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ETAPS Foreword

Welcome to the 24th ETAPS! ETAPS 2021 was originally planned to take place in
Luxembourg in its beautiful capital Luxembourg City. Because of the Covid-19 pan-
demic, this was changed to an online event.

ETAPS 2021 was the 24th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organising these conferences in a coherent,
highly synchronised conference programme enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops take place that
attract many researchers from all over the globe.

ETAPS 2021 received 260 submissions in total, 115 of which were accepted,
yielding an overall acceptance rate of 44.2%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2021 featured the unifying invited speakers Scott Smolka (Stony Brook
University) and Jane Hillston (University of Edinburgh) and the conference-specific
invited speakers Isil Dillig (University of Texas at Austin) for ESOP and Willem Visser
(Stellenbosch University) for FASE. Inivited tutorials were provided by Erika Abrahdm
(RWTH Aachen University) on analysis of hybrid systems and Madhusudan
Parthasararathy (University of Illinois at Urbana-Champaign) on combining machine
learning and formal methods.

ETAPS 2021 was originally supposed to take place in Luxembourg City, Luxem-
bourg organized by the SnT - Interdisciplinary Centre for Security, Reliability and
Trust, University of Luxembourg. University of Luxembourg was founded in 2003.
The university is one of the best and most international young universities with 6,700
students from 129 countries and 1,331 academics from all over the globe. The local
organisation team consisted of Peter Y.A. Ryan (general chair), Peter B. Roenne (or-
ganisation chair), Joaquin Garcia-Alfaro (workshop chair), Magali Martin (event
manager), David Mestel (publicity chair), and Alfredo Rial (local proceedings chair).

ETAPS 2021 was further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).
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The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbriicken), Marieke Huisman (Twente, chair), Jan Kofron (Prague), Barbara Konig
(Duisburg), Gerald Liittgen (Bamberg), Caterina Urban (INRIA), Tarmo Uustalu
(Reykjavik and Tallinn), and Lenore Zuck (Chicago).

Other members of the steering committee are: Patricia Bouyer (Paris), Einar Broch
Johnsen (Oslo), Dana Fisman (Be’er Sheva), Jan Friso Groote (Eindhoven), Esther
Guerra (Madrid), Reiko Heckel (Leicester), Joost-Pieter Katoen (Aachen and Twente),
Stefan Kiefer (Oxford), Fabrice Kordon (Paris), Jan Kietinsky (Munich), Kim G.
Larsen (Aalborg), Tiziana Margaria (Limerick), Andrew M. Pitts (Cambridge), Grigore
Rosu (Illinois), Peter Ryan (Luxembourg), Don Sannella (Edinburgh), Lutz Schroder
(Erlangen), Ilya Sergey (Singapore), Mariélle Stoelinga (Twente), Gabriele Taentzer
(Marburg), Christine Tasson (Paris), Peter Thiemann (Freiburg), Jan Vitek (Prague),
Anton Wijs (Eindhoven), Manuel Wimmer (Linz), and Nobuko Yoshida (London).

I’d like to take this opportunity to thank all the authors, attendees, organizers of the
satellite workshops, and Springer-Verlag GmbH for their support. I hope you all
enjoyed ETAPS 2021.

Finally, a big thanks to Peter, Peter, Magali and their local organisation team for all
their enormous efforts to make ETAPS a fantastic online event. I hope there will be a
next opportunity to host ETAPS in Luxembourg.

February 2021 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President



Preface

TACAS 2021 was the 27th edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems conference series. TACAS
2021 was part of the 24th European Joint Conferences on Theory and Practice of
Software (ETAPS 2021), which although originally planned to take place in
Luxembourg City, was held as an online event on March 27 to April 1 due the the
COVID-19 pandemic.

TACAS is a forum for researchers, developers, and users interested in rigorously
based tools and algorithms for the construction and analysis of systems. The conference
aims to bridge the gaps between different communities with this common interest and
to support them in their quest to improve the utility, reliability, flexibility, and effi-
ciency of tools and algorithms for building computer-controlled systems. There were
four types of submissions for TACAS:

— Research papers advancing the theoretical foundations for the construction and
analysis of systems.

— Case study papers with an emphasis on a real-world setting.

— Regular tool papers presenting a new tool, a new tool component, or novel
extensions to an existing tool and requiring an artifact submission.

— Tool demonstration papers focusing on the usage aspects of tools, also subject to the
artifact submission requirement.

This year 141 papers were submitted to TACAS, consisting of 90 research papers,
29 regular tool papers, 16 tool demo papers, and 6 case study papers. Authors were
allowed to submit up to four papers. Each paper was reviewed by three Program
Committee (PC) members, who made extensive use of subreviewers.

Similarly to previous years, it was possible to submit an artifact alongside a paper,
which was mandatory for regular tool and tool demo papers. An artifact might consist
of a tool, models, proofs, or other data required for validation of the results of the
paper. The Artifact Evaluation Committee (AEC) was tasked with reviewing the
artifacts, based on their documentation, ease of use, and, most importantly, whether the
results presented in the corresponding paper could be accurately reproduced. Most
of the evaluation was carried out using a standardised virtual machine to ensure con-
sistency of the results, except for those artifacts that had special hardware requirements.

The evaluation consisted of two rounds. The first round was carried out in parallel
with the work of the PC. The judgment of the AEC was communicated to the PC and
weighed in their discussion. The second round took place after paper acceptance
notifications were sent out; authors of accepted research papers who did not submit an
artifact in the first round could submit their artifact here. In total, 72 artifacts were
submitted (63 in the first round and 9 in the second), of which 57 were accepted and 15
rejected. This corresponds to an acceptance rate of 79 percent. Papers with an accepted
artifact include a badge on the first page.
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Selected authors were requested to provide a rebuttal for both papers and artifacts in
case a review gave rise to questions. In total 166 rebuttals were provided. Using the
review reports and rebuttals the Programme and the Artifact Evaluation Committees
extensively discussed the papers and artifacts and ultimately decided to accept 32
research papers, 7 tool papers, 6 tool demos, and 2 case studies.

Besides the regular conference papers, this two-volume proceedings also contains 8
short papers that describe the participating verification systems and a competition
report presenting the results of the 10th SV-COMP, the competition on automatic
software verifiers for C and Java programs. These papers were reviewed by a separate
program committee (PC); each of the papers was assessed by at least three reviewers.
A total of 30 verification systems with developers from 11 countries entered the sys-
tematic comparative evaluation, including four submissions from industry. Two ses-
sions in the TACAS program were reserved for the presentation of the results: (1) a
summary by the competition chair and of the participating tools by the developer teams
in the first session, and (2) an open community meeting in the second session.

March/April 2021 Jan Friso Groote
Kim Guldstrand Larsen

Frédéric Lang

Thierry Lecomte

Thomas Neele

Peter Gjol Jensen

Dirk Beyer

Alfredo Rial
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Abstract. Numerous tasks in program analysis and synthesis reduce to
deciding reachability in possibly infinite graphs such as those induced by
Petri nets. However, the Petri net reachability problem has recently been
shown to require non-elementary time, which raises questions about the
practical applicability of Petri nets as target models. In this paper, we
introduce a novel approach for efficiently semi-deciding the reachability
problem for Petri nets in practice. Our key insight is that computa-
tionally lightweight over-approximations of Petri nets can be used as
distance oracles in classical graph exploration algorithms such as A" and
greedy best-first search. We provide and evaluate a prototype implemen-
tation of our approach that outperforms existing state-of-the-art tools,
sometimes by orders of magnitude, and which is also competitive with
domain-specific tools on benchmarks coming from program synthesis and
concurrent program analysis.

Keywords: Petri nets - reachability - shortest paths - model checking

1 Introduction

Many problems in program analysis, synthesis and verification reduce to decid-
ing reachability of a vertex or a set of vertices in infinite graphs, e.g., when
reasoning about concurrent programs with an unbounded number of threads,
or when arbitrarily many components can be used in a synthesis task. For au-
tomated reasoning tasks, those infinite graphs are finitely represented by some
mathematical model. Finding the right such model requires a trade-off between
the two conflicting goals of maximal expressive power and computational feasi-
bility of the relevant decision problems. Petri nets are a ubiquitous mathemati-
cal model that provides a good compromise between those two goals. They are
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expressive enough to find a plethora of applications in computer science, in par-
ticular in the analysis of concurrent processes, yet the reachability problem for
Petri nets is decidable [47,40,41,43]. Counter abstraction has evolved as a generic
abstraction paradigm that reduces a variety of program analysis tasks to prob-
lems in Petri nets or variants thereof such as well-structured transition systems,
see e.g. [30,39,61,5]. Due to their generality and versatility, Petri nets and their
extensions find numerous applications also in other areas, including the design
and analysis of protocols [22], business processes [57], biological systems [33,11]
and chemical systems [2]. The goal of this paper is to introduce and evaluate
an efficient generic approach to deciding the Petri net reachability problem on
instances arising from applications in program verification and synthesis.

A Petri net comprises a finite set of places with a finite number of transitions.
Places carry a finite yet unbounded number of tokens and transitions can remove
and add tokens to places. A marking specifies how many tokens each place
carries. An example of a Petri net is given on the left-hand side of Figure 1,
where the two places {p1,p2} are depicted as circles and transitions {¢1,t2, 3}
as squares. Places carry tokens depicted as filled circles; thus p; carries one token
and py carries none. We write this as [p;: 1,pa: 0], or (1,0) if there is a clear
ordering on the places. Transition t; can add a single token to place p; at any
moment. As soon as a token is present in pi, it can be consumed by transition
to, which then adds a token to place ps and puts back one token to place p;.
Finally, transition ¢3 consumes tokens from p; without adding any token at all.

Y
2, 0) (0,0

t1 b to P2 k/w ltz t3

//\/im\

Fig. 1. Left: A Petri net N. Right: Search of the forthcoming Algorithm 1 over the
graph Gn(N) from (0,0) to (0,1), where (z,y) denotes [p1: z,p2: y] and each number
in a box next to a marking is its heuristic value. Only the blue region is expanded.

A Petri net induces a possibly infinite directed graph whose vertices are
markings, and whose edges are determined by the transitions of the Petri net,
cf. the right side of Figure 1. Given two markings, the reachability problem asks
whether they are connected in this graph. In Figure 1, the marking (0, 1) i
reachable from (0,0), e. g via paths of lengths 3 and 5: (0, O) (1, O)

(1, 1) (0,1) and (0, ) 5 (1, 0) (2, 0) (2, 1) (1, 1) (0,1).

In practice, the Petri net reachability problem is a challenging decision prob-
lem due to its horrendous worst-case complexity: an exponential-space lower
bound was established in the 1970s [45], and a non-elementary time lower bound
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has only recently been established [13]. One may thus question whether a prob-
lem with such high worst-case complexity is of any practical relevance, and
whether reducing program analysis tasks to Petri net reachability is anything
else than merely an intellectual exercise. We debunk those concerns and present
a technique which decides most reachability instances appearing in the wild.
When evaluated on large-scale instances involving Petri nets with thousands of
places and tens of thousands of transitions, our prototype implementation is
most of the time faster, even up to several orders of magnitude on large-scale
instances, and solves more instances than existing state-of-the-art tools. Our im-
plementation is also competitive with specialized domain-specific tools. One of
the biggest advantages of our approach is that it is extremely simple to describe
and implement, and it readily generalizes to many extensions of Petri nets. In
fact, it was surprising to us that our approach has not yet been discovered. We
now describe the main observations and techniques underlying our approach.
Ever since the early days of research in Petri nets, state-space over-approxi-
mations have been studied to attenuate the high computational complexity of
their decision problems. One such over-approximation is, informally speaking,
to allow places to carry a negative number of tokens. Deciding reachability then
reduces to solving the so-called state equation, a system of linear equations as-
sociated to a Petri net. Another over-approximation are continuous Petri nets,
a variant where places carry fractional tokens and “fractions of transitions” can
be applied [14]. The benefit is that deciding reachability drops down to polyno-
mial time [25]. While those approximations have been applied for pruning search
spaces, see e.g. [23,4,8,29], we make the following simple key observation:

If a marking m is reachable from an initial marking in an over-
approximation, then the length of a shortest witnessing path in the over-
approzimation lower bounds the length of a shortest path reaching m.

The availability of an oracle providing lower bounds on the length of shortest
paths between markings enables us to appeal to classical graph traversal algo-
rithms which have been highly successful in artificial intelligence and require such
oracles, namely A" and greedy best-first search, see e.g. [52]. In particular, deter-
mining the length of shortest paths in the over-approximations described above
can be phrased as optimization problems in (integer) linear programming and
optimization modulo theories, for which efficient off-the-shelf solvers are avail-
able [32,7]. Thus, oracle calls can be made at comparably modest computational
cost, which is crucial for the applicability of those algorithms. As a result, a
large class of existing state-space over-approximations can be applied to obtain
a highly efficient forward-analysis semi-decision procedure for the reachability
problem. For example, in Figure 1, using the state equation as distance oracle,
A" only explores the four vertices in the blue region and directly reaches the
target vertex, whereas a breadth-first search may need to explore all vertices of
the figure and a depth-first search may even not terminate.

In theory, our approach could be turned into a decision procedure by ap-
plying bounds on the length of shortest paths in Petri nets [44]. However, such
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lengths can grow non-elementarily in the number of places [13], and just com-
puting the cut-off length will already be infeasible for any Petri net of practical
relevance. It is worth mentioning that, in practice, it has been observed that the
over-approximations we employ also often witness non-reachability though, see
g- [23]. Still, when dealing with finite state spaces, our procedure is complete.
A noteworthy benefit of our approach is that it enables finding shortest paths
when A" is used as the underlying algorithm. In program analysis, paths usually
correspond to traces reaching an erroneous configuration. In this setting, shorter
error traces are preferred as they help understanding why a certain error occurs.
Furthermore, in program synthesis, paths correspond to synthesis plans. Again,
shorter paths are preferred as they yield shorter synthesized programs. In fact,
we develop our algorithmic framework for weighted Petri nets in which transi-
tions are weighted with positive integers. Classical Petri nets correspond to the
special instance where all weights are equal to one. Weighted Petri nets are useful
to reflect cost or preferences in synthesis tasks. For example, there are program
synthesis approaches where software projects are mined to determine how often
API methods are called to guide a procedure by preferring more frequent meth-
ods [27,26,46]. Similarity metrics can also be used to obtain costs estimating the
relevance of invoking methods [24]. It has further been argued that weighted
Petri nets are a good model for synthesis tasks of chemical reactions as they can
reflect costs of various chemical compounds [58]. Finally, weights can be viewed
as representing an amount of time it takes to fire a transition, see e.g. [50].

Related work. Our approach falls under the umbrella term directed model check-
ing coined in the early 2000s, which refers to a set of techniques to tackle the
state-explosion problem via guided state-space exploration. It primarily targets
disproving safety properties by quickly finding a path to an error state without
the need to explicitly construct the whole state space. As such, directed model
checking is useful for bug-finding since, in the words of Yang and Dill [60], in
practice, model checkers are most useful when they find bugs, not when they prove
a property. The survey paper [20] gives an overview over various directed model
checking techniques for finite-state systems.

For Petri nets, directed reachability algorithms based on over-approximations
as developed in this work have not been described. In [56], it is argued that ex-
ploration heuristics, like A", can be useful for Petri nets, but they do not consider
over-approximations for the underlying heuristic functions. The authors of [36]
use Petri nets for scheduling problems and employ the state equation, viewed as
a system of linear equations over @, in order to explore and prune reachability
graphs. This approach is, however, not guaranteed to discover shortest paths.
There has been further work on using A* for exploring the reachability graph of
Petri nets for scheduling problems, see, e.g., [42,48] and the references therein.

2 Preliminaries

Let N:={0,1,...}. For all D C Q and > € {>,>}, let Dy g :== {a € D : a > 0},
and for every set X, let DX denote the set of vectors DX := {v | v: X — D}.
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We naturally extend operations componentwise. In particular, (u + v)(x) =
u(z) + v(z) for every z € X, and uw > v iff u(x) > v(zx) for every = € X.

Graphs. A (labeled directed) graph is a triple G = (V, E, A), where V is a set of
nodes, A is a finite set of elements called actions, and E C V x A x V is the
set of edges labeled by actions. We say that G has finite out-degree if the set of
outgoing edges {(w,a,w’) € E : w = v} is finite for every v € V. Similarly, it has
finite in-degree if the set of ingoing edges is finite for every v € V. If G has both
finite out- and in-degree, then we say that G is locally finite. A path 7 is a finite
sequence of nodes (v;);;., and actions (a;),,.,, such that (vi,a;,vi41) € E
for all 1 <14 < n. We say that 7 is a path from v to w (or a v-w path) if v = v,
and w = v,, and its label is ayas - - - a,—1, where € denotes the empty sequence.

A weighted graph is a tuple G = (V, E, A, u) where (V,E,A) is a graph
with a weight function p: E — Qsqg. The weight of path 7 is the weight of its
edges, i.e. pu(m) == > 1 ;o (v, a5, vi1). A shortest path from v to w is a v-w
path 7 minimizing p(7). We define distg: V x V — Qs U {oc} as the distance
function where distg (v, w) is the weight of a shortest path from v to w, with
dist (v, w) == oo if there is none. We assume throughout the paper that weighted
graphs have a minimal weight, i.e. that min{u(e) : e € E} exists. For graphs
with finite out-degree, this ensures that if a path exists between two nodes, then
a shortest one exists.* This mild assumption always holds in our setting.

Petri nets. A weighted Petri net is a tuple N' = (P, T, f, \) where

— P is a finite set whose elements are called places,

— T is a finite set, disjoint from P, whose elements are called transitions,

— [ (PxT)U(T x P) — N is the flow function assigning multiplicities to
arcs connecting places and transitions, and

AT — Qs is the weight function assigning weights to transitions.

A marking is a vector m € N¥ which indicates that place p holds m(p) tokens. A
weighted Petri net with A(¢) = 1 for each ¢ € T is called a Petri net. For example,
Figure 1 depicts a Petri net N with P = {p1,p2}, T = {t1,t2,t3}, f(p1,t3) =
f(p1,t2) = f(t1,p1) = f(ta,p1) = f(te,p2) = 1 (multiplicity omitted on arcs)
and f(—,—) = 0 elsewhere (no arc). Moreover, A is marked with [p;: 1,p2: 0].

The guard and effect of a transition t € T are vectors g, € N and A, € Z”
where g;(p) = f(p,t) and A(p) = f(t,p) — f(p,t). We say that ¢ is firable
from marking m if m > g;. If t is firable from m, then it may be fired, which
leads to marking m’ = m + A,;. We write this as m i>N m’. These notions
naturally extend to sequences of transitions, i.e. —y denotes the identity relation
over NP A_ := 0, A\(¢) = 0, and for every ti,to,...,tx € T: Ay py.p, =
Ay + A+t Ay, At 1) = A1) + Alt2) + -+ + Alty), and

tita--ty ty to t1
AR = Sy o0 By o Sy .

4 Otherwise, there could be increasingly better paths, e.g. of weights 1, 1/2,1/4,....
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We say that —yi= Uter ;N and Sy:= Uyer- —»y are the step and reachability
relations. Note that the latter is the reflexive transitive closure of —y.

For example, m ﬂm m’ and m MN m’ in Figure 1, where m :=
[p1: 1,p2: 0] and m/ == [p;: 0,py: 1]. Moreover, to is not firable in m/.

Given a sequence o € T*, denote by |o|; € N the number of times transition
t occurs in o. The Parikh image of o is the vector & € N7 that captures the
number of occurrences of transitions appearing in o, i.e. o' (t) := |o|, forall t € T..

Each weighted Petri net N' = (P, T, f,A) induces a locally finite weighted
graph Gn(N) == (V, E, T, it), called its reachability graph, where V := N E =
{(m,t,m’) : m SN m'} and p(m,t,m') .= A(t) for each (m,t,m’) € E. An
example of a reachability graph is given on the right of Figure 1. We write dist
to denote distg,,(n). We have disty(m, m') # oo iff m sy m/ for some o € T*,
and if the latter holds, then distxr(m, m’) is the minimal weight among such
firing sequences o. Moreover, for (unweighted) Petri nets, dista(m,m’) is the
minimal number of transitions to fire to reach m’ from m.

3 Directed Search Algorithms

Our approach relies on classical pathfinding procedures guided by node selection
strategies. Their generic scheme is described in Algorithm 1. Its termination with
avalue d # oo indicates that the weighted graph G = (V, E, A, 1) has a path from
s to t of weight d, whereas termination with d = oo signals that distg(s,t) = oc.

Algorithm 1 maintains a set of

1 g:=[s—=0,0—00:0#s] frontier nodes C and a map-
2 C:={s} ping g: V — Qx> U {00} such
3 while C' # () do that g(w) is the weight of the
a v = argmin, - S(g,v) best known path from s to w.
5 if v =t then return g(t) In Line 4, a selection strategy
6 for (v,a,w) € E do S determines which node v
7 if g(v) + p(v,a,w) < g(w) then to ezpand next. Starting from
8 g(w) := g(v) + p(v, a,w) Line 6, a successor w of v is
9 C =CuU{w} added to the frontier if its dis-
10 C:=C\{v} tance improves.
11 return oo Let h: V. — Qo U {oc}
Algorithm 1: Directed search algorithm. estimate the distance from all

nodes to a target t € V. The

selection strategies sending (g, v) respectively to g(v), g(v) + h(v) or h(v) yield
the classical Dijkstra’s, A" and greedy best-first search (GBFS) algorithms.

When instantiating S with Dijkstra’s selection strategy, a return value d # oo

is guaranteed to equal distg(s,t). This is not true for A* and GBFS. However,

if h fulfills the following consistency properties, then A" also has this guarantee:
h(t) = 0 and h(v) < u(v,a,w) + h(w) for every (v,a,w) € E (see, e.g., [52]).

In the setting of infinite graphs, unlike GBFS, A" and Dijkstra’s selection

strategies guarantee termination if distg (s, t) # oo. Yet, we introduce unbounded

heuristics for which termination is also guaranteed for GBFS. Note that these
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guarantees would vanish in the presence of zero weights. An infinite path 7 is
a sequence of nodes (v;);cy and actions (a;);cy such that (vi, a;,vi41) € E for
all i € N. We say that heuristic h is unbounded (w.r.t. G) if for every infinite
simple path vy, v1,v2,... of G and for every b € >, there exists an index i s.t.
h(v;) > b. In other words, unboundedness forbids an infinite simple path of G
to “cap” at some distance estimate b. The following technical lemma enables to
prove termination of GFBS in the presence of unbounded heuristics.

Lemma 1. If G is locally finite, then the following holds:

1. The set of paths of weight at most c € Q>¢ starting from node s is finite.
2. Let W C V. The set distq(W,t) = {distg(w,t) : w € W} has a minimum.
3. No node is expanded infinitely often by Algorithm 1.

Theorem 1. Algorithm 1 with the greedy best-first search selection strategy al-
ways finds reachable targets for locally finite graphs and unbounded heuristics.

Proof. First observe that Algorithm 1 satisfies this invariant:

if g(v) # oo, then g(v) is the weight of a path from s to v in G
whose nodes were all expanded, except possibly v. (x)

Assume distg(s,t) # oo. For the sake of contradiction, suppose ¢ is never
expanded. Let K; be the subgraph of G induced by nodes expanded at least
once within the first 7 iterations of the while loop. In particular, K; is the
graph made only of node s. Let K = Ky UKy U---. By Lemma 1 (3), no node is
expanded infinitely often, hence K is infinite. Moreover, K has finite out-degree,
and each node of K is reachable from s in K by (). Thus, by Konig’s lemma,
K contains an infinite path vy, v1,... € V of pairwise distinct nodes.

Let w be a node of K minimizing dist(w, t). That minimum is well-defined
by Lemma 1 (2). Since s € K; C K and t is reachable from s, we have
distg(w, t) < distg(s,t) < oco. By minimality of w # t, there exists an edge
(w,a,w") of G such that distg(w’,t) < diste(w,t) and w’ does not appear in K.
Note that w’ is added to C at some point, but is never expanded as it would
otherwise belong to K. Let ¢ be the smallest index such that w belongs to Kj.
Since h is unbounded, there exists j such that h(v;) > h(w’) and v; is expanded
after iteration ¢ of the while loop. This is a contradiction as w’ would have been
expanded instead of v;. 0

4 Directed Reachability

In this section, we explain how to instantiate Algorithm 1 for finding short(est)
firing sequences witnessing reachability in weighted Petri nets. Since Dijkstra’s
selection strategy does not require any heuristic, we focus on A" and greedy best-
first search which require consistent and unbounded heuristics. More precisely,
we introduce distance under-approximations (Section 4.1); present relevant con-
crete distance under-approximations (Section 4.2); and put everything together
into our framework (Section 4.3).
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4.1 Distance Under-approximations

A distance under-approzimation of a weighted Petri net N' = (P, T, f,)\) is a
function d: NP x NP — Qs U {oc} such that for all m, m’,m"” € NF:

— d(m,m’) < distyr(m,m’),
— d(m,m"”) < d(m,m’) +d(m',m") (triangle inequality), and
— d is effective, i.e. there is an algorithm that evaluates d on all inputs.

We naturally obtain a heuristic from d for a directed search towards marking
Myarges- Indeed, let h: NP — Q>0 U {oo} be defined by h(m) = d(m, myarget)-
The following proposition shows that & is a suitable heuristic for A":

Proposition 1. Mapping h is a consistent heuristic.
Proof. Let m, m’ € NP and t € T be such that m Sy m/. We have:

h(m) = d(mv mtarget) by def. of h)

<d(m,m') +d(m/, myarget) by the triangle inequality)

< A(t) + d(m/, myarget) since m Sy m')

(
(

< distyr(m,m') + d(m’, myarger) (by distance under-approximation)
(

= A(t) + h(m/) (

by def. of h).

MOI‘GOVGI‘, h(mtarget) == d(mtargeta mtarget) S diStN(mtargem mtarget) - 07 Where
the last equality follows from the fact that weights are positive. O

4.2 From Petri Net Relaxations to Distance Under-approximations

We now introduce classical relaxations of Petri nets which over-approximate
reachability and consequently give rise to distance under-approximations. The
main source of hardness of the reachability problem stems from the fact that
places are required to hold a non-negative number of tokens. If we relax this re-
quirement and allow negative numbers of tokens, we obtain a more tractable re-
lation. More precisely, we write m L, m/ iff m’ = m+A,. Note that transitions
are always firable under this semantics. Moreover, they may lead to “markings”
with negative components.

Another source of hardness comes from the fact that markings are discrete.
Hence, we can further relax —7 into —g where transitions may be scaled down:

mi><@m’ — m' =m+6§- A, for some 0 < § < 1.
One gets a less crude relaxation from considering nonnegative “markings” only:
min@zo m < (m>§-g;) and (m' =m+6-A;) for some 0 < § < 1.

Under these, we obtain “markings” from QF and QIZ)O respectively. Petri nets
equipped with relation —q., are known as continuous Petri nets [14,15].



Directed Reachability for Infinite-State Systems 11

To unify all three relaxations, we sometimes write m ﬁ>(G, m/’ to emphasize
the scaling factor &, where § = 1 whenever G = Z. Let dg : NP xNF — Qs oU{oc}

be defined as dg(m,m’) = oo if m £g m/, and otherwise:

i=1

dg(m,m’) :== min {Z 5; - A(t;) : m 2 ontn, m’} :

In words, dg(m,m’) is the weight of a shortest path from m to m/ in the graph
induced by the relaxed step relation —g, where weights are scaled accordingly.
We now show that any dg, which we call the G-distance, is a distance under-
approximation, and first show effectiveness of all dg. It is well-known and readily
seen that reachability over G € {Z,Q} is characterized by the following state
equation, since transitions are always firable due to the absence of guards:

m Sem — ElaeGgo:m’:m+Za(t)-At.
teT

Here, o can be seen as the Parikh image of a sequence o leading from m to m/'.
Proposition 2. The functions dz, dg, dg., are effective.

Proof. By the state equation, we have:

dg(m,m') = min {Z At)-o(t):0eGLy,m =m+ Za(t) : At} .

teT teT

Therefore, dg(m, m’) (resp. dz(m, m’)) are computable by (resp. integer) linear
programming, which is complete for P (resp. NP), in its variant where one must
check whether the minimal solution is at most some bound.

For dg.,, note that the reachability relation of a continuous Petri net can
be expressed in the existential fragment of linear real arithmetic [8]. Hence,
effectiveness follows from the decidability of linear real arithmetic. a

Altogether, we conclude that dg is a distance under-approximation. Further-
more, we can show that dg yields unbounded heuristics, which, by Theorem 1,
ensure termination of GBFS on reachable instances:

Theorem 2. Let G € {Z,Q,Q>¢}, then dg is a distance under-approzimation.
Moreover, the heuristics arising from it are unbounded.

Proof. Let N = (P, T, f,\) be a weighted Petri net. Effectiveness of dg follows
from Proposition 2. By definitions and a simple induction, 2y C g for any
sequence o € T with weights left unchanged for unscaled transitions. This
implies that dg(m,m’) < distar(m,m’) for every m, m’ € G. Moreover, the
triangle inequality holds since for every m, m/,m” € G and sequences o, o’

o / 0'/ 1. . O'O'/ 1
m —g m —gm’ implies m —g m'.
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Let us sketch the proof of the second part. Let marget be a marking and let
hg be the heuristic obtained from dg for Myarget. Since hg(m) < hg(m) for all
m and G € {Z,Q>¢}, it suffices to prove that dg is unbounded. Suppose it is
not. There exist b € Q> and pairwise distinct markings mg, my, ... each with
hg(m;) < b. Let ; be a solution to the state equation that gives hg(m;). By
well-quasi-ordering and pairwise distinctness, there is a subsequence such that
my,(p) < my, (p) < --- for some p € P. Thus, lim;_,cc Myarget(p) — M, (p) =
—00, and hence lim; o, x;,(s) = oo for some s € T with A,(p) < 0. This means
that b > hg(m,) = > ,cr A(t) - x4, () > b for a sufficiently large j. O

4.3 Directed Reachability Based on Distance Under-approximations

We have all the ingredients to use Algorithm 1 for answering reachability queries.

A distance under-approximation scheme is a mapping D that associates a dis-
tance under-approximation D(N') to each weighted Petri net N Let hp( N Marger
be the heuristic obtained from D(N) for marking myarget. By instantiating Al-
gorithm 1 with this heuristic, we can search for a short(est) firing sequence wit-
nessing that m,,ect is reachable. Of course, constructing the reachability graph
of N would be at least as difficult as answering this query, or impossible if it is
infinite. Hence, we provide Gn(N') symbolically through A and let Algorithm 1
explore it on-the-fly by progressively firing its transitions.

For each G € {Z,Q,Q>0}, the function D¢ mapping a weighted Petri net '
to its G-distance dg is a distance under-approximation scheme with consistent
and unbounded heuristics by Proposition 1, Theorem 1 and Theorem 2. Although
Algorithm 1 is geared towards finding paths, it can prove non-reachability even
for infinite reachability graphs. Indeed, at some point, every candidate marking
m € C may be such that hp(ar)m,,,,.. (M) = 00, which halts with oo. There is
no guarantee that this happens, but, as reported e.g. by [23,8], the G-distance for
domains G € {Z,Q,Q>¢} does well for witnessing non-reachability in practice,
often from the very first marking M.

An example. We illustrate our approach with a toy example and Dg (the scheme
based on the state equation over QL ). Consider the Petri net A illustrated on
the left of Figure 1, but marked with myy;; := [p1: 0,p2: 0]. Suppose we wish to
determine whether myy;; can reach marking Mmyarget = [p1: 0,p2: 1] in N.

We consider the case where Algorithm 1 follows a greedy best-first search,
but the markings would be expanded in the same way with A". Let us abbreviate
a marking [p1: @, p2: y] as (z,y). Since Az, = (0, 1), the heuristic considers that
Mini¢ Can reach Myager in a single step using transition to (it is unaware of the
guard). Marking (1,0) is expanded and its heuristic value increases to 2 as the
state equation considers that both ¢ and ¢3 must be fired (in some unknown
order). Markings (2,0) and (1,1) are both discovered with respective heuristic
values 3 and 1. The latter is more promising, so it is expanded and target (0,1)
is discovered. Since its heuristic value is 0, it is immediately expanded and the
correct distance dist o (Minit, Miarget) = 3 is returned. Note that, in this example,
the only markings expanded are precisely those occurring on the shortest path.
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Handling multiple targets. Algorithm 1 can be adapted to search for some mark-
ing from a given target set X C N”. The idea consists simply in using a heuristic
hx: NP — Qo U {oc} estimating the weight of a shortest path to any target:

hx (m) = min{Ap ) miaege (M) Mtarger € X}
This is convenient for partial reachability instances occurring in practice, i.e.

X = {mtarget e N': Marget (D) ~p c(p)} where ¢ € N and each ~p€ {=,>}.

5 Experimental Results

We implemented Algorithm 1 in a prototype called FASTFORWARD [10], which
supports all presented selection strategies and distance under-approximations.
We evaluate FASTFORWARD empirically with three main goals in mind. First,
we show that our approach is competitive with established tools and can even
vastly outperform them, and we also give insights on its performance w.r.t. its
parameterizations. Second, we compare the length of the witnesses reported by
the different tools. Third, we briefly discuss the quality of the heuristics.

Technical details. Our tool is written in C# and uses GUROBI [32], a state-of-
the-art MILP solver, for distance under-approximations. Benchmarks were run
on an machine with an 8-Core Intel® Core™ i7-7700 CPU @ 3.60GHz running
Ubuntu 18.04 and with memory constrained to ~8GB. We used a timeout of 60
seconds per instance, and all tools were invoked from a PYTHON script using the
time module for time measurements.

A minor challenge arises from the fact that many instances specify an upward-
closed set of initial markings rather than a single one. For example, mp;c(p) >
1 to specify, e.g., an arbitrary number of threads. We handle this by setting
minit(p) = 1 and adding a transition ¢, producing a token into p.

As a preprocessing step, we implemented sign analysis [29]. It is a general
pruning technique running in polynomial time that has been shown beneficial
for reducing the size of the state-space of Petri nets. Initially, places that carry
tokens are viewed as marked. For each transition whose input places are marked,
the output places also become marked. When a fixpoint is reached, places left
unmarked cannot carry tokens in any reachable marking, so they are discarded.

Benchmarks. Due to the lack of tools handling reachability for unbounded
state spaces, benchmarks arising in the literature are primarily coverability in-
stances®, i.e. reachability towards an upward closed set of target markings. We
gathered 61 positive and 115 negative coverability instances originating from
five suites [39,28,6,35,18] previously used for benchmarking [23,8,29]. They arise
from the analysis of multi-threaded C programs with shared-memory; mutual

5 The Model Checking Contest focuses on reachability for finite state spaces.
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exclusion algorithms; communication protocols; provenance analysis in the con-
text of a medical messaging and a bug-tracking system; and the verification of
ERLANG concurrent programs. We further extracted the sypet suite made of 30
positive (standard) reachability instances arising from queries encountered in
type-directed program synthesis [24]. The overall goal of this work is to enable
a vast range of untapped applications requiring reachability over unbounded
state-spaces, rather than just coverability. To obtain further (positive) instances
of the Petri net reachability problem, we performed random walks on the Petri
nets from the aforementioned coverability benchmarks. To this end, we used the
largest quarter of distinct Petri nets from each coverability suite, for a total of
33. We performed one random walk each of lengths 20, 25, 30, 35, 40, 50, 60,
75, 90 and 100, and we saved the resulting marking as the target. For nets with
an upward-closed initial marking, we randomly chose to start with a number of
tokens between 1 and 20% of the length of the walk. It is important to note that
even with long random walks, instances can (and in fact tend to) have short wit-
nesses. To remove trivial instances and only keep the most challenging ones, we
removed those instances where any considered tool reported a witness of length
at most 20, disregarding the transitions used to generate the initial marking.
This leaves us with 127 challenging instances on which the shortest witness is
either unknown or has length more than 20. Moreover, this yields real-world
Petri nets with no bias towards any specific kind of targets.
This table summarizes the characteristics of the various benchmarks:

Number of places Number of transitions
min. med. mean max. min. med. mean max.

COVERABILITY 61 16 87 226 2826 14 181 1519 27370
SYPET 30 65 251 320 1199 537 2307 2646 8340
RANDOM WALKS 127 52 306 531 2826 60 3137 5885 27370

Suite Size

Tool comparison. To evaluate our approach on reachability instances, we com-
pare FASTFORWARD to LOLA [53], a tool developed for two decades that wins
several categories of the Model Checking Contest every year. LOLA is geared to-
wards model checking of finite state spaces, but it implements semi-decision pro-
cedures for the unbounded case. We further compare the three selection strate-
gies of Algorithm 1: A", GBFS and Dijkstra; the two first with the distance
under-approximation scheme Dg, which provides the best trade-off between es-
timate quality and efficiency. In fact, the other heuristics perform strictly worse
on almost all instances. We also considered comparing with KREACH [17], a tool
showcased at TACAS’20 that implements an exact non-elementary algorithm.
However, it timed out on all instances with a larger time limit of 10 minutes.
Figure 2 depicts the number of reachability instances decided by the tools
within the time limit. As shown, all approaches outperform LOLA, with GBFS
as the clear winner on the RANDOM-WALK suite and A" slightly better on the
SYPET suite. Note that Dijkstra’s selection strategy sometimes competes due
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Fig. 2. Cumulative number of reachability instances decided over time. Left: SYPET
suite (semi-log scale). Right: RANDOM-WALK suite (log scale).

to its locally very cheap computational cost (no heuristic evaluation), but its
performance generally decreases as the distance increases.

To show the versatility of our approach, we also benchmarked FASTFOR-
WARD on the original coverability instances. Recall that coverability EXPSPACE-
complete and reduces to reachability in linear time [45,51]. While exceeding the
PSPACE-completeness of reachability for finite state-spaces [38,21], coverability
is much more tame than the non-elementary complexity of (unbounded) reach-
ability. We compare FASTFORWARD to four tools implementing algorithms tai-
lored, some of which are specifically to the coverability problem: LOLA, BFc [39],
ICOVER [29] and the backward algorithm (based on [1]) of MIST [28]. We did not
test PETRINIZER [23] since it only handles negative instances, while we focus on
positive ones; likewise for QCOVER [8] since it is superseded by ICOVER.

59/61 60/61
g g 60 57/61 g g 60 50761
g3 50/61 €5 50/61
g8 46/61 23 46/61
2240 36/61 Z L 40 t 40/61
Z VI 34/61 Z Vi 37/61
= 31/61 ° 5 32/61
2% 2 2732
ER] Elss]
2% 55
< <
0 | | | | 0 1 | | |
01 05 1.5 5 15 60 01 05 1.5 5 15 60
time ¢ in seconds time ¢ in seconds

—4— FF(A", Dg) —i— FF(GBFS, Dy) —@— FF(DIKSTRA) =—4— LOLA
—— Brc —— ICOVER — MIST

Fig. 3. Cumulative number of (positive) coverability instances decided over time. Left:
Evaluation on the original instances. Right: Evaluation on the pre-pruned instances.

Figure 3 illustrates the number of coverability instances decided within the
time limit. The left side corresponds to an evaluation on the original instances
where FASTFORWARD performs pruning (included in its runtime). On the right-
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hand side the pruned instances are the input for all tools, and the time for this
pruning is not included for any tool. As a caveat, [COVER performs its own pre-
processing which includes pruning among techniques specific to coverability. This
preprocessing is enabled (and its time is included) even when pruning is already
done. Using FASTFORWARD(A®, Dg), we decide more instances than all tools on
unpruned Petri nets, and one less than BrC for pre-pruned instances. It is worth
mentioning that with a time limit of 10 minutes per instance, FASTFORWARD (A",
Dg) is the only tool to decide all 61 instances.
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Fig. 4. Runtime comparison against FF (A", Dg) (left) and FF(GBFS, Dg) (right), in
seconds, for individual instances without pre-pruning. Tools on the first column of each
side include coverability and reachability instances, while those on the second column
of each side include coverability only. Marks on the green lines denote timeouts (60 s).

We also compared the running time of A® and GBFS with Dg to the other
tools and approaches. For each tool, we considered the type of instances it can
handle: either reachability and coverability, or coverability only. Figure 4 depicts
this comparison, where the base approach is faster for data points that lie in the
upper-left half of the graph. The axes start at 0.1 second to avoid a comparison
based on technical aspects such as the programming language. Yet, LOLA, Brc
and MIST regularly solve instances faster than this, which speaks to their level
of optimization. We can see that FASTFORWARD outperforms ICOVER, LOLA
and MIST overall. We cannot compete with BFC in execution time as it is a
highly optimized tool specifically tailored to only the coverability problem that
can employ optimization techniques such as Karp-Miller trees that do not work
for reachability queries.

Length of the witnesses. Since our approach is also geared towards the iden-
tification of short(est) reachability witnesses, we compared the different tools
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with respect to length of the reported one, depicted in Figure 5. Positive values
on the y-axis mean the witness was not minimal, while y = 0 means it was.
Note that the points for BFC must be taken with a grain of salt: it uses a differ-
ent file format, and its translation utility can introduce additional transitions.
This means that even if BFC found a shortest witness, it could be longer than a
shortest one of the original instance.
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Fig. 5. Length of the returned witness, per tool, compared to the length of a shortest
witness. ICOVER is left out as it does not return witnesses. FF (A", Dg), FF(DIJKSTRA)
and MIST are left out as they are guaranteed to return shortest witnesses.

Still, the graph shows that reported witnesses can be far from minimal. For
example, on one instance LOLA returns a witness that is 53 transitions longer
than the one of FASTFORWARD(A®, Dg). Still, LOLA returns a shortest witness
on 28 out of 43 instances. Similarly, FASTFORWARD(GBFS, Dg) finds a shortest
path on 60 out of 83 instances®. In contrast, MIST finds a shortest witness on
all instances since its backward algorithm is guaranteed to do so on unweighted
Petri nets, which constitute all of our instances. Again, this approach is tailored
to coverability and cannot be lifted to reachability.

Heuristics and pruning. We briefly discuss the quality of the heuristics and
the impact of pruning. The left-hand side of Figure 6 compares the exact dis-
tance to the estimated distance from the initial marking.” It shows that it is
incredibly accurate for all G-distances, but even more so for G = Q>g. We ex-
perimented with this distance using the logical translation of [8] and Z3 [49] as
the optimization modulo theories solver. At present, it appears that the gain in
estimate quality does not compensate for the extra computational cost.

As depicted on the right-hand side of Figure 6, pruning can make some in-
stances trivial, but in general, many challenging instances remain so. On average,
around 50% of places and 40% of transitions were pruned.

5 These numbers disregard instances where the tool did not finish or where a shortest
witness is not known, i.e. no method guaranteeing one finished in time.
7 73 reported two non optimal solutions which explains the two points above the line.
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6 Conclusion

We presented an efficient approach to the Petri net reachability problem that
uses state-space over-approximations as distance oracles in the classical graph
traversal algorithms A* and greedy best-first search. Our experiments have shown
that using the state equation over on provides the best trade-off between com-
putational feasibility and the accuracy of the oracle. However, we expect that
further advances in optimization modulo theories solvers may enable employing
stronger over-approximations such as continuous Petri nets in the future.

Moreover, non-algebraic distance under-approximations also fit naturally in
our framework, e.g. the syntactic distance of [55] and “a-graphs” of [24]. These
are crude approximations with low computational cost. Our preliminary tests
show that, although they could not compete with our distances, they can provide
early speed-ups on instances with large branching factors. An interesting line of
research consists in identifying cheap approximations with better estimates.

We wish to emphasize that our approach to the reachability problem has the
potential to also be naturally used for semi-deciding reachability in extensions of
Petri nets with a recursively enumerable reachability problem, such as Petri nets
with resets and transfers [3,19] as well as colored Petri nets [37]. These extensions
have, for instance, been used for the generation of program loop invariants [54],
the validation of business processes [59] and the verification of multi-threaded
C and Java program skeletons with communication primitives [16,39]. Linear
rational and integer arithmetic over-approximations for such extended Petri nets
exist [12,9,34,31] and could smoothly be used inside our framework.
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Abstract. We present an approach to synthesize relational invariants
to prove equivalences between object-oriented programs. The approach
bridges the gap between recursive data types and arrays that serve to rep-
resent internal states. Our relational invariants are recursively-defined,
and thus are valid for data structures of unbounded size. Based on intro-
ducing recursion into the proofs by observing and lifting the constraints
from joint methods of the two objects, our approach is fully automatic
and can be seen as an algorithm for solving Constrained Horn Clauses
(CHC) of a specific sort. It has been implemented on top of the SMT-
based CHC solver ADTCHC and evaluated on a range of benchmarks.

1 Introduction

Relational verification is widely applicable during an iterative process of soft-
ware development, when a high-level specification, a prototype implementation,
or even an arbitrary previous version is compared to the current version and
verified for the absence of newly introduced bugs. As software grows large, com-
positionality becomes a crucial factor to achieve scalability of relational verifi-
cation tasks: reasoning about pairs of entire programs is reduced to reasoning
about pairs of modules or isolated components of code. Proofs found for one
component can be reused while reasoning about another component, or even
the system in a whole. Successful examples in large-scale verification projects
include a step-wise refinement in seL4 [30] and the integration of model checking
to software development workflow in AWS C Common [11].

In this work, we represent relational verification problems over object-oriented
programs as Constrained Horn Clauses (CHC). A CHC is an implication in first-
order logic that involves a set of unknown predicates. For a system of CHCs, we
wish to find an interpretation for all predicates that validates all implications.
CHCs are used in various tasks appearing in verification, e.g., finding loop in-
variants or function summaries. For relational verification, a system of CHCs
can be constructed by pairing components of code of two versions in lockstep
and supplying it with relational pre- and post-conditions [14,39,44,53|. State-
of-the-art tools for solving CHC, e.g., [9,19,21,27,32], are based on Satisfiability
Modulo Theories (SMT), e.g., [40,47], they gradually become more robust, as
long as the programs under analysis do not have a mized use of data structures.

Verification conditions of real-world problems involve data structures such
as arrays and Algebraic Data Types (ADTs) of unknown size, expecting the
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proofs to capture (quantified or recursive) properties over countably infinite
sets of elements. Arrays are being handled in loops and often require finding
universally-quantified loop invariants [21]. ADTs, such as lists, maps, and sets,
require reasoning by structural induction [47] and often rely on additional helper
lemmas which are difficult to be synthesized automatically. For relational veri-
fication tasks, where one program is over arrays, and another is over ADTS, the
solvers should likely reason over quantified formulas and induction at the same
time, which is currently challenging for most of the automated tools.

We propose a set of new algorithms for solving CHCs constructed by pairing
programs over arrays and ADTs. Because we deal with object-oriented programs,
the data structures might be accessed and modified in any given method, and our
pairing is done for each method separately. Relational proofs are synthesized over
the data structures — they describe a relation that holds while simultaneously
traversing pairs of elements by any of the methods. Our key idea is that not all
methods may be needed for the actual synthesis. In fact, our algorithm generates
a candidate proof by bridging a single pair of methods and then validates/repairs
it on all others. In essence, we observe how pairs of inputs (or pairs of outputs)
change the states, guess a candidate relation between elements of states, and
(dis-)prove it on all other methods using an SMT-based theorem prover.

Our synthesis strategy is customized for different classes of benchmarks via
so called recipes. We present two recipes for the list ADT that are applicable,
respectively, for (1) stacks and queues, and (2) sets, multisets, and maps. They
both discover nontrivial invariants that need a recursive interpretation. We in-
dependently generate its base and recursive cases. The key point in determining
the relations is to automatically investigate how an input or an output affects the
state. Finally, we discover auxiliary lemmas that provide additional properties
about objects in isolation and help proving the inferred invariants are valid.

Importantly, in contrast to a more lightweight CHC setting over numeri-
cal theories (and even arrays) that can rely on an SMT solver to validate its
recursion-free solutions, the validation of our recursive solutions is conducted
by structural induction. We thus rely on recent advances in SMT-based fully
automated theorem proving [55] that (since recently) supports arrays. The ex-
periments have shown that the approach is reasonably fast in practice. Our
contribution, while presented in the CHC context, can be lifted on the program
analysis context and implemented in a range of robust verification tools that are
designed to support compositionality [7,24].

The rest of the paper is structured as follows. A short outline on background
and notation is given in Sect. 2. In Sect. 3, we give an overview of the approach.
Then, Sect. 4 and Sect. 5 present our recipes. Finally, we give the evaluation
details in Sect. 6, related work in Sect. 7, and conclude the paper in Sect. 8.

2 Preliminaries

An object O = (St, Init, (Op,,)nep,ny) is defined over internal states St, with
initialization Init(s) denoting initial states s, and methods Op,,, also called op-
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erations, for some identifier n (which for simplicity is treated as a natural number
in some finite interval, but later sections liberally refer to Op,, by their name).
Each operation Op,,(in,s,s’, out) defines transitions between a pair of states s
and s’ for a given input in, producing an output out. Moreover, each operation
has an associated precondition pre,, (in, s), ranging over the input and pre-state.

In this paper, we take a syntactic approach by representing states as tuples of
variables. Specifically, we assume that Init(s) and each operation Op(in, s, s’, out)
is given as a predicate, i.e., as a characteristic formula, over the specified param-
eters, that holds for initial states, respectively, when the program can take a
particular transition. Such a formula can be obtained from the source code by
symbolic execution, and we assume that effect of loops inside operations is cap-
tured by quantified formulas, creation of which is an orthogonal problem. Hence,
our approach is language agnostic.

We assume that the programs under consideration are deterministic, and we
assume that pre(in,s) = 3¢, out. Op,, (in,s,s’, out). Note that for determin-
istic programs, the existential quantifier in 3s’, out. Op,,(in,s,s’, out) can be
eliminated if pre(in, s) holds as s, out are functionally determined by in, s.

We aim at solving a relational verification problem over two objects and
reduce it to inductive invariant inference over a composition of two objects.

Definition 1. Two objects A and C are equivalent if there exists an inductive
imwvariant R over a composition of these objects, which satisfies all clauses below.
It connects two states St and St€ before and after each pair of operations

(0p£a Opg)ne[l,N]~
initialization:

Init*(as) A Init® (cs) = R(as,cs)
consecution:

R(as, cs) A Opit(in, as,as’, out™) A Op§ (in,cs, cs', out®) = R(as’,cs')

R(as, cs) A Opi(in, as,as’, out™) A OpSi(in, cs, cs', out®) = R(as’,cs')
safety: applicability:
R(as, cs) A pref(in, as) = pre§ (in, cs)

R(as, cs) A pre§(in, as) = pref(in, cs)

R(as, cs) A prefy(in, as) = pre§; (in, cs)
R(as, cs) A pre$y(in, as) = prex (in, cs)
safety: outputs:

R(as, cs) A Opit(in, as,as’, out™) A OpS (in, cs, cs', out®) = out™ = out®

R(as, cs) A Opi(in, as,as’, out™) A Op$(in, cs, cs', out”) = out™ = out®
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Implications in Def. 1 define a set of Constrained Horn Clauses (CHC) over
an uninterpreted relation symbol R. There are three types of constraints: (1) ini-
tialization, (2) consecution, and (3) safety. The third, safety, reflects the actual
relational specification, i.e., the correspondence between the programs under
analysis, in terms of the user-visible variables, namely the input in, and the
respective outputs, out and out’. Here, safety is divided into applicability (coin-
cidence of preconditions) and equivalence of outputs, which together ensure that
the two programs are observationally equivalent. To prove that this equivalence
holds, one needs to infer a more complicated invariant R over the internal state.
For this reason, we need the initiation and the consecution constraints: whatever
happens due to each operation, the invariant is maintained, and by safety, the
programs remain observationally equivalent indefinitely.

Problem Statement: We seek an interpretation of R that satisfies all con-
straints in Def. 1 simultaneously. This conventional formulation of a CHC task
lets us to use any off-the-shelf CHC solver. However, the problem is undecidable
in general, thus no solver guarantees to handle our specific tasks. Furthermore,
existing solvers mainly support the lightweight arithmetic theories, and a few
exceptions support also ADTs [27] and arrays [21,32]. To the best of our knowl-
edge, there is no CHC solver that supports ADTs and arrays at the same time,
and there is no CHC solver that synthesizes recursive solutions.

Context: The system of CHCs ensures that A and C' can be substituted
interchangeably in any calling context, and it is applicable to a wide range of
techniques for formal program development. The focus on equivalence instead of
subsumption is not essential for our work, and the presented approach works for
the asymmetric case just the same. Specifically, Liskov and Wing’s substitution
principle [36] follows (precondition strengthening is reflected by the applicability
constraints from pre? to pre®, and all postconditions with respect to the outputs
are equivalent). Data Refinement [15,25] follows similarly (Def. 1 characterizes
that R is a forward simulation [37]). See Sect. 7 for more details.

3 Synthesis of Recursive Relational Invariants

In this section, we present the fundamentals of the approach to synthesize recur-
sive relational invariants for systems over arrays and ADTs that we instantiate
and illustrate on examples in the subsequent sections.

3.1 Overview

Our approach is purely symbolic and fully automatic in both stages: generating
a candidate relational invariant, and proving it correct (i.e., validating). The key
insight is an analysis of the operations joint in the constraints of Def. 1. We follow
a strategy of introducing recursion into the interpretation based on ADTs, and
by aligning the base case to initialization and the recurrence conditions to joint
operations. In particular, a relational invariant R that bridges an algebraic list xs
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Algorithm 1: Automated synthesis of recursive relational invariants

Input: Objects A = (as, Init*, (Op?)nen) and C = (cs, it®, (0p$)nen),
where as, cs are the state variables, and xs is a list variable of as

Output: relational invariant R between A and C

1 R(nil, cs) < Init* (as[zs = nil]) A Init® (cs);

2 ¢r < true;

3 let y and ys be fresh variables;

4 while true do

5 cs, < UPDATE(Op2, Op<, as[xzs == cons(y, ys)], cs) for some n € N;

6 by ¢r AMATCH(Op?,, OpS., as[zs == cons(y, ys)], cs, cs,) for some m € N;

7 R(as[zs := cons(y, ys)], cs) < ¢r A R(as[zs == ys], csr);

8 if VALIDATE(R, A, C) then return R;

and an array (with auxiliary variables, such as indez) cs is defined recursively
over the structure of xs, which produces this general schema:

op(cs) if s = nil
3 ¢sp. dr(y, ys, s, ¢csp) A R(ys,cs.) if xs = cons(y, ys)

R(zs, cs) = { (1)

This schema has two placeholders for constraints, ¢, in the base case and ¢,
in the recursive case, that may refer to the variables in scope (as indicated
by their respective parameter lists). Moreover, we seek a Skolem function to
eliminate the existentially-quantified state variable cs,. in the recursive position.
Intuitively the desired Skolem function captures the delta between two array
states that corresponds to the delta between zs and ys.

Alg. 1 gives our top-level synthesis procedure for interpretations of R. It takes
as input two objects, A and C, where as and cs are tuples variables that represent
their respective states. We refer to primed versions of these state variables to as
as’ and c¢s’, assuming that all as, cs, as’, and cs’ are distinct. The algorithm
works with algebraic lists specifically and thus as is assumed to have such a
component given by the state variable zs. We denote by as[xs := €] the updated
vector of variables such that zs is replaced in as by symbolic expression e.

The base case of the interpretation of R is straightforward (line 1): the al-
gorithm uses a predicate Init® and a predicate Init* in which the zs variable
is instantiated to nil. The inductive case of the interpretation of R is trickier
(line 7). Because several different operations that produce state, consume state,
or do nothing with a state are possible (see Def. 2 later in the section), some of
them might contribute to different parts of the interpretation being synthesized.
In particular, methods MATCH and UPDATE are responsible for generating a
body of R. They are instantiated differently for our two recipes in Sect. 4 (ap-
plicable for stacks and queues) and Sect. 5 (applicable for (multi)sets and maps).

The first method, UPDATE, synthesizes an updated symbolic state cs,, a
tuple of symbolic expressions, to be used in the nested inductive call of R.
It can therefore be understood to compute a witness (or Skolem function) to
existential quantifier in Eq. (1) as an expression of the remaining variables in
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scope, Y, ys, as, c¢s. The second method, MATCH then collects constraints ¢, from
suitable transitions w.r.t. this cs,..

In a loop for each candidate interpretation of R, our algorithm runs an
automated SMT-based theorem prover [55] to validate it (line 8). The algorithm
can iterate several times and converges after a successful theorem-prover run.

A noteworthy feature of our framework is that UPDATE and MATCH should
not necessarily be synchronized in pairs. Although cs,. and the result of MATCH
are going to be eventually combined and used in a single formula, the nonde-
terministic nature of our synthesis procedure suggests that the two ingredients
may originate from potentially non-joint operations, thereby enlarging the search
space of possible relational invariants.

3.2 Classifying Operations

Our particular strategies for choosing ingredients for the inductive interpretation
of R are based on the classification of the operations of the abstract object.

We define a partial ordering “=<" on ADT states that connects constructors
discerned by the recurrence in R to the transitions of operations. With respect
to this ordering, we can for example recognize operations that leave the ADT
unchanged (“noops”, which play a special role in Sect. 5), operations that “pro-
duce” constructors and thereby enlarge the internal state by additional elements
and conversely operations that “consume” constructors. A natural choice for <
is the reflexive closure of the subterm ordering, where zs < ys for lists specifies
that zs is a suffix of ys. In general, this ordering can be used to control the result
of the synthesis for specific applications, and is a heuristic choice. A choice which
works well for our examples is that xs is a non-strict subsequence of ys.

The =< ordering naturally extends to tuples of variables (and thus, states),
and lets us classify operations into the following three kinds.

Definition 2. Let Op be an operation of an abstract object. Then,

1SNo(Op) = Vi,s,s',0.0p(i,s,s',0) = s=5s'

def

1SPROD(Op) = Vi, s,s’,0.0p(i,s,5",0) = s < s A—-1SNo(Op)
1SCONSM(Op) = Vi, s,s',0.0p(i,s,s',0) = s' < s A —-1sNo(Op)
Ezxample 1. The class of an operation can often be identified by a cheap syntactic
check to recognize when cons is applied to a current state or a next state variable.
In the upcoming stack example in Fig. 1, from xs’ = cons(in, xs) we have that
push is a producer operation, and from cons(out,xs’) = xs we classify pop as
consumer operation. A top operation, not shown in Fig. 1, would be recognized
as a noop (see also hasElement in the upcoming example in Fig. 3).

In the next two subsections, we introduce our particular strategies for the im-
plementations of UPDATE and MATCH of Alg. 1, in reference to Def. 2. Some
operations fall into neither of the classes; or it may be hard to determine so if
they do, given that Def. 2 is semantic; and different operations may contribute
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different ingredients for a correct definition of R. To make use of as many oper-
ations as possible, we suggest strategies for all three classes of operations, to be
able to synthesize a relational invariant in complex cases, even when complete
information about the system is difficult to obtain.

4 Recipe 1: Linear Scan

We identify a class of problems that require scanning the arrays in implementa-
tions of stacks and queues linearly. A distinguishing feature in this class is the
presence of a numeric variable in ¢s through which array cells are accessed (de-
noted indez in the rest of the section). We first illustrate the synthesis process
on the following example and then present the algorithmic details.

4.1 Motivating Example

Two realizations of a FIFO stack are shown in Fig. 1: one is based on linked lists,
and another is based on arrays. They share a common interface of initialization
and the two operations push and pop. For example, the encodings of pop of
ListStack and ArrStack are respectively:

ListStack
Op

bon (zs,zs’, out)

= (zs # nil A s’ = xs.tail A out = zs.head)
= (ws = cons(out, zs")) (after simplification)
OpArrStack(a’ n, Cl/, n/’ O’Ut)

pop
=n>0Ad =aAn=n—1Aout =aln'])

where zs # nil and n > 0 are the preconditions, and out captures the return
value. As an illustration, formula Opg>****(s, ,7) holds for all states s in
which pop terminates and returns 7 (by convention we use _ to denote terms
that are irrelevant in a particular context). Note also that in the implementation
of ArrStack, the popped value is not erased from the array — in order for a[n]
to be considered in the future, it has to be rewritten by some push operator. In
general, the array always contains infinitely many unknown values outside the
range of cells a[0],...,a[n — 1] which are never accessed.

A possible relational invariant R(zs,n,a) bridging ListStack and ArrStack
is defined as follows:

n=0 if zs = nil
n>0Ay=aln—1]AR(ys,n—1,a) if zs = cons(y, ys)

Ras,n.0) = { ®
Intuitively, this R captures that a list s has the same content as the portion of
an array a between indexes 0 (including) and n (excluding). When s is empty,
then the portion of a should be empty too, thus n = 0. Otherwise, zs is created
by cons-ing some other list ys and an element y then (1) n should be strictly
positive, and (2) y should belong to the designated portion of a.
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class ListStack: class ArrStack:
def init(): def init():
xs = nil n=20
a=1[...]
def push(in): def push(in):
Xs = cons(in, Xs) aln] = in
n=n+1
def pop():
assert xs != nil def pop():
out = xs.head assert n > 0
xs = xs.tail n=n-1
return out return a[n]

Fig. 1: Two implementations of a FIFO stack.

Op;?(in,out) Op;?(in,out)
cons(y, ys) ————— ys ys —————— cons(y, ys)
R R R R
Opg(in,out) Opg(in,out)
S — > CSp cCSyp — CS

Fig. 2: Transitions of consumer operations (left) and producer operations (right) used
to instantiate Eq. (1).

The schema in Sect. 3.1 has two placeholders for constraints, ¢, in the base
case and ¢, in the recursive case, that may refer to the variables in scope (as
indicated by their respective parameter lists). Moreover, we seek a state cs, in
the recursive position. Placeholder ¢ is instantiated by constraints from the ini-
tialization operations, such as n = 0 from ArrStack. This alignment of base case
and initialization is not just a coincidence: many data structures start initially
empty and are gradually populated by calling operations (e.g., collections).

The purpose of ¢, in the recursive case of Eq. (1) is twofold. First, it connects
a portion of the ADT state (specifically y) to the array state cs, in the example
via a[n — 1] = y, and it determines a suitable array state cs, as an argument of
the recursive occurrence of R. For instance, we take n — 1 for the recursive call
but leave a unchanged. This is motivated by the observation that a state where
xs = cons(y, ys) for some y, ys is consumed by pop. Using this information, the
recurrence of R must align with the corresponding array transitions, too, as
shown in Fig. 2 on the left. The constraint n > 0 is the precondition of the array
operation, whereas y = a[n — 1] follows from comparing the outputs. As shown
in Fig. 2 on the right, we can dually base the recurrence on push, which produces
a cons, i.e., a transition from ys to xs = cons(y, ys) for some y. In this case, both
transitions need to be viewed in reverse such that the respective successor states
of push now match the left side R(zs, cs) of the schema. Then, the assignment
n =n + 1 can be rewritten to yield the equation n, =n — 1.
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Algorithm 2: UPDATE (recipe 1)

Input: Operations Op* and Op©,
as[zs == cons(y, ys)| the shape of the state of A,
cs the state variables of C, assuming c¢s = (_, indez, a) where index
and a are variables of integer and array types, resp.
Output: Updated arguments cs,
1 if 1IsSProD(O0p?) then

2 let cs, = (_,index’,a’) be s.t. Vin, Jout . Op© (in, cs,, cs, out);
3 return (_, indez’, a);

4 if 1sCoNsM(Op?) then

5 let cs, = (_,index’,a’) be s.t. Vin, Jout . Op© (in, cs, cs,, out);
6 return (_, indez’, a);

Algorithm 3: MATCH (recipe 1)

Input: Operations Op* and Op©,
as[zs = cons(y, ys)] the shape of the state of A,
cs the state variables of C',
csr the updated state of C, assuming cs, = (_, index’, a) where index’
and a are variables of integer and array types, resp.
Output: Formula ¢,
if 1IsProD(Op?) then
inv < GETLOOPINVARIANT (indez’, Op©);
return inv A —Init%(cs) Ay = alindez'];
if 1sConsm(Op?) then
return pre* A pre$ Ay = alindex'];
return true;

[=2 3L BNV VI

To make this intuition practical, our approach suggests a particular strat-
egy for picking operations to take constraints from, recognizing consumers and
producers more generally, and validating the guessed relational invariants using
induction and lemmas.

4.2 Algorithm Description

Alg. 2 and Alg. 3 show the implementations of UPDATE and MATCH, respectively,
that suit stacks and queues. Recall that these algorithms are called from Alg. 1
and take as input pairs of nondeterministically chosen joint operations of A
and C state variables cs of C'; current version of state variables cs,. to be used
in the recursive call of R; and fresh variables y and ys introduced in Alg. 1 to
define the inductive rule of R. Outputs of UPDATE and MATCH are respectively
an updated tuple of variables cs, and a subformula 1 to be conjoined with the
inductive definition of R.

If the producing operator is picked (line 1 of Alg. 2), then we have to find a
term indez’, such that it would be transitioned by OpC to index. In particular,
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after assigning a new value to an array cell, indez is monotonically updated (i.e.,
incremented like in the example in Fig. 1, or decremented). Thus, to access the
array cell containing a new value using an updated value of index, we have to
invert the arithmetic operation and obtain index — 1 (for Fig. 1) or indez +1 (in
the case of decrementation). Technically, in Alg. 2, it is realized by taking the
indez variable from cs, through which cells of the array can be observed (e.g., n
in example in Fig. 1) and finding such a term indez’, that would be transitioned
by Opc to index. Thus, the resulting cs,. is composed from the same ingredients
as ¢s where indez’ replaces indez.

If the consuming operation is picked (line 4), then we proceed in the reverse
direction and find indez’ that is a result of transitioning of indez through Op®.

Alg. 3 for this recipe relies on the output of Alg. 2. Interestingly, it is sup-
ported even if ¢s, is computed using the producer, but v in Alg. 3 is computed
using the consumer. Our particular strategy for the consumers in this recipe is 1)
to use the precondition for Opc, and 2) to bridge the outputs of OpA and OpC
via an equality. Alternatively, the inference via producer in line 1, in comparison,
misses important constraint in the example, as the precondition of push is trivial.
Such a situation can be mitigated by the discovery of a loop invariant (line 2)
over indez, i.e., usually just using Linear Integer Arithmetic (LIA), adding it,
and blocking the initial state (to distinguish from the base case of the definition
of R) in the inductive case of the interpretation of R being synthesized. Loop
invariants are generated as follows as interpretations of predicate inv satisfying
the following two implications:

Init®(cs) = inw(cs)

inv(cs) A ( \/ Op€ (in, cs, cs’, 0ut)> = inv(cs’)

neN

Note that these CHCs (over LIA) can be solved by numerous existing ap-
proaches. Without a query, ideally the strongest loop invariant is desirable; how-
ever in practice it suffices to apply lightweight techniques based on forward-
propagation of initial states using quantifier elimination, followed by its inductive
subset computation [20]. This often finds an adequately-strong invariant.

Ezample 2. Recall the stack example in Fig. 1. Let the indez’ term be computed
by Alg. 2 via inverting the increment operation in push. Thus, it is used as an
argument of the nested call to R in the inductive case of the definition of R.
By construction, the a[indez’] cell contains a value of in, i.e., the argument of
push. At the same time, in is the argument of cons in OpA representing push,
which lets us bridge the array and ADT in the proof. To allow this, Alg. 3
takes argument y of cons from the inductive definition of R, and equates it with
alindez'], producing y = a[n — 1]. Combining it all together, we get the final
solution, as shown in (2).



34 G. Fedyukovich and G. Ernst

class ListSet: class ArraySet:
def init(): def init():
xs = nil a = [false, false, ...]
def hasElement(in): def hasElement(in):
return contains(xs, in) return a[in]
def insert(in): def insert(in):
Xs = cons(in, Xs) alin] = true
def erase(in): def erase(in):
xs = removeall(xs, in) alin] = false

Fig. 3: Two implementations of a set, where the list is not necessarily duplicate-free.

5 Recipe 2: Noop-based synthesis

In this subsection we present a recipe that suits sets, multisets, and maps, that
are in some sense non-linear. That is, data structures do not maintain any index
variable, which is usually used to access elements. Instead, arrays are viewed as
maps, and the corresponding ADTs are equipped with recursive functions that
traverse the data structure over and over again for each input. Oftentimes, these
objects have noop operations, and our synthesis procedure makes use of them.

5.1 Motivating Example

Fig. 3 shows two implementations of a set. The list-based implementation stores
elements in the order of their insert-ions. The elements are not removed unless
erase is called explicitly. Thus, duplicate entries of the same elements are al-
lowed. The implementation uses the recursive contains and removeall functions
that both traverse the list and search for a specific element:

false if zs = nil

contains(zs, a) = { (a =y) V contains(ys,a), if zs = cons(y, ys)

nil if zs = nil
removeall(zs,a) = q ite(a = y, removeall(ys,a),
cons(y, removeall(ys,a))) if zs = cons(y, ys)

The array-based implementation handles a map a from elements to Booleans.
Initially, all cells in a are false. Inserting and removing an element is implemented
by storing true and false to the corresponding cell respectively. The difficulty
here is to support the shown implementation of insert and erase in Fig. 3, as
well as possible variants that e.g., eagerly prune duplicate entries in the list-based
implementation (see Sect. 6).

The expected output of our synthesis procedure is as follows:

R(zs,a) = {

Vz. —alz] if zs = nil
aly] A R(ys,aly := contains(ys, x)]), if zs = cons(y, ys)

(3)
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Algorithm 4: UPDATE (recipe 2)

Input: Operations Op”? and Op® such that 1sNo(Op*) holds,
as[zs == cons(y, ys)| the shape of the state of A,
c¢s the state variables of C'
Output: Updated arguments cs,
1 let cs’ be fresh variables;
2 ¢+ Op™(y, as[zs = ys], as[zs == ys], out) A Op© (y, cs’, _, out);
3 <« Vz.2#4y = Jout’. Op(z,cs, ,out’) A Op(z,cs’, ,out');
4 assume QE(Jout . ¢ A1) simplifies to (cs’ = cs,);
5 return cs,;

Algorithm 5: MATCH (recipe 2)

Input: Operations Op”? and Op® such that 1sNo(Op*) holds,
as[zs == cons(y, ys)] the shape of the state of A, denoted aso below,
cs the state variables of C,
csy the updated state of C'
Output: Formula ¢,
1 ¢+ Op(y, aso, aso, out) A Op©(y, cs, cs,, out);
2 return SIMPLIFY(QE(Jout . ¢));

5.2 Algorithm details

Alg. 4 and Alg. 5 show the implementations of UPDATE and MATCH, respectively,
for this recipe. The arguments cs,. of the nested call to R in the inductive case of
the definition of R are computed in Alg. 4 using the symbolic encoding of noop.
In the set example, noop is the hasElement operation, which allows observing
the status of the internal state and does not modify it. We furthermore assume
that the input of Op,, coincides with the type of elements stored in the list, i.e.,
it is meaningful to call Op,, (y,---) with the list head y from the recursive case
of (1) where zs = cons(y, ys).

The key idea behind Alg. 4 is to make necessary adjustments to c¢s to con-
struct cs, that mirror any changes that can be observed via Op” when tran-
sitioning from list zs to ys in (1). This update is determined in terms of an
auxiliary variables cs’ that are constrained to satisfy certain input/output pairs
for the corresponding Opc7 by case analysis whether the input is this partic-
ular y that is removed by the recurrence. The primary intention is to reassign
aly] appropriately. We do this by collecting constraints ¢ such that the output
observed for Op® for y and cs’ matches that of the corresponding Op™ on the
smaller state with ys. This is also the key difference to Sect. 4, where we heuris-
tically keep a unchanged in the recursive call in (1). The outputs for all other
inputs z, however, are enforced to be unchanged w.r.t. the original cs, which is
expressed by the constraint . We then eliminate the quantifier for out (which
is straightforward as the operations are deterministic) and rewrite the formula
to closed expressions cs,. for variables cs’ as result.
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Ezxample 3. Specifically for the example in Sect. 5.1, the algorithm proceeds by
symbolic execution of hasElement, yielding formulas the following constituents:

Op™ = (out = contains(ys,y))
0p° = (out = aly])
¢ = (out = contains(ys,y) A out = a’[y])
= Vz.y#2z = FJout'.out' =d[z] A out’ = alz])

The result Jout . p Ay of Alg. 4 is now solved for a’. The only free variables refer
to the states of the systems. Bound variables out and out’ can be eliminated by
merging equalities over out and out’:

a'ly] = contains(ys,y) A (Vz.y # 2 = d'[z] = a[z])

The first conjunct therefore provides the update for a'[y|, whereas the second
conjunct of ¢ states that a’[z] should not be changed at indices other than y.
After applying the axioms over the theory of arrays we get as result the following
equality, which pattern matches the expected shape in line 4:

QE(Jout . ¢) < (a' = a[r = contains(ys,x)])

This transformation requires to “reverse-apply” the axiom of extensionality,
i.e., switch from the pointwise comparison of a and a’ to an equality between
the entire arrays. Note that while in general quantifier elimination is difficult,
our current implementation has a limited, but often sufficient, support that can
be extended by supplying rules to the underlying SMT-based theorem prover.

While OpA Alg. 4 predict future outputs of OpA for input y, Alg. 5 exe-
cutes OpA on the state where zs = cons(y, ys) to obtain the current output of
OpA for the same y. The generated constraint simply expresses that the output
of Op® has to match. For hasElement we obtain the following formula:

Jout . (contains(cons(y, ys),y) = out) A (aly] = out)

Unfolding the definition of contains and simplification produces true = a[z],
which is then used as the “body” of the inductive case of R in (3).

6 Evaluation

We have implemented the approach in a prototype CHC solver called ADTCHC?,
relying on ADTIND [55] as an inductive prover, which in turn uses the Z3 [40]
SMT solver to quickly perform the satisfiability checks over uninterpreted func-
tions and linear arithmetic that are needed at various solving stages. ADTCHC
automatically determines the appropriate synthesis recipe through analyzing the

3 The tool and benchmarks are available at https://github.com/grigoryfedyukovich/
aeval/tree/adt-chc.
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syntax of the program (i.e., presence of index variables) and is able to successfully
find relational invariants and prove them valid for all considered benchmarks.

We have evaluated the approach from Sect. 3 on different realizations of
text-book data structures. The evaluation aims at answering two questions. Is
the approach effective in the first place to discover suitable relational invariants,
and how well can the necessary induction proofs be automated? The latter is
relevant since Alg. 1 crucially depends on VALIDATE in its refinement loop.

All our benchmarks require recursive invariants. They fall into two cate-
gories. First, stacks and queues from Sect. 4 (with variations that store values
only to even indexes of the array) are solved based on linear scan. Second,
sets, multisets, and maps, (that differ in whether, e.g., duplicate elements are
stored in the respective lists) are solved with the approach in Sect. 5. We in-
clude such variations to reflect different trade-offs when designing specifications,
and to demonstrate that our technique is reasonably flexible. The only user-
provided lemma was required for the multiset benchmark (marked * in Table 1):
YV a,zs. num(a,zs) =0 = remove(a,xs) = xs.

The results from the evalua- Table 1: Invariant synthesis timings.
tion? of both groups of benchmarks
(resp., recipes used) are shown in  Benchmark Variant Time (s)

Table 1. The choice which recipe to

use was made by the tool itself at Stack Fig. 1 2.81
synthesis time. Total time (in sec- Stack event cells 2.79
onds wall-clock) is entirely domi- Queue ordinary 40.61
nated by proof search in ADTIND, Queue even cells 42.18
and includes the time for SMT  Set Fig. 3 2.12
queries. We remark that the time Set no duplicates 19.24
to synthesize the relational invari- Multiset* with remove 32.62
ant is negligible in comparison to  Multiset with clear 3.59
the proof time (and the proof time Map duplicates 1.95
is often proportional to the number  Map no duplicates 5.83

of internal SMT calls).

Most proofs are found using the default proof strategy (the same for every
benchmark) within 20s. This is caused by the large proof search space created
by a combination of array simplification and forward rewriting. We have also
tested our tool of buggy implementations, e.g., in which the consumer opera-
tions are correct (and can be used for correct guesses of relational invariants),
but producers are not. Expectedly, the tool is unable to synthesize a relational
invariant for the whole systems in these cases.

We have already presented the relational invariants found for the stack (2),
for the stack variant that stores to even array indices only, counter n is de-
creased by 2 instead of 1 in the recursive call as expected. Relational invari-
ant R(zs, m,n,a) for the queue benchmarks keeps two indices into the array a,
depending on the variant, the first element of the list zs is found at a[m] or a[n]

4 The evaluation was conducted on MacBook Pro, Processor: 2 GHz Intel Core i5,
Memory: 8 GB 1867 MHz LPDDR3, MacOS v10.14.6.
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and the recursion either increases m or decreases n. The relational invariants
for the multiset and map examples are analogous. All necessary lemmas are
automatically discovered and proved by ADTIND, as an example for the set
benchmarks: V zs, s, z. R(xs,s) = contains(z,zs)=s[z].

7 Related Work

Although there exist automated techniques to synthesize relational invariants,
nothing was proposed to deal simultaneously with ADTs and arrays. Conceptu-
ally, our approach is related to SIMABS, an SMT-based algorithm to simulation
synthesis [18]. SIMABS exploits a space of possible simulations and (dis-)proves
them using an off-the-shelf decision procedure. Guesses for simulation relation
are obtained also from the source code, by matching variables from two pro-
grams. Alternatively, simulation relations can be inferred from test runs [49] or
through translation validation [41]. Our approach allows dealing with objects
(not just imperative code) and contributes several novel strategies for guessing
and proving non-trivial simulation relations.

Discovery of invariants to relate the behaviors of two programs or other ways
of establishing program equivalence is an active research area [5,14,22,23,39,44,
51]. These approaches typically reduce the relational verification problem to a
safety verification problem and rely on the existing tools—often, solvers for con-
strained Horn clauses (CHC). Currently, since ADTs and arrays are challenging
for the underlying solvers, the applicability of the approaches to our tasks are
also limited. There are decision procedures for abstraction of ADTS to lists, sets,
and multisets [52], however, these apply to certain predefined abstractions only.

Our approach can be seen as an application of Syntax-Guided Synthesis (Sy-
GuS) [2]. Strategies dependent on types of benchmarks essentially represent sets
of syntactic templates filled iteratively and checked using an SMT solver. SyGuS
is successfully used also in CHC solving [19,21] and in lemma synthesis [46,47,55].
There are only a few approaches [21,28,31,55| that apply SyGuS to synthesize
formulas over ADTs or arrays/quantifier. Data-driven approaches are comple-
mentary to such syntax-based approaches, e.g., [38]. Neither deals with arrays,
quantifiers, and ADTs at the same time.

Unno et al. [53] support recursive predicates, by taking the least solution
of initialization and consecution as the definition of R, however, this may lead
to rather cumbersome inductive cases (e.g., for pop in the stack). We avoid
the problem by basing the recurrence scheme on the data structure, and infer
constraints that are well aligned to that scheme from the operations. Jennisys [34]
tackles the related problem of generating recursive implementations from an
abstract model, where the simulation relation is given.

More generally, the problem addressed in this work relates to the idea of
step-wise refinement, originally conceived by [16] and [54] as a guideline to orga-
nize software development and later studied extensively in a formal setting for
rigorous assessment of functional correctness (e.g., [1,4,15,25,29, 33, 36]). The
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standard proof technique relies on simulation relations [37] that couple the two
state spaces, which is directly reflected in the CHC system of Def. 1.

Many methods and tools support development using formal refinement [1,4,
8,17,26,29,33,45|. Large-scale verification projects that are based on refinement
include seL4 [30], FSCQ [10], Flashix [48], and CompCert [35], with high human
effort involved. Correct-by-construction correspondence between low-level code
and high-level data types helps to some extent in, e.g., [13] and COGENT [3]. Re-
cent work on “push-button” verification includes a verified TLS library [12], AWS
C Common library [11], file system [50], a hyperkernel [42], network functions [56],
where the high degree of proof automation is in part achieved by statically
bounding the state space of the systems. The latter work [56] specifically notes
how non-experts can formulate high-level correctness requirements (their speci-
fications are written in Python), as evidence that refinement-based approaches
may ultimately overcome the “specification bottleneck” [6,43].

8 Conclusion and Outlook

We have demonstrated an approach that can fully automatically synthesize and
prove relational invariants over recursive data types and arrays. The approach
is based on introducing quantifiers and recursion into the definition of such
relations in a systematic way, and by instantiating this schema with constraints
from joint transitions of the two systems. A somewhat surprising insight was
that it is useful to view such transitions both forward and in reverse, leading to
the classification into producers and consumers as a guideline for the search.

We have presented a general synthesis algorithm and two concrete instan-
tiations for different data structures of different sorts. The approach is fully
automatic in guessing a relation and proving it correct. It relies on the recently
developed CHC solver called ADTCHC which in turn is based on an SMT-based
theorem prover ADTIND featuring a support for arrays, quantifiers and structural
induction. The approach is modular and can be extended by further synthesis
strategies in the future. In particular, since based on CHC techniques, it can be
integrated with other existing CHC solvers tailored to non-ADT reasoning, and
can be used in large-scale verification frameworks such as [24] that reduce the
safety verification to CHC tasks.

Many more interesting benchmarks lend themselves for further investigation:
positional insertion and removal of lists, amortized data structures, benchmarks
based on trees or nested arrays, and ultimately some real-world software systems.
With a growing search space, it becomes more important to quickly recognize in-
correct simulation relations, e.g., by evaluation-based counter-examples (cf. [31]),
to prevent costly proof attempts. Similarly, incorporating external tools for in-
variant generation is another topic for future work.
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Abstract. Tools that automatically prove the absence or detect the
presence of large floating-point roundoff errors or the special values NaN
and Infinity greatly help developers to reason about the unintuitive nature
of floating-point arithmetic. We show that state-of-the-art tools, however,
support or provide non-trivial results only for relatively short programs.
We propose a framework for combining different static and dynamic
analyses that allows to increase their reach beyond what they can do
individually. Furthermore, we show how adaptations of existing dynamic
and static techniques effectively trade some soundness guarantees for
increased scalability, providing conditional verification of floating-point
kernels in realistic programs.

1 Introduction

Floating-point arithmetic is widely used across many domains, including machine
learning, scientific computing, embedded systems, and the Internet of Things.
Floating-point computations resemble real-valued arithmetic, but provide only
finite precision, which commits roundoff errors at potentially every operation.
While these errors are individually small, they propagate through an application
and can make its results meaningless [47]. In addition, floating-point arithmetic
features special values such as not-a-number (NaN) and Infinity [48]. As a result,
these computations are very challenging for developers to reason about and
debug manually. There is, therefore, a clear need for automated verification and
debugging techniques for such computations.

Unfortunately, today’s techniques do not handle realistic floating-point pro-
grams well. Consider for example a program that simulates the interaction of
several bodies under gravity. We took a C implementation of this N-body problem
from Rosetta Code [5], which takes as input the masses, positions and velocities
of—in our case—three bodies, and shows their evolution over a number of time-
steps. The entire program is moderately-sized with 108 lines of code. Suppose
that we want to verify the absence or presence of special floating values and
cancellation (i.e. large roundoff) errors in this program. None of the currently
available floating-point analysis tools is able to do this.
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int main(int argc, charx argv([]) {... // Reads masses, positions and velocities

for(int i=0; i<timeSteps; i++) { simulate(mass, pos, v); ...}
}
void simulate() { compute_accelerations(mass, pos); ...}
void compute_ accelerations(double mass[], vector pos[]){

for(int i=0;i<bodies;i++){ ...

for(int j=0;j<bodies;j++) {if(i!=j) {
acc[i] = numerical _kernel(mass[j], pos[i], pos[j], acc[i]);}}}}

© 0 N o G A W N e

vector numerical _kernel(double mass, vector pos_i, vector pos_j, vector acc) {
return addVectors(acc, scaleVector(g*mass/pow(mod(subtractVectors(pos_i,pos_j)),3),

[
=}

subtractVectors(pos_j,pos_i))); // compute acceleration

11 |}

Listing 1.1. Snippet of Rosetta code N-body simulation

State-of-the-art static roundoff-error analysis tools [33,31,30,60,65,72] are in
principle capable of proving the absence of both special values and large roundoff
errors by computing an abstraction of the possible behaviors. However, they work
only on small programs, mostly consisting of a single function, and thus do not
work for our N-body example. The static tools that do scale [11,63,43] suffer
from large over-approximations due to abstractions and thus effectively cannot
prove the absence of issues either. Bounded model checking [52] or SMT decision
procedures [25] perform exact bit-precise reasoning, but do not scale enough due
to the complexity of floating-point arithmetic.

On the other hand, there exist dynamic analyses that search for concrete inputs
proving the presence of Infinities [38], NaNs or cancellation errors [10,21,78]. We
could not apply any of these tools on our example, to a large part because they, too,
have been designed for relatively small programs. More guided techniques such as
symbolic execution [57] rely on a back-end SMT solver, for which floating-point
theories have very limited scalability.

We evaluated representative available tools on a new collection of floating-
point benchmarks and get similar results for most of them (Section 5).

We observed that often only a relatively small part of a program performs
complex numerical computations—we call these parts the numerical kernels.
Existing state-of-the-art floating-point analyzers can be applied to these kernels,
provided that one can supply a precondition that bounds the kernel’s input ranges
(their minimum and maximum values). Obtaining such preconditions manually is
challenging, since the kernels are usually nested in loops as functions. Listing 1.1
shows a subset of the N-body example; the numerical kernel that we identified is
on line 9, nested behind several for-loops and function calls.

Based on this observation, we propose a two-phase analysis that combines
different program analyses to conditionally verify the absence of special values
and cancellation errors in numerical kernels ‘concealed’ in large programs. First,
we employ a scalable program analysis to infer the ranges of a kernel’s inputs in
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the context of the containing application. In the second phase a different program
analysis assumes these ranges to verify the kernels.

The main insight behind this combination is that the first scalable analysis
does not need to perform sophisticated floating-point reasoning; the domain
specifications required for the second numerical analysis need to only capture
input ranges of variables.

The main challenge in our two-phase analysis is the first phase where our
objective is to infer the ranges of the kernel inputs automatically. We first
attempt to verify the numerical kernels fully soundly. Hence, we utilize abstract
interpretation to infer sound ranges of kernel inputs. In case it is unable to infer
useful (finite) ranges for the kernels, we propose to adapt existing blackbox and
greybox fuzzing techniques [12], and evaluate them in their ability to produce
large kernel input ranges capturing as many feasible inputs as possible.

After inferring the kernel ranges, the second phase utilizes a slightly adapted
existing static and sound roundoff error analysis [30] to verify the kernels. In
case this analysis produces warnings for special values, we additionally utilize
SMT-based bounded model-checking [52] to check for spurious warnings.

Although there is a large body of work on combining different program
analyses, our goal of analyzing real-world applications to verify their numerical
kernels is novel. Our combination is specifically tailored to this setting, by
considering the intricacies of floating-point arithmetic and the limitations of
today’s analysis techniques in reasoning about them.

Using a dynamic analysis in the first phase means that we are only able to
infer approximations of the kernel input ranges. Consequently, we can verify
the kernels only conditionally, because the verification is performed under the
assumption that the input-domain specifications precisely describe possible values
of the kernel inputs. Thus, we take a practical standpoint and relax the soundness
guarantees in favor of wider applicability of today’s static floating-point roundoff-
error verification techniques.

Our evaluation shows that for 16 out of 24 kernels, this approach is able to
verify that no special floating-point values occur; for 3 of those kernels, verification
is sound. For 14 kernels, we additionally show the absence of cancellation errors
that are a main cause of large roundoff errors.

Contributions To summarize, our paper makes the following contributions:

a) a two-phase framework that combines dynamic and static analyses to condi-
tionally verify the absence of floating-point special values and large roundoff
errors in kernels,

b) a novel guided blackbox fuzzing technique to infer kernel ranges, implemented
in an open-source prototype tool called Blossom, and

¢) an evaluation on a new benchmark set of mid-size numerical programs.

Our benchmarks, the tool Blossom as well as scripts of all of our experiments are
available at https://github.com/dlohar/blossom.
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Fig. 1. Overview of our approach

2 A Two-Phase Approach

Figure 1 shows an overview of our two-phase approach that strives to increase
the reach of existing floating-point analyses of floating-point numerical kernels.
Our key observation is that such kernels appear in real-world applications from a
variety of domains, but they are often ‘hidden’ behind several function calls and
other non-numerical code that the round-off analyzers cannot handle. The first
phase infers bounds on the input variables of a set of numerical kernels K that
have been identified by a user in a program P. In the second phase, we utilize
these ranges to (conditionally) verify the kernels, i.e. to (conditionally) prove the
absence of special values and large roundoff errors.

An alternative strategy would be to identify the largest kernel input ranges
for which correctness can be guaranteed. However, even if one could infer such
preconditions (we are not aware of a tool that performs such a backward analysis),
our techniques for the first phase would still be needed to determine whether the
program can execute the kernels on inputs outside of the safe ranges.

2.1 First Phase: Whole Program Analysis

In the first phase we have a whole program analyzer that, starting from the
program inputs constrained by Z, infers bounds R on the kernel inputs auto-
matically. These bounds are crucial, as the presence of cancellations and special
values directly depends on the ranges of possible values; an unbounded input
range will, in general, also lead to unbounded roundoff errors and special values.

To obtain the kernel ranges, we need to analyze the entire program. In
general, it is infeasible to compute the exact ranges, so that we want to approxi-
mate them. We propose to first use a sound static analysis, which computes an
over-approximation of the true ranges. They thus cover all feasible inputs, but
additionally also spurious ones, so we want these ranges to be as tight (small) as
possible. If the abstractions necessarily performed by the static analyzer become
prohibitively large, we propose to use dynamic analysis to compute an unsound
approximation of the kernel ranges. These ranges should be as wide as possible
to capture as many concrete executions as possible.
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Sound Static Analysis We choose abstract interpretation [26] and specifically the
industry-strength analyzer Astrée [63] to infer a sound over-approximation of the
kernel ranges, as Astrée scales for large programs with complex code and data
structures and comes with a variety of abstract domains.

The choice of the abstract domain in Astrée is, in general, a trade-off between
the amount of over-approximation and the analysis running time. The interval
domain abstracts a set of concrete variable values by their lower and upper
bounds: [z,7] = {z | x < < T}. While operations on interval arithmetic [64]
are efficient, intervals cannot capture correlations between variables and therefore
over-approximate the real behavior (e.g. © — x # 0 in interval arithmetic).
Nonetheless, for our benchmarks we have not observed any noticeable difference
in the results with more sophisticated domains (e.g. octagon). This is likely due
to our benchmarks having many nonlinear operations. Hence, we choose the
interval domain as the numerical abstract domain for our purpose.

Dynamic Analysis Fuzzing finds inputs that demonstrate certain (unwanted)
behavior. We propose to fuzz a program and at the same time monitor the kernel
inputs to record the lower and upper bounds seen during concrete executions.

We instrument each user-specified kernel in the program with a kernel monitor
that keeps track of the smallest and largest value seen for each kernel input.
We repeatedly execute the instrumented program and report the minimum and
maximum values seen for each kernel input over all executions. This approach
crucially depends on the choice of program inputs that are used for fuzzing. We
propose and experimentally compare blackbox, guided blackbox, and directed
greybox fuzzing [12]| as methods for input selection in Section 6.

Blackbox fuzzing is a naive but effective technique in many testing situations.
In our setting, the blackbox fuzzer randomly draws inputs from the program
ranges Z, i.e. without any reference to the internal structure of the program.

We further propose guided blackboxr fuzzing that is guided toward enlarging
the kernel input ranges. For this, the program input generator records those
inputs that have widened the kernel ranges, and randomly generates new inputs
that are within a certain (small) distance from these, in the hope that the new
inputs would enlarge the monitored ranges even further.

While blackbox techniques are straightforward to implement, they do not take
into account the program structure. We thus evaluate an adaptation of directed
greybox fuzzing, implemented in the the state-of-the-art tool AFLGo [12] that can
be directed toward specific program locations, while exploring as many different
paths in the program as possible. We first fuzz the program to obtain an initial
estimate for the kernel input ranges with AFLGo (targeting the kernel). Then,
we employ AFLGo in a refinement loop that iteratively attempts to widen the
currently seen kernel input ranges. We instrument the kernels with conditional
statements that check whether a kernel input is outside of the current kernel
range. We use this conditional statement as a target for AFLGo, effectively
directing it to find kernel inputs that are outside of the current estimate. If
AFLGo finds a program input that widens the current kernel input range, we
update it accordingly and iterate the process until a user-defined timeout.
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2.2 Second Phase: Numerical Kernel Analysis

With the ranges (R) inferred in the first phase, we analyze the user-identified
numerical kernels (KC) in the second phase with a static analyzer. Our objective
in the second phase is to either show the absence of special floating-point values
and large roundoff errors in a kernel or to generate warnings for the potential
presence of such values.

We use the sound floating-point roundoff analysis tool Daisy [30], which
automatically proves the absence of special values and computes an absolute
error bound for each kernel output. When Daisy generates a warning that special
values can potentially occur, we use a SAT/SMT-based model checker that
performs exact floating-point reasoning and that can identify spurious warnings.

By itself, the error bound on the kernel output is not particularly helpful,
however, since we do not know how this error propagates to the end of the
program (although there exist scalable analyses that potentially can compute
this information, e.g. [61]). That said, for many numerical applications the exact
error bound is not important, since the algorithm itself is already approximate.
For these applications, it is thus sufficient if we can show that the roundoff
errors are not too large. We thus modify Daisy to report a warning when it
detects a possible cancellation, i.e. when an arithmetic operation increases the
relative error significantly (e.g. when two values that are close in magnitude get
subtracted [42]). Additionally, Daisy includes an optimization procedure that can
improve the accuracy of the kernels by rewriting the arithmetic expressions to
commit smaller roundoff errors. We provide more details in Section 4.

2.3 Soundness Guarantees

To summarize, using the extended Daisy analysis, we can conditionally verify
that kernels do not result in any NaN or Infinity, and that they do not commit
cancellation errors, i.e. lead to large roundoff errors. When the kernel input ranges
are computed soundly using abstract interpretation (e.g. Astrée), our verification
is conditional in that we only verify the absence of cancellations for the kernels,
but not for the rest of the program.

When the ranges are computed using dynamic analysis in the first phase,
they include more concrete values than the fuzzer witnessed. Values between the
lower and upper bound are not necessarily observed by the fuzzer, and are also
not necessarily feasible. If one were to consider only values witnessed at runtime,
then it would be possible to analyze kernels for individual traces, although this
would be quite expensive [10]. However, if we can soundly show that no special
values or large roundoff errors (cancellations) occur inside a kernel for a given
input range, we have shown this for more executions than can be explored by
dynamic testing in general (since there are usually too many floating-point values
to explore exhaustively). Unlike for a NaN or Infinity that are obvious to detect,
cancellation cannot, in general, be detected by inspecting the computed results
and thus our combination is valuable.
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3 First Phase: Whole Program Analysis

Abstract Interpretation with Astrée We utilize Astrée as it scales for large C
programs with complex code and data structures. We add wrapper functions
to provide bounds for global variables, since Astrée does not assume ranges
for global variables directly. We further annotate the kernels K with Astrée’s
__ASTREE_log_vars() construct. This construct records the range information that
Astrée logs about the kernel inputs at the entry of the kernels.

Note that the analysis of Astrée can be extensively parameterized with the
knowledge of the program under analysis. Although this makes the analysis even
more precise, it requires vast manual effort and knowledge of the intricacies of
the program. To avoid this, we parameterize Astrée as generically as possible.
We only use semantic loop unrolling until a defined loop bound to reduce the
over-approximation in the analysis for all benchmarks.

Blackbox Fuzzing with Blossom We implement our novel blackbox fuzzing for ker-
nel range computation in a tool we call Blossom. Blossom works by instrumenting
the program to be analyzed. Blossom is implemented as an LLVM pass and works
on C, C++, and Rust input programs with complex programming constructs
and data types (and would work for any programming language that compiles to
LLVM). Blossom takes as input the program P, a configuration file that specifies
the ranges of program inputs, the fuzzing technique that we want to execute
(standard or guided blackbox), and a timeout. The LLVM pass automatically
instruments P by inserting code that performs the indicated fuzzing process until
the specified timeout, and records the ranges of kernel inputs.

In order to perform vanilla blackbox fuzzing, the code is instrumented with an
input generator that utilizes the srand() function with distinctive seeds to randomly
generate values of program inputs from the set of input bounds Z. This process
is continued until the specified timeout.

Guided Blackbox Fuzzing with Blossom Algorithm 1 shows our guided blackbox
fuzzing algorithm for generating program inputs to maximize kernel ranges. The
algorithm is also implemented via LLVM-pass instrumentation in Blossom.

The inputs to Algorithm 1 are the program P with an identified set of kernels
IC, a set of n program input ranges (Z), and a timeout (7). The algorithm is also
parameterized by the number of mutations m and a constant ¢ that determines
the neighborhood radii for all program inputs from which mutants (new program
inputs) are drawn. The algorithm returns a set of kernel ranges [{Rio}, {Rni}|
(line 16). The goal is to compute the interval [{R;,}, {Rn:}] as wide as possible.

The algorithm keeps an input queue @), which stores program inputs on which
the program is to be executed. If ) is empty, m new random inputs taken from
the program input ranges Z are added to it (line 6-7). If @) is not empty, the
algorithm first dequeues one valuation of all the program inputs {vy,- - ,v,}
from @ (line 9), and executes the program P on these program inputs. During
the execution of the program, the kernel monitor checks the kernel inputs and
updates the kernel ranges as it is done in vanilla blackbox fuzzing (line 10). If the
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Algorithm 1 Guided Blackbox Fuzzing

1: procedure GUIDED-BLACKBOX(P, Z, K, T', m, c)

2 Q «+ ¢, {Rio} ={oBL_MAX}, {Rn;} ={pBL_MIN}

3 {r1, - ,rn} ¢ computeRadii(Z, c) > generates mutation radii
4: while 7' # 0 do

5: if Q == ¢ then

6: for ¢ from 1 to m do

7 @ < enqueue(generateRandomInput(Z)) > generates random inputs
8: else

9: {vi, -+ ,Un} < dequeue(Q)
10: {Rio}, {Rni}] < executeAndmonitorkernels(K)
11: if (kernelRangeUpdated([{Rio}, {Rni}])) then
12: for i from 1 to m — 1 do
13: {d1, -+ ,dn} + mutate(vi Fri, - ,vn FTn)
14: Q < enqueve({d1, -+ ,dn})

15: @ < enqueue(generateRandomInput(Z)) > avoids local max/min
16: return [{Rio}, {Rni} > returns kernel input ranges

kernel ranges were updated, i.e. we found an input that led to the kernel input
being outside of the currently known range, we generate m — 1 mutants from a
program input {vy,--- ,v,} by randomly drawing inputs from its neighborhood
vy Fri, 0, Fryp and add them to the queue (line 12-14). (We draw mutants
randomly from the neighborhood to reduce the possibility of duplicate program
inputs.) The neighborhood, i.e. maximal distance of a mutant to the original
program input, is defined by the neighborhood radii {ry,---,r,} (computed
once on line 3) that depend on the width of each input range. Effectively, if an
input range is large, then we will draw mutants from a larger neighborhood as
well. This step enables to search in the neighborhood of the inputs that enlarged
the ranges of the kernels recently. Then, we generate one random input for all
variables in the whole input range (line 15). This step ensures that we do not
get stuck in a local maximum or minimum. The whole process is repeated until
timeout 7.

4 Second Phase: Static Analysis with Daisy and CBMC

Next, we use the computed kernel ranges R as kernel input specifications (pre-
conditions) and adapt the state-of-the-art roundoff-error analyzer Daisy [30] to
verify the absence of cancellation errors and special float values. The translation
of kernels and the precondition annotation to Daisy’s input language in Scala is
currently done manually, but could be automated in the future.

Daisy’s core roundoff-error analysis performs a forward dataflow analysis. It
computes ranges and worst-case absolute error bounds for each intermediate arith-
metic (abstract syntax tree) expression using the interval and affine arithmetic
abstract domains. As part of this analysis, it checks for overflows and invalid
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expressions that could lead to NaN values, as their absence is a prerequisite for a
meaningful roundoff-error computation.

We extend Daisy to check at every intermediate expression for a possible
cancellation, using the ranges and absolute error bounds that Daisy computes
by default. At each binary arithmetic operation, we compare the relative errors
of the operands with the relative error of the binary operation result. If the
relative error increases more than a given factor, we report an error. We compute
the relative error for an intermediate expression x as the ratio of its worst-case
absolute error bound divided by the smallest value that the range of = contains.
When the range of x ([z]) contains zero, we divide instead by some small constant
¢ max(emin(E) to make relative errors always well-defined. While this does not
compute a sound bound on the relative error, this is not needed for our purpose,
since we are only interested in a relative comparison.

With this extension, we can prove for each kernel and the specified kernel
input ranges, that cancellation and special values do not occur (but we cannot
prove their presence). When Daisy cannot show this, it issues a warning with
the possibly problematic intermediate expression. Spurious warnings for special
values can be checked with a tool that performs exact reasoning, e.g. CBMC [52],
and which reports a counterexample trace to the user who can use this trace to
confirm whether the warning is genuine and if so, for debugging.

Optimizing the Kernels Daisy furthermore provides a rewriting optimization that
finds an ordering of an arithmetic expression for which it can show a smaller
(absolute) roundoff error [32]. The rewriting relies on the fact that floating-point
arithmetic is not associative and distributive and hence different evaluation
orders commit errors of different magnitudes. Daisy’s algorithm uses real-valued
identities such as associativity and distributivity to rewrite the expression. Using
this optimization, we can thus locally improve the accuracy of the numerical
kernels.

5 State of the Art on Real-World Programs

We collected a new set of real-world numerical programs from different application
domains, as existing floating-point benchmark sets [29] cover kernels only. We
first report on our experiments using existing representative state-of-the-art tools
on these benchmarks, before evaluating our approach in Section 6.

Benchmarks All our benchmark programs are existing programs collected online
from a variety of domains such as scientific computing simulations (nbody, pendutum,
lulesh, reactor, molecular), physics algorithms (fbench, arclength), numerical methods
(tinpack) and machine learning (tinearsvc). Table 1 provides an overview of the
size and complexity of our benchmarks, as well as the number and arithmetic
complexity of the kernels that we chose for verification. We also count the number
of trigonometric operations (implemented in library functions) in the kernels,
and the ‘depth’ column shows the number of function calls needed to reach the
kernels from program entry.
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. kernels
benchmark [lang. LOC #in. #func. #loops 4 Jarith op. #trig. op. depth
arclength [68]| C 31 1 1 2 1 20 5 1
linearsvc [8] | C 32 4 1 3 1 7 - 1
raycasting [6]| C 94 3 1 4 = 4
nbody [5] C 108 21 10 9 2 9, 22 - 2,2
pendulum [2] C 141 4 11 8 2 24, 42 2,11 4,2
fbenchv2 [1] C 215 8 2 5 2 6, 14 -5 2,2
molecular [4] | C++ 323 3 8 13 |3 8,12, 11 -3 1,1, 1
fbenchvl [1] C 380 8 10 4 19,6, 14, 36 --5- 5,2,2,3
reactor [7] C++ 467 4 11 2 3 14,11, 13 -,2,2 2,0,1
linpack [3] C 544 5 12 31 |1 8 - 2
lulesh [51] C+ 2187 5 43 74 14109, 77,14,41  ---- 6,7,6,7

Table 1. Benchmark statistics

These benchmarks are single-threaded C or C++ floating-point programs
with arrays, structures, branching, loops, and function calls (we translated the
pendulun benchmark manually from Python to C). We modified the benchmarks by
replacing dynamic memory allocation, pointer arithmetic, and I/O operations as
appropriate, since these are challenging for most program analyses. We considered
two versions of fbench: one with user-defined trigonometric functions (V1) and
380 LOC, and another with their library versions (V2). We specified bounds on
the program inputs manually and identified a set of numerical kernels containing
a large number of arithmetic operations.

State of the Art We first evaluate existing state-of-the-art tools on our benchmark
set. For this, we choose CBMC, Astrée and AFLGo as representatives for model
checking, abstract interpretation and directed greybox fuzzing, respectively. To
the best of our knowledge, AFLGo was not used for floating-point debugging
before. These tools check for assertion violations, so we have added assertions to
our chosen kernels to check for absence of Infinity and NaN using the standard
library functions isinf and isnan.

We do not include a deductive verifier (e.g. [24]) in this comparison, because
it requires detailed user annotations of every function. None of the state-of-
the-art static roundoff-error analysis tools [43,33,31,30,60,65,72] work on the
whole applications in our benchmark set. Available dynamic analyses for finding
large roundoff errors [10,21,77,21,78,44] or special values [38,57,9] also work only
on smaller programs (often restricted to kernels). Only the dynamic-analysis
tool FPDebug [10] has been shown to scale beyond numerical kernels, but
unfortunately the code has not been actively maintained over the years.

All experiments are done for 64-bit precision and on a Debian server system
with 2.67GHz and 50GB RAM. We have used CBMC version 5.12 with MiniSat
2.2.0 (we have observed in our preliminary experiments that CBMC performs
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better with MiniSat), Astrée’s linux64_b5162300_retease and AFLGo downloaded on
June 9, 2020. We have set a 1-hour time budget for all experiments and unrolled
all loops for 50 iterations for both CBMC and Astrée.

With CBMC and Astrée, we are able to prove the absence of special float
values in linearsvC and rayCasting, two of the smallest benchmarks. Additionally,
Astrée also proves the absence of special values in kernels 1 and 5 in fbenchvi.
For all other C benchmarks (Astrée does not work on C++ programs), Astrée
generates warnings for the potential existence of special values. With AFLGo,
however, we do not find any special values within the time limit.

For the nbody and pendulum benchmarks, we originally had larger program input
ranges. For these, AFLGo was able to show the presence of special values in the
kernels, suggesting that greybox fuzzing is effective for detecting special values.
For the subsequent experiments, we have used tighter program input ranges to
avoid special values.

6 Evaluation of our Two-Phase Approach

We next evaluate our two-phase approach. For a fair comparison with the state-of-
the-art tools, we designate a 1-hour time limit for the entire analysis, allocating
50 minutes for generating the kernel ranges and 10 minutes for the kernel analysis.
We have empirically evaluated the effect of the time limit and observed that
increasing the time does not affect the results of our benchmarks, but a smaller
time limit led to worse results.

Computing Kernel Ranges The main step is the computation of the kernel
ranges. We compare the kernel ranges obtained with blackbox fuzzing (BB),
guided blackbox fuzzing (GBB) (both implemented in Blossom), AFLGo with
our iterative widening (AFLGo), and a combination of BB and AFLGo iterative
widening (BB+AFLGo). We have empirically determined that with 5 mutants
GBB performs the best for all our benchmarks. For AFLGo, we first fuzz the
program for 5 minutes and then run our iterative widening that employs the
fuzzer in a refinement loop to widen the so-obtained ranges (see Section 2.1) for
the next 45 minutes. For BB+AFLGo, we use Blossom’s blackbox fuzzing for 25
minutes to generate the initial ranges. On these ranges, we use our range-widening
technique with AFLGo for the next 25 minutes.

To compare the obtained kernel ranges, we first compute the width of each
kernel range (T — x) and show in Table 2 the average width over all kernel inputs
and over 5 runs with different random seeds. For our dynamic analyses, we want
to maximize the kernel ranges to cover as many kernel inputs as possible.

We also add the sound over-approximated ranges computed by Astrée, when-
ever these are available. While Astrée produces a warning inside the arclength
kernel, it still computes a finite range for the kernel input.

In 5 out of the 7 kernels where Astrée finds non-trivial ranges, our fuzzing
techniques also compute ranges that are close to Astrée’s. They are even equal
in the case of rayCasting. In the other 2 cases, Astrée reports big ranges whereas
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avg range width kernel

benchmark k 1
enchmarlckemel #3a15| \ (rée BB AFLGo BB+AFLGo GBB |analysis
arclength 1 1 6.16e+4 3.14 3.14 3.14 3.14 v
linearsvC 1 4 3.73 3.73 3.71 3.72 3.73 (V)
rayCasting 1 5) 12.20 12.20 12.20 12.20 12.20 v
bod 1 6 0 1.09e+5 6.67e+4 1.21e+H 1.02e+8 v
sy 2 9 00 1.25e+4 8.45e+3 1.19e+4 8.91e+6 X

1 4 00 14.80 12.86 14.82 14.56 v
pendulum

2 5 00 22.38 17.61 22.39 22.16 v

1 5 24.60 20.46 20.46 20.46 20.46 X
fbenchv2

2 5 0 21.36 21.36 21.36 21.36 X

1 1 403.00 0.18 0.18 0.18 0.18 v

2 5) 20.50 20.46 20.46 20.46 20.46 X
fbenchvl

3 5 oo 21.36 21.36 24.76 21.36 X

4 1 1.57 1.54 1.54 1.54 1.54 v
linpack 1 8 0 3.60e+6 4.44e+3 3.60e+6 2.11e+269 X

1 4 X 9.04 9.04 9.04 9.04 X
molecular 2 6 X 1.86 1.86 1.86 1.86 v

3 7 X 12.88 12.88 12.88 12.88 v

1 1 X 1.00 1.00 1.00 1.00 v
reactor 2 6 X 1.43e+2 9.35e+1 1.43e+2 1.46e+2 X

3 1 X 2.50 2.50 2.50 2.50 v

1 24 X 4.97 4.80 4.97 4.95 (v)

2 18 X 6.09 5.51 5.50 5.89 v
lulesh

3 9 X 3.48 3.09 3.42 3.25 v

4 12 X 5.95 5.49 5.93 5.77 v

Table 2. Comparison of kernel ranges generated by different techniques and settings

all fuzzing techniques compute smaller ranges with the same width, suggesting a
possible large over-approximation of Astrée’s ranges (or the inability of fuzzers
to discover new kernel inputs within the time limit).

In the other cases, when Astrée finds unbounded ranges or does not work, we
observe that for all but 3 kernels, all four fuzzing techniques compute very similar
range widths. For 3 kernels, however, GBB finds significantly larger ranges, thus
discovering kernel inputs that the other methods are not able to find. We thus
conclude that guided blackbox fuzzing appears to be most suitable for computing
kernel ranges in our benchmarks, as it can discover apparent outliers.

AFLGo often computes the smallest ranges. Our hypothesis is that because
AFLGo aims to maximize the number of paths in the program to reach the target
locations in the kernels, it focuses on generating values to find new paths rather
than generating values exercising an already found path that may increase the
width of the kernel ranges.
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benchmark kernel #vars‘BB AFLGo BB+AFLGo GBB

linearsvC 1 4 = 221 - =
nbody 1 6 121.05 312.93 144.86 181.26

2 9 155.31 226.10 127.25 206.20
S 1 4 0.69 51.77 0.57 5.25

2 5 0.69 4437 0.54 4.48
fbenchVv2 L o ) ) 1.99 i

2 5 - 0.04 - -

1 1 - 0.03 - -
fbenchvi 2 5 - - 1.99 =

3 5 - 0.04 8.85 -
linpack 1 8 0.01 100.15 - 114.58
molecular 2 6 0.25 8.0 0.15 0.33

1 1 - 0.01 - -
reactor 2 6 251 11.32 2091 2.80

3 1 - 0.01 - -

1 24 1.67 6.76 1.74 2.50

2 18 4.28 19.73 15.59 6.96
lulesh

3 9 7.14  23.25 10.55 11.97

4 12 391 16.13 3.49 5.88

Table 3. Variation of computed kernel range widths (from the average width) for our
three fuzzing techniques (in %), ‘-’ denotes no variation

Effect of Randomness All fuzzing techniques (BB, GBB, AFLGo) rely on ran-
domness. To evaluate how the computed kernel ranges are affected by it, we
calculate the variation of the range widths compared to the average range width
(per variable) over 5 runs. For 7 kernels, we do not detect any variation at all for
any of the methods; Table 3 shows the variations for the remaining kernels.

We observe that all methods have large variations for the benchmarks nbody
and linpack, i.e. those for which GBB has found very large ranges. This suggests
that there are a few corner-case inputs that lead to large kernel ranges (which
only GBB was able to reliably find). Further, we see that AFLGo has a large
range variation due to randomness for a few additional benchmarks, whereas BB
and GBB have variations that are relatively small.

Conditional Kernel Verification We were able to (conditionally) prove the absence
of special floating-point values for 16 out of the 24 kernels, and (conditionally)
prove the absence of cancellation errors for 14 of those kernels. We show these
results in the last column of Table 2: ‘/” indicates that Daisy could prove both
the absence of special values and cancellation in the kernel for the specified kernel
ranges, ‘(v/)’ indicates that only the absence of special values could be verified,
and ‘X’ shows when Daisy reports a special-value warning. For the relatively small
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benchmarks arclength, linearsvC and rayCasting, our verification of the kernels is
sound, i.e. unconditional, as we used ranges computed by Astrée.

When Daisy reports a warning, it is not guaranteed that a kernel can actually
compute a special-value result, because of 1) Daisy’s over-approximation of the
concrete program semantics, and because 2) the range we compute may contain
values that are not feasible in the actual program execution. To help developers
debug warnings reported by the static analyzer, we use CBMC on those kernels.

CBMC reports counterexamples in all kernels for which Daisy reports warnings.
Upon code inspection, however, we identified the counterexamples of nbody and
fbench to be spurious for the particular program inputs we consider. In these
cases, the true kernel input range was discontinuous, and the counterexamples
were reported for the infeasible inputs. In particular, in kernel 2 of nbody, a NaN
could be produced if the two bodies that are simulated collide, which would
not happen for the initial conditions that we chose. Similarly, the kernels in the
ray-tracing algorithm of fbench could produce Infinity, if the ray was chosen in a
very particular way. With the program input ranges we have chosen, this was
impossible.

For linpack, the arithmetic overflow reported is indeed genuine, since a division
by zero can occur before the kernel if the input matrix contains a zero on the
diagonal, which leads to undefined behavior and the huge range of the kernel
inputs. Similarly, for molecular and reactor, arithmetic overflow can occur for a
specific position of molecules and a specific value of the angle between particle’s
direction and the X-axis, respectively.

We note that given the counterexamples produced by CBMC, we could
straight-forwardly identify the warnings as spurious or genuine. In future work,
one could consider refining the kernel monitoring, such that it would not only
track a single range per kernel but could detect discontinuous ranges.

Our extension of Daisy reports cancellation-error warnings for one kernel of
linearsvc and one kernel of lulesh. We have used a threshold of 10 for reporting
cancellation, i.e. if the relative errors of the operands and the result differ by more
than three orders of magnitude, we report an error. We inspected the kernel code
and confirmed that the cancellation warnings are genuine, i.e. there are indeed
inputs that will result in a large roundoff error. The number of cancellations
found may seem small. We suspect that this is the case, because our benchmarks
were mostly written as reference or example programs (e.g. lulesh was developed
to be a representative hydrodynamics simulation code), hence we expect them to
be carefully developed and tested.

Kernel Optimization We have additionally applied Daisy’s rewriting optimization
on those kernels for which Daisy does not report possible special values. With
this procedure, we could reduce the roundoff errors in 8 of the kernels out of
which 6 cases are notable. We could reduce the error by 9.5% for linearsvc, 7.1%
and 3.3% for two outputs of kernel 2 in pendutum, by 19.8%, 4.0%, 5.8%, and 5.8%
for different kernel outputs of lulesh, and by 33.3% for one output of motecular.
From these experimental results, we conclude that the ranges that we inferred in
the first phase are actually useful for kernel analysis.
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7 Related Work

Abstract interpretation-based techniques are in principle uniquely suitable for
verifying the absence of special values and safety in floating-point programs. We
have chosen Astrée [63] in this work because it is an industrial-strength tool,
and as such, supports a wide range of C programs and is designed for scalability.
Apron [50] is a library of numerical abstract domains that are sound w.r.t. floating-
point arithmetic, and includes, for instance, the domain of polyhedra [19], which
is, however, significantly more expensive than the interval arithmetic domain
that we use. ELINA [71] provides performance-optimized implementations of
many numerical abstract domains, but its polyhedra domain does not support
floating-point arithmetic.

These domains only bound variable values; abstract domains [43,33,31,30] or
optimization-based static analyses [60,65,72] for bounding roundoff errors provide
nontrivial results only for relatively small kernels. For the second step in our
framework, we could have in principle chosen any of these tools; we chose Daisy
because we found it easy to modify for our needs, and because it already includes
the rewriting optimization.

In the space of deductive verification, besides Frama-C [24], the Boogie interme-
diate verification language [53] also has support for floating-point arithmetic and
discharges the verification conditions using the Z3 SMT solver. Similarly, bounded
model checking [52] is limited by the performance of the underlying SAT/SMT
solvers. While the floating-point support in today’s SMT solvers [17,16] has im-
proved significantly in recent years, it is still limited to relatively few arithmetic
expressions.

Many interactive theorem provers have floating-point formalizations [49,15,37].
While these do allow to prove complex functional properties [13,14,46], the proofs
are largely manual and require significant expertise.

Blackbox testing has been explored to find large roundoff errors by executing a
higher-precision version of the program side-by-side [10,21,77]. Recently, whitebox
testing has been used for detecting overflows [38], by phrasing the search as a
mathematical optimization problem, and large roundoff errors [21,78], by adapting
the notion of condition numbers. KLEE-Float [57], FPGen [44] and Ariadne [9]
use symbolic execution for finding bugs in floating-point code, including overflows
and large precision loss and cancellation. While KLEE-Float relies on the floating-
point SMT decision procedures, Ariadne approximates the path constraints and
uses the real-valued theory. FPGen injects specialized inaccuracy checks to find
cancellations. Only FPDebug [10] has been shown to scale beyond numerical
kernels and, to the best of our knowledge, none of the dynamic techniques have
been used to obtain range information.

Once a large roundoff error has been identified, Herbgrind [69] can help to
locate its root cause, which may be in a different instruction than where the error
becomes significant. Herbgrind is thus complementary to our work and may be
used to locate root causes of potential cancellation errors reported by Daisy.

Rewriting floating-point expressions in order to optimize roundoff errors has
been explored in the tool Herbie [67] and others [74,76]. These approaches attempt
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to repair unstable code, checking accuracy using a dynamic analysis. They are
alternatives to using Daisy for the second step in our framework. Alternative
program optimizations that we have not explored in this work, but that also
require range information, include mixed-precision tuning [32,20,68] and general
non-semantics preserving approximation [70].

Apart from AFLGo [12], there is a wide range of targeted greybox fuzzers, such
as those targeting specified program locations [18], rare branches [54], unexplored
branches [55,73], or potential vulnerabilities [39,45,22,56]|. In our setting, we
require fuzzers like AFLGo to target the specific program locations of kernels.

There is a significant body of work on guiding program analyzers. In particular,
test case generation is typically guided by a static analysis toward specific parts
of the code (e.g., [27,35,66,41,40,58,62,28,59,23,36,34,75,44]). Our approach is
similar to these techniques as it infers input ranges to guide verifiers of numerical
kernels toward those kernel executions that are relevant in the context of the
containing application.

8 Conclusion

Even though floating-point programs have received a lot of attention recently, their
focus has been largely on verifying or debugging arithmetic kernels. Our review
of existing techniques and tools has shown that few approaches with specific
floating-point support are applicable to whole programs without significant user
expertise. We have found, however, that standard greybox fuzzing proved to be
effective in detecting overflows and NaNs. Meanwhile, static-analysis techniques
to show the absence of special values and cancellation errors remain limited to
programs with few bounded loops and numerical kernels, respectively.

Instead of trying to scale up existing roundoff-error analysis tools to whole
programs, we combine them with more scalable analyses that compute the kernel
preconditions needed for the roundoff analyses to work. We showed how relatively
small adaptations to well-known techniques of directed blackbox and greybox
fuzzing are enough to realize such a framework. Together with modifications to an
existing roundoff-error analyzer, we are able to conditionally verify the absence
of special values and cancellations in a number of numerical kernels in realistic
floating-point programs that are out of reach for today’s analyses. At the same
time, our analysis is precise enough to identify several cases of cancellations. While
our approach is not suitable and not intended for certification of safety-critical
systems, we believe that it nonetheless provides valuable debugging feedback for
many real-world applications.
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Abstract. Problems arising in many scientific disciplines are often mod-
elled using edge-coloured directed graphs. These can be enormous in the
number of both vertices and colours. Given such a graph, the original
problem frequently translates to the detection of the graph’s strongly
connected components, which is challenging at this scale.

We propose a new, symbolic algorithm that computes all the monochro-
matic strongly connected components of an edge-coloured graph. In the
worst case, the algorithm performs O(p - n - logn) symbolic steps, where
p is the number of colours and n the number of vertices. We evaluate the
algorithm using an experimental implementation based on Binary Deci-
sion Diagrams (BDDs) and large (up to 2*®) coloured graphs produced
by models appearing in systems biology.

Keywords: strongly connected components - symbolic algorithm - edge-coloured
digraphs - systems biology

1 Introduction

Processing massive data sets poses a series of interesting computational challenges.
A variety of these data sets can be modelled as very large multigraphs, augmented
by a specific collection of application-dependent edge attributes. These attributes
are often represented as colours and the resulting formalism is called an edge-
coloured graph [4,10]. Geographic information systems, telecommunications traffic,
or internet data are prime examples of data that are best represented as such edge-
coloured graphs. For instance, in social networking, it is typically used to identify
groups of nodes related to each other by some specific criteria (Sports, Health,
Technology, Religion, etc.) represented as colours. Our interest in processing huge
edge-coloured graphs is primarily motivated by applications taken from systems
biology [5,29] and genetics [25] where we have to deal not only with giant graphs
as measured by the number of vertices and edges but also with large sets of
colours. The colours in such graphs represent various parameters that influence
the dynamics of a biological system [5,9, 46].

Fundamental graph algorithms such as breadth-first search, spanning tree
construction, shortest paths, decomposition into strongly connected components
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(SCCs), etc., are building blocks of many practical applications. For the edge-
coloured graphs, the primary research focus so far has been on some of the
“classical” coloured graph problems, like the determination of the chromatic index,
finding sub-graphs with a specified colour property (the coloured version of the
k-linked problem), properly edge-coloured cycles and paths, alternating cycles,
rainbow cliques, monochromatic cliques, monochromatic cycles, etc. [1-4,55, 33].
To the best of our knowledge, we are not aware of any work on SCC decom-
position for edge-coloured graphs, even though this problem has many important
applications. For example, in biological systems, connected components represent
the attractors of the system. These play an essential role in determining the
system’s properties, since they may correspond, for example, to the specific phe-
notypes of a cell [21]. The parameters (e.g. reaction rates) in such systems might
be represented as edge colours in the state transition graph. The knowledge of
attractors and how their structure depends on parameters is vital for understand-
ing various biological phenomena [24, 38]. Other applications where investigation
of attractors is crucial include predictions of the global climate change [52], or
predictions of spreading of infectious diseases such as COVID-19 [39].

There is a serious computational problem related to the processing of massive
edge-coloured graphs, even the non-coloured ones, that significantly affects the
tractability of SCC decomposition. The graphs often cannot be handled with
standard (explicit) representations since they are too large to be kept in the main
memory. Various approaches have been considered to deal with such giant graphs:
distributed-memory structures, structures for representing graphs symbolically,
or storing the graphs in external memory. We review these approaches in more
detail in the related work section.

In [6,13] we have initially attacked the SCC decomposition problem for
massive edge-coloured graphs by developing a parallel semi-symbolic algorithm
for detecting terminal SCCs. The algorithm uses symbolic structures to represent
sets of parameters, while the graph itself is represented explicitly. The results
have shown that the parallel semi-symbolic algorithm is not sufficient for the
practical needs to tackle large graphs representing real-world problems. Those
findings have motivated us to propose an entirely symbolic approach.

In this paper, we consider edge-coloured multi-digraphs, i.e., multi-digraphs
such that each directed edge has a colour and no two parallel (i.e., joining the
same pair of vertices) edges have the same colour. Here, we refer to such graphs
simply as coloured graphs. For coloured graphs, we can define several notions
of strongly connected components involving colours. We consider the simplest
case, where the SCCs are monochromatic, that is all their edges have the same
colour [35]. This choice is motivated by the application in systems biology, as
mentioned above.

We propose a novel fully symbolic algorithm for detecting all monochro-
matic components in coloured graphs which is in practice significantly faster
than is achievable with a naive execution of an algorithm for symbolic SCC
decomposition scanning all colours one-by-one, in particular on massive coloured
graphs. This is because in many applications, the edges are largely shared among
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individual colours [5] and our algorithm is capable of exploiting this fact. The
algorithm conceptually follows the lock-step reachability approach by Bloem [14]
for monochromatic digraphs. The key new ingredients behind our algorithm are
a careful orchestration of the forward and backward reachability for different
colours and a sophisticated selection of a set of pivots.

1.1 Related Work

The detection of SCCs in (monochromatic) digraphs is a well-known problem com-
putable in linear time. Best serial (explicit) algorithms are Kosaraju-Sharir [50]
and Tarjan [53], which are both inherently based on depth-first search. However,
these algorithms do not scale for large graphs, e.g., those encountered in model-
checking. Therefore, alternative approaches to SCC decomposition have been
proposed (I/O efficient, parallel, symbolic algorithms).

The algorithm of Jiang [32] gives an I/O-efficient alternative based on a com-
bination of depth-first and breadth-first search.

Efficient parallel distributed-memory algorithms avoid the inherently sequen-
tial DFS step [45] in several different ways. The Forward-Backward algorithm [26]
employs a divide-and-conquer approach relying on picking a pivot state and split-
ting the graph in three independent (no crossing SCCs) parts. The approach of
Orzan [44] uses a different distribution scheme called a colouring transformation
employing a set of prioritised colours to split the graph into many parts at once.
The recursive OWCTY-Backward-Forward (OBF) approach is proposed in [8].
It recursively splits the graph in a number of independent sub-graphs called
OBF slices and applies to each slice the One-Way-Catch-Them-Young (OWCTY)
technique. In [51] the authors utilise variants of Forward-Backward and Orzan’s
algorithms for optimal execution on shared-memory multi-core platforms. Fi-
nally, Bloemen et al. [15] utilise the important ability of Tarjan’s algorithm to
return detected SCCs on-the-fly. In particular, they present an on-the-fly parallel
algorithm showing promising speedups for large graphs containing large SCCs.
On another end, GPU-accelerated approaches to computing SCCs have been
addressed, e.g., in [7,30, 37, 56].

Computing SCCs of (monochromatic) digraphs symbolically is another way
to handle giant graphs and has been thoroughly explored in literature. As
in the case of efficient parallelisation, depth-first search is not feasible in the
symbolic framework [28]. In consequence, many DFS-based algorithms cannot be
easily revised to work with symbolically represented graphs. An algorithm based
on forward and backward reachability performing O(n?) symbolic steps was
presented by Xie and Beerel in [57]. Bloem et al. present an improved O(n -logn)
algorithm in [14]. Finally, an O(n) algorithm was presented by Gentilini et
al. in [27,28]. This bound has been proved to be tight in [20]. In [20], the authors
argue that the algorithm from [27] is optimal even when considering more fine-
grained complexity criteria, like the diameter of the graph and the diameter of the
individual components. Ciardo et al. [59] use the idea of saturation [22] to speed
up state exploration when computing each SCC in the Xie-Beerel algorithm, and
compute the transitive closure of the transition relation using a novel algorithm
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based on saturation. Besides these generic algorithms, there have been recently
also proposed symbolic SCC decomposition methods to deal with specific large
graphs, e.g., graphs generated by Boolean networks [42, 58].

2 Problem Definition

As we have already stated in the introductory section, the SCC decomposition
problem for edge-coloured graphs has remained mostly unexplored until now. We
thus start this paper by introducing and formalising the notion of coloured SCC
decomposition itself and state some of its basic properties.

Before giving exact definitions, it might be instructive to discuss the substance
of the coloured SCC decomposition intuitively. There are several ways of capturing
the notion of a “coloured connected component”. For example, one of them is that
of a colour-connectivity first introduced by Saad [47]. It is based on alternating
paths in which successive edges differ in colour. However, there is no unique,
universally acceptable notion of a coloured component.

In the biological application we have in mind, we want to identify a coloured
component as a coloured collection of SCCs—a collection where for every colour
there is a set of all relevant monochromatic SCCs. Such setting leads us to
represent SCCs in the form of a relation. To that end, we first introduce such a
relation for monochromatic graphs (Section 2.1) and consequently extend it to
edge-coloured graphs (Section 2.2). The relation-based approach gives us also
the advantage of allowing a feasible symbolic encoding of the problem.

2.1 Graphs and Strongly Connected Components

Let us first recall the standard definitions of a directed graph and its strongly
connected components:

Definition 1. A directed graph is a tuple G = (V, E) where V is a set of graph
vertices and E CV x V is a set of graph edges.

We are going to use the word graph to mean directed graph in the following.
We write u — v when (u,v) € E and u —* v when (u,v) € E*, the reflexive
and transitive closure of E. We say that v is reachable from u if w —* v. The
reachability relation allows us to decompose a graph into strongly connected
components, defined as follows:

Definition 2. In a graph G = (V, E), a strongly connected component (SCC)
1s a mazimal set W CV such that for all u,v € W, u —* v and v =" u. For a
fized v € V, we write SCC(G,v) to denote the SCC of G that contains v.

If the graph G is clear from the context, we can simply write SCC(v). A
set of vertices S C V is said to be SCC-closed if every SCC W is either fully
contained inside S (W C S), or in its complement (W C V '\ S). Notice that
given a vertex v, the set of all vertices reachable from v, as well as the set of all
vertices that can reach v, are both SCC-closed.
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A pivotal problem in computer science is to find the SCC decomposition of G.
As mentioned above, we represent the decomposition in the form of an equivalence
relation Rg.. such that the individual SCCs are exactly the equivalence classes
of Rgc.. The relation-based formulation of the SCC decomposition problem is
the following:

Problem 1 (SCC decomposition) Given a graph G = (V. E), find the SCC
decomposition relation Rs.. € V x V such that (u,v) € Rgee if and only if
SCC(u) = SCC(v).

Note that SCC(u) is the section of the first attribute of Ry, i.e. SCC(u) =
{u] (u,v) € Rsee }. We denote such a section in the following way: SCC(u) =
Rgee(u, ). Here, u is the specific value of an attribute at which the section is
taken, and _ is used in place of the attributes that remain unchanged. Such
notation naturally extends to relations of arbitrary arity.

2.2 Coloured SCC Decomposition Problem

We now lift the formal framework to the coloured setting. An edge-coloured
graph can be seen as a succinct representation of several different graphs, all
sharing the same set of vertices. Note that to emphasise the difference from the
standard graphs as given in Definition 1, we sometimes call the standard graphs
monochromatic.

Definition 3. An edge-coloured directed multi-graph (coloured graph for short)
is a tuple & = (V,C, E) where V is a set of vertices, C is a set of colours and
ECV xC xV isa coloured edge relation.

We also write u — v whenever (u,c,v) € E. By fixing a colour ¢ € C and
keeping only the c-coloured edges (with the colour attribute removed), we obtain
a monochromatic graph &(c) = (V,{(u,v) | (u,c,v) € E}). We call this graph
the monochromatisation of & with respect to c. Intuitively, one can view the
elements of C' as a type of graph parametrisation where the edge structure of the
graph changes based on the specific ¢ € C.

The SCC decomposition relation R,.. is extended to the coloured SCC
decomposition relation P, by relating every colour ¢ € C with all SCCs of the
monochromatisation &(¢). In consequence, the SCC decomposition problem is
then lifted to the coloured SCC decomposition problem as follows:

Problem 2 (Coloured SCC decomposition) Given a coloured graph & =
(V,C,E), find the coloured SCC decomposition relation Rsee € V x C x V
satisfying (u,c,v) € Rsee if and only if (u,v) € Rsee of B(c).

From this definition, we can immediately observe the following properties
about the relationship of R, with the terms which we have defined before:

— Rs.c of a monochromatisation &(c) is exactly the section R (o, ¢, -);
— SCC(B(c),v) is exactly the section R (v, ¢, -).

From this, it should be immediately clear that $Rg.. contains all components of
the underlying monochromatisations.
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3 Algorithm

Conceptually, our algorithm follows the lock-step reachability approach by
Bloem [14] for monochromatic graphs. The lock-step algorithm itself is based on
the basic forward-backward decomposition algorithm [57]. In this section, we first
briefly introduce these two algorithms in order to explain better the key ideas
behind our approach and, in particular, to explain what were the main difficulties
encountered in employing the concepts of these algorithms to edge-coloured
graphs. Although the algorithms were originally presented as producing a set of
SCCs, we reformulate them slightly using the equivalent relation-based approach
as explained in the previous section. After that, we present the coloured SCC
decomposition algorithm. However, before we dive into the algorithmics, let us
first briefly discuss the computation model we are using.

3.1 Symbolic Computation Model

As a complexity measure of our algorithm, we consider the number of symbolic
steps, or more specifically, symbolic set and relation operations that the algorithm
performs. As is customary, we assume that sets of vertices (V') and colours (C)
can be represented symbolically (for example, using reduced ordered binary
decision diagrams [17]) as well as any relations over these sets. In particular, we
often talk about coloured vertex sets, by which we mean the subsets of V' x C.

Aside from normal set operations (union, intersection, difference, product and
element selection), we also require some basic relational operations, all of which
we outline in Fig. 1. These extra operations tend to appear in other applications
as well (such as symbolic model checking [18]), and are thus typically already
available in mature symbolic computation packages.

Finally, there are several derived operators that are partially specific to our
application to coloured graphs. However, these can be constructed using standard
set and relation operations. The intuitive meaning of the derived operators is
as follows: COLOURS returns all the colours that appear in the given coloured
vertex set. PRE and POST compute the pre and post-image of a (monochromatic
or coloured) set of vertices, i.e. the set of successors or predecessors of all the
vertices in the given set, respectively. Finally, JOIN takes a coloured vertex set A
and computes the set {(u,c,v) | (u,c) € A, (v,c) € A}.

3.2 Forward-backward Algorithm

To symbolically compute the SCCs of a graph G = (V, E), Xie and Beerel [57]
observed that for any vertex v € V', the intersection W = F'N B of the forward
reachable vertices F' = {v/ € V | v —* ¢’} and the backward reachable vertices
B={v eV |v —=* v} is exactly the strongly connected component of G which
contains v.

The algorithm thus picks an arbitrary pivot v € V| and divides the vertices of
the graph into four disjoint sets: W, FA\W, B\W and V'\ (FUB). This is illustrated
graphically in Fig. 2 (left). The set W is then immediately reported as an SCC
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Standard set operations
pick element PIck(A) arbitrary © € A
union AUB {r|x€e Avae B}
intersection ANB {z|ze ANz € B}
difference A\ B {z|ze ANz ¢ B}
product Ax B {(z,y) |z € ANy € B}
Relation manipulation (R C S1 X ... X Sy)
. : {(yl,---7yi—17yi+17~~~7yn)|
i-th section at z oi(z, R) Wts e Yimts T Yosts o2 yn) € R
existential
quantification of Fi(R) Uses, oi(z, R)
the i-th element
swap SwaP(R C A x B) {(y,z) € Bx A| (z,y) € R}
Derived operations (G = (V, E), & = (V,C, E))
colours COLOURS(A CV x () F1(A)
pre-image PRE(G,ACYV) H(VxA)NE)
post-image PosT(G,ACYV) J((AXV)NE)
coloured pre-image | PRE(®, A CV x () J3((V x Swar(A)) N E)
coloured post-image | PosT(®,ACV x C) SwAP(F1((A X V)N E))
coloured join JOIN(ACV x C) (V x SwAP(A))N (A x V)

Fig. 1. Summary of symbolic operations that appear in the presented algorithms. The
derived operations can be implemented using the standard and relational operations.
However, typically they also have a slightly more efficient direct implementations.

of the graph, and added into the component relation: R.. < Rgee U (W x W).
It is easy to see that every other SCC is fully contained within one of the three
remaining sets (they are SCC-closed), and the algorithm thus recursively repeats
this process independently in each set.

The correctness of the algorithm follows from the initial observation and the
fact that every vertex eventually appears in W (either as a pivot or as a result of
F N B). In the worst case, the algorithm performs O(|V|?) symbolic steps, since
every vertex is picked as a pivot at most once and the computation of F' and B
requires at most O(|V|) PRE/POST operations.

3.3 Lock-step Algorithm

To improve the efficiency of the forward-backward algorithm, the lock-step
approach [14] uses another important observation: To compute W, it is not
necessary to fully compute both F' and B; only the smaller (in terms of diameter)
of the two sets needs to be entirely known. With this observation, the computation
of F and B can be modified in the following way: Instead of computing F' and
B one after the other, the computation is interleaved in a step-by-step manner
(dovetailing). When one of the sets is fully computed, the computation of the
second set is stopped. Let us call the computed set converged and denote it by
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V V

Fig. 2. Illustration of the difference between the forward-backward algorithm (left) and
the lock-step algorithm (right). On the left, we fully compute both backward (B) and
forward (F) reachable sets from the pivot v, identifying W as F'N B. On the right,
without loss of generality, assume F' is fully computed first. It thus becomes converged
(Con) and the computation of B (Non) is stopped before it is fully explored.

Con, and the unfinished set non-converged and denote it by Non. This situation
is illustrated in Fig. 2 (right).

However, even when Con is fully known, we still need to finish the computation
of states in Non that are inside Con to discover the whole component W. This
is necessary if there are vertices w in W whose forward distance from v (i.e. the
length of the path v —* w) is short while their backward distance (the length of
the path w —* v) is long, or vice versa. Such vertices are thus only discovered
in one of the two reachability procedures and still need to be discovered by the
other one to identify the whole component. However, an important observation
is that only the vertices already inside Con need to be considered in this step.

After this, the SCC can be identified and reported just as in the forward-
backward algorithm. Finally, the recursion now continues in sets Con \ W and
V'\ Con. This is due to Non being not fully computed; we cannot guarantee that
no SCC overlaps outside of Non (Non is not necessarily SCC-closed).

The algorithm is still correct because every vertex is eventually either picked
as a pivot or discovered in some W. Furthermore, due to the way Con and Non
are computed guarantees that W is still a whole SCC. In terms of complexity,
the algorithm performs O(|V|-log|V|) symbolic steps in the worst case. To see
why this is true, we may observe that every vertex appears in W exactly once,
and that the smaller of the two sets Con \ W and V' \ Con, let us call it S, is
always smaller than ‘Qll The authors then argue that the price of every iteration
can be attributed (up to a multiplicative constant) to the vertices in S U W and
that every vertex appears in .S at most O(log|V])-times.

3.4 Coloured Lock-step Algorithm

When developing an algorithm for coloured graphs, we had to deal with multiple
challenges which do not appear for monochromatic graphs and require careful
consideration. In the following, we refer to the pseudocode in Algorithm 1.

An important observation is that the structure of components in the graph can
change arbitrarily with respect to the graph colours. In consequence, our algorithm
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Algorithm 1: Symbolic Coloured SCC Decomposition

1
2
3
4

© o N o O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34

35
36
37
38
39
40
41
42

Function CoLOUREDSCC(6 = (V,C, E))
Rsee € (VX C x V) <+ 0
DECOMPOSITION(®, Reee, V X C);
return R,..;

Function DECOMPOSITION(& = (V,C, E),Rsc C(V xCx V),V C (V x())
if ¥V = () then return;
F, B,?, B C (V x C) + Pvots(V);
ﬁ,gzg(VxCN—@;
Fiock, Biock € C < 0;
while Floer U Biock € COLOURS(V) do
CV x C  (PosT(®, F)NV)\ F;
B CVxC« (PRE(®, B)NV)\ B;
Flock < Flock U (COLOURS(V) \ COLOURS(?));
Biock - Biook U (COLOURS(V) \ COLOURS(B) \ Fioct);
.ﬁ <~ .?u} U (]:ﬂ (V X Block));
Ei — l?u) U BNV X Flock))
F e« F\(V x Buw);
g < ? \ (V X Flock);
F FUF;

B« BUR:
end
Con CV x C + (FN(V X Fioet)) U (BN (V X Blowk));

?<—]?u>ﬂC0n;
? <—B_u>ﬁCon;
while?#@/\g#@do
« (PoST(®, F) N Con) \ F:
B « (Pre(®, B) N Con) \ B;
Fe FUF
B+« BUB;

end

WCV xC<+ FNh;

msc{: < mscc U JOIN(W);
DECOMPOSITION(®&, Ree, V \ Con);
DECOMPOSITION(®, Ryee, Con \ W);

)

Function P1voTs(V)
PC(VxC)«+ 0,V C(VxC)+V;
while V' # () do

(v,c) + Pick(V');

P+ PU{v} xo1(v,V));

V'« V'\ (V x CoLOURS(P));
end
return P;
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cannot simply operate with sets of graph vertices as the normal algorithm would.
To that end, we use the notion of coloured vertex sets as introduced in Section 3.1
where the symbolic operations we perform on these sets have been described.

Initially, the algorithm starts with all vertices and colours, i.e. the full set
V' x C. However, as the components are discovered, the intermediate results may
contain different vertices appearing only for certain subsets of C. As a result,
we often cannot pick a single pivot vertex that would be valid for all considered
colours. Instead, we aim to pick a pivot set P C V x C such that for every colour
that still appears in V), the set contains ezactly one vertex. Alternatively, one can
also view the pivot set as a (partial) function from C to V. This is done in the
Prvors function.

The lock-step reachability procedure also cannot operate as in a standard
graph. First of all, there can be colours where the forward reachability converges
first, as well as colours where this happens for backward reachability. The
algorithm thus has to account for both options simultaneously. Second, for each
colour, the reachability can converge in a different number of steps. To deal
with this problem, we introduce the Fj,.; and Bj,.; variables. These store the
mutually disjoint sets of colours for which forward and backward reachability
already converged. The lock-step procedure terminates when Fj,.; and B,k
contain all the colours that appear in V.

Throughout the algorithm, we keep track of several coloured-set variables.
The first two, F and B, represent the forward and backward reachable sets,
respectively. We then have four variables ? Fus g, l?u) to represent the frontiers
of these sets, i.e., the set of pairs (v, c) such that the vertex v has not yet been
expanded in the correspondmg reachability procedure for the colour c. The
frontier of F is the set ? U ]—' The sets %

involves those colours for which the lock-step reachability procedure has not

and F, contain disjoint colours —

finished yet, while .7-" represents the unfinished part of the frontier that shall be
explored in the second while cycle; similarly for 5 and l?u) .

In the first while cycle (lines 10-21), we compute the reachability sets in
the lock-step manner. Once a reachability set is completed for some colours
(i.e., there are no vertices to expand with those colours), we add the colours to
the corresponding Fj,.; or B, variable. Note that we ensure that Fj,.; and
Bioer, remain disjoint even if the two reachability procedures converged at the
same time for certain colours—see line 14. We use Fj,cr and Bj,ci to split the
newly computed frontier sets into the parts that are to be explored in the next
iteration (F, 5) and the parts that are currently left unfinished (F,, B,).

After the first while cycle, we compute the set Con that is an analogue for the
converged set of the original lock-step algorithm (line 22). As already suggested
above and unlike the original algorithm, this set cannot be just F or B, but is
instead a mixture of both, depending on the convergent colours. To compute this
set, we use the Fj,.. and By, variables.

The second while cycle (lines 25-30) then completes the unfinished forward
and backward reachability set, restricted to the inside of the converged set. The
intersection of F and B then forms a coloured set W with the property that
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for all ¢ € COLOURS(V), W(_, ¢) is a strongly connected component of &(c¢). We
create the corresponding relation using the JOIN operation, add this relation to
the resulting R, and recursively call the whole procedure with V' \ Con and
Con \ W as the base coloured sets of vertices.

Let us note that there is possibly another approach. Instead of trying to work
with all colours still appearing in the coloured vertex set at once, we cold fork
a new recursive procedure whenever the colour set splits due to the differences in
the graph structure. For example, instead of picking multiple coloured vertices
as pivots, one could pick a single vertex with a valid subset of colours and then
address the remaining colours in a separate recursive call. While such approach
could be to some extent beneficial in a massively parallel environment where
each recursive call can be executed independently on a new CPU, the amount
of forking in large systems will soon become unreasonable. More importantly,
it defeats the purpose of symbolic representation which aims to minimise the
number of symbolic operations.

3.5 Correctness and Complexity of the Coloured Lock-step
Algorithm

Theorem 1. Let & = (V,C,E) be a coloured graph. The coloured lock-step
algorithm terminates and computes the coloured SCC decomposition relation Rge.

Proof. We first show that the set W computed on line 31 indeed contains one SCC
for every colour ¢ € COLOURS()V) and that the recursive calls of DECOMPOSITION
preserve the property that V is SCC-closed with respect to all colours.

Let us assume that V is SCC-closed and let us take an arbitrary ¢ €
CoLoUuRs(V). The function PIvoTs chooses a set that contains exactly one
pair whose colour is ¢, let us call this pair (v,c). Let us further assume that ¢ is
assigned into Fj,.p first (the case with B, is completely symmetric).

Let us now choose an arbitrary vertex w such that v and w are in the same
SCC of &(¢), i.e. v =* w and w —* v. As the first while cycle finishes, F contains
all the pairs of the form (u,c) € V where u is reachable from v in &(c). Thus, it
also contains (w, ¢) due to the fact that V is SCC-closed. Now, either (w,c¢) € B,

or there exists a vertex z such that w —* , x —* v in &(¢) and x € I?Z This
means that (w,c) is added to B in the second while cycle. In both cases, both
(v,¢) and (w, ¢) are then added to W. As the vertex choices were arbitrary, this
proves that the SCC of v in &(c) is contained in W. Furthermore, if (y,c) € W
for an arbitrary y, then v —* y and y —* v in &(c¢), which means that y is in
SCC(®(c),v). This proves that W contains exactly one SCC for every colour
¢ € COLOURS(V).

We now argue that Con is SCC-closed with respect to all colours. This
immediately implies that both V \ Con and Con \ W are SCC-closed. Let us
assume that there is a colour ¢ € COLOURS(V) and two vertices v, w in the
same SCC of &(c) such that (v,c) € Con, but (w,c) € Con. Let us assume that
¢ € Fjoer (as above, the case of By, is completely symmetrical). Then (v, ¢) € F
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after the first while cycle finishes. This also means that (w,c¢) € F as the forward
reachability procedure is completed for ¢ and thus (w,¢) € Con, a contradiction.

What remains is to show that the algorithm terminates and that every SCC
is eventually found. Termination is trivially proved by the fact that size of the
set V always decreases in recursive calls: both W and Con are nonempty, because
they contain the initial pivot set as a subset. Clearly, a representant of every
SCC of every monochromatisation &(c) is eventually chosen as a pivot. Together
with the above reasoning, this implies that the algorithm is correct. a

Theorem 2. Let |V| be the number of vertices in the coloured graph and let
|C| be the number of colours. The coloured lock-step algorithm performs at most
O(|C] - |V -log|V]) symbolic steps.

Proof. Let us first note that all the derived operations defined in Fig. 1 use
only a constant number of the basic symbolic operations. As we are considering
asymptotic complexity here, we can view all the operations in Fig. 1 as elementary
symbolic steps.

We first make the observation that each vertex may be chosen as a part of
the pivot set at most |C| times. Clearly, once a vertex is included in the pivot
set with a set of colours C’, then, {v} x C" C Con (due to the monotonicity of
the construction of F and B) and the elements of {v} x C’ do not appear in
subsequent recursive calls. This means that the total complexity of the calls to
Prvots is bounded by O(|C| - |V]) and we can exclude the calls from the rest of
the complexity analysis.

We now consider the complexity of a single call to DECOMPOSITION without
the subsequent recursive calls. Let us now select one of the colours for which
the lock-step reachability procedure (lines 10-21) finished last, i.e., one of the
colours that have been added to Fj,cp or Bjoer in the final iteration of the cycle.
Let us call this colour ¢. Recall that o3(c, X) is the set of vertices with colour ¢
in a coloured set X.

Let us denote by W := g9(¢, W) and let S be the smaller of oy(c,V \ Con)
and o2(c,Con \ W). Clearly S contains at most |V|/2 vertices. Let k = |S UW|.
We now argue that the number of symbolic steps in a given call (without the
recursive calls) is bounded by O(k).

Assume w.l.o.g. that ¢ € Fj,e (a completely symmetric argument solves the
case ¢ € Bjyer). Then oo(c,Con) = o9(c, F). If S is oa(c, Con \ W) then k is the
size of oa(c, F). Each iteration of the first while cycle puts at least one vertex
with colour ¢ into F; otherwise ¢ would not be one of the last colours to finish.
This means that the cycle runs for at most k iterations. This also means that
the size of o9(x, X) for all colours z and X' € {F, B} is also bound by k, which
in turn means that the second while cycle cannot make more than O(k) steps.

If S is 02(c,V \ Con) instead, let us define B := o3(c, B) right after the first
while cycle has finished. We know that B C S U W: if a vertex v were in B\ S
then (v,c) € Con = F and thus v € W. Again, each iteration of the first while
cycle puts at least one vertex with colour ¢ into B; otherwise ¢ would have been
in By, before it appeared in Fj,q. Similarly to the previous case, this means
that both while cycles run for at most O(k) steps.
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The rest of the argument uses amortised reasoning, in a way similar to the
proof in [14]. Note that each vertex is going to be an element of the set W as
described above at most |C| times (once for each colour). Furthermore, each
vertex is going to be an element of the set S as described above at most |C|-log |V
times: for each colour, the vertex can be an element of the smaller of the two
sets at most log |V] times. As the cost of each single call can be charged to the
vertices in S U W as explained above, it is sufficient to charge each vertex the
total cost of |C|+ |C| - log|V|. Together, this means that the total number of
symbolic steps is bounded by O(|C| - |V]-log |V]). O

Note that the upper bound established by Theorem 2 is no better than the one
we would get if we split the coloured graph into its monochromatic constituents
and processed each monochromatic graph separately using the original lock-step
algorithm [14]. We remark, however, that the coloured approach is a heuristic
whose real complexity might be much smaller. Indeed, the complexity analysis
in the previous proof focused on a single colour, omitting the fact than SCCs
for many other colours are found at the same time. In case where the edges are
largely shared among the colours, which is true in many applications, the heuristic
has the potential to significantly outperform the parameter-scan approach. The
situation is similar to that of the coloured model checking; see the observations
made in [5].

4 Experimental Evaluation

In this section, we examine the applicability of our algorithm in real-world sit-
uations. First, we discuss how we implemented the algorithm and share some
useful recommendations in this regard. We then look at how the implementa-
tion performs on real-life coloured graphs which are derived from large models
considered in computational biology.

4.1 Implementation

As our symbolic set representation, we consider standard reduced ordered binary
decision diagrams (ROBDDs, or just BDDs for short) [17]. The source of our
edge-coloured graphs are the transition systems of parametrised Boolean networks
(PBN) as understood in [11, 60].

Boolean networks. Normal (non-parametrised) Boolean networks [34, 46,
49, 54] appear in computational systems biology as logical models of complex bio-
chemical processes [16]. Here, we use the asynchronous variant of BNs introduced
by Thomas [54]. A Boolean network consists of Boolean variables, each having a
Boolean update function. Update functions are executed non-deterministically
and change the state of the Boolean variables. The semantics of such a network
is a directed graph where the vertices are the possible valuations of the Boolean
variables and the edges are induced by the non-deterministic execution of the
update functions.
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This type of models is especially challenging for symbolic analysis. It is a
well-known fact, that using symbolic structures, like BDDs, to represent very
large state spaces gives good results for synchronous systems, but shows its limits
when trying to tackle asynchronicity (see e.g. [23]).

In the parametrised variant, the update functions can be partially unknown.
This introduces a set of colours (parametrisations), each colour fully instantiating
all update functions of the network. As a result, the semantics of such a model is
an edge-coloured directed graph as we consider in this paper. For a full technical
description of PBNs and their coloured graph semantics, please refer to [11].

Our implementation heavily relies on the existing internal libraries of our
tool AEON [12], which at the moment partially supports symbolic analysis of
PBNs. Specifically, AEON uses symbolic BDD-based representation of colour
sets, but relies on explicit state space exploration. In this work, we extend these
capabilities to fully symbolic analysis of the whole graph.

Custom operations. Aside from implementing the POST and PRE opera-
tions for a given PBN, we also choose to provide specialised implementations for
the CoLOURS and P1voTs procedures. Especially for the PIvoTs procedure, this
can greatly reduce the number of necessary symbolic steps, as we avoid picking
pivots vertex-by-vertex.

To implement these two operations as efficiently as possible, we always order
the Boolean variables in our BDDs starting from the colour and ending with vertex
variables. This ensures that both P1voTs and COLOURS can be implemented by
pruning the vertex variable nodes and minimising the BDD.

Specifically, in this ordering, for COLOURS, all vertex nodes are effectively
substituted with the true terminal node and the BDD is minimised. For P1voTs,
one (arbitrary) path of vertex variable nodes (corresponding to one pivot vertex)
is preserved for every colour, and the rest of the vertex nodes are pruned.

Trimming. Finally, most graphs typically contain a large number of trivial
SCCs that introduce unnecessary overhead to the main algorithm. To avoid this
overhead, we additionally perform a trimming step before each invocation of
DECOMPOSITION. Trimming consists of repeatedly removing all vertices which
have no outgoing or no incoming edges and is employed by most symbolic SCC
algorithms on standard directed graphs as well. The coloured analogue of trimming
is straightforward, as it can be achieved using PRE and POST operations just as in
the non-coloured case. For a coloured set of vertices V, POST(PRE(®,V)N V)NV
returns only vertices which have at least one predecessor in V. The successor
variant simply exchanges the POST and PRE operations.

4.2 Experiments

We evaluated our algorithm on 7 real-world networks based on the models from
the Ginsim Boolean network database [19]. The experiments were performed
on a 32-core AMD Ryzen workstation with 64GB of RAM memory. All tested
models are available in our source code repository.> Note that the smaller models

3 https://github.com/sybila/biodivine-1ib-param-bn/tree/tacas
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Table 1. Overview of the test models for the algorithm evaluation. The times
(minutes:seconds) refer to the total runtime of the SCC decomposition procedure. The
model variables and parameters give the number of Boolean variables necessary to
represent the PBN symbolically. Finally, the graph size and colour set size specifies the
magnitude of |V|-|C| and |C| for the coloured graph corresponding to the network.

Model Name inoaclltﬁ{es Paxﬁietlers GSria;I;h S((:;(i?lg?zre Time
Sziiﬁzzctliic[?fs] 10 46 ~2* | ~2" | 00:58.35
?gﬁjﬁfoﬁj;]t 9 54 ~2% | ~2'% | 01:13.39
B?ﬁiﬁj F?ielTSt 18 44 ~2% | ~2'7 | 50:44.80
Differe?l;iiilii)n [41] 23 48 ~ 2% ~ 2! 71:80.12
\gg’chsxjvgar}lfaﬁg(r)l}g 26 38 ~2% |~ 2% | 78:38.34
Signzllliliarfigrfl{ [36] 30 4 ~27 | ~2'7 1118:34.88

(< 23%) should be easy to process even on a less powerful machine, however the
larger models can require substantial amounts of RAM.

The PBNs and their analysis runtime is summarised in Table 1. For each
network, we specify the number of Boolean variables used by symbolic encoding,
separated into model variables (vertices) and model parameters (colours), and
the actual approximate size of the coloured graph. Note that not all combinations
of parameters (possible graph colours) are usually biologically admissible, and
these are filtered out before the coloured SCC decomposition. Hence the size of
the graph is smaller than the space of all the considered BDD variables.

From the presented results, we can draw the following observations: First,
fully symbolic approach allows us to scale to much larger graphs than before,
especially in terms of state space. Until now, AEON was typically limited (even
for an easier problem of bottom SCC detection) to vertex counts of 215 — 220,
exhausting memory even for much smaller state spaces when dealing with complex
parameter space. Here, we can easily handle up to 23° vertices with non-trivial
parameter space and we hope to push this number even higher with further
optimisations to our experimental implementation.

Second, the coloured heuristic is beneficial for symbolic computation. To
support this claim, we considered a monochromatic variant of the decomposition
problem for the WG Signaling Pathway and tested the basic lock-step algorithm
on a collection of pseudo-random monochromatisations of this graph. Processing
one such monochromatisation typically required 0.5 — 1 second. Considering the
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graph in question has 2359296 colours, processing the colours one-by-one would,
even in ideal conditions, take well above 300 hours (more than 12 days).

5 Conclusions

In this paper we have presented a fully symbolic algorithm for detecting all
monochromatic strongly connected components in edge-coloured graphs. The
work has been motivated by systems sciences, namely systems biology, where the
need for efficient automated analysis of components in large graphs with large
sets of coloured edges is emergent. The algorithm combines several ideas inspired
by existing state-of-the-art algorithms for SCC decomposition in a non-trivial
way. We believe this is the first fully symbolic algorithm aiming to solve the
problem efficiently.

The experimental evaluation has shown that in expected practical scenar-
ios, the presented algorithm has a strong potential to be significantly faster
than iterating a standard algorithm for SCC decomposition executed on all
monochromatic sub-graphs one-by-one.
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Abstract. NP-hard combinatorial optimization problems are pivotal in science
and business. There exists a variety of approaches for solving such problems, but
for problems with complex constraints and objective functions, local search algo-
rithms scale the best. Such algorithms usually assume that finding a non-optimal
solution with no other requirements is easy. However, what if it is NP-hard? In
such case, a SAT solver can be used for finding the initial solution, but how can
one continue solving the optimization problem? We offer a generic methodol-
ogy, called Local Search with SAT Oracle (LSSO), to solve such problems. LSSO
facilitates implementation of advanced local search methods, such as variable
neighbourhood search, hill climbing and iterated local search, while using a SAT
solver as an oracle. We have successfully applied our approach to solve a critical
industrial problem of cell placement and productized our solution at Intel.

1 Introduction

Real-life combinatorial optimization problems are pivotal in science, operations re-
search, engineering, economics, and business [11,13,20,21,23].

Loosely speaking, an instance of a combinatorial optimization problem deals with
the minimization of an objective function over a finite set, subject to feasibility con-
straints (or, simply, constraints). The set of all elements satisfying the constraints is
referred to as the set of feasible solutions (or, simply, solutions). In this paper, we focus
on solving any problem, which can be expressed as a constraint optimization program
(COP) [2]. Arguably, the vast majority of combinatorial problems, encountered in prac-
tice, fall under this category.

Many important combinatorial problems are NP-hard. For such problems, various
algorithmic strategies have been devised, including complete methods, such as branch-
and-bound and dynamic programming, and incomplete methods, such as greedy algo-
rithms and local search. Each such method imposes requirements on the mathematical
properties of the problem with a consequent limit on the scope of applicability.

Local search algorithms stand out from the rest in that they impose relatively mild
constraints on the type of the problem to be addressed, thus providing a wide scope of
applicability. Furthermore, they seem to scale better with input size relative to complete
algorithms [24]. This makes local search algorithms an attractive choice. However, lo-
cal search algorithms may return a low-quality solution or no solution at all, given a
problem for which the mere task of finding a feasible solution is NP-hard. Henceforth,
we shall refer to such problems as NP-Hard-Feasible problems.
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This paper introduces the Local Search with SAT Oracle (LSSO) methodology, that
is, local search algorithms which use a SAT solver (or a SAT-based optimization algo-
rithm; details appear later) as an oracle. A key advantage of our approach is that it can
handle problems with complex constraints and objective functions. In particular, it can
handle NP-Hard-Feasible problems.

To see how SAT solvers might be useful, consider the basic version of a local search
for an optimal solution. At the beginning, the local search generates an initial solution
and sets it as the current solution. Then, it enters a loop. In each iteration, it looks
for a solution with a lower value of the objective function within a neighbourhood of
the current one. If such a solution is found, it is set to be the current solution, and the
execution resumes. Otherwise, the algorithm terminates and returns the current solution.

A key component of local search algorithms is the neighbourhood function, which
assigns to each feasible solution a subset of feasible solutions, called its neighbour-
hood. Ordinarily, a neighbourhood of the current feasible solution comprises a set of
solutions which can be obtained from the current solution by applying a small collec-
tion of feasibility-preserving perturbations to its combinatorial structure. A key con-
cern is ensuring that neighbourhoods: (i) are polynomially searchable, and (ii) con-
tain high-quality solutions. However, meeting both requirements might be challenging,
since polynomial searchability implies that neighbourhoods should be small, and hence
less likely to contain high-quality solutions. In addition, in the case of NP-Hard-Feasible
problems, it is not clear how to achieve polynomial searchability, since a search should,
in particular, be able to find a feasible solution, which is NP-hard.

Our main idea is to let the SAT solver both find an initial solution and conduct the
neighbourhood search. The designer can now define feasibility constraints and neigh-
bourhoods declaratively, that is, by a set of SAT constraints. The designer has more
freedom to choose neighbourhoods, which need neither be small, nor contain only so-
lutions close to the current solution. This is because the search of the now complex and
possibly large neighbourhoods is entrusted to SAT solvers, constructed precisely to ef-
ficiently search large complex subspaces. Our approach lends itself to implementations
of advanced local search variants, such as variable neighbourhood search, hill climbing
and iterated local search [29].

An important feature of our algorithms is that they are anytime. Recall that an any-
time algorithm is expected to return a valid solution even if interrupted. An anytime
algorithm for an optimization problem is expected to find an improving set of solutions.
The anytime property is essential for industrial application, since it allows the user to
get an approximate solution even for very difficult instances [14, 15].

We demonstrate the usefulness of our approach by solving hard industrial instances
of the NP-Hard-Feasible cell placement problem. Cell placement is one of the most
important problems in VLSI automation [28]. Its most basic version concerns placing
without overlap a set of rectangles on a grid, while minimizing the occupied area. In
reality, the problem is more complex. Our approach has been successfully productized
at Intel.

The rest of this paper is organized as follows: Sect. 2 provides the necessary back-
ground. Sect. 3 introduces our LSSO methodology. Sect. 4 shows how to solve place-
ment with LSSO. Sect. 5 presents the experimental results. Sect. 6 concludes our paper.
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2 Background

This section provides some background. Sect. 2.1 is an overview of COP. Sect. 2.2
describes the cell placement problem and shows how to reduce it to COP. Sect. 2.3 dis-
cusses how one can solve a COP using a SAT-based bit-vector solver. Sect. 2.4 reviews
local search.

2.1 Constraint Optimization Program (COP)

This work presents a new methodology for solving a wide class of combinatorial op-
timization problems, which can be expressed as a Constraint Optimization Program,
shown in Def. 1.

Definition 1 (Constraint Optimization Program (COP) [2]). A constraint optimiza-
tion program is a tuple (X, D,C, W) where:
1. X = {x1...2,} is afinite set of variables often referred to as decision variables.
2. D ={D;...D,} is a corresponding set of finite domains. Without loss of gener-
ality, each D; is assumed to be a closed bounded interval of non-negative integers.
3. C={Cy...Cp} is afinite set of constraints Cy, : Dy X --- x D,, — {0,1}.
4. W :Dy X --- X D, — Zis an objective function to be minimized.

2.2 The Cell Placement Problem

Cell Placement (Placement) is a major stage in the VLSI design cycle [8,16]. The input
of the cell placement problem comprises the following components:

1. A rectangular grid region of M rows and IN columns, on which the cells are to be
placed. Row/column line numbering starts at 0 and ends at M/, respectively.

2. A finite set C of rectangular cells. The width and the height of each cell ¢ € C
are assumed to be positive integers, denoted by ¢*'¥" . (0 < ¢width < N and
cheight . ( < cheight < M respectively.

3. A set R of forbidden rectangular regions. A forbidden region r € R is specified
by 4 numbers T’west’ Tsouth’ Teast and ,rnorth (where, 0 S rwest’ ,reast < N; 0 S
rsouth)rnorth < M;?"e(LSt > ,rwest;rnorth > ,r,south)’ denoting the leftmost col-
umn line, bottom row line, rightmost column line, and top row line, respectively.

4. A finite set Z of nets, each consisting of a non-empty subset of cells. The nets may
(and usually do) intersect.

We are interested in feasible placements, that is, placements in which no cell over-
laps other cells or forbidden regions. Given a feasible placement, we define the size of
a net n € T as the perimeter of the box bounding its placed cells. We define the size
of the placement as the sum of the sizes of the nets. We are required to find a feasible
placement of a minimal size. An example is shown in Fig. 1.

In industrial practice, there may be additional industrial requirements, such as align-
ing some of the cells, enforcing parity constraints (i.e., the user might require the y co-
ordinates of some of the cells to be either even or odd) [19], ensuring a minimal distance
between some of the cells and others. We omit further details due to IP considerations.

Placement is NP-Hard-Feasible, since the NP-complete bin packing problem can be
reduced to the decision version of the placement problem [10].
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2.2.1 Constraint Optimization Program for Cell Placement. We show how to con-
struct a COP for the cell placement problem. For each cell ¢ € C, let ¢*¢5¢ and %5t
denote its leftmost and rightmost column respectively, and c****" and ¢"°"*" denote its
bottom and top row. Strictly speaking, it suffices to use ¢ and ¢*°“*" as the COP’s
independent variables, but it is convenient to use ¢**** and ¢"°"" as syntactic sugar for
cwest 4 cwidth and csouth 4 cheight “regpectively. The COP looks as follows:

1. Variables: {cet, c*ovt" | c € C}
2. Domains: ¢t € [0... N — 1] and c¢****" € [0... M — 1]
3. Feasibility constraints:

(a) Each cell cis placed wholly within the grid region:

(Cwest > O) A (ceast < N) A (csouth > 0) A (cnorth < M)
(b) For every pair of cells (c;, ¢;), such that ¢ < j, there is no overlap:
(C;uest > c;ast) v (C}uest > C;zast) vV (Cfouth > c}wrth) vV (C;outh > C;Lorth)
(c) For every pair {(r, ¢) of a forbidden region r and a cell ¢, there is no overlap:

(rwest > Ceast) v (Cwest > ,reast) vV (Tsouth > Cnorth) vV (Csouth > ,rnorth)

(d) Constraints representing any additional industrial requirements.
4. Objective function W: for every net n € I, let ||n|| denote its size. We have:

[In]| = (max(ce“t) — min(cw“t)) + (Inax(cm’”h) _ min(csouth)>

cen cen cen cen
w=> |nl
nel
8
T T [ [ ]
[
6 : —
C2 1
5 1 C4 —
4l : -
3 b-es--
Bs
2
C1 1'-_>
1
oL L[]
01 2 3 45 6 78

Fig. 1: Placement example [16]. A solution is shown for the problem of placing five cells c¢1, c2,
c3,cq and cs of sizes 4 x 1,4 x3,2x2,2x4 and 1 x 5 respectively, on a grid with M = N = 8.
There are three nets: n1 = {c1, cs, ¢s5}, n2 = {c2, c3} and ng = {c2, ca } (without any forbidden
regions). The bounding boxes of the nets are Bi, B2 and Bs, respectively. The sizes of the nets,
comprising the perimeters of the bounding boxes, are 20, 18 and 20, respectively. The overall
placement size is 20 + 18 4+ 20 = 58. The solution is an optimal one.
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2.3 Solving COP with SAT

A COP can be solved with various types of solvers [2]. In particular, it is possible
to solve a COP by reduction to a series of SAT solver invocations through bit-vector
reasoning as explained below.

2.3.1 Bit-vector Solving and SAT. We start with reviewing the basic terminology,
related to SAT solving. A literal | is a Boolean variable v or its negation —v. A clause
is a disjunction of literals. A formula F' is in Conjunctive Normal Form (CNF) if it is a
conjunction (set) of clauses.

A SAT solver [4] receives a CNF formula F' and returns a satisfying assignment
(aka, model or solution), if one exists. In incremental SAT solving under assumptions |5,
18], the user may invoke the SAT solver multiple times, each time with a different
set of assumption literals (called, simply, the assumptions) and, possibly, additional
clauses. The solver then checks the satisfiability of all the clauses provided so far, while
enforcing the values of the current assumptions.

A bit-vector variable (bit-vector) of widthn = |B|, B = {vn,Vn—1,...,v1},1s a
sequence of n Boolean variables, called bits. Bit v; is the Least Significant Bit (LSB)
and v,, is the Most Significant Bit (MSB). A Boolean constant is either L (0) or T (1).
A bit-vector constant is a bit-vector (BV), each one of whose bits is substituted by a
Boolean constant. A bit-vector term is either a bit-vector, a BV constant, or a result
of applying an operator which returns a bit-vector (for example, BV addition, if-then-
else, concatenation) over other terms and atoms. An atom is either a Boolean variable,
a Boolean constant or a result of applying an operator, which returns a Boolean (for
example, = or unsigned-less-than), over BV terms and atoms. A bit-vector formula
(also known as a bit-vector constraint) is recursively defined to be either an atom, a
negation of a bit-vector formula, or the result of applying the Boolean operator A or
the Boolean operator V over two or more bit-vector formulas. See [3, 12] for a rigorous
description of the BV language. A BV solver decides the satisfiability of BV formulas.

A BV formula F' is satisfiable iff it has a model, that is, an assignment of BV and
Boolean constants to their corresponding BV and Boolean variables, which satisfies F'.
In this paper, BV constants are interpreted as unsigned numbers, and BV comparison
operators are interpreted as unsigned. For example, given a bit-vector B = {v3, v, v1 },
the formula F' = B < 2 has two models y1 : p1(B) = 0 and po : p2(B) = 1.

All the algorithms presented in this work are assumed to use the so-called eager BV
solver [6] which, following some preprocessing, translates the input BV formula to an
equisatisfiable formula in CNF and solves it with a SAT solver. Thus, we will use the
notions of BV solving and SAT solving interchangeably. We also assume the BV solver
to have the same incremental API as a SAT solver.

Since the variables in a COP have finite domains, both the variables and the con-
straints of a COP can be easily expressed as BV variables and BV constraints.

In particular, in the COP constructed for the cell placement problem in Sect. 2.2.1,
the variables and the constraints can be expressed as BV variables and constraints as
follows: For each cell ¢, we define four bit-vectors: ¢*s* and c®*** of width [log N
as well as c*“*" and c"°"" of width [log M. All the constraints in our COP involve
these bit-vectors and can be expressed in terms of operators and relations available in
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the BV language [3]. Specifically, we implement min and max operators using a series
of if-then-else operators. In addition, for every operator, we zero-extend the widths of
the operands and the resulting bit-vector to prevent an overflow, whenever required.

Reducing the constraints of a COP to a BV formula and invoking BV solver suffices
to find one non-optimal solution. However, for solving the optimization problem by
reduction to BV, one needs an extension of BV solving to optimization.'

2.3.2 Extending Bit-vector Solving to Optimization. One can extend bit-vector
solving to the so-called Bit-Vector Optimization (OBV) [19] as follows:

A model 1 of a BV formula F is T-minimal, for a given bit-vector T, iff u(T) <
v(T') (where the comparison is unsigned) for every model v of F. Given a BV formula
Fandaterm T = {t,,tn_1,...,t1} in F, where T is called the optimization target
(or, simply, the farget), Bit-Vector Optimization (OBYV) is the problem of finding a 7-
minimal model of F'. The bits of the target 7" are referred to as the target bits.

Translating our placement COP to OBV is straightforward. We have already shown
how to translate the constraints. The optimization target is constructed in the same way
as the objective function ¥ is constructed in the COP.

How can one solve OBV in practice? First, one can use the following simple any-
time Linear Search algorithm, implemented on top of an incremental BV solver [16,27]:

1: solver.Assert(F); i := solver.Sat() > assert F' and find the first solution
2: while 1 is a solution do > while there is still a solution
3: solver.Assert(T < p(T)) > block all the solutions with cost > u(T)
4: = solver.Sat() > can we improve our solution?
5: return g > p is guaranteed to be 7T-minimal

Another anytime algorithm to solve OBV is the following binary search-based al-
gorithm, called OBV-BS [9, 19]:

1: solver.Assert(F); u := solver.Sat() > assert F' and find the first solution
2: 1:=mn > ¢ is the current bit number, initialized to the MSB
3: while i > 1 and u(t;) = L do > fix to L the MSBs, assigned to L in p
4: solver.Assert(—t;)
5: 1 =1—1 > after the loop, ¢ will point to the first target bit, assigned T
6: while: > 1do > Check one-by-one, if we can flip the remaining target bits to L
7: = solver.Sat({—t;}) > run the solver under the assumption —¢;
8: if satisfiable then
9: while (: > 1 and u(t;) = L) do solver.Assert(—t;);i := i — 1 endwhile
10: else
11: solver.Assert(t;);i:=1i— 1 >t; cannot be flipped to L, so we fix itto T
12: return p

We have successfully applied OBV-BS for solving the problem of fixing an existing
placement [19], closely related to the generic placement problem, we are exploring

" One cannot use MaxSAT [26]-the widely used extension of SAT to optimizing a linear Pseudo-
Boolean (PB) function—to solve COP in the generic case, since the objective function is not
guaranteed to be linear PB. In particular, it is not linear PB for placement, if only because the
variables are bit-vectors, rather than Booleans.
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in this work. However, both Linear Search and OBV-BS failed to scale to industrial
instances of our current problem of finding an optimal placement from scratch (with
Linear Search scaling somewhat better than OBV-BS).

Recently, we have introduced the so-called Polosat anytime algorithm [16],
which can be used instead of the standard SAT solver inside Linear Search (and other
SAT-based anytime optimization algorithms) to make it substantially more scalable. The
idea behind Polosat, shown below, is to simulate local search using a SAT solver. We
use the strictly-monotone version of Polosat [16], which assumes the availability of
the so-called Boolean observable variables (observables) Obs, that is, a set of Boolean
variables on which the objective function depends (for placement, the observables might
comprise the bits of the bit-vectors, representing the sizes of the nets, for every net).
Polosat is carried out by getting a model 1 and then trying to improve it by repeatedly
flipping observables, which have not been assigned _L in previous models:

1: function SOLVER.POLOSAT(assumptions)
Require: Target bit-vector 7' is available; Observables Obs are available.

2: i = solver.Sat(assumptions) > get the first model p
3 is_good_epoch = 1 > good epoch: an iteration, which improves j
4 while is_good_epoch do > one loop is an epoch
5 B:={v:ve€O0bs,ulv)="T} > remove any observables, assigned _L
6: is_good_epoch := 0

7 while B is not empty do

8 b; := B.front(); B.dequeue()

9: o = solver.Sat(assumptions U {—b;}) > trying to flip b;
10: if satisfiable then
11: if o(T) < pu(T) then p := o and is_good_epoch := 1
12: B:={b:beB,o(t) =1} remove any observables, assigned L
13: return /.

To combine Polosat into Linear Search, it is sufficient to replace solver.Sat invo-
cations by solver.Polosat invocations in the code. > We have shown in [16] that replacing
plain SAT invocations by Polosat invocations in Linear Search makes our placement
tool substantially more scalable. We reaffirm this result in Sect. 5.

Yet, despite the significant progress we had witnessed when applying Polosat,
we found that combining Polosat into Linear Search is still insufficient for solving
a variety of complex real-world instances of our industrial placement problem. This
empirical challenge lead us to develop our 1.SSO methodology, presented in this paper.
As we shall see, combining LSSO and Polosat makes our tool considerably more
scalable, while the methodology itself is generic and can be applied to solving a wide
range of optimization problems.

2.4 Local Search Algorithms

Local search strategies [1] are a collection of algorithmic templates. An algorithmic
template specifies the main flow of an algorithm, but leaves some details unimple-

2 polosat also uses polarity fixing strategies, such as TORC [14, 17], omitted here; please refer
to [16] for details. Additional non-anytime OBV algorithms are introduced in [19,22].
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mented. By implementing these details for a specific problem, one obtains an algo-
rithmic solution for that problem.

2.4.1 Basic Local Search Strategy. The basic strategy generates an initial feasible
solution and sets it as the current solution. Then, it enters a loop. In each iteration, it
looks within a neighbourhood of the current solution for a feasible solution with a lower
value of the objective function. If one is found, it is set to be the current solution. Other-
wise, the algorithm is terminated returning the current solution. Note that this version is
guaranteed to stop; it does so, when it reaches a local minimum of the objective function
with respect to the neighbourhood used.

To turn this algorithmic template into a complete algorithm, one has to implement
the following problem-dependent items: (i) A procedure for generating an initial fea-
sible element. (ii) A neighbourhood function assigning to each solution a subset of
solutions. (iii) An algorithm for searching the neighbourhood for a better solution.

2.4.2 Neighbourhood Functions. A key factor, which affects both the complexity
of the search and the quality of the resulting solution, is the selection of a neighbour-
hood function. In theory, the selection ought to depend on a mathematical analysis of
the structure of the feasible set and the profile of the objective function. For complex
problems, such an analysis is usually beyond reach. The classical approach to neigh-
bourhood definition is based on the following problem-independent general principles:

1. Drawing on an analogy to optimization algorithms in the continuous case (such as
gradient descent or line search), a neighbourhood should be so defined as to make
its elements “close” to the current solution. So, typically, the neighbourhood of a
feasible solution is specified by a small class of feasibility-preserving modifica-
tions/perturbations to its combinatorial structure.

2. A neighbourhood should be so defined as to ensure that it is polynomially search-
able. Hence, unless we have a sophisticated non-exhaustive neighbourhood search
algorithm, neighbourhoods should be small.

However, as we have argued in Sect. 1, this approach is not without issues. In par-
ticular, feasibility-preserving perturbations may not be easy to find, especially for NP-
Hard-Feasible problems, while having small neighbourhoods implies a low likelihood
of high-quality solutions.

2.4.3 Advanced Versions of Local Search. A disadvantage of the basic version of lo-
cal search is that it may stop at a local minimum of a poor quality, if too small a region of
the feasible space is explored. To circumvent this outcome, advanced variants enabling
an exploration of larger portions of the feasible space have been devised [7,29]. Those
described here provide some mechanism to escape from the local minimum to “nearby”
solutions and resume the search from there. They have been designed to accommodate
situations, where local minima are not distributed uniformly in the feasibility space, but
are rather clustered in close proximity [25].

The variable neighbourhood search approach uses multiple neighbourhoods to es-
cape from local minima. It relies on the fact that a local minimum with respect to one
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neighbourhood need not be a local minimum with respect to another (if the latter is
not contained in the former). The algorithm maintains a set of neighbourhood func-
tions. Once a local minimum with respect to the current neighbourhood is reached, the
neighbourhood is switched, and the search is resumed.

The hill climbing method allows the selection of a non-improving solution, once
a local minimum is reached. Since the objective function no longer monotonically de-
creases, there is now a possibility of a cycle: a solution may be visited more than once
forcing the search into an infinite loop. One can deal with this problem in various ways:
ignore it and let the algorithm run until the timeout expires, use randomization, or in-
troduce data structures that keep track of the search history and prohibit solutions that
have already been encountered. The latter approach is referred to as tabu search.

Another idea is to use large neighbourhoods. This approach increases the size of the
explored region and the likelihood of better solutions. However, large neighbourhood
search may become intractable.

The iterated local search approach can be viewed as “a local search within a local
search”. In each iteration of the search, it uses a subsidiary search algorithm to explore
iteratively a feasible sub-space. Once a local minimum is returned, a new search is
initiated in a region, whose elements are obtained by “perturbing” the recent solution.

All the above approaches can be implemented within our LSSO framework. The
key difference between LSSO and previous approaches is using SAT or Polosat as
an oracle for both finding the initial solution and carrying out the neighbourhood search.

3 Local Search with SAT Oracle (1.SS0)

This section introduces the main contribution of our paper. We propose using SAT as an
oracle in local search algorithms to address the scalability and quality issues that arise
in the classical local search algorithms, especially, given an NP-Hard-Feasible problem.

Given a combinatorial optimization problem, the first stage in designing an LSSO
solution is expressing the problem as a COP.

In the second stage, the COP decision variables are translated to bit-vectors, and the
feasibility constraints are translated to a BV formula (including any additional industrial
requirements). One might experiment with several alternative formulations and select
the one deemed best.

The third step is defining the so-called neighbourhood generators. A neighbourhood
generator N (1) accepts as an input a solution p (that is, a model to the bit-vector
formula, representing the COP), and generates neighbourhood constraints. The set of all
the assignments which satisfy the feasibility and neighbourhood constraints constitutes
the neighbourhood of the solution. Thus, finding such an assignment amounts to finding
an element of the neighbourhood of .

A key ingredient of our methodology is the adoption of a neighbourhood concept,
which differs significantly from the classical one, described in Sect. 2.4.2:

1. The neighbourhood need not be small and need not contain (only) elements “close”
to the current solution.
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. Normally, N (1) should generate constraints which ensure a cost lower than that of

. If such a formulation is possible, then an iteration of the local search algorithm
merely needs to find a model to these constraints in order to progress.

. If the objective function is too complex to model in its entirety, a neighbourbood

generator might attempt to ensure a better value for the objective function by im-
posing constraints on the objective function’s sub-components. For example, when
the objective function is a very large sum of bit-vector terms, one might impose
constraints on the sum’s terms or small partial sums thereof.

. Notwithstanding the above, neighbourhood generators may support kill climbing, in

which case, the constraints are so formulated as to admit non-improving solutions.

Note that, in our approach, neighbourhoods direct the search to “higher-quality”

regions with respect to the current solution, regardless of the algorithmic difficulties of
searching such regions. This is another key aspect of our approach: we trust SAT solvers
to search complex sub-spaces efficiently.

Having discussed neighbourhoods, we are now ready to describe the simplest LSSO

implementation:

1.

2.

A BV solver instance is created and the COP is provided to the solver. Specifically,
we represent the COP’s decision variables as bit-vectors, where the widths are cho-
sen to accommodate the largest values. We provide the feasibility constraints to the
solver as BV constraints. Then, we implement neighbourhood generators, which,
given a feasible solution, return a set of BV constraints defining its neighbourhood.
The local search is carried out as follows:
(a) The algorithm obtains an initial solution by asserting the feasibility constraints
and asking the solver for a model. This model is set as the current solution .
(b) The algorithm enters a loop, in which the solver operates in incremental mode.
In each iteration, the algorithm calls the neighbourhood generator with the cur-
rent solution as input, to generate a list of BV constraints. These are provided
to the solver, which is asked for a model. If a model « is found, u is set to a.
Otherwise, the algorithm terminates returning .

The neighbourhood constraints can be given to the solver as either assumptions or

assertions. This leads to two types of search, providing a tradeoff between execution
time and quality:

1.

Non-speculative search: the neighbourhood constraints are passed to the solver as
assertions. Once assertions are passed to the solver, they are enforced in all ensuing
iterations. The search proceeds through a monotone sequence of decreasing neigh-
bourhoods until a local minimum is reached. Thus, the search is localized and is
relatively fast at the possible expense of quality.

Speculative search: the neighbourhood constraints are passed to the solver as as-
sumptions. The neighbourhood constraints are valid only for one iteration. Thus,
the current neighbourhood is not intersected with previous neighbourhoods and a
larger portion of the feasibility space will be explored. The search is expected to
be slower, since the SAT solver handles assumptions less efficiently than asser-
tions [18], but the quality of resulting solution is expected to be better, since the
search can explore a greater part of the feasibility space, especially so by variable
neighbourhood search and hill climbing.
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Alg. 1 depicts our implementation of LSSO. The algorithm receives four inputs. The
Boolean inputs VA'S, HC, and SPEC specify whether variable neighbourhood search,
hill climbing, and speculative search are to be used. All combinations are possible, ex-
cept that hill climbing requires speculative search. The input N,,,., applies to variable
neighbourhood search. It specifies an upper bound on the number of consecutive neigh-
bourhood switches without finding a solution. If that bound is exceeded, the algorithm
terminates with the current solution. To effect variable neighbourhood search, the algo-
rithm uses a predefined list of neighbourhood generators N = [Ny (), N1(p) . .. ]. The
first generator N (1) is considered the default and is used most of the time. The others
are used to escape local minima.

Alg. 1 carries out iterated local search with Polosat as an oracle, where the ob-
servables are recommended to be set to the bits of the inputs of the objective function.
One can also replace the Polosat invocation by an ordinary SAT invocation.

4 1SS0 Algorithms for the Cell Placement Problem

This section presents our LSSO-based placement algorithms. All the algorithms are
instantiations of Alg. 1 with different sets of parameters. The BV constraints are gener-
ated by translating the COP constraints, as discussed in Sect. 2.3. Each algorithm uses
some of the neighbourhood generators defined in Sect. 4.1.

The algorithms are presented in Sect. 4.2. None of the algorithms define the target
bit-vector explicitly, since they rely on local search instead of OBV solving. By default,
the algorithms use Polosat as the oracle, where the observables comprise all the bits
of the bit-vectors, representing the sizes of the nets, where the size of net n is given by
the following bit-vector term (for every intermediate term and the resulting term ||n||,
its width is set to the minimal possible width which prevents an overflow, where the
operators are zero-extended, whenever required):

[nll = (meax(ce”t) - min(cw“t)> + (max(c”o”h) — min(cs"“th)>
ceEn

cen ceEn cen

4.1 Neighbourhood Generators

4.1.1 Neighbourhood Generator IN;. Let i be a placement, that is, a model to the
bit-vector formula representing the feasibility constraints. The neighbourhood Ny (1)
is designed for a highly localized fast search at the possible expense of quality. To this
end, the constraints corresponding to N (i) force a decrease of the objective function
in a very constrained manner, so as to help the solver to come back quickly. Ny (u)
consists of all of legal placements, for which all the nets are no bigger and at least one
net is smaller than under 1, thus ensuring a lower cost. The constraints are:

each net is no bigger at least one net is smaller

Azl < pin)) A (Vdinl < wdinl))

nel nel
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Algorithm 1 Local Search with SAT Oracle (L.SSO)

1: procedure LOCALSEARCH(VN S = T,HC =T, SPEC =T, Nnas = 10)

Require: £ > feasibility constraints
Require: N := [No(p), N1(p)...] > neighbourhood constraints generators
Require: J(z) > hill climbing constraints generator
> From now on, confine the search to the feasible space
2: solver.Assert(L)
3: current < solver.Sat() > find the initial solution
4: if —current then return None > the problem is unsatisfiable
> Loop initialization
S: best < current
6: stop < L > stopping condition
7: Jump < L > indicates whether hill climbing should be attempted
8: 140 > current neighbourhood index
9: while —stop do
> Compute neighbourhood constraints
10: if HC A jump then > hill climbing is required
11: neighbourhood_constraints := J (current)
12: else > hill climbing is not required
13: neighbourhood_constraints := Ni|(current)
> If the mode is speculative, constraints are assumptions; otherwise they are assertions
14: if SPEC then
15: assertions := [|; assumptions := neighbourhood_constraints
16: else
17: assertions := neighbourhood_constraints; assumptions := ||
> Search for the next solution
18: solver.Assert(assertions)
19: next < solver.Polosat(assumptions)
20: if next then > found a solution
21: current <— next;i < 0; jump < L
22: if current.cost < best.cost then best < current
23: continue

24
25:
26:

27:
28:
29:

30:
31:

> > > Solution not found
> If we are in variable neighbourhood mode and the number of consecutive neighbour-

hood switches without a model has not exceeded the bound, move to next neighbourhood

if VNS A (i < (Nmae — 1)) then
1 i+1
continue
> If we are in hill climbing mode, and have exhausted the bound on neighbourhood

switches without getting a model, and hill climbing has not already been attempted in this
iteration, attempt it in the next iteration

if HC A —jump then
jump < T
continue
> If we got here, we are stuck and need to terminate
stop < T

return best
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4.1.2 N3: a Family of Neighbourhood Generators. The /Ny family is designed for
variable neighbourhood search. Each of its neighbourhoods strictly contains /N; and
allows the objective function to decrease in more ways. This implies higher quality so-
lutions at the expense of slower convergence. To define the N, family, let @ = ||T|| be
the number of the nets and assume o > 3. For each permutation o of [1...a] and posi-
tive number 2 < d < « we define a neighbourhood function Ny [, d](u) as follows: Let
Ng(1)s - - - No(a) be the permuted sequence of the nets. Partition this sequence into [cv/d ]
segments of size d (last segment could be shorter). The neighbourhood Ns [, d]() con-
sists of all of legal placements, for which the sum of the net sizes of each segment is
no bigger than under i, and the sum of at least one segment is smaller. Note that this
ensures a cost lower than the placement under . By choosing different pairs (o, d), one
may obtain different neighbourhoods. The constraints are:

each sum is no bigger

[ae/d] / min(kd,c) min(kd,o)
/\( Yo el < Y M(l%(i)”))

k=1 \i=(k—1)d+1 i=(k—1)d+1

A

at least one sum is smaller

[ae/d] / min(kd,a) min(kd,o)
VTS ol <5 o)
k=1 \i=(k—1)d+1 i=(k—1)d+1

4.1.3 Hill-climbing Neighbourhood Generator N3. N3 is designed to implement
hill climbing. We reason as follows: If the current placement is not a global minimum,
there exists a placement with at least one smaller net. Hence, to tunnel away from the
local minimum, we generate the following neighbourhood constraints:

at least one net is smaller

\/ Il < u(linl)

nel

4.2 1.5S0-based Algorithms for Placement

All the algorithms below are instantiations of Alg. 1; they use lists of neighbourhood
generators, composed of the ones defined in Sect. 4.1, where hill climbing is carried out
by using the neighbourhood generator N5. Due to project deadline constraints, we did
not explore other combinations.

1. single_nbr_nonspec
(a) parameters: VNS = 1, HC = L, SPEC = L, Nppaw = 1.
(b) list of neighbourhood generators: [N]
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2. many_nbr_nonspec
(a) parameters: VNS = T, HC = L, SPEC = L, Nyyae = 10.
(b) list of neighbourhood generators: N»[o, d|(pt), enumerated by drawing o and d
by a pseudo-random generator.
3. many_env_spec
(a) parameters: VNS = T, HC = L, SPEC = T, Nyae = 10.
(b) list of neighbourhood generators: the first generator is N7 and the rest are
Ns o, d](p), enumerated by drawing o and d by a pseudo-random generator.
4. many_env_spec_hill_clmb
(a) parameters: VNS = L, HC = T,SPEC =T, Nopaz = 1.
(b) list of neighbourhood generators: [N]
(c) neighbourhood generator N3 is used for hill climbing.

5 Experimental Results

We study the performance of the following algorithms within our placement tool:

1. Algorithms which use Polosat as the satisfiability oracle:
(a) 1s (Linear Search, described in Sect. 2.3.2, with Polosat as the oracle)
(b) single_nbr_nonspec (see Sect. 4.2)
(¢) many_nbr_nonspec (see Sect. 4.2)
(d) many_env_spec (see Sect. 4.2)
() many_env_spec_hill_clmb (see Sect. 4.2)
2. Algorithms which use standard SAT solving as the satisfiability oracle:
(a) bs_no_polosat [19]: OBV-BS (see Sect. 2.3.2).
(b) 1s_no_polosat: Linear Search with SAT as the oracle
(c) many_env_spec_hill_clmb_no_polosat:
many_env_spec_hill_clmb with SAT instead of Polosat (to study the
impact of  disabling Polosat on LSS0, we chose
many_env_spec_hill_clmb, since, as we shall soon see, it outperforms
the other LSSO algorithms in a pairwise comparison).
3. virtual-best: represents the best result of the above algorithms per timeout.

We used an extensive set of 1200 proprietary industrial designs of various sizes and
complexities. The sizes of the grids (where a grid size is the width IN multiplied by
the height M) can be characterized as follows: a) Minimum size = 70; b) Maximum =
364000; c) Average ~ 4643; d) Standard deviation ~ 18829. We used machines with
32Gb of memory running Intel® Xeon®) processors with 3Ghz CPU frequency.

We ran the algorithms for 600 seconds and measured the quality of the placement
at different time intervals. Fig. 2 shows our main results. For each algorithm and time
interval, Fig. 2 displays a score which represents the quality. The score is a real num-
ber between 0 and 1 inclusive, where the closer the score is to 1 the better. For each
algorithm and time interval, the score is computed as follows: we compute the average
value of the following score-per-instance: (the result of virtual-best in 600 sec.) / (the
result of the current algorithm within the current time interval). Our conclusions:
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First, when using SAT as the oracle, Linear Search (1s_no_polosat) outperforms
OBV-BS (bs_no_polosat), demonstrating that OBV-BS is not useful when the opti-
mization target is a complex arithmetic expression (rather than a vector of lexicograph-
ically ordered bits, where each bit is a result of a separate calculation as in [19]). Based
on this result, we preferred Linear Search over OBV—-BS as the baseline algorithm.

Second, confirming the conclusion of [16], Polosat makes Linear Search sub-
stantially more efficient (compare 1s to 1s_no_polosat).

Third, and more importantly in the context of this work, our best novel LSSO algo-
rithm even without Polosat (many_env_spec_hill_clmb_no_polosat) is al-
most as efficient as Linear Search with Polosat (1s), the latter being the state-of-
the-art in solving placement [16]. Moreover, the best Polosat-based LSSO algorithm
(many_env_spec_hill_clmb) is significantly more efficient than both aforemen-
tioned algorithms. This result justifies the usage of both major components of our so-
lution: LSSO-the high-level local search on top a satisfiability oracle, presented in this
paper, and Polosat [16]-the low-level local search simulation with SAT.

Finally, the virtual best algorithm yields the absolutely best result, providing evi-
dence that development of different LSSO algorithms pays off.

Additionally, Table 1 shows a pairwise comparison between our four Polosat-
based LSSO algorithms. many_env_spec_hill_clmb outperforms the others.

Table 2 offers a fine-grained comparison between our best novel LSSO algorithm
many_env_spec_hill clmb and the Polosat-based Local Search 1s, the latter
being the state-of-the-art in solving placement [16]. The comparison is provided per
grid size category and for two different timeouts. LSSO improves the performance sig-
nificantly for every input size category for both timeouts. Comparing the results for the
two timeouts on the biggest instances shows that increasing the timeout makes the gap
between LSSO and 1s more significant, given large grids.

Finally, Table 3 shows the unique contribution of each algorithm to the virtual best
in 600 sec. (we dismissed all the instances on which there was more than one best-
performing solver). Notably, each of the LSSO algorithms is a contributor. Surpris-
ingly, many_nbr_nonspec contributes more than many_env_spec_hill_clmb,
despite the latter algorithm outperforming the former in a pairwise comparison. A
possible explanation is that we ran many_nbr_nonspec with Polosat only, while
many_env_spec_hill_clmb was run twice with Polosat and SAT. Another sur-
prising result is the significant contribution of
many_env_spec_hill clmb_no_polosat,second only tomany nbr_nonspec,
implying that a SAT-based LSSO algorithm should be part of any parallel portfolio.

many_-nbr_nonspec|single_nbr_nonspec|many_env._spec
many_env_spec_hill_clmb (730 141 329) (813253 134) (227 893 80)
many._nbr_nonspec (815 147 238) (344 170 686)
single_.nbr_nonspec (130280 790)

Table 1: Pairwise comparison between LSSO algorithms for the timeout of 600 sec. Each non-
empty cell (r,c) contains a comparison between Algorithm R in row r and Algorithm C' in
column c. The value (w d 1) in each non-empty cell is interpreted as follows: R outscored C' on
w instances; there was a draw on d instances; C' outscored R on [ instances.
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Fig.2: Comparing Algorithms Over Time
Grid size Timeout of 600 seconds Timeout of 300 seconds
‘ 1s is better | Draw | LSSO is better || 1 s is better| Draw [ LSSO is better
< 500 27| 62 337 211 56 349
> 500 & < 10000 571 74 551 57 91 534
> 10000 17| 28 47 18| 40 34
Table 2: Comparing the best Polosat-based LSSO algorithm

(many_env_spec_hill_clmb) to the Polosat-based Linear Search (1s), the latter
comprising the previous state-of-the-art.

6 Conclusion

We have presented a new methodology for solving NP-hard combinatorial optimization
problems, called Local Search with SAT Oracle (LS SO0). Our approach can handle prob-
lems for which finding even one feasible solution is already NP-hard. LSS0 applies lo-
cal search which uses a SAT solver or the SAT-based optimization algorithm Polosat
as an oracle. We have introduced a generic algorithm which integrates different local
search schemes within the LSSO framework. Furthermore, we have implemented our
approach in an industrial tool for solving the cell placement problem in VLSI and have
shown that our new LSSO approach makes the tool substantially more efficient. Our
tool has been successfully productized at Intel.

Algorithm Contribution | | Algorithm Contribution
many.-nbr_nonspec 240((1s 33
many-env_spec-hill_clmb_no_polosat 181||many_env_spec 21
many-env_spec-hill_clmb 79||1s-no-polosat 12
single_nbr_nonspec 54||bs_no_-polosat 8

Table 3: Unique contribution to the virtual best per algorithm (sorted by the contribution).
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Abstract. Infrastructure as Code is a new approach to computing in-
frastructure management that allows users to leverage tools such as ver-
sion control, automatic deployments, and program analysis for infras-
tructure configurations. This approach allows for faster and more ho-
mogeneous configuration of a complete infrastructure. Infrastructure as
Code languages, such as CloudFormation or TerraForm, use a declara-
tive model so that users only need to describe the desired state of the
infrastructure. However, in practice, these languages are not processed
atomically. During an upgrade, the infrastructure goes through a series of
intermediate states. We identify a security vulnerability that occurs dur-
ing an upgrade even when the initial and final states of the infrastructure
are secure, and we show that those vulnerability are possible in Ama-
zon’s AWS and Google Cloud. We call such attacks intra-update sniping
vulnerabilities. In order to mitigate this shortcoming, we present a tech-
nique that detects such vulnerabilities and pinpoints the root causes of
insecure deployment migrations. We implement this technique in a tool,
Héyhé, that uses dataflow graph analysis. We evaluate our tool on a set
of open-source CloudFormation templates and find that it is scalable and
could be used as part of a deployment workflow.

1 Introduction

Managing an infrastructure of thousands of hosts, with different software and
servers is nearly impossible to do manually. A relatively new approach to in-
frastructure management is called Infrastructure as Code (IaC). This has given
rise to many different tools with a shared goal: helping system administrators
manage their infrastructure in the same way as they manage code. Some tools,
like Ansible [20], Puppet [23] or Chef [6] are Configuration Management tools:
they allow the administrator to specify the entire configuration of one or more
running machines and automatically deploy it by connecting to that machine
and performing administrative tasks on behalf of the administrator. These tools
automatically detect and apply the steps necessary to switch from the current
state of a machine to the desired state, specified by the administrator. Similarly,
tools like Amazon’s CloudFormation [3] or Hashicorp’s Terraform [11] read a
description of the desired infrastructure and automatically take the necessary
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Fig. 1: A deployment of a computation (the orange lambda), accessing a database
(the blue disk stack), which is accessible to the outside world through an API
(the purple gateway). The upgrade should change the computation to access
more sensitive data (the lambda with the subscript 2), but be authenticated
through a user check (the red identification checks).

steps to deploy that infrastructure. In CloudFormation, an infrastructure con-
figuration is declared as a set of resources.

Benefits of IaC are well-known among practitioners: the entire infrastructure
is described accurately by a configuration file, making it easy to debug or vi-
sualize the infrastructure. This way the infrastructure can be version controlled
and documented as any other programming language. The tools help guarantee
identical configuration of hosts, making it an essential practice for security and
maintainability.

However, for all the benefits IaC brings, it also opens new security vulnera-
bilities. We have identified a new class of vulnerability issues that appear while
the tool is operating on the infrastructure. In order to decrease infrastructure
upgrade times, deployment tools typically will run many operations in parallel.
We argue that this parallelism, as well as the global naming used in these infras-
tructures, can lead to discrepancies during the upgrade that lead to a violation
of the intended security policy, even if the initial infrastructure and the target
infrastructure are both perfectly secure. We empirically validate our claims by
reenacting this vulnerability in both, Amazon’s AWS and in Google Cloud.

1.1 Proof of Concept

When upgrading the infrastructure, if operators do not provide enough depen-
dencies, ie. they do not impose an ordering on upgrade operations, a security
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policy and a protected service might be upgraded in an order that exposes pri-
vate data. Consider an example given in Figure 1: an API service that replies
to any request with some benign information, as depicted in Fig. la. The ser-
vice is upgraded so that the API returns private information about users, and
the security policy is modified to allow only authenticated users to access the
service, as shown in Figure 1d. This architecture is a core architectural build-
ing block for serverless computing. This same configuration is recommended in
AWS’s “Well Architected” developer guideline series [1]. The upgrade code is
functionally correct and implements the desired change, but the user did not
specify ordering constraints. However, without such constraints, there are two
possible upgrade plans. First, as shown in Figure 1b, the backend computation
may be updated first. In this case, since the authentication has not yet been
added to the API, there is a short period of time where private data is publicly
accessible. The amount of time this information is exposed depends on the cloud
service provider and the particulars of the infrastructure, but typically ranges on
the order of seconds to minutes. We call this kind of attack intra-update sniping
vulnerability. The second possible upgrade order, shown in Figure lc, imple-
ments the desired secure update order. Enforcing the second ordering requires
the user to explicitly specify an ordering constraint that the authentication must
be added before the backend computation is updated.

Another instance of intra-update sniping vulnerability happens when compo-
nents are added or removed from an infrastructure, but no ordering constraints
are given between them and components that use them. As an example, suppose
a user is adding a lamda that reads data from a new S3 bucket. If no depen-
dency is specified, the lambda could be created and connected to the bucket
before CloudFormation recognizes that the bucket is already owned. The at-
tacker who owns this bucket may then inject their data into the user’s system
during the time it takes CloudFormation to notice the naming conflict and roll
back the migration. This is related to the issue of S3 bucket namesquatting [15].

Although this paper is mostly focused on Amazon’s infrastructure, we have
successfully reproduced a similar scenario in Google Cloud, demonstrating that
intra-update sniping vulnerabilities are not limited to one cloud provider. We
reported this issue to Google, and although they acknowledged the problem, they
explicitly stated that it is the responsibility of the user to ensure the security of
their deployment.

1.2 Detecting Intra-update Sniping Vulnerabilities

We propose a tool, Hayha, that detects possible intra-update sniping vulnera-
bilities and proposes solutions to users. Hayha allows CloudFormation users to
check the security of planned updates to their infrastructure, before they ac-
tually deploy the update. Although our tool is specifically engineered to work
with CloudFormation, this class of vulnerabilities is not limited to it, and the
proposed solution is generic enough to be adopted in any other Infrastructure
as Code language.
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The main challenge in detecting intra-update sniping vulnerabilities is in de-
termining the underlying issue with common deployment models that lead to the
security vulnerability. We identify parallelism and in-place upgrades as the root
causes, arguing there is a trade-off in Infrastructure as Code between security
and scalability. On the opposite side of this trade-off, some practitioners advo-
cate for Immutable Infrastructure [12] management, which re-builds the entire
infrastructures from scratch on each update and only switches atomically to the
new infrastructure when it is ready. This practice would guarantee atomicity of
updates to the infrastructure and the absence of intra-update sniping vulnera-
bilities. However, this comes with a huge cost in terms of scalability and does
not apply well when statefulness is required (for example, migrating an existing
database), making it a less attractive practice.

Naturally, there is a connection between intra-update sniping vulnerability
and the problem of data races and concurrent access. Our proposed solution, of
adding ordering constraints, is somewhat similar to generic tools in the concur-
rency domain, such as memory barriers or locks [19,16,24], that add constraints
to the order of execution of a program. However, the focus of our work are config-
uration files that describe infrastructure, not programs. We cannot simply apply
existing work, because these configuration files do not have a formal semantics,
creating this way an additional challenge for our problem domain.

In summary, we identify the following key contributions of this paper:

— The description of intra-update sniping vulnerabilities and how they arise in
TaC services, with examples in AWS and Google Cloud.

— An intermediate representation of IaC configurations that allows us to reason
about security and network properties of a deployment, as well as about
changes in deployments.

— A tool, Hayha [17] that statically checks for potential intra-update sniping
vulnerabilities in a proposed infrastructure update.

— An evaluation on CloudFormation files scraped from GitHub, showing Hayha
scales and runs fast enough to be adopted into developer workflows.

2 A Model for Infrastructure as Code

Our tool, Hayhé, detects the possibility of a sniping attack in future deployments.
It analyzes the given deployment and raises alarms when it detects potential
security issues. The tool follows steps that we further detail in this section.
Step 1: Internal representation. First, Hiyhé reads the configuration of
the current and target infrastructure and translates them to the internal repre-
sentation. This representation is a dataflow graph identifying which component
of the infrastructure has access to which other components, and under which
security assumptions. Figure 2 shows two such simplified dataflow graphs that
our tool built from arch in Fig. 1. From this graph, Hayh& learns the desired
security level of each component. In this section we describe how to compute
security levels of resources in a given CloudFormation file: in Section 2.1 we de-
scribe the concrete syntax of a general CloudFormation file and how it applies
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Authorizer
PublicGet PrivateGet

’ PublicLambda ‘ ’ PrivateLambda ‘
(a) An Initial Dataflow Graph (b) A Target Dataflow Graph

Fig. 2: Dataflow graphs derived from an infrastructure

to other IaC tools; in Section 2.2 we describe how we model an infrastructure
in terms of network communication and security; finally, in Section 2.3 we show
the execution semantics and computation of the security level of resources in an
infrastructure.

Step 2: Capturing all potential upgrade states. After the initial and
target configurations are converted to our model, Hayha builds an upgrade state,
designed to represent every possible intermediate infrastructure that could exist
during the upgrade. In Section 2.4 we formally define the upgrade semantics
from an initial state to a target state in terms of our model, while in Section 3.1
we show how the upgrade state is built in practice. Figure 3 shows such a state,
in form of a graph, which contains a path (Web to PublicGet to PrivateLambda)
allowing any user on the web to access a sensitive resource in a non-secure
manner. Finally, in Section 3.2 we discuss how dependency relations refine the
upgrade state.

Web
Authorizer

PublicGet PrivateGet

PublicLambda }—% PrivateLambda

Fig. 3: Upgrade State with a Path Exposing a Security Vulnerability

Step 3: Analysis. (Section 3.3) Hiyha computes an over-approximation of
the intermediate states and the security level of their nodes in order to answer
two questions: 1) is every node in every possible intermediate state at least as
secure as the corresponding node in the initial or target configuration? and 2)
does every node in every possible intermediate state communicate only with
existing nodes? Any possible violation is reported to the user so they can take
action and modify their target configuration accordingly. For example, using the



110 J. Lepiller et al.

DependsOn keyword, one can enforce build orders in a CloudFormation file. For
Figure 3, Hayha reports the possible insecure access to PrivateLambda:

Resource Privatelambda is not sufficiently protected, it needs at
least Authorizer and is protected by None during upgrade. Add DependsOn
properties to ensure correct security.

2.1 CloudFormation Infrastructures

CloudFormation uses a declarative language in which users can specify the de-
sired state of their system. An example of a CloudFormation file is given on
the left side of Figure 4. It shows a simplified example of an infrastructure in
which an API can be called to access the result of running a Lambda (a sim-
ple function). There are no formal semantics for CloudFormation files [4,9] —
they are simply YAML or JSON files created from the given AWS CloudForma-
tion templates. Other tools, such as Terraform by HashiCorp, follow a similar
template-based design.

To formalize the behavior of IaC languages, we would also need to formalize
the precise behavior of components. However, these components are very diverse,
ranging from firewalls and HT'TP servers to general purpose machines or even
entire network configurations. Fortunately, the intra-update sniping vulnerability
is independent from the precise behavior of individual components, and we only
need to analyze the network and security behavior of the infrastructure. We
only track the security level of requests, and abstract away from their content.
To describe our model, we need to introduce three concepts used in IaC:

A component of the infrastructure is called a resource. Every configuration
file declares a set of resources and their configurations (e.g. Figure 4). Some
resources, like the LambdaFzecutionRole and the LambdaPermission are secu-
rity resources, and they prevent an unauthorized use of other resources. Other
resources, like the GreetingLambda and the GreetingRequestGET are actual run-
ning processes, the later also being publicly accessible. Finally, some resources
do not correspond to a running process, but to a group of resources such as
GreetingApi that gives some configuration value to every resource in the group.

A resource’s configuration may reference other resources, and we record that
information in our model. Based on the CloudFormation documentation, we
distinguish different types of references that we list below:

— network references(r, r’) are directed network connections between two
components r and 7/, that allow 7 to send requests to 7/, and receive answers.

— incoming protection references(r, s) protect all incoming requests to a
resource r, using a security resource s.

— outgoing protection references(r, s) protect all outgoing requests from
a resource r, using a security resource s.

— connection protection references(r, r’, s) protect a specific connection
between two resources r and 7’ using a security resource s.

— collection references(c, r) specify a resource r is in a specific collection
resource c.



CloudFormation File

Intra-update Sniping Vulnerabilities

Corresponding Model

{ "Resources”: {
” LambdaPermission”: {
?Type”: " AWS::Lambda::Permission”,
”Properties”: {
”FunctionName”: ” GreetinglLambda”,
”SourceArn”: ” GreetingApi”

LambdaPermission [security)
intrinsic security: LambdaPermission,

connection security (GreetingApi, Greet-
ingLambda, this)

111

}
b
" GreetingLambda”: { GreetingLambda
?Type”: ” AWS::Lambda::Function”, intrinsic security: T
”Properties”: {
”Role”: ” LambdaExecutionRole”
}
h
" GreetingRequestGET”: { GreetingRequestGET [public]
?Type”: " AWS::ApiGateway::Method”, intrinsic security: T,
”Properties”: {
”Integration”: ” GreetingLambda”, network(this, GreetingLambda),
?RestApild”: ” Greeting Api” collects(GreetingApi, this)
}
b
” GreetingApi”: { GreetingApi [collection]
?Type”: " AWS::ApiGateway:: Api” intrinsic security: T
h

” LambdaExecutionRole”: {
?Type”: " AWS::TAM::Role”
”Properties”: {

M

Fig. 4: Mapping Between a CloudFormation File and our Model

Each of these reference types can be present in any resource, any number
of time. The resource it is declared in can take any role in the relation that it
defines, and we represent the resource as this in the model, as shown on the
right side of Figure 4.

In CloudFormation, a dependency is declared by using e.g. the DependsOn
keyword. A dependency restricts the order in which updates can occur: before a
resource can be updated, all the resources it depends on must have been updated.

2.2 Model of a CloudFormation Infrastructure

We now describe a model for a CloudFormation infrastructure. We define a
state S = (R, D) as a set of resources and a partial order that represents the
dependency relation between resources. A resource is a tuple composed of a name
(string), a type, an intrinsic security context, an origin flag, the different types
of references discussed above, and the original configuration of the resource.

With (id,id") € D we denote that id depends on id’, and that id cannot be
upgraded until id’ is upgraded.

The origin flag denotes whether the resource comes from the initial state or
the target state during an upgrade, but it is not used at all when dealing with
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a single state. Similarly, the original configuration’s type is not further defined,
and depends on the vendor. It is not used for a single deployment, and we only
use it to check for equality of resources when updating an existing deployment.

Inspired by Abstract Interpretation [10], we define a security context as an
abstract domain with a partial order and some abstract operations: a top, a
bottom, a meet, and a join. When two security contexts are comparable (z C y),
we say that x is less permissive than y, or that z is more secure than y.

We define predicates that can help us to express some properties of resources
in a specific state S: collection(r), resp. security(r), means that r is a resource
whose type is that of a collection resource, resp. a security resource. We use
public(r) to denote when r is a resource whose type is that of a resource that
can be accessed from anywhere on the internet (although this might be restricted
with security references), or if it is contained in a collection that is itself publicly
accessible.

Definition 1 (connection). A connection is possible between two resources
when there is a network reference between them or resources that collects them.
network reference(c,c’)
ref(r,r’) < 3Je,/. A r=cVcollects(c,r)
r’ = Vcollects(d 1)

The security of a connection is the minimum security level a request from
r must have to be able to reach 7’ directly. This definition reflects the fact
that, when a connection is secured by multiple security resources, it must have
sufficient authority to be accepted by all of them.

Definition 2 (connection security).

incoming protection(c, s)
Je, .V < outgoing protection(c, s)
security(r,r’) <= M« sec(s) connection protection(c,c, s)

: (r=cVcollects(c,r))
with A { (r' = V collects(c', "))

2.3 Execution Semantics

The execution semantics for our intermediate representation is given below. The
semantics explains which resources are allowed to talk to which resources, and
under which security level. When we write L = r — 7/, it means that r is allowed
to send a request to r’, under the security level L.

A request can come from the internet (represented with the constant W)
and reach a public resource 7’ if it has a sufficient security level L. Similarly, a
request can come from a resource r and reach 7’ if it has a sufficient security
level, v’ is not a collection, and both resources have an adequate configuration
that allows them to communicate.

r" € R —collection(r’) L C security(W,r")  public(r’)

OutsideRequest
b LEW =7
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(r,7') € R —collection(r’) L C security(r,r') ref(r,r')
LEr—7!

InternalRequest

A path P is a finite sequence of resources whose first resource is public,
and subsequent resources can be reached from the previous, using the above
semantics under some security level. The security of a path is then defined as
the minimal security level under which every node can be reached in the above
semantics:

security((r1,...,m)) = ANi_qsecurity(ri—1,7;)

with rg = W. We note W —* r the set of paths whose last element is 7.
Similarly, the security of a node is defined as the minimal security level under
which the node can be reached by at least one path:

Sec(r) = V {security(P)|P € W —* r}

When the infrastructure, under which we consider the security of resources,
is not clear from the context, we clarify that with a subscript Secg(r).

Definition 3 (Substate). When comparing two states, S1 and Sz, we say that
S1 C Sy when

— FEvery resource of S1 is a resource of So and
— For every pair of resources r,r' in Sy, if L't r — 1" holds in Sy, then it also
holds in Ssy.

Our first lemma states that, when a state is a substate of another, its nodes
are at least as secure as the other.

Lemma 1 (Substate Security).
V51,8 Vid € 51. S1 C Sy — Secsl (Zd) C 56052 (’Ld)

Proof. We note that by definition, id is in both states. Additionally, any path in
S1 is also a path in Sy, and since the security of connections in S; is more secure
than the same connections in S5, the security of paths in S7 is greater than the
security of the same paths in Ss.

The security of a node is the meet of the security of paths that lead to it in
the state. Paths that lead to id is S are the paths that lead to it in S7, and
potentially additional paths. Therefore, the security of id in S; is greater than
in SQ.

2.4 Upgrade Semantics and Security Policy

In IaC tools, an upgrade changes a given infrastructure state to a new state. This
is done by upgrading each node that needs to be changed as specified by the
new configuration. Generally, nodes are upgraded in an unspecified order, even
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in parallel, to improve deployment speed. Node updates are sent asynchronously
to every service that needs to be updated, and there are dozens if not hundreds
of steps each service must take to complete its update. When these upgrades
are sent in parallel, it is difficult to reason about the state of the system as the
running time for a node upgrade depends on the latency of the service. To model
this behavior, we define an interleaving semantics for upgrades.

An upgrade starts in an initial state S; and ends in a target state S;. Ad-
ditional dependency ordering information is provided by the relation D of the
target state.

The configuration of an identifier can be updated if all its dependencies are
already updated (Vid', (id,id') € R = S(id") = S¢(id’)), and it has not been
updated yet:

S(id) # Si(id) Vid', (id,id") € R = S(id') = Sy(id')
S — Slid « S,(id)]

UpgradeConf

A new resource can be created under the same conditions, if it was not present
in the initial state:

id¢ S Vid R(id,id) = S(id') = S,(id")
S — Slid « Sy (id)]

An identifier can be removed, if it is not in the target state:

UpgradeAdd

id¢ S,y ideS
S — S\id

We collect every accessible intermediate state in a set denoted by Acc:

UpgradeDel

. SeAcc S— 8
Achnltm AccNext S € Ace

Note that, in the absence of any dependency, Acc contains every combination
where each resource is either at its initial or target configuration, leading to 2™
possible intermediate states when n is the number of changed resources.

We next show that, when two identifiers are in a dependency relation, some
intermediate states are not possible. For ease of expressing this lemma, we extend
equality to also check whether id is in the domain of S. If id is neither in S nor
S, we have S(id) = S’(id). Otherwise, id must be in both and associated to the
same configuration for the equality to hold.

Lemma 2 (Dependency Restriction).
V(id,id") € R,S € Acc = S(id) # Si(id) v S(id") # S;(id") vV S(id) =
Si(id) v Sy (id') = S;(id")

Proof. By induction of S € Acc and by case analysis on the inequality that holds
in the inductive case.

We now define the security policy as:
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Definition 4 (Security Policy). A deployment from S; to S; is secure iff:

Sec(S,id) C Sec(S;, id) if S;(id) = S(id)
VS € Ace,Vid, { Sec(S,id) C Sec(St,id) if Si(id) = S(id)
Sec(S,id) = L otherwise (id is not in S)

Our work focuses on security issues that happen during upgrades, assuming
that the initial and target states are both secure. We require that in any inter-
mediate state any resource is at least as secure as their counterpart in the initial
or target state, depending on where their configuration comes from.

3 Architectural Design of the Hayha Tool

3.1 Upgrade States

To verify the security of intermediate states, we could compute all the possible
intermediate states and pass them to existing tools that could check the secu-
rity of such states. However, this approach has two main drawbacks. First, we
would need to construct 2" intermediate states, which does not scale for large
infrastructure changes. Second, the result of such tools would not be easy to
understand for end users, as they would report issues with states that are not
defined or even considered by the user. Our goal is a tool that is both scalable
and able to provide suggestions on how to change the target configuration, not
some hidden intermediate configuration.

Web Web Web
Authorizer Authorizer VT =T
GET GET GET
’ lambda’ ‘ ’ lambda® ‘ ’ lambda’ ‘ ’ lambda® ‘

(a) Graphical (b) Graphical Rep- (c) Graphical Representation of the
Representation of resentation of the Upgrade State
the Initial State Target State

Fig. 5: Example Upgrade State

To address scalability we introduce upgrade states which represent multiple
states on which we can apply the same execution semantics. Recall that a state
is composed of a list of resources with their origin, type and references, and
of a dependency relation. An upgrade state is composed in the same way. The
set of resources is the union of the resources from the initial and target states,
excluding initial resources that only differ from their target counterpart by their
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provenance flag. When resources are added or removed from an infrastructure,
we introduce an empty resource for each of them. They represent the absence of
these resources. The dependency relation of the upgrade state is the dependency
relation of the target state.

The execution semantics of an upgrade state is the same as the execution
semantics of a normal state. Since the upgrade state represents multiple versions
of the same resources at the same time, we need to change the definition of the
security level of a connection between resources. An example of an upgrade state
is given in Figure 5. The initial state has an API, a GET method and a lambda,
and everything is public. The target state modifies the lambda and adds an
authorizer. The upgrade state is comprised of the unchanged API, the target
authorizer (with an empty resource as its initial counterpart), the GET method
(which did not change), and the two variants of the lambda. The connection
to the GET method is protected either by the empty node (T) or the target
authorizer. The minimal security level for this connection is therefore T.

In summary, when a security resource is relevant for a connection, we need
to consider its counterpart that has a different provenance flag. If it is also
relevant, the connection is protected by the disjunction of the security level of
these resources (they cannot both exist at the same time, but one of them exists
at any given time). If it is not relevant, the upgrade state represents at least one
case where the security resource is not relevant, meaning that the connection
is protected by the disjunction of the first security level and T, which is T
(no security at all). If the counterpart is an empty resource, the upgrade state
represents at least one case where the security resource was deleted (or not yet
added), so the connection is also unprotected. If there is no counterpart, the
connection is simply protected by the resource, because it does not change in
any way during the upgrade.

We denote by U(S;,S¢) the upgrade state created from the initial state S;
and the target state S;. We now show that this state indeed collects all possible
intermediate states.

Lemma 3 (Upgrade Graph is an Overapproximation).
VS € Ace.S C U(S;, St)

Proof. To apply the definition, we first show resources of S are resources of U.
Then, we show that any connection in S is a connection in U, because resources
come with the same references in both states.

3.2 Splitting Dependencies

We have seen that the upgrade state created from the initial and target configu-
rations is an over-approximation of all the intermediate states, when we do not
consider dependencies. Because dependencies reduce the number of intermedi-
ate states, the upgrade state might not be precise enough and might produce a
warning when no actual intermediate states violate the security policy.
Variants. When the state has two nodes A and A’ with the same identifier,
but a different label, we call them a variant of one another. When A belongs to
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the initial configuration and A’ to the target configuration, (A, A’) is called an
upgrade pair.

We refine the upgrade state by splitting it along a dependency. Considering
a state S, its dependency relation D, and two target resources (A’, B’) € D,
the split of S, split(S, A’, B') is a set of upgrade states. Suppose A’ and B’ are,
respectively, part of an upgrade pair (A, A’) and (B, B"). Then, split(S, A’, B)
is the set of three upgrade states, where only one of A or A’ remains, and only
one of B or B’. We exclude the case where A’ and B remain. When any of these
nodes does not exist, the number of possible combination is reduced. When only
A’ and B exist in S, we have found an impossible situation, and the result of
splitting is the empty set.

Although this process creates an exponential number of states, the number of
dependencies tends to be limited in practice, because they slow upgrades down.
At the same time, a big number of dependencies actually reduces the number of
possible intermediate states, until every node is in a dependency, in which case
there are exactly n intermediate states.

We now prove that splitting the upgrade state is correct, in the sense that
the set of states split(S) still contains all the possible intermediate states (Acc):

Theorem 1 (Correct Split).
VS € Ace. Ju € split(U(S;,S;)). SCu

Proof. Let us take a state S € Acc from the set of all possible intermediate
states. Since splitting a state according to a dependency preserves the states
from Acc (Lemma 4 below), we can consider every dependency and split them
in any order. Initially, it holds that S C U(S;, S;), using Lemma 3.

Consider an upgrade state u such that S C w and D(id,id'). By Lemma 4,
we can find a state v’ € split(u,id,id’") such that S C u’.

After applying this for each dependency, 1/ is one of the states resulting from
split(U(S;, St)), and the claim of the theorem holds.

The following intermediate lemma is needed to prove the correction of the
split. It states that if a state contains one of the accessible states, splitting a
dependency in it results in a set of states, where one of them still contains this
intermediate state.

Lemma 4 (Split Graphs). VS € Acc. V(id,id') € D. S Cu = Ju/ €
split(u,id,id'), S C u’

Proof. Take (A, A") the upgrade pair whose identifier is id. Similarly, take (B, B’)
the upgrade pair whose identifier is id’. Since S € Acc, A" and B cannot both
exist at the same time in S (Lemma 2). Since S C u, we also know that u has
at least one variant of id and one variant of id’, the ones that are present in S.

The states from split(u, id,id") are composed of the same nodes as u, except
for id and id’, where they all have one of the four possible combinations of
initial and target states, except for the pair A’, B. Since S doesn’t have them
both either, one states has the same variants of id and id’ as S, and we call it
u'. We now show that S C u’.
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First, we note that v’ has the same nodes as u, except for those with identifier
id and id’. For any resource in S, the resource was present in u, so it is also in
u/, unless it has identifier id or id’. For this last cases, we note that v’ is defined
to contain the same variants as S, so the resources of S are also resources of u/'.

Second, if we take L + r — 7/ in S, we can use the same reasoning as in
Lemma 3 to conclude that is also holds in /. Thus we conclude that S C .

3.3 Finding Vulnerabilities

After Hayh& constructs the upgrade state, the next step is to check for security
issues. Although we could split the upgrade state recursively until no dependency
remains, a more interesting strategy is to immediately check the upgrade state for
issues. If none is found, it is not necessary to refine the upgrade state. Otherwise,
we try to find a relevant dependency and split the upgrade state on it, running
the analysis on the resulting states, splitting on other dependencies as needed.

Our analysis detects two types of issues: first, if an empty node is accessible,
it might be used by the infrastructure at a point it is not registered by the
owner of the infrastructure. This is the case for a new node that is accessible
before it is created. When that node is a resource that can be claimed by a third
party (such as an S3 bucket), the attacker might be able to register it before the
user. Similarly, for a deleted resource, an attacker could register it for themselves
before the user stops using it.

Second, the security context of every node in the upgrade state is compared
to the security of the same node in the initial or target state (depending on its
provenance flag). When its security is strictly lower than the security of the node
in the state it comes from, or incomparable, we raise an alarm because there is
an intermediate step where the resource might not be sufficiently protected.

Using Lemma 1 and Theorem 1, when the security of a node in a possible
intermediate state (collected in Acc) is insufficient, the security of that node in
at least one split upgrade state is even lower. Therefore, if there is a violation of
the security property, our tool will detect it.

4 Experiments

Héyha is designed to be used before the deployment of a CloudFormation update,
and it is crucial that Hayhd does not interrupt developer workflow. Our goal
was, therefore, to evaluate the scalability of Héyhéa on a variety of real-world
CloudFormation updates. To do this, we collected 36 CloudFormation files from
GitHub, where each file had a history of updates (commits). We ran Héayha
against every update recorded in GitHub to that file, and measured the running
time. We found that our analysis completed within one seconds for all files — we
believe that these results indicate that Hayha could be integrated in developer
workflow with minimal disruption to the user. The details of the evaluation
dataset are given in Fig. 6.
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Fig. 6: Analysis time of various CloudFormation files from GitHub. Point size is
proportional to the number of updated resources, which are between 0 and 31.

To collect the set of GitHub CloudFormation files used in our scalability
benchmark, we searched GitHub using the web search tool for code with the key-
word AWSTemplateFormatVersion - which is a required keyword for any Cloud-
Formation file. We then filtered by the .yaml extension, and further manually
filtered for valid CloudFormation files (as opposed to other languages with over-
lap). Since we wanted to track updates to these files, we also filtered manually
to find only files that had a revision history (> 2 commits for the file).

While we showed that Hayhé scales well on real world data, we did not iden-
tify any instances of intra-update sniping vulnerability in these files. This is an
expected result, as the CloudFormation files we found on GitHub were generally
designed as templates that developers would customize to their own needs. We
believe application-focused CloudFormation files are not often uploaded, since
CloudFormation files can contain sensitive and proprietary information (e.g. in-
frastrucuture design). In order to run a large-scale analysis to check for past
instances of intra-update sniping vulnerability, we would need access to a repos-
itory of the private user data for many CloudFormation users.

5 Related Work

Following the development and use of Infrastructure as Code (IaC) practices,
many threats and security challenges were recognized [26,27]. The security risks
that have been identified in IaC have thus far remained similar to existing vul-
nerabilities arising from poor security practices, such as infrequent key rotation
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and hard-coded secret values [25]. Additionally, despite existing recommenda-
tions and good practices when dealing with cloud infrastructure, many existing
deployments are still left insecure by user misconfigurations. For example, stor-
age “buckets” which host files, should generally be configured by user to disallow
world readable/writable permissions. However, in practice, users struggle with
this [8]. Existing work has used SMT solver to automatically detect such vul-
nerabilities and help users secure their resources [4,9]. In contrast, we focus on
the dynamic behavior of deployment updates that occur when using IaC tools,
and their effect on security configuration.

Much work has focused on the security of virtualization technologies based
on attack models such as malicious cloud users to compromised cloud providers,
as summarized in [13]. In our work however, we do not make any assumption
on the specific technology, as intra-update sniping vulnerabilities rely mostly on
timing and insecure configuration on the user’s side.

Our work is based on a graph model of the dataflow network of resources
created in an infrastructure configuration. Similarly, Al-Shaer et al [2] propose
to model and check network security using a graph-based model of the network.
As with other work on the network and infrastructure security [5,18], the focus
of the analysis is on the security of static network topologies, instead of the
security of a moving topology, as we have in this paper. The analysis of security
in static networks and static information flow models [21] is complementary to
our work, as we assume the initial and target infrastructure are secure.

Beyond network configurations, there has been work in the analysis of con-
figuration files. In particular, static analysis has been used to check that IaC
configurations are idempotent [14,30], an important property for maintaining
reproducibility of infrastructure. The reproducibility of infrastructure is known
to be a challenge [7], despite IaC being declarative and version controlled. Fur-
ther efforts have used probabilistic modelling to learn constraints on configura-
tions [22,28,29].

6 Conclusion

We have identified a new class of vulnerability that applies to Infrastructure
as Code services, intra-update sniping vulnerabilities, that arise from a lack of
ordering in upgrading resources. We presented a tool, Hayha, that detects such
vulnerabilities in CloudFormation, and gives feedback to users on how securely
update their infrastructure deployment. Our evaluation shows the scalability of
Héyha by running it on existing configurations from GitHub and found that it
runs quickly enough to be usable in practice.
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Abstract. The first-order theory of rewriting is a decidable theory for
linear variable-separated rewrite systems. The decision procedure is based
on tree automata techniques and recently we completed a formalization
in the Isabelle proof assistant. In this paper we present a certificate
language that enables the output of software tools implementing the de-
cision procedure to be formally verified. To show the feasibility of this
approach, we present FORT-h, a reincarnation of the decision tool FORT
with certifiable output, and the formally verified certifier FORTify.

1 Introduction

Many properties of rewrite systems can be expressed as logical formulas in the
first-order theory of rewriting. This theory is decidable for the class of linear
variable-separated rewrite systems, which includes all ground rewrite systems.
The decision procedure is based on tree automata techniques and goes back to
Dauchet and Tison [7]. It is implemented in FORT [17,18]. FORT takes as input
one or more rewrite systems Rg, R1, ... and a formula ¢, and determines whether
or not the rewrite systems satisfy the property expressed by ¢, in which case it
reports yes or no. FORT may not reach a conclusion due to limited resources.

For properties related to confluence and termination, designated competitions
(CoCo [15], termCOMP [9]) of software tools take place regularly. Occasionally,
yes/no conflicts appear. Since the participating tools typically couple a plethora
of techniques with sophisticated search strategies, human inspection of the out-
put of tools to determine the correct answer is often not feasible. Hence certified
categories were created in which tools must output a formal certificate. This
certificate is verified by CeTA [21], an automatically generated Haskell program
using the code generation feature of Isabelle. This requires not only that the
underlying techniques are formalized in Isabelle, but the formalization must be
executable for code generation to apply. During the time-consuming formaliza-
tion process, mistakes in papers are sometimes brought to light.
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Since 2017 we are concerned with the question of how to ensure the correct-
ness of the answers produced by FORT. The certifier CETA supports a great many
techniques for establishing concrete properties like termination and confluence,
but the formalizations in the underlying Isabelle Formalization of Rewriting
(IsaFoR)? are orthogonal to the ones required for supporting the decision proce-
dure underlying FORT. We recently completed the formalization of the automata
constructions involved in the decision procedure [14]. Earlier fragments were de-
scribed in [8,13]. In this paper we put these efforts to the test. More precisely,
we

1. present a certificate language which is rich enough to express the various au-
tomata operations in decision procedures for the first-order theory of rewrit-
ing as well as numerous predicate symbols that may appear in formulas in
this theory,

2. describe the tasks required to turn the formalization described in [14] into
verified code to check certificates within reasonable time,

3. present a new reincarnation of FORT in Haskell, named FORT-h, which is
capable of producing certificates.

The remainder of the paper is organized as follows. The next section briefly
recapitulates the first-order theory of rewriting and the variant of the decision
procedure described in [14]. Sections 3 and 4 describe the representation of for-
mulas in certificates and the certificate language. In Section 5 we describe how
certificates are validated by FORTify, the verified Haskell program obtained from
the Isabelle formalization. Section 6 describes FORT-h. Experimental results are
presented in Section 7, before we conclude in Section 8.

2 Preliminaries

Familiarity with term rewriting [2] and tree automata [6] is useful, but we briefly
recall important definitions and notation that we use in the remainder.

Terms T (F,V) are constructed from a signature F, consisting of function
symbols with fixed arities, and a set of variables V. A term rewrite system (TRS
for short) R consists of rewrite rules £ — r between terms ¢ and r. Instead of the
usual restrictions ¢ ¢ V and Var(r) C Var({), we require Var({)NVar(r) = &. Here
Var(t) denotes the set of variables in a term ¢. Moreover, £ and r are assumed to
be linear terms (i.e., variables occur at most once). The conditions on the rewrite
rules are necessary to ensure decidability of the first-order theory of rewriting for
these linear variable-separated TRSs. The (one-step) rewrite relation of a TRS
R is denoted by —x. A term t is ground if Var(t) = @. The set of ground terms
is denoted by T (F).

The first-order theory of rewriting is defined over a language £ containing
the predicate symbols —, —*, =, and many more. As models, we consider finite
linear variable-separated TRSs R over signatures F such that 7 (F) is non-
empty. The set T (F) serves as domain for the variables in formulas over £. The

3 http://cl-informatik.uibk.ac.at /software/ceta/
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interpretation of the predicate symbol — in R is the one-step rewrite relation
— over T(F), =" denotes the restriction of —% to terms in 7(F), and = is
interpreted as the identity relation on 7 (F). Since we use ground terms as car-
rier, formulas in the first-order theory of rewriting express properties on ground
terms. For instance, the following formula ¢ expresses the property of having
unique normal forms (UNR):

VsVitVu(s =" tA-Jo({t > v)As =" uA-Fv(u—v) = t=u)

To use ¢ for establishing UNR for arbitrary terms (i.e., terms in 7 (F,V)) two
additional constant symbols need to be added to the signature [18]. (More on this
in Section 8.) Additional predicates in £ increase the expressive power and also
allow expressing properties more compactly. For instance, we can write NF()
for =3v (t = v) and s —' t for s =* t A =Jv (t — v). In Section 3 we present a
grammar that describes the available constructions for predicates. All predicates
that can be represented using these constructions are supported in our decision
procedure.

The decision procedure is based on tree automata that recognize relations
on ground terms. Here we give a brief summary. More information can be found
in [6] and [14]. A tree automaton A = (F,Q, Q¢, A) consists of a finite signature
F, a finite set @ of states, disjoint from F, a subset Q; C @ of final states,
and a set of transition rules A. Transition rules have one of the following two
shapes: f(p1,...,pn) — q with f € F and p1,...,pn,q¢ € @, or p — g with
p,q € Q. The latter are called epsilon transitions. Transition rules can be viewed
as rewrite rules between ground terms in 7 (FUQ). The induced rewrite relation
is denoted by —a or —4. A ground term ¢t € T (F) is accepted by A if t =% ¢
for some ¢ € Q. The set of all accepted terms is denoted by L(A) and a set L
of ground terms is regular if L = L(A) for some tree automaton A.

We encode n-tuples with n > 1 of ground terms as terms over an enriched
signature, as follows. We write (™ for the signature (F U {L})" where L ¢ F
is a fresh constant. The arity of a symbol fi--- f, € F is the maximum of
the arities of fi,..., f,. The encoding of terms t,...,t, € T(F) is the unique
term (t1,...,t,) € T(F) such that Pos({ty,...,t,)) = Pos(t;)U---UPos(t,)
and (t1,...,tn)(p) = f1-- fn where f; = t;(p) if p € Pos(t;) and f; = L
otherwise, for all p € Pos({t1,...,t,)) and 1 < i < n. As an example, for the
terms s = f(g(a),f(b,b)), t = g(g(a)), and u = f(b,g(a)) we obtain (s,t,u) =
fgf(ggb(aal),fLg(bLla, bl 1)). An n-ary relation on ground terms is regular if
its encoding is accepted by a tree automaton operating on terms in 7 (F (”)).
Such an automaton is called an RR,, automaton and regular n-ary relations are
called RR,, relations. The i-th cylindrification of an RR,, relation R over T (F) is
the RRn+1 relation {(th e ,ti_l, u,ti, e ,tn) | (tl, N ,tn) € Rand u € T(F)}

Besides RR,, automata, the decision procedure makes use of ground tree
transducers (GTTs for short). A GTT is a pair G = (A, B) of tree automata
over the same signature F. A pair (s,t) of ground terms in 7 (F) is accepted by
G if s =4 u g t for some term u € T(F U Q). Here @ is the combined set of
states of A and B. The set of all such pairs is denoted by L(G). We denote by



130 F. Mitterwallner et al.

L,(G) the set of all pairs (s,t) such that s —} g g t for some state ¢ € Q. A
binary relation R on ground terms is a(n anchored) GTT relation if there exists
a GTT G such that R = L(G) (R = L,(G)). The decision procedure for the first-
order theory of rewriting described in [7] and implemented in FORT uses GTTs,
the formalized variant described in [14] uses anchored GTTs (aGTTs), which
have better closure properties. Both are supported in our certificate language,
but FORT-h and FORTIfy use anchored GTTs since they permit us to model
more predicates while reducing the need for ad-hoc constructions that need to
be turned into executable (verified) code.

The decision procedure for the first-order theory of rewriting constructs RR,,
automata for the subformulas in a bottom-up fashion. GTTs (aGTTs) come
into play for some of the atomic subformulas consisting of predicate symbols and
variables. Closure properties take care of the logical structure of formulas. A final
emptiness check determines whether the formula is satisfied for the TRS given
as input to the decision procedure. Rather than formally stating the properties
involved, we illustrate the decision procedure on an example.

Ezample 1. Consider the formula ¢ = Vs3t (s —* t A NF(t)), which expresses
the normalization property of TRSs. To determine whether a TRS R over a
signature F satisfies ¢, we first construct an RR; automaton 4; that accepts
the ground normal forms in 7 (F), using an algorithm first described in [5] and
recently formalized in [13]. For the subformula s —* ¢ we construct a GTT G for
the parallel rewrite relation 45 . Since GTT relations are effectively closed under
transitive closure (while RRy relations are not), we obtain a GTT G, for —%.
This GTT is transformed into an RRy automaton Asy. (In the formalized decision
procedure described in [14], an RRy automaton for —* is constructed from an
anchored GT'T for the root step relation —%, using suitable closure properties of
anchored GTT and RRg relations.) We cylindrify the RR; automaton .4, into an
RRy automaton Aj that accepts 7 (F) x NFx. A product construction involving
Ay and A3 produces an RRy automaton A4 for the subformula s —* ¢t A NF(¢).
Projection yields an RR; automaton Ajs corresponding to 3¢ (s —* t ANF(t)). So
¢ holds if and only if L(As) = 7 (F). In FORT the V quantifier is transformed into
the equivalent — 9. Hence complementation is used to obtain an RR; automaton
Ag and the existential quantifier is implemented using projection. This gives an
RR( automaton A; which either accepts the empty relation @ or the singleton
set {()} consisting of the nullary tuple (). The outermost negation gives rise
to another complementation step. The final RRy automaton Ag is tested for
emptiness: L(Ag) = @ if and only the TRS R does not satisfy ¢.

3 Formulas

The first step in the certification process is to translate formulas in the first-order
theory of rewriting into a format suitable for further processing. We adopt de
Bruijn indices [4] to avoid alpha renaming.
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Ezxample 2. Consider the formula

forall s, t, u ([0] s =>x t & [1] s ->*x u =>
exists v ([1] t ->x v & [0] u ->* v))

in FORT syntax. It expresses the commutation of two TRSs, indicated by the
indices 0 and 1. Using de Bruijn indices for the term variables s, ¢, u, v produces

VVV(2—=51A2-70) = F(2-270A1=0)
We refer to Example 4 for further explanation.

The formal syntax of formulas in certificates is given below. Angle brackets
() are used for non-terminal symbols. Here (rr2) denotes the supported binary
regular relations, which are formally defined after Example 3. Likewise, (rr)
stands for regular sets (which are identified with unary regular relations).

(formula) == (rrl(rr) (term)) | (xr2(rre) (term) (term))
| Cand (formula) ) | Cor (formula) x) | (not (formula))
| (forall (formula)) | (exists (formula)) | (true) | (false)
| (restrict (formula) ({trs) +))

(term) == (nat) (trs) == (nat) | (nat) - (nat) == 0 |1]2] -

De Bruijn indices are used for (term) variables and (nat)- denotes a TRS
with index (nat) in which the left- and right-hand sides of the rules have been
swapped. The class of linear variable-separated TRSs is closed under this op-
eration. We use it to represent the conversion relation <»* of a TRS R as the
reachability relation —* induced by the TRS RUR™.

Ezxample 3. The commutation property in Example 2 is rendered as follows:

(forall (forall (forall (or (not (and (rr2 (step*x (0)) 2 1)
(rr2 (step* (1)) 2 0))) (exists (and (rr2 (stepx (1)) 2 0)
(rr2 (step* (0)) 1 0)))))))

Here (step* (0)) denotes the RRy relation —* induced by the first TRS (which
is indexed by 0) and (rr2 (step* (1)) 2 0) represents the subformula [1] t
=>* v of the FORT formula in Example 2.

We continue with the certificate syntax of RR; and RR; relations:

(rr1) == (terms) | (nf ((trs) +)) | (inf (rrp)) | (proj (1]2)(rra))
| Cunion (rry) (rry)) | (inter (rry) (rry)) | (diff (rry) (rri))

(gtt (gtt) (pos) (num)) | (product (rri) (rr1)) | (id (rr))

| Cunion (rry) (rre)) | (inter (rre) (rra)) | (Aiff (rro) (rra))

(rra) =

| Ccomp (rra) (rre)) | (inverse (rr2))
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(pos) == >=]e|> (num) == >=|1]>

(gtt) == (root-step ((trs) +)) | (inverse (gtt)) | (union (gtt) (gtt))
| Cacomp (gtt) (gtt)) | (gcomp (gtt) (gtt)) | (inter (git) (gtt))
| (acomplement (gtt)) | (atc(gtt)) | (gtc (git))

Here (terms) refers to 7(F), (nf ({(trs) +)) to the normal forms (NF) in-
duced by the union of the underlying TRSs, and (inf (772)) to the infinity
predicate (INFg) which is satisfied by all terms having infinitely many succes-
sors with respect to the relation R. Furthermore, (proj (1|2)(rrz)) denotes
projection (7) to the first (second) argument, (gtt (git) (pos) (num)) the trans-
formation of a GTT relation into an RRs relation with corresponding context
closure (cf. [14, Section 3]), (id (7r1)) the identity relation on the underlying set,
and (gtc (gtt)) ((atc (git))) the (anchored) transitive closure of the underlying
(anchored) GTT relation.

The constructs defined above closely correspond to the formalized closure
operations for the predicates in the first-order theory of rewriting, reported in [14]
and summarized below:

A= 5 |A |AUA| AT |AT |AcA|ASA|A°| AN A

:= A|R"|RUR|RNR|R |TxT|=r
T(F)|NF|[INF | TUT |TAT | T¢| 71(R) | m2(R)
=>[1|> p = =|e|>

S 89
MM ||

Here A are anchored GTT relations ({gtt)), R are RRy relations ({rr2)), and T
are regular sets of ground terms ((r7r1)).

For convenience of tool authors, we add a few other constructs to (rry). The
certifier expands these to a sequence of basic constructs given above.

(rry) = -+ | (step ({trs) +)) | (step= ((trs)+))
| (step+ ((trs) +)) | (step* ((irs) +)) | (equality)
| (parallel-step ((trs) +)) | (root-step+ ((trs) +))
| (non-root-step ((trs) +)) | (join ((trs) +))

The complete list can be obtained from the accompanying website.

4 Certificates

A certificate for a first-order formula ¢ explains how the corresponding RR,,
automaton is constructed. We adopt a line-oriented natural deduction style. The
automata are implicit. This is a deliberate design decision to keep certificates
small. More importantly, it avoids having to check equivalence of finite tree
automata, which is EXPTIME-complete [6, Section 1.7].

(certificate) ::= ((item) (inference) (formula) (info) ) {certificate)
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| (empty (item)) | (nonempty (item))
(item) == (nat) (info) = (size (nat)(nat) (nat)) | ---

(inference) = (xrrl (rry) (term)) | (xr2 (rry) (term) (term))
| (and (item) =) | (or (item) x) | (not (item))
| (exists (item)) | (anf (item)) | ---

Currently the (info) field only serves as an interface between the tool (which
provides the certificate) and the certifier to compare the sizes of the constructed
automata. In the future we plan to extend this field with concrete automata.
This allows to test language equivalence of a tree automaton computed by a tool
that supports our certificate language and the one reconstructed by FORTify,
thereby providing tool authors with a mechanism to trace buggy constructions
in case a certificate is rejected.
We revisit Example 1 to illustrate the construction of certificates.

Ezample 4. The formula ¢ = Vs3t(s —* t A NF(t)) expressing normalization
is rendered as ¢’ = V3(1 —§ 0 A0 € NF[0]) in de Bruijn notation. Here 1 refers
to the variable s, the second and third occurrences of 0 refer to ¢, and the last
occurrence of 0 refer to the first (and only) TRS, which has index 0. We construct
the certificate bottom-up, to mimic the decision procedure. The first line is for
NF[0]:

(0 (rr1 (nf (0)) 0) (rr1 (nf (0)) 0))
The components can be read as follows:

— (item) = 0 denotes the first step in our proof,

— (inference) = rr1 (nf (0)) O construct the automaton that accepts the
normal forms and keeps track of the variable 0,

— (formula) = rr1 (nf (0)) 0 denotes the subformula 0 € NF[0]; it is sat-
isfiable if and only if the automaton constructed using the description in
(inference) is not empty.

The apparent redundancy will disappear when we continue. We proceed by ex-
pressing the relation —{ and subsequently make sure that the second component
of —¢ is in normal form:

(1 (rr2 (stepx (0)) 1 0) (rr2 (step*x (0)) 1 0))
(2 (and (1 0)) (and ((rr2 (stepx (0)) 1 0) (rri (af (0)) 0))))

Line 1 is similar to line 0. The inference step and 1 0 in line 2 constructs an RR;
automaton that accepts the intersection of the relations modeled in lines 1 and
0. This automaton corresponds to A4 in Example 1. The cylindrification step
from A; to Az in Example 1 is left implicit. We continue with the projection of
variable 0 and afterwards complement the resulting automaton. This is done by
an exists followed by a not inference step:
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(3 (exists 2) (exists (and ((rr2 (stepx (0)) 1 0)
(rr1 (nf (0)) 0)))))

(4 (not 3) (not (exists (and ((rr2 (stepx (0)) 1 0)
(rr1 (nf (0)) 0))))))

The inference steps until this point describe the construction of Ag in Example 1.
We complete the certificate by introducing the remaining operators:

(5 (exists 4) (exists (not (exists (and ((rr2 (stepx (0)) 1 0)
(rr1 (mf (0)) 0)))))))

(6 (not 5) (not (exists (nmot (exists (and ((rr2 (step* (0)) 1 0)
(rr1 (mf (0)) 0))))))))

(7 (nnf 6) (forall (exists (and ((rr2 (step* (0)) 1 0)
(rr1 (mf (0)) 0))))))

(nonempty 7)

The nnf inference step does not modify the tree automaton computed in step
6 (which corresponds to Ag in Example 1) but checks the equivalence of the
formula in line 6 with the one of line 7, which corresponds to the input formula
¢’. The equivalence check incorporates V elimination, negation normal form,
and associativity, commutativity and idempotency of A and V. In the future
we might add support for additional equivalences in first-order logic. The final
step (nonempty 7) checks that L(As) # @. So this certificate claims that the
input TRS is normalizing. For TRSs that do not satisfy ¢, the final line in the
certificate would be (empty 7).

In the previous example we intentionally skipped over some details to convey
the underlying intuition. First of all, the (rrs) construct (step* (0)) is derived
and internally unfolded via (anchored) GTTs into

(gtt (gtc (root-step 0)) >= >)

Starting from an anchored GTT that accepts the root step relation induced
by the first (and only) TRS in the list, an application of the GTT transitive
closure operation followed by a multi-hole context closure operation with at least
one hole that may appear in any position, an RR, automaton that accepts the
relation —§ is constructed. We also mentioned that cylindrification is implicit.
The same holds for the projection operation that is used in the exists inference
steps. A projection takes place in the first component if the variable 0 is present
in the list of variables, otherwise the inference step preserves the automaton.
This approach is sound as variables indicate the relevant components of the RR,,
automaton. Thanks to the de Bruijn representation, the innermost quantifier
refers to variable 0, the first component in the given RR, automaton. However
we must keep track of all variables occurring in the surrounding formula and
update that list accordingly.

5 FORTify

The example in the preceding section makes clear that a certificate can be viewed
as a recipe for the certifier to perform certain operations on automata and for-
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mulas to confirm the final (non-)emptiness claim. In particular, checking a cer-
tificate is expensive because the decision procedure for the first-order theory is
replayed using code-generated operations from a verified version of the decision
procedure. In this section we describe the steps we performed to turn the Is-
abelle formalization of the decision procedure described in [14] into our certifier
FORTify.

We use the FOL-Fitting library [3], which is part of the Archive of Formal
Proofs,* to connect the first-order theory of rewriting and first-order logic. The
translation is more or less straightforward. We interpret RR; constructions as
predicates and RRs construction as relations in first-order logic and prove both
interpretations to be semantically equivalent:

lemma eval_formula F Rs o f =
eval o undefined (for_eval_rel F Rs) (form_of formula f)

With this equivalence we are able to define the semantics of formulas:

definition formula_satisfiable where
formula_satisfiable F Rs f «— (Ja. range o € T F A
eval_formula F Rs « f)

definition formula_unsatisfiable where
formula_unsatisfiable F Rs fm <— (formula_satisfiable F Rs fm = False)

definition correct_certificate where
correct_certificate F Rs claim infs n =
(claim = Empty +— (formula_unsatisfiable (fset F) (map fset Rs)
(fst (snd (snd (infs ! n))))) A
claim = Nonempty +— formula_satisfiable (fset F) (map fset Rs)
(fst (snd (snd (infs ! n)))))

Last but not least we define the important function check_certificate which
takes as input a signature, a list of TRSs, a boolean, a formula, and a certificate.
This function first verifies that the given formula and the claim corresponds to
the ones referenced in the certificate and afterwards checks the integrity of the
certificate. The following lemmata, which are formally proved in Isabelle, state
the correctness of the check_certificate function:

lemma check_certificate F Rs A fm (Certificate infs claim n) = Some B
= fm = fst (snd (snd (infs ! n))) A A = (claim = Nonempty)

lemma check_certificate F Rs A fm (Certificate infs claim n) = Some B
= (B = True — correct_certificate F Rs claim infs n) N
(B = False — correct_certificate F Rs (case claim of
Empty = Nonempty | Nonempty = Empty) infs n)

4 https://www.isa-afp.org
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The first lemma ensures that our check function verifies that the provided param-
eters fm (formula) and A (answer satisfiable/unsatisfiable) match the formula
and the claim stated in the certificate. The second lemma is the key result. It
states that the check function returns Some True if and only if the certificate
is correct. The only-if case is hidden in the last two lines. More precisely, if the
claim of the certificate is wrong then negating the claim (the first-order theory
of rewriting is complete) leads to a correct certificate. Therefore, if our check
function returns Some None then the certificate is correct after negating the
claim.

Our check function returns None if the global assumptions (the input TRS is
not linear variable-separated, the signature is not empty, etc.) are not fulfilled.
We plan to extend the check_certificate function in the near future such that
it reports these kind of errors.

A central part of the formalization is to obtain a trustworthy decision pro-
cedure to verify certificates. Hence we use the code generation facility of Is-
abelle/HOL to produce an executable version of our check certificate func-
tion. Isabelle’s code generation facility is able to derive executable code for our
constructions with the exception of inductively defined sets. In [8, Section 7]
an abstract Horn inference system for finite sets is introduced to overcome this
limitation. We use this framework to obtain executable code for the following
constructions defined as inductive sets:

— reachable and productive states of a tree automaton,

— states of tree automata obtained by the subset construction,

— epsilon transitions for the composition and transitive closure constructions
of (anchored) GTTs,

— an inductive set needed for the tree automaton for the infinity predicate.

At this point we can use Isabelle’s code generation to obtain an executable check
function. However, more effort is needed to obtain an efficient check function.
Checking the certificate in Example 6 below did not terminate after more than
24 hours computation time. We used the profiling capabilities of the Glasgow
Haskell Compiler (GHC) to analyze the generated code. This revealed that most
of the time was spent on checking membership. Since the computed tree au-
tomata can grow very large, the use of lists as underlying data structure for sets
in the generated code is a bottleneck.

To overcome this problem we decided to use the container framework of
Lochbihler [12]. In our case, the setup involved a non-trivial overhead as the
container framework requires multiple class instances for data types used inside
sets. Some of these instances could be derived automatically by the deriving
framework of Sternagel and Thiemann [20]. Afterwards Isabelle’s code generation
was able to generate a check_certificate function that uses red-black trees as
underlying data structure for sets.

Sadly, the function was still infeasible for the certificate in Example 6. This
time the power set construction, which is exponential in worst case, turned out
to be the culprit. In this construction we compute the transitive closure of the
present epsilon transitions multiple times. Adding an explicit construction to
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TRSs Ro, Ri, ...
A) 7 v / error
B)
formula ¢

Fig. 1. Certificate validation with FORTify.

remove epsilon transitions from tree automata solved this issue. To make a long
story short, after further modifications we were able to verify the certificate for
Example 6 in a little less than 3 minutes, which we consider fast enough for a
first prototype. The resulting code-generated certifier is called FORTify.

The overall design of FORTIfy is shown in Figure 1. It can be viewed as two
separate modules A and B. Module B is the verified Haskell code base that is gen-
erated by Isabelle’s code generation facility, containing the check_certificate
function and the data type declarations for formulas and certificates. To use
this functionality, we wrote a parser which translates strings representing for-
mulas (signatures, TRSs, certificates) to semantically equivalent formulas (sig-
natures, TRSs, certificates) represented in the data types obtained from the
generated code. This was done in Haskell and refers to module A in Figure 1.
Module A accepts formulas in FORT syntax. Hence it also applies the con-
version to the de Bruijn representation. After the translation in module A, the
check_certificate function in module B is executed and its output is reported.

Importantly, the code in module A is not verified in Isabelle. Correctness of
FORTify must therefore assume correctness of module A as well as the correct-
ness of the Glasgow Haskell Compiler, which we use to generate a standalone
executable from the generated code.

6 FORT-h

FORT-h is a new decision tool for the first order theory of rewriting. It is a
reimplementation of the decision mode of the previous FORT tool [18] based on
a modified decision procedure. The decision procedure, like the formalization,
is based on anchored GTTs. The new tool is implemented in Haskell whereas
FORT is written in Java.

FORT-h supports all features of FORT while extending the domain of sup-
ported TRSs from left-linear right-ground TRSs to linear wvariable-separated
ones. While FORT could technically take such TRSs as input, it is unsound
when checking non-ground properties on them.
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TRSs Ro, R, ... yes / no / maybe

formula ¢ certificate

Fig. 2. Interface of FORT-h.

Example 5. To check confluence of the linear variable-separated TRS

g(g(z)) — &(y) a—ga)
FORT-h can be called with

> ./fort-h "CR" input.trs
NO

where input.trs is a text file containing the rewrite system. The tool correctly
states that NO the system is not confluent. However, FORT incorrectly identifies
this as confluent due to the lack of support for variables appearing in right-hand
sides of rules.

FORT-h took part in the 2020 edition of the Confluence Competition, com-
peting in five categories: COM, GCR, NFP, UNC and UNR. Even though it does
not support many problems tested in the competition, due to the restriction to
linear variable-separated TRSs, it was able to win the category for most YES
results in UNR. The tool expects as input a formula ¢ and one or more TRSs, as
seen in Figure 2. It then outputs the answer YES or NO depending on whether
 is satisfied or not by the given TRSs. FORT-h may be passed some additional
options:

—-c FILE: causes FORT-h to write a certificate to the given FILE,

-i: enables the additional (info) in the inference steps in the certificate,

-v: enables verbose output (e.g. showing the internal formula representation).
-w: enables witness generation.

As an example of the latter, consider Example 5 and the call

> fort-h -w "CR" input.trs

NO

formula body / witness:
(0 (k=0 =>%) 1 & 7 0 (->* o *<-) 1)
0 =g(_000))
1 =g(_01(M

So in addition to the answer NO, it also outputs a counter example for the given
formula consisting of the two terms g(_.00()) and g(_01()). Here _00 and _01
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are additional constants required to reduce confluence to ground-confluence, and
represent variables. The terms should therefore be read as g(z) and g(y).
Internally FORT-h represents formulas using de Bruijn indices as described
in Section 4. Additionally, universal quantifiers and implications are eliminated,
and negations are pushed as far as possible to the atomic subformulas. The
tool then traverses the formula in a bottom-up fashion, constructing the corre-
sponding anchored GTTs and RR,, automata. During this traversal we also keep
track of the steps taken, to construct the certificate if necessary. To improve
performance the automata are cached and reused for equal subformulas. The
tree automaton representing the whole formula is then checked for emptiness. If
the accepted language is empty, FORT-h reports NO, otherwise it outputs YES.

7 Experiments

The experiments described in this section were run on a computer with a Intel(R)
Core(TM) i7-5930K CPU with 6 cores at 3.50GHz.

In the 2019 edition of the Confluence Competition [15] three tools contested
the commutation (COM) category:5 ACP [1], CoLL [19], and FORT. On input
problem COPS #1118 the tools gave conflicting answers.

Example 6. COPS #1118 is about the commutation of the TRSs COPS #669
a—c f(a) = b b—b b — h(b, h(c,a))
and COPS #695
h(a,a) = ¢ b — h(b,a) b—a f(c) —»c c—a

To determine the correct answer we use FORT-h to produce a certificate for
ground-confluence by calling

> fort-h -c cert -i "GCom([O0],[1])" 1118.trs
YES

This produces the following certificate:

(0 (rr2 (comp (inverse (stepx (1))) (stepx (0))) 0 1)

(rr2 (comp (inverse (step* (1))) (stepx (0))) 0 1)

(size 13 53 0))
(1 (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1)

(rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1)

(size 11 47 0))
(2 (not 1) (not (rr2 (comp (step* (0)) (inverse (stepx (1)))) 0 1)))
(3 (and (0 2))

(and ((rr2 (comp (inverse (step* (1))) (stepx (0))) 0 1)

(not (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1)))))

(4 (exists 3)

% https://cops.uibk.ac.at/results/?7y=2019&c=COM


https://cops.uibk.ac.at/?q=1118
https://cops.uibk.ac.at/?q=1118
https://cops.uibk.ac.at/?q=669
https://cops.uibk.ac.at/?q=695
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Table 1. FORT(-h) run on GCR formulas with a 60s timeout (FORTify with 600s).

YES @-time ¢ NO o-time ¢ ) total (¢/) time

(1) FORT-h 36 0.26s 10 84 0.56s 16 2 176.23s (17.6h)
FORT 37 03ls — 82 0.52s — 3 234.08s

(2) FORT-h 37 1.48s 10 84 0.09s 16 1 122.55s (17.8h)
FORT 37 0.32s — 82 0.50s — 3 233.20s

(3) FORT-h 36 0.45s 6 83 0.08s 9 3 202.64s (18.2h)
FORT 37 0.32s — 82 0.55s — 3 236.69s

(exists (and ((rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)
(not (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1))))))
(5 (exists 4)
(exists (exists (and ((rr2 (comp (inverse (step* (1)))
(stepx (0))) 0 1) (not (rr2 (comp (stepx (0))
(inverse (stepx (1)))) 0 1)))))))
(6 (not 5)
(not (exists (exists (and (
(rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)
(not (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1))))))))
(7 (anf 6)
(forall (forall (or (
(not (rr2 (comp (inverse (step* (1))) (stepx (0))) 0 1))
(rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1))))))
(nonempty 7)

When passing this certificate to FORTify, after 2 minutes and 57 seconds the
output Certified is produced, so we can be assured that the TRSs do commute.
Note that the inference steps 0 and 1 contain the optional size information. Here
(size k m n) means the underlying RR,, automaton constructed by FORT-h
contains k final states, m transitions, and n epsilon transitions.

We also ran some experiments comparing FORT-h to FORT. The problems for
these experiments are taken from the Confluence Problems database (COPS),
and consists of 122 left-linear right-ground TRSs. Note that FORT-h imple-
ments no parallelism, while FORT does. For the first two experiments we chose
a timeout of 60 seconds for the decision tools and 600 seconds for FORTify. The
formulas were taken from the experiments reported in [17]. The first three

VsViVu(s =" tAs—="u = t|u) (1)
VsVtVu(s =" tAs—=u = tlu) (2)
ViVu(t <" v = tlu) (3)

denote different but equivalent formulations of ground-confluence (GCR).

The results are shown in Table 1, where the YES (NO) column shows the
number of systems determined to be (non-)ground-confluent together with av-
erage time (@-time) the tool took. The co column is the number of timeouts.
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To compare overall performance the total time column contains the sum of all
runtimes, including timeouts but excluding the time taken by FORTify. The
v/ columns show the numbers of certifiable results as well as the overall time
taken by FORTIfy (¢/-time). These results show that, even though they have the
same meaning, the choice of formula has an impact on performance. Interest-
ingly FORT-h is generally faster and can solve more problems than FORT even
though it can not take advantage of any parallelism. This performance advan-
tage is more prominent in systems which are non-confluent. For problems with
the answer YES, FORT can still prove more. The table also shows that FORTify
can only certify a small portion the results. This is due to the performance of
the certifier, since all other problems time out. It is also apparent that formulas
containing conversion (++*) are especially slow. No wrong results by the decision
tools where identified.

The second set of formulas represents the normal form property, restricted
to ground terms (GNFP):

ViVu (t <" uANF(u) = t =" u)

—~
(G2
=

VsVitVu(s 5 tAs = v = t =" u)
vVt (WN(t) = CR(t))

—
D
=

The results for these are shown in Table 2. The same pattern is observed, where
even though both can (dis)prove satisfaction for the same formulas, FORT-h is
faster overall.

For the last experiment we test performance on properties over two TRSs.
This is done by checking ground-commutation (GCOM) for all pairs of systems
form the dataset, resulting in 7503 problems. A timeout of 60 seconds was used.
The results, presented in Table 3, show that FORT-h is ahead here as well,
(dis)proving more problems and doing so in significantly less time.

Full details of the experiments are available from the website® accompanying
this paper. Precompiled binaries of FORT-h and FORTify are available from the
same site. We also present a few additional experiments with FORTify.

6 https://fortissimo.uibk.ac.at/tacas2021

Table 2. FORT(-h) run on GNFP formulas with a 60s timeout (FORTify with 600s).

YES @-time ¢ NO @-time ¢ 00 total (¢/) time

(4) FORT-h 59 0.70s 31 63 0.07s 20 0 45.62s (14.6h)
FORT 59 0.23s — 63 0.39s — 0 38.16s

(5) FORT-h 59 0.03s 46 63 0.01s 50 0 2.55s  (6.3h)
FORT 59 0.22s — 63 0.30s — 0 31.83s

(6) FORT-h 59 0.05s 42 62 0.12s 45 1 705ls (8.6h)
FORT 59 0.31s — 62 0.64s — 1 117.86s


https://fortissimo.uibk.ac.at/tacas2021
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Table 3. FORT(-h) run on GCOM with a 60s timeout (FORTify with 600s).

YES @-time ¢ NO @-time 4 00 total (¢/) time
FORT-h 1381 0.16s 878 6120 0.03s 3666 2 517.32s (681.5h)
FORT 1354 1.46s — 6100 0.94s — 49 10670.89s

8 Conclusion

In this paper we presented FORTIfy, a certifier for the first-order theory of rewrit-
ing for linear variable-separated TRSs, together with an expressive certificate
language for formulas and proofs. Moreover, a new implementation of the de-
cision procedure for the theory of rewriting, FORT-h, is capable of producing
certificates in this language.

We mention three topics which require further research. First of all, many
certificates produced by FORT-h cannot be validated by the current version of
FORTify within reasonable time. We will further improve the algorithms and
data structures used in the check-certificate function. A natural candidate
for optimization is the transitive closure algorithm generated by Isabelle, which
always takes cubic time. Currently, sharing only takes place in the inference
rules. Expanding this to the individual constructions will be the next step. Also
trimming of anchored GTTs could improve the run time. In the current state of
the formalization only trimming of GTTs is proved to be sound. Profiling will
be used to determine other candidates that are likely to have a large impact on
the validation time.

A second topic for future research is the certification of properties on open
(i.e., non-ground) terms. In [8,16, 18] conditions are presented to reduce proper-
ties related to confluence to the corresponding properties on ground terms, by
adding additional constants to the signature. These results need to be formalized
in Isabelle and the certificate language needs to be extended, before FORTify can
be used to certify the corresponding categories in the Confluence Competition.
We plan to define signature extensions directly in formulas, to offer the most
flexibility. A related issue is the support for many-sorted signatures in the Is-
abelle formalization. FORT-h already supports many-sorted TRSs, which is the
format in the GCR category of CoCo.

A third topic is improving the efficiency of FORT-h. We anticipate that sup-
porting parallelism will further speed up FORT-h, especially for large formulas.
Preprocessing techniques that go beyond the mere transformation to negation
normal form will be helpful to obtain equivalent formulas that reduce the size
of the ensuing tree automata in the decision procedure. In [10] similar ideas are
applied to WSEKS, in connection with MONA [11].

Acknowledgments. We thank René Thiemann for giving valuable advice on how
to improve the efficiency of the generated code. The comments by the anonymous
reviewers improved the presentation.
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Abstract. This paper presents a novel approach for quantifier instan-
tiation in Satisfiability Modulo Theories (SMT) that leverages syntax-
guided synthesis (SyGuS) to choose instantiation terms. It targets quan-
tified constraints over background theories such as (non)linear integer,
reals and floating-point arithmetic, bit-vectors, and their combinations.
Unlike previous approaches for quantifier instantiation in these domains
which rely on theory-specific strategies, the new approach can be applied
to any (combined) theory, when provided with a grammar for instantia-
tion terms for all sorts in the theory. We implement syntax-guided instan-
tiation in the SMT solver CVC4, leveraging its support for enumerative
SyGuS. Our experiments demonstrate the versatility of the approach,
showing that it is competitive with or exceeds the performance of state-
of-the-art solvers on a range of background theories.

1 Introduction

Modern Satisfiability Modulo Theories (SMT) solvers are highly efficient tools,
capable of reasoning about constraints over a wide range of logical theories,
including (non-linear) real and integer arithmetic, fixed-size bit-vectors, and
floating-point arithmetic. Their core algorithms are designed primarily for quan-
tifier-free constraints, but various extensions have been shown to work well also
for quantified constraints in many cases. Quantified reasoning in SMT has many
practical applications, including software verification, automated theorem prov-
ing, and synthesis.

Current SMT solvers handle quantified constraints in a variety of ways, with
a degree of effectiveness that usually depends on the background theory. For
instance heuristic instantiation techniques such as E-matching [15] are used for
quantified formulas with heavy use of uninterpreted functions. These heuristic
instantiation techniques are refutationally incomplete but they can be highly
effective, in particular in the context of verification applications. For quantified
constraints over a particular background theory, such as linear arithmetic or
fixed-size bit-vectors, on the other hand, SMT solvers resort to an entirely dif-
ferent set of techniques. While also based on quantifier instantiation, these other
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techniques tend to be counterexample-guided and can be complete for theories
and fragments of first-order logic that admit quantifier elimination.

Specific previous work in the latter direction includes counterexample-guided
quantifier instantiation techniques for linear arithmetic [25] and fixed-size bit-
vectors [18,20]. The key to developing each of them is to devise an appropriate,
theory-specific selection function, which determines a term selection strategy for
instantiating universal quantifiers. For some logics, e.g., linear arithmetic, se-
lection functions can be based on the notion of elimination set found in classic
algorithms for quantifier elimination [9,14]. However, since many theories used
in practice do not admit quantifier elimination, the design of a good selection
function is usually non-trivial. These challenges are further magnified when rea-
soning in combinations of multiple theories.

We propose a novel, syntaz-guided quantifier instantiation (SyQI) approach,
which is both general-purpose and highly effective for quantified formulas in
background theories such as (non)linear integer, reals and floating-point arith-
metic, and their combinations. The new approach leverages an embedding of a
solver for the syntax-guided synthesis (SyGuS) problem [1] within an SMT solver
in order to choose terms for quantifier instantiation in a counterexample-guided
manner. It is theory-agnostic and only requires the specification, via a grammar,
of the set of terms to consider for each sort in the theory when instantiating quan-
tifiers.® Since it can be applied to quantified formulas in any background theory,
it is more general in scope than previous work [20]. Our approach is intended
for logics such as quantified floating-point arithmetic, which would benefit from
counterexample-guided quantifier instantiation, but for which appropriate selec-
tion function are not obvious. We show that the use of syntax-guided synthesis
gives us the flexibility to develop variants of our approach that are highly com-
petitive with the state of the art in SMT solving. More specifically, this paper
makes the following contributions:

— We present and prove correct a simple yet novel quantifier instantiation
approach that leverages syntax-guided synthesis for selecting instantiations.

— We explore variants of the approach along several dimensions, including the
choice of symbols to include in grammars for various background theories.

— We implement this technique in the SMT solver CVC4 [5] and show that
it performs remarkably well in a wide variety of SMT logics. In particular,
it improves upon the state of the art for solving quantified formulas over
floating-point arithmetic, and is highly competitive for non-linear integer
arithmetic and certain combined logics that involve fixed-size bit-vectors.

Related Work. Handling quantified formulas in SMT solvers is a long-standing
challenge. Early approaches for quantified formulas were largely based on E-
matching [8,10, 15]. They have been later supplemented with techniques that
rely on models for establishing satisfiability [11,26], and on conflict finding to
accelerate the search for unsatisfiability [27]. Pragmatic enumerative approaches

3 Our implementation provides a default grammar for all supported sorts. In general,
grammars can also be provided by the user. We do not explore this option here.
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for quantifier instantiation have also been explored and shown to increase the
precision of SMT solvers on inputs involving uninterpreted functions where E-
matching is incomplete [21]. The approach we describe here is also enumerative in
nature; however, it leverages syntax-guided synthesis for choosing instantiations
and does not target inputs with uninterpreted functions.

For quantified formulas over a single background theory, counterexample-
guided approaches have been considered by Bjgrner and Janota [6] and by
Reynolds et al. [25], targeting primarily quantified linear integer/real arithmetic.
For theories of other data types (e.g., bit-vectors), most approaches use value-
based instantiation, where concrete variable assignments for a set of quantifier-
free formulas derived from the negation of the input formula (the counterexam-
ples) provide instantiations for the universal variables. In the SMT solver Z3 [16],
model-based quantifier instantiation (MBQI) [11] is combined with a template-
based model finding procedure [29]. A recent line of work by Niemetz et al. [18]
leverages invertibility conditions in a counterexample-guided loop for quantifier
instantiation of formulas in the theory of fixed-size bit-vectors. Brain et al. [7] lift
the concept of invertibility conditions to the theory of floating-point arithmetic
and presented a preliminary quantifier elimination procedure for a fragment of
the theory based on these conditions. Another approach for lazy quantifier elim-
ination for bit-vector formulas is explored by Vediramana Krishnan et al. [12],
based on iterative approximate quantifier elimination.

Reynolds et al. [24] leverage counterexample-guided quantifier instantiation
(CEGQI) to efficiently solve a restricted but practically useful form of syntax-
guided synthesis problems. In contrast, the work in this paper has the dual goal
of leveraging enumerative syntax-guided synthesis to establish a strategy for
quantifier instantiation of (first-order) quantified formulas.

SyGuS techniques to solve quantified problems were previously explored by
Preiner et al. in [20]. However, instead of focusing on quantifier instantiation
they combined enumerative syntax-guided synthesis with value-based quantifier
instantiation to synthesize Skolem functions for existential variables.

2 Background

We assume the usual notions and terminology of many-sorted first-order logic
with equality (denoted by =2). Let S be a set of sort symbols. For every o € S,
let X, be an infinite set of variables of sort o. Let X = Uaes X,. Let X be a
signature consisting of a set X° C S of sort symbols and a set X/ of interpreted
(and sorted) function symbols fo19n? with arity n > 0 and o1, ...,0,,0 € X°.
We assume that X includes a Boolean sort Bool and the Boolean values T (true)
and L (false). Let Z be a X-interpretation that maps: each sort o € X'* to a non-
empty set o (the domain of T), with Bool® = {T,L}; each variable 2 € X,
to an element zZ € ¢Z; and each function f7r % € X/ to a total function
ffof x ... x ol —ofif n >0, and to an element in o if n = 0.

We assume the usual definition of well-sorted terms, literals, and formulas
as Bool terms with variables in X and symbols in X, and refer to them as X-
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terms, Y-atoms, and so on. A ground term/formula is a X-term/formula without
variables. We define « = (21, ..., z,,) as a tuple of variables and write Q. with
Q € {V,3} for a quantified formula Qz;.---Qx,.o. A formula is universal if
it has the form Va. P where P is a quantifier-free formula. For simplicity, we
consider only universal quantifiers since existential quantifiers can be rewritten
in terms of universal ones. We use Lit(¢) to denote the set of X-literals of X-
formula . For a Y-term or X-formula e, we use e[x] to indicate that the free
variables of e are in «. For a tuple of X-terms t = (¢y, ..., t, ), we write e[t] for the
term or formula obtained from e by simultaneously replacing each occurrence
of z; in e by t;. If ¢ is a X-term/formula and Z a X-interpretation, we write
t to denote the meaning of ¢ in Z. We use the usual inductive definition of a
satisfiability relation = between X-interpretations and X-formulas.

A theory T is a pair (X, I), where X is a signature and [ is a non-empty class
of X-interpretations (the models of T') that is closed under variable reassignment,
i.e., every X-interpretation that only differs from an Z € I in how it interprets
variables is also in I. A Y-formula ¢ is T-satisfiable (resp. T-unsatisfiable) if it
is satisfied by some (resp. no) interpretation in I; it is T-valid if it is satisfied
by all interpretations in I.

Enumerative SyGuS using an Embedding into Datatypes. A syntax-guided syn-
thesis problem for an n-ary function f in a background theory T consists of
a set of semantic restrictions (a specification) for f, given as a (second-order)
T-formula of the form 3f. ¢[f], and a set of syntactic restrictions on the solu-
tions for f, typically expressed as a context-free grammar. A solution to such
a problem is a term t[zq,...,x,] that satisfies the syntactic restrictions and is
such that the formula p[Ax1,...,x,.t] is T-valid.

As shown in previous work [24], syntactic restrictions for the bodies of func-
tions to synthesize can be conveniently represented as a set of (algebraic) data-
types. The setting in this paper is simpler. Instead of synthesizing terms cor-
responding to function bodies, we use context-free-grammars for defining a set
of (first-order) terms in a given theory, possibly containing free function sym-
bols. For instance, let a and b be free constants of sort Int. The context-free
grammar R below specifies a set of integer (Z) and Boolean (B) terms:

Z:=0|1|a|b| Z+Z | Z—-Z7 | ite(B,Z,2) (1)
B:=B>B | Z~Z | -B| BAB (2)
Given such a grammar, our SyGuS solver generates the following mutually re-
cursive datatypes:
Z=zero | one | a | b | plus(Z,2) | minus(Z,2) | ite(B,Z2,2) (3)
B=geq(Z,2) | eq(Z,2) | not(B) | and(B,B) (4)
Each datatype constructor, listed on the right-hand side of each equation, corre-
sponds to a production rule of R, e.g., plus corresponds to the rule Z ::= Z + Z.

Given a datatype value v, we write to_term(v) to denote the term that v rep-
resents, e.g., to_term(plus(a, b)) is the term a + b.
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In previous work [22,24], a smart enumerative approach for syntax-guided
synthesis was presented and implemented in CVC4. In that work, the generation
of terms is based on finding solutions for an evolving set of constraints in an
extension of the quantifier-free fragment of algebraic datatypes, for which some
SMT solvers have dedicated decision procedures [3,23]. In the remainder of
this paper, we write Tp to denote the theory of datatypes over a signature Xp
of constructor and selector symbols. The signature Xp includes (parametric)
datatype sorts that are interpreted as the universe of a term algebra over the
constructors. Selectors are interpreted as functions that extract the immediate
subterms of a constructor term.

In our setting, datatype constraints are used to express syntactic restrictions
on the terms in the original theory. For instance, in case of the example theory
and corresponding datatypes Z and B defined above, we can write a datatype
constraint that is falsified by all terms of the form plus(zero,t) where ¢ is a
constructor term of sort Z. This corresponds to ruling out terms of the form
(0+...) in the original theory where s is a term of sort Int. In more detail, for a
datatype term d, we write isc(d) to denote the discriminator predicate, which is
satisfied exactly when d is interpreted as a datatype value whose top constructor
is C. We write sel, ,,(d) to denote a shared selector [28] applied to d, interpreted
as the n' child of d with sort ¢ if one exists, and as an arbitrary element of
o otherwise. These symbols are used for constructing blocking constraints. For
example, we can write —ispiys(d) V iszero(selz,1(d)) to state the constraint above
that d cannot be interpreted as any datatype value corresponding to an Int term
of the form (04 ...). In the context of syntax-guided synthesis, a constraint like
this is added, for instance, to filter out redundant terms (like 0 4 ...) or terms
already known to falsify the synthesis conjecture.

Our approach for syntax-guided instantiation relies on a notion of evaluation
variables. A related, more general, notion of evaluation functions was used in
the context of syntax-guided synthesis (see Section 2 of [22] for details). Let d
be a term of a datatype sort encoding a grammar over terms of sort . We write
eq to denote a free constant of sort o, which we call the evaluation variable for
d. We use evaluation variables to determine which terms to use in instantiations
of quantified formulas. The algorithm given in the following section will add
constraints that force the interpretation of e4 to be equal to to_term(d?) in
interpretations Z. A simple example of such a constraint is isy(d) = e4 = a,
stating that the evaluation variable e4 for d is equal to the free constant a of
integer type when d is interpreted as the datatype value a.

3 SyGuS Quantifier Instantiation (SyQI)

Our new SyGuS-based instantiation approach combines counterexample-guided
quantifier instantiation (CEGQI) with smart enumerative SyGuS techniques to
synthesize terms for quantifier instantiation. In essence, it is an algorithm that
tries to synthesize a term ¢ for a variable  in a given formula V. P[z] such that
—P[t] holds. For synthesis purposes, each quantified variable is associated with
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Algorithm 1 Main algorithms of the SyQI approach.

: procedure syqi({Q1,...,Qn},G)
for Q; € {Q1,...,Qn} with Q; = Va. P[x] do
for x €  do
Let d, be a fresh global constant of datatype sort grammarg(x)
G = GU{l; = —Plea,]} with fresh Boolean constant [; and fresh eq,

1
2
3
4
5
6: repeat
7
8
9
0
1

if check(G) = unsat then return unsat

r,Z = check(G A (I1 V... VI,))
if » = unsat then return sat

for I; € {l1,...,ln} such that [} = T do
1 G = G Uselect_lemmas;(Q;,7)
12: procedure select_lemmas,(Vz1,. .., zp. Plz1,...,zp], )
13: L=70
14: for z; € {z1,...,7p} do
15: t; = to_term(dZ,)
16: L= LU {explain(d,, ~ dz,) = ed,, ~ to_term(d;,)}

17: return non-empty subset of {P[t1,...,¢p|} UL based on selection strategy £

a SyGuS grammar based on the sort of the variable. For example, our algorithm
uses a bit-vector-specific grammar to synthesize bit-vector terms as possible in-
stantiations of quantified variables of bit-vector sort. Our SyGuS solver suggests
instantiations based on such grammars and an evolving set of constraints on
the instance term. The main advantage of this instantiation approach is that
it does not require theory-specific quantifier instantiation algorithms. Its only
theory-specific aspects are the construction of the grammar for each theory sort
and the satisfiability checks performed on the generated instances.

Algorithm 1 shows the two main procedures syqi and select_lemmas, of
our SyGuS instantiation approach. To simplify the exposition, we describe the
restricted case where the quantified input formula are all universal. Our imple-
mentation in CVC4, however, applies to the general case through a lazy conver-
sion to DNF and resolution of quantifier alternations.

Procedure syqi takes as argument a set {Q1,...,Q,} of universal (quanti-
fied) T-formulas and a set G of ground T-formulas. As an initial step, and prior
to solving the problem, we generate a lemma for each quantified formula @Q; as
part of our counterexample-guided quantifier instantiation approach (lines 2-5).
We first create a fresh datatype constant d,, of sort grammar g (z) for each vari-
able z € x in each input formula V. Plz]. The datatype sort grammarg(x)
is constructed from a SyGuS grammar determined by the sort of variable x.
The language generated by the grammar includes ground terms from @; and
G of the same sort. These terms are chosen following a selection strategy S,
which we describe in Section 3.1. Apart from running check, used as a black
box, grammarg implements the only theory-specific handling of our procedure.
Finally, we add to G a lemma of the form [, = —P[eq,] for each quantified for-
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mula, where /; is a fresh Boolean constant (the counterexample literal for @;).
Thanks to [; being fresh, this preserves the satisfiability of G. The notation eq,
is a shorthand for (eq, ,...,eaq, ), the tuple of evaluation variables for each d,
of x € . The purpose of a counterexample lemma is twofold. First, it indicates
whether a quantified formula Q; is active (I; assigned to true) or inactive (I;
assigned to false). Second, it focuses on finding counterexamples that falsify the
body of Q;.

The main loop of procedure syqi is provided in lines 6-11. Each iteration
starts with a quantifier-free satisfiability check (performed by procedure check
on line 7) on the current set of ground formulas G in the combined theory
T UTp. If G is unsatisfiable, procedure syqi returns unsat. If G is satisfiable,
the procedure further checks whether it can find a counterexample for any of the
quantified formulas @Q,...,Q,, which is done by checking the satisfiability of
GA(l1V...Vly,). If the check returns unsat then no more counterexamples can be
found; the algorithm concludes that input set is satisfiable and returns sat. The
reason is that, in this case, the set G is satisfiable and entails each input formula,
as proven later in this section. If the second call to check (line 8) returns sat, it
additionally returns (a finite representation of) a model Z for the current set of
ground formulas G. Since 7 satisfies [ V...V [,, it does not satisfy at least one
quantified formula in Q1,...,Q,.* For each active quantified formula in Z, we
generate new lemmas via procedure select_lemmas, (lines 10-11), and repeat
the main loop of the algorithm. Note that the second satisfiability check can be
avoided by employing a special decision heuristic for counterexample literals [;
in the SAT solver. The decision heuristic will always assign a counterexample
literal [; to true on a decision. Consequently, [; can only be assigned to false in
a candidate interpretation Z if —l; is entailed by the set of ground formulas G.

Procedure select_lemmas, takes a formula Va. Plx| and a model Z as ar-
guments and generates a set of lemmas based on Z and selection strategy L.
The procedure maintains the invariant of always returning a set of lemmas L
where L \ G is non-empty. This set L includes a single instantiation lemma (of
the form P[t]) and an evaluation unfolding lemmas (see below) for each variable
x € x. The returned lemmas are generated based on one of three lemma selec-
tion strategies: priority-inst, priority-eval, and interleave. Strategy interleave selects
both the instantiation lemma and a set of evaluation unfolding lemmas at the
same time. Strategies priority-inst and priority-eval give priority to instantiation
lemmas and evaluation unfolding lemmas, respectively; i.e., strategy priority-inst
selects the instantiation lemma and only selects evaluation unfolding lemmas if
the instantiation lemma was already in G. Analogously, priority-eval gives priority
to evaluation unfolding lemmas.

The various lemmas are constructed as follows. For each variable = € x we
use the model value dZ of datatype constant d, to construct the corresponding
term to_term(dZ) in the theory of variable x (line 15). The constructed term
corresponds to a term synthesized by the SyGuS extension of our datatypes

4 Note that this does not mean the quantified formula is unsatisfiable, only that it is
not satisfied in Z.
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solver based on the grammar specified for x. To ensure that d, evaluates to
the same values as term to_term(dZ) under model value dZ, we generate the
evaluation unfolding lemma explain(d, ~ d%) = e;, ~ to_term(dZ). The
explanation for the model value dg is expressed in terms of discriminator pred-
icates. For example, if value dZ represents term a + b, the procedure gener-
ates lemma ispius(dy) A isa(selz1(dy)) Aisp(selz 2(dy)) = eq, = a +b. As a last
step, select_lemmas, selects a non-empty subset of the generated instantiation
lemma Pl[ty,...,t,] (where cach ¢; is to_term(dZ )) and the evaluation unfolding
lemmas L according to the lemma selection strategy L.

We now discuss the correctness properties of our approach. In the following,
we say a grammar R for sort o is complete, if for all interpretations Z and values
v of sort o, it generates at least one term ¢ such that ¢ = v. Note that we only
consider complete grammars in this paper. We say a lemma selection strategy £
is fair wrt a set of formulas G if it returns a set of lemmas that contain at least
one lemma inequivalent to each formula in G whenever such lemma exists.

Theorem 1. Let T be a theory with signature X, let F' be a set of universal for-
mulas {Q1,...,Qn} and Gy is a set of quantifier-free formulas. If all grammars
constructed by the calls to grammars in syqi are complete and the selection
strategy L used for select_lemmas, is fair, then the following statements hold:

1. (Refutation Soundness) If syqi(F,Gg) returns unsat, F'U Gy is T-unsatis-
fiable.

2. (Model soundness) If syqi(F,Gg) returns sat, F'UGq is T-satisfiable.

3. (Progress) Let G; be the current state of the set of ground formulas G after
i iterations of syqi (lines 6-11). Each iteration i + 1 adds at least one new

Jormula to Gy, so that Giyq \ G; # 0.

Conceptually, the proof of refutational soundness relies on the fact that all
lemmas added to G are entailed by the input or maintain equisatisfiability with
respect to the input. The proof of model soundness relies on the fact that when
G collectively entails the negation of (all) quantified formulas, then the current
model Z for G must be a model for all quantified formulas. Procedure syqi is
not terminating in general. However, the progress property guarantees that the
algorithm does not get stuck in a single state and keeps making progress towards
refining the set of possible models by ruling out at least one candidate model at
each iteration of the procedure’s main loop.

Proof. For brevity, we show these statements for the case of n = 1 and where Q1
is V. P[x]; the proof can be easily lifted to n > 1. When syqi(F, Gy) terminates,
the internal set G is the union of:

— The initial quantifier-free formula Gy,

— The counterexample lemma G, of the form | = —P[eq, ] added on line 5,
— A set of instantiations G, of the form P[t], and

— A set of evaluation lemmas G, of the form C[d] = e4 =~ t.
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To show (1), assume that ¢ is satisfied by some Y-interpretation 7, where
without loss of generality assume that [ is false. Let Z be a XU Xp-interpretation
that extends J such that for each evaluation variable ey, the interpretation of
d in Z is such that to_term(d?)? = e. Such a value exists since our grammars
are complete by assumption. We show that Z satisfies each formula ¢ in G. If
1 € G, then this holds since J satisfies ¢, and hence, by extension Z does
as well. If ¥ € Gey, then 1 is satisfied by Z since it interprets [; as false. If
1) € Gipst 18 an instantiation lemma of some @Q);, then it is satisfied by Z since
J also satisfies Q;. If ¢ € G, is an evaluation lemma, this is satisfied by our
construction of dZ. Thus ¢ is T-satisfiable, then G' must be (7' U Tp)-satisfiable.
Thus, since syqi(F,Gg) returns unsat when G is (T'UTp)-unsatisfiable, this
means that F'U Gy must be T-unsatisfiable as well.

To show (2), if syqi(F,Go) returns sat, then the set G is satisfied by some
YU Xp-interpretation and GU{l; } is unsatisfiable. Let 7 be the X-interpretation
that interprets all symbols in X the same as in Z. Since G U {l; } is unsatisfiable,
we have that Go U Gipst U Gy U {—Pleq,]} is T U Tp-unsatisfiable. Since all X-
interpretations can be lifted to a X' U Yp-interpretation satisfying G.,, it must
also be the case that GoUG st U{—Pleq, ]} is T-unsatisfiable. Hence, all models
of Go U Gipst must make Pleg, ] true. Since eq, does not occur in Gy U Gipst,
this implies that all models of Gy U G5 satisfy Va. Plx]. Since Go U Ginst € G
and Z satisfies G, we have that J satisfies {Va.P[z]} UG.

To show (3), assume ad absurdum that G is satisfied by a T'U Tp-interpre-
tation Z where to_term(d,”) = t and Q, is active in Z. Also assume that G
contains the evaluation unfolding lemmas for d,T and the instantiation lemma
PIt]. Due to the former, we have that eq,Z = t%. Since Q is active in Z, Z satis-
fies =Pleq,]. However, Pt] is also satisfied by Z, a contradiction. Thus, at least
one of the lemmas returned by select_lemmas, for ()1 must be inequivalent to
the lemmas in G, due to our assumption that £ is a fair selection strategy. 0O

3.1 Grammar Construction

For quantifier instantiation, we focus on the theories of fixed-size bit-vectors,
floating-point numbers, integers, and reals as defined by the SMT-LIB 2 stan-
dard [4]. The signature of the theory of fixed-size bit-vectors includes a unique
sort for each positive bit-vector width n, denoted here as BV[,). The signature
of the theory of floating-point numbers includes a rounding-mode sort RM and
a unique floating-point sort for each combination of positive exponent width e
and significand width s, denoted here as FP[. ;. The theories of Integers and
Reals include the integer sort Int and the real sort Real, respectively. For each
of these sorts we define a SyGuS grammar that includes the following operators
and constants.

Rpv : {~,—,&,|,®,+,, =+, +s, mod, mod, <<, >>, >>,,0, 1, ones, smin, smax }
Rpp : {—,abs,rem, \/, rti, +, -, +, fma, NaN, +00, +0, +min’, £max”, #min", +max" }
Rrw : {RNA,RNE,RTE,RTP,RTZ} R : {+,— 0,1}  Rpea : {+, —, =,0,1}
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Theory Symbol SMT-LIB Syntax Sort
~, = bvnot, bvneg BV =BV
&, |, & bvand, bvor, bvxor BV X BV — BV
BV <, >, >, bvshl, bvlshr, bvashr BV () X BV = BV
+, —, - bvadd, bvsub, bvmul BV () X BV = BV(y
=+, +s, mod, mod, bvudiv, bvsdiv, bvurem, bvsrem  BV(,) X BV, =BV,
—,abs fp.neg, fp.abs FPle.qg = FPle,s
rem fp.rem FPe,s) X FPe ) = FPe g
FP Nz rti fp.sqrt, fp.roundTolntegral RMxFP. o —FPpe g
+, -+ fp.add, fp.mul, fp.div RMxFPe X FPe g —FPpc g
fma fpfma RMXFP[E,S] XFP[E,S] XFP[e,s]‘)FP[e,s]
Ints +, — +, — Intx Int— Int
Reals +, —, + +, =,/ Real x Real — Real

Table 1. Set of operators considered in SyGuS grammars.

The (non-constant) operators and their SMT-LIB names and types are listed in
Table 1. Note that we further restrict the division operator + of sort Real to
division by value, i.e., we do not allow division by an arbitrary term of sort Real.
We also add a set of special values of the corresponding sort to each default
grammar. We represent bit-vector values of sort BV, as bit-strings of length n,
where the left-most bit is the most significant bit. For floating-point values of sort
FPc,s), we use bit strings where the left-most bit indicates the sign, the following
e bits represent the exponent, and the remaining bits the significand. For the
theory of fixed-size bit-vectors, we use smaxj,) or sminp, for the mazimum or
minimum signed value of width n, e.g., smaxpy = 0111 and sminpy = 1000, and
ones[,,) for the maximum unsigned value, e.g., onesyy = 1111. For the theory of
floating-point numbers, we use £0 for positive and negative zero, +co for positive
and negative infinity, and NaN for not a number, e.g., —0(3,5 = 10000000 and
+00(3,5) = 01110000. We further use £min® for the positive and negative smallest
subnormal, £max® for the positive and negative largest subnormal, +min™ for the
positive and negative smallest normal, and +max™ for the positive and negative
largest normal, e.g., Inax[3 5 = = 10001111 and +m1n[3 5 = 00010000. In the
definition of grammar Rpp above, we use symbol + to indicate that both the
positive and negative variant of a special value is included in the grammar.

We extend the above set of default grammars (grammarg in Algorithm 1)
with ground terms that occur in an input set {Q1, ..., @, }UGq based on the sort
of variable © € ® in Q; = Va. P[x] and a term selection strategy. This strategy
is based on the following two factors. We consider three modes for the scope of
ground terms: (1) ground terms that occur in quantified formula Q; (strategy
in) (2) ground terms that occur in the set of ground formulas G (strategy out),
and (3) the union of (1) and (2) (strategy both). We consider three modes for
the size of ground terms, defined as the number of subterms a term consists of:
(a) terms of minimal size, i.e., constants that occur in a term (strategy min) (b)
terms of mazimal size (strategy max), and (c¢) the union of (a) and (b) (strategy
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both). For example, for a ground term a + b - ¢, strategy min will select «a, b, c,
max will select a +b- ¢, and both will select a, b, ¢,a+b- c. Each of the scope and
size modes may be combined, giving 3 * 3 = 9 possible term selection strategies.

Ezxample 1. Let Q =Vx.x-x % a-a+b-b+2-a-bwhere x, a,b have integer type
and suppose we run syqi({Q},0). The algorithm first constructs the grammar
grammarg(z) for xz, where we assume term selection strategy S with scope in
and size min, which considers ground terms that occur in Q and are of minimal
size (2, a, and b