
27th International Conference, TACAS 2021
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021
Luxembourg City, Luxembourg, March 27 – April 1, 2021
Proceedings, Part II

Tools and Algorithms
for the Construction
and Analysis of SystemsLN

CS
 1

26
52

AR
Co

SS
Jan Friso Groote
Kim Guldstrand Larsen (Eds.)

Lecture Notes in Computer Science 12652

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0001-9619-1558

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Jan Friso Groote • Kim Guldstrand Larsen (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems
27th International Conference, TACAS 2021
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021
Luxembourg City, Luxembourg, March 27 – April 1, 2021
Proceedings, Part II

123

Editors
Jan Friso Groote
Eindhoven University of Technology
Eindhoven, The Netherlands

Kim Guldstrand Larsen
Aalborg University
Aalborg East, Denmark

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-72012-4 ISBN 978-3-030-72013-1 (eBook)
https://doi.org/10.1007/978-3-030-72013-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2021. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2196-6587
https://orcid.org/0000-0002-5953-3384
https://doi.org/10.1007/978-3-030-72013-1
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 24th ETAPS! ETAPS 2021 was originally planned to take place in
Luxembourg in its beautiful capital Luxembourg City. Because of the Covid-19 pan-
demic, this was changed to an online event.

ETAPS 2021 was the 24th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organising these conferences in a coherent,
highly synchronised conference programme enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops take place that
attract many researchers from all over the globe.

ETAPS 2021 received 260 submissions in total, 115 of which were accepted,
yielding an overall acceptance rate of 44.2%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2021 featured the unifying invited speakers Scott Smolka (Stony Brook
University) and Jane Hillston (University of Edinburgh) and the conference-specific
invited speakers Işil Dillig (University of Texas at Austin) for ESOP and Willem Visser
(Stellenbosch University) for FASE. Inivited tutorials were provided by Erika Ábrahám
(RWTH Aachen University) on analysis of hybrid systems and Madhusudan
Parthasararathy (University of Illinois at Urbana-Champaign) on combining machine
learning and formal methods.

ETAPS 2021 was originally supposed to take place in Luxembourg City, Luxem-
bourg organized by the SnT - Interdisciplinary Centre for Security, Reliability and
Trust, University of Luxembourg. University of Luxembourg was founded in 2003.
The university is one of the best and most international young universities with 6,700
students from 129 countries and 1,331 academics from all over the globe. The local
organisation team consisted of Peter Y.A. Ryan (general chair), Peter B. Roenne (or-
ganisation chair), Joaquin Garcia-Alfaro (workshop chair), Magali Martin (event
manager), David Mestel (publicity chair), and Alfredo Rial (local proceedings chair).

ETAPS 2021 was further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbrücken), Marieke Huisman (Twente, chair), Jan Kofron (Prague), Barbara König
(Duisburg), Gerald Lüttgen (Bamberg), Caterina Urban (INRIA), Tarmo Uustalu
(Reykjavik and Tallinn), and Lenore Zuck (Chicago).

Other members of the steering committee are: Patricia Bouyer (Paris), Einar Broch
Johnsen (Oslo), Dana Fisman (Be’er Sheva), Jan Friso Groote (Eindhoven), Esther
Guerra (Madrid), Reiko Heckel (Leicester), Joost-Pieter Katoen (Aachen and Twente),
Stefan Kiefer (Oxford), Fabrice Kordon (Paris), Jan Křetínský (Munich), Kim G.
Larsen (Aalborg), Tiziana Margaria (Limerick), Andrew M. Pitts (Cambridge), Grigore
Roșu (Illinois), Peter Ryan (Luxembourg), Don Sannella (Edinburgh), Lutz Schröder
(Erlangen), Ilya Sergey (Singapore), Mariëlle Stoelinga (Twente), Gabriele Taentzer
(Marburg), Christine Tasson (Paris), Peter Thiemann (Freiburg), Jan Vitek (Prague),
Anton Wijs (Eindhoven), Manuel Wimmer (Linz), and Nobuko Yoshida (London).

I’d like to take this opportunity to thank all the authors, attendees, organizers of the
satellite workshops, and Springer-Verlag GmbH for their support. I hope you all
enjoyed ETAPS 2021.

Finally, a big thanks to Peter, Peter, Magali and their local organisation team for all
their enormous efforts to make ETAPS a fantastic online event. I hope there will be a
next opportunity to host ETAPS in Luxembourg.

February 2021 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

Preface

TACAS 2021 was the 27th edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems conference series. TACAS
2021 was part of the 24th European Joint Conferences on Theory and Practice of
Software (ETAPS 2021), which although originally planned to take place in
Luxembourg City, was held as an online event on March 27 to April 1 due the the
COVID-19 pandemic.

TACAS is a forum for researchers, developers, and users interested in rigorously
based tools and algorithms for the construction and analysis of systems. The conference
aims to bridge the gaps between different communities with this common interest and
to support them in their quest to improve the utility, reliability, flexibility, and effi-
ciency of tools and algorithms for building computer-controlled systems. There were
four types of submissions for TACAS:

– Research papers advancing the theoretical foundations for the construction and
analysis of systems.

– Case study papers with an emphasis on a real-world setting.
– Regular tool papers presenting a new tool, a new tool component, or novel

extensions to an existing tool and requiring an artifact submission.
– Tool demonstration papers focusing on the usage aspects of tools, also subject to the

artifact submission requirement.

This year 141 papers were submitted to TACAS, consisting of 90 research papers,
29 regular tool papers, 16 tool demo papers, and 6 case study papers. Authors were
allowed to submit up to four papers. Each paper was reviewed by three Program
Committee (PC) members, who made extensive use of subreviewers.

Similarly to previous years, it was possible to submit an artifact alongside a paper,
which was mandatory for regular tool and tool demo papers. An artifact might consist
of a tool, models, proofs, or other data required for validation of the results of the
paper. The Artifact Evaluation Committee (AEC) was tasked with reviewing the
artifacts, based on their documentation, ease of use, and, most importantly, whether the
results presented in the corresponding paper could be accurately reproduced. Most
of the evaluation was carried out using a standardised virtual machine to ensure con-
sistency of the results, except for those artifacts that had special hardware requirements.

The evaluation consisted of two rounds. The first round was carried out in parallel
with the work of the PC. The judgment of the AEC was communicated to the PC and
weighed in their discussion. The second round took place after paper acceptance
notifications were sent out; authors of accepted research papers who did not submit an
artifact in the first round could submit their artifact here. In total, 72 artifacts were
submitted (63 in the first round and 9 in the second), of which 57 were accepted and 15
rejected. This corresponds to an acceptance rate of 79 percent. Papers with an accepted
artifact include a badge on the first page.

Selected authors were requested to provide a rebuttal for both papers and artifacts in
case a review gave rise to questions. In total 166 rebuttals were provided. Using the
review reports and rebuttals the Programme and the Artifact Evaluation Committees
extensively discussed the papers and artifacts and ultimately decided to accept 32
research papers, 7 tool papers, 6 tool demos, and 2 case studies.

Besides the regular conference papers, this two-volume proceedings also contains 8
short papers that describe the participating verification systems and a competition
report presenting the results of the 10th SV-COMP, the competition on automatic
software verifiers for C and Java programs. These papers were reviewed by a separate
program committee (PC); each of the papers was assessed by at least three reviewers.
A total of 30 verification systems with developers from 11 countries entered the sys-
tematic comparative evaluation, including four submissions from industry. Two ses-
sions in the TACAS program were reserved for the presentation of the results: (1) a
summary by the competition chair and of the participating tools by the developer teams
in the first session, and (2) an open community meeting in the second session.

March/April 2021 Jan Friso Groote
Kim Guldstrand Larsen

Frédéric Lang
Thierry Lecomte
Thomas Neele

Peter Gjøl Jensen
Dirk Beyer

Alfredo Rial

viii Preface

Organization

Program Committee (TACAS)

Christel Baier TU Dresden, Germany
Dirk Beyer LMU Munich, Germany
Armin Biere Johannes Kepler University Linz, Austria
Valentina Castiglioni Reykjavik University, Iceland
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Rance Cleaveland University of Maryland, USA
Pedro R. D’Argenio Universidad Nacional de Córdoba - CONICET,

Argentina
Yuxin Deng East China Normal University, China
Carla Ferreira Universidade NOVA de Lisboa, Portugal
Goran Frehse ENSTA Paris, France
Susanne Graf Université Grenoble Alpes/CNRS/VERIMAG, France
Jan Friso Groote (Chair) Eindhoven University of Technology, Netherlands
Orna Grumberg Technion - Israel Institute of Technology, Israel
Kim Guldstrand Larsen

(Chair)
Aalborg University, Denmark

Klaus Havelund Jet Propulsion Laboratory, USA
Holger Hermanns Saarland University, Germany
Peter Höfner Australian National University, Australia
Hossein Hojjat Rochester Institute of Technology, USA
Falk Howar TU Dortmund, Germany
David N. Jansen Institute of Software, Chinese Academy of Sciences,

China
Marcin Jurdziński The University of Warwick, Great Britain
Joost-Pieter Katoen RWTH Aachen/Universiteit Twente,

Germany/Netherlands
Jeroen J. A. Keiren Eindhoven University of Technology, Netherlands
Sophia Knight University of Minnesota, USA
Laura Kovács Vienna University of Technology, Austria
Jan Křetínský Technical University of Munich, Germany
Alfons Laarman Leiden University, Netherlands
Frédéric Lang Inria Grenoble - Rhône-Alpes/CONVECS, France
Thierry Lecomte ClearSy Systems Engineering, France
Xinxin Liu Institute of Software, Chinese Academy of Sciences,

China
Mieke Massink CNR-ISTI, Italy
Radu Mateescu Inria, France
Jun Pang University of Luxembourg, Luxembourg

Dave Parker University of Birmingham, Great Britain
Jaco van de Pol Aarhus University, Denmark
Natasha Sharygina Università della Svizzera Italiana, Switzerland
Jan Strejček Masaryk University, Czech Republic
Antti Valmari University of Jyväskylä, Finland
Björn Victor Uppsala University, Sweden
Sarah Winkler Free University of Bozen-Bolzano, Italy

Artifact Evaluation Committee – AEC

Elvio Gilberto Amparore University of Turin, Italy
Haniel Barbosa Universidade Federal de Minas Gerais, France
František Blahoudek University of Texas at Austin, USA
Olav Bunte Eindhoven University of Technology, Netherlands
Damien Busatto-Gaston Université Libre de Bruxelles, Belgium
Nathalie Cauchi University of Oxford, Great Britain
Jesús Mauricio Chimento KTH, Sweden
Joshua Dawes University of Luxembourg, Luxembourg
Mathias Fleury Johannes Kepler University Linz, Austria
Daniel J. Fremont University of California, Santa Cruz, USA
Manuel Gieseking University of Oldenburg, Germany
Peter Gjøl Jensen (Chair) Aalborg University, Denmark
Kush Grover Technical University of Munich, Germany
Hans-Dieter Hiep CWI, Netherlands
Daniela Kaufmann Johannes Kepler University Linz, Austria
Mitja Kulczynski Kiel University, Germany
Alfons Laarman Leiden University, Netherlands
Luca Laurenti University of Oxford, Great Britain
Maurice Laveaux Eindhoven University of Technology, Netherlands
Yong Li Institute of Software, Chinese Academy of Sciences,

China
Debasmita Lohar Max Planck Institute for Software Systems, Germany
Viktor Malík Brno University of Technology, Czech Republic
Joshua Moerman RWTH Aachen University, Germany
Stefanie Mohr Technische Universität München, Germany
Marco Muñiz Aalborg University, Denmark
Thomas Neele (Chair) Royal Holloway University of London, Great Britain
Wytse Oortwijn University of Twente, Netherlands
Elizabeth Polgreen University of Edinburgh, Great Britain
José Proenca CISTER-ISEP and HASLab-INESC TEC, Portugal
Etienne Renault LRDE, France
Alceste Scalas Technical University of Denmark, Denmark
Morten Konggaard Schou Aalborg University, Denmark
Veronika Šoková Brno University of Technology, Czech Republic
Yoni Zohar Stanford University, USA

x Organization

Program Committee and Jury – SV-COMP

Pavel Andrianov
(CPALockator)

ISP RAS, Russia

Philipp Berger (NITWIT) RWTH Aachen, Germany
Dirk Beyer (Chair) LMU Munich, Germany
Marek Chalupa (Symbiotic) Masaryk University, Brno, Czech Republic
Lucas Cordeiro

(ESBMC-kind)
University of Manchester, Great Britain

Priyanka Darke (VeriAbs) Tata Consultancy Services, India
Daniel Dietsch (UTaipan) University of Freiburg, Germany
Gidon Ernst (Korn) LMU Munich, Germany
Ákos Hajdu (Gazer-Theta) BME, Hungary
Matthias Heizmann

(UAutomizer)
University of Freiburg, Germany

Hossein Hojjat (JayHorn) Rochester Institute of Technology, USA
Stephan Holzner (CPA-Seq) LMU Munich, Germany
Falk Howar (JDart) TU Dortmund, Germany
Soha Hussein (Java Ranger) University of Minnesota, USA
Omar Inverso (Lazy-CSeq) Gran Sasso Science Institute, Italy
Saurabh Joshi (Pinaka) IIT Hyderabad, India
Dominik Klumpp (UKojak) University of Freiburg, Germany
Henrich Lauko (DIVINE) Masaryk University, Brno, Czech Republic
Viktor Malík (2LS) Brno University of Technology, Czech Republic
Felipe R. Monteiro

(ESBMC-incr)
Amazon Web Services, USA

Vadim Mutilin
(CPA-BAM-BnB)

ISP RAS, Russia

Hernán Ponce de León
(Dartagnan)

Bundeswehr University Munich, Germany

Zvonimir Rakamaric
(SMACK)

University of Utah, USA

Cedric Richter (PeSCo) Paderborn University, Germany
Simmo Saan (rGoblint) University of Tartu, Estonia
Peter Schrammel (JBMC) University of Sussex/Diffblue, Great Britain
Martin Spiessl (Frama-C) LMU Munich, Germany
Michael Tautschnig

(CBMC)
Amazon Web Services, USA

Steering Committee

Dirk Beyer LMU Munich, Germany
Rance Cleaveland University of Maryland, USA
Holger Hermanns Saarland University, Germany

Organization xi

Joost-Pieter Katoen (Chair) RWTH Aachen/Universiteit Twente,
Germany/Netherlands

Kim Guldstrand Larsen Aalborg University, Denmark
Bernhard Steffen Technische Universität Dortmund, Germany

Additional Reviewers

Abate, Carmine
Achilleos, Antonis
Akshay, S.
Andriushchenko, Roman
André, Étienne
Asadi, Sepideh
Ashok, Pranav
Azeem, Muqsit
Bannister, Callum
Barnett, Lee
Basile, Davide
Batz, Kevin
Baumgartner, Peter
Becchi, Anna
ter Beek, Maurice H.
Bendík, Jaroslav
Bensalem, Saddek
van der Berg, Freark
Berg, Jeremias
Berger, Philipp
Bernardo, Marco
Biewer, Sebastian
Bischopink, Christopher
Blicha, Martin
Bønneland, Frederik M.
Bouvier, Pierre
Bozzano, Marco
Brellmann, David
Broccia, Giovanna
Budde, Carlos E.
Bursuc, Sergiu
Cassel, Sofia
Castro, Pablo
Chalupa, Marek
Chen, Mingshuai
Chiang, James
Ciancia, Vincenzo
Ciesielski, Maciej

Clement, Bradley
Coenen, Norine
Cubuktepe, Murat
Degiovanni, Renzo
Demasi, Ramiro
Dierl, Simon
Dixon, Alex
van Dijk, Tom
Donatelli, Susanna
Dongol, Brijesh
Edera, Alejandro
Eisentraut, Julia
Emmi, Michael
Evangelidis, Alexandros
Fedotov, Alexander
Fedyukovich, Grigory
Fehnker, Ansgar
Feng, Weizhi
Ferreira, Francisco
Fleury, Mathias
Freiberger, Felix
Frenkel, Hadar
Friedberger, Karlheinz
Fränzle, Martin
Funke, Florian
Gallá, Francesco
Garavel, Hubert
Geatti, Luca
Gengelbach, Arve
Goodloe, Alwyn
Goorden, Martijn
Goudsmid, Ohad
Griggio, Alberto
Groce, Alex
Grover, Kush
Hafidi, Yousra
Hallé, Sylvain
Hecking-Harbusch, Jesko

xii Organization

Heizmann, Matthias
Holzner, Stephan
Holík, Lukáš
Hyvärinen, Antti
Irfan, Ahmed
Javed, Omar
Jensen, Mathias Claus
Jonas, Martin
Junges, Sebastian
Käfer, Nikolai
Kanav, Sudeep
Kapus, Timotej
Kauffman, Sean
Khamespanah, Ehsan
Kheireddine, Anissa
Kiviriga, Andrej
Klauck, Michaela
Kobayashi, Naoki
Köhl, Maximilian Alexander
Kozachinskiy, Alexander
Kutsia, Temur
Lahkim Bennani, Ismail
Lammich, Peter
Lang, Frédéric
Lanotte, Ruggero
Latella, Diego
Laurenti, Luca
Ledent, Philippe
Lehtinen, Karoliina
Lemberger, Thomas
Li, Jianlin
Li, Qin
Li, Xie
Li, Xin
Lin, Shaokai
Lion, Benjamin
Liu, Jiaxiang
Liu, Wanwei
Loreti, Michele
Magnago, Enrico
Major, Juraj
Marché, Claude
Mariegaard, Anders
Marsso, Lina
Mauritz, Malte
McClurg, Jedidiah

Meggendorfer, Tobias
Metzger, Niklas
Meyer, Roland
Micheli, Andrea
Mittelmann, Munyque
Mizera, Andrzej
Moerman, Joshua
Mohr, Stefanie
Mora, Federico
Mover, Sergio
Mues, Malte
Muller, Lucie
Muroor-Nadumane, Ajay
Möhle, Sibylle
Neele, Thomas
Noll, Thomas
Norman, Gethin
Otoni, Rodrigo
Parys, Paweł
Pattinson, Dirk
Pavela, Jiří
Pena, Lucas
Pinault, Laureline
Piribauer, Jakob
Pirogov, Anton
Pommellet, Adrien
Quatmann, Tim
Rappoport, Omer
Raskin, Jean-François
Rothenberg, Bat-Chen
Rouquette, Nicolas
Rümmer, Philipp
S., Krishna
Šafránek, David
Sankaranarayanan, Sriram
Schallau, Till
Schupp, Stefan
Serwe, Wendelin
Shafiei, Nastaran
Shi, Xiaomu
Síč, Juraj
Sickert, Salomon
Singh, Gagandeep
Slivovsky, Friedrich
Sølvsten, Steffan
Song, Fu

Organization xiii

Spel, Jip
Srivathsan, B.
Stankovic, Miroslav
Stock, Gregory
Strejček, Jan
Su, Cui
Suda, Martin
Sun, Jun
Svozil, Alexander
Tian, Chun
Tibo, Alessandro
Tini, Simone
Tonetta, Stefano
Trtík, Marek
Turrini, Andrea

Vandin, Andrea
Weber, Tjark
Weininger, Maximilian
Wendler, Philipp
Wolf, Karsten
Wolovick, Nicolás
Wu, Zhilin
Xu, Ming
Yang, Pengfei
Yang, Xiaoxiao
Zhan, Naijun
Zhang, Min
Zhang, Wenbo
Zhang, Wenhui
Zhao, Hengjun

xiv Organization

Contents – Part II

Verification Techniques (not SMT)

Directed Reachability for Infinite-State Systems . 3
Michael Blondin, Christoph Haase, and Philip Offtermatt

Bridging Arrays and ADTs in Recursive Proofs . 24
Grigory Fedyukovich and Gidon Ernst

A Two-Phase Approach for Conditional Floating-Point Verification 43
Debasmita Lohar, Clothilde Jeangoudoux, Joshua Sobel, Eva Darulova,
and Maria Christakis

Symbolic Coloured SCC Decomposition . 64
Nikola Beneš, Luboš Brim, Samuel Pastva, and David Šafránek

Case Studies

Local Search with a SAT Oracle for Combinatorial Optimization 87
Aviad Cohen, Alexander Nadel, and Vadim Ryvchin

Analyzing Infrastructure as Code to Prevent Intra-update
Sniping Vulnerabilities. 105

Julien Lepiller, Ruzica Piskac, Martin Schäf, and Mark Santolucito

Proof Generation/Validation

Certifying Proofs in the First-Order Theory of Rewriting 127
Fabian Mitterwallner, Alexander Lochmann, Aart Middeldorp,
and Bertram Felgenhauer

Syntax-Guided Quantifier Instantiation. 145
Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark Barrett,
and Cesare Tinelli

Making Theory Reasoning Simpler . 164
Giles Reger, Johannes Schoisswohl, and Andrei Voronkov

Deductive Stability Proofs for Ordinary Differential Equations 181
Yong Kiam Tan and André Platzer

Tool Papers

An SMT-Based Approach for Verifying Binarized Neural Networks 203
Guy Amir, Haoze Wu, Clark Barrett, and Guy Katz

cake_lpr: Verified Propagation Redundancy Checking in CakeML 223
Yong Kiam Tan, Marijn J. H. Heule, and Magnus O. Myreen

Deductive Verification of Floating-Point Java Programs in KeY 242
Rosa Abbasi, Jonas Schiffl, Eva Darulova, Mattias Ulbrich,
and Wolfgang Ahrendt

Helmholtz: A Verifier for Tezos Smart Contracts Based
on Refinement Types. 262

Yuki Nishida, Hiromasa Saito, Ran Chen, Akira Kawata, Jun Furuse,
Kohei Suenaga, and Atsushi Igarashi

SyReNN: A Tool for Analyzing Deep Neural Networks. 281
Matthew Sotoudeh and Aditya V. Thakur

MachSMT: A Machine Learning-based Algorithm Selector
for SMT Solvers . 303

Joseph Scott, Aina Niemetz, Mathias Preiner, Saeed Nejati,
and Vijay Ganesh

dtControl 2.0: Explainable Strategy Representation via Decision Tree
Learning Steered by Experts . 326

Pranav Ashok, Mathias Jackermeier, Jan Křetínský,
Christoph Weinhuber, Maximilian Weininger, and Mayank Yadav

Tool Demo Papers

HLola: A Very Functional Tool for Extensible Stream
Runtime Verification . 349

Felipe Gorostiaga and César Sánchez

AMulet 2.0 for Verifying Multiplier Circuits . 357
Daniela Kaufmann and Armin Biere

RTLola on Board: Testing Real Driving Emissions on your Phone 365
Sebastian Biewer, Bernd Finkbeiner, Holger Hermanns,
Maximilian A. Köhl, Yannik Schnitzer, and Maximilian Schwenger

Replicating Restart with Prolonged Retrials: An Experimental Report. 373
Carlos E. Budde and Arnd Hartmanns

A Web Interface for Petri Nets with Transits and Petri Games 381
Manuel Gieseking, Jesko Hecking-Harbusch, and Ann Yanich

xvi Contents – Part II

Momba: JANI Meets Python . 389
Maximilian A. Köhl, Michaela Klauck, and Holger Hermanns

SV-Comp Tool Competition Papers

Software Verification: 10th Comparative Evaluation (SV-COMP 2021) 401
Dirk Beyer

CPALockator: Thread-Modular Analysis with Projections:
(Competition Contribution). 423

Pavel Andrianov, Vadim Mutilin, and Alexey Khoroshilov

DARTAGNAN: Leveraging Compiler Optimizations and the Price of Precision
(Competition Contribution). 428

Hernán Ponce-de-León, Thomas Haas, and Roland Meyer

Gazer-Theta: LLVM-based Verifier Portfolio with BMC/CEGAR
(Competition Contribution). 433

Zsófia Ádám, Gyula Sallai, and Ákos Hajdu

GOBLINT: Thread-Modular Abstract Interpretation Using Side-Effecting
Constraints: (Competition Contribution) . 438

Simmo Saan, Michael Schwarz, Kalmer Apinis, Julian Erhard,
Helmut Seidl, Ralf Vogler, and Vesal Vojdani

Towards String Support in JayHorn (Competition Contribution). 443
Ali Shamakhi, Hossein Hojjat, and Philipp Rümmer

JDART: Portfolio Solving, Breadth-First Search and SMT-Lib Strings
(Competition Contribution). 448

Malte Mues and Falk Howar

Symbiotic 8: Beyond Symbolic Execution: (Competition Contribution) 453
Marek Chalupa, Tomáš Jašek, Jakub Novák, Anna Řechtáčková,
Veronika Šoková, and Jan Strejček

VeriAbs: A Tool for Scalable Verification by Abstraction
(Competition Contribution). 458

Priyanka Darke, Sakshi Agrawal, and R. Venkatesh

Author Index . 463

Contents – Part II xvii

Contents – Part I

Game Theory

A Game for Linear-time–Branching-time Spectroscopy 3
Benjamin Bisping and Uwe Nestmann

On Satisficing in Quantitative Games . 20
Suguman Bansal, Krishnendu Chatterjee, and Moshe Y. Vardi

Quasipolynomial Computation of Nested Fixpoints 38
Daniel Hausmann and Lutz Schröder

SMT Verification

A Flexible Proof Format for SAT Solver-Elaborator Communication 59
Seulkee Baek, Mario Carneiro, and Marijn J. H. Heule

Generating Extended Resolution Proofs with a BDD-Based SAT Solver 76
Randal E. Bryant and Marijn J. H. Heule

Bounded Model Checking for Hyperproperties . 94
Tzu-Han Hsu, César Sánchez, and Borzoo Bonakdarpour

Counterexample-Guided Prophecy for Model Checking Modulo
the Theory of Arrays . 113

Makai Mann, Ahmed Irfan, Alberto Griggio, Oded Padon,
and Clark Barrett

SAT Solving with GPU Accelerated Inprocessing . 133
Muhammad Osama, Anton Wijs, and Armin Biere

FOREST: An Interactive Multi-tree Synthesizer for Regular Expressions 152
Margarida Ferreira, Miguel Terra-Neves, Miguel Ventura, Inês Lynce,
and Ruben Martins

Probabilities

Finding Provably Optimal Markov Chains . 173
Jip Spel, Sebastian Junges, and Joost-Pieter Katoen

Inductive Synthesis for Probabilistic Programs Reaches New Horizons 191
Roman Andriushchenko, Milan Češka, Sebastian Junges,
and Joost-Pieter Katoen

Analysis of Markov Jump Processes under Terminal Constraints. 210
Michael Backenköhler, Luca Bortolussi, Gerrit Großmann,
and Verena Wolf

Multi-objective Optimization of Long-run Average and Total Rewards 230
Tim Quatmann and Joost-Pieter Katoen

Inferring Expected Runtimes of Probabilistic Integer Programs Using
Expected Sizes . 250

Fabian Meyer, Marcel Hark, and Jürgen Giesl

Probabilistic and Systematic Coverage of Consecutive Test-Method Pairs
for Detecting Order-Dependent Flaky Tests . 270

Anjiang Wei, Pu Yi, Tao Xie, Darko Marinov, and Wing Lam

Timed Systems

Timed Automata Relaxation for Reachability . 291
Jaroslav Bendík, Ahmet Sencan, Ebru Aydin Gol, and Ivana Černá

Iterative Bounded Synthesis for Efficient Cycle Detection in Parametric
Timed Automata . 311

Étienne André, Jaime Arias, Laure Petrucci, and Jaco van de Pol

Algebraic Quantitative Semantics for Efficient Online
Temporal Monitoring. 330

Konstantinos Mamouras, Agnishom Chattopadhyay, and Zhifu Wang

Neural Networks

Synthesizing Context-free Grammars from Recurrent Neural Networks 351
Daniel M. Yellin and Gail Weiss

Automated and Formal Synthesis of Neural Barrier Certificates
for Dynamical Models . 370

Andrea Peruffo, Daniele Ahmed, and Alessandro Abate

Improving Neural Network Verification through Spurious Region
Guided Refinement . 389

Pengfei Yang, Renjue Li, Jianlin Li, Cheng-Chao Huang, Jingyi Wang,
Jun Sun, Bai Xue, and Lijun Zhang

Analysis of Network Communication

Resilient Capacity-Aware Routing . 411
Stefan Schmid, Nicolas Schnepf, and Jiří Srba

xx Contents – Part I

Network Traffic Classification by Program Synthesis. 430
Lei Shi, Yahui Li, Boon Thau Loo, and Rajeev Alur

General Decidability Results for Asynchronous Shared-Memory Programs:
Higher-Order and Beyond . 449

Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

Author Index . 469

Contents – Part I xxi

Verification Techniques (not SMT)

Directed Reachability for Infinite-State Systems�

Michael Blondin1 , Christoph Haase2 , and Philip Offtermatt1,3 (�)

1 Université de Sherbrooke, Sherbrooke, Canada
{michael.blondin, philip.offtermatt}@usherbrooke.ca

2 University of Oxford, Oxford, United Kingdom
christoph.haase@cs.ox.ac.uk

3 Max Planck Institute for Software Systems, Saarbrücken, Germany

Abstract. Numerous tasks in program analysis and synthesis reduce to
deciding reachability in possibly infinite graphs such as those induced by
Petri nets. However, the Petri net reachability problem has recently been
shown to require non-elementary time, which raises questions about the
practical applicability of Petri nets as target models. In this paper, we
introduce a novel approach for efficiently semi-deciding the reachability
problem for Petri nets in practice. Our key insight is that computa-
tionally lightweight over-approximations of Petri nets can be used as
distance oracles in classical graph exploration algorithms such as A∗ and
greedy best-first search. We provide and evaluate a prototype implemen-
tation of our approach that outperforms existing state-of-the-art tools,
sometimes by orders of magnitude, and which is also competitive with
domain-specific tools on benchmarks coming from program synthesis and
concurrent program analysis.

Keywords: Petri nets · reachability · shortest paths · model checking

1 Introduction

Many problems in program analysis, synthesis and verification reduce to decid-
ing reachability of a vertex or a set of vertices in infinite graphs, e.g., when
reasoning about concurrent programs with an unbounded number of threads,
or when arbitrarily many components can be used in a synthesis task. For au-
tomated reasoning tasks, those infinite graphs are finitely represented by some
mathematical model. Finding the right such model requires a trade-off between
the two conflicting goals of maximal expressive power and computational feasi-
bility of the relevant decision problems. Petri nets are a ubiquitous mathemati-
cal model that provides a good compromise between those two goals. They are

� An extended version containing full proofs as well as a primer on applications of
the Petri net reachability problem can be obtained from: arxiv.org/abs/2010.07912.
This work is part of a project that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (Grant agreement No. 852769, ARiAT). It is also supported by a Discov-
ery Grant from the Natural Sciences and Engineering Research Council of Canada
(NSERC). Parts of this research were carried out while the second author was affil-
iated with the Department of Computer Science, University College London, UK.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 3–23, 2021.
https://doi.org/10.1007/978-3-030-72013-1 1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_1&domain=pdf
http://orcid.org/0000-0003-2914-2734
http://orcid.org/0000-0002-5452-936X
http://orcid.org/0000-0001-8477-2849
https://arxiv.org/abs/2010.07912
https://doi.org/10.1007/978-3-030-72013-1_1

4 M. Blondin et al.

expressive enough to find a plethora of applications in computer science, in par-
ticular in the analysis of concurrent processes, yet the reachability problem for
Petri nets is decidable [47,40,41,43]. Counter abstraction has evolved as a generic
abstraction paradigm that reduces a variety of program analysis tasks to prob-
lems in Petri nets or variants thereof such as well-structured transition systems,
see e.g. [30,39,61,5]. Due to their generality and versatility, Petri nets and their
extensions find numerous applications also in other areas, including the design
and analysis of protocols [22], business processes [57], biological systems [33,11]
and chemical systems [2]. The goal of this paper is to introduce and evaluate
an efficient generic approach to deciding the Petri net reachability problem on
instances arising from applications in program verification and synthesis.

A Petri net comprises a finite set of places with a finite number of transitions.
Places carry a finite yet unbounded number of tokens and transitions can remove
and add tokens to places. A marking specifies how many tokens each place
carries. An example of a Petri net is given on the left-hand side of Figure 1,
where the two places {p1, p2} are depicted as circles and transitions {t1, t2, t3}
as squares. Places carry tokens depicted as filled circles; thus p1 carries one token
and p2 carries none. We write this as [p1 : 1, p2 : 0], or (1, 0) if there is a clear
ordering on the places. Transition t1 can add a single token to place p1 at any
moment. As soon as a token is present in p1, it can be consumed by transition
t2, which then adds a token to place p2 and puts back one token to place p1.
Finally, transition t3 consumes tokens from p1 without adding any token at all.

Fig. 1. Left: A Petri net N . Right: Search of the forthcoming Algorithm 1 over the
graph GN(N) from (0, 0) to (0, 1), where (x, y) denotes [p1 : x, p2 : y] and each number
in a box next to a marking is its heuristic value. Only the blue region is expanded.

A Petri net induces a possibly infinite directed graph whose vertices are
markings, and whose edges are determined by the transitions of the Petri net,
cf. the right side of Figure 1. Given two markings, the reachability problem asks
whether they are connected in this graph. In Figure 1, the marking (0, 1) is

reachable from (0, 0), e.g., via paths of lengths 3 and 5: (0, 0)
t1−→ (1, 0)

t2−→
(1, 1)

t3−→ (0, 1) and (0, 0)
t1−→ (1, 0)

t1−→ (2, 0)
t2−→ (2, 1)

t3−→ (1, 1)
t3−→ (0, 1).

In practice, the Petri net reachability problem is a challenging decision prob-
lem due to its horrendous worst-case complexity: an exponential-space lower
bound was established in the 1970s [45], and a non-elementary time lower bound

Directed Reachability for Infinite-State Systems 5

has only recently been established [13]. One may thus question whether a prob-
lem with such high worst-case complexity is of any practical relevance, and
whether reducing program analysis tasks to Petri net reachability is anything
else than merely an intellectual exercise. We debunk those concerns and present
a technique which decides most reachability instances appearing in the wild.
When evaluated on large-scale instances involving Petri nets with thousands of
places and tens of thousands of transitions, our prototype implementation is
most of the time faster, even up to several orders of magnitude on large-scale
instances, and solves more instances than existing state-of-the-art tools. Our im-
plementation is also competitive with specialized domain-specific tools. One of
the biggest advantages of our approach is that it is extremely simple to describe
and implement, and it readily generalizes to many extensions of Petri nets. In
fact, it was surprising to us that our approach has not yet been discovered. We
now describe the main observations and techniques underlying our approach.

Ever since the early days of research in Petri nets, state-space over-approxi-
mations have been studied to attenuate the high computational complexity of
their decision problems. One such over-approximation is, informally speaking,
to allow places to carry a negative number of tokens. Deciding reachability then
reduces to solving the so-called state equation, a system of linear equations as-
sociated to a Petri net. Another over-approximation are continuous Petri nets,
a variant where places carry fractional tokens and “fractions of transitions” can
be applied [14]. The benefit is that deciding reachability drops down to polyno-
mial time [25]. While those approximations have been applied for pruning search
spaces, see e.g. [23,4,8,29], we make the following simple key observation:

If a marking m is reachable from an initial marking in an over-
approximation, then the length of a shortest witnessing path in the over-
approximation lower bounds the length of a shortest path reaching m.

The availability of an oracle providing lower bounds on the length of shortest
paths between markings enables us to appeal to classical graph traversal algo-
rithms which have been highly successful in artificial intelligence and require such
oracles, namely A∗ and greedy best-first search, see e.g. [52]. In particular, deter-
mining the length of shortest paths in the over-approximations described above
can be phrased as optimization problems in (integer) linear programming and
optimization modulo theories, for which efficient off-the-shelf solvers are avail-
able [32,7]. Thus, oracle calls can be made at comparably modest computational
cost, which is crucial for the applicability of those algorithms. As a result, a
large class of existing state-space over-approximations can be applied to obtain
a highly efficient forward-analysis semi-decision procedure for the reachability
problem. For example, in Figure 1, using the state equation as distance oracle,
A∗ only explores the four vertices in the blue region and directly reaches the
target vertex, whereas a breadth-first search may need to explore all vertices of
the figure and a depth-first search may even not terminate.

In theory, our approach could be turned into a decision procedure by ap-
plying bounds on the length of shortest paths in Petri nets [44]. However, such

6 M. Blondin et al.

lengths can grow non-elementarily in the number of places [13], and just com-
puting the cut-off length will already be infeasible for any Petri net of practical
relevance. It is worth mentioning that, in practice, it has been observed that the
over-approximations we employ also often witness non-reachability though, see
e.g. [23]. Still, when dealing with finite state spaces, our procedure is complete.

A noteworthy benefit of our approach is that it enables finding shortest paths
when A∗ is used as the underlying algorithm. In program analysis, paths usually
correspond to traces reaching an erroneous configuration. In this setting, shorter
error traces are preferred as they help understanding why a certain error occurs.
Furthermore, in program synthesis, paths correspond to synthesis plans. Again,
shorter paths are preferred as they yield shorter synthesized programs. In fact,
we develop our algorithmic framework for weighted Petri nets in which transi-
tions are weighted with positive integers. Classical Petri nets correspond to the
special instance where all weights are equal to one. Weighted Petri nets are useful
to reflect cost or preferences in synthesis tasks. For example, there are program
synthesis approaches where software projects are mined to determine how often
API methods are called to guide a procedure by preferring more frequent meth-
ods [27,26,46]. Similarity metrics can also be used to obtain costs estimating the
relevance of invoking methods [24]. It has further been argued that weighted
Petri nets are a good model for synthesis tasks of chemical reactions as they can
reflect costs of various chemical compounds [58]. Finally, weights can be viewed
as representing an amount of time it takes to fire a transition, see e.g. [50].

Related work. Our approach falls under the umbrella term directed model check-
ing coined in the early 2000s, which refers to a set of techniques to tackle the
state-explosion problem via guided state-space exploration. It primarily targets
disproving safety properties by quickly finding a path to an error state without
the need to explicitly construct the whole state space. As such, directed model
checking is useful for bug-finding since, in the words of Yang and Dill [60], in
practice, model checkers are most useful when they find bugs, not when they prove
a property. The survey paper [20] gives an overview over various directed model
checking techniques for finite-state systems.

For Petri nets, directed reachability algorithms based on over-approximations
as developed in this work have not been described. In [56], it is argued that ex-
ploration heuristics, like A∗, can be useful for Petri nets, but they do not consider
over-approximations for the underlying heuristic functions. The authors of [36]
use Petri nets for scheduling problems and employ the state equation, viewed as
a system of linear equations over Q, in order to explore and prune reachability
graphs. This approach is, however, not guaranteed to discover shortest paths.
There has been further work on using A∗ for exploring the reachability graph of
Petri nets for scheduling problems, see, e.g., [42,48] and the references therein.

2 Preliminaries

Let N := {0, 1, . . .}. For all D ⊆ Q and � ∈ {≥, >}, let D�0 := {a ∈ D : a � 0},
and for every set X, let DX denote the set of vectors DX := {v | v : X → D}.

Directed Reachability for Infinite-State Systems 7

We naturally extend operations componentwise. In particular, (u + v)(x) :=
u(x) + v(x) for every x ∈ X, and u ≥ v iff u(x) ≥ v(x) for every x ∈ X.

Graphs. A (labeled directed) graph is a triple G = (V,E,A), where V is a set of
nodes, A is a finite set of elements called actions, and E ⊆ V × A × V is the
set of edges labeled by actions. We say that G has finite out-degree if the set of
outgoing edges {(w, a,w′) ∈ E : w = v} is finite for every v ∈ V . Similarly, it has
finite in-degree if the set of ingoing edges is finite for every v ∈ V . If G has both
finite out- and in-degree, then we say that G is locally finite. A path π is a finite
sequence of nodes (vi)1≤i≤n and actions (ai)1≤i<n such that (vi, ai, vi+1) ∈ E
for all 1 ≤ i < n. We say that π is a path from v to w (or a v-w path) if v = v1
and w = vn, and its label is a1a2 · · · an−1, where ε denotes the empty sequence.

A weighted graph is a tuple G = (V,E,A, μ) where (V,E,A) is a graph
with a weight function μ : E → Q>0. The weight of path π is the weight of its
edges, i.e. μ(π) :=

∑
1≤i<n μ(vi, ai, vi+1). A shortest path from v to w is a v-w

path π minimizing μ(π). We define distG : V × V → Q≥0 ∪ {∞} as the distance
function where distG(v, w) is the weight of a shortest path from v to w, with
distG(v, w) :=∞ if there is none. We assume throughout the paper that weighted
graphs have a minimal weight, i.e. that min{μ(e) : e ∈ E} exists. For graphs
with finite out-degree, this ensures that if a path exists between two nodes, then
a shortest one exists.4 This mild assumption always holds in our setting.

Petri nets. A weighted Petri net is a tuple N = (P, T, f, λ) where

– P is a finite set whose elements are called places,
– T is a finite set, disjoint from P , whose elements are called transitions,
– f : (P × T) ∪ (T × P) → N is the flow function assigning multiplicities to

arcs connecting places and transitions, and
– λ : T → Q>0 is the weight function assigning weights to transitions.

A marking is a vector m ∈ NP which indicates that place p holds m(p) tokens. A
weighted Petri net with λ(t) = 1 for each t ∈ T is called a Petri net. For example,
Figure 1 depicts a Petri net N with P = {p1, p2}, T = {t1, t2, t3}, f(p1, t3) =
f(p1, t2) = f(t1, p1) = f(t2, p1) = f(t2, p2) = 1 (multiplicity omitted on arcs)
and f(−,−) = 0 elsewhere (no arc). Moreover, N is marked with [p1 : 1, p2 : 0].

The guard and effect of a transition t ∈ T are vectors gt ∈ NP and Δt ∈ ZP

where gt(p) := f(p, t) and Δt(p) := f(t, p) − f(p, t). We say that t is firable
from marking m if m ≥ gt. If t is firable from m, then it may be fired, which

leads to marking m′ := m + Δt. We write this as m
t−→N m′. These notions

naturally extend to sequences of transitions, i.e.
ε−→N denotes the identity relation

over NP , Δε := 0, λ(ε) := 0, and for every t1, t2, . . . , tk ∈ T : Δt1t2···tk :=
Δt1 +Δt2 + · · ·+Δtk , λ(t1t2 · · · tk) := λ(t1) + λ(t2) + · · ·+ λ(tk), and

t1t2···tk−−−−−→N :=
tk−→N ◦ · · · ◦

t2−→N ◦
t1−→N .

4 Otherwise, there could be increasingly better paths, e.g. of weights 1, 1/2, 1/4,

8 M. Blondin et al.

We say that −→N:= ∪t∈T
t−→N and

∗−→N:= ∪σ∈T∗
σ−→N are the step and reachability

relations. Note that the latter is the reflexive transitive closure of −→N.

For example, m
t2t3−−→N m′ and m

t1t2t3t3−−−−−→N m′ in Figure 1, where m :=
[p1 : 1, p2 : 0] and m′ := [p1 : 0, p2 : 1]. Moreover, t2 is not firable in m′.

Given a sequence σ ∈ T ∗, denote by |σ|t ∈ N the number of times transition
t occurs in σ. The Parikh image of σ is the vector σ ∈ NT that captures the
number of occurrences of transitions appearing in σ, i.e. σ(t) := |σ|t for all t ∈ T .

Each weighted Petri net N = (P, T, f, λ) induces a locally finite weighted
graph GN(N) := (V,E, T, μ), called its reachability graph, where V := NP , E :=

{(m, t,m′) : m
t−→N m′} and μ(m, t,m′) := λ(t) for each (m, t,m′) ∈ E. An

example of a reachability graph is given on the right of Figure 1. We write distN
to denote distGN(N). We have distN (m,m′) �=∞ iff m

σ−→N m′ for some σ ∈ T ∗,
and if the latter holds, then distN (m,m′) is the minimal weight among such
firing sequences σ. Moreover, for (unweighted) Petri nets, distN (m,m′) is the
minimal number of transitions to fire to reach m′ from m.

3 Directed Search Algorithms

Our approach relies on classical pathfinding procedures guided by node selection
strategies. Their generic scheme is described in Algorithm 1. Its termination with
a value d �=∞ indicates that the weighted graph G = (V,E,A, μ) has a path from
s to t of weight d, whereas termination with d =∞ signals that distG(s, t) =∞.

1 g := [s �→ 0, v �→ ∞ : v �= s]
2 C := {s}
3 while C �= ∅ do
4 v := argminv∈C S(g, v)
5 if v = t then return g(t)
6 for (v, a, w) ∈ E do
7 if g(v) + μ(v, a, w) < g(w) then
8 g(w) := g(v) + μ(v, a, w)
9 C := C ∪ {w}

10 C := C \ {v}
11 return ∞
Algorithm 1: Directed search algorithm.

Algorithm 1 maintains a set of
frontier nodes C and a map-
ping g : V → Q≥0 ∪{∞} such
that g(w) is the weight of the
best known path from s to w.
In Line 4, a selection strategy
S determines which node v
to expand next. Starting from
Line 6, a successor w of v is
added to the frontier if its dis-
tance improves.

Let h : V → Q≥0 ∪ {∞}
estimate the distance from all
nodes to a target t ∈ V . The

selection strategies sending (g, v) respectively to g(v), g(v) + h(v) or h(v) yield
the classical Dijkstra’s, A∗ and greedy best-first search (GBFS) algorithms.

When instantiating S with Dijkstra’s selection strategy, a return value d �=∞
is guaranteed to equal distG(s, t). This is not true for A∗ and GBFS. However,
if h fulfills the following consistency properties, then A∗ also has this guarantee:
h(t) = 0 and h(v) ≤ μ(v, a, w) + h(w) for every (v, a, w) ∈ E (see, e.g., [52]).

In the setting of infinite graphs, unlike GBFS, A∗ and Dijkstra’s selection
strategies guarantee termination if distG(s, t) �=∞. Yet, we introduce unbounded
heuristics for which termination is also guaranteed for GBFS. Note that these

Directed Reachability for Infinite-State Systems 9

guarantees would vanish in the presence of zero weights. An infinite path π is
a sequence of nodes (vi)i∈N and actions (ai)i∈N such that (vi, ai, vi+1) ∈ E for
all i ∈ N. We say that heuristic h is unbounded (w.r.t. G) if for every infinite
simple path v0, v1, v2, . . . of G and for every b ∈ Q≥0, there exists an index i s.t.
h(vi) ≥ b. In other words, unboundedness forbids an infinite simple path of G
to “cap” at some distance estimate b. The following technical lemma enables to
prove termination of GFBS in the presence of unbounded heuristics.

Lemma 1. If G is locally finite, then the following holds:

1. The set of paths of weight at most c ∈ Q≥0 starting from node s is finite.
2. Let W ⊆ V . The set distG(W, t) := {distG(w, t) : w ∈W} has a minimum.
3. No node is expanded infinitely often by Algorithm 1.

Theorem 1. Algorithm 1 with the greedy best-first search selection strategy al-
ways finds reachable targets for locally finite graphs and unbounded heuristics.

Proof. First observe that Algorithm 1 satisfies this invariant:

if g(v) �=∞, then g(v) is the weight of a path from s to v in G
whose nodes were all expanded, except possibly v. (∗)

Assume distG(s, t) �= ∞. For the sake of contradiction, suppose t is never
expanded. Let Ki be the subgraph of G induced by nodes expanded at least
once within the first i iterations of the while loop. In particular, K1 is the
graph made only of node s. Let K = K1 ∪K2 ∪ · · · . By Lemma 1 (3), no node is
expanded infinitely often, hence K is infinite. Moreover, K has finite out-degree,
and each node of K is reachable from s in K by (∗). Thus, by König’s lemma,
K contains an infinite path v0, v1, . . . ∈ V of pairwise distinct nodes.

Let w be a node of K minimizing distG(w, t). That minimum is well-defined
by Lemma 1 (2). Since s ∈ K1 ⊆ K and t is reachable from s, we have
distG(w, t) ≤ distG(s, t) < ∞. By minimality of w �= t, there exists an edge
(w, a,w′) of G such that distG(w

′, t) < distG(w, t) and w′ does not appear in K.
Note that w′ is added to C at some point, but is never expanded as it would
otherwise belong to K. Let i be the smallest index such that w belongs to Ki.
Since h is unbounded, there exists j such that h(vj) > h(w′) and vj is expanded
after iteration i of the while loop. This is a contradiction as w′ would have been
expanded instead of vj . ��

4 Directed Reachability

In this section, we explain how to instantiate Algorithm 1 for finding short(est)
firing sequences witnessing reachability in weighted Petri nets. Since Dijkstra’s
selection strategy does not require any heuristic, we focus on A∗ and greedy best-
first search which require consistent and unbounded heuristics. More precisely,
we introduce distance under-approximations (Section 4.1); present relevant con-
crete distance under-approximations (Section 4.2); and put everything together
into our framework (Section 4.3).

10 M. Blondin et al.

4.1 Distance Under-approximations

A distance under-approximation of a weighted Petri net N = (P, T, f, λ) is a
function d : NP × NP → Q≥0 ∪ {∞} such that for all m,m′,m′′ ∈ NP :

– d(m,m′) ≤ distN (m,m′),
– d(m,m′′) ≤ d(m,m′) + d(m′,m′′) (triangle inequality), and
– d is effective, i.e. there is an algorithm that evaluates d on all inputs.

We naturally obtain a heuristic from d for a directed search towards marking
mtarget. Indeed, let h : NP → Q≥0 ∪ {∞} be defined by h(m) := d(m,mtarget).
The following proposition shows that h is a suitable heuristic for A∗:

Proposition 1. Mapping h is a consistent heuristic.

Proof. Let m,m′ ∈ NP and t ∈ T be such that m
t−→N m′. We have:

h(m) = d(m,mtarget) (by def. of h)

≤ d(m,m′) + d(m′,mtarget) (by the triangle inequality)

≤ distN (m,m′) + d(m′,mtarget) (by distance under-approximation)

≤ λ(t) + d(m′,mtarget) (since m
t−→N m′)

= λ(t) + h(m′) (by def. of h).

Moreover, h(mtarget) = d(mtarget,mtarget) ≤ distN (mtarget,mtarget) = 0, where
the last equality follows from the fact that weights are positive. ��

4.2 From Petri Net Relaxations to Distance Under-approximations

We now introduce classical relaxations of Petri nets which over-approximate
reachability and consequently give rise to distance under-approximations. The
main source of hardness of the reachability problem stems from the fact that
places are required to hold a non-negative number of tokens. If we relax this re-
quirement and allow negative numbers of tokens, we obtain a more tractable re-

lation. More precisely, we write m
t−→Z m′ iffm′ = m+Δt. Note that transitions

are always firable under this semantics. Moreover, they may lead to “markings”
with negative components.

Another source of hardness comes from the fact that markings are discrete.
Hence, we can further relax −→Z into −→Q where transitions may be scaled down:

m
t−→Q m′ ⇐⇒ m′ = m+ δ ·Δt for some 0 < δ ≤ 1.

One gets a less crude relaxation from considering nonnegative “markings” only:

m
t−→Q≥0

m′ ⇐⇒ (m ≥ δ · gt) and (m′ = m+ δ ·Δt) for some 0 < δ ≤ 1.

Under these, we obtain “markings” from QP and QP
≥0 respectively. Petri nets

equipped with relation −→Q≥0
are known as continuous Petri nets [14,15].

Directed Reachability for Infinite-State Systems 11

To unify all three relaxations, we sometimes write m
δt−→G m′ to emphasize

the scaling factor δ, where δ = 1 whenever G = Z. Let dG : NP×NP → Q≥0∪{∞}
be defined as dG(m,m′) :=∞ if m � ∗−→G m′, and otherwise:

dG(m,m′) := min

{
n∑

i=1

δi · λ(ti) : m
δ1t1···δntn−−−−−−−→G m′

}
.

In words, dG(m,m′) is the weight of a shortest path from m to m′ in the graph
induced by the relaxed step relation −→G, where weights are scaled accordingly.

We now show that any dG, which we call the G-distance, is a distance under-
approximation, and first show effectiveness of all dG. It is well-known and readily
seen that reachability over G ∈ {Z,Q} is characterized by the following state
equation, since transitions are always firable due to the absence of guards:

m
∗−→G m′ ⇐⇒ ∃σ ∈ GT

≥0 : m′ = m+
∑
t∈T

σ(t) ·Δt.

Here, σ can be seen as the Parikh image of a sequence σ leading from m to m′.

Proposition 2. The functions dZ, dQ, dQ≥0
are effective.

Proof. By the state equation, we have:

dG(m,m′) = min

{∑
t∈T

λ(t) · σ(t) : σ ∈ GT
≥0,m

′ = m+
∑
t∈T

σ(t) ·Δt

}
.

Therefore, dQ(m,m′) (resp. dZ(m,m′)) are computable by (resp. integer) linear
programming, which is complete for P (resp. NP), in its variant where one must
check whether the minimal solution is at most some bound.

For dQ≥0
, note that the reachability relation of a continuous Petri net can

be expressed in the existential fragment of linear real arithmetic [8]. Hence,
effectiveness follows from the decidability of linear real arithmetic. ��

Altogether, we conclude that dG is a distance under-approximation. Further-
more, we can show that dG yields unbounded heuristics, which, by Theorem 1,
ensure termination of GBFS on reachable instances:

Theorem 2. Let G ∈ {Z,Q,Q≥0}, then dG is a distance under-approximation.
Moreover, the heuristics arising from it are unbounded.

Proof. Let N = (P, T, f, λ) be a weighted Petri net. Effectiveness of dG follows

from Proposition 2. By definitions and a simple induction,
σ−→N ⊆ σ−→G for any

sequence σ ∈ T ∗, with weights left unchanged for unscaled transitions. This
implies that dG(m,m′) ≤ distN (m,m′) for every m,m′ ∈ GP . Moreover, the
triangle inequality holds since for every m,m′,m′′ ∈ GP and sequences σ, σ′:

m
σ−→G m′ σ′

−→G m′′ implies m
σσ′
−−→G m′′.

12 M. Blondin et al.

Let us sketch the proof of the second part. Let mtarget be a marking and let
hG be the heuristic obtained from dG for mtarget. Since hQ(m) ≤ hG(m) for all
m and G ∈ {Z,Q≥0}, it suffices to prove that dQ is unbounded. Suppose it is
not. There exist b ∈ Q≥0 and pairwise distinct markings m0,m1, . . . each with
hQ(mi) ≤ b. Let xi be a solution to the state equation that gives hQ(mi). By
well-quasi-ordering and pairwise distinctness, there is a subsequence such that
mi0(p) < mi1(p) < · · · for some p ∈ P . Thus, limj→∞ mtarget(p) −mij (p) =
−∞, and hence limj→∞ xij (s) =∞ for some s ∈ T with Δs(p) < 0. This means
that b ≥ hQ(mij) =

∑
t∈T λ(t) · xij (t) > b for a sufficiently large j. ��

4.3 Directed Reachability Based on Distance Under-approximations

We have all the ingredients to use Algorithm 1 for answering reachability queries.
A distance under-approximation scheme is a mapping D that associates a dis-

tance under-approximation D(N) to each weighted Petri netN . Let hD(N),mtarget

be the heuristic obtained from D(N) for marking mtarget. By instantiating Al-
gorithm 1 with this heuristic, we can search for a short(est) firing sequence wit-
nessing that mtarget is reachable. Of course, constructing the reachability graph
of N would be at least as difficult as answering this query, or impossible if it is
infinite. Hence, we provide GN(N) symbolically through N and let Algorithm 1
explore it on-the-fly by progressively firing its transitions.

For each G ∈ {Z,Q,Q≥0}, the function DG mapping a weighted Petri net N
to its G-distance dG is a distance under-approximation scheme with consistent
and unbounded heuristics by Proposition 1, Theorem 1 and Theorem 2. Although
Algorithm 1 is geared towards finding paths, it can prove non-reachability even
for infinite reachability graphs. Indeed, at some point, every candidate marking
m ∈ C may be such that hD(N),mtarget

(m) = ∞, which halts with ∞. There is
no guarantee that this happens, but, as reported e.g. by [23,8], the G-distance for
domains G ∈ {Z,Q,Q≥0} does well for witnessing non-reachability in practice,
often from the very first marking minit.

An example. We illustrate our approach with a toy example and DQ (the scheme
based on the state equation over QT

≥0). Consider the Petri net N illustrated on
the left of Figure 1, but marked with minit := [p1 : 0, p2 : 0]. Suppose we wish to
determine whether minit can reach marking mtarget := [p1 : 0, p2 : 1] in N .

We consider the case where Algorithm 1 follows a greedy best-first search,
but the markings would be expanded in the same way with A∗. Let us abbreviate
a marking [p1 : x, p2 : y] as (x, y). Since Δt2 = (0, 1), the heuristic considers that
minit can reach mtarget in a single step using transition t2 (it is unaware of the
guard). Marking (1, 0) is expanded and its heuristic value increases to 2 as the
state equation considers that both t2 and t3 must be fired (in some unknown
order). Markings (2, 0) and (1, 1) are both discovered with respective heuristic
values 3 and 1. The latter is more promising, so it is expanded and target (0, 1)
is discovered. Since its heuristic value is 0, it is immediately expanded and the
correct distance distN (minit,mtarget) = 3 is returned. Note that, in this example,
the only markings expanded are precisely those occurring on the shortest path.

Directed Reachability for Infinite-State Systems 13

Handling multiple targets. Algorithm 1 can be adapted to search for some mark-
ing from a given target set X ⊆ NP . The idea consists simply in using a heuristic
hX : NP → Q≥0 ∪ {∞} estimating the weight of a shortest path to any target:

hX(m) := min{hD(N),mtarget
(m) : mtarget ∈ X}.

This is convenient for partial reachability instances occurring in practice, i.e.

X :=
{
mtarget ∈ NP : mtarget(p) ∼p c(p)

}
where c ∈ NP and each ∼p∈ {=,≥}.

5 Experimental Results

We implemented Algorithm 1 in a prototype called FastForward [10], which
supports all presented selection strategies and distance under-approximations.
We evaluate FastForward empirically with three main goals in mind. First,
we show that our approach is competitive with established tools and can even
vastly outperform them, and we also give insights on its performance w.r.t. its
parameterizations. Second, we compare the length of the witnesses reported by
the different tools. Third, we briefly discuss the quality of the heuristics.

Technical details. Our tool is written in C# and uses Gurobi [32], a state-of-
the-art MILP solver, for distance under-approximations. Benchmarks were run
on an machine with an 8-Core Intel R© CoreTM i7-7700 CPU @ 3.60GHz running
Ubuntu 18.04 and with memory constrained to ∼8GB. We used a timeout of 60
seconds per instance, and all tools were invoked from a Python script using the
time module for time measurements.

A minor challenge arises from the fact that many instances specify an upward-
closed set of initial markings rather than a single one. For example, minit(p) ≥
1 to specify, e.g., an arbitrary number of threads. We handle this by setting
minit(p) = 1 and adding a transition tp producing a token into p.

As a preprocessing step, we implemented sign analysis [29]. It is a general
pruning technique running in polynomial time that has been shown beneficial
for reducing the size of the state-space of Petri nets. Initially, places that carry
tokens are viewed as marked. For each transition whose input places are marked,
the output places also become marked. When a fixpoint is reached, places left
unmarked cannot carry tokens in any reachable marking, so they are discarded.

Benchmarks. Due to the lack of tools handling reachability for unbounded
state spaces, benchmarks arising in the literature are primarily coverability in-
stances5, i.e. reachability towards an upward closed set of target markings. We
gathered 61 positive and 115 negative coverability instances originating from
five suites [39,28,6,35,18] previously used for benchmarking [23,8,29]. They arise
from the analysis of multi-threaded C programs with shared-memory; mutual

5 The Model Checking Contest focuses on reachability for finite state spaces.

14 M. Blondin et al.

exclusion algorithms; communication protocols; provenance analysis in the con-
text of a medical messaging and a bug-tracking system; and the verification of
Erlang concurrent programs. We further extracted the sypet suite made of 30
positive (standard) reachability instances arising from queries encountered in
type-directed program synthesis [24]. The overall goal of this work is to enable
a vast range of untapped applications requiring reachability over unbounded
state-spaces, rather than just coverability. To obtain further (positive) instances
of the Petri net reachability problem, we performed random walks on the Petri
nets from the aforementioned coverability benchmarks. To this end, we used the
largest quarter of distinct Petri nets from each coverability suite, for a total of
33. We performed one random walk each of lengths 20, 25, 30, 35, 40, 50, 60,
75, 90 and 100, and we saved the resulting marking as the target. For nets with
an upward-closed initial marking, we randomly chose to start with a number of
tokens between 1 and 20% of the length of the walk. It is important to note that
even with long random walks, instances can (and in fact tend to) have short wit-
nesses. To remove trivial instances and only keep the most challenging ones, we
removed those instances where any considered tool reported a witness of length
at most 20, disregarding the transitions used to generate the initial marking.
This leaves us with 127 challenging instances on which the shortest witness is
either unknown or has length more than 20. Moreover, this yields real-world
Petri nets with no bias towards any specific kind of targets.

This table summarizes the characteristics of the various benchmarks:

Suite Size
Number of places Number of transitions

min. med. mean max. min. med. mean max.

coverability 61 16 87 226 2826 14 181 1519 27370

sypet 30 65 251 320 1199 537 2307 2646 8340

random walks 127 52 306 531 2826 60 3137 5885 27370

Tool comparison. To evaluate our approach on reachability instances, we com-
pare FastForward to LoLA [53], a tool developed for two decades that wins
several categories of the Model Checking Contest every year. LoLA is geared to-
wards model checking of finite state spaces, but it implements semi-decision pro-
cedures for the unbounded case. We further compare the three selection strate-
gies of Algorithm 1: A∗, GBFS and Dijkstra; the two first with the distance
under-approximation scheme DQ, which provides the best trade-off between es-
timate quality and efficiency. In fact, the other heuristics perform strictly worse
on almost all instances. We also considered comparing with KReach [17], a tool
showcased at TACAS’20 that implements an exact non-elementary algorithm.
However, it timed out on all instances with a larger time limit of 10 minutes.

Figure 2 depicts the number of reachability instances decided by the tools
within the time limit. As shown, all approaches outperform LoLA, with GBFS
as the clear winner on the random-walk suite and A∗ slightly better on the
sypet suite. Note that Dijkstra’s selection strategy sometimes competes due

Directed Reachability for Infinite-State Systems 15

Fig. 2. Cumulative number of reachability instances decided over time. Left : sypet
suite (semi-log scale). Right : random-walk suite (log scale).

to its locally very cheap computational cost (no heuristic evaluation), but its
performance generally decreases as the distance increases.

To show the versatility of our approach, we also benchmarked FastFor-
ward on the original coverability instances. Recall that coverability EXPSPACE-
complete and reduces to reachability in linear time [45,51]. While exceeding the
PSPACE-completeness of reachability for finite state-spaces [38,21], coverability
is much more tame than the non-elementary complexity of (unbounded) reach-
ability. We compare FastForward to four tools implementing algorithms tai-
lored, some of which are specifically to the coverability problem: LoLA,Bfc [39],
ICover [29] and the backward algorithm (based on [1]) of mist [28]. We did not
test Petrinizer [23] since it only handles negative instances, while we focus on
positive ones; likewise for QCover [8] since it is superseded by ICover.

Fig. 3. Cumulative number of (positive) coverability instances decided over time. Left :
Evaluation on the original instances. Right : Evaluation on the pre-pruned instances.

Figure 3 illustrates the number of coverability instances decided within the
time limit. The left side corresponds to an evaluation on the original instances
where FastForward performs pruning (included in its runtime). On the right-

16 M. Blondin et al.

hand side the pruned instances are the input for all tools, and the time for this
pruning is not included for any tool. As a caveat, ICover performs its own pre-
processing which includes pruning among techniques specific to coverability. This
preprocessing is enabled (and its time is included) even when pruning is already
done. Using FastForward(A∗, DQ), we decide more instances than all tools on
unpruned Petri nets, and one less than Bfc for pre-pruned instances. It is worth
mentioning that with a time limit of 10 minutes per instance, FastForward(A∗,
DQ) is the only tool to decide all 61 instances.

Fig. 4. Runtime comparison against FF(A∗, DQ) (left) and FF(GBFS, DQ) (right), in
seconds, for individual instances without pre-pruning. Tools on the first column of each
side include coverability and reachability instances, while those on the second column
of each side include coverability only. Marks on the green lines denote timeouts (60 s).

We also compared the running time of A∗ and GBFS with DQ to the other
tools and approaches. For each tool, we considered the type of instances it can
handle: either reachability and coverability, or coverability only. Figure 4 depicts
this comparison, where the base approach is faster for data points that lie in the
upper-left half of the graph. The axes start at 0.1 second to avoid a comparison
based on technical aspects such as the programming language. Yet, LoLA, Bfc
and mist regularly solve instances faster than this, which speaks to their level
of optimization. We can see that FastForward outperforms ICover, LoLA
and mist overall. We cannot compete with Bfc in execution time as it is a
highly optimized tool specifically tailored to only the coverability problem that
can employ optimization techniques such as Karp-Miller trees that do not work
for reachability queries.

Length of the witnesses. Since our approach is also geared towards the iden-
tification of short(est) reachability witnesses, we compared the different tools

Directed Reachability for Infinite-State Systems 17

with respect to length of the reported one, depicted in Figure 5. Positive values
on the y-axis mean the witness was not minimal, while y = 0 means it was.
Note that the points for Bfc must be taken with a grain of salt: it uses a differ-
ent file format, and its translation utility can introduce additional transitions.
This means that even if Bfc found a shortest witness, it could be longer than a
shortest one of the original instance.

Fig. 5. Length of the returned witness, per tool, compared to the length of a shortest
witness. ICover is left out as it does not return witnesses. FF(A∗, DQ), FF(Dijkstra)
and mist are left out as they are guaranteed to return shortest witnesses.

Still, the graph shows that reported witnesses can be far from minimal. For
example, on one instance LoLA returns a witness that is 53 transitions longer
than the one of FastForward(A∗, DQ). Still, LoLA returns a shortest witness
on 28 out of 43 instances. Similarly, FastForward(GBFS, DQ) finds a shortest
path on 60 out of 83 instances6. In contrast, mist finds a shortest witness on
all instances since its backward algorithm is guaranteed to do so on unweighted
Petri nets, which constitute all of our instances. Again, this approach is tailored
to coverability and cannot be lifted to reachability.

Heuristics and pruning. We briefly discuss the quality of the heuristics and
the impact of pruning. The left-hand side of Figure 6 compares the exact dis-
tance to the estimated distance from the initial marking.7 It shows that it is
incredibly accurate for all G-distances, but even more so for G = Q≥0. We ex-
perimented with this distance using the logical translation of [8] and Z3 [49] as
the optimization modulo theories solver. At present, it appears that the gain in
estimate quality does not compensate for the extra computational cost.

As depicted on the right-hand side of Figure 6, pruning can make some in-
stances trivial, but in general, many challenging instances remain so. On average,
around 50% of places and 40% of transitions were pruned.

6 These numbers disregard instances where the tool did not finish or where a shortest
witness is not known, i.e. no method guaranteeing one finished in time.

7 Z3 reported two non optimal solutions which explains the two points above the line.

18 M. Blondin et al.

Fig. 6. Left : initial distance estimation compared to the exact distance (points closer
to the diagonal are better). Right : number of instances per percentage of places (left)
and transitions (right) removed by pruning (rounded to nearest multiple of 10).

6 Conclusion

We presented an efficient approach to the Petri net reachability problem that
uses state-space over-approximations as distance oracles in the classical graph
traversal algorithms A∗ and greedy best-first search. Our experiments have shown
that using the state equation over QT

≥0 provides the best trade-off between com-
putational feasibility and the accuracy of the oracle. However, we expect that
further advances in optimization modulo theories solvers may enable employing
stronger over-approximations such as continuous Petri nets in the future.

Moreover, non-algebraic distance under-approximations also fit naturally in
our framework, e.g. the syntactic distance of [55] and “α-graphs” of [24]. These
are crude approximations with low computational cost. Our preliminary tests
show that, although they could not compete with our distances, they can provide
early speed-ups on instances with large branching factors. An interesting line of
research consists in identifying cheap approximations with better estimates.

We wish to emphasize that our approach to the reachability problem has the
potential to also be naturally used for semi-deciding reachability in extensions of
Petri nets with a recursively enumerable reachability problem, such as Petri nets
with resets and transfers [3,19] as well as colored Petri nets [37]. These extensions
have, for instance, been used for the generation of program loop invariants [54],
the validation of business processes [59] and the verification of multi-threaded
C and Java program skeletons with communication primitives [16,39]. Linear
rational and integer arithmetic over-approximations for such extended Petri nets
exist [12,9,34,31] and could smoothly be used inside our framework.

Acknowledgments

We thank Juliette Fournis d’Albiat for her help with extracting the sypet suite.

Directed Reachability for Infinite-State Systems 19

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theo-
rems for infinite-state systems. In: Proc. 11th Annual IEEE Symposium on
Logic in Computer Science (LICS). pp. 313–321. IEEE Computer Society (1996).
https://doi.org/10.1109/LICS.1996.561359

2. Angeli, D., De Leenheer, P., Sontag, E.D.: A Petri net approach to the study of
persistence in chemical reaction networks. Mathematical Biosciences 210(2), 598–
618 (2007). https://doi.org/10.1016/j.mbs.2007.07.003

3. Araki, T., Kasami, T.: Some decision problems related to the reachability
problem for Petri nets. Theoretical Computer Science 3(1), 85–104 (1976).
https://doi.org/10.1016/0304-3975(76)90067-0

4. Athanasiou, K., Liu, P., Wahl, T.: Unbounded-thread program verification using
thread-state equations. In: Proc. 8th International Joint Conference on Automated
Reasoning (IJCAR). pp. 516–531. Springer (2016). https://doi.org/10.1007/978-3-
319-40229-1 35

5. Bansal, K., Koskinen, E., Wies, T., Zufferey, D.: Structural counter abstrac-
tion. In: Proc. 19th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). pp. 62–77. Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7 5

6. Barth, A., Mitchell, J.C., Datta, A., Sundaram, S.: Privacy and util-
ity in business processes. In: Proc. 20th IEEE Computer Security Foun-
dations Symposium (CSF). pp. 279–294. IEEE Computer Society (2007).
https://doi.org/10.1109/CSF.2007.26

7. Bjørner, N., Phan, A., Fleckenstein, L.: νZ - an optimizing SMT solver. In:
Proc. 21st International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS). pp. 194–199. Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0 14

8. Blondin, M., Finkel, A., Haase, C., Haddad, S.: The logical view on continuous
Petri nets. ACM Transactions on Computational Logic (TOCL) 18(3), 24:1–24:28
(2017). https://doi.org/10.1145/3105908

9. Blondin, M., Haase, C., Mazowiecki, F.: Affine extensions of integer vector addi-
tion systems with states. In: Proc. 29th International Conference on Concurrency
Theory (CONCUR). pp. 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik (2018). https://doi.org/10.4230/LIPIcs.CONCUR.2018.14

10. Blondin, M., Haase, C., Offtermatt, P.: Fastforward: A tool for reachabil-
ity in Petri nets with infinite state spaces. Artifact for the TACAS21
contribution ”Directed Reachability for Infinite-State Systems” (2021).
https://doi.org/10.6084/m9.figshare.13573592

11. Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformat-
ics 8(4), 210–219 (2007). https://doi.org/10.1093/bib/bbm029

12. Chistikov, D., Haase, C., Halfon, S.: Context-free commutative grammars with
integer counters and resets. Theoretical Computer Science 735, 147–161 (2018).
https://doi.org/10.1016/j.tcs.2016.06.017

13. Czerwiński, W., Lasota, S., Lazić, R., Leroux, J., Mazowiecki, F.: The reach-
ability problem for Petri nets is not elementary. In: Proc. 51st Annual ACM
SIGACT Symposium on Theory of Computing (STOC). pp. 24–33. ACM (2019).
https://doi.org/10.1145/3313276.3316369

14. David, R., Alla, H.: Continuous Petri nets. In: Proc. 8th European Workshop on
Application and Theory of Petri nets. vol. 340, pp. 275–294 (1987)

https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1016/j.mbs.2007.07.003
https://doi.org/10.1016/0304-3975(76)90067-0
https://doi.org/10.1007/978-3-319-40229-1_35
https://doi.org/10.1007/978-3-319-40229-1_35
https://doi.org/10.1007/978-3-642-36742-7_5
https://doi.org/10.1109/CSF.2007.26
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1145/3105908
https://doi.org/10.4230/LIPIcs.CONCUR.2018.14
https://doi.org/10.6084/m9.figshare.13573592
https://doi.org/10.1093/bib/bbm029
https://doi.org/10.1016/j.tcs.2016.06.017
https://doi.org/10.1145/3313276.3316369

20 M. Blondin et al.

15. David, R., Alla, H.: Discrete, Continuous, and Hybrid Petri nets. Springer, 2nd

edn. (2010)
16. Delzanno, G., Raskin, J., Van Begin, L.: Towards the automated verification of

multithreaded Java programs. In: Proc. 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). pp. 173–187.
Springer (2002). https://doi.org/10.1007/3-540-46002-0 13

17. Dixon, A., Lazić, R.: Kreach: A tool for reachability in Petri nets. In: Proc. 26th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). pp. 405–412. Springer (2020). https://doi.org/10.1007/978-
3-030-45190-5 22

18. D’Osualdo, E., Kochems, J., Ong, C.L.: Automatic verification of erlang-style con-
currency. In: Proc. 20th International Symposium on Static Analysis (SAS). pp.
454–476. Springer (2013). https://doi.org/10.1007/978-3-642-38856-9 24

19. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidabil-
ity and undecidability. In: Proc. 25th International Colloquium on Au-
tomata, Languages and Programming (ICALP). pp. 103–115. Springer (1998).
https://doi.org/10.1007/BFb0055044

20. Edelkamp, S., Schuppan, V., Bosnacki, D., Wijs, A., Fehnker, A., Aljazzar, H.:
Survey on directed model checking. In: Proc. 5th International Workshop on
Model Checking and Artificial Intelligence (MoChArt). pp. 65–89. Springer (2008).
https://doi.org/10.1007/978-3-642-00431-5 5

21. Esparza, J.: Decidability and complexity of Petri net problems — An introduction,
pp. 374–428. Springer (1998). https://doi.org/10.1007/3-540-65306-6 20

22. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population pro-
tocols. Acta Informatica 54(2), 191–215 (2017). https://doi.org/10.1007/s00236-
016-0272-3

23. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P.J., Nikšić, F.: An
SMT-based approach to coverability analysis. In: Proc. 26th International Con-
ference on Computer Aided Verification (CAV). pp. 603–619. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9 40

24. Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.W.: Component-based
synthesis for complex APIs. In: Proc. 44th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL). pp. 599–612. ACM (2017).
https://doi.org/10.1145/3009837.3009851

25. Fraca, E., Haddad, S.: Complexity analysis of continuous Petri nets. Fundamenta
Informaticae 137(1), 1–28 (2015). https://doi.org/10.3233/FI-2015-1168

26. Galenson, J.: Dynamic and Interactive Synthesis of Code Snippets. Ph.D. thesis,
University of California (2014)

27. Galenson, J., Reames, P., Bod́ık, R., Hartmann, B., Sen, K.: Codehint: dy-
namic and interactive synthesis of code snippets. In: Proc. 36th Interna-
tional Conference on Software Engineering (ICSE). pp. 653–663. ACM (2014).
https://doi.org/10.1145/2568225.2568250

28. Ganty, P.: Algorithmes et structures de données efficaces pour la manipulation de
contraintes sur les intervalles. Master’s thesis, Université Libre de Bruxelles (2002),
(In French)

29. Geffroy, T., Leroux, J., Sutre, G.: Occam’s razor applied to the Petri
net coverability problem. Theoretical Computer Science 750, 38–52 (2018).
https://doi.org/10.1016/j.tcs.2018.04.014

30. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal
of the ACM 39(3), 675–735 (1992). https://doi.org/10.1145/146637.146681

https://doi.org/10.1007/3-540-46002-0_13
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1007/978-3-642-38856-9_24
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1007/978-3-642-00431-5_5
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.3233/FI-2015-1168
https://doi.org/10.1145/2568225.2568250
https://doi.org/10.1016/j.tcs.2018.04.014
https://doi.org/10.1145/146637.146681

Directed Reachability for Infinite-State Systems 21

31. Gupta, U., Shah, P., Akshay, S., Hofman, P.: Continuous reachability for unordered
data Petri nets is in PTime. In: Proc. 22nd International Conference on Foundations
of Software Science and Computation Structures (FoSSaCS). pp. 260–276. Springer
(2019). https://doi.org/10.1007/978-3-030-17127-8 15

32. Gurobi Optimization, L.: Gurobi optimizer reference manual (2020), http://www.
gurobi.com

33. Heiner, M., Gilbert, D.R., Donaldson, R.: Petri nets for systems and synthetic
biology. In: Formal Methods for Computational Systems Biology. pp. 215–264.
Springer (2008). https://doi.org/10.1007/978-3-540-68894-5 7

34. Hofman, P., Leroux, J., Totzke, P.: Linear combinations of unordered
data vectors. In: Proc. 32nd Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS). pp. 1–11. IEEE Computer Society (2017).
https://doi.org/10.1109/LICS.2017.8005065

35. Janák, J.: Issue Tracking Systems. Master’s thesis, Masaryk University (2009)
36. Jeng, M.D., Chen, S.C.: A heuristic search approach using approximate solutions

to Petri net state equations for scheduling flexible manufacturing systems. In-
ternational Journal of Flexible Manufacturing Systems 10(2), 139–162 (1998).
https://doi.org/10.1023/A:1008097430956

37. Jensen, K.: Coloured Petri nets: basic concepts, analysis methods and practical
use, vol. 1. Springer Science & Business Media (2013)

38. Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of some prob-
lems in Petri nets. Theoretical Computer Science 4(3), 277–299 (1977).
https://doi.org/10.1016/0304-3975(77)90014-7

39. Kaiser, A., Kroening, D., Wahl, T.: A widening approach to multithreaded pro-
gram verification. ACM Transactions on Programming Languages and Systems
(TOPLAS) 36(4), 14:1–14:29 (2014). https://doi.org/10.1145/2629608

40. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary
version). In: Proc. 14th Symposium on Theory of Computing (STOC). pp. 267–281.
ACM (1982). https://doi.org/10.1145/800070.802201

41. Lambert, J.: A structure to decide reachability in Petri nets. Theoretical Computer
Science 99(1), 79–104 (1992). https://doi.org/10.1016/0304-3975(92)90173-D

42. Lee, D.Y., DiCesare, F.: Scheduling flexible manufacturing systems using Petri
nets and heuristic search. IEEE Transactions on robotics and automation 10(2),
123–132 (1994). https://doi.org/10.1109/70.282537

43. Leroux, J.: Vector addition systems reachability problem (A simpler solution). In:
Turing-100 – The Alan Turing Centenary. pp. 214–228. EasyChair (2012)

44. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In:
Proc. 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
pp. 56–67. IEEE Computer Society (2015). https://doi.org/10.1109/LICS.2015.16

45. Lipton, R.J.: The reachability problem requires exponential space. Tech. rep., Yale
University (1976)

46. Liu, B., Dong, W., Zhang, Y.: Accelerating API-based program synthe-
sis via API usage pattern mining. IEEE Access 7, 159162–159176 (2019).
https://doi.org/10.1109/ACCESS.2019.2950232

47. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Proc.
13th Symposium on Theory of Computing (STOC). pp. 238–246. ACM (1981).
https://doi.org/10.1145/800076.802477

48. Mej́ıa, G., Odrey, N.G.: An approach using Petri nets and improved heuristic
search for manufacturing system scheduling. Journal of Manufacturing Systems
24(2), 79–92 (2005). https://doi.org/10.1016/S0278-6125(05)80009-3

https://doi.org/10.1007/978-3-030-17127-8_15
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1007/978-3-540-68894-5_7
https://doi.org/10.1109/LICS.2017.8005065
https://doi.org/10.1023/A:1008097430956
https://doi.org/10.1016/0304-3975(77)90014-7
https://doi.org/10.1145/2629608
https://doi.org/10.1145/800070.802201
https://doi.org/10.1016/0304-3975(92)90173-D
https://doi.org/10.1109/70.282537
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1109/ACCESS.2019.2950232
https://doi.org/10.1145/800076.802477
https://doi.org/10.1016/S0278-6125(05)80009-3

22 M. Blondin et al.

49. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Proc. 14th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-
540-78800-3 24, tool available at https://github.com/Z3Prover/z3.

50. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989). https://doi.org/10.1109/5.24143

51. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theoretical Computer Science 6, 223–231 (1978). https://doi.org/10.1016/0304-
3975(78)90036-1

52. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall
Press, 3rd edn. (2009)

53. Schmidt, K.: LoLA: A low level analyser. In: Proc. International Conference on
Application and Theory of Petri Nets (ICATPN). pp. 465–474. Springer (2000).
https://doi.org/10.1007/3-540-44988-4 27

54. Silverman, J., Kincaid, Z.: Loop summarization with rational vector addition sys-
tems. In: Proc. 31st International Conference on Computer Aided Verification
(CAV). pp. 97–115. Springer (2019). https://doi.org/10.1007/978-3-030-25543-5 7

55. Strazny, T.: An algorithmic framework for checking coverability in well-structured
transition systems. Ph.D. thesis, Universität Oldenburg (2014), http://csd.
informatik.uni-oldenburg.de/∼skript/pub/diss/strazny-phdthesis-roterbericht.pdf

56. Uma, G., Prasad, B.: Reachability trees for Petri nets: a heuristic approach.
Knowledge-Based Systems 6(3), 174 – 177 (1993). https://doi.org/10.1016/0950-
7051(93)90042-R

57. van der Aalst, W.: The application of Petri nets to workflow manage-
ment. Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998).
https://doi.org/10.1142/S0218126698000043

58. Watel, D., Weisser, M., Barth, D.: Parameterized complexity and approximability
of coverability problems in weighted Petri nets. In: Proc. 38th International Confer-
ence on Application and Theory of Petri Nets and Concurrency (PETRI NETS).
pp. 330–349. Springer (2017). https://doi.org/10.1007/978-3-319-57861-3 19

59. Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.:
Synchronization and cancelation in workflows based on reset nets. Inter-
national Journal of Cooperative Information Systems 18(1), 63–114 (2009).
https://doi.org/10.1142/S0218843009002002

60. Yang, C.H., Dill, D.L.: Validation with guided search of the state space. In:
Proc. 35th Conference on Design Automation (DAC). pp. 599–604. ACM (1998).
https://doi.org/10.1145/277044.277201

61. Zuck, L.D., Pnueli, A.: Model checking and abstraction to the aid of parameterized
systems (a survey). Computer Languages, Systems & Structures 30(3-4), 139–169
(2004). https://doi.org/10.1016/j.cl.2004.02.006

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/Z3Prover/z3
https://doi.org/10.1109/5.24143
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/978-3-030-25543-5_7
http://csd.informatik.uni-oldenburg.de/~skript/pub/diss/strazny-phdthesis-roterbericht.pdf
http://csd.informatik.uni-oldenburg.de/~skript/pub/diss/strazny-phdthesis-roterbericht.pdf
https://doi.org/10.1016/0950-7051(93)90042-R
https://doi.org/10.1016/0950-7051(93)90042-R
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1007/978-3-319-57861-3_19
https://doi.org/10.1142/S0218843009002002
https://doi.org/10.1145/277044.277201
https://doi.org/10.1016/j.cl.2004.02.006

Directed Reachability for Infinite-State Systems 23

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Bridging Arrays and ADTs in Recursive Proofs

Grigory Fedyukovich1(�) and Gidon Ernst2

1 Florida State University, Tallahassee, USA, grigory@cs.fsu.edu
2 Ludwig-Maximilians-University, Munich, Germany, gidon.ernst@lmu.de

Abstract. We present an approach to synthesize relational invariants
to prove equivalences between object-oriented programs. The approach
bridges the gap between recursive data types and arrays that serve to rep-
resent internal states. Our relational invariants are recursively-defined,
and thus are valid for data structures of unbounded size. Based on intro-
ducing recursion into the proofs by observing and lifting the constraints
from joint methods of the two objects, our approach is fully automatic
and can be seen as an algorithm for solving Constrained Horn Clauses
(CHC) of a specific sort. It has been implemented on top of the SMT-
based CHC solver AdtChc and evaluated on a range of benchmarks.

1 Introduction

Relational verification is widely applicable during an iterative process of soft-
ware development, when a high-level specification, a prototype implementation,
or even an arbitrary previous version is compared to the current version and
verified for the absence of newly introduced bugs. As software grows large, com-
positionality becomes a crucial factor to achieve scalability of relational verifi-
cation tasks: reasoning about pairs of entire programs is reduced to reasoning
about pairs of modules or isolated components of code. Proofs found for one
component can be reused while reasoning about another component, or even
the system in a whole. Successful examples in large-scale verification projects
include a step-wise refinement in seL4 [30] and the integration of model checking
to software development workflow in AWS C Common [11].

In this work, we represent relational verification problems over object-oriented
programs as Constrained Horn Clauses (CHC). A CHC is an implication in first-
order logic that involves a set of unknown predicates. For a system of CHCs, we
wish to find an interpretation for all predicates that validates all implications.
CHCs are used in various tasks appearing in verification, e.g., finding loop in-
variants or function summaries. For relational verification, a system of CHCs
can be constructed by pairing components of code of two versions in lockstep
and supplying it with relational pre- and post-conditions [14, 39, 44, 53]. State-
of-the-art tools for solving CHC, e.g., [9,19,21,27,32], are based on Satisfiability
Modulo Theories (SMT), e.g., [40, 47], they gradually become more robust, as
long as the programs under analysis do not have a mixed use of data structures.

Verification conditions of real-world problems involve data structures such
as arrays and Algebraic Data Types (ADTs) of unknown size, expecting the
c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 24–42, 2021.
https://doi.org/10.1007/978-3-030-72013-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_2&domain=pdf
http://orcid.org/0000-0003-1727-4043
http://orcid.org/0000-0002-3289-5764
mailto:grigory@cs.fsu.edu
mailto:gidon.ernst@lmu.de

Bridging Arrays and ADTs in Recursive Proofs 25

proofs to capture (quantified or recursive) properties over countably infinite
sets of elements. Arrays are being handled in loops and often require finding
universally-quantified loop invariants [21]. ADTs, such as lists, maps, and sets,
require reasoning by structural induction [47] and often rely on additional helper
lemmas which are difficult to be synthesized automatically. For relational veri-
fication tasks, where one program is over arrays, and another is over ADTs, the
solvers should likely reason over quantified formulas and induction at the same
time, which is currently challenging for most of the automated tools.

We propose a set of new algorithms for solving CHCs constructed by pairing
programs over arrays and ADTs. Because we deal with object-oriented programs,
the data structures might be accessed and modified in any given method, and our
pairing is done for each method separately. Relational proofs are synthesized over
the data structures – they describe a relation that holds while simultaneously
traversing pairs of elements by any of the methods. Our key idea is that not all
methods may be needed for the actual synthesis. In fact, our algorithm generates
a candidate proof by bridging a single pair of methods and then validates/repairs
it on all others. In essence, we observe how pairs of inputs (or pairs of outputs)
change the states, guess a candidate relation between elements of states, and
(dis-)prove it on all other methods using an SMT-based theorem prover.

Our synthesis strategy is customized for different classes of benchmarks via
so called recipes. We present two recipes for the list ADT that are applicable,
respectively, for (1) stacks and queues, and (2) sets, multisets, and maps. They
both discover nontrivial invariants that need a recursive interpretation. We in-
dependently generate its base and recursive cases. The key point in determining
the relations is to automatically investigate how an input or an output affects the
state. Finally, we discover auxiliary lemmas that provide additional properties
about objects in isolation and help proving the inferred invariants are valid.

Importantly, in contrast to a more lightweight CHC setting over numeri-
cal theories (and even arrays) that can rely on an SMT solver to validate its
recursion-free solutions, the validation of our recursive solutions is conducted
by structural induction. We thus rely on recent advances in SMT-based fully
automated theorem proving [55] that (since recently) supports arrays. The ex-
periments have shown that the approach is reasonably fast in practice. Our
contribution, while presented in the CHC context, can be lifted on the program
analysis context and implemented in a range of robust verification tools that are
designed to support compositionality [7, 24].

The rest of the paper is structured as follows. A short outline on background
and notation is given in Sect. 2. In Sect. 3, we give an overview of the approach.
Then, Sect. 4 and Sect. 5 present our recipes. Finally, we give the evaluation
details in Sect. 6, related work in Sect. 7, and conclude the paper in Sect. 8.

2 Preliminaries

An object O = (St , Init , (Opn)n∈[1,N]) is defined over internal states St , with
initialization Init(s) denoting initial states s, and methods Opn, also called op-

26 G. Fedyukovich and G. Ernst

erations, for some identifier n (which for simplicity is treated as a natural number
in some finite interval, but later sections liberally refer to Opn by their name).
Each operation Opn(in, s, s

′, out) defines transitions between a pair of states s
and s′ for a given input in, producing an output out . Moreover, each operation
has an associated precondition pren(in, s), ranging over the input and pre-state.

In this paper, we take a syntactic approach by representing states as tuples of
variables. Specifically, we assume that Init(s) and each operation Op(in, s, s′, out)
is given as a predicate, i.e., as a characteristic formula, over the specified param-
eters, that holds for initial states, respectively, when the program can take a
particular transition. Such a formula can be obtained from the source code by
symbolic execution, and we assume that effect of loops inside operations is cap-
tured by quantified formulas, creation of which is an orthogonal problem. Hence,
our approach is language agnostic.

We assume that the programs under consideration are deterministic, and we
assume that pre(in, s) =⇒ ∃s′, out . Opn(in, s, s

′, out). Note that for determin-
istic programs, the existential quantifier in ∃s′, out . Opn(in, s, s

′, out) can be
eliminated if pre(in, s) holds as s′, out are functionally determined by in, s.

We aim at solving a relational verification problem over two objects and
reduce it to inductive invariant inference over a composition of two objects.

Definition 1. Two objects A and C are equivalent if there exists an inductive
invariant R over a composition of these objects, which satisfies all clauses below.
It connects two states StA and StC before and after each pair of operations
(OpA

n ,OpC
n)n∈[1,N].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

initialization:

InitA(as) ∧ InitC(cs) =⇒ R(as, cs)

consecution:

R(as, cs) ∧OpA
1 (in, as, as

′, outA) ∧OpC
1 (in, cs, cs

′, outC) =⇒ R(as′, cs′)
. . .

R(as, cs) ∧OpA
N (in, as, as′, outA) ∧OpC

N (in, cs, cs′, outC) =⇒ R(as′, cs′)
safety: applicability:

R(as, cs) ∧ preA1 (in, as) =⇒ preC1 (in, cs)

R(as, cs) ∧ preC1 (in, as) =⇒ preA1 (in, cs)

. . .

R(as, cs) ∧ preAN (in, as) =⇒ preCN (in, cs)

R(as, cs) ∧ preCN (in, as) =⇒ preAN (in, cs)

safety: outputs:

R(as, cs) ∧OpA
1 (in, as, as

′, outA) ∧OpC
1 (in, cs, cs

′, outC) =⇒ outA=outC

. . .

R(as, cs) ∧OpA
N (in, as, as′, outA) ∧OpC

N (in, cs, cs′, outC) =⇒ outA=outC

Bridging Arrays and ADTs in Recursive Proofs 27

Implications in Def. 1 define a set of Constrained Horn Clauses (CHC) over
an uninterpreted relation symbol R. There are three types of constraints: (1) ini-
tialization, (2) consecution, and (3) safety. The third, safety, reflects the actual
relational specification, i.e., the correspondence between the programs under
analysis, in terms of the user-visible variables, namely the input in, and the
respective outputs, out and out ′. Here, safety is divided into applicability (coin-
cidence of preconditions) and equivalence of outputs, which together ensure that
the two programs are observationally equivalent. To prove that this equivalence
holds, one needs to infer a more complicated invariant R over the internal state.
For this reason, we need the initiation and the consecution constraints: whatever
happens due to each operation, the invariant is maintained, and by safety, the
programs remain observationally equivalent indefinitely.

Problem Statement: We seek an interpretation of R that satisfies all con-
straints in Def. 1 simultaneously. This conventional formulation of a CHC task
lets us to use any off-the-shelf CHC solver. However, the problem is undecidable
in general, thus no solver guarantees to handle our specific tasks. Furthermore,
existing solvers mainly support the lightweight arithmetic theories, and a few
exceptions support also ADTs [27] and arrays [21,32]. To the best of our knowl-
edge, there is no CHC solver that supports ADTs and arrays at the same time,
and there is no CHC solver that synthesizes recursive solutions.

Context: The system of CHCs ensures that A and C can be substituted
interchangeably in any calling context, and it is applicable to a wide range of
techniques for formal program development. The focus on equivalence instead of
subsumption is not essential for our work, and the presented approach works for
the asymmetric case just the same. Specifically, Liskov and Wing’s substitution
principle [36] follows (precondition strengthening is reflected by the applicability
constraints from preA to preC , and all postconditions with respect to the outputs
are equivalent). Data Refinement [15, 25] follows similarly (Def. 1 characterizes
that R is a forward simulation [37]). See Sect. 7 for more details.

3 Synthesis of Recursive Relational Invariants

In this section, we present the fundamentals of the approach to synthesize recur-
sive relational invariants for systems over arrays and ADTs that we instantiate
and illustrate on examples in the subsequent sections.

3.1 Overview

Our approach is purely symbolic and fully automatic in both stages: generating
a candidate relational invariant, and proving it correct (i.e., validating). The key
insight is an analysis of the operations joint in the constraints of Def. 1. We follow
a strategy of introducing recursion into the interpretation based on ADTs, and
by aligning the base case to initialization and the recurrence conditions to joint
operations. In particular, a relational invariant R that bridges an algebraic list xs

28 G. Fedyukovich and G. Ernst

Algorithm 1: Automated synthesis of recursive relational invariants
Input: Objects A = (as, InitA, (OpA

n)n∈N) and C = (cs, InitC , (OpC
n)n∈N),

where as, cs are the state variables, and xs is a list variable of as
Output: relational invariant R between A and C

1 R(nil, cs) ← InitA(as[xs := nil]) ∧ InitC(cs);
2 φr ← true;
3 let y and ys be fresh variables;
4 while true do
5 csr ← Update(OpA

n ,OpC
n , as[xs := cons(y, ys)], cs) for some n ∈ N ;

6 φr ← φr ∧Match(OpA
m,OpC

m, as[xs := cons(y, ys)], cs, csr) for some m ∈ N ;
7 R(as[xs := cons(y, ys)], cs) ← φr ∧R(as[xs := ys], csr);
8 if Validate(R, A, C) then return R;

and an array (with auxiliary variables, such as index) cs is defined recursively
over the structure of xs , which produces this general schema:

R(xs , cs) =

{
φb(cs) if xs = nil

∃ csr. φr(y, ys , cs, csr) ∧R(ys, csr) if xs = cons(y, ys)
(1)

This schema has two placeholders for constraints, φb in the base case and φr

in the recursive case, that may refer to the variables in scope (as indicated
by their respective parameter lists). Moreover, we seek a Skolem function to
eliminate the existentially-quantified state variable csr in the recursive position.
Intuitively the desired Skolem function captures the delta between two array
states that corresponds to the delta between xs and ys .

Alg. 1 gives our top-level synthesis procedure for interpretations of R. It takes
as input two objects, A and C, where as and cs are tuples variables that represent
their respective states. We refer to primed versions of these state variables to as
as ′ and cs ′, assuming that all as, cs, as ′, and cs ′ are distinct. The algorithm
works with algebraic lists specifically and thus as is assumed to have such a
component given by the state variable xs . We denote by as[xs := e] the updated
vector of variables such that xs is replaced in as by symbolic expression e.

The base case of the interpretation of R is straightforward (line 1): the al-
gorithm uses a predicate InitC and a predicate InitA in which the xs variable
is instantiated to nil. The inductive case of the interpretation of R is trickier
(line 7). Because several different operations that produce state, consume state,
or do nothing with a state are possible (see Def. 2 later in the section), some of
them might contribute to different parts of the interpretation being synthesized.
In particular, methods Match and Update are responsible for generating a
body of R. They are instantiated differently for our two recipes in Sect. 4 (ap-
plicable for stacks and queues) and Sect. 5 (applicable for (multi)sets and maps).

The first method, Update, synthesizes an updated symbolic state csr, a
tuple of symbolic expressions, to be used in the nested inductive call of R.
It can therefore be understood to compute a witness (or Skolem function) to
existential quantifier in Eq. (1) as an expression of the remaining variables in

Bridging Arrays and ADTs in Recursive Proofs 29

scope, y, ys , as, cs. The second method, Match then collects constraints φr from
suitable transitions w.r.t. this csr.

In a loop for each candidate interpretation of R, our algorithm runs an
automated SMT-based theorem prover [55] to validate it (line 8). The algorithm
can iterate several times and converges after a successful theorem-prover run.

A noteworthy feature of our framework is that Update and Match should
not necessarily be synchronized in pairs. Although csr and the result of Match
are going to be eventually combined and used in a single formula, the nonde-
terministic nature of our synthesis procedure suggests that the two ingredients
may originate from potentially non-joint operations, thereby enlarging the search
space of possible relational invariants.

3.2 Classifying Operations

Our particular strategies for choosing ingredients for the inductive interpretation
of R are based on the classification of the operations of the abstract object.

We define a partial ordering “�” on ADT states that connects constructors
discerned by the recurrence in R to the transitions of operations. With respect
to this ordering, we can for example recognize operations that leave the ADT
unchanged (“noops”, which play a special role in Sect. 5), operations that “pro-
duce” constructors and thereby enlarge the internal state by additional elements
and conversely operations that “consume” constructors. A natural choice for �
is the reflexive closure of the subterm ordering, where xs � ys for lists specifies
that xs is a suffix of ys . In general, this ordering can be used to control the result
of the synthesis for specific applications, and is a heuristic choice. A choice which
works well for our examples is that xs is a non-strict subsequence of ys .

The � ordering naturally extends to tuples of variables (and thus, states),
and lets us classify operations into the following three kinds.

Definition 2. Let Op be an operation of an abstract object. Then,

isNo(Op)
def
= ∀i, s, s′, o .Op(i, s, s′, o) =⇒ s = s′

isProd(Op)
def
= ∀i, s, s′, o .Op(i, s, s′, o) =⇒ s � s′ ∧ ¬isNo(Op)

isConsm(Op)
def
= ∀i, s, s′, o .Op(i, s, s′, o) =⇒ s′ � s ∧ ¬isNo(Op)

Example 1. The class of an operation can often be identified by a cheap syntactic
check to recognize when cons is applied to a current state or a next state variable.
In the upcoming stack example in Fig. 1, from xs′ = cons(in, xs) we have that
push is a producer operation, and from cons(out, xs′) = xs we classify pop as
consumer operation. A top operation, not shown in Fig. 1, would be recognized
as a noop (see also hasElement in the upcoming example in Fig. 3).

In the next two subsections, we introduce our particular strategies for the im-
plementations of Update and Match of Alg. 1, in reference to Def. 2. Some
operations fall into neither of the classes; or it may be hard to determine so if
they do, given that Def. 2 is semantic; and different operations may contribute

30 G. Fedyukovich and G. Ernst

different ingredients for a correct definition of R. To make use of as many oper-
ations as possible, we suggest strategies for all three classes of operations, to be
able to synthesize a relational invariant in complex cases, even when complete
information about the system is difficult to obtain.

4 Recipe 1: Linear Scan

We identify a class of problems that require scanning the arrays in implementa-
tions of stacks and queues linearly. A distinguishing feature in this class is the
presence of a numeric variable in cs through which array cells are accessed (de-
noted index in the rest of the section). We first illustrate the synthesis process
on the following example and then present the algorithmic details.

4.1 Motivating Example

Two realizations of a FIFO stack are shown in Fig. 1: one is based on linked lists,
and another is based on arrays. They share a common interface of initialization
and the two operations push and pop. For example, the encodings of pop of
ListStack and ArrStack are respectively:

OpListStack
pop (xs , xs ′, out)

= (xs �= nil ∧ xs ′ = xs.tail ∧ out = xs.head)

= (xs = cons(out , xs ′)) (after simplification)

OpArrStack
pop (a, n, a′, n′, out)

= (n > 0 ∧ a′ = a ∧ n = n− 1 ∧ out = a[n′])

where xs �= nil and n > 0 are the preconditions, and out captures the return
value. As an illustration, formula OpListStack

pop (s,_, 7) holds for all states s in
which pop terminates and returns 7 (by convention we use _ to denote terms
that are irrelevant in a particular context). Note also that in the implementation
of ArrStack, the popped value is not erased from the array – in order for a[n]
to be considered in the future, it has to be rewritten by some push operator. In
general, the array always contains infinitely many unknown values outside the
range of cells a[0], . . . , a[n− 1] which are never accessed.

A possible relational invariant R(xs , n, a) bridging ListStack and ArrStack

is defined as follows:

R(xs , n, a) =

{
n = 0 if xs = nil

n > 0 ∧ y = a[n− 1] ∧R(ys , n− 1, a) if xs = cons(y, ys)
(2)

Intuitively, this R captures that a list xs has the same content as the portion of
an array a between indexes 0 (including) and n (excluding). When xs is empty,
then the portion of a should be empty too, thus n = 0. Otherwise, xs is created
by cons-ing some other list ys and an element y then (1) n should be strictly
positive, and (2) y should belong to the designated portion of a.

Bridging Arrays and ADTs in Recursive Proofs 31

class ListStack:

def init():

xs = nil

def push(in):

xs = cons(in, xs)

def pop():

assert xs != nil

out = xs.head

xs = xs.tail

return out

class ArrStack:

def init():

n = 0

a = [...]

def push(in):

a[n] = in

n = n + 1

def pop():

assert n > 0

n = n - 1

return a[n]

Fig. 1: Two implementations of a FIFO stack.

cons(y, ys) ys

cs csr

OpA
n (in,out)

R R

OpC
n (in,out)

ys cons(y, ys)

csr cs

OpA
n (in,out)

R R

OpC
n (in,out)

Fig. 2: Transitions of consumer operations (left) and producer operations (right) used
to instantiate Eq. (1).

The schema in Sect. 3.1 has two placeholders for constraints, φb in the base
case and φr in the recursive case, that may refer to the variables in scope (as
indicated by their respective parameter lists). Moreover, we seek a state csr in
the recursive position. Placeholder φb is instantiated by constraints from the ini-
tialization operations, such as n = 0 from ArrStack. This alignment of base case
and initialization is not just a coincidence: many data structures start initially
empty and are gradually populated by calling operations (e.g., collections).

The purpose of φr in the recursive case of Eq. (1) is twofold. First, it connects
a portion of the ADT state (specifically y) to the array state cs, in the example
via a[n− 1] = y, and it determines a suitable array state csr as an argument of
the recursive occurrence of R. For instance, we take n− 1 for the recursive call
but leave a unchanged. This is motivated by the observation that a state where
xs = cons(y, ys) for some y, ys is consumed by pop. Using this information, the
recurrence of R must align with the corresponding array transitions, too, as
shown in Fig. 2 on the left. The constraint n > 0 is the precondition of the array
operation, whereas y = a[n− 1] follows from comparing the outputs. As shown
in Fig. 2 on the right, we can dually base the recurrence on push, which produces
a cons, i.e., a transition from ys to xs = cons(y, ys) for some y. In this case, both
transitions need to be viewed in reverse such that the respective successor states
of push now match the left side R(xs , cs) of the schema. Then, the assignment
n = n + 1 can be rewritten to yield the equation nr = n− 1.

32 G. Fedyukovich and G. Ernst

Algorithm 2: Update (recipe 1)
Input: Operations OpA and OpC ,

as[xs := cons(y, ys)] the shape of the state of A,
cs the state variables of C, assuming cs = (_, index , a) where index
and a are variables of integer and array types, resp.

Output: Updated arguments csr
1 if isProd(OpA) then
2 let csr = (_, index ′, a′) be s.t. ∀in, ∃out .OpC(in, csr, cs, out);
3 return (_, index ′, a);
4 if isConsm(OpA) then
5 let csr = (_, index ′, a′) be s.t. ∀in, ∃out .OpC(in, cs, csr, out);
6 return (_, index ′, a);

Algorithm 3: Match (recipe 1)
Input: Operations OpA and OpC ,

as[xs := cons(y, ys)] the shape of the state of A,
cs the state variables of C,
csr the updated state of C, assuming csr = (_, index ′, a) where index ′

and a are variables of integer and array types, resp.
Output: Formula φr

1 if isProd(OpA) then
2 inv ← GetLoopInvariant(index ′,OpC);
3 return inv ∧ ¬InitC(cs) ∧ y = a[index ′];
4 if isConsm(OpA) then
5 return preA

n ∧ preC
n ∧ y = a[index ′];

6 return true;

To make this intuition practical, our approach suggests a particular strat-
egy for picking operations to take constraints from, recognizing consumers and
producers more generally, and validating the guessed relational invariants using
induction and lemmas.

4.2 Algorithm Description

Alg. 2 and Alg. 3 show the implementations of Update and Match, respectively,
that suit stacks and queues. Recall that these algorithms are called from Alg. 1
and take as input pairs of nondeterministically chosen joint operations of A
and C; state variables cs of C; current version of state variables csr to be used
in the recursive call of R; and fresh variables y and ys introduced in Alg. 1 to
define the inductive rule of R. Outputs of Update and Match are respectively
an updated tuple of variables csr and a subformula ψ to be conjoined with the
inductive definition of R.

If the producing operator is picked (line 1 of Alg. 2), then we have to find a
term index ′, such that it would be transitioned by OpC to index . In particular,

Bridging Arrays and ADTs in Recursive Proofs 33

after assigning a new value to an array cell, index is monotonically updated (i.e.,
incremented like in the example in Fig. 1, or decremented). Thus, to access the
array cell containing a new value using an updated value of index , we have to
invert the arithmetic operation and obtain index −1 (for Fig. 1) or index +1 (in
the case of decrementation). Technically, in Alg. 2, it is realized by taking the
index variable from cs, through which cells of the array can be observed (e.g., n
in example in Fig. 1) and finding such a term index ′, that would be transitioned
by OpC to index . Thus, the resulting csr is composed from the same ingredients
as cs where index ′ replaces index .

If the consuming operation is picked (line 4), then we proceed in the reverse
direction and find index ′ that is a result of transitioning of index through OpC .

Alg. 3 for this recipe relies on the output of Alg. 2. Interestingly, it is sup-
ported even if csr is computed using the producer, but ψ in Alg. 3 is computed
using the consumer. Our particular strategy for the consumers in this recipe is 1)
to use the precondition for OpC , and 2) to bridge the outputs of OpA and OpC

via an equality. Alternatively, the inference via producer in line 1, in comparison,
misses important constraint in the example, as the precondition of push is trivial.
Such a situation can be mitigated by the discovery of a loop invariant (line 2)
over index , i.e., usually just using Linear Integer Arithmetic (LIA), adding it,
and blocking the initial state (to distinguish from the base case of the definition
of R) in the inductive case of the interpretation of R being synthesized. Loop
invariants are generated as follows as interpretations of predicate inv satisfying
the following two implications:

InitC(cs) =⇒ inv(cs)

inv(cs) ∧
(∨

n∈N

OpC
n (in, cs, cs

′, out)

)
=⇒ inv(cs ′)

Note that these CHCs (over LIA) can be solved by numerous existing ap-
proaches. Without a query, ideally the strongest loop invariant is desirable; how-
ever in practice it suffices to apply lightweight techniques based on forward-
propagation of initial states using quantifier elimination, followed by its inductive
subset computation [20]. This often finds an adequately-strong invariant.

Example 2. Recall the stack example in Fig. 1. Let the index ′ term be computed
by Alg. 2 via inverting the increment operation in push. Thus, it is used as an
argument of the nested call to R in the inductive case of the definition of R.
By construction, the a[index ′] cell contains a value of in, i.e., the argument of
push. At the same time, in is the argument of cons in OpA representing push,
which lets us bridge the array and ADT in the proof. To allow this, Alg. 3
takes argument y of cons from the inductive definition of R, and equates it with
a[index ′], producing y = a[n − 1]. Combining it all together, we get the final
solution, as shown in (2).

34 G. Fedyukovich and G. Ernst

class ListSet:

def init():

xs = nil

def hasElement(in):

return contains(xs, in)

def insert(in):

xs = cons(in, xs)

def erase(in):

xs = removeall(xs, in)

class ArraySet:

def init():

a = [false, false, ...]

def hasElement(in):

return a[in]

def insert(in):

a[in] = true

def erase(in):

a[in] = false

Fig. 3: Two implementations of a set, where the list is not necessarily duplicate-free.

5 Recipe 2: Noop-based synthesis

In this subsection we present a recipe that suits sets, multisets, and maps, that
are in some sense non-linear. That is, data structures do not maintain any index
variable, which is usually used to access elements. Instead, arrays are viewed as
maps, and the corresponding ADTs are equipped with recursive functions that
traverse the data structure over and over again for each input. Oftentimes, these
objects have noop operations, and our synthesis procedure makes use of them.

5.1 Motivating Example

Fig. 3 shows two implementations of a set. The list-based implementation stores
elements in the order of their insert-ions. The elements are not removed unless
erase is called explicitly. Thus, duplicate entries of the same elements are al-
lowed. The implementation uses the recursive contains and removeall functions
that both traverse the list and search for a specific element:

contains(xs , a) =

{
false if xs = nil

(a = y) ∨ contains(ys , a), if xs = cons(y, ys)

removeall(xs , a) =

⎧⎨⎩
nil if xs = nil

ite(a = y, removeall(ys, a),
cons(y, removeall(ys , a))) if xs = cons(y, ys)

The array-based implementation handles a map a from elements to Booleans.
Initially, all cells in a are false. Inserting and removing an element is implemented
by storing true and false to the corresponding cell respectively. The difficulty
here is to support the shown implementation of insert and erase in Fig. 3, as
well as possible variants that e.g., eagerly prune duplicate entries in the list-based
implementation (see Sect. 6).

The expected output of our synthesis procedure is as follows:

R(xs , a) =

{
∀z. ¬a[z] if xs = nil

a[y] ∧R(ys, a[y := contains(ys, x)]), if xs = cons(y, ys)
(3)

Bridging Arrays and ADTs in Recursive Proofs 35

Algorithm 4: Update (recipe 2)
Input: Operations OpA and OpC such that isNo(OpA) holds,

as[xs := cons(y, ys)] the shape of the state of A,
cs the state variables of C

Output: Updated arguments csr
1 let cs ′ be fresh variables;
2 φ ← OpA(y, as[xs := ys], as[xs := ys], out) ∧OpC(y, cs ′,_, out);
3 ψ ← ∀z . z �= y =⇒ ∃out ′ .OpC(z, cs,_, out ′) ∧OpC(z, cs ′,_, out ′);
4 assume QE(∃out . φ ∧ ψ) simplifies to (cs ′ = csr);
5 return csr;

Algorithm 5: Match (recipe 2)
Input: Operations OpA and OpC such that isNo(OpA) holds,

as[xs := cons(y, ys)] the shape of the state of A, denoted as0 below,
cs the state variables of C,
csr the updated state of C

Output: Formula φr

1 φ ← OpA(y, as0, as0, out) ∧OpC(y, cs, csr, out);
2 return simplify(QE(∃out . φ));

5.2 Algorithm details

Alg. 4 and Alg. 5 show the implementations of Update and Match, respectively,
for this recipe. The arguments csr of the nested call to R in the inductive case of
the definition of R are computed in Alg. 4 using the symbolic encoding of noop.
In the set example, noop is the hasElement operation, which allows observing
the status of the internal state and does not modify it. We furthermore assume
that the input of Opn coincides with the type of elements stored in the list, i.e.,
it is meaningful to call Opn(y, · · ·) with the list head y from the recursive case
of (1) where xs = cons(y, ys).

The key idea behind Alg. 4 is to make necessary adjustments to cs to con-
struct csr that mirror any changes that can be observed via OpA when tran-
sitioning from list xs to ys in (1). This update is determined in terms of an
auxiliary variables cs ′ that are constrained to satisfy certain input/output pairs
for the corresponding OpC , by case analysis whether the input is this partic-
ular y that is removed by the recurrence. The primary intention is to reassign
a[y] appropriately. We do this by collecting constraints φ such that the output
observed for OpC for y and cs ′ matches that of the corresponding OpA on the
smaller state with ys . This is also the key difference to Sect. 4, where we heuris-
tically keep a unchanged in the recursive call in (1). The outputs for all other
inputs z, however, are enforced to be unchanged w.r.t. the original cs, which is
expressed by the constraint ψ. We then eliminate the quantifier for out (which
is straightforward as the operations are deterministic) and rewrite the formula
to closed expressions csr for variables cs ′ as result.

36 G. Fedyukovich and G. Ernst

Example 3. Specifically for the example in Sect. 5.1, the algorithm proceeds by
symbolic execution of hasElement, yielding formulas the following constituents:

OpA = (out = contains(ys , y))

OpC = (out = a[y])

φ = (out = contains(ys , y) ∧ out = a′[y])
ψ = (∀z . y �= z =⇒ ∃out ′ . out ′ = a′[z] ∧ out ′ = a[z])

The result ∃out . φ∧ψ of Alg. 4 is now solved for a′. The only free variables refer
to the states of the systems. Bound variables out and out ′ can be eliminated by
merging equalities over out and out ′:

a′[y] = contains(ys, y) ∧ (∀z . y �= z =⇒ a′[z] = a[z])

The first conjunct therefore provides the update for a′[y], whereas the second
conjunct of φ states that a′[z] should not be changed at indices other than y.
After applying the axioms over the theory of arrays we get as result the following
equality, which pattern matches the expected shape in line 4:

QE(∃out . φ) ⇐⇒ (a′ = a[x := contains(ys, x)])

This transformation requires to “reverse-apply” the axiom of extensionality,
i.e., switch from the pointwise comparison of a and a′ to an equality between
the entire arrays. Note that while in general quantifier elimination is difficult,
our current implementation has a limited, but often sufficient, support that can
be extended by supplying rules to the underlying SMT-based theorem prover.

While OpA Alg. 4 predict future outputs of OpA for input y, Alg. 5 exe-
cutes OpA on the state where xs = cons(y, ys) to obtain the current output of
OpA for the same y. The generated constraint simply expresses that the output
of OpC has to match. For hasElement we obtain the following formula:

∃out . (contains(cons(y, ys), y) = out) ∧ (a[y] = out)

Unfolding the definition of contains and simplification produces true = a[x],
which is then used as the “body” of the inductive case of R in (3).

6 Evaluation

We have implemented the approach in a prototype CHC solver called AdtChc3,
relying on AdtInd [55] as an inductive prover, which in turn uses the Z3 [40]
SMT solver to quickly perform the satisfiability checks over uninterpreted func-
tions and linear arithmetic that are needed at various solving stages. AdtChc
automatically determines the appropriate synthesis recipe through analyzing the
3 The tool and benchmarks are available at https://github.com/grigoryfedyukovich/

aeval/tree/adt-chc.

https://github.com/grigoryfedyukovich/aeval/tree/adt-chc
https://github.com/grigoryfedyukovich/aeval/tree/adt-chc

Bridging Arrays and ADTs in Recursive Proofs 37

syntax of the program (i.e., presence of index variables) and is able to successfully
find relational invariants and prove them valid for all considered benchmarks.

We have evaluated the approach from Sect. 3 on different realizations of
text-book data structures. The evaluation aims at answering two questions. Is
the approach effective in the first place to discover suitable relational invariants,
and how well can the necessary induction proofs be automated? The latter is
relevant since Alg. 1 crucially depends on Validate in its refinement loop.

All our benchmarks require recursive invariants. They fall into two cate-
gories. First, stacks and queues from Sect. 4 (with variations that store values
only to even indexes of the array) are solved based on linear scan. Second,
sets, multisets, and maps, (that differ in whether, e.g., duplicate elements are
stored in the respective lists) are solved with the approach in Sect. 5. We in-
clude such variations to reflect different trade-offs when designing specifications,
and to demonstrate that our technique is reasonably flexible. The only user-
provided lemma was required for the multiset benchmark (marked ∗ in Table 1):
∀ a, xs. num(a, xs) = 0 =⇒ remove(a, xs) = xs.

Table 1: Invariant synthesis timings.

Benchmark Variant Time (s)

Stack Fig. 1 2.81
Stack even cells 2.79
Queue ordinary 40.61
Queue even cells 42.18

Set Fig. 3 2.12
Set no duplicates 19.24
Multiset∗ with remove 32.62
Multiset with clear 3.59
Map duplicates 1.95
Map no duplicates 5.83

The results from the evalua-
tion4 of both groups of benchmarks
(resp., recipes used) are shown in
Table 1. The choice which recipe to
use was made by the tool itself at
synthesis time. Total time (in sec-
onds wall-clock) is entirely domi-
nated by proof search in AdtInd,
and includes the time for SMT
queries. We remark that the time
to synthesize the relational invari-
ant is negligible in comparison to
the proof time (and the proof time
is often proportional to the number
of internal SMT calls).

Most proofs are found using the default proof strategy (the same for every
benchmark) within 20s. This is caused by the large proof search space created
by a combination of array simplification and forward rewriting. We have also
tested our tool of buggy implementations, e.g., in which the consumer opera-
tions are correct (and can be used for correct guesses of relational invariants),
but producers are not. Expectedly, the tool is unable to synthesize a relational
invariant for the whole systems in these cases.

We have already presented the relational invariants found for the stack (2),
for the stack variant that stores to even array indices only, counter n is de-
creased by 2 instead of 1 in the recursive call as expected. Relational invari-
ant R(xs ,m, n, a) for the queue benchmarks keeps two indices into the array a,
depending on the variant, the first element of the list xs is found at a[m] or a[n]

4 The evaluation was conducted on MacBook Pro, Processor: 2 GHz Intel Core i5,
Memory: 8 GB 1867 MHz LPDDR3, MacOS v10.14.6.

38 G. Fedyukovich and G. Ernst

and the recursion either increases m or decreases n. The relational invariants
for the multiset and map examples are analogous. All necessary lemmas are
automatically discovered and proved by AdtInd, as an example for the set
benchmarks: ∀ xs, s, x. R(xs, s) =⇒ contains(x, xs)=s[x].

7 Related Work

Although there exist automated techniques to synthesize relational invariants,
nothing was proposed to deal simultaneously with ADTs and arrays. Conceptu-
ally, our approach is related to SimAbs, an SMT-based algorithm to simulation
synthesis [18]. SimAbs exploits a space of possible simulations and (dis-)proves
them using an off-the-shelf decision procedure. Guesses for simulation relation
are obtained also from the source code, by matching variables from two pro-
grams. Alternatively, simulation relations can be inferred from test runs [49] or
through translation validation [41]. Our approach allows dealing with objects
(not just imperative code) and contributes several novel strategies for guessing
and proving non-trivial simulation relations.

Discovery of invariants to relate the behaviors of two programs or other ways
of establishing program equivalence is an active research area [5,14,22,23,39,44,
51]. These approaches typically reduce the relational verification problem to a
safety verification problem and rely on the existing tools—often, solvers for con-
strained Horn clauses (CHC). Currently, since ADTs and arrays are challenging
for the underlying solvers, the applicability of the approaches to our tasks are
also limited. There are decision procedures for abstraction of ADTs to lists, sets,
and multisets [52], however, these apply to certain predefined abstractions only.

Our approach can be seen as an application of Syntax-Guided Synthesis (Sy-
GuS) [2]. Strategies dependent on types of benchmarks essentially represent sets
of syntactic templates filled iteratively and checked using an SMT solver. SyGuS
is successfully used also in CHC solving [19,21] and in lemma synthesis [46,47,55].
There are only a few approaches [21, 28, 31, 55] that apply SyGuS to synthesize
formulas over ADTs or arrays/quantifier. Data-driven approaches are comple-
mentary to such syntax-based approaches, e.g., [38]. Neither deals with arrays,
quantifiers, and ADTs at the same time.

Unno et al. [53] support recursive predicates, by taking the least solution
of initialization and consecution as the definition of R, however, this may lead
to rather cumbersome inductive cases (e.g., for pop in the stack). We avoid
the problem by basing the recurrence scheme on the data structure, and infer
constraints that are well aligned to that scheme from the operations. Jennisys [34]
tackles the related problem of generating recursive implementations from an
abstract model, where the simulation relation is given.

More generally, the problem addressed in this work relates to the idea of
step-wise refinement, originally conceived by [16] and [54] as a guideline to orga-
nize software development and later studied extensively in a formal setting for
rigorous assessment of functional correctness (e.g., [1, 4, 15, 25, 29, 33, 36]). The

Bridging Arrays and ADTs in Recursive Proofs 39

standard proof technique relies on simulation relations [37] that couple the two
state spaces, which is directly reflected in the CHC system of Def. 1.

Many methods and tools support development using formal refinement [1,4,
8,17,26,29,33,45]. Large-scale verification projects that are based on refinement
include seL4 [30], FSCQ [10], Flashix [48], and CompCert [35], with high human
effort involved. Correct-by-construction correspondence between low-level code
and high-level data types helps to some extent in, e.g., [13] and Cogent [3]. Re-
cent work on “push-button” verification includes a verified TLS library [12], AWS
C Common library [11], file system [50], a hyperkernel [42], network functions [56],
where the high degree of proof automation is in part achieved by statically
bounding the state space of the systems. The latter work [56] specifically notes
how non-experts can formulate high-level correctness requirements (their speci-
fications are written in Python), as evidence that refinement-based approaches
may ultimately overcome the “specification bottleneck” [6, 43].

8 Conclusion and Outlook

We have demonstrated an approach that can fully automatically synthesize and
prove relational invariants over recursive data types and arrays. The approach
is based on introducing quantifiers and recursion into the definition of such
relations in a systematic way, and by instantiating this schema with constraints
from joint transitions of the two systems. A somewhat surprising insight was
that it is useful to view such transitions both forward and in reverse, leading to
the classification into producers and consumers as a guideline for the search.

We have presented a general synthesis algorithm and two concrete instan-
tiations for different data structures of different sorts. The approach is fully
automatic in guessing a relation and proving it correct. It relies on the recently
developed CHC solver called AdtChc which in turn is based on an SMT-based
theorem prover AdtInd featuring a support for arrays, quantifiers and structural
induction. The approach is modular and can be extended by further synthesis
strategies in the future. In particular, since based on CHC techniques, it can be
integrated with other existing CHC solvers tailored to non-ADT reasoning, and
can be used in large-scale verification frameworks such as [24] that reduce the
safety verification to CHC tasks.

Many more interesting benchmarks lend themselves for further investigation:
positional insertion and removal of lists, amortized data structures, benchmarks
based on trees or nested arrays, and ultimately some real-world software systems.
With a growing search space, it becomes more important to quickly recognize in-
correct simulation relations, e.g., by evaluation-based counter-examples (cf. [31]),
to prevent costly proof attempts. Similarly, incorporating external tools for in-
variant generation is another topic for future work.

40 G. Fedyukovich and G. Ernst

References

1. J.-R. Abrial. Modeling in Event-B: System and Software engineering. Cambridge
University Press, 2010.

2. R. Alur, R. Bodík, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-Guided Synthesis.
In FMCAD, pages 1–17. IEEE, 2013.

3. S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb, L. O’Connor, J. Beeren,
Y. Nagashima, J. Lim, T. Sewell, J. Tuong, G. Keller, T. Murray, G. Klein, and
G. Heiserer. Cogent: Verifying high-assurance file system implementations. In
ASPLOS, pages 175–188. ACM, 2016.

4. R.-J. Back and J. Wright. Refinement calculus: a systematic introduction. Springer
Science & Business Media, 2012.

5. G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product
programs. In FM, volume 6664 of LNCS, pages 200–214. Springer, 2011.

6. C. Baumann, B. Beckert, H. Blasum, and T. Bormer. Lessons learned from mi-
crokernel verification–specification is the new bottleneck. In SSV, volume 102 of
EPTCS, pages 18–32. Elsevier, 2012.

7. D. Beyer and M. E. Keremoglu. CPAchecker: A Tool for Configurable Software
Verification. In CAV, volume 6806 of LNCS, pages 184–190. Springer, 2011.

8. E. Börger. The ASM refinement method. Formal Aspects of Computing, 15(2-
3):237–257, 2003.

9. A. Champion, N. Kobayashi, and R. Sato. HoIce: An ICE-Based Non-linear Horn
Clause Solver. In APLAS, volume 11275 of LNCS, pages 146–156. Springer, 2018.

10. H. Chen, D. Ziegler, A. Chlipala, N. Zeldovich, and M. F. Kaashoek. Using Crash
Hoare Logic for certifying the FSCQ file system. In SOSP. ACM, 2015.

11. N. Chong, B. Cook, K. Kallas, K. Khazem, F. R. Monteiro, D. Schwartz-Narbonne,
S. Tasiran, M. Tautschnig, and M. R. Tuttle. Code-level model checking in the
software development workflow. In G. Rothermel and D. Bae, editors, ICSE-SEIP,
pages 11–20. ACM, 2020.

12. A. Chudnov, N. Collins, B. Cook, J. Dodds, B. Huffman, C. MacCárthaigh, S. Mag-
ill, E. Mertens, E. Mullen, S. Tasiran, et al. Continuous formal verification of
Amazon s2n. In CAV, pages 430–446. Springer, 2018.

13. C. L. Conway and C. W. Barrett. Verifying low-level implementations of high-level
datatypes. In CAV, volume 6174 of LNCS, pages 306–320. Springer, 2010.

14. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Solving Horn Clauses
on Inductive Data Types Without Induction. TPLP, 18(3-4):452–469, 2018.

15. W.-P. de Roever and K. Engelhardt. Data refinement: Model-oriented proof meth-
ods and their comparison. Cambridge University Press, 1998.

16. E. W. Dijkstra. A constructive approach to the problem of program correctness.
BIT Numerical Mathematics, 8(3):174–186, 1968.

17. G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, and W. Reif. KIV: Overview
and VerifyThis competition. Software Tools for Technology Transfer (STTT),
17(6):677–694, 2015.

18. G. Fedyukovich, A. Gurfinkel, and N. Sharygina. Automated discovery of simula-
tion between programs. In LPAR, volume 9450 of LNCS, pages 606–621. Springer,
2015.

19. G. Fedyukovich, S. Kaufman, and R. Bodík. Sampling Invariants from Frequency
Distributions. In FMCAD, pages 100–107. IEEE, 2017.

Bridging Arrays and ADTs in Recursive Proofs 41

20. G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta. Solving Constrained
Horn Clauses Using Syntax and Data. In FMCAD, pages 170–178. IEEE, 2018.

21. G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta. Quantified Invariants via
Syntax-Guided Synthesis. In CAV, Part I, volume 11561 of LNCS, pages 259–277.
Springer, 2019.

22. D. Felsing, S. Grebing, V. Klebanov, P. Rümmer, and M. Ulbrich. Automating
regression verification. In ASE, pages 349–360. ACM, 2014.

23. B. Godlin and O. Strichman. Inference rules for proving the equivalence of recursive
procedures. Acta Informatica, 45(6):403–439, 2008.

24. A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The SeaHorn Verification
Framework. In CAV, volume 9206 of LNCS, pages 343–361. Springer, 2015.

25. J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In ESOP,
pages 187–196. Springer, 1986.

26. C. A. R. Hoare. Unified theories of programming. In Mathematical methods in
program development, pages 313–367. Springer, 1997.

27. H. Hojjat and P. Rümmer. The ELDARICA Horn Solver. In FMCAD, pages
158–164. IEEE, 2018.

28. J. P. Inala, N. Polikarpova, X. Qiu, B. S. Lerner, and A. Solar-Lezama. Synthesis
of recursive ADT transformations from reusable templates. In TACAS, Part I,
volume 10205 of LNCS, pages 247–263, 2017.

29. C. B. Jones. Systematic software development using VDM, volume 2. Prentice Hall
Englewood Cliffs, 1990.

30. G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an operating-system kernel. Communications of the ACM,
53(6):107–115, 2010.

31. E. Kneuss, I. Kuraj, V. Kuncak, and P. Suter. Synthesis modulo recursive func-
tions. In OOPSLA, pages 407–426, 2013.

32. A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-Based Model Checking for
Recursive Programs. In CAV, volume 8559 of LNCS, pages 17–34, 2014.

33. L. Lamport. Specifying systems: the TLA+ language and tools for hardware and
software engineers. Addison-Wesley, 2002.

34. K. R. M. Leino and A. Milicevic. Program extrapolation with Jennisys. In OOP-
SLA, pages 411–430, 2012.

35. X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

36. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. Transactions on
Programming Languages and Systems, 16(6):1811–1841, 1994.

37. R. Milner. An algebraic definition of simulation between programs. In IJCAI,
pages 481–489, 1971.

38. A. Miltner, S. Padhi, T. Millstein, and D. Walker. Data-driven inference of repre-
sentation invariants. In PLDI, pages 1–15, 2020.

39. D. Mordvinov and G. Fedyukovich. Property Directed Inference of Relational
Invariants. In FMCAD, pages 152–160. IEEE, 2019.

40. L. D. Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, volume
4963 of LNCS, pages 337–340. Springer, 2008.

41. K. S. Namjoshi and L. D. Zuck. Witnessing program transformations. In SAS,
volume 7935 of LNCS, pages 304–323. Springer, 2013.

42. L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt, E. Torlak, and
X. Wang. Hyperkernel: Push-button verification of an OS kernel. In OSDI, pages
252–269, 2017.

42 G. Fedyukovich and G. Ernst

43. P. W. O’Hearn. Continuous reasoning: scaling the impact of formal methods. In
LICS, pages 13–25. ACM, 2018.

44. L. Pick, G. Fedyukovich, and A. Gupta. Exploiting Synchrony and Symmetry in
Relational Verification. In CAV, Part I, volume 10981 of LNCS, pages 164–182.
Springer, 2018.

45. M.-L. Potet and Y. Rouzaud. Composition and refinement in the B-method. In
Proc. of the B Conference, volume 1393 of LNCS, pages 46–65. Springer, 1998.

46. A. Reynolds, H. Barbosa, A. Nötzli, C. W. Barrett, and C. Tinelli. cvc4sy: Smart
and Fast Term Enumeration for Syntax-Guided Synthesis. In CAV, Part II, volume
11562 of LNCS, pages 74–83. Springer, 2019.

47. A. Reynolds and V. Kuncak. Induction for SMT solvers. In VMCAI, volume 8931
of LNCS, pages 80–98. Springer, 2015.

48. G. Schellhorn, G. Ernst, J. Pfähler, D. Haneberg, and W. Reif. Development of a
verified Flash file system. In ABZ, volume 8477 of LNCS, pages 9–24. Springer,
2014. Invited Paper.

49. R. Sharma, E. Schkufza, B. R. Churchill, and A. Aiken. Data-driven Equivalence
Checking. In OOPSLA, pages 391–406. ACM, 2013.

50. H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang. Push-button verification
of file systems via crash refinement. In OSDI, pages 1–16, 2016.

51. O. Strichman and M. Veitsman. Regression verification for unbalanced recursive
functions. In FM, pages 645–658. Springer, 2016.

52. P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types
with abstractions. SIGPLAN notices, 45(1):199–210, 2010.

53. H. Unno, S. Torii, and H. Sakamoto. Automating Induction for Solving Horn
Clauses. In CAV, volume 10427 of LNCS, pages 571–591. Springer, 2017.

54. N. Wirth. Program development by stepwise refinement. Communications of the
ACM, 14(4):221–227, 1971.

55. W. Yang, G. Fedyukovich, and A. Gupta. Lemma Synthesis for Automating In-
duction over Algebraic Data Types. In CP, volume 11802 of LNCS, pages 600–617.
Springer, 2019.

56. A. Zaostrovnykh, S. Pirelli, R. Iyer, M. Rizzo, L. Pedrosa, K. Argyraki, and G. Can-
dea. Verifying software network functions with no verification expertise. In OSDI,
pages 275–290, 2019.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/

A Two-Phase Approach for
Conditional Floating-Point Verification

Debasmita Lohar1 (�), Clothilde Jeangoudoux1,
Joshua Sobel2, Eva Darulova1 , and Maria Christakis1

1 MPI-SWS, Saarland Informatics Campus, Saarbrücken and Kaiserslautern,
Germany, {dlohar,jeangoudoux,eva,maria}@mpi-sws.org

2 University of Rochester, Rochester, USA, jsobel3@u.rochester.edu

Abstract. Tools that automatically prove the absence or detect the
presence of large floating-point roundoff errors or the special values NaN
and Infinity greatly help developers to reason about the unintuitive nature
of floating-point arithmetic. We show that state-of-the-art tools, however,
support or provide non-trivial results only for relatively short programs.
We propose a framework for combining different static and dynamic
analyses that allows to increase their reach beyond what they can do
individually. Furthermore, we show how adaptations of existing dynamic
and static techniques effectively trade some soundness guarantees for
increased scalability, providing conditional verification of floating-point
kernels in realistic programs.

1 Introduction

Floating-point arithmetic is widely used across many domains, including machine
learning, scientific computing, embedded systems, and the Internet of Things.
Floating-point computations resemble real-valued arithmetic, but provide only
finite precision, which commits roundoff errors at potentially every operation.
While these errors are individually small, they propagate through an application
and can make its results meaningless [47]. In addition, floating-point arithmetic
features special values such as not-a-number (NaN) and Infinity [48]. As a result,
these computations are very challenging for developers to reason about and
debug manually. There is, therefore, a clear need for automated verification and
debugging techniques for such computations.

Unfortunately, today’s techniques do not handle realistic floating-point pro-
grams well. Consider for example a program that simulates the interaction of
several bodies under gravity. We took a C implementation of this N-body problem
from Rosetta Code [5], which takes as input the masses, positions and velocities
of—in our case—three bodies, and shows their evolution over a number of time-
steps. The entire program is moderately-sized with 108 lines of code. Suppose
that we want to verify the absence or presence of special floating values and
cancellation (i.e. large roundoff) errors in this program. None of the currently
available floating-point analysis tools is able to do this.
c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 43–63, 2021.
https://doi.org/10.1007/978-3-030-72013-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_3&domain=pdf
http://orcid.org/0000-0001-8639-4116
http://orcid.org/0000-0002-6848-3163

44 D. Lohar et al.

Listing 1.1. Snippet of Rosetta code N-body simulation

State-of-the-art static roundoff-error analysis tools [33,31,30,60,65,72] are in
principle capable of proving the absence of both special values and large roundoff
errors by computing an abstraction of the possible behaviors. However, they work
only on small programs, mostly consisting of a single function, and thus do not
work for our N-body example. The static tools that do scale [11,63,43] suffer
from large over-approximations due to abstractions and thus effectively cannot
prove the absence of issues either. Bounded model checking [52] or SMT decision
procedures [25] perform exact bit-precise reasoning, but do not scale enough due
to the complexity of floating-point arithmetic.

On the other hand, there exist dynamic analyses that search for concrete inputs
proving the presence of Infinities [38], NaNs or cancellation errors [10,21,78]. We
could not apply any of these tools on our example, to a large part because they, too,
have been designed for relatively small programs. More guided techniques such as
symbolic execution [57] rely on a back-end SMT solver, for which floating-point
theories have very limited scalability.

We evaluated representative available tools on a new collection of floating-
point benchmarks and get similar results for most of them (Section 5).

We observed that often only a relatively small part of a program performs
complex numerical computations—we call these parts the numerical kernels.
Existing state-of-the-art floating-point analyzers can be applied to these kernels,
provided that one can supply a precondition that bounds the kernel’s input ranges
(their minimum and maximum values). Obtaining such preconditions manually is
challenging, since the kernels are usually nested in loops as functions. Listing 1.1
shows a subset of the N-body example; the numerical kernel that we identified is
on line 9, nested behind several for-loops and function calls.

Based on this observation, we propose a two-phase analysis that combines
different program analyses to conditionally verify the absence of special values
and cancellation errors in numerical kernels ‘concealed’ in large programs. First,
we employ a scalable program analysis to infer the ranges of a kernel’s inputs in

1 int main(int argc, char* argv[]) {... // Reads masses, positions and velocities

2 for(int i=0; i<timeSteps; i++) { simulate(mass, pos, v); ...}

3 }

4 void simulate() { compute_accelerations(mass, pos); ...}

5 void compute_accelerations(double mass[], vector pos[]){

6 for(int i=0;i<bodies;i++){ ...

7 for(int j=0;j<bodies;j++) {if(i!=j) {

8 acc[i] = numerical_kernel(mass[j], pos[i], pos[j], acc[i]);}}}}

9 vector numerical_kernel(double mass, vector pos_i, vector pos_j, vector acc) {

10 return addVectors(acc, scaleVector(g*mass/pow(mod(subtractVectors(pos_i,pos_j)),3),

subtractVectors(pos_j,pos_i))); // compute acceleration

11 }

A Two-Phase Approach for Conditional Floating-Point Verification 45

the context of the containing application. In the second phase a different program
analysis assumes these ranges to verify the kernels.

The main insight behind this combination is that the first scalable analysis
does not need to perform sophisticated floating-point reasoning; the domain
specifications required for the second numerical analysis need to only capture
input ranges of variables.

The main challenge in our two-phase analysis is the first phase where our
objective is to infer the ranges of the kernel inputs automatically. We first
attempt to verify the numerical kernels fully soundly. Hence, we utilize abstract
interpretation to infer sound ranges of kernel inputs. In case it is unable to infer
useful (finite) ranges for the kernels, we propose to adapt existing blackbox and
greybox fuzzing techniques [12], and evaluate them in their ability to produce
large kernel input ranges capturing as many feasible inputs as possible.

After inferring the kernel ranges, the second phase utilizes a slightly adapted
existing static and sound roundoff error analysis [30] to verify the kernels. In
case this analysis produces warnings for special values, we additionally utilize
SMT-based bounded model-checking [52] to check for spurious warnings.

Although there is a large body of work on combining different program
analyses, our goal of analyzing real-world applications to verify their numerical
kernels is novel. Our combination is specifically tailored to this setting, by
considering the intricacies of floating-point arithmetic and the limitations of
today’s analysis techniques in reasoning about them.

Using a dynamic analysis in the first phase means that we are only able to
infer approximations of the kernel input ranges. Consequently, we can verify
the kernels only conditionally, because the verification is performed under the
assumption that the input-domain specifications precisely describe possible values
of the kernel inputs. Thus, we take a practical standpoint and relax the soundness
guarantees in favor of wider applicability of today’s static floating-point roundoff-
error verification techniques.

Our evaluation shows that for 16 out of 24 kernels, this approach is able to
verify that no special floating-point values occur; for 3 of those kernels, verification
is sound. For 14 kernels, we additionally show the absence of cancellation errors
that are a main cause of large roundoff errors.

Contributions To summarize, our paper makes the following contributions:

a) a two-phase framework that combines dynamic and static analyses to condi-
tionally verify the absence of floating-point special values and large roundoff
errors in kernels,

b) a novel guided blackbox fuzzing technique to infer kernel ranges, implemented
in an open-source prototype tool called Blossom, and

c) an evaluation on a new benchmark set of mid-size numerical programs.

Our benchmarks, the tool Blossom as well as scripts of all of our experiments are
available at https://github.com/dlohar/blossom.

https://github.com/dlohar/blossom

46 D. Lohar et al.

Whole Program Analyzer

Abstract Interpretation
program P +

kernels K +

input bounds I
[−∞, + ∞] kernels K +

ranges R

Numerical Kernel Analyzer

Static Program Analysis

, NaN

warnings
∞

trace / warnings

+

large round-off
Blackbox Fuzzing

Guided Blackbox
Fuzzing

Greybox Fuzzing

Static Program Analysis

Fig. 1. Overview of our approach

2 A Two-Phase Approach

Figure 1 shows an overview of our two-phase approach that strives to increase
the reach of existing floating-point analyses of floating-point numerical kernels.
Our key observation is that such kernels appear in real-world applications from a
variety of domains, but they are often ‘hidden’ behind several function calls and
other non-numerical code that the round-off analyzers cannot handle. The first
phase infers bounds on the input variables of a set of numerical kernels K that
have been identified by a user in a program P. In the second phase, we utilize
these ranges to (conditionally) verify the kernels, i.e. to (conditionally) prove the
absence of special values and large roundoff errors.

An alternative strategy would be to identify the largest kernel input ranges
for which correctness can be guaranteed. However, even if one could infer such
preconditions (we are not aware of a tool that performs such a backward analysis),
our techniques for the first phase would still be needed to determine whether the
program can execute the kernels on inputs outside of the safe ranges.

2.1 First Phase: Whole Program Analysis

In the first phase we have a whole program analyzer that, starting from the
program inputs constrained by I, infers bounds R on the kernel inputs auto-
matically. These bounds are crucial, as the presence of cancellations and special
values directly depends on the ranges of possible values; an unbounded input
range will, in general, also lead to unbounded roundoff errors and special values.

To obtain the kernel ranges, we need to analyze the entire program. In
general, it is infeasible to compute the exact ranges, so that we want to approxi-
mate them. We propose to first use a sound static analysis, which computes an
over-approximation of the true ranges. They thus cover all feasible inputs, but
additionally also spurious ones, so we want these ranges to be as tight (small) as
possible. If the abstractions necessarily performed by the static analyzer become
prohibitively large, we propose to use dynamic analysis to compute an unsound
approximation of the kernel ranges. These ranges should be as wide as possible
to capture as many concrete executions as possible.

A Two-Phase Approach for Conditional Floating-Point Verification 47

Sound Static Analysis We choose abstract interpretation [26] and specifically the
industry-strength analyzer Astrée [63] to infer a sound over-approximation of the
kernel ranges, as Astrée scales for large programs with complex code and data
structures and comes with a variety of abstract domains.

The choice of the abstract domain in Astrée is, in general, a trade-off between
the amount of over-approximation and the analysis running time. The interval
domain abstracts a set of concrete variable values by their lower and upper
bounds: [x, x] := {x | x ≤ x ≤ x}. While operations on interval arithmetic [64]
are efficient, intervals cannot capture correlations between variables and therefore
over-approximate the real behavior (e.g. x − x �= 0 in interval arithmetic).
Nonetheless, for our benchmarks we have not observed any noticeable difference
in the results with more sophisticated domains (e.g. octagon). This is likely due
to our benchmarks having many nonlinear operations. Hence, we choose the
interval domain as the numerical abstract domain for our purpose.

Dynamic Analysis Fuzzing finds inputs that demonstrate certain (unwanted)
behavior. We propose to fuzz a program and at the same time monitor the kernel
inputs to record the lower and upper bounds seen during concrete executions.

We instrument each user-specified kernel in the program with a kernel monitor
that keeps track of the smallest and largest value seen for each kernel input.
We repeatedly execute the instrumented program and report the minimum and
maximum values seen for each kernel input over all executions. This approach
crucially depends on the choice of program inputs that are used for fuzzing. We
propose and experimentally compare blackbox, guided blackbox, and directed
greybox fuzzing [12] as methods for input selection in Section 6.

Blackbox fuzzing is a naive but effective technique in many testing situations.
In our setting, the blackbox fuzzer randomly draws inputs from the program
ranges I, i.e. without any reference to the internal structure of the program.

We further propose guided blackbox fuzzing that is guided toward enlarging
the kernel input ranges. For this, the program input generator records those
inputs that have widened the kernel ranges, and randomly generates new inputs
that are within a certain (small) distance from these, in the hope that the new
inputs would enlarge the monitored ranges even further.

While blackbox techniques are straightforward to implement, they do not take
into account the program structure. We thus evaluate an adaptation of directed
greybox fuzzing, implemented in the the state-of-the-art tool AFLGo [12] that can
be directed toward specific program locations, while exploring as many different
paths in the program as possible. We first fuzz the program to obtain an initial
estimate for the kernel input ranges with AFLGo (targeting the kernel). Then,
we employ AFLGo in a refinement loop that iteratively attempts to widen the
currently seen kernel input ranges. We instrument the kernels with conditional
statements that check whether a kernel input is outside of the current kernel
range. We use this conditional statement as a target for AFLGo, effectively
directing it to find kernel inputs that are outside of the current estimate. If
AFLGo finds a program input that widens the current kernel input range, we
update it accordingly and iterate the process until a user-defined timeout.

48 D. Lohar et al.

2.2 Second Phase: Numerical Kernel Analysis

With the ranges (R) inferred in the first phase, we analyze the user-identified
numerical kernels (K) in the second phase with a static analyzer. Our objective
in the second phase is to either show the absence of special floating-point values
and large roundoff errors in a kernel or to generate warnings for the potential
presence of such values.

We use the sound floating-point roundoff analysis tool Daisy [30], which
automatically proves the absence of special values and computes an absolute
error bound for each kernel output. When Daisy generates a warning that special
values can potentially occur, we use a SAT/SMT-based model checker that
performs exact floating-point reasoning and that can identify spurious warnings.

By itself, the error bound on the kernel output is not particularly helpful,
however, since we do not know how this error propagates to the end of the
program (although there exist scalable analyses that potentially can compute
this information, e.g. [61]). That said, for many numerical applications the exact
error bound is not important, since the algorithm itself is already approximate.
For these applications, it is thus sufficient if we can show that the roundoff
errors are not too large. We thus modify Daisy to report a warning when it
detects a possible cancellation, i.e. when an arithmetic operation increases the
relative error significantly (e.g. when two values that are close in magnitude get
subtracted [42]). Additionally, Daisy includes an optimization procedure that can
improve the accuracy of the kernels by rewriting the arithmetic expressions to
commit smaller roundoff errors. We provide more details in Section 4.

2.3 Soundness Guarantees

To summarize, using the extended Daisy analysis, we can conditionally verify
that kernels do not result in any NaN or Infinity, and that they do not commit
cancellation errors, i.e. lead to large roundoff errors. When the kernel input ranges
are computed soundly using abstract interpretation (e.g. Astrée), our verification
is conditional in that we only verify the absence of cancellations for the kernels,
but not for the rest of the program.

When the ranges are computed using dynamic analysis in the first phase,
they include more concrete values than the fuzzer witnessed. Values between the
lower and upper bound are not necessarily observed by the fuzzer, and are also
not necessarily feasible. If one were to consider only values witnessed at runtime,
then it would be possible to analyze kernels for individual traces, although this
would be quite expensive [10]. However, if we can soundly show that no special
values or large roundoff errors (cancellations) occur inside a kernel for a given
input range, we have shown this for more executions than can be explored by
dynamic testing in general (since there are usually too many floating-point values
to explore exhaustively). Unlike for a NaN or Infinity that are obvious to detect,
cancellation cannot, in general, be detected by inspecting the computed results
and thus our combination is valuable.

A Two-Phase Approach for Conditional Floating-Point Verification 49

3 First Phase: Whole Program Analysis

Abstract Interpretation with Astrée We utilize Astrée as it scales for large C
programs with complex code and data structures. We add wrapper functions
to provide bounds for global variables, since Astrée does not assume ranges
for global variables directly. We further annotate the kernels K with Astrée’s
__ASTREE_log_vars() construct. This construct records the range information that
Astrée logs about the kernel inputs at the entry of the kernels.

Note that the analysis of Astrée can be extensively parameterized with the
knowledge of the program under analysis. Although this makes the analysis even
more precise, it requires vast manual effort and knowledge of the intricacies of
the program. To avoid this, we parameterize Astrée as generically as possible.
We only use semantic loop unrolling until a defined loop bound to reduce the
over-approximation in the analysis for all benchmarks.

Blackbox Fuzzing with Blossom We implement our novel blackbox fuzzing for ker-
nel range computation in a tool we call Blossom. Blossom works by instrumenting
the program to be analyzed. Blossom is implemented as an LLVM pass and works
on C, C++, and Rust input programs with complex programming constructs
and data types (and would work for any programming language that compiles to
LLVM). Blossom takes as input the program P , a configuration file that specifies
the ranges of program inputs, the fuzzing technique that we want to execute
(standard or guided blackbox), and a timeout. The LLVM pass automatically
instruments P by inserting code that performs the indicated fuzzing process until
the specified timeout, and records the ranges of kernel inputs.

In order to perform vanilla blackbox fuzzing, the code is instrumented with an
input generator that utilizes the srand() function with distinctive seeds to randomly
generate values of program inputs from the set of input bounds I. This process
is continued until the specified timeout.

Guided Blackbox Fuzzing with Blossom Algorithm 1 shows our guided blackbox
fuzzing algorithm for generating program inputs to maximize kernel ranges. The
algorithm is also implemented via LLVM-pass instrumentation in Blossom.

The inputs to Algorithm 1 are the program P with an identified set of kernels
K, a set of n program input ranges (I), and a timeout (T). The algorithm is also
parameterized by the number of mutations m and a constant c that determines
the neighborhood radii for all program inputs from which mutants (new program
inputs) are drawn. The algorithm returns a set of kernel ranges [{Rlo}, {Rhi}]
(line 16). The goal is to compute the interval [{Rlo}, {Rhi}] as wide as possible.

The algorithm keeps an input queue Q, which stores program inputs on which
the program is to be executed. If Q is empty, m new random inputs taken from
the program input ranges I are added to it (line 6–7). If Q is not empty, the
algorithm first dequeues one valuation of all the program inputs {v1, · · · , vn}
from Q (line 9), and executes the program P on these program inputs. During
the execution of the program, the kernel monitor checks the kernel inputs and
updates the kernel ranges as it is done in vanilla blackbox fuzzing (line 10). If the

50 D. Lohar et al.

Algorithm 1 Guided Blackbox Fuzzing
1: procedure guided-blackbox(P, I, K, T , m, c)
2: Q ← φ, {Rlo} ={DBL_MAX}, {Rhi} ={DBL_MIN}
3: {r1, · · · , rn} ← computeRadii(I, c) � generates mutation radii
4: while T �= 0 do
5: if Q == φ then
6: for i from 1 to m do
7: Q ← enqueue(generateRandomInput(I)) � generates random inputs
8: else
9: {v1, · · · , vn} ← dequeue(Q)

10: [{Rlo}, {Rhi}] ← executeAndmonitorKernels(K)
11: if (kernelRangeUpdated([{Rlo}, {Rhi}])) then
12: for i from 1 to m− 1 do
13: {d1, · · · , dn} ← mutate(v1 ∓ r1, · · · , vn ∓ rn)
14: Q ← enqueue({d1, · · · , dn})
15: Q ← enqueue(generateRandomInput(I)) � avoids local max/min
16: return [{Rlo}, {Rhi}] � returns kernel input ranges

kernel ranges were updated, i.e. we found an input that led to the kernel input
being outside of the currently known range, we generate m− 1 mutants from a
program input {v1, · · · , vn} by randomly drawing inputs from its neighborhood
v1 ∓ r1, · · · , vn ∓ rn and add them to the queue (line 12–14). (We draw mutants
randomly from the neighborhood to reduce the possibility of duplicate program
inputs.) The neighborhood, i.e. maximal distance of a mutant to the original
program input, is defined by the neighborhood radii {r1, · · · , rn} (computed
once on line 3) that depend on the width of each input range. Effectively, if an
input range is large, then we will draw mutants from a larger neighborhood as
well. This step enables to search in the neighborhood of the inputs that enlarged
the ranges of the kernels recently. Then, we generate one random input for all
variables in the whole input range (line 15). This step ensures that we do not
get stuck in a local maximum or minimum. The whole process is repeated until
timeout T .

4 Second Phase: Static Analysis with Daisy and CBMC

Next, we use the computed kernel ranges R as kernel input specifications (pre-
conditions) and adapt the state-of-the-art roundoff-error analyzer Daisy [30] to
verify the absence of cancellation errors and special float values. The translation
of kernels and the precondition annotation to Daisy’s input language in Scala is
currently done manually, but could be automated in the future.

Daisy’s core roundoff-error analysis performs a forward dataflow analysis. It
computes ranges and worst-case absolute error bounds for each intermediate arith-
metic (abstract syntax tree) expression using the interval and affine arithmetic
abstract domains. As part of this analysis, it checks for overflows and invalid

A Two-Phase Approach for Conditional Floating-Point Verification 51

expressions that could lead to NaN values, as their absence is a prerequisite for a
meaningful roundoff-error computation.

We extend Daisy to check at every intermediate expression for a possible
cancellation, using the ranges and absolute error bounds that Daisy computes
by default. At each binary arithmetic operation, we compare the relative errors
of the operands with the relative error of the binary operation result. If the
relative error increases more than a given factor, we report an error. We compute
the relative error for an intermediate expression x as the ratio of its worst-case
absolute error bound divided by the smallest value that the range of x contains.
When the range of x ([x]) contains zero, we divide instead by some small constant
c, Δx

max(c,min([x])) , to make relative errors always well-defined. While this does not
compute a sound bound on the relative error, this is not needed for our purpose,
since we are only interested in a relative comparison.

With this extension, we can prove for each kernel and the specified kernel
input ranges, that cancellation and special values do not occur (but we cannot
prove their presence). When Daisy cannot show this, it issues a warning with
the possibly problematic intermediate expression. Spurious warnings for special
values can be checked with a tool that performs exact reasoning, e.g. CBMC [52],
and which reports a counterexample trace to the user who can use this trace to
confirm whether the warning is genuine and if so, for debugging.

Optimizing the Kernels Daisy furthermore provides a rewriting optimization that
finds an ordering of an arithmetic expression for which it can show a smaller
(absolute) roundoff error [32]. The rewriting relies on the fact that floating-point
arithmetic is not associative and distributive and hence different evaluation
orders commit errors of different magnitudes. Daisy’s algorithm uses real-valued
identities such as associativity and distributivity to rewrite the expression. Using
this optimization, we can thus locally improve the accuracy of the numerical
kernels.

5 State of the Art on Real-World Programs

We collected a new set of real-world numerical programs from different application
domains, as existing floating-point benchmark sets [29] cover kernels only. We
first report on our experiments using existing representative state-of-the-art tools
on these benchmarks, before evaluating our approach in Section 6.

Benchmarks All our benchmark programs are existing programs collected online
from a variety of domains such as scientific computing simulations (nbody, pendulum,
lulesh, reactor, molecular), physics algorithms (fbench, arclength), numerical methods
(linpack) and machine learning (linearSVC). Table 1 provides an overview of the
size and complexity of our benchmarks, as well as the number and arithmetic
complexity of the kernels that we chose for verification. We also count the number
of trigonometric operations (implemented in library functions) in the kernels,
and the ‘depth’ column shows the number of function calls needed to reach the
kernels from program entry.

52 D. Lohar et al.

benchmark lang. LOC #in. #func. #loops
kernels

#arith op. #trig. op. depth

arclength [68] C 31 1 1 2 1 20 5 1
linearSVC [8] C 32 4 1 3 1 7 - 1
raycasting [6] C 94 2 4 3 1 4 - 4
nbody [5] C 108 21 10 9 2 9, 22 -,- 2, 2
pendulum [2] C 141 4 11 8 2 24, 42 2,11 4, 2
fbenchV2 [1] C 215 8 2 5 2 6, 14 -,5 2, 2
molecular [4] C++ 323 3 8 13 3 8, 12, 11 -,-,3 1,1, 1
fbenchV1 [1] C 380 8 10 8 4 19, 6, 14, 36 -,-,5,- 5, 2, 2, 3
reactor [7] C++ 467 4 11 2 3 14, 11, 13 -,2,2 2, 0, 1
linpack [3] C 544 5 12 31 1 8 - 2
lulesh [51] C++ 2187 5 43 74 4 109, 77, 14, 41 -,-,-,- 6, 7, 6, 7

Table 1. Benchmark statistics

These benchmarks are single-threaded C or C++ floating-point programs
with arrays, structures, branching, loops, and function calls (we translated the
pendulum benchmark manually from Python to C). We modified the benchmarks by
replacing dynamic memory allocation, pointer arithmetic, and I/O operations as
appropriate, since these are challenging for most program analyses. We considered
two versions of fbench: one with user-defined trigonometric functions (V1) and
380 LOC, and another with their library versions (V2). We specified bounds on
the program inputs manually and identified a set of numerical kernels containing
a large number of arithmetic operations.

State of the Art We first evaluate existing state-of-the-art tools on our benchmark
set. For this, we choose CBMC, Astrée and AFLGo as representatives for model
checking, abstract interpretation and directed greybox fuzzing, respectively. To
the best of our knowledge, AFLGo was not used for floating-point debugging
before. These tools check for assertion violations, so we have added assertions to
our chosen kernels to check for absence of Infinity and NaN using the standard
library functions isinf and isnan.

We do not include a deductive verifier (e.g. [24]) in this comparison, because
it requires detailed user annotations of every function. None of the state-of-
the-art static roundoff-error analysis tools [43,33,31,30,60,65,72] work on the
whole applications in our benchmark set. Available dynamic analyses for finding
large roundoff errors [10,21,77,21,78,44] or special values [38,57,9] also work only
on smaller programs (often restricted to kernels). Only the dynamic-analysis
tool FPDebug [10] has been shown to scale beyond numerical kernels, but
unfortunately the code has not been actively maintained over the years.

All experiments are done for 64-bit precision and on a Debian server system
with 2.67GHz and 50GB RAM. We have used CBMC version 5.12 with MiniSat
2.2.0 (we have observed in our preliminary experiments that CBMC performs

A Two-Phase Approach for Conditional Floating-Point Verification 53

better with MiniSat), Astrée’s linux64_b5162300_release and AFLGo downloaded on
June 9, 2020. We have set a 1-hour time budget for all experiments and unrolled
all loops for 50 iterations for both CBMC and Astrée.

With CBMC and Astrée, we are able to prove the absence of special float
values in linearSVC and rayCasting, two of the smallest benchmarks. Additionally,
Astrée also proves the absence of special values in kernels 1 and 5 in fbenchV1.
For all other C benchmarks (Astrée does not work on C++ programs), Astrée
generates warnings for the potential existence of special values. With AFLGo,
however, we do not find any special values within the time limit.

For the nbody and pendulum benchmarks, we originally had larger program input
ranges. For these, AFLGo was able to show the presence of special values in the
kernels, suggesting that greybox fuzzing is effective for detecting special values.
For the subsequent experiments, we have used tighter program input ranges to
avoid special values.

6 Evaluation of our Two-Phase Approach

We next evaluate our two-phase approach. For a fair comparison with the state-of-
the-art tools, we designate a 1-hour time limit for the entire analysis, allocating
50 minutes for generating the kernel ranges and 10 minutes for the kernel analysis.
We have empirically evaluated the effect of the time limit and observed that
increasing the time does not affect the results of our benchmarks, but a smaller
time limit led to worse results.

Computing Kernel Ranges The main step is the computation of the kernel
ranges. We compare the kernel ranges obtained with blackbox fuzzing (BB),
guided blackbox fuzzing (GBB) (both implemented in Blossom), AFLGo with
our iterative widening (AFLGo), and a combination of BB and AFLGo iterative
widening (BB+AFLGo). We have empirically determined that with 5 mutants
GBB performs the best for all our benchmarks. For AFLGo, we first fuzz the
program for 5 minutes and then run our iterative widening that employs the
fuzzer in a refinement loop to widen the so-obtained ranges (see Section 2.1) for
the next 45 minutes. For BB+AFLGo, we use Blossom’s blackbox fuzzing for 25
minutes to generate the initial ranges. On these ranges, we use our range-widening
technique with AFLGo for the next 25 minutes.

To compare the obtained kernel ranges, we first compute the width of each
kernel range (x− x) and show in Table 2 the average width over all kernel inputs
and over 5 runs with different random seeds. For our dynamic analyses, we want
to maximize the kernel ranges to cover as many kernel inputs as possible.

We also add the sound over-approximated ranges computed by Astrée, when-
ever these are available. While Astrée produces a warning inside the arclength

kernel, it still computes a finite range for the kernel input.
In 5 out of the 7 kernels where Astrée finds non-trivial ranges, our fuzzing

techniques also compute ranges that are close to Astrée’s. They are even equal
in the case of rayCasting. In the other 2 cases, Astrée reports big ranges whereas

54 D. Lohar et al.

benchmark kernel #vars
avg range width kernel

Astrée BB AFLGo BB+AFLGo GBB analysis

arclength 1 1 6.16e+4 3.14 3.14 3.14 3.14 �

linearSVC 1 4 3.73 3.73 3.71 3.72 3.73 (�)
rayCasting 1 5 12.20 12.20 12.20 12.20 12.20 �

nbody
1 6 ∞ 1.09e+5 6.67e+4 1.21e+5 1.02e+8 �

2 9 ∞ 1.25e+4 8.45e+3 1.19e+4 8.91e+6 �

1 4 ∞ 14.80 12.86 14.82 14.56 �
pendulum

2 5 ∞ 22.38 17.61 22.39 22.16 �

fbenchV2
1 5 24.60 20.46 20.46 20.46 20.46 �

2 5 ∞ 21.36 21.36 21.36 21.36 �

1 1 403.00 0.18 0.18 0.18 0.18 �

2 5 20.50 20.46 20.46 20.46 20.46 �

3 5 ∞ 21.36 21.36 24.76 21.36 �
fbenchV1

4 1 1.57 1.54 1.54 1.54 1.54 �

linpack 1 8 ∞ 3.60e+6 4.44e+3 3.60e+6 2.11e+269 �

1 4 � 9.04 9.04 9.04 9.04 �

2 6 � 1.86 1.86 1.86 1.86 �molecular

3 7 � 12.88 12.88 12.88 12.88 �

reactor

1 1 � 1.00 1.00 1.00 1.00 �

2 6 � 1.43e+2 9.35e+1 1.43e+2 1.46e+2 �

3 1 � 2.50 2.50 2.50 2.50 �

1 24 � 4.97 4.80 4.97 4.95 (�)
2 18 � 6.09 5.51 5.50 5.89 �

3 9 � 3.48 3.09 3.42 3.25 �
lulesh

4 12 � 5.95 5.49 5.93 5.77 �

Table 2. Comparison of kernel ranges generated by different techniques and settings

all fuzzing techniques compute smaller ranges with the same width, suggesting a
possible large over-approximation of Astrée’s ranges (or the inability of fuzzers
to discover new kernel inputs within the time limit).

In the other cases, when Astrée finds unbounded ranges or does not work, we
observe that for all but 3 kernels, all four fuzzing techniques compute very similar
range widths. For 3 kernels, however, GBB finds significantly larger ranges, thus
discovering kernel inputs that the other methods are not able to find. We thus
conclude that guided blackbox fuzzing appears to be most suitable for computing
kernel ranges in our benchmarks, as it can discover apparent outliers.

AFLGo often computes the smallest ranges. Our hypothesis is that because
AFLGo aims to maximize the number of paths in the program to reach the target
locations in the kernels, it focuses on generating values to find new paths rather
than generating values exercising an already found path that may increase the
width of the kernel ranges.

A Two-Phase Approach for Conditional Floating-Point Verification 55

benchmark kernel #vars BB AFLGo BB+AFLGo GBB

linearSVC 1 4 - 2.21 - -

nbody
1 6 121.05 312.93 144.86 181.26
2 9 155.31 226.10 127.25 206.20
1 4 0.69 51.77 0.57 5.25

pendulum
2 5 0.69 44.37 0.54 4.48

fbenchV2
1 5 - - 1.99 -
2 5 - 0.04 - -
1 1 - 0.03 - -
2 5 - - 1.99 -fbenchV1

3 5 - 0.04 8.85 -
linpack 1 8 0.01 100.15 - 114.58
molecular 2 6 0.25 8.0 0.15 0.33

1 1 - 0.01 - -
2 6 2.51 11.32 2.91 2.80reactor

3 1 - 0.01 - -
1 24 1.67 6.76 1.74 2.50
2 18 4.28 19.73 15.59 6.96
3 9 7.14 23.25 10.55 11.97

lulesh

4 12 3.91 16.13 3.49 5.88
Table 3. Variation of computed kernel range widths (from the average width) for our
three fuzzing techniques (in %), ‘-’ denotes no variation

Effect of Randomness All fuzzing techniques (BB, GBB, AFLGo) rely on ran-
domness. To evaluate how the computed kernel ranges are affected by it, we
calculate the variation of the range widths compared to the average range width
(per variable) over 5 runs. For 7 kernels, we do not detect any variation at all for
any of the methods; Table 3 shows the variations for the remaining kernels.

We observe that all methods have large variations for the benchmarks nbody

and linpack, i.e. those for which GBB has found very large ranges. This suggests
that there are a few corner-case inputs that lead to large kernel ranges (which
only GBB was able to reliably find). Further, we see that AFLGo has a large
range variation due to randomness for a few additional benchmarks, whereas BB
and GBB have variations that are relatively small.

Conditional Kernel Verification We were able to (conditionally) prove the absence
of special floating-point values for 16 out of the 24 kernels, and (conditionally)
prove the absence of cancellation errors for 14 of those kernels. We show these
results in the last column of Table 2: ‘�’ indicates that Daisy could prove both
the absence of special values and cancellation in the kernel for the specified kernel
ranges, ‘(�)’ indicates that only the absence of special values could be verified,
and ‘�’ shows when Daisy reports a special-value warning. For the relatively small

56 D. Lohar et al.

benchmarks arclength, linearSVC and rayCasting, our verification of the kernels is
sound, i.e. unconditional, as we used ranges computed by Astrée.

When Daisy reports a warning, it is not guaranteed that a kernel can actually
compute a special-value result, because of 1) Daisy’s over-approximation of the
concrete program semantics, and because 2) the range we compute may contain
values that are not feasible in the actual program execution. To help developers
debug warnings reported by the static analyzer, we use CBMC on those kernels.

CBMC reports counterexamples in all kernels for which Daisy reports warnings.
Upon code inspection, however, we identified the counterexamples of nbody and
fbench to be spurious for the particular program inputs we consider. In these
cases, the true kernel input range was discontinuous, and the counterexamples
were reported for the infeasible inputs. In particular, in kernel 2 of nbody, a NaN
could be produced if the two bodies that are simulated collide, which would
not happen for the initial conditions that we chose. Similarly, the kernels in the
ray-tracing algorithm of fbench could produce Infinity, if the ray was chosen in a
very particular way. With the program input ranges we have chosen, this was
impossible.

For linpack, the arithmetic overflow reported is indeed genuine, since a division
by zero can occur before the kernel if the input matrix contains a zero on the
diagonal, which leads to undefined behavior and the huge range of the kernel
inputs. Similarly, for molecular and reactor, arithmetic overflow can occur for a
specific position of molecules and a specific value of the angle between particle’s
direction and the X-axis, respectively.

We note that given the counterexamples produced by CBMC, we could
straight-forwardly identify the warnings as spurious or genuine. In future work,
one could consider refining the kernel monitoring, such that it would not only
track a single range per kernel but could detect discontinuous ranges.

Our extension of Daisy reports cancellation-error warnings for one kernel of
linearSVC and one kernel of lulesh. We have used a threshold of 103 for reporting
cancellation, i.e. if the relative errors of the operands and the result differ by more
than three orders of magnitude, we report an error. We inspected the kernel code
and confirmed that the cancellation warnings are genuine, i.e. there are indeed
inputs that will result in a large roundoff error. The number of cancellations
found may seem small. We suspect that this is the case, because our benchmarks
were mostly written as reference or example programs (e.g. lulesh was developed
to be a representative hydrodynamics simulation code), hence we expect them to
be carefully developed and tested.

Kernel Optimization We have additionally applied Daisy’s rewriting optimization
on those kernels for which Daisy does not report possible special values. With
this procedure, we could reduce the roundoff errors in 8 of the kernels out of
which 6 cases are notable. We could reduce the error by 9.5% for linearSVC, 7.1%
and 3.3% for two outputs of kernel 2 in pendulum, by 19.8%, 4.0%, 5.8%, and 5.8%
for different kernel outputs of lulesh, and by 33.3% for one output of molecular.
From these experimental results, we conclude that the ranges that we inferred in
the first phase are actually useful for kernel analysis.

A Two-Phase Approach for Conditional Floating-Point Verification 57

7 Related Work

Abstract interpretation-based techniques are in principle uniquely suitable for
verifying the absence of special values and safety in floating-point programs. We
have chosen Astrée [63] in this work because it is an industrial-strength tool,
and as such, supports a wide range of C programs and is designed for scalability.
Apron [50] is a library of numerical abstract domains that are sound w.r.t. floating-
point arithmetic, and includes, for instance, the domain of polyhedra [19], which
is, however, significantly more expensive than the interval arithmetic domain
that we use. ELINA [71] provides performance-optimized implementations of
many numerical abstract domains, but its polyhedra domain does not support
floating-point arithmetic.

These domains only bound variable values; abstract domains [43,33,31,30] or
optimization-based static analyses [60,65,72] for bounding roundoff errors provide
nontrivial results only for relatively small kernels. For the second step in our
framework, we could have in principle chosen any of these tools; we chose Daisy
because we found it easy to modify for our needs, and because it already includes
the rewriting optimization.

In the space of deductive verification, besides Frama-C [24], the Boogie interme-
diate verification language [53] also has support for floating-point arithmetic and
discharges the verification conditions using the Z3 SMT solver. Similarly, bounded
model checking [52] is limited by the performance of the underlying SAT/SMT
solvers. While the floating-point support in today’s SMT solvers [17,16] has im-
proved significantly in recent years, it is still limited to relatively few arithmetic
expressions.

Many interactive theorem provers have floating-point formalizations [49,15,37].
While these do allow to prove complex functional properties [13,14,46], the proofs
are largely manual and require significant expertise.

Blackbox testing has been explored to find large roundoff errors by executing a
higher-precision version of the program side-by-side [10,21,77]. Recently, whitebox
testing has been used for detecting overflows [38], by phrasing the search as a
mathematical optimization problem, and large roundoff errors [21,78], by adapting
the notion of condition numbers. KLEE-Float [57], FPGen [44] and Ariadne [9]
use symbolic execution for finding bugs in floating-point code, including overflows
and large precision loss and cancellation. While KLEE-Float relies on the floating-
point SMT decision procedures, Ariadne approximates the path constraints and
uses the real-valued theory. FPGen injects specialized inaccuracy checks to find
cancellations. Only FPDebug [10] has been shown to scale beyond numerical
kernels and, to the best of our knowledge, none of the dynamic techniques have
been used to obtain range information.

Once a large roundoff error has been identified, Herbgrind [69] can help to
locate its root cause, which may be in a different instruction than where the error
becomes significant. Herbgrind is thus complementary to our work and may be
used to locate root causes of potential cancellation errors reported by Daisy.

Rewriting floating-point expressions in order to optimize roundoff errors has
been explored in the tool Herbie [67] and others [74,76]. These approaches attempt

58 D. Lohar et al.

to repair unstable code, checking accuracy using a dynamic analysis. They are
alternatives to using Daisy for the second step in our framework. Alternative
program optimizations that we have not explored in this work, but that also
require range information, include mixed-precision tuning [32,20,68] and general
non-semantics preserving approximation [70].

Apart from AFLGo [12], there is a wide range of targeted greybox fuzzers, such
as those targeting specified program locations [18], rare branches [54], unexplored
branches [55,73], or potential vulnerabilities [39,45,22,56]. In our setting, we
require fuzzers like AFLGo to target the specific program locations of kernels.

There is a significant body of work on guiding program analyzers. In particular,
test case generation is typically guided by a static analysis toward specific parts
of the code (e.g., [27,35,66,41,40,58,62,28,59,23,36,34,75,44]). Our approach is
similar to these techniques as it infers input ranges to guide verifiers of numerical
kernels toward those kernel executions that are relevant in the context of the
containing application.

8 Conclusion

Even though floating-point programs have received a lot of attention recently, their
focus has been largely on verifying or debugging arithmetic kernels. Our review
of existing techniques and tools has shown that few approaches with specific
floating-point support are applicable to whole programs without significant user
expertise. We have found, however, that standard greybox fuzzing proved to be
effective in detecting overflows and NaNs. Meanwhile, static-analysis techniques
to show the absence of special values and cancellation errors remain limited to
programs with few bounded loops and numerical kernels, respectively.

Instead of trying to scale up existing roundoff-error analysis tools to whole
programs, we combine them with more scalable analyses that compute the kernel
preconditions needed for the roundoff analyses to work. We showed how relatively
small adaptations to well-known techniques of directed blackbox and greybox
fuzzing are enough to realize such a framework. Together with modifications to an
existing roundoff-error analyzer, we are able to conditionally verify the absence
of special values and cancellations in a number of numerical kernels in realistic
floating-point programs that are out of reach for today’s analyses. At the same
time, our analysis is precise enough to identify several cases of cancellations. While
our approach is not suitable and not intended for certification of safety-critical
systems, we believe that it nonetheless provides valuable debugging feedback for
many real-world applications.

Acknowledgements

This research was partially funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) project 387674182 and project 389792660
as part of TRR 248 (see https://perspicuous-computing.science). We also thank
Dr.-Ing. Jörg Herter from AbsInt for the training and assistance with Astrée.

https://perspicuous-computing.science)

A Two-Phase Approach for Conditional Floating-Point Verification 59

References

1. FBench: Trigonometry Intense Floating Point Benchmark. https://www.fourmilab.ch/

fbench/fbench.html, Accessed: 2020-10-05
2. Inverted-pendulum Control Problem. http://www.toddsifleet.com/projects/

inverted-pendulum, Accessed: 2020-10-05
3. LINPACK Benchmark. https://people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/

linpack_bench.html, Accessed: 2020-10-05
4. Molecular Dynamics. https://people.math.sc.edu/Burkardt/cpp_src/md/md.html, Accessed:

2020-10-05
5. N-body Problem. https://rosettacode.org/wiki/N-body_problem#C, Accessed: 2020-10-05
6. Ray-casting Algorithm. https://rosettacode.org/wiki/Ray-casting_algorithm#C, Ac-

cessed: 2020-10-05
7. Simulated Test of Reactor Shielding. https://people.math.sc.edu/Burkardt/cpp_src/

reactor_simulation/reactor_simulation.html, Accessed: 2020-10-05
8. Project Sklearn-porter. https://github.com/nok/sklearn-porter (2018)
9. Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic Detection of Floating-Point Exceptions.

In: ACM Sigplan Notices. No. 1, ACM (2013)
10. Benz, F., Hildebrandt, A., Hack, S.: A Dynamic Program Analysis to Find Floating-

Point Accuracy Problems. In: Programming Language Design and Implementation
(PLDI) (2012)

11. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A Static Analyzer for Large Safety-Critical Software. In: Programming
Language Design and Implementation (PLDI) (2003)

12. Böhme, M., Pham, V., Nguyen, M., Roychoudhury, A.: Directed Greybox Fuzzing.
In: Computer and Communications Security (CCS) (2017)

13. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
Equation Numerical Resolution: A Comprehensive Mechanized Proof of a C Program.
Journal of Automated Reasoning 50(4) (2013)

14. Boldo, S., Filliâtre, J., Melquiond, G.: Combining Coq and Gappa for Certifying
Floating-Point Programs. In: Intelligent Computer Mathematics (2009)

15. Boldo, S., Melquiond, G.: Flocq: A Unified Library for Proving Floating-Point
Algorithms in Coq. In: Computer Arithmetic (ARITH) (2011)

16. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding Floating-Point
Logic with Abstract Conflict Driven Clause Learning. Formal Methods Syst. Des.
45(2) (2014)

17. Brain, M., Schanda, F., Sun, Y.: Building Better Bit-Blasting for Floating-Point
Problems. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (2019)

18. Chen, H., Xue, Y., Li, Y., Chen, B., Xie, X., Wu, X., Liu, Y.: Hawkeye: Towards a
Desired Directed Grey-box Fuzzer. In: Computer and Communications Security
(CCS) (2018)

19. Chen, L., Miné, A., Cousot, P.: A Sound Floating-Point Polyhedra Abstract Domain.
In: Asian Symposium on Programming Languages and Systems (APLAS) (2008)

20. Chiang, W.F., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G., Raka-
marić, Z.: Rigorous Floating-point Mixed-precision Tuning. In: Principles of Pro-
gramming Languages (POPL) (2017)

21. Chiang, W., Gopalakrishnan, G., Rakamaric, Z., Solovyev, A.: Efficient Search
for Inputs Causing High Floating-Point Errors. In: Symposium on Principles and
Practice of Parallel Programming (PPoPP) (2014)

https://www.fourmilab.ch/fbench/fbench.html
https://www.fourmilab.ch/fbench/fbench.html
http://www.toddsifleet.com/projects/inverted-pendulum
http://www.toddsifleet.com/projects/inverted-pendulum
https://people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/linpack_bench.html
https://people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/linpack_bench.html
https://people.math.sc.edu/Burkardt/cpp_src/md/md.html
https://rosettacode.org/wiki/N-body_problem#C
https://rosettacode.org/wiki/Ray-casting_algorithm#C
https://people.math.sc.edu/Burkardt/cpp_src/reactor_simulation/reactor_simulation.html
https://people.math.sc.edu/Burkardt/cpp_src/reactor_simulation/reactor_simulation.html
https://github.com/nok/sklearn-porter

60 D. Lohar et al.

22. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz: Program Aware
Fuzzing—(Competition Contribution). In: Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS) (2019)

23. Christakis, M., Müller, P., Wüstholz, V.: Guiding Dynamic Symbolic Execution
Toward Unverified Program Executions. In: International Conference on Software
Engineering (ICSE) (2016)

24. Claude, M., Moy, Y.: The Jessie plugin for Deductive Verification in Frama-C,
Tutorial and Reference Manual. INRIA Saclay-Île-de-France & LRI, CNRS UMR
8623 (2018), http://krakatoa.lri.fr/jessie.html

25. Correnson, L., Cuoq, P., Kirchner, F., Prevosto, V., Puccetti, A., Signoles, J.,
Yakobowski, B.: Frama-C User Manual (2011), http://frama-c.com//support.html

26. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages (POPL) (1977)

27. Csallner, C., Smaragdakis, Y.: Check ’n’ Crash: Combining Static Checking and
Testing. In: International Conference on Software Engineering (ICSE) (2005)

28. Czech, M., Jakobs, M.C., Wehrheim, H.: Just Test What You Cannot Verify! In:
Fundamental Approaches to Software Engineering (FASE) (2015)

29. Damouche, N., Martel, M., Panchekha, P., Qiu, J., Sanchez-Stern, A., Tatlock, Z.:
Toward a Standard Benchmark Format and Suite for Floating-Point Analysis. In:
NSV (2016)

30. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy -
Framework for Analysis and Optimization of Numerical Programs. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS) (2018)

31. Darulova, E., Kuncak, V.: Towards a Compiler for Reals. TOPLAS 39(2) (2017)
32. Darulova, E., Horn, E., Sharma, S.: Sound Mixed-precision Optimization with

Rewriting. In: International Conference on Cyber-Physical Systems (ICCPS) (2018)
33. De Dinechin, F., Lauter, C.Q., Melquiond, G.: Assisted Verification of Elementary

Functions Using Gappa. In: ACM Symposium on Applied Computing (2006)
34. Devecsery, D., Chen, P.M., Flinn, J., Narayanasamy, S.: Optimistic Hybrid Analysis:

Accelerating Dynamic Analysis Through Predicated Static Analysis. In: Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS)
(2018)

35. Dwyer, M.B., Purandare, R.: Residual Dynamic Typestate Analysis Exploiting
Static Analysis: Results to Reformulate and Reduce the Cost of Dynamic Analysis.
In: ASE (2007)

36. Ferles, K., Wüstholz, V., Christakis, M., Dillig, I.: Failure-Directed Program Trim-
ming. In: Foundations of Software Engineering (ESEC/FSE) (2017)

37. Fox, A., Harrison, J., Akbarpour, B.: A Formal Model of IEEE Floating Point
Arithmetic. HOL4 Theorem Prover Library (2017)

38. Fu, Z., Su, Z.: Effective Floating-Point Analysis via Weak-Distance Minimization.
In: Programming Language Design and Implementation (PLDI) (2019)

39. Ganesh, V., Leek, T., Rinard, M.C.: Taint-Based Directed Whitebox Fuzzing. In:
International Conference on Software Engineering (ICSE) (2009)

40. Ge, X., Taneja, K., Xie, T., Tillmann, N.: DyTa: Dynamic Symbolic Execution
Guided with Static Verification Results. In: International Conference on Software
Engineering (ICSE) (2011)

41. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional May-Must Pro-
gram Analysis: Unleashing the Power of Alternation. In: Principles of Programming
Languages (POPL) (2010)

http://krakatoa.lri.fr/jessie.html
http://frama-c.com//support.html

A Two-Phase Approach for Conditional Floating-Point Verification 61

42. Goldberg, D.: What Every Computer Scientist Should Know About Floating-point
Arithmetic. ACM Comput. Surv. 23(1) (1991)

43. Goubault, E., Putot, S.: Static Analysis of Finite Precision Computations. In:
Verification, Model Checking, and Abstract Interpretation (VMCAI) (2011)

44. Guo, H., Rubio-González, C.: Efficient Generation of Error-Inducing Floating-
Point Inputs via Symbolic Execution. In: International Conference on Software
Engineering (ICSE) (2020)

45. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowsing for Overflows: A
Guided Fuzzer to Find Buffer Boundary Violations. In: Security (2013)

46. Harrison, J.: Floating Point Verification in HOL Light: The Exponential Function.
Formal Methods in System Design 16(3) (2000)

47. Hatton, L., Roberts, A.: How Accurate is Scientific Software? IEEE Trans. Softw.
Eng. 20 (1994)

48. IEEE, C.S.: IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008
(2008)

49. Jacobsen, C., Solovyev, A., Gopalakrishnan, G.: A Parameterized Floating-Point
Formalizaton in HOL Light. Electronic Notes in Theoretical Computer Science 317
(2015)

50. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static
Analysis. In: Computer Aided Verification (CAV) (2009)

51. Karlin, I., Bhatele, A., Chamberlain, B.L., Cohen, J., Devito, Z., Gokhale, M.,
Haque, R., Hornung, R., Keasler, J., Laney, D., Luke, E., Lloyd, S., McGraw, J.,
Neely, R., Richards, D., Schulz, M., Still, C.H., Wang, F., Wong, D.: LULESH
Programming Model and Performance Ports Overview. Tech. Rep. LLNL-TR-608824
(2012)

52. Kroening, D., Tautschnig, M.: CBMC–C bounded model checker. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Springer (2014)

53. Leino, K.R.M.: This is Boogie 2 (2008), https://www.microsoft.com/en-us/research/

publication/this-is-boogie-2-2/

54. Lemieux, C., Sen, K.: FairFuzz: A Targeted Mutation Strategy for Increasing
Greybox Fuzz Testing Coverage. In: Automated Software Engineering (ASE) (2018)

55. Li, Y., Chen, B., Chandramohan, M., Lin, S., Liu, Y., Tiu, A.: Steelix: Program-
State Based Binary Fuzzing. In: Foundations of Software Engineering (ESEC/FSE)
(2017)

56. Li, Y., Ji, S., Lv, C., Chen, Y., Chen, J., Gu, Q., Wu, C.: V-Fuzz: Vulnerability-
Oriented Evolutionary Fuzzing. CoRR abs/1901.01142 (2019)

57. Liew, D., Schemmel, D., Cadar, C., Donaldson, A.F., Zähl, R., Wehrle, K.: Floating-
Point Symbolic Execution: A Case Study in N-Version Programming. In: Automated
Software Engineering (ASE) (2017)

58. Ma, K.K., Khoo, Y.P., Foster, J.S., Hicks, M.: Directed Symbolic Execution. In:
Static Analysis Symposium (SAS) (2011)

59. Ma, L., Artho, C., Zhang, C., Sato, H., Gmeiner, J., Ramler, R.: GRT: Program-
Analysis-Guided Random Testing. In: Automated Software Engineering (ASE)
(2015)

60. Magron, V., Constantinides, G., Donaldson, A.: Certified Roundoff Error Bounds
Using Semidefinite Programming. ACM Trans. Math. Softw. 43(4) (2017)

61. Mahmoud, A., Venkatagiri, R., Ahmed, K., Misailovic, S., Marinov, D., Fletcher,
C.W., Adve, S.V.: Minotaur: Adapting Software Testing Techniques for Hardware
Errors. In: Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (2019)

https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/

62 D. Lohar et al.

62. Marinescu, P.D., Cadar, C.: KATCH: High-Coverage Testing of Software Patches.
In: Foundations of Software Engineering (ESEC/FSE) (2013)

63. Miné, A., Mauborgne, L., Rival, X., Feret, J., Cousot, P., Kästner, D., Wilhelm, S.,
Ferdinand, C.: Taking Static Analysis to the Next Level: Proving the Absence of
Run-Time Errors and Data Races with Astrée. In: Embedded Real Time Software
and Systems (ERTS) (2016)

64. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society
for Industrial and Applied Mathematics (2009)

65. Moscato, M., Titolo, L., Dutle, A., Muñoz, C.: Automatic Estimation of Verified
Floating-Point Round-Off Errors via Static Analysis. In: SAFECOMP (2017)

66. Nori, A.V., Rajamani, S.K., Tetali, S., Thakur, A.V.: The YOGI Project: Software
Property Checking via Static Analysis and Testing. In: Tools and Algorithms for
the Construction and Analysis of Systems (TACAS) (2009)

67. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically Improv-
ing Accuracy for Floating Point Expressions. In: Programming Language Design
and Implementation (PLDI) (2015)

68. Rubio-González, C., Nguyen, C., Nguyen, H.D., Demmel, J., Kahan, W., Sen, K.,
Bailey, D.H., Iancu, C., Hough, D.: Precimonious: Tuning Assistant for Floating-
point Precision. In: High Performance Computing, Networking, Storage and Analysis
(SC) (2013)

69. Sanchez-Stern, A., Panchekha, P., Lerner, S., Tatlock, Z.: Finding Root Causes
of Floating Point Error. In: Programming Language Design and Implementation
(PLDI) (2018)

70. Schkufza, E., Sharma, R., Aiken, A.: Stochastic Optimization of Floating-Point
Programs with Tunable Precision. In: Programming Language Design and Imple-
mentation (PLDI) (2014)

71. Singh, G., Püschel, M., Vechev, M.T.: Fast polyhedra abstract domain. In: Principles
of Programming Languages (POPL) (2017)

72. Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.: Rigorous Estimation
of Floating-Point Round-off Errors with Symbolic Taylor Expansions. In: Formal
Methods (FM) (2015)

73. Wang, M., Liang, J., Chen, Y., Jiang, Y., Jiao, X., Liu, H., Zhao, X., Sun, J.: SAFL:
Increasing and Accelerating Testing Coverage with Symbolic Execution and Guided
Fuzzing. In: International Conference on Software Engineering: Companion (ICSE
Companion) (2018)

74. Wang, X., Wang, H., Su, Z., Tang, E., Chen, X., Shen, W., Chen, Z., Wang, L.,
Zhang, X., Li, X.: Global Optimization of Numerical Programs via Prioritized
Stochastic Algebraic Transformations. In: International Conference on Software
Engineering (ICSE) (2019)

75. Wüstholz, V., Christakis, M.: Targeted Greybox Fuzzing with Static Lookahead
Analysis. In: International Conference on Software Engineering (ICSE) (2020), to
appear.

76. Yi, X., Chen, L., Mao, X., Ji, T.: Efficient Automated Repair of High Floating-Point
Errors in Numerical Libraries. Proceedings of the ACM on Programming Languages
3(POPL) (2019)

77. Zou, D., Wang, R., Xiong, Y., Zhang, L., Su, Z., Mei, H.: A Genetic Algorithm for
Detecting Significant Floating-Point Inaccuracies. In: International Conference on
Software Engineering (ICSE) (2015)

78. Zou, D., Zeng, M., Xiong, Y., Fu, Z., Zhang, L., Su, Z.: Detecting Floating-Point
Errors via Atomic Conditions. PACMPL 4(POPL) (2020)

A Two-Phase Approach for Conditional Floating-Point Verification 63

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Symbolic Coloured SCC Decomposition�

Nikola Beneš , Luboš Brim, Samuel Pastva, and David Šafránek

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbenes3,brim,xpastva,safranek}@fi.muni.cz

Abstract. Problems arising in many scientific disciplines are often mod-
elled using edge-coloured directed graphs. These can be enormous in the
number of both vertices and colours. Given such a graph, the original
problem frequently translates to the detection of the graph’s strongly
connected components, which is challenging at this scale.

We propose a new, symbolic algorithm that computes all the monochro-
matic strongly connected components of an edge-coloured graph. In the
worst case, the algorithm performs O(p · n · log n) symbolic steps, where
p is the number of colours and n the number of vertices. We evaluate the
algorithm using an experimental implementation based on Binary Deci-
sion Diagrams (BDDs) and large (up to 248) coloured graphs produced
by models appearing in systems biology.

Keywords: strongly connected components · symbolic algorithm · edge-coloured
digraphs · systems biology

1 Introduction

Processing massive data sets poses a series of interesting computational challenges.
A variety of these data sets can be modelled as very large multigraphs, augmented
by a specific collection of application-dependent edge attributes. These attributes
are often represented as colours and the resulting formalism is called an edge-
coloured graph [4, 10]. Geographic information systems, telecommunications traffic,
or internet data are prime examples of data that are best represented as such edge-
coloured graphs. For instance, in social networking, it is typically used to identify
groups of nodes related to each other by some specific criteria (Sports, Health,
Technology, Religion, etc.) represented as colours. Our interest in processing huge
edge-coloured graphs is primarily motivated by applications taken from systems
biology [5, 29] and genetics [25] where we have to deal not only with giant graphs
as measured by the number of vertices and edges but also with large sets of
colours. The colours in such graphs represent various parameters that influence
the dynamics of a biological system [5, 9, 46].

Fundamental graph algorithms such as breadth-first search, spanning tree
construction, shortest paths, decomposition into strongly connected components

� Supported by the Czech Science Foundation grant No. 18-00178S.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 64–83, 2021.
https://doi.org/10.1007/978-3-030-72013-1 4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-72013-1_4

(SCCs), etc., are building blocks of many practical applications. For the edge-
coloured graphs, the primary research focus so far has been on some of the
“classical” coloured graph problems, like the determination of the chromatic index,
finding sub-graphs with a specified colour property (the coloured version of the
k-linked problem), properly edge-coloured cycles and paths, alternating cycles,
rainbow cliques, monochromatic cliques, monochromatic cycles, etc. [1–4, 55, 33].

To the best of our knowledge, we are not aware of any work on SCC decom-
position for edge-coloured graphs, even though this problem has many important
applications. For example, in biological systems, connected components represent
the attractors of the system. These play an essential role in determining the
system’s properties, since they may correspond, for example, to the specific phe-
notypes of a cell [21]. The parameters (e.g. reaction rates) in such systems might
be represented as edge colours in the state transition graph. The knowledge of
attractors and how their structure depends on parameters is vital for understand-
ing various biological phenomena [24, 38]. Other applications where investigation
of attractors is crucial include predictions of the global climate change [52], or
predictions of spreading of infectious diseases such as COVID-19 [39].

There is a serious computational problem related to the processing of massive
edge-coloured graphs, even the non-coloured ones, that significantly affects the
tractability of SCC decomposition. The graphs often cannot be handled with
standard (explicit) representations since they are too large to be kept in the main
memory. Various approaches have been considered to deal with such giant graphs:
distributed-memory structures, structures for representing graphs symbolically,
or storing the graphs in external memory. We review these approaches in more
detail in the related work section.

In [6, 13] we have initially attacked the SCC decomposition problem for
massive edge-coloured graphs by developing a parallel semi-symbolic algorithm
for detecting terminal SCCs. The algorithm uses symbolic structures to represent
sets of parameters, while the graph itself is represented explicitly. The results
have shown that the parallel semi-symbolic algorithm is not sufficient for the
practical needs to tackle large graphs representing real-world problems. Those
findings have motivated us to propose an entirely symbolic approach.

In this paper, we consider edge-coloured multi-digraphs, i.e., multi-digraphs
such that each directed edge has a colour and no two parallel (i.e., joining the
same pair of vertices) edges have the same colour. Here, we refer to such graphs
simply as coloured graphs. For coloured graphs, we can define several notions
of strongly connected components involving colours. We consider the simplest
case, where the SCCs are monochromatic, that is all their edges have the same
colour [35]. This choice is motivated by the application in systems biology, as
mentioned above.

We propose a novel fully symbolic algorithm for detecting all monochro-
matic components in coloured graphs which is in practice significantly faster
than is achievable with a näıve execution of an algorithm for symbolic SCC
decomposition scanning all colours one-by-one, in particular on massive coloured
graphs. This is because in many applications, the edges are largely shared among

Symbolic Coloured SCC Decomposition 65

individual colours [5] and our algorithm is capable of exploiting this fact. The
algorithm conceptually follows the lock-step reachability approach by Bloem [14]
for monochromatic digraphs. The key new ingredients behind our algorithm are
a careful orchestration of the forward and backward reachability for different
colours and a sophisticated selection of a set of pivots.

1.1 Related Work

The detection of SCCs in (monochromatic) digraphs is a well-known problem com-
putable in linear time. Best serial (explicit) algorithms are Kosaraju-Sharir [50]
and Tarjan [53], which are both inherently based on depth-first search. However,
these algorithms do not scale for large graphs, e.g., those encountered in model-
checking. Therefore, alternative approaches to SCC decomposition have been
proposed (I/O efficient, parallel, symbolic algorithms).

The algorithm of Jiang [32] gives an I/O-efficient alternative based on a com-
bination of depth-first and breadth-first search.

Efficient parallel distributed-memory algorithms avoid the inherently sequen-
tial DFS step [45] in several different ways. The Forward-Backward algorithm [26]
employs a divide-and-conquer approach relying on picking a pivot state and split-
ting the graph in three independent (no crossing SCCs) parts. The approach of
Orzan [44] uses a different distribution scheme called a colouring transformation
employing a set of prioritised colours to split the graph into many parts at once.
The recursive OWCTY-Backward-Forward (OBF) approach is proposed in [8].
It recursively splits the graph in a number of independent sub-graphs called
OBF slices and applies to each slice the One-Way-Catch-Them-Young (OWCTY)
technique. In [51] the authors utilise variants of Forward-Backward and Orzan’s
algorithms for optimal execution on shared-memory multi-core platforms. Fi-
nally, Bloemen et al. [15] utilise the important ability of Tarjan’s algorithm to
return detected SCCs on-the-fly. In particular, they present an on-the-fly parallel
algorithm showing promising speedups for large graphs containing large SCCs.
On another end, GPU-accelerated approaches to computing SCCs have been
addressed, e.g., in [7, 30, 37, 56].

Computing SCCs of (monochromatic) digraphs symbolically is another way
to handle giant graphs and has been thoroughly explored in literature. As
in the case of efficient parallelisation, depth-first search is not feasible in the
symbolic framework [28]. In consequence, many DFS-based algorithms cannot be
easily revised to work with symbolically represented graphs. An algorithm based
on forward and backward reachability performing O(n2) symbolic steps was
presented by Xie and Beerel in [57]. Bloem et al. present an improved O(n · log n)
algorithm in [14]. Finally, an O(n) algorithm was presented by Gentilini et
al. in [27, 28]. This bound has been proved to be tight in [20]. In [20], the authors
argue that the algorithm from [27] is optimal even when considering more fine-
grained complexity criteria, like the diameter of the graph and the diameter of the
individual components. Ciardo et al. [59] use the idea of saturation [22] to speed
up state exploration when computing each SCC in the Xie-Beerel algorithm, and
compute the transitive closure of the transition relation using a novel algorithm

66 N. Beneš et al.

based on saturation. Besides these generic algorithms, there have been recently
also proposed symbolic SCC decomposition methods to deal with specific large
graphs, e.g., graphs generated by Boolean networks [42, 58].

2 Problem Definition

As we have already stated in the introductory section, the SCC decomposition
problem for edge-coloured graphs has remained mostly unexplored until now. We
thus start this paper by introducing and formalising the notion of coloured SCC
decomposition itself and state some of its basic properties.

Before giving exact definitions, it might be instructive to discuss the substance
of the coloured SCC decomposition intuitively. There are several ways of capturing
the notion of a “coloured connected component”. For example, one of them is that
of a colour-connectivity first introduced by Saad [47]. It is based on alternating
paths in which successive edges differ in colour. However, there is no unique,
universally acceptable notion of a coloured component.

In the biological application we have in mind, we want to identify a coloured
component as a coloured collection of SCCs—a collection where for every colour
there is a set of all relevant monochromatic SCCs. Such setting leads us to
represent SCCs in the form of a relation. To that end, we first introduce such a
relation for monochromatic graphs (Section 2.1) and consequently extend it to
edge-coloured graphs (Section 2.2). The relation-based approach gives us also
the advantage of allowing a feasible symbolic encoding of the problem.

2.1 Graphs and Strongly Connected Components

Let us first recall the standard definitions of a directed graph and its strongly
connected components:

Definition 1. A directed graph is a tuple G = (V,E) where V is a set of graph
vertices and E ⊆ V × V is a set of graph edges.

We are going to use the word graph to mean directed graph in the following.
We write u → v when (u, v) ∈ E and u →∗ v when (u, v) ∈ E∗, the reflexive
and transitive closure of E. We say that v is reachable from u if u →∗ v. The
reachability relation allows us to decompose a graph into strongly connected
components, defined as follows:

Definition 2. In a graph G = (V,E), a strongly connected component (SCC)
is a maximal set W ⊆ V such that for all u, v ∈W , u→∗ v and v →∗ u. For a
fixed v ∈ V , we write SCC(G, v) to denote the SCC of G that contains v.

If the graph G is clear from the context, we can simply write SCC(v). A
set of vertices S ⊆ V is said to be SCC-closed if every SCC W is either fully
contained inside S (W ⊆ S), or in its complement (W ⊆ V \ S). Notice that
given a vertex v, the set of all vertices reachable from v, as well as the set of all
vertices that can reach v, are both SCC-closed.

Symbolic Coloured SCC Decomposition 67

A pivotal problem in computer science is to find the SCC decomposition of G.
As mentioned above, we represent the decomposition in the form of an equivalence
relation Rscc such that the individual SCCs are exactly the equivalence classes
of Rscc . The relation-based formulation of the SCC decomposition problem is
the following:

Problem 1 (SCC decomposition) Given a graph G = (V,E), find the SCC
decomposition relation Rscc ⊆ V × V such that (u, v) ∈ Rscc if and only if
SCC(u) = SCC(v).

Note that SCC(u) is the section of the first attribute of Rscc , i.e. SCC(u) =
{u | (u, v) ∈ Rscc}. We denote such a section in the following way: SCC(u) =
Rscc(u,). Here, u is the specific value of an attribute at which the section is
taken, and is used in place of the attributes that remain unchanged. Such
notation naturally extends to relations of arbitrary arity.

2.2 Coloured SCC Decomposition Problem

We now lift the formal framework to the coloured setting. An edge-coloured
graph can be seen as a succinct representation of several different graphs, all
sharing the same set of vertices. Note that to emphasise the difference from the
standard graphs as given in Definition 1, we sometimes call the standard graphs
monochromatic.

Definition 3. An edge-coloured directed multi-graph (coloured graph for short)
is a tuple G = (V,C,E) where V is a set of vertices, C is a set of colours and
E ⊆ V × C × V is a coloured edge relation.

We also write u
c−→ v whenever (u, c, v) ∈ E. By fixing a colour c ∈ C and

keeping only the c-coloured edges (with the colour attribute removed), we obtain
a monochromatic graph G(c) = (V, {(u, v) | (u, c, v) ∈ E}). We call this graph
the monochromatisation of G with respect to c. Intuitively, one can view the
elements of C as a type of graph parametrisation where the edge structure of the
graph changes based on the specific c ∈ C.

The SCC decomposition relation Rscc is extended to the coloured SCC
decomposition relation Rscc by relating every colour c ∈ C with all SCCs of the
monochromatisation G(c). In consequence, the SCC decomposition problem is
then lifted to the coloured SCC decomposition problem as follows:

Problem 2 (Coloured SCC decomposition) Given a coloured graph G =
(V,C,E), find the coloured SCC decomposition relation Rscc ⊆ V × C × V
satisfying (u, c, v) ∈ Rscc if and only if (u, v) ∈ Rscc of G(c).

From this definition, we can immediately observe the following properties
about the relationship of Rscc with the terms which we have defined before:

– Rscc of a monochromatisation G(c) is exactly the section Rscc(, c,);
– SCC(G(c), v) is exactly the section Rscc(v, c,).

From this, it should be immediately clear that Rscc contains all components of
the underlying monochromatisations.

68 N. Beneš et al.

3 Algorithm

Conceptually, our algorithm follows the lock-step reachability approach by
Bloem [14] for monochromatic graphs. The lock-step algorithm itself is based on
the basic forward-backward decomposition algorithm [57]. In this section, we first
briefly introduce these two algorithms in order to explain better the key ideas
behind our approach and, in particular, to explain what were the main difficulties
encountered in employing the concepts of these algorithms to edge-coloured
graphs. Although the algorithms were originally presented as producing a set of
SCCs, we reformulate them slightly using the equivalent relation-based approach
as explained in the previous section. After that, we present the coloured SCC
decomposition algorithm. However, before we dive into the algorithmics, let us
first briefly discuss the computation model we are using.

3.1 Symbolic Computation Model

As a complexity measure of our algorithm, we consider the number of symbolic
steps, or more specifically, symbolic set and relation operations that the algorithm
performs. As is customary, we assume that sets of vertices (V) and colours (C)
can be represented symbolically (for example, using reduced ordered binary
decision diagrams [17]) as well as any relations over these sets. In particular, we
often talk about coloured vertex sets, by which we mean the subsets of V × C.

Aside from normal set operations (union, intersection, difference, product and
element selection), we also require some basic relational operations, all of which
we outline in Fig. 1. These extra operations tend to appear in other applications
as well (such as symbolic model checking [18]), and are thus typically already
available in mature symbolic computation packages.

Finally, there are several derived operators that are partially specific to our
application to coloured graphs. However, these can be constructed using standard
set and relation operations. The intuitive meaning of the derived operators is
as follows: Colours returns all the colours that appear in the given coloured
vertex set. Pre and Post compute the pre and post-image of a (monochromatic
or coloured) set of vertices, i.e. the set of successors or predecessors of all the
vertices in the given set, respectively. Finally, Join takes a coloured vertex set A
and computes the set {(u, c, v) | (u, c) ∈ A, (v, c) ∈ A}.

3.2 Forward-backward Algorithm

To symbolically compute the SCCs of a graph G = (V,E), Xie and Beerel [57]
observed that for any vertex v ∈ V , the intersection W = F ∩B of the forward
reachable vertices F = {v′ ∈ V | v →∗ v′} and the backward reachable vertices
B = {v′ ∈ V | v′ →∗ v} is exactly the strongly connected component of G which
contains v.

The algorithm thus picks an arbitrary pivot v ∈ V , and divides the vertices of
the graph into four disjoint sets:W , F\W ,B\W and V \(F∪B). This is illustrated
graphically in Fig. 2 (left). The set W is then immediately reported as an SCC

Symbolic Coloured SCC Decomposition 69

Standard set operations

pick element Pick(A) arbitrary x ∈ A

union A ∪B {x | x ∈ A ∨ x ∈ B}
intersection A ∩B {x | x ∈ A ∧ x ∈ B}
difference A \B {x | x ∈ A ∧ x �∈ B}
product A×B {(x, y) | x ∈ A ∧ y ∈ B}

Relation manipulation (R ⊆ S1 × . . .× Sn)

i-th section at x σi(x,R)
{(y1, . . . , yi−1, yi+1, . . . , yn) |

(y1, . . . , yi−1, x, yi+1, . . . , yn) ∈ R}
existential

quantification of
the i-th element

∃i(R)
⋃

x∈Si
σi(x,R)

swap Swap(R ⊆ A×B) {(y, x) ∈ B ×A | (x, y) ∈ R}
Derived operations (G = (V,E),G = (V,C,E))

colours Colours(A ⊆ V × C) ∃1(A)

pre-image Pre(G,A ⊆ V) ∃2((V ×A) ∩ E)

post-image Post(G,A ⊆ V) ∃1((A× V) ∩ E)

coloured pre-image Pre(G, A ⊆ V × C) ∃3((V × Swap(A)) ∩ E)

coloured post-image Post(G, A ⊆ V × C) Swap(∃1((A× V) ∩ E))

coloured join Join(A ⊆ V × C) (V × Swap(A)) ∩ (A× V)

Fig. 1. Summary of symbolic operations that appear in the presented algorithms. The
derived operations can be implemented using the standard and relational operations.
However, typically they also have a slightly more efficient direct implementations.

of the graph, and added into the component relation: Rscc ← Rscc ∪ (W ×W).
It is easy to see that every other SCC is fully contained within one of the three
remaining sets (they are SCC-closed), and the algorithm thus recursively repeats
this process independently in each set.

The correctness of the algorithm follows from the initial observation and the
fact that every vertex eventually appears in W (either as a pivot or as a result of
F ∩B). In the worst case, the algorithm performs O(|V |2) symbolic steps, since
every vertex is picked as a pivot at most once and the computation of F and B
requires at most O(|V |) Pre/Post operations.

3.3 Lock-step Algorithm

To improve the efficiency of the forward-backward algorithm, the lock-step
approach [14] uses another important observation: To compute W , it is not
necessary to fully compute both F and B; only the smaller (in terms of diameter)
of the two sets needs to be entirely known. With this observation, the computation
of F and B can be modified in the following way: Instead of computing F and
B one after the other, the computation is interleaved in a step-by-step manner
(dovetailing). When one of the sets is fully computed, the computation of the
second set is stopped. Let us call the computed set converged and denote it by

70 N. Beneš et al.

V

B F
W

v

V

Non

Con
W

v

Fig. 2. Illustration of the difference between the forward-backward algorithm (left) and
the lock-step algorithm (right). On the left, we fully compute both backward (B) and
forward (F) reachable sets from the pivot v, identifying W as F ∩ B. On the right,
without loss of generality, assume F is fully computed first. It thus becomes converged
(Con) and the computation of B (Non) is stopped before it is fully explored.

Con, and the unfinished set non-converged and denote it by Non. This situation
is illustrated in Fig. 2 (right).

However, even when Con is fully known, we still need to finish the computation
of states in Non that are inside Con to discover the whole component W . This
is necessary if there are vertices w in W whose forward distance from v (i.e. the
length of the path v →∗ w) is short while their backward distance (the length of
the path w →∗ v) is long, or vice versa. Such vertices are thus only discovered
in one of the two reachability procedures and still need to be discovered by the
other one to identify the whole component. However, an important observation
is that only the vertices already inside Con need to be considered in this step.

After this, the SCC can be identified and reported just as in the forward-
backward algorithm. Finally, the recursion now continues in sets Con \W and
V \Con. This is due to Non being not fully computed; we cannot guarantee that
no SCC overlaps outside of Non (Non is not necessarily SCC-closed).

The algorithm is still correct because every vertex is eventually either picked
as a pivot or discovered in some W . Furthermore, due to the way Con and Non
are computed guarantees that W is still a whole SCC. In terms of complexity,
the algorithm performs O(|V | · log |V |) symbolic steps in the worst case. To see
why this is true, we may observe that every vertex appears in W exactly once,
and that the smaller of the two sets Con \W and V \ Con, let us call it S, is

always smaller than |V |
2 . The authors then argue that the price of every iteration

can be attributed (up to a multiplicative constant) to the vertices in S ∪W and
that every vertex appears in S at most O(log |V |)-times.

3.4 Coloured Lock-step Algorithm

When developing an algorithm for coloured graphs, we had to deal with multiple
challenges which do not appear for monochromatic graphs and require careful
consideration. In the following, we refer to the pseudocode in Algorithm 1.

An important observation is that the structure of components in the graph can
change arbitrarily with respect to the graph colours. In consequence, our algorithm

Symbolic Coloured SCC Decomposition 71

Algorithm 1: Symbolic Coloured SCC Decomposition

1 Function ColouredSCC(G = (V,C,E))
2 Rscc ⊆ (V × C × V) ← ∅;
3 Decomposition(G,Rscc , V × C);
4 return Rscc ;

5 Function Decomposition(G = (V,C,E),Rscc ⊆ (V × C × V),V ⊆ (V × C))
6 if V = ∅ then return;

7 F ,B,−→F ,
−→B ⊆ (V × C) ← Pivots(V);

8
−→Fu,

−→Bu ⊆ (V × C) ← ∅;
9 Flock , Block ⊆ C ← ∅;

10 while Flock ∪Block ⊂ Colours(V) do
11

−→F ⊆ V × C ← (Post(G,
−→F) ∩ V) \ F ;

12
−→B ⊆ V × C ← (Pre(G,

−→B) ∩ V) \ B;
13 Flock ← Flock ∪ (Colours(V) \Colours(

−→F));

14 Block ← Block ∪ (Colours(V) \Colours(
−→B) \ Flock);

15
−→Fu ← −→Fu ∪ (F ∩ (V ×Block));

16
−→Bu ← −→Bu ∪ (B ∩ (V × Flock));

17
−→F ← −→F \ (V ×Block);

18
−→B ← −→B \ (V × Flock);

19 F ← F ∪−→F ;

20 B ← B ∪ −→B ;

21 end
22 Con ⊆ V × C ← (F ∩ (V × Flock)) ∪ (B ∩ (V ×Block));

23
−→F ← −→Fu ∩ Con;

24
−→B ← −→Bu ∩ Con;

25 while
−→F �= ∅ ∧ −→B �= ∅ do

26
−→F ← (Post(G,

−→F) ∩ Con) \ F ;

27
−→B ← (Pre(G,

−→B) ∩ Con) \ B;
28 F ← F ∪−→F ;

29 B ← B ∪ −→B ;

30 end
31 W ⊆ V × C ← F ∩ B;
32 Rscc ← Rscc ∪ Join(W);
33 Decomposition(G,Rscc ,V \ Con);
34 Decomposition(G,Rscc , Con \W);

35 Function Pivots(V)
36 P ⊆ (V × C) ← ∅; V ′ ⊆ (V × C) ← V;
37 while V ′ �= ∅ do
38 (v, c) ← Pick(V ′);
39 P ← P ∪ ({v} × σ1(v,V ′));
40 V ′ ← V ′ \ (V ×Colours(P));

41 end
42 return P;

72 N. Beneš et al.

cannot simply operate with sets of graph vertices as the normal algorithm would.
To that end, we use the notion of coloured vertex sets as introduced in Section 3.1
where the symbolic operations we perform on these sets have been described.

Initially, the algorithm starts with all vertices and colours, i.e. the full set
V ×C. However, as the components are discovered, the intermediate results may
contain different vertices appearing only for certain subsets of C. As a result,
we often cannot pick a single pivot vertex that would be valid for all considered
colours. Instead, we aim to pick a pivot set P ⊆ V ×C such that for every colour
that still appears in V , the set contains exactly one vertex. Alternatively, one can
also view the pivot set as a (partial) function from C to V . This is done in the
Pivots function.

The lock-step reachability procedure also cannot operate as in a standard
graph. First of all, there can be colours where the forward reachability converges
first, as well as colours where this happens for backward reachability. The
algorithm thus has to account for both options simultaneously. Second, for each
colour, the reachability can converge in a different number of steps. To deal
with this problem, we introduce the Flock and Block variables. These store the
mutually disjoint sets of colours for which forward and backward reachability
already converged. The lock-step procedure terminates when Flock and Block

contain all the colours that appear in V.
Throughout the algorithm, we keep track of several coloured-set variables.

The first two, F and B, represent the forward and backward reachable sets,

respectively. We then have four variables
−→F ,

−→Fu,
−→B ,

−→Bu to represent the frontiers
of these sets, i.e., the set of pairs (v, c) such that the vertex v has not yet been
expanded in the corresponding reachability procedure for the colour c. The

frontier of F is the set
−→F ∪ −→Fu. The sets

−→F and
−→Fu contain disjoint colours –−→F involves those colours for which the lock-step reachability procedure has not

finished yet, while
−→Fu represents the unfinished part of the frontier that shall be

explored in the second while cycle; similarly for
−→B and

−→Bu.
In the first while cycle (lines 10–21), we compute the reachability sets in

the lock-step manner. Once a reachability set is completed for some colours
(i.e., there are no vertices to expand with those colours), we add the colours to
the corresponding Flock or Block variable. Note that we ensure that Flock and
Block remain disjoint even if the two reachability procedures converged at the
same time for certain colours—see line 14. We use Flock and Block to split the
newly computed frontier sets into the parts that are to be explored in the next

iteration (
−→F ,

−→B) and the parts that are currently left unfinished (
−→Fu,

−→Bu).
After the first while cycle, we compute the set Con that is an analogue for the

converged set of the original lock-step algorithm (line 22). As already suggested
above and unlike the original algorithm, this set cannot be just F or B, but is
instead a mixture of both, depending on the convergent colours. To compute this
set, we use the Flock and Block variables.

The second while cycle (lines 25–30) then completes the unfinished forward
and backward reachability set, restricted to the inside of the converged set. The
intersection of F and B then forms a coloured set W with the property that

Symbolic Coloured SCC Decomposition 73

for all c ∈ Colours(V), W(, c) is a strongly connected component of G(c). We
create the corresponding relation using the Join operation, add this relation to
the resulting Rscc , and recursively call the whole procedure with V \ Con and
Con \W as the base coloured sets of vertices.

Let us note that there is possibly another approach. Instead of trying to work
with all colours still appearing in the coloured vertex set at once, we cold fork
a new recursive procedure whenever the colour set splits due to the differences in
the graph structure. For example, instead of picking multiple coloured vertices
as pivots, one could pick a single vertex with a valid subset of colours and then
address the remaining colours in a separate recursive call. While such approach
could be to some extent beneficial in a massively parallel environment where
each recursive call can be executed independently on a new CPU, the amount
of forking in large systems will soon become unreasonable. More importantly,
it defeats the purpose of symbolic representation which aims to minimise the
number of symbolic operations.

3.5 Correctness and Complexity of the Coloured Lock-step
Algorithm

Theorem 1. Let G = (V,C,E) be a coloured graph. The coloured lock-step
algorithm terminates and computes the coloured SCC decomposition relation Rscc.

Proof. We first show that the setW computed on line 31 indeed contains one SCC
for every colour c ∈ Colours(V) and that the recursive calls of Decomposition
preserve the property that V is SCC-closed with respect to all colours.

Let us assume that V is SCC-closed and let us take an arbitrary c ∈
Colours(V). The function Pivots chooses a set that contains exactly one
pair whose colour is c, let us call this pair (v, c). Let us further assume that c is
assigned into Flock first (the case with Block is completely symmetric).

Let us now choose an arbitrary vertex w such that v and w are in the same
SCC of G(c), i.e. v →∗ w and w →∗ v. As the first while cycle finishes, F contains
all the pairs of the form (u, c) ∈ V where u is reachable from v in G(c). Thus, it
also contains (w, c) due to the fact that V is SCC-closed. Now, either (w, c) ∈ B,
or there exists a vertex x such that w →∗ x, x→∗ v in G(c) and x ∈ −→Bu. This
means that (w, c) is added to B in the second while cycle. In both cases, both
(v, c) and (w, c) are then added to W . As the vertex choices were arbitrary, this
proves that the SCC of v in G(c) is contained in W. Furthermore, if (y, c) ∈ W
for an arbitrary y, then v →∗ y and y →∗ v in G(c), which means that y is in
SCC(G(c), v). This proves that W contains exactly one SCC for every colour
c ∈ Colours(V).

We now argue that Con is SCC-closed with respect to all colours. This
immediately implies that both V \ Con and Con \ W are SCC-closed. Let us
assume that there is a colour c ∈ Colours(V) and two vertices v, w in the
same SCC of G(c) such that (v, c) ∈ Con, but (w, c) �∈ Con. Let us assume that
c ∈ Flock (as above, the case of Block is completely symmetrical). Then (v, c) ∈ F

74 N. Beneš et al.

after the first while cycle finishes. This also means that (w, c) ∈ F as the forward
reachability procedure is completed for c and thus (w, c) ∈ Con, a contradiction.

What remains is to show that the algorithm terminates and that every SCC
is eventually found. Termination is trivially proved by the fact that size of the
set V always decreases in recursive calls: both W and Con are nonempty, because
they contain the initial pivot set as a subset. Clearly, a representant of every
SCC of every monochromatisation G(c) is eventually chosen as a pivot. Together
with the above reasoning, this implies that the algorithm is correct. ��
Theorem 2. Let |V | be the number of vertices in the coloured graph and let
|C| be the number of colours. The coloured lock-step algorithm performs at most
O(|C| · |V | · log |V |) symbolic steps.

Proof. Let us first note that all the derived operations defined in Fig. 1 use
only a constant number of the basic symbolic operations. As we are considering
asymptotic complexity here, we can view all the operations in Fig. 1 as elementary
symbolic steps.

We first make the observation that each vertex may be chosen as a part of
the pivot set at most |C| times. Clearly, once a vertex is included in the pivot
set with a set of colours C ′, then, {v} × C ′ ⊆ Con (due to the monotonicity of
the construction of F and B) and the elements of {v} × C ′ do not appear in
subsequent recursive calls. This means that the total complexity of the calls to
Pivots is bounded by O(|C| · |V |) and we can exclude the calls from the rest of
the complexity analysis.

We now consider the complexity of a single call to Decomposition without
the subsequent recursive calls. Let us now select one of the colours for which
the lock-step reachability procedure (lines 10–21) finished last, i.e., one of the
colours that have been added to Flock or Block in the final iteration of the cycle.
Let us call this colour c. Recall that σ2(c,X) is the set of vertices with colour c
in a coloured set X .

Let us denote by W := σ2(c,W) and let S be the smaller of σ2(c,V \ Con)
and σ2(c, Con \W). Clearly S contains at most |V |/2 vertices. Let k = |S ∪W |.
We now argue that the number of symbolic steps in a given call (without the
recursive calls) is bounded by O(k).

Assume w.l.o.g. that c ∈ Flock (a completely symmetric argument solves the
case c ∈ Block). Then σ2(c, Con) = σ2(c,F). If S is σ2(c, Con \W) then k is the
size of σ2(c,F). Each iteration of the first while cycle puts at least one vertex
with colour c into F ; otherwise c would not be one of the last colours to finish.
This means that the cycle runs for at most k iterations. This also means that
the size of σ2(x,X) for all colours x and X ∈ {F ,B} is also bound by k, which
in turn means that the second while cycle cannot make more than O(k) steps.

If S is σ2(c,V \ Con) instead, let us define B := σ2(c,B) right after the first
while cycle has finished. We know that B ⊆ S ∪W : if a vertex v were in B \ S
then (v, c) ∈ Con = F and thus v ∈ W . Again, each iteration of the first while
cycle puts at least one vertex with colour c into B; otherwise c would have been
in Block before it appeared in Flock . Similarly to the previous case, this means
that both while cycles run for at most O(k) steps.

Symbolic Coloured SCC Decomposition 75

The rest of the argument uses amortised reasoning, in a way similar to the
proof in [14]. Note that each vertex is going to be an element of the set W as
described above at most |C| times (once for each colour). Furthermore, each
vertex is going to be an element of the set S as described above at most |C|·log |V |
times: for each colour, the vertex can be an element of the smaller of the two
sets at most log |V | times. As the cost of each single call can be charged to the
vertices in S ∪W as explained above, it is sufficient to charge each vertex the
total cost of |C| + |C| · log |V |. Together, this means that the total number of
symbolic steps is bounded by O(|C| · |V | · log |V |). ��

Note that the upper bound established by Theorem 2 is no better than the one
we would get if we split the coloured graph into its monochromatic constituents
and processed each monochromatic graph separately using the original lock-step
algorithm [14]. We remark, however, that the coloured approach is a heuristic
whose real complexity might be much smaller. Indeed, the complexity analysis
in the previous proof focused on a single colour, omitting the fact than SCCs
for many other colours are found at the same time. In case where the edges are
largely shared among the colours, which is true in many applications, the heuristic
has the potential to significantly outperform the parameter-scan approach. The
situation is similar to that of the coloured model checking; see the observations
made in [5].

4 Experimental Evaluation

In this section, we examine the applicability of our algorithm in real-world sit-
uations. First, we discuss how we implemented the algorithm and share some
useful recommendations in this regard. We then look at how the implementa-
tion performs on real-life coloured graphs which are derived from large models
considered in computational biology.

4.1 Implementation

As our symbolic set representation, we consider standard reduced ordered binary
decision diagrams (ROBDDs, or just BDDs for short) [17]. The source of our
edge-coloured graphs are the transition systems of parametrised Boolean networks
(PBN) as understood in [11, 60].

Boolean networks. Normal (non-parametrised) Boolean networks [34, 46,
49, 54] appear in computational systems biology as logical models of complex bio-
chemical processes [16]. Here, we use the asynchronous variant of BNs introduced
by Thomas [54]. A Boolean network consists of Boolean variables, each having a
Boolean update function. Update functions are executed non-deterministically
and change the state of the Boolean variables. The semantics of such a network
is a directed graph where the vertices are the possible valuations of the Boolean
variables and the edges are induced by the non-deterministic execution of the
update functions.

76 N. Beneš et al.

This type of models is especially challenging for symbolic analysis. It is a
well-known fact, that using symbolic structures, like BDDs, to represent very
large state spaces gives good results for synchronous systems, but shows its limits
when trying to tackle asynchronicity (see e.g. [23]).

In the parametrised variant, the update functions can be partially unknown.
This introduces a set of colours (parametrisations), each colour fully instantiating
all update functions of the network. As a result, the semantics of such a model is
an edge-coloured directed graph as we consider in this paper. For a full technical
description of PBNs and their coloured graph semantics, please refer to [11].

Our implementation heavily relies on the existing internal libraries of our
tool AEON [12], which at the moment partially supports symbolic analysis of
PBNs. Specifically, AEON uses symbolic BDD-based representation of colour
sets, but relies on explicit state space exploration. In this work, we extend these
capabilities to fully symbolic analysis of the whole graph.

Custom operations. Aside from implementing the Post and Pre opera-
tions for a given PBN, we also choose to provide specialised implementations for
the Colours and Pivots procedures. Especially for the Pivots procedure, this
can greatly reduce the number of necessary symbolic steps, as we avoid picking
pivots vertex-by-vertex.

To implement these two operations as efficiently as possible, we always order
the Boolean variables in our BDDs starting from the colour and ending with vertex
variables. This ensures that both Pivots and Colours can be implemented by
pruning the vertex variable nodes and minimising the BDD.

Specifically, in this ordering, for Colours, all vertex nodes are effectively
substituted with the true terminal node and the BDD is minimised. For Pivots,
one (arbitrary) path of vertex variable nodes (corresponding to one pivot vertex)
is preserved for every colour, and the rest of the vertex nodes are pruned.

Trimming. Finally, most graphs typically contain a large number of trivial
SCCs that introduce unnecessary overhead to the main algorithm. To avoid this
overhead, we additionally perform a trimming step before each invocation of
Decomposition. Trimming consists of repeatedly removing all vertices which
have no outgoing or no incoming edges and is employed by most symbolic SCC
algorithms on standard directed graphs as well. The coloured analogue of trimming
is straightforward, as it can be achieved using Pre and Post operations just as in
the non-coloured case. For a coloured set of vertices V , Post(Pre(G,V)∩V)∩V
returns only vertices which have at least one predecessor in V. The successor
variant simply exchanges the Post and Pre operations.

4.2 Experiments

We evaluated our algorithm on 7 real-world networks based on the models from
the Ginsim Boolean network database [19]. The experiments were performed
on a 32-core AMD Ryzen workstation with 64GB of RAM memory. All tested
models are available in our source code repository.3 Note that the smaller models

3 https://github.com/sybila/biodivine-lib-param-bn/tree/tacas

Symbolic Coloured SCC Decomposition 77

Table 1. Overview of the test models for the algorithm evaluation. The times
(minutes:seconds) refer to the total runtime of the SCC decomposition procedure. The
model variables and parameters give the number of Boolean variables necessary to
represent the PBN symbolically. Finally, the graph size and colour set size specifies the
magnitude of |V | · |C| and |C| for the coloured graph corresponding to the network.

Model Name
Model

Variables
Model

Parameters
Graph
Size

Colour
Set Size

Time

Asymmetric Cell
Division [48]

5 48 ∼ 224 ∼ 219 00:09.47

Reduced TCR
Signalisation [36]

10 46 ∼ 224 ∼ 214 00:58.35

Budding Yeast
(Orlando) [43]

9 54 ∼ 227 ∼ 218 01:13.39

Budding Yeast
(Irons) [31]

18 44 ∼ 235 ∼ 217 50:44.80

T-Cell
Differentiation [41]

23 48 ∼ 240 ∼ 217 71:80.12

WG Signalling
Pathway [40]

26 38 ∼ 248 ∼ 222 78:38.34

Full TCR
Signalisation [36]

30 48 ∼ 247 ∼ 217 118:34.88

(< 230) should be easy to process even on a less powerful machine, however the
larger models can require substantial amounts of RAM.

The PBNs and their analysis runtime is summarised in Table 1. For each
network, we specify the number of Boolean variables used by symbolic encoding,
separated into model variables (vertices) and model parameters (colours), and
the actual approximate size of the coloured graph. Note that not all combinations
of parameters (possible graph colours) are usually biologically admissible, and
these are filtered out before the coloured SCC decomposition. Hence the size of
the graph is smaller than the space of all the considered BDD variables.

From the presented results, we can draw the following observations: First,
fully symbolic approach allows us to scale to much larger graphs than before,
especially in terms of state space. Until now, AEON was typically limited (even
for an easier problem of bottom SCC detection) to vertex counts of 215 − 220,
exhausting memory even for much smaller state spaces when dealing with complex
parameter space. Here, we can easily handle up to 230 vertices with non-trivial
parameter space and we hope to push this number even higher with further
optimisations to our experimental implementation.

Second, the coloured heuristic is beneficial for symbolic computation. To
support this claim, we considered a monochromatic variant of the decomposition
problem for the WG Signaling Pathway and tested the basic lock-step algorithm
on a collection of pseudo-random monochromatisations of this graph. Processing
one such monochromatisation typically required 0.5− 1 second. Considering the

78 N. Beneš et al.

graph in question has 2359296 colours, processing the colours one-by-one would,
even in ideal conditions, take well above 300 hours (more than 12 days).

5 Conclusions

In this paper we have presented a fully symbolic algorithm for detecting all
monochromatic strongly connected components in edge-coloured graphs. The
work has been motivated by systems sciences, namely systems biology, where the
need for efficient automated analysis of components in large graphs with large
sets of coloured edges is emergent. The algorithm combines several ideas inspired
by existing state-of-the-art algorithms for SCC decomposition in a non-trivial
way. We believe this is the first fully symbolic algorithm aiming to solve the
problem efficiently.

The experimental evaluation has shown that in expected practical scenar-
ios, the presented algorithm has a strong potential to be significantly faster
than iterating a standard algorithm for SCC decomposition executed on all
monochromatic sub-graphs one-by-one.

References

1. Abouelaoualim, A., Das, K.C., Faria, L., Manoussakis, Y., Martinhon, C., Saad, R.:
Paths and trails in edge-colored graphs. In: LATIN 2008: Theoretical Informatics.
pp. 723–735. Springer (2008)

2. Akbari, S., Alipour, A.: Multicolored trees in complete graphs. Journal of Graph
Theory 54(3), 221–232 (2007)

3. Alon, N., Gutin, G.: Properly colored hamilton cycles in edge-colored complete
graphs. Random Structures & Algorithms 11(2), 179–186 (1997)

4. Bang-Jensen, J., Gutin, G.: Alternating cycles and paths in edge-coloured multi-
graphs: A survey. Discrete Mathematics 165-166, 39 – 60 (1997)

5. Barnat, J., Brim, L., Krejci, A., Streck, A., Safranek, D., Vejnar, M., Vejpustek,
T.: On parameter synthesis by parallel model checking. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 9(3), 693–705 (2012)

6. Barnat, J., Beneš, N., Brim, L., Demko, M., Hajnal, M., Pastva, S., Šafránek, D.:
Detecting attractors in biological models with uncertain parameters. In: Compu-
tational Methods in Systems Biology (CMSB 2017). Lecture Notes in Computer
Science, vol. 10545, pp. 40–56. Springer (2017)

7. Barnat, J., Bauch, P., Brim, L., Češka, M.: Computing strongly connected compo-
nents in parallel on CUDA. In: 25th IEEE International Symposium on Parallel
and Distributed Processing, IPDPS 2011 - Conference Proceedings. pp. 544–555.
IEEE (2011)

8. Barnat, J., Chaloupka, J., Van De Pol, J.: Distributed algorithms for SCC decom-
position. J. Log. and Comput. 21(1), 23–44 (2011)

9. Batt, G., Page, M., Cantone, I., Goessler, G., Monteiro, P.T., de Jong, H.: Efficient
parameter search for qualitative models of regulatory networks using symbolic
model checking. Bioinformatics 26(18) (2010)

10. Behzad, M., Chartrand, G., Lesniak-Foster, L.: Graphs and Digraphs. Wadsworth
Publishing (1979)

Symbolic Coloured SCC Decomposition 79

11. Beneš, N., Brim, L., Pastva, S., Poláček, J., Šafránek, D.: Formal analysis of
qualitative long-term behaviour in parametrised boolean networks. In: Ait-Ameur,
Y., Qin, S. (eds.) Formal Methods and Software Engineering. pp. 353–369. Springer
International Publishing, Cham (2019)

12. Beneš, N., Brim, L., Pastva, S., Šafránek, D.: AEON: attractor bifurcation analysis
of parametrised boolean networks. In: Computer Aided Verification - 32nd Inter-
national Conference, CAV 2020. Lecture Notes in Computer Science, vol. 12224.
Springer International Publishing, Cham (2020)

13. Beneš, N., Brim, L., Pastva, S., Poláček, J., Šafránek, D.: Formal analysis of
qualitative long-term behaviour in parametrised boolean networks. In: Formal
Methods and Software Engineering (ICFEM 2019). Lecture Notes in Computer
Science, vol. 11852, pp. 353–369. Springer (2019)

14. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected compo-
nent analysis in n log n symbolic steps. In: Formal Methods in Computer-Aided
Design (FMCAD 2000). pp. 37–54. Lecture Notes in Computer Science, Springer-
Verlag (2000)

15. Bloemen, V., Laarman, A., van de Pol, J.: Multi-core on-the-fly SCC decomposition.
In: Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. PPoPP ’16, ACM, New York, NY, USA (2016)

16. Brim, L., Češka, M., Šafránek, D.: Model checking of biological systems. In: Formal
Methods for Dynamical Systems. pp. 63–112. Springer Berlin Heidelberg (2013)

17. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

18. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10ˆ20 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

19. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks
with ginsim. In: Bacterial Molecular Networks, pp. 463–479. Springer (2012)

20. Chatterjee, K., Dvořák, W., Henzinger, M., Loitzenbauer, V.: Lower bounds for
symbolic computation on graphs: Strongly connected components, liveness, safety,
and diameter. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2018). pp. 2341–2356. SIAM (2018)

21. Choo, S.M., Cho, K.H.: An efficient algorithm for identifying primary phenotype
attractors of a large-scale boolean network. BMC Systems Biology 10(1), 95 (2016)

22. Ciardo, G., Marmorstein, R.M., Siminiceanu, R.: The saturation algorithm for
symbolic state-space exploration. Int. J. Softw. Tools Technol. Transf. 8(1), 4–25
(2006)

23. Couvreur, J., Thierry-Mieg, Y.: Hierarchical decision diagrams to exploit model
structure. In: FORTE 2005. Lecture Notes in Computer Science, vol. 3731, pp.
443–457. Springer (2005). https://doi.org/10.1007/11562436 32

24. Deritei, D., Aird, W.C., Ercsey-Ravasz, M., Regan, E.R.: Principles of dynamical
modularity in biological regulatory networks. Nature Scientific Reports 6, 21957
(2016)

25. Dorninger, D.: Hamiltonian circuits determining the order of chromosomes. Discrete
Applied Mathematics 50(2), 159 – 168 (1994)

26. Fleischer, L.K., Hendrickson, B., Pınar, A.: On identifying strongly connected
components in parallel. In: Parallel and Distributed Processing. Lecture Notes in
Computer Science, vol. 1800, pp. 505–511. Springer (2000)

27. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components
in a linear number of symbolic steps. In: Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2003). vol. 3, pp. 573–582.
SIAM (2003)

80 N. Beneš et al.

28. Gentilini, R., Piazza, C., Policriti, A.: Symbolic graphs: Linear solutions to connec-
tivity related problems. Algorithmica 50(1), 120–158 (2008)

29. Giacobbe, M., Guet, C.C., Gupta, A., Henzinger, T.A., Paixão, T., Petrov, T.:
Model checking the evolution of gene regulatory networks. Acta Informatica 54(8),
765–787 (2017)

30. Hong, S., Rodia, N.C., Olukotun, K.: On fast parallel detection of strongly connected
components (SCC) in small-world graphs. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
SC 2013, ACM, New York, NY, USA (2013)

31. Irons, D.: Logical analysis of the budding yeast cell cycle. Journal of theoretical
biology 257(4), 543–559 (2009)

32. Jiang, B.: I/O- and CPU-optimal recognition of strongly connected components.
Information Processing Letters 45(3), 111 – 115 (1993)

33. Kano, M., Li, X.: Monochromatic and heterochromatic subgraphs in edge-colored
graphs - a survey. Graphs and Combinatorics 24(4), 237–263 (2008)

34. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology 22(3), 437–467 (1969)

35. Király, Z.: Monochromatic components in edge-colored complete uniform hyper-
graphs. European Journal of Combinatorics 35, 374 – 376 (2014)

36. Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Simeoni, L., Gilles, E.D.: A method-
ology for the structural and functional analysis of signaling and regulatory networks.
BMC bioinformatics 7(1), 56 (2006)

37. Li, G., Zhu, Z., Cong, Z., Yang, F.: Efficient decomposition of strongly connected
components on GPUs. Journal of Systems Architecture 60(1), 1 – 10 (2014)

38. Li, Q., Wennborg, A., Aurell, E., Dekel, E., Zou, J.Z., Xu, Y., Huang, S., Ernberg,
I.: Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of
stability, and escape. Proceedings of the National Academy of Sciences 113(10),
2672–2677 (2016)

39. Matouk, A.: Complex dynamics in susceptible-infected models for covid-19 with
multi-drug resistance. Chaos, Solitons & Fractals 140, 110257 (2020)

40. Mbodj, A., Junion, G., Brun, C., Furlong, E.E., Thieffry, D.: Logical modelling of
drosophila signalling pathways. Molecular BioSystems 9(9), 2248–2258 (2013)

41. Mendoza, L., Xenarios, I.: A method for the generation of standardized qualita-
tive dynamical systems of regulatory networks. Theoretical Biology and Medical
Modelling 3(1), 13 (2006)

42. Mizera, A., Pang, J., Qu, H., Yuan, Q.: Taming asynchrony for attractor detection
in large boolean networks. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 16(1), 31–42 (2019)

43. Orlando, D.A., Lin, C.Y., Bernard, A., Wang, J.Y., Socolar, J.E., Iversen, E.S.,
Hartemink, A.J., Haase, S.B.: Global control of cell-cycle transcription by coupled
CDK and network oscillators. Nature 453(7197), 944–947 (2008)

44. Orzan, S.: On Distributed Verification and Verified Distribution. Ph.D. thesis, Free
University Amsterdam (2005)

45. Reif, J.H.: Depth-first search is inherently sequential. Information Processing Letters
20(5), 229 – 234 (1985)

46. Richard, A., Comet, J.P., Bernot, G.: Graph-based modeling of biological regulatory
networks: Introduction of singular states. In: Computational Methods in Systems
Biology (CMSB 2005). Lecture Notes in Computer Science, vol. 3082, pp. 58–72.
Springer (2005)

47. Saad, R.: Sur quelques problèmes de complexité dans les graphes. Ph.D. thesis, U.
de Paris-Sud, Orsay (1992)

Symbolic Coloured SCC Decomposition 81

48. Sánchez-Osorio, I., Hernández-Mart́ınez, C.A., Mart́ınez-Antonio, A.: Modeling
asymmetric cell division in caulobacter crescentus using a boolean logic approach.
In: Asymmetric Cell Division in Development, Differentiation and Cancer, pp. 1–21.
Springer (2017)

49. Schwab, J.D., Kühlwein, S.D., Ikonomi, N., Kühl, M., Kestler, H.A.: Concepts in
boolean network modeling: What do they all mean? Computational and Structural
Biotechnology Journal 18, 571–582 (2020)

50. Sharir, M.: A strong-connectivity algorithm and its applications in data flow analysis.
Computers & Mathematics with Applications 7(1), 67–72 (1981)

51. Slota, G.M., Rajamanickam, S., Madduri, K.: BFS and coloring-based parallel
algorithms for strongly connected components and related problems. In: 2014 IEEE
28th International Parallel and Distributed Processing Symposium. pp. 550–559
(2014)

52. Steffen, W., Rockström, J., Richardson, K., Lenton, T.M., Folke, C., Liverman,
D., Summerhayes, C.P., Barnosky, A.D., Cornell, S.E., Crucifix, M., Donges, J.F.,
Fetzer, I., Lade, S.J., Scheffer, M., Winkelmann, R., Schellnhuber, H.J.: Trajectories
of the earth system in the anthropocene. Proceedings of the National Academy of
Sciences 115(33), 8252–8259 (2018)

53. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

54. Thomas, R.: Boolean formalization of genetic control circuits. Journal of Theoretical
Biology 42(3), 563–585 (1973)

55. Thomason, A., Wagner, P.: Complete graphs with no rainbow path. Journal of
Graph Theory 54(3), 261–266 (2007)

56. Wijs, A., Katoen, J.P., Bošnački, D.: GPU-based graph decomposition into strongly
connected and maximal end components. In: Computer Aided Verification (CAV
2014). Lecture Notes in Computer Science, vol. 8559, pp. 310–326. Springer (2014)

57. Xie, A., Beerel, P.A.: Implicit enumeration of strongly connected components and
an application to formal verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 19(10), 1225–1230 (2000)

58. Yuan, Q., Mizera, A., Pang, J., Qu, H.: A new decomposition-based method
for detecting attractors in synchronous boolean networks. Science of Computer
Programming 180, 18–35 (2019)

59. Zhao, Y., Ciardo, G.: Symbolic computation of strongly connected components and
fair cycles using saturation. Innov. Syst. Softw. Eng. 7(2), 141–150 (2011)

60. Zou, Y.M.: Boolean networks with multiexpressions and parameters. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 10, 584–592 (2013)

82 N. Beneš et al.

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Symbolic Coloured SCC Decomposition 83

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Case Studies

Local Search with a SAT Oracle for Combinatorial

Optimization

Aviad Cohen, Alexander Nadel � and Vadim Ryvchin

Intel Corporation, P.O. Box 1659, Haifa 31015, Israel
{aviad.cohen,alexander.nadel}@intel.com,vadimryv@gmail.com

Abstract. NP-hard combinatorial optimization problems are pivotal in science
and business. There exists a variety of approaches for solving such problems, but
for problems with complex constraints and objective functions, local search algo-
rithms scale the best. Such algorithms usually assume that finding a non-optimal
solution with no other requirements is easy. However, what if it is NP-hard? In
such case, a SAT solver can be used for finding the initial solution, but how can
one continue solving the optimization problem? We offer a generic methodol-
ogy, called Local Search with SAT Oracle (LSSO), to solve such problems. LSSO
facilitates implementation of advanced local search methods, such as variable
neighbourhood search, hill climbing and iterated local search, while using a SAT
solver as an oracle. We have successfully applied our approach to solve a critical
industrial problem of cell placement and productized our solution at Intel.

1 Introduction

Real-life combinatorial optimization problems are pivotal in science, operations re-
search, engineering, economics, and business [11, 13, 20, 21, 23].

Loosely speaking, an instance of a combinatorial optimization problem deals with
the minimization of an objective function over a finite set, subject to feasibility con-
straints (or, simply, constraints). The set of all elements satisfying the constraints is
referred to as the set of feasible solutions (or, simply, solutions). In this paper, we focus
on solving any problem, which can be expressed as a constraint optimization program
(COP) [2]. Arguably, the vast majority of combinatorial problems, encountered in prac-
tice, fall under this category.

Many important combinatorial problems are NP-hard. For such problems, various
algorithmic strategies have been devised, including complete methods, such as branch-
and-bound and dynamic programming, and incomplete methods, such as greedy algo-
rithms and local search. Each such method imposes requirements on the mathematical
properties of the problem with a consequent limit on the scope of applicability.

Local search algorithms stand out from the rest in that they impose relatively mild
constraints on the type of the problem to be addressed, thus providing a wide scope of
applicability. Furthermore, they seem to scale better with input size relative to complete
algorithms [24]. This makes local search algorithms an attractive choice. However, lo-
cal search algorithms may return a low-quality solution or no solution at all, given a
problem for which the mere task of finding a feasible solution is NP-hard. Henceforth,
we shall refer to such problems as NP-Hard-Feasible problems.
c© The Author(s) 2021

J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 87–104, 2021.
https://doi.org/10.1007/978-3-030-72013-1 5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_5&domain=pdf
http://orcid.org/0000-0003-4679-892X
https://doi.org/10.1007/978-3-030-72013-1_5

88 A. Cohen, A. Nadel and V. Ryvchin

This paper introduces the Local Search with SAT Oracle (LSSO) methodology, that
is, local search algorithms which use a SAT solver (or a SAT-based optimization algo-
rithm; details appear later) as an oracle. A key advantage of our approach is that it can
handle problems with complex constraints and objective functions. In particular, it can
handle NP-Hard-Feasible problems.

To see how SAT solvers might be useful, consider the basic version of a local search
for an optimal solution. At the beginning, the local search generates an initial solution
and sets it as the current solution. Then, it enters a loop. In each iteration, it looks
for a solution with a lower value of the objective function within a neighbourhood of
the current one. If such a solution is found, it is set to be the current solution, and the
execution resumes. Otherwise, the algorithm terminates and returns the current solution.

A key component of local search algorithms is the neighbourhood function, which
assigns to each feasible solution a subset of feasible solutions, called its neighbour-
hood. Ordinarily, a neighbourhood of the current feasible solution comprises a set of
solutions which can be obtained from the current solution by applying a small collec-
tion of feasibility-preserving perturbations to its combinatorial structure. A key con-
cern is ensuring that neighbourhoods: (i) are polynomially searchable, and (ii) con-
tain high-quality solutions. However, meeting both requirements might be challenging,
since polynomial searchability implies that neighbourhoods should be small, and hence
less likely to contain high-quality solutions. In addition, in the case of NP-Hard-Feasible
problems, it is not clear how to achieve polynomial searchability, since a search should,
in particular, be able to find a feasible solution, which is NP-hard.

Our main idea is to let the SAT solver both find an initial solution and conduct the
neighbourhood search. The designer can now define feasibility constraints and neigh-
bourhoods declaratively, that is, by a set of SAT constraints. The designer has more
freedom to choose neighbourhoods, which need neither be small, nor contain only so-
lutions close to the current solution. This is because the search of the now complex and
possibly large neighbourhoods is entrusted to SAT solvers, constructed precisely to ef-
ficiently search large complex subspaces. Our approach lends itself to implementations
of advanced local search variants, such as variable neighbourhood search, hill climbing
and iterated local search [29].

An important feature of our algorithms is that they are anytime. Recall that an any-
time algorithm is expected to return a valid solution even if interrupted. An anytime
algorithm for an optimization problem is expected to find an improving set of solutions.
The anytime property is essential for industrial application, since it allows the user to
get an approximate solution even for very difficult instances [14, 15].

We demonstrate the usefulness of our approach by solving hard industrial instances
of the NP-Hard-Feasible cell placement problem. Cell placement is one of the most
important problems in VLSI automation [28]. Its most basic version concerns placing
without overlap a set of rectangles on a grid, while minimizing the occupied area. In
reality, the problem is more complex. Our approach has been successfully productized
at Intel.

The rest of this paper is organized as follows: Sect. 2 provides the necessary back-
ground. Sect. 3 introduces our LSSO methodology. Sect. 4 shows how to solve place-
ment with LSSO. Sect. 5 presents the experimental results. Sect. 6 concludes our paper.

Local Search with a SAT Oracle 89

2 Background

This section provides some background. Sect. 2.1 is an overview of COP. Sect. 2.2
describes the cell placement problem and shows how to reduce it to COP. Sect. 2.3 dis-
cusses how one can solve a COP using a SAT-based bit-vector solver. Sect. 2.4 reviews
local search.

2.1 Constraint Optimization Program (COP)

This work presents a new methodology for solving a wide class of combinatorial op-
timization problems, which can be expressed as a Constraint Optimization Program,
shown in Def. 1.

Definition 1 (Constraint Optimization Program (COP) [2]). A constraint optimiza-
tion program is a tuple (X ,D, C, Ψ) where:

1. X = {x1 . . . xn} is a finite set of variables often referred to as decision variables.
2. D = {D1 . . .Dn} is a corresponding set of finite domains. Without loss of gener-

ality, each Di is assumed to be a closed bounded interval of non-negative integers.
3. C = {C1 . . . Cm} is a finite set of constraints Ck : D1 × · · · × Dn �→ {0, 1}.
4. Ψ : D1 × · · · × Dn �→ Z is an objective function to be minimized.

2.2 The Cell Placement Problem

Cell Placement (Placement) is a major stage in the VLSI design cycle [8,16]. The input
of the cell placement problem comprises the following components:

1. A rectangular grid region of M rows and N columns, on which the cells are to be
placed. Row/column line numbering starts at 0 and ends at M /N , respectively.

2. A finite set C of rectangular cells. The width and the height of each cell c ∈ C
are assumed to be positive integers, denoted by cwidth : 0 < cwidth ≤ N and
cheight : 0 < cheight ≤M , respectively.

3. A set R of forbidden rectangular regions. A forbidden region r ∈ R is specified
by 4 numbers rwest, rsouth, reast and rnorth (where, 0 ≤ rwest, reast < N ; 0 ≤
rsouth, rnorth < M ; reast > rwest; rnorth > rsouth), denoting the leftmost col-
umn line, bottom row line, rightmost column line, and top row line, respectively.

4. A finite set I of nets, each consisting of a non-empty subset of cells. The nets may
(and usually do) intersect.

We are interested in feasible placements, that is, placements in which no cell over-
laps other cells or forbidden regions. Given a feasible placement, we define the size of
a net n ∈ I as the perimeter of the box bounding its placed cells. We define the size
of the placement as the sum of the sizes of the nets. We are required to find a feasible
placement of a minimal size. An example is shown in Fig. 1.

In industrial practice, there may be additional industrial requirements, such as align-
ing some of the cells, enforcing parity constraints (i.e., the user might require the y co-
ordinates of some of the cells to be either even or odd) [19], ensuring a minimal distance
between some of the cells and others. We omit further details due to IP considerations.

Placement is NP-Hard-Feasible, since the NP-complete bin packing problem can be
reduced to the decision version of the placement problem [10].

90 A. Cohen, A. Nadel and V. Ryvchin

2.2.1 Constraint Optimization Program for Cell Placement. We show how to con-
struct a COP for the cell placement problem. For each cell c ∈ C, let cwest and ceast

denote its leftmost and rightmost column respectively, and csouth and cnorth denote its
bottom and top row. Strictly speaking, it suffices to use cwest and csouth as the COP’s
independent variables, but it is convenient to use ceast and cnorth as syntactic sugar for
cwest + cwidth and csouth + cheight, respectively. The COP looks as follows:

1. Variables: {cwest, csouth | c ∈ C}
2. Domains: cwest ∈ [0 . . .N − 1] and csouth ∈ [0 . . .M − 1]
3. Feasibility constraints:

(a) Each cell c is placed wholly within the grid region:

(cwest ≥ 0) ∧ (ceast ≤N) ∧ (csouth ≥ 0) ∧ (cnorth ≤M)

(b) For every pair of cells 〈ci, cj〉, such that i < j, there is no overlap:

(cwest
i ≥ ceastj) ∨ (cwest

j ≥ ceasti) ∨ (csouthi ≥ cnorthj) ∨ (csouthj ≥ cnorthi)

(c) For every pair 〈r, c〉 of a forbidden region r and a cell c, there is no overlap:

(rwest ≥ ceast) ∨ (cwest ≥ reast) ∨ (rsouth ≥ cnorth) ∨ (csouth ≥ rnorth)

(d) Constraints representing any additional industrial requirements.
4. Objective function Ψ : for every net n ∈ I, let ‖n‖ denote its size. We have:

‖n‖ =
(
max
c∈n

(ceast)−min
c∈n

(cwest)

)
+

(
max
c∈n

(cnorth)−min
c∈n

(csouth)

)
Ψ =

∑
n∈I
‖n‖

Fig. 1: Placement example [16]. A solution is shown for the problem of placing five cells c1, c2,
c3, c4 and c5 of sizes 4×1, 4×3, 2×2, 2×4 and 1×5 respectively, on a grid with M = N = 8.
There are three nets: n1 = {c1, c3, c5}, n2 = {c2, c3} and n3 = {c2, c4} (without any forbidden
regions). The bounding boxes of the nets are B1, B2 and B3, respectively. The sizes of the nets,
comprising the perimeters of the bounding boxes, are 20, 18 and 20, respectively. The overall
placement size is 20 + 18 + 20 = 58. The solution is an optimal one.

Local Search with a SAT Oracle 91

2.3 Solving COP with SAT

A COP can be solved with various types of solvers [2]. In particular, it is possible
to solve a COP by reduction to a series of SAT solver invocations through bit-vector
reasoning as explained below.

2.3.1 Bit-vector Solving and SAT. We start with reviewing the basic terminology,
related to SAT solving. A literal l is a Boolean variable v or its negation ¬v. A clause
is a disjunction of literals. A formula F is in Conjunctive Normal Form (CNF) if it is a
conjunction (set) of clauses.

A SAT solver [4] receives a CNF formula F and returns a satisfying assignment
(aka, model or solution), if one exists. In incremental SAT solving under assumptions [5,
18], the user may invoke the SAT solver multiple times, each time with a different
set of assumption literals (called, simply, the assumptions) and, possibly, additional
clauses. The solver then checks the satisfiability of all the clauses provided so far, while
enforcing the values of the current assumptions.

A bit-vector variable (bit-vector) of width n = |B|, B = {vn, vn−1, . . . , v1}, is a
sequence of n Boolean variables, called bits. Bit v1 is the Least Significant Bit (LSB)
and vn is the Most Significant Bit (MSB). A Boolean constant is either ⊥ (0) or ! (1).
A bit-vector constant is a bit-vector (BV), each one of whose bits is substituted by a
Boolean constant. A bit-vector term is either a bit-vector, a BV constant, or a result
of applying an operator which returns a bit-vector (for example, BV addition, if-then-
else, concatenation) over other terms and atoms. An atom is either a Boolean variable,
a Boolean constant or a result of applying an operator, which returns a Boolean (for
example, = or unsigned-less-than), over BV terms and atoms. A bit-vector formula
(also known as a bit-vector constraint) is recursively defined to be either an atom, a
negation of a bit-vector formula, or the result of applying the Boolean operator ∧ or
the Boolean operator ∨ over two or more bit-vector formulas. See [3,12] for a rigorous
description of the BV language. A BV solver decides the satisfiability of BV formulas.

A BV formula F is satisfiable iff it has a model, that is, an assignment of BV and
Boolean constants to their corresponding BV and Boolean variables, which satisfies F .
In this paper, BV constants are interpreted as unsigned numbers, and BV comparison
operators are interpreted as unsigned. For example, given a bit-vector B = {v3, v2, v1},
the formula F = B < 2 has two models μ1 : μ1(B) = 0 and μ2 : μ2(B) = 1.

All the algorithms presented in this work are assumed to use the so-called eager BV
solver [6] which, following some preprocessing, translates the input BV formula to an
equisatisfiable formula in CNF and solves it with a SAT solver. Thus, we will use the
notions of BV solving and SAT solving interchangeably. We also assume the BV solver
to have the same incremental API as a SAT solver.

Since the variables in a COP have finite domains, both the variables and the con-
straints of a COP can be easily expressed as BV variables and BV constraints.

In particular, in the COP constructed for the cell placement problem in Sect. 2.2.1,
the variables and the constraints can be expressed as BV variables and constraints as
follows: For each cell c, we define four bit-vectors: cwest and ceast of width "logN#
as well as csouth and cnorth of width "logM#. All the constraints in our COP involve
these bit-vectors and can be expressed in terms of operators and relations available in

92 A. Cohen, A. Nadel and V. Ryvchin

the BV language [3]. Specifically, we implement min and max operators using a series
of if-then-else operators. In addition, for every operator, we zero-extend the widths of
the operands and the resulting bit-vector to prevent an overflow, whenever required.

Reducing the constraints of a COP to a BV formula and invoking BV solver suffices
to find one non-optimal solution. However, for solving the optimization problem by
reduction to BV, one needs an extension of BV solving to optimization.1

2.3.2 Extending Bit-vector Solving to Optimization. One can extend bit-vector
solving to the so-called Bit-Vector Optimization (OBV) [19] as follows:

A model μ of a BV formula F is T -minimal, for a given bit-vector T , iff μ(T) ≤
ν(T) (where the comparison is unsigned) for every model ν of F . Given a BV formula
F and a term T = {tn, tn−1, . . . , t1} in F , where T is called the optimization target
(or, simply, the target), Bit-Vector Optimization (OBV) is the problem of finding a T -
minimal model of F . The bits of the target T are referred to as the target bits.

Translating our placement COP to OBV is straightforward. We have already shown
how to translate the constraints. The optimization target is constructed in the same way
as the objective function Ψ is constructed in the COP.

How can one solve OBV in practice? First, one can use the following simple any-
time Linear Search algorithm, implemented on top of an incremental BV solver [16,27]:

1: solver.Assert(F); μ := solver.Sat() � assert F and find the first solution
2: while μ is a solution do � while there is still a solution
3: solver.Assert(T < μ(T)) � block all the solutions with cost ≥ μ(T)
4: μ := solver.Sat() � can we improve our solution?
5: return μ � μ is guaranteed to be T -minimal

Another anytime algorithm to solve OBV is the following binary search-based al-
gorithm, called OBV-BS [9, 19]:

1: solver.Assert(F); μ := solver.Sat() � assert F and find the first solution
2: i := n � i is the current bit number, initialized to the MSB
3: while i ≥ 1 and μ(ti) = ⊥ do � fix to ⊥ the MSBs, assigned to ⊥ in μ
4: solver.Assert(¬ti)
5: i := i− 1 � after the loop, i will point to the first target bit, assigned !
6: while i ≥ 1 do � Check one-by-one, if we can flip the remaining target bits to ⊥
7: μ := solver.Sat({¬ti}) � run the solver under the assumption ¬ti
8: if satisfiable then

9: while (i ≥ 1 and μ(ti) = ⊥) do solver.Assert(¬ti); i := i− 1 endwhile

10: else

11: solver.Assert(ti); i := i− 1 � ti cannot be flipped to ⊥, so we fix it to !
12: return μ

We have successfully applied OBV-BS for solving the problem of fixing an existing
placement [19], closely related to the generic placement problem, we are exploring

1 One cannot use MaxSAT [26]–the widely used extension of SAT to optimizing a linear Pseudo-
Boolean (PB) function–to solve COP in the generic case, since the objective function is not
guaranteed to be linear PB. In particular, it is not linear PB for placement, if only because the
variables are bit-vectors, rather than Booleans.

Local Search with a SAT Oracle 93

in this work. However, both Linear Search and OBV-BS failed to scale to industrial
instances of our current problem of finding an optimal placement from scratch (with
Linear Search scaling somewhat better than OBV-BS).

Recently, we have introduced the so-called Polosat anytime algorithm [16],
which can be used instead of the standard SAT solver inside Linear Search (and other
SAT-based anytime optimization algorithms) to make it substantially more scalable. The
idea behind Polosat, shown below, is to simulate local search using a SAT solver. We
use the strictly-monotone version of Polosat [16], which assumes the availability of
the so-called Boolean observable variables (observables) Obs, that is, a set of Boolean
variables on which the objective function depends (for placement, the observables might
comprise the bits of the bit-vectors, representing the sizes of the nets, for every net).
Polosat is carried out by getting a model μ and then trying to improve it by repeatedly
flipping observables, which have not been assigned ⊥ in previous models:

1: function SOLVER.POLOSAT(assumptions)
Require: Target bit-vector T is available; Observables Obs are available.

2: μ := solver.Sat(assumptions) � get the first model μ
3: is good epoch := 1 � good epoch: an iteration, which improves μ
4: while is good epoch do � one loop is an epoch
5: B := {v : v ∈ Obs, μ(v) = !} � remove any observables, assigned ⊥
6: is good epoch := 0
7: while B is not empty do

8: bi := B.front();B.dequeue()
9: σ := solver.Sat(assumptions ∪ {¬bi}) � trying to flip bi

10: if satisfiable then

11: if σ(T) < μ(T) then μ := σ and is good epoch := 1
12: B := {b : b ∈ B, σ(t) = 1} � remove any observables, assigned ⊥
13: return μ

To combine Polosat into Linear Search, it is sufficient to replace solver.Sat invo-
cations by solver.Polosat invocations in the code. 2 We have shown in [16] that replacing
plain SAT invocations by Polosat invocations in Linear Search makes our placement
tool substantially more scalable. We reaffirm this result in Sect. 5.

Yet, despite the significant progress we had witnessed when applying Polosat,
we found that combining Polosat into Linear Search is still insufficient for solving
a variety of complex real-world instances of our industrial placement problem. This
empirical challenge lead us to develop our LSSO methodology, presented in this paper.
As we shall see, combining LSSO and Polosat makes our tool considerably more
scalable, while the methodology itself is generic and can be applied to solving a wide
range of optimization problems.

2.4 Local Search Algorithms

Local search strategies [1] are a collection of algorithmic templates. An algorithmic
template specifies the main flow of an algorithm, but leaves some details unimple-

2 Polosat also uses polarity fixing strategies, such as TORC [14,17], omitted here; please refer
to [16] for details. Additional non-anytime OBV algorithms are introduced in [19, 22].

94 A. Cohen, A. Nadel and V. Ryvchin

mented. By implementing these details for a specific problem, one obtains an algo-
rithmic solution for that problem.

2.4.1 Basic Local Search Strategy. The basic strategy generates an initial feasible
solution and sets it as the current solution. Then, it enters a loop. In each iteration, it
looks within a neighbourhood of the current solution for a feasible solution with a lower
value of the objective function. If one is found, it is set to be the current solution. Other-
wise, the algorithm is terminated returning the current solution. Note that this version is
guaranteed to stop; it does so, when it reaches a local minimum of the objective function
with respect to the neighbourhood used.

To turn this algorithmic template into a complete algorithm, one has to implement
the following problem-dependent items: (i) A procedure for generating an initial fea-
sible element. (ii) A neighbourhood function assigning to each solution a subset of
solutions. (iii) An algorithm for searching the neighbourhood for a better solution.

2.4.2 Neighbourhood Functions. A key factor, which affects both the complexity
of the search and the quality of the resulting solution, is the selection of a neighbour-
hood function. In theory, the selection ought to depend on a mathematical analysis of
the structure of the feasible set and the profile of the objective function. For complex
problems, such an analysis is usually beyond reach. The classical approach to neigh-
bourhood definition is based on the following problem-independent general principles:

1. Drawing on an analogy to optimization algorithms in the continuous case (such as
gradient descent or line search), a neighbourhood should be so defined as to make
its elements “close” to the current solution. So, typically, the neighbourhood of a
feasible solution is specified by a small class of feasibility-preserving modifica-
tions/perturbations to its combinatorial structure.

2. A neighbourhood should be so defined as to ensure that it is polynomially search-
able. Hence, unless we have a sophisticated non-exhaustive neighbourhood search
algorithm, neighbourhoods should be small.

However, as we have argued in Sect. 1, this approach is not without issues. In par-
ticular, feasibility-preserving perturbations may not be easy to find, especially for NP-
Hard-Feasible problems, while having small neighbourhoods implies a low likelihood
of high-quality solutions.

2.4.3 Advanced Versions of Local Search. A disadvantage of the basic version of lo-
cal search is that it may stop at a local minimum of a poor quality, if too small a region of
the feasible space is explored. To circumvent this outcome, advanced variants enabling
an exploration of larger portions of the feasible space have been devised [7, 29]. Those
described here provide some mechanism to escape from the local minimum to “nearby”
solutions and resume the search from there. They have been designed to accommodate
situations, where local minima are not distributed uniformly in the feasibility space, but
are rather clustered in close proximity [25].

The variable neighbourhood search approach uses multiple neighbourhoods to es-
cape from local minima. It relies on the fact that a local minimum with respect to one

Local Search with a SAT Oracle 95

neighbourhood need not be a local minimum with respect to another (if the latter is
not contained in the former). The algorithm maintains a set of neighbourhood func-
tions. Once a local minimum with respect to the current neighbourhood is reached, the
neighbourhood is switched, and the search is resumed.

The hill climbing method allows the selection of a non-improving solution, once
a local minimum is reached. Since the objective function no longer monotonically de-
creases, there is now a possibility of a cycle: a solution may be visited more than once
forcing the search into an infinite loop. One can deal with this problem in various ways:
ignore it and let the algorithm run until the timeout expires, use randomization, or in-
troduce data structures that keep track of the search history and prohibit solutions that
have already been encountered. The latter approach is referred to as tabu search.

Another idea is to use large neighbourhoods. This approach increases the size of the
explored region and the likelihood of better solutions. However, large neighbourhood
search may become intractable.

The iterated local search approach can be viewed as “a local search within a local
search”. In each iteration of the search, it uses a subsidiary search algorithm to explore
iteratively a feasible sub-space. Once a local minimum is returned, a new search is
initiated in a region, whose elements are obtained by “perturbing” the recent solution.

All the above approaches can be implemented within our LSSO framework. The
key difference between LSSO and previous approaches is using SAT or Polosat as
an oracle for both finding the initial solution and carrying out the neighbourhood search.

3 Local Search with SAT Oracle (LSSO)

This section introduces the main contribution of our paper. We propose using SAT as an
oracle in local search algorithms to address the scalability and quality issues that arise
in the classical local search algorithms, especially, given an NP-Hard-Feasible problem.

Given a combinatorial optimization problem, the first stage in designing an LSSO
solution is expressing the problem as a COP.

In the second stage, the COP decision variables are translated to bit-vectors, and the
feasibility constraints are translated to a BV formula (including any additional industrial
requirements). One might experiment with several alternative formulations and select
the one deemed best.

The third step is defining the so-called neighbourhood generators. A neighbourhood
generator N (μ) accepts as an input a solution μ (that is, a model to the bit-vector
formula, representing the COP), and generates neighbourhood constraints. The set of all
the assignments which satisfy the feasibility and neighbourhood constraints constitutes
the neighbourhood of the solution. Thus, finding such an assignment amounts to finding
an element of the neighbourhood of μ.

A key ingredient of our methodology is the adoption of a neighbourhood concept,
which differs significantly from the classical one, described in Sect. 2.4.2:

1. The neighbourhood need not be small and need not contain (only) elements “close”
to the current solution.

96 A. Cohen, A. Nadel and V. Ryvchin

2. Normally,N (μ) should generate constraints which ensure a cost lower than that of
μ. If such a formulation is possible, then an iteration of the local search algorithm
merely needs to find a model to these constraints in order to progress.

3. If the objective function is too complex to model in its entirety, a neighbourbood
generator might attempt to ensure a better value for the objective function by im-
posing constraints on the objective function’s sub-components. For example, when
the objective function is a very large sum of bit-vector terms, one might impose
constraints on the sum’s terms or small partial sums thereof.

4. Notwithstanding the above, neighbourhood generators may support hill climbing, in
which case, the constraints are so formulated as to admit non-improving solutions.

Note that, in our approach, neighbourhoods direct the search to “higher-quality”
regions with respect to the current solution, regardless of the algorithmic difficulties of
searching such regions. This is another key aspect of our approach: we trust SAT solvers
to search complex sub-spaces efficiently.

Having discussed neighbourhoods, we are now ready to describe the simplest LSSO
implementation:

1. A BV solver instance is created and the COP is provided to the solver. Specifically,
we represent the COP’s decision variables as bit-vectors, where the widths are cho-
sen to accommodate the largest values. We provide the feasibility constraints to the
solver as BV constraints. Then, we implement neighbourhood generators, which,
given a feasible solution, return a set of BV constraints defining its neighbourhood.

2. The local search is carried out as follows:
(a) The algorithm obtains an initial solution by asserting the feasibility constraints

and asking the solver for a model. This model is set as the current solution μ.
(b) The algorithm enters a loop, in which the solver operates in incremental mode.

In each iteration, the algorithm calls the neighbourhood generator with the cur-
rent solution as input, to generate a list of BV constraints. These are provided
to the solver, which is asked for a model. If a model α is found, μ is set to α.
Otherwise, the algorithm terminates returning μ.

The neighbourhood constraints can be given to the solver as either assumptions or
assertions. This leads to two types of search, providing a tradeoff between execution
time and quality:

1. Non-speculative search: the neighbourhood constraints are passed to the solver as
assertions. Once assertions are passed to the solver, they are enforced in all ensuing
iterations. The search proceeds through a monotone sequence of decreasing neigh-
bourhoods until a local minimum is reached. Thus, the search is localized and is
relatively fast at the possible expense of quality.

2. Speculative search: the neighbourhood constraints are passed to the solver as as-
sumptions. The neighbourhood constraints are valid only for one iteration. Thus,
the current neighbourhood is not intersected with previous neighbourhoods and a
larger portion of the feasibility space will be explored. The search is expected to
be slower, since the SAT solver handles assumptions less efficiently than asser-
tions [18], but the quality of resulting solution is expected to be better, since the
search can explore a greater part of the feasibility space, especially so by variable
neighbourhood search and hill climbing.

Local Search with a SAT Oracle 97

Alg. 1 depicts our implementation of LSSO. The algorithm receives four inputs. The
Boolean inputs VNS ,HC, and SPEC specify whether variable neighbourhood search,
hill climbing, and speculative search are to be used. All combinations are possible, ex-
cept that hill climbing requires speculative search. The input Nmax applies to variable
neighbourhood search. It specifies an upper bound on the number of consecutive neigh-
bourhood switches without finding a solution. If that bound is exceeded, the algorithm
terminates with the current solution. To effect variable neighbourhood search, the algo-
rithm uses a predefined list of neighbourhood generatorsN = [N0(μ),N1(μ) . . .]. The
first generator N0(μ) is considered the default and is used most of the time. The others
are used to escape local minima.

Alg. 1 carries out iterated local search with Polosat as an oracle, where the ob-
servables are recommended to be set to the bits of the inputs of the objective function.
One can also replace the Polosat invocation by an ordinary SAT invocation.

4 LSSO Algorithms for the Cell Placement Problem

This section presents our LSSO-based placement algorithms. All the algorithms are
instantiations of Alg. 1 with different sets of parameters. The BV constraints are gener-
ated by translating the COP constraints, as discussed in Sect. 2.3. Each algorithm uses
some of the neighbourhood generators defined in Sect. 4.1.

The algorithms are presented in Sect. 4.2. None of the algorithms define the target
bit-vector explicitly, since they rely on local search instead of OBV solving. By default,
the algorithms use Polosat as the oracle, where the observables comprise all the bits
of the bit-vectors, representing the sizes of the nets, where the size of net n is given by
the following bit-vector term (for every intermediate term and the resulting term ‖n‖,
its width is set to the minimal possible width which prevents an overflow, where the
operators are zero-extended, whenever required):

‖n‖ =
(
max
c∈n

(ceast)−min
c∈n

(cwest)

)
+

(
max
c∈n

(cnorth)−min
c∈n

(csouth)

)

4.1 Neighbourhood Generators

4.1.1 Neighbourhood Generator N1. Let μ be a placement, that is, a model to the
bit-vector formula representing the feasibility constraints. The neighbourhood N1(μ)
is designed for a highly localized fast search at the possible expense of quality. To this
end, the constraints corresponding to N1(μ) force a decrease of the objective function
in a very constrained manner, so as to help the solver to come back quickly. N1(μ)
consists of all of legal placements, for which all the nets are no bigger and at least one
net is smaller than under μ, thus ensuring a lower cost. The constraints are:

(each net is no bigger︷ ︸︸ ︷∧
n∈I

(‖n‖ ≤ μ(‖n‖))
) ∧ at least one net is smaller︷ ︸︸ ︷(∨

n∈I
(‖n‖ < μ(‖n‖)

)

98 A. Cohen, A. Nadel and V. Ryvchin

Algorithm 1 Local Search with SAT Oracle (LSSO)
1: procedure LOCALSEARCH(VNS = �,HC = �, SPEC = �, Nmax = 10)

Require: L � feasibility constraints
Require: N := [N0(μ),N1(μ) . . .] � neighbourhood constraints generators
Require: J (x) � hill climbing constraints generator

� From now on, confine the search to the feasible space
2: solver.Assert(L)
3: current ← solver.Sat() � find the initial solution
4: if ¬current then return None � the problem is unsatisfiable

� Loop initialization
5: best ← current
6: stop ← ⊥ � stopping condition
7: jump ← ⊥ � indicates whether hill climbing should be attempted
8: i ← 0 � current neighbourhood index
9: while ¬stop do

� Compute neighbourhood constraints
10: if HC ∧ jump then � hill climbing is required
11: neighbourhood constraints := J (current)
12: else � hill climbing is not required
13: neighbourhood constraints := N [i](current)

� If the mode is speculative, constraints are assumptions; otherwise they are assertions
14: if SPEC then

15: assertions := []; assumptions := neighbourhood constraints
16: else

17: assertions := neighbourhood constraints; assumptions := []

� Search for the next solution
18: solver.Assert(assertions)
19: next ← solver.Polosat(assumptions)
20: if next then � found a solution
21: current ← next; i ← 0; jump ← ⊥
22: if current.cost < best.cost then best ← current
23: continue

� � � Solution not found
� If we are in variable neighbourhood mode and the number of consecutive neighbour-

hood switches without a model has not exceeded the bound, move to next neighbourhood
24: if VNS ∧ (i < (Nmax − 1)) then

25: i ← i+ 1
26: continue

� If we are in hill climbing mode, and have exhausted the bound on neighbourhood
switches without getting a model, and hill climbing has not already been attempted in this
iteration, attempt it in the next iteration

27: if HC ∧ ¬jump then

28: jump ← �
29: continue

� If we got here, we are stuck and need to terminate
30: stop ← �
31: return best

Local Search with a SAT Oracle 99

4.1.2 N2: a Family of Neighbourhood Generators. The N2 family is designed for
variable neighbourhood search. Each of its neighbourhoods strictly contains N1 and
allows the objective function to decrease in more ways. This implies higher quality so-
lutions at the expense of slower convergence. To define the N2 family, let α = ‖I‖ be
the number of the nets and assume α ≥ 3. For each permutation σ of [1 . . . α] and posi-
tive number 2 ≤ d < α we define a neighbourhood function N2[σ, d](μ) as follows: Let
nσ(1), . . . nσ(α) be the permuted sequence of the nets. Partition this sequence into "α/d#
segments of size d (last segment could be shorter). The neighbourhood N2[σ, d](μ) con-
sists of all of legal placements, for which the sum of the net sizes of each segment is
no bigger than under μ, and the sum of at least one segment is smaller. Note that this
ensures a cost lower than the placement under μ. By choosing different pairs 〈σ, d〉, one
may obtain different neighbourhoods. The constraints are:⎛⎜⎜⎜⎜⎜⎝

each sum is no bigger︷ ︸︸ ︷
�α/d�∧
k=1

(
min(kd,α)∑

i=(k−1)d+1

‖nσ(i)‖ ≤
min(kd,α)∑

i=(k−1)d+1

μ(‖nσ(i)‖)
)⎞⎟⎟⎟⎟⎟⎠

∧
⎛⎜⎜⎜⎜⎝

at least one sum is smaller︷ ︸︸ ︷
�α/d�∨
k=1

(
min(kd,α)∑

i=(k−1)d+1

‖nσ(i)‖ <

min(kd,α)∑
i=(k−1)d+1

μ(‖nσ(i)‖)
)⎞⎟⎟⎟⎟⎠

4.1.3 Hill-climbing Neighbourhood Generator N3. N3 is designed to implement
hill climbing. We reason as follows: If the current placement is not a global minimum,
there exists a placement with at least one smaller net. Hence, to tunnel away from the
local minimum, we generate the following neighbourhood constraints:

at least one net is smaller︷ ︸︸ ︷∨
n∈I

∥∥n‖ < μ(‖n‖)

4.2 LSSO-based Algorithms for Placement

All the algorithms below are instantiations of Alg. 1; they use lists of neighbourhood
generators, composed of the ones defined in Sect. 4.1, where hill climbing is carried out
by using the neighbourhood generator N3. Due to project deadline constraints, we did
not explore other combinations.

1. single nbr nonspec
(a) parameters: VNS = ⊥,HC = ⊥, SPEC = ⊥, Nmax = 1.
(b) list of neighbourhood generators: [N1]

100 A. Cohen, A. Nadel and V. Ryvchin

2. many nbr nonspec
(a) parameters: VNS = !,HC = ⊥, SPEC = ⊥, Nmax = 10.
(b) list of neighbourhood generators: N2[σ, d](μ), enumerated by drawing σ and d

by a pseudo-random generator.
3. many env spec

(a) parameters: VNS = !,HC = ⊥, SPEC = !, Nmax = 10.
(b) list of neighbourhood generators: the first generator is N1 and the rest are

N2[σ, d](μ), enumerated by drawing σ and d by a pseudo-random generator.
4. many env spec hill clmb

(a) parameters: VNS = ⊥,HC = !, SPEC = !, Nmax = 1.
(b) list of neighbourhood generators: [N1]
(c) neighbourhood generator N3 is used for hill climbing.

5 Experimental Results

We study the performance of the following algorithms within our placement tool:

1. Algorithms which use Polosat as the satisfiability oracle:
(a) ls (Linear Search, described in Sect. 2.3.2, with Polosat as the oracle)
(b) single nbr nonspec (see Sect. 4.2)
(c) many nbr nonspec (see Sect. 4.2)
(d) many env spec (see Sect. 4.2)
(e) many env spec hill clmb (see Sect. 4.2)

2. Algorithms which use standard SAT solving as the satisfiability oracle:
(a) bs no polosat [19]: OBV-BS (see Sect. 2.3.2).
(b) ls no polosat: Linear Search with SAT as the oracle
(c) many env spec hill clmb no polosat:

many env spec hill clmb with SAT instead of Polosat (to study the
impact of disabling Polosat on LSSO, we chose
many env spec hill clmb, since, as we shall soon see, it outperforms
the other LSSO algorithms in a pairwise comparison).

3. virtual-best: represents the best result of the above algorithms per timeout.

We used an extensive set of 1200 proprietary industrial designs of various sizes and
complexities. The sizes of the grids (where a grid size is the width N multiplied by
the height M) can be characterized as follows: a) Minimum size = 70; b) Maximum =
364000; c) Average ≈ 4643; d) Standard deviation ≈ 18829. We used machines with
32Gb of memory running Intel� Xeon� processors with 3Ghz CPU frequency.

We ran the algorithms for 600 seconds and measured the quality of the placement
at different time intervals. Fig. 2 shows our main results. For each algorithm and time
interval, Fig. 2 displays a score which represents the quality. The score is a real num-
ber between 0 and 1 inclusive, where the closer the score is to 1 the better. For each
algorithm and time interval, the score is computed as follows: we compute the average
value of the following score-per-instance: (the result of virtual-best in 600 sec.) / (the
result of the current algorithm within the current time interval). Our conclusions:

Local Search with a SAT Oracle 101

First, when using SAT as the oracle, Linear Search (ls no polosat) outperforms
OBV-BS (bs no polosat), demonstrating that OBV-BS is not useful when the opti-
mization target is a complex arithmetic expression (rather than a vector of lexicograph-
ically ordered bits, where each bit is a result of a separate calculation as in [19]). Based
on this result, we preferred Linear Search over OBV-BS as the baseline algorithm.

Second, confirming the conclusion of [16], Polosat makes Linear Search sub-
stantially more efficient (compare ls to ls no polosat).

Third, and more importantly in the context of this work, our best novel LSSO algo-
rithm even without Polosat (many env spec hill clmb no polosat) is al-
most as efficient as Linear Search with Polosat (ls), the latter being the state-of-
the-art in solving placement [16]. Moreover, the best Polosat-based LSSO algorithm
(many env spec hill clmb) is significantly more efficient than both aforemen-
tioned algorithms. This result justifies the usage of both major components of our so-
lution: LSSO–the high-level local search on top a satisfiability oracle, presented in this
paper, and Polosat [16]–the low-level local search simulation with SAT.

Finally, the virtual best algorithm yields the absolutely best result, providing evi-
dence that development of different LSSO algorithms pays off.

Additionally, Table 1 shows a pairwise comparison between our four Polosat-
based LSSO algorithms. many env spec hill clmb outperforms the others.

Table 2 offers a fine-grained comparison between our best novel LSSO algorithm
many env spec hill clmb and the Polosat-based Local Search ls, the latter
being the state-of-the-art in solving placement [16]. The comparison is provided per
grid size category and for two different timeouts. LSSO improves the performance sig-
nificantly for every input size category for both timeouts. Comparing the results for the
two timeouts on the biggest instances shows that increasing the timeout makes the gap
between LSSO and ls more significant, given large grids.

Finally, Table 3 shows the unique contribution of each algorithm to the virtual best
in 600 sec. (we dismissed all the instances on which there was more than one best-
performing solver). Notably, each of the LSSO algorithms is a contributor. Surpris-
ingly, many nbr nonspec contributes more than many env spec hill clmb,
despite the latter algorithm outperforming the former in a pairwise comparison. A
possible explanation is that we ran many nbr nonspec with Polosat only, while
many env spec hill clmb was run twice with Polosat and SAT. Another sur-
prising result is the significant contribution of
many env spec hill clmb no polosat, second only to many nbr nonspec,
implying that a SAT-based LSSO algorithm should be part of any parallel portfolio.

Table 1: Pairwise comparison between LSSO algorithms for the timeout of 600 sec. Each non-
empty cell (r, c) contains a comparison between Algorithm R in row r and Algorithm C in
column c. The value (w d l) in each non-empty cell is interpreted as follows: R outscored C on
w instances; there was a draw on d instances; C outscored R on l instances.

many nbr nonspec single nbr nonspec many env spec
many env spec hill clmb (730 141 329) (813 253 134) (227 893 80)

many nbr nonspec (815 147 238) (344 170 686)
single nbr nonspec (130 280 790)

102 A. Cohen, A. Nadel and V. Ryvchin

Fig. 2: Comparing Algorithms Over Time

Grid size Timeout of 600 seconds Timeout of 300 seconds
ls is better Draw LSSO is better ls is better Draw LSSO is better

≤ 500 27 62 337 21 56 349
> 500 & ≤ 10000 57 74 551 57 91 534
> 10000 17 28 47 18 40 34

Table 2: Comparing the best Polosat-based LSSO algorithm
(many env spec hill clmb) to the Polosat-based Linear Search (ls), the latter
comprising the previous state-of-the-art.

6 Conclusion

We have presented a new methodology for solving NP-hard combinatorial optimization
problems, called Local Search with SAT Oracle (LSSO). Our approach can handle prob-
lems for which finding even one feasible solution is already NP-hard. LSSO applies lo-
cal search which uses a SAT solver or the SAT-based optimization algorithm Polosat
as an oracle. We have introduced a generic algorithm which integrates different local
search schemes within the LSSO framework. Furthermore, we have implemented our
approach in an industrial tool for solving the cell placement problem in VLSI and have
shown that our new LSSO approach makes the tool substantially more efficient. Our
tool has been successfully productized at Intel.

Algorithm Contribution Algorithm Contribution
many nbr nonspec 240 ls 33
many env spec hill clmb no polosat 181 many env spec 21
many env spec hill clmb 79 ls no polosat 12
single nbr nonspec 54 bs no polosat 8

Table 3: Unique contribution to the virtual best per algorithm (sorted by the contribution).

Local Search with a SAT Oracle 103

References

1. E. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimization. John Wiley, USA,
1st edition, 1997.

2. T. Achterberg. Constraint Integer Programming. PhD thesis, 2007. Chapter 1.
3. C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.6. Techni-

cal report, Department of Computer Science, The University of Iowa, 2017. Available at
www.SMT-LIB.org.

4. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

5. N. Eén and N. Sörensson. An extensible SAT-solver. In SAT, pages 502–518, 2003.
6. V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In W. Damm

and H. Hermanns, editors, Computer Aided Verification, 19th International Conference, CAV
2007, Berlin, Germany, July 3-7, 2007, Proceedings, volume 4590 of Lecture Notes in Com-
puter Science, pages 519–531. Springer, 2007.

7. M. Gendreau and J.-Y. Potvin. Handbook of Metaheuristics. Springer Publishing Company,
Incorporated, 2nd edition, 2010.

8. S. Held, B. Korte, D. Rautenbach, and J. Vygen. Combinatorial optimization in VLSI design.
In V. Chvátal, editor, Combinatorial Optimization - Methods and Applications, volume 31 of
NATO Science for Peace and Security Series - D: Information and Communication Security,
pages 33–96. IOS Press, 2011.

9. D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability. Addi-
son Wesley, December 2015.

10. R. Korf, M. Moffitt, and M. Pollack. Optimal rectangle packing. Annals OR, 179:261–295,
September 2010.

11. B. Korte and J. Vygen. Combinatorial Optimization Theory and Algorithms. Springer, 2018.
12. D. Kroening and O. Strichman. Bit vectors. In Decision Procedures: An Algorithmic Point

of View, pages 135–156. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.
13. J. Lee. A First Course in Combinatorial Optimization. Cambridge University Press, 2005.
14. A. Nadel. Anytime weighted MaxSAT with improved polarity selection and bit-vector op-

timization. In C. W. Barrett and J. Yang, editors, 2019 Formal Methods in Computer Aided
Design, FMCAD 2019, San Jose, CA, USA, October 22-25, 2019, pages 193–202. IEEE,
2019.

15. A. Nadel. Anytime algorithms for MaxSAT and beyond. In 2020 Formal Methods in Com-
puter Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020, page 1. IEEE,
2020.

16. A. Nadel. On optimizing a generic function in SAT. In 2020 Formal Methods in Computer
Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020, pages 205–213. IEEE,
2020.

17. A. Nadel. Polarity and variable selection heuristics for SAT-based anytime MaxSAT. J.
Satisf. Boolean Model. Comput., 12(1):17–22, 2020.

18. A. Nadel and V. Ryvchin. Efficient SAT solving under assumptions. In Theory and Applica-
tions of Satisfiability Testing - SAT 2012 - 15th International Conference, Trento, Italy, June
17-20, 2012. Proceedings, pages 242–255, 2012.

19. A. Nadel and V. Ryvchin. Bit-vector optimization. In TACAS 2016, pages 851–867, 2016.
20. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley inter-

science series in discrete mathematics and optimization. Wiley, 1988.
21. C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-

plexity. Prentice-Hall, 1982.

104 A. Cohen, A. Nadel and V. Ryvchin

22. A. Petkovska, A. Mishchenko, M. Soeken, G. D. Micheli, R. K. Brayton, and P. Ienne. Fast
generation of lexicographic satisfiable assignments: enabling canonicity in SAT-based appli-
cations. In F. Liu, editor, Proceedings of the 35th International Conference on Computer-
Aided Design, ICCAD 2016, Austin, TX, USA, November 7-10, 2016, page 4. ACM, 2016.

23. R. Poler, J. Mula, and M. Dı̀az-Madroñero. Operations Research Problems: Statements and
Solutions. Springer, London, 2014.

24. S. Prestwich. Combining the scalability of local search with the pruning techniques of sys-
tematic search. Annals of Operations Research, 115:51–72, September 2002.

25. F. Rothlauf. Design of Modern Heuristics. Natural Computing Series. Springer, 2011.
26. O. Roussel and V. M. Manquinho. Pseudo-boolean and cardinality constraints. In A. Biere,

M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications, pages 695–733. IOS Press, 2009.

27. R. Sebastiani and S. Tomasi. Optimization in SMT with LA(Q) cost functions. In B. Gram-
lich, D. Miller, and U. Sattler, editors, Automated Reasoning - 6th International Joint Confer-
ence, IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture
Notes in Computer Science, pages 484–498. Springer, 2012.

28. N. A. Sherwani. Algorithms for VLSI physical design automation. Kluwer, 3 edition, Novem-
ber 1998.

29. E.-G. Talbi. Metaheuristics: From Design to Implementation. Wiley Publishing, 2009.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/

Analyzing Infrastructure as Code to Prevent
Intra-update Sniping Vulnerabilities

Julien Lepiller1 , Ruzica Piskac (�)1, Martin Schäf2, and Mark Santolucito3

1 Yale University, New Haven, USA {julien.lepiller,ruzica.piskac}@yale.edu
2 Amazon Web Services, NYC, USA schaef@amazon.com

3 Barnard College, Columbia University, NYC, USA msantolu@barnard.edu

Abstract. Infrastructure as Code is a new approach to computing in-
frastructure management that allows users to leverage tools such as ver-
sion control, automatic deployments, and program analysis for infras-
tructure configurations. This approach allows for faster and more ho-
mogeneous configuration of a complete infrastructure. Infrastructure as
Code languages, such as CloudFormation or TerraForm, use a declara-
tive model so that users only need to describe the desired state of the
infrastructure. However, in practice, these languages are not processed
atomically. During an upgrade, the infrastructure goes through a series of
intermediate states. We identify a security vulnerability that occurs dur-
ing an upgrade even when the initial and final states of the infrastructure
are secure, and we show that those vulnerability are possible in Ama-
zon’s AWS and Google Cloud. We call such attacks intra-update sniping
vulnerabilities. In order to mitigate this shortcoming, we present a tech-
nique that detects such vulnerabilities and pinpoints the root causes of
insecure deployment migrations. We implement this technique in a tool,
Häyhä, that uses dataflow graph analysis. We evaluate our tool on a set
of open-source CloudFormation templates and find that it is scalable and
could be used as part of a deployment workflow.

1 Introduction

Managing an infrastructure of thousands of hosts, with different software and
servers is nearly impossible to do manually. A relatively new approach to in-
frastructure management is called Infrastructure as Code (IaC). This has given
rise to many different tools with a shared goal: helping system administrators
manage their infrastructure in the same way as they manage code. Some tools,
like Ansible [20], Puppet [23] or Chef [6] are Configuration Management tools:
they allow the administrator to specify the entire configuration of one or more
running machines and automatically deploy it by connecting to that machine
and performing administrative tasks on behalf of the administrator. These tools
automatically detect and apply the steps necessary to switch from the current
state of a machine to the desired state, specified by the administrator. Similarly,
tools like Amazon’s CloudFormation [3] or Hashicorp’s Terraform [11] read a
description of the desired infrastructure and automatically take the necessary

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 105–123, 2021.
https://doi.org/10.1007/978-3-030-72013-1 6

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_6&domain=pdf
http://orcid.org/0000-0003-2284-5488
http://orcid.org/0000-0001-8646-4364
https://doi.org/10.1007/978-3-030-72013-1_6

106 J. Lepiller et al.

Fig. 1: A deployment of a computation (the orange lambda), accessing a database
(the blue disk stack), which is accessible to the outside world through an API
(the purple gateway). The upgrade should change the computation to access
more sensitive data (the lambda with the subscript 2), but be authenticated
through a user check (the red identification checks).

steps to deploy that infrastructure. In CloudFormation, an infrastructure con-
figuration is declared as a set of resources .

Benefits of IaC are well-known among practitioners: the entire infrastructure
is described accurately by a configuration file, making it easy to debug or vi-
sualize the infrastructure. This way the infrastructure can be version controlled
and documented as any other programming language. The tools help guarantee
identical configuration of hosts, making it an essential practice for security and
maintainability.

However, for all the benefits IaC brings, it also opens new security vulnera-
bilities. We have identified a new class of vulnerability issues that appear while
the tool is operating on the infrastructure. In order to decrease infrastructure
upgrade times, deployment tools typically will run many operations in parallel.
We argue that this parallelism, as well as the global naming used in these infras-
tructures, can lead to discrepancies during the upgrade that lead to a violation
of the intended security policy, even if the initial infrastructure and the target
infrastructure are both perfectly secure. We empirically validate our claims by
reenacting this vulnerability in both, Amazon’s AWS and in Google Cloud.

1.1 Proof of Concept

When upgrading the infrastructure, if operators do not provide enough depen-
dencies, ie. they do not impose an ordering on upgrade operations, a security

Intra-update Sniping Vulnerabilities 107

policy and a protected service might be upgraded in an order that exposes pri-
vate data. Consider an example given in Figure 1: an API service that replies
to any request with some benign information, as depicted in Fig. 1a. The ser-
vice is upgraded so that the API returns private information about users, and
the security policy is modified to allow only authenticated users to access the
service, as shown in Figure 1d. This architecture is a core architectural build-
ing block for serverless computing. This same configuration is recommended in
AWS’s “Well Architected” developer guideline series [1]. The upgrade code is
functionally correct and implements the desired change, but the user did not
specify ordering constraints. However, without such constraints, there are two
possible upgrade plans. First, as shown in Figure 1b, the backend computation
may be updated first. In this case, since the authentication has not yet been
added to the API, there is a short period of time where private data is publicly
accessible. The amount of time this information is exposed depends on the cloud
service provider and the particulars of the infrastructure, but typically ranges on
the order of seconds to minutes. We call this kind of attack intra-update sniping
vulnerability. The second possible upgrade order, shown in Figure 1c, imple-
ments the desired secure update order. Enforcing the second ordering requires
the user to explicitly specify an ordering constraint that the authentication must
be added before the backend computation is updated.

Another instance of intra-update sniping vulnerability happens when compo-
nents are added or removed from an infrastructure, but no ordering constraints
are given between them and components that use them. As an example, suppose
a user is adding a lamda that reads data from a new S3 bucket. If no depen-
dency is specified, the lambda could be created and connected to the bucket
before CloudFormation recognizes that the bucket is already owned. The at-
tacker who owns this bucket may then inject their data into the user’s system
during the time it takes CloudFormation to notice the naming conflict and roll
back the migration. This is related to the issue of S3 bucket namesquatting [15].

Although this paper is mostly focused on Amazon’s infrastructure, we have
successfully reproduced a similar scenario in Google Cloud, demonstrating that
intra-update sniping vulnerabilities are not limited to one cloud provider. We
reported this issue to Google, and although they acknowledged the problem, they
explicitly stated that it is the responsibility of the user to ensure the security of
their deployment.

1.2 Detecting Intra-update Sniping Vulnerabilities

We propose a tool, Häyhä, that detects possible intra-update sniping vulnera-
bilities and proposes solutions to users. Häyhä allows CloudFormation users to
check the security of planned updates to their infrastructure, before they ac-
tually deploy the update. Although our tool is specifically engineered to work
with CloudFormation, this class of vulnerabilities is not limited to it, and the
proposed solution is generic enough to be adopted in any other Infrastructure
as Code language.

108 J. Lepiller et al.

The main challenge in detecting intra-update sniping vulnerabilities is in de-
termining the underlying issue with common deployment models that lead to the
security vulnerability. We identify parallelism and in-place upgrades as the root
causes, arguing there is a trade-off in Infrastructure as Code between security
and scalability. On the opposite side of this trade-off, some practitioners advo-
cate for Immutable Infrastructure [12] management, which re-builds the entire
infrastructures from scratch on each update and only switches atomically to the
new infrastructure when it is ready. This practice would guarantee atomicity of
updates to the infrastructure and the absence of intra-update sniping vulnera-
bilities. However, this comes with a huge cost in terms of scalability and does
not apply well when statefulness is required (for example, migrating an existing
database), making it a less attractive practice.

Naturally, there is a connection between intra-update sniping vulnerability
and the problem of data races and concurrent access. Our proposed solution, of
adding ordering constraints, is somewhat similar to generic tools in the concur-
rency domain, such as memory barriers or locks [19,16,24], that add constraints
to the order of execution of a program. However, the focus of our work are config-
uration files that describe infrastructure, not programs. We cannot simply apply
existing work, because these configuration files do not have a formal semantics,
creating this way an additional challenge for our problem domain.

In summary, we identify the following key contributions of this paper:

– The description of intra-update sniping vulnerabilities and how they arise in
IaC services, with examples in AWS and Google Cloud.

– An intermediate representation of IaC configurations that allows us to reason
about security and network properties of a deployment, as well as about
changes in deployments.

– A tool, Häyhä [17] that statically checks for potential intra-update sniping
vulnerabilities in a proposed infrastructure update.

– An evaluation on CloudFormation files scraped from GitHub, showing Häyhä
scales and runs fast enough to be adopted into developer workflows.

2 A Model for Infrastructure as Code

Our tool, Häyhä, detects the possibility of a sniping attack in future deployments.
It analyzes the given deployment and raises alarms when it detects potential
security issues. The tool follows steps that we further detail in this section.

Step 1: Internal representation. First, Häyhä reads the configuration of
the current and target infrastructure and translates them to the internal repre-
sentation. This representation is a dataflow graph identifying which component
of the infrastructure has access to which other components, and under which
security assumptions. Figure 2 shows two such simplified dataflow graphs that
our tool built from arch in Fig. 1. From this graph, Häyhä learns the desired
security level of each component. In this section we describe how to compute
security levels of resources in a given CloudFormation file: in Section 2.1 we de-
scribe the concrete syntax of a general CloudFormation file and how it applies

Intra-update Sniping Vulnerabilities 109

Web

PublicGet

PublicLambda

No Authorizer

(a) An Initial Dataflow Graph

Web

PrivateGet

PrivateLambda

Authorizer

(b) A Target Dataflow Graph

Fig. 2: Dataflow graphs derived from an infrastructure

to other IaC tools; in Section 2.2 we describe how we model an infrastructure
in terms of network communication and security; finally, in Section 2.3 we show
the execution semantics and computation of the security level of resources in an
infrastructure.

Step 2: Capturing all potential upgrade states. After the initial and
target configurations are converted to our model, Häyhä builds an upgrade state,
designed to represent every possible intermediate infrastructure that could exist
during the upgrade. In Section 2.4 we formally define the upgrade semantics
from an initial state to a target state in terms of our model, while in Section 3.1
we show how the upgrade state is built in practice. Figure 3 shows such a state,
in form of a graph, which contains a path (Web to PublicGet to PrivateLambda)
allowing any user on the web to access a sensitive resource in a non-secure
manner. Finally, in Section 3.2 we discuss how dependency relations refine the
upgrade state.

Web

PublicGet PrivateGet

PublicLambda PrivateLambda

No Authorizer Authorizer

Fig. 3: Upgrade State with a Path Exposing a Security Vulnerability

Step 3: Analysis. (Section 3.3) Häyhä computes an over-approximation of
the intermediate states and the security level of their nodes in order to answer
two questions: 1) is every node in every possible intermediate state at least as
secure as the corresponding node in the initial or target configuration? and 2)
does every node in every possible intermediate state communicate only with
existing nodes? Any possible violation is reported to the user so they can take
action and modify their target configuration accordingly. For example, using the

110 J. Lepiller et al.

DependsOn keyword, one can enforce build orders in a CloudFormation file. For
Figure 3, Häyhä reports the possible insecure access to PrivateLambda:

Resource PrivateLambda is not sufficiently protected, it needs at

least Authorizer and is protected by None during upgrade. Add DependsOn

properties to ensure correct security.

2.1 CloudFormation Infrastructures

CloudFormation uses a declarative language in which users can specify the de-
sired state of their system. An example of a CloudFormation file is given on
the left side of Figure 4. It shows a simplified example of an infrastructure in
which an API can be called to access the result of running a Lambda (a sim-
ple function). There are no formal semantics for CloudFormation files [4,9] –
they are simply YAML or JSON files created from the given AWS CloudForma-
tion templates. Other tools, such as Terraform by HashiCorp, follow a similar
template-based design.

To formalize the behavior of IaC languages, we would also need to formalize
the precise behavior of components. However, these components are very diverse,
ranging from firewalls and HTTP servers to general purpose machines or even
entire network configurations. Fortunately, the intra-update sniping vulnerability
is independent from the precise behavior of individual components, and we only
need to analyze the network and security behavior of the infrastructure. We
only track the security level of requests, and abstract away from their content.
To describe our model, we need to introduce three concepts used in IaC:

A component of the infrastructure is called a resource. Every configuration
file declares a set of resources and their configurations (e.g. Figure 4). Some
resources, like the LambdaExecutionRole and the LambdaPermission are secu-
rity resources, and they prevent an unauthorized use of other resources. Other
resources, like the GreetingLambda and the GreetingRequestGET are actual run-
ning processes, the later also being publicly accessible. Finally, some resources
do not correspond to a running process, but to a group of resources such as
GreetingApi that gives some configuration value to every resource in the group.

A resource’s configuration may reference other resources, and we record that
information in our model. Based on the CloudFormation documentation, we
distinguish different types of references that we list below:

– network references(r, r’) are directed network connections between two
components r and r′, that allow r to send requests to r′, and receive answers.

– incoming protection references(r, s) protect all incoming requests to a
resource r, using a security resource s.

– outgoing protection references(r, s) protect all outgoing requests from
a resource r, using a security resource s.

– connection protection references(r, r’, s) protect a specific connection
between two resources r and r′ using a security resource s.

– collection references(c, r) specify a resource r is in a specific collection
resource c.

Intra-update Sniping Vulnerabilities 111

CloudFormation File Corresponding Model

{ ”Resources”: {
”LambdaPermission”: { LambdaPermission [security]

”Type”: ”AWS::Lambda::Permission”, intrinsic security: LambdaPermission,

”Properties”: {
”FunctionName”: ”GreetingLambda”, connection security(GreetingApi, Greet-

ingLambda, this)”SourceArn”: ”GreetingApi”

}
},
”GreetingLambda”: { GreetingLambda

”Type”: ”AWS::Lambda::Function”, intrinsic security: �
”Properties”: {

”Role”: ”LambdaExecutionRole”
}

},
”GreetingRequestGET”: { GreetingRequestGET [public]

”Type”: ”AWS::ApiGateway::Method”, intrinsic security: �,

”Properties”: {
”Integration”: ”GreetingLambda”, network(this, GreetingLambda),

”RestApiId”: ”GreetingApi” collects(GreetingApi, this)

}
},
”GreetingApi”: { GreetingApi [collection]

”Type”: ”AWS::ApiGateway::Api” intrinsic security: �
},
”LambdaExecutionRole”: {

”Type”: ”AWS::IAM::Role”

”Properties”: {
...

}}}}

Fig. 4: Mapping Between a CloudFormation File and our Model

Each of these reference types can be present in any resource, any number
of time. The resource it is declared in can take any role in the relation that it
defines, and we represent the resource as this in the model, as shown on the
right side of Figure 4.

In CloudFormation, a dependency is declared by using e.g. the DependsOn
keyword. A dependency restricts the order in which updates can occur: before a
resource can be updated, all the resources it depends on must have been updated.

2.2 Model of a CloudFormation Infrastructure

We now describe a model for a CloudFormation infrastructure. We define a
state S = (R,D) as a set of resources and a partial order that represents the
dependency relation between resources. A resource is a tuple composed of a name
(string), a type, an intrinsic security context, an origin flag, the different types
of references discussed above, and the original configuration of the resource.

With (id, id′) ∈ D we denote that id depends on id′, and that id cannot be
upgraded until id′ is upgraded.

The origin flag denotes whether the resource comes from the initial state or
the target state during an upgrade, but it is not used at all when dealing with

112 J. Lepiller et al.

a single state. Similarly, the original configuration’s type is not further defined,
and depends on the vendor. It is not used for a single deployment, and we only
use it to check for equality of resources when updating an existing deployment.

Inspired by Abstract Interpretation [10], we define a security context as an
abstract domain with a partial order and some abstract operations: a top, a
bottom, a meet, and a join. When two security contexts are comparable (x % y),
we say that x is less permissive than y, or that x is more secure than y.

We define predicates that can help us to express some properties of resources
in a specific state S: collection(r), resp. security(r), means that r is a resource
whose type is that of a collection resource, resp. a security resource. We use
public(r) to denote when r is a resource whose type is that of a resource that
can be accessed from anywhere on the internet (although this might be restricted
with security references), or if it is contained in a collection that is itself publicly
accessible.

Definition 1 (connection). A connection is possible between two resources
when there is a network reference between them or resources that collects them.

ref(r, r′) ⇐⇒ ∃c, c′. ∧

⎧⎨⎩network reference(c, c′)
r = c ∨ collects(c, r)
r′ = c′ ∨ collects(c′, r′)

The security of a connection is the minimum security level a request from
r must have to be able to reach r′ directly. This definition reflects the fact
that, when a connection is secured by multiple security resources, it must have
sufficient authority to be accepted by all of them.

Definition 2 (connection security).

security(r, r′) ⇐⇒ �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩sec(s)

∣∣∣∣∣∣∣∣∣∣
∃c, c′. ∨

⎧⎨⎩ incoming protection(c, s)
outgoing protection(c′, s)
connection protection(c, c′, s)

with ∧
{
(r = c ∨ collects(c, r))
(r′ = c′ ∨ collects(c′, r′))

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
2.3 Execution Semantics

The execution semantics for our intermediate representation is given below. The
semantics explains which resources are allowed to talk to which resources, and
under which security level. When we write L & r → r′, it means that r is allowed
to send a request to r′, under the security level L.

A request can come from the internet (represented with the constant W)
and reach a public resource r′ if it has a sufficient security level L. Similarly, a
request can come from a resource r and reach r′ if it has a sufficient security
level, r′ is not a collection, and both resources have an adequate configuration
that allows them to communicate.

OutsideRequest
r′ ∈ R ¬collection(r′) L % security(W, r′) public(r′)

L &W → r′

Intra-update Sniping Vulnerabilities 113

InternalRequest
(r, r′) ∈ R2 ¬collection(r′) L % security(r, r′) ref(r, r′)

L & r → r′

A path P is a finite sequence of resources whose first resource is public,
and subsequent resources can be reached from the previous, using the above
semantics under some security level. The security of a path is then defined as
the minimal security level under which every node can be reached in the above
semantics:

security((r1, . . . , rn)) = ∧n
i=1security(ri−1, ri)

with r0 = W . We note W →∗ r the set of paths whose last element is r.
Similarly, the security of a node is defined as the minimal security level under
which the node can be reached by at least one path:

Sec(r) = ∨{security(P)|P ∈W →∗ r}
When the infrastructure, under which we consider the security of resources,

is not clear from the context, we clarify that with a subscript SecS(r).

Definition 3 (Substate). When comparing two states, S1 and S2, we say that
S1 ⊆ S2 when

– Every resource of S1 is a resource of S2 and
– For every pair of resources r, r′ in S1, if L & r → r′ holds in S1, then it also

holds in S2.

Our first lemma states that, when a state is a substate of another, its nodes
are at least as secure as the other.

Lemma 1 (Substate Security).
∀S1, S2. ∀id ∈ S1. S1 ⊆ S2 =⇒ SecS1

(id) % SecS2
(id)

Proof. We note that by definition, id is in both states. Additionally, any path in
S1 is also a path in S2, and since the security of connections in S1 is more secure
than the same connections in S2, the security of paths in S1 is greater than the
security of the same paths in S2.

The security of a node is the meet of the security of paths that lead to it in
the state. Paths that lead to id is S2 are the paths that lead to it in S1, and
potentially additional paths. Therefore, the security of id in S1 is greater than
in S2.

2.4 Upgrade Semantics and Security Policy

In IaC tools, an upgrade changes a given infrastructure state to a new state. This
is done by upgrading each node that needs to be changed as specified by the
new configuration. Generally, nodes are upgraded in an unspecified order, even

114 J. Lepiller et al.

in parallel, to improve deployment speed. Node updates are sent asynchronously
to every service that needs to be updated, and there are dozens if not hundreds
of steps each service must take to complete its update. When these upgrades
are sent in parallel, it is difficult to reason about the state of the system as the
running time for a node upgrade depends on the latency of the service. To model
this behavior, we define an interleaving semantics for upgrades.

An upgrade starts in an initial state Si and ends in a target state St. Ad-
ditional dependency ordering information is provided by the relation D of the
target state.

The configuration of an identifier can be updated if all its dependencies are
already updated (∀id′, (id, id′) ∈ R =⇒ S(id′) = St(id

′)), and it has not been
updated yet:

UpgradeConf
S(id) �= St(id) ∀id′, (id, id′) ∈ R =⇒ S(id′) = St(id

′)
S → S[id← St(id)]

A new resource can be created under the same conditions, if it was not present
in the initial state:

UpgradeAdd
id /∈ S ∀id′, R(id, id′) =⇒ S(id′) = St(id

′)
S → S[id← St(id)]

An identifier can be removed, if it is not in the target state:

UpgradeDel
id /∈ St id ∈ S

S → S \ id
We collect every accessible intermediate state in a set denoted by Acc:

AccInit
Si ∈ Acc

AccNext
S ∈ Acc S → S′

S′ ∈ Acc

Note that, in the absence of any dependency, Acc contains every combination
where each resource is either at its initial or target configuration, leading to 2n

possible intermediate states when n is the number of changed resources.
We next show that, when two identifiers are in a dependency relation, some

intermediate states are not possible. For ease of expressing this lemma, we extend
equality to also check whether id is in the domain of S. If id is neither in S nor
S′, we have S(id) = S′(id). Otherwise, id must be in both and associated to the
same configuration for the equality to hold.

Lemma 2 (Dependency Restriction).
∀(id, id′) ∈ R,S ∈ Acc =⇒ S(id) �= St(id) ∨ S(id′) �= Si(id

′) ∨ St(id) =
Si(id) ∨ St(id

′) = Si(id
′)

Proof. By induction of S ∈ Acc and by case analysis on the inequality that holds
in the inductive case.

We now define the security policy as:

Intra-update Sniping Vulnerabilities 115

Definition 4 (Security Policy). A deployment from Si to St is secure iff:

∀S ∈ Acc, ∀id,

⎧⎨⎩Sec(S, id) % Sec(Si, id) if Si(id) = S(id)
Sec(S, id) % Sec(St, id) if St(id) = S(id)
Sec(S, id) = ⊥ otherwise (id is not in S)

Our work focuses on security issues that happen during upgrades, assuming
that the initial and target states are both secure. We require that in any inter-
mediate state any resource is at least as secure as their counterpart in the initial
or target state, depending on where their configuration comes from.

3 Architectural Design of the Häyhä Tool

3.1 Upgrade States

To verify the security of intermediate states, we could compute all the possible
intermediate states and pass them to existing tools that could check the secu-
rity of such states. However, this approach has two main drawbacks. First, we
would need to construct 2n intermediate states, which does not scale for large
infrastructure changes. Second, the result of such tools would not be easy to
understand for end users, as they would report issues with states that are not
defined or even considered by the user. Our goal is a tool that is both scalable
and able to provide suggestions on how to change the target configuration, not
some hidden intermediate configuration.

Web

GET

lambdaI

(a) Graphical
Representation of
the Initial State

Web

GET

lambdaT

Authorizer

(b) Graphical Rep-
resentation of the
Target State

Web

GET

lambdaI lambdaT

Authorizer ∨ � = �

(c) Graphical Representation of the
Upgrade State

Fig. 5: Example Upgrade State

To address scalability we introduce upgrade states which represent multiple
states on which we can apply the same execution semantics. Recall that a state
is composed of a list of resources with their origin, type and references, and
of a dependency relation. An upgrade state is composed in the same way. The
set of resources is the union of the resources from the initial and target states,
excluding initial resources that only differ from their target counterpart by their

116 J. Lepiller et al.

provenance flag. When resources are added or removed from an infrastructure,
we introduce an empty resource for each of them. They represent the absence of
these resources. The dependency relation of the upgrade state is the dependency
relation of the target state.

The execution semantics of an upgrade state is the same as the execution
semantics of a normal state. Since the upgrade state represents multiple versions
of the same resources at the same time, we need to change the definition of the
security level of a connection between resources. An example of an upgrade state
is given in Figure 5. The initial state has an API, a GET method and a lambda,
and everything is public. The target state modifies the lambda and adds an
authorizer. The upgrade state is comprised of the unchanged API, the target
authorizer (with an empty resource as its initial counterpart), the GET method
(which did not change), and the two variants of the lambda. The connection
to the GET method is protected either by the empty node (!) or the target
authorizer. The minimal security level for this connection is therefore !.

In summary, when a security resource is relevant for a connection, we need
to consider its counterpart that has a different provenance flag. If it is also
relevant, the connection is protected by the disjunction of the security level of
these resources (they cannot both exist at the same time, but one of them exists
at any given time). If it is not relevant, the upgrade state represents at least one
case where the security resource is not relevant, meaning that the connection
is protected by the disjunction of the first security level and !, which is !
(no security at all). If the counterpart is an empty resource, the upgrade state
represents at least one case where the security resource was deleted (or not yet
added), so the connection is also unprotected. If there is no counterpart, the
connection is simply protected by the resource, because it does not change in
any way during the upgrade.

We denote by U(Si, St) the upgrade state created from the initial state Si

and the target state St. We now show that this state indeed collects all possible
intermediate states.

Lemma 3 (Upgrade Graph is an Overapproximation).
∀S ∈ Acc.S ⊆ U(Si, St)

Proof. To apply the definition, we first show resources of S are resources of U .
Then, we show that any connection in S is a connection in U , because resources
come with the same references in both states.

3.2 Splitting Dependencies

We have seen that the upgrade state created from the initial and target configu-
rations is an over-approximation of all the intermediate states, when we do not
consider dependencies. Because dependencies reduce the number of intermedi-
ate states, the upgrade state might not be precise enough and might produce a
warning when no actual intermediate states violate the security policy.

Variants. When the state has two nodes A and A′ with the same identifier,
but a different label, we call them a variant of one another. When A belongs to

Intra-update Sniping Vulnerabilities 117

the initial configuration and A′ to the target configuration, (A,A′) is called an
upgrade pair.

We refine the upgrade state by splitting it along a dependency. Considering
a state S, its dependency relation D, and two target resources (A′, B′) ∈ D,
the split of S, split(S,A′, B′) is a set of upgrade states. Suppose A′ and B′ are,
respectively, part of an upgrade pair (A,A′) and (B,B′). Then, split(S,A′, B′)
is the set of three upgrade states, where only one of A or A′ remains, and only
one of B or B′. We exclude the case where A′ and B remain. When any of these
nodes does not exist, the number of possible combination is reduced. When only
A′ and B exist in S, we have found an impossible situation, and the result of
splitting is the empty set.

Although this process creates an exponential number of states, the number of
dependencies tends to be limited in practice, because they slow upgrades down.
At the same time, a big number of dependencies actually reduces the number of
possible intermediate states, until every node is in a dependency, in which case
there are exactly n intermediate states.

We now prove that splitting the upgrade state is correct, in the sense that
the set of states split(S) still contains all the possible intermediate states (Acc):

Theorem 1 (Correct Split).
∀S ∈ Acc. ∃u ∈ split(U(Si, St)). S ⊆ u

Proof. Let us take a state S ∈ Acc from the set of all possible intermediate
states. Since splitting a state according to a dependency preserves the states
from Acc (Lemma 4 below), we can consider every dependency and split them
in any order. Initially, it holds that S ⊆ U(Si, St), using Lemma 3.

Consider an upgrade state u such that S ⊆ u and D(id, id′). By Lemma 4,
we can find a state u′ ∈ split(u, id, id′) such that S ⊆ u′.

After applying this for each dependency, u′ is one of the states resulting from
split(U(Si, St)), and the claim of the theorem holds.

The following intermediate lemma is needed to prove the correction of the
split. It states that if a state contains one of the accessible states, splitting a
dependency in it results in a set of states, where one of them still contains this
intermediate state.

Lemma 4 (Split Graphs). ∀S ∈ Acc. ∀(id, id′) ∈ D. S ⊆ u =⇒ ∃u′ ∈
split(u, id, id′), S ⊆ u′

Proof. Take (A,A′) the upgrade pair whose identifier is id. Similarly, take (B,B′)
the upgrade pair whose identifier is id′. Since S ∈ Acc, A′ and B cannot both
exist at the same time in S (Lemma 2). Since S ⊆ u, we also know that u has
at least one variant of id and one variant of id′, the ones that are present in S.

The states from split(u, id, id′) are composed of the same nodes as u, except
for id and id′, where they all have one of the four possible combinations of
initial and target states, except for the pair A′, B. Since S doesn’t have them
both either, one states has the same variants of id and id′ as S, and we call it
u′. We now show that S ⊆ u′.

118 J. Lepiller et al.

First, we note that u′ has the same nodes as u, except for those with identifier
id and id′. For any resource in S, the resource was present in u, so it is also in
u′, unless it has identifier id or id′. For this last cases, we note that u′ is defined
to contain the same variants as S, so the resources of S are also resources of u′.

Second, if we take L & r → r′ in S, we can use the same reasoning as in
Lemma 3 to conclude that is also holds in u′. Thus we conclude that S ⊆ u′.

3.3 Finding Vulnerabilities

After Häyhä constructs the upgrade state, the next step is to check for security
issues. Although we could split the upgrade state recursively until no dependency
remains, a more interesting strategy is to immediately check the upgrade state for
issues. If none is found, it is not necessary to refine the upgrade state. Otherwise,
we try to find a relevant dependency and split the upgrade state on it, running
the analysis on the resulting states, splitting on other dependencies as needed.

Our analysis detects two types of issues: first, if an empty node is accessible,
it might be used by the infrastructure at a point it is not registered by the
owner of the infrastructure. This is the case for a new node that is accessible
before it is created. When that node is a resource that can be claimed by a third
party (such as an S3 bucket), the attacker might be able to register it before the
user. Similarly, for a deleted resource, an attacker could register it for themselves
before the user stops using it.

Second, the security context of every node in the upgrade state is compared
to the security of the same node in the initial or target state (depending on its
provenance flag). When its security is strictly lower than the security of the node
in the state it comes from, or incomparable, we raise an alarm because there is
an intermediate step where the resource might not be sufficiently protected.

Using Lemma 1 and Theorem 1, when the security of a node in a possible
intermediate state (collected in Acc) is insufficient, the security of that node in
at least one split upgrade state is even lower. Therefore, if there is a violation of
the security property, our tool will detect it.

4 Experiments

Häyhä is designed to be used before the deployment of a CloudFormation update,
and it is crucial that Häyhä does not interrupt developer workflow. Our goal
was, therefore, to evaluate the scalability of Häyhä on a variety of real-world
CloudFormation updates. To do this, we collected 36 CloudFormation files from
GitHub, where each file had a history of updates (commits). We ran Häyhä
against every update recorded in GitHub to that file, and measured the running
time. We found that our analysis completed within one seconds for all files – we
believe that these results indicate that Häyhä could be integrated in developer
workflow with minimal disruption to the user. The details of the evaluation
dataset are given in Fig. 6.

Intra-update Sniping Vulnerabilities 119

Fig. 6: Analysis time of various CloudFormation files from GitHub. Point size is
proportional to the number of updated resources, which are between 0 and 31.

To collect the set of GitHub CloudFormation files used in our scalability
benchmark, we searched GitHub using the web search tool for code with the key-
word AWSTemplateFormatVersion - which is a required keyword for any Cloud-
Formation file. We then filtered by the .yaml extension, and further manually
filtered for valid CloudFormation files (as opposed to other languages with over-
lap). Since we wanted to track updates to these files, we also filtered manually
to find only files that had a revision history (≥ 2 commits for the file).

While we showed that Häyhä scales well on real world data, we did not iden-
tify any instances of intra-update sniping vulnerability in these files. This is an
expected result, as the CloudFormation files we found on GitHub were generally
designed as templates that developers would customize to their own needs. We
believe application-focused CloudFormation files are not often uploaded, since
CloudFormation files can contain sensitive and proprietary information (e.g. in-
frastrucuture design). In order to run a large-scale analysis to check for past
instances of intra-update sniping vulnerability, we would need access to a repos-
itory of the private user data for many CloudFormation users.

5 Related Work

Following the development and use of Infrastructure as Code (IaC) practices,
many threats and security challenges were recognized [26,27]. The security risks
that have been identified in IaC have thus far remained similar to existing vul-
nerabilities arising from poor security practices, such as infrequent key rotation

120 J. Lepiller et al.

and hard-coded secret values [25]. Additionally, despite existing recommenda-
tions and good practices when dealing with cloud infrastructure, many existing
deployments are still left insecure by user misconfigurations. For example, stor-
age “buckets” which host files, should generally be configured by user to disallow
world readable/writable permissions. However, in practice, users struggle with
this [8]. Existing work has used SMT solver to automatically detect such vul-
nerabilities and help users secure their resources [4,9]. In contrast, we focus on
the dynamic behavior of deployment updates that occur when using IaC tools,
and their effect on security configuration.

Much work has focused on the security of virtualization technologies based
on attack models such as malicious cloud users to compromised cloud providers,
as summarized in [13]. In our work however, we do not make any assumption
on the specific technology, as intra-update sniping vulnerabilities rely mostly on
timing and insecure configuration on the user’s side.

Our work is based on a graph model of the dataflow network of resources
created in an infrastructure configuration. Similarly, Al-Shaer et al [2] propose
to model and check network security using a graph-based model of the network.
As with other work on the network and infrastructure security [5,18], the focus
of the analysis is on the security of static network topologies, instead of the
security of a moving topology, as we have in this paper. The analysis of security
in static networks and static information flow models [21] is complementary to
our work, as we assume the initial and target infrastructure are secure.

Beyond network configurations, there has been work in the analysis of con-
figuration files. In particular, static analysis has been used to check that IaC
configurations are idempotent [14,30], an important property for maintaining
reproducibility of infrastructure. The reproducibility of infrastructure is known
to be a challenge [7], despite IaC being declarative and version controlled. Fur-
ther efforts have used probabilistic modelling to learn constraints on configura-
tions [22,28,29].

6 Conclusion

We have identified a new class of vulnerability that applies to Infrastructure
as Code services, intra-update sniping vulnerabilities, that arise from a lack of
ordering in upgrading resources. We presented a tool, Häyhä, that detects such
vulnerabilities in CloudFormation, and gives feedback to users on how securely
update their infrastructure deployment. Our evaluation shows the scalability of
Häyhä by running it on existing configurations from GitHub and found that it
runs quickly enough to be usable in practice.

Acknowledgement

This work was completed while working on the grant supported by the National
Science Foundation under Grant No. CCF-1715387, and partially supported by
the Office of Naval Research under Grant N00014-17-1-2787.

Intra-update Sniping Vulnerabilities 121

References

1. Julian Wood: Building well-architected serverless applications: Controlling server-
less API access. AWS Compute Blog, https://aws.amazon.com/blogs/compute/
building-well-architected-serverless-applications-controlling-serverless-api-access-
part-1/

2. Al-Shaer, E., Marrero, W., El-Atawy, A., ElBadawi, K.: Network configuration
in a box: towards end-to-end verification of network reachability and security. In:
2009 17th IEEE International Conference on Network Protocols (2009)

3. Amazon.com, Inc: CloudFormation, aws.amazon.com
4. Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow, K., Rungta, N.,

Tkachuk, O., Varming, C.: Semantic-based automated reasoning for AWS access
policies using smt. In: 2018 Formal Methods in Computer Aided Design (FMCAD).
IEEE (2018)

5. Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira,
M., Valadarsky, A.: Vericon: towards verifying controller programs in software-
defined networks. In: Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (2014)

6. Chef misc, Inc: Chef, https://www.chef.io
7. Cito, J., Schermann, G., Wittern, J.E., Leitner, P., Zumberi, S., Gall, H.C.: An em-

pirical analysis of the docker container ecosystem on github. In: 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR). IEEE
(2017)

8. Continella, A., Polino, M., Pogliani, M., Zanero, S.: There’s a hole in that bucket!
a large-scale analysis of misconfigured S3 buckets. In: Proceedings of the 34th
Annual Computer Security Applications Conference. ACSAC ’18, Association for
Computing Machinery, New York, NY, USA (2018)

9. Cook, B.: Formal reasoning about the security of amazon web services. In: Chock-
ler, H., Weissenbacher, G. (eds.) Computer Aided Verification (CAV). Springer
International Publishing (2018)

10. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of
the 4th Symp. on Principles of Programming Languages. ACM (1977)

11. Hashicorp: Terraform, https://www.terraform.io
12. Hashicorp: What is mutable vs. immutable infrastructure?, https:

//www.hashicorp.com/resources/what-is-mutable-vs-immutable-infrastructure/
13. Huang, W., Ganjali, A., Kim, B.H., Oh, S., Lie, D.: The state of public

infrastructure-as-a-service cloud security. ACM Comput. Surv. 47(4) (Jun 2015)
14. Hummer, W., Rosenberg, F., Oliveira, F., Eilam, T.: Testing idempotence for in-

frastructure as code. In: ACM/IFIP/USENIX International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing. Springer (2013)

15. Ian Mckay: S3 Bucket Namesquatting - Abusing predictable S3 bucket names,
https://onecloudplease.com/blog/s3-bucket-namesquatting

16. Ponce-de León, H., Furbach, F., Heljanko, K., Meyer, R.: Portability analysis for
weak memory models porthos: One tool for all models. In: Ranzato, F. (ed.) Static
Analysis Symposium. pp. 299–320. Springer International Publishing, Cham (2017)

17. Lepiller, J., Piskac, R., Schäf, M., Santolucito, M.: Häyhä (2021), https://
gitlab.com/rose-yale/hayha

18. Liu, J., Hallahan, W., Schlesinger, C., Sharif, M., Lee, J., Soulé, R., Wang,
H., Caşcaval, C., McKeown, N., Foster, N.: P4v: Practical verification for pro-
grammable data planes. In: Proceedings of the 2018 Conference of the ACM Special

https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-controlling-serverless-api-access-part-1/
https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-controlling-serverless-api-access-part-1/
https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-controlling-serverless-api-access-part-1/
aws.amazon.com
https://www.chef.io
https://www.terraform.io
https://www.hashicorp.com/resources/what-is-mutable-vs-immutable-infrastructure/
https://www.hashicorp.com/resources/what-is-mutable-vs-immutable-infrastructure/
https://onecloudplease.com/blog/s3-bucket-namesquatting
https://gitlab.com/rose-yale/hayha
https://gitlab.com/rose-yale/hayha

122 J. Lepiller et al.

Interest Group on Data Communication. SIGCOMM ’18, Association for Comput-
ing Machinery, New York, NY, USA (2018)

19. Meshman, Y., Dan, A.M., Vechev, M.T., Yahav, E.: Synthesis of memory fences
via refinement propagation. In: Müller-Olm, M., Seidl, H. (eds.) Static Analysis
- 21st International Symposium, SAS 2014, Munich, Germany, September 11-13,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8723, pp. 237–252.
Springer (2014)

20. Michael DeHaan and Contributors: Ansible, https://www.ansible.com
21. Parker, J., Vazou, N., Hicks, M.: Lweb: Information flow security for multi-tier web

applications. Proc. ACM Program. Lang. 3(POPL) (Jan 2019)
22. Piskac, R.: New applications of software synthesis: Verification of configuration

files and firewall repair. In: Podelski, A. (ed.) Static Analysis Symposium (SAS).
Springer International Publishing (2018)

23. Puppet, Inc: Puppet, https://www.puppet.com
24. Raad, A., Doko, M., Rožić, L., Lahav, O., Vafeiadis, V.: On library correctness un-

der weak memory consistency: Specifying and verifying concurrent libraries under
declarative consistency models. Proc. ACM Program. Lang. 3(POPL) (Jan 2019).
https://doi.org/10.1145/3290381, https://doi.org/10.1145/3290381

25. Rahman, A., Parnin, C., Williams, L.: The seven sins: Security smells in infras-
tructure as code scripts. In: 2019 IEEE/ACM 41st International Conference on
misc Engineering (ICSE) (2019)

26. Rahman, A.A.U., Williams, L.: misc security in devops: Synthesizing practition-
ers’ perceptions and practices. In: 2016 IEEE/ACM International Workshop on
Continuous misc Evolution and Delivery (CSED) (2016)

27. Rahman, A., Parnin, C., Williams, L.: The seven sins: security smells in infras-
tructure as code scripts. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). pp. 164–175. IEEE (2019)

28. Santolucito, M., Zhai, E., Dhodapkar, R., Shim, A., Piskac, R.: Synthesizing con-
figuration file specifications with association rule learning. Proceedings of the ACM
on Programming Languages 1(OOPSLA) (2017)

29. Santolucito, M., Zhai, E., Piskac, R.: Probabilistic automated language learning for
configuration files. In: International Conference on Computer Aided Verification.
Springer (2016)

30. Shambaugh, R., Weiss, A., Guha, A.: Rehearsal: A configuration verification tool
for puppet. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI) (2016)

https://www.ansible.com
https://www.puppet.com
https://doi.org/10.1145/3290381
https://doi.org/10.1145/3290381

Intra-update Sniping Vulnerabilities 123

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/

Proof Generation/Validation

Certifying Proofs in the First-Order Theory of
Rewriting�

Fabian Mitterwallner1 (�), Alexander Lochmann1 ,
Aart Middeldorp1 , and Bertram Felgenhauer2

1 Department of Computer Science, University of Innsbruck, Innsbruck, Austria
fabian.mitterwallner@uibk.ac.at, alexander.lochmann@uibk.ac.at,

aart.middeldorp@uibk.ac.at
2 Innsbruck, Austria

int-e@gmx.de

Abstract. The first-order theory of rewriting is a decidable theory for
linear variable-separated rewrite systems. The decision procedure is based
on tree automata techniques and recently we completed a formalization
in the Isabelle proof assistant. In this paper we present a certificate
language that enables the output of software tools implementing the de-
cision procedure to be formally verified. To show the feasibility of this
approach, we present FORT-h, a reincarnation of the decision tool FORT
with certifiable output, and the formally verified certifier FORTify.

1 Introduction

Many properties of rewrite systems can be expressed as logical formulas in the
first-order theory of rewriting. This theory is decidable for the class of linear
variable-separated rewrite systems, which includes all ground rewrite systems.
The decision procedure is based on tree automata techniques and goes back to
Dauchet and Tison [7]. It is implemented in FORT [17,18]. FORT takes as input
one or more rewrite systemsR0,R1, . . . and a formula ϕ, and determines whether
or not the rewrite systems satisfy the property expressed by ϕ, in which case it
reports yes or no. FORT may not reach a conclusion due to limited resources.

For properties related to confluence and termination, designated competitions
(CoCo [15], termCOMP [9]) of software tools take place regularly. Occasionally,
yes/no conflicts appear. Since the participating tools typically couple a plethora
of techniques with sophisticated search strategies, human inspection of the out-
put of tools to determine the correct answer is often not feasible. Hence certified
categories were created in which tools must output a formal certificate. This
certificate is verified by CeTA [21], an automatically generated Haskell program
using the code generation feature of Isabelle. This requires not only that the
underlying techniques are formalized in Isabelle, but the formalization must be
executable for code generation to apply. During the time-consuming formaliza-
tion process, mistakes in papers are sometimes brought to light.

� This research is supported by FWF (Austrian Science Fund) project P30301.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 127–144, 2021.
https://doi.org/10.1007/978-3-030-72013-1 7

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_7&domain=pdf
http://orcid.org/0000-0001-5992-9517
http://orcid.org/0000-0002-6145-3893
http://orcid.org/0000-0001-7366-8464
https://doi.org/10.1007/978-3-030-72013-1_7

128 F. Mitterwallner et al.

Since 2017 we are concerned with the question of how to ensure the correct-
ness of the answers produced by FORT. The certifier CeTA supports a great many
techniques for establishing concrete properties like termination and confluence,
but the formalizations in the underlying Isabelle Formalization of Rewriting
(IsaFoR)3 are orthogonal to the ones required for supporting the decision proce-
dure underlying FORT. We recently completed the formalization of the automata
constructions involved in the decision procedure [14]. Earlier fragments were de-
scribed in [8, 13]. In this paper we put these efforts to the test. More precisely,
we

1. present a certificate language which is rich enough to express the various au-
tomata operations in decision procedures for the first-order theory of rewrit-
ing as well as numerous predicate symbols that may appear in formulas in
this theory,

2. describe the tasks required to turn the formalization described in [14] into
verified code to check certificates within reasonable time,

3. present a new reincarnation of FORT in Haskell, named FORT-h, which is
capable of producing certificates.

The remainder of the paper is organized as follows. The next section briefly
recapitulates the first-order theory of rewriting and the variant of the decision
procedure described in [14]. Sections 3 and 4 describe the representation of for-
mulas in certificates and the certificate language. In Section 5 we describe how
certificates are validated by FORTify, the verified Haskell program obtained from
the Isabelle formalization. Section 6 describes FORT-h. Experimental results are
presented in Section 7, before we conclude in Section 8.

2 Preliminaries

Familiarity with term rewriting [2] and tree automata [6] is useful, but we briefly
recall important definitions and notation that we use in the remainder.

Terms T (F ,V) are constructed from a signature F , consisting of function
symbols with fixed arities, and a set of variables V. A term rewrite system (TRS
for short) R consists of rewrite rules �→ r between terms � and r. Instead of the
usual restrictions � /∈ V and Var(r) ⊆ Var(�), we require Var(�)∩Var(r) = ∅. Here
Var(t) denotes the set of variables in a term t. Moreover, � and r are assumed to
be linear terms (i.e., variables occur at most once). The conditions on the rewrite
rules are necessary to ensure decidability of the first-order theory of rewriting for
these linear variable-separated TRSs. The (one-step) rewrite relation of a TRS
R is denoted by →R. A term t is ground if Var(t) = ∅. The set of ground terms
is denoted by T (F).

The first-order theory of rewriting is defined over a language L containing
the predicate symbols →, →∗, =, and many more. As models, we consider finite
linear variable-separated TRSs R over signatures F such that T (F) is non-
empty. The set T (F) serves as domain for the variables in formulas over L. The
3 http://cl-informatik.uibk.ac.at/software/ceta/

http://cl-informatik.uibk.ac.at/software/ceta/

Certifying Proofs in the First-Order Theory of Rewriting 129

interpretation of the predicate symbol → in R is the one-step rewrite relation
→R over T (F), →∗ denotes the restriction of →∗

R to terms in T (F), and = is
interpreted as the identity relation on T (F). Since we use ground terms as car-
rier, formulas in the first-order theory of rewriting express properties on ground
terms. For instance, the following formula ϕ expresses the property of having
unique normal forms (UNR):

∀ s ∀ t ∀u (s→∗ t ∧ ¬∃ v (t→ v) ∧ s→∗ u ∧ ¬∃ v (u→ v) =⇒ t = u)

To use ϕ for establishing UNR for arbitrary terms (i.e., terms in T (F ,V)) two
additional constant symbols need to be added to the signature [18]. (More on this
in Section 8.) Additional predicates in L increase the expressive power and also
allow expressing properties more compactly. For instance, we can write NF(t)
for ¬∃ v (t→ v) and s→! t for s→∗ t ∧ ¬∃ v (t→ v). In Section 3 we present a
grammar that describes the available constructions for predicates. All predicates
that can be represented using these constructions are supported in our decision
procedure.

The decision procedure is based on tree automata that recognize relations
on ground terms. Here we give a brief summary. More information can be found
in [6] and [14]. A tree automaton A = (F , Q,Qf , Δ) consists of a finite signature
F , a finite set Q of states, disjoint from F , a subset Qf ⊆ Q of final states,
and a set of transition rules Δ. Transition rules have one of the following two
shapes: f(p1, . . . , pn) → q with f ∈ F and p1, . . . , pn, q ∈ Q, or p → q with
p, q ∈ Q. The latter are called epsilon transitions. Transition rules can be viewed
as rewrite rules between ground terms in T (F∪Q). The induced rewrite relation
is denoted by →Δ or →A. A ground term t ∈ T (F) is accepted by A if t→∗

Δ q
for some q ∈ Qf . The set of all accepted terms is denoted by L(A) and a set L
of ground terms is regular if L = L(A) for some tree automaton A.

We encode n-tuples with n � 1 of ground terms as terms over an enriched
signature, as follows. We write F (n) for the signature (F ∪ {⊥})n where ⊥ /∈ F
is a fresh constant. The arity of a symbol f1 · · · fn ∈ F (n) is the maximum of
the arities of f1, . . . , fn. The encoding of terms t1, . . . , tn ∈ T (F) is the unique
term 〈t1, . . . , tn〉 ∈ T (F (n)) such that Pos(〈t1, . . . , tn〉) = Pos(t1)∪· · ·∪Pos(tn)
and 〈t1, . . . , tn〉(p) = f1 · · · fn where fi = ti(p) if p ∈ Pos(ti) and fi = ⊥
otherwise, for all p ∈ Pos(〈t1, . . . , tn〉) and 1 � i � n. As an example, for the
terms s = f(g(a), f(b, b)), t = g(g(a)), and u = f(b, g(a)) we obtain 〈s, t, u〉 =
fgf(ggb(aa⊥), f⊥g(b⊥a, b⊥⊥)). An n-ary relation on ground terms is regular if
its encoding is accepted by a tree automaton operating on terms in T (F(n)).
Such an automaton is called an RRn automaton and regular n-ary relations are
called RRn relations. The i-th cylindrification of an RRn relation R over T (F) is
the RRn+1 relation {(t1, . . . , ti−1, u, ti, . . . , tn) | (t1, . . . , tn) ∈ R and u ∈ T (F)}.

Besides RRn automata, the decision procedure makes use of ground tree
transducers (GTTs for short). A GTT is a pair G = (A,B) of tree automata
over the same signature F . A pair (s, t) of ground terms in T (F) is accepted by
G if s →∗

A u →∗
B t for some term u ∈ T (F ∪ Q). Here Q is the combined set of

states of A and B. The set of all such pairs is denoted by L(G). We denote by

130 F. Mitterwallner et al.

La(G) the set of all pairs (s, t) such that s →∗
A q →∗

B t for some state q ∈ Q. A
binary relation R on ground terms is a(n anchored) GTT relation if there exists
a GTT G such that R = L(G) (R = La(G)). The decision procedure for the first-
order theory of rewriting described in [7] and implemented in FORT uses GTTs,
the formalized variant described in [14] uses anchored GTTs (aGTTs), which
have better closure properties. Both are supported in our certificate language,
but FORT-h and FORTify use anchored GTTs since they permit us to model
more predicates while reducing the need for ad-hoc constructions that need to
be turned into executable (verified) code.

The decision procedure for the first-order theory of rewriting constructs RRn

automata for the subformulas in a bottom-up fashion. GTTs (aGTTs) come
into play for some of the atomic subformulas consisting of predicate symbols and
variables. Closure properties take care of the logical structure of formulas. A final
emptiness check determines whether the formula is satisfied for the TRS given
as input to the decision procedure. Rather than formally stating the properties
involved, we illustrate the decision procedure on an example.

Example 1. Consider the formula ϕ = ∀ s ∃ t (s →∗ t ∧ NF(t)), which expresses
the normalization property of TRSs. To determine whether a TRS R over a
signature F satisfies ϕ, we first construct an RR1 automaton A1 that accepts
the ground normal forms in T (F), using an algorithm first described in [5] and
recently formalized in [13]. For the subformula s→∗ t we construct a GTT G1 for
the parallel rewrite relation −→‖ R. Since GTT relations are effectively closed under
transitive closure (while RR2 relations are not), we obtain a GTT G2 for →∗

R.
This GTT is transformed into an RR2 automaton A2. (In the formalized decision
procedure described in [14], an RR2 automaton for →∗ is constructed from an
anchored GTT for the root step relation→ε

R, using suitable closure properties of
anchored GTT and RR2 relations.) We cylindrify the RR1 automaton A1 into an
RR2 automaton A3 that accepts T (F)×NFR. A product construction involving
A2 and A3 produces an RR2 automaton A4 for the subformula s →∗ t ∧ NF(t).
Projection yields an RR1 automaton A5 corresponding to ∃ t (s→∗ t∧NF(t)). So
ϕ holds if and only if L(A5) = T (F). In FORT the ∀ quantifier is transformed into
the equivalent ¬∃¬. Hence complementation is used to obtain an RR1 automaton
A6 and the existential quantifier is implemented using projection. This gives an
RR0 automaton A7 which either accepts the empty relation ∅ or the singleton
set {()} consisting of the nullary tuple (). The outermost negation gives rise
to another complementation step. The final RR0 automaton A8 is tested for
emptiness: L(A8) = ∅ if and only the TRS R does not satisfy ϕ.

3 Formulas

The first step in the certification process is to translate formulas in the first-order
theory of rewriting into a format suitable for further processing. We adopt de
Bruijn indices [4] to avoid alpha renaming.

Certifying Proofs in the First-Order Theory of Rewriting 131

Example 2. Consider the formula

forall s, t, u ([0] s ->* t & [1] s ->* u =>

exists v ([1] t ->* v & [0] u ->* v))

in FORT syntax. It expresses the commutation of two TRSs, indicated by the
indices 0 and 1. Using de Bruijn indices for the term variables s, t, u, v produces

∀∀∀ (2→∗
0 1 ∧ 2→∗

1 0) =⇒ ∃ (2→∗
1 0 ∧ 1→∗

0 0)

We refer to Example 4 for further explanation.

The formal syntax of formulas in certificates is given below. Angle brackets
〈 〉 are used for non-terminal symbols. Here 〈rr2〉 denotes the supported binary
regular relations, which are formally defined after Example 3. Likewise, 〈rr1〉
stands for regular sets (which are identified with unary regular relations).

〈formula〉 ::= (rr1 〈rr1〉 〈term〉) | (rr2 〈rr2〉 〈term〉 〈term〉)
| (and 〈formula〉 ∗) | (or 〈formula〉 ∗) | (not 〈formula〉)
| (forall 〈formula〉) | (exists 〈formula〉) | (true) | (false)
| (restrict 〈formula〉 (〈trs〉+))

〈term〉 ::= 〈nat〉 〈trs〉 ::= 〈nat〉 | 〈nat〉 - 〈nat〉 ::= 0 | 1 | 2 | · · ·

De Bruijn indices are used for 〈term〉 variables and 〈nat〉 - denotes a TRS
with index 〈nat〉 in which the left- and right-hand sides of the rules have been
swapped. The class of linear variable-separated TRSs is closed under this op-
eration. We use it to represent the conversion relation ↔∗ of a TRS R as the
reachability relation →∗ induced by the TRS R∪R−.

Example 3. The commutation property in Example 2 is rendered as follows:

(forall (forall (forall (or (not (and (rr2 (step* (0)) 2 1)

(rr2 (step* (1)) 2 0))) (exists (and (rr2 (step* (1)) 2 0)

(rr2 (step* (0)) 1 0)))))))

Here (step* (0)) denotes the RR2 relation→∗ induced by the first TRS (which
is indexed by 0) and (rr2 (step* (1)) 2 0) represents the subformula [1] t

->* v of the FORT formula in Example 2.

We continue with the certificate syntax of RR1 and RR2 relations:

〈rr1〉 ::= (terms) | (nf (〈trs〉+)) | (inf 〈rr2〉) | (proj (1 | 2) 〈rr2〉)
| (union 〈rr1〉 〈rr1〉) | (inter 〈rr1〉 〈rr1〉) | (diff 〈rr1〉 〈rr1〉)

〈rr2〉 ::= (gtt 〈gtt〉 〈pos〉 〈num〉) | (product 〈rr1〉 〈rr1〉) | (id 〈rr1〉)
| (union 〈rr2〉 〈rr2〉) | (inter 〈rr2〉 〈rr2〉) | (diff 〈rr2〉 〈rr2〉)
| (comp 〈rr2〉 〈rr2〉) | (inverse 〈rr2〉)

132 F. Mitterwallner et al.

〈pos〉 ::= >= | e | > 〈num〉 ::= >= | 1 | >

〈gtt〉 ::= (root-step (〈trs〉+)) | (inverse 〈gtt〉) | (union 〈gtt〉 〈gtt〉)
| (acomp 〈gtt〉 〈gtt〉) | (gcomp 〈gtt〉 〈gtt〉) | (inter 〈gtt〉 〈gtt〉)
| (acomplement 〈gtt〉) | (atc 〈gtt〉) | (gtc 〈gtt〉)

Here (terms) refers to T (F), (nf (〈trs〉 +)) to the normal forms (NF) in-
duced by the union of the underlying TRSs, and (inf 〈rr2〉) to the infinity
predicate (INFR) which is satisfied by all terms having infinitely many succes-
sors with respect to the relation R. Furthermore, (proj (1 | 2) 〈rr2〉) denotes
projection (π) to the first (second) argument, (gtt 〈gtt〉 〈pos〉 〈num〉) the trans-
formation of a GTT relation into an RR2 relation with corresponding context
closure (cf. [14, Section 3]), (id 〈rr1〉) the identity relation on the underlying set,
and (gtc 〈gtt〉) ((atc 〈gtt〉)) the (anchored) transitive closure of the underlying
(anchored) GTT relation.

The constructs defined above closely correspond to the formalized closure
operations for the predicates in the first-order theory of rewriting, reported in [14]
and summarized below:

A ::= →ε | A− | A ∪A | A+ | Â+ | A ◦A | A ◦̂ A | Ac | A ∩A

R ::= A | Rn
p | R ∪R | R ∩R | R− | T × T | =T

T ::= T (F) | NF | INFR | T ∪ T | T ∩ T | T c | π1(R) | π2(R)

n ::= � | 1 | > p ::= � | ε | >

Here A are anchored GTT relations (〈gtt〉), R are RR2 relations (〈rr2〉), and T
are regular sets of ground terms (〈rr1〉).

For convenience of tool authors, we add a few other constructs to 〈rr2〉. The
certifier expands these to a sequence of basic constructs given above.

〈rr2〉 ::= · · · | (step (〈trs〉+)) | (step= (〈trs〉+))

| (step+ (〈trs〉+)) | (step* (〈trs〉+)) | (equality)
| (parallel-step (〈trs〉+)) | (root-step+ (〈trs〉+))

| (non-root-step (〈trs〉+)) | (join (〈trs〉+))

The complete list can be obtained from the accompanying website.

4 Certificates

A certificate for a first-order formula ϕ explains how the corresponding RRn

automaton is constructed. We adopt a line-oriented natural deduction style. The
automata are implicit. This is a deliberate design decision to keep certificates
small. More importantly, it avoids having to check equivalence of finite tree
automata, which is EXPTIME-complete [6, Section 1.7].

〈certificate〉 ::= (〈item〉 〈inference〉 〈formula〉 〈info〉 ∗) 〈certificate〉

Certifying Proofs in the First-Order Theory of Rewriting 133

| (empty 〈item〉) | (nonempty 〈item〉)

〈item〉 ::= 〈nat〉 〈info〉 ::= (size 〈nat〉 〈nat〉 〈nat〉) | · · ·

〈inference〉 ::= (rr1 〈rr1〉 〈term〉) | (rr2 〈rr2〉 〈term〉 〈term〉)
| (and 〈item〉 ∗) | (or 〈item〉 ∗) | (not 〈item〉)
| (exists 〈item〉) | (nnf 〈item〉) | · · ·

Currently the 〈info〉 field only serves as an interface between the tool (which
provides the certificate) and the certifier to compare the sizes of the constructed
automata. In the future we plan to extend this field with concrete automata.
This allows to test language equivalence of a tree automaton computed by a tool
that supports our certificate language and the one reconstructed by FORTify,
thereby providing tool authors with a mechanism to trace buggy constructions
in case a certificate is rejected.

We revisit Example 1 to illustrate the construction of certificates.

Example 4. The formula ϕ = ∀ s ∃ t (s →∗ t ∧ NF(t)) expressing normalization
is rendered as ϕ′ = ∀∃(1→∗

0 0 ∧ 0 ∈ NF[0]) in de Bruijn notation. Here 1 refers
to the variable s, the second and third occurrences of 0 refer to t, and the last
occurrence of 0 refer to the first (and only) TRS, which has index 0. We construct
the certificate bottom-up, to mimic the decision procedure. The first line is for
NF[0]:

(0 (rr1 (nf (0)) 0) (rr1 (nf (0)) 0))

The components can be read as follows:

– 〈item〉 = 0 denotes the first step in our proof,
– 〈inference〉 = rr1 (nf (0)) 0 construct the automaton that accepts the

normal forms and keeps track of the variable 0,
– 〈formula〉 = rr1 (nf (0)) 0 denotes the subformula 0 ∈ NF[0]; it is sat-

isfiable if and only if the automaton constructed using the description in
〈inference〉 is not empty.

The apparent redundancy will disappear when we continue. We proceed by ex-
pressing the relation→∗

0 and subsequently make sure that the second component
of →∗

0 is in normal form:

(1 (rr2 (step* (0)) 1 0) (rr2 (step* (0)) 1 0))

(2 (and (1 0)) (and ((rr2 (step* (0)) 1 0) (rr1 (nf (0)) 0))))

Line 1 is similar to line 0. The inference step and 1 0 in line 2 constructs an RR2

automaton that accepts the intersection of the relations modeled in lines 1 and
0. This automaton corresponds to A4 in Example 1. The cylindrification step
from A1 to A3 in Example 1 is left implicit. We continue with the projection of
variable 0 and afterwards complement the resulting automaton. This is done by
an exists followed by a not inference step:

134 F. Mitterwallner et al.

(3 (exists 2) (exists (and ((rr2 (step* (0)) 1 0)

(rr1 (nf (0)) 0)))))

(4 (not 3) (not (exists (and ((rr2 (step* (0)) 1 0)

(rr1 (nf (0)) 0))))))

The inference steps until this point describe the construction of A6 in Example 1.
We complete the certificate by introducing the remaining operators:

(5 (exists 4) (exists (not (exists (and ((rr2 (step* (0)) 1 0)

(rr1 (nf (0)) 0)))))))

(6 (not 5) (not (exists (not (exists (and ((rr2 (step* (0)) 1 0)

(rr1 (nf (0)) 0))))))))

(7 (nnf 6) (forall (exists (and ((rr2 (step* (0)) 1 0)

(rr1 (nf (0)) 0))))))

(nonempty 7)

The nnf inference step does not modify the tree automaton computed in step
6 (which corresponds to A8 in Example 1) but checks the equivalence of the
formula in line 6 with the one of line 7, which corresponds to the input formula
ϕ′. The equivalence check incorporates ∀ elimination, negation normal form,
and associativity, commutativity and idempotency of ∧ and ∨. In the future
we might add support for additional equivalences in first-order logic. The final
step (nonempty 7) checks that L(A8) �= ∅. So this certificate claims that the
input TRS is normalizing. For TRSs that do not satisfy ϕ, the final line in the
certificate would be (empty 7).

In the previous example we intentionally skipped over some details to convey
the underlying intuition. First of all, the 〈rr2〉 construct (step* (0)) is derived
and internally unfolded via (anchored) GTTs into

(gtt (gtc (root-step 0)) >= >)

Starting from an anchored GTT that accepts the root step relation induced
by the first (and only) TRS in the list, an application of the GTT transitive
closure operation followed by a multi-hole context closure operation with at least
one hole that may appear in any position, an RR2 automaton that accepts the
relation →∗

0 is constructed. We also mentioned that cylindrification is implicit.
The same holds for the projection operation that is used in the exists inference
steps. A projection takes place in the first component if the variable 0 is present
in the list of variables, otherwise the inference step preserves the automaton.
This approach is sound as variables indicate the relevant components of the RRn

automaton. Thanks to the de Bruijn representation, the innermost quantifier
refers to variable 0, the first component in the given RRn automaton. However
we must keep track of all variables occurring in the surrounding formula and
update that list accordingly.

5 FORTify

The example in the preceding section makes clear that a certificate can be viewed
as a recipe for the certifier to perform certain operations on automata and for-

Certifying Proofs in the First-Order Theory of Rewriting 135

mulas to confirm the final (non-)emptiness claim. In particular, checking a cer-
tificate is expensive because the decision procedure for the first-order theory is
replayed using code-generated operations from a verified version of the decision
procedure. In this section we describe the steps we performed to turn the Is-
abelle formalization of the decision procedure described in [14] into our certifier
FORTify.

We use the FOL-Fitting library [3], which is part of the Archive of Formal
Proofs,4 to connect the first-order theory of rewriting and first-order logic. The
translation is more or less straightforward. We interpret RR1 constructions as
predicates and RR2 construction as relations in first-order logic and prove both
interpretations to be semantically equivalent:

lemma eval formula F Rs α f =
eval α undefined (for eval rel F Rs) (form of formula f)

With this equivalence we are able to define the semantics of formulas:

definition formula satisfiable where
formula satisfiable F Rs f ←→ (∃α. range α ⊆ T G F ∧
eval formula F Rs α f)

definition formula unsatisfiable where
formula unsatisfiable F Rs fm ←→ (formula satisfiable F Rs fm = False)

definition correct certificate where
correct certificate F Rs claim infs n ≡
(claim = Empty ←→ (formula unsatisfiable (fset F) (map fset Rs)

(fst (snd (snd (infs ! n))))) ∧
claim = Nonempty ←→ formula satisfiable (fset F) (map fset Rs)
(fst (snd (snd (infs ! n)))))

Last but not least we define the important function check certificate which
takes as input a signature, a list of TRSs, a boolean, a formula, and a certificate.
This function first verifies that the given formula and the claim corresponds to
the ones referenced in the certificate and afterwards checks the integrity of the
certificate. The following lemmata, which are formally proved in Isabelle, state
the correctness of the check certificate function:

lemma check certificate F Rs A fm (Certificate infs claim n) = Some B
=⇒ fm = fst (snd (snd (infs ! n))) ∧ A = (claim = Nonempty)

lemma check certificate F Rs A fm (Certificate infs claim n) = Some B
=⇒ (B = True −→ correct certificate F Rs claim infs n) ∧

(B = False −→ correct certificate F Rs (case claim of
Empty ⇒ Nonempty | Nonempty ⇒ Empty) infs n)

4 https://www.isa-afp.org

https://www.isa-afp.org

136 F. Mitterwallner et al.

The first lemma ensures that our check function verifies that the provided param-
eters fm (formula) and A (answer satisfiable/unsatisfiable) match the formula
and the claim stated in the certificate. The second lemma is the key result. It
states that the check function returns Some True if and only if the certificate
is correct. The only-if case is hidden in the last two lines. More precisely, if the
claim of the certificate is wrong then negating the claim (the first-order theory
of rewriting is complete) leads to a correct certificate. Therefore, if our check
function returns Some None then the certificate is correct after negating the
claim.

Our check function returns None if the global assumptions (the input TRS is
not linear variable-separated, the signature is not empty, etc.) are not fulfilled.
We plan to extend the check certificate function in the near future such that
it reports these kind of errors.

A central part of the formalization is to obtain a trustworthy decision pro-
cedure to verify certificates. Hence we use the code generation facility of Is-
abelle/HOL to produce an executable version of our check certificate func-
tion. Isabelle’s code generation facility is able to derive executable code for our
constructions with the exception of inductively defined sets. In [8, Section 7]
an abstract Horn inference system for finite sets is introduced to overcome this
limitation. We use this framework to obtain executable code for the following
constructions defined as inductive sets:

– reachable and productive states of a tree automaton,
– states of tree automata obtained by the subset construction,
– epsilon transitions for the composition and transitive closure constructions

of (anchored) GTTs,
– an inductive set needed for the tree automaton for the infinity predicate.

At this point we can use Isabelle’s code generation to obtain an executable check
function. However, more effort is needed to obtain an efficient check function.
Checking the certificate in Example 6 below did not terminate after more than
24 hours computation time. We used the profiling capabilities of the Glasgow
Haskell Compiler (GHC) to analyze the generated code. This revealed that most
of the time was spent on checking membership. Since the computed tree au-
tomata can grow very large, the use of lists as underlying data structure for sets
in the generated code is a bottleneck.

To overcome this problem we decided to use the container framework of
Lochbihler [12]. In our case, the setup involved a non-trivial overhead as the
container framework requires multiple class instances for data types used inside
sets. Some of these instances could be derived automatically by the deriving
framework of Sternagel and Thiemann [20]. Afterwards Isabelle’s code generation
was able to generate a check certificate function that uses red-black trees as
underlying data structure for sets.

Sadly, the function was still infeasible for the certificate in Example 6. This
time the power set construction, which is exponential in worst case, turned out
to be the culprit. In this construction we compute the transitive closure of the
present epsilon transitions multiple times. Adding an explicit construction to

Certifying Proofs in the First-Order Theory of Rewriting 137

TRSs R0, R1, . . .

formula ϕ

y
es

/
n
o

certifi
ca
te

� / error(A)

(B)

Fig. 1. Certificate validation with FORTify.

remove epsilon transitions from tree automata solved this issue. To make a long
story short, after further modifications we were able to verify the certificate for
Example 6 in a little less than 3 minutes, which we consider fast enough for a
first prototype. The resulting code-generated certifier is called FORTify.

The overall design of FORTify is shown in Figure 1. It can be viewed as two
separate modules A and B. Module B is the verified Haskell code base that is gen-
erated by Isabelle’s code generation facility, containing the check certificate

function and the data type declarations for formulas and certificates. To use
this functionality, we wrote a parser which translates strings representing for-
mulas (signatures, TRSs, certificates) to semantically equivalent formulas (sig-
natures, TRSs, certificates) represented in the data types obtained from the
generated code. This was done in Haskell and refers to module A in Figure 1.
Module A accepts formulas in FORT syntax. Hence it also applies the con-
version to the de Bruijn representation. After the translation in module A, the
check certificate function in module B is executed and its output is reported.

Importantly, the code in module A is not verified in Isabelle. Correctness of
FORTify must therefore assume correctness of module A as well as the correct-
ness of the Glasgow Haskell Compiler, which we use to generate a standalone
executable from the generated code.

6 FORT-h

FORT-h is a new decision tool for the first order theory of rewriting. It is a
reimplementation of the decision mode of the previous FORT tool [18] based on
a modified decision procedure. The decision procedure, like the formalization,
is based on anchored GTTs. The new tool is implemented in Haskell whereas
FORT is written in Java.

FORT-h supports all features of FORT while extending the domain of sup-
ported TRSs from left-linear right-ground TRSs to linear variable-separated
ones. While FORT could technically take such TRSs as input, it is unsound
when checking non-ground properties on them.

138 F. Mitterwallner et al.

FORT-h

TRSs R0, R1, . . .

formula ϕ

yes / no / maybe

certificate

Fig. 2. Interface of FORT-h.

Example 5. To check confluence of the linear variable-separated TRS

g(g(x))→ g(y) a→ g(a)

FORT-h can be called with

> ./fort-h "CR" input.trs

NO

where input.trs is a text file containing the rewrite system. The tool correctly
states that NO the system is not confluent. However, FORT incorrectly identifies
this as confluent due to the lack of support for variables appearing in right-hand
sides of rules.

FORT-h took part in the 2020 edition of the Confluence Competition, com-
peting in five categories: COM, GCR, NFP, UNC and UNR. Even though it does
not support many problems tested in the competition, due to the restriction to
linear variable-separated TRSs, it was able to win the category for most YES
results in UNR. The tool expects as input a formula ϕ and one or more TRSs, as
seen in Figure 2. It then outputs the answer YES or NO depending on whether
ϕ is satisfied or not by the given TRSs. FORT-h may be passed some additional
options:

-c FILE: causes FORT-h to write a certificate to the given FILE,
-i: enables the additional 〈info〉 in the inference steps in the certificate,
-v: enables verbose output (e.g. showing the internal formula representation).
-w: enables witness generation.

As an example of the latter, consider Example 5 and the call

> fort-h -w "CR" input.trs

NO

formula body / witness:

(0 (<- o ->*) 1 & ~ 0 (->* o *<-) 1)

0 = g(_00())

1 = g(_01())

So in addition to the answer NO, it also outputs a counter example for the given
formula consisting of the two terms g(00()) and g(01()). Here 00 and 01

Certifying Proofs in the First-Order Theory of Rewriting 139

are additional constants required to reduce confluence to ground-confluence, and
represent variables. The terms should therefore be read as g(x) and g(y).

Internally FORT-h represents formulas using de Bruijn indices as described
in Section 4. Additionally, universal quantifiers and implications are eliminated,
and negations are pushed as far as possible to the atomic subformulas. The
tool then traverses the formula in a bottom-up fashion, constructing the corre-
sponding anchored GTTs and RRn automata. During this traversal we also keep
track of the steps taken, to construct the certificate if necessary. To improve
performance the automata are cached and reused for equal subformulas. The
tree automaton representing the whole formula is then checked for emptiness. If
the accepted language is empty, FORT-h reports NO, otherwise it outputs YES.

7 Experiments

The experiments described in this section were run on a computer with a Intel(R)
Core(TM) i7-5930K CPU with 6 cores at 3.50GHz.

In the 2019 edition of the Confluence Competition [15] three tools contested
the commutation (COM) category:5 ACP [1], CoLL [19], and FORT. On input
problem COPS #1118 the tools gave conflicting answers.

Example 6. COPS #1118 is about the commutation of the TRSs COPS #669

a→ c f(a)→ b b→ b b→ h(b, h(c, a))

and COPS #695

h(a, a)→ c b→ h(b, a) b→ a f(c)→ c c→ a

To determine the correct answer we use FORT-h to produce a certificate for
ground-confluence by calling

> fort-h -c cert -i "GCom([0],[1])" 1118.trs

YES

This produces the following certificate:

(0 (rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)

(rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)

(size 13 53 0))

(1 (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1)

(rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1)

(size 11 47 0))

(2 (not 1) (not (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1)))

(3 (and (0 2))

(and ((rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)

(not (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1)))))

(4 (exists 3)

5 https://cops.uibk.ac.at/results/?y=2019&c=COM

https://cops.uibk.ac.at/?q=1118
https://cops.uibk.ac.at/?q=1118
https://cops.uibk.ac.at/?q=669
https://cops.uibk.ac.at/?q=695
https://cops.uibk.ac.at/results/?y=2019&c=COM

140 F. Mitterwallner et al.

Table 1. FORT(-h) run on GCR formulas with a 60 s timeout (FORTify with 600 s).

YES ∅-time � NO ∅-time � ∞ total (�) time

(1) FORT-h 36 0.26 s 10 84 0.56 s 16 2 176.23 s (17.6 h)
FORT 37 0.31 s — 82 0.52 s — 3 234.08 s

(2) FORT-h 37 1.48 s 10 84 0.09 s 16 1 122.55 s (17.8 h)
FORT 37 0.32 s — 82 0.50 s — 3 233.20 s

(3) FORT-h 36 0.45 s 6 83 0.08 s 9 3 202.64 s (18.2 h)
FORT 37 0.32 s — 82 0.55 s — 3 236.69 s

(exists (and ((rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)

(not (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1))))))

(5 (exists 4)

(exists (exists (and ((rr2 (comp (inverse (step* (1)))

(step* (0))) 0 1) (not (rr2 (comp (step* (0))

(inverse (step* (1)))) 0 1)))))))

(6 (not 5)

(not (exists (exists (and (

(rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)

(not (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1))))))))

(7 (nnf 6)

(forall (forall (or (

(not (rr2 (comp (inverse (step* (1))) (step* (0))) 0 1))

(rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1))))))

(nonempty 7)

When passing this certificate to FORTify, after 2 minutes and 57 seconds the
output Certified is produced, so we can be assured that the TRSs do commute.
Note that the inference steps 0 and 1 contain the optional size information. Here
(size k m n) means the underlying RRn automaton constructed by FORT-h
contains k final states, m transitions, and n epsilon transitions.

We also ran some experiments comparing FORT-h to FORT. The problems for
these experiments are taken from the Confluence Problems database (COPS),
and consists of 122 left-linear right-ground TRSs. Note that FORT-h imple-
ments no parallelism, while FORT does. For the first two experiments we chose
a timeout of 60 seconds for the decision tools and 600 seconds for FORTify. The
formulas were taken from the experiments reported in [17]. The first three

∀ s ∀ t ∀u (s→∗ t ∧ s→∗ u =⇒ t ↓ u) (1)

∀ s ∀ t ∀u (s→∗ t ∧ s→ u =⇒ t ↓ u) (2)

∀ t ∀u (t↔∗ u =⇒ t ↓ u) (3)

denote different but equivalent formulations of ground-confluence (GCR).
The results are shown in Table 1, where the YES (NO) column shows the

number of systems determined to be (non-)ground-confluent together with av-
erage time (∅-time) the tool took. The ∞ column is the number of timeouts.

Certifying Proofs in the First-Order Theory of Rewriting 141

To compare overall performance the total time column contains the sum of all
runtimes, including timeouts but excluding the time taken by FORTify. The
� columns show the numbers of certifiable results as well as the overall time
taken by FORTify (�-time). These results show that, even though they have the
same meaning, the choice of formula has an impact on performance. Interest-
ingly FORT-h is generally faster and can solve more problems than FORT even
though it can not take advantage of any parallelism. This performance advan-
tage is more prominent in systems which are non-confluent. For problems with
the answer YES, FORT can still prove more. The table also shows that FORTify
can only certify a small portion the results. This is due to the performance of
the certifier, since all other problems time out. It is also apparent that formulas
containing conversion (↔∗) are especially slow. No wrong results by the decision
tools where identified.

The second set of formulas represents the normal form property, restricted
to ground terms (GNFP):

∀ t ∀u (t↔∗ u ∧ NF(u) =⇒ t→∗ u) (4)

∀ s ∀ t ∀u (s→ t ∧ s→! u =⇒ t→∗ u) (5)

∀ t (WN(t) =⇒ CR(t)) (6)

The results for these are shown in Table 2. The same pattern is observed, where
even though both can (dis)prove satisfaction for the same formulas, FORT-h is
faster overall.

For the last experiment we test performance on properties over two TRSs.
This is done by checking ground-commutation (GCOM) for all pairs of systems
form the dataset, resulting in 7503 problems. A timeout of 60 seconds was used.
The results, presented in Table 3, show that FORT-h is ahead here as well,
(dis)proving more problems and doing so in significantly less time.

Full details of the experiments are available from the website6 accompanying
this paper. Precompiled binaries of FORT-h and FORTify are available from the
same site. We also present a few additional experiments with FORTify.

6 https://fortissimo.uibk.ac.at/tacas2021

Table 2. FORT(-h) run on GNFP formulas with a 60 s timeout (FORTify with 600 s).

YES ∅-time � NO ∅-time � ∞ total (�) time

(4) FORT-h 59 0.70 s 31 63 0.07 s 20 0 45.62 s (14.6 h)
FORT 59 0.23 s — 63 0.39 s — 0 38.16 s

(5) FORT-h 59 0.03 s 46 63 0.01 s 50 0 2.55 s (6.3 h)
FORT 59 0.22 s — 63 0.30 s — 0 31.83 s

(6) FORT-h 59 0.05 s 42 62 0.12 s 45 1 70.51 s (8.6 h)
FORT 59 0.31 s — 62 0.64 s — 1 117.86 s

https://fortissimo.uibk.ac.at/tacas2021

142 F. Mitterwallner et al.

Table 3. FORT(-h) run on GCOM with a 60 s timeout (FORTify with 600 s).

YES ∅-time � NO ∅-time � ∞ total (�) time

FORT-h 1381 0.16 s 878 6120 0.03 s 3666 2 517.32 s (681.5 h)
FORT 1354 1.46 s — 6100 0.94 s — 49 10670.89 s

8 Conclusion

In this paper we presented FORTify, a certifier for the first-order theory of rewrit-
ing for linear variable-separated TRSs, together with an expressive certificate
language for formulas and proofs. Moreover, a new implementation of the de-
cision procedure for the theory of rewriting, FORT-h, is capable of producing
certificates in this language.

We mention three topics which require further research. First of all, many
certificates produced by FORT-h cannot be validated by the current version of
FORTify within reasonable time. We will further improve the algorithms and
data structures used in the check-certificate function. A natural candidate
for optimization is the transitive closure algorithm generated by Isabelle, which
always takes cubic time. Currently, sharing only takes place in the inference
rules. Expanding this to the individual constructions will be the next step. Also
trimming of anchored GTTs could improve the run time. In the current state of
the formalization only trimming of GTTs is proved to be sound. Profiling will
be used to determine other candidates that are likely to have a large impact on
the validation time.

A second topic for future research is the certification of properties on open
(i.e., non-ground) terms. In [8,16,18] conditions are presented to reduce proper-
ties related to confluence to the corresponding properties on ground terms, by
adding additional constants to the signature. These results need to be formalized
in Isabelle and the certificate language needs to be extended, before FORTify can
be used to certify the corresponding categories in the Confluence Competition.
We plan to define signature extensions directly in formulas, to offer the most
flexibility. A related issue is the support for many-sorted signatures in the Is-
abelle formalization. FORT-h already supports many-sorted TRSs, which is the
format in the GCR category of CoCo.

A third topic is improving the efficiency of FORT-h. We anticipate that sup-
porting parallelism will further speed up FORT-h, especially for large formulas.
Preprocessing techniques that go beyond the mere transformation to negation
normal form will be helpful to obtain equivalent formulas that reduce the size
of the ensuing tree automata in the decision procedure. In [10] similar ideas are
applied to WSkS, in connection with MONA [11].

Acknowledgments. We thank René Thiemann for giving valuable advice on how
to improve the efficiency of the generated code. The comments by the anonymous
reviewers improved the presentation.

Certifying Proofs in the First-Order Theory of Rewriting 143

References

1. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting systems
automatically. In: Treinen, R. (ed.) Proc. 20th International Conference on Rewrit-
ing Techniques and Applications. Lecture Notes in Computer Science, vol. 5595,
pp. 93–102 (2009). https://doi.org/10.1007/978-3-642-02348-4 7

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998). https://doi.org/10.1017/CBO9781139172752

3. Berghofer, S.: First-order logic according to Fitting. Archive of Formal Proofs
(2007), https://isa-afp.org/entries/FOL-Fitting.html, Formal proof development

4. de Bruijn, N.G.: Lambda calculus notation with nameless dummies: A tool for
automatic formula manipulation, with application to the Church–Rosser theorem.
Indagationes Mathematicae 34(5), 381–392 (1972). https://doi.org/10.1016/1385-
7258(72)90034-0

5. Comon, H.: Sequentiality, monadic second-order logic and tree au-
tomata. Information and Computation 157(1-2), 25–51 (2000).
https://doi.org/10.1006/inco.1999.2838

6. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2008), http:
//tata.gforge.inria.fr/

7. Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable. In:
Proc. 5th IEEE Symposium on Logic in Computer Science. pp. 242–248 (1990).
https://doi.org/10.1109/LICS.1990.113750

8. Felgenhauer, B., Middeldorp, A., Prathamesh, T.V.H., Rapp, F.: A verified ground
confluence tool for linear variable-separated rewrite systems in Isabelle/HOL.
In: Mahboubi, A., Myreen, M.O. (eds.) Proc. 8th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs. pp. 132–143 (2019).
https://doi.org/10.1145/3293880.3294098

9. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination
and complexity competition. In: Beyer, D., Huisman, M., Kordon, F., Steffen,
B. (eds.) Proc. 25th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Lecture Notes in Computer Science, vol.
11429, pp. 156–166 (2019). https://doi.org/10.1007/978-3-030-17502-3 10

10. Havlena, V., Hoĺık, L., Lengal, O., Vales, O., Vojnar, T.: Antiprenexing for WSkS:
A little goes a long way. In: Albert, E., Kovacs, L. (eds.) Proc. 23rd International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning. EPiC
Series in Computing, vol. 73, pp. 298–316 (2020). https://doi.org/10.29007/6bfc

11. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. In-
ternational Journal of Foundations of Computer Science 13(4), 571–586 (2002).
https://doi.org/10.1142/S012905410200128X

12. Lochbihler, A.: Light-weight containers for Isabelle: Efficient, extensible, nestable.
In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Proc. 4th International
Conference on Interactive Theorem Proving. Lecture Notes in Computer Science,
vol. 7998, pp. 116–132 (2013). https://doi.org/10.1007/978-3-642-39634-2 11

13. Lochmann, A., Middeldorp, A.: Formalized proofs of the infinity and normal form
predicates in the first-order theory of rewriting. In: Biere, A., Parker, D. (eds.)
Proc. 26th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Lecture Notes in Computer Science, vol. 12079, pp. 178–
194 (2020). https://doi.org/10.1007/978-3-030-45237-7 11

https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1017/CBO9781139172752
https://isa-afp.org/entries/FOL-Fitting.html
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1006/inco.1999.2838
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
https://doi.org/10.1109/LICS.1990.113750
https://doi.org/10.1145/3293880.3294098
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.29007/6bfc
https://doi.org/10.1142/S012905410200128X
https://doi.org/10.1007/978-3-642-39634-2_11
https://doi.org/10.1007/978-3-030-45237-7_11

144 F. Mitterwallner et al.

14. Lochmann, A., Middeldorp, A., Mitterwallner, F., Felgenhauer, B.: A ver-
ified decision procedure for the first-order theory of rewriting for linear
variable-separated rewrite systems variable-separated rewrite systems in Is-
abelle/HOL. In: Hriţcu, C., Popescu, A. (eds.) Proc. 10th ACM SIGPLAN In-
ternational Conference on Certified Programs and Proofs. pp. 250–263 (2021).
https://doi.org/10.1145/3437992.3439918

15. Middeldorp, A., Nagele, J., Shintani, K.: Confluence competition 2019. In:
Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) Proc. 25th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Lecture Notes in Computer Science, vol. 11429, pp. 25–40 (2019).
https://doi.org/10.1007/978-3-030-17502-3 2

16. Mitterwallner, F.: Extending Tools for Confluence and Related Properties of
Rewrite Systems. Master’s thesis, University of Innsbruck (2020)

17. Rapp, F., Middeldorp, A.: Automating the first-order theory of left-linear right-
ground term rewrite systems. In: Kesner, D., Pientka, B. (eds.) Proc. 1st In-
ternational Conference on Formal Structures for Computation and Deduction.
Leibniz International Proceedings in Informatics, vol. 52, pp. 36:1–36:12 (2016).
https://doi.org/10.4230/LIPIcs.FSCD.2016.36

18. Rapp, F., Middeldorp, A.: FORT 2.0. In: Galmiche, D., Schulz, S., Sebastiani, R.
(eds.) Proc. 9th International Joint Conference on Automated Reasoning. LNAI,
vol. 10900, pp. 81–88 (2018). https://doi.org/10.1007/978-3-319-94205-6 6

19. Shintani, K., Hirokawa, N.: CoLL: A confluence tool for left-linear term rewrite
systems. In: Felty, A.P., Middeldorp, A. (eds.) Proc. 25th International Conference
on Automated Deduction. Lecture Notes in Computer Science, vol. 9195, pp. 127–
136 (2015). https://doi.org/10.1007/978-3-319-21401-6 8

20. Sternagel, C., Thiemann, R.: Deriving class instances for datatypes. Archive of
Formal Proofs (2015), https://isa-afp.org/entries/Deriving.html, Formal proof de-
velopment

21. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Proc. 22nd International
Conference on Theorem Proving in Higher Order Logics. Lecture Notes in Com-
puter Science, vol. 5674, pp. 452–468 (2009). https://doi.org/10.1007/978-3-642-
03359-9 31

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3437992.3439918
https://doi.org/10.1007/978-3-030-17502-3_2
https://doi.org/10.4230/LIPIcs.FSCD.2016.36
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1007/978-3-319-21401-6_8
https://isa-afp.org/entries/Deriving.html
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31
https://creativecommons.org/licenses/by/4.0/

Syntax-Guided Quantifier Instantiation�

Aina Niemetz1 , Mathias Preiner1(�) , Andrew Reynolds2 ,
Clark Barrett1 , and Cesare Tinelli2

1 Stanford University, Stanford, USA
preiner@cs.stanford.edu

2 The University of Iowa, Iowa City, USA

Abstract. This paper presents a novel approach for quantifier instan-
tiation in Satisfiability Modulo Theories (SMT) that leverages syntax-
guided synthesis (SyGuS) to choose instantiation terms. It targets quan-
tified constraints over background theories such as (non)linear integer,
reals and floating-point arithmetic, bit-vectors, and their combinations.
Unlike previous approaches for quantifier instantiation in these domains
which rely on theory-specific strategies, the new approach can be applied
to any (combined) theory, when provided with a grammar for instantia-
tion terms for all sorts in the theory. We implement syntax-guided instan-
tiation in the SMT solver CVC4, leveraging its support for enumerative
SyGuS. Our experiments demonstrate the versatility of the approach,
showing that it is competitive with or exceeds the performance of state-
of-the-art solvers on a range of background theories.

1 Introduction

Modern Satisfiability Modulo Theories (SMT) solvers are highly efficient tools,
capable of reasoning about constraints over a wide range of logical theories,
including (non-linear) real and integer arithmetic, fixed-size bit-vectors, and
floating-point arithmetic. Their core algorithms are designed primarily for quan-
tifier-free constraints, but various extensions have been shown to work well also
for quantified constraints in many cases. Quantified reasoning in SMT has many
practical applications, including software verification, automated theorem prov-
ing, and synthesis.

Current SMT solvers handle quantified constraints in a variety of ways, with
a degree of effectiveness that usually depends on the background theory. For
instance heuristic instantiation techniques such as E-matching [15] are used for
quantified formulas with heavy use of uninterpreted functions. These heuristic
instantiation techniques are refutationally incomplete but they can be highly
effective, in particular in the context of verification applications. For quantified
constraints over a particular background theory, such as linear arithmetic or
fixed-size bit-vectors, on the other hand, SMT solvers resort to an entirely dif-
ferent set of techniques. While also based on quantifier instantiation, these other

� This work was supported in part by DARPA (award no. FA8650-18-2-7861), NSF
(award no. 1656926) and ONR (award no. N68335-17-C-0558).

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 145–163, 2021.
https://doi.org/10.1007/978-3-030-72013-1 8

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_8&domain=pdf
http://orcid.org/0000-0003-2600-5283
http://orcid.org/0000-0002-7142-6258
http://orcid.org/0000-0002-3529-8682
http://orcid.org/0000-0002-9522-3084
http://orcid.org/0000-0002-6726-775X
https://doi.org/10.1007/978-3-030-72013-1_8

146 A. Niemetz et al.

techniques tend to be counterexample-guided and can be complete for theories
and fragments of first-order logic that admit quantifier elimination.

Specific previous work in the latter direction includes counterexample-guided
quantifier instantiation techniques for linear arithmetic [25] and fixed-size bit-
vectors [18,20]. The key to developing each of them is to devise an appropriate,
theory-specific selection function, which determines a term selection strategy for
instantiating universal quantifiers. For some logics, e.g., linear arithmetic, se-
lection functions can be based on the notion of elimination set found in classic
algorithms for quantifier elimination [9, 14]. However, since many theories used
in practice do not admit quantifier elimination, the design of a good selection
function is usually non-trivial. These challenges are further magnified when rea-
soning in combinations of multiple theories.

We propose a novel, syntax-guided quantifier instantiation (SyQI) approach,
which is both general-purpose and highly effective for quantified formulas in
background theories such as (non)linear integer, reals and floating-point arith-
metic, and their combinations. The new approach leverages an embedding of a
solver for the syntax-guided synthesis (SyGuS) problem [1] within an SMT solver
in order to choose terms for quantifier instantiation in a counterexample-guided
manner. It is theory-agnostic and only requires the specification, via a grammar,
of the set of terms to consider for each sort in the theory when instantiating quan-
tifiers.3 Since it can be applied to quantified formulas in any background theory,
it is more general in scope than previous work [20]. Our approach is intended
for logics such as quantified floating-point arithmetic, which would benefit from
counterexample-guided quantifier instantiation, but for which appropriate selec-
tion function are not obvious. We show that the use of syntax-guided synthesis
gives us the flexibility to develop variants of our approach that are highly com-
petitive with the state of the art in SMT solving. More specifically, this paper
makes the following contributions :

– We present and prove correct a simple yet novel quantifier instantiation
approach that leverages syntax-guided synthesis for selecting instantiations.

– We explore variants of the approach along several dimensions, including the
choice of symbols to include in grammars for various background theories.

– We implement this technique in the SMT solver CVC4 [5] and show that
it performs remarkably well in a wide variety of SMT logics. In particular,
it improves upon the state of the art for solving quantified formulas over
floating-point arithmetic, and is highly competitive for non-linear integer
arithmetic and certain combined logics that involve fixed-size bit-vectors.

Related Work. Handling quantified formulas in SMT solvers is a long-standing
challenge. Early approaches for quantified formulas were largely based on E-
matching [8, 10, 15]. They have been later supplemented with techniques that
rely on models for establishing satisfiability [11, 26], and on conflict finding to
accelerate the search for unsatisfiability [27]. Pragmatic enumerative approaches

3 Our implementation provides a default grammar for all supported sorts. In general,
grammars can also be provided by the user. We do not explore this option here.

Syntax-Guided Quantifier Instantiation 147

for quantifier instantiation have also been explored and shown to increase the
precision of SMT solvers on inputs involving uninterpreted functions where E-
matching is incomplete [21]. The approach we describe here is also enumerative in
nature; however, it leverages syntax-guided synthesis for choosing instantiations
and does not target inputs with uninterpreted functions.

For quantified formulas over a single background theory, counterexample-
guided approaches have been considered by Bjørner and Janota [6] and by
Reynolds et al. [25], targeting primarily quantified linear integer/real arithmetic.
For theories of other data types (e.g., bit-vectors), most approaches use value-
based instantiation, where concrete variable assignments for a set of quantifier-
free formulas derived from the negation of the input formula (the counterexam-
ples) provide instantiations for the universal variables. In the SMT solver Z3 [16],
model-based quantifier instantiation (MBQI) [11] is combined with a template-
based model finding procedure [29]. A recent line of work by Niemetz et al. [18]
leverages invertibility conditions in a counterexample-guided loop for quantifier
instantiation of formulas in the theory of fixed-size bit-vectors. Brain et al. [7] lift
the concept of invertibility conditions to the theory of floating-point arithmetic
and presented a preliminary quantifier elimination procedure for a fragment of
the theory based on these conditions. Another approach for lazy quantifier elim-
ination for bit-vector formulas is explored by Vediramana Krishnan et al. [12],
based on iterative approximate quantifier elimination.

Reynolds et al. [24] leverage counterexample-guided quantifier instantiation
(CEGQI) to efficiently solve a restricted but practically useful form of syntax-
guided synthesis problems. In contrast, the work in this paper has the dual goal
of leveraging enumerative syntax-guided synthesis to establish a strategy for
quantifier instantiation of (first-order) quantified formulas.

SyGuS techniques to solve quantified problems were previously explored by
Preiner et al. in [20]. However, instead of focusing on quantifier instantiation
they combined enumerative syntax-guided synthesis with value-based quantifier
instantiation to synthesize Skolem functions for existential variables.

2 Background

We assume the usual notions and terminology of many-sorted first-order logic
with equality (denoted by ≈). Let S be a set of sort symbols. For every σ ∈ S,
let Xσ be an infinite set of variables of sort σ. Let X =

⋃
σ∈S Xσ. Let Σ be a

signature consisting of a set Σs⊆ S of sort symbols and a set Σf of interpreted
(and sorted) function symbols fσ1···σnσ with arity n ≥ 0 and σ1, ..., σn, σ ∈ Σs.
We assume that Σ includes a Boolean sort Bool and the Boolean values ! (true)
and ⊥ (false). Let I be a Σ-interpretation that maps: each sort σ ∈ Σs to a non-
empty set σI (the domain of I), with BoolI = {!,⊥}; each variable x ∈ Xσ

to an element xI ∈ σI ; and each function fσ1···σnσ ∈ Σf to a total function
fI: σI

1 × ...× σI
n → σI if n > 0, and to an element in σI if n = 0.

We assume the usual definition of well-sorted terms, literals, and formulas
as Bool terms with variables in X and symbols in Σ, and refer to them as Σ-

148 A. Niemetz et al.

terms, Σ-atoms, and so on. A ground term/formula is a Σ-term/formula without
variables. We define x = (x1, ..., xn) as a tuple of variables and write Qx.ϕ with
Q ∈ {∀, ∃} for a quantified formula Qx1. · · ·Qxn.ϕ. A formula is universal if
it has the form ∀x. P where P is a quantifier-free formula. For simplicity, we
consider only universal quantifiers since existential quantifiers can be rewritten
in terms of universal ones. We use Lit(ϕ) to denote the set of Σ-literals of Σ-
formula ϕ. For a Σ-term or Σ-formula e, we use e[x] to indicate that the free
variables of e are in x. For a tuple of Σ-terms t = (t1, ..., tn), we write e[t] for the
term or formula obtained from e by simultaneously replacing each occurrence
of xi in e by ti. If t is a Σ-term/formula and I a Σ-interpretation, we write
tI to denote the meaning of t in I. We use the usual inductive definition of a
satisfiability relation |= between Σ-interpretations and Σ-formulas.

A theory T is a pair (Σ, I), where Σ is a signature and I is a non-empty class
of Σ-interpretations (the models of T) that is closed under variable reassignment,
i.e., every Σ-interpretation that only differs from an I ∈ I in how it interprets
variables is also in I. A Σ-formula ϕ is T -satisfiable (resp. T -unsatisfiable) if it
is satisfied by some (resp. no) interpretation in I; it is T -valid if it is satisfied
by all interpretations in I.

Enumerative SyGuS using an Embedding into Datatypes. A syntax-guided syn-
thesis problem for an n-ary function f in a background theory T consists of
a set of semantic restrictions (a specification) for f , given as a (second-order)
T -formula of the form ∃f. ϕ[f], and a set of syntactic restrictions on the solu-
tions for f , typically expressed as a context-free grammar. A solution to such
a problem is a term t[x1, . . . , xn] that satisfies the syntactic restrictions and is
such that the formula ϕ[λx1, . . . , xn.t] is T -valid.

As shown in previous work [24], syntactic restrictions for the bodies of func-
tions to synthesize can be conveniently represented as a set of (algebraic) data-
types. The setting in this paper is simpler. Instead of synthesizing terms cor-
responding to function bodies, we use context-free-grammars for defining a set
of (first-order) terms in a given theory, possibly containing free function sym-
bols. For instance, let a and b be free constants of sort Int. The context-free
grammar R below specifies a set of integer (Z) and Boolean (B) terms:

Z ::= 0 | 1 | a | b | Z + Z | Z − Z | ite(B,Z,Z) (1)

B ::= B ≥ B | Z ≈ Z | ¬B | B ∧B (2)

Given such a grammar, our SyGuS solver generates the following mutually re-
cursive datatypes:

Z = zero | one | a | b | plus(Z,Z) | minus(Z,Z) | ite(B,Z,Z) (3)

B = geq(Z,Z) | eq(Z,Z) | not(B) | and(B,B) (4)

Each datatype constructor, listed on the right-hand side of each equation, corre-
sponds to a production rule of R, e.g., plus corresponds to the rule Z ::= Z +Z.
Given a datatype value v, we write to term(v) to denote the term that v rep-
resents, e.g., to term(plus(a, b)) is the term a+ b.

Syntax-Guided Quantifier Instantiation 149

In previous work [22, 24], a smart enumerative approach for syntax-guided
synthesis was presented and implemented in CVC4. In that work, the generation
of terms is based on finding solutions for an evolving set of constraints in an
extension of the quantifier-free fragment of algebraic datatypes, for which some
SMT solvers have dedicated decision procedures [3, 23]. In the remainder of
this paper, we write TD to denote the theory of datatypes over a signature ΣD

of constructor and selector symbols. The signature ΣD includes (parametric)
datatype sorts that are interpreted as the universe of a term algebra over the
constructors. Selectors are interpreted as functions that extract the immediate
subterms of a constructor term.

In our setting, datatype constraints are used to express syntactic restrictions
on the terms in the original theory. For instance, in case of the example theory
and corresponding datatypes Z and B defined above, we can write a datatype
constraint that is falsified by all terms of the form plus(zero, t) where t is a
constructor term of sort Z. This corresponds to ruling out terms of the form
(0+ . . .) in the original theory where s is a term of sort Int. In more detail, for a
datatype term d, we write isC(d) to denote the discriminator predicate, which is
satisfied exactly when d is interpreted as a datatype value whose top constructor
is C. We write selσ,n(d) to denote a shared selector [28] applied to d, interpreted
as the nth child of d with sort σ if one exists, and as an arbitrary element of
σ otherwise. These symbols are used for constructing blocking constraints. For
example, we can write ¬isplus(d)∨¬iszero(selZ,1(d)) to state the constraint above
that d cannot be interpreted as any datatype value corresponding to an Int term
of the form (0+ . . .). In the context of syntax-guided synthesis, a constraint like
this is added, for instance, to filter out redundant terms (like 0 + . . .) or terms
already known to falsify the synthesis conjecture.

Our approach for syntax-guided instantiation relies on a notion of evaluation
variables. A related, more general, notion of evaluation functions was used in
the context of syntax-guided synthesis (see Section 2 of [22] for details). Let d
be a term of a datatype sort encoding a grammar over terms of sort σ. We write
ed to denote a free constant of sort σ, which we call the evaluation variable for
d. We use evaluation variables to determine which terms to use in instantiations
of quantified formulas. The algorithm given in the following section will add
constraints that force the interpretation of ed to be equal to to term(dI) in
interpretations I. A simple example of such a constraint is isa(d) ⇒ ed ≈ a,
stating that the evaluation variable ed for d is equal to the free constant a of
integer type when d is interpreted as the datatype value a.

3 SyGuS Quantifier Instantiation (SyQI)

Our new SyGuS-based instantiation approach combines counterexample-guided
quantifier instantiation (CEGQI) with smart enumerative SyGuS techniques to
synthesize terms for quantifier instantiation. In essence, it is an algorithm that
tries to synthesize a term t for a variable x in a given formula ∀x. P [x] such that
¬P [t] holds. For synthesis purposes, each quantified variable is associated with

150 A. Niemetz et al.

Algorithm 1 Main algorithms of the SyQI approach.

1: procedure syqi({Q1, . . . , Qn}, G)
2: for Qj ∈ {Q1, . . . , Qn} with Qj = ∀x. P [x] do
3: for x ∈ x do
4: Let dx be a fresh global constant of datatype sort grammarS(x)

5: G := G ∪ {lj ⇒ ¬P [edx]} with fresh Boolean constant lj and fresh edx
6: repeat
7: if check(G) = unsat then return unsat

8: r, I := check(G ∧ (l1 ∨ . . . ∨ ln))
9: if r = unsat then return sat
10: for lj ∈ {l1, . . . , ln} such that lIj = � do
11: G := G ∪ select lemmasL(Qj , I)
12: procedure select lemmasL(∀x1, . . . , xp. P [x1, . . . , xp], I)
13: L := ∅
14: for xi ∈ {x1, . . . , xp} do
15: ti := to term(dIxi

)
16: L := L ∪ {explain(dxi ≈ dIxi

) ⇒ edxi
≈ to term(dIxi

)}
17: return non-empty subset of {P [t1, . . . , tp]} ∪ L based on selection strategy L

a SyGuS grammar based on the sort of the variable. For example, our algorithm
uses a bit-vector-specific grammar to synthesize bit-vector terms as possible in-
stantiations of quantified variables of bit-vector sort. Our SyGuS solver suggests
instantiations based on such grammars and an evolving set of constraints on
the instance term. The main advantage of this instantiation approach is that
it does not require theory-specific quantifier instantiation algorithms. Its only
theory-specific aspects are the construction of the grammar for each theory sort
and the satisfiability checks performed on the generated instances.

Algorithm 1 shows the two main procedures syqi and select lemmasL of
our SyGuS instantiation approach. To simplify the exposition, we describe the
restricted case where the quantified input formula are all universal. Our imple-
mentation in CVC4, however, applies to the general case through a lazy conver-
sion to DNF and resolution of quantifier alternations.

Procedure syqi takes as argument a set {Q1, . . . , Qn} of universal (quanti-
fied) T -formulas and a set G of ground T -formulas. As an initial step, and prior
to solving the problem, we generate a lemma for each quantified formula Qi as
part of our counterexample-guided quantifier instantiation approach (lines 2-5).
We first create a fresh datatype constant dx of sort grammarS(x) for each vari-
able x ∈ x in each input formula ∀x. P [x]. The datatype sort grammarS(x)
is constructed from a SyGuS grammar determined by the sort of variable x.
The language generated by the grammar includes ground terms from Qi and
G of the same sort. These terms are chosen following a selection strategy S,
which we describe in Section 3.1. Apart from running check, used as a black
box, grammarS implements the only theory-specific handling of our procedure.
Finally, we add to G a lemma of the form li ⇒ ¬P [edx] for each quantified for-

Syntax-Guided Quantifier Instantiation 151

mula, where li is a fresh Boolean constant (the counterexample literal for Qi).
Thanks to li being fresh, this preserves the satisfiability of G. The notation edx

is a shorthand for (edx1
, . . . , edxm

), the tuple of evaluation variables for each dx
of x ∈ x. The purpose of a counterexample lemma is twofold. First, it indicates
whether a quantified formula Qi is active (li assigned to true) or inactive (li
assigned to false). Second, it focuses on finding counterexamples that falsify the
body of Qi.

The main loop of procedure syqi is provided in lines 6-11. Each iteration
starts with a quantifier-free satisfiability check (performed by procedure check
on line 7) on the current set of ground formulas G in the combined theory
T ∪ TD. If G is unsatisfiable, procedure syqi returns unsat. If G is satisfiable,
the procedure further checks whether it can find a counterexample for any of the
quantified formulas Q1, . . . , Qn, which is done by checking the satisfiability of
G∧(l1∨. . .∨ln). If the check returns unsat then no more counterexamples can be
found; the algorithm concludes that input set is satisfiable and returns sat. The
reason is that, in this case, the set G is satisfiable and entails each input formula,
as proven later in this section. If the second call to check (line 8) returns sat, it
additionally returns (a finite representation of) a model I for the current set of
ground formulas G. Since I satisfies l1 ∨ . . . ∨ ln, it does not satisfy at least one
quantified formula in Q1, . . . , Qn.

4 For each active quantified formula in I, we
generate new lemmas via procedure select lemmasL (lines 10-11), and repeat
the main loop of the algorithm. Note that the second satisfiability check can be
avoided by employing a special decision heuristic for counterexample literals li
in the SAT solver. The decision heuristic will always assign a counterexample
literal li to true on a decision. Consequently, li can only be assigned to false in
a candidate interpretation I if ¬li is entailed by the set of ground formulas G.

Procedure select lemmasL takes a formula ∀x. P [x] and a model I as ar-
guments and generates a set of lemmas based on I and selection strategy L.
The procedure maintains the invariant of always returning a set of lemmas L
where L \G is non-empty. This set L includes a single instantiation lemma (of
the form P [t]) and an evaluation unfolding lemmas (see below) for each variable
x ∈ x. The returned lemmas are generated based on one of three lemma selec-
tion strategies : priority-inst, priority-eval, and interleave. Strategy interleave selects
both the instantiation lemma and a set of evaluation unfolding lemmas at the
same time. Strategies priority-inst and priority-eval give priority to instantiation
lemmas and evaluation unfolding lemmas, respectively; i.e., strategy priority-inst
selects the instantiation lemma and only selects evaluation unfolding lemmas if
the instantiation lemma was already in G. Analogously, priority-eval gives priority
to evaluation unfolding lemmas.

The various lemmas are constructed as follows. For each variable x ∈ x we
use the model value dIx of datatype constant dx to construct the corresponding
term to term(dIx) in the theory of variable x (line 15). The constructed term
corresponds to a term synthesized by the SyGuS extension of our datatypes

4 Note that this does not mean the quantified formula is unsatisfiable, only that it is
not satisfied in I.

152 A. Niemetz et al.

solver based on the grammar specified for x. To ensure that dx evaluates to
the same values as term to term(dIx) under model value dIx , we generate the
evaluation unfolding lemma explain(dx ≈ dIx) ⇒ edx

≈ to term(dIx). The
explanation for the model value dIx is expressed in terms of discriminator pred-
icates. For example, if value dIx represents term a + b, the procedure gener-
ates lemma isplus(dx) ∧ isa(selZ,1(dx)) ∧ isb(selZ,2(dx)) ⇒ edx = a + b. As a last
step, select lemmasL selects a non-empty subset of the generated instantiation
lemma P [t1, . . . , tp] (where each ti is to term(dIxi

)) and the evaluation unfolding
lemmas L according to the lemma selection strategy L.

We now discuss the correctness properties of our approach. In the following,
we say a grammar R for sort σ is complete, if for all interpretations I and values
v of sort σ, it generates at least one term t such that tI = v. Note that we only
consider complete grammars in this paper. We say a lemma selection strategy L
is fair wrt a set of formulas G if it returns a set of lemmas that contain at least
one lemma inequivalent to each formula in G whenever such lemma exists.

Theorem 1. Let T be a theory with signature Σ, let F be a set of universal for-
mulas {Q1, . . . , Qn} and G0 is a set of quantifier-free formulas. If all grammars
constructed by the calls to grammarS in syqi are complete and the selection
strategy L used for select lemmasL is fair, then the following statements hold:

1. (Refutation Soundness) If syqi(F,G0) returns unsat, F ∪ G0 is T -unsatis-
fiable.

2. (Model soundness) If syqi(F,G0) returns sat, F ∪G0 is T -satisfiable.

3. (Progress) Let Gi be the current state of the set of ground formulas G after
i iterations of syqi (lines 6-11). Each iteration i + 1 adds at least one new
formula to Gi, so that Gi+1 \Gi �= ∅.

Conceptually, the proof of refutational soundness relies on the fact that all
lemmas added to G are entailed by the input or maintain equisatisfiability with
respect to the input. The proof of model soundness relies on the fact that when
G collectively entails the negation of (all) quantified formulas, then the current
model I for G must be a model for all quantified formulas. Procedure syqi is
not terminating in general. However, the progress property guarantees that the
algorithm does not get stuck in a single state and keeps making progress towards
refining the set of possible models by ruling out at least one candidate model at
each iteration of the procedure’s main loop.

Proof. For brevity, we show these statements for the case of n = 1 and where Q1

is ∀x. P [x]; the proof can be easily lifted to n > 1. When syqi(F,G0) terminates,
the internal set G is the union of:

– The initial quantifier-free formula G0,

– The counterexample lemma Gcex of the form l⇒ ¬P [edx] added on line 5,

– A set of instantiations Ginst of the form P [t], and

– A set of evaluation lemmas Gev of the form C[d]⇒ ed ≈ t.

Syntax-Guided Quantifier Instantiation 153

To show (1), assume that ϕ is satisfied by some Σ-interpretation J , where
without loss of generality assume that lJ is false. Let I be aΣ∪ΣD-interpretation
that extends J such that for each evaluation variable ed, the interpretation of
d in I is such that to term(dI)I = eId . Such a value exists since our grammars
are complete by assumption. We show that I satisfies each formula ψ in G. If
ψ ∈ G0, then this holds since J satisfies ϕ, and hence, by extension I does
as well. If ψ ∈ Gcex, then ψ is satisfied by I since it interprets li as false. If
ψ ∈ Ginst is an instantiation lemma of some Qi, then it is satisfied by I since
J also satisfies Qi. If ψ ∈ Gev is an evaluation lemma, this is satisfied by our
construction of dI . Thus ϕ is T -satisfiable, then G must be (T ∪ TD)-satisfiable.
Thus, since syqi(F,G0) returns unsat when G is (T ∪ TD)-unsatisfiable, this
means that F ∪G0 must be T -unsatisfiable as well.

To show (2), if syqi(F,G0) returns sat, then the set G is satisfied by some
Σ∪ΣD-interpretation and G∪{l1} is unsatisfiable. Let J be the Σ-interpretation
that interprets all symbols in Σ the same as in I. Since G∪{l1} is unsatisfiable,
we have that G0 ∪Ginst ∪Gev ∪ {¬P [edx]} is T ∪ TD-unsatisfiable. Since all Σ-
interpretations can be lifted to a Σ ∪ ΣD-interpretation satisfying Gev, it must
also be the case that G0∪Ginst∪{¬P [edx]} is T -unsatisfiable. Hence, all models
of G0 ∪ Ginst must make P [edx] true. Since edx does not occur in G0 ∪ Ginst,
this implies that all models of G0 ∪Ginst satisfy ∀x. P [x]. Since G0 ∪Ginst ⊆ G
and I satisfies G, we have that J satisfies {∀x.P [x]} ∪G.

To show (3), assume ad absurdum that G is satisfied by a T ∪ TD-interpre-
tation I where to term(dx

I) = t and Q1 is active in I. Also assume that G
contains the evaluation unfolding lemmas for dx

I and the instantiation lemma
P [t]. Due to the former, we have that edx

I = tI . Since Q1 is active in I, I satis-
fies ¬P [edx]. However, P [t] is also satisfied by I, a contradiction. Thus, at least
one of the lemmas returned by select lemmasL for Q1 must be inequivalent to
the lemmas in G, due to our assumption that L is a fair selection strategy. ��

3.1 Grammar Construction

For quantifier instantiation, we focus on the theories of fixed-size bit-vectors,
floating-point numbers, integers, and reals as defined by the SMT-LIB 2 stan-
dard [4]. The signature of the theory of fixed-size bit-vectors includes a unique
sort for each positive bit-vector width n, denoted here as BV[n]. The signature
of the theory of floating-point numbers includes a rounding-mode sort RM and
a unique floating-point sort for each combination of positive exponent width e
and significand width s, denoted here as FP[e,s]. The theories of Integers and
Reals include the integer sort Int and the real sort Real, respectively. For each
of these sorts we define a SyGuS grammar that includes the following operators
and constants.

RBV : {∼ ,−,&, |,⊕,+, ·,÷,÷s,mod,mods <<,>>,>>a, 0, 1, ones, smin, smax}
RFP : {−, abs, rem,

√
, rti,+, ·,÷, fma,NaN,±∞,±0,±mins,±maxs,±minn,±maxn}

RRM : {RNA,RNE,RTE,RTP,RTZ} RInt : {+,−, 0, 1} RReal : {+,−,÷, 0, 1}

154 A. Niemetz et al.

Theory Symbol SMT-LIB Syntax Sort

BV

∼ , − bvnot, bvneg BV[n]→BV[n]

&, |, ⊕ bvand, bvor, bvxor BV[n]×BV[n]→BV[n]

<<, >>, >>a bvshl, bvlshr, bvashr BV[n]×BV[n]→BV[n]

+, −, · bvadd, bvsub, bvmul BV[n]×BV[n]→BV[n]

÷, ÷s, mod, mods bvudiv, bvsdiv, bvurem, bvsrem BV[n]×BV[n]→BV[n]

FP

−,abs fp.neg, fp.abs FP[e,s]→FP[e,s]

rem fp.rem FP[e,s]×FP[e,s]→FP[e,s]√
, rti fp.sqrt, fp.roundToIntegral RM×FP[e,s]→FP[e,s]

+, ·, ÷ fp.add, fp.mul, fp.div RM×FP[e,s]×FP[e,s]→FP[e,s]

fma fp.fma RM×FP[e,s]×FP[e,s]×FP[e,s]→FP[e,s]

Ints +, − +, − Int×Int→ Int

Reals +, −, ÷ +, −, / Real×Real→Real

Table 1. Set of operators considered in SyGuS grammars.

The (non-constant) operators and their SMT-LIB names and types are listed in
Table 1. Note that we further restrict the division operator ÷ of sort Real to
division by value, i.e., we do not allow division by an arbitrary term of sort Real.
We also add a set of special values of the corresponding sort to each default
grammar. We represent bit-vector values of sort BV[n] as bit-strings of length n,
where the left-most bit is the most significant bit. For floating-point values of sort
FP[e,s], we use bit strings where the left-most bit indicates the sign, the following
e bits represent the exponent, and the remaining bits the significand. For the
theory of fixed-size bit-vectors, we use smax[n] or smin[n] for the maximum or
minimum signed value of width n, e.g., smax[4] = 0111 and smin[4] = 1000, and
ones[n] for the maximum unsigned value, e.g., ones[4] = 1111. For the theory of
floating-point numbers, we use ±0 for positive and negative zero, ±∞ for positive
and negative infinity, and NaN for not a number, e.g., −0[3,5] = 10000000 and
+∞[3,5] = 01110000. We further use ±mins for the positive and negative smallest
subnormal, ±maxs for the positive and negative largest subnormal, ±minn for the
positive and negative smallest normal, and ±maxn for the positive and negative
largest normal, e.g., −maxs[3,5] = 10001111 and +minn[3,5] = 00010000. In the
definition of grammar RFP above, we use symbol ± to indicate that both the
positive and negative variant of a special value is included in the grammar.

We extend the above set of default grammars (grammarS in Algorithm 1)
with ground terms that occur in an input set {Q1, . . . , Qn}∪G0 based on the sort
of variable x ∈ x in Qi = ∀x. P [x] and a term selection strategy. This strategy
is based on the following two factors. We consider three modes for the scope of
ground terms: (1) ground terms that occur in quantified formula Qi (strategy
in) (2) ground terms that occur in the set of ground formulas G (strategy out),
and (3) the union of (1) and (2) (strategy both). We consider three modes for
the size of ground terms, defined as the number of subterms a term consists of:
(a) terms of minimal size, i.e., constants that occur in a term (strategy min) (b)
terms of maximal size (strategy max), and (c) the union of (a) and (b) (strategy

Syntax-Guided Quantifier Instantiation 155

both). For example, for a ground term a + b · c, strategy min will select a, b, c,
max will select a+ b · c, and both will select a, b, c, a+ b · c. Each of the scope and
size modes may be combined, giving 3 ∗ 3 = 9 possible term selection strategies.

Example 1. Let Q = ∀x. x ·x �≈ a ·a+ b · b+2 ·a · b where x, a, b have integer type
and suppose we run syqi({Q}, ∅). The algorithm first constructs the grammar
grammarS(x) for x, where we assume term selection strategy S with scope in
and size min, which considers ground terms that occur in Q and are of minimal
size (2, a, and b). This grammar is encoded as the following datatype Z:

Z = zero | one | plus(Z,Z) | minus(Z,Z) | two | a | b

The algorithm introduces a fresh datatype variable dx of type Z, a fresh integer
variable edx

of integer type, and adds l ⇒ edx
· edx

≈ a · a + b · b + 2 · a · b to
the internal set G of ground formulas, where l is a fresh Boolean variable. In the
first iteration of the loop, we have that G (and G ∪ {l}) are satisfiable. Hence,
the algorithm calls select lemmasL on Q and a model I for G; assume that
dIx = zero and eIdx

= aI = bI = 0. Based on the lemma selection strategy, we
may choose to add the instantiation lemma 0 · 0 �≈ a · a + b · b + 2 · a · b, or the
evaluation lemma iszero(dx) ⇒ edx

≈ 0, or both lemmas to G. Assuming both
lemmas are added to G, the next iteration of the loop will consider a new model
I ′ where dI

′
x �= zero and eI

′
dx
�= 0. The algorithm will continue finding models

with new values for dx, until it finds a model I ′′ where dI
′′

x = plus(a, b). At this
point the instantiation lemma (a+ b) · (a+ b) �≈ a ·a+ b · b+2 ·a · b will be added
to G, which is equivalent to false, and syqi will terminate with unsat. ��

3.2 Implementation Details

We implemented syntax-guided quantifier instantiation in the CVC4 [5] solver,
which has support for a wide range of background theories, covering all those
in the SMT-LIB standard library [2]. CVC4 is based on the CDCL(T) (for-
merly DPLL(T)) framework [19]. This framework integrates a propositional SAT
solver, which attempts to find a Boolean assignment that propositionally satis-
fies the input formula, with one or more specialize theory solvers, which monitor
the assignments made by the SAT solver to theory literal and flag a conflict if
the assignments are ever inconsistent in their theory.

Our SyQI technique is implemented as a module of the subsolver of CVC4
that handles quantified formulas. We leverage CVC4’s support for smart enumer-
ative SyGuS as described in Reynolds et al. [22]. Specifically, the check method
in line 7 in Algorithm 1 involves calling the (combination) of quantifier-free the-
ory solvers, which includes an extension of the theory of datatypes described in
the following.

Symmetry Breaking for Smart Enumerative Synthesis. As described in previous
work [22, 24], CVC4 uses advanced techniques for symmetry breaking for the
datatypes over which context-free grammars are embedded. The quantifier-free

156 A. Niemetz et al.

datatype theory solver in CVC4 is extended to issue symmetry blocking clauses
based on reasoning about such datatypes, so that the models we generate for a
datatype variable d are such that to term(d) is unique with respect to rewriting.
For example, the terms a + b and b + a are equivalent, and in CVC4, one will
be rewritten to the other. Thus, we know that we only have to consider one
variant, e.g., a+ b. Hence, the extended datatypes solver may issue the blocking
clause ¬isplus(d) ∨ ¬isb(selZ,1(d)) ∨ ¬isa(selZ,2(d)), effectively stating that the
term associated with d should not be b + a. This technique is highly valuable
for syntax-guided synthesis, since it reduces the set of terms considered in the
search for candidate solutions. In the context of this work, these techniques are
of great importance, since they guarantee that our algorithm does not consider
multiple instantiations over tuples of pairwise equivalent terms.

Quantified Formulas within Boolean Structure and Nested Quantification. As
mentioned earlier, while not shown in Algorithm 1, our approach uses standard
techniques for handling qeneral quantified formulas, in particular with quan-
tifiers that occur below Boolean connectives. In the context of CDCL(T), for
each quantified formula Qi of the form ∀x. P [x], the propositional model of our
Boolean structure may either assign Qi to true or false, or leave it unassigned.
Quantified formulas that are assigned to false are Skolemized, i.e., a lemma of
the form ¬Qi ⇒ ¬P [k], where k are fresh constants, is returned to the SAT
solver. Quantified formulas that are unassigned are ignored. Quantified formu-
las that are assigned to true are either active or inactive based on the value
assigned to their counterexample literals. Those that are active are processed
via select lemmasL. In practice, instantiation lemmas are guarded so that
Qi ⇒ P [t] is returned to the SAT solver, meaning that the conclusion only
holds when Qi is assigned to true. Furthermore, each Qi may have nested quan-
tification, that is, the formula P the counterexample lemma li ⇒ ¬P [edx] may
contain quantified subformulas. Those quantified formulas are then processed by
our full algorithm in the same way as quantified formulas from the input.

4 Experiments

We implemented our approach in the SMT solver CVC4 [5]. We provide here
an extensive evaluation of the techniques and strategies described in Section 3.
We first evaluate term and lemma selection strategies for grammar construction,
and then compare the performance of our best configuration against Z3 [16],
the only state-of-the-art SMT solver besides CVC4 that supports all the logics
supported by our implementation.

We performed all experiments on a cluster with Intel Xeon CPU E5-2620
CPUs with 2.1GHz and 128GB memory. We used a time limit of 300 seconds,
and an 8GB memory limit for each solver/benchmark pair and count memory
out as time out. We evaluate here all configurations on all quantified logics
in SMT-LIB [2] that do not contain uninterpreted functions (UF). As an ex-
ception, we include the logic UFBV, since the benchmarks in this logic rely

Syntax-Guided Quantifier Instantiation 157

Strategy Solved Sat Unsat TO MO Uniq Time[s]

Term Selection Strategies

both-max 12865 825 12040 2871 10 8 886137.3
both-both 12848 823 12025 2887 11 12 892219.8
both-min 12843 819 12024 2893 10 10 893808.7
in-both 12688 831 11857 3052 6 6 939886.7
in-min 12673 828 11845 3065 8 4 944167.2
in-max 12667 832 11835 3067 12 7 944952.3
out-both 12660 785 11875 3081 5 3 948301.4
out-min 12643 788 11855 3098 5 2 954925.1
out-max 12616 774 11842 3127 3 6 961683.9

Lemma Selection Strategies

interleave 12848 823 12025 2887 11 60 892272.2
priority-inst 12838 821 12017 2893 15 49 897454.3
priority-eval 12721 821 11900 3019 6 52 938443.4

Table 2. Selection strategies on considered logics (15,746 benchmarks).

almost entirely on BV reasoning only. We generally exclude logics with UF since
for such logics counterexample-guided techniques, as in our approach, are not
expected to be more effective than heuristic instantiation techniques such as
E-matching, which we confirmed in a preliminary evaluation. Overall, we in-
clude logics BV (bit-vectors), FP (floating-point arithmetic), LIA (linear integer
arithmetic), LRA (linear real arithmetic), NIA (non-linear integer arithmetic),
NRA (non-linear real arithmetic), and their combinations BVFP, BVFPLRA,
FPLRA, and UFBV. In total, our benchmark set consists of 15,746 benchmarks.

Term Selection for Grammar Construction. As a first experiment, we
determine the best combination of scope-based and size-based ground term se-
lection strategies for grammar construction as introduced in Section 3.1. We
combine strategies based on scope with strategies based on term size into nine
selection strategies: in-min, in-max, in-both, out-min, out-max, out-both, both-min,
both-max, both-both. The results for our SyGuS instantiation approach with
these strategies enabled is shown in Table 2. Note that preliminary experiments
identified lemma selection strategy interleave as the best. Hence, we use strategy
interleave as the lemma selection strategy for this experiment.

Overall, using strategy both for the scope performs best. Furthermore, for
this strategy all three size-based strategies perform equally well. For the re-
maining experiments, we use strategy both-both as the term selection strategy
for grammar construction, where both minimal and maximal ground terms are
selected from both the quantified formula Qi (containing the variable we con-
struct a grammar for) and the set of ground formulas G. Note that we choose the
more general strategy both-both over strategy both-max even though both-max
performs slightly better.

Lemma Selection. In our second experiment, we determine the best lemma se-
lection strategy out of the three strategies priority-inst, priority-eval and interleave

158 A. Niemetz et al.

described in Section 3. The results are shown in Table 2. Note that we use the
previously determined best term selection strategy both-both in this experiment.

The best overall strategy is interleave, indicating that it is beneficial to con-
sider instantiation lemmas and evaluation unfolding lemmas in parallel. On the
other hand, prioritizing evaluation lemmas over instantiation lemmas (priority-
eval) performed significantly worse than the other two configurations. Since this
strategy prioritizes evaluation lemmas, it has the advantage over other configu-
rations of delaying instantiations until we obtain an interpretation I where the
interpretation of edx is consistent with respect to dx, i.e., e

I
dx

= to term(dx)
I .

As a consequence, prioritizing evaluation lemmas puts more effort into find-
ing terms in instantiation that are guaranteed to refine the current candidate
model I. However, we conclude from these results that it is often effective to con-
sider instantiations in an eager fashion, either in parallel or even before consid-
ering evaluation lemmas. This is likely because instantiation lemmas may often
refine the set of possible models even when G does not yet force our evaluation
variables to have an interpretation that is consistent with their corresponding
datatype values. Nevertheless, we found that evaluation lemmas are often neces-
sary in practice for ensuring our procedure does not get stuck on a single model.
When only instantiation lemmas are used, our procedure often terminates the
loop with no new lemmas. This is to be expected, as such a strategy violates the
requirements for the progress property of Theorem 1.

In the remaining experiment, we use strategy interleave as the lemma selection
strategy since it performs slightly better than priority-inst.

Comparison Against Other Techniques. Finally, we compare our SyGuS
instantiation approach against other techniques implemented in CVC4, the state-
of-the-art SMT solvers Z3 [16] (version 4.8.9) and Boolector [17] (version 3.2.1),
and the superposition-based theorem prover Vampire [13] (version 4.5.1). Note
that Boolector implements counterexample-guided model synthesis [20] but only
supports the SMT-LIB logic BV, whereas Vampire supports LIA, LRA, NIA,
and NRA. We consider the following four configurations of CVC4: ematch:
with E-matching [15] enabled; cegqi: with CEGQI for linear arithmetic [25] and
bit-vectors [18] enabled, falls back to value-based instantiation techniques for
other theories; enum: with enumerative instantiation [21] enabled; syqi: with
our SyGuS instantiation approach enabled. We use strategy both-both for term
selection, and interleave for lemma selection.

The results are summarized in Table 3. First, note that Z3 disagrees on 10
benchmarks in logic FP with the other four CVC4 configurations. This is due to
a known problem in Z3 related to operator rem, where it answers sat instead of
unsat. We do not count these 10 benchmarks as solved and give the number of
disagreements in parenthesis marked with a * in Table 3.

Overall, note that E-matching (ematch) performs very poorly on these
benchmark sets. This is not surprising since it is designed with a focus on prob-
lems with uninterpreted functions. To a lesser extent, enumerative instantiation
(enum) also performs poorly, probably also due to the fact that it is not designed
for inputs without uninterpreted functions. In detail, both this configuration and

Syntax-Guided Quantifier Instantiation 159

Logic syqi cegqi ematch enum Z3 Boolector Vampire

BV sat 269 411 203 204 566 620 -
(5846) unsat 4752 5039 3846 4699 4934 4889 -

unsolved 825 396 1797 943 346 337 -

BVFP sat 113 110 26 29 174 - -
(224) unsat 14 4 4 14 11 - -

unsolved 97 110 194 181 39 - -

BVFPLRA sat 103 95 67 67 164 - -
(185) unsat 5 5 5 6 5 - -

unsolved 77 85 113 112 16 - -

FP sat 34 28 23 23 47 - -
(2484) unsat 2117 1899 83 1615 1923 - -

unsolved 333 557 2378 846 504 (10)* - -

FPLRA sat 17 17 13 13 18 - -
(27) unsat 0 0 0 0 0 - -

unsolved 10 10 14 14 9 - -

LIA sat 188 199 19 19 189 - 5
(607) unsat 319 357 46 171 295 - 310

unsolved 100 51 542 417 123 - 292

LRA sat 79 593 461 461 740 - 0
(2419) unsat 955 1306 1018 1117 1454 - 871

unsolved 1385 520 940 841 225 - 1548

NIA sat 12 11 6 6 12 - 0
(20) unsat 7 8 1 5 5 - 6

unsolved 1 1 13 9 3 - 14

NRA sat 0 0 0 0 2 - 0
(3813) unsat 3781 3781 3703 3768 3806 - 3803

unsolved 32 32 110 45 5 - 10

UFBV sat 8 8 8 8 26 - -
(121) unsat 74 53 47 66 72 - -

unsolved 39 60 66 47 23 - -

Total sat 823 1472 826 830 1938 - -
(15746) unsat 12024 12452 8753 11461 12505 - -

unsolved 2899 1822 6167 3455 1293 (10)* - -

Table 3. SyQI vs. other techniques, Z3, Boolector, and Vampire (15,746 benchmarks).

syqi are enumerative in nature. The former uses a selection strategy based on
the evolving ground terms in the current context, whereas the latter uses a fixed
grammar built from the initial set of terms. In a sense, syqi leverages the power
of a grammar for discovering new terms, whereas enum adapts to what terms
are generated by instantiations. Overall, syqi solves 556 more benchmarks than
enumerative instantiation, justifying the need for a syntax-guided approach for
instantiation for inputs that are rich in background theories.

Our results show that syqi is remarkably competitive when compared to
cegqi, which uses the best known theory-specific instantiation strategies. The
performance of syntax-guided instantiation matches or exceeds counterexample-
guided instantiation on logics BVFP, BVFPLRA, FP, FPLRA, NIA, NRA, and
UFBV. In particular, for quantified floating-point arithmetic (FP), the perfor-
mance of syqi significantly outperforms cegqi, where it solves 224 more bench-

160 A. Niemetz et al.

marks. We attribute this to the fact that cegqi only performs value-based instan-
tiation, whereas the use of grammars is effective in determining useful symbolic
terms to use in instantiations for this theory. Interestingly, syqi solves the only
satisfiable benchmark in the NIA category that is unsolved by cegqi, mean-
ing that in a portfolio setting with all available configurations, CVC4 solves
all benchmarks in this category. On the other hand, counterexample-guided in-
stantiation outperforms syqi on logics such as LIA, LRA, and BV, where well-
established instantiation strategies exist. Syntax-guided techniques are especially
ineffective for linear real arithmetic, since it is often important to construct spe-
cific real constants based on solving sets of linear (in)equalities [25].

Comparing all configurations of CVC4 with Z3, Boolector, and Vampire, we
see that in some logics like LIA and NIA, counterexample-guided instantiation in
CVC4 outperforms Z3 and Vampire, whereas in other logics like NRA, UFBV,
and many logics that combine BV, FP and LRA, Z3 performs best. For the
logic BV, Boolector outperforms CVC4 and Z3; however, CVC4 solves the most
unsatisfiable instances. The syqi configuration performs best on the floating-
point benchmarks, where it solves 181 more than the closest competitor. When
comparing the four CVC4 configurations in terms of uniquely solved instances,
cegqi uniquely solves 660 instances, syqi 119 instances, enum 117 instances,
and ematch not a single one. Between configurations cegqi and syqi, the former
uniquely solves 1479 instances, and the latter 402 instances.

In summary, theory-specific approaches as implemented in CVC4, Z3, and
Boolector outperform syqi in categories where instantiation strategies are highly
mature, such as linear integer and real arithmetic, and fixed-width bit-vectors.
Nevertheless, our evaluation demonstrates the versatility of the approach, es-
pecially for benchmarks using quantified floating-point arithmetic or combined
theories where no good approach to quantifier instantiation was known.

5 Conclusion

We have presented a syntax-guided approach for quantifier instantiation and im-
plemented it in the SMT solver CVC4. Our experiments show that our approach
is a viable alternative to theory-specific quantifier instantiation techniques and
can be applied to a wide range of logics. In particular, for the theory of floating-
point arithmetic, syntax-guided instantiation in CVC4 significantly outperforms
the state of the art. In future work, we plan to tune our grammar construc-
tion based on an analysis of which terms are more likely to appear in conflicts,
which can potentially be done automatically. Another direction of future work
is to provide an interface that would allow users to supply their own grammars
for use in SyQI, similarly to the user-provided triggers for E-matching. We also
plan to use our approach as a baseline for quantified logics in recent (and future)
new theories. Currently, support in SMT solvers is highly limited, for instance,
for quantified formulas involving the theory of strings and regular expressions.
Syntax-guided instantiation can serve as a baseline for potential user applications
that rely on quantified formulas in these theories.

Syntax-Guided Quantifier Instantiation 161

References

1. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013. pp. 1–8. IEEE (2013), http://ieeexplore.ieee.org/document/
6679385/

2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2020), http://www.SMT-LIB.org

3. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfi-
ability in the theory of recursive data types. Electr. Notes Theor. Comput. Sci.
174(8), 23–37 (2007). https://doi.org/10.1016/j.entcs.2006.11.037

4. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (Edinburgh, UK) (2010)

5. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806,
pp. 171–177. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1 14

6. Bjørner, N., Janota, M.: Playing with quantified satisfaction. In: Fehnker, A.,
McIver, A., Sutcliffe, G., Voronkov, A. (eds.) 20th International Conferences on
Logic for Programming, Artificial Intelligence and Reasoning - Short Presentations,
LPAR 2015, Suva, Fiji, November 24-28, 2015. EPiC Series in Computing, vol. 35,
pp. 15–27. EasyChair (2015), https://easychair.org/publications/paper/jmM

7. Brain, M., Niemetz, A., Preiner, M., Reynolds, A., Barrett, C.W., Tinelli, C.:
Invertibility conditions for floating-point formulas. In: Dillig, I., Tasiran, S. (eds.)
Computer Aided Verification - 31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 11562, pp. 116–136. Springer (2019). https://doi.org/10.1007/978-3-
030-25543-5 8

8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005). https://doi.org/10.1145/1066100.1066102

9. Ferrante, J., Rackoff, C.: A decision procedure for the first order the-
ory of real addition with order. SIAM J. Comput. 4(1), 69–76 (1975).
https://doi.org/10.1137/0204006

10. Ge, Y., Barrett, C.W., Tinelli, C.: Solving quantified verification conditions us-
ing satisfiability modulo theories. In: Pfenning, F. (ed.) Automated Deduction -
CADE-21, 21st International Conference on Automated Deduction, Bremen, Ger-
many, July 17-20, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4603,
pp. 167–182. Springer (2007). https://doi.org/10.1007/978-3-540-73595-3 12

11. Ge, Y., de Moura, L.M.: Complete instantiation for quantified formulas in sat-
isfiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26
- July 2, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5643, pp.
306–320. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4 25

12. K., H.G.V., Fedyukovich, G., Gurfinkel, A.: Word level property directed reachabil-
ity. In: IEEE/ACM International Conference On Computer Aided Design, ICCAD
2020, San Diego, CA, USA, November 2-5, 2020. pp. 107:1–107:9. IEEE (2020).
https://doi.org/10.1145/3400302.3415708

http://ieeexplore.ieee.org/document/6679385/
http://ieeexplore.ieee.org/document/6679385/
http://www.SMT-LIB.org
https://doi.org/10.1016/j.entcs.2006.11.037
https://doi.org/10.1007/978-3-642-22110-1_14
https://easychair.org/publications/paper/jmM
https://doi.org/10.1007/978-3-030-25543-5_8
https://doi.org/10.1007/978-3-030-25543-5_8
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1137/0204006
https://doi.org/10.1007/978-3-540-73595-3_12
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1145/3400302.3415708

162 A. Niemetz et al.

13. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Shary-
gina, N., Veith, H. (eds.) Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceed-
ings. Lecture Notes in Computer Science, vol. 8044, pp. 1–35. Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8 1

14. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J.
36(5), 450–462 (1993). https://doi.org/10.1093/comjnl/36.5.450

15. de Moura, L.M., Bjørner, N.: Efficient e-matching for SMT solvers. In: Pfen-
ning, F. (ed.) Automated Deduction - CADE-21, 21st International Conference
on Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4603, pp. 183–198. Springer (2007).
https://doi.org/10.1007/978-3-540-73595-3 13

16. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

17. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisf. Boolean Model. Com-
put. 9(1), 53–58 (2014). https://doi.org/10.3233/sat190101

18. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C.W., Tinelli, C.: On solving
quantified bit-vector constraints using invertibility conditions. Formal Methods in
System Design pp. 1572–8102 (2021). https://doi.org/10.1007/s10703-020-00359-9

19. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theo-
ries: from an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (Nov 2006)

20. Preiner, M., Niemetz, A., Biere, A.: Counterexample-guided model synthesis. In:
Legay, A., Margaria, T. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 10205, pp. 264–280 (2017). https://doi.org/10.1007/978-3-
662-54577-5 15

21. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation.
In: Beyer, D., Huisman, M. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems - 24th International Conference, TACAS 2018, Held
as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 10806, pp. 112–131. Springer (2018).
https://doi.org/10.1007/978-3-319-89963-3 7

22. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C.W., Tinelli, C.: cvc4sy: Smart and
fast term enumeration for syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.)
Computer Aided Verification - 31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 11562, pp. 74–83. Springer (2019). https://doi.org/10.1007/978-3-030-
25543-5 5

23. Reynolds, A., Blanchette, J.C.: A decision procedure for (co)datatypes in SMT
solvers. In: Felty, A.P., Middeldorp, A. (eds.) Automated Deduction - CADE-25 -
25th International Conference on Automated Deduction, Berlin, Germany, August

https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1093/comjnl/36.5.450
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.3233/sat190101
https://doi.org/10.1007/s10703-020-00359-9
https://doi.org/10.1007/978-3-662-54577-5_15
https://doi.org/10.1007/978-3-662-54577-5_15
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5

Syntax-Guided Quantifier Instantiation 163

1-7, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9195, pp. 197–
213. Springer (2015). https://doi.org/10.1007/978-3-319-21401-6 13, https://doi.
org/10.1007/978-3-319-21401-6 13

24. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.W.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In: Kroening, D., Pasare-
anu, C.S. (eds.) Computer Aided Verification - 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 9207, pp. 198–216. Springer (2015).
https://doi.org/10.1007/978-3-319-21668-3 12

25. Reynolds, A., King, T., Kuncak, V.: Solving quantified linear arithmetic by
counterexample-guided instantiation. Formal Methods Syst. Des. 51(3), 500–532
(2017). https://doi.org/10.1007/s10703-017-0290-y

26. Reynolds, A., Tinelli, C., Goel, A., Krstic, S., Deters, M., Barrett, C.W.: Quan-
tifier instantiation techniques for finite model finding in SMT. In: Bonacina,
M.P. (ed.) Automated Deduction - CADE-24 - 24th International Conference
on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceed-
ings. Lecture Notes in Computer Science, vol. 7898, pp. 377–391. Springer (2013).
https://doi.org/10.1007/978-3-642-38574-2 26

27. Reynolds, A., Tinelli, C., de Moura, L.M.: Finding conflicting instances of quan-
tified formulas in SMT. In: Formal Methods in Computer-Aided Design, FMCAD
2014, Lausanne, Switzerland, October 21-24, 2014. pp. 195–202. IEEE (2014).
https://doi.org/10.1109/FMCAD.2014.6987613

28. Reynolds, A., Viswanathan, A., Barbosa, H., Tinelli, C., Barrett, C.: Datatypes
with shared selectors. In: Automated Reasoning - 9th International Joint
Conference, IJCAR 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings. pp. 591–608 (2018).
https://doi.org/10.1007/978-3-319-94205-6 39

29. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quanti-
fied bit-vector formulas. In: Bloem, R., Sharygina, N. (eds.) Proceedings of 10th
International Conference on Formal Methods in Computer-Aided Design, FM-
CAD 2010, Lugano, Switzerland, October 20-23. pp. 239–246. IEEE (2010),
http://ieeexplore.ieee.org/document/5770955/

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-21401-6_13
https://doi.org/10.1007/978-3-319-21401-6_13
https://doi.org/10.1007/978-3-319-21401-6_13
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/s10703-017-0290-y
https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1109/FMCAD.2014.6987613
https://doi.org/10.1007/978-3-319-94205-6_39
http://ieeexplore.ieee.org/document/5770955/
http://creativecommons.org/licenses/by/4.0/

Making Theory Reasoning Simpler

Giles Reger1, Johannes Schoisswohl1(�), and Andrei Voronkov1,2

1 University of Manchester, Manchester, UK
2 EasyChair, Manchester, UK

johannes.schoisswohl@manchester.ac.uk

Abstract Reasoning with quantifiers and theories is at the core of many
applications in program analysis and verification. Whilst the problem is
undecidable in general and hard in practice, we have been making large
pragmatic steps forward. Our previous work proposed an instantiation
rule for theory reasoning that produced pragmatically useful instances.
Whilst this led to an increase in performance, it had its limitations as
the rule produces ground instances which (i) can be overly specific, thus
not useful in proof search, and (ii) contribute to the already problematic
search space explosion as many new instances are introduced. This paper
begins by introducing that specifically addresses these two concerns as it
produces general solutions and it is a simplification rule, i.e. it replaces an
existing clause by a ‘simpler’ one. Encouraged by initial success with this
new rule, we performed an experiment to identify further common cases
where the complex structure of theory terms blocked existing methods.
This resulted in four further simplification rules for theory reasoning. The
resulting extensions are implemented in the Vampire theorem prover
and evaluated on SMT-LIB, showing that the new extensions result in
a considerable increase in the number of problems solved, including 90
problems unsolved by state-of-the-art SMT solvers.

1 Introduction

Many applications of reasoning in program analysis and verification depend on
reasoning with the first-order theory of arithmetic, often in combination with
other theories and quantifiers. A common approach to this problem is via Satis-
fiability Modulo Theory (SMT) solving, which has strong support for decidable
theories but may struggle to scale in the presence of quantifiers. Conversely,
superposition-based first-order solvers handle quantifiers naturally and have, re-
cently, been extended to reason with theories [2,3,5,6,9,13,16,21]. Such solvers
are based on a saturation loop and tend to suffer from search space explosion.
This is compounded by the effective but explosive use of theory axioms, leading
to the derivation of numerous inconsequential consequences of the theory. So far
we have attempted to control this explosive behaviour [10,17] but now we aim
to eliminate some of it. This paper introduces a set of simplification rules for
reasoning in the theory of (any combination of linear or non-linear real, rational,
or integer) arithmetic, i.e. rules that make reasoning in arithmetic simpler.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 164–180, 2021.
https://doi.org/10.1007/978-3-030-72013-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-72013-1_9

Making Theory Reasoning Simpler 165

This work was motivated by our previous attempt [20] to find useful instances
of first-order clauses that would be otherwise difficult to find via reasoning with
theory axioms. For example, when considering the two clauses

r(7x) ¬r(6 + y) ∨ p(y)

our previous work would apply resolution on r(7x) and ¬r(6+y) using unification
with abstraction to produce the clause 7x �= 6+ y∨ p(y) and then applied theory
instantiation, utilising an SMT solver to find the substitution {x �→ 1, y �→ 1},
producing the instance p(1). This may or may not be useful to proof search
and, crucially, we need to keep performing inferences with the original clauses in
case it is not. In this case, we would prefer to instantiate with {y �→ 7x− 6} to
produce 7x �= 6+ (7x− 6) ∨ p(7x− 6), which can be reduced to p(7x− 6). This
is a general solution (being logically equivalent) that is also simpler – in this
case it has fewer variables than the original clause. Hence, we replace the clause
by the more general result, aiding proof search and preventing the addition of
unnecessary instances.

The above was motivated by the observation that we would often see clauses
of the form k̂x �= t ∨ C[x] (for numeral k̂, variable x, and term t) and expend

much effort using theory axioms to rewrite k̂x �= t into x �= t
̂k
. This led us to

conduct an experiment to identify other common cases where arithmetic clauses
could be simplified. An immediate observation is that, if x ranges over the reals,

p(7x−6) can be instantiated with {x �→ (y+6)
7 } to produce p(y). Furthermore, in

the above example we no longer need to employ the expensive unification with
abstraction as we can instantiate r(7x) with {x �→ z

7} to produce r(z) and then
resolve with r(6 + y) ∨ p(y) to produce p(y) directly.

Another observation was that a large amount of effort was expended by
the theorem prover reordering sums and products to expose seemingly obvious
structure. For example, taking (3t+ x) + 2t and producing 5t+ x requires three
theory axioms and 12 rewriting steps. To combat this, we introduce an evaluation
method that flattens sums and products, reorders and simplifies them, before
reintroducing the necessary bracketed structure. A related common issue was the
occurrence of terms that could easily be cancelled, such as in 4x+ 3 < 4x+ 10,
again requiring significant rewriting effort that can be replaced by a special rule.

This paper does not present the exploratory experimentation described above
but focusses instead on the fruits of this work. After introducing the necessary
preliminaries (Sec. 2), we make the following contributions:

– A new Gaussian Variable Elimination rule (Sec. 3) that eliminates variables
if they can be described completely in terms of other variables.

– A set of Arithmetic Subterm Generalisation rules (Sec. 4) that replace clauses
with obvious generalisations, as in the above cases of replacing p(7x−6) with
p(y) and r(7x) with r(x).

– A general approach to the evaluation of terms involving arithmetic (Sec. 5),
including a special rule to handle a surprisingly common corner case in-
volving unary minus.

166 G. Reger et al.

– A rule for cancelling subterms, e.g. in 4x+ 3 < 4x+ 10 (Sec. 6)

These rules are all implemented in the Vampire [1,14] theorem prover. Our
experimental evaluation (Sec. 7) shows that the new rules significantly improve
the number of problems (from SMT-LIB) that Vampire can solve. Our final
experiment shows that the new Vampire can solve 1,052 problems unsolved by
Vampire 4.5, 1,056 problems unsolved by CVC4, and 1,350 problems unsolved
by Z3 — given their complementary nature, this equates to 90 problems unsolved
by any of these state-of-the-art solvers.

2 Preliminaries and Related Work

First-Order Logic and Theories. We consider a many-sorted first-order logic
with equality. A signature is a pair Σ = (Ξ,Ω) where Ξ is a set of sorts and
Ω a set of predicate and function symbols with associated argument and return
sorts from Ξ. Terms are of the form c, x, or f(t1, . . . , tn) where f is a function
symbol of arity n ≥ 1, t1, . . . , tn are terms, c is a zero arity function symbol (i.e.
a constant) and x is a variable. We assume that all terms are well-sorted and
write t : σ if term t has sort σ. Atoms are of the form p(t1, . . . , tn), q or t1 *s t2
where p is a predicate symbol of arity n, t1, . . . , tn are terms, q is a zero arity
predicate symbol and for each sort s ∈ Ξ, *s is the equality symbol for the sort
s. We write simply * when s is known from the context or irrelevant. A literal is
either an atom A, in which case we call it positive, or a negation of an atom ¬A,
in which case we call it negative. When L is a negative literal ¬A and we write
¬L, we mean the positive literal A. For negative literals with binary predicates
¬(t1 ♦ t2) (like, e.g. equality), we sometimes write t1 �♦ t2.

A clause is a disjunction of literals L1 ∨ . . . ∨ Ln for n ≥ 0. We disregard
the order of literals and treat a clause as a multiset. When n = 0 we speak of
the empty clause, which is always false. When n = 1 a clause is called a unit
clause. Variables in clauses are considered to be universally quantified. Standard
methods exist to transform an arbitrary first-order formula into clausal form
(e.g. [15] and our recent work in [19]).

In the following we use expression to mean a term, an atom, a literal, or a
clause. We write E[t]p to denote an expression E containing a term t at position
p (a position is a unique point in an expression’s syntax tree) and may then
write E[s]p to denote the same expression with t replaced by term s at p. We
will normally leave the position p as implicit. A substitution is any θ of the form
{x1 �→ t1, . . . , xn �→ tn}, where n ≥ 0. Eθ is the expression obtained from E
by the simultaneous replacement of each xi by ti. An expression is ground if
it contains no variables. An instance of E is any expression Eθ and a ground
instance of E is any instance of E that is ground. A unifier of two terms, atoms
or literals E1 and E2 is a substitution θ such that E1θ = E2θ. It is known that
if two expressions have a unifier, then they have a so-called most general unifier.

We assume a standard notion of a (first-order, many-sorted) interpretation I,
which assigns a non-empty domain Is to every sort s ∈ Ξ, and maps every func-
tion symbol f to a function If and every predicate symbol p to a relation Ip on

Making Theory Reasoning Simpler 167

these domains so that the mapping respects sorts. We call If the interpretation
of f in I, and similarly for Ip and Is. Interpretations are also sometimes called
first-order structures. A sentence is a closed formula, i.e. with no free variables.
We use the standard notions of validity and satisfiability of sentences in such
interpretations. An interpretation is a model for a set of clauses if (the universal
closure of) each of these clauses is true in the interpretation.

A theory T is identified by a class of interpretations. A sentence is satisfiable
in T if it is true in at least one of these interpretations and valid if it is true in
all of them. A function (or predicate) symbol f is called uninterpreted in T , if
for every interpretation I of T and every interpretation I ′ which agrees with I
on all symbols apart from f , I ′ is also an interpretation of T . A theory is called
complete if, for every sentence F of this theory, either F or ¬F is valid in this
theory. Evidently, every theory of a single interpretation is complete. We can
define satisfiability and validity of arbitrary formulas in an interpretation in a
standard way by treating free variables as new uninterpreted constants.

The theories we will deal with are the theories of integer, rational, and real
arithmetic with uninterpreted functions, denoted by TZ, TQ, and TR, which fix the
interpretation of a distinguished sort σZ, σQ, and σR to the set of mathematical
integers Z, rationals Q, and reals R respectively, and assign the usual meanings to
the function and predicate symbols {+,−, <,≤, ·}. By k̂, we denote the numeral
interpreted as k in any of these theories. We consider signatures over these
theories to additionally contain uninterpreted functions, and predicates, hence,
in contrast to the case without unintpreted functions, for none of these theories
there is a sound and complete proof system (see e.g. [13]).

Unless stated differently, we use the symbols x, y, z for variables, s, t, u for
terms, C,D for clauses, p, q, r for predicate symbols, f, g, h for function symbols,
and σ for substitutions, and sorts, with sometimes suffixes being added.

Term Orderings. A simplification ordering (see, e.g. [8]) on terms is an ordering
that is well-founded, monotonic, stable under substitutions and has the subterm
property. Such an ordering captures a notion of simplicity, i.e. t1 ≺ t2 implies
that t1 is in some way simpler than t2. Vampire uses the Knuth-Bendix or-
dering [12], which is parametrized by total precedence ordering on function and
predicate symbols -. This is total on ground terms and partial on non-ground
ones, leading to the possibility of incomparable terms, e.g. f(x, a) and f(b, y). A
simplification ordering ≺ on terms can be extended to a simplification ordering
on literals and clauses, using a multiset extension of orderings. For simplicity,
we will use ≺ to refer to the term ordering and its lifting. Whenever E1 ≺ E2

(E2 ≺ E1) we say that E1 is smaller (bigger) than E2. An equality literal t * s
is oriented if t ≺ s or s ≺ t.

Saturation-Based Proof Search. We introduce our new rules within the context of
saturation-based proof search. The general idea in saturation is to maintain two
sets of Active and Passive clauses. A saturation-loop then selects a clause C from
Passive, places C in Active, applies generating inferences between C and clauses
in Active, and finally places newly derived clauses in Passive after applying some

168 G. Reger et al.

retention tests. The retention tests involve checking whether the new clause is
itself redundant (i.e. a tautology) or redundant with respect to existing clauses
(implied by a set of smaller clauses in Active ∪ Passive). Rules that remove the
parent clause immediately from the search space without performing a retention
test are called immediate simplification rules. Whenever there are applicable
immediate simplification rules, the first one wrt. some fixed ordering is chosen
to be applied to the selected clause instead of applying any other rule. The rules
introduced in this paper are all introduced as immediate simplification rules.
However, as mentioned later, not all of them strictly obey the requirement that
the result is smaller. Normally this would have implications on the completeness
of the approach but we lose completeness when we start reasoning with theories.
This leads us to a trade-off between the potential loss of some proofs by missing
some inferences, and the potential gain via simplifying proof search. Our later
experimental results show that forgoing completeness is of pragmatic interest.

Superposition Calculus. Vampire works with the superposition and resolution
calculus (see our previous work [11,14] for a description). The calculus itself is
not of direct interest to this work. We do, however, draw attention to two rules.
Firstly, the Equality Resolution rule

s �* t ∨ C

Cθ
θ is a most general unifier of s and t

is a starting point for both our previous theory instantiation work and the Gaus-
sian Variable Elimination rule introduced later (Sec. 3). Secondly, we draw at-
tention to the Demodulation (or rewriting by unit equalities) rule

l * r ����L[t] ∨ C

L[rθ] ∨ C

where lθ = t, rθ ≺ lθ, and (l * r)θ ≺ L[t]∨C. This is of interest as later we will
need to take special care of the last side-condition when evaluating terms.

Theory Reasoning. To perform theory reasoning within this context it is common
to do two things. Firstly, to evaluate new clauses to put them in a common form
(e.g. rewrite all inequalities in terms of <) and evaluate ground theory terms and
literals (e.g. 1+2 becomes 3 and 1 < 2 becomes false). More complex evaluation
is possible and is the subject of this work (see Section 5). Secondly, relevant
theory axioms can be added to the initial search space. For example, if the input
clauses use the + symbol one can add the axioms x+ y * y + x and x+ 0 * x,
among others.

In addition to these basic methods, Vampire also employs a number of other
techniques. AVATAR modulo theories [16] uses an SMT solver within the con-
text of clause splitting to ensure that the ground part of any chosen clause splits
are theory-consistent. The previously mentioned unification with abstraction and
theory instantiation [20] rules support lazy unification modulo theories and prag-
matic instantiation. Theory axiom usage can be controlled by the set of support

Making Theory Reasoning Simpler 169

strategy [17] or layered clause selection [10]. Both approaches de-prioritise reas-
oning with theory axioms.

3 Gaussian variable elimination

Recall the example 7x �= 6 + y ∨ p(y) from the Introduction (Sec. 1) where we
want to identify the substitution {y �→ 7x− 6} to produce the simpler instance
p(7x− 6). Our general approach is to rewrite 7x �= 6+ y in terms of y and then
apply the standard Equality Resolution rule introduced in Sec. 2. This gives us
the straightforward rule:

s �* t ∨ C[x]
gve

C[u]

where x : σZ, x : σQ, or x : σR, 〈s, t〉 =⇒∗
gve 〈x, u〉, or 〈t, s〉 =⇒∗

gve 〈x, u〉 and x is
not a subterm of u. The relation =⇒∗

gve is the reflexive, and transitive closure of
the relation =⇒gve which can be defined as follows.

〈s + t, u〉 =⇒gve 〈s, u + (− t)〉
〈s + t, u〉 =⇒gve 〈t, u + (− s)〉 〈− s, t〉 =⇒gve 〈s,− t〉

〈s · t̂, u〉 =⇒gve 〈s, u / t〉 if t �= 0, and t̂ : σQ, or t̂ : σR
〈ŝ · t, u〉 =⇒gve 〈t, u / s〉 if s �= 0, and ŝ : σQ, or t̂ : σR

〈s / t̂, u〉 =⇒gve 〈s, u · t〉 if t �= 0, and t̂ : σQ, or t̂ : σR

It should be noted that =⇒gve is not normalising. The pair 〈s1 + s2, t〉 can,
for example, be rewritten to 〈s1, t− s2〉, as well as to 〈s2, t− s1〉. But due to the
fact that there is at most a linear number of such rewritings, we can enumerate
all of them and choose the first 〈x, t〉, such that x is not a subterm of t. Further
choice comes from the fact that we can either rewrite based on 〈l, r〉, or based
on 〈r, l〉. Looking at our example, we could rewrite

〈6 + y, 7x〉 =⇒gve 〈y, 7x− 6〉

but also
〈7x, 6 + y〉 =⇒gve 〈x, (6 + y) / 7〉

if x is not of integer sort, leaving us with a choice. Another source of choice
comes from the fact that our premise can contain multiple negative equalities.
Any of those could potentially be used to rewrite the rest of the clause.

Since application of the rule, will yield a logically equivalent conclusion, with
fewer literals and fewer distinct variables, we make an arbitrary choice. For
the same reason, we implement this as a simplification rule (thus removing the
premise from the search space) even though the conclusion will often be incom-
parable to (not smaller than) the premise.

To further demonstrate this rule we consider the additional example

170 G. Reger et al.

p(7xxxy − 6)
asg·varp(7xxx− 6)
asgpowvar

p(7x− 6)
asg·nump(x− 6)
asg+

p(x)

Figure 1. Illustration of the 4 generalization rules, in the theory of Reals.

x+ y �= 36 ∨ x+ 3y �= 90 ∨ p(x, y)
gve

(36− y) + 3y �= 90 ∨ p(36− y, y)
eval

36 + 2y �= 90 ∨ p(36− y, y)
gve

∨ p(36− (90− 36)/2, (90− 36)/2)
eval

p(9, 27)

which highlights the need to interleave evaluation between successive Gaussian
elimination steps — we discuss our evaluation strategy below.

4 Arithmetic subterm generalization

Taking a closer look at the choice for our example from the previous section,
we see that we could have instantiated the premise y + 6 �* 7x ∨ p(y) either
with {y �→ 7x − 6} to get p(7x − 6), or with {x �→ (6 + y) / 7} to obtain p(y)
(again, assuming that x is not of integer sort). Both of the clauses are logically
equivalent in TQ, and TR, since the earlier is an instance of the latter, and the
latter implies the earlier as we can apply the substitution {x �→ (y+6) / 7} and
simplify the result to the earlier clause. Obviously this kind of reasoning can be
applied for any linear subterm k̂ · x+ d where k �= 0.

Splitting this idea into multiple rules lets us take these generalizations fur-
ther. Therefore we propose 4 rules for arithmetic subterm generalization, that
are illustrated in a single example in Figure 1.

Since we do not want the applicability of our generalization rules to depend
on associativity and commutativity (AC) we will formulate them modulo AC.
For this purpose we introduce the following notation. We use C[t]AC to denote a
clause that contains the subterm t modulo AC. Further we use C[t′]AC to denote
the same clause, but all occurrences of t modulo AC, being replaced by t′.

Addition Generalization

C[x + t1 + . . . + tn]AC
asg+

C[x]AC

where

– x : σ for some σ ∈ {σZ, σQ, σR}

Making Theory Reasoning Simpler 171

– all occurrences of x are in the subterm x + t1 + . . . + tn (modulo AC)
– x is not a subterm of ti

The first rule deals with the case where a clause contains a sum with a variable
as summand. Such a sum can be generalized by applying the substitution {x �→
x − t1 − . . . − tn} , and simplifying the result.

Numeral Multiplication Generalization

C[k̂ · x · t1 · . . . · tn]AC
asg·num

C[x · t1 · . . . · tn]AC

where

– x : σ for some σ ∈ {σQ, σR}
– all occurrences of x are in the term k̂ · x · t1 · . . . · tn (modulo AC)
– x is not a subterm of ti

In the second rule we generalize a product that contains one variable that occurs
only once in this product. Its soundness is justified by the substitution {x �→ x̂

k}.

Variable Multiplication Generalization

C[x · x1 · . . . · xn]AC
asg·var

C[x]AC

where

– x : σ for some σ ∈ {σZ, σQ, σR}
– all occurrences of x, xi are in the term x · x1 · . . . · xn (modulo AC)
– x �= xi

In this rule we generalize subterms that are products of variables, containing
redundant variables. The rule is sound since we can replace xi by 1̂.

Variable Power Generalization

C[xn]AC
asgpowvar

C[xk]AC

where

– x : σR
– xn is an abbreviation for x · x · ... · x
– k =

{
1 if n is odd

2 if n is even

– all occurrences of x are in the term xn (modulo AC)

The last rule lets us generalize away redundant powers of variables. Its soundness
is guaranteed by the fact, that for Real numbers the co-domains of xn and xk

are the same.
All of the above rules produce a result that is smaller with respect to any sim-

plification ordering due to the removal of terms, justifying their implementation
as immediate simplifications.

172 G. Reger et al.

5 Evaluation

As mentioned above, reasoning with arithmetic often requires us to be able to
evaluate terms — evaluations such as 3 + 3 =⇒ 6 and f(x) + 0 =⇒ f(x) are
straightforward but we also want to support evaluations such as (3t+x)+2t =⇒
5t+ x for variable x and arbitrary term t. We introduce a new method for this
(replacing a previous ad-hoc method implemented in Vampire). The general
idea is to first rewrite terms into a special normal form, apply simplifying steps
that preserve this form, and then denormalise to obtain standard terms again.
We describe the three steps in detail below.

Normalization. This step removes the need to take care of reordering and brack-
eting of terms. Our general normal form is as follows

ĉ1 · (t1,1 · . . . · t1,k1
) + . . . + ĉn · (tn,1 · . . . · t1,kn

)

where ti,j ≺1 ti,j+1 and (ti,1 · . . . · ti,ki
) ≺2 (ti+1,1 · . . . · ti+1,ki+1

). To get

to this normal form we rewrite −t as −1 · t, rewrite t / ĉ as t · 1̂
c , rewrite t as

1 · t where necessary, and sort with respect to ≺1 and ≺2. Both relations ≺1,
and ≺2 need to be strict total orderings, on terms, and ≺1-sorted lists of terms
respectively. Vampire uses so-called aggressive sharing for terms, meaning that
for each distinct term there is at most one instance present in memory, and copies
are being made by copying the term’s id. Hence we can define ≺1 as comparing
the ids of two terms. We use the same approach for ≺2.

Simplification. Once in normal form, terms can be simplified by joining coeffi-
cients for identical terms and removing terms multiplied by zero. This can be
given as follows:

ĉ · t · . . . d̂ . . . · u =⇒eval ĉd · t · . . . · u
s + . . . ĉ1 · t + ĉ2 · t . . . + u =⇒eval s + . . . ĉ1 + c2 · t . . . + u

s + . . . + 0̂ · t + . . . + u =⇒eval s + . . . + u

If we would generate an empty sum by removing an addition we will simplify to 0̂
instead. All of these steps can be implemented in linear time and in a bottom up
manner, since we firstly can rely on the terms being sorted by the non-numeral
parts of their summands, and secondly on a numeral part of a product being on
a fixed position.

Denormalisation. Finally, as the normal form contains redundant information
(such as 1 · t+ . . . instead of t+ . . .) we need to denormalise as follows:

−1 · (t1 · . . . · tn) =⇒ (t1 · (. . . · (tn−1 · (− tn)) . . .))

1 · (t1 · . . . · tn) =⇒ (t1 · (. . . · (tn−1 · tn) . . .))

Making Theory Reasoning Simpler 173

We define the rule eval to be the chain of normalising, simplifying and de-
normalising a clause in a bottom-up manner, which is only applied if the step
of simplification is successful for some subterm. The reason for not always ap-
plying the rules is to prevent arbitrary reordering of sums and products, which
in many cases leads to conclusions being bigger than the premise. This can have
significant consequences beyond perturbing proof search. Consider the following
scenario involving the Demodulation rule (see Sec. 2).

x+ y * y + x �������
k = a+ (b+ c)

demodulation
k = a+ (c+ b)

eval
k = a+ (b+ c)

This process would repeat itself ad infinitum as the initial clause is deleted,
replaced by an identical clause. Evaluation would violate the side-condition that
should have prevented this, if we would not insist on the step of simplification
being successful for the rule to be applied.

In most cases this inference rule is a true simplification wrt. our simplification
ordering, since we eliminate at least one symbol in each of the cases in the step
simplification. Due to generating sometimes bigger terms in the normalisation,
like in the case x+x⇒ 1 · x+1 · x⇒ 2 · x we sometimes violate the simplifica-
tion ordering. Due to the fact that these cases do not occur too frequently, and
completeness is not possible in our base theories, we ignore these violations.

During experimentation, we discovered many cases where a unary minus
blocks our evaluation rule. Consider the following desired derivation

y + t �= x ∨ C[y +−x]
C[y +−(y + t)

C[y + (−y +−t)]
C[t]

This is not currently possible as the weight of −y+−t is 5, which is larger than
the weight of −(y + t), meaning the second step is not a simplification.

We introduce a simple fix by modifying the weight function and symbol
precedence of the Knuth-Bendix ordering as follows:

1. We let − to be weight 0 (for every sorted version of −)
2. We let − be the largest symbol among symbols of its sort

As a result we can use the following rewrite rule as an additional simplifaction
rule, since the right hand side has the same weight as the left hand side, but −,
the outer most symbol on the left hand side, has higher precedence than + the
one on the right hand side.

− (x + y) =⇒push− (− x) + (− y)

174 G. Reger et al.

6 Cancellation

The motivation for our last rule was two-fold. Firstly evaluation of constant
predicates can be helpful in some cases, but fails in seemingly trivial cases. One
example for a case like this is the redundant literal 4x+3 < 4x+10. The simple
approach of evaluating interpreted predicates fails since we are dealing with non-
ground symbols. However it can be simplified to a ground term that can then
be evaluated, by cancelling away the 4x on both sides of the inequality.

The second motivation were cases where unification with abstraction yields
literals in which gve could almost be applied but require a step of cancellation.
An example for such a case is the derivation

p(5x) ¬p(3x) ∨ C[x]

3x �= 5x ∨ C[x]
cancel

0 �= 2x ∨ C[x]
gve

C[0]

In order to resolve both of these cases we propose the inference rule cancel-
lation cancel, which consists of the following two symmetric cases depending on
which side is cancelled.

s+ . . . n̂t . . .+ u ♦v + . . . n̂t . . .+ w ∨ C
cancel

s+ . . .+ u ♦v + . . .+ w ∨ C

where

– ♦∈ {*, �*, <, �<,≤, �≤}

s+ . . . n̂t . . .+ u ♦v + . . . m̂t . . .+ w ∨ C
cancel

s+ . . .+ u ♦v + . . . m̂− nt . . .+ w ∨ C

where

– m̂− n- n̂−m
– ♦∈ {*, �*, <, �<,≤, �≤}

s+ . . . n̂t . . .+ u ♦v + . . . m̂t . . .+ w ∨ C
cancel

s+ . . . n̂−mt . . .+ u ♦v + . . .+ w ∨ C

where

– n̂−m- m̂− n
– ♦∈ {*, �*, <, �<,≤, �≤}

In order for the rule to not be sensitive to associativity and commutativity, we
perform the same steps of normalisation and denormalisation as for the rule eval.
Again we will only simplify a clause, if cancellation itself, not only normalisation
and denormalisation, is applicable.

The rule is a simplification rule since the number of symbols is reduced with
(almost) every application of the cancellation.

Making Theory Reasoning Simpler 175

Table 1. Compares the number of problems solved with any configuration where a
new option is enabled to the ones where it is disabled, with a runtime of 10 seconds.
The column “both” lists how many were solved in either case. The columns “on”,
and “off” list how many additional problems could have been solved with the option
enabled, or disabled respectively.

on both off

gve 121 3372 104
eval 323 2927 347
asg 440 2859 298
push− 112 3378 107
cancel 576 2749 272

7 Experimental evaluation

We describe two experiments to establish the impact of the new rules. The first
experiment compares the new rules to each other, whilst the second experiment
aims to determine how helpful the new rules will be in designing extensions to
Vampire’s portfolio mode. This is a standard approach to evaluating the benefit
of new features in an automated theorem prover [18].

Experimental Setup. We implemented the rules as immediate simplification rules
in Vampire 4.5 (the implementation is available from the GitHub repository
linked from the Vampire website [1], on the branch integer-arithemtic). We
selected a suitable subset of problems as follows. We started with the set prob-
lems of 56,210 from SMT-LIB that involve quantifiers and arithmetic. In a first
step we filtered out benchmarks that Vampire could solve within 1 second in
both default mode (which involves a simpler version of the rule eval), and in
default mode with eval enabled. Our main experiments were carried out on the
remaining set of 21,512 benchmarks, we which will refer to as B. Filtering out
trivial benchmarks avoids the results containing noise from benchmarks that
can easily be solved and is an approach recently adopted by SMT-COMP [22].
Experiments are run on a Linux cluster where each node contains two octa-
core 2.1 GHz Intel Xeon processors and 160GB of RAM. The raw results of our
experiments can be found on GitHub3.

Experiment 1. In our first experiment we wanted to find out which are the best
combinations of new rules, and whether the rules themselves have a positive im-
pact on proof search. Therefore we ran Vampire in each of the 32 configurations
C resulting from enabling or disabling each of the 5 groups of rules (asg, gve,
eval, push−, and cancel) over B with a timeout of 10 seconds.

The results are given in Table 1 showing the total number of problems solved
and the problems gained/lost when compared to the default mode with no op-
tions set. Each row represents the combination (union) of 16 strategies where

3 https://github.com/vprover/vampire_publications/tree/master/

experimental_data/TACAS-2021-THEORY-REASONING

https://github.com/vprover/vampire_publications/tree/master/experimental_data/TACAS-2021-THEORY-REASONING
https://github.com/vprover/vampire_publications/tree/master/experimental_data/TACAS-2021-THEORY-REASONING

176 G. Reger et al.

Table 2. The top 10 strategies in the greedy ranking of configurations.

solved id eval gve asg push− cancel

2546 15 � � � � �
548 24 �
136 27 � � �
63 22 � �
51 9 � � �
38 4 � �
27 23 � � �
20 26 � �
19 25 � �
18 5 � � �

Table 3. The symmetric difference in number of problems solved between the three
new strategies in portfolio mode against Vampire 4.5. Each cell indicates the number
of problems solved by the row solver unsolved by the column solver. The column unique
lists how many problems each strategy could solve that no other strategy could. The
strategy Vampire * is what we can solve with either of the three other strategies.
Vampire * is not taken into account for uniqueness.

strategy total unique Vampire * 15 24 27 Vampire 4.5

Vampire * 7511 0 0 622 937 932 1052
15 6889 64 0 0 865 729 824
24 6574 12 0 550 0 261 366
27 6579 2 0 419 266 0 165

Vampire 4.5 6506 10 47 441 298 92 0

that option is turned on. This shows that, with the exception of evaluation, the
gains outweigh the losses, sometimes considerably. This result for evaluation tells
us that the other rules can still operate effectively without our new evaluation
and, further, that the two evaluation methods are in some sense complementary.
Therefore, whilst we explore this further, we will keep both evaluation methods.
The most significant gains are with cancellation, which may be related to the
fact that it is applicable to inequalities as well as equalities.

Greedy Ranking. Another way of looking at the results of Experiment 1 is to
create a greedy ranking rank of all configurations C, starting with the set of all
configurations, and ranking the configuration solving the most benchmarks in B
as the best, ranking the one that solves most of the remaining benchmarks as
second, and so on. The top 10 strategies in this ranking are given in Table 2.
The overall best strategy uses all 5 of the new rules. Interestingly, the second
best strategy only uses the gve rule. This ranking indicates the most promising
strategies to use in our next experiment.

Experiment 2 In our second experiment we wanted to see how many new prob-
lems we can solve with the new simplification rules compared to our current

Making Theory Reasoning Simpler 177

Table 4. Comparing our new approach, Vampire *, against Vampire 4.5, Cvc4, and
Z3 with results separated by logic. The notation (+a,−b) means that the solver solved
a problems the new Vampire could not solve, and the new vampire could solve b the
other solver couldn’t. The entries a(b) in the column Vampire *, list the number a of
problems that could be solved by our new rules, and b the number of these problems
that could not be solved by any of the other solvers.

count Vampire * Vampire 4.5 Cvc4 Z3

ALIA 24 14 (0) 12 (+0, -2) 23 (+9, -0) 24 (+10, -0)
AUFDTLIA 134 39 (0) 39 (+0, -0) 86 (+47, -0) 80 (+45, -4)
AUFLIA 862 312 (4) 311 (+4, -5) 295 (+84, -101) 331 (+148, -129)
AUFLIRA 1697 1364 (0) 1354 (+0, -10) 1455 (+101, -10) 1453 (+102, -13)
AUFNIA 3 0 (0) 0 (+0, -0) 0 (+0, -0) 0 (+0, -0)
AUFNIRA 509 87 (2) 81 (+2, -8) 87 (+20, -20) 63 (+16, -40)
LIA 246 79 (0) 78 (+0, -1) 246 (+167, -0) 230 (+155, -4)
LRA 2043 1013 (41) 365 (+0, -648) 1528 (+635, -120) 1756 (+883, -140)
NIA 11 1 (0) 1 (+0, -0) 9 (+9, -1) 5 (+4, -0)
NRA 101 92 (0) 91 (+0, -1) 72 (+0, -20) 96 (+9, -5)
UFDTLIA 274 120 (4) 115 (+0, -5) 40 (+3, -83) 34 (+1, -87)
UFDTLIRA 33 0 (0) 0 (+0, -0) 33 (+33, -0) 33 (+33, -0)
UFLIA 4833 1924 (23) 1829 (+30, -125) 2314 (+501, -111) 1899 (+315, -340)
UFLRA 7 2 (0) 2 (+0, -0) 2 (+0, -0) 5 (+3, -0)
UFNIA 10735 2463 (16) 2227 (+11, -247) 4928 (+3055, -590) 3858 (+1983, -588)

Any Logic 21512 7510 (90) 6505 (+47, -1052) 11118 (+4664, -1056) 9867 (+3707, -1350)

best effort in Vampire 4.5. Therefore we ran Vampire with the three top rank-
ing configurations of experiment 3 forced added on top of Vampire’s portfolio
mode. The portfolio mode executes a sequence of strategies heuristically chosen
based on problem features. Forcing a configuration of new options on top of this
forces each strategy to make use of the new options. We ran this experiment
over B with a timeout of 200 seconds.

Results are given in Table 3 and show that the new rules allow Vampire
to solver considerably more problems (1052) than it could before whilst losing
relatively few (47). The best configuration of options (all five new rules) solves
the most with the other two configurations solving roughly the same. The in-
teresting point here is that they remain complementary, solving a large number
of problems uniquely. These are the exact conditions we require for producing
a new, powerful portfolio mode. It is likely that performance will improve even
further when also considering other option combinations.

Finally, Table 4 compares the number of problems solved by either of the
three top strategies – referred to as Vampire∗ – against Vampire 4.5, Z3 [7]
and Cvc4 [4]. Results are further separated by the logic in which the bench-
marks belong — A stands for Arrays, UF stands for Uninterpreted Functions,
DT stands for Data Types, L stands for Linear, N for Non-linear, I stands for
Integers, R stands for Reals, with the final A standing for Arithmetic. Here we
notice that the new rules make a considerable impact in the case of pure linear
real arithmetic. This is likely due to the fact that the asg allows us to fully
generalise away most linear terms and gve will be broadly applicable without
uninterpreted functions. It is interesting to note that, whilst the new Vampire

178 G. Reger et al.

solves fewer problems than Cvc4, and Z3 overall, it solves many (1056, and
1350) problems that the other provers do not solve. The most striking result
is that we can solve 90 new problems, neither Vampire 4.5 nor either of the
state-of-the-art SMT solvers could solve.

8 Conclusion

We have motivated and introduced five new simplification rules for reasoning
in the theory of arithmetic within saturation-based first-order theorem provers.
These rules were implemented within the Vampire theorem prover and demon-
strated to improve the reasoning power on problems taken from SMT-LIB. It
remains future work to explore the ideal combinations of these rules and existing
proof search heuristics. It also remains an open question whether we can design
an evaluation rule and modified simplification ordering that ensures that every
evaluation that we want to perform is a true simplification. As demonstrated,
this is not necessary pragmatically but would be satisfying theoretically.

References

1. Vampire website. https://vprover.github.io/.

2. E. Althaus, E. Kruglov, and C. Weidenbach. Superposition modulo linear arith-
metic SUP(LA). In Frontiers of Combining Systems, 7th International Symposium,
FroCoS 2009, Trento, Italy, September 16-18, 2009. Proceedings, vol. 5749 of Lec-
ture Notes in Computer Science, pp. 84–99. Springer, 2009.

3. L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational theorem proving for
hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput., 5:193–212,
1994.

4. C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reyn-
olds, and C. Tinelli. CVC4. In Proceedings of the 23rd International Conference on
Computer Aided Verification, number 6806 in Lecture Notes in Computer Science,
pp. 171–177. Springer-Verlag, 2011.

5. P. Baumgartner and U. Waldmann. Hierarchic Superposition With Weak Abstrac-
tion. In Proceedings of the 24th International Conference on Automated Deduction,
number 7898 in Lecture Notes in Artificial Intelligence, pp. 39–57. Springer-Verlag,
2013.

6. M. P. Bonacina, C. Lynch, and L. M. de Moura. On deciding satisfiability by
theorem proving with speculative inferences. J. Autom. Reasoning, 47(2):161–189,
2011.

7. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In Proc. of TACAS,
vol. 4963 of LNCS, pp. 337–340, 2008.

8. N. Dershowitz and D. A. Plaisted. Rewriting. In Handbook of Automated Reason-
ing, vol. I, chapter 9, pp. 535–610. Elsevier Science, 2001.

9. H. Ganzinger and K. Korovin. Theory instantiation. In Logic for Programming,
Artificial Intelligence, and Reasoning, 13th International Conference, LPAR 2006,
Phnom Penh, Cambodia, November 13-17, 2006, Proceedings, vol. 4246 of Lecture
Notes in Computer Science, pp. 497–511. Springer, 2006.

https://vprover.github.io/

Making Theory Reasoning Simpler 179

10. B. Gleiss and M. Suda. Layered clause selection for theory reasoning. In Automated
Reasoning, pp. 402–409. Springer International Publishing, 2020.

11. K. Hoder, G. Reger, M. Suda, and A. Voronkov. Selecting the selection. In Auto-
mated Reasoning: 8th International Joint Conference, IJCAR 2016, Coimbra, Por-
tugal, June 27 – July 2, 2016, Proceedings, pp. 313–329. Springer International
Publishing, 2016.

12. D. Knuth and P. Bendix. Simple word problems in universal algebra. In Compu-
tational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, 1970.

13. K. Korovin and A. Voronkov. Integrating linear arithmetic into superposition
calculus. In Computer Science Logic, 21st International Workshop, CSL 2007,
16th Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15,
2007, Proceedings, vol. 4646 of Lecture Notes in Computer Science, pp. 223–237.
Springer, 2007.

14. L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In CAV
2013, vol. 8044 of Lecture Notes in Computer Science, pp. 1–35, 2013.

15. A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In
Handbook of Automated Reasoning (in 2 volumes), pp. 335–367. Elsevier and MIT
Press, 2001.

16. G. Reger, N. Bjørner, M. Suda, and A. Voronkov. AVATAR modulo theories.
In GCAI 2016. 2nd Global Conference on Artificial Intelligence, vol. 41 of EPiC
Series in Computing, pp. 39–52. EasyChair, 2016.

17. G. Reger and M. Suda. Set of support for theory reasoning. In IWIL Workshop
and LPAR Short Presentations, vol. 1 of Kalpa Publications in Computing, pp.
124–134. EasyChair, 2017.

18. G. Reger, M. Suda, and A. Voronkov. The challenges of evaluating a new feature
in Vampire. In Proceedings of the 1st and 2nd Vampire Workshops, vol. 38 of EPiC
Series in Computing, pp. 70–74. EasyChair, 2016.

19. G. Reger, M. Suda, and A. Voronkov. New techniques in clausal form generation.
In GCAI 2016. 2nd Global Conference on Artificial Intelligence, vol. 41 of EPiC
Series in Computing, pp. 11–23. EasyChair, 2016.

20. G. Reger, M. Suda, and A. Voronkov. Unification with abstraction and theory
instantiation in saturation-based reasoning. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pp. 3–22. Springer,
2018.

21. P. Rümmer. A Constraint Sequent Calculus for First-Order Logic with Linear
Integer Arithmetic. In Proceedings of the 15th International Conference on Logic
for Programming Artificial Intelligence and Reasoning, number 5330 in Lecture
Notes in Artificial Intelligence, pp. 274–289. Springer-Verlag, 2008.

22. T. Weber, S. Conchon, D. Déharbe, M. Heizmann, A. Niemetz, and G. Reger.
The smt competition 2015–2018. Journal on Satisfiability, Boolean Modeling and
Computation, 11(1):221–259, 2019.

180 G. Reger et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Deductive Stability Proofs for
Ordinary Differential Equations�

Yong Kiam Tan(�) and André Platzer(�)

Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
{yongkiat,aplatzer}@cs.cmu.edu

Abstract. Stability is required for real world controlled systems as it
ensures that those systems can tolerate small, real world perturbations
around their desired operating states. This paper shows how stability for
continuous systems modeled by ordinary differential equations (ODEs)
can be formally verified in differential dynamic logic (dL). The key insight
is to specify ODE stability by suitably nesting the dynamic modalities of
dL with first-order logic quantifiers. Elucidating the logical structure of
stability properties in this way has three key benefits: i) it provides a flex-
ible means of formally specifying various stability properties of interest,
ii) it yields rigorous proofs of those stability properties from dL’s axioms
with dL’s ODE safety and liveness proof principles, and iii) it enables
formal analysis of the relationships between various stability properties
which, in turn, inform proofs of those properties. These benefits are put
into practice through an implementation of stability proofs for several
examples in KeYmaera X, a hybrid systems theorem prover based on dL.

Keywords: differential equations, stability, differential dynamic logic

1 Introduction

The study of stability has its roots in efforts to understand mechanical systems,
particularly those arising in celestial mechanics [15,19,30]. Today, it is an im-
portant part of numerous applications in dynamical systems [34] and control
theory [14,18]. This paper studies proofs of stability for continuous dynamical
systems described by ordinary differential equations (ODEs), such as those used
to model feedback control systems [14,18]. For such systems, ODE stability is
a key correctness requirement [2] that deserves fully rigorous proofs alongside
other key properties such as safety and liveness of those ODEs [28,36]. Despite
this, formal stability verification has received less attention compared to proofs
of safety and liveness, e.g., through reachability or deductive techniques [8].

Stability for a continuous system (or ODEs) requires that i) its system state
always stays close to some desired operating state(s) when initially slightly per-
turbed from those operating state(s), and ii) those perturbations are eventually
dissipated so the system returns to a desired operating state. These properties

� This research was sponsored by the AFOSR under grant number FA9550-16-1-0288.
The first author was supported by A*STAR, Singapore.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 181–199, 2021.
https://doi.org/10.1007/978-3-030-72013-1 10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_10&domain=pdf
http://orcid.org/0000-0001-7033-2463
http://orcid.org/0000-0001-7238-5710
https://doi.org/10.1007/978-3-030-72013-1_10

182 Y. K. Tan and A. Platzer

Fig. 1. A pendulum (in
green) hung by a rigid
rod from a pivot (in
black) perturbed from its
resting state (bottom)
and from its inverted,
upright position (top).
Perturbed states (with
dashed boundaries) are
faded out to show the
progression of time.

are especially crucial for engineered systems because
they must be robust to real world perturbations de-
viating from idealized system models. Simple pendu-
lums provide canonical examples of stability phenom-
ena: they are always observed to settle in the rest po-
sition of Fig. 1 (bottom) after some time regardless
of how they are initially released. In contrast, the in-
verted pendulum in Fig. 1 (top) is theoretically also
at a resting position but can only be observed tran-
siently in practice because the slightest real world per-
turbation will cause the pendulum to fall due to grav-
ity. Stability explains these observations—the resting
position is (asymptotically) stable while the inverted
position is unstable and requires active control to en-
sure its stability. Proofs of safety and liveness proper-
ties are still required for the inverted pendulum under
control, e.g., its controller must never generate unsafe
amounts of torque and the pendulum must eventually
reach the inverted position. The triumvirate of safety,
liveness, and stability is required for holistic correct-
ness of the inverted pendulum controller.

Fig. 2. A Lyapunov func-
tion that decreases along
the pendulum trajectory
shown in Fig. 1 (bottom).

The classical way of distinguishing the aforemen-
tioned stability situations is by designing a Lyapunov
function [19], i.e., an energy-like auxiliary measure
satisfying certain arithmetical conditions [14,18,31]
which implies that the auxiliary energy decreases
along system trajectories towards local minima at
the stable resting state(s), see Fig. 2. Prior ap-
proaches [1,12,17,21,33] have emphasized the need to
formally verify those arithmetical conditions in order
to guarantee that a conjectured Lyapunov function
correctly implies stability for a given system.

This paper shows how deductive proofs of ODE stability can be carried out
in differential dynamic logic (dL) [25,26,27], a logic for deductive verification of
hybrid systems.1 The key insight is that stability properties can be specified
by suitably nesting the dynamic modalities of dL with quantifiers of first-order
logic. The resulting specifications are amenable to rigorous proof by combining
dL’s ODE safety [28] and liveness [36] proof principles with real arithmetic and
first-order quantifier reasoning. This makes it possible to syntactically derive sta-
bility for a given system from the small set of dL axioms which, in turn, enables
trustworthy stability proofs in the KeYmaera X theorem prover for hybrid sys-
tems [11,26]. Notably, this approach directly verifies stability specifications, which

1 Hybrid systems are mathematical models describing discrete and continuous dynam-
ics, and interactions thereof. This paper’s formal understanding of ODE stability is
crucial for subsequent investigation of hybrid systems stability [5,13,20].

22

11 0

34 0

1
2

t

Lyapunov Function

2

3

4

1

Deductive Stability Proofs for Ordinary Differential Equations 183

goes beyond verifying arithmetic that imply those specifications [1,12,17,21,33].
This is crucial for advanced stability notions because those variations generally
require subtle twists to the required arithmetical conditions on their Lyapunov
functions [14]; proofs of stability specifications alleviate the onus on system de-
signers to correctly pick and check the appropriate conditions for their applica-
tions. Section 3 shows how various stability properties for ODE equilibria can be
formally specified and proved in dL with Lyapunov function techniques. Section 4
generalizes those stability specifications, yielding unambiguous formal specifica-
tions of advanced stability properties from the literature [14,18], along with their
derived proof rules. These specifications also provide rigorous insights into the
logical relationship between various stability notions, which are used to inform
their respective proofs. Section 5 illustrates the practicality of this paper’s dL
approach through several stability case studies formalized in KeYmaera X.

All omitted definitions and proofs are available in the supplement [35].

2 Background: Differential Dynamic Logic

This section briefly recalls the syntax and semantics of dL, focusing on its con-
tinuous fragment which has a complete axiomatization for ODE invariants [28].
Full presentations of dL, including its discrete fragment, are elsewhere [26,27].

Syntax and Semantics. The grammar of dL terms is as follows, where x ∈ V
is a variable and c ∈ Q is a rational constant. These terms are polynomials over
V (extensions with Noetherian functions [28] such as exp, sin, cos are possible):

p, q ::= x | c | p+ q | p · q

The grammar of dL formulas is as follows, where ∼ ∈ {=, �=,≥, >,≤, <} is a
comparison operator and α is a hybrid program:

φ, ψ ::= p ∼ q | φ ∧ ψ | φ ∨ ψ | ¬φ | ∀v φ | ∃v φ | [α]φ | 〈α〉φ

This grammar features atomic comparisons (p ∼ q), propositional connectives
(¬, ∧, ∨), first-order quantifiers over the reals (∀ , ∃), and the box ([α]φ) and
diamond (〈α〉φ) modality formulas which express that all or some runs of hybrid
program α satisfy φ, respectively. The modalities [·], 〈·〉 can be freely nested
with first-order and modal connectives, which is crucial for the specification of
stability properties in Sections 3 and 4. Formulas not containing the modalities
are formulas of first-order real arithmetic and are written as P,Q,R.

This paper focuses on the continuous fragment of hybrid programs α ≡
x′ = f(x)&Q, where x′ = f(x) is an n-dimensional system of ordinary differen-
tial equations (ODEs), x′

1=f1(x), . . . , x
′
n=fn(x), over variables x = (x1, . . . , xn),

the LHS x′
i is the time derivative of xi and the RHS fi(x) is a polynomial over

variables x. The evolution domain constraint Q specifies the set of states in
which the ODE is allowed to evolve continuously. When Q is the formula true,
the ODE is also written as x′ = f(x). For n-dimensional vectors x, y, the dot

184 Y. K. Tan and A. Platzer

product is x·y def
=

∑n
i=1 xiyi and ‖x‖2 def

=
∑n

i=1 x
2
i denotes the squared Euclidean

norm. Variables z ∈ V \ {x} not occurring on the LHS of ODE x′ = f(x) are
parameters that remain constant along ODE solutions. The following parametric
ODE model of a simple pendulum is used as a running example.

Example 1 (Pendulum model). The ODE αp ≡ θ′ = ω, ω′ = − g
L sin(θ) − bω

models a pendulum (illustrated below) suspended from a pivot by a rod of length
L, where θ is the angle of displacement, ω is the angular velocity of the pendulum,
and g > 0 is the gravitational constant. Parameter a = g

L is a positive scaling
constant and parameter b ≥ 0 is the coefficient of friction for angular velocity.
The symbolic parameters a, b make analysis of αp apply to a range of concrete
values, e.g., pendulums that are suspended by a long rod (with large L) are
modeled by small positive values of a, while frictionless pendulums have b = 0.

A simplification of αp is used because stability analyses of-
ten concern the behavior of the pendulum near its resting (or
inverted) state where θ = 0. For such nearby states with θ ≈ 0,
the small angle approximation sin(θ) ≈ θ yields a linear ODE:2

αl ≡ θ′ = ω, ω′ = −aθ − bω (1)

An inverted pendulum is modeled by a similar ODE (illus-
trated on the right) under a change of coordinates. Such a pen-
dulum requires an external torque input u(θ, ω) to maintain its
stability; u(θ, ω) is determined and proved correct in Section 5.

αi ≡ θ′ = ω, ω′ = aθ − bω − u(θ, ω) (2)

States ν : V → R assign real values to each variable in V; the set of all states
is S. The semantics of dL formula φ is the set of states [[φ]] ⊆ S in which φ is
true [26,27], where the semantics of first-order logical connectives are defined as
usual, e.g., [[φ∧ψ]] = [[φ]]∩ [[ψ]]. For ODEs, the semantics of the modal operators
is as follows.3 Let ν ∈ S and ϕ : [0, T)→ S for some 0 < T ≤ ∞, be the unique,
right-maximal solution [6] to ODE x′ = f(x) with initial value ϕ(0) = ν:

ν ∈ [[[x′ = f(x)&Q]φ]] iff for all 0 ≤ τ < T where ϕ(ζ)∈ [[Q]] for all 0 ≤ ζ ≤ τ :

ϕ(τ) ∈ [[φ]]

ν ∈ [[〈x′ = f(x)&Q〉φ]] iff there exists 0 ≤ τ < T such that:

ϕ(τ) ∈ [[φ]] and ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ ≤ τ

For a formula P the ε-neighborhood of P with respect to x is defined as

Uε(P)
def≡ ∃y

(
‖x− y‖2 < ε2 ∧ P (y)

)
, where the existentially quantified variables

y are fresh in P . The neighborhood formula Uε(P) characterizes the set of states
within distance ε from P , with respect to the dynamically evolving variables x.

2 This linearization is justified by the Hartman-Grobman theorem [6]. A nonlinear

polynomial approximation, such as sin(θ) ≈ θ − θ3

6
, can also be used.

3 The semantics of dL formulas is defined compositionally elsewhere [26,27].

L

g

ω

θ

g

u

ω

θ

Deductive Stability Proofs for Ordinary Differential Equations 185

This is useful for syntactically expressing small ε perturbations in the stability
definitions of Sections 3 and 4. For formulas P of first-order real arithmetic, the
ε-neighborhood, Uε(P), can be equivalently expressed in quantifier-free form by
quantifier elimination [4]. For example, Uε(x = 0) is equivalent to the formula
‖x‖2 < ε2. Formulas P and ∂P are the syntactically definable topological closure
and boundary of the set characterized by P , respectively [4].

Proof Calculus. All derivations and proof rules are presented in a classical
sequent calculus. The semantics of sequent Γ & φ is equivalent to the formula
(
∧

ψ∈Γ ψ) → φ. A sequent is valid iff its corresponding formula is valid. Com-
pleted branches in a sequent proof are marked with ∗. Assumptions ψ ∈ Γ that
have only ODE parameters as free variables remain true along ODE evolutions
and are soundly kept across ODE deduction steps [26,27]. First-order real arith-
metic is decidable [4] so we assume such a decision procedure and label proof
steps with R when they follow from real arithmetic. Axioms and proof rules are
derivable iff they can be deduced from sound dL axioms and proof rules [26,27].

Formula I is an invariant of the ODE x′ = f(x)&Q iff the formula I →
[x′ = f(x)&Q]I is valid. The dL proof calculus is complete for ODE invari-
ants [28], i.e., any true ODE invariant expressible in first-order real arithmetic
can be proved in the calculus. The calculus also supports refinement reason-
ing [36] for proving ODE liveness properties P → 〈x′ = f(x)&Q〉R, which says
that the goal R is reached along the ODE x′ = f(x)&Q from precondition P .

An important syntactic tool for reasoning with ODE x′ = f(x) is the Lie

derivative of term p defined as
.
p

def
=

∑
xi∈x

∂p
∂xi

fi(x), whose semantic value is
equal to the time derivative of the value of p along solutionsϕ of the ODE [26,28].
They are provably definable in dL using syntactic differentials [26].

3 Asymptotic Stability of an Equilibrium Point

This section presents Lyapunov’s classical notion of asymptotic stability [19]
and its formal specification in dL. This formalization enables the derivation of
dL stability proof rules with Lyapunov functions [14,18,19,31]. Several related
stability concepts are formalized in dL, along with their relationships and rules.

3.1 Mathematical Preliminaries

An equilibrium point of ODE x′ = f(x) is a point x0 ∈ Rn where f(x0) = 0, so a
system that starts at x0 stays at x0 along its continuous evolution. Such points
are often interesting in real-world systems, e.g., the equilibrium point θ = 0, ω =
0 for αl from (1) is the resting state of a pendulum. For a controlled system,
equilibrium points often correspond to desired steady system states where no
further continuous control input (modeled as part of f(x)) is required [18].

For brevity, assume the origin 0 ∈ Rn is an equilibrium point of interest. Any
other equilibrium point(s) of interest x0 ∈ Rn can be translated to the origin
with the change of coordinates x �→ x− x0 for the ODE (see supplement [35]).

186 Y. K. Tan and A. Platzer

Fig. 3. Solutions from points in the δ ball around the origin, like the green initial point
x, remain within the ε ball around the origin 0 ∈ Rn (black dot) and asymptotically
approach the origin. The latter two plots illustrate how asymptotic stability for an ODE
can be broken down into a pair of (quantified) ODE safety and liveness properties.

The following definition of asymptotic stability is standard [14,18,31].4

Definition 2 (Asymptotic stability [14,18,31]). The origin 0 ∈ Rn of ODE
x′ = f(x) is

– stable if, for all ε > 0, there exists δ > 0 such that for all initial states
x = x(0) with ‖x‖ < δ, the right-maximal ODE solution x(t) : [0, T) → Rn

satisfies ‖x(t)‖ < ε for all times 0 ≤ t < T ,
– attractive if there exists δ > 0 such that for all x = x(0) with ‖x‖ < δ, the

right-maximal ODE solution x(t) : [0, T)→ Rn satisfies limt→T x(t) = 0,
– asymptotically stable if it is stable and attractive.

These definitions can be understood using the resting state of the pendulum
from Fig. 1 (bottom) which is asymptotically stable. When the pendulum is given
a light push from its bottom resting state (formally, ‖x‖ < δ), it gently oscillates
near that resting state (formally, ‖x(t)‖ < ε). In the presence of friction, these
oscillations eventually dissipate so the pendulum asymptotically returns to its
resting state (formally, limt→T x(t) = 0). This behavior is local, i.e., for any given
ε > 0, there exists a sufficiently small δ > 0 perturbation of the initial state that
results in gentle oscillations with ‖x(t)‖ < ε, see Fig. 3 (left). A strong push,
e.g., with δ > ε, could instead cause the pendulum to spin around on its pivot.

Remark 3. Stability and attractivity do not imply each other [31, Chapter I.2.7].
However, if the origin is stable, attractivity can be defined in a simpler way. This
is proved in dL, after characterizing stability and attractivity syntactically.

3.2 Formal Specification

The formal specification of asymptotic stability in dL combines i) the dynamic
modalities of dL, which are used to quantify over the dynamics of the ODE, and
ii) the first-order logic quantifiers, which are used to express combinations of
(topologically) local and asymptotic properties of those dynamics.

4 Some definitions require, or implicitly assume, right-maximal solutions x(t) to be
global, i.e., with T = ∞, see [18, Definition 4.1] and associated discussion. The
definitions presented here are better suited for subsequent generalizations.

Deductive Stability Proofs for Ordinary Differential Equations 187

Lemma 4 (Asymptotic stability in dL). The origin of ODE x′ = f(x) is,
respectively, i) stable, ii) attractive, and iii) asymptotically stable iff the
dL formulas i) Stab(x′ = f(x)), ii) Attr(x′ = f(x)), and iii) AStab(x′ = f(x))
respectively are valid. Variables ε, δ are fresh, i.e., not in x, f(x).

Stab(x′ = f(x)) ≡ ∀ε>0 ∃δ>0 ∀x
(
Uδ(x = 0)→ [x′ = f(x)]Uε(x = 0)

)
Attr(x′ = f(x)) ≡ ∃δ>0 ∀x

(
Uδ(x = 0)→ Asym(x′ = f(x), x = 0)

)
AStab(x′ = f(x)) ≡ Stab(x′ = f(x)) ∧Attr(x′ = f(x))

Formula Asym(x′ = f(x), P) ≡ ∀ε>0 〈x′ = f(x)〉[x′ = f(x)]Uε(P) charac-
terizes the set of states that asymptotically approach P along ODE solutions.

Formula Stab(x′ = f(x)) is a syntactic dL rendering of the corresponding
quantifiers from Def. 2. The safety property Uδ(x = 0) → [x′ = f(x)]Uε(x = 0)
expresses that solutions starting from the δ-neighborhood of the origin always
(for all times) stay safely in the ε-neighborhood, as visualized in Fig. 3 (middle).

Formula Attr(x′ = f(x)) uses the subformula Asym(x′ = f(x), x = 0) which
characterizes the limit in Def. 2. Recall limt→T x(t) = 0 iff for all ε > 0 there
exists a time τ with 0 ≤ τ < T such that for all times t with τ ≤ t < T ,
the solution satisfies ‖x(t)‖ < ε, i.e., the limit requires for all distances ε > 0,
the ODE solution will eventually always be within distance ε of the origin, as
visualized in Fig. 3 (right). This limit is characterized using nested 〈·〉[·] modali-
ties, together with first-order quantification according to Def. 2. More generally,
formula Asym(x′ = f(x), P) characterizes the set of initial states where the
right-maximal ODE solution asymptotically approaches P ; this set is known as
the region of attraction of P [18]. Thus, attractivity requires that the region of
attraction of the origin contains an open neighborhood Uδ(x = 0) of the origin.

From Lemma4, proving validity of the formula AStab(x′ = f(x)) yields a
rigorous proof of asymptotic stability for x′ = f(x). However, if the origin is
stable, then attractivity can be provably simplified with the following corollary.

Corollary 5 (Stable attractivity). The following axiom is derivable in dL.
SAttr Stab(x′ = f(x))→

(
Asym(x′ = f(x), x=0)↔∀ε>0 〈x′ = f(x)〉 Uε(x=0)

)
Corollary 5 simplifies the syntactic characterization of the region of attrac-

tion for stable equilibria from a nested 〈·〉[·] formula to a 〈·〉 formula, which is
then directly amenable to ODE liveness reasoning [36]. This corollary is used to
simplify proofs of asymptotic stability, as explained next.

3.3 Lyapunov Functions

Lyapunov functions are the standard tool for showing stability of general, non-
linear ODEs [14,18,31] and finding suitable Lyapunov functions is an important
problem in its own right [1,9,12,17,21,23,24,33,37]. This section shows how a
candidate Lyapunov function, once found, can be used to rigorously prove sta-
bility. The following proof rules derive Lyapunov stability arguments [14,18,31]
syntactically in dL.

188 Y. K. Tan and A. Platzer

Lemma 6 (Lyapunov functions). The following Lyapunov function proof
rules are derivable in dL.

Lyap≥
& f(0) = 0 ∧ v(0) = 0 & ∃γ>0 ∀x

(
0<‖x‖2≤γ2 → v > 0 ∧ .

v ≤ 0
)

& Stab(x′ = f(x))

Lyap>
& f(0) = 0 ∧ v(0) = 0 & ∃γ>0 ∀x

(
0<‖x‖2≤γ2 → v > 0 ∧ .

v < 0
)

& AStab(x′ = f(x))

Rules Lyap≥, Lyap> use the Lyapunov function v as an auxiliary, energy-
like function near the origin which is positive and has non-positive (resp. nega-
tive Lyap>) derivative

.
v. This guarantees that v is non-increasing (resp. decreas-

ing) along ODE solutions near the origin, see Fig. 2. The right premise of both
rules use ∃γ>0 ∀x

(
0<‖x‖2≤γ2 → · · ·

)
to require that the Lyapunov function

conditions are true in a γ-neighborhood of the origin. The subtle difference in
sign condition for

.
v between rules Lyap≥, Lyap> is illustrated for the pendulum.

Example 7 (Pendulum asymptotic stability). For ODE αl from (1), a suitable

Lyapunov function for proving its stability [18] is v = a θ2

2 + (bθ+ω)2+ω2

4 , where

the Lie derivative of v along αl is
.
v = − b

2 (aθ
2+ω2). Stability5 is formally proved

in dL for any parameter values a > 0, b ≥ 0 using rule Lyap≥ because both of
its resulting arithmetical premises are provable by R. The full dL derivation, also
used in KeYmaera X (Section 5), is shown in the proof of Lemma6 [35].

When b > 0, i.e., friction is non-negligible, an identical derivation with Lyap>

instead of Lyap≥ proves asymptotic stability because − b
2 (aθ

2 + ω2) is negative
except at the origin. Indeed, displacements to the pendulum’s resting state can
only be dissipated in the presence of friction, not when b = 0.

3.4 Asymptotic Stability Variations

Asymptotic stability is a strong guarantee about the local behavior of ODE
solutions near equilibrium points of interest. In certain applications, stronger
stability guarantees may be needed for those equilibria [18]. This section exam-
ines two standard stability variations, shows how they can be proved in dL, and
formally analyzes their logical relationship with asymptotic stability.

Exponential stability As the name suggests, the first stability variation, ex-
ponential stability, guarantees an exponential rate of convergence towards the
equilibrium point from an initial displacement. This is useful, e.g., for bounding
the time spent by a perturbed system far away from its desired operating state.

Definition 8 (Exponential stability [14,18,31]). The origin 0 ∈ Rn of ODE
x′ = f(x) is exponentially stable if there are positive constants α, β, δ > 0 such
that for all initial states x = x(0) with ‖x‖ < δ, the right-maximal ODE solution
x(t) : [0, T)→ Rn satisfies ‖x(t)‖ ≤ α‖x(0)‖ exp (−βt) for all times 0 ≤ t < T .

5 For the trigonometric pendulum ODE αp from Example 1, the Lyapunov function

v = a(1− cos(θ))+ (bθ+ω)2+ω2

4
with Lie derivative

.
v = − b

2
(aθ sin(θ)+ω2) proves its

stability [18] but requires arithmetic reasoning over trigonometric functions.

Deductive Stability Proofs for Ordinary Differential Equations 189

Exponential stability bounds the norm of solutions to ODE x′ = f(x) near
the origin by a decaying exponential. It is specified in dL as follows.

Lemma 9 (Exponential stability in dL). The origin of ODE x′ = f(x) is
exponentially stable iff the following dL formula is valid. Variables α, β, δ, y
are fresh, i.e., not in x, f(x).

EStab(x′ = f(x)) ≡∃α>0 ∃β>0 ∃δ>0 ∀x
(
Uδ(x = 0)→

[y :=α2‖x‖2;x′ = f(x), y′ = −2βy] ‖x‖2 ≤ y
)

The discrete assignment y :=α2‖x‖2 sets the value of variable y to that of α2‖x‖2
and ; denotes sequential composition of hybrid programs [26,27].

Formula EStab(x′ = f(x)) uses a fresh variable y with ODE y′ = −2βy
and initialized to α2‖x‖2 so that y differentially axiomatizes [28] the (squared)
decaying exponential function α2‖x(0)‖2 exp (−2βt) along ODE solutions. Such
an implicit (polynomial) characterization of exponential decay allows syntactic
proof steps to use decidable real arithmetic reasoning.

Lemma 10 (Lyapunov function for exponential stability). The following
Lyapunov function proof rule for exponential stability is derivable in dL, where
k1, k2, k3 ∈ Q are positive constants.

LyapE
& ∃γ>0 ∀x

(
‖x‖2≤γ2 → k21‖x‖2 ≤ v ≤ k22‖x‖2 ∧

.
v ≤ −2k3v)

& EStab(x′ = f(x))

Rule LyapE enables proofs of exponential stability in dL. In fact, the proof
of Lemma10 (see supplement [35]) yields concrete, quantitative bounds, where
EStab(x′ = f(x)) is explicitly witnessed with scaling constant α = k2

k1
and decay

rate β = k3. These can be used to calculate time bounds when the system
state will return sufficiently close to the origin. Similarly, the disturbance δ in
EStab(x′ = f(x)) is quantitatively witnessed by k1

k2
γ for any γ witnessing validity

of the premise of rule LyapE. This yields a provable estimate of the region around
the origin where exponential stability holds; this latter estimate is explored next.

Region of attraction Formulas Attr(x′ = f(x)) and EStab(x′ = f(x)) both
feature a subformula of the form ∃δ > 0 ∀x (Uδ(x = 0) → · · ·) which expresses
that attractivity (or exponential stability) is locally true in some δ neighborhood
of the origin. In many applications, it is useful to find and rigorously prove that
a given set is attractive or exponentially stable with respect to the origin [18,
Chapter 8.2]. The second stability variation yields provable subsets of the region
of attraction, including the special case where it is the entire state space. This is
formalized using the following variants of Attr(x′ = f(x)) and EStab(x′ = f(x))
within a region given by a formula P .

AttrP(x′ = f(x), P) ≡ ∀x
(
P → Asym(x′ = f(x), x = 0)

)
EStabP(x′ = f(x), P) ≡ ∃α>0 ∃β>0 ∀x

(
P →

[y :=α2‖x‖2;x′ = f(x), y′ = −2βy] ‖x‖2 ≤ y
)

190 Y. K. Tan and A. Platzer

The formula AttrP(x′ = f(x), P) is valid iff the set characterized by P is
a subset of the origin’s region of attraction [18]. For example, Attr(x′ = f(x))
is ∃δ > 0 AttrP(x′ = f(x),Uδ(x = 0)). This generalization is useful for for-
malizing stronger notions of stability in dL, such as the following global stability
notions [14,18]. For brevity, dL specifications of the stability properties (in bold)
are given below with mathematical definitions deferred to the supplement [35].

Lemma 11 (Global stability in dL). The origin of ODE x′ = f(x) is glob-
ally asymptotically stable iff the dL formula Stab(x′ = f(x)) ∧ AttrP(x′ =
f(x), true) is valid. The origin is globally exponentially stable iff the dL for-
mula EStabP(x′ = f(x), true) is valid.

Global stability ensures that all perturbations to the system state are even-
tually dissipated. Their proof rules are similar to Lyap> and LyapE respectively.

Lemma 12 (Lyapunov function for global stability). The following Lya-
punov function proof rules for global asymptotic and exponential stability are

derivable in dL. In rule LyapGE , k1, k2, k3 ∈ Q are positive constants.

LyapG>
& f(0)=0∧v(0)=0 x�=0 & v>0 ∧ .

v<0 & ∀b ∃γ>0 ∀x
(
v≤b→Uγ(x=0)

)
& Stab(x′ = f(x)) ∧AttrP(x′ = f(x), true)

LyapGE
& k21‖x‖2 ≤ v ≤ k22‖x‖2 ∧

.
v ≤ −2k3v

& EStabP(x′ = f(x), true)

Example 13 (Pendulum global exponential stability). For simplicity, instantiate
Example 7 with parameters a = 1, b = 1. The Lyapunov function then simplifies

to v = θ2

2 + (θ+ω)2+ω2

4 with Lie derivative
.
v = − (θ2+ω2)

2 , which satisfies the real

arithmetic inequalities θ2+ω2

4 ≤ v ≤ θ2 + ω2 and
.
v ≤ − 1

2v. Thus, rule LyapGE
proves global exponential stability of αl with k1 = 1

2 , k2 = 1, and k3 = 1
4 . An

important caveat is that Example 7 used a local small angle approximation, so
this global phenomenon does not hold for a real world pendulum (nor for αp).

Logical relationships With the proliferation of stability variations just in-
troduced, it is useful to take stock of their logical relationships. An important
example of such a relationship is shown in the following corollary.

Corollary 14 (Exponential stability implies asymptotic stability). The
following axioms are derivable in dL.
EStabStab EStab(x′ = f(x))→ Stab(x′ = f(x))

EStabAttr EStabP(x′ = f(x), P)→ AttrP(x′ = f(x), P)

Derived axioms EStabStab, EStabAttr show that exponential stability im-
plies asymptotic stability. In proofs, EStabAttr allows the region of attraction
to be estimated using the region where solutions are exponentially bounded.

Deductive Stability Proofs for Ordinary Differential Equations 191

4 General Stability

This section provides stability definitions and proof rules that generalize stability
for an equilibrium point from Section 3 to the stability of sets. These definitions
are useful when the desired stable system state(s) is not modeled by a single
equilibrium point, but may instead, e.g., lie on a periodic trajectory [18], a
hyperplane, or a continuum of equilibrium points within the state space [14].
The generalized definition is used to formalize two stability notions from the
literature [14,18], and to justify their Lyapunov function proof rules.

4.1 General Stability and General Attractivity

The following general stability formula defines stability in dL with respect to an
ODE x′ = f(x) and formulas P,R. The quantified variables ε, δ are assumed to
be fresh by bound renaming, i.e., do not appear in x, f(x), P or R.

StabPR(x
′ = f(x), P,R) ≡ ∀ε>0 ∃δ>0 ∀x

(
Uδ(P)→ [x′ = f(x)]Uε(R)

)
This formula generalizes stability of the origin Stab(x′ = f(x)) by adding two

logical tuning knobs that can be intuitively understood as follows. The precon-
dition P characterizes the initial states from which the system state is expected
to be disturbed by some disturbance δ. The postcondition R characterizes the
set of desired operating states that the system must remain close (within the ε
neighborhood of R) after being disturbed from its initial states.

The general attractivity formula similarly generalizes AttrP(x′ = f(x), P)
with a postcondition R towards which the ODE solutions from initial states
satisfying precondition P are asymptotically attracted.

AttrPR(x
′ = f(x), P,R) ≡ ∀x

(
P → Asym(x′ = f(x), R)

)
Lemma 15 (General Lyapunov functions). The following Lyapunov func-
tion proof rule for general stability with two stacked premises is derivable in dL.

GLyap

& P → R

& ∀ε>0 ∃0<γ≤ε ∃k

⎛⎝∀x (∂(Uγ(R))→ v ≥ k)∧
∃0<δ≤γ ∀x (Uδ(P)→ R ∨ v<k)∧
∀x

(
R∨v<k → [x′ = f(x)&Uγ(R)](R∨v<k)

)
⎞⎠

& StabPR(x
′ = f(x), P,R)

Rule GLyap proves general stability for precondition P and postcondition
R. It generalizes the Lyapunov function reasoning underlying rule Lyap≥ to
support arbitrary pre- and postconditions. The conjunct ∀x (∂(Uγ(R))→ v ≥ k)
requires v≥k on the boundary of Uγ(R) while the middle conjunct requires v<k
for some small neighborhood of P excluding R. The conjunct ∀x

(
R∨v<k → · · ·

)
asserts that R ∨ v < k is an invariant of the ODE within closed domain Uγ(R).
When R is a formula of first-order real arithmetic, this invariance question is
provably equivalent in dL to a formula of real arithmetic [28], so the premise

192 Y. K. Tan and A. Platzer

of rule GLyap is, in theory, decidable by R for a given candidate Lyapunov
function v. In practice, it is prudent to consider specialized stability notions, for
which the premise of rule GLyap can be arithmetically simplified. Proof rules
for generalized attractivity are also derivable for specialized instances.

4.2 Specialization

General stability specializes to several stability notions in the literature. For
brevity, dL specifications of the stability properties (in bold) are given below
with mathematical definitions deferred to the supplement [35].

Set Stability An important special case is when the desired operating states
are exactly the states from which disturbances are expected, i.e., R ≡ P . This
leads to the notion of set stability of the set characterized by P [14,18].

Lemma 16 (Set Stability in dL). For the ODE x′ = f(x), the set character-
ized by formula P is i) stable, ii) attractive, iii) asymptotically stable, and
iv) globally asymptotically stable iff the following dL formulas are valid:

i) StabPR(x
′ = f(x), P, P),

ii) ∃δ>0 AttrPR(x
′ = f(x),Uδ(P), P),

iii) StabPR(x
′ = f(x), P, P) ∧ ∃δ>0 AttrPR(x

′ = f(x),Uδ(P), P), and
iv) StabPR(x

′ = f(x), P, P) ∧AttrPR(x
′ = f(x), true, P)

The intuition for Lemma16 is similar to Lemmas 4 and 11, except formula
P (instead of the origin) characterizes the set of desirable states. An application
of set stability is shown in the following example.

Example 17 (Tennis racket theorem [3]). The following system of ODEs models
the rotation of a 3D rigid body [6,14], where x1, x2, x3 are angular velocities and
I1 > I2 > I3 > 0 are the principal moments of inertia along the respective axes.

αr ≡ x′
1 =

I2 − I3
I1

x2x3, x′
2 =

I3 − I1
I2

x3x1, x′
3 =

I1 − I2
I3

x1x2

When such a rigid object is spun or rotated on each of its axes, a well-known
physical curiosity [3] is that the rotation is stable in the first and third axes,
whilst additional (unstable) twisting motion is observed for the intermediate
axis. Mathematically, a perfect rotation, e.g., around x1, corresponds to a (large)
initial value for x1 with no rotation in the other axes, i.e., x2 = 0, x3 = 0.
Accordingly the real world observation of stability for rotations about the first
principal axis is explained by stability with respect to small perturbations in
x2, x3, as formally specified by formula (3) below. Note that the set characterized
by formula x2 = 0∧x3 = 0 is the entire x1 axis, not just a single point. Similarly,
rotations are stable around the third principal axis iff formula (4) is valid.

StabPR(αr, x2 = 0 ∧ x3 = 0, x2 = 0 ∧ x3 = 0) (3)

StabPR(αr, x1 = 0 ∧ x2 = 0, x1 = 0 ∧ x2 = 0) (4)

The validity of formulas (3) and (4) are proved in Example 20.

Deductive Stability Proofs for Ordinary Differential Equations 193

The formal specification of set stability yields three provable logical conse-
quences which are important stepping stones for the set stability proof rules.

Corollary 18 (Set stability properties). The following axioms are derivable
in dL. In axiom SClosure, formula P characterizes the topological closure of
formula P . In axiom SClosed, formula P characterizes a closed set.

SetSAttr
StabPR(x

′ = f(x), P, P)

→
(
Asym(x′ = f(x), P)↔ ∀ε>0 〈x′ = f(x)〉 Uε(P)

)
SClosure StabPR(x

′ = f(x), P, P)↔ StabPR(x
′ = f(x), P , P)

SClosed StabPR(x
′ = f(x), P, P)→ ∀x

(
P → [x′ = f(x)]P

)
Axiom SetSAttr generalizes SAttr and provides a syntactic simplification of

the region of attraction for formula P when P is stable. Axiom SClosure says
that stability of P is equivalent to stability of its closure P , because for any
perturbation δ > 0, the neighborhoods Uδ(P) and Uδ(P) are provably equivalent
in real arithmetic. Axiom SClosed says that for closed formulas P , invariance
of P is a necessary condition for stability of P . Without loss of generality, it
suffices to develop proof rules for stability of formulas characterizing closed (using
SClosure) and invariant (using SClosed) sets. Indeed, standard definitions of set
stability [14,18] usually assume that the set of concern is closed and invariant.

Lemma 19 (Set stability Lyapunov functions). The following Lyapunov
function proof rules for set stability are derivable in dL. In derived rules SLyap≥
and SLyap>, formula P characterizes a compact (i.e., closed and bounded) set.
In derived rule SLyap∗≥, the two premises are stacked.

SLyap≥
P & [x′ = f(x)]P ¬P & v > 0 ∧ .

v ≤ 0 ∂P & v ≤ 0

& StabPR(x
′ = f(x), P, P)

SLyap>
P & [x′ = f(x)]P ¬P & v > 0 ∧ .

v < 0 ∂P & v ≤ 0

& StabPR(x
′ = f(x), P, P) ∧ ∃δ>0 AttrPR(x

′ = f(x),Uδ(P), P)

SLyap∗≥

P & [x′ = f(x)]P

& ∀ε>0 ∃0<γ≤ε

⎛⎝∃k (
∀x (∂(Uγ(P))→ v ≥ k)∧
∃0<δ≤γ ∀x (Uδ(P) ∧ ¬P → v < k)

)
∧

∀x (Uγ(P) ∧ ¬P → .
v ≤ 0)

⎞⎠
& StabPR(x

′ = f(x), P, P)

All three proof rules have the necessary premise P & [x′ = f(x)]P which says
that formula P is an invariant of the ODE x′ = f(x). Rules SLyap≥, SLyap>
are slight generalizations of Lyapunov function proof rules for set stability [14]
and they respectively generalize rules Lyap≥, Lyap> to prove stability for an
invariant P . Importantly, both rules assume that P characterizes a compact,
i.e., closed and bounded set, which simplifies the arithmetical conditions on v in
their premises. The rule without the boundedness requirement on P suggested
in the remark after [18, Definition 8.1], is unsound, see supplement [35].

194 Y. K. Tan and A. Platzer

For asymptotic stability (in rule SLyap>), boundedness also guarantees that
perturbed ODE solutions always exist for sufficient duration, which is a funda-
mental step in the ODE liveness proofs [36]. Rule SLyap∗

≥ is derived from rule
GLyap using invariance of P by the first premise; it provides a means of formally
proving the set stability properties (3) and (4) from Example 17.

Example 20 (Stability of rigid body motion). The proof for (3) uses the Lya-
punov function v = 1

2 (
I1−I2
I3

x2
2 − I3−I1

I2
x2
3), whose Lie derivative is

.
v = 0, and

rule SLyap∗≥ with formula P ≡ x2 = 0 ∧ x3 = 0. The proof for (4) is symmetric.
For the top premise of rule SLyap∗

≥, formula P is a provable invariant [28] of
the ODE αr. The bottom premise, although arithmetically complicated, can be
simplified by choosing γ = ε and deciding the resulting formula by R.

Recall that the x1 axis is not a compact set so neither of the standard proof
rules for set stability SLyap≥, SLyap> would be sound for this proof.

Epsilon-Stability Motivated by numerical robustness of proofs of stability,
Gao et al. [12] define ε-stability for ODEs. The following dL characterization
shows how ε-stability can be understood as an instance of general stability.

Lemma 21 (ε-Stability in dL). The origin of ODE x′ = f(x) is ε-stable for
constant ε > 0 iff the dL formula StabPR(x

′ = f(x), x = 0,Uε(x = 0)) is valid.

Unlike set stability, ε-stability is an instance of general stability where the
pre- and postconditions differ. In ε-stability, systems are perturbed from the
precondition x = 0 (the origin), but the postcondition enlarges the set of desired
states to a ε > 0 neighborhood of the origin, which is considered indistinguish-
able from the origin itself [12]. An immediate consequence of Lemma21 is that
rule GLyap can be used to prove ε-stability, as shown in the next section.

5 Stability in KeYmaera X

This section puts the dL stability specifications and derivations from the pre-
ceding sections into practice through proofs for several case studies in the KeY-
maera X theorem prover [11].6 Examples 7, 13, 17, 20 have also been formalized.
The insights from these proofs are discussed after an overview of the case studies.

Inverted Pendulum. The stability of the resting state of the pendulum is in-
vestigated in Examples 7 and 13. For the inverted pendulum αi from (2), the
controlled torque u(θ, ω) must be designed and rigorously proved to ensure feed-
back stabilization [18] of the inverted position. A standard PD (Proportional-
Derivative) controller can be used for stabilization, where the control input has
the form u(θ, ω) = k1θ+ k2ω for tuning parameters k1, k2. Asymptotic stability
of the inverted position is achieved for any control parameter choice where k1 > a
and k2 > −b. The sequent a > 0, b ≥ 0, k1 > a, k2 > −b & AStab(αi) is proved

in KeYmaera X using the Lyapunov function (k1−a)θ2

2 + (((b+k2)θ+ω)2+ω2)
4 .

6 See https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability

https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability

Deductive Stability Proofs for Ordinary Differential Equations 195

Frictional Tennis Racket Theorem. The stability of a 3D rigid body is inves-
tigated for αr in Examples 17 and 20. The following ODEs model additional
frictional forces that oppose the rotational motion in each axis of the rigid body,
where α1, α2, α3 > 0 are positive coefficients of friction:

αf ≡ x′
1=

I2 − I3
I1

x2x3−α1x1, x
′
2=

I3 − I1
I2

x3x1−α2x2, x
′
3=

I1 − I2
I3

x1x2−α3x3

In the presence of friction, rotations of the rigid body are globally asymptot-
ically stable in the first and third principal axes, as proved in KeYmaera X.

Γ ≡ I1 > I2, I2 > I3, I3 > 0, α1 > 0, α2 > 0, α3 > 0

Γ & StabPR(αf , x2=0 ∧ x3=0, x2=0 ∧ x3=0) ∧AttrPR(αf , true, x2=0 ∧ x3=0)

Γ & StabPR(αf , x1=0 ∧ x2=0, x1=0 ∧ x2=0) ∧AttrPR(αf , true, x1=0 ∧ x2=0)

Both asymptotic stability properties are proved using SLyap∗
≥ and the live-

ness property [36] that the kinetic energy I1x
2
1+ I2x

2
2+ I3x

2
3 of the system tends

to zero over time. The latter property implies that solutions of αf exist glob-
ally and that the values of x1, x2, x3 asymptotically tend to zero, which proves
global asymptotic stability with the aid of SetSAttr. Even though a proof rule for
(global) asymptotic stability of general nonlinear ODEs and unbounded sets is
not available (Section 4), this example shows that formalized stability properties
can still be proved on a case-by-case basis using dL’s ODE reasoning principles.

Moore-Greitzer Jet Engine [12]. The origin of the ODE modeling a simpli-
fied jet engine αm ≡ x′

1 = −x2 − 3
2x

2
1 − 1

2x
3
1, x′

2 = 3x1 − x2 is ε-stable for
ε = 10−10 [12]. The sequent ε = 10−10 & StabPR(αm, x2

1 + x2
2 = 0, x2

1 + x2
2 < ε2)

is proved in KeYmaera X. The key proof ingredients are an ε-Lyapunov func-
tion [12] and manual arithmetic steps, e.g., instantiating existential quantifiers
appearing in the specification of ε-stability with appropriate values [12].

Other Examples [1]. Stability for several ODEs with Lyapunov functions gen-
erated by an inductive synthesis technique [1, Examples 5–11] were successfully
verified in KeYmaera X. The proof for the largest, 6-dim. nonlinear ODE [1,
Example 5] required substantial manual arithmetic reasoning in KeYmaera X.7

The arithmetical conditions in [1, Equation 1] are identical to the premises
of rule Lyap≥ except it unsoundly omits the condition v(0) = 0, see supple-
ment [35]. The generated Lyapunov functions remain correct because the induc-
tive synthesis technique [1] implicitly guarantees this omitted condition.

Summary. These case studies demonstrate the feasibility of carrying out proofs
of various (advanced) stability properties within KeYmaera X using this paper’s
stability specifications. The proofs share similar high-level proof structure, which
suggests that proof automation could significantly reduce proof effort [10]. Such
automation should also support user input of key insights for difficult reasoning
steps, e.g., real arithmetic reasoning with nested, alternating quantifiers.

7 The Lyapunov function in [1, Example 5] does not work for its associated ODE. It
works if the ODE is corrected with ẋ1 = −x3

1+4x3
2−6x3x4, as in the literature [23].

196 Y. K. Tan and A. Platzer

6 Related Work

Stability is a fundamental property of interest across many different fields of
mathematics [6,15,19,30,31,34] and engineering [14,18,20]. This related work dis-
cussion focuses on formal approaches to stability of ODEs.

Logical specification of stability. Rouche, Habets, and Laloy [31] provide a pio-
neering example of using logical notation to specify and classify stability prop-
erties of ODEs. Alternative logical frameworks have also been used to specify
stability and related properties: stability is expressed in HyperSTL [22] as a hy-
perproperty relating the trace of an ODE against two constant traces; ε-stability
is studied in the context of δ-complete reasoning over the reals [12]; region sta-
bility for hybrid systems [29] is discussed using CTL*; the syntactic specification
of Asym(x′ = f(x), P) resembles the limit definition using filters [16]. This pa-
per uses dL as a sweet spot logical framework, general enough to specify various
stability properties of interest, e.g., asymptotic or exponential stability, and the
stability of sets, while also enabling syntactic proofs of those properties.

Formal verification of stability. There is a vast literature on finding Lyapunov
functions for stability, e.g., through numerical [24,23,37] and algebraic meth-
ods [9,21]. Formal approaches are often based on finding Lyapunov function can-
didates and certifying the correctness of those generated candidates [1,12,17,33].
This paper’s approach enables highly trustworthy certification of those candi-
dates in dL and KeYmaera X, with stability proof rules that are soundly de-
rived from dL’s parsimonious axiomatization [25,26,27], as implemented in KeY-
maera X [11,26]. Sections 4 and 5 further show that this paper’s approach sup-
ports verification of advanced stability properties [12,14,18] within the same dL
framework. New stability proof rules like GLyap can also be soundly and syntac-
tically justified in dL without the need for (low-level) semantic reasoning about
the underlying ODE mathematics. As an example of the latter, semantic ap-
proach, LaSalle’s invariance principle is formalized in Coq [7] and used to verify
the correctness of an inverted pendulum controller [32].

7 Conclusion

This paper shows how ODE stability can be formalized in dL using the key idea
that stability properties are ∀ /∃ -quantified dynamical formulas. These speci-
fications, their proof rules, and their logical relationships are all syntactically
derived from dL’s sound proof calculus. This further enables trustworthy KeY-
maera X proofs that rigorously verify every step in an ODE stability argument,
from arithmetical premises down to dynamical reasoning for ODEs. Directions
for future work include i) formalization of stability with respect to perturbations
of the system dynamics, and ii) generalizations of stability to hybrid systems.

Acknowledgments. We thank Brandon Bohrer, Stefan Mitsch, and the anony-
mous reviewers for their helpful feedback on KeYmaera X and this paper.

Deductive Stability Proofs for Ordinary Differential Equations 197

References

1. Ahmed, D., Peruffo, A., Abate, A.: Automated and sound synthesis of Lyapunov
functions with SMT solvers. In: Biere, A., Parker, D. (eds.) TACAS. LNCS, vol.
12078, pp. 97–114. Springer (2020). https://doi.org/10.1007/978-3-030-45190-5 6

2. Alur, R.: Principles of Cyber-Physical Systems. MIT Press (2015)
3. Ashbaugh, M.S., Chicone, C.C., Cushman, R.H.: The twisting tennis

racket. Journal of Dynamics and Differential Equations 3, 67–85 (1991).
https://doi.org/10.1007/BF01049489

4. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, Heidelberg
(1998). https://doi.org/10.1007/978-3-662-03718-8

5. Branicky, M.S.: Introduction to hybrid systems. In: Hristu-Varsakelis, D., Levine,
W.S. (eds.) Handbook of Networked and Embedded Control Systems, pp. 91–116.
Birkhäuser (2005). https://doi.org/10.1007/0-8176-4404-0 5

6. Chicone, C.: Ordinary Differential Equations with Applications. Springer, New
York, second edn. (2006). https://doi.org/10.1007/0-387-35794-7

7. Cohen, C., Rouhling, D.: A formal proof in Coq of LaSalle’s invariance principle.
In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP. LNCS, vol. 10499, pp. 148–163.
Springer (2017). https://doi.org/10.1007/978-3-319-66107-0 10

8. Doyen, L., Frehse, G., Pappas, G.J., Platzer, A.: Verification of hybrid systems.
In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking, pp. 1047–1110. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8 30

9. Forsman, K.: Construction of Lyapunov functions using Gröbner bases. In: CDC.
vol. 1, pp. 798–799. IEEE (1991). https://doi.org/10.1109/CDC.1991.261424

10. Fulton, N., Mitsch, S., Bohrer, B., Platzer, A.: Bellerophon: Tactical theorem prov-
ing for hybrid systems. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP. LNCS,
vol. 10499, pp. 207–224. Springer (2017). https://doi.org/10.1007/978-3-319-66107-
0 14

11. Fulton, N., Mitsch, S., Quesel, J., Völp, M., Platzer, A.: KeYmaera X: an ax-
iomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middel-
dorp, A. (eds.) CADE. LNCS, vol. 9195, pp. 527–538. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21401-6 36

12. Gao, S., Kapinski, J., Deshmukh, J.V., Roohi, N., Solar-Lezama, A., Aréchiga,
N., Kong, S.: Numerically-robust inductive proof rules for continuous dynamical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV. LNCS, vol. 11562, pp. 137–154.
Springer (2019). https://doi.org/10.1007/978-3-030-25543-5 9

13. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid Dynamical Systems: Modeling,
Stability, and Robustness. Princeton University Press (2012)

14. Haddad, W.M., Chellaboina, V.: Nonlinear Dynamical Systems and Control: A
Lyapunov-Based Approach. Princeton University Press (2008)

15. Hirsch, M.W.: The dynamical systems approach to differential equations. Bull.
Amer. Math. Soc. (N.S.) 11(1), 1–64 (07 1984)

16. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical anal-
ysis in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP.
LNCS, vol. 7998, pp. 279–294. Springer (2013). https://doi.org/10.1007/978-3-642-
39634-2 21

17. Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Aréchiga, N.:
Simulation-guided Lyapunov analysis for hybrid dynamical systems.
In: Fränzle, M., Lygeros, J. (eds.) HSCC. pp. 133–142. ACM (2014).
https://doi.org/10.1145/2562059.2562139

https://doi.org/10.1007/978-3-030-45190-5_6
https://doi.org/10.1007/BF01049489
https://doi.org/10.1007/978-3-662-03718-8
https://doi.org/10.1007/0-8176-4404-0_5
https://doi.org/10.1007/0-387-35794-7
https://doi.org/10.1007/978-3-319-66107-0_10
https://doi.org/10.1007/978-3-319-10575-8_30
https://doi.org/10.1007/978-3-319-10575-8_30
https://doi.org/10.1109/CDC.1991.261424
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-030-25543-5_9
https://doi.org/10.1007/978-3-642-39634-2_21
https://doi.org/10.1007/978-3-642-39634-2_21
https://doi.org/10.1145/2562059.2562139

198 Y. K. Tan and A. Platzer

18. Khalil, H.K.: Nonlinear systems. Macmillan Publishing Company, New York (1992)
19. Liapounoff, A.: Probléme général de la stabilité du mouvement. Annales de la

Faculté des sciences de Toulouse : Mathématiques 9, 203–474 (1907)
20. Liberzon, D.: Switching in Systems and Control. Systems & Control: Foundations

& Applications, Birkhäuser (2003). https://doi.org/10.1007/978-1-4612-0017-8
21. Liu, J., Zhan, N., Zhao, H.: Automatically discovering relaxed Lyapunov func-

tions for polynomial dynamical systems. Math. Comput. Sci. 6(4), 395–408 (2012).
https://doi.org/10.1007/s11786-012-0133-6

22. Nguyen, L.V., Kapinski, J., Jin, X., Deshmukh, J.V., Johnson, T.T.: Hyperprop-
erties of real-valued signals. In: Talpin, J., Derler, P., Schneider, K. (eds.) MEM-
OCODE. pp. 104–113. ACM (2017). https://doi.org/10.1145/3127041.3127058

23. Papachristodoulou, A., Prajna, S.: On the construction of Lyapunov functions
using the sum of squares decomposition. In: CDC. vol. 3, pp. 3482–3487. IEEE
(2002). https://doi.org/10.1109/CDC.2002.1184414

24. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization. Ph.D. thesis, California Institute of Technology
(2000)

25. Platzer, A.: The complete proof theory of hybrid systems. In: LICS. pp. 541–550.
IEEE Computer Society (2012). https://doi.org/10.1109/LICS.2012.64

26. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reasoning 59(2), 219–265 (2017). https://doi.org/10.1007/s10817-016-
9385-1

27. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

28. Platzer, A., Tan, Y.K.: Differential equation invariance axiomatization. J. ACM
67(1) (2020). https://doi.org/10.1145/3380825

29. Podelski, A., Wagner, S.: Model checking of hybrid systems: From reachability
towards stability. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC. LNCS, vol. 3927,
pp. 507–521. Springer (2006). https://doi.org/10.1007/11730637 38

30. Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars,
Paris (1892–1899)

31. Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method.
Springer, New York (1977). https://doi.org/10.1007/978-1-4684-9362-7

32. Rouhling, D.: A formal proof in Coq of a control function for the inverted
pendulum. In: Andronick, J., Felty, A.P. (eds.) CPP. pp. 28–41. ACM (2018).
https://doi.org/10.1145/3167101

33. Sankaranarayanan, S., Chen, X., Ábrahám, E.: Lyapunov function synthesis using
Handelman representations. In: Tarbouriech, S., Krstic, M. (eds.) NOLCOS. pp.
576–581. IFAC (2013). https://doi.org/10.3182/20130904-3-FR-2041.00198

34. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry, and Engineering. Westview Press, Boulder, CO, second edn.
(2015)

35. Tan, Y.K., Platzer, A.: Deductive stability proofs for ordinary differential equa-
tions. CoRR abs/2010.13096 (2020), https://arxiv.org/abs/2010.13096

36. Tan, Y.K., Platzer, A.: An axiomatic approach to existence and live-
ness for differential equations. Formal Aspects Comput. (to appear).
https://doi.org/10.1007/s00165-020-00525-0

37. Topcu, U., Packard, A.K., Seiler, P.J.: Local stability analysis using simu-
lations and sum-of-squares programming. Autom. 44(10), 2669–2675 (2008).
https://doi.org/10.1016/j.automatica.2008.03.010

https://doi.org/10.1007/978-1-4612-0017-8
https://doi.org/10.1007/s11786-012-0133-6
https://doi.org/10.1145/3127041.3127058
https://doi.org/10.1109/CDC.2002.1184414
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1145/3380825
https://doi.org/10.1007/11730637_38
https://doi.org/10.1007/978-1-4684-9362-7
https://doi.org/10.1145/3167101
https://doi.org/10.3182/20130904-3-FR-2041.00198
https://arxiv.org/abs/2010.13096
https://doi.org/10.1007/s00165-020-00525-0
https://doi.org/10.1016/j.automatica.2008.03.010

Deductive Stability Proofs for Ordinary Differential Equations 199

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Tool Papers

An SMT-Based Approach for Verifying
Binarized Neural Networks

Guy Amir1, Haoze Wu2, Clark Barrett2, and Guy Katz1[�]

1 The Hebrew University of Jerusalem, Jerusalem, Israel
{guy.amir2, g.katz}@mail.huji.ac.il

2 Stanford University, Stanford, USA
{haozewu, barrett}@cs.stanford.edu

Abstract. Deep learning has emerged as an effective approach for cre-
ating modern software systems, with neural networks often surpassing
hand-crafted systems. Unfortunately, neural networks are known to suffer
from various safety and security issues. Formal verification is a promising
avenue for tackling this difficulty, by formally certifying that networks
are correct. We propose an SMT-based technique for verifying binarized
neural networks — a popular kind of neural network, where some weights
have been binarized in order to render the neural network more memory
and energy efficient, and quicker to evaluate. One novelty of our tech-
nique is that it allows the verification of neural networks that include
both binarized and non-binarized components. Neural network verifica-
tion is computationally very difficult, and so we propose here various
optimizations, integrated into our SMT procedure as deduction steps, as
well as an approach for parallelizing verification queries. We implement
our technique as an extension to the Marabou framework, and use it to
evaluate the approach on popular binarized neural network architectures.

1 Introduction

In recent years, deep neural networks (DNNs) [21] have revolutionized the state
of the art in a variety of tasks, such as image recognition [12,37], text classifica-
tion [39], and many others. These DNNs, which are artifacts that are generated
automatically from a set of training data, generalize very well — i.e., are very
successful at handling inputs they had not encountered previously. The suc-
cess of DNNs is so significant that they are increasingly being incorporated into
highly-critical systems, such as autonomous vehicles and aircraft [7, 30].

In order to tackle increasingly complex tasks, the size of modern DNNs has
also been increasing, sometimes reaching many millions of neurons [46]. Con-
sequently, in some domains, DNN size has become a restricting factor: huge
networks have a large memory footprint, and evaluating them consumes both
time and energy. Thus, resource-efficient networks are required in order to allow
DNNs to be deployed on resource-limited, embedded devices [23,42].

One promising approach for mitigating this problem is via DNN quantiza-
tion [4, 27]. Ordinarily, each edge in a DNN has an associated weight, typically

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 203–222, 2021.
https://doi.org/10.1007/978-3-030-72013-1_11

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-72013-1_11

204 G. Amir et al.

stored as a 32-bit floating point number. In a quantized network, these weights
are stored using fewer bits. Additionally, the activation functions used by the
network are also quantized, so that their outputs consist of fewer bits. The net-
work’s memory footprint thus becomes significantly smaller, and its evaluation
much quicker and cheaper. When the weights and activation function outputs
are represented using just a single bit, the resulting network is called a binarized
neural network (BNN) [26]. BNNs are a highly popular variant of a quantized
DNN [10, 40, 56, 57], as their computing time can be up to 58 times faster, and
their memory footprint 32 times smaller, than that of traditional DNNs [45].
There are also network architectures in which some parts of the network are
quantized, and others are not [45]. While quantization leads to some loss of
network precision, quantized networks are sufficiently precise in many cases [45].

In recent years, various security and safety issues have been observed in
DNNs [33,48]. This has led to the development of a large variety of verification
tools and approaches (e.g., [16, 25, 33, 52], and many others). However, most of
these approaches have not focused on binarized neural networks, although they
are just as vulnerable to safety and security concerns as other DNNs. Recent work
has shown that verifying quantized neural networks is PSPACE-hard [24], and
that it requires different methods than the ones used for verifying non-quantized
DNNs [18]. The few existing approaches that do handle binarized networks focus
on the strictly binarized case, i.e., on networks where all components are binary,
and verify them using a SAT solver encoding [29, 43]. Neural networks that are
only partially binarized [45] cannot be readily encoded as SAT formulas, and
thus verifying these networks remains an open problem.

Here, we propose an SMT-based [5] approach and tool for the formal ver-
ification of binarized neural networks. We build on top of the Reluplex algo-
rithm [33],3 and extend it so that it can support the sign function,

sign(x) =

{
x < 0 −1
x ≥ 0 1.

We show how this extension, when integrated into Reluplex, is sufficient for ver-
ifying BNNs. To the best of our knowledge, the approach presented here is the
first capable of verifying BNNs that are not strictly binarized. Our technique
is implemented as an extension to the open-source Marabou framework [2, 34].
We discuss the principles of our approach and the key components of our imple-
mentation. We evaluate it both on the XNOR-Net BNN architecture [45], which
combines binarized and non-binarized parts, and on a strictly binarized network.

The rest of this paper is organized as follows. In Section 2, we provide the
necessary background on DNNs, BNNs, and the SMT-based formal verification
of DNNs. Next, we present our SMT-based approach for supporting the sign
activation function in Section 3, followed by details on enhancements and opti-
mizations for the approach in Section 4. We discuss the implementation of our
tool in Section 5, and its evaluation in Section 6. Related work is discussed in
Section 7, and we conclude in Section 8.

3 [33] is a recent extended version of the original Reluplex paper [31].

An SMT-Based Approach for Verifying Binarized Neural Networks 205

2 Background

Deep Neural Networks. A deep neural network (DNN) is a directed graph,
where the nodes (also called neurons) are organized in layers. The first layer is
the input layer, the last layer is the output layer, and the intermediate layers
are the hidden layers. When the network is evaluated, the input neurons are
assigned initial values (e.g., the pixels of an image), and these values are then
propagated through the network, layer by layer, all the way to the output layer.
The values of the output neurons determine the result returned to the user:
often, the neuron with the greatest value corresponds to the output class that
is returned. A network is called feed-forward if outgoing edges from neurons in
layer i can only lead to neurons in layer j if j > i. For simplicity, we will assume
here that outgoing edges from layer i only lead to the consecutive layer, i+ 1.

Each layer in the neural network has a layer type, which determines how the
values of its neurons are computed (using the values of the preceding layer’s
neurons). One common type is the weighted sum layer: neurons in this layer are
computed as a linear combination of the values of neurons from the preceding
layer, according to predetermined edge weights and biases. Another common
type of layer is the rectified linear unit (ReLU) layer, where each node y is
connected to precisely one node x from the preceding layer, and its value is
computed by y = ReLU(x) = max(0, x). The max-pooling layer is also common:
each neuron y in this layer is connected to multiple neurons x1, . . . , xk from the
preceding layer, and its value is given by y = max(x1, . . . , xk).

More formally, a DNN N with k inputs and m outputs is a mapping Rk →
Rm. It is given as a sequence of layers L1, . . . , Ln, where L1 and Ln are the
input and output layers, respectively. We denote the size of layer Li as si, and
its individual neurons as v1i , . . . , v

si
i . We use Vi to denote the column vector

[v1i , . . . , v
si
i]T . During evaluation, the input values V1 are given, and V2, . . . , Vn

are computed iteratively. The network also includes a mapping TN : N → T ,
such that T (i) indicates the type of hidden layer i. For our purposes, we focus
on layer types T = {weighted sum,ReLU,max}, but of course other types could
be included. If Tn(i) = weighted sum, then layer Li has a weight matrix Wi of
dimensions si× si−1 and a bias vector Bi of size si, and its values are computed
as Vi = Wi · Vi−1 + Bi. For Tn(i) = ReLU, the ReLU function is applied to
each neuron, i.e. vji = ReLU(vji−1) (we required that si = si−1 in this case). If

Tn(i) = max, then each neuron vji in layer Li has a list src of source indices,

and its value is computed as vji = maxk∈src v
k
i−1.

Fig. 1: A toy DNN.

A simple illustration appears in
Fig. 1. This network has a weighted
sum layer and a ReLU layer as its
hidden layers, and a weighted sum
layer as its output layer. For the
weighted sum layers, the weights
and biases are listed in the figure.
On input V1 = [1, 2]T , the first

206 G. Amir et al.

layer’s neurons evaluate to V2 = [6,−1]T . After ReLUs are applied, we get
V3 = [6, 0]T , and finally the output is V4 = [6].

Fig. 2: A toy BNN with a single binary block com-
posed of three layers: a weighted sum layer, a batch
normalization layer, and a sign layer.

Binarized Neural Net-
works. In a binarized neural
network (BNN), the layers
are typically organized into
binary blocks, regarded as
units with binary inputs and
outputs. Following the defi-
nitions of Hubara et al. [26]
and Narodytska et al. [43], a
binary block is comprised of three layers: (i) a weighted sum layer, where each
entry of the weight matrix W is either 1 or −1; (ii) a batch normalization layer,
which normalizes the values from its preceding layer (this layer can be regarded
as a weighted sum layer, where the weight matrix W has real-valued entries in
its diagonal, and 0 for all other entries); and (iii) a sign layer, which applies the
sign function to each neuron in the preceding layer. Because each block ends
with a sign layer, its output is always a binary vector, i.e. a vector whose entries
are ±1. Thus, when several binary blocks are concatenated, the inputs and out-
puts of each block are always binary. Here, we call a network strictly binarized
if it is composed solely of binary blocks (except for the output layer). If the
network contains binary blocks but also additional layers (e.g., ReLU layers), we
say that it is a partially binarized neural network. BNNs can be made to fit into
our definitions by extending the set T to include the sign function. An example
appears in Fig. 2; for input V1 = [−1, 3]T , the network’s output is V5 = [−2].

SMT-Based Verification of Deep Neural Networks. Given a DNN N that
transforms an input vector x into an output vector y = N(x), a pre-condition
P on x, and a post-condition Q on y, the DNN verification problem [33] is to
determine whether there exists a concrete input x0 such that P (x0)∧Q(N(x0)).
Typically, Q represents an undesirable output of the DNN, and so the existence
of such an x0 constitutes a counterexample. A sound and complete verification
engine should return a suitable x0 if the problem is satisfiable (SAT), or reply
that it is unsatisfiable (UNSAT). As in most DNN verification literature, we will
restrict ourselves to the case where P andQ are conjunctions of linear constraints
over the input and output neurons, respectively [16,33,52].

Here, we focus on an SMT-based approach for DNN verification, which was
introduced in the Reluplex algorithm [33] and extended in the Marabou frame-
work [2, 34]. It entails regarding the DNN’s node values as variables, and the
verification query as a set of constraints on these variables. The solver’s goal
is to find an assignment of the DNN’s nodes that satisfies P and Q. The con-
straints are partitioned into two sets: linear constraints, i.e. equations and vari-
able lower and upper bounds, which include the input constraints in P , the
output constraints in Q, and the weighted sum layers within the network; and

An SMT-Based Approach for Verifying Binarized Neural Networks 207

piecewise-linear constraints, which include the activation function constraints,
such as ReLU or max constraints. The linear constraints are easier to solve
(specifically, they can be phrased as a linear program [6], solvable in polynomial
time); whereas the piecewise-linear constraints are more difficult, and render the
problem NP-complete [33]. We observe that sign constraints are also piecewise-
linear.

In Reluplex, the linear constraints are solved iteratively, using a variant of the
Simplex algorithm [13]. Specifically, Reluplex maintains a variable assignment,
and iteratively corrects the assignments of variables that violate a linear con-
straint. Once the linear constraints are satisfied, Reluplex attempts to correct any
violated piecewise-linear constraints — again by making iterative adjustments
to the assignment. If these steps re-introduce violations in the linear constraints,
these constraints are addressed again. Often, this process converges; but if it
does not, Reluplex performs a case split, which transforms one piecewise-linear
constraint into a disjunction of linear constraints. Then, one of the disjuncts
is applied and the others are stored, and the solving process continues; and if
UNSAT is reached, Reluplex backtracks, removes the disjunct it has applied and
applies a different disjunct instead. The process terminates either when one of
the search paths returns SAT (the entire query is SAT), or when they all return
UNSAT (the entire query is UNSAT). It is desirable to perform as few case splits as
possible, as they significantly enlarge the search space to be explored.

The Reluplex algorithm is formally defined as a sound and complete calculus
of derivation rules [33]. We omit here the derivation rules aimed at solving the
linear constraints, and bring only the rules aimed at addressing the piecewise-
linear constraints; specifically, ReLU constraints [33]. These derivation rules are
given in Fig. 3, where: (i) X is the set of all variables in the query; (ii) R is the set
of all ReLU pairs; i.e., 〈b, f〉 ∈ R implies that it should hold that f = ReLU(b);
(iii) α is the current assignment, mapping variables to real values; (iv) l and u
map variables to their current lower and upper bounds, respectively; and (v) the
update(α, x, v) procedure changes the current assignment α by setting the value
of x to v. The ReluCorrectb and ReluCorrectf rules are used for correcting an
assignment in which a ReLU constraint is currently violated, by adjusting either
the value of b or f , respectively. The ReluSplit rule transforms a ReLU constraint
into a disjunction, by forcing either b’s lower bound to be non-negative, or its
upper bound to be non-positive. This forces the constraint into either its active
phase (the identity function) or its inactive phase (the zero function). In the
case when we guess that a ReLU is active, we also apply the addEq operation
to add the equation f = b, in order to make sure the ReLU is satisfied in the
active phase. The Success rule terminates the search procedure when all variable
assignments are within their bounds (i.e., all linear constraints hold), and all
ReLU constraints are satisfied. The rule for reaching an UNSAT conclusion is
part of the linear constraint derivation rules which are not depicted; see [33] for
additional details.

The aforementioned derivation rules describe a search procedure: the solver
incrementally constructs a satisfying assignment, and performs case splitting

208 G. Amir et al.

ReluCorrectb
〈b, f〉 ∈ R, α(f) �= ReLU(α(b))

α := update(α, b, α(f))
ReluCorrectf

〈b, f〉 ∈ R, α(f) �= ReLU(α(b))

α := update(α, f,ReLU(α(b)))

ReluSplit

〈b, f〉 ∈ R

u(b) := min(u(b), 0),

l(f) := max(l(f), 0),

u(f) := min(u(f), 0)

l(b) := max(l(b), 0),

addEq(f = b)

Success
∀x ∈ X . l(x) ≤ α(x) ≤ u(x), ∀〈b, f〉 ∈ R. α(f) = ReLU(α(b))

SAT

Fig. 3: Derivation rules for the Reluplex algorithm (simplified; see [33] for more
details).

when needed. Another key ingredient in modern SMT solvers is deduction steps,
aimed at narrowing down the search space by ruling out possible case splits.
In this context, deductions are aimed at obtaining tighter bounds for variables:
i.e., finding greater values for l(x) and smaller values for u(x) for each variable
x ∈ X . These bounds can indeed remove case splits by fixing activation functions
into one of their phases; for example, if f = ReLU(b) and we deduce that b ≥ 3,
we know that the ReLU is in its active phase, and no case split is required. We
provide additional details on some of these deduction steps in Section 4.

3 Extending Reluplex to Support Sign Constraints

In order to extend Reluplex to support sign constraints, we follow a similar
approach to how ReLUs are handled. We encode every sign constraint f = sign(b)
as two separate variables, f and b. Variable b represents the input to the sign
function, whereas f represents the sign’s output. In the toy example from Fig. 2,
b will represent the assignment for neuron v13 , and f will represent v14 .

Initially, a sign constraint poses no bound constraints over b, i.e. l(b) =
−∞ and u(b) = ∞. Because the values of f are always ±1, we set l(f) = −1
and u(f) = 1. If, during the search and deduction process, tighter bounds are
discovered that imply that b ≥ 0 or f > −1, we say that the sign constraint
has been fixed to the positive phase; in this case, it can be regarded as a linear
constraint, namely b ≥ 0∧f = 1. Likewise, if it is discovered that b < 0 or f < 1,
the constraint is fixed to the negative phase, and is regarded as b < 0∧ f = −1.
If neither case applies, we say that the constraint’s phase has not yet been fixed.

In each iteration of the search procedure, a violated constraint is selected
and corrected, by altering the variable assignment. A violated sign constraint is
corrected by assigning f the appropriate value: −1 if the current assignment of b
is negative, and 1 otherwise. Case splits (which are needed to ensure completeness
and termination) are handled similarly to the ReLU case: we allow the solver to
assert that a sign constraint is in either the positive or negative phase, and then
backtrack and flip that assertion if the search hits a dead-end.

More formally, we define this extension to Reluplex by modifying the deriva-
tion rules described in Fig. 3 as follows. The rules for handling linear con-

An SMT-Based Approach for Verifying Binarized Neural Networks 209

SignCorrect−
〈b, f〉 ∈ S, α(b) < 0, α(f) �= −1

α := update(α, f,−1)
SignCorrect+

〈b, f〉 ∈ S, α(b) ≥ 0, α(f) �= 1

α := update(α, f, 1)

SignSplit

〈b, f〉 ∈ S

u(b) := min(u(b),−ε),

l(f) := max(l(f),−1),

u(f) := min(u(f),−1)

l(b) := max(l(b), 0),

l(f) := max(l(f), 1),

u(f) := min(u(f), 1)

Success

∀x ∈ X . l(x) ≤ α(x) ≤ u(x),

∀〈b, f〉 ∈ S. α(f) = sign(α(b)), ∀〈b, f〉 ∈ R. α(f) = ReLU(α(b))

SAT

Fig. 4: The extended Reluplex derivation rules, with support for sign constraints.

straints and ReLU constraints are unchanged — the approach is modular and
extensible in that sense, as each type of constraint is addressed separately. In
Fig. 4, we depict new derivation rules, capable of addressing sign constraints.
The SignCorrect− and SignCorrect+ rules allow us to adjust the assignment of f
to account for the current assignment of b — i.e., set f to −1 if b is negative,
and to 1 otherwise. The SignSplit is used for performing a case split on a sign
constraint, introducing a disjunction for enforcing that either b is non-negative
(l(b) ≥ 0) and f = 1, or b is negative (u(b) ≤ −ε; epsilon is a small positive con-
stant, chosen to reflect the desired precision) and f = −1. Finally, the Success
rule replaces the one from Fig. 3: it requires that all linear, ReLU and sign
constraints be satisfied simultaneously.

We demonstrate this process with a simple example. Observe again the toy
example for Fig. 2, the pre-condition P = (1 ≤ v11 ≤ 2)∧ (−1 ≤ v21 ≤ 1), and the
post-condition Q = (v15 ≤ 5). Our goal is to find an assignment to the variables
{v11 , v21 , v12 , v13 , v14 , v15} that satisfies P , Q, and also the constraints imposed by
the BNN itself, namely the weighted sums v12 = v11 − v21 + 1, v13 = 0.5v12 , and
v15 = 2v14 , and the sign constraint v14 = sign(v13).

variable v11 v21 v12 v13 v14 v15
assignment 1 1 0 2 1 −1 −2
assignment 2 1 0 2 1 1 −2
assignment 3 1 0 2 1 1 2

Fig. 5: An iterative solution for a
BNN verification query.

Initially, we invoke derivation rules that
address the linear constraints (see [33]),
and come up with an assignment that
satisfies them, depicted as assignment 1
in Fig. 5. However, this assignment vi-
olates the sign constraint: v14 = −1 �=
sign(v13) = sign(1) = 1. We can thus in-
voke the SignCorrect+ rule, which adjusts
the assignment, leading to assignment 2
in the figure. The sign constraint is now satisfied, but the linear constraint
v15 = 2v14 is violated. We thus let the solver correct the linear constraints again,
this time obtaining assignment 3 in the figure, which satisfies all constraints.
The Success rule now applies, and we return SAT and the satisfying variable
assignment.

The above-described calculus is sound and complete (assuming the ε used
in the SignSplit rule is sufficiently small): when it answers SAT or UNSAT, that

210 G. Amir et al.

statement is correct, and for any input query there is a sequence of derivation
steps that will lead to either SAT or UNSAT. The proof is quite similar to that of the
original Reluplex procedure [33], and is omitted. A naive strategy that will always
lead to termination is to apply the SignSplit rule to saturation; this effectively
transforms the problem into an (exponentially long) sequence of linear programs.
Then, each of these linear programs can be solved quickly (linear programming
is known to be in P). However, this strategy is typically quite slow. In the next
section we discuss how many of these case splits can be avoided by applying
multiple optimizations.

4 Optimizations

Weighted Sum Layer Elimination. The SMT-based approach introduces
a new variable for each node in a weighted sum layer, and an equation to ex-
press that node’s value as a weighted sum of nodes from the preceding layer. In
BNNs, we often encounter consecutive weighted sum layers — specifically be-
cause of the binary block structure, in which a weighted sum layer is followed by
a batch normalization layer, which is also encoded as weighted sum layer. Thus,
a straightforward way to reduce the number of variables and equations, and
hence to expedite the solution process, is to combine two consecutive weighted
sum layers into a single layer. Specifically, the original layers can be regarded as
transforming input x into y = W2(W1 · x + B1) + B2, and the simplification as
computing y = W3 · x + B3, where W3 = W2 ·W1 and B3 = W2 · B1 + B2. An
illustration appears in Fig. 6 (for simplicity, all bias values are assumed to be 0).

Fig. 6: On the left, a (partial) DNN with two consecutive weighted sum layers.
On the right, an equivalent DNN with these two layers merged into one.

LP Relaxation. Given a constraint f = sign(b), it is beneficial to deduce
tighter bounds on the b and f variables — especially if these tighter bounds fix
the constraints into one of its linear phases. We thus introduce a preprocessing
phase, prior to the invocation of our enhanced Reluplex procedure, in which
tighter bounds are computed by invoking a linear programming (LP) solver.

The idea, inspired by similar relaxations for ReLU nodes [14, 49], is to over-
approximate each constraint in the network, including sign constraints, as a set
of linear constraints. Then, for every variable v in the encoding, an LP solver

An SMT-Based Approach for Verifying Binarized Neural Networks 211

is used to compute an upper bound u (by maximizing) and a lower bound l
(by minimizing) for v. Because the LP encoding is an over-approximation, v is
indeed within the range [l, u] for any input to the network.

Let f = sign(b), and suppose we initially know that l ≤ b ≤ u. The linear
over-approximation that we introduce for f is a trapezoid (see Fig. 7), with the
following edges: (i) f ≤ 1; (ii) f ≥ −1; (iii) f ≤ 2

−l · b+1; and (iv) f ≥ 2
u · b− 1.

It is straightforward to show that these four equations form the smallest convex
polytope containing the values of f .

We demonstrate this process on the simple BNN depicted on the left-hand
side of Fig. 7. Suppose we know that the input variable, x, is bounded in the
range −1 ≤ x ≤ 1, and we wish to compute a lower bound for y. Simple, interval-
arithmetic based bound propagation [33] shows that b1 = 3x+1 is bounded in the
range −2 ≤ b1 ≤ 4, and similarly that b2 = −4x+2 is in the range −2 ≤ b2 ≤ 6.
Because neither b1 nor b2 are strictly negative or positive, we only know that
−1 ≤ f1, f2 ≤ 1, and so the best bound obtainable for y is y ≥ −2. However, by
formulating the LP relaxation of the problem (right-hand side of Fig. 7), we get
the optimal solution x = − 1

3 , b1 = 0, b2 = 10
3 , f1 = −1, f2 = 1

9 , y = − 8
9 , implying

the tighter bound y ≥ − 8
9 .

+2

(4,1)

(-2,-1)

b1

f1
f1 ≤ 1

f1 ≥ −1

f1
≥
1
2
b1
− 1

f 1
≤
b 1

+
1

minimize y s.t.:
−1 ≤ x ≤ 1
b1 = 3x+ 1
b2 = −4x+ 2
y = f1 + f2

−1 ≤ f1 ≤ 1
−1 ≤ f2 ≤ 1
b1
2
−1 ≤ f1 ≤ b1+1

b2
3
−1 ≤ f2 ≤ b2+1

Fig. 7: A simple BNN (left), the trapezoid relaxation of f1 = sign(b1) (center),
and its LP encoding (right). The trapezoid relaxation of f2 is not depicted.

The aforementioned linear relaxation technique is effective but expensive
— because it entails invoking the LP solver twice for each neuron in the BNN
encoding. Consequently, in our tool, the technique is applied only once per query,
as a preprocessing step. Later, during the search procedure, we apply a related
but more lightweight technique, called symbolic bound tightening [52], which we
enhanced to support sign constraints.

Symbolic Bound Tightening. In symbolic bound tightening, we compute
for each neuron v a symbolic lower bound sl(x) and a symbolic upper bound
su(x), which are linear combinations of the input neurons. Upper and lower
bounds can then be derived from their symbolic counterparts using simple in-
terval arithmetic. For example, suppose the network’s input nodes are x1 and

212 G. Amir et al.

x2, and that for some neuron v we have:

sl(v) = 5x1 − 2x2 + 3, su(v) = 3x1 + 4x2 − 1

and that the currently known bounds are x1 ∈ [−1, 2], x2 ∈ [−1, 1] and v ∈
[−2, 11]. Using the symbolic bounds and the input bounds, we can derive that
the upper bound of v is at most 6 + 4 − 1 = 9, and that its lower bound is at
least −5− 2+ 3 = −4. In this case, the upper bound we have discovered for v is
tighter than the previous one, and so we can update v’s range to be [−2, 9].

Fig. 8: Symbolic bounds for
f=sign(b).

The symbolic bound expressions are propa-
gated layer by layer [52]. Propagation through
weighted sum layers is straightforward: the sym-
bolic bounds are simply multiplied by the re-
spective edge weights and summed up. Efficient
approaches for propagations through ReLU lay-
ers have also been proposed [51]. Our contribu-
tion here is an extension of these techniques for
propagating symbolic bounds also through sign
layers. The approach again uses a trapezoid, al-
though a more coarse one — so that we can ap-
proximate each neuron from above and below us-
ing a single linear expression. More specifically,
for f = sign(b) with b ∈ [l, u] and previously-computed symbolic bounds su(b)
and sl(b), the symbolic bounds for f are given by:

sl(f) =
2

u
· sl(b)− 1, su(f) = −2

l
· su(b) + 1

An illustration appears in Fig. 8. The blue trapezoid is the relaxation we use for
the symbolic bound computation, whereas the gray trapezoid is the one used for
the LP relaxation discussed previously. The blue trapezoid is larger, and hence
leads to looser bounds than the gray trapezoid; but it is computationally cheaper
to compute and use, and our evaluation demonstrates its usefulness.

Polarity-based Splitting. The Marabou framework supports a parallelized
solving mode, using the Split-and-Conquer (S&C) algorithm [54]. At a high level,
S&C partitions a verification query φ into a set of sub-queries Φ := {φ1, ...φn},
such that φ and

∨
φ′∈Φ φ′ are equi-satisfiable, and handles each sub-query in-

dependently. Each sub-query is solved with a timeout value; and if that value
is reached, the sub-query is again split into additional sub-queries, and each is
solved with a greater timeout value. The process repeats until one of the sub-
queries is determined to be SAT, or until all sub-queries are proven UNSAT.

One Marabou strategy for creating sub-queries is by splitting the ranges of
input neurons. For example, if in query φ an input neuron x is bounded in the
range x ∈ [0, 4] and φ times out, it might be split into φ1 and φ2 such that
x ∈ [0, 2] in φ1 and x ∈ [2, 4] in φ2. This strategy is effective when the neural
network being verified has only a few input neurons.

An SMT-Based Approach for Verifying Binarized Neural Networks 213

Another way to create sub-queries is to perform case-splits on piecewise-linear
constraints — sign constraints, in our case. For instance, given a verification
query φ := φ′ ∧ f = sign(b), we can partition it into φ− := φ′ ∧ b < 0 ∧ f = −1
and φ+ := φ′ ∧ b ≥ 0 ∧ f = 1. Note that φ and φ+ ∨ φ− are equi-satisfiable.

The heuristics for picking which sign constraint to split on have a significant
impact on the difficulty of the resulting sub-problems [54]. Specifically, it is
desirable that the sub-queries be easier than the original query, and also that
they be balanced in terms of runtime — i.e., we wish to avoid the case where φ1

is very easy and φ2 is very hard, as that makes poor use of parallel computing
resources. To create easier sub-problems, we propose to split on sign constraints
that occur in the earlier layers of the BNN, as that leads to efficient bound
propagation when combined with our symbolic bound tightening mechanism.
To create balanced sub-problems, we use a metric called polarity, which was
proposed in [54] for ReLUs and is extended here to support sign constraints.

Definition 1. Given a sign constraint f = sign(b), and the bounds l ≤ b ≤ u,
where l < 0, and u > 0, the polarity of the sign constraint is defined as p = u+l

u−l .

Intuitively, the closer the polarity is to 0, the more balanced the resulting
queries will be if we perform a case-split on this constraint. For example, if
φ = φ′∧−10 ≤ b ≤ 10 and we create φ1 = φ′∧−10 ≤ b < 0, φ2 = φ′∧0 ≤ b ≤ 10,
then queries φ1 and φ2 are roughly balanced. However, if initially −10 ≤ b ≤ 1,
we obtain φ1 = φ′ ∧−10 ≤ b < 0 and φ2 = φ′ ∧ 0 ≤ b ≤ 1. In this case, φ2 might
prove significantly easier than φ1 because the smaller range of b in φ2 could lead
to very effective bound tightening. Consequently, we use a heuristic that picks
the sign constraint with the smallest polarity among the first k candidates (in
topological order), where k is a configurable parameter. In our experiments, we
empirically selected k = 5.

5 Implementation

We implemented our approach as an extension to Marabou [34], which is an open-
source, freely available SMT-based DNN verification framework [2]. Marabou
implements the Reluplex algorithm, but with multiple extensions and optimiza-
tions — e.g., support for additional activation functions, deduction methods, and
parallelization [54]. It has been used for a variety of verification tasks, such as
network simplification [19] and optimization [47], verification of video streaming
protocols [35], DNN modification [20], adversarial robustness evaluation [9,22,32]
verification of recurrent networks [28], and others. However, to date Marabou
could not support sign constraints, and thus, could not be used to verify BNNs.
Below we describe our main contributions to the code base. Our complete code
is available as an artifact accompanying this paper [1], and has also been merged
into the main Marabou repository [2].

Basic Support for Sign Constraints (SignConstraint.cpp). During ex-
ecution, Marabou maintains a set of piecewise-linear constraints that are part

214 G. Amir et al.

of the query being solved. To support various activation functions, these con-
straints are represented using classes that inherit from the abstract Piecewise-
LinearConstraint class. Here, we added a new sub-class, SignConstraint, that in-
herits from PiecewiseLinearConstraint. The methods of this class check whether
the piecewise-linear sign constraint is satisfied, and in case it is not — which
possible changes to the current assignment could fix the violation. This class’
methods also extend Marabou’s deduction mechanism for bound tightening.

Input Interfaces for Sign Constraints (MarabouNetworkTF.py).
Marabou supports various input interfaces, most notable of which is the Ten-
sorFlow interface, which automatically translates a DNN stored in TensorFlow
protobuf or savedModel formats into a Marabou query. As part of our exten-
sions, we enhanced this interface so that it can properly handle BNNs and sign
constraints. Additionally, users can create queries using Marabou’s native C++
interface, by instantiating the SignConstraint class discussed previously.

Network-Level Reasoner (NetworkLevelReasoner.cpp, Layer.cpp, LP-
Formulator.cpp). The Network-Level Reasoner (NLR) is the part of Marabou
that is aware of the topology of the neural network being verified, as opposed to
just the individual constraints that comprise it. We extended Marabou’s NLR
to support sign constraints and implement the optimizations discussed in Sec-
tion 4. Specifically, one extension that we added allows this class to identify
consecutive weighted sum layers and merge them. Another extension creates a
linear over-approximation of the network, including the trapezoid-shaped over-
approximation of each sign constraint. As part of the symbolic bound propaga-
tion process, the NLR traverses the network, layer by layer, each time computing
the symbolic bound expressions for each neuron in the current layer.

Polarity-Based Splitting (DnCManager.cpp). We extended the methods
of this class, which is part of Marabou’s S&C mechanism, to compute the polarity
value of each sign constraint (see Definition 1), based on the current bounds.

6 Evaluation

All the benchmarks described in this section are included in our artifact, and
are publicly available online [1].

Strictly Binarized Networks. We began by training a strictly binarized net-
work over the MNIST digit recognition dataset.4 This dataset includes 70,000
images of handwritten digits, each given as a 28 × 28 pixeled image, with nor-
malized brightness values ranging from 0 to 1. The network that we trained has
an input layer of size 784, followed by six binary blocks (four blocks of size 50,

4 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

An SMT-Based Approach for Verifying Binarized Neural Networks 215

two blocks of size 10), and a final output layer with 10 neurons. Note that in the
first block we omitted the sign layer in order to improve the network’s accuracy.5

The model was trained for 300 epochs using the Larq library [17] and the Adam
optimizer [36], achieving 90% accuracy.

Fig. 9: An adversarial example for the
MNIST network.

After training, we used Larq’s ex-
port mechanism to save the trained
network in a TensorFlow format, and
then used our newly added Marabou in-
terface to load it. For our verification
queries, we first chose 500 samples from
the test set which were classified cor-
rectly by the network. Then, we used
these samples to formulate adversarial
robustness queries [33,48]: queries that ask Marabou to find a slightly perturbed
input which is misclassified by the network, i.e. is assigned a different label than
the original. We formulated 500 queries, constructed from 50 queries for each of
ten possible perturbation values δ ∈ {0.1, 0.15, 0.2, 0.3, 0.5, 1, 3, 5, 10, 15} in L∞
norm, one query per input sample. An UNSAT answer from Marabou indicates
that no adversarial perturbation exists (for the specified δ), whereas a SAT answer
includes, as the counterexample, an actual perturbation that leads to misclassifi-
cation. Such adversarial robustness queries are the most widespread verification
benchmarks in the literature (e.g., [16,25,33,52]). An example appears in Fig. 9:
the image on the left is the original, correctly classified as 1, and the image on
the right is the perturbed image discovered by Marabou, misclassified as 3.

Through our experiments we set out to evaluate our tool’s performance,
and also measured the contribution of each of the features that we introduced:
(i) weighted sum (ws) layer elimination; (ii) LP relaxation; (iii) symbolic bound
tightening (sbt); and (iv) polarity-based splitting. We thus defined five configu-
rations of the tool: the all category, in which all four features are enabled, and
four all-X configurations for X∈ {ws, lp, sbt, polarity}, indicating that feature
X is turned off and the other features are enabled. All five configurations uti-
lized Marabou’s parallelization features, except for all-polarity — where instead
of polarity-based splitting we used Marabou’s default splitting strategy, which
splits the input domain in half in each step.

Fig. 10 depicts Marabou’s results using each of the five configurations. Each
experiment was run on an Intel Xeon E5-2637 v4 CPUs machine, running Ubuntu
16.04 and using eight cores, with a wall-clock timeout of 5,000 seconds. Most no-
tably, the results show the usefulness of polarity-based splitting when compared
to Marabou’s default splitting strategy: whereas the all-polarity configuration
only solved 218 instances, the all configuration solved 458. It also shows that
the weighted sum layer elimination feature significantly improves performance,
from 436 solved instances in all-ws to 458 solved instances in all, and with
significantly faster solving speed. With the remaining two features, namely LP

5 This is standard practice; see https://docs.larq.dev/larq/guides/

bnn-architecture/

https://docs.larq.dev/larq/guides/bnn-architecture/
https://docs.larq.dev/larq/guides/bnn-architecture/

216 G. Amir et al.

relaxations and symbolic bound tightening, the results are less clear: although
the all-lp and all-sbt configurations both slightly outperform the all configura-
tion, indicating that these two features slowed down the solver, we observe that
for many instances they do lead to an improvement; see Fig. 11. Specifically, on
UNSAT instances, the all configuration was able to solve one more benchmark
than either all-lp or all-sbt ; and it strictly outperformed all-lp on 13% of the
instances, and all-sbt on 21% of the instances. Gaining better insights into the
causes for these differences is a work in progress.

Fig. 10: Running the five configurations of Marabou on the MNIST BNN.

Fig. 11: Evaluating the LP relaxation and symbolic bound tightening features.

An SMT-Based Approach for Verifying Binarized Neural Networks 217

In
p
u
t

C
on

vo
lu
ti
on

M
ax

-P
o
ol

S
ig
n

C
on

vo
lu
ti
on

M
ax

-P
o
ol

B
at
ch

N
or
m

W
ei
gh

te
d
S
u
m

A

Fig. 12: The XNOR-Net architecture of our
network.

XNOR-Net. XNOR-Net [45] is
a BNN architecture for image
recognition networks. XNOR-
Nets consist of a series of binary
convolution blocks, each contain-
ing a sign layer, a convolution
layer, and a max-pooling layer
(here, we regard convolution layers as a specific case of weighted sum layers).
We constructed such a network with two binary convolution blocks: the first
block has three layers, including a convolution layer with three filters, and the
second block has four layers, including a convolution layer with two filters. The
two binary convolution blocks are followed by a batch normalization layer and
a fully-connected weighted sum layer (10 neurons) for the network’s output, as
depicted in Fig. 12. Our network was trained on the Fashion-MNIST dataset,
which includes 70,000 images from ten different clothing categories [55], each
given as a 28 × 28 pixeled image. The model was trained for 30 epochs, and
achieved a modest accuracy of 70.97%.

Fig. 13: An original image (left) and its
perturbed, misclassified image (right).

For our verification queries, we chose
300 correctly classified samples from
the test set, and used them to for-
mulate adversarial robustness queries.
Each query was formulated using
one sample and a perturbation value
δ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} in L∞
norm. Fig. 13 depicts the adversarial
image that Marabou produced for one
of these queries. The image on the left is a correctly classified image of a shirt,
and the image on the right is the perturbed image, now misclassified as a coat.

Based on the results from the previous set of experiments, we used Marabou
with weighted sum layer elimination and polarity-based splitting turned on, but
with symbolic bound tightening and LP relaxation turned off. Each experiment
ran on an Intel Xeon E5-2637 v4 machine, using eight cores and a wall-clock
timeout of 7,200 seconds. The results are depicted in Table 1. The results demon-
strate that UNSAT queries tended to be solved significantly faster than SAT ones,
indicating that Marabou’s search procedure for these cases needs further opti-
mization. Overall, Marabou was able to solve 203 out of 300 queries. To the best
of our knowledge, this is the first effort to formally verify an XNOR-Net. We
note that these results demonstrate the usefulness of an SMT-based approach
for BNN verification, as it allows the verification of DNNs with multiple types
of activation functions, such as a combination of sign and max-pooling.

7 Related Work

DNNs have become pervasive in recent years, and the discovery of various faults
and errors has given rise to multiple approaches for verifying them. These in-

218 G. Amir et al.

Table 1: Marabou’s performance on the XNOR-Net queries.

δ
SAT UNSAT

Solved Avg. Time (s) # Solved Avg. Time (s) # Timeouts

0.05 15 909.13 23 4.96 12
0.1 15 1,627.67 20 12.15 15
0.15 9 1,113.33 29 5 12
0.2 10 1,387.7 24 4.96 16
0.25 9 1,426 22 4.91 19
0.3 7 1,550.86 20 26.75 23

Total 65 1,317.52 138 9.16 97

clude various SMT-based approaches (e.g., [25, 33, 34, 38]), approaches based
on LP and MILP solvers (e.g., [8, 14, 41, 49]), approaches based on symbolic
interval propagation or abstract interpretation (e.g., [16,50,52,53]), abstraction-
refinement (e.g., [3, 15]), and many others. Most of these lines of work have
focused on non-quantized DNNs. Verification of quantized DNNs is PSPACE-
hard [24], and requires different tools than the ones used for their non-quantized
counterparts [18]. Our technique extends an existing line of SMT-based verifiers
to support also the sign activation functions needed for verifying BNNs; and
these new activations can be combined with various other layers.

Work to date on the verification of BNNs has relied exclusively on reducing
the problem to Boolean satisfiability, and has thus been limited to the strictly bi-
narized case [11,29,43,44]. Our approach, in contrast, can be applied to binarized
neural networks that include activation functions beyond the sign function, as
we have demonstrated by verifying an XNOR-Net. Comparing the performance
of Marabou and the SAT-based approaches is left for future work.

8 Conclusion

BNNs are a promising avenue for leveraging deep learning in devices with limited
resources. However, it is highly desirable to verify their correctness prior to
deployment. Here, we propose an SMT-based verification approach that enables
the verification of BNNs. This approach, which we have implemented as part
of the Marabou framework [2], seamlessly integrates with the other components
of the SMT solver in a modular way. Using Marabou, we have verified, for the
first time, a network that uses both binarized and non-binarized layers. In the
future, we plan to improve the scalability of our approach, by enhancing it with
stronger bound deduction capabilities, based on abstract interpretation [16].

Acknowledgements. We thank Nina Narodytska, Kyle Julian, Kai Jia, Leon
Overweel and the Plumerai research team for their contributions to this project.
The project was partially supported by the Israel Science Foundation (grant
number 683/18), the Binational Science Foundation (grant number 2017662),
the National Science Foundation (grant number 1814369), and the Center for
Interdisciplinary Data Science Research at The Hebrew University of Jerusalem.

An SMT-Based Approach for Verifying Binarized Neural Networks 219

References

1. Artifact repository. https://github.com/guyam2/BNN_Verification_Artifact.
2. Marabou repository. https://github.com/NeuralNetworkVerification/

Marabou.
3. P. Ashok, V. Hashemi, J. Kretinsky, and S. Mühlberger. DeepAbstract: Neural

Network Abstraction for Accelerating Verification. In Proc. 18th Int. Symposium
on Automated Technology for Verification and Analysis (ATVA), 2020.

4. P. Bacchus, R. Stewart, and E. Komendantskaya. Accuracy, Training Time and
Hardware Efficiency Trade-Offs for Quantized Neural Networks on FPGAs. In
Proc. 16th Int. Symposium on Applied Reconfigurable Computing (ARC), pages
121–135, 2020.

5. C. Barrett and C. Tinelli. Satisfiability modulo theories. Springer, 2018.
6. O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi.

Measuring Neural Net Robustness with Constraints. In Proc. 30th Conf. on Neural
Information Processing Systems (NIPS), 2016.

7. M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba.
End to End Learning for Self-Driving Cars, 2016. Technical Report. http:

//arxiv.org/abs/1604.07316.
8. R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. Mudigonda. A Unified View

of Piecewise Linear Neural Network Verification. In Proc. 32nd Conf. on Neural
Information Processing Systems (NeurIPS), pages 4795–4804, 2018.

9. N. Carlini, G. Katz, C. Barrett, and D. Dill. Provably Minimally-Distorted Adver-
sarial Examples, 2017. Technical Report. https://arxiv.org/abs/1709.10207.

10. H. Chen, L. Zhuo, B. Zhang, X. Zheng, J. Liu, R. Ji, D. D., and G. Guo. Bina-
rized Neural Architecture Search for Efficient Object Recognition, 2020. Technical
Report. http://arxiv.org/abs/2009.04247.

11. C.-H. Cheng, G. Nührenberg, C.-H. Huang, and H. Ruess. Verification of Binarized
Neural Networks via Inter-Neuron Factoring, 2017. Technical Report. http://

arxiv.org/abs/1710.03107.
12. D. Ciregan, U. Meier, and J. Schmidhuber. Multi-Column Deep Neural Networks

for Image Classification. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 3642–3649, 2012.

13. G. Dantzig. Linear Programming and Extensions. Princeton University Press,
1963.

14. R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Net-
works. In Proc. 15th Int. Symp. on Automated Technology for Verification and
Analysis (ATVA), pages 269–286, 2017.

15. Y. Elboher, J. Gottschlich, and G. Katz. An Abstraction-Based Framework for
Neural Network Verification. In Proc. 32nd Int. Conf. on Computer Aided Verifi-
cation (CAV), pages 43–65, 2020.

16. T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri, and
M. Vechev. AI2: Safety and Robustness Certification of Neural Networks with
Abstract Interpretation. In Proc. 39th IEEE Symposium on Security and Privacy
(S&P), 2018.

17. L. Geiger and P. Team. Larq: An Open-Source Library for Training Binarized
Neural Networks. Journal of Open Source Software, 5(45):1746, 2020.

18. M. Giacobbe, T. Henzinger, and M. Lechner. How Many Bits Does it Take to
Quantize Your Neural Network? In Proc. 26th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 79–97, 2020.

https://github.com/guyam2/BNN_Verification_Artifact
https://github.com/NeuralNetworkVerification/Marabou
https://github.com/NeuralNetworkVerification/Marabou
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1709.10207
http://arxiv.org/abs/2009.04247
http://arxiv.org/abs/1710.03107
http://arxiv.org/abs/1710.03107

220 G. Amir et al.

19. S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz. Simplifying
Neural Networks using Formal Verification. In Proc. 12th NASA Formal Methods
Symposium (NFM), pages 85–93, 2020.

20. B. Goldberger, Y. Adi, J. Keshet, and G. Katz. Minimal Modifications of Deep
Neural Networks using Verification. In Proc. 23rd Int. Conf. on Logic for Program-
ming, Artificial Intelligence and Reasoning (LPAR), pages 260–278, 2020.

21. I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

22. D. Gopinath, G. Katz, C. Pǎsǎreanu, and C. Barrett. DeepSafe: A Data-driven
Approach for Assessing Robustness of Neural Networks. In Proc. 16th. Int. Sym-
posium on on Automated Technology for Verification and Analysis (ATVA), pages
3–19, 2018.

23. S. Han, H. Mao, and W. Dally. Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. In Proc. 4th
Int. Conf. on Learning Representations (ICLR), 2016.

24. T. Henzinger, M. Lechner, and D. Zikelic. Scalable Verification of Quantized Neural
Networks (Technical Report), 2020. Technical Report. https://arxiv.org/abs/
2012.08185.

25. X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification of Deep
Neural Networks. In Proc. 29th Int. Conf. on Computer Aided Verification (CAV),
pages 3–29, 2017.

26. I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized
Neural Networks. In Proc. 30th Conf. on Neural Information Processing Systems
(NIPS), pages 4107–4115, 2016.

27. I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized
Neural Networks: Training Neural Networks with Low Precision Weights and Ac-
tivations. The Journal of Machine Learning Research, 18(1):6869–6898, 2017.

28. Y. Jacoby, C. Barrett, and G. Katz. Verifying Recurrent Neural Networks using
Invariant Inference. In Proc. 18th Int. Symposium on Automated Technology for
Verification and Analysis (ATVA), 2020.

29. K. Jia and M. Rinard. Efficient Exact Verification of Binarized Neural Networks,
2020. Technical Report. http://arxiv.org/abs/2005.03597.

30. K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy Compression
for Aircraft Collision Avoidance Systems. In Proc. 35th Digital Avionics Systems
Conf. (DASC), pages 1–10, 2016.

31. G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks. In Proc. 29th Int. Conf. on
Computer Aided Verification (CAV), pages 97–117, 2017.

32. G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Towards Proving
the Adversarial Robustness of Deep Neural Networks. In Proc. 1st Workshop on
Formal Verification of Autonomous Vehicles (FVAV), pages 19–26, 2017.

33. G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a Calculus
for Reasoning about Deep Neural Networks, 2021. Submitted, preprint avaialble
upon request.

34. G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor,
H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett. The Marabou Frame-
work for Verification and Analysis of Deep Neural Networks. In Proc. 31st Int.
Conf. on Computer Aided Verification (CAV), pages 443–452, 2019.

35. Y. Kazak, C. Barrett, G. Katz, and M. Schapira. Verifying Deep-RL-Driven Sys-
tems. In Proc. 1st ACM SIGCOMM Workshop on Network Meets AI & ML (Ne-
tAI), pages 83–89, 2019.

https://arxiv.org/abs/2012.08185
https://arxiv.org/abs/2012.08185
http://arxiv.org/abs/2005.03597

An SMT-Based Approach for Verifying Binarized Neural Networks 221

36. D. Kingma and J. Ba. Adam: a Method for Stochastic Optimization, 2014. Tech-
nical Report. http://arxiv.org/abs/1412.6980.

37. A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classification with Deep
Convolutional Neural Networks. In Proc. 26th Conf. on Neural Information Pro-
cessing Systems (NIPS), pages 1097–1105, 2012.

38. L. Kuper, G. Katz, J. Gottschlich, K. Julian, C. Barrett, and M. Kochenderfer.
Toward Scalable Verification for Safety-Critical Deep Networks, 2018. Technical
Report. https://arxiv.org/abs/1801.05950.

39. S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent Convolutional Neural Networks for
Text Classification. In Proc. 29th AAAI Conf. on Artificial Intelligence, 2015.

40. D. Lin, S. Talathi, and S. Annapureddy. Fixed Point Quantization of Deep Convo-
lutional Networks. In Proc. 33rd Int. Conf. on Machine Learning (ICML), pages
2849–2858, 2016.

41. A. Lomuscio and L. Maganti. An Approach to Reachability Analysis for Feed-
Forward ReLU Neural Networks, 2017. Technical Report. http://arxiv.org/

abs/1706.07351.

42. P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning Convolutional
Neural Networks for Resource Efficient Inference, 2016. Technical Report. http:
//arxiv.org/abs/1611.06440.

43. N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh. Verifying
Properties of Binarized Deep Neural Networks, 2017. Technical Report. http:

//arxiv.org/abs/1709.06662.

44. N. Narodytska, H. Zhang, A. Gupta, and T. Walsh. In Search for a SAT-friendly
Binarized Neural Network Architecture. In Proc. 7th Int. Conf. on Learning Rep-
resentations (ICLR), 2019.

45. M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net: Imagenet
Classification using Binary Convolutional Neural Networks. In Proc. 14th European
Conf. on Computer Vision (ECCV), pages 525–542, 2016.

46. K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. In Proc. 3rd Int. Conf. on Learning Representations (ICLR),
2015.

47. C. Strong, H. Wu, A. Zeljić, K. Julian, G. Katz, C. Barrett, and M. Kochenderfer.
Global Optimization of Objective Functions Represented by ReLU networks, 2020.
Technical Report. http://arxiv.org/abs/2010.03258.

48. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing Properties of Neural Networks, 2013. Technical Report.
http://arxiv.org/abs/1312.6199.

49. V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural Networks with
Mixed Integer Programming. In Proc. 7th Int. Conf. on Learning Representations
(ICLR), 2019.

50. H. Tran, S. Bak, and T. Johnson. Verification of Deep Convolutional Neural Net-
works Using ImageStars. In Proc. 32nd Int. Conf. on Computer Aided Verification
(CAV), pages 18–42, 2020.

51. S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Efficient Formal Safety
Analysis of Neural Networks, 2018. Technical Report. https://arxiv.org/abs/
1809.08098.

52. S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security Analysis
of Neural Networks using Symbolic Intervals. In Proc. 27th USENIX Security
Symposium, pages 1599–1614, 2018.

http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1801.05950
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/2010.03258
http://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1809.08098
https://arxiv.org/abs/1809.08098

222 G. Amir et al.

53. T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning, I. Dhillon, and
L. Daniel. Towards Fast Computation of Certified Robustness for ReLU Networks,
2018. Technical Report. http://arxiv.org/abs/1804.09699.

54. H. Wu, A. Ozdemir, A. Zeljić, A. Irfan, K. Julian, D. Gopinath, S. Fouladi, G. Katz,
C. Păsăreanu, and C. Barrett. Parallelization Techniques for Verifying Neural
Networks. In Proc. 20th Int. Conf. on Formal Methods in Computer-Aided Design
(FMCAD), pages 128–137, 2020.

55. H. Xiao, K. Rasul, and R. Vollgraf. Fashion-Mnist: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms, 2017. Technical Report. http://
arxiv.org/abs/1708.07747.

56. J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang, and X.-S. Hua.
Quantization Networks. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 7308–7316, 2019.

57. Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard. Adaptive Quan-
tization for Deep Neural Network, 2017. Technical Report. http://arxiv.org/
abs/1712.01048.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1804.09699
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1712.01048
http://arxiv.org/abs/1712.01048
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

cake_lpr: Verified Propagation Redundancy
Checking in CakeML

Yong Kiam Tan1(�) , Marijn J. H. Heule1 , and Magnus O. Myreen2

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
{yongkiat,mheule}@cs.cmu.edu

2 Chalmers University of Technology, Gothenburg, Sweden
myreen@chalmers.se

Abstract. Modern SAT solvers can emit independently checkable proof
certificates to validate their results. The state-of-the-art proof system
that allows for compact proof certificates is propagation redundancy (PR).
However, the only existing method to validate proofs in this system with
a formally verified tool requires a transformation to a weaker proof sys-
tem, which can result in a significant blowup in the size of the proof and
increased proof validation time. This paper describes the first approach
to formally verify PR proofs on a succinct representation; we present (i) a
new Linear PR (LPR) proof format, (ii) a tool to efficiently convert PR
proofs into LPR format, and (iii) cake_lpr, a verified LPR proof checker
developed in CakeML. The LPR format is backwards compatible with
the existing LRAT format, but extends the latter with support for the
addition of PR clauses. Moreover, cake_lpr is verified using CakeML’s
binary code extraction toolchain, which yields correctness guarantees for
its machine code (binary) implementation. This further distinguishes our
clausal proof checker from existing ones because unverified extraction and
compilation tools are removed from its trusted computing base. We ex-
perimentally show that LPR provides efficiency gains over existing proof
formats and that the strong correctness guarantees are obtained without
significant sacrifice in the performance of the verified executable.

Keywords: linear propagation redundancy · binary code extraction

1 Introduction

Given a formula of propositional logic, the task of a SAT solver is to decide if
there exists an assignment that satisfies the formula. Such a satisfying assign-
ment, if found by a SAT solver, is easily verifiable by independent checkers and
so one does not need to trust the inner workings of the solver. The situation
with unsatisfiable formulas, i.e., where no satisfying assignment exists, is not as
straightforward. Here, SAT solvers must produce an unsatisfiability proof. Ide-
ally, the proof system (and proof format) for such proofs should be sufficiently
expressive, allowing SAT solvers to efficiently produce proofs that correspond to
the SAT solving techniques they use at runtime. At the same time, the resulting
proofs ought to be efficiently checkable by independent and trustworthy tools.
© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 223–241, 2021.
https://doi.org/10.1007/978-3-030-72013-1_12

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_12&domain=pdf
http://orcid.org/0000-0001-7033-2463
http://orcid.org/0000-0002-5587-8801
http://orcid.org/0000-0002-9504-4107
https://doi.org/10.1007/978-3-030-72013-1_12

224 Y. K. Tan et al.

The de facto standard proof system for propositional unsatisfiability proofs is
known as Resolution Asymmetric Tautology (RAT) [24]. The associated DRAT
format [36] combines clause addition based on RAT steps and clause deletion.
Independent checking tools can validate proofs in the DRAT format; they have
been used to check the results of the SAT competitions since 2014 [36] and
in industry [15]. Enriching DRAT proofs with hints is the main technique for
developing efficient verified proof checkers, e.g., existing verified checkers use the
enriched proof formats LRAT [6] and GRAT [28].

A recently proposed proof system, called Propagation Redundancy (PR) [21],
generalizes RAT. There exist short PR proofs without new variables for many
problems that are hard for resolution, such as pigeonhole formulas, Tseitin prob-
lems, and mutilated chessboard problems [19]. Due to the absence of new vari-
ables it is easier to find PR proofs automatically [20], and it is considered unlikely
that there exist short RAT proofs for these problems that do not introduce new
variables nor reuse eliminated variables [21]. Such PR proofs can be checked di-
rectly [21], or they can first be transformed into DRAT proofs or even Extended
Resolution proofs by introducing new variables [18,25]. In theory, the blowup is
small, i.e., polynomial-sized. However, in practice, the transformed proofs can be
significantly more expensive to validate compared to the original PR proofs [21].

A natural question arises: why should proof checkers be trusted to correctly
check proofs if we do not likewise trust SAT solvers to correctly determine satisfi-
ability? One answer is that proof checkers are much easier to implement so their
code can be carefully audited. Another answer is that the algorithms underlying
proof checkers have been formally verified in a proof assistant [6, 15, 28]. How-
ever, to get executable code for these verified checkers, some additional unverified
steps are still required. Although unlikely, each of these steps can introduce bugs
in the resulting executable: (1) the algorithms are extracted by unverified code
generation tools into source code for a programming language; (2) unverified
parsing, file I/O, and command-line interface code is added; (3) the combined
code is then compiled by unverified compilers down to executable machine code.

The contributions of this paper are: (i) a new Linear PR (henceforth LPR)
proof format that enriches PR proofs with hints and is backwards compatible
with the LRAT format; (ii) a tool to efficiently enrich PR proofs with hints; and
(iii) cake_lpr, an efficient verified LPR proof checker with correctness guaran-
tees, including for steps (1)–(3) enumerated above. The cake_lpr tool is publicly
available at https://github.com/tanyongkiam/cake_lpr and it was used to val-
idate the unsatisfiability proofs in the 2020 SAT Competition because of its
strong trust story combined with easy compilation and usage. Moreover, the
stronger proof system could be supported in future competitions.

Section 3 shows how PR proofs can be enriched to obtain LPR proofs and
presents the corresponding LPR proof checking algorithm (Contributions i & ii).
Notably, existing LRAT proof checkers can be extended in a clean and minimal
way to support LPR proofs. Section 4 explains the implementation of our checker
in CakeML, as well as the correctness guarantees and high-level verification strat-
egy behind the proofs (Contribution iii). Section 5 benchmarks our proof format

https://github.com/tanyongkiam/cake_lpr

cake_lpr: Verified Propagation Redundancy Checking in CakeML 225

Table 1. A comparison of SAT proof checkers that have been verified in various proof
assistants [6,15,28]. Green background (cells with +) indicates desirable properties, e.g.,
LPR is based on a stronger proof system than LRAT and GRAT, while red backgrounds
(cells with ×) indicate less desirable properties. Yellow backgrounds (cells with −) are
also undesirable but to a lesser extent.

and proof checker against existing implementations. A summary comparison of
the new proof checker against existing verified proof checkers is in Table 1.

2 Background

This section provides background on CakeML and its related tools. It also recalls
the standard problem format and clausal proof systems used by SAT solvers.

2.1 HOL4 and CakeML

HOL4 is a proof assistant implementing classical higher-order logic [34]. CakeML
is a programming language deeply embedded in HOL4, i.e., its abstract syntax
is represented as a HOL datatype and its semantics is formalized within HOL4.
Several tools for developing verified CakeML software are used in this work to
fill the verification gaps in the correspondingly enumerated items in Section 1:

(1) Two tools are used to produce (or extract) verified CakeML source code:
– the CakeML proof-producing translator [32] automatically synthesizes

verified source code from pure algorithmic specifications;
– the CakeML characteristic formula (CF) framework [14] provides a sep-

aration logic which can be used to manually verify (more efficient) im-
perative code for performance-critical parts of the proof checker.

(2) CakeML provides a foreign function interface (FFI) and a corresponding
formal FFI model [10]. These are used to verify system call interactions, e.g.,
file I/O and command-line interfaces, under carefully specified assumptions.

(3) Most importantly, CakeML has a compiler that is verified [35] to preserve
the semantics of source CakeML programs down to their compiled machine
code implementations. Hence, all guarantees obtained from the preceding
steps can be carried down to the level of machine code.

226 Y. K. Tan et al.

The combination of these tools enables binary code extraction [27] where
verified machine code is extracted directly in HOL4. Several other CakeML-based
programs have been verified using these tools, including: certificate checkers for
floating-point error bounds [3] and vote counting [13], and an OpenTheory article
checker [1]. Œuf provides a similar toolchain in the Coq proof assistant [31].

2.2 SAT Problems and Clausal Proofs

Fix a set of boolean variables x1, . . . , xn, where the negation of variable xi is
denoted xi, and the negation of xi is identified with xi. Variables and their
negations are called literals and are denoted using l. The input for propositional
SAT solvers is a formula F in conjunctive normal form (CNF) over the set
of variables x1, . . . , xn. Here, CNF means that F consists of an outer logical
conjunction F ≡

∧m
i=1 Ci, where each clause Ci is a disjunction over some of

the literals Ci ≡ li1 ∨ li2, · · · ∨ lik. Formulas in CNF can be represented directly
as sets of clauses and clauses as sets of literals. The empty clause is denoted
⊥. An assignment α assigns boolean values to each variable; α can be partial,
i.e., it only assigns values to some of the variables. Like formulas and clauses,
a (partial) assignment can be represented as the set of literals assigned the
boolean value true by that assignment. The negation of an assignment, denoted
α, assigns the negation of all literals in α. An assignment α satisfies a clause
C iff their set intersection is nonempty. Additionally, we define C |α = ! if
α satisfies C; otherwise, C |α denotes the result of removing from C all the
literals falsified by α, i.e., C |α = C \ α. For a formula F , we define F |α =
{C |α | C ∈ F and C |α �= !}. Intuitively, F |α contains the remaining clauses
in formula F after committing to the partial assignment α.

The task of a SAT solver is to determine whether F is satisfiable, i.e., whether
there exists a (possibly partial) assignment α such that F |α is empty. Any sat-
isfying assignment can be used as certificate of satisfiability. Formulas without
a satisfying assignment are unsatisfiable. Certifying unsatisfiability is more diffi-
cult and typically uses a clausal proof system [21]. The idea behind these proof
systems is briefly recalled next, using the key concept of clause redundancy.

Definition 1. A clause C is redundant with respect to formula F iff F ∧C and
F are both satisfiable or both unsatisfiable, i.e., they are satisfiability equivalent.

A clause C that is redundant for F can be added to F without changing
its satisfiability. Clausal proof systems work by successively adding redundant
clauses to F until the empty clause ⊥ is added, as illustrated below:

F
+ redundant C1︷︸︸︷

=⇒ F ∧ C1

+ redundant C2︷︸︸︷
=⇒ F ∧ C1 ∧ C2

+ redundant C3︷︸︸︷
=⇒ · · · =⇒ F ∧ C1 ∧ C2 ∧ · · · ∧ ⊥

Satisfiability is preserved along each =⇒ step because of redundancy, e.g.,
satisfiability of F implies satisfiability of F ∧ C1. Since the final formula is un-
satisfiable, the sequence of redundant clause addition steps C1, C2, . . . ,⊥ corre-
sponds to a proof of unsatisfiability for F . Deciding clause redundancy is as hard

cake_lpr: Verified Propagation Redundancy Checking in CakeML 227

as solving the SAT problem itself because ⊥ is always redundant for unsatisfiable
formulas. The difference between clausal proof systems is how the redundancy
of a (proposed) redundant clause C is efficiently certified at each proof step.

Many notions of redundancy are based on unit propagation. A unit clause
is a clause with only one literal. The result of applying the unit clause rule to
a formula F is the formula F |l where (l) is a unit clause in F . The iterated
application of the unit clause rule to a formula F until no unit clauses are left
is called unit propagation. If unit propagation on F yields the empty clause ⊥,
denoted by F &1 ⊥, we say that F implies ⊥ by unit propagation. The notion of
implied by unit propagation is also used for regular clauses as follows: F &1 C iff
F ∧ ¬C &1 ⊥ with ¬C =

∧
l∈C(l). Observe that ¬C can be viewed as a partial

assignment that assigns the literals l, for l ∈ C, to true. For a formula G, F &1 G
iff F &1 C for all C ∈ G. The main clausal proof system used in this paper is
based on propagation redundant clauses, which are defined as follows.

Definition 2. Let F be a formula, C a nonempty clause, and α the smallest
assignment that falsifies C. Then, C is propagation redundant (PR) with respect
to F if there exists an assignment ω which satisfies C and such that F |α &1 F |ω.

Intuitively, a PR clause C is redundant because any satisfying assignment for
F that does not already satisfy C can be modified to a satisfying assignment
for F ∧ C by updating its literals assigned to true according to the (partial)
witnessing assignment ω [21]. Propagation redundancy is efficiently checkable
in polynomial time using the witnessing assignment and PR generalizes various
other notions of clause redundancy, including the de facto standard Resolution
Asymmetric Tautology (RAT) proof system (see [21, Theorem 2]) that is able to
compactly express all current techniques used in state-of-the-art SAT solvers [24].

In practice, clausal proof formats also contain deletion information to speed
up proof validation. Hence, unsatisfiability proofs for formula F are modeled
as sequences I1, . . . , In of instructions that either add or delete a clause. An
addition instruction is a triple 〈a, C, ω〉, where C is a clause and ω is a (possibly
empty) witnessing assignment ; a deletion instruction is a pair 〈d, C〉 where C is
a clause. The sequence I1, . . . , In gives rise to formulas F1, . . . , Fn with F0 = F
as follows, where Fj is the accumulated formula up to the j-th instruction:

Fj =

{
Fj−1 ∪ {C} if Ij is of the form 〈a, C, ω〉
Fj−1 \ {C} if Ij is of the form 〈d, C〉

A PR proof of unsatisfiability is valid if the last instruction adds the empty
clause In = 〈a,⊥, ∅〉, and, for all addition instructions Ij = 〈a, Cj , ωj〉, it holds
that Cj is PR with respect to Fj−1 using witness ωj . In case an empty witness
is provided for Ij , then Fj−1 &1 C should hold.

3 Linear Propagation Redundancy

This section describes a new clausal proof format called LPR (short for Linear
Propagation Redundancy). The format is designed to allow efficient validation

228 Y. K. Tan et al.

〈proof〉 = {〈line〉}
〈line〉 = (〈lpr〉 | 〈delete〉), “\n”
〈lpr〉 = 〈id〉, 〈clause〉,〈witness〉,“0”, 〈idlist〉, {〈reduced〉}, “0”
〈delete〉 = 〈id〉, “d”, 〈idlist〉, “0”
〈reduced〉 = 〈neg〉, 〈idlist〉
〈idlist〉 = {〈id〉}
〈id〉 = 〈pos〉
〈lit〉 = 〈pos〉 | 〈neg〉
〈pos〉 = “1” | “2” | . . .
〈neg〉 = “−”, 〈pos〉
〈clause〉 = {〈lit〉}
〈witness〉 = {〈lit〉}

Fig. 1. The grammar for the LPR format. Additions compared to the LRAT gram-
mar [6] are highlighted in bold.

of PR clauses using a (verified) proof checker. We also enhanced the DPR-trim
tool3 to efficiently add hints to PR proofs, thereby turning them into LPR proofs.
Throughout the section, we emphasize how LPR can be viewed as a clean and
minimal extension of the existing LRAT proof format, which thereby enables its
straightforward implementation in existing LRAT tools.

The most commonly used proof format for SAT solvers is DRAT, which com-
bines deletion with RAT redundancy [36]. DRAT proofs are easy for SAT solvers
to emit and top-tier SAT solvers support it, but have some disadvantages for
verified proof checking. In particular, checking whether a clause is RAT requires a
significant amount of proof search to find the unit clauses necessary for showing
the implied-by-unit-propagation property. This complicates verification of the
proof checking algorithm and slows down the resulting verified proof checkers.
The idea behind the Linear RAT (LRAT) [6, 15] and GRAT [28] formats is to
include these unit clauses as hints so that verified proof checkers can follow the
hints directly without the need for proof search. The LPR format lifts this idea
to allow fast validation of the PR property.

An assignment ω reduces a clause C if C |ω ⊂ C and C |ω �= !. To check the
PR property F |α &1 F |ω, it suffices to check, for each clause C ∈ F reduced
by ω, that F |α &1 C |ω. Hence, in practice, a smaller ω yields a cheaper PR
check. The LPR format extends the PR format by adding, for each clause that
is reduced by the witness, a list of all unit clause hints required for showing the
implied-by-unit-propagation property. Additionally, in order to point to clauses,
the LPR format includes an index for each clause at the beginning of each line.
The grammar of the LPR format is shown in Fig. 1.

Our extension to DPR-trim enriches input PR proofs by finding and adding
all required unit clause hints. It also shrinks the witness ω where possible: every
literal in ω ∩ α is removed as well as any literal in ω that is implied by unit
propagation from F |α. The shrinking was shown to be correct [21], but has
3 LPR hint addition is now part of the public GitHub version available at

https://github.com/marijnheule/dpr-trim using the command-line option -L.

https://github.com/marijnheule/dpr-trim

cake_lpr: Verified Propagation Redundancy Checking in CakeML 229

DIMACS file

p cnf 12 22
1 2 3 0
4 5 6 0
7 8 9 0
10 11 12 0

-1 -4 0
-2 -5 0
-3 -6 0
-1 -7 0
-2 -8 0
-3 -9 0
...

LPR proof file

23 -3 -10 -3 -10 1 12 0 -5 17 -8 20 -19 7 -22 10 0
24 -3 -11 -3 -11 2 12 0 -6 18 -9 21 -19 7 -22 10 0
25 -3 0 23 24 4 13 0
26 -6 -10 -6 -10 4 12 0 -5 11 -13 7 -14 20 -22 16 0
27 -6 -11 -6 -11 5 12 0 -6 12 -13 7 -15 21 -22 16 0
28 -6 0 26 27 4 19 0
29 -9 -10 -9 -10 7 12 0 -8 11 -13 10 -14 17 -19 16 0
30 -9 -11 -9 -11 8 12 0 -9 12 -13 10 -15 18 -19 16 0
31 -9 0 29 30 4 22 0
32 -2 0 6 9 28 31 2 3 14 0
33 -5 0 6 15 25 31 1 3 8 0
34 0 25 28 32 33 1 2 5 0

Fig. 2. (Left) The first ten clauses of pigeonhole formula (4 pigeons, 3 holes) in the
DIMACS format used by SAT solvers. (Right) The LPR refutation consisting of clause-
witness pairs and unit clause hints. The first bold integer in each line is the clause index
while other bold integers are the unit clause hints. Dropping the bold integers yields a
proof in the PR format. Redundant spaces have been added to improve readability.

not been implemented so far. We observed that the witnesses in the PR proofs
produced by SaDiCaL [20] can be substantially compressed using this method.

Fig. 2 (left) shows an example formula in the standard DIMACS problem
format. The DIMACS format includes a header line starting with “p cnf ” fol-
lowed by the number of variables and the number of clauses. The non-comment
lines (not starting with “c ”) represent clauses, and they end with “0”. Positive
integers denote positive literals, while negative integers denote negative literals.
Fig. 2 (right) shows a corresponding proof in LPR format. Deletion lines in LPR
are formatted identically to LRAT [6] (not shown here). For clause addition
lines, the LPR format only differs from LRAT in case the clause to be added
has PR but not RAT redundancy. A clause addition line in LPR format consists
of three parts. The first part is the first integer on the line, which denotes the
index of the new clause. The second part consists of the clause and the witness;
the first group of literals is the clause. The (potentially empty) witness starts
from the second occurrence of the first literal of the clause until the first 0 that
separates the unit clause hints. The second part exactly matches the PR proof
format [21]. The third part (after the first 0) are the unit clause hints, which
exactly matches the LRAT format [6].

The checking algorithm for LPR, shown in Fig. 3, overlaps significantly with
that for LRAT (see [6, Algorithm 1]). The only differences are Steps 4 and
5.1. In Step 4, the witness is used (if present) instead of always using the first
literal in Cj . In Step 5.1, clauses are skipped if they are satisfied by the witness.
Notice that a clause can only be both reduced and satisfied by a witness if the
witness consists of at least two literals, while in the LRAT format witnesses
always consist of exactly one literal. Note also that the algorithm does not check
whether Cj |ω = !, which is a requirement for PR. This omission is allowed
because the first literal in ω in the LPR (and PR) format is the same as the first
literal in Cj .

230 Y. K. Tan et al.

Input: CNF F = {Ci}i∈I and line
 an LPR step.
Output: YES if parsed clause Cj proved PR for F by
,

NO otherwise.
1. parse
 as

[
j, Cj ,ωj , 0, ĩ0, {−ik, ĩk}nk=1

]
instantiating variables with (vectors of) positive integers.

2. set α ← ¬Cj

3. for i ∈ ĩ0

3.1. set C′
i ← Ci |α

3.2. if C′
i = ⊥, return YES

3.3. if C′
i = � or |C′

i| ≥ 2, return NO
3.4. set α ← α ∪ C′

i

4. if ωj �= ∅ then set ω ← ωj else set ω ← (Cj)1
(if Cj = ⊥, return NO)

5. for i ∈ I
5.1. if Ci is satisfied by ω or is not reduced by ω,

skip to next iteration of Step 5.
5.2. find k such that ik = i (from
)

(return NO if no such k exists)
5.3. if Ci |(α \ ω) = �, skip
5.4. set α′ ← α ∪ (¬Ci \ ω)
5.5. for m ∈ ĩk

5.5.1. set C′
m ← Cm |α′

5.5.2. if C′
m = ⊥, skip to next iteration of Step 5.

5.5.3. if C′
m = � or |C′

m| ≥ 2, return NO
5.5.4. set α′ ← α′ ∪ C′

m

5.6. return NO
6. return YES

Fig. 3. Algorithm to check a single clause addition step in the LPR format. The bold
parts show the additions compared to LRAT proof checking [6].

4 CakeML Proof Checking

This section explains the implementation and verification of cake_lpr, our veri-
fied CakeML LPR proof checker. Section 4.1 focuses on the high-level verification
strategy which we used to reduce the verification task to mostly routine low-level
proofs (the latter details are omitted). Section 4.2 highlights important verified
performance optimizations used in the proof checker.

4.1 Verification Strategy

The development of cake_lpr proceeds in three refinement steps, where each
step progressively produces a more concrete and performant implementation of
the proof checker. These refinements are visualized in the three columns of Fig. 4.

Step 1 formalizes the definition of CNF formulas and their unsatisfiability, as
well as the PR proof system described in Section 2.2. The inputs and outputs to

cake_lpr: Verified Propagation Redundancy Checking in CakeML 231

Abstract CNF
Formula

Concrete CNF
Formula

DIMACS
Input File

�
(lift repr.)

�
(parse)

PR Proof
System

LPR Checker
(Fig. 3)

cake_lpr
�

(pure impl.)
�

(imp. impl.)

Valid Proof
(unsat.) ?

YES or NO
(Fig. 3)

VERIFIED UNSAT
or ERROR

Step 1 Step 2 Step 3

�
(verified)

�
(verified)

Input

Output

Fig. 4. The three step refinement used in the development of cake_lpr.

the proof system are abstract and not tied to any concrete representation at this
step. For example, input variables are drawn from an arbitrary type α, clauses
and CNFs are represented using sets. The correctness of the PR proof system is
proved in this step, i.e., we show that a valid PR proof implies unsatisfiability of
the input CNF. The proof essentially follows [21, Theorem 1].

Step 2 implements a purely functional version of the LPR proof checking al-
gorithm from Fig. 3. Here, the inputs and outputs are given concrete representa-
tions with computable datatypes, e.g., literals are integers (similar to DIMACS),
clauses are lists of integers, and CNFs are lists of clauses. These concrete rep-
resentations lift naturally to the abstract, set-based representation from Step 1.
The output is a YES or NO answer according to the algorithm from Fig. 3. The
correctness theorem for Step 2 shows that LPR proof checking correctly refines
the PR proof system, i.e., if it outputs YES, then there exists a valid PR proof for
the input (lifted) CNF; by Step 1, this implies that the CNF is unsatisfiable.4

Step 3 uses imperative features available in the CakeML source language, e.g.,
(byte) arrays and exceptions, to improve code performance; these optimizations
are detailed further in Section 4.2. This step also adds user interface features like
parsing and file I/O so that the input CNF formula is read (and parsed) from
a file, and the results are printed on the standard output and error streams.
The verification of this step uses CakeML’s proof-producing translator [32] and
characteristic formula framework [14] to prove the correctness of the source code
implementation of cake_lpr; this code is subsequently compiled with the veri-
fied CakeML compiler. Composing the correctness theorem for source cake_lpr
with CakeML’s compiler correctness theorem yields the corresponding correct-
ness theorem for the cake_lpr binary. The final correctness theorem is given
in Appendix A. Briefly, it shows that if the cake_lpr executable prints the
string “s VERIFIED UNSAT\n” to the standard output stream (in CakeML’s FFI
model [10]), then the input (parsed) DIMACS file is an unsatisfiable CNF.
4 If the output is NO, the input CNF could still be unsatisfiable, but the input LPR

proof is not valid according to the algorithm in Fig. 3.

232 Y. K. Tan et al.

4.2 Verified Optimizations

To minimize verification effort, CakeML’s imperative features are only used for
the most performance-critical steps of cake_lpr. Our design decisions are based
on empirical observations about the LPR proof checking algorithm. These are
explained below with reference to specific steps in the algorithm from Fig. 3.

Array-based representations. In practice, many LPR proof steps do not re-
quire the full strength of a PR (or RAT) clause. Hence, a large part of proof
checking time is spent in the Step 3 loop of the algorithm and it is important to
compute the main loop bottleneck, Ci |α in Step 3.1, as efficiently as possible.
CakeML’s native byte arrays are used to maintain a compact bitset-like repre-
sentation of the assignment α, so that Ci |α can be computed in one pass over
Ci with constant time bitset lookup for each literal in Ci.

For proof steps requiring the full strength of PR clauses, Step 5 loops over
all undeleted clauses in the formula. Formulas are represented as an array of
clauses5 together with a lazily updated list that tracks all indices of the array
containing undeleted clauses. This enables both constant-time lookup of clauses
throughout the algorithm and fast iteration over the undeleted clauses for Step 5.
Deletion in the index list is done in (amortized) constant time by removing a
deleted index only when the index is looked up in Step 5.1. Additionally, for
each literal, the smallest clause index where that literal occurs (if any) is lazily
tracked in a lookup array; for a given witness ω, all clauses occurring at indices
below the index of any literal in ω can be skipped in Step 5.1.

Proof checking exceptions. There are several steps in the proof checking
algorithm that can fail (report NO) if the input proof is invalid, e.g., in Step 3.3.
In a purely functional implementation, results are represented with an option:
None indicating a failure and Some res indicating success with result res. While
conceptually simple, this means that common case (successful) intermediate re-
sults are always boxed within an option and then immediately unboxed with
pattern matching to be used again. In cake_lpr, failures instead raise excep-
tions which are directly handled at the top level. Thus, successful results can be
passed directly, i.e., as res, without any boxing. Support for verifying the use of
exceptions is a unique feature of CakeML’s CF framework [14].

Buffered I/O streams. Proof files generated by SAT solvers can be large, e.g.,
ranging from 300 MB to 4 GB for the second benchmark suite in Section 5. These
files are streamed into memory line by line because each proof step depends only
on information contained in its corresponding line in the file. This streaming
interaction is optimized using CakeML’s verified buffered I/O library [29] which
maintains an internal buffer of yet-to-be-read bytes from the read-only proof file
to batch and minimize the number of expensive filesystem I/O calls.
5 Deleted clauses are no longer referenced by the array and are automatically freed by

CakeML’s garbage collector.

cake_lpr: Verified Propagation Redundancy Checking in CakeML 233

5 Benchmarks

This section compares the verified CakeML LPR proof checker against other
verified checkers on two benchmark suites and a RAT microbenchmark. The first
suite is a collection of problems with PR proofs generated by the satisfaction-
driven clause learning (SDCL) solver SaDiCaL [20], while the second suite con-
sists of unsatisfiable problems from the SAT Race 2019 competition.6 The RAT
microbenchmark consists of proofs for large mutilated chessboards generated by
a BDD-based SAT solver [5]. The CakeML checker is labeled cake_lpr (default
4GB heap and stack space), while other checkers used are labeled acl2-lrat
(verified in ACL2 [15]), coq-lrat (verified in Coq [6]), and GRATchk (verified
in Isabelle/HOL [28]) respectively. All experiments were run on identical nodes
with Intel Xeon E5-2695 v3 CPUs (35M cache, 2.30GHz) and 128GB RAM.
Configuration options specific to each benchmark suite are reported below.

5.1 SaDiCaL PR Benchmarks

The SaDiCaL solver produces PR proofs for hard SAT problems in its benchmark
suite [20] and it is experimentally much faster than a plain DRAT-based CDCL
solver on those problems [20, Section 7]. The PR proofs are directly checked
by cake_lpr after conversion into LPR format with DPR-trim. For all other
checkers, the PR proofs were first converted to DRAT format using pr2drat (as
in the earlier approach [20]), and then into LRAT and GRAT formats using the
DRAT-trim and GRATgen7 tools respectively. All tools were ran with a timeout
of 10000 seconds and all timings are reported in seconds (to one d.p.). Results
are summarized in Tables 2 and 3.

All benchmarks were successfully solved by SaDiCaL except mchess19 which
exceeded the time limit. For the remaining benchmarks, generating and check-
ing LPR proofs required a comparable (1–2.5x) amount of time to solving the
problems, except mchess, for which LPR generation and checking is much faster
than solving (Table 2). Unsurprisingly, direct checking of LPR proofs is much
faster than the circuitous route of converting into DRAT and then into either
LRAT or GRAT (Table 3). Unlike LPR, checking PR proofs via the LRAT route
is 5–60x slower than solving those problems; this is a significant drawback to
using the route in practice for certifying solver results.

The backwards compatibility of cake_lpr is also shown in Table 3, where
it is used to check the generated LRAT proofs. Among the LRAT checkers,
acl2-lrat is fastest, followed by cake_lpr (LRAT checking), and coq-lrat. Al-
though cake_lpr (LRAT checking) is on average 1.3x slower than acl2-lrat, it
scales better on the mchess problems and is actually much faster than acl2-lrat
on mchess18. We also observed that the GRAT toolchain (summing SaDiCaL,
pr2drat, GRATgen and GRATchk times) is much slower than the LRAT toolchains

6 The suites are available at http://fmv.jku.at/sadical/ and http://sat-race-2019.ciirc.
cvut.cz/ respectively.

7 GRATgen, the only tool that supports parallelism, was ran with 8 threads.

http://fmv.jku.at/sadical/
http://sat-race-2019.ciirc.cvut.cz/
http://sat-race-2019.ciirc.cvut.cz/

234 Y. K. Tan et al.

Table 2. Timings for PR benchmarks with conversion into LPR format. The “Total
(LPR)” column sums the generation and checking times. The timing for mchess19 is
omitted because SaDiCaL timed out; timings for the Urquhart U.-s3-* benchmarks are
omitted because they took a negligible amount of time (< 1.0s total).

Problem SaDiCaL DPR-trim cake_lpr
(LPR)

Total
(LPR)

hole20 1.0 0.5 0.7 2.2
hole30 6.9 2.4 6.1 15.4
hole40 31.3 10.0 25.1 66.3
hole50 101.7 35.5 87.9 225.1
mchess15 18.5 1.1 2.1 21.7
mchess16 21.7 1.2 2.1 25.0
mchess17 34.8 1.6 3.4 39.8
mchess18 59.8 2.3 5.2 67.2

Problem SaDiCaL DPR-trim cake_lpr
(LPR)

Total
(LPR)

U.-s4-b1 0.7 0.6 0.3 1.6
U.-s4-b2 0.3 0.4 0.2 0.8
U.-s4-b3 0.4 0.4 0.2 1.0
U.-s4-b4 0.3 0.5 0.3 1.1
U.-s5-b1 2.5 0.9 1.3 4.7
U.-s5-b2 1.2 0.6 0.7 2.4
U.-s5-b3 3.2 1.5 2.0 6.8
U.-s5-b4 5.5 1.5 3.2 10.1

Table 3. Timings for PR benchmarks, first converted to DRAT and subsequently
converted into LRAT and GRAT formats. The “Total (LRAT)” and “Total (GRAT)”
columns sum the fastest generation and checking times for the LRAT and GRAT
formats respectively. The “Total (LPR)” column (in bold, fastest total time) is repro-
duced from Table 2 for ease of comparison. Fail(T) indicates a timeout. Timings for
the mchess19 and U.-s3-* benchmarks are omitted as in Table 2.

Prob. pr2drat DRAT-trim cake_lpr
(LRAT)

acl2-lrat coq-lrat GRATgen GRATchk Total
(LPR)

Total
(LRAT)

Total
(GRAT)

hole20 0.8 4.4 18.5 7.9 966.7 4.6 18.2 2.2 14.2 24.6
hole30 6.8 61.4 180.4 105.9 Fail(T) 24.5 647.9 15.4 181.0 686.1
hole40 32.4 460.0 1039.5 711.8 Fail(T) 101.3 Fail(T) 66.3 1235.5 -
hole50 108.6 2663.0 4697.4 3292.2 Fail(T) 337.2 Fail(T) 225.1 6165.5 -
mchess15 7.7 48.2 49.3 36.2 Fail(T) 48.4 2023.1 21.7 110.6 2097.7
mchess16 9.0 62.0 59.8 53.2 Fail(T) 55.2 2903.8 25.0 145.9 2989.6
mchess17 14.5 105 97.3 88.5 Fail(T) 86.1 7050.9 39.8 242.7 7186.3
mchess18 25.1 195.0 152.7 296.8 Fail(T) 135.9 Fail(T) 67.2 432.5 -
U.-s4-b1 0.5 2.5 3.6 3.3 135.7 3.6 44.8 1.6 7.0 49.7
U.-s4-b2 0.2 0.8 1.4 1.0 23.2 1.7 8.2 0.8 2.3 10.4
U.-s4-b3 0.3 1.3 2.0 1.5 49.2 2.4 16.2 1.0 3.5 19.3
U.-s4-b4 0.3 1.1 1.8 1.4 38.3 2.0 10.3 1.1 3.1 12.9
U.-s5-b1 4.2 13.6 16.7 12.5 3048.7 17.4 933.2 4.7 32.8 957.3
U.-s5-b2 1.7 5.6 7.3 5.5 614.7 7.7 189.6 2.4 13.9 200.2
U.-s5-b3 5.0 18.4 26.3 22.2 8750.5 21.1 2316.3 6.8 48.8 2345.6
U.-s5-b4 11.3 34.2 36.9 30.1 Fail(T) 40.6 Fail(T) 10.1 81.0 -

(summing SaDiCaL, pr2drat, DRAT-trim and fastest LRAT checking times).
This is in contrast to the SAT Race 2019 benchmarks below (Fig. 5), where we
observed the opposite relationship. We believe that the difference in checking
speed is due to the various checkers having different optimizations for checking
the expensive RAT proof steps produced by conversion from PR proofs.

5.2 SAT Race 2019 Benchmarks

We further benchmarked the verified checkers on a suite of 117 unsatisfiable
problems from the SAT Race 2019 competition. For all problems, DRAT proofs
were generated using the state-of-the-art SAT solver CaDiCaL before conversion
into the LRAT or GRAT formats. Notably, proofs generated by CaDiCaL on this

cake_lpr: Verified Propagation Redundancy Checking in CakeML 235

Table 4. A summary of the SAT Race 2019 benchmark results. The N/A row counts
problems that timed out or failed in an earlier step of the respective toolchains.

Status CaDiCaL DRAT-trim acl2-lrat cake_lpr coq-lrat GRATgen GRATchk

Success 102 97 96 97 36 100 100
Timeout 15 5 0 0 61 0 0
Failure 0 0 1 0 0 2 0
N/A 0 15 20 20 20 15 17

Fig. 5. (Top) Total SAT Race 2019 proofs checked within a given (per instance) time
limit for the LRAT proof checkers. (Bottom) Total SAT Race 2019 proofs generated and
checked within a given (per instance) time limit for the LRAT and GRAT toolchains.

suite rarely require RAT (or PR) steps, so the checkers are stress-tested on their
implementation of file I/O, parsing, and Step 3.1 from Fig. 3; cake_lpr is the
only tool with a formally verified implementation of the former two steps. All
tools were ran with the SAT competition standard timeout of 5000 seconds.

A summary of the results is given in Table 4. All proofs generated by CaDiCaL
were checked by at least one checker. The acl2-lrat checker fails with a parse
error on one problem even though none of the other checkers reported such an
error; GRATgen aborted on two problems for an unknown reason. Plots com-
paring LRAT proof checking time and overall proof generation and checking
time (LRAT and GRAT) are shown in Fig. 5. From Fig. 5 (top), the relative
order of LRAT checking speeds remains the same, where cake_lpr is on av-
erage 1.2x slower than acl2-lrat, although cake_lpr is faster on 28 bench-

236 Y. K. Tan et al.

Table 5. Timings for the RAT microbenchmark. The number of proof steps and file size
of the proofs (in MB) are shown in the last two columns. Fail(T) indicates a timeout.

Problem pgbdd lrat-check cake_lpr acl2-lrat coq-lrat LRAT Steps File Size

mchess20 3.9 0.5 0.5 19.6 3405.2 125752 5.1
mchess40 47.5 1.0 3.5 453.4 Fail(T) 769287 36
mchess60 311.7 2.7 10.6 4885.2 Fail(T) 2300522 114
mchess80 1164.1 4.8 22.6 Fail(T) Fail(T) 5089457 259
mchess100 3599.0 9.3 44.2 Fail(T) Fail(T) 9506092 499

marks. From Fig. 5 (bottom), both LRAT toolchains are slower than the GRAT
toolchain (average 3.5 times slower for cake_lpr and 3.4 times for acl2-lrat).
Part of the speedup for GRAT comes from GRATgen, which is the only tool that
can be ran in parallel (with 8 threads). This suggests that adding native support
for GRAT-based input to cake_lpr could be a worthwhile future extension.

5.3 Mutilated Chessboard RAT Microbenchmarks

The final microbenchmark suite tests the LRAT checkers on large mutilated
chessboard problem instances (up to 100 by 100) solved by pgbdd, a BDD-based
SAT solver [5]. Unlike the previous two suites, LRAT proofs are emitted directly
by the solver so additional DRAT-trim conversion is not needed. All tools were ran
with a timeout of 10000 seconds and all timings are reported in seconds (to one
d.p.). For additional scaling comparison, we also report results for lrat-check,
an unverified LRAT proof checker implemented in C.

The results in Table 5 show the impact of cake_lpr’s RAT optimizations
(Section 4.2). Notably, cake_lpr scales essentially linearly in the size of the
proofs (up to ≈ 10 million proof steps). As a result, cake_lpr is significantly
faster than acl2-lrat and coq-lrat on these RAT-heavy proofs and it comes
within a 5x factor of the unverified lrat-check tool.

6 Related Work

Verified Proof Checking. There are several RAT-based verified proof checkers,
in ACL2 [15], Coq [6], and Isabelle/HOL [28]. All three checkers are based on
extensions of DRAT, which is itself an extension of the DRUP format [16]; the
Coq checker is based on a predecessor for the GRIT [7] format. The ACL2 checker
can be efficiently and directly executed (without extraction) using imperative
primitives native to the ACL2 kernel [15]. However, the implementation of these
features in ACL2 itself must be trusted to trust the proof checking results, hence
the yellow background in Table 1. SMTCoq [2, 9] is another certificate-based
checker for SAT and SMT problems in Coq. Its resolution-based proof certificates
can be checked natively using native computation extensions of the Coq kernel.

Applications. SAT solving is a key technology underlying many software and
hardware verification domains [4, 23]. Certifying SAT results adds a layer of

cake_lpr: Verified Propagation Redundancy Checking in CakeML 237

trust and is clearly a worthwhile endeavor. Solver-aided mathematical results [17,
22, 26] are particularly interesting and challenging to certify because these of-
ten feature complicated SAT encodings, custom (hand-crafted) proof steps, and
enormous resulting proofs [22]. Our cake_lpr checker can handle the latter two
challenges effectively. For the first challenge, the SAT encoding of mathematical
problems can also be verified within proof assistants. This was demonstrated for
the Boolean Pythagorean Triples problem building on the Coq proof checker [8].

Verified SAT Solving. An alternative to proof checking is to verify the SAT
solvers [11, 12, 30, 33]. This is a significant undertaking but it would allow the
pipeline of generating and checking proofs to be entirely bypassed. Furthermore,
such verification efforts can yield new insights about key invariants underlying
SAT solving techniques compared to prior pen-and-paper presentations, e.g., the
2WL invariant [12]. However, the performance of verified SAT solvers are not
yet competitive with modern (unverified) SAT solving technology [11,12].

7 Conclusion

This work presents the new LPR proof format for verified checking of PR proofs.
It demonstrates the feasibility of using binary code extraction to verify a perfor-
mant LPR proof checker, cake_lpr, down to its machine code implementation.

Given the strength of the PR proof system, there is ongoing research into the
design of satisfaction-driven clause learning techniques [20, 21] for SAT solvers
based on PR clauses. Our proof checker opens up the possibility of using a verified
checker to help check and debug the implementation of these new techniques.
It also gives future SAT competitions the option of providing PR as the default
(verified) proof system for participating solvers.

Acknowledgments. We thank Jasmin Blanchette and the anonymous review-
ers for their helpful feedback on earlier drafts of this paper, Peter Lammich for
help with GRATgen, and Stefan O’Rear for help with profiling CakeML programs.

The first author was supported by A*STAR, Singapore, the second author
was supported by the National Science Foundation (NSF) under grant CCF-
2010951, and the third author was supported by the Swedish Foundation for
Strategic Research, Sweden. This work was also supported by NSF award number
ACI-1445606 at the Pittsburgh Supercomputing Center (PSC).

A Correctness Theorem for cake_lpr

The correctness theorem for cake_lpr verified in HOL4 is shown in Fig. 6. The
assumptions (1) (in red) are routine for compiled CakeML programs that use
its basis library. The first line assumes that the command-line cl and file system
fs models are well-formed. The second line assumes that the compiled code is
correctly placed into (code) memory according to CakeML’s x64 machine model.

238 Y. K. Tan et al.

Fig. 6. The end-to-end correctness theorem for the CakeML LPR proof checker.

The first guarantee (2) (in blue) is that the machine code implementation
always terminates normally according to CakeML’s x64 machine code semantics.
In particular, the code never crashes and may emit some I/O events when run;
however, it possibly terminates with an out-of-memory error (extend_with_re-
source_limit) when CakeML runs out of stack or heap space.

The main correctness guarantee for cake_lpr is (3) (in green) and (4) (in
black). Briefly, (3) says that the only observable change to the filesystem after
executing cake_lpr are strings printed on standard output out and standard
error err . According to (3), if the string “s VERIFIED UNSAT\n” is printed onto
standard output, then cake_lpr was provided with a file (in its first command-
line argument), and the file parses in DIMACS format to a formula fml which is
unsatisfiable. The remaining else case (4), says that the only other possibilities
for standard output are either (i) a printed version of the parsed DIMACS file (if
no LPR proof file is provided), or (ii) the empty string. All other error messages
are printed onto standard error.

In addition, the DIMACS parser (parse_dimacs) is proved to be left inverse
to the DIMACS printer (print_dimacs) in the following sense:

� wf_fml fml ⇒
∃mv fml ′.
parse_dimacs (print_dimacs fml) = Some (mv ,fml ′) ∧ interp fml = interp fml ′

Briefly, this says that for any well-formed formula fml , printing that for-
mula into DIMACS format then parsing it yields another formula fml ′ which is
guaranteed to have the same interpretation according to the semantics of CNFs
formalized in HOL4. All parsed formulas are well-formed (not shown here).

cake_lpr: Verified Propagation Redundancy Checking in CakeML 239

References

1. Abrahamsson, O.: A verified proof checker for higher-order
logic. J. Log. Algebraic Methods Program. 112, 100530 (2020).
https://doi.org/10.1016/j.jlamp.2020.100530

2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A mod-
ular integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouan-
naud, J., Shao, Z. (eds.) CPP. LNCS, vol. 7086, pp. 135–150. Springer (2011).
https://doi.org/10.1007/978-3-642-25379-9_12

3. Becker, H., Zyuzin, N., Monat, R., Darulova, E., Myreen, M.O., Fox, A.C.J.:
A verified certificate checker for finite-precision error bounds in Coq and
HOL4. In: Bjørner, N., Gurfinkel, A. (eds.) FMCAD. pp. 1–10. IEEE (2018).
https://doi.org/10.23919/FMCAD.2018.8603019

4. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, R. (ed.) TACAS. LNCS, vol. 1579, pp. 193–207. Springer
(1999). https://doi.org/10.1007/3-540-49059-0_14

5. Bryant, R.E., Heule, M.J.H.: Generating extended resolution proofs with a BDD-
based SAT solver. In: Groote, J.F., Larsen, K.G. (eds.) TACAS. LNCS, Springer
(2021), to appear

6. Cruz-Filipe, L., Heule, M.J.H., Hunt Jr., W.A., Kaufmann, M., Schneider-Kamp,
P.: Efficient certified RAT verification. In: de Moura, L. (ed.) CADE. LNCS, vol.
10395, pp. 220–236. Springer (2017). https://doi.org/10.1007/978-3-319-63046-5_-
14

7. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient certified resolution
proof checking. In: Legay, A., Margaria, T. (eds.) TACAS. LNCS, vol. 10205, pp.
118–135 (2017). https://doi.org/10.1007/978-3-662-54577-5_7

8. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Formally verifying the so-
lution to the boolean Pythagorean triples problem. J. Autom. Reasoning 63(3),
695–722 (2019). https://doi.org/10.1007/s10817-018-9490-4

9. Ekici, B., Mebsout, A., Tinelli, C., Keller, C., Katz, G., Reynolds, A., Barrett,
C.W.: SMTCoq: A plug-in for integrating SMT solvers into Coq. In: Majum-
dar, R., Kuncak, V. (eds.) CAV. LNCS, vol. 10427, pp. 126–133. Springer (2017).
https://doi.org/10.1007/978-3-319-63390-9_7

10. Férée, H., Pohjola, J.Å., Kumar, R., Owens, S., Myreen, M.O., Ho, S.: Program
verification in the presence of I/O - semantics, verified library routines, and verified
applications. In: Piskac, R., Rümmer, P. (eds.) VSTTE. LNCS, vol. 11294, pp. 88–
111. Springer (2018). https://doi.org/10.1007/978-3-030-03592-1_6

11. Fleury, M.: Optimizing a verified SAT solver. In: Badger, J.M., Rozier,
K.Y. (eds.) NFM. LNCS, vol. 11460, pp. 148–165. Springer (2019).
https://doi.org/10.1007/978-3-030-20652-9_10

12. Fleury, M., Blanchette, J.C., Lammich, P.: A verified SAT solver with watched
literals using imperative HOL. In: Andronick, J., Felty, A.P. (eds.) CPP. pp. 158–
171. ACM (2018). https://doi.org/10.1145/3167080

13. Ghale, M.K., Pattinson, D., Kumar, R., Norrish, M.: Verified certificate checking
for counting votes. In: Piskac, R., Rümmer, P. (eds.) VSTTE. LNCS, vol. 11294,
pp. 69–87. Springer (2018). https://doi.org/10.1007/978-3-030-03592-1_5

14. Guéneau, A., Myreen, M.O., Kumar, R., Norrish, M.: Verified characteristic formu-
lae for CakeML. In: Yang, H. (ed.) ESOP. LNCS, vol. 10201, pp. 584–610. Springer
(2017). https://doi.org/10.1007/978-3-662-54434-1_22

https://doi.org/10.1016/j.jlamp.2020.100530
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.1007/s10817-018-9490-4
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1007/978-3-030-03592-1_6
https://doi.org/10.1007/978-3-030-20652-9_10
https://doi.org/10.1145/3167080
https://doi.org/10.1007/978-3-030-03592-1_5
https://doi.org/10.1007/978-3-662-54434-1_22

240 Y. K. Tan et al.

15. Heule, M., Hunt Jr., W.A., Kaufmann, M., Wetzler, N.: Efficient, verified checking
of propositional proofs. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP. LNCS, vol.
10499, pp. 269–284. Springer (2017). https://doi.org/10.1007/978-3-319-66107-0_-
18

16. Heule, M., Hunt Jr., W.A., Wetzler, N.: Trimming while check-
ing clausal proofs. In: FMCAD. pp. 181–188. IEEE (2013).
https://doi.org/10.1109/FMCAD.2013.6679408

17. Heule, M.J.H.: Schur number five. In: McIlraith, S.A., Weinberger, K.Q. (eds.)
AAAI. pp. 6598–6606. AAAI Press (2018)

18. Heule, M.J.H., Biere, A.: What a difference a variable makes. In: Beyer, D.,
Huisman, M. (eds.) TACAS. LNCS, vol. 10806, pp. 75–92. Springer (2018).
https://doi.org/10.1007/978-3-319-89963-3_5

19. Heule, M.J.H., Kiesl, B., Biere, A.: Clausal proofs of mutilated chessboards. In:
Badger, J.M., Rozier, K.Y. (eds.) NFM. LNCS, vol. 11460, pp. 204–210. Springer
(2019). https://doi.org/10.1007/978-3-030-20652-9_13

20. Heule, M.J.H., Kiesl, B., Biere, A.: Encoding redundancy for satisfaction-driven
clause learning. In: Vojnar, T., Zhang, L. (eds.) TACAS. LNCS, vol. 11427, pp.
41–58. Springer (2019). https://doi.org/10.1007/978-3-030-17462-0_3

21. Heule, M.J.H., Kiesl, B., Biere, A.: Strong extension-free proof systems. J. Autom.
Reasoning 64(3), 533–554 (2020). https://doi.org/10.1007/s10817-019-09516-0

22. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the
boolean Pythagorean triples problem via cube-and-conquer. In: Creignou, N.,
Berre, D.L. (eds.) SAT. LNCS, vol. 9710, pp. 228–245. Springer (2016).
https://doi.org/10.1007/978-3-319-40970-2_15

23. Jackson, D., Schechter, I., Shlyakhter, I.: Alcoa: the alloy constraint analyzer.
In: Ghezzi, C., Jazayeri, M., Wolf, A.L. (eds.) ICSE. pp. 730–733. ACM (2000).
https://doi.org/10.1145/337180.337616

24. Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR. LNCS, vol. 7364, pp. 355–370. Springer (2012).
https://doi.org/10.1007/978-3-642-31365-3_28

25. Kiesl, B., Rebola-Pardo, A., Heule, M.J.H.: Extended resolution simulates DRAT.
In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR. LNCS, vol. 10900, pp.
516–531. Springer (2018). https://doi.org/10.1007/978-3-319-94205-6_34

26. Konev, B., Lisitsa, A.: Computer-aided proof of Erdős discrepancy properties. Ar-
tif. Intell. 224, 103–118 (2015). https://doi.org/10.1016/j.artint.2015.03.004

27. Kumar, R., Mullen, E., Tatlock, Z., Myreen, M.O.: Software verification with ITPs
should use binary code extraction to reduce the TCB - (short paper). In: Avigad,
J., Mahboubi, A. (eds.) ITP. LNCS, vol. 10895, pp. 362–369. Springer (2018).
https://doi.org/10.1007/978-3-319-94821-8_21

28. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reasoning
64(3), 513–532 (2020). https://doi.org/10.1007/s10817-019-09525-z

29. Lind, J., Mihajlovic, N., Myreen, M.O.: Verified hash map and buffered I/O li-
braries for CakeML. In: Trends in Functional Programming (TFP) (2021), accepted
for presentation

30. Maric, F.: Formal verification of a modern SAT solver by shallow embed-
ding into Isabelle/HOL. Theor. Comput. Sci. 411(50), 4333–4356 (2010).
https://doi.org/10.1016/j.tcs.2010.09.014

31. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: Œuf: min-
imizing the Coq extraction TCB. In: Andronick, J., Felty, A.P. (eds.) CPP. pp.
172–185. ACM (2018). https://doi.org/10.1145/3167089

https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1109/FMCAD.2013.6679408
https://doi.org/10.1007/978-3-319-89963-3_5
https://doi.org/10.1007/978-3-030-20652-9_13
https://doi.org/10.1007/978-3-030-17462-0_3
https://doi.org/10.1007/s10817-019-09516-0
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1145/337180.337616
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-319-94205-6_34
https://doi.org/10.1016/j.artint.2015.03.004
https://doi.org/10.1007/978-3-319-94821-8_21
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1145/3167089

cake_lpr: Verified Propagation Redundancy Checking in CakeML 241

32. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic
into pure and stateful ML. J. Funct. Program. 24(2-3), 284–315 (2014).
https://doi.org/10.1017/S0956796813000282

33. Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: A verified modern SAT solver.
In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI. LNCS, vol. 7148, pp. 363–378.
Springer (2012). https://doi.org/10.1007/978-3-642-27940-9_24

34. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz,
C.A., Tahar, S. (eds.) TPHOLs. LNCS, vol. 5170, pp. 28–32. Springer (2008).
https://doi.org/10.1007/978-3-540-71067-7_6

35. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A.C.J., Owens, S., Norrish, M.:
The verified CakeML compiler backend. J. Funct. Program. 29, e2 (2019).
https://doi.org/10.1017/S0956796818000229

36. Wetzler, N., Heule, M., Hunt Jr., W.A.: DRAT-trim: Efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT. LNCS,
vol. 8561, pp. 422–429. Springer (2014). https://doi.org/10.1007/978-3-319-09284-
3_31

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
http://creativecommons.org/licenses/by/4.0/

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

Deductive Verification of Floating-Point
Java Programs in KeY

Rosa Abbasi1 (�), Jonas Schiffl2 , Eva Darulova1 ,
Mattias Ulbrich2 , and Wolfgang Ahrendt3

1 MPI-SWS, Kaiserslautern and Saarbrücken, Germany, {rosaabbasi,eva}@mpi-sws.org
2 Karlsruhe Institute of Technology, Karlsruhe, Germany,

{jonas.schiffl,ulbrich}@kit.edu
3 Chalmers University of Technology, Göteborg, Sweden, ahrendt@chalmers.se

Abstract. Deductive verification has been successful in verifying inter-
esting properties of real-world programs. One notable gap is the limited
support for floating-point reasoning. This is unfortunate, as floating-point
arithmetic is particularly unintuitive to reason about due to rounding
as well as the presence of the special values infinity and ‘Not a Num-
ber’ (NaN). In this paper, we present the first floating-point support in
a deductive verification tool for the Java programming language. Our
support in the KeY verifier handles arithmetic via floating-point decision
procedures inside SMT solvers and transcendental functions via axioma-
tization. We evaluate this integration on new benchmarks, and show that
this approach is powerful enough to prove the absence of floating-point
special values—often a prerequisite for further reasoning about numeri-
cal computations—as well as certain functional properties for realistic
benchmarks.

Keywords: Deductive Verification · Floating-point Arithmetic · Tran-
scendental Functions.

1 Introduction

Deductive verification has been successful in providing functional verification for
programs written in popular programming languages such as Java [4,23,41,49],
Python [29], Rust [6], C [25, 54], and Ada [19, 50]. Deductive verifiers allow a
user to annotate methods in a program with pre- and postconditions, from which
they automatically generate verification conditions (VCs). These are then either
proven directly by the verifier itself, or discharged with external tools such as
automated (SMT) solvers or interactive proof assistants.

While deductive verifiers fully implement many sophisticated data represen-
tations (including heap data structures, objects, and ownership), support for
floating-point numbers remains rather limited – solely Frama-C and SPARK offer
automated support for floating-point arithmetic in C and Ada [32]. This state
of affairs is at least partially a result of previous limitations in floating-point
support in SMT solvers. Consequently, deductive verification has been used for
c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 242–261, 2021.
https://doi.org/10.1007/978-3-030-72013-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_13&domain=pdf
http://orcid.org/0000-0003-1495-3470
http://orcid.org/0000-0002-9882-8177
http://orcid.org/0000-0002-6848-3163
http://orcid.org/0000-0002-2350-1831
http://orcid.org/0000-0002-5671-2555

Deductive Verification of Floating-Point Java Programs in KeY 243

floating-point programs only by experts with considerable manual effort [15,32].
This is unfortunate as it makes deductive verification unavailable for a large
number of programs across many domains including embedded systems, machine
learning, and scientific computing. With the increasing need for parallelization
in code, scientific computing specifically has recently experienced algorithmic
challenges for which formal methods may contribute to a solution [10,56].

One of the main challenges of floating-point arithmetic is its unintuitive
behavior and the special values that the IEEE 754 standard [39] introduces.
For instance, an overflow or a division by zero results in the special value
(positive or negative) infinity, and not a runtime exception. Similarly, invalid
operations like sqrt(-1.0) result in a Not a Number (NaN) value. These special
values are problematic as seemingly straight-forward identities do not hold (x
== x or x * 0.0 == 0.0). In addition, every operation on floating-point numbers
potentially involves rounding, which compromises familiar rules like associativity
and distributivity. Hence, reasoning support for writing correct floating-point
programs is indispensable.

Abstract interpretation-based tools can prove the absence of runtime errors
and special values [20, 43], and bound roundoff errors due to floating-point’s
finite precision [11, 21, 26, 36, 57]. SMT decision procedures [18] or SAT-based
model-checking [24,56], on the other hand, can prove intricate properties requiring
bit-precise reasoning. However, these techniques and tools largely support only
purely floating-point programs or program snippets, or analyze programs only
up to a predefined depth of the call stack. General reasoning about real-world
object-oriented programs, however, also requires support for features such as the
(unbounded) heap, necessitating different analyses which need to be combined
with floating-point reasoning.

Handling floating-points in a deductive verifier has unique advantages. First,
the deductive verification approach already comes with the infrastructure for
reasoning about complex control and data structures (like exception handling and
heap). Second, it allows one to flexibly combine the verifier’s symbolic execution
reasoning with external decision procedures. Third, depending on the theory
support, the verifier or external solver may also generate counterexamples of a
property and thus help program debugging – something an abstract interpretation-
based approach fundamentally cannot provide.

We report on adding floating-point support to the KeY deductive verifier,
providing the first automated deductive floating-point support for the Java
programming language. We focus mainly on proving the absence of the special
values infinity and NaN. While these are helpful in certain circumstances, for most
applications they signal an error. Hence, showing their absence is a prerequisite
for further (functional) reasoning. That said, our extension also allows one to
express and discharge arbitrary functional properties expressible in floating-point
arithmetic, including bounds on roundoff errors for certain programs, and bounds
on differences between two similar floating-point programs

We exploit both KeY’s symbolic execution and external SMT support. On
the one hand, we handle arithmetic operations by relying on a combination of

244 R. Abbasi et al.

KeY’s symbolic execution to handle the heap and SMT based decision procedures
to handle the floating-point part of the VCs. On the other hand, we support
transcendental functions via axiomatization in the KeY prover itself.

Transcendental functions such as sine are a common feature in numerical
programs, but are not supported by floating-point decision procedures. We explore
two ways of supporting them soundly but approximately, by encoding them as
axiomatized uninterpreted function symbols once directly in the SMT queries,
and once in additional calculus rules in KeY. Our evaluation shows that even
though such reasoning is approximate, it is nonetheless sufficient to prove the
absence of special values in many interesting programs.

We evaluate KeY’s floating-point support on a number of real-world floating-
point Java programs. Our benchmark set allows us to evaluate recent progress in
SMT floating-point support in Z3 [28], CVC4 [8] and MathSAT [22] on yet unseen
benchmarks. For instance, we observe that quantifiers are challenging even if they
do not affect satisfiability of SMT queries. Our benchmarks are openly available,
and we expect our insights to be useful for further solver development.

Contributions In summary, we make the following contributions:

– we implement and evaluate the first automated deductive verification of
floating-point Java programs by combining the strength of rule based and
SMT based deduction;

– we collect a new set of challenging real-world floating-point benchmarks in
Java (available at https://gitlab.mpi-sws.org/AVA/key-float-benchmarks/);

– we compare different SMT solvers for discharging floating-point VCs on this
new set of benchmarks;

– and we develop novel automated support for reasoning about transcendental
functions in a deductive verifier.

2 Background

2.1 Introduction to KeY

KeY [4] is a platform for deductive verification of Java programs, working at a
source code level. The input is a Java program annotated in the Java Modeling
Language (JML) [45], encouraging a Design by Contract ([46,51]) approach to
software development. The user specifies the expected behavior of Java classes
with class invariants that the program has to maintain at critical points. Methods
are specified with method contracts, consisting mainly of pre- and postconditions,
with the understanding that if the precondition holds when the method is called,
the postcondition has to hold after the method returns.

After loading an annotated program, KeY translates it to a formula in
Java Dynamic Logic [4] (JavaDL), an instance of Dynamic Logic [37] which
enables logical reasoning about Java programs. Logical rules are provided for
the translation of programs into first-order logic, and for closing the resulting
goals, or proof obligations. KeY is semi-interactive in that it allows manual rule

https://gitlab.mpi-sws.org/AVA/key-float-benchmarks/

Deductive Verification of Floating-Point Java Programs in KeY 245

application, while also offering powerful built-in automation and macros. In
addition, it is also possible to translate an open goal into SMT-LIB format [9]
and call an external SMT solver. For specific theories, SMT solvers can be much
more efficient than KeY’s own automation. This makes it possible to prove some
goals, which depend on SMT supported theories, by using an SMT solver, while
others are proved internally, using KeY’s own automation.

2.2 Floating-Point Arithmetic in Java

In the following, we summarize some central characteristics of Java floating-point
numbers, loosely following [53]. Each normal floating-point number x can be
represented as a triplet (s,m, e), such that x = (−1)s ∗m ∗ 2e, where s ∈ {0, 1}
is the sign, m (called significand) is a binary fixed-point number with one digit
before the radix point and p−1 digits after the radix point (note that 0 ≤ m < 2),
and e (exponent) is an integer such that emin ≤ e ≤ emax. Java supports two
floating-point formats (both in base 2): float (‘single’) precision with p = 24, and
minimal and maximal exponent emin = −126, emax = 127 and double precision
with p = 53, emin = −1022, emax = 1023.

Whenever the result of a computation cannot be exactly represented with
the given precision, it is rounded. IEEE 754 defines various rounding modes, of
which Java only supports round to nearest, ties to even. Rounding is exact, as if
one would first compute the ideal real number, and round afterwards.

The triple representation gives us two zeros, +0 and −0, represented by
(0, 0, 0) and (1, 0, 0), respectively. If the absolute value of the ideal result of a
computation is too small to be representable as a floating-point number of the
given format, the resulting floating point number is +0 or −0. In addition, there
are three special values, +∞, −∞, and NaN (Not a Number). If the absolute
value of the ideal result of a computation is too big to be representable as a
floating-point number of the given format, the result is +∞ or −∞. Also, division
by zero will give an infinite result (e.g., 7.13/+0 = +∞). Computing further with
infinity may give an infinite result (e.g., +∞++∞ = +∞), but may also result
in the additional ‘error value’ NaN (e.g., +∞−+∞ = NaN). Due to the presence
of infinities and NaN, floating-point operations do not throw Java exceptions.

By default, the Java virtual machine is allowed to make use of higher-precision
formats provided by the hardware. This can make computation more accurate,
but it also leads to platform dependent behaviour. This can be avoided by using
the strictfp modifier, ensuring that only the single and double precision types
are used. This modifier ensures portability.

3 Floating-Point Support in KeY

3.1 Arithmetics

In order to be able to specify and verify programs containing floating-point
numbers, we made several extensions to the KeY tool. First, we added the float

246 R. Abbasi et al.

Listing 1.1: The Rectangle.scale benchmark
/*@ public normal_behavior

@ requires \fp_nice(arg0.x) && \fp_nice(arg0.y)

@ && \fp_nice(arg1) && \fp_nice(arg2);

@ ensures !\fp_nan(\result.x) && !\fp_nan(\result.y) &&

@ !\fp_nan(\result.width) && !\fp_nan(\result.height);

@ also

@ public normal_behavior

@ requires -5.53 <= arg0.x && arg0.x <= -3.38 &&

@ -5.53 <= arg0.y && arg0.y <= -3.38 &&

@ 3.1 < arg0.width && arg0.width <= 3.7332 &&

@ 3.0000001 < arg0.height && arg0.height <=4.0004 &&

@ 3.0003001 < arg1 && arg1 <= 4.0024 &&

@ -6.4000003 < arg2 && arg2 <= 3.0001;

@ ensures !\fp_nan(\result.x) && !\fp_nan(\result.y)&&

@ !\fp_nan(\result.width) &&!\fp_nan(\result.height);

@*/

public Rectangle scale(Rectangle arg0, double arg1, double arg2){

Area v1 = new Area(arg0);

AffineTransform v2 = AffineTransform.getScaleInstance(arg1, arg2);

Area v3 = v1.createTransformedArea(v2);

Rectangle v4 = v3.getRectangle2D();

return v4;

}

and double types to the KeY type system, together with an enum type for the
different rounding modes of the IEEE 754 Standard.

We further introduced functions and predicate symbols to formalize opera-
tions (+, *, . . .) and comparisons (<, ==, . . .) on floating-point expressions. The
translation supports both code with and without the strictfp modifier. However,
since the actual precision of non-strictfp operations is not known, the function
symbols remain uninterpreted. We extended KeY’s parser to correctly handle
programs and annotations containing floating-point numbers, and added logic
rules for translating floating-point expressions from Java or JML to JavaDL.

As an example, Listing 1.1 shows JML specifications of our Rectangle bench-
mark that contains floating-point literals and makes use of the fp_nan and fp_nice

predicates. fp_nan states that a floating-point expression is NaN and fp_nice,
which is shorthand for “not infinity and not NaN”, states that a floating-point
expression is not NaN or infinity. The scale method contains two contracts that
are checked separately, ensuring that the class fields of a scaled rectangle object
are not NaN, considering different preconditions. For the first contract, the SMT
solver produces a counterexample. In the second, we bound inputs by concrete
ranges that we picked arbitrarily and get the valid result. In practice, such ranges
would come from the context, e.g. from the kind of rectangles that appear in an
application, or from known ranges of sensor values.

Deductive Verification of Floating-Point Java Programs in KeY 247

Concerning discharging the resulting proof obligations, there were two main
ways to consider. One is to create a floating-point theory within KeY by adding
axioms and deduction rules, so that the desired properties can be proven in
KeY’s sequent calculus. The other way is to translate the proof obligations from
JavaDL to SMT-LIB and call an external SMT solver. While the KeY approach
traditionally favors conducting proofs within KeY, for this work, we partially
deviated from this way in order to harness the greater experience and efficiency of
SMT solvers when it comes to floating-point arithmetic. Our approach attempts
to get the best of both worlds by distinguishing between basic floating-point
arithmetic, i. e., elementary operations and comparisons, and more complex
functions which do not have an SMT-LIB equivalent (e. g., the transcendental
functions), or where the SMT-LIB function is not usefully implemented by current
SMT solvers (see Section 3.2.B).

Elementary operations and comparisons get translated to the corresponding
SMT-LIB functions. In SMT-LIB, all floating-point computations conform to the
IEEE 754 Standard. Therefore, only Java programs with the strictfp modifier
can be directly translated to SMT-LIB without loss of correctness.

We developed a translation from KeY’s floating-point theory to SMT-LIB.
In order to integrate it into KeY, we also overhauled the existing translation
from JavaDL to SMT-LIB to create a new, more modular framework, which
now supports all the features of the original translation, e. g., heaps and integer
arithmetic, but also floating-point expressions at the same time.

Floating-point intricacies sometimes require extra caution. For example, there
are two different notions of equality for floats: bitwise equality and IEEE754
equality. Our implementation ensures these are distinguished correctly, and that
the specification language remains intuitive for a developer to use.

Using the translation to SMT-LIB, we can specify and prove two classes of
properties in KeY: The absence of special values is specified using the fp_nan and
fp_infinite predicates (or the fp_nice equivalent). Furthermore, one can specify
functional properties that are expressible in floating-point arithmetic, e.g. one
can compare the result of a computation against the result of a different program
which is known to produce a good result or a reference value.

3.2 Transcendental Functions

Floating-point decision procedures in SMT solvers successfully handle programs
consisting of arithmetic and square root operations. Many numerical real-world
programs, however, include transcendental functions such as sin and cos. In Java
programs, these functions are implemented as static library functions in the class
java.lang.Math.

Unlike arithmetic operations, transcendental functions are much more loosely
specified by the IEEE 754 Standard—only an upper bound on the roundoff
error is given. Libraries are thus free to provide different implementations, and
even tighter error bounds. Exact reasoning in the same spirit as floating-point
arithmetic would thus have to encode a specific implementation. Given that these
implementations are highly optimized, this approach would be arguably complex.

248 R. Abbasi et al.

We observe, however, that such exact reasoning about transcendental functions is
often not necessary and a sound approximate approach is sufficient and efficient.

In this section, we introduce an axiomatic approach for reasoning about
programs containing transcendental functions. We observe that with the flexibility
of deductive verification and KeY itself, we can instantiate it in two different ways.
We encode transcendental functions as uninterpreted functions and axiomatize
them in the SMT queries. Alternatively, we encode these axioms in KeY as logical
inference rules.

(A) Axiomatization in SMT We encode library functions as uninterpreted
functions and include a set of axioms in the SMT-LIB translation for each
method that is called in a benchmark. That is, we extended KeY such that when
a transcendental function exists in the proof obligation, its definition alongside
all the axioms for that function are added to the translation.

For the axiomatization of transcendentals, we did not add rules that expand
to a definition or allow a repeated approximation of the function value (like
expansion into a Taylor series). Instead, we added a number of lemmata encoding
interesting properties related to special values. For instance, the following axiom
states that if the input to the sin function is not a NaN or infinity, then the
returned value of sin is between −1.0 and 1.0:

(assert (forall ((a Float64)) (=>

(and (not (fp.isNaN a)) (not (fp.isInfinite a)))

(and (fp.leq (sinDouble a) (fp #b0 #b01111111111 #b0000...000000))

(fp.geq (sinDouble a) (fp #b1 #b01111111111 #b0000...000000))))))

Note that this implies that the result is not a NaN or infinity. The other axioms
are similar in spirit, so we do not list them.

These axioms are expressed as quantified floating-point formulas and capture
high-level properties of library functions complying with the specifications in the
IEEE 754 Standard. Clearly, since we do not have the actual implementations of
these functions, we are not able to prove arbitrary properties. However, such an
axiomatization is often sufficient to check for the (absence of) special values, i.e.
NaN and infinity, as our experiments in Section 4.4 show.

(B) Taclets in KeY Reasoning about quantified formulas in SMT is a long-
lasting challenge [34]. We have also observed in our experiments with only
arithmetic operations (Section 4.3) that SMT solvers struggle with quantifiers in
combination with floating-points. We have therefore implemented an alternative
approach encoding the axioms not in the SMT queries, but instead as deductive
inference rules (so-called taclets) in KeY.

The rules encode the same logical information as the universally quantified
assertions that we add in SMT-LIB (and where we leave the choice of instantia-
tions entirely to the SMT/SAT solver). With our taclet approach, we instantiate
a quantifier (only) to one’s needs. We note that for proving a property correct,
this results in a correct (under)approximation. However, the prize for achieving

Deductive Verification of Floating-Point Java Programs in KeY 249

Benchmark Details Automode Statistics

benchmark # classes
method

calls
arith.

ops
library

functions
goals closed

by KeY
goals to be

closed externally
rules
applied

automode
time (s)

Complex.add (2) 1 0 2 - 3 / 3 1 / 4 185 / 286 0.7 / 0.2
Complex.divide (2) 1 0 11 - 10 / 8 2 / 8 483 / 625 0.7 / 0.8
Complex.compare 1 0 2 - 3 2 216 0.2
Complex.reciprocal (2) 1 1 6 - 1 / 1 2 / 2 402 / 406 0.4 / 0.5
Circuit.impedance 2 1 3 - 1 4 360 0.5
Circuit.current (2) 2 3 14 - 11 / 11 4 / 1 1267 / 1238 4.0 / 4.1
Matrix2.transposedEq 1 3 3 - 3 1 735 0.9
Matrix3.transposedEq 1 4 34 - 3 1 1786 5.1
Matrix3.transposedEqV2 1 4 34 - 3 1 1796 5.4
Rectangle.scale (2) 3 + 1 23 22 - 32 / 32 32 / 16 5990 / 5617 18.4 / 14.5
Rotate.computeError 1 + 1 6 26 - 108 8 3693 74.2
Rotate.computeRelErr 1 + 1 6 28 - 120 8 3898 79.6
FPLoop.fploop 1 0 1 - 2 4 99 0.1
FPLoop.fploop2 1 0 1 - 2 4 99 0.1
FPLoop.fploop3 1 0 1 - 2 4 99 0.1
Cartesian.toPolar 2 + 1 3 6 sqrt, atan 1 4 438 0.5
Cartesian.distanceTo 1 + 1 1 5 sqrt 2 1 191 0.1
Polar.toCartesian 2 + 1 3 4 cos, sin 1 2 364 0.5
Circuit.instantCurrent 2 + 1 14 23 sqrt, atan, cos 17 2 1686 14.1
Circuit.instantVoltage 1 + 1 1 4 cos 0 2 138 0.1

Table 1: Benchmark details and KeY automode statistics, time is measured in
seconds

more closed proofs and shorter running times is that for disproving a prop-
erty, not considering all possible quantifier instantiations may lead to spurious
counterexamples, i.e., false positives.

A heuristic strategy applies the rules automatically using the occurrences
of transcendentals as instantiation triggers. However, instantiating the axioms
too eagerly, considerably increases the number of open goals, which is why we
assume that the user selects the axioms to apply manually (and did so in the
experiments). After the application the proof obligation can either be closed, i.e
proven, by KeY automatically, or be given to the SMT solver as before for final
solving.

Currently, the set of axioms (in the SMT-LIB translation and as taclets in
KeY) only contains axioms for the transcendental functions occurring in our
benchmarks. So far we have 10 axioms; however, adding more axioms (also for
further transcendentals like exponentiation or logarithm) is straightforward. The
full set of axioms is included in the Appendix of the technical report [3].

4 Evaluation

4.1 Benchmark Programs

We collected a set of existing floating-point Java programs representing real-
world applications in order to evaluate the feasibility and performance of KeY’s
floating-point support.

The left half of Table 1 provides an overview of our benchmarks. Each
benchmark consists of one method, which is composed of arithmetic operations

250 R. Abbasi et al.

Listing 1.2: The Circuit.instantCurrent benchmark
public class Circuit {

double maxVoltage, frequency, resistance, inductance;

// ...

/*@ public normal_behavior

@ requires 1.0 < this.maxVoltage && this.maxVoltage < 12.0 &&

@ 1.0 < this.frequency && this.frequency < 100.0 &&

@ 1.0 < this.resistance && this.resistance < 50.0 &&

@ 0.001 < this.inductance && this.inductance < 0.004 &&

@ 0.0 < time && time < 300.0;

@ ensures !\fp_nan(\result) && !\fp_infinite(\result);

@*/

public double instantCurrent(double time) {

Complex current = computeCurrent();

double maxCurrent = Math.sqrt(current.getRealPart() * current.getRealPart() +

current.getImaginaryPart() * current.getImaginaryPart());

double theta = Math.atan(current.getImaginaryPart() / current.getRealPart());

return maxCurrent * Math.cos((2.0 * Math.PI * frequency * time) + theta);

}}

and method calls to potentially other classes. The invocations of methods from
java.lang.Math (e.g. Math.abs) are marked by “+1” in Table 1; these are resolved
by inlining the method implementation. For benchmarks that contain calls to
transcendental functions and square root, the called functions are listed; these are
handled by our axiomatization. We include sqrt in this list, as we have observed
that exact support can be expensive, so it may be advantageous to handle sqrt

axiomatically. Benchmarks Rectangle, Circuit, Matrix3 and Rotation are partially
shown in Listings 1.1, 1.2, 1.3 and 1.4 respectively.

Each benchmark also includes a JML contract that is to be checked. For
some methods, we specify two contracts (marked by “(2)” in the first column
of Table 1), each serving as an independent benchmark. The contracts for most
of these benchmarks check that the methods do not return a special value i.e
infinity and/or NaN, the preconditions being that the variables are not themselves
special values and possibly are bounded in a given range. For the Matrix, FPLoop
and Rotate benchmarks, we check a functional property (see Section 4.3). FPLoop,
which has three contracts, additionally shows how to specify floating-point loop
behavior using loop invariants.

4.2 Proof Obligation Generation

To reason about the contract of a selected benchmark, we apply KeY, which
generates proof obligations or ‘goals’. Some of these goals (heap-related) are
closed by KeY automatically. The remaining open goals are closed by either SMT
solvers with floating-point support directly (Section 3.1 and Section 3.2.A), or

Deductive Verification of Floating-Point Java Programs in KeY 251

with a combination of transcendental KeY taclets and floating-point SMT solving
(Section 3.2.B).

Columns 6 and 7 in Table 1 show the number of proof obligations closed by
KeY directly and to be discharged by external solvers, respectively. The next two
columns show the number of taclet rules that KeY applied in order to close its
goals, and the time this takes. For benchmarks with two contracts we show the
respective values separated by ‘/’.

We run our experiments on a server with 1.5 TB memory and 4x12 CPU cores
at 3 GHz. However, KeY runs single-threadedly and does not use more than 8GB
of memory.

For our set of benchmarks, the symbolic execution process is fully automated.
Note that the machinery can deal with loop invariants, if they are provided. Loop
invariant generation is, however, particularly challenging for floating-points due
to roundoff errors [27,40], and a research topic in itself.

4.3 Evaluation of SMT Floating-Point Support

Previous work [32] reported that SMT support for floating-point arithmetic is
rather limited. However, with recent advances [18], we evaluate the situation
again. Most benchmarks used to evaluate SMT solvers’ decision procedures [1]
aim to check (individual) specialized (corner case) properties of floating-point
arithmetic. The proof obligations generated from our set of benchmarks are
complementary in that they are more arithmetic heavy, while nonetheless relying
on accurate reasoning about special values and functional properties.

For each open goal not automatically closed, KeY generates one SMT-LIB
file that is fed to the solvers for validation. We compare the performance of the
three major SMT solvers with floating-point support CVC4 [8] (version 1.8, with
the SymFPU library [18] enabled), Z3 (4.8.9) [28] and MathSAT (5.6.3) [22]. For
this we set a timeout of 300s for each proof obligation. While KeY is able to
discharge proof obligations in parallel, for our experiments, we do so sequentially
to maintain comparability.

KeY’s default translation to SMT includes quantifiers. These quantifications
are not related to floating-point arithmetic, but are used to logically encode
important properties of the Java memory model, like the type hierarchy and
the absence of dangling references on any valid Java heap. If we reason about
floating-point problems in isolation, they are not needed, but if we want to
consider Java verification more holistically with questions combining aspects of
heap and floating point reasoning, they become essential. We manually inspected
that the proof obligations without our axiomatized treatment of transcendental
functions do not depend on these properties and investigate the quantifier support
by including or removing them from the SMT translations. We do not report
results with quantifiers for MathSAT, since it does not support them.

Table 2 summarizes the results of our experiments. Column 4 shows the
number of expected valid or invalid goals for all benchmarks. For each solver we
show the number of goals that each solver can validate or invalidate, together
with the average time (in seconds) needed. The goals resulting in timeout were

252 R. Abbasi et al.

index experiment
quantified
axioms

goals
CVC4 Z3 MathSAT

goals decided avg. # goals decided avg. # goals decided avg.

1 valid
contracts

� 80 79 4.1 25 18.4 - -
2 � 80 79 4.0 52 35.0 80 8.8

3 invalid
contracts

� 9 0 3.4 0 3.4 - -
4 � 9 8 36.7 7 27.6 9 3.9

5 axioms in SMT � 10 9 33.2 4 63.4 - -
6 axioms as taclets � 10 10 33.4 5 74.2 8 0.9

7 fp.sqrt � 7 7 46.2 1 23.5 5 0.4
8 axiomatized sqrt � 7 5 2.4 5 282.8 5 5.7

Table 2: Summary of valid / invalid goals correctly decided and average running
times of each solver for the SMT translations with and without quantified axioms

Fig. 1: Runtimes for valid goals with
SMT translations with quantifiers

Fig. 2: Runtimes for valid goals with
SMT translations without quantifiers

excluded from the computation of the average time. Column 3 shows whether
the SMT queries include quantifiers or not.

Rows 1 and 2 of Table 2 show the results for benchmarks with valid contracts.
This experiment thus represents the common behavior of KeY, whose main goal
is to prove contracts correct. Rows 3 and 4 of Table 2 demonstrate the results
for benchmarks with invalid contracts, i.e. for those we expect a counterexample
for at least one of the goals. The Appendix of the technical report [3] contains
the detailed results for each experiment separated by benchmark. Figure 1 and
Figure 2 show a more detailed view of the solvers’ running time for the valid
benchmarks. The x-axis shows the number of open goals that are discharged by
the SMT solvers, sorted by running time for each solver individually. The k-th
point of one graph shows the minimum running time needed by the solver to
close each of the k fastest goals. Note that each solver may have different goals
which are its k fastest. The y-axis shows the time on a logarithmic scale.

We conclude that in the presence of quantified axioms and floating-point
arithmetic solvers’ performance deteriorate for both valid and invalid goals.
In particular, none of the solvers is able to find counterexamples for any of
the invalid goals. However, when the quantified axioms are removed from the

Deductive Verification of Floating-Point Java Programs in KeY 253

SMT translations, their performance improves. For valid contracts, CVC4 and
MathSAT perform better than Z3, in terms of both number of goals validated
and the running time per goal. In particular, MathSAT is able to prove all goals.
However, the running time performance of CVC4 is better than MathSAT’s. For
invalid contracts, solvers are able to produce the expected counterexamples at
least partially. Particularly, MathSAT has a better performance than CVC4 and
Z3 in terms of both running time and the number of proof obligations for which
it can produce counterexamples.

We conducted another experiment on our Rectangle.scale benchmark to assess
the solvers’ sensitivity to various changes, applied to the benchmark’s contract
or its implementation. We considered modifications such as reducing the number
of classes while keeping the same functionality, having tighter and larger bounds
for variables, reducing the number of arithmetic operations etc. The details of
this experiment can be found in the Appendix of the technical report [3]. In
summary, solvers’ performance seems to be sensitive to slight innocuous looking
changes such as the number of classes involved and variable bounds. For example,
constraining arg2 in the original benchmark more tightly allows CVC4 to validate
all goals (1 more). This behavior could be potentially exploited by e.g. relaxing a
variable’s bounds.

Proving Functional Properties Listings 1.3 and 1.4 show examples of functional
properties that are expressible in floating-point arithmetic and that KeY can
handle. The verification results are included in rows 1 and 2 of Table 2, for more
details see the Appendix of the technical report [3].

For Matrix, we check that the determinants of a matrix and its transpose
are equal. Note that this property holds trivially under real arithmetic, but
not necessarily under floating-points. After feeding transposedEq (which uses the
determinant method) and its contract to KeY, increasing the default timeout
sufficiently and discharging the created goal, CVC4 generates a counterexample
in 170.2s seconds and MathSAT in 16.2s. Z3 times out after 30 minutes. By
feeding transposedEqV2 (which uses the determinantNew method) to KeY, CVC4
validates the contract in 1.1s, MathSAT in 3.9s and Z3 times out again. One
thing worth noting is that the way programs are written can greatly influence the
computational complexity needed to reject or verify the contract. This is evident
from the fact that slightly modifying the order of operations (using determinantNew

instead) substantially reduces verification time and changes the verification result
for MathSAT and CVC4.

For Rotate, we check that the difference between an original vector and the
one that is rotated four times by 90 degrees, must not be larger than 1.0E-15.
We also verified the same bound for the relative difference (by exploiting another
method and contract) for this benchmark. The constant cos90 in Listing 1.4 is
not precisely 0.0 to account for rounding effects in the computation of the cosine.
FPLoop includes three loops, for which the contracts check that the return value
is bigger than a given constant.

Though not always very fast, these examples show that verification of func-
tional floating-point properties is viable.

254 R. Abbasi et al.

Listing 1.3: The Matrix3 benchmark
public class Matrix3 {

double a, b, c, d, e, f, g, h, i; //The matrix: [[a b c],[d e f],[g h i]]

double det;

// method transpose not shown

double determinant() {

return (a * e * i + b * f * g + c * d * h) -

(c * e * g + b * d * i + a * f * h);

}

double determinantNew() {

return (a * (e * i) + (g * (b * f) + c * (d * h))) -

(e * (c * g) + (i * (b * d) + a * (f * h)));

}

/*@ ensures \fp_normal(\result) ==> (\result == det); @*/

double transposedEq() {

det = determinant();

return transpose().determinant();

}

/*@ ensures \fp_normal(\result) ==> (\result == det); @*/

double transposedEqV2() {

det = determinantNew();

return transpose().determinantNew();

}

}

Listing 1.4: The Rotation benchmark
public class Rotation {

final static double cos90 = 6.123233995736766E-17;

final static double sin90 = 1.0;

// rotates a 2D vector by 90 degrees

public static double[] rotate(double[] vec) {

double x = vec[0] * cos90 - vec[1] * sin90;

double y = vec[0] * sin90 + vec[1] * cos90;

return new double[]{x, y};

}

/*@ requires (\forall int i; 0 <= i && i < vec.length;

@ \fp_nice(vec[i]) && vec[i] > 1.0 && vec[i] < 2.0) && vec.length == 2;

@ ensures \result[0] < 1.0E-15 && \result[1] < 1.0E-15;

*/

public static double[] computeError(double[] vec) {

double[] temp = rotate(rotate(rotate(rotate(vec))));

return new double[]{Math.abs(temp[0] - vec[0]), Math.abs(temp[1] - vec[1])};

}

}

Deductive Verification of Floating-Point Java Programs in KeY 255

4.4 Evaluation of Support for Transcendental Functions in KeY

We evaluated the two approaches from Section 3.2.A on our set of benchmarks;
rows 5 and 6 in Table 2 summarize the results. (The detailed results of these
experiments are included in the Appendix of the technical report [3].) Note that
both approaches are fully automated.

We conclude that the SMT solvers perform better when the axiomatization
is applied at the KeY level. When axioms for transcendental functions are added
to the SMT-LIB translation directly Z3 validates 4 out of 10 goals. With the
axiomatization at the KeY level, solvers are able to validate more goals (with
quantified formulas removed from the SMT translations), e.g. Z3 is able to
validate 5 goals and CVC4 can validate all. Therefore, it is preferable to apply
them on the KeY side via taclet rules.

All the solvers we have used in this work comply with the IEEE 754 standard
and therefore have bit-precise support for the square root function. They provide
bit-precise reasoning by effectively encoding the behavior of floating-point circuits
over bitvectors (which is naturally expensive), together with different heuristics
and abstractions to speed up solving time. However, depending on the property, we
do not always need bit-precise reasoning, so we propose handling the square root
function with the same taclet-based axiomatization as introduced in Section 3.2.B.

To this end, we conducted an experiment on the benchmarks containing sqrt,
comparing the approach from Section 3.2.B (adding the necessary axioms, resp.
taclet rules) to using the square root implemented in SMT solvers (fp.sqrt). We
chose to include only axioms specified in or inferred from the IEEE 754 standard
(e.g. if the argument of the square root function is NaN or less than zero, then
the square root results in NaN). The full set of axioms that we used is included
in the Appendix of the technical report [3].

Rows 7 and 8 in Table 2 summarize the results for this experiment; the detailed
results are included in the Appendix of the technical report [3]. We observed
that for two out of the three benchmarks, the average running time of all solvers
decreases using the axiomatized square root. Furthermore, Z3 is able to reason
about more proof obligations with the axiomatized version. However, the success
of this approach depends on the axioms added to KeY and may not always work
if we do not have suitable axioms. For example, for the Circuit.instantCurrent

benchmark (Listing 1.2), using the axiomatized square root, CVC4 is not able to
validate the contract, but with fp.sqrt the contract is validated.

In summary, treating sqrt axiomatically can result in shorter solving times
than performing bit-precise reasoning, but the approach may not always succeed
when the axioms are not sufficient to prove a particular property.

4.5 Discussion and insights

The experiments show that highly automated floating point program verification
is viable for relevant properties (handling of special values and some functional
properties), up to a certain level of complexity (given by the SMT solvers). The
choices of which parts of a proof obligation are delegated to SMT, and how they

256 R. Abbasi et al.

are translated to SMT, are crucial for achieving effective and efficient program
verification. Arithmetic operations proved to be more efficiently dealt with by
delegation to SMT, whereas for transcendental functions, axiomatization and
rule based treatment in the theorem prover, outside the SMT solver, performs
clearly better.

5 Related Work

Our implementation uses the floating-point SMT-LIB theory [17], which how-
ever does not handle transcendental functions, as their semantics is (library)
implementation dependent. Some real-valued automated solvers do handle tran-
scendental functions [5,33], but to the best of our knowledge, the combination of
floating-points and reals in SMT solvers is still severely limited.

None of the existing deductive verifiers support floating-point transcendental
functions automatically. The Why3 deductive verification framework [30] has
support for floating-point arithmetic, with front-ends for the C and Ada pro-
gramming languages through Frama-C [25] and SPARK [19, 32], respectively.
Why3 has back-end support for different SMT solvers, as well as interactive proof
assistants like Coq. Until recently, Why3 would discharge still many interesting
floating-point problems with help of Coq, relying on significant user interaction. In
later work [32] (in the context with floating-point verification for Ada programs),
Why3 can achieve a higher degree of automation. Note, however, that the user is
still required to add code assertions as well as ‘ghost code’ to a significant extent.

The Boogie intermediate verification language [47] also supports floating-
point expressions, and targets Z3 for discharging proof obligations. In the Boogie
community, it was observed that writing a specification in Boogie leads to
decreases in SMT solver performance when compared to writing the goal in
SMT-LIB directly, probably due to an inherent mixing of theories when using
Boogie [2]. This matches our own experiences, and separation of theories should
be considered an important task for the further development of floating-point
verification.

Other deductive verifiers for Java have only rudimentary support for floating-
points. Verifast [41] treats floating-point operations as if they were real values,
and OpenJML [23] parses programs with floating-point operations, but essentially
treats float and double as uninterpreted sorts.

The Java category of verification competition SV-COMP [12] contains a num-
ber of benchmarks that make use of floating-point variables. However, the focus
of these benchmarks is usually not on arithmetical properties of expressions, but
on the completeness of the Java language support. Amongst the participants of
SV-COMP 2020, the Symbolic (Java) Pathfinder (SPF) [55] (and various exten-
sions) and the Java Bounded Model Checker (JBMC) [24] support floating-point
arithmetic. Besides being limited to exploring the state space up to a bounded
depth, their constraint languages do not support quantifiers and abstracting of
method calls—which are features that we have used in this work.

Deductive Verification of Floating-Point Java Programs in KeY 257

Floating-point arithmetic has also been formalized in several interactive
theorem provers [16, 31, 42]. While one can prove intricate properties about
floating-point programs [14,15,38], proofs using interactive provers are to a large
part manual and require significant expertise.

Abstract interpretation based techniques can show the absence of special
values in floating-point code fully automatically, and several abstract domains
which are sound with respect to floating-point arithmetic exist [20,43]. While the
analysis itself is fully automated, applying it successfully to real-world programs
in general requires adaptation to each program analyzed by end-users, e.g. the
selection of suitable abstract domains or widening thresholds [13].

Besides showing the absence of special values, recent research has developed
static analyses to bound floating-point roundoff errors [26,35,48,52,57]. These
analyses currently work only for small arithmetic kernels and the tools in particular
do not accept programs with objects.

Dynamic analyses generally scale well on real-world programs, but can only
identify bugs (when given failure-triggering input), rather than proving correctness
for all possible inputs. Executing a floating-point program together with a higher-
precision one allows one to find inputs which cause large roundoff errors [11,21,44].
Ariadne [7] uses a combination of symbolic execution, real-valued SMT solving
and testing to find inputs that trigger floating-point exceptions, including overflow
and invalid operations. Our work subsumes this approach as the SMT solvers
that we use can directly generate counterexamples, but more importantly, KeY
is able to prove the absence of such exceptions.

6 Conclusion

By joining the forces of rule-based deduction and SAT-based SMT solving, we
presented the first working floating-point support in a deductive verification tool
for Java and by that close a remaining gap in KeY to now support full sequential
Java. Our evaluation shows that for specifications dealing with value ranges and
absence of NaN and infinity, our approach can verify realistic programs within a
reasonable time frame. We observe that the MathSAT and CVC4 solver’s floating-
point support scales sufficiently for our benchmarks, as long as the queries do
not include any quantifiers, and that our axiomatized approach for handling
transcendental functions is best realized using calculus rules in KeY’s internal
reasoning engine. While our work is implemented within the KeY verifier, we
expect our approach to be portable to other verifiers.

Acknowledgements

This research was partially funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) project 387674182. The authors would like
to thank Daniel Eddeland, who together with co-author W. Ahrendt performed
prestudies which impacted the current work.

258 R. Abbasi et al.

References

1. QF_FP SMT benchmarks. https://clc-gitlab.cs.uiowa.edu:2443/

SMT-LIB-benchmarks/QF_FP (2019)
2. Slow verification of programs combining multiple floating point values (Github issue)

(2019 (accessed May 11, 2020)), https://github.com/boogie-org/boogie/issues/109
3. Abbasi, R., Schiffl, J., Darulova, E., Ulbrich, M., Ahrendt, W.: Deductive Verification

of Floating-Point Java Programs in KeY. CoRR abs/2101.08733 (2021)
4. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):

Deductive Software Verification - The KeY Book - From Theory to Practice, LNCS,
vol. 10001. Springer (2016)

5. Akbarpour, B., Paulson, L.C.: MetiTarski: An Automatic Theorem Prover for
Real-Valued Special Functions. Journal of Automated Reasoning 44(3) (2010)

6. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust Types for
Modular Specification and Verification. In: Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA) (2019)

7. Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic Detection of Floating-point Exceptions.
In: Principles of Programming Languages (POPL) (2013)

8. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi’c, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Computer Aided Verification (CAV) (2011),
snowbird, Utah

9. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB Standard: Version 2.0. In:
Proceedings of the 8th International Workshop on Satisfiability Modulo Theories
(2010)

10. Beckert, B., Nestler, B., Kiefer, M., Selzer, M., Ulbrich, M.: Experience Report:
Formal Methods in Material Science. CoRR abs/1802.02374 (2018)

11. Benz, F., Hildebrandt, A., Hack, S.: A Dynamic Program Analysis to Find Floating-
Point Accuracy Problems. In: Programming Language Design and Implementation
(PLDI) (2012)

12. Beyer, D.: Advances in automatic software verification: Sv-comp 2020. In: Tools
and Algorithms for the Construction and Analysis of Systems (TACAS) (2020)

13. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A Static Analyzer for Large Safety-Critical Software. In: Programming
Language Design and Implementation (PLDI) (2003)

14. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
Equation Numerical Resolution: A Comprehensive Mechanized Proof of a C Program.
Journal of Automated Reasoning 50(4) (2013)

15. Boldo, S., Filliâtre, J.C., Melquiond, G.: Combining Coq and Gappa for Certifying
Floating-Point Programs. In: Intelligent Computer Mathematics (2009)

16. Boldo, S., Melquiond, G.: Flocq: A Unified Library for Proving Floating-Point
Algorithms in Coq. In: IEEE Symposium on Computer Arithmetic (ARITH) (2011)

17. Brain, M., Tinelli, C., Rümmer, P., Wahl, T.: An Automatable Formal Semantics for
IEEE-754 Floating-Point Arithmetic. In: IEEE Symposium on Computer Arithmetic
(ARITH) (2015)

18. Brain, M., Schanda, F., Sun, Y.: Building Better Bit-Blasting for Floating-Point
Problems. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (2019)

19. Chapman, R., Schanda, F.: Are We There Yet? 20 Years of Industrial Theorem
Proving with SPARK. In: Interactive Theorem Proving (ITP) (2014)

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP
https://github.com/boogie-org/boogie/issues/109

Deductive Verification of Floating-Point Java Programs in KeY 259

20. Chen, L., Miné, A., Cousot, P.: A Sound Floating-Point Polyhedra Abstract Domain.
In: Asian Symposium on Programming Languages and Systems (APLAS) (2008)

21. Chiang, W.F., Gopalakrishnan, G., Rakamaric, Z., Solovyev, A.: Efficient Search for
Inputs Causing High Floating-point Errors. In: Principles and Practice of Parallel
Programming (PPoPP) (2014)

22. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Proceedings of Tools and Algorithms for the Construction and Analysis
of Systems (TACAS) (2013)

23. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: NASA Formal
Methods (2011)

24. Cordeiro, L.C., Kesseli, P., Kroening, D., Schrammel, P., Trtík, M.: JBMC: A
Bounded Model Checking Tool for Verifying Java Bytecode. In: Computer Aided
Verification (CAV) (2018)

25. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Software Engineering and Formal Methods (SEFM) (2012)

26. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy -
Framework for Analysis and Optimization of Numerical Programs. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS) (2018)

27. Darulova, E., Kuncak, V.: Towards a Compiler for Reals. TOPLAS 39(2) (2017)
28. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Tools and Algorithms

for the Construction and Analysis of Systems (TACAS) (2008)
29. Eilers, M., Müller, P.: Nagini: A Static Verifier for Python. In: Computer Aided

Verification (CAV) (2018)
30. Filliâtre, J.C., Paskevich, A.: Why3 — Where Programs Meet Provers. In: European

Symposium on Programming (ESOP) (2013)
31. Fox, A., Harrison, J., Akbarpour, B.: A Formal Model of IEEE Floating

Point Arithmetic. HOL4 Theorem Prover Library (2017), https://github.com/

HOL-Theorem-Prover/HOL/tree/master/src/floating-point

32. Fumex, C., Marché, C., Moy, Y.: Automating the Verification of Floating-Point
Programs. In: Verified Software: Theories, Tools, and Experiments (VSTTE) (2017)

33. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT Solver for Nonlinear Theories over
the Reals. In: Automated Deduction – CADE-24 (2013)

34. Ge, Y., de Moura, L.: Complete Instantiation for Quantified Formulas in Satisfia-
biliby Modulo Theories. In: Computer Aided Verification (CAV) (2009)

35. Goubault, E., Putot, S.: Static Analysis of Finite Precision Computations. In:
Verification, Model Checking, and Abstract Interpretation (VMCAI) (2011)

36. Goubault, E., Putot, S.: Robustness Analysis of Finite Precision Implementations.
In: Asian Symposium on Programming Languages and Systems (APLAS) (2013)

37. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. In: Handbook of Philosophical
Logic, pp. 99–217. Springer (2001)

38. Harrison, J.: Floating Point Verification in HOL Light: The Exponential Function.
Formal Methods in System Design 16(3) (2000)

39. IEEE, C.S.: IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008
(2008)

40. Izycheva, A., Darulova, E., Seidl, H.: Counterexample and Simulation-Guided
Floating-Point Loop Invariant Synthesis. In: Static Analysis Symposium (SAS)
(2020)

41. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. In: NASA
Formal Methods (NFM) (2011)

https://github.com/HOL-Theorem-Prover/HOL/tree/master/src/floating-point
https://github.com/HOL-Theorem-Prover/HOL/tree/master/src/floating-point

260 R. Abbasi et al.

42. Jacobsen, C., Solovyev, A., Gopalakrishnan, G.: A Parameterized Floating-Point
Formalizaton in HOL Light. Electronic Notes in Theoretical Computer Science 317
(2015)

43. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static
Analysis. In: Computer Aided Verification (CAV) (2009)

44. Lam, M.O., Hollingsworth, J.K., Stewart, G.W.: Dynamic Floating-point Cancella-
tion Detection. Parallel Comput. 39(3) (2013)

45. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering
Notes 31(3) (2006)

46. Leavens, G.T., Cheon, Y.: Design by Contract with JML (2006), http://www.jmlspecs.
org/jmldbc.pdf

47. Leino, K.R.M.: This is Boogie 2 (June 2008), https://www.microsoft.com/en-us/

research/publication/this-is-boogie-2-2/

48. Magron, V., Constantinides, G., Donaldson, A.: Certified Roundoff Error Bounds
Using Semidefinite Programming. ACM Trans. Math. Softw. 43(4) (2017)

49. Marché, C., Paulin-Mohring, C., Urbain, X.: The KRAKATOA tool for certification
of Java/JavaCard programs annotated in JML. The Journal of Logic and Algebraic
Programming 58(1) (2004)

50. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with SPARK.
Cambridge University Press (2015)

51. Meyer, B.: Applying “Design by Contract”. Computer 25(10) (1992)
52. Moscato, M., Titolo, L., Dutle, A., Muñoz, C.: Automatic Estimation of Verified

Floating-Point Round-Off Errors via Static Analysis. In: SAFECOMP (2017)
53. Muller, J., Brisebarre, N., de Dinechin, F., Jeannerod, C., Lefèvre, V., Melquiond,

G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic.
Birkhäuser (2010)

54. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A Verification Infrastructure
for Permission-Based Reasoning. In: Verification, Model Checking, and Abstract
Interpretation (VMCAI) (2016)

55. Pasareanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K., Lowry, M.R.,
Person, S., Pape, M.: Combining unit-level symbolic execution and system-level
concrete execution for testing NASA software. In: International Symposium on
Software Testing and Analysis (ISSTA) (2008)

56. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Using Model Checking
with Symbolic Execution to Verify Parallel Numerical Programs. In: International
Symposium on Software Testing and Analysis (ISSTA) (2006)

57. Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.: Rigorous Estimation
of Floating-Point Round-off Errors with Symbolic Taylor Expansions. In: Formal
Methods (FM) (2015)

http://www.jmlspecs.org/jmldbc.pdf
http://www.jmlspecs.org/jmldbc.pdf
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/

Deductive Verification of Floating-Point Java Programs in KeY 261

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

Helmholtz: A Verifier for Tezos Smart Contracts
Based on Refinement Types

Yuki Nishida1(�) , Hiromasa Saito1, Ran Chen1,
Akira Kawata1�, Jun Furuse2,

Kohei Suenaga1 , and Atsushi Igarashi1

1 Kyoto University, Kyoto, Japan
{nishida,hsaito,aran,akira,ksuenaga,igarashi}@fos.kuis.kyoto-u.ac.jp

2 DaiLambda, Inc., Kyoto, Japan
jun.furuse@dailambda.jp

Abstract. A smart contract is a program executed on a blockchain,
based on which many cryptocurrencies are implemented, and is being
used for automating transactions. Due to the large amount of money that
smart contracts deal with, there is a surging demand for a method that
can statically and formally verify them.
This tool paper describes our type-based static verification tool Helm-
holtz for Michelson, which is a statically typed stack-based language
for writing smart contracts that are executed on the blockchain platform
Tezos. Helmholtz is designed on top of our extension of Michelson’s
type system with refinement types. Helmholtz takes a Michelson pro-
gram annotated with a user-defined specification written in the form
of a refinement type as input; it then typechecks the program against
the specification based on the refinement type system, discharging the
generated verification conditions with the SMT solver Z3. We briefly
introduce our refinement type system for the core calculus Mini-Michel-
son of Michelson, which incorporates the characteristic features such as
compound datatypes (e.g., lists and pairs), higher-order functions, and
invocation of another contract. Helmholtz successfully verifies several
practical Michelson programs, including one that transfers money to an
account and that checks a digital signature.

1 Introduction

A blockchain is a data structure to implement a distributed ledger in a trustless yet
secure way. The idea of blockchains is initially devised for the Bitcoin cryptocur-
rency [12] platform. Many cryptocurrencies are implemented using blockchains,
in which value equivalent to a significant amount of money is exchanged.

Recently, many cryptocurrency platforms allow programs to be executed on a
blockchain. Such programs are called smart contracts [19] (or, simply a contract
in this paper) since they work as a device to enable automated execution of a
contract. In general, a smart contract is a program Pa associated with an account

� Current affiliation: Preferred Networks, Inc.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 262–280, 2021.
https://doi.org/10.1007/978-3-030-72013-1 14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_14&domain=pdf
http://orcid.org/0000-0001-5941-6770
http://orcid.org/0000-0002-7466-8789
http://orcid.org/0000-0002-5143-9764
https://doi.org/10.1007/978-3-030-72013-1_14

Helmholtz: Tezos Smart Contract Verifier 263

a on a blockchain. When the account a receives money from another account b
with a parameter v, the computation defined in Pa is conducted, during which
the state of the account a (e.g., the balance of the account and values that are
stored by the previous invocations of Pa) which is recorded on the blockchain
may be updated. The contract Pa may execute money transactions to another
account (say c), which results in invocations of other contracts (say Pc) during
or after the computation; therefore, contract invocations may be chained.

Although smart contracts’ original motivation was handling simple transac-
tions (e.g., money transfer) among the accounts on a blockchain, recent contracts
are being used for more complicated purposes (e.g., establishing a fund involving
multiple accounts). Following this trend, the languages for writing smart con-
tracts also evolve from those that allow a contract to execute relatively simple
transactions (e.g., Script for Bitcoin) to those that allow a program that is
as complex as one written in standard programming languages (e.g., EVM for
Ethereum and Michelson [1] for Tezos [4]).

Due to a large amount of money they deal with, verification of smart contracts
is imperative. Static verification is especially needed since a smart contract
cannot be fixed once deployed on a blockchain. Attack on a vulnerable contract
indeed happened. For example, the DAO attack, in which the vulnerability
of a fundraising contract was exploited, resulted in the loss of cryptocurrency
equivalent to approximately 150M USD [18].

In this paper, we describe our type-based static verifier Helmholtz3 for
smart contracts written in Michelson. The Michelson language is a statically- and
simply typed stack-based language equipped with rich data types (e.g., lists, maps,
and higher-order functions) and primitives to manipulate them. Although several
high-level languages that compile to Michelson are being developed, Michelson is
most widely used to write a smart contract for Tezos as of writing.

A Michelson program expresses the above computation in a purely functional
style, in which the Michelson program corresponding to Pa is defined as a function.
The function takes a pair of the parameter v and a value s that represents the
current state of the account (called storage) and returns a pair of a list of
operations and the updated storage s′. Here, an operation is a Michelson value
that expresses the computation (e.g., transferring money to an account and
invoking the contract associated with the account) that is to be conducted after
the current computation (i.e., Pa) terminates. After the computation specified
by Pa finishes with a pair of a storage value and an operation list, a blockchain
system invokes the computation specified in the operation list. This purely
functional style admits static verification methods for Michelson programs similar
to those for standard functional languages.

As the theoretical foundation of Helmholtz, we design a refinement type
system for Michelson as an extension of the original simple type system. In
contrast to standard refinement types that refine the types of values, our type

3 Hermann von Helmholtz (1821–1894), a German physicist and physician, was a
doctoral advisor of Albert A. Michelson (1852–1931), whom the Michelson language
is apparently named after.

264 Y. Nishida et al.

system refines the type of stacks. We briefly describe our type system in Section 3;
a detailed explanation is deferred to a future paper.

We show that our tool can verify several practical smart contracts. In addition
to the contracts we wrote ourselves, we apply our tool to the sample Michelson
programs used in Mi-cho-coq [3], a formalization of Michelson in Coq proof
assistant [21]. These contracts consist of practical contracts such as one that
checks a digital signature and one that transfers money.

We note that Helmholtz currently supports approximately 80% of the
whole instructions of the Michelson language. Another limitation of the current
Helmholtz is that it can verify only a single contract, although one often uses
multiple contracts for an application, in which a contract may call another by a
money transfer operation, and their behavior as a whole is of interest. We are
currently extending Helmholtz so that it can deal with more programs.

Our contribution is summarized as follows: (1) Definition of the core calculus
Mini-Michelson and its refinement type system; (2) Automated verification tool
Helmholtz for Michelson contracts implemented based on the type system
of Mini-Michelson; the interface to the implementation can be found at https:
//www.fos.kuis.kyoto-u.ac.jp/trylang/Helmholtz; and (3) Evaluation of Helm-
holtz with various Michelson contracts, including practical ones.

The rest of this paper is organized as follows. Before introducing the technical
details, we present an overview of the verifier Helmholtz in Section 2 using a
simple example of a Michelson contract. Section 3 introduces the core calculus
Mini-Michelson and its refinement type system. Section 4 describes the verifier
Helmholtz, a case study, and experimental results. After discussing related
work in Section 5, we conclude in Section 6.

2 Overview of Helmholtz and Michelson

We overview our tool Helmholtz in this section before presenting its technical
details. We also explain Michelson by example (Section 2.2) and user-written
annotation added to a Michelson program for verification purposes (Section 2.3).

2.1 Helmholtz

As input, Helmholtz takes a Michelson program annotated with (1) its specifi-
cation expressed in a refinement type and (2) additional user annotations such
as loop invariants. It typechecks the annotated program against the specification
using our refinement type system; the verification conditions generated during
the typechecking is discharged by the SMT solver Z3 [11]. If the code successfully
typechecks, then the program is guaranteed to satisfy the specification.

Helmholtz is implemented as a subcommand of tezos-client, the client
program of the Tezos blockchain. For example, to verify boomerang.tz in Figure 1,
we run tezos-client refinement boomerang.tz. If the verification succeeds,
the command outputs VERIFIED to the terminal screen (with a few log messages);
otherwise, it outputs UNVERIFIED.

https://www.fos.kuis.kyoto-u.ac.jp/trylang/Helmholtz
https://www.fos.kuis.kyoto-u.ac.jp/trylang/Helmholtz

Helmholtz: Tezos Smart Contract Verifier 265

Fig. 1. boomerang.tz. The comment inside /* */ describes the stack at the program
point.

2.2 An Example Contract in Michelson

Figure 1 shows an example of a Michelson program called boomerang. A Michelson
program is associated with an account on the Tezos blockchain; the program is
invoked by transferring money to this account. This artificial program in Figure 1,
when it is invoked, is supposed to transfer the received money back to the account
that initiated the transaction.

A Michelson program starts with type declarations of its parameter, whose
value is given by contract invocation, and storage, which is the state that the
contract account stores. Lines 1–2 declare that the types of both are unit, the
type inhabited by the only value Unit. Lines 3–6 surrounded by << and >> are a
user-written annotation used by Helmholtz for verification; we will explain this
annotation later. The code section in Lines 8–24 is the body of this program.

Let us take a look at the code section of the program. In the following
explanation of each instruction, we describe the state of the stack after each
instruction as comments; stack elements are delimited by �.

– Execution of a Michelson program starts with a stack with one value, which
is a pair (param, st) of a parameter param and a storage value storage.

– CDR pops the pair at the top of the stack and pushes the second value of the
popped pair; therefore, after executing the instruction, the stack contains the
single value st.

– NIL pushes the empty list [] to the stack; the instruction is accompanied by
the type operation of the list elements for typechecking purposes.

266 Y. Nishida et al.

– AMOUNT pushes the nonnegative amount of the money sent to the account to
which this program is associated.

– PUSH mutez 0 pushes the value 0. The type mutez represents a unit of money
used in Tezos.

– IFCMPEQ b1 b2, if the state of the stack before executing the instruction
is v1 � v2 � tl, (1) pops v1 and v2 and (2) executes the then-branch b1

(resp., the else-branch b2) if v2 = v1 (resp., v2 �= v1). In boomerang, this
instruction does nothing if amount = 0; otherwise, the instructions in the
else-branch are executed.

– SOURCE at the beginning of the else-branch pushes the address src of the
source account, which initiated the chain of contract invocations that the
current contract belongs to, resulting in the stack src � [] � st.

– CONTRACT T pops an address addr from the stack and typechecks whether the
contract associated with addr takes an argument of type T . If the typechecking
succeeds, then Some (Contract addr) is pushed; otherwise, None is pushed.
The constructor Contract creates an object that represents a typechecked
contract at the given address. In Tezos, the source account is always a contract
that takes the value Unit as a parameter; thus, Some (Contract src) will
always be pushed onto the stack.

– ASSERT_SOME pops a value v from the stack and pushes v’ if v is Some v’;
otherwise, it raises an exception.

– UNIT pushes the unit value Unit to the stack.
– TRANSFER_TOKENS, if the stack is of the shape varg � vamt � vcontr �

tl, pops varg, vamt, and vcontr from the stack and pushes (Transfer

varg vamt vcontr) onto tl. The value Transfer varg vamt vcontr is an
operation object expressing that money (of amount vamt) shall be sent to
the account vcontr with the argument varg after this program finishes
without raising an exception. Therefore, the program associated with vcontr

is invoked after this program finishes.
– CONS with the stack v1 � v2 � tl pops v1 and v2, and pushes a cons list
v1::v2 onto the stack. (We use the list notation in OCaml here.)

– After executing one of the branches associated with IFCMPEQ in this program,
the shape of the stack should be ops � storage, where ops is [] if amount
= 0 or [Transfer varg vamt vcontr] if amount > 0. The instruction PAIR

pops ops and storage, and pushes (ops,storage).

A Michelson program is supposed to finish its execution with a singleton stack
whose unique element is a pair of (1) a list of operations to be executed after the
current execution of the contract finishes and (2) the new value for the storage.

Michelson is a statically typed language. Each instruction is associated with a
typing rule that specifies the shapes of stacks before and after it by a sequence of
simple types such as int and int list. For example, CONS requires the type of
top element to be T and that of the second to be T list (for any T); it ensures
the top element after it has type T list.

Other notable features of Michelson include first-class functions, hashing,
instructions related to cryptography such as signature verification, and manipu-
lation of a blockchain using operations.

Helmholtz: Tezos Smart Contract Verifier 267

2.3 Specification

A user can specify the behavior of a program by a ContractAnnot annotation,
which is a part of the augmented syntax of our verification tool. A ContractAnnot

annotation gives a specification of a Michelson program by the following no-
tation inspired by the refinement types: {(param,st) | pre} -> {(ops,st’)
| post} & {exc | abpost} where pre, post, and abpost are predicates. This
specification reads as follows: if this program is invoked with a parameter param
and storage st that satisfies the property pre, then (1) if the execution of this pro-
gram succeeds, then it returns a list of operations ops and new storage storage’
that satisfy the property post; (2) if this program raises an exception with value
exc, then exc satisfies abpost. The specification language is expressive enough
to cover the specifications for practical contracts, including the ones we used in
the experiments in Section 4.3. In the predicates, one can use several keywords
such as amount for the amount of the money sent to this program when it is
invoked and source for the source account’s address.

The ContractAnnot annotation in Figure 1 (Lines 3–6) formalizes this pro-
gram’s specification as follows. This program can take any parameter and storage
(Line 3). Successful execution of this program results in a pair (ops,st’) that
satisfies the condition in Lines 4–5 that expresses (1) if amount = 0, then ops is
empty, that is, no operation will be issued; (2) if amount > 0, then ops is a list of
a single element Transfer Unit amount (Contract source), which expresses
transfer of money of the amount amount to the account at source with the unit
argument.4 In the specification language, source and amount are keywords that
stand for the source account and the amount of money sent to this program,
respectively. The part & { _ | False } expresses that this program does not
raise an exception. This specification correctly formalizes the intended behavior
of this program.

3 Refinement Type System for Mini-Michelson

In this section, we formalize Mini-Michelson, a core subset of Michelson with its
syntax, operational semantics, and refinement type system. We also state that
the type system is sound. We omit many features from the full language in favor
of conciseness but includes language constructs—such as higher-order functions
and iterations—that make verification difficult.

Figure 2 shows the syntax of Mini-Michelson. Values, ranged over by V ,
consist of integers i; addresses a; operations transaction (V, i, a) to invoke a
contract at a by sending money of amount i and an argument V ; pairs (V1, V2)
of values; the empty list []; cons V1 :: V2; and code 〈IS 〉 of first-class functions.5

4 As we mentioned in Section 1, Helmholtz can currently verify the behavior of a
single contract, although there will be an invocation of the contract associated with
source after the termination of boomerang. An operation is treated as an opaque
data structure, from which one cannot extract values.

5 Closures are not needed because functions in Michelson can access only arguments.

268 Y. Nishida et al.

V ::= i | a | transaction (V, i, a) | (V1, V2) | [] | V1 :: V2 | 〈IS〉
T ::= int | address | operation | T1 × T2 | T list | T1 → T2

IS ::= {I1; ... ; In}
I ::= IS | DIP IS | DROP | DUP | SWAP | PUSHT V | NOT | ADD | IF IS1 IS2 |

LOOP IS | PAIR | CAR | CDR | NILT | CONS | IF_CONS IS 1 IS2 | ITER IS |
LAMBDAT1 T2 IS | EXEC | TRANSFER_TOKENST

Fig. 2. Syntax of Mini-Michelson

Unlike Michelson, we use integers as a substitute for Boolean values so that 0
means false and the others mean true. Simple types, ranged over by T , consist of
base types (int, address, and operation, which are self-explanatory), pair types
T1 × T2, list types T list, and function types T1 → T2. Instruction sequences,
ranged over by IS , are a sequence of instructions, ranged over by I, enclosed by
curly braces. A Mini-Michelson program is an instruction sequence.

Instructions include those for stack manipulation (to DROP, DUPlicate, SWAP,
and PUSH values); NOT and ADD for manipulating integers; PAIR, CAR, and CDR for
pairs; NIL and CONS for constructing lists; and TRANSFER_TOKENS to create an
operation that expresses a money transfer after the current contract execution.
The instruction IF branches depending on whether the stack top is 0 or not;
IF_CONS branches on whether the stack top is a cons or not. The instruction
LOOP IS repeats IS as long as the stack top is a nonzero integer at the loop
entry; ITER IS is for iterating the list at the stack top. LAMBDA pushes a function
(described by its operand IS) onto the stack, and EXEC calls a function. Perhaps
unfamiliar is DIP IS , which pops and saves the stack top somewhere else, executes
IS , and then pushes the saved value back.

We also use a few kinds of stacks in the following definitions: value stacks,
ranged over by S, type stacks, ranged over by T̄ , and type binding stacks, ranged
over by Υ , of the form x1 : T1 � .. � xn : Tn. The empty stack is denoted by ‡,
and push is by �. We often omit the empty stack and write, for example, V1 � V2

for V1 � V2 � ‡. Intuitively, T1 � .. � Tn and x1 : T1 � .. � xn : Tn describe stacks
V1 � .. � Vn where each value Vi is of type Ti. We will use variables to name stack
elements in the refinement type system.

Mini-Michelson (as well as Michelson) is equipped with a simple type system.
The type judgment for instructions is written T̄ & I ⇒ T̄ ′, which means that
instruction I transforms a stack of type T̄ into another stack of type T̄ ′. The
type judgment for values is written V : T , which means that V is given simple
type T . We omit typing rules as they are fairly straightforward.

3.1 Operational Semantics

We give a big-step operational semantics of Mini-Michelson by defining the
judgment S & I ⇓ S′, which means that executing the instruction I under the
stack S results in the stack S′, (and also S & IS ⇓ S′). Most rules for S & I ⇓ S′

are straightforward. We show rules for DIP and LOOP below and omit other rules.

Helmholtz: Tezos Smart Contract Verifier 269

S � IS ⇓ S′

V � S � DIP IS ⇓ V � S′
S � IS ⇓ S′ S′ � LOOP IS ⇓ S′′ (i �= 0)

i � S � LOOP IS ⇓ S′′ 0 � S � LOOP IS ⇓ S

The first rule means that the body IS is executed with the stack S obtained by
removing the top element V , which is pushed back onto the resulting stack S′.
There are two rules for LOOP: the first rule means that if the stack top is nonzero,
then the body is executed, and then the execution of LOOP IS is repeated; the
second rule means that, if the stack top is zero, then the loop acts as a no-op.

3.2 Refinement Type System

In the refinement type system, a simple stack type T1 � .. � Tn is augmented
with a formula ϕ of first-order logic to describe the relationship among stack
elements. We introduce refinement stack types, ranged over by Φ, of the form
{x1 : T1 � ... � xn : Tn | ϕ(x1, ... , xn)}, which denotes stacks V1 � .. � Vn such
that V1 : T1, . . . , Vn : Tn and ϕ(V1, ... , Vn) hold.

We show (part of) the syntax of terms and formulae of the first-order logic:

t ::= x | V | transaction (t1, t2, t3) | t1 :: t2 | (t1, t2) | t1 + t2 | · · ·
ϕ ::= t1 = t2 | call (t1, t2) = t3 | ϕ1 ∨ ϕ2 | ¬ϕ | ∃x : T.ϕ | · · ·

The language for predicates is multi-sorted, where a sort is a simple type of
Michelson. The sorting rules for term constructors and relation symbols are
standard. For example, in t1 + t2, both t1 and t2 have to be of sorts int; and in
t1 = t2, the sorts of t1 and t2 must be the same, and so on. The only relation
symbol worth explaining is call (t1, t2) = t3, which informally means that calling
function t1 with argument t2 (as the only element of the input stack) yields a
stack consisting only of t3 as a result. We use other predicates, connectives, and
quantifiers such as t1 �= t2, ϕ1 ∧ ϕ12, ϕ1 =⇒ ϕ2, and ∀x : T.ϕ, which can be
considered as derived forms.

We define the semantics of the formulae in a standard manner. Let σ be a value
assignment, i.e., a sort-respecting finite map from variables to values. We define
the interpretation [[t]]σ of t under σ and valid formulae under a value assignment,
denoted by σ |= ϕ; for call (t1, t2) = t3, we define σ |= call (t1, t2) = t3 iff
[[t2]]σ � ‡ & [[t1]]σ ⇓ [[t3]]σ � ‡. Equality on instruction sequences is intensional:
formula 〈IS 〉 = 〈IS ′〉 is valid only if IS and IS ′ are syntactically equal.

For a finite mapping Γ (called a type environment) from variables to sorts,
Γ |= σ and Γ |= ϕ are defined as usual: Γ |= σ iff dom (σ) = dom (Γ) and
σ(x) : Γ (x) for any x ∈ dom (σ); Γ |= ϕ iff σ |= ϕ for any value assignment σ
such that Γ |= σ.

The type system is equipped with subtyping whose judgment is of the form
Γ & Φ1 <: Φ2, which means stack type Φ1 is a subtype of Φ2 under Γ . The type
judgment for instructions (resp. instruction sequences) is of the form Γ & Φ1 I Φ2

(resp. Γ & Φ1 IS Φ2), which means that, under Γ , if I (resp. IS) is executed
under a stack satisfying Φ1, the resulting stack (if the execution terminates)
satisfies Φ2. We often call Φ1 pre-condition and Φ2 post-condition.

We show representative typing rules in Figure 3.

270 Y. Nishida et al.

Γ, x : T � {Υ | ϕ} IS {Υ ′ | ϕ′}
Γ � {x : T � Υ | ϕ} DIP IS {x : T � Υ ′ | ϕ′} (RT-Dip)

Γ � {Υ | ∃ x : int.ϕ ∧ x �= 0} IS1 Φ Γ � {Υ | ∃ x : int.ϕ ∧ x = 0} IS2 Φ

Γ � {x : int � Υ | ϕ} IF IS1 IS2 Φ
(RT-If)

Γ � {Υ | ∃ x : int.ϕ ∧ x �= 0} IS {x : int � Υ | ϕ}
Γ � {x : int � Υ | ϕ} LOOP IS {Υ | ∃ x : int.ϕ ∧ x = 0} (RT-Loop)

y′
1 : T1 � {y1 : T1 | y′

1 = y1 ∧ ϕ1} IS {y2 : T2 | ϕ2}
Γ � {Υ | ϕ} LAMBDAT1 T2 IS

{x : T1 → T2 � Υ | ϕ ∧ ∀ y′
1 : T1, y2 : T2.ϕ1[y1 := y′

1] ∧ call (x, y′
1) = y2 =⇒ ϕ2}

(RT-Lambda)

Γ � {x1 : T1 �x2 : T1 → T2 �Υ | ϕ} EXEC {x3 : T2 �Υ | ∃ x1 : T1, x2 : T1 → T2.ϕ∧call (x2, x1) = x3}
(RT-Exec)

Γ � Φ1 <: Φ′
1 Γ � Φ′

1 I Φ′
2 Γ � Φ′

2 <: Φ2

Γ � Φ1 I Φ2
(RT-Sub)

Fig. 3. Typing rules (excerpt)

– (RT-Dip) means that DIP IS is well typed if the body IS is typed under the
stack type obtained by removing the top element. The popped value named
x is moved to the type environment part so that it can be referred to in the
refinement predicate ϕ in the pre-condition.

– (RT-If) means that the instruction is well typed if both branches have the
same post-condition; the pre-conditions of the branches are strengthened by
the assumptions that the top of the input stack is true (x �= 0) and false
(x = 0). The variable x is existentially quantified because the top element
will be removed before the execution of either branch.

– (RT-Loop) is similar to the proof rule for while-loops in Hoare logic. The
formula ϕ is a loop invariant. Since the body of LOOP is executed while the
stack top is nonzero, the pre-condition for the body IS is strengthened by
x �= 0, whereas the post-condition of LOOP IS is strengthened by x = 0.

– (RT-Lambda) is for the instruction to push a first-class function onto the
operand stack. The premise of the rule means that the body IS takes a
value (named y1) of type T1 that satisfies ϕ1 and outputs a value (named
y2) of type T2 that satisfies ϕ2 (if it terminates). The post-condition in the
conclusion expresses, by using call, that the function x has the property
above. The extra variable y′1 in the type environment of the premise is an
alias of y1; being a variable declared in the type environment y′1 can appear
in both ϕ1 and ϕ2

6 and can describe the relationship between the input and
output of the function.

– (RT-Exec) adds call (x2, x1) = x3 to the post-condition, meaning that the
result of a call to the function x2 with x1 as an argument yields x3. It may
look simpler than expected; the crux here is that ϕ is expected to imply
∀x1 : T1, x3 : T2.ϕ1 ∧ call (x2, x1) = x3 =⇒ ϕ2, where ϕ1 and ϕ2 represent

6 The scope of a variable in a refinement stack type is its predicate part and so y1
cannot appear in the post-condition.

Helmholtz: Tezos Smart Contract Verifier 271

the pre- and post-conditions, respectively, of function x2. If x1 satisfies ϕ1,
then we can derive that ϕ2 holds.

– (RT-Sub) is the rule for subsumption to strengthening the pre-condition
and weakening the post-condition. In our type system, subtyping is defined
semantically: A subtyping judgment Γ & {Υ | ϕ1} <: {Υ | ϕ2} holds if for any
σ such that ∀x ∈ dom (Γ, Υ).σ(x) : (Γ, Υ)(x), σ |= ϕ1 =⇒ ϕ2 is valid. (Here,
by abuse of notation, the type binding stack Υ is regarded as a mapping from
variables to sorts.)

We state that our type system is sound : For a well-typed instruction, if we
execute the instruction under a stack that satisfies the pre-condition of the typing,
then (if the execution halts) the resulting stack satisfies the post-condition of the
typing. To state the soundness theorem, we define an auxiliary relation Γ |= S : Φ,
which means “stack S satisfies stack refinement type Φ under environment Γ”,
by: Γ |= V1 � .. � Vm : {y1 : T ′

1 � .. � ym : T ′
m | ϕ} ⇐⇒ V1 : T ′

1, . . . , Vm :
T ′
m and σ[y1 �→ V1, .. , ym �→ Vm] |= ϕ for any σ such that Γ |= σ.
Then, the soundness theorem, whose proof will appear in a forthcoming full

version, is stated as follows:

Theorem 1 (Soundness). If Γ & Φ1 IS Φ2, Γ |= S : Φ1, and S & IS ⇓ S′,
then Γ |= S′ : Φ2.

Sketch of Typechecking We implement a typechecking algorithm as follows.
Given a type environment, a pre-condition, and a post-condition, our algorithm
computes the strongest post-condition of the code starting from the given pre-
condition. This computation is conducted according to the syntax-directed version
of the typing rules created essentially in the same way as a type system with
subtyping (e.g., one described in [15]). An application of the subtyping generates
verification conditions. The accumulated verification conditions are fed to Z3;
the typechecking succeeds if they are successfully discharged.

3.3 Extensions

The implementation supports a few extensions of the formalization explained
above, which are explained below.

The type system implemented in Helmholtz is extended with refinements for
values thrown by raising exceptions. For example, the typing rule for instruction
FAILWITH, which raises an exception with the value at the stack top, is given as
follows:

Γ & {x : T � Υ | ϕ} FAILWITH {Υ | ⊥}&{err | ∃x : T, Υ.ϕ ∧ x = err}.

The rule expresses that, if FAILWITH is executed under a non-empty stack that
satisfies ϕ, then the program point just after the instruction is not reachable
(hence, {Υ | ⊥}). The refinement ∃x : T, Υ.ϕ ∧ x = err for the exception case
states that ϕ in the pre-condition with the top element x is equal to the raised

272 Y. Nishida et al.

value err; since x is not in the scope in the exception refinement, x is bound
by an existential quantifier. The typing rules for the other instructions can be
extended with the “&” part easily.

Helmholtz deals with measure functions introduced by Kawaguchi et al. [9]
and supported by Liquid Haskell [23]. If a measure function is defined by a
Measure annotation, Helmholtz “weaves” the function definition into relevant
typing rules. For instance, given the annotation Measure len : list int ->

int where [] = 0 | h :: t = (1 + len t), Helmholtz assumes an unin-
terpreted function symbol len and augments (RT-Nil) and (RT-Cons) as
follows, where the last equality in each post-condition comes from the definition
of len.

Γ � {Υ | ϕ} NILT {x : T list � Υ | ϕ ∧ x = [] ∧ len [] = 0}
Γ � {x1 : T � x2 : T list � Υ | ϕ} CONS {x3 : T list � Υ | ∃x1 : T, x2 : T list.ϕ ∧ x1 ::

x2 = x3 ∧ len (x1 :: x2) = 1 + lenx2}

4 Tool Implementation

In this section, we discuss annotations in detail, show a case study of contract
verification, and present verification experiments.

4.1 Annotations

Helmholtz supports several forms of annotations (surrounded by << and >> in
the source code), other than ContractAnnot explained in Section 2.

Assert Φ and Assume Φ can appear before or after an instruction. The former
asserts that the stack at the annotated program location satisfies the type Φ; the
assertion is verified by Helmholtz. If there is an annotation Assume Φ, Helm-
holtz assumes that the stack satisfies the type Φ at the annotated program
location. A user can give a hint to Helmholtz by using Assume Φ. The user
has to make sure that it is correct; if an Assume annotation is incorrect, the
verification result may be incorrect.

LoopInv Φ asserts the loop invariant of a loop instruction (e.g., LOOP and
ITER). In the current implementation, annotating a loop invariant using LoopInv

Φ is mandatory. Helmholtz checks that Φ is indeed a loop invariant and uses it
to verify the rest of the program.

In the current implementation, a LAMBDA instruction, which pushes a function
on the top of the stack, must be accompanied by the LambdaAnnot annotation,
where Φpre → Φpost & Φabpost is a specification of the pushed function and the
bindings (x1 : T1, . . . , xn : Tn) introduce the ghost variables that can be used in
the annotations in the body of the annotated LAMBDA instruction;7 one can omit
the declaration of ghost variables if it is empty. The first contract in Figure 4,
which pushes a function that takes a pair of integers and returns the sum of them,
presents an example of LambdaAnnot. The annotated type of the function (Line 5)

7 ContractAnnot also allows declarations of ghost variable used in the code section.

Helmholtz: Tezos Smart Contract Verifier 273

Fig. 4. lambda.tz, which uses higher-order functions, and length.tz, which uses a
measure function in the contract annotation.

expresses that it returns 4 if it is fed with a pair (3, 1). The ghost variables a and
b are used in the annotations Assume (Line 8) and Assert (Line 10) in the body
to denote the first and the second arguments of the pair passed to this function.

Helmholtz allows user-defined (recursive) functions to be used in annotations;
these functions are called measure functions following the terminology of Liquid-
Haskell [9]. The annotation Measure x : T1 → T2 where p1 = e1 | · · · | pn = en
defines a recursive function x that takes a value of type T1, destructs it by
the pattern matching, and returns a value of type T2. Metavariables p and e
represent ML-like patterns and expressions. The second contract in Figure 4,
which computes the length of the list passed as a parameter, exemplifies the
usage of the Measure annotation. This contract defines a measure function len

that takes a list of integers and returns its type; it is used in ContractAnnot and
LoopInv.

4.2 Case Study: Contract with Signature Verification

Figure 5 presents the code of the contract checksig.tz, which verifies that
a sender indeed signed certain data using her private key. This contract uses
instruction CHECK_SIGNATURE, which is supposed to be executed under a stack of
the form key � sig � bytes � tl, where key is a public key, sig is a signature,
and bytes is some data. CHECK_SIGNATURE pops these three values from the

274 Y. Nishida et al.

Fig. 5. checksig.tz, which involves signature verification.

stack and pushes true if sig is the valid signature for bytes with the private
key corresponding to key.

The intended behavior of checksig.tz is as follows. It stores a pair of
an address addr, which is the address of a contract that takes a string pa-
rameter, and a public key key in its storage. It takes a pair (sig,s) of type
pair signature string as a parameter where signature is the primitive
Michelson type for signatures. This contract terminates without exception if sig
is created from the serialized (packed) representation of s and signed by the
private key corresponding to key. In a normal termination, this contract transfers
1 mutez to the contract with address addr. If this signature verification fails,
then an exception is raised.

This behavior is expressed as a specification in the ContractAnnot annotation
in checksig.tz as follows.

– The refinement of its pre-condition part expresses that the address stored
in the first element store.first of the storage store is an address of
a contract that takes a value of type string as a parameter. This is ex-
pressed by the pattern-matching of Contract store.first, which represents
the contract stored at the address store.first, to the pattern expression
Contract<string> _, which matches a contract that takes a string value.

– The refinement of the post-condition forces the following three conditions:
(1) the store is not updated by this contract (store = new_store); (2)
param.first is the signature created from the packed string Pack param.

second of the string in the second element of the parameter and signed by the
private key corresponding to the second element store.second of the store
(sig store.second param.first (Pack param.second)); and (3) the op-
erations ops returned by this contract is [Transfer param.second 1

Helmholtz: Tezos Smart Contract Verifier 275

(Contract store.first)], which represents an operation of transferring
1 mutez to the contract Contract store.first with the parameter param.
second. The predicate sig and the constructor Pack are primitives of Helm-
holtz that can be used in an annotation.

– The refinement in the exception part expresses that if an exception is raised,
then the signature verification should have failed (not (sig store.second

param.first (Pack param.second))).

Helmholtz successfully verifies checksig.tz without any additional anno-
tation in the code section. If we change the instruction ASSERT in Line 12 to
DROP to let the contract drop the result of the signature verification (hence, an
exception is not raised even if the signature verification fails), the verification
fails as intended.

4.3 Experiments

We applied Helmholtz to various contracts; Table 1 is an excerpt of the result,
in which we show (1) the number of the instructions in each contract (column
#instr.) and (2) time (ms) spent to verify each contract. The experiments are
conducted on MacOS Catalina 10.15.7 with Dual-Core Intel Core i5 (1.8 GHz), 8
GB RAM. We used Z3 version 4.8.8. The contracts boomerang.tz, deposit.tz,
manager.tz, vote.tz, and reservoir.tz are taken from the benchmark of Mi-
cho-coq [3]. checksig.tz is derived from weather_insurance.tz of the official
Tezos test suite.8 vote_for_delegate.tz and xcat.tz are taken from the official
test suite; xcat.tz is simplified from the original. triangular_num.tz is a simple
test case that we made as an example of using LOOP. The source code of these
contracts can be found at the Web interface of Helmholtz. Each contract is
supposed to work as follows.

– boomerang.tz: Transfers the received amount of money to the source account.
– deposit.tz: Transfers money to the sender if the address of the sender is

identical to that is stored in the storage.
– manager.tz: Calls the passed function if the address of the caller matches

the address stored in the storage.
– vote.tz: Accepts a vote to a candidate if the voter transfers enough voting

fee, and stores the tally.
– checksig.tz: The one explained in Section 4.2.
– vote_for_delegate.tz: Delegates one’s ballot in voting by stakeholders,

which is one of the fundamental features of Tezos, to another using a primitive
operation of Tezos.

– xcat.tz: Transfers all stored money to one of the two accounts specified
beforehand if called with the correct password. The account that gets money
is decided based on whether the contract is called before or after a deadline.

8 https://gitlab.com/tezos/tezos/-/tree/ee2f75bb941522acbcf6d5065a9f3b2/
tests python/contracts/mini scenarios

https://gitlab.com/tezos/tezos/-/tree/ee2f75bb941522acbcf6d5065a9f3b2/tests_python/contracts/mini_scenarios
https://gitlab.com/tezos/tezos/-/tree/ee2f75bb941522acbcf6d5065a9f3b2/tests_python/contracts/mini_scenarios

276 Y. Nishida et al.

– reservoir.tz: Sends a certain amount of money to either a contract or
another depending on whether the contract is executed before or after the
deadline.

– triangular_num.tz: Calculates the sum from 1 to n, which is the passed
parameter.

In the experiments, we verified that each contract indeed works according to
the intention explained above. triangular_num.tz was the only contract that
required a manual annotation for verification in the code section; we needed to
specify a loop invariant in this contract.

Table 1. Benchmark result

Filename #instr. time (ms) Filename #instr. time (ms)

boomerang.tz 17 35 checksig_unverified.tz 36 62
deposit.tz 24 54 vote_for_delegate.tz 87 143
manager.tz 29 60 xcat.tz 64 188
vote.tz 24 62 reservoir.tz 45 87
checksig.tz 38 65 triangular_num.tz 16 35

Although the numbers of instructions in these contracts are not large, they cap-
ture essential features of smart contracts; everyone except triangular_num.tz
executes transactions; deposit.tz and manager.tz check the identity of the
caller; and checksig.tz conducts signature verification. The time spent on
verification is small.

5 Related Work

There are several publications on the formalization of programming languages for
writing smart contracts. Hirai [7] formalizes EVM, a low-level smart contract lan-
guage of Ethereum and its implementation, using Lem [13], a language to specify
semantic definitions; definitions written in Lem can be compiled into definitions
in Coq, HOL4, and Isabelle/HOL. Based on the generated definition, he verifies
several properties of Ethereum smart contracts using Isabelle/HOL. Bernardo et
al. [3] implemented Mi-Cho-Coq, a formalization of the semantics of Michelson
using the Coq proof assistant. They also verified several Michelson contracts.
Compared to their approach, we aim to develop an automated verification tool
for smart contracts. Park et al. [14] developed a formal verification tool for EVM
by using the K-framework [17], which can be used to derive a symbolic model
checker from a formally specified language semantics (in this case, formalized
EVM semantics [6]), and successfully applied the derived model checker to a few
EVM contracts. It would be interesting to formalize the semantics of Michelson
in the K-framework to compare Helmholtz with the derived model checker.

The DAO attack [18], mentioned in Section 1, is one of the notorious attacks
on a smart contract. It exploits a vulnerability of a smart contract that is related

Helmholtz: Tezos Smart Contract Verifier 277

to a callback. Grossman et al. [5] proposed a type-based technique to verify
that execution of a smart contract that may contain callbacks is equivalent to
another execution without any callback. This property, called effectively callback
freedom, can be seen as one of the criteria for execution of a smart contract not
to be vulnerable to the DAO-like attack. Their type system focuses on verifying
the ECF property of execution of a smart contract, whereas ours concerns the
verification of generic functional properties of a smart contract.

Benton proposes a program logic for a minimal stack-based programming
language [2]. His program logic can give an assertion to a stack as our stack
refinement types do. However, his language does not support first-class functions
nor instructions for dealing with smart contracts (e.g., signature verification).

Our type system is an extension of the Michelson type system with re-
finement types, which have been successfully applied to various programming
languages [16,22,9,10,20,26,23,24,25]. DTAL [25] is a notable example of an ap-
plication of refinement types to an assembly language, a low-level language like
Michelson. A DTAL program defines a computation using registers; we are not
aware of refinement types for stack-based languages like Michelson.

We notice the resemblance between our type system and a program logic for
PCF proposed by Honda and Yoshida [8], although the targets of verification are
different. Their logic supports a judgment of the form A & e :u B, where e is a
PCF program, A is a pre-condition assertion, B is a post-condition assertion, and
u represents the value that e evaluates to and can be used in B, which resembles
our type judgment in the formalization in Section 3. Their assertion language also
incorporates a term expression f •x, which expresses the value resulting from the
application of f to x; this expression resembles the formula call (t1, t2) = t3 used
in a refinement predicate. We have not noticed an automated verifier implemented
based on their logic. Further comparison is interesting future work.

6 Conclusion

We described our automated verification tool Helmholtz for the smart contract
language Michelson based on the refinement type system for Mini-Michelson.
Helmholtz verifies whether a Michelson program follows a specification given in
the form of a refinement type. We also demonstrated that Helmholtz successfully
verifies various practical Michelson contracts.

Currently, Helmholtz supports approximately 80% of the whole instructions
of the Michelson language. The definition of a measure function is limited in the
sense that, for example, it can define only a function with one argument. We are
currently extending Helmholtz so that it can deal with more programs.

Helmholtz currently verifies the behavior of a single contract, although
a blockchain application often consists of multiple contracts in which contract
calls are chained. To verify such an application as a whole, we plan to extend
Helmholtz so that it can verify an inter-contract behavior compositionally by
combining the verification results of each contract.

278 Y. Nishida et al.

References

1. Michelson: the language of smart contracts in Tezos. https://tezos.gitlab.io/
whitedoc/michelson.html, retrieved Oct. 14, 2020.

2. Benton, N.: A Typed, Compositional Logic for a Stack-Based Abstract Ma-
chine. In: Proceedings of Asian Sympoisum on Programming Languages
and Systems (APLAS). pp. 364–380. Springer Berlin Heidelberg (2005).
https://doi.org/10.1007/11575467 24

3. Bernardo, B., Cauderlier, R., Hu, Z., Pesin, B., Tesson, J.: Mi-Cho-Coq, a framework
for certifying Tezos smart contracts. In: Formal Methods. FM 2019 International
Workshops - Porto, Portugal, October 7-11, 2019, Revised Selected Papers, Part
I. Lecture Notes in Computer Science, vol. 12232, pp. 368–379. Springer (2019).
https://doi.org/10.1007/978-3-030-54994-7 28

4. Goodman, L.: Tezos — a self-amending crypto-ledger. white paper. https://tezos.
com/static/white paper-2dc8c02267a8fb86bd67a108199441bf.pdf (2014), retrieved
Oct. 14, 2020.

5. Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sagiv,
M., Zohar, Y.: Online detection of effectively callback free objects with appli-
cations to smart contracts. Proc. ACM Program. Lang. 2(POPL) (Dec 2017).
https://doi.org/10.1145/3158136

6. Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D.,
Moore, B., Park, D., Zhang, Y., Stefanescu, A., Rosu, G.: KEVM: A Com-
plete Formal Semantics of the Ethereum Virtual Machine. In: 2018 IEEE 31st
Computer Security Foundations Symposium (CSF). pp. 204–217 (Jul 2018).
https://doi.org/10.1109/CSF.2018.00022

7. Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers.
In: Financial Cryptography and Data Security. pp. 520–535. Springer International
Publishing (2017)

8. Honda, K., Yoshida, N.: A compositional logic for polymorphic higher-order func-
tions. In: Proceedings of the 6th International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming, 24-26 August 2004, Verona,
Italy. pp. 191–202. ACM (2004). https://doi.org/10.1145/1013963.1013985

9. Kawaguchi, M., Rondon, P.M., Jhala, R.: Type-based data structure verification.
In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. pp.
304–315. ACM (2009). https://doi.org/10.1145/1542476.1542510

10. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, June 4-8, 2011. pp. 222–233 (2011). https://doi.org/10.1145/1993498.1993525

11. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings. pp. 337–340 (2008). https://doi.org/10.1007/978-3-540-78800-3 24

12. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf (2008), retrieved Oct. 12, 2020.

13. Owens, S., Böhm, P., Zappa Nardelli, F., Sewell, P.: Lem: A lightweight tool for
heavyweight semantics. In: Interactive Theorem Proving. pp. 363–369. Springer
Berlin Heidelberg (2011)

https://tezos.gitlab.io/whitedoc/michelson.html
https://tezos.gitlab.io/whitedoc/michelson.html
https://doi.org/10.1007/11575467_24
https://doi.org/10.1007/978-3-030-54994-7_28
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://doi.org/10.1145/3158136
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1145/1013963.1013985
https://doi.org/10.1145/1542476.1542510
https://doi.org/10.1145/1993498.1993525
https://doi.org/10.1007/978-3-540-78800-3_24
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

Helmholtz: Tezos Smart Contract Verifier 279

14. Park, D., Zhang, Y., Saxena, M., Daian, P., Roşu, G.: A formal verifica-
tion tool for Ethereum VM bytecode. In: Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. pp. 912–915. ACM (Oct 2018).
https://doi.org/10.1145/3236024.3264591

15. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
16. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Proceedings of

the ACM SIGPLAN 2008 Conference on Programming Language Design and
Implementation, Tucson, AZ, USA, June 7-13, 2008. pp. 159–169 (2008).
https://doi.org/10.1145/1375581.1375602

17. Roşu, G., Şerbănută, T.F.: An overview of the K semantic framework. The
Journal of Logic and Algebraic Programming 79(6), 397–434 (Aug 2010).
https://doi.org/10.1016/j.jlap.2010.03.012

18. Siegel, D.: Understanding the DAO attack. CoinDesk (2016), https://www.coindesk.
com/understanding-dao-hack-journalists, retrieved Oct. 13, 2020.

19. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (Sep 1997). https://doi.org/10.5210/fm.v2i9.548

20. Terauchi, T.: Dependent types from counterexamples. In: Proceedings of the
37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2010, Madrid, Spain, January 17-23, 2010. pp. 119–130 (2010).
https://doi.org/10.1145/1706299.1706315

21. The Coq development team: The coq proof assistant reference manual (2020),
http://coq.inria.fr, version 8.12.0

22. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: Pro-
ceedings of the 11th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, September 7-9, 2009, Coimbra, Portugal. pp.
277–288 (2009). https://doi.org/10.1145/1599410.1599445

23. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Jones, S.L.P.: Refinement types
for Haskell. In: Proceedings of the 19th ACM SIGPLAN international conference on
Functional programming, Gothenburg, Sweden, September 1-3, 2014. pp. 269–282.
ACM (2014). https://doi.org/10.1145/2628136.2628161

24. Xi, H.: Dependent ML an approach to practical programming
with dependent types. J. Funct. Program. 17(2), 215–286 (2007).
https://doi.org/10.1017/S0956796806006216

25. Xi, H., Harper, R.: A dependently typed assembly language. In: Proceedings of
the Sixth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’01), Firenze (Florence), Italy, September 3-5, 2001. pp. 169–180. ACM
(2001). https://doi.org/10.1145/507635.507657

26. Zhu, H., Jagannathan, S.: Compositional and lightweight dependent type inference
for ML. In: Verification, Model Checking, and Abstract Interpretation, 14th Inter-
national Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings.
pp. 295–314 (2013). https://doi.org/10.1007/978-3-642-35873-9 19

https://doi.org/10.1145/3236024.3264591
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1016/j.jlap.2010.03.012
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://doi.org/10.5210/fm.v2i9.548
https://doi.org/10.1145/1706299.1706315
http://coq.inria.fr
https://doi.org/10.1145/1599410.1599445
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1017/S0956796806006216
https://doi.org/10.1145/507635.507657
https://doi.org/10.1007/978-3-642-35873-9_19

280 Y. Nishida et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

SyReNN: A Tool for Analyzing Deep Neural
Networks �

Matthew Sotoudeh (�) and Aditya V. Thakur (�)

University of California, Davis CA 95616, USA
{masotoudeh,avthakur}@ucdavis.edu

Abstract. Deep Neural Networks (DNNs) are rapidly gaining popular-
ity in a variety of important domains. Formally, DNNs are complicated
vector-valued functions which come in a variety of sizes and applica-
tions. Unfortunately, modern DNNs have been shown to be vulnerable
to a variety of attacks and buggy behavior. This has motivated recent
work in formally analyzing the properties of such DNNs. This paper in-
troduces SyReNN, a tool for understanding and analyzing a DNN by
computing its symbolic representation. The key insight is to decompose
the DNN into linear functions. Our tool is designed for analyses using
low-dimensional subsets of the input space, a unique design point in the
space of DNN analysis tools. We describe the tool and the underlying
theory, then evaluate its use and performance on three case studies: com-
puting Integrated Gradients, visualizing a DNN’s decision boundaries,
and patching a DNN.

Keywords: Deep Neural Networks · Symbolic representation · Inte-
grated Gradients

1 Introduction

Deep Neural Networks (DNNs) [18] have become the state-of-the-art in a variety
of applications including image recognition [53,33] and natural language process-
ing [12]. Moreover, they are increasingly used in safety- and security-critical ap-
plications such as autonomous vehicles [31] and medical diagnosis [10,38,28,37].
These advances have been accelerated by improved hardware and algorithms.

DNNs (Section 2) are programs that compute a vector-valued function, i.e.,
from Rn to Rm. They are straight-line programs written as a concatenation of
alternating linear and non-linear layers. The coefficients of the linear layers are
learned from data via gradient descent during a training process. A number
of different non-linear layers (called activation functions) are commonly used,
including the rectified linear and maximum pooling functions.

Owing to the variety of application domains and deployment constraints,
DNNs come in many different sizes. For instance, large image-recognition and

� Artifact available at https://zenodo.org/record/4124489. Extended paper available
at https://arxiv.org/abs/2101.03263.

© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 281–302, 2021.
https://doi.org/10.1007/978-3-030-72013-1 15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_15&domain=pdf
http://orcid.org/0000-0003-2060-1009
http://orcid.org/0000-0003-3166-1517
https://zenodo.org/record/4124489
https://arxiv.org/abs/2101.03263
https://doi.org/10.1007/978-3-030-72013-1_15

282 M. Sotoudeh and A. V. Thakur

natural-language processing models are trained and deployed using cloud re-
sources [33,12], medium-size models could be trained in the cloud but deployed
on hardware with limited resources [31], and finally small models could be trained
and deployed directly on edge devices [47,9,22,34,35]. There has also been a re-
cent push to compress trained models to reduce their size [24]. Such smaller
models play an especially important role in privacy-critical applications, such
as wake word detection for voice assistants, because they allow sensitive user
data to stay on the user’s own device instead of needing to be sent to a remote
computer for processing.

Although DNNs are very popular, they are not perfect. One particularly con-
cerning development is that modern DNNs have been shown to be extremely vul-
nerable to adversarial examples, inputs which are intentionally manipulated to
appear unmodified to humans but become misclassified by the DNN [54,19,40,8].
Similarly, fooling examples are inputs that look like random noise to humans, but
are classified with high confidence by DNNs [41]. Mistakes made by DNNs have
led to loss of life [36,17] and wrongful arrests [26,27]. For this reason, it is impor-
tant to develop techniques for analyzing, understanding, and repairing DNNs.

This paper introduces SyReNN, a tool for understanding and analyzing
DNNs. SyReNN implements state-of-the-art algorithms for computing precise
symbolic representations of piecewise-linear DNNs (Section 3). Given an input
subspace of a DNN, SyReNN computes a symbolic representation that decom-
poses the behavior of the DNN into finitely-many linear functions. SyReNN im-
plements the one-dimensional analysis algorithm of Sotoudeh and Thakur [50]
and extends it to the two-dimensional setting as described in Section 4.

Key insights. There are two key insights enabling this approach, first identi-
fied in Sotoudeh and Thakur [50]. First, most popular DNN architectures today
are piecewise-linear, meaning they can be precisely decomposed into finitely-
many linear functions. This allows us to reduce their analysis to equivalent
questions in linear algebra, one of the most well-understood fields of modern
mathematics. Second, many applications only require analyzing the behavior
of the DNN on a low-dimensional subset of the input space. Hence, whereas
prior work has attempted to give up precision for efficiency in analyzing high-
dimensional input regions [48,49,16], our work has focused on algorithms that
are both efficient and precise in analyzing lower-dimensional regions (Section 4).

Tool design. The SyReNN tool is designed to be easy to use and extend, as
well as efficient (Section 5). The core of SyReNN is written as a highly-optimized,
parallel C++ server using Intel TBB for parallelization [45] and Eigen for matrix
operations [23]. A user-friendly Python front-end interfaces with the PyTorch
deep learning framework [44].

Use cases. We demonstrate the utility of SyReNN using three applications.
The first computes Integrated Gradients (IG), a state-of-the-art measure used to
determine which input dimensions (e.g., pixels for an image-recognition network)
were most important in the final classification produced by the network (Sec-
tion 6.1). The second precisely visualizes the decision boundaries of a DNN (Sec-
tion 6.2). The last patches (repairs) a DNN to satisfy some desired specification

SyReNN: A Tool for Analyzing Deep Neural Network 283

involving infinitely-many points (Section 6.3). Thus, SyReNN is an interesting
and useful tool in the toolbox for understanding and analyzing DNNs.

Contributions. The contributions of this paper are:

– A definition of symbolic representation of DNNs (Section 3).
– An efficient algorithm for computing symbolic representations for DNNs over

low-dimensional input subspaces (Section 4).
– A design of a usable and well-engineered tool implementing these ideas called

SyReNN (Section 5).
– Three applications of SyReNN (Section 6).

Section 2 presents preliminaries about DNNs; Section 7 presents related work;
Section 8 concludes. SyReNN is available on GitHub at https://github.com/
95616ARG/SyReNN.

2 Preliminaries

We now formally define the notion of DNN we will use in this paper.

Definition 1. A Deep Neural Network (DNN) is a function f : Rn → Rm

which can be written f = f1 ◦ f2 · · · ◦ fn for a sequence of layer functions f1, f2,
. . . , fn.

Our work is primarily concerned with the popular class of piecewise-linear
DNNs, defined below. In this definition and the rest of this paper, we will use the
term “polytope” to mean a convex and bounded polytope except where specified.

Definition 2. A function f : Rn → Rm is piecewise-linear (PWL) if its input
domain Rn can be partitioned into finitely-many possibly-unbounded polytopes
X1, X2, . . . , Xk such that f�Xi

is linear for every Xi.

The most common activation function used today is the ReLU function, a
PWL activation function which is defined below.

Definition 3. The rectified linear function (ReLU) is a function ReLU : Rn →
Rm defined component-wise by

ReLU(�v)i :=

{
0 if vi < 0

vi otherwise,

where ReLU(�v)i is the ith component of the vector ReLU(�v) and vi is the ith
component of the vector �v.

In order to see that ReLU is PWL, we must show that its input domain Rn

can be partitioned such that, in each partition, ReLU is linear. In this case, we
can use the orthants of Rn as our partitioning: within each orthant, the signs
of the components do not change hence ReLU is the linear function that just
zeros out the negative components.

https://github.com/95616ARG/SyReNN
https://github.com/95616ARG/SyReNN

284 M. Sotoudeh and A. V. Thakur

Fig. 1: Example function for which f̂�[−1,2] = {[−1, 0], [0, 1], [1, 2]}.

Although we focus on ReLU due to its popularity and expository power,
SyReNN works with a number of other popular PWL layers include MaxPool,
Leaky ReLU, Hard Tanh, Fully-Connected, and Convolutional layers, as defined
in [18]. PWL layers have become exceedingly common. In fact, nearly all of the
state-of-the-art image recognition models bundled with Pytorch [43] are PWL.

Example 1. The DNN f : R1 → R1 defined by

f(x) :=
[
1 −1 −1

]
ReLU

⎛⎝⎡⎣ 1 −1
1 0
−1 0

⎤⎦ [
x
1

]⎞⎠
can be broken into layers f = f1 ◦ f2 ◦ f3 where

f1(x) :=

⎡⎣ 1 −1
1 0
−1 0

⎤⎦ [
x
1

]
, f2 = ReLU, and f3(�v) =

[
1 −1 −1

]
�v.

The DNN’s input-output behavior on the domain [−1, 2] is shown in Figure 1.

3 A Symbolic Representation of DNNs

We formalize the symbolic representation according to the following definition:

Definition 4. Given a PWL function f : Rn → Rm and a bounded convex

polytope X ⊆ Rn, we define the symbolic representation of f on X, written f̂�X ,

to be a finite set of polytopes f̂�X = {P1, . . . , Pn}, such that:

1. The set {P1, P2, . . . , Pn} partitions X, except possibly for overlapping bound-
aries.

2. Each Pi is a bounded convex polytope.
3. Within each Pi, the function f�Pi is linear.

Notably, if f is a DNN using only PWL layers, then f is PWL and so we can

define f̂�X . This symbolic representation allows one to reduce questions about

SyReNN: A Tool for Analyzing Deep Neural Network 285

the DNN f to questions about finitely-many linear functions Fi. For example,
because linear functions are convex, to verify that ∀x ∈ X. f(x) ∈ Y for some

polytope Y , it suffices to verify ∀Pi ∈ f̂�X .∀�v ∈ Vert(Pi). f(�v) ∈ Y , where
Vert(Pi) is the (finite) set of vertices for the bounded convex polytope Pi; thus,
here both of the quantifiers are over finite sets. The symbolic representation
described above can be seen as a generalization of the ExactLine representa-
tion [50], which considered only one-dimensional restriction domains of interest.

Example 2. Consider again the DNN f : R1 → R1 given by

f(x) :=
[
1 −1 −1

]
ReLU

⎛⎝⎡⎣ 1 −1
1 0
−1 0

⎤⎦ [
x
1

]⎞⎠
and the region of interest X = [−1, 2]. The input-output behavior of f on X is
shown in Figure 1. From this, we can see that

f̂�X = {[−1, 0], [0, 1], [1, 2]}.

Within each of these partitions, the input-output behavior is linear, which for
R1 → R1 we can see visually as just a line segment. As this set fully partitions

X, then, this is a valid f̂�X .

4 Computing the Symbolic Representation

This section presents an efficient algorithm for computing f̂�X for a DNN f com-
posed of PWL layers. To retain both scalability and precision, we will require
the input region X be two-dimensional. This design choice is relatively unex-
plored in the neural-network analysis literature (most analyses strike a balance
between precision and scalability, ignoring dimensionality). We show that, for
two-dimensional X, we can use an efficient polytope representation to produce
an algorithm that demonstrates good best-case and in-practice efficiency while
retaining full precision. This algorithm represents a direct generalization of the
approach of [50].

The difficulties our algorithm addresses arise from three areas. First, when

computing f̂�X there may be exponentially many such partitions on all of Rn

but only a small number of them may intersect with X. Consequently, the algo-
rithm needs to be able to find those partitions that intersect with X efficiently
without explicitly listing all of the partitions on Rn. Second, it is often more
convenient to specify the partitioning via hyperplanes separating the partitions
than explicit polytopes. For example, for the one-dimensional ReLU function
we may simply state that the line x = 0 separates the two partitions, because
ReLU is linear both in the region x ≤ 0 and x ≥ 0. Finally, neural networks
are typically composed of sequences of linear and piecewise-linear layers, where
the partitioning imposed by each layer individually may be well-understood but
their composition is more complex. For example, identifying the linear partitions

286 M. Sotoudeh and A. V. Thakur

of y = ReLU(4 ·ReLU(−3x − 1) + 2) is non-trivial, even though we know the
linear partitions of each composed function individually.

Our algorithm only requires the user to specify the hyperplanes defining the
partitioning for the activation function used in each layer; our current implemen-
tation comes with support for common PWL activation functions. For example,
if a ReLU layer is used for an n-dimensional input vector, then the hyperplanes
would be defined by the equations x1 = 0, x2 = 0, . . . , xn = 0. It then com-
putes the symbolic representation for a single layer at a time, composing them
sequentially to compute the symbolic representation across the entire network.

To allow such compositions of layers, instead of directly computing f̂�X , we
will define another primitive, denoted by the operator ⊗ and sometimes referred
to as Extend, such that

Extend(h, ĝ) = h⊗ ĝ = ĥ ◦ g. (1)

Consider f = fn ◦ fn−1 ◦ · · · ◦ f1, and let I : x �→ x be the identity map. I is

linear across its entire input space, and, thus, Î�X = {X}. By the definition of

Extend(f1, ·), we have f1 ⊗ Î�X = ̂(f1 ◦ I)�X = f̂1�X , where the final equality
holds by the definition of the identity map I. We can then iteratively apply this

procedure to inductively compute ̂(fi ◦ · · · ◦ f1)�X from ̂(fi−1 ◦ · · · f1)�X like so:

fi ⊗ ̂(fi−1 ◦ · · · ◦ f1)�X = ̂(fi ◦ fi−1 ◦ · · · ◦ f1)�X

until we have computed ̂(fn ◦ fn−1 ◦ · · · ◦ f1)�X = f̂�X , which is the required
symbolic representation.

4.1 Algorithm for Extend

Algorithm 1 present an algorithm for computing Extend for arbitrary PWL

functions, where Extend(h, ĝ) = h⊗ ĝ = ĥ ◦ g.
Geometric intuition for the algorithm. Consider the ReLU function (Def-
inition 3). It can be shown that, within any orthant (i.e., when the signs of all
coefficients are held constant), ReLU(�x) is equivalent to some linear function,
in particular the element-wise product of �x with a vector that zeroes out the
negative-signed components. However, for our algorithm, all we need to know is
that the linear partitions of ReLU (in this case the orthants) are separated by
hyperplanes x1 = 0, x2 = 0, . . . , xn = 0.

Given a two-dimensional convex bounded polytope X, the execution of the
algorithm for f = ReLU can be visualized as follows. We pick some vertex v
of X, and begin traversing the boundary of the polytope in counter-clockwise
order. If we hit an orthant boundary (corresponding to some hyperplane xi = 0),
it implies that the behavior of the function behaves differently at the points
of the polytope to one side of the boundary from those at the other side of
the boundary. Thus, we partition X into X1 and X2, where X1 lies to one
side of the hyperplane and X2 lies to the other side. We recursively apply this

SyReNN: A Tool for Analyzing Deep Neural Network 287

procedure to X1 and X2 until the resulting polytopes all lie on exactly one side
of every hyperplane (orthant boundary). But lying on exactly one side of every
hyperplane (orthant boundary) implies each polytope lies entirely within a linear
partition of the function (a single orthant), hence the application of the function
on that polytope is linear, and hence we have our partitioning.

Functions used in algorithm. Given a two-dimensional bounded convex
polytope X, Vert(X) returns a list of its vertices in counter-clockwise order,
repeating the initial vertex at the end. Given a set of points X, ConvexHull(X)

represents their convex hull (the smallest bounded polytope containing every
point in X). Given a scalar value x, Sign(x) computes the sign of that value
(i.e., −1 if x < 0, +1 if x > 0, and 0 if x = 0).

Algorithm description. The key insight of the algorithm is to recursively
partition the polytopes until such a partition lies entirely within a linear region
of the function f . Algorithm 1 begins by constructing a queue containing the
polytopes of ĝ�X . Each iteration either removes a polytope from the queue that
lies entirely in one linear region (placing it in Y), or splits (partitions) some
polytope into two smaller polytopes that get put back into the queue. When we
pop a polytope P from the queue, Line 6 iterates over all hyperplanes Nk ·x = bk
defining the piecewise-linear partitioning of f , looking for any for which some
vertex Vi lies on the positive side of the hyperplane and another vertex Vj lies
on the negative side of the hyperplane. If none exist (Line 7), by convexity we
are guaranteed that the entire polytope lies entirely on one side with respect to
every hyperplane, meaning it lies entirely within a linear partition of f . Thus, we
can add it to Y and continue. If two such vertices are found (starting Line 10),
then we can find “extreme” i and j indices such that Vi is the last vertex in
a counter-clockwise traversal to lie on the same side of the hyperplane as V1

and Vj is the last vertex lying on the opposite side of the hyperplane. We then
call SplitPlane() (Algorithm 2) to actually partition the polytope on opposite
sides of the hyperplane, adding both to our worklist.

In the best case, each partition is in a single orthant: the algorithm never calls
SplitPlane() at all — it merely iterates over all of the n input partitions, checks
their v vertices, and appends to the resulting set (for a best-case complexity of
O(nv)). In the worst case, it splits each polytope in the queue on each face,
resulting in exponential time complexity. As we will show in Section 6, this
exponential worst-case behavior is not encountered in practice, thus making
SyReNN a practical tool for DNN analysis.

Please see the extended version of this paper for a worked example of the
algorithm’s execution.

4.2 Representing Polytopes

We close this section with a discussion of implementation concerns when repre-

senting the convex polytopes that make up the partitioning of f̂�X . In standard
computational geometry, bounded polytopes can be represented in two equiva-
lent forms:

288 M. Sotoudeh and A. V. Thakur

Algorithm 1: f ⊗ ĝ�X for two-dimensional X. f is defined by hyper-
planes N1 · x = b1 through Nm · x = bm such that, within any partition
imposed by the hyperplanes f is equivalent to some affine function.

Input: ĝ�X = {P1, . . . , Pn}.
Output: ̂f ◦ g�X

1 W ← ConstructQueue(ĝ�X)

2 Y ← ∅
3 while W not empty do
4 P ← Pop(W)

5 V ← Vert(P)

6 K ← {Nk | ∃i, j : Sign(Nk · g(Vi)− bk) > 0 ∧ Sign(Nk · g(Vj)− bk) < 0}
7 if K = ∅ then
8 Y ← Y ∪ {P}
9 continue

10 N, b ← any element from K
11 i ← argmaxi{Sign(N · g(Vi)− b) = Sign(N · g(V1)− b)}
12 j ← argmaxj{Sign(N · g(Vj)− b) �= Sign(N · g(Vi)− b)}
13 for V ′ ∈ SplitPlane(V, g, i, j,N, b) do
14 W ← Push(W, ConvexHull(V ′))

15 return Y

1. The half-space or H-representation, which encodes the polytope as an in-
tersection of finitely-many half-spaces. (Each half-space being defined as a
halfspace defined by an affine inequality Ax ≤ b.)

2. The vertex or V-representation, which encodes the polytope as a set of
finitely many points; the polytope is then taken to be the convex hull of
the points (i.e., smallest convex shape containing all of the points).

Certain operations are more efficient when using one representation compared
to the other. For example, finding the intersection of two polytopes in an H-
representation can be done in linear time by concatenating their representative
half-spaces, but the same is not possible in V-representation.

There are two main operations on polytopes we need perform in our algo-
rithms: (i) splitting a polytope with a hyperplane, and (ii) applying an affine
map to all points in the polytope. In general, the first is more efficient in an
H-representation, while the latter is more efficient in a V-representation. How-
ever, when restricted to two-dimensional polygons, the former is also efficient in
a V-representation, as demonstrated by Algorithm 2, helping to motivate our
use of the V-representation in our algorithm.

Furthermore, the two polytope representations have different resiliency to
floating-point operations. In particular, H-representations for polytopes in Rn

are notoriously difficult to achieve high-precision with, because the error in-
troduced from using floating point numbers gets arbitrarily large as one goes
in a particular direction along any hyperplane face. Ideally, we would like the

SyReNN: A Tool for Analyzing Deep Neural Network 289

Algorithm 2: SplitPlane(V, g, i, j,N, b)

Input: V , the vertices of the polytope in the input space of g. A function g. i
is the index of the last vertex lying on the same side of the orthant face
as V1. j is the index of the last vertex lying on the opposite side of the
orthant face as V1. N and b define the hyperplane N · x = b to split on.

Output: {P1, P2}, two sets of vertices whose convex hulls form a partitioning
of V such that each lies on only one side of the N · x = b hyperplane.

1 pi ← Vi +
b−N·g(Vi)

N·(g(Vi+1)−g(Vi))
(Vi+1 − Vi)

2 pj ← Vj +
b−N·g(Vj)

N·(g(Vj+1)−g(Vj))
(Vj+1 − Vj)

3 A ← {pi, pj} ∪ {v ∈ V | Sign(N · v − b) = Sign(N · Vi − b)}
4 B ← {pi, pj} ∪ {v ∈ V | Sign(N · v − b) = Sign(N · Vj − b)}
5 return {A,B}

hyperplane to be most accurate in the region of the polytope itself, which corre-
sponds to choosing the magnitude of the norm vector correctly. Unfortunately,
to our knowledge, there is no efficient algorithm for computing the ideal floating
point H-representation of a polytope, although libraries such as APRON [30]
are able to provide reasonable results for low-dimensional spaces. However, be-
cause neural networks utilize extremely high-dimensional spaces (often hundreds
or thousands of dimensions) and we wish to iteratively apply our analysis, we
find that errors from using floating-point H-representations can quickly multiply
and compound to become infeasible. By contrast, floating-point inaccuracies in
a V-representation are directly interpretable as slightly misplacing the vertices
of the polytope; no “localization” process is necessary to penalize inaccuracies
close to the polytope more than those far away from it.

Another difference is in the space complexity of the representation. In gen-
eral, H-representations can be more space-efficient for common shapes than V-
representations. However, when the polytope lies in a low-dimensional subspace
of a larger space, the V-representation is usually significantly more efficient.

Thus, V-representations are a good choice for low-dimensionality polytopes
embedded in high-dimensional space, which is exactly what we need for analyzing
neural networks with two-dimensional restriction domains of interest. This is why
we designed our algorithms to rely on Vert(X), so that they could be directly
computed on a V-representation.

The 2D algorithm described above can be seen as implementing the recursive
case of a more general, n-dimensional version of the algorithm that recurses on
each of the (n − 1)-dimensional facets. Please see the extended version of this
paper for more details.

5 SyReNN tool

This section provides more details about the design and implementation of our
tool, SyReNN (Symbolic Representations of Neural Networks), which computes

290 M. Sotoudeh and A. V. Thakur

f̂�X , where f is a DNN using only piecewise-linear layers and X is a union of
one- or two-dimensional polytopes. The tool is available under the MIT license
at https://github.com/95616ARG/SyReNN and in the PyPI package pysyrenn.

Input and output format. SyReNN supports reading DNNs from two stan-
dard formats: ERAN (a textual format used by the ERAN project [1]) as well as
ONNX (an industry-standard format supporting a wide variety of different mod-
els) [42]. Internally, the input DNN is described as an instance of the Network

class, which is itself a list of sequential Layers. A number of layer types are
provided by SyReNN, including FullyConnectedLayer, ConvolutionalLayer,
and ReLULayer. To support more complicated DNN architectures, we have im-
plemented a ConcatLayer, which represents a concatenation of the output of
two different layers. The input region of interest, X, is defined as a polytope
described by a list of its vertices in counter-clockwise order. The output of the

tool is the symbolic representation f̂�X .

Overall Architecture. We designed SyReNN in a client-server architecture
using gRPC [20] and protocol buffers [21] as a standard method of communica-
tion between the two. This architecture allows the bulk of the heavy computation
to be done in efficient C++ code, while allowing user-friendly interfaces in a va-
riety of languages. It also allows practitioners to run the server remotely on a
more powerful machine if necessary. The C++ server implementation uses the
Intel TBB library for parallelization. Our official front-end library is written
in Python, and available as a package on PyPI so installation is as simple as
pip install pysyrenn. The entire project can be built using the Bazel build
system, which manages dependencies using checksums.

Server Architecture. The major algorithms are implemented as a gRPC
server written in C++. When a connection is first made, the server initializes
the state with an empty DNN f(x) = x. During the session, three operations
are permitted: (i) append a layer g so that the current session’s DNN is updated

from f0 to f1(x) := g(f0(x)), (ii) compute f̂�X for a one-dimensional X, or (iii)

compute f̂�X for a two-dimensional X. We have separate methods for one- and
two-dimensional X, because the one-dimensional case has specific optimizations
for controlling memory usage. The SegmentedLine and UPolytope types are
used to represent one- and two-dimensional partitions of X, respectively. When
operation (1) is performed, a new instance of the LayerTransformer class is ini-
tialized with the relevant parameters and added to a running vector of the cur-
rent layers. When operation (2) is performed, a new queue of SegmentedLines is
constructed, corresponding to X, and the before-allocated LayerTransformers

are applied sequentially to compute f̂�X . In this case, extra control is provided
to automatically gauge memory usage and pause computation for portions of
X until more memory is made available. Finally, when operation (3) is a per-
formed, a new instance of UPolytope is initialized with the vertices of X and

the LayerTransformers are again applied sequentially to compute f̂�X .

Client Architecture. Our Python client exposes an interface for defining
DNNs similar to the popular Sequential-Network Keras API [11]. Objects repre-

https://github.com/95616ARG/SyReNN

SyReNN: A Tool for Analyzing Deep Neural Network 291

sent individual layers in the network, and they can be combined sequentially into
a Network instance. The key addition of our library is that this Network exposes

methods for computing f̂�X given a V-representation description of X. To do
this, it invokes the server and passes a layer-by-layer description of f followed

by the polytope X, then parses the response f̂�X .

Extending to support different layer types. Different layer types are sup-
ported by sub-classing the LayerTransformer class. Instances of this class ex-
pose a method for computing Extend(h, ·) for the corresponding layer h. To
simplify implementation, two sub-classes of LayerTransformer are provided:
one for entirely-linear layers (such as fully-connected and convolutional layers),
and one for piecewise-linear layers. For fully-linear layers, all that needs to be
provided is a method computing the layer function itself. For piecewise-linear
layers, two methods need to be provided: (1) computing the layer function itself,
and (2) one describing the hyperplanes which separate the linear regions. The
base class then directly implements Algorithm 1 for that layer. This architecture
makes supporting new layers a straight-forward process.

Float Safety. Like Reluplex [32], SyReNN uses floating-point arithmetic to

compute f̂�X efficiently. Unfortunately, this means that in some cases its results
will not be entirely precise when compared to a real-valued or multiple-precision
version of the algorithm. Approaches for addressing this are discussed in the
extended version of this paper.

6 Applications of SyReNN

This section presents the use of SyReNN in three example case studies.

6.1 Integrated Gradients

A common problem in the field of explainable machine learning is understanding
why a DNN made the prediction it did. For example, given an image classified
by a DNN as a ‘cat,’ why did the DNN decide it was a cat instead of, say, a dog?
Were there particular pixels which were particularly important in deciding this?
Integrated Gradients (IG) [52] is the state-of-the-art method for computing such
model attributions.

Definition 5. Given a DNN f , the integrated gradients along dimension i for
input x and baseline x′ is defined to be:

IGi(x)
def
= (xi − x′

i)×
∫ 1

α=0

∂f(x′ + α× (x− x′))
∂xi

dα. (2)

The computed value IGi(x) determines relatively how important the ith input
(e.g., pixel) was to the classification.

However, exactly computing this integral requires a symbolic, closed form
for the gradient of the network. Until [50], it was not known how to compute

292 M. Sotoudeh and A. V. Thakur

such a closed-form and so IGs were always only approximated using a sampling-
based approach. Unfortunately, because it was unknown how to compute the true
value, there was no way for practitioners to determine how accurate their ap-
proximations were. This is particularly concerning in fairness applications where
an accurate attribution is exceedingly important.

In [50], it was recognized that, when X = ConvexHull({x, x′}), f̂�X can be

used to exactly compute IGi(x). This is because within each partition of f̂�X
the gradient of the network is constant because it behaves as a linear function,
and hence the integral can be written as the weighted sum of such finitely-
many gradients.1 Using our symbolic representation, the exact IG can thus be
computed as follows: ∑

ConvexHull({yi,y′
i})∈ ̂f�ConvexHull({x,x′})

(y′i − yi)×
∂f(0.5× (yi + y′i))

∂xi
(3)

Where here yi, y
′
i are the endpoints of the segment with yi closer to x and y′i

closest to x′.

Implementation. The helper class IntegratedGradientsHelper is provided
by our Python client library. It takes as input a DNN f and a set of (x, x′)
input-baseline pairs and then computes IG for each pair.

Empirical Results. In [50] SyReNN was used to show conclusively that ex-
isting sampling-based methods were insufficient to adequately approximate the
true IG. This realization led to changes in the official IG implementation to use
the more-precise trapezoidal sampling method we argued for.

Timing Numbers. In those experiments, we used SyReNN to compute f̂�X
for three different DNNs f , namely the small, medium, and large convolutional
models from [1]. For each DNN, we ran SyReNN on 100 one-dimensional lines.
The 100 calls to SyReNN completed in 20.8 seconds for the small model, 183.3
for the medium model, and 615.5 for the big model. Tests were performed on an
Intel Core i7-7820X CPU at 3.60GHz with 32GB of memory.

6.2 Visualization of DNN Decision Boundaries

Whereas IG helps understand why a DNN made a particular prediction about
a single input point, another major task is visualizing the decision boundaries
of a DNN on infinitely-many input points. Figure 2 shows a visualization of an
ACAS Xu DNN [31] which takes as input the position of an airplane and an
approaching attacker, then produces as output one of five advisories instructing
the plane, such as “clear of conflict” or to move “weak left.” Every point in
the diagram represents the relative position of the approaching plane, while the
color indicates the advisory.

1 As noted in [50], this technically requires a slight strengthening of the definition of

f̂�X which is satisfied by our algorithms as defined above.

SyReNN: A Tool for Analyzing Deep Neural Network 293

(a) Decision boundaries

computed using f̂�X

(b) Decision bound-
aries computed using
DeepPoly[k = 252]

(c) Decision bound-
aries computed using
DeepPoly[k = 1002]

Legend: Clear-of-Conflict, Weak Right, Strong Right, Strong Left, Weak Left.

Fig. 2: Visualization of decision boundaries for the ACAS Xu network. Using
SyReNN (left) quickly produces the exact decision boundaries. Using abstract
interpretation-based tools like DeepPoly (middle and right) are slower and pro-
duce only imprecise approximations of the decision boundaries.

One approach to such visualizations is to simply sample finitely-many points
and extrapolate the behavior on the entire domain from those finitely-many
points. However, this approach is imprecise and risks missing vital information
because there is no way to know the correct sampling density to use to identify
all important features.

Another approach is to use a tool such as DeepPoly [49] to over-approximate
the output range of the DNN. However, because DeepPoly is a relatively coarse
over-approximation, there may be regions of the input space for which it cannot
state with confidence the decision made by the network. In fact, the approxima-
tions used by DeepPoly are extremely coarse. A näıve application of DeepPoly
to this problem results in it being unable to make claims about any of the in-
put space of interest. In order to utilize it, we must partition the space and
run DeepPoly within each partition, which significantly slows down the analysis.
Even when using 252 partitions, Figure 2b shows that most of the interesting
region is still unclassifiable with DeepPoly (shown in white). Only with 1002 par-
titions can DeepPoly effectively approximate the decision boundaries, although
it is still quite imprecise.

By contrast, f̂�X can be used to exactly determine the decision boundaries
on any 2D polytope subset of the input space, which can then be plotted. This is

shown in Figure 2a. Furthermore, as shown in Table 1, the approach using f̂�X
is significantly faster than that using ERAN, even as we get the precise answer
instead of an approximation. Such visualizations can be particularly helpful in
identifying issues to be fixed using techniques such as those in Section 6.3.

294 M. Sotoudeh and A. V. Thakur

Table 1: Comparing the performance of DNN visualization using SyReNN versus

DeepPoly for the ACAS Xu network [31]. f̂�X size is the number of partitions

in the symbolic representation. SyReNN time is the time taken to compute f̂�X
using SyReNN. DeepPoly[k] time is the time taken to compute DeepPoly for
approximating decision boundaries with k partitions. Each scenario represents a
different two-dimensional slice of the input space; within each slice, the heading
of the intruder relative to the ownship along with the speed of each involved
plane is fixed.

DeepPoly time (secs)

Scenario f̂�X size SyReNN time (secs) k = 252 k = 552 k = 1002

Head-On, Slow 33200 10.9 9.1 43.2 141.3
Head-On, Fast 30769 10.2 8.2 39.0 128.0
Perpendicular, Slow 37251 12.5 9.2 42.9 141.7
Perpendicular, Fast 33931 11.4 8.2 39.2 127.5
Opposite, Slow 36743 12.1 9.8 46.7 152.5
Opposite, Fast 38965 13.0 9.5 45.2 147.3
-Perpendicular, Slow 36037 11.9 9.5 45.0 146.4
-Perpendicular, Fast 33208 10.9 8.3 39.5 130.2

Implementation. The helper class PlanesClassifier is provided by our
Python client library. It takes as input a DNN f and an input region X, then
computes the decision boundaries of f on X.

Timing Numbers. Timing comparisons are given in Table 1. We see that
SyReNN is quite performant, and the exact SyReNN can be computed more
quickly than even a mediocre approximation from DeepPoly using 552 parti-
tions. Tests were performed on a dedicated Amazon EC2 c5.metal instance,
using BenchExec [5] to limit the number of CPU cores to 16 and RAM to 16GB.

6.3 Patching of DNNs

We have now seen how SyReNN can be used to visualize the behavior of a DNN.
This can be particularly useful for identifying buggy behavior. For example,
in Figure 2a we can see that the decision boundary between “strong right” and
“strong left” is not symmetrical.

The final application we consider for SyReNN is patching DNNs to correct
undesired behavior. Patching is described formally in [51]. Given an initial net-
work N and a specification φ describing desired constraints on the input/output,
the goal of patching is to find a small modification to the parameters of N pro-
ducing a new DNN N ′ that satisfies the constraints in φ.

The key theory behind DNN patching we will use was developed in [51]. The
key realization of that work is that, for a certain DNN architecture, correcting the
network behavior on an infinite, 2D region X is exactly equivalent to correcting

SyReNN: A Tool for Analyzing Deep Neural Network 295

(a) Before patching. (b) Patched pockets. (c) Patched bands. (d) Patched symme-
try.

Legend: Clear-of-Conflict, Weak Right, Strong Right, Strong Left, Weak Left.

Fig. 3: Network patching.

its behavior on the finitely-many vertices Vert(Pi) for each of the finitely-many

Pi ∈ f̂�X . Hence, SyReNN plays a key role in enabling efficient DNN patching.
For this case study, we patched the same aircraft collision-avoidance DNN

visualized in Section 6.2. We patched the DNN three times to correct three dif-
ferent buggy behaviors of the network: (i) remove “Pockets” of strong left/strong
right in regions that are otherwise weak left/weak right; (ii) remove the “Bands”
of weak-left advisory behind and to the left of the plane; and (iii) enforce “Sym-
metry” across the horizontal. The DNNs before and after patching with different
specifications are shown in Figure 3.

Implementation The helper class NetPatcher is provided by our Python
client library. It takes as input a DNN f and pairs of input region, output label
Xi, Yi, then computes a new DNN f ′ which maps all points in each Xi into Yi.

Timing Numbers. As in Section 6.2, computing f̂�X for use in patching took
approximately 10 seconds.

7 Related Work

The related problem of exact reach set analysis for DNNs was investigated in
[58]. However, the authors use an algorithm that relies on explicitly enumerating
all exponentially-many (2n) possible signs at each ReLU layer. By contrast,
our algorithm adapts to the actual input polytopes, efficiently restricting its
consideration to activations that are actually possible.

Hanin and Rolnick [25] prove theoretical properties about the cardinality of

f̂�X for ReLU networks, showing that |f̂�X | is expected to grow polynomially
with the number of nodes in the network for randomly-initialized networks.

Thrun [55] and Bastani et al.[4] extract symbolic rules meant to approximate

DNNs, which can approximate the symbolic representation f̂�X .
In particular, the ERAN [1] tool and underlying DeepPoly [49] domain were

designed to verify the non-existence of adversarial examples. Breutel et al. [6]
give an iterative refinement algorithm for an overapproximation of the weakest
precondition as a polytope where the required output is also a polytope.

296 M. Sotoudeh and A. V. Thakur

Scheibler et al. [46] verify the safety of a machine-learning controller using
the SMT-solver iSAT3, but support small unrolling depths and basic safety prop-
erties. Zhu et al. [60] use a synthesis procedure to generate a safe deterministic
program that can enforce safety conditions by monitoring the deployed DNN
and preventing potentially unsafe actions. The presence of adversarial and fool-
ing inputs for DNNs as well as applications of DNNs in safety-critical systems
has led to efforts to verify and certify DNNs [3,32,14,29,16,7,57,49,2]. Approxi-
mate reachability analysis for neural networks safely overapproximates the set
of possible outputs [16,58,59,57,13,56].

Prior work in the area of network patching focuses on enforcing constraints
on the network during training. DiffAI [39] is an approach to train neural net-
works that are certifiably robust to adversarial perturbations. DL2 [15] allows
for training and querying neural networks with logical constraints.

8 Conclusion and Future Work

We presented SyReNN, a tool for understanding and analyzing DNNs. Given
a piecewise-linear network and a low-dimensional polytope subspace of the in-
put subspace, SyReNN computes a symbolic representation that decomposes the
behavior of the DNN into finitely-many linear functions. We showed how to effi-
ciently compute this representation, and presented the design of the correspond-
ing tool. We illustrated the utility of SyReNN on three applications: computing
exact IG, visualizing the behavior of DNNs, and patching (repairing) DNNs.

In contrast to prior work, SyReNN explores a unique point in the design
space of DNN analysis tools. Instead of trading off precision of the analysis
for efficiency, SyReNN focuses on analyzing DNN behavior on low-dimensional
subspaces of the domain, for which we can provide both efficiency and precision.

We plan on extending SyReNN to make use of GPUs and other massively-

parallel hardware to more quickly compute f̂�X for large f or X. Techniques
to support input polytopes that are greater than two dimensional is also a ripe
area of future work. We may also be able to take advantage of the fact that non-
convex polytopes can be represented efficiently in 2D. Extending algorithms for

f̂�X to handle architectures such as Recurrent Neural Networks (RNNs) will
open up new application areas for SyReNN.

Acknowledgements. We thank the anonymous reviewers for their feedback and
suggestions on this work. This material is based upon work supported by a
Facebook Probability and Programming award.

References

1. ETH robustness analyzer for neural networks (ERAN). https://github.com/
eth-sri/eran (2019), accessed: 2019-05-01

https://github.com/eth-sri/eran
https://github.com/eth-sri/eran

SyReNN: A Tool for Analyzing Deep Neural Network 297

2. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction: a
synergistic approach for analyzing neural network robustness. In: McKinley, K.S.,
Fisher, K. (eds.) Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June
22-26, 2019. pp. 731–744. ACM (2019). https://doi.org/10.1145/3314221.3314614,
https://doi.org/10.1145/3314221.3314614

3. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi,
A.: Measuring neural net robustness with constraints. In: Lee, D.D., Sugiyama,
M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Informa-
tion Processing Systems 29: Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain. pp. 2613–2621 (2016), http:
//papers.nips.cc/paper/6339-measuring-neural-net-robustness-with-constraints

4. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via pol-
icy extraction. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada. pp. 2499–2509 (2018), http://papers.
nips.cc/paper/7516-verifiable-reinforcement-learning-via-policy-extraction

5. Beyer, D.: Reliable and reproducible competition results with benchexec and
witnesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems - 22nd Inter-
national Conference, TACAS 2016, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The
Netherlands, April 2-8, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 9636, pp. 887–904. Springer (2016). https://doi.org/10.1007/978-3-662-49674-
9 55, https://doi.org/10.1007/978-3-662-49674-9 55

6. Breutel, S., Maire, F., Hayward, R.: Extracting interface assertions from neural net-
works in polyhedral format. In: ESANN 2003, 11th European Symposium on Artifi-
cial Neural Networks, Bruges, Belgium, April 23-25, 2003, Proceedings. pp. 463–468
(2003), https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2003-72.pdf

7. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A uni-
fied view of piecewise linear neural network verification. In: Bengio, S., Wal-
lach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-
8, 2018, Montréal, Canada. pp. 4795–4804 (2018), http://papers.nips.cc/paper/
7728-a-unified-view-of-piecewise-linear-neural-network-verification

8. Carlini, N., Wagner, D.A.: Audio adversarial examples: Targeted attacks on
speech-to-text. In: 2018 IEEE Security and Privacy Workshops, SP Workshops
2018, San Francisco, CA, USA, May 24, 2018. pp. 1–7. IEEE Computer Society
(2018). https://doi.org/10.1109/SPW.2018.00009, https://doi.org/10.1109/SPW.
2018.00009

9. Chen, J., Ran, X.: Deep learning with edge computing: A review. Proc. IEEE
107(8), 1655–1674 (2019). https://doi.org/10.1109/JPROC.2019.2921977, https:
//doi.org/10.1109/JPROC.2019.2921977

10. Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way,
G.P., Ferrero, E., Agapow, P.M., Zietz, M., Hoffman, M.M., Xie, W., Rosen, G.L.,
Lengerich, B.J., Israeli, J., Lanchantin, J., Woloszynek, S., Carpenter, A.E., Shriku-
mar, A., Xu, J., Cofer, E.M., Lavender, C.A., Turaga, S.C., Alexandari, A.M., Lu,
Z., Harris, D.J., DeCaprio, D., Qi, Y., Kundaje, A., Peng, Y., Wiley, L.K., Segler,

https://doi.org/10.1145/3314221.3314614
https://doi.org/10.1145/3314221.3314614
http://papers.nips.cc/paper/6339-measuring-neural-net-robustness-with-constraints
http://papers.nips.cc/paper/6339-measuring-neural-net-robustness-with-constraints
http://papers.nips.cc/paper/7516-verifiable-reinforcement-learning-via-policy-extraction
http://papers.nips.cc/paper/7516-verifiable-reinforcement-learning-via-policy-extraction
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2003-72.pdf
http://papers.nips.cc/paper/7728-a-unified-view-of-piecewise-linear-neural-network-verification
http://papers.nips.cc/paper/7728-a-unified-view-of-piecewise-linear-neural-network-verification
https://doi.org/10.1109/SPW.2018.00009
https://doi.org/10.1109/SPW.2018.00009
https://doi.org/10.1109/SPW.2018.00009
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/JPROC.2019.2921977

298 M. Sotoudeh and A. V. Thakur

M.H.S., Boca, S.M., Swamidass, S.J., Huang, A., Gitter, A., Greene, C.S.: Opportu-
nities and obstacles for deep learning in biology and medicine. Journal of The Royal
Society Interface 15(141), 20170387 (2018). https://doi.org/10.1098/rsif.2017.0387

11. Chollet, F., et al.: Keras. https://keras.io (2015)

12. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. In: Burstein, J., Doran, C., Solorio,
T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers). pp. 4171–4186. Association for Computational Linguistics (2019).
https://doi.org/10.18653/v1/n19-1423, https://doi.org/10.18653/v1/n19-1423

13. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C.A., Narkawicz, A.
(eds.) NASA Formal Methods - 10th International Symposium, NFM 2018, New-
port News, VA, USA, April 17-19, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 10811, pp. 121–138. Springer (2018). https://doi.org/10.1007/978-3-
319-77935-5 9, https://doi.org/10.1007/978-3-319-77935-5 9

14. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Kumar, K.N. (eds.) Automated Technology for Verification and
Analysis - 15th International Symposium, ATVA 2017, Pune, India, October 3-
6, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10482, pp. 269–
286. Springer (2017). https://doi.org/10.1007/978-3-319-68167-2 19, https://doi.
org/10.1007/978-3-319-68167-2 19

15. Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., Vechev,
M.T.: DL2: training and querying neural networks with logic. In: Chaudhuri, K.,
Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Pro-
ceedings of Machine Learning Research, vol. 97, pp. 1931–1941. PMLR (2019),
http://proceedings.mlr.press/v97/fischer19a.html

16. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy, SP 2018, Pro-
ceedings, 21-23 May 2018, San Francisco, California, USA. pp. 3–18. IEEE Com-
puter Society (2018). https://doi.org/10.1109/SP.2018.00058, https://doi.org/10.
1109/SP.2018.00058

17. Gonzales, R.: Feds say self-driving uber suv did not recognize jaywalking
pedestrian in fatal crash. NPR https://www.npr.org/2019/11/07/777438412/
feds-say-self-driving-uber-suv-did-not-recognize-jaywalking-pedestrian-in-fatal-
(Nov 2019), accessed: 2020-06-06

18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org

19. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings (2015), http://arxiv.org/abs/1412.6572

20. Google: grpc: A high-performance, open source universal rpc framework. ”https:
//grpc.io/ (2020)

21. Google: Protocol buffers - google’s data interchange format. https://developers.
google.com/protocol-buffers/ (2020)

https://doi.org/10.1098/rsif.2017.0387
https://keras.io
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
http://proceedings.mlr.press/v97/fischer19a.html
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-uber-suv-did-not-recognize-jaywalking-pedestrian-in-fatal-
https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-uber-suv-did-not-recognize-jaywalking-pedestrian-in-fatal-
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1412.6572
"https://grpc.io/
"https://grpc.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

SyReNN: A Tool for Analyzing Deep Neural Network 299

22. Gopinath, S., Ghanathe, N., Seshadri, V., Sharma, R.: Compiling kb-sized machine
learning models to tiny iot devices. In: McKinley, K.S., Fisher, K. (eds.) Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp. 79–95.
ACM (2019). https://doi.org/10.1145/3314221.3314597, https://doi.org/10.1145/
3314221.3314597

23. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
24. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural network

with pruning, trained quantization and huffman coding. In: Bengio, Y., LeCun, Y.
(eds.) 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (2016), http:
//arxiv.org/abs/1510.00149

25. Hanin, B., Rolnick, D.: Complexity of linear regions in deep networks. In: Chaud-
huri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA.
Proceedings of Machine Learning Research, vol. 97, pp. 2596–2604. PMLR (2019),
http://proceedings.mlr.press/v97/hanin19a.html

26. Hern, A.: Facebook translates ’good morning’ into ’attack them’, lead-
ing to arrest. https://www.theguardian.com/technology/2017/oct/24/
facebook-palestine-israel-translates-good-morning-attack-them-arrest (Jun
2017), accessed: 2020-06-06

27. Hill, K.: Wrongfully accused by an algorithm. New York Times. https://www.
nytimes.com/2020/06/24/technology/facial-recognition-arrest.html (Jun 2020),
accessed: 2020-06-06

28. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L.H., Aerts, H.J.: Artificial
intelligence in radiology. Nature Reviews Cancer p. 1 (2018)

29. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10426, pp. 3–29.
Springer (2017). https://doi.org/10.1007/978-3-319-63387-9 1, https://doi.org/10.
1007/978-3-319-63387-9 1

30. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for
static analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2,
2009. Proceedings. Lecture Notes in Computer Science, vol. 5643, pp. 661–667.
Springer (2009). https://doi.org/10.1007/978-3-642-02658-4 52, https://doi.org/
10.1007/978-3-642-02658-4 52

31. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression
for aircraft collision avoidance systems. CoRR abs/1810.04240 (2018), http://
arxiv.org/abs/1810.04240

32. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Relu-
plex: An efficient SMT solver for verifying deep neural networks. In: Ma-
jumdar, R., Kuncak, V. (eds.) Computer Aided Verification - 29th Interna-
tional Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 10426, pp. 97–117.
Springer (2017). https://doi.org/10.1007/978-3-319-63387-9 5, https://doi.org/10.
1007/978-3-319-63387-9 5

33. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C.,

https://doi.org/10.1145/3314221.3314597
https://doi.org/10.1145/3314221.3314597
https://doi.org/10.1145/3314221.3314597
http://eigen.tuxfamily.org
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://proceedings.mlr.press/v97/hanin19a.html
https://www.theguardian.com/technology/2017/oct/24/facebook-palestine-israel-translates-good-morning-attack-them-arrest
https://www.theguardian.com/technology/2017/oct/24/facebook-palestine-israel-translates-good-morning-attack-them-arrest
https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html
https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
http://arxiv.org/abs/1810.04240
http://arxiv.org/abs/1810.04240
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

300 M. Sotoudeh and A. V. Thakur

Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Pro-
cessing Systems 25: 26th Annual Conference on Neural Information Process-
ing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States. pp. 1106–1114 (2012), http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks

34. Kumar, A., Seshadri, V., Sharma, R.: Shiftry: RNN inference in 2kb
of RAM. Proc. ACM Program. Lang. 4(OOPSLA), 182:1–182:30 (2020).
https://doi.org/10.1145/3428250, https://doi.org/10.1145/3428250

35. Kusupati, A., Singh, M., Bhatia, K., Kumar, A., Jain, P., Varma, M.: Fastgrnn:
A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network. In:
Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada. pp. 9031–9042 (2018)

36. Lee, D.: US opens investigation into Tesla after fatal crash. BBC. https://www.
bbc.co.uk/news/technology-36680043 (Jul 2016), accessed: 2020-06-06

37. Mendelson, E.B.: Artificial intelligence in breast imaging: potentials and limita-
tions. American Journal of Roentgenology 212(2), 293–299 (2019)

38. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for health-
care: review, opportunities and challenges. Briefings Bioinform. 19(6), 1236–1246
(2018). https://doi.org/10.1093/bib/bbx044, https://doi.org/10.1093/bib/bbx044

39. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for
provably robust neural networks. In: Dy, J.G., Krause, A. (eds.) Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine
Learning Research, vol. 80, pp. 3575–3583. PMLR (2018), http://proceedings.mlr.
press/v80/mirman18b.html

40. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: A simple and ac-
curate method to fool deep neural networks. In: 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016. pp. 2574–2582. IEEE Computer Society
(2016). https://doi.org/10.1109/CVPR.2016.282, https://doi.org/10.1109/CVPR.
2016.282

41. Nguyen, A.M., Yosinski, J., Clune, J.: Deep neural networks are eas-
ily fooled: High confidence predictions for unrecognizable images. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015. pp. 427–436. IEEE Computer So-
ciety (2015). https://doi.org/10.1109/CVPR.2015.7298640, https://doi.org/10.
1109/CVPR.2015.7298640

42. ONNX: Open neural network exchange. https://onnx.ai/ (2020)
43. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,

Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)
44. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Wallach,
H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R.
(eds.) Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada. pp. 8024–8035 (2019), http://papers.nips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://doi.org/10.1145/3428250
https://doi.org/10.1145/3428250
https://www.bbc.co.uk/news/technology-36680043
https://www.bbc.co.uk/news/technology-36680043
https://doi.org/10.1093/bib/bbx044
https://doi.org/10.1093/bib/bbx044
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2015.7298640
https://doi.org/10.1109/CVPR.2015.7298640
https://doi.org/10.1109/CVPR.2015.7298640
https://onnx.ai/
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library

SyReNN: A Tool for Analyzing Deep Neural Network 301

45. Reinders, J.: Intel threading building blocks: outfitting C++ for multi-core pro-
cessor parallelism. ” O’Reilly Media, Inc.” (2007)

46. Scheibler, K., Winterer, L., Wimmer, R., Becker, B.: Towards verification of arti-
ficial neural networks. In: Heinkel, U., Kriesten, D., Rößler, M. (eds.) Methoden
und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen
und Systemen, MBMV 2015, Chemnitz, Germany, March 3-4, 2015. pp. 30–40.
Sächsische Landesbibliothek (2015)

47. Sharma, H., Park, J., Mahajan, D., Amaro, E., Kim, J.K., Shao, C., Mishra, A.,
Esmaeilzadeh, H.: From high-level deep neural models to fpgas. In: 49th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2016, Taipei,
Taiwan, October 15-19, 2016. pp. 17:1–17:12. IEEE Computer Society (2016).
https://doi.org/10.1109/MICRO.2016.7783720, https://doi.org/10.1109/MICRO.
2016.7783720

48. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective
robustness certification. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada. pp. 10825–10836 (2018),
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification

49. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certi-
fying neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1–41:30 (2019).
https://doi.org/10.1145/3290354, https://doi.org/10.1145/3290354

50. Sotoudeh, M., Thakur, A.V.: Computing linear restrictions of neural networks.
In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada. pp. 14132–14143 (2019), http:
//papers.nips.cc/paper/9562-computing-linear-restrictions-of-neural-networks

51. Sotoudeh, M., Thakur, A.V.: Correcting deep neural networks with small, general-
izing patches. In: Workshop on Safety and Robustness in Decision Making (2019)

52. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017.
Proceedings of Machine Learning Research, vol. 70, pp. 3319–3328. PMLR (2017),
http://proceedings.mlr.press/v70/sundararajan17a.html

53. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethink-
ing the inception architecture for computer vision. In: 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016. pp. 2818–2826. IEEE Computer Society
(2016). https://doi.org/10.1109/CVPR.2016.308, https://doi.org/10.1109/CVPR.
2016.308

54. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. In: Bengio, Y., LeCun, Y.
(eds.) 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings (2014),
http://arxiv.org/abs/1312.6199

55. Thrun, S.: Extracting rules from artifical neural networks with distributed repre-
sentations. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural
Information Processing Systems 7, [NIPS Conference, Denver, Colorado, USA,
1994]. pp. 505–512. MIT Press (1994)

https://doi.org/10.1109/MICRO.2016.7783720
https://doi.org/10.1109/MICRO.2016.7783720
https://doi.org/10.1109/MICRO.2016.7783720
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
http://papers.nips.cc/paper/9562-computing-linear-restrictions-of-neural-networks
http://papers.nips.cc/paper/9562-computing-linear-restrictions-of-neural-networks
http://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
http://arxiv.org/abs/1312.6199

302 M. Sotoudeh and A. V. Thakur

56. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analy-
sis of neural networks using symbolic intervals. In: Enck, W., Felt, A.P. (eds.)
27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018. pp. 1599–1614. USENIX Association (2018), https:
//www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi

57. Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., Daniel, L., Boning, D.S.,
Dhillon, I.S.: Towards fast computation of certified robustness for relu networks.
In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 5273–5282.
PMLR (2018), http://proceedings.mlr.press/v80/weng18a.html

58. Xiang, W., Tran, H., Johnson, T.T.: Reachable set computation and safety verifi-
cation for neural networks with relu activations. CoRR abs/1712.08163 (2017),
http://arxiv.org/abs/1712.08163

59. Xiang, W., Tran, H., Rosenfeld, J.A., Johnson, T.T.: Reachable set es-
timation and safety verification for piecewise linear systems with neu-
ral network controllers. In: 2018 Annual American Control Conference,
ACC 2018, Milwaukee, WI, USA, June 27-29, 2018. pp. 1574–1579. IEEE
(2018). https://doi.org/10.23919/ACC.2018.8431048, https://doi.org/10.23919/
ACC.2018.8431048

60. Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An inductive synthesis frame-
work for verifiable reinforcement learning. In: McKinley, K.S., Fisher, K. (eds.)
Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-
26, 2019. pp. 686–701. ACM (2019). https://doi.org/10.1145/3314221.3314638,
https://doi.org/10.1145/3314221.3314638

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
http://proceedings.mlr.press/v80/weng18a.html
http://arxiv.org/abs/1712.08163
https://doi.org/10.23919/ACC.2018.8431048
https://doi.org/10.23919/ACC.2018.8431048
https://doi.org/10.23919/ACC.2018.8431048
https://doi.org/10.1145/3314221.3314638
https://doi.org/10.1145/3314221.3314638
https://creativecommons.org/licenses/by/4.0/

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

MachSMT: A Machine Learning-based
Algorithm Selector for SMT Solvers�

Joseph Scott1(�) , Aina Niemetz2 , Mathias Preiner2 ,
Saeed Nejati1 , and Vijay Ganesh1

1 University of Waterloo, Waterloo, Ontario, Canada
{joseph.scott, snejati, vijay.ganesh}@uwaterloo.ca

2 Stanford University, Stanford, USA
{niemetz,preiner}@cs.stanford.edu

Abstract. In this paper, we present MachSMT, an algorithm selection
tool for Satisfiability Modulo Theories (SMT) solvers. MachSMT sup-
ports the entirety of the SMT-LIB language. It employs machine learn-
ing (ML) methods to construct both empirical hardness models (EHMs)
and pairwise ranking comparators (PWCs) over state-of-the-art SMT
solvers. Given an SMT formula I as input, MachSMT leverages these
learnt models to output a ranking of solvers based on predicted run
time on the formula I. We evaluate MachSMT on the solvers, bench-
marks, and data obtained from SMT-COMP 2019 and 2020. We observe
MachSMT frequently improves on competition winners, winning 54 divi-
sions outright and up to a 198.4% improvement in PAR-2 score, notably
in logics that have broad applications (e.g., BV, LIA, NRA, etc.) in veri-
fication, program analysis, and software engineering. The MachSMT tool
is designed to be easily tuned and extended to any suitable solver appli-
cation by users. MachSMT is not a replacement for SMT solvers by any
means. Instead, it is a tool that enables users to leverage the collective
strength of the diverse set of algorithms implemented as part of these
sophisticated solvers.

Keywords: SMT Solvers · Machine Learning · Algorithm Selection

1 Introduction

Satisfiability Modulo Theories (SMT) solvers are tools to decide the satisfiability
of formulas over first-order theories such as bit-vectors, floating-point arithmetic,
integers, reals, strings, arrays, and their combinations [44,9,24,18,47,20,46]. In
recent years, SMT solvers have had a revolutionary impact on applications in
software engineering (broadly construed), such as software testing [17,48] and
verification [23,15,27,39], as well as in sub-fields of AI [53,35,30]. This impact is a
driver for an insatiable demand for evermore efficient solvers, not only to scale to
larger instances obtained from existing applications (e.g., automatic bug-finding

� This work was supported in part by DARPA (award no. FA8650-18-2-7861) and
ONR (award no. N68335-17-C-0558).

© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 303–325, 2021.
https://doi.org/10.1007/978-3-030-72013-1 16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_16&domain=pdf
http://orcid.org/0000-0002-4145-1612
http://orcid.org/0000-0003-2600-5283
http://orcid.org/0000-0002-7142-6258
http://orcid.org/0000-0002-1473-3630
http://orcid.org/0000-0002-6029-2047
https://doi.org/10.1007/978-3-030-72013-1_16

304 J. Scott et al.

in commercial software [26,4]), but also to solve problems from new application
domains (e.g., verification and synthesis of cryptographic primitives [13]).

Motivation for Algorithm Selection for SMT Solvers. In response
to this high demand, the SMT community has developed a plethora of solver
heuristics and configurations. For example, in the 2019 edition of the annual
SMT-COMP competition [10,31], more than 50 solvers and their configurations
were submitted. Many of these solvers implement very different algorithms to
tackle the satisfiability problem for (a combination of) first-order theories, with
significantly varying performance profiles. For example, in the quantifier-free
theory of floating-point arithmetic (QF FP), there exist several substantially
different decision procedures, e.g., bit-blasting [16], abstract CDCL [14], inter-
reduction methods [55], and reduction to global optimization [22,11]. In this
specific setting of floating-point solvers, input instances may be derived from
a variety of applications, such as software verification or analysis of machine
learning (ML) models [56]. In such a scenario, a very natural question arises:
which solver or configuration is best for a given input instance?

Another well-known issue with many SMT solvers (even state-of-the-art ones)
is that users may not know a priori which formula features or encoding would
make an instance easy to solve. This can be very frustrating for users as they
have to try a large number of different encodings with different solver configura-
tions before they can figure out which combination works best for their specific
scenario, which may result in a combinatorial explosion. Users have also noted
that as their applications change, what was once a great solver configuration
in an earlier setting is suddenly not very good in the newer one. One possible
approach to address this problem is to use a portfolio of solvers, just as has
been successfully done in the context of SAT solvers. Unfortunately, given the
plethora of solvers (more than 50 in SMT-COMP 2019 and 2020) and configura-
tions (CVC4 [9] alone utilizes 23 different configurations in a sequential portfolio
setting for quantified logics) such an approach becomes quickly infeasible in the
SMT solver setting.

Brief Overview of MachSMT. One way to address the above-mentioned
problems is to use an automated algorithm-selection tool that can automati-
cally and with high accuracy predict the best algorithm from a given set of
algorithms for a specific input. Such a tool selects the best SMT solver from a
set of solvers for a given SMT formula. To this end, we introduce MachSMT,
a machine learning-based algorithm-selection tool. MachSMT supports the en-
tirety of the SMT-LIB language [8]. It takes as input an instance for a specified
theory of interest, and outputs a ranking of solvers predicted to have the lowest
runtime. Internally, MachSMT is a set of machine learnt models constructed by
analyzing the runtimes of solver configurations on benchmarks with respect to
the frequencies of grammatical constructs (e.g., predicates, functions, rounding
modes, etc.). Additionally, it defines other syntactical properties that can have
influence in performance (e.g., quantifier nesting levels).

At a high-level, MachSMT works as follows. At its core, MachSMT uses two
techniques to perform algorithm selection: empirical hardness models (EHMs)

MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers 305

and pairwise ranking comparators (PWCs). MachSMT uses frequencies of gram-
matical constructs from the SMT-LIB language [8], in addition to several other
syntactical metrics for features pipelined with Principal Component Analysis
(PCA) and AdaBoosting to construct its empirical hardness models and com-
parators.

An EHM for a given solver S is a mapping from an input instance I to a
predicted runtime of S on I. At runtime, given I, MachSMT queries all EHMs for
all solvers (that were considered during training) over I, and outputs a ranking of
solvers based on their predicted runtimes (top-ranked solver is predicted to solve
the input problem the fastest). By contrast, a learnt pairwise ranking comparator
(PWC) is a mapping that takes as input pair (S1,S2) of solvers and an input
instance I, and outputs a ranking over the input solvers based on which one of
them is predicted to have a lower runtime on I (denoted as S1 ≤ S2 or S1 ≥ S2).
During evaluation, given an input instance I, MachSMT uses the learnt PWC
as a comparator to rank the set of solvers.

While algorithm selection has been considered in the broad setting of solvers
(e.g., QBF solvers [50] and SAT solvers [67]) as well as certain specific SMT
theories [57,5,64], we are not aware of previous work on algorithm selection aimed
at the entirety of SMT-LIB [7]. Our results demonstrate that the MachSMT
algorithm selector is highly effective, in that it outperforms the competition
winners on the majority of tracks from the SMT-COMP in 2019 and 2020.

Perhaps the first algorithm selection tool in the context of logic solvers was
SATZilla [67]. Since its introduction, SATZilla has had a tremendous impact
on SAT solver research, winning multiple gold medals in the SAT competitions.
Having said that, there are several significant differences between MachSMT and
SATZilla. Briefly, SATZilla deploys a feature selection scheme to avoid the curse
of dimensionality, while MachSMT leverages a learnt dimensionality reduction
scheme, namely, Principal Component Analysis (PCA). In fact, a feature selec-
tion scheme would simply not scale in the context of SMT solvers given the very
large number of learnt models that are incorporated into MachSMT. We discuss
additional differences between SATZilla and MachSMT at length in Section 6.

It goes without saying that MachSMT is only as powerful as the underlying
solvers that it has access to. MachSMT is clearly not a replacement for any par-
ticular SMT solver, but rather a tool that enables users to leverage the collective
strength of the diverse set of algorithms and configurations implemented as part
of these sophisticated solvers.

Contributions.

We make the following contributions in this paper.

1. The MachSMT Algorithm Selection Tool. We present the MachSMT
tool, an algorithm selection tool for the entirety of SMT-LIB. MachSMT
uses machine learning (ML) to construct EHMs and PWCs of solvers for
algorithm selection. A key feature of MachSMT tool is that it is designed to
be easily tuned and extended by SMT solver users (Section 3).

306 J. Scott et al.

2. Analysis of MachSMT over SMT-COMP 2019 and 2020 Bench-
marks and Solvers. We perform an extensive experimental analysis of
MachSMT across all divisions from SMT-COMP 2019 and 2020. We observe
that MachSMT improves on competition winners in 54 divisions, with up to
198.4% improvement in performance for the QF BVFPLRA SQ ’20 and up
to 191.1% for the QF BVFP SQ ’20 division. We provide our learnt mod-
els, used in our experimentation, for ease of use and transparency. While
building learnt models for MachSMT can be computationally expensive
(a one time cost), installing, downloading, and using our models is easy
(Section 4). All source code and learnt models from our experience can be
found at: https://github.com/j29scott/MachSMT. The artifact is available
at: https://zenodo.org/record/4458699.

The rest of this paper is structured as follows. Section 2 provides the neces-
sary background, Section 3 gives a technical description of MachSMT, Section 4
gives an experimental evaluation of MachSMT over SMT-COMP 2019 and 2020,
Section 5 provides an analysis of the experimental results, Section 6 describes
related work, and Section 7 concludes the paper and discusses future work.

2 Background

In this section, we provide some background on algorithm selection via EHMs
and PWCs, and the machine learning methods we use, such as principal compo-
nent analysis (PCA) and k-fold cross validation.

2.1 A Brief Overview of Algorithm Selection

The idea of algorithm selection was first proposed and formalized by Rice et.
al. [51] in 1976. Researchers have long known that given a set of different algo-
rithms and implementations for the same specification or problem, it is often the
case that one of these implementations may perform poorly on a given class of
inputs while another might perform very well. This is especially true for prob-
lems believed to be computationally hard (e.g., NP-hard). The reasons for this
phenomenon could be as diverse as choice of data structures, fundamental differ-
ences between algorithms, or the fact that heuristics implemented as part of one
algorithm can exploit the input problem structure or the underlying hardware
better than the others.

It is natural to want to exploit the diversity in algorithmic approaches to
minimize the cumulative runtimes. However, in practice users often deploy greedy
algorithm selection – picking the best observed algorithm based on empirical
analysis and testing. However, greedy algorithm selection can be sub-optimal
when the best empirical algorithm has deficiencies relative to other algorithms
on certain families of inputs.

With the recent advances in AI and ML, researchers are beginning to lever-
age these new technologies to advance algorithm selection. To the best of our

https://github.com/j29scott/MachSMT
https://zenodo.org/record/4458699

MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers 307

knowledge, there are two key approaches for ML-driven algorithm selection in
the context of constraint solvers: through the use of Empirical Hardness Models
(EHMs), and through Pairwise Ranking Comparators (PWCs).

Algorithm Selection via Empirical Hardness Models (EHMs): Let I be
an input in the language of S with a corresponding feature vector �x ∈ Rn. For
an algorithm s ∈ S, an EHM is a learnt function fs : Rn → R that predicts the
runtime of s on I. An EHM is constructed with an ML regression model trained
on collected runtime data. The algorithm is then selected by computing:

argmin
s∈S

fs(�x)

Algorithm Selection via Pairwise Ranking Comparators (PWCs). Let
P be the set of all unique pair sets (sets of size two). For each p = (Si,Sj) ∈ P ,
construct a learnt comparator fp : Rn → {0, 1}, that returns 0 if algorithm Si
solves I faster than Sj , and 1 otherwise. For an input I with a feature vector �x,
we compute a ranking of algorithms as a map r over S, where for s ∈ S, r[s] is
the ranking of solver s that represents: “how many solvers in S are faster than
s in solving the input S”, or more formally: r[s] = Σp:s∈pfs(�x). The selected
solver is then the minimum ranked solver, i.e.,

argmin
s∈S

r[s]

2.2 Supervised Learning, Adaptive Boosting, Curse of
Dimensionality, and K-Fold Cross-Validation

Supervised learning is one of the most predominant areas of ML. Supervised
learning takes as input a dataset of features X and labels Y , and each datapoint
�x ∈ X has a label y ∈ Y . A datapoint is a real valued vector �x ∈ Rn describing a
sample. The learning problem is said to be a classification problem if the labels
y ∈ Y come from a fixed and finite set of classes C (e.g., a set of algorithms).
Alternatively, the learning problem is a regression problem if the labels are real
valued (e.g., runtimes).

One efficient and effective approach to supervised learning is Adaptive Boost-
ing (AdaBoost). AdaBoost is an ensemble approach to machine learning invented
by Freund and Schapire et. al. [21], which won the Gödel Prize in 2003. In ensem-
ble learning, a set of learning algorithms (e.g., weak learners) are trained, and
predictions are made diplomatically across the set. In this paper, we exclusively
consider AdaBoost to solve both the classification and regression problems for
algorithm selection. We use an ensemble of 200 decision trees in the AdaBoost
algorithm. For more, we refer to Drucker et al. [19].

While supervised learning has had tremendous impacts in several areas of
research, there are pitfalls, such as the curse of dimensionality (CoD). Consider
the convex polytope P formed around the convex hull of X. The volume of P

308 J. Scott et al.

increases exponentially with the dimensionality of X requiring an exponential
amount of datapoints to avoid extreme sparsity in X. Sparsity in datasets is
one of the leading causes of poor performances in learnt models [28]. There
is a large literature on managing the CoD. In this paper, we discuss feature
selection and deploy dimensionality reduction solutions. In feature selection, a
new dataset X ′ is computed from X by selecting the subset of features that are
the most performant on a validation dataset. Feature selection was deployed in
the successful SATZilla algorithm selection tool for Boolean satisfiability.

Despite the success of feature selection in SATZilla, feature selection does
have some flaws. First, there is a significant loss of information. In the case of
SATZilla, a feature vector composed of more than a hundred values describing
an input is reduced to just five values. Second, the total number of feature
subsets is exponential in the number of features. While there has been a great
deal of research in reducing the time spent searching for high performing subsets
[65,36], in our experiments, we found it to be the most computationally taxing
component of the SATZilla framework.

When evaluating the performance of a supervised learning model, a training
set is used to construct the learnt model and a testing set is set aside to evaluate.
However, this method alone can be prone to overfitting and selection bias [54,43].
Instead, researchers often use k−fold cross-validation to evaluate their learnt
models. In k−fold cross validation, the dataset is split into k sets, and the learnt
model is trained on k − 1 sets and is evaluated on the set that is left out. This
process is repeated k times so each set gets evaluated.

2.3 Unsupervised Learning and Principal Component Analysis

Unsupervised learning, in contrast to supervised learning, is the study of detect-
ing patterns in an unlabelled dataset X. Applications of unsupervised learning
include dimensionality reduction [66,63], clustering [29,72], and anomaly detec-
tion [38,1]. Principal Component Analysis (PCA) is an unsupervised learning
dimensionality reduction technique. PCA computes an orthogonal transforma-
tion of a dataset X composed of points in Rn to a new data set X ′ composed
of points in Rn′

where n′ < n. PCA is an incremental algorithm, wherein, each
iteration a new component (or dimension) is computed. On the first iteration,
a hyperplane is fit around the dataset X and its corresponding spanning vector
is the first element of the basis around the transformation onto X ′. On each
subsequent iteration, a new hyperplane is computed under the additional con-
straint of it being orthogonal to its predecessors. This process is repeated until
the desired number of iterations is achieved [32,66].

3 An overview of MachSMT

In this section, we provide an overview of the MachSMT tool. The architecture
diagram of MachSMT is presented in Figure 1.

MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers 309

Feature ID Description

1–4 Frequency of problem description grammatical
constructs (e.g., assert, check-sat, etc.)

5–13 Frequency of declaration/definition grammatical constructs
(e.g., declare-const, define-fun, declare-sort, etc.)

14–15 Frequency of the echo/exit grammatical constructs
16–27 Frequency of the get-* grammatical constructs (e.g.,

get-model, get-unsat-core, etc.)

28–29 Frequency of the push/pop incremental benchmark
grammatical constructs

30–31 Frequency of the reset/reset-assertions
grammatical constructs

32–35 Frequency of the set-* grammatical constructs
(e.g., set-logic)

36–37 Frequency of the forall/exists quantifiers

38 Frequency of let bindings

39–49 Frequency of core/Boolean constructs,
sorts, and literals (e.g., true, Bool, and, =>,
ite, distinct, etc.)

50–52 Frequency of grammatical constructs of the
theory of arrays (e.g., select, store, etc.)

53–88 Frequency of grammatical constructs of the
theory of bit-vectors (e.g., BitVec, bvor, bvuge,
bvsge, bvult, etc.)

89–135 Frequency of grammatical constructs of the
theory of floating-point (e.g., fp.add, Float32,
RNE, fp.eq, fp.isNaN, fp.to real, etc.)

135–150 Frequency of grammatical constructs of the
theory of integers and reals (e.g., Int, Real,
∗, +, to real, is int)

151 Average number of selects per array

152 Average store chain depth per array

153–155 Average/Median/Deviation of BV adder chains

156–158 Number of forall/exists variables and their ratio

159 Average quantifier nesting level

160–161 Average arity and applications of
uninterpreted functions

162 Size of the smt2 file in bytes

Table 1: Complete list of the 162 features used in MachSMT

310 J. Scott et al.

Fig. 1 Architecture of MachSMT.

3.1 Features, Preprocessing, and Learning

MachSMT uses a feature vector with 162 entries (i.e., dimensions). A complete
description of each feature is provided in Table 1. We deploy two strategies to
mitigate taxing feature calculation times, which can severely impair algorithm
selection solutions. First, all features are entirely syntactical properties of the
input. This is a major difference between MachSMT and other algorithm se-
lection solutions, such as SATZilla. Second, all features are calculated within a
strict and user-adjustable timeout (default 10s). On a timeout, the feature value
is recorded as −1.0.

MachSMT performs three key preprocessing steps before constructing any
learnt models over a given dataset. We describe each subsequently. First, all
feature values are scaled to zero mean and unit variance3. This data normal-
ization technique is common in ML research and applications to improve both
model efficiency and numerical robustness. The second step in the preprocessing
pipeline is computing the polynomial interaction terms of degree two on the re-
sultant normalized feature vector. These polynomial features make interacting
correlations of features explicit. These first two preprocessing steps are included
in the SATZilla preprocessing pipeline [71].

As discussed in Section 2, ML in a high dimensional space is prone to the
curse of dimensionality. While other algorithm selection solutions (e.g., SATZilla)
commonly implement feature selection solutions, we propose the use of learnt
dimensionality, namely PCA. As discussed above, feature selection can be a
proactive solution to the curse of dimensionality but presents many challenges
when applying to SMT. Internally MachSMT manages more than a thousand
learnt models, and calculating optimal feature subsets for each one is infeasible.

3 x−μ
σ

, where x is a feature sample, μ is the mean across the specific feature on the
training set, and σ is the deviation across the specific feature on the training set.

MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers 311

The third and final preprocessing step is applying PCA on the resultant
polynomial features. The final feature vector is composed of the first 35 principal
components. PCA is the final step in the MachSMT preprocessing pipeline. The
resultant feature set is used when constructing the learnt models with AdaBoost.
We use AdaBoost for both regression in the EHMs and classifications in the
PWCs. We configure AdaBoost with 200 decision tree estimators and linear
loss. MachSMT uses scikit-learn and numpy as its ML backend and the entire
tool is written in Python [49]. MachSMT is easily extensible and supports any
ML model/pipeline under scikit-learn syntax.

3.2 Variants of MachSMT

MachSMT implements the following algorithm selection solutions.

1. MachSMT-SolverEHM – This variant of MachSMT is analogous to the
algorithm selection approach taken by SATZilla. As described in Section 2,
an EHM is constructed for each solver, and the selected solver is computed
by taking an argmin over all predictions.

2. MachSMT-SolverLogicEHM – This approach is similar to MachSMT-
SolverEHM, with the key difference being an EHM is constructed for every
solver, logic pair. As state-of-the-art SMT solvers implement significantly
different algorithms depending on the logic of the input problem, datapoints
from different logics could negatively skew predictions.

3. MachSMT-SolverPWC – This variant of MachSMT deploys the PairWise
comparator approach as described in Section 2. In this variant of the PWC,
comparators are trained for every pair of solvers across all provided data.

4. MachSMT-SolverLogicPWC – This variant of MachSMT is analogous to
MachSMT-SolverPWC, with the key difference that solver-wise comparators
are constructed by only training on the benchmarks of a common logic.

MachSMT by default creates models for all aforementioned approaches to
algorithm selection. In evaluation, MachSMT evaluates each approach’s perfor-
mance on each logic. In deployment, MachSMT uses the approach that had the
best-observed performance in evaluation.

3.3 Using MachSMT

MachSMT consists of three core tools, which are used to build, evaluate, and
deploy MachSMT, respectively.

1. machsmt build – This tool is the interface for building MachSMT’s database
around the solvers and benchmarks provided by the user. It takes as input
a csv data file denoting the columns ‘solver’, ‘benchmark’, and ‘score’. The
output is a library directory containing the resultant database, and learnt
models under default settings.

machsmt build -f data.csv -l /path/to/lib/dir

312 J. Scott et al.

Logic, Track, Year Winner
Improvement over Distance from

Random [%] Winner [%] VBS [%]

QF BVFP, SQ’20 Bitwuzla 195.1 191.1 86.2
QF BVFPLRA, SQ’20 MathSAT5 199.1 198.4 34.0
QF UFBV, SQ’19 Yices 153.5 113.3 95.3
NRA, SQ’19 Vampire 169.6 114.0 99.2
QF NRA, SQ’19 Yices 101.3 71.5 52.1
QF UFNRA, SQ’19 Yices 148.1 77.1 36.1
QF LIA, SQ’20 MathSAT5 132.6 71.5 46.4
QF UFBV, SQ’20 Yices 137.8 67.4 109.4
QF UFNRA, SQ’20 Yices 151.3 47.9 42.6
QF ABV, INC’20 Yices 169.4 50.8 114.6
QF NRA, SQ’20 Yices 82.5 41.2 46.5
QF AUFLIA, SQ’20 Yices 200.0 37.2 27.9
BV, SQ’20 CVC4 112.1 30.6 117.8
QF LRA, SQ’19 SPASS-SATT 89.3 28.4 59.5
QF UFLRA, INC’20 Z3 133.3 26.2 19.9
QF ANIA, SQ’20 MathSAT5 199.0 26.1 61.6
QF LIA, SQ’19 SPASS-SATT 161.5 29.8 66.3
BV, SQ’19 Q3B 91.8 25.0 83.7
LIA, SQ’20 CVC4 172.5 22.3 19.6
QF UFNIA, SQ’20 CVC4 125.6 21.9 105.0
UFDTNIRA, SQ’20 Vampire 123.9 24.0 92.6
QF UFLRA, INC’19 Z3 110.0 19.6 22.0
QF FP, SQ’19 COLIBRI 41.6 18.4 62.8
QF AUFBV, SQ’20 Yices 82.0 20.4 3.6

Table 2: Selected results of MachSMT on data from SMT-COMP 2019 and
2020. All numbers are percent differences of PAR-2 scores across all benchmarks.
Columns 3 and 4 show the improvement over random selection and competition
winners (higher is better). Column 5 shows the PAR-2 difference to the VBS
(lower is better).

2. machsmt eval – This tool takes as input the library directory generated by
machsmt build and evaluates it under k-fold cross validation and provides
a summary of results. It further tunes MachSMT to use the best empirically
observed variant based on the logic and track of the input benchmark.

machsmt eval -l /path/to/lib/dir

3. machsmt – This tool is the primary interface to MachSMT’ algorithm se-
lection. Provided an input benchmark and its library files, it will output a
ranking of solvers that are predicted to solve the benchmark the fastest.

machsmt benchmark.smt2 -l /path/to/lib/dir

MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers 313

Fig. 2 Plot for BV in the Single Query (SQ) Track in SMT-COMP ’19.

3.4 User-defined Features

We include a simple interface for users to extend the considered features in
MachSMT’s algorithm selection. All that is required is to create a Python
method that returns a single floating-point number (or an iterable object thereof)
representing the feature. As input, the user enters the path of the SMT-LIB
input, as well as its logic and track. If a user feature is to be considered by
MachSMT, the user-defined procedure should return its floating-point represen-
tation; otherwise, it returns none. All user-defined features are automatically
included in building MachSMT. These custom features in principal can signif-
icantly affect the accuracy of MachSMT when engineered to target a specific
class of benchmarks.

4 Experimental Evaluation of MachSMT on SMT-COMP
2019 and 2020 Data

In this section, we present the evaluation of our MachSMT tool (refer to Ta-
ble 2 and CDF plots in Figures 2–6), specifically with the benchmarks, solvers,
and solver runtime analysis from SMT-COMP 2019 and 2020. The artifact is
available at: https://zenodo.org/record/4458699.

https://zenodo.org/record/4458699

314 J. Scott et al.

Fig. 3 Plot for NRA in the Single Query (SQ) Track in SMT-COMP ’19.

4.1 Experimental Setup and Methodology

In this experiment, we used the benchmarks, timing analysis, and solvers pro-
vided by the organizers of the SMT-COMP 2019 and 2020 competitions [31,6]. In
both years, all solver input queries were performed on the StarExec computing
service [58], which consists of a cluster of 2.4 GHz Intel Xeon machines running
Red Hat Enterprise Linux 7.2. Each solver/benchmark pair was configured to
have 4 cores and 60GB of memory available. The time limit for each pair was
2400 seconds in 2019, and 1200 seconds in 2020.

We evaluate MachSMT and all of its variants using k-fold cross validation
(with k = 5). In cross validation, the dataset is randomly partitioned into k
subsets per division. A model is then trained over k − 1 subsets and makes pre-
dictions over the subset that is excluded from training. This process is repeated
to obtain fair predictions for each subset. Cross validation is commonly deployed
to analyze machine learning models. For more details, please see Section 2.

4.2 Experimental Results

For every division, we evaluated MachSMT by checking whether we beat the
competition winner from each division. For the sequential tracks, we evaluate
solvers across, according to PAR-2 scores (i.e., the wallclock runtime on success-

MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers 315

Fig. 4 Division QF BVFPLRA in the Single Query Track in SMT-COMP 2020.

ful termination, otherwise twice the wallclock timeout)4 [42]. For incremental
tracks, we use the following formula:

w + (2 ∗ t/n) ∗ (n−m)

where w is the wall clock runtime, t is the wallclock timeout, n is the total
number of check-sats in the benchmark, and m is the total number of check-sats
successfully solved.

We present select results in Table 2. We consider three baselines when evalu-
ating MachSMT, namely: random algorithm selection, the competition winner,
and the virtual best solver (VBS) (note, VBS is perfect algorithm selection and
cannot be beaten). We consider all divisions of at least 25 benchmarks and ob-
serve MachSMT to improve on the competition winner in 54 out of 85. We report
the results for MachSMT-SolverLogicEHM in the table as it is by far the most
performant, dominating in all divisions except for 4.

We present select CDF plots in Figures 2-6. A CDF plot is a visualization
of how a solver performs on a database of inputs. A point (X,Y) denotes that a
solver S solves Y inputs within X seconds each.

4 In case of an incorrect answer, the score is recorded as 10 times the wallclock timeout.

316 J. Scott et al.

Fig. 5 Division QF LIA in the Single Query Track in SMT-COMP 2020.

5 Analysis and Discussion of Results

In Section 3.2, we describe four formulations of MachSMT. In our evaluation
(see Table 2), we observe MachSMT-SolverLogicEHM to be significantly more
performant than all other formulations. When evaluating over SMT-COMP, in
all divisions that MachSMT improved over the competition winner, MachSMT-
SolverLogicEHM was the most performant in all except for three (which were
won by MachSMT-SolverLogicPWC).

Our experimental results validate the idea that algorithm selection (in par-
ticular through the use of EHMs) can be a powerful way to address the com-
binatorial explosion that solver users face when trying to decide which solver-
configuration pair is best suited for their application. We note that MachSMT is
particularly powerful in the context of logics, such as QF UFBV, that are derived
from a diverse set of applications and a wide variety of algorithms have been
designed to solve them. As has been noted in previous work, algorithm selection
methods work well for non-homogeneous benchmarks, especially where there is
no single algorithm (solver) that performs the best across the board. EHMs are
an effective way to distinguish between such algorithms given a problem instance
and predict which one might perform the best on said instance.

One major threat to the validity of any ML solution is the generalizability of
the learnt models on unseen data. It has been noted in previous work that a prac-
tical way to address this issue is to use k−fold cross validation scheme [54,43],
thus motivating our use of this approach in our experiments. We further note

MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers 317

Fig. 6 Division QF UFBV in the Single Query Track in SMT-COMP 2020.

that our evaluation of MachSMT includes decades of runtime analysis and more
than 100 GB of benchmarks spanning numerous applications, giving us greater
confidence in the robustness of our results.

6 Related Work

In this section we provide an overview of previous work on algorithm selection
in the context of constraint solvers and contrast it with MachSMT.

6.1 Key differences between SATZilla and MachSMT

As mentioned above, SATZilla was the first algorithm selection method in the
context of logic solvers [67]. While our work is inspired by SATZilla, MachSMT
differs from SATZilla in several key ways. First, SATZilla deploys a feature
selection scheme to avoid the curse of dimensionality. While good in practice for
the SAT setting, feature selection does lose significant amounts of information.
Further, it can be very expensive to compute optimal feature subsets.

By contrast, MachSMT leverages a learnt dimensionality reduction scheme,
namely, Principal Component Analysis (PCA). The key advantage of PCA is
that it does not perform a search for optimal feature subset (like one has to do
in the context of feature selection), and hence is significantly more efficient. In
fact, a feature selection method is unlikely to scale for SMT solvers, unlike SAT,

318 J. Scott et al.

simply because of the significantly larger number of features, logics, and solvers
that one has to contend with. Second, MachSMT deploys a modern ML pipeline,
including an ensemble learning approach, namely Adaptive Boosting [21].

6.2 Algorithm Selection for Logic Solvers and Their Applications

Algorithm selection tools have a rich history and have been around since at least
1976 when Rice et al. were the first to propose it [51]. Algorithm selectors have
been extensively used in many contexts, e.g., classifiers for machine learning [2],
combinatorics [37], and other NP-hard optimization problems [60,62]. Within
the context of solvers, algorithm selectors have been proposed for QBF [50,41],
SAT [67,68,69], CSP solvers [25,3,34], and recommenders for ATP tools [59,61].

In the setting of SMT solver applications, symbolic execution tools have used
algorithm selection strategies [64] and portfolio strategies [33] for the specific
classes of instances within the context of the bit-vector theory. This would be
an ideal use case of MachSMT, since we provide a more complete solution.

There have been other works using machine learning to improve the perfor-
mance of SMT solvers. Balunovic et al. [5] use neural networks and synthesis
to find tactics and strategies for three SMT-LIB theories. A previous version of
our work proposed an algorithm selection tool for the QF FP theory [57]. To
the best of our knowledge, MachSMT is the first publicly available tool for the
entirety of SMT-LIB. Other works have leverage machine learning to improve
internal heuristics in solvers [12,52,40]

Pairwise ranking has been used in algorithm selection in the latest versions
of SATZilla [70], as well as in other settings such as variable selection in the
context of splitting heuristics in divide-and-conquer parallel SAT solvers [45].

7 Conclusions and Future Work

In this paper, we presented MachSMT, the first algorithm selection tool that
spans the entirety of the SMT-LIB logics. MachSMT is designed to be user-
friendly and easily modifiable by users for their specific application and SMT
solvers of interest.

Using MachSMT, we observe improvement in 54 out of 85 divisions in all
tracks from the SMT-COMP 2019 and 2020, with up to a 198.4% improvement
for the QF BVFPLRA SQ ’20 division in PAR-2 score. Most of the logics on
which we don’t see improvement are ones for which we have very few benchmarks.

For future work, we plan to extend our scoring scheme to take into account
model validation and unsat core divisions. We further plan to extend our feature
set with more (theory-)specific features based on feedback from the SMT com-
munity. It is very likely that users may have domain-specific knowledge about
certain features that might be most predictive of solver runtime for their par-
ticular application. Hence, we have provided an interface to easily extend and
specialize MachSMT to a user’s specific setting.

MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers 319

References

1. Agrawal, S., Agrawal, J.: Survey on anomaly detection using data
mining techniques. Procedia Computer Science 60, 708–713 (2015).
https://doi.org/10.1016/j.procs.2015.08.220

2. Ali, S., Smith, K.A.: On learning algorithm selection for classification. Appl. Soft
Comput. 6(2), 119–138 (2006). https://doi.org/10.1016/j.asoc.2004.12.002

3. Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY: a lazy portfolio approach
for constraint solving. Theory Pract. Log. Program. 14(4-5), 509–524 (2014).
https://doi.org/10.1017/S1471068414000179

4. Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow, K.S.,
Rungta, N., Tkachuk, O., Varming, C.: Semantic-based automated reason-
ing for AWS access policies using SMT. In: Bjørner, N., Gurfinkel, A.
(eds.) 2018 Formal Methods in Computer Aided Design, FMCAD 2018,
Austin, TX, USA, October 30 - November 2, 2018. pp. 1–9. IEEE (2018).
https://doi.org/10.23919/FMCAD.2018.8602994

5. Balunovic, M., Bielik, P., Vechev, M.T.: Learning to solve SMT formulas. In: Ben-
gio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R.
(eds.) Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada. pp. 10338–10349 (2018), http://papers.nips.cc/paper/
8233-learning-to-solve-smt-formulas

6. Barbosa, H., Hyvärinen, A., Hoenecke, J.: Smt-comp 2020. https://www.
smt-comp.org/2020 (2020)

7. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2020)

8. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (Edinburgh, UK) (2010)

9. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806,
pp. 171–177. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1 14

10. Barrett, C.W., de Moura, L.M., Stump, A.: SMT-COMP: satisfiability modulo
theories competition. In: Etessami, K., Rajamani, S.K. (eds.) Computer Aided
Verification, 17th International Conference, CAV 2005, Edinburgh, Scotland, UK,
July 6-10, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3576, pp.
20–23. Springer (2005). https://doi.org/10.1007/11513988 4

11. Ben Khadra, M.A., Stoffel, D., Kunz, W.: gosat: Floating-point satisfiability as
global optimization. In: Stewart, D., Weissenbacher, G. (eds.) 2017 Formal Methods
in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017. pp.
11–14. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102235

12. Beyer, D., Dangl, M.: Strategy selection for software verification based on
boolean features - A simple but effective approach 11245, 144–159 (2018).
https://doi.org/10.1007/978-3-030-03421-4 11

13. Bhargavan, K., Bond, B., Delignat-Lavaud, A., Fournet, C., Hawblitzel, C.,
Hritcu, C., Ishtiaq, S., Kohlweiss, M., Leino, R., Lorch, J.R., Maillard, K.,
Pan, J., Parno, B., Protzenko, J., Ramananandro, T., Rane, A., Rastogi,
A., Swamy, N., Thompson, L., Wang, P., Béguelin, S.Z., Zinzindohoue, J.K.:

https://doi.org/10.1016/j.procs.2015.08.220
https://doi.org/10.1016/j.asoc.2004.12.002
https://doi.org/10.1017/S1471068414000179
https://doi.org/10.23919/FMCAD.2018.8602994
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas
https://www.smt-comp.org/2020
https://www.smt-comp.org/2020
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/11513988_4
https://doi.org/10.23919/FMCAD.2017.8102235
https://doi.org/10.1007/978-3-030-03421-4_11

320 J. Scott et al.

Everest: Towards a verified, drop-in replacement of HTTPS. In: Lerner, B.S.,
Bod́ık, R., Krishnamurthi, S. (eds.) 2nd Summit on Advances in Program-
ming Languages, SNAPL 2017, May 7-10, 2017, Asilomar, CA, USA. LIPIcs,
vol. 71, pp. 1:1–1:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2017). https://doi.org/10.4230/LIPIcs.SNAPL.2017.1, https://doi.org/10.4230/
LIPIcs.SNAPL.2017.1

14. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-
point logic with abstract conflict driven clause learning. Formal Methods Syst.
Des. 45(2), 213–245 (2014). https://doi.org/10.1007/s10703-013-0203-7

15. Brain, M., Schanda, F., Sun, Y.: Building better bit-blasting for floating-point
problems. In: Vojnar, T., Zhang, L. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems - 25th International Conference, TACAS 2019,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 11427, pp. 79–98. Springer (2019).
https://doi.org/10.1007/978-3-030-17462-0 5

16. Brain, M., Schanda, F., Sun, Y.: Building better bit-blasting for floating-point
problems. In: Vojnar, T., Zhang, L. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems - 25th International Conference, TACAS 2019,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 11427, pp. 79–98. Springer (2019).
https://doi.org/10.1007/978-3-030-17462-0 5

17. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. ACM Trans. Inf. Syst. Secur. 12(2), 10:1–10:38
(2008). https://doi.org/10.1145/1455518.1455522

18. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 19th International Conference, TACAS
2013, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7795, pp. 93–107. Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7 7

19. Drucker, H.: Improving regressors using boosting techniques. In: Fisher, D.H.
(ed.) Proceedings of the Fourteenth International Conference on Machine Learning
(ICML 1997), Nashville, Tennessee, USA, July 8-12, 1997. pp. 107–115. Morgan
Kaufmann (1997)

20. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Ver-
ification - 26th International Conference, CAV 2014, Held as Part of the Vi-
enna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8559, pp. 737–744. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9 49

21. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. Journal-
Japanese Society For Artificial Intelligence 14(771-780), 1612 (1999)

22. Fu, Z., Su, Z.: Xsat: A fast floating-point satisfiability solver. In: Chaudhuri,
S., Farzan, A. (eds.) Computer Aided Verification - 28th International Confer-
ence, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 9780, pp. 187–209. Springer (2016).
https://doi.org/10.1007/978-3-319-41540-6 11

https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.1007/s10703-013-0203-7
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-41540-6_11

MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers 321

23. Gadelha, M.Y.R., Monteiro, F.R., Cordeiro, L.C., Nicole, D.A.: ESBMC v6.0: Ver-
ifying C programs using k-induction and invariant inference - (competition con-
tribution). In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 25 Years of TACAS:
TOOLympics, Held as Part of ETAPS 2019, Prague, Czech Republic, April 6-11,
2019, Proceedings, Part III. Lecture Notes in Computer Science, vol. 11429, pp.
209–213. Springer (2019). https://doi.org/10.1007/978-3-030-17502-3 15

24. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In:
Damm, W., Hermanns, H. (eds.) Computer Aided Verification, 19th Interna-
tional Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4590, pp. 519–531. Springer (2007).
https://doi.org/10.1007/978-3-540-73368-3 52

25. Gent, I.P., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N.C.A., Nightingale, P.,
Petrie, K.E.: Learning when to use lazy learning in constraint solving. In: Coelho,
H., Studer, R., Wooldridge, M.J. (eds.) ECAI 2010 - 19th European Conference on
Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings. Frontiers
in Artificial Intelligence and Applications, vol. 215, pp. 873–878. IOS Press (2010).
https://doi.org/10.3233/978-1-60750-606-5-873

26. Godefroid, P., Levin, M.Y., Molnar, D.A.: SAGE: whitebox
fuzzing for security testing. Commun. ACM 55(3), 40–44 (2012).
https://doi.org/10.1145/2093548.2093564

27. Goues, C.L., Leino, K.R.M., Moskal, M.: The boogie verification debugger (tool pa-
per). In: Barthe, G., Pardo, A., Schneider, G. (eds.) Software Engineering and For-
mal Methods - 9th International Conference, SEFM 2011, Montevideo, Uruguay,
November 14-18, 2011. Proceedings. Lecture Notes in Computer Science, vol. 7041,
pp. 407–414. Springer (2011). https://doi.org/10.1007/978-3-642-24690-6 28

28. Greenland, S., Mansournia, M.A., Altman, D.G.: Sparse data bias: a problem hid-
ing in plain sight. bmj 352, i1981 (2016). https://doi.org/10.1136/bmj.i1981

29. Grira, N., Crucianu, M., Boujemaa, N.: Unsupervised and semi-supervised cluster-
ing: a brief survey. A review of machine learning techniques for processing multi-
media content 1, 9–16 (2004)

30. Guidotti, D., Barrett, C., Katz, G., Pulina, L., Narodyska, N., Tacchella, A.:
The VNN-LIB standard, http://www.vnnlib.org/wp-content/uploads/2020/07/
main-1.pdf

31. Hadarean, L., Hyvärinen, A., Niemetz, A., Reger, G.: Smt-comp 2019. https://
www.smt-comp.org/2019 (2019)

32. Halko, N., Martinsson, P., Tropp, J.A.: Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM
Rev. 53(2), 217–288 (2011). https://doi.org/10.1137/090771806

33. Healy, A., Monahan, R., Power, J.F.: Predicting SMT solver performance for soft-
ware verification. In: Dubois, C., Masci, P., Méry, D. (eds.) Proceedings of the
Third Workshop on Formal Integrated Development Environment, F-IDE@FM
2016, Limassol, Cyprus, November 8, 2016. EPTCS, vol. 240, pp. 20–37 (2016).
https://doi.org/10.4204/EPTCS.240.2

34. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: A hierarchical port-
folio of solvers and transformations. In: Simonis, H. (ed.) Integration of AI and OR
Techniques in Constraint Programming - 11th International Conference, CPAIOR
2014, Cork, Ireland, May 19-23, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8451, pp. 301–317. Springer (2014). https://doi.org/10.1007/978-3-
319-07046-9 22

https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.3233/978-1-60750-606-5-873
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1007/978-3-642-24690-6_28
https://doi.org/10.1136/bmj.i1981
http://www.vnnlib.org/wp-content/uploads/2020/07/main-1.pdf
http://www.vnnlib.org/wp-content/uploads/2020/07/main-1.pdf
https://www.smt-comp.org/2019
https://www.smt-comp.org/2019
https://doi.org/10.1137/090771806
https://doi.org/10.4204/EPTCS.240.2
https://doi.org/10.1007/978-3-319-07046-9_22
https://doi.org/10.1007/978-3-319-07046-9_22

322 J. Scott et al.

35. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex:
An efficient SMT solver for verifying deep neural networks. In: Majumdar, R.,
Kuncak, V. (eds.) Computer Aided Verification - 29th International Confer-
ence, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 10426, pp. 97–117. Springer (2017).
https://doi.org/10.1007/978-3-319-63387-9 5

36. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Sleeman,
D.H., Edwards, P. (eds.) Proceedings of the Ninth International Workshop on Ma-
chine Learning (ML 1992), Aberdeen, Scotland, UK, July 1-3, 1992, pp. 249–256.
Morgan Kaufmann (1992). https://doi.org/10.1016/b978-1-55860-247-2.50037-1

37. Kotthoff, L.: Algorithm selection for combinatorial search problems: A survey.
In: Bessiere, C., Raedt, L.D., Kotthoff, L., Nijssen, S., O’Sullivan, B., Pedreschi,
D. (eds.) Data Mining and Constraint Programming - Foundations of a Cross-
Disciplinary Approach, Lecture Notes in Computer Science, vol. 10101, pp. 149–
190. Springer (2016). https://doi.org/10.1007/978-3-319-50137-6 7

38. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep
learning-based network anomaly detection. Clust. Comput. 22(Suppl 1), 949–961
(2019). https://doi.org/10.1007/s10586-017-1117-8

39. Leino, K.R.M.: Automating theorem proving with SMT. In: Blazy, S., Paulin-
Mohring, C., Pichardie, D. (eds.) Interactive Theorem Proving - 4th Inter-
national Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceed-
ings. Lecture Notes in Computer Science, vol. 7998, pp. 2–16. Springer (2013).
https://doi.org/10.1007/978-3-642-39634-2 2

40. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branch-
ing heuristic for SAT solvers. In: Creignou, N., Berre, D.L. (eds.) Theory and
Applications of Satisfiability Testing - SAT 2016 - 19th International Conference,
Bordeaux, France, July 5-8, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 9710, pp. 123–140. Springer (2016). https://doi.org/10.1007/978-3-319-40970-
2 9

41. Malitsky, Y.: Evolving instance-specific algorithm configuration. In:
Instance-Specific Algorithm Configuration, pp. 93–105. Springer (2014).
https://doi.org/10.1007/978-3-319-11230-5, https://doi.org/10.1007/
978-3-319-11230-5

42. Marijn Heule, Matti Järvisalo, M.S.: Sat race 2019 (2019), http://sat-race-2019.
ciirc.cvut.cz/

43. Moore, A.W.: Cross-validation for detecting and preventing overfitting. School of
Computer Science Carneigie Mellon University (2001)

44. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

45. Nejati, S., Frioux, L.L., Ganesh, V.: A machine learning based splitting heuristic
for divide-and-conquer solvers. In: Simonis, H. (ed.) Principles and Practice of
Constraint Programming - 26th International Conference, CP 2020, Louvain-la-
Neuve, Belgium, September 7-11, 2020, Proceedings. Lecture Notes in Computer
Science, vol. 12333, pp. 899–916. Springer (2020). https://doi.org/10.1007/978-3-
030-58475-7 52

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1016/b978-1-55860-247-2.50037-1
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1007/s10586-017-1117-8
https://doi.org/10.1007/978-3-642-39634-2_2
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-11230-5
https://doi.org/10.1007/978-3-319-11230-5
https://doi.org/10.1007/978-3-319-11230-5
http://sat-race-2019.ciirc.cvut.cz/
http://sat-race-2019.ciirc.cvut.cz/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-58475-7_52
https://doi.org/10.1007/978-3-030-58475-7_52

MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers 323

46. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
abs/2006.01621 (2020), https://arxiv.org/abs/2006.01621

47. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisf. Boolean Model. Com-
put. 9(1), 53–58 (2014). https://doi.org/10.3233/sat190101

48. Pasareanu, C.S., Visser, W.: A survey of new trends in symbolic execution for
software testing and analysis. Int. J. Softw. Tools Technol. Transf. 11(4), 339–353
(2009). https://doi.org/10.1007/s10009-009-0118-1

49. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

50. Pulina, L., Tacchella, A.: A multi-engine solver for quantified boolean formulas. In:
Bessiere, C. (ed.) Principles and Practice of Constraint Programming - CP 2007,
13th International Conference, CP 2007, Providence, RI, USA, September 23-27,
2007, Proceedings. Lecture Notes in Computer Science, vol. 4741, pp. 574–589.
Springer (2007). https://doi.org/10.1007/978-3-540-74970-7 41

51. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976).
https://doi.org/10.1016/S0065-2458(08)60520-3

52. Richter, C., Wehrheim, H.: Pesco: Predicting sequential combinations of verifiers
- (competition contribution). In: Beyer, D., Huisman, M., Kordon, F., Steffen, B.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems - 25
Years of TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague, Czech Re-
public, April 6-11, 2019, Proceedings, Part III. Lecture Notes in Computer Science,
vol. 11429, pp. 229–233. Springer (2019). https://doi.org/10.1007/978-3-030-17502-
3 19

53. Rintanen, J.: Madagascar: Scalable planning with sat. Proceedings of the 8th In-
ternational Planning Competition (IPC-2014) 21 (2014)

54. Rodŕıguez, J.D., Mart́ınez, A.P., Lozano, J.A.: Sensitivity analysis of k-fold cross
validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell.
32(3), 569–575 (2010). https://doi.org/10.1109/TPAMI.2009.187

55. Salvia, R., Titolo, L., Feliú, M.A., Moscato, M.M., Muñoz, C.A., Rakamaric, Z.: A
mixed real and floating-point solver. In: Badger, J.M., Rozier, K.Y. (eds.) NASA
Formal Methods - 11th International Symposium, NFM 2019, Houston, TX, USA,
May 7-9, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11460, pp.
363–370. Springer (2019). https://doi.org/10.1007/978-3-030-20652-9 25

56. Scott, J., Panju, M., Ganesh, V.: LGML: logic guided machine learning (student
abstract). In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. pp.
13909–13910. AAAI Press (2020), https://aaai.org/ojs/index.php/AAAI/article/
view/7227

57. Scott, J., Poupart, P., Ganesh, V.: An algorithm selection approach for QF FP
solvers. In: 17th International Workshop on Satisfiability Modulo Theories (2019)

58. Stump, A., Sutcliffe, G., Tinelli, C.: Starexec: A cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) Automated Rea-
soning - 7th International Joint Conference, IJCAR 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8562, pp. 367–373. Springer (2014).
https://doi.org/10.1007/978-3-319-08587-6 28

https://arxiv.org/abs/2006.01621
https://doi.org/10.3233/sat190101
https://doi.org/10.1007/s10009-009-0118-1
https://doi.org/10.1007/978-3-540-74970-7_41
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1109/TPAMI.2009.187
https://doi.org/10.1007/978-3-030-20652-9_25
https://aaai.org/ojs/index.php/AAAI/article/view/7227
https://aaai.org/ojs/index.php/AAAI/article/view/7227
https://doi.org/10.1007/978-3-319-08587-6_28

324 J. Scott et al.

59. Sutcliffe, G.: The TPTP problem library and associated infrastructure -
from CNF to th0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017).
https://doi.org/10.1007/s10817-017-9407-7

60. Tierney, K., Malitsky, Y.: An algorithm selection benchmark of the container pre-
marshalling problem. In: Dhaenens, C., Jourdan, L., Marmion, M. (eds.) Learning
and Intelligent Optimization - 9th International Conference, LION 9, Lille, France,
January 12-15, 2015. Revised Selected Papers. Lecture Notes in Computer Science,
vol. 8994, pp. 17–22. Springer (2015). https://doi.org/10.1007/978-3-319-19084-6 2

61. Urban, J., Sutcliffe, G., Pudlák, P., Vyskocil, J.: Malarea SG1- machine learner
for automated reasoning with semantic guidance. In: Armando, A., Baum-
gartner, P., Dowek, G. (eds.) Automated Reasoning, 4th International Joint
Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings.
Lecture Notes in Computer Science, vol. 5195, pp. 441–456. Springer (2008).
https://doi.org/10.1007/978-3-540-71070-7 37

62. Vallati, M., Chrpa, L., Kitchin, D.E.: Portfolio-based planning: State of the
art, common practice and open challenges. AI Commun. 28(4), 717–733 (2015).
https://doi.org/10.3233/AIC-150671

63. Van Der Maaten, L., Postma, E., Van den Herik, J.: Dimensionality reduction: a
comparative. J Mach Learn Res 10(66-71), 13 (2009)

64. Wen, S.H., Mow, W.L., Chen, W.N., Wang, C.Y., Hsiao, H.C.: Enhanc-
ing symbolic execution by machine learning based solver selection (01 2019).
https://doi.org/10.14722/bar.2019.23080

65. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T.A., Vapnik,
V.: Feature selection for svms. In: Leen, T.K., Dietterich, T.G., Tresp, V.
(eds.) Advances in Neural Information Processing Systems 13, Papers from
Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA. pp.
668–674. MIT Press (2000), https://proceedings.neurips.cc/paper/2000/hash/
8c3039bd5842dca3d944faab91447818-Abstract.html

66. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometrics
and intelligent laboratory systems 2(1-3), 37–52 (1987)

67. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla-07: The design and
analysis of an algorithm portfolio for SAT. In: Bessiere, C. (ed.) Principles
and Practice of Constraint Programming - CP 2007, 13th International Con-
ference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4741, pp. 712–727. Springer (2007).
https://doi.org/10.1007/978-3-540-74970-7 50

68. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based
algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008).
https://doi.org/10.1613/jair.2490

69. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla2009: an automatic
algorithm portfolio for sat. SAT 4, 53–55 (2009)

70. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Evaluating component solver
contributions to portfolio-based algorithm selectors. In: Cimatti, A., Sebas-
tiani, R. (eds.) Theory and Applications of Satisfiability Testing - SAT 2012
- 15th International Conference, Trento, Italy, June 17-20, 2012. Proceedings.
Lecture Notes in Computer Science, vol. 7317, pp. 228–241. Springer (2012).
https://doi.org/10.1007/978-3-642-31612-8 18

71. Xu, L., Hutter, F., Shen, J., Hoos, H.H., Leyton-Brown, K.: Satzilla2012: Improved
algorithm selection based on cost-sensitive classification models. Proceedings of
SAT Challenge pp. 57–58 (2012)

https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/978-3-319-19084-6_2
https://doi.org/10.1007/978-3-540-71070-7_37
https://doi.org/10.3233/AIC-150671
https://doi.org/10.14722/bar.2019.23080
https://proceedings.neurips.cc/paper/2000/hash/8c3039bd5842dca3d944faab91447818-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/8c3039bd5842dca3d944faab91447818-Abstract.html
https://doi.org/10.1007/978-3-540-74970-7_50
https://doi.org/10.1613/jair.2490
https://doi.org/10.1007/978-3-642-31612-8_18

MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers 325

72. Xu, R., II, D.C.W.: Survey of clustering algorithms. IEEE Trans. Neural Net-
works 16(3), 645–678 (2005). https://doi.org/10.1109/TNN.2005.845141, https:
//doi.org/10.1109/TNN.2005.845141

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/TNN.2005.845141
http://creativecommons.org/licenses/by/4.0/

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

dtControl 2.0: Explainable Strategy
Representation via Decision Tree Learning

Steered by Experts �

Pranav Ashok1 , Mathias Jackermeier1, Jan Křet́ınský1 ,
Christoph Weinhuber1(�) , Maximilian Weininger1 , and Mayank Yadav2

1 Technical University of Munich, Munich, Germany
firstname.lastname@tum.de

2 Department of Computer Science and Engineering, I.I.T. Delhi,
New Delhi, India

cs1180356@iitd.ac.in

Abstract. Recent advances have shown how decision trees are apt data
structures for concisely representing strategies (or controllers) satisfying
various objectives. Moreover, they also make the strategy more explainable.
The recent tool dtControl had provided pipelines with tools support-
ing strategy synthesis for hybrid systems, such as SCOTS and Uppaal

Stratego. We present dtControl 2.0, a new version with several fun-
damentally novel features. Most importantly, the user can now provide
domain knowledge to be exploited in the decision tree learning process
and can also interactively steer the process based on the dynamically
provided information. To this end, we also provide a graphical user inter-
face. It allows for inspection and re-computation of parts of the result,
suggesting as well as receiving advice on predicates, and visual simulation
of the decision-making process. Besides, we interface model checkers of
probabilistic systems, namely STORM and PRISM and provide dedicated
support for categorical enumeration-type state variables. Consequently,
the controllers are more explainable and smaller.

Keywords: Strategy representation · Controller representation · Deci-
sion Tree · Explainable Learning · Hybrid systems · Probabilistic Model
Checking · Markov Decision Process

1 Introduction

A controller (also known as strategy, policy or scheduler) of a system assigns to
each state of the system a set of actions that should be taken in order to achieve a
certain goal. For example, one may want to satisfy a given specification of a robot’s

� This work has been partially supported by the German Research Foundation (DFG)
project No. 383882557 SUV (KR 4890/2-1), No. 427755713 GOPro (KR 4890/3-1)
and the TUM International Graduate School of Science and Engineering (IGSSE)
grant 10.06 PARSEC. We thank Tim Quatman for implementing JSON-export of
strategies in STORM and Pushpak Jagtap for his support with the SCOTS models.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 326–345, 2021.
https://doi.org/10.1007/978-3-030-72013-1 17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_17&domain=pdf
http://orcid.org/0000-0002-1083-4741
http://orcid.org/0000-0002-8122-2881
http://orcid.org/0000-0002-1600-4933
http://orcid.org/0000-0002-0163-2152
http://orcid.org/0000-0003-0302-8108
https://doi.org/10.1007/978-3-030-72013-1_17

dtControl 2.0 327

behaviour or exhibit a concurrency bug appearing only in some interleaving. It
is desirable that the controllers possess several additional properties, besides
achieving the goal, in order to be usable in practice. Firstly, controllers should
be explainable. Only then can they be understood, trusted and implemented
by the engineers, certified by the authorities, or used in the debugging process
[11]. Secondly, they should be small in size and efficient to run. Only then they
can be deployed on embedded devices with limited memory of a few kilobytes,
while the automatically synthesized ones are orders of magnitude larger [49].
Thirdly, whenever the primary goal, e.g. functional correctness, is accompanied
by a secondary criterion, e.g. energy efficiency, they should be performant with
respect to this criterion.

Automatic controller synthesis is able to provide controllers for a given goal
in various domains, such as probabilistic systems [32, 17], hybrid systems [45,
16, 30, 19] or reactive systems [35]. In some cases, even the performance can be
reflected [16]. However, despite recent interest in explainability in connection to
AI-based controllers [2] and despite typically small memories of embedded devices,
automatic techniques for controller synthesis mostly fall short of producing small
explainable results. A typical outcome is a controller in the form of a look-up
table, listing the actions for each possible state, or a binary decision diagram
(BDD) [14] representation thereof. While the latter reduces the size to some
extent, none of the two representations is explainable: the former due to its size,
the latter due to the bit-level representation with all high-level structure lost.
Instead, learning representations in the form of decision trees (DT) [38] has
been recently explored to this end [7, 3]. DTs turn out to be usually smaller
than BDD but do not drown to the bit level and are generally well known for
their interpretability and explainability due to their simple structure. However,
despite showing significant potential, the state-of-the-art tool dtControl [4] uses
predicates without natural interpretation, and moreover, the best size reductions
are achieved using determinization, i.e. making the controller less permissive,
which negatively affects performance [7].

Example 1 (Motivating example). Consider the cruise control model of [34],
where we want to control the speed of our car so that it never crashes into the
car in front while, as a secondary performance objective, keeping the distance
between the two cars small.

A safe controller for the this model as returned by Uppaal Stratego, is
a lookup table of size 418 MB with 300,000 lines. The respective BDD has
1,448 nodes with all information bit-blasted. Using adaptations of standard
DT-construction algorithms, as implemented in dtControl, we can get a DT
with 987 nodes, which is still too large to be explained. Using determinization
techniques, the controller can be compressed to 3 nodes! However, then the DT
allows only to decelerate until the minimum velocity. This is safe, as we cannot
crash into the car in front, but it does not even attempt at getting close to the
front car, and thus has a very bad performance.

One can find a strategy with optimal performance, retaining the maximal
permissiveness, not determinizing at all, which can be represented by a DT with 11

328 P. Ashok et al.

nodes. A picture of this DT as well as reasoning how to derive the predicates from
the kinematic equations is in the extended version of this paper [5, Appendix A].

However, exactly because the predicates are based on the domain knowledge,
namely the kinematic equations, they take the form of algebraic predicates and
not simply linear predicates, which are the only ones in dtControl and commonly
in the machine-learning literature on DTs. 1

This motivating example shows that using domain knowledge and algebraic
predicates, available now in dtControl 2.0, one can get smaller representation
than when using existing heuristics. Further, it improves the performance of the
DT, and it is easily explainable, as it is based on domain knowledge. In fact,
the discussed controller is so explainable that it allowed us to find a bug in the
original model. In general, using dtControl 2.0 a domain expert can try to
compress the controller, thus gain more insight and validate that it is correct.
Another example of this has been reported from the use of dtControl in the
manufacturing domain [31].

While automatic synthesis of good predicates from the domain knowledge may
seem as distant as automatic synthesis of program invariants or automatic theorem
provers, we adopt the philosophy of those domains and offer semi-automatic
techniques.

Additionally, if not performance but only safety of a controller is relevant,
we can still benefit from determinization without drawbacks. To this end, we
also provide a new determinization procedure that generalizes the extremely
successful MaxFreq technique of [4] and is as good or better on all our examples.

To incorporate the changes just discussed, namely algebraic predicates, semi-
automatic approach, and better determinization, we have also reworked the
tool and its interfaces. To begin with, the software architecture of dtControl
2.0 is now very modular and allows for easy further modifications, as well as
adding support for new synthesis tools. In fact, we have already added parsers
for the tools STORM [17] and PRISM [32], and thus we support probabilistic
models as well. Since these models also contain categorical (or enumeration-
type) variables, e.g. protocol states, we have also added support for categorical
predicates. Furthermore, we added a graphical user interface that not only is
easier to use than the command-line interface, but also allows to inspect the DT,
modify and retrain parts of it, and simulate runs of the model under its control,
further increasing the possibilities to explain the DT and validate the controller.

Summing up, the main improvements of dtControl 2.0 over the previous
version [4] are the following:

– Support of algebraic predicates and categorical predicates
– Semi-automatic interface and GUI with several interactive modes
– New determinization procedure
– Interfaces for model checkers PRISM and Storm and experimental evidence

of improvements on probabilistic models compared to BDD

The paper is structured as follows. After recalling necessary background in
Section 2, we give an overview of the improvements over the previous version of

dtControl 2.0 329

the tool from the global perspective in Section 3. We detail on the algorithmic
contribution in Sections 4 (predicate domains), 5 (predicate selection) and 6
(determinization). Section 7 provides experimental evaluation and Section 8
concludes.

Related work. DTs have been suggested for representing controllers of and
counterexamples in probabilistic systems in [11], however, the authors only discuss
approximate representations. The ideas have been extended to other setting, such
as reactive synthesis [12] and hybrid systems [7]. More general linear predicates
have been considered in leaves of the trees in [3]. dtControl 2.0 contains the
DT induction algorithms from [7, 3]. The differences to the previous version
of the tool dtControl [4] are summarized above and schematically depicted in
Figure 2.

Besides, DTs have been used to represent and learn strategies for safety
objectives in [40] and to learn program invariants in [21]. Further, DTs were
used for representing the strategies during the model checking process, namely
in strategy iteration [10] or in simulation-based algorithms [42]. Representing
controllers exactly using a structure similar to DT (mistakenly claimed to be an
algebraic decision diagram) was first suggested by [22], however, no automatic
construction algorithm was provided.

The idea of non-linear predicates has been explored in [28]. In that work,
however, it is not based on domain knowledge, but rather on projecting the
state-space to higher dimensions.

BDDs [14] have been commonly used to represent strategies in planning [15],
symbolic model checking [32] as well as to represent hybrid system controllers
[45, 30]. While BDD [14] operate only on Boolean variables, they have the
advantage of being diagrams and not trees. Moreover, they correspond to Boolean
functions that can be implemented on hardware easily. [18] proposes an automatic
compression technique for numerical controllers using BDDs. Similar to our work,
[49] considers the problem of obtaining concise BDD representation of controllers
and presents a technique to obtain smaller BDDs via determinization. However,
BDDs are difficult to explain due to variables being bit-blasted and their size is
very sensitive to the chosen variable ordering. An extension of BDDs, algebraic
or multi-terminal decision diagrams (ADD/MTBDD) [8, 20], have been used in
reinforcement learning for strategy synthesis [26, 47]. ADDs extend BDDs with
the possibility to have multiple values in the terminal nodes, but the predicates
still work only on boolean variables, retaining the disadvantages of BDDs.

2 Decision tree learning for controller representation

In this section, we briefly describe how controllers can be represented as decision
trees as in [4]. We give an exemplified overview of the method, pinpointing the
role of our algorithmic contributions.

A (non-deterministic, also called permissive) controller is a map C : S �→ 2A

from states to non-empty sets of actions. This notion of a controller is fairly

330 P. Ashok et al.

general; the only requirement is that it has to be memoryless and non-randomized.
These kind of controllers are optimal for many tasks such as expected (discounted)
reward, reachability or parity objectives. Moreover, even finite-memory controllers
can be written in this form by considering the product of the state space with
the finite memory as the domain, for example, like in LTL model checking.

Decision trees (DT), e.g. [38], are trees where every leaf node is labelled with
a non-empty set of actions and every inner node is labelled with a predicate
ρ : S �→ {true, false}.

vo vf d actions

0 0 5 {neu}
2 6 10 {dec,neu, acc}
2 6 15 {dec,neu, acc}
4 4 15 {dec,neu}

(a)

vo > 0

{neu}vf > 4

{dec,neu}{dec,neu, acc}

falsetrue

(b)

Fig. 1: An example controller based on the cruise-control model in the form of a lookup
table (left), and the corresponding decision tree (right).

Example 2 (Decision tree representation). As an example, consider the controller
given in Figure 1a. It is a subset of the real cruise-control case study from the
motivating Example 1. A state is a 3-tuple of the variables vo, vf and d, which
denote the velocity of our car, the front car and the distance between the cars
respectively. In each state, our car may be allowed to perform a subset of the
following set of actions: decelerate (dec), stay in neutral (neu) or accelerate (acc).
A DT representing this lookup table is depicted in Figure 1b.

Given a state, for example vo = vf = 4, d = 10, the DT is evaluated as follows:
We start at the root and, since it is an inner node, we evaluate its predicate
vo > 0. As this is true, we follow the true branch and reach the inner node
labelled with the predicate vf > 4. This is false, so we follow the false branch and
reach the leaf node labelled {dec,neu}. Hence, we know that all three possibilities
of decelerating, staying neutral and accelerating are allowed by the controller. 1

To construct a DT representation of a given controller, the following recursive
algorithm may be used. Note that it is heuristic since constructing an optimal
binary decision tree is an NP-complete problem [27].

Base case: If all states in the the controller agree on their set of actions B (i.e.
for all states s we have C(s) = B), return a leaf node with label B.

Recursive case: Otherwise, we split the controller. For this, we select a predicate
ρ and construct an inner node with label ρ. Then we partition the controller

dtControl 2.0 331

by evaluating the predicate on the state space, and recursively construct one
DT for the sub-controller on states {s ∈ S | ρ(s)} where the predicate is
true, and one for the sub-controller where it is false. These controllers are
the children of the inner node with label ρ and we proceed recursively.

For selecting the predicate, we consider two hyper-parameters: The domain
of the predicates (see Section 4) and the way to select predicates (see Section 5).
The selection is typically performed by selecting the predicate with the lowest
impurity ; this is a measure for how homogenous (or “pure”) the controller is after
the split, in other words the degree to which all the states agree on their actions.

We also consider a third hyper-parameter of the algorithm, namely deter-
minization by safe early stopping (see Section 6). This modifies the base case as
follows: if all states in the controller agree on at least one action a (i.e. for all
states s we have a ∈ C(s)), then we return a leaf node with label {a}. This variant
of early stopping ensures that, even though the controller is not represented
exactly, still for every state a safe action is allowed.

Hence, if the original controller satisfies some property, e.g. that a safe set of
states is never left, the DT construction algorithm ensures that this property is
retained. This is because our algorithm represents the strategy exactly (or a safe
subset, in case of determinization) and does not generalize as DTs typically do in
machine learning. DTs are suitable for both tasks, as both rely on the strength
of DTs exploiting underlying structure.

Remark 1. Note that for some types of objectives such as reachability, deter-
minization of permissive strategies might lead to a violation of the original
guarantees. For example, consider a strategy that allows both a self-looping and
a non-self-looping action at a particular state. If the determinizer decides to
restrict to the self-looping action, the reachability property may be violated in the
determinized strategy. However, this problem can be addressed when synthesizing
the strategy by ensuring that every action makes progress towards the target.

3 Tool

dtControl 2.0 is an easy-to-use open-source tool for representing memoryless
symbolic controllers as more compact and more interpretable DTs, while retaining
safety guarantees of the original controllers. Our website dtcontrol.model.in.

tum.de offers hyperlinks to the easy-to-install pip package3, the documentation
and the source code. Additionally, the artifact that has passed the TACAS 21
artifact evaluation is available here [6].

The schema in Figure 2 illustrates the workflow of using dtControl, high-
lighting new features in red. Considering dtControl as a black box, it shows that
given a controller, it returns a DT representing the controller and also offers the
possibility to simulate a run of the system under the control of the DT, visualizing

3 pip is a standard package-management system used to install and manage software
packages written in Python.

dtcontrol.model.in.tum.de
dtcontrol.model.in.tum.de

332 P. Ashok et al.

Fig. 2: An overview of the components of dtControl 2.0, thereby showing software
architecture and workflow. Contributions of this paper are highlighted in red.

the decisions made. The controller can be input in various formats, including
the newly supported strategy representations of the well-known probabilistic
model checkers PRISM [32] and STORM [17]. The DT is output in several machine
readable formats, and as C-code that can be directly used for executing the
controller on embedded devices. Note that this C-code consists only of nested
if-else-statements. The new graphical user interface also offers the possibility
to inspect the graph in an interactive web user interface, which even allows to
edit the DT. This means that parts of the DT can be retrained with a different
set of hyper-parameters and directly replaced. This way, one can for example
first train a determinized DT and then retrain important parts of it to be more
permissive and hence more performant for a secondary criterion. Figure 3 shows
a screenshot of the newly integrated graphical user interface.

Looking at the inner workings of dtControl, we see the three important
hyper-parameters that were already introduced in Section 2: predicate domain,
predicate selector, and determinizer. For each of these, dtControl offers various
choices, some of which were newly added for version 2.0. Most prominently, the
user now has the possibility to directly influence both the predicate domain and
the predicate selector, by providing domain knowledge and thus also additional
predicates, or by directly using the interactive predicate selection. More details
on the predicate domain and how domain knowledge is specified can be found in
Section 4. The different ways to select predicates, especially the new interactive
mode, are the topic of Section 5. Our new insights into determinization are

dtControl 2.0 333

Fig. 3: Screenshot of the new web-based graphical user interface. It offers a sidebar for
easy selection of the controller file and hyper-parameters, an experiments table where
benchmarks can be queued, and a results table in which some statistics of the run are
provided. Moreover, users can click on the ‘eye’ icon in the results table to inspect the
built decision tree.

described in Section 6. To support the user in finding a good set of hyper-
parameters, dtControl also offers extensive benchmarking functionality, allowing
to specify multiple variants and reporting several statistics.

Technical notes. dtControl 2.0 is written in Python 3 following an architec-
ture closely resembling the schema in Figure 2. The modularity, along with our
technical documentation, allows users to easily extend the tool. For example,
supporting another input format is only a matter of adding a parser.

dtControl 2.0 works with Python version 3.7.9 or higher. The core of the
tool which runs the learning algorithms requires numpy [23], pandas [36] and
scikit-learn [41] and optionally the library for the heuristic OC1 [39]. The
algebraic predicates rely on SymPy [37] and SciPy [48]. The web user interface is
powered by Flask [1] and D3.js [9].

4 Predicate domain

The domain of the predicates that we allow in the inner nodes of the DT is of key
importance. As we saw in the motivating Example 1, allowing for more expressive
predicates can dramatically reduce the size of the DT.

We assume that our state space is structured, i.e. it is a Cartesian product of
the domain of the variables (S = S1 × . . .× Sn). We use si to refer to the i-th
state-variable of a state s ∈ S. In Example 2, the three state-variables are the
velocity of our car, the velocity of the front car, and the distance.

334 P. Ashok et al.

We first give an overview of the predicate domains dtControl 2.0 supports,
before discussing the details of the new ones.

Axis-aligned predicates [38] have the form si ≤ c, where c is a rational constant.
This is the easiest form of predicates, and they have the advantage that there are
only finitely many, as the domain of every state-variable is bounded. However,
they are also least expressive.

Linear predicates (also known as oblique [39]) have the form
∑

i si · ai ≤ c,
where ai are rational coefficients and c is a rational constant. They have the
advantage that they are able to combine several state-variables which can lead to
saving linearly many splits, cf. [29, Fig. 5.2]. The disadvantage of these predicates
is that there are infinitely many choices of coefficients, which is why heuristics
were introduced to determine a good set of predicates to try out [39, 4]. However,
heuristically determined coefficients and combinations of variables can impede
explainability.

Algebraic predicates have the form f(s) ≤ c, where f is any mathematical
function over the state-variables and c is a rational constant. It can use elementary
functions such as exponentiation, log, or even trigonometric functions. Example
1 illustrated how this can reduce the size and improve explainability. More
discussion of these predicates follows in Section 4.2.

Categorical predicates are special predicates for categorical (enumeration-
type) state-variables such as colour or protocol state, and they are discussed in
Section 4.1.

4.1 Categorical predicates

Categorical state-variables do not have a numeric domain, but instead are un-
ordered and qualitative. They commonly occur in the models coming from the
tools PRISM and STORM.

Example 3. Let one state-variable be ‘colour’ with the domain {red, blue, green}.
A simple approach is to assign numbers to every value, e.g. red = 0, blue =
1, green = 2, and treat this variable as numeric. However, a resulting predi-
cate such as colour ≤ 2 is hardly explainable and additionally depends on the
assignment of numbers. For example, it would not be possible to single out
colour ∈ {red, green} using a single predicate, given the aforementioned numeric
assignment. Using linear predicates, for example adding half of the colour to
some other state-variable, is even more confusing and dependent on the numeric
assignment. 1

Instead of treating the categorical variables using their numeric encodings,
dtControl 2.0 supports specialized algorithms from literature, see e.g. [43, 44].
They work by labelling an inner node with a categorical variable and performing
a (possibly non-binary) split according to the value of the categorical variable.
The node can have at most one child for every possible value of the categorical
variable, but it can also group together similarly behaving values, see Figure 4 for
an example. For the grouping, dtControl 2.0 uses the greedy algorithm from [44,

dtControl 2.0 335

Chapter 7] called attribute-value grouping. It proceeds by first considering to
have a branch for every single possible value of the categorical variable, and then
merging branches as long as it improves the predicate; see [5, Appendix C] for
the full pseudocode of the algorithm.

In our experiments we found that the grouping algorithm sometimes did not
merge branches in cases where it would actually have made the DT smaller or more
explainable. This is because the resulting impurity, the goodness of a predicate,
could be marginally worse due to floating-point inaccuracies. Thus, we introduce
tolerance, a bias parameter in favour of larger value groups. When checking
whether to merge branches, we do not require the impurity to improve, but we
allow it to become worse up to our tolerance. Setting tolerance to 0 corresponds
exactly to the algorithm from [44], while setting tolerance to ∞ results in merging
branches until only two remain, thus producing binary predicates.

To allow dtControl 2.0 to use categorical predicates, the user has to provide
a metadata file, which tells the tool which variables are categorical and which
are numeric; see [5, Appendix B.1] for an example.

4.2 Algebraic predicates

It is impossible to try out every mathematical expression over the state-variables,
and it would also not necessarily result in an explainable DT. Instead, we allow
the user to enter domain knowledge to suggest templates of predicates that
dtControl 2.0 should try. See [5, Appendix B.2] for a discussion of the format
in which domain knowledge can be entered.

Providing the basic equations that govern the model behaviour can already
help in finding a good predicate, and is easy to do for a domain expert. Addition-
ally, dtControl 2.0 offers several possibilities to further exploit the provided
domain knowledge:

Firstly, the given predicates need not be exact, but may contain coefficients.
These coefficients can be both completely arbitrary or may come from a finite
set suggested by the user. For coefficients with finite domain, dtControl 2.0

tries all possibilities; for arbitrary coefficients, it uses curve fitting to find a good

color

{c}{a} {b}

br g

(a)

color

{b}{a}

br, g

(b)

Fig. 4: Two examples of a categorical split. On the left, all possible values of the state-
variable colour lead to a different child in a non-binary split. On the right, red and
green lead to the same child, which is a result of grouping similar values together.

336 P. Ashok et al.

value. For example, the user can specify a predicate such as d+(vo− vf) · c0 > c1
with c0 being an arbitrary rational number and c1 ∈ {0, 5, 10}.

Secondly, the interactive predicate selection (see Section 5) allows the user
to try out various predicates at once and observe their respective impurity in
the current node. The user can then choose among them as well as iteratively
suggest further predicates, inspired by those where the most promising results
were observed.

Thirdly, the decisions given by a DT can be visualized in the simulator,
possibly leading to better understanding the controller. Upon gaining any further
insight, the user can directly edit any subtree of the result, possibly utilizing the
interactive predicate selection again.

5 Predicate selection

The tool offers a range of options to affect the selection of the most appropriate
predicate from a given domain.

Impurity measures: As mentioned in Section 2, the predicate selection is typically
based on the lowest impurity induced. The most commonly used impurity mea-
sure (and the only one the first version of dtControl supported) is Shannon’s
entropy [46]. In dtControl 2.0, a number of other impurity measures from the
literature [43, 13, 25, 39, 3] are available. However, our results indicate that
entropy typically performs the best, and therefore it is used as the default option
unless the user specifies otherwise. Due to lack of space, we delegate the details
and experimental comparison between the impurity measures to [5, Appendix D].

Priorities: dtControl 2.0 also has the new functionality to assign priorities to
the predicate generating algorithms. Priorities are rational numbers between 0
and 1. The impurity of every predicate is divided by the priority of the algorithm
that generated it. For example, a user can use axis-aligned splits with priority
1 and a linear heuristic with priority 1/2. Then the more complicated linear
predicate is only chosen if it is at least twice as good (in terms of impurity) as
the easier-to-understand axis-aligned split. A predicate with priority 0 is only
considered after all predicates with non-zero priority have failed to split the data.
This allows the user to give just a few predicates from domain knowledge, which
are then strictly preferred to the automatically generated ones, but which need
not suffice to construct a complete DT for the controller.

Interactive predicate selection: dtControl 2.0 offers the user the possibility
to manually select the predicate in every split. This way, the user can prefer
predicates that are explainable over those that optimize the impurity.

The screenshot of the interactive interface in [5, Appendix F] shows the
information that dtControl 2.0 provides. The user is given some statistics
and metadata, e.g. minimum, maximum and step size of the state-variables in
the current node, a few automatically generated predicates for reference and all

dtControl 2.0 337

predicates generated from domain knowledge. The user can specify new predicates
and is immediately informed about their impurity. Upon selecting a predicate,
the split is performed and the user continues in the next node.

The user can also first construct a DT using some automatic algorithm
and then restart the construction from an arbitrary node using the interactive
predicate selection to handcraft an optimized representation, or at any point
decide that the rest of the DT should be constructed automatically.

6 New insights about determinization

In our context, determinization denotes a procedure that, for some or all states,
picks a subset of the allowed actions. Formally, a determinization function δ
transforms a controller C into a “more determinized” C ′, such that for all states
s ∈ C we have ∅ � C ′(s) ⊆ C(s). This reduces the permissiveness, but often
also reduces the size. Note that, for safety controllers, this always preserves
the original guarantees of the controller. For other (non-safety) controllers, see
Remark 1.

dtControl 2.0 supports three different general approaches to determinizing a
controller: pre-processing, post-processing and safe early stopping. Pre-processing
commits to a single determinization before constructing the DT. Post-processing
prunes the DT after its construction, e.g. safe pruning in [7]. The basic idea of
safe early stopping is already described in Section 2: if all states agree on at
least one action, then instead of continuing to split the controller, stop early
and return a leaf node with that common action. Alternatively, to preserve more
permissiveness, one can return not only a single common action, but all common
actions; formally, return the maximum set B such that for all states s in the
node B ⊆ C(s).

The results of [4] show that both pre-processing and post-processing are
outperformed by an on-the-fly approach based on safe early stopping. This is
because pre-processing discards a lot of information that could have been useful
in the DT construction and post-processing can only affect the bottom-most
nodes of the resulting DT, but usually not those close to the root.

We now give a new view on safe early stopping approaches for determinizing
a controller that allows us to generalize the techniques of [4], reducing the size of
the resulting DTs even more.

Example 4. Consider the following controller: C(s1) = {a, b, c}, C(s2) = {a, b, d},
C(s3) = {x, y}. All three states map to different sets of actions, and thus an
impurity measure like entropy penalizes grouping s1 and s2 the same as grouping
s1 and s3. However, if determinization is allowed, grouping s1 and s2 need not be
penalized at all, as these states agree on some actions, namely a and b. Grouping
s1 and s2 into the same child node thus allows the algorithm to stop early at that
point and return a leaf node with {a, b}, in contrast to grouping s1 and s3. 1

Knowing that we want to determinize by safe early stopping affects the
predicate selection process. Intuitively, sets of states are more homogeneous the

338 P. Ashok et al.

more actions they share. We want to take this into account when calculating the
impurity of predicates. One way to do this would be to calculate the impurity of
all possible determinization functions and pick the best one. This, however, is
infeasible, hence we propose the heuristic of multi-label impurity measures. These
impurity measures do not only consider the full set of allowed actions in their
calculation, but instead they depend on the individual actions occurring in the
set. This allows the DT construction to pick better predicates, namely those
whose resulting children are more likely to be determinizable. In [5, Appendix E]
we formally derive the multi-label variants of entropy and Gini-index.

To conclude this section, we point out the key difference between the new
approach of multi-label impurity measures and the previous idea that was intro-
duced in [4]. The approach from [4] does not evaluate the impurity of all possible
determinization functions, but rather picks a smart one – that of maximum
frequency (MaxFreq) – and evaluates according to that. MaxFreq determinizes in
the following way: for every state, it selects from the allowed actions that action
occurring most frequently throughout the whole controller. This way, many states
share common actions. This is already better than pre-processing, as it does not
determinize the controller a priori, but rather considers a different determinization
function at every node. However, in every node we calculate the impurity for
several different predicates, and the optimal choice of determinization function
depends on the predicate. Thus, choosing a single determinization function for
a whole node is still too coarse, as it is fixed independent of the considered
predicate. We illustrate the arising problem in the following Example 5.

Fig. 5: A simple example of a dataset that is split suboptimally by the MaxFreq approach
from [4], but optimally by the new multi-label entropy approach.

Example 5. Figure 5 shows a simple controller with a two-dimensional state
space. Every point is labeled with its set of allowed actions.

As c is the most frequent action, MaxFreq determinizes the states (1, 2),
(1, 3), (2, 2) and (2, 3) to action c. Hence the red split (predicate y < 1.5) is
considered optimal, as it groups together all four states that map to c. The blue

dtControl 2.0 339

split (predicate x < 1.5) is considered suboptimal, as then the data still looks
very heterogeneous. So, using MaxFreq, we need two splits for this controller;
one to split of all the c’s and one to split the two remaining states.

However, it is better to first choose a predicate and then determine a fitting
determinization function. When calculating the impurity of the blue split, we can
choose to determinize all states with x = 1 to {a} and all states with x = 2 to
{b}. Thus, in both resulting sub-controllers the impurity is 0 as all states agree on
at least one action. This way, one split suffices to get a complete DT. Multi-label
impurity measures notice when labels are shared between many (or all) states in
a sub-controller, and thus they allow to prefer the optimal blue split. 1

7 Experiments

Experimental setup. We compare three approaches: BDDs, the first version of
dtControl from [4] and dtControl 2.0. For BDDs4 the variable ordering is
important, so we report the smallest of 20 BDDs that we constructed by starting
with a random initial variable ordering and reordering until convergence. To
determinize BDDs, we used the pre-processing approach, 10 times with the mini-
mum norm and 10 times with MaxFreq. For the previous version of dtControl,
we picked the smaller of either a DT with only axis-aligned predicates or a DT
with linear predicates using the logistic regression heuristic that was typically
best in [4]. Determinization uses safe early stopping with the MaxFreq approach.
For dtControl 2.0, we use the multi-label entropy based determinization and
utilize the categorical predicates for the case studies from probabilistic model
checking. We ran all experiments on a server with operating system Ubuntu
19.10, a 2.2GHz Intel(R) Xeon(R) CPU E5-2630 v4 and 250 GB RAM.

Comparing determinization techniques on cyber-physical systems. Table 1 shows
the sizes of determinized BDDs and DTs on the permissive controllers of the
tools SCOTS and Uppaal Stratego that were already used in [4]. We see that the
new determinization approach is strictly better than the previous one, with only
two DTs being of equal size, as the result of the previous method was already
optimal. With the exception of the case studies helicopter and truck trailer where
BDDs are comparable or slightly better, both approaches using DTs are orders
of magnitude smaller than BDDs or an explicit representation of the state-action
mapping.

Case studies from probabilistic model checking. For Table 2, we used case studies
from the quantitative verification benchmark set [24], which includes models from
the PRISM benchmark suite [33]. Note that these case studies contain unordered
enumeration-type state-variables for which we utilize the new categorical predi-
cates. To get the controllers, we solved the case study with STORM and exported
the resulting controller. This export already eliminates unreachable states. The

4 Our implementation of BDDs is based on the dd python library https://github.

com/tulip-control/dd.

https://github.com/tulip-control/dd
https://github.com/tulip-control/dd

340 P. Ashok et al.

Table 1: Controller sizes of different determinized representations of the controllers
from SCOTS and Uppaal Stratego. “States” is the number of states in the controller,
“BDD” the number of nodes of the smallest BDD from 20 tries, dtControl 1.0 [4] the
smallest DT the previous version of dtControl could generate and dtControl 2.0 the
smallest DT the new version can construct. “TO” denotes a failure to produce a result
in 3 hours. The smallest numbers in each row are highlighted.

Case study States BDD dtControl 1.0 dtControl 2.0

cartpole 271 127 11 7

10rooms 26,244 128 7 7

helicopter 280,539 870 221 123

cruise-latest 295,615 1,448 3 3

dcdc 593,089 381 9 5

truck trailer 1,386,211 18,186 42,561 31,499

traffic 30m 16,639,662 TO 127 97

previous version of dtControl was not able to handle these case studies, so we
only compare dtControl 2.0 to BDDs.

Table 2 shows that also for case studies from probabilistic model checking, DTs
are a good way of representing controllers. The DT is the smallest representation
on 13 out of 19 case studies, often reducing the size by an order of magnitude
compared to BDDs or the explicit representation. On 3 case studies, BDDs are
smallest, and on 2 case studies, both the DT and the BDD fail to reduce the size
compared to the explicit representation. This happens if there are many different
actions and thus states cannot be grouped together. A worst case example of this
is a model where every state has a different action; then, a DT would have as
many leaf nodes as there are states, and hence twice as many nodes in total.

Remark 2. Note that the controllers exported by STORM are deterministic, so no
determinization approach can be utilized in the DT construction. We conjecture
that if a permissive strategy was exported, dtControl 2.0 would benefit from
the additional information and be able to reduce the controller size further as for
the cyber-physical systems.

8 Conclusion

We have presented a radically new version of the tool dtControl for representing
controllers by decision trees. The tool now features a graphical user interface,
allowing both experts and non-experts to conveniently interact with the decision
tree learning process as well as the resulting tree. There is now a range of
possibilities on how the user can provide additional information. The algebraic
predicates provide the means to capture the (often non-linear) relationships from
the domain knowledge. The categorical predicates together with the interface
to probabilistic model checkers allow for efficient representation of strategies for
Markov decision processes, too. Finally, the more efficient determinization yields

dtControl 2.0 341

Table 2: Controller sizes of different representations of controllers from the quantitative
verification benchmark set [24], i.e. from the tools STORM and PRISM. “States” is the
number of states in the controller, “BDD” the number of nodes of the smallest BDD of
20 tries and dtControl 2.0 the smallest DT we could construct. The smallest numbers
in each row are highlighted.

Case study States BDD dtControl 2.0

triangle-tireworld.9 48 51 23

pacman.5 232 330 33

rectangle-tireworld.11 241 498 373

philosophers-mdp.3 344 295 181

firewire abst.3.rounds 610 61 25

rabin.3 704 303 27

ij.10 1,013 436 753

zeroconf.1000.4.true.correct max 1,068 386 63

blocksworld.5 1,124 3,985 855

cdrive.10 1,921 5,134 2,401

consensus.2.disagree 2,064 138 67

beb.3-4.LineSeized 4,173 913 59

csma.2-4.some before 7,472 1,059 103

eajs.2.100.5.ExpUtil 12,627 1,315 153

elevators.a-11-9 14,742 6,750 9,883

exploding-blocksworld.5 76,741 34,447 1,777

echoring.MaxOffline1 104,892 43,165 1,543

wlan dl.0.80.deadline 189,641 5,738 2,563

pnueli-zuck.5 303,427 50,128 150,341

very small (possibly non-performant) controllers, which are particularly useful
for debugging the model.

We see at least two major promising future directions. Firstly, synthesis
of predicates could be made more automatic using mathematical reasoning on
the domain knowledge, such as substituting expressions with a certain unit of
measurement into other domain equations in the places with the same unit of
measurement, e.g. to plug difference of two velocities into an equation for velocity.
Secondly, one could transform the controllers into possibly entirely different
controllers (not just less permissive) so that they still preserve optimality (or
yield ε-optimality) but are smaller or simpler. Here, a closer interaction loop
with the model checkers might lead to efficient heuristics.

342 P. Ashok et al.

References

1. Flask web development: developing web applications with python. https://pypi.
org/project/Flask/, accessed: 14.10.2020

2. Adadi, A., Berrada, M.: Peeking inside the black-box: A survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

3. Ashok, P., Brázdil, T., Chatterjee, K., Křet́ınský, J., Lampert, C.H., Toman, V.:
Strategy representation by decision trees with linear classifiers. In: QEST. Lecture
Notes in Computer Science, vol. 11785, pp. 109–128. Springer (2019)

4. Ashok, P., Jackermeier, M., Jagtap, P., Křet́ınský, J., Weininger, M., Zamani, M.:
dtcontrol: decision tree learning algorithms for controller representation. In: HSCC.
pp. 17:1–17:7. ACM (2020)

5. Ashok, P., Jackermeier, M., Křet́ınský, J., Weinhuber, C., Weininger, M., Yadav,
M.: dtControl 2.0: Explainable strategy representation via decision tree learning
steered by experts. CoRR abs/2101.07202 (2021)

6. Ashok, P., Jackermeier, M., Křet́ınský, J., Weinhuber, C., Weininger, M., Yadav, M.:
dtControl 2.0: Explainable strategy representation via decision tree learning steered
by experts (TACAS 21 artifact) (Jan 2021). https://doi.org/10.5281/zenodo.4437169

7. Ashok, P., Křet́ınský, J., Larsen, K.G., Coënt, A.L., Taankvist, J.H., Weininger,
M.: SOS: safe, optimal and small strategies for hybrid Markov decision processes.
In: QEST. Lecture Notes in Computer Science, vol. 11785, pp. 147–164. Springer
(2019)

8. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic decision diagrams and their applications. Formal Methods
Syst. Des. 10(2/3), 171–206 (1997)

9. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE transactions
on visualization and computer graphics 17(12), 2301–2309 (2011)

10. Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in policy construc-
tion. In: IJCAI. pp. 1104–1113. Morgan Kaufmann (1995)

11. Brázdil, T., Chatterjee, K., Chmelik, M., Fellner, A., Křet́ınský, J.: Counterexample
explanation by learning small strategies in Markov decision processes. In: CAV (1).
Lecture Notes in Computer Science, vol. 9206, pp. 158–177. Springer (2015)

12. Brázdil, T., Chatterjee, K., Křet́ınský, J., Toman, V.: Strategy representation by
decision trees in reactive synthesis. In: TACAS (1). Lecture Notes in Computer
Science, vol. 10805, pp. 385–407. Springer (2018)

13. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression
Trees. Wadsworth (1984)

14. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

15. Cimatti, A., Roveri, M., Traverso, P.: Automatic obdd-based generation of universal
plans in non-deterministic domains. In: AAAI/IAAI. pp. 875–881. AAAI Press /
The MIT Press (1998)

16. David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Uppaal
stratego. In: TACAS. Lecture Notes in Computer Science, vol. 9035, pp. 206–211.
Springer (2015)

17. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: A modern
probabilistic model checker. In: CAV (2). Lecture Notes in Computer Science, vol.
10427, pp. 592–600. Springer (2017)

18. Della Penna, G., Intrigila, B., Lauri, N., Magazzeni, D.: Fast and compact encoding
of numerical controllers using obdds. In: Cetto, J.A., Ferrier, J.L., Filipe, J. (eds.)

https://pypi.org/project/Flask/
https://pypi.org/project/Flask/
https://doi.org/10.5281/zenodo.4437169

dtControl 2.0 343

Informatics in Control, Automation and Robotics: Selcted Papers from the Interna-
tional Conference on Informatics in Control, Automation and Robotics 2008, pp.
75–87. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

19. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems.
In: CAV. Lecture Notes in Computer Science, vol. 6806, pp. 379–395. Springer
(2011)

20. Fujita, M., McGeer, P.C., Yang, J.C.: Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation. Formal Methods Syst. Des.
10(2/3), 149–169 (1997)

21. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: POPL. pp. 499–512. ACM (2016)

22. Girard, A.: Low-complexity quantized switching controllers using approximate
bisimulation. CoRR abs/1209.4576 (2012)

23. Harris, C.R., Millman, K.J., van der Walt, S., Gommers, R., Virtanen, P., Courna-
peau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S.,
van Kerkwijk, M.H., Brett, M., Haldane, A., del Ŕıo, J.F., Wiebe, M., Peterson, P.,
Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke,
C., Oliphant, T.E.: Array programming with numpy. CoRR abs/2006.10256
(2020)

24. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quan-
titative verification benchmark set. In: TACAS (1). Lecture Notes in Computer
Science, vol. 11427, pp. 344–350. Springer (2019)

25. Heath, D.G., Kasif, S., Salzberg, S.: Induction of oblique decision trees. In: Proceed-
ings of the 13th International Joint Conference on Artificial Intelligence. Chambéry,
France, August 28 - September 3, 1993. pp. 1002–1007 (1993)

26. Hoey, J., St-Aubin, R., Hu, A.J., Boutilier, C.: SPUDD: stochastic planning using
decision diagrams. In: UAI. pp. 279–288. Morgan Kaufmann (1999)

27. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP-complete.
Inf. Process. Lett. 5(1), 15–17 (1976)

28. Ittner, A., Schlosser, M.: Non-linear decision trees - NDT. In: ICML. pp. 252–257.
Morgan Kaufmann (1996)

29. Jackermeier, M.: dtControl: Decision Tree Learning for Explainable Controller
Representation. Bachelor’s thesis, Technische Universität München (2020)

30. Jr., M.M., Davitian, A., Tabuada, P.: PESSOA: A tool for embedded controller
synthesis. In: CAV. Lecture Notes in Computer Science, vol. 6174, pp. 566–569.
Springer (2010)

31. Kiesbye, J.: Private Communication (2020)
32. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic

real-time systems. In: CAV. Lecture Notes in Computer Science, vol. 6806, pp.
585–591. Springer (2011)

33. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
QEST. pp. 203–204. IEEE Computer Society (2012)

34. Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise
control. In: Correct System Design. Lecture Notes in Computer Science, vol. 9360,
pp. 260–277. Springer (2015)

35. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems
from LTL specifications via parity games. Acta Informatica 57(1-2), 3–36 (2020)

36. Wes McKinney: Data Structures for Statistical Computing in Python. In: Stéfan
van der Walt, Jarrod Millman (eds.) Proceedings of the 9th Python in Science
Conference. pp. 56 – 61 (2010). https://doi.org/10.25080/Majora-92bf1922-00a

https://doi.org/10.25080/Majora-92bf1922-00a

344 P. Ashok et al.

37. Meurer, A., Smith, C.P., Paprocki, M., Cert́ık, O., Kirpichev, S.B., Rocklin, M.,
Kumar, A., Ivanov, S., Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger,
B.E., Muller, R.P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F.,
Curry, M.J., Terrel, A.R., Roucka, S., Saboo, A., Fernando, I., Kulal, S., Cimrman,
R., Scopatz, A.M.: Sympy: symbolic computing in python. PeerJ Comput. Sci. 3,
e103 (2017)

38. Mitchell, T.M.: Machine learning. McGraw Hill series in computer science, McGraw-
Hill (1997)

39. Murthy, S.K., Kasif, S., Salzberg, S., Beigel, R.: OC1: A randomized induction of
oblique decision trees. In: AAAI. pp. 322–327. AAAI Press / The MIT Press (1993)

40. Neider, D., Markgraf, O.: Learning-based synthesis of safety controllers. In: FMCAD.
pp. 120–128. IEEE (2019)

41. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

42. Pyeatt, L.D., Howe, A.E., et al.: Decision tree function approximation in reinforce-
ment learning. In: Proceedings of the third international symposium on adaptive
systems: evolutionary computation and probabilistic graphical models. vol. 2, pp.
70–77. Cuba (2001)

43. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
44. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
45. Rungger, M., Zamani, M.: SCOTS: A tool for the synthesis of symbolic controllers.

In: HSCC. pp. 99–104. ACM (2016)
46. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4),

623–656 (1948)
47. St-Aubin, R., Hoey, J., Boutilier, C.: APRICODD: approximate policy construction

using decision diagrams. In: NIPS. pp. 1089–1095. MIT Press (2000)
48. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau,

D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S., Brett, M.,
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson,
E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald,
A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy: Scipy 1.0-fundamental
algorithms for scientific computing in python. CoRR abs/1907.10121 (2019)

49. Zapreev, I.S., Verdier, C., Jr., M.M.: Optimal symbolic controllers determinization
for BDD storage. In: ADHS 2018. IFAC-PapersOnLine, vol. 51, pp. 1–6. Elsevier
(2018). https://doi.org/10.1016/j.ifacol.2018.08.001

https://doi.org/10.1016/j.ifacol.2018.08.001

dtControl 2.0 345

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License(https://creativecommons.org/licenses/by/4.

0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Tool Demo Papers

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

HLola: a Very Functional Tool for

Extensible Stream Runtime Verification�

Felipe Gorostiaga1,2,3(�) and César Sánchez1

1 IMDEA Software Institute, Madrid, Spain
2 Universidad Politécnica de Madrid, Madrid, Spain

3 CIFASIS, Rosario, Argentina
{felipe.gorostiaga,cesar.sanchez}@imdea.org

Abstract. We present HLola, an extensible Stream Runtime Verification (SRV)
tool, that borrows from the functional language Haskell (1) rich types for data
in events and verdicts; and (2) functional features for parametrization, libraries,
high-order specification transformations, etc.
SRV is a formal dynamic analysis technique that generalizes Runtime Verifica-
tion (RV) algorithms from temporal logics like LTL to stream monitoring, al-
lowing the computation of verdicts richer than Booleans (quantitative values and
beyond). The keystone of SRV is the clean separation between temporal depen-
dencies and data computations. However, in spite of this theoretical separation
previous engines include hardwired implementations of just a few datatypes, re-
quiring complex changes in the tool chain to incorporate new data types. Addi-
tionally, when previous tools implement features like parametrization these are
implemented in an ad-hoc way. In contrast, HLola is implemented as a Haskell
embedded DSL, borrowing datatypes and functional aspects from Haskell, re-
sulting in an extensible engine4. We illustrate HLola through several examples,
including a UAV monitoring infrastructure with predictive characteristics that has
been validated in online runtime verification in real mission planning.

1 Introduction

Runtime Verification [4,14,18] is a dynamic technique that studies (1) how to generate
monitors from formal specifications, and (2) algorithms to monitor the system under
analysis, one trace at a time. Early RV specification languages were based on logics
like past LTL [19] adapted to finite traces [5,10,15], regular expressions [23], fix-point
logics [1], rule based languages [3], or rewriting [21]. Verdicts and many times observa-
tions in most of these specification logics are restricted to Booleans, often because most
early logics in RV were borrowed from static verification—where decidability is cru-
cial. SRV [9,22] attempts to generalize these monitoring algorithms to richer datatypes,
including in observations and verdicts. SRV offers declarative specifications where off-
set expressions allow accessing streams at different moments in time, including future
instants. Most previous SRV developments [9, 11] and their extensions to event-based
� This work was funded in part by the Madrid Regional Government under project “S2018/TCS-

4339 (BLOQUES-CM)”, by Spanish National Project “BOSCO (PGC2018-102210-B-100)”.
4 The tool is available open-source at http://github.com/imdea-software/hlola

© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 349–356, 2021.
https://doi.org/10.1007/978-3-030-72013-1 18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_18&domain=pdf
http://orcid.org/0000-0002-3478-3408
http://orcid.org/0000-0003-3927-4773
http://github.com/imdea-software/hlola
https://doi.org/10.1007/978-3-030-72013-1_18

350 F. Gorostiaga and C. Sánchez

systems [8,11,12,17] focus on efficiently implementing the temporal engine, promising
that new datatypes can be incorporated easily. However, in practice, adding a datatype
requires modifying the parser, the internal representation and the runtime system. Con-
sequently, existing tools only support a limited hardwired collection of datatypes (typi-
cally Booleans and numeric types for quantitative monitoring).

In this paper we demonstrate the tool HLola, whose core language is Lola [9],
but that enables arbitrary datatypes. HLola is implemented as an embedded DSL in
Haskell. Other RV tools implemented as eDSLs include [2, 13] (in Scala), and [24]
which implements LTL as an eDSL in Haskell. The main theoretical novelty of HLola
is a technique called lift deep embedding, that consists in borrowing types transparently
from Haskell and embedding the resulting language back into Haskell (see [7] for an in-
troduction to HLola with details of the theoretical underpinnings). In fact, most HLola
datatypes were introduced after the temporal engine was completed without requiring
any re-implementation. An eDSL enables higher-order functions to describe transfor-
mations that produce stream declarations from stream declarations, enabling stream
parametrization for free. HLola libraries collect these transformers so new logics like
LTL, MTL, etc with Boolean and quantitative semantics can be implemented in a few
lines (see Section 2). Haskell type-classes enable simplifiers, which can anticipate the
value of an expression without requiring the computation of all its sub-expressions.
Implementing these in previous systems requires to re-invent and implement features
manually (like macro expansions, etc). HLola even allows specifications as data to im-
plement “specifications within specifications” (a feature that allows computing a full
auxiliary specification at every instant, useful in simulation and for nested properties).
This is used in an UAV scenario to implement Kalman filters [16] as monitors that
predict the trajectory of the unmanned aircraft. The output of this monitor is used to
anticipate problems (using another monitor) and take preventive planning actions.

Stream Runtime Verification in a nutshell SRV generalizes monitoring algorithms to
arbitrary data, where datatypes are abstracted using multi-sorted first-order interpreted
signatures (called data theories in the Lola terminology). The signatures are interpreted
in the sense that every functional symbol f used to build terms of a given type is accom-
panied with an evaluation function f (the interpretation) that allows the computation of
values (given values of the arguments). A Lola specification 〈I,O,E〉 consists of (1) a
set of typed input stream variables I , which correspond to the inputs observed by the
monitor; (2) a set of typed output stream variables O which represent the outputs of
the monitor as well as intermediate observations; and (3) defining equations, which as-
sociate every output y ∈ O with a stream expression Ey that describes declaratively
the intended values of y. The set of stream expressions of a given type is built from
constants and function symbols as constructors (as usual), and also from offset expres-
sions of the form s[k, d] where s is a stream variable, k is an integer number and d is
a value of the type of s used as default. For example, altitude[-1,0.0m] repre-
sents the value of stream altitude in the previous step of time, with 0.0m as default
value to be used at the initial instant. Online efficient algorithms can be synthesized for
specifications with (bounded) future accesses [9, 22], where efficiency means that re-
sources (time and space) are independent of the length of the trace and can be calculated
statically. HLola can be efficiently monitored in a trace-length independent sense [7].

HLola: a Very Functional Tool for Extensible Stream Runtime Verification 351

2 The HLola Tool

Fig. 1 shows the software architecture of HLola. We start from an HLola specification,
which can borrow datatypes, notation and features from the Haskell language (repre-
sented by the red dashed arrow in Fig. 1). A simple translator processes the specification
and generates code in the Haskell eDSL. The translator does not fully parse the spec
and only preforms simple rewrites, leaving most of the specification unchanged. The
resulting code is combined with the HLola engine (developed in Haskell) and compiled
into a binary in the target platform. A well-known downside of this approach is that
during the second compilation stage, error reports may be rather cryptic. On the other
hand, a Haskell expert can write specifications directly in the embedded DSL, which
still resembles Lola, to finely tune an HLola specification.

The enhanced capabilities of HLola with respect to Lola (streams as data, stream
type polymorphism and parametric streams) impact the syntax of the language, which
diverges slightly from the syntax of the original Lola. HLola files can either be libraries
or specifications: Libraries include HLola code that define streams and facilities to cre-
ate streams, and must be declared using library <Name> (where <Name> is the name
of the library) on the first line of the HLola file. Specifications first state the format for
input and output events as format JSON or format CSV. Source files then can import
libraries and stream data manipulation facilities (called theories) with the statements
use library <Name> and use theory <Name> respectively. HLola files can also
import arbitrary Haskell libraries using the statement use haskell <Name>, and in-
clude Haskell code directly anywhere within the blocks delimited between #HASKELL

and #ENDOFHASKELL. Specifications then define the input and output streams. An Input
stream is declared by its type and name in a line of the form input <Type> <name>,
just like in the original Lola language. The syntax of <Type> follows the Haskell no-
tation. An Output stream is specified by its type, name and parameters on the left hand
side of =, and its defining expression on the right hand side of =:

output <TypeConstraints>? <Type> <name> <args>* = <Expr>,

where <TypeConstraints> is an optional set of constraints over the polymorphic
types handled by the stream (expressed in Haskell notation), and <args> is an optional
list of arguments of the form <Type> <name>. We can use define instead of output
to define intermediate streams, whose values are not reported by the monitor but can
be used by other streams. The defining <Expr> of an output stream allows the use of

Fig. 1. Software Architecture of HLola.

352 F. Gorostiaga and C. Sánchez

let clauses, where blocks, type annotation, do notation, etc. The access to the value
of a stream s at the current instant uses the term s[now] to distinguish it from s, the
stream itself (whose type is stream of values). The offset expression that accesses a
stream s at a shift of i with default value d is written as s[i|d], as in classic Lola. The
symbol ’ is used to lift an object o from the theory as in ’o. We sometimes indicate
the arity of the object o being lifted for clarity or to aid the type inference as in 2’o. To
improve readability, some operators have been overridden by their lifted version, such
as if-then-else.

Libraries. The following HLola file defines a library of Past-LTL operators, called LTL,
as part of the HLola distribution5.

library LTL

use library Utils

output Bool historically <Stream Bool p> = p[now] && historically p [-1|’True]

output Bool once <Stream Bool p> = p[now] || once p[-1|’False]

output Bool since <Stream Bool p> <Stream Bool q> = q[now] ||
(p[now] && p ‘since‘ q [-1|’False])

output Int nFalses <Stream Bool p> = nFalses p[-1|0] + if p[now] then 0 else 1

output Double percFalses <Stream Bool p> = nFalses p[now] ‘intdiv‘ (instantN[now])

The auxiliary library Utils includes instantN, which stores the current instant num-
ber. Stream historically is parametrized by Boolean stream p. Once instantiated,
historically p will be true until p becomes false for the first time, and will be
false thereafter. This definition uses offsets to define the unrolling, using the constant
value true in the first instant, lifted from Haskell as ’True. This library also contains
quantitative operators like nFalses, that counts the total number of falsifications up to
an instant, and percFalses that calculates the ratio of falsifications. A similar library
for MTL includes the parametrized definition of ϕ U(a,b)ψ:
output Bool until <(Int,Int) (a,b)> <Stream Bool phi> <Stream Bool psi> = from a
where from a | a == b = psi[a|’False]

| otherwise = psi[a|’False] || (phi[a|’True] && from (a+1))

Here the parametrized stream until takes the interval (a, b) and the streams ϕ and ψ
as parameters. Similarly, the library for Quantitative MTL introduces a parametrized
stream to calculate the arithmetic mean of the last k values of a given stream:

output Double meanLast <Int k> <Stream Double str> = numr / denom
where denom=1’fromIntegral (2’min ’k (instantN[now])) ; numr=sumLast k str [now]

which takes as parameters the window size k and the stream str. The denominator is
the minimum of k and instantN, converted to Double. The numerator is the sum of
the last k values in str. Polymorphosim allows us to generalize this definition to any
Haskell type as long as it is Fractional, Equalizable and Streamable, using the following
stream signature instead (and the same expression):

output (Eq a, Fractional a, Streamable a) => a meanLast <Int k> <Stream a str>

5 All libraries, definitions and examples are available open-source in the GitHub repository and
at https://software.imdea.org/hlola/specs.html.

https://software.imdea.org/hlola/specs.html

HLola: a Very Functional Tool for Extensible Stream Runtime Verification 353

3 Example Specifications

In this section we show a collection of HLola specifications to demonstrate the capabil-
ities of HLola to define stream based monitors.

Temporal Logics. HLola allows us to easily define, in a declarative way, many specifi-
cations written in temporal logic. The HLola distribution contains many LTL examples,
including a sender/receiver model from [6], and other temporal logics. Consider the fol-
lowing MTL property from [20]: (alarm → ([0,10]allClear ∨[10,10]shutdown)),
which includes deadlines between environment events and the corresponding system
responses, stating that that an alarm is followed by a shutdown event in exactly 10 time
units unless allClear is received. This is defined in HLola as follows:

format JSON
use library MTL

#HASKELL

data Event = Alarm | AllClear | ShutDown deriving (Generic,Read,FromJSON,Eq)

#ENDOFHASKELL

input Event event

define Bool allClear = event [now] === ’AllClear

define Bool shutdown = event [now] === ’Shutdown

define Bool alarm = event [now] === ’Alarm

output Bool property = alarm [now] ‘implies‘ (willClear[now] || willShutdown[now])

where willClear = eventually (0,10) allClear

willShutdown = eventually (10,10) shutdown

Pinescript example. TradingView is an online charting platform for stock exchange,
which offers the Pinescript language to query stock time series. Pinescript queries are
then run in the company’s servers. We have implemented the indicators of Pinescript
in HLola as a library, and we have implementated a trading strategy6 using the HLola
Pinescript library. Compared to Pinescript, HLola offers formal semantics, runtime re-
source guarantees (time and space) and is much more expressive, for example allowing
relational queries that involve multiple stocks (their averages, etc).

UAV specifications. We have used HLola also for the online monitoring of several
properties of UAVs missions. For example: (1) That the UAV does not fly over for-
bidden regions, and (2) that the UAV is in good position when it takes a picture. The
input streams of these two specifications consist of the state of the UAV at every in-
stant and the onboard camera events to detect when a picture is being captured. This
specification imports geometric facilities from theory Geometry2D, and Haskell li-
braries Data.Maybe and Data.List. It then defines custom datatypes to retrieve data
from the UAV, which are enclosed in a verbatim HASKELL block. The output stream
all_ok_capturing assesses that, whenever the vehicle is taking a picture, the height,
roll and pitch are acceptable and the vehicle is near the target location. The output
stream flying_in_safe_zones reports if the UAV is flying outside every forbid-
den region. The output stream depth_into_poly takes the minimum of the distances
between the vehicle position and every side of the forbidden region inside which the
vehicle is.

6 Available at www.tradingview.com/script/DushajXt-MACD-Strategy

www.tradingview.com/script/DushajXt-MACD-Strategy

354 F. Gorostiaga and C. Sánchez

format JSON
use theory Geometry2D
use library Utils
use haskell Data.Maybe
use haskell Data.List

#HASKELL
data Attitude = Attitude {yaw :: Double, roll :: Double, pitch :: Double}

deriving (Show,Generic,Read,FromJSON,ToJSON)
data Target = Target {x :: Double, y :: Double, num_wp :: Double} ...
data Position = Position {x :: Double, y :: Double, alt :: Double} ...
#ENDOFHASKELL

input Attitude attitude
input Vector2 velocity
input Position position
input Double altitude
input Target target
input [[[Double]]] nofly
input [String] events_within

output Bool all_ok_capturing = capturing [now] ‘implies‘
(height_ok [now] && near [now] && roll_ok [now] && pitch_ok [now])

output Bool flying_in_safe_zones = ’isNothing (flying_in_poly [now])

output (Maybe Double) depth_into_poly = let
mSides = ’(fmap polygonSides) (flying_in_poly [now])
distance_from_pos = ’shortestDist (filtered_pos [now])
in 2’fmap distance_from_pos mSides
where shortestDist x = minimum.map (distancePointSegment x)

define Bool capturing = ...

define Double filtered_pos_component <(Position->Double) field> <String nm> = ...

define Double filtered_pos_x = filtered_pos_component x "x" [now]

define Double filtered_pos_y = filtered_pos_component y "y" [now]

define Double filtered_pos_alt = filtered_pos_component alt "alt" [now]

define Point2 filtered_pos = ’P (filtered_pos_x [now]) (filtered_pos_y [now])

define Bool near = let target_pos = ’targetToPoint (target [now])
in 2’distance (filtered_pos [now]) target_pos < 1
where targetToPoint (Target x y _) = P x y

define Bool height_ok = filtered_pos_alt [now] > 0

define Bool roll_ok = ’(abs.roll) (attitude [now]) < 0.0523

define Bool pitch_ok = ’(abs.pitch) (attitude [now]) < 0.0523

define [Polygon] no_fly_polys = ...

define (Maybe Polygon) flying_in_poly = let
position_in_poly = ’pointInPoly (filtered_pos [now])
in 2’find position_in_poly (no_fly_polys [now])

Intermediate stream capturing captures whether the UAV is taking a picture (omitted
for brevity). The streams filtered_pos_alt and filtered_pos represent the loca-
tion and altitude of the UAV filtered to reduce noise from the sensors. We omit the defi-
nition of the filter, which is implemented in filtered_pos_component The streams
height_ok, roll_ok, and pitch_ok, calculate that the corresponding attitude of the
vehicle is within certain boundaries. Finally, the intermediate stream no_fly_polys
obtains a set of Polygons from the input forbidden regions (its definition has been omit-
ted), and the stream flying_in_poly returns the forbidden region in which the vehi-
cle is flying, if any. The artifact attached to this paper includes more UAV specifications,
which have been validated in real missions [25].

HLola: a Very Functional Tool for Extensible Stream Runtime Verification 355

References

1. Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based runtime
verification. In Proc. of the 5th Int’l Conf. on Verification, Model Checking and Abstract
Interpretation (VMCAI’04), volume 2937 of LNCS, pages 44–57. Springer, 2004.

2. Howard Barringer and Klaus Havelund. Tracecontract: A scala DSL for trace analysis. In
Michael J. Butler and Wolfram Schulte, editors, FM 2011: Formal Methods - 17th Interna-
tional Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings,
volume 6664 of Lecture Notes in Computer Science, pages 57–72. Springer, 2011.

3. Howard Barringer, David Rydeheard, and Klaus Havelund. Rule systems for run-time mon-
itoring: From eagle to ruler. In Oleg Sokolsky and Serdar Taşıran, editors, Runtime Verifica-
tion, pages 111–125, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

4. Ezio Bartocci and Yliès Falcone, editors. Lectures on Runtime Verification - Introductory
and Advanced Topics, volume 10457 of LNCS. Springer, 2018.

5. Andreas Bauer, Martin Leucker, and Chrisitan Schallhart. Runtime verification for LTL and
TLTL. ACM Transactions on Software Engineering and Methodology, 20(4):14, 2011.

6. Marco Benedetti and Alessandro Cimatti. Bounded model checking for past LTL. In Proc.
of TACAS’03, volume 2619 of LNCS, pages 18–33. Springer, 2003.

7. Martı́n Ceresa, Felipe Gorostiaga, and César Sánchez. Declarative stream runtime verifica-
tion (hlola). In Bruno C. d. S. Oliveira, editor, Programming Languages and Systems, pages
25–43, Cham, 2020. Springer International Publishing.

8. Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Scheffel, Malte Schmitz,
and Daniel Thoma. TeSSLa: Temporal stream-based specification language. In Proc. of
SBMF’18, volume 11254 of LNCS. Springer, 2018.

9. Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd Finkbeiner,
Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: Runtime monitoring of syn-
chronous systems. In Proc. of the 12th Int’l Symp. of Temporal Representation and Reason-
ing (TIME’05), pages 166–174. IEEE CS Press, 2005.

10. Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and David Van
Campenhout. Reasoning with temporal logic on truncated paths. In Proc. of the 15th
Int’l Conf. on Computer Aided Verification (CAV’03), volume 2725 of LNCS, pages 27–39.
Springer, 2003.

11. Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximilian Schwenger, Marvin
Stenger, Leander Tentrup, and Torfah Hazem. StreamLAB: Stream-based monitoring of
cyber-physical systems. In Proc. of the 31st Int’l Conf. on Computer-Aided Verification
(CAV’19), volume 11561 of LNCS, pages 421–431. Springer, 2019.

12. Felipe Gorostiaga and César Sánchez. Striver: Stream runtime verification for real-time
event-streams. In Proc. of the 18th Int’l Conf. on Runtime Verification (RV’18), volume
11237 of LNCS, pages 282–298. Springer, 2018.

13. Klaus Havelund. Rule-based runtime verification revisited. Int. J. Softw. Tools Technol.
Transf., 17(2):143–170, 2015.

14. Klaus Havelund and Allen Goldberg. Verify your runs. In Proc. of VSTTE’05, LNCS 4171,
pages 374–383. Springer, 2005.

15. Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety properties. In Proc.
of the 8th Int’l Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’02), volume 2280 of LNCS, pages 342–356. Springer-Verlag, 2002.

16. Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Trans-
actions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

17. Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Alexander Schramm.
TeSSLa: Runtime verification of non-synchronized real-time streams. In Proc. of the 33rd
Symposium on Applied Computing (SAC’18). ACM, 2018.

356 F. Gorostiaga and C. Sánchez

18. Martin Leucker and Christian Schallhart. A brief account of runtime verification. J. Logic
Algebr. Progr., 78(5):293–303, 2009.

19. Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems. Springer-Verlag,
1995.

20. Joël Ouaknine and James Worrell. Some recent results in metric temporal logic. In Proc. of
FORMATS’08, volume 5215 of LNCS, pages 1–13. Springer, 2008.

21. Grigore Roşu and Klaus Havelund. Rewriting-based techniques for runtime verification.
Automated Software Engineering, 12(2):151–197, 2005.

22. César Sánchez. Online and offline stream runtime verification of synchronous systems. In
Proc. of the 18th Int’l Conf. on Runtime Verification (RV’18), volume 11237 of LNCS, pages
138–163. Springer, 2018.

23. Koushik Sen and Grigore Roşu. Generating optimal monitors for extended regular expres-
sions. In Oleg Sokolsky and Mahesh Viswanathan, editors, Electronic Notes in Theoretical
Computer Science, volume 89. Elsevier, 2003.

24. Volker Stolz and Frank Huch. Runtime verification of concurrent haskell programs. Electron.
Notes Theor. Comput. Sci., 113:201–216, 2005.

25. Sebastián Zudaire, Felipe Gorostiaga, César Sánchez, Gerardo Schneider, and Sebastián
Uchitel. Assumption monitoring using runtime verification for UAV temporal task plan
executions. Under submission, 2020.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

AMulet 2.0 for Verifying Multiplier Circuits�

Daniela Kaufmann �, Armin Biere

Johannes Kepler University, Linz, Austria
{daniela.kaufmann,biere}@jku.at

Abstract. AMulet 2.0 is a fully automatic tool for the verification of
integer multipliers using computer algebra. Our tool models multiplier
circuits given as and-inverter graphs as a set of polynomials and applies
preprocessing techniques based on elimination theory of Gröbner bases.
Finally it uses a polynomial reduction algorithm to verify the correctness
of the given circuit. AMulet 2.0 is a re-factorization and improved re-
implementation of our previous multiplier verification tool AMulet 1.0.

1 Introduction

Formal verification of arithmetic circuits is important to prevent issues like the
famous Pentium FDIV bug [28]. Up to now there have been many attempts to
verify these circuits, but even today the problem of fully automatic verification
of arithmetic circuits, and especially multipliers, is still considered to be hard.

Methods based on decision diagrams [6] rely on manual structural decomposi-
tion of the multiplier. Approaches based on satisfiability checking (SAT) are not
scalable [3]. Recently progress has been made using theorem provers [29]. How-
ever, the multipliers have to be given as SVL netlists, which relies on preservation
of hierarchical information.For flattened gate-level multipliers the currently most
successful technique uses algebraic reasoning [7, 15, 17, 25, 26]. In this line of
work the circuit is modeled as a set of polynomials and the specification is then
checked to be implied by the circuit polynomials. For non-experts Chap. 2 of [15]
might serve as introduction to bit-level verification using computer algebra.

In our approach [17] we apply a combination of SAT solving and computer
algebra. Certain parts of the multiplier, i.e., complex final stage adders that
are generate-and-propagate (GP) adders [27], are hard to verify using computer
algebra, but are easy to verify using SAT solvers [21]. Therefore we apply adder
substitution [17] and replace complex final stage adders by simple ripple-carry
(RC) adders. The equivalence of the adders is verified using SAT solvers. The
correctness of the simplified multiplier is shown using computer algebra [17].

This tool paper presents AMulet 2.0, a successor of AMulet 1.0 [17,19].
AMulet 2.0 reads multipliers given as and-inverter graphs (AIG) [22] and
fully automatically applies adder substitution and verifies the (simplified) circuit.
Furthermore, certificates can be generated in the Nullstellensatz proof format [16]
or in the practical algebraic calculus (PAC) [20] to validate the verification results.

� This work is supported by the LIT AI Lab funded by the State of Upper Austria.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 357–364, 2021.
https://doi.org/10.1007/978-3-030-72013-1 19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_19&domain=pdf
http://orcid.org/0000-0002-5645-0292
http://orcid.org/0000-0001-7170-9242
https://doi.org/10.1007/978-3-030-72013-1_19

358 D. Kaufmann and A. Biere

AMulet 2.0 is a modular C++ re-implementation of AMulet 1.0 (while
AMulet 1.0 consists of a single C file). AMulet 2.0 is not only a stan-
dalone tool but also serves as a polynomial reasoning framework, i.e., parts can
easily be integrated into different workflows, cf. Sect. 4. AMulet 2.0 still pro-
vides the same functionality as AMulet 1.0, but with improved algorithms, cf.
Sect 5, based on the same theory [15,17]. In this paper we focus on novelties of
AMulet 2.0 and refer the reader to [19] for an introduction to AMulet 1.0.

2 Circuit Verification using Computer Algebra

AMulet 2.0 takes as input signed or unsigned integer multipliers C, given
as AIGs, with 2n input bits a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} and output bits
s0, . . . , s2n−1 ∈ {0, 1}. We denote the internal AIG nodes by l1, . . . , lk ∈ {0, 1}.
Let Z[X] = Z[a0, . . . , an−1, b0, . . . , bn−1, l1, . . . , lk, s0, . . . , s2n−1]. The multiplier
C is correct iff for all possible inputs ai, bi ∈ {0, 1} the specification L = 0 holds:

L = −
2n−1∑
i=0

2isi +

(n−1∑
i=0

2iai

)(n−1∑
i=0

2ibi

)
(1)

For signed multipliers the most significant bits s2n−1, an−1, and bn−1 deter-
mine the sign and the weights have to be negated, i.e., 22n−1 becomes −22n−1.

The semantics of each AIG node implies a polynomial relation, e.g., u = v∧¬w
implies −u + v − vw = 0. Let G(C) ⊆ Z[X] be the set of polynomials that
contains for each AIG node the corresponding polynomial relation. Additionally,
all variables x ∈ X are Boolean and we enforce this property by the set of
Boolean value constraints B(X) = {x(1− x) | x ∈ X} ⊆ Z[X]. The polynomials
in G(C) ∪ B(X) are ordered according to a lexicographic order, such that the
output variable of a gate is always greater than the inputs of the gate [23].

Let J(C) = 〈G(C) ∪B(X)〉 ⊆ Z[X] be the ideal generated by G(C) ∪B(X).
The circuit fulfills its specification if and only if we can derive that L ∈ J(C) [17].
We showed in [17] that G(C) ∪B(X) is a D-Gröbner basis [2] for J(C) ⊆ Z[X].
Thus, the correctness of the circuit can be established by reducing L by the
polynomials G(C) ∪B(X) and checking whether the result is zero.

However, simply reducing the specification by G(C) ∪ B(X) leads to large
intermediate results [24]. Hence, we eliminate variables in G(C) ∪ B(X) prior
to reduction to yield a more compact D-Gröbner basis [17], which boils down to
simple substitutions, but relies on the elimination theorem of Gröbner bases [9].

3 Usage

AMulet 2.0 is available at http://fmv.jku.at/amulet2 and is published as open
source under the MIT license. AMulet 2.0 relies on the AIGER library [5] and
the GMP library [10]. The AIGER library is provided together with the source
code of AMulet 2.0, the GMP library needs to be pre-installed by the user.
AMulet 2.0 is compiled executing “./configure.sh && make”.

http://fmv.jku.at/amulet2

AMulet 2.0 for Verifying Multiplier Circuits 359

In a complete workflow one should first apply adder substitution, using the
substitution mode of AMulet 2.0, to make sure that a potential complex final
stage adder is replaced by a simple RC adder. Afterwards, one of the two
modes, the verification mode or certification mode, can be applied to verify the
(simplified) multiplier, which we will call in the following rewritten multiplier. If
it is known that the final stage adder is not a complex GP adder, the substitution
step can be omitted. We present a complete demonstration for the unsigned 64-bit
multiplier <bpwtcl.aig>, which is included in the complementary material [14].
The output of AMulet 2.0 can be seen in the corresponding log-files that are
also included in the artifact.

Adder Substitution. First we apply adder substitution by running

./amulet -substitute bpwtcl.aig miter.cnf rewritten.aig [options]

If the multiplier computes multiplication of signed integers the option “-signed”
has to be involved, because the signedness is part of the circuit specification.

If adder substitution can be applied successfully, the generated miter is written
to <miter.cnf> and the rewritten multiplier to <rewritten.aig>. Otherwise,
the input multiplier will be written to <rewritten.aig> and a trivially unsat-
isfiable CNF is written to <miter.cnf>. The file <miter.cnf> has to be given
to a SAT solver, e.g. Kissat [4], which is then expected to return unsatisfiable.
The rewritten multiplier can be verified or certified using AMulet 2.0.

Verification. Verification is executed by

./amulet -verify rewritten.aig [options]

As for adder substitution, one has to invoke the option “-signed” for signed mul-
tipliers. Furthermore, the option “-no-counter-examples” is available, which
turns off generation and saving of counter examples in <rewritten.cex>, in the
case when the multiplier in <rewritten.aig> is incorrect.

Certification. Certification is applied using

./amulet -certify rewritten.aig out.pol out.prf out.spc [options]

In this mode, AMulet 2.0 verifies the multiplier and automatically gener-
ates proof certificates, which can be checked by corresponding proof checkers.
AMulet 2.0 supports two proof formats, Nullstellensatz proofs [1,16] and PAC
proofs [20] based on the polynomial calculus [8]. The default proof format is
the Nullstellensatz proof, because it generates smaller proof files and is faster to
check. Proofs in the PAC format can be generated using the option “-pac”. All
options of the verification mode are available too.

The proofs are stored in the provided files <out.pol>, <out.prf>, and
<out.spc>. The file <out.pol> contains the gate constraints, the second file
<out.prf> the core proof in the selected proof format and the third file <out.spc>
the specification of the multiplier. The generated proofs can be given to the
proof checkers Nuss-Checker [16] for Nullstellensatz proofs or to the proof
checkers Pacheck [20], or Pastèque [20] for PAC proofs.

360 D. Kaufmann and A. Biere

Fig. 1. Architecture of AMulet 2.0.

4 AMulet 2.0

In this section we present the architecture of AMulet 2.0 and discuss novel
optimizations. The design of AMulet 2.0 is shown in Fig. 1. In contrast to
AMulet 1.0, which consists of one single C file, AMulet 2.0 is split into
components, which also allows to integrate only parts, e.g., the polynomial library
or the polynomial solver, in different workflows, cf. the provided demos in the
artifact [14]. AMulet 2.0 is implemented in C++11 and consists of around
6 000 lines of code. It relies on the AIGER library [5] to process the given AIG
and the GMP library [10] to represent large integers.

The mode of AMulet 2.0 is triggered by the command line input, cf. Sect. 3.
In substitution mode, AMulet 2.0 parses the AIG, allocates the internal
gate structure, and invokes the substitution engine for adder substitution. In
verification mode, AMulet 2.0 reads the AIG and initializes the gate structure.
Afterwards, the circuit is verified in the polynomial solver using polynomial
operations of the polynomial library. In certification mode proofs are generated in
addition. In the following we present the individual components of AMulet 2.0.

Parser Module AMulet 2.0 checks whether the given AIG circuit fulfills
the requirements described in Sect. 2, i.e., the AIG circuit has an even number
of inputs and an equal number of outputs. The AIG module wraps functions of
the external AIGER library that are needed to process the input file.

Gate Library After parsing we allocate a gate for each AIG node, which
includes structural information, such as dependencies, or whether the gate rep-
resents an input/output or an XOR-gate. Furthermore, each gate is linked to
a unique variable. If the given AIG is verified or certified, AMulet 2.0 also
initializes the gate constraints and creates the specification polynomial L ∈ Z[X].

Substitution Engine In substitution mode, AMulet 2.0 applies heuristic
pattern matching to identify GP adders [17]. In AMulet 2.0 we enhanced
the identification heuristics and cover special cases that are not considered in
AMulet 1.0. Thus, AMulet 2.0 is able to detect more GP adders than
AMulet 1.0. After a positive GP pattern match, AMulet 2.0 generates an
equivalent RC adder and replaces the GP adder by the RC adder. A bit-level
miter is generated in CNF to verify the equivalence of the adders. The rewritten
multiplier and the CNF miter are printed to the provided output files.

Substitution Engine

Polynomial Solver

Gate Library

AIGParser

Substitution

Elimination

Slicing Proofs

AMulet2.0

Reduction

Polynomial Library

Monomial

Term Hashing

Variable

-certify

 Multiplier correct?
.pol Gate constraints
.prf Proof
.spc Specification

-verify

Multiplier correct?

-substitute

.cnf Miter

.aig Rewritten AIG

.aig Input AIG

+Mode

AMulet 2.0 for Verifying Multiplier Circuits 361

Polynomial Solver The polynomial solver is based on the solving engine
of AMulet 1.0 [19] and is used to verify or certify the given multiplier. In a
nutshell, the polynomial solver first applies preprocessing by eliminating selected
variables. Afterwards, the remaining variables are ordered into column-wise
slices, such that we can apply our incremental verification algorithm [18], where
we split the specification L into multiple polynomials and verify the multiplier by
deriving the correctness of each slice using polynomial reduction. The necessary
polynomial operations are implemented in the Polynomial Library.

In AMulet 2.0 we eliminate variables before ordering them, while in
AMulet 1.0 it is the other way around. We eliminate all internal gates of the
XOR-structures and all single-parent nodes in the AIG. Thus, fewer variables
are considered for ordering, which improves computation time of AMulet 2.0.

Furthermore, we include a novel XOR-based slicing approach in AMulet 2.0,
which relies on the fact that many multiplier architectures use XOR-skeletons to
compute the output bits. We identify these skeletons and assign all nodes of a
skeleton to the same slice. Gates occurring between XOR-skeletons are assigned
to the smaller (less significant) slice. Hence, after two iterations all slices are
fixed, which improves slicing compared to AMulet 1.0. All variables that are
not assigned to slices, e.g., gates used to compute the partial products in Booth
encoding [27], are eliminated from the gate structure.

In few cases, where we cannot identify XOR-skeletons, e.g., in multipliers con-
taining a carry-select adder, we fall back on the slicing approach of AMulet 1.0:
We slice based on input cones and eagerly move gates between slices to reduce
the number of carries, by iterating multiple times over the variables.

After assigning gates to slices, AMulet 2.0 reduces the slice-wise specifica-
tions incrementally by the sliced gate constraints and checks whether the final
result is zero, following the implementation of AMulet 1.0. If the final remain-
der is not zero, AMulet 2.0 detects counter examples, i.e., input assignments
for which the multiplier circuit computes an incorrect result.

In certification mode, AMulet 2.0 tracks polynomial operations in the
selected proof format, i.e., Nullstellensatz or PAC, and prints gate constraints,
the generated proof, and the specification L to the provided files.

Polynomial Library The polynomial library implements the arithmetic oper-
ations for addition and multiplication of polynomials (by constants), and division
by terms. Since all variables represent Boolean values, we always reduce expo-
nents greater than one automatically to one, i.e., we assume x · x = x.

Polynomials are represented as linked lists of monomials. Each monomial
consists of a coefficient, represented using the GMP library, and a term. Terms
are linked lists of variables, which are internally shared using a hash table.

In AMulet 1.0 we do not share monomials and make hard copies in the
few occasions when a monomial needs to be copied. This has the benefit that
we can simply modify coefficients of the monomials, e.g., during addition. In
our experiments we observed that allocating new GMP objects is actually quite
time consuming, and therefore we now share monomials in AMulet 2.0, using
reference counting, which decreases verification time by a factor of two.

362 D. Kaufmann and A. Biere

Fig. 2. Verification of AOKI multipliers (left) and of large multipliers (right), in seconds.

5 Evaluation

In our experiments we use an Intel Xeon E5-2620 v4 CPU at 2.10GHz (with turbo-
mode disabled) with a memory limit of 128 GB. The time is listed in seconds
(wall-clock time). We compare AMulet 2.0 to our previous tool AMulet 1.0
and to the most recent related work RevSCA, RevSCA-2.0 [25] and ABC-based
work of [7] on multiplier verification using computer algebra, where circuits are
given as AIGs. The tool of [26] is not yet available. We consider two versions
of AMulet 1.0: (i) AMulet 1.0 as published in [17], (ii) AMulet 1.5 a
slightly improved version [13] with new heuristics for detecting GP adders. The
experimental data is included in the artifact [14].

In our first experiment we consider the comprehensive AOKI benchmark
set [12], which provides 384 signed and unsigned integer multiplier architectures
up to input bit-width 64, also covering Booth encoding. We consider all 384
architectures of bit-width 64. The time limit is set to 300 seconds. The results
are shown on the left side of Fig. 2, where it can be seen that AMulet 2.0
is the only tool that is able to verify the complete benchmark set. RevSCA
only supports verification of unsigned integers. ABC-based work of [7] uses an
optimization, which only works for simple multiplier architectures. Enabling this
optimization on the more involved AOKI benchmarks leads to incompleteness.
Without enabling it [7] either produces a segmentation fault or exceeds the time
limit. Thus there are no results for [7] on the left side of Fig. 2.

In our second experiment we generate benchmarks of simple multipliers up
to input size 2 048, using scripts by Arist Kojevnikov [11]. The time limit is set
to 86 400 seconds (24 h) and the results are shown on the right side of Fig. 2. It
can be seen that AMulet 2.0 outperforms all competitor tools and is an order
of magnitude faster on large multiplier circuits.

6 Conclusion

We presented AMulet 2.0, a fully automatic tool for verifying multiplier circuits
given as AIGs. AMulet 2.0 is a re-factorization and re-implementation of our
previous verification tool AMulet 1.0 [17, 19] and successfully verifies a large
set of multiplier architectures. In the future we want to directly integrate a SAT
solver into AMulet 2.0 and provide language bindings, e.g. for Python.

AMulet 2.0 for Verifying Multiplier Circuits 363

References

1. P. Beame, R. Impagliazzo, J. Kraj́ıcek, T. Pitassi, and P. Pudlák. Lower Bounds
on Hilbert’s Nullstellensatz and Propositional Proofs. In Proc. London Math.
Society, volume s3-73, pages 1–26, 1996.

2. T. Becker, V. Weispfenning, and H. Kredel. Gröbner Bases, volume 141 ofGraduate
texts in mathematics. Springer, 1993.

3. A. Biere. Collection of Combinational Arithmetic Miters Submitted to the SAT
Competition 2016. In SAT Competition 2016, volume B-2016-1 of Dep. of Com-
puter Science Report Series B, pages 65–66. University of Helsinki, 2016.

4. A. Biere, K. Fazekas, M. Fleury, and M. Heisinger. CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Dep.
of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

5. A. Biere, K. Heljanko, and S. Wieringa. AIGER 1.9 And Beyond. Technical
report, FMV Reports Series, JKU Linz, Austria, 2011.

6. R. E. Bryant and Y. Chen. Verification of arithmetic circuits using binary moment
diagrams. STTT, 3(2):137–155, 2001.

7. M. J. Ciesielski, T. Su, A. Yasin, and C. Yu. Understanding Algebraic Rewriting
for Arithmetic Circuit Verification: a Bit-Flow Model. IEEE TCAD, pages 1–1,
2019. Early acces.

8. M. Clegg, J. Edmonds, and R. Impagliazzo. Using the Groebner Basis Algorithm
to Find Proofs of Unsatisfiability. In STOC 1996, pages 174–183. ACM, 1996.

9. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer-Verlag
New York, 1997.

10. T. Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library, 2016. Version 6.1.2.

11. E. Hirsch, D. Itsykson, A. Kojevnikov, E. Kulikov, and S. Nikolenko. Report on the
Mixed Boolean-Algebraic Solver. Technical report, Laboratory of Mathematical
Logic of St. Petersburg Dep. of Steklov Institute of Mathematics, 2005.

12. N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi. Formal Design of Arithmetic
Circuits Based on Arithmetic Description Language. IEICE Transactions, 89-
A(12):3500–3509, 2006.

13. D. Kaufmann. Amulet 1.5. https://github.com/d-kfmnn/amulet, 2020.

14. D. Kaufmann. Artifact for AMulet2.0 for verifying multiplier circuits. http:
//fmv.jku.at/amulet2 artifact, 2020.

15. D. Kaufmann. Formal Verification of Multiplier Circuits using Computer Algebra.
PhD thesis, Informatik, Johannes Kepler University Linz, 2020.

16. D. Kaufmann and A. Biere. Nullstellensatz-proofs for multiplier verification. In
Computer Algebra in Scientific Computing, volume 12291 of LNCS, pages 368–389.
Springer, 2020.

17. D. Kaufmann, A. Biere, and M. Kauers. Verifying Large Multipliers by Combining
SAT and Computer Algebra. In FMCAD 2019, pages 28–36. IEEE, 2019.

18. D. Kaufmann, A. Biere, and M. Kauers. Incremental Column-wise verification of
arithmetic circuits using computer algebra. Formal Methods Syst. Des., 56(1):22–
54, 2020.

19. D. Kaufmann, A. Biere, and M. Kauers. SAT, Computer Algebra, Multipliers. In
Vampire 2018 and Vampire 2019, volume 71 of EPiC Series in Computing, pages
1–18. EasyChair, 2020.

https://github.com/d-kfmnn/amulet
http://fmv.jku.at/amulet2_artifact
http://fmv.jku.at/amulet2_artifact

364 D. Kaufmann and A. Biere

20. D. Kaufmann, M. Fleury, and A. Biere. Pacheck and Pastèque, Checking Practical
Algebraic Calculus Proofs. In FMCAD 2020, volume 1 of FMCAD, pages 264–269.
TU Vienna Academic Press, 2020.

21. D. Kaufmann, M. Kauers, A. Biere, and D. Cok. Arithmetic Verification Problems
Submitted to the SAT Race 2019. In SAT Race 2019, volume B-2019-1 of Dep. of
Computer Science Report Series B, page 49. University of Helsinki, 2019.

22. A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai. Robust Boolean reason-
ing for equivalence checking and functional property verification. IEEE TCAD,
21(12):1377–1394, 2002.

23. J. Lv, P. Kalla, and F. Enescu. Efficient Gröbner Basis Reductions for Formal
Verification of Galois Field Arithmetic Circuits. IEEE TCAD, 32(9):1409–1420,
2013.

24. A. Mahzoon, D. Große, and R. Drechsler. PolyCleaner: Clean your Polynomials
before Backward Rewriting to verify Million-gate Multipliers. In ICCAD 2018,
pages 129:1 – 129:8. ACM, 2018.

25. A. Mahzoon, D. Große, and R. Drechsler. RevSCA: Using Reverse Engineering to
Bring Light into Backward Rewriting for Big and Dirty Multipliers. In DAC 2019,
pages 185:1–185:6. ACM, 2019.

26. A. Mahzoon, D. Große, C. Scholl, and R. Drechsler. Towards formal verification
of optimized and industrial multipliers. In DATE, pages 544–549. IEEE, 2020.

27. B. Parhami. Computer Arithmetic - Algorithms and Hardware designs. Oxford
University Press, 2000.

28. H. Sharangpani and M. L. Barton. Statistical analysis of floating point flaw in the
pentium processor. 1994.

29. M. Temel, A. Slobodová, and W. A. Hunt. Automated and scalable verification
of integer multipliers. In CAV (1), volume 12224 of Lecture Notes in Computer
Science, pages 485–507. Springer, 2020.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

RTLola on Board: Testing Real Driving
Emissions on your Phone�

Sebastian Biewer1(�) , Bernd Finkbeiner2 ,
Holger Hermanns1,3 , Maximilian A. Köhl1 ,

Yannik Schnitzer1 , and Maximilian Schwenger2

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
biewer@depend.uni-saarland.de

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
3 Institute of Intelligent Software, Guangzhou, China

Abstract. This paper is about shipping runtime verification to the
masses. It presents the crucial technology enabling everyday car owners
to monitor the behaviour of their cars in-the-wild. Concretely, we present
an Android app that deploys rtlola runtime monitors for the purpose of
diagnosing automotive exhaust emissions. For this, it harvests the avail-
ability of cheap bluetooth adapters to the On-Board-Diagnostics (obd)
ports, which are ubiquitous in cars nowadays. We detail its use in the con-
text of Real Driving Emissions (rde) tests and report on sample runs
that helped identify violations of the regulatory framework currently
valid in the European Union.

1 Introduction

In the last decade, far more than 600 million cars have entered the streets world-
wide [10]. With very few exceptions, each of these cars is equipped with a stan-
dardized On-Board-Diagnostics (obd [16]) interface. Five years ago it surfaced
that many of the cars out there do not adhere to the regulatory framework with
which they are supposed to comply. For example, a number of undeniable proofs
of tampered emission cleaning systems in passenger cars [5,3,14] are known by
now. When this scandal first surfaced, the regulations imposed by the authori-
ties were related to isolated tests carried out under lab-like conditions on chassis
dynamometers [20,4]. Since then, there has been a growing understanding that
emission and fuel or battery consumption measurements should best take place
in a realistic context. Hence, the first test framework for testing on public roads,
the Real Driving Emissions (rde) test has been developed [19,17] and is being
rolled out for car model approval in Europe and other entities of jurisdiction.

The rde regulation specifies the conditions under which a car trip qualifies
as a valid rde test. These conditions refer to the trajectory driven, duration,

� This work is partly supported by DFG grant 389792660 as part of TRR 248 –
CPEC, by the European Research Council (ERC) grants 683300 (OSARES), 695614
(POWVER), and 966770 (LEOpowver), and by the Key-Area Research and Devel-
opment Program Grant 2018B010107004 of Guangdong Province.

© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 365–372, 2021.
https://doi.org/10.1007/978-3-030-72013-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_20&domain=pdf
https://orcid.org/0000-0002-6897-2506
https://orcid.org/0000-0002-4280-8441
https://orcid.org/0000-0002-2766-9615
https://orcid.org/0000-0003-2551-2814
https://orcid.org/0000-0001-7406-3440
https://orcid.org/0000-0002-2091-7575
https://depend.cs.uni-saarland.de/tools/loladrives/playstore
https://perspicuous-computing.science
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-72013-1_20

366 S. Biewer et al.

altitudes, speeds, and on the dynamics of the driving profile [17]. By combin-
ing the information available at the obd port and the position of the car, it is
possible to cast rde testing into a runtime monitoring [21,13,12] problem. In-
deed we have shown in earlier work [9] how to formalize the rde regulations in
rtlola [7,8], a real-time extension of the stream-based specification language
Lola [6]. Lola combines the ease-of-use of rule-based specification languages with
the expressive power of heavy-weight scripting languages or temporal logics. The
eponymous framework generates runtime monitors for such specifications, which
were successfully deployed, for instance, on unmanned aircraft [18,2].

An official rde test requires a calibrated portable emissions measurement
system (pems) to be connected to the car’s exhaust pipe while driving the test, so
as to correctly quantify the amount of exhaust emissions induced. The purchasing
costs of a pems are in the order of �250,000 which is close to unaffordable even
in a research context. However, many car models expose a variety of diagnosis
data through obd and an obd-to-Bluetooth adapter can be purchased for around
�10. The data exposed depends on the type of engine, emission cleaning system,
and other components in use. There are several minimal combinations of obd
data giving good approximations of emitted gases. In particular, various car
models expose the sensor readings of their after-treatment NOx sensor deployed
at the rear of the exhaust pipe.

Sensor
Data

Drive
Record

RTLola

RDE Specification

Data
Donation

UI

Fig. 1: LolaDrives

Contribution. This paper presents LolaDrives, an An-
droid app enabling car owners to carry out real driv-
ing emission tests with little investment. Prerequisites
are (i) an Android phone, (ii) an obd-to-Bluetooth
adapter, and (iii) a car model that does indeed expose
the needed values via obd. If the latter is not the case,
the app can still serve the user as a convenient personal
monitoring and logging device for the many quantities ex-
posed while driving.

A structural overview of LolaDrives is depicted in
Figure 1. At the core of the app is an Android version
of the rtlola engine [7]. The engine is strictly separated
from the data acquisition and the rtlola rde specifica-
tion. This separation will make it possible to reuse the
approach in other runtime monitoring contexts, be it of espresso machines via
usb, or drones via Wi-Fi. In both cases, it would especially be the specification
in rtlola that needs to change, not the engine. Car sensor data is acquired
via Bluetooth from the obd device, and combined with location data provided
by Android’s gps service. The data streams are recorded for later diagnosis.
Anticipating future application scenarios involving crowd sourcing car data, we
advertise the app as part of a car data platform (cdp), which includes an upload
facility for donating drive records. While driving, the app’s user interface (ui)
displays diagnostic information to the user, both regarding the correct execu-
tion of an rde test drive and the car’s emission data. We will detail the separate
components of the app next.

RTLola on Board: Testing Real Driving Emissions on your Phone 367

Notably, the lack of any calibration and the unknown precision of the data
exposed by the car manufacturer via obd make it impossible to consider the
rde test results reported by LolaDrives as anything more than indicators of
the car’s rde behaviour in a legal sense.

2 RDE Monitoring on Android

The primary feature of LolaDrives is to monitor the progress of an rde test
drive. For this, it uses the rtlola monitoring framework. This bridges the gap
between formally sound concepts and every-day use cases. While rtlola does
target a broad audience, that audience is still intended to be expert users rather
than the general public. It requires users to execute three tasks: provide a formal
specification of the intended behaviour, supply input data, and interpret the
monitor’s output. LolaDrives reduces these tasks to minimal action points for
end-users.

Specification. No end-user input is required with respect to the rtlola specifica-
tion. The definition of what is a valid rde test is fixed [9] and strictly follows the
constraints imposed by the regulation issued by the European Commission [17].
These constraints concern the driving behaviour and layout of the route. Some
of them apply universally, e.g., the ambient temperature must range between
273K and 303K. For others, the rde regulation differentiates three environ-
ments: urban, rural, and motorway with different environments imposing differ-
ent restrictions on the car, such as an average velocity between 15 and 40 km/h
in an urban environment. A segment refers to all parts of the test drive in which
the car operates in a certain environment. While segments may be interrupted,
each one needs to occupy a specific share of the total distance travelled.

Input Data Provision. LolaDrives uses sensor readings provided over the obd
interface as input data. The user only has to plug the obd-to-Bluetooth adapter
in the respective port at (or close to) the dashboard of her car and pair it with
her phone. The car then automatically transmits data to the phone while driving.

Interpretation of Output. While driving, LolaDrives assists the user in the
critical task of satisfying all the constraints that make up a valid rde. It provides
feedback on the driving behaviour indicating which requirements on the test are
satisfied to what extent, and which still need attention. Furthermore, it evaluates
the measured exhaust data and informs the user of whether or not the car violates
emission regulations. Both of these tasks require an online analysis of driving
data. For this analysis, LolaDrives uses the rtlola monitoring framework.

Foundational Underpinning. rtlola [8,7] is a stream-based runtime verifica-
tion framework. The rtlola monitor analyses sequences of input data to assess
whether or not the system complies with the specification. The specification lan-
guage has a formal semantics which enables devising provably correct monitoring
algorithms [15].

An rtlola specification consists of input stream declarations where each
input stream corresponds to a source of input data such as the NOx sensor

368 S. Biewer et al.

of the car. Output stream declarations then spell out how to filter and refine
the input data. For this, rtlola provides primitives for complex analyses such
as sliding window aggregation for common aggregation functions. Further, the
specification contains binary trigger conditions. The satisfaction of such a con-
dition constitutes a violation of the specification and prompts the monitor to
immediately relay a warning to the user. The following snippet is an extract of
an rtlola specification for rde test drives [11]:

input velo_kmph, accel_mpss: Float64

output is_rural := ... output rural_avg_velo := ...

output rural_dyn : Float64 @1Hz filter: is_rural := velo_kmph *

accel_mpss / 3.6

output rural_pctl_dyn : Float64 @1Hz :=

rural_dyn.aggregate(over: 7200, using: pctl(95)).defaults(to: 0.0)

trigger rural_pctl_dyn > (0.136 * rural_avg_velo + 14.44)

∧ rural_avg_velo <= 74.6

This specification fragment checks whether the car complies with the rde reg-
ulations regarding the driving dynamics in the rural segment4. The first line
declares two input streams representing the velocity in kmh−1 and acceleration
in m s−2 supplied by the car. The third line computes the dynamics in m2 s−3, by
multiplying the velocity and acceleration. The regulations then demand that the
95th percentile of the dynamics are no greater than 0.136·vavg+14.44 where vavg
is the average velocity of the vehicle. The computation of the velocity and the
dynamics only consider sensor readings obtained while in the rural segment. The
full specifications are publicly available [1]. Note that while the specification is
relatively easy to design and understand for computer scientists and engineers,
it exceeds the expertise expectable of laymen users. However, it is not neces-
sary for them to be confronted with the full potential of the language because
LolaDrives comes preconfigured with a set of rde-specific specifications.

As can be seen, the requirements on the end-user are minimal. Thus, the setup
enables users to conduct rde test drives and assess the emission-behaviour of
their cars without requiring them to understand the underlying technology.

3 User Experience

This section discusses the user perspective on LolaDrives. After a general
overview, we report on the use of LolaDrives for conducting rde test drives
with a rented vehicle (the precise car model being unknown upfront).

Overview. The preparation of the test requires the user to plug the obd-adapter
into the obd-port of the car. After starting car and app, LolaDrives receives
data packets and determines the sensor profile of the car, assuming phone and
adapter are paired via Bluetooth. Some sensor profiles provide insufficient data
to conduct an rde test drive. In this case, the app is still convenient to use for
real-time displaying and logging the available data regardless of rde regulations,

4 See Annex IIIA, Appendix 7a, 3.1.3 in the eu regulations [17].

RTLola on Board: Testing Real Driving Emissions on your Phone 369

(a) Diagnostics view dis-
plays the most recent diag-
nostics information.

(b) rde progress view dis-
plays current state param-
eters of the test drive.

(d) Map of the second rde
test drive.

Fig. 2: ui of LolaDrives displaying different views and a map of a test route.

see Figure 2a. If the data suffices, the app selects an appropriate specification and
initializes the rtlola monitor. LolaDrives then starts filtering and visualising
the data output and trigger notifications provided by the monitor.

After successful setup, the ui switches to an rde guiding view (Figure 2b).
From top to bottom, it shows the total time, which must be between 90 and
120min to finish the test, and the total distance travelled. The next line indicates
the current state of the conditions for a valid rde test drive disregarding emission
data. In the screenshot, the drive is still in progress and inconclusive, indicated by
the question mark. Instead, the ui can also indicate success or failure. The latter
verdict can occur far before the time limit is reached, caused by an irrecoverable
situation such as transgression of the 160 kmh−1 speed limit. Note that the
indicator reports the current status if the test drive were to end in this moment.
Together with the regulatory constraints, this implies that the current verdict
can alternate between success and failure from minute 90 to 120. As there is no
specific point in time when the test ends, the app continues to compute statistics
until the tester manually stops it or the 120min mark is reached. Beneath the
status indicator is the green NOx bar displaying the total NOx emissions. The
vertical red bar denotes the permitted threshold of 168mg km−1.

The next three ui groups represent the progress in each of the distinct seg-
ments: urban, rural, and motorway. Each group consists of two horizontal bars.
The gray progress bar displays the distance covered in the respective segment.
The vertical blue indicators denote lower and upper bounds as per official reg-
ulation, for an expected trip length of 83 km. The blue bar below the gray one

370 S. Biewer et al.

Drive 1 Drive 2

Distance
[km]

NOx

[mg/km]
CO2

[g/km]
Distance
[km]

NOx

[mg/km]
CO2

[g/km]

Urban 35.45 137 222 37.46 102 251
Rural 22.33 305 154 27.40 90 172
Motorway 26.10 241 153 25.37 105 175
Total 83.88 214 183 90.22 99 205

Table 1: Aggregation of the emission data based on the cdp.

illustrates two different metrics for the driving dynamics. Both dots need to re-
main below/above their thresholds. A more aggressive acceleration behaviour
shifts the dots to the right and a passive driving style to the left.

Test Drive. The technical framework and visual feedback of the app were tested
in two rde test drives. Both tests were conducted with an Audi A6 Avant 45-TDI
hybrid diesel, which is approved as Euro 6d-TEMP (DG) with an NOx threshold
of 80mg km−1 under lab conditions and 168mg km−1 for rde conditions. Among
the diagnosis parameters available within this car are vehicle and engine speed,
ambient temperature, engine fuel rate, mass air flow, and two NOx-sensors—
one in front and one behind the emission cleaning system in the exhaust pipe.
With this data, exhaust mass flow and fuel consumption can be computed, from
which the total amounts of NOx and CO2 can be derived [11]. In both drives, the
driving dynamics were close to the allowed maximum, in the first test below and
in the second test above the threshold, so the second test drive did not result
in a valid rde test. In both cases, the app correctly confirmed the satisfaction
and violation of the rde criteria. In the first drive, the app reported an average
NOx emission of 214mg km−1. This constitutes a violation of the regulation.

The app also allows for inspection of the driving data in a plotted form (Fig-
ure 2c). Figure 2d shows the route of an rde test drive. The first half of the
time constituted the urban segment (green). The next 30-40% of the test mainly
consisted of the rural segment (purple) followed by the motorway segment (red).

Data Harvesting. For further analysis, data can be uploaded to a cloud storage
which is part of the car data platform (cdp). This platform provides a uniform
way to harvest data by specifying a format for collection, analysis, and exchange
of this data. cdp builds upon a json format (https://json-schema.org/) con-
taining timestamped events such as an obd response, including its raw payload.
As an example, the data presented in Table 1 is an aggregation of the rde test
drives mentioned above obtained by post-processing the data.

4 Conclusion

LolaDrives pushes runtime verification technology into cars and phones of
everyday users. The app is available in Google Play [1]; a version for iOS is
already initiated. Moreover, the car data platform constitutes a crowd-sourcing
initiative for car data with the intention to enable large scale analyses of emission
data beyond a single trip and a single car model.

https://json-schema.org/

RTLola on Board: Testing Real Driving Emissions on your Phone 371

References

1. LolaDrives web page, https://loladrives.app
2. Baumeister, J., Finkbeiner, B., Schirmer, S., Schwenger, M., Torens, C.: RTLola

cleared for take-off: Monitoring autonomous aircraft. In: CAV 2020. LNCS, vol.
12225, pp. 28–39. Springer (2020). https://doi.org/10.1007/978-3-030-53291-8 3

3. BBC: Audi chief Rupert Stadler arrested in diesel emissions probe. BBC,
https://www.bbc.com/news/business-44517753 (2018), https://www.bbc.com/

news/business-44517753, Online; accessed: 2020-10-15
4. Biewer, S., D’Argenio, P., Hermanns, H.: Doping tests for cyber-physical systems.

In: Parker, D., Wolf, V. (eds.) Quantitative Evaluation of Systems, 16th Inter-
national Conference, QEST 2019, Glasgow, UK, September 10-12, 2019, Proceed-
ings. Lecture Notes in Computer Science, vol. 11785, pp. 313–331. Springer (2019).
https://doi.org/10.1007/978-3-030-30281-8 18

5. Contag, M., Li, G., Pawlowski, A., Domke, F., Levchenko, K., Holz, T., Sav-
age, S.: How they did it: An analysis of emission defeat devices in modern au-
tomobiles. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017. pp. 231–250. IEEE Computer Society (2017).
https://doi.org/10.1109/SP.2017.66

6. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: Lola: Runtime monitoring of synchronous
systems. In: TIME 2005. pp. 166–174. IEEE Computer Society Press (June).
https://doi.org/10.1109/TIME.2005.26

7. Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M., Stenger, M.,
Tentrup, L., Torfah, H.: StreamLAB: Stream-based Monitoring of Cyber-Physical
Systems. In: CAV 2019. LNCS, vol. 11561, pp. 421–431. Springer (2019).
https://doi.org/10.1007/978-3-030-25540-4 24

8. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time Stream-
based Monitoring. CoRR abs/1711.03829 (2017), http://arxiv.org/abs/1711.
03829

9. Hermanns, H., Biewer, S., D’Argenio, P.R., Köhl, M.A.: Verification, testing, and
runtime monitoring of automotive exhaust emissions. In: LPAR. pp. 1–17 (2018).
https://doi.org/10.29007/6zxt

10. International Organization of Motor Vehicle Manufacturers: 2005-2019 sales statis-
tics http://www.oica.net/category/sales-statistics

11. Köhl, M.A., Hermanns, H., Biewer, S.: Efficient monitoring of real driving emis-
sions. In: Colombo, C., Leucker, M. (eds.) Runtime Verification - 18th Interna-
tional Conference, RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceed-
ings. Lecture Notes in Computer Science, vol. 11237, pp. 299–315. Springer (2018).
https://doi.org/10.1007/978-3-030-03769-7 17

12. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assur-
ance based on formal specifications. In: Arabnia, H.R. (ed.) Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications, PDPTA 1999, June 28 - Junlly 1, 1999, Las Vegas, Nevada, USA.
pp. 279–287. CSREA Press (1999)

13. Moosbrugger, P., Rozier, K.Y., Schumann, J.: R2U2: Monitoring and Diagnosis of
Security Threats for Unmanned Aerial Systems. Formal Methods Syst. Des. 51(1),
31–61 (2017). https://doi.org/10.1007/s10703-017-0275-x

14. Riley, C.: Volkswagen’s diesel scandal costs hit $30 billion. CNN
Business (2018), https://money.cnn.com/2017/09/29/investing/

https://loladrives.app
https://doi.org/10.1007/978-3-030-53291-8_3
https://www.bbc.com/news/business-44517753
https://www.bbc.com/news/business-44517753
https://doi.org/10.1007/978-3-030-30281-8_18
https://doi.org/10.1109/SP.2017.66
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/978-3-030-25540-4_24
http://arxiv.org/abs/1711.03829
http://arxiv.org/abs/1711.03829
https://doi.org/10.29007/6zxt
http://www.oica.net/category/sales-statistics
https://doi.org/10.1007/978-3-030-03769-7_17
https://doi.org/10.1007/s10703-017-0275-x
https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-billion/index.html

372 S. Biewer et al.

volkswagen-diesel-cost-30-billion/index.html, Online; accessed: 2020-
10-15

15. Schwenger, M.: Let’s not Trust Experience Blindly: Formal Monitoring of Humans
and other CPS. Master thesis, Saarland University (2019)

16. The European Parliament and the Council of the European Union: Direc-
tive 98/69/ec of the european parliament and of the council. Official Journal
of the European Communities (1998), http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=CELEX:31998L0069:EN:HTML

17. The European Parliament and the Council of the European Union: Commission
Regulation (EU) 2017/1151 (June 2017), http://data.europa.eu/eli/reg/2017/
1151/oj

18. Torens, C., Adolf, F., Faymonville, P., Schirmer, S.: Towards intelligent system
health management using runtime monitoring. In: AIAA Information Systems-
AIAA Infotech @ Aerospace. American Institute of Aeronautics and Astronautics
(AIAA) (jan 2017). https://doi.org/10.2514/6.2017-0419

19. Tutuianu, M., Bonnel, P., Ciuffo, B., Haniu, T., Ichikawa, N., Marotta, A., Pavlovic,
J., Steven, H.: Development of the world-wide harmonized light duty test cycle
(wltc) and a possible pathway for its introduction in the european legislation.
Transportation Research Part D: Transport and Environment 40(Supplement C),
61 – 75 (2015). https://doi.org/10.1016/j.trd.2015.07.011

20. United Nations: UN Vehicle Regulations - 1958 Agreement, Revision 2, Addendum
100, Regulation No. 101, Revision 3 — E/ECE/324/Rev.2/Add.100/Rev.3 (2013),
http://www.unece.org/trans/main/wp29/wp29regs101-120.html

21. Watanabe, K., Kang, E., Lin, C., Shiraishi, S.: Runtime monitoring for safety of
intelligent vehicles. In: Proceedings of the 55th Annual Design Automation Confer-
ence, DAC 2018, San Francisco, CA, USA, June 24-29, 2018. pp. 31:1–31:6. ACM
(2018). https://doi.org/10.1145/3195970.3199856

Legal Attribution Android, Google Play and the Google Play logo are trademarks

of Google LLC.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-billion/index.html
https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-billion/index.html
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://data.europa.eu/eli/reg/2017/1151/oj
http://data.europa.eu/eli/reg/2017/1151/oj
https://doi.org/10.2514/6.2017-0419
https://doi.org/10.1016/j.trd.2015.07.011
http://www.unece.org/trans/main/wp29/wp29regs101-120.html
https://doi.org/10.1145/3195970.3199856
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

Replicating Restart with Prolonged
Retrials: An Experimental Report�

Carlos E. Budde (�) and Arnd Hartmanns (�)

University of Twente, Enschede, The Netherlands
{c.e.budde,a.hartmanns}@utwente.nl

Abstract Statistical model checking uses Monte Carlo simulation to
analyse stochastic formal models. It avoids state space explosion, but
requires rare event simulation techniques to efficiently estimate very low
probabilities. One such technique is Restart. Villén-Altamirano recently
showed—by way of a theoretical study and ad-hoc implementation—that
a generalisation of Restart to prolonged retrials offers improved per-
formance. In this paper, we demonstrate our independent replication of
the original experimental results. We implemented Restart with pro-
longed retrials in the FIG and modes tools, and apply them to the models
used originally. To do so, we had to resolve ambiguities in the original
work, and refine our setup multiple times. We ultimately confirm the pre-
vious results, but our experience also highlights the need for precise doc-
umentation of experiments to enable replicability in computer science.

1 Introduction

In stochastic timed systems, the time between faults, customer interarrival times,
transmission delays, or exponential backoff wait times follow (continuous) prob-
ability distributions. Probabilistic model checking [3] can compute dependabil-
ity metrics like reliability and availability in the Markovian case. To evade state
space explosion and evaluate non-Markovian systems, statistical model check-
ing (SMC [2]) has become a popular alternative. At its core, SMC is Monte
Carlo simulation for formal models. It faces a runtime explosion when estimat-
ing the probability p of a rare event with a sufficiently low error, e.g. an error of
±10−10 for p ≈ 10−9 (i.e. a relative error of 0.1). Rare event simulation (RES)
techniques [17] address this problem. They can broadly be categorised into im-
portance sampling and importance splitting. The former changes the probabil-
ity distributions while the latter changes the simulation algorithm to make the
rare event more likely. Both techniques then compensate for these changes in
the statistical evaluation. RES has garnered the interest of mathematicians and
computer scientists alike. The scientific outcomes range from theoretical studies
of a RES technique’s limit behaviour and optimality [8,14,16] over experimental
validation on Matlab studies or ad-hoc implementations [10,11,19] to application
� Authors are listed alphabetically. This work was supported by NWO via project

no. 15474 (SEQUOIA) and VENI grant no. 639.021.754.
c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 373–380, 2021.
https://doi.org/10.1007/978-3-030-72013-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_21&domain=pdf
http://orcid.org/0000-0001-8807-1548
http://orcid.org/0000-0003-3268-8674
https://doi.org/10.1007/978-3-030-72013-1_21

374 C. E. Budde and A. Hartmanns

reports using larger case studies [5,12,18] as well as automated tools [4,6,15,18]
that accept a loss of optimality in exchange for practicality.

Two recent papers showed theoretically [21] and empirically [19] that pro-
longing retrials in the Restart importance splitting technique [22] reduces the
required number of samples for the same error, with optimal runtime around
prolonging by 1 to 2 levels. The models and parameters used in [19] are de-
scribed in supplementary material [20], but the implementation is not publicly
available. In this paper, we demonstrate our replication of the results of [19,21],
where replication “means that an independent group can obtain the same res-
ult using artifacts which they develop completely independently” in the ACM
terminology [1]. To this end, we implemented Restart with prolonged retrials
(Restart-P) in the FIG rare event simulator [4] and the modes statistical model
checker [7] of the Modest Toolset [13]. We recreated the models in the IOSA
and Modest languages, and ran experiments following the original setup.

Our experiments confirm the behaviour and performance improvements of
Restart-P reported in [19,21]. However, we encountered ambiguities in the tex-
tual and pictorial descriptions of Restart-P and the experimental setup in the
original papers, some of which we could only resolve with input from the author
of [19,21]. Different parts of our work thus reside on different levels between rep-
lication and reproduction (which “means that an independent group can obtain
the same result using the author’s own artifacts” [1]). Throughout the paper, we
document where we achieved fully independent replication, where information
from private communication was needed, and where we had to ultimately resort
to requesting and inspecting the source code for the original implementation.

The contribution of this paper is thus threefold: (1) We provide pseudocode
for Restart-P in Sect. 2 that clarifies the technical details w.r.t. [19,21]. (2) We
demonstrate the new Restart-P capabilities of FIG and modes by replicating
the original experiments in Sect. 3. (3) We reflect on our experience (as prac-
tical computer scientists) in independently replicating existing (theoretically-
flavoured) work.

2 Restart with Prolonged Retrials

Let a stochastic timed discrete-event model be given as a tuple 〈S, s0, step, F 〉
of a set of states S, an initial state s0 ∈ S, a function step : S → [0,∞) × S
where step(s) samples a random path from s to the next event and returns a
pair 〈t, s′〉 of its duration and next state, and a subset of rare event states F ⊆ S.
A simulation run is a sequence of states obtained by repeatedly applying step.
Models with general probability distributions encode their memory in the states.

Importance splitting uses an importance function fI : S → [0,∞) indicating
“how close” a state is to the rare event. Partition the range of fI into k+1 non-
empty intervals to obtain a level function fL : S → { 0, . . . , k } with fL(s1) <
fL(s2) ⇒ fI(s1) < fI(s2). For simplicity, assume fI(s0) = 0 and step(s) =
〈t, s′〉 ⇒ fL(s

′) ≤ fL(s)+1 (a step moves up by at most one level). Let Ci
def= { s |

fL(s) ≥ i }. Then “thresholds Ti of fI are defined so that each set Ci is associated

Replicating Restart with Prolonged Retrials 375

Input: model 〈S, s0, step, F 〉, fL, fS , prolongation depth j, max. sim. time Tmax

tF := 0, list ξ := {| 〈s0, 0, 0, 0〉 |} // 〈state, time, creation level, last-split level〉
while ξ �= ∅ do // run all trials to end

〈s, t,
create ,
split〉 := ξ.get-remove() // data of current trial
while t < Tmax do

〈t′, s′〉 := step(s) // simulate to next change in state
t′ := min{ t′, Tmax − t }, t := t+ t′ // advance time, at most to Tmax

if s ∈ F then tF := tF + t′/
∏�split

i=1 fS(i) // accumulate weighted rare time
〈
,
′〉 := 〈fL(s), fL(s′)〉, s := s′

if
′ <
 then // trial went down:
if
′ = 0 =
create then
split := 0 // reset main trial at level 0
else if
′ = 0 ∨
′ <
create − j then break // end retrial if 0 or j down
else
split := min(
split ,

′ + j) // else update last-split level

else if
′ >
split then // trial went up far enough:

split :=
′ // update last-split level
foreach i ∈ {1, . . . , fS(
′)−1} do ξ.add(〈s′, t,
′,
split〉) // split off retrials

return tF // return accumulated weighted time spent in rare states

Algorithm 1: Restart with prolonged retrials of depth j (Restart-Pj)

with fI ≥ Ti” [21]. Function fS : { 1, . . . , k } → N \ { 0 } defines splitting factors.
fI , fL, and fS are specified by experts or derived automatically [6]. Importance
splitting with Restart starts a run (the main trial) from s0 that, whenever it
moves up from s in current level l − 1 to s′ in level l, spawns fS(l)− 1 new child
runs (retrials of level l) from s′. Retrials end when they move down below their
creation level. The trials’ weights in probability estimation are appropriately
reduced to compensate. Restart with prolonged retrials of depth j, denoted
Restart-Pj , is defined as follows in [21] (shortened and adapted to our notation):

In Restart-Pj , each of the retrials of level i finishes when it leaves set
Ci−j ; that is, it continues until it down-crosses the threshold i− j. If one
of these trials again up-crosses the threshold where it was generated (or
any other between i− j+1 and i), a new set of retrials is not performed.
If j ≥ i, the retrials are cut when they reach the threshold 0. The main
trial, which continues after leaving set Ci−j , potentially leads to new sets
of retrials if it up-crosses threshold Ti after having left set Ci−j . If the
main trial reaches the threshold 0, it collects the weight of all the retrials
(which has been cut at that threshold) and thus, new sets of retrials of
level 1 are performed next time the main trial up-crosses threshold T1.

In addition, [21, Fig. 1] graphically illustrates the behaviour of Restart-P1. The
original Restart [22] is Restart-P0. The above textual description clearly con-
veys the core idea of Restart-P, but we found it to omit three technical details:
– The condition for when an up-going retrial spawns new retrials is more com-

plex than with Restart. We became aware of this when comparing the tex-
tual description with the graphical depiction in [21, Fig. 1]. In fact, we need

376 C. E. Budde and A. Hartmanns

to keep track of the last level at which a retrial will split, and decrement that
value when it moves more than j levels down. (Independent replication.)

– The definitions in [19,21] do not include 0 in the range of values for i in Ci

and Ti. Our definitions would associate T0 with states s where fI(s) = 0. Im-
plemented in FIG, this lead to increasing underestimation as the prolongation
depth j increased. Only once we interpreted threshold 0 to refer to level 0
(i.e. states s where fL(s) = 0) did we obtain consistent estimations across
different j. The correctness of this interpretation was confirmed by the author
of [19,21] in private communication. (Semi-independent replication.)

– When a trial reaches, or spends time in, a state in F , we must weight this
event’s influence on the statistical estimate by a factor of 1/

∏fL(s)
i=1 fS(i) in the

original Restart. With this weight calculation, FIG produced subtle under-
estimations on some of the models from [20] when j > 0. We finally requested
the source code for the original experiments and found that fL(s) must be
replaced by the level on which the current trial was last split, i.e. the value
must not change when moving down ≤ j levels. (Resembles a reproduction.)

We make these details explicit in Algorithm 1, for the case of estimating the
long-run average time spent in F (i.e. steady-state simulation). FIG evolved as
described above and is thus mostly a replication. modes was extended with pro-
longations later, using a recursive formulation of the algorithm gleaned from the
original code. It thus lacks the complete independence of a replication as per [1].

3 Experiments

Table 2 in [21] provides steady-state estimates, numbers of samples, and runtimes
obtained using Restart-Pj on a Jackson (i.e. Markov) 2-tandem queueing net-
work for j ∈ { 0, . . . , 4 }. The same data is given in [19] for j ∈ { 0, . . . , 2 } on a
similar system with three queues and a seven-node network, in Jackson and non-
Jackson (using Erlang and hyperexponential distributions) variants. The original
articles and extra material [20] describe the models, and the experimental setup:
– The set F is characterised. E.g. for the 3-tandem network, it contains the states

where the third queue has ≥ L = 30 (Jackson) or 14 packets (non-Jackson).
– All probability distributions and the fI , fL, and fS functions are characterised.
– Tmax time values for the steady-state simulations are specified for all models.
– The statistical evaluation aims for a relative error of 0.1 with 95% confidence

(except for the tandem queue, where the error is 0.005); Restart-P runs are
performed sequentially until the half-width of the 95% confidence interval is
below 10% (resp. 0.5%) of the current estimate. (Note that this guarantees
the requested confidence only asymptotically for decreasing width [9].)

In our replication attempt, we had to resolve the following unspecified aspects:
– The queue capacities C > L are not documented, but influence the estimate:

for C close to L, the steady-state probability is underestimated. We settled for
C = 20 ·L in FIG’s IOSA models (replication); the influence of C −L rapidly
diminishes beyond small values. Later, from inspecting the original source

Replicating Restart with Prolonged Retrials 377

Table 1. Experimental results for the examples considered in [19,21]

model
(type)
p

original [19,21] adapted orig. code modes FIG

j p̂ n time p̂ n time p̂ n time p̂ n time
2-tandem
(Jackson)
4.86E-15

0 4.85E-15 3909 2906 4.84E-15 2731 1930 4.88E-15 2542 988 4.85E-15 2537 4202

1 4.86E-15 3032 2107 4.93E-15 1905 1654 4.87E-15 1859 939 4.82E-15 1969 4000

2 4.86E-15 2660 2091 4.80E-15 1831 1959 4.85E-15 1845 1175 4.86E-15 1700 4379

3 4.87E-15 2476 2287 4.86E-15 1691 2319 4.83E-15 1626 1322 4.84E-15 1656 5448

4 4.85E-15 2458 3188 4.88E-15 1562 2638 4.85E-15 1610 1626 4.86E-15 1580 6402

3-tandem
(Jackson)
4.86E-15

0 4.66E-15 120 54 4.90E-15 89 28 4.24E-15 116 9 4.58E-15 122 43

1 4.61E-15 88 35 4.84E-15 44 20 4.90E-15 97 10 5.63E-15 80 36

2 4.66E-15 78 38 4.84E-15 49 19 4.83E-15 79 11 5.23E-15 65 39

3-tandem
(non-J.)

0 7.08E-15 95 137 8.38E-15 728 180 8.87E-15 1002 256 8.28E-15 1293 715

1 7.03E-15 65 90 8.50E-15 661 181 8.10E-15 650 182 8.65E-15 618 436

2 7.03E-15 55 90 8.34E-15 388 191 8.53E-15 386 157 9.59E-15 386 402

7-nodes
(Jackson)
2.54E-15

0 2.53E-15 42 16 2.33E-15 44 18 2.59E-15 36 10 2.34E-15 52 277

1 2.46E-15 28 12 2.50E-15 34 14 2.34E-15 26 11 2.47E-15 32 248

2 2.46E-15 27 12 2.41E-15 20 13 2.63E-15 25 15 2.42E-15 32 332

7-nodes
(non-J.)

0 7.57E-15 54 56 7.96E-15 149 52 8.98E-15 135 88 8.55E-15 202 1305

1 7.40E-15 44 52 7.37E-15 92 45 7.46E-15 103 84 8.03E-15 142 1323

2 7.64E-15 30 32 7.29E-15 79 52 8.31E-15 91 119 7.45E-15 126 1495

code, we found that the queues are practically unbounded (implemented as
32-bit integer counters), which we reproduce in the Modest models for modes.

– FIG by default uses the batch means technique for steady-state simulation,
where a single run is partitioned into equal-duration batches, each of which
provides one sample value. In communication with the original author, we
found that each of their samples results from an independent run. We adapted
FIG to do the same. It is the default in modes. (Semi-independent replication.)

– We also found in this communication that the original runs perform no split-
ting for the first 40 clients served; this part of the run is ignored as an initial
transient phase. We confirmed this in the source code. We measured the av-
erage time to serve 40 clients for each model and use the result as transient
phase duration with FIG and modes since neither tool supports a transient
phase based on clients served. (Semi-independent replication.)

The original experiments were realised in a single file of C code that represents
both the algorithm and the models, specialised to queueing models with trans-
ition probabilities and service rates specified in constant arrays. In fact, the code
we received implemented the 2-tandem queueing network only. We extended this
code with a compile-time choice among the models described in [20], and fixed
few small bugs. We thus have four sets of results to compare, shown in Table 1:
the original numbers given in [19,21], plus those from our new executions of the
adapted code, modes, and FIG. In the table, time is in seconds, p̂ is the estimate,
p is the true steady-state probability where it can be derived, and n is the num-
ber of samples needed by the statistical evaluation. The adapted code and FIG
ran on an Intel Xeon E5-2630 v3 (2.4-3.2 GHz), and modes ran on a Core i7-4790

378 C. E. Budde and A. Hartmanns

(3.6-4.0 GHz, 4 physical/8 logical cores) system. The adapted code and FIG are
single-threaded whereas modes used 7 simulation threads. The adapted code is
tailor-mode for these models, while FIG has to encode them in the more general
IOSA framework, making it slower; modes in turn profits from a special-case im-
plementation for CTMC to speed up the Markovian cases. Comparing runtimes
between tools is thus of limited use. The estimates are the centers of confidence
intervals returned by the tools with confidence and relative width as described
above. Each 〈estimate, n, time〉 triple was selected from 5 tool executions by pick-
ing the one with the median runtime. We underline the best runtimes among
values for j. However, the wide confidence intervals (except for 2-tandem), few
executions, and in principle unsound stopping criterion that we reproduce from
the original experiments mean that results, including best values of j, vary a lot
for different random seeds. The original experimental setup is thus insufficient
for drawing conclusions about the precise tradeoffs between specific values of j,
but may at most expose an overall trend.

Nevertheless, our estimates are mostly within the margin of error around the
original or true results. We confirm the main experimental conclusion of [19,21]:
as j increases, n decreases, but from some point—mostly j > 1 or 2—runtime
increases, due to the overhead of more retrials surviving longer. For the non-
Jackson triple tandem network, none of our results matches the numbers of [19].
Since the original code, albeit adapted, agrees with FIG and modes rather than
with the original results, we suspect an error in [19] or [20] w.r.t. this one model.

4 Conclusion

We demonstrated the extension of the FIG and modes rare event simulation tools
to support prolonged retrials in rare event simulation using Restart import-
ance splitting. These implementations and experiments were the outcome of an
exercise in independently replicating experimental research originally performed
in mathematics, from a computer science perspective. We confirm the key find-
ings of the earlier work. At the same time, we document several issues—small
but critical technical details of the algorithm and experimental setup—where
the publicly available information was insufficient for a completely independ-
ent replication. We in particular noticed that replicating randomised/statistical
algorithms poses a particular challenge since small errors may result in subtle
mis-estimations that are often drowned in the overall statistical error. In the end,
however, all issues could be resolved due to the exceptional support, respons-
iveness, and openness of the original author, José Villén-Altamirano, whom we
thank earnestly. However, such support cannot be expected for experimental
work in general, in particular where temporary staff like Ph.D. students—who
eventually graduate and move to new institutions or industry—perform the bulk
of the experiments. This paper thus also highlights the need for computer science
and the formal verification community to continue their push for artifact eval-
uation and archived, publicly available reproduction packages. A reproduction
package for our experiments is archived at DOI 10.6084/m9.figshare.12269462.

https://doi.org/10.6084/m9.figshare.12269462

Replicating Restart with Prolonged Retrials 379

References

1. ACM: Artifact review and badging (2020), https://www.acm.org/publications/
policies/artifact-review-and-badging-current, version 1.1.

2. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018). https://doi.org/10.1145/3158668

3. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probab-
ilistic systems. In: Handbook of Model Checking, pp. 963–999. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_28

4. Budde, C.E.: FIG: The finite improbability generator. In: TACAS. LNCS, vol.
12078, pp. 483–491. Springer (2020). https://doi.org/10.1007/978-3-030-45190-
5_27

5. Budde, C.E., Biagi, M., Monti, R.E., D’Argenio, P.R., Stoelinga, M.: Rare event
simulation for non-Markovian repairable fault trees. In: TACAS. LNCS, vol. 12078,
pp. 463–482. Springer (2020). https://doi.org/10.1007/978-3-030-45190-5_26

6. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Automated compositional
importance splitting. Sci. Comput. Program. 174, 90–108 (2019). ht-
tps://doi.org/10.1016/j.scico.2019.01.006

7. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: TACAS. LNCS, vol. 10806, pp.
340–358. Springer (2018). https://doi.org/10.1007/978-3-319-89963-3_20

8. Buijsrogge, A., de Boer, P.T., Scheinhardt, W.R.W.: Importance sampling for non-
Markovian tandem queues using subsolutions. Queueing Systems 93, 31–65 (2019).
https://doi.org/10.1007/s11134-019-09623-0

9. Chow, Y.S., Robbins, H.: On the asymptotic theory of fixed-width sequential con-
fidence intervals for the mean. Ann. Math. Statist. 36(2), 457–462 (1965). ht-
tps://doi.org/10.1214/aoms/1177700156

10. Dean, T., Dupuis, P.: Splitting for rare event simulation: A large deviation approach
to design and analysis. Stochastic Processes and their Applications 119(2), 562–
587 (2009). https://doi.org/10.1016/j.spa.2008.02.017

11. Garvels, M.J.J., van Ommeren, J.K.C.W., Kroese, D.P.: On the importance func-
tion in splitting simulation. Eur. Trans. Telecommun. 13(4), 363–371 (2002). ht-
tps://doi.org/10.1002/ett.4460130408

12. Hartmanns, A., Hensel, C., Klauck, M., Klein, J., Kretínský, J., Parker, D., Quat-
mann, T., Ruijters, E., Steinmetz, M.: The 2019 comparison of tools for the ana-
lysis of quantitative formal models. In: TACAS. LNCS, vol. 11429. Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_5

13. Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment for
quantitative modelling and verification. In: TACAS. LNCS, vol. 8413, pp. 593–598.
Springer (2014). https://doi.org/10.1007/978-3-642-54862-8_51

14. Hult, H., Nyquist, P.: Large deviations for weighted empirical measures arising in
importance sampling. Stochastic Processes and their Applications 126(1), 138–170
(2016). https://doi.org/10.1016/j.spa.2015.08.002

15. Legay, A., Sedwards, S., Traonouez, L.M.: Plasma Lab: A modular statist-
ical model checking platform. In: ISoLA. LNCS, vol. 9952, pp. 77–93 (2016).
https://doi.org/10.1007/978-3-319-47166-2_6

16. Reijsbergen, D., Boer, P.T.D., Scheinhardt, W., Juneja, S.: Path-ZVA:
General, efficient, and automated importance sampling for highly reliable
Markovian systems. ACM Trans. Model. Comput. Simul. 28(3) (2018). ht-
tps://doi.org/10.1145/3161569

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3158668
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-030-45190-5_27
https://doi.org/10.1007/978-3-030-45190-5_27
https://doi.org/10.1007/978-3-030-45190-5_26
https://doi.org/10.1016/j.scico.2019.01.006
https://doi.org/10.1016/j.scico.2019.01.006
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/s11134-019-09623-0
https://doi.org/10.1214/aoms/1177700156
https://doi.org/10.1214/aoms/1177700156
https://doi.org/10.1016/j.spa.2008.02.017
https://doi.org/10.1002/ett.4460130408
https://doi.org/10.1002/ett.4460130408
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1016/j.spa.2015.08.002
https://doi.org/10.1007/978-3-319-47166-2_6
https://doi.org/10.1145/3161569
https://doi.org/10.1145/3161569

380 C. E. Budde and A. Hartmanns

17. Rubino, G., Tuffin, B.: Introduction to rare event simulation. pp. 1–13. Wiley
(2009). https://doi.org/10.1002/9780470745403.ch1

18. Ruijters, E., Reijsbergen, D., de Boer, P.T., Stoelinga, M.: Rare event simulation
for dynamic fault trees. Reliability Engineering & System Safety 186, 220–231
(2019). https://doi.org/10.1016/j.ress.2019.02.004

19. Villén-Altamirano, J.: RESTART vs Splitting: A comparative study. Performance
Evaluation 121–122, 38–47 (2018). https://doi.org/10.1016/j.peva.2018.02.002

20. Villén-Altamirano, J.: Simulation details of the paper “RESTART vs Splitting:
a comparative study”. [19]. https://doi.org/10.1016/j.peva.2018.02.002, Appendix
A. Supplementary data

21. Villén-Altamirano, J.: An improved variant of the rare event simulation method
RESTART using prolonged retrials. Operations Research Perspectives 6, 100–108
(2019). https://doi.org/10.1016/j.orp.2019.100108

22. Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: a method for accelerat-
ing rare event simulations. In: Queueing, Performance and Control in ATM (ITC-
13). pp. 71–76. Elsevier (1991)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original authors and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1002/9780470745403.ch1
https://doi.org/10.1016/j.ress.2019.02.004
https://doi.org/10.1016/j.peva.2018.02.002
https://doi.org/10.1016/j.peva.2018.02.002
https://doi.org/10.1016/j.orp.2019.100108
https://creativecommons.org/licenses/by/4.0/

A Web Interface for Petri Nets with Transits
and Petri Games �

Manuel Gieseking1(�) , Jesko Hecking-Harbusch2 , and Ann Yanich1

1 University of Oldenburg, Oldenburg, Germany
{gieseking,ann.yanich}@informatik.uni-oldenburg.de

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
jesko.hecking-harbusch@cispa.de

Abstract. Developing algorithms for distributed systems is an error-
prone task. Formal models like Petri nets with transits and Petri games
can prevent errors when developing such algorithms. Petri nets with tran-
sits allow us to follow the data flow between components in a distributed
system. They can be model checked against specifications in LTL on both
the local data flow and the global behavior. Petri games allow the synthe-
sis of local controllers for distributed systems from safety specifications.
Modeling problems in these formalisms requires defining extended Petri
nets which can be cumbersome when performed textually.
In this paper, we present a web interface1 that allows an intuitive, visual
definition of Petri nets with transits and Petri games. The corresponding
model checking and synthesis problems are solved directly on a server.
In the interface, implementations, counterexamples, and all intermediate
steps can be analyzed and simulated. Stepwise simulations and interac-
tive state space generation support the user in detecting modeling errors.

1 Introduction

Distributed systems consist of several individual components. Each component
has incomplete information about the other components. Asynchronous dis-
tributed systems have no fixed rate at which components progress but rather each
component progresses at its individual rate between synchronizations with other
components. Implementing correct algorithms for asynchronous distributed sys-
tems is difficult because they have to both work with the incomplete information
of the components and for every possible scheduling between the components.

Petri nets [22,21] are a natural model for asynchronous distributed systems.
Tokens represent components and transitions with more than one token corre-
spond to synchronizations between the components. Petri nets with transits [9]
extend Petri nets with a transit relation to model the data flow in asynchronous

� This work has been supported by the German Research Foundation (DFG) through
Grant Petri Games (392735815) and through the Collaborative Research Center
“Foundations of Perspicuous Software Systems” (TRR 248, 389792660), and by the
European Research Council (ERC) through Grant OSARES (683300).

1 The web interface is deployed at http://adam.informatik.uni-oldenburg.de.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 381–388, 2021.
https://doi.org/10.1007/978-3-030-72013-1 22

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_22&domain=pdf
http://orcid.org/0000-0001-9073-3002
http://orcid.org/0000-0003-2076-617X
http://orcid.org/0000-0002-0170-0012
http://adam.informatik.uni-oldenburg.de
https://doi.org/10.1007/978-3-030-72013-1_22

382 M. Gieseking et al.

distributed systems. Flow-LTL [9] is a specification language for Petri nets with
transits and allows us to specify linear properties on both the global and the
local view of the system. In particular, it is possible to globally select desired
runs of the system with LTL (e.g., only fair and maximal runs) and check the
local data flow of only those runs again with LTL. A model checker for Petri
nets with transits against Flow-LTL is implemented in the tool AdamMC [10].

Petri games [14] define the synthesis of asynchronous distributed systems
based on Petri nets and causal memory. With causal memory, players exchange
their entire causal past only upon synchronization. Without synchronization,
players have no information of each other. For safety winning conditions, the
synthesis algorithm for Petri games with a bounded number of controllable com-
ponents and one uncontrollable component is implemented in AdamSYNT [12]2.
Both tools are command-line tools lacking visual support to model Petri nets
with transits or Petri games and the possibility to simulate or interactively ex-
plore implementations, counterexamples, and parts of the created state space.

In this paper, we present a web interface3 for model checking asynchronous
distributed systems with data flows and for the synthesis of asynchronous dis-
tributed systems with causal memory from safety specification. The web inter-
face offers an input for Petri nets with transits and Petri games where the user
interactively creates places, transitions, and their connections with a few inputs.

As a back-end, the algorithms of AdamMC are used to model check Petri
nets with transits against a given Flow-LTL formula as specification. Internally,
the problem is reduced to the model checking problem of Petri nets against
LTL. Both, the input Petri net with transits and the constructed Petri net can
be visualized and simulated in the web interface. For a positive result, the web
interface lets the user follow the control flow of the combined system and the data
flow of the components. For a negative result, the web interface simulates the
counterexample with a visual separation of the global and each local behavior.

The algorithms of AdamSYNT solve the given Petri game with safety specifi-
cation. Internally, the problem is reduced to solving a finite two-player game with
complete information. For a positive result, a winning strategy for the Petri game
and the two-player game can be visualized and the former can be simulated. For
a negative result, the web interface lets the user interactively construct strategies
of the two-player game and highlights why they violate the specification. These
new intuitive construction methods, interactive features, and visualizations are
of great impact when developing asynchronous distributed systems.

2 Web Interface for Petri Nets with Transits

The web interface can model check Petri nets with transits against Flow-LTL.
We use an example from software-defined networks to showcase the workflow.

2 AdamSYNT was previously called Adam. From now on, AdamMC and
AdamSYNT are combined in the tool Adam (https://github.com/adamtool/adam).

3 The web interface is open source (https://github.com/adamtool/webinterface) and
a corresponding artifact to set it all up locally in a virtual machine is available [16].

https://github.com/adamtool/adam#readme
https://github.com/adamtool/webinterface#readme

A Web Interface for Petri Nets with Transits and Petri Games 383

Fig. 1. Screenshot from the web interface for the model checking workflow.

Workflow for Petri Nets With Transits One application domain for Petri
nets with transits are software-defined networks (SDNs) [20,4]. The nodes of
the network are switches which forward packets along the edges of the net-
work according to the routing configuration. Packets enter the network at ingress
switches and leave it at egress switches. SDNs separate the packet forwarding
process, called the data plane, from the routing process, called the control plane.
Concurrent updates to the routing configuration are difficult to get right [15].

The separation of data and control plane and updates to the routing con-
figuration can be encoded into Petri nets with transits [9]. Using this encod-
ing, we demonstrate the workflow of the web interface for model checking an
asynchronous distributed system with data flows. The packets of the SDN are
modeled by the data flow in the Petri net with transits. The data flow relation
as an extension from Petri nets to Petri nets with transits is depicted as colored
and labeled arcs. In Fig. 1, the web interface presents the resulting Petri net
with transits N. First, we use the tools on the left to create for each switch a
place si with i ∈ {0, . . . , 5} and add a token (cf. outer parts of N). Then, we
create transitions for the connections between the switches and for the origin of
packets in the SDN (cf. transition ingress in the top-left corner) and link them
with flows in both directions. Additionally, we create local transits between the
switches corresponding to the forwarding of packets. They are displayed in light
blue and red and are identified by the letters. This constitutes the data plane.

Next, we define the control plane, i.e., which forwarding is activated. Each
transition to forward packets is connected to a place ai with i ∈ {0, . . . , 5} which
has a token when the forwarding is configured initially (cf. places a3, a4, and a5)
and no token otherwise (cf. places a0, a1, and a2). For the concurrent update,
we create places ui with i ∈ {0, . . . , 7} and transitions ti with i ∈ {6, . . . , 11}
with corresponding flows (cf. inner parts of N).

384 M. Gieseking et al.

Transitions for the forwarding are set as weak fair, i.e., whenever a transition
is infinitely long enabled in a run, it also has to fire infinitely often, indicated by
the purple color of the outer transitions. Transitions for the update do not require
fairness assumptions. A satisfied Flow-LTL formula is AF s5 specifying that all
packets eventually reach switch s5. An unsatisfied formula is (Gu0 ⇒ AF s2)
requiring for runs, where the update is never executed, that all packets are taking
the lower-left route. The fairness assumptions and a maximality assumption, i.e.,
whenever some transition can fire in a run some transition fires, are automatically
added to the formula. In the screenshot, a counterexample for the unsatisfied
formula is displayed on the right. The first packet takes the upper-right route
via transitions t3, t4, and t5 and the update never starts.

Features for Petri Nets with Transits. AdamMC [10] is a command-line
model checking tool for Petri nets with transits and Flow-LTL [9]. The model
checking problem of Petri nets with transits against Flow-LTL is solved by a re-
duction to Petri nets and LTL. The web interface allows displaying and arranging
the nodes of the Petri net from the reduction and the input Petri net with tran-
sits. Automatic layout techniques are applied to avoid the overlapping of nodes.
A physics control, which modifies the repulsion, link, and gravity strength of
nodes, can be used to minimize the overlapping of edges. Heuristics generate
coordinates for the constructed Petri net by using the coordinates of the input
Petri net with transits to obtain a similar layout of corresponding parts.

For a positive result, the web interface allows visualizing the data flow trees
for given firing sequences of the nets. For a negative result, the counterexample
can be simulated both in the Petri net with transits and in the Petri net from
the reduction. The witness of the counterexample for each flow subformula and
the run violating the global behavior can be displayed by the web interface. This
functionality is helpful when developing an encoding of a problem into Petri net
with transits to ensure that a counterexample is not an error in the encoding.
The constructed Petri net can be exported into a standard format for Petri net
model checking (PNML) and the constructed LTL formula can be displayed.

3 Web Interface for Petri Games

The web interface can synthesize local controllers from safety specifications. The
workflow is showcased for a distributed alarm system given as a Petri game.

Workflow for Petri Games We demonstrate the workflow of the web interface
for the synthesis of asynchronous distributed systems with causal memory from
safety specifications. Petri games separate the places of an underlying Petri net
into system places and environment places. Tokens on system places are system
players and tokens on environment places are environment players. Each player
has causal memory : only upon synchronization with other players, they exchange
their entire causal past. For safety specifications, the system players have to avoid
that a bad place is reached for all behaviors of the environment players.

A Web Interface for Petri Nets with Transits and Petri Games 385

Fig. 2. Screenshot from the web interface for the synthesis workflow.

We want to obtain two local controllers of a distributed alarm system that
should indicate the location of a burglary at both controllers. In Fig. 2, the web
interface presents the resulting Petri game on the left and the winning strategy
for the alarm system on the right. The burglar is modeled by an environment
player and each component of the distributed alarm system by a system player.
Environment players are on white places and system players on gray ones. We
create five environment places e0, e1, e2, eL, and eR. The place e0 has a token,
e1 and e2 serve for the decision to burgle a location, and eL and eR for actually
burgling the location. Each component x ∈ {p, q} of the alarm system has one
system place x0 with a token, two system places x1 and x2 to detect a burglary
and inform the other component, and two system places xL and xR to sound
an alarm with the position of a burglary. We create rows of transitions for the
environment player deciding where to burgle (first row), for the components de-
tecting a burglary (second row), for the communication between the components
(third row), and for sounding the alarm at each location (fourth row).

At last, we use transitions fai with i ∈ {0, . . . , 3} and frj with j ∈ {0, . . . , 7}
connected to the bad place bad to define that the implementation of the dis-
tributed alarm system should avoid false alarms and false reports. A false alarm
occurs if the burglar did not burgle any location but an alarm occurred, i.e., in
every pair of places {e0} × {pL, pR, qL, qR}. A false report occurs if a burglary
happened at a location but a component of the alarm system indicates a bur-
glary at the other location, i.e., in every pair of places {e1, eL} × {pR, qR} and
{e2, eR} × {pL, qL}. We add transitions and flows to bad for these cases.

The web interface finds a winning strategy (depicted on the right in Fig. 2)
for the Petri game described above. Each component locally monitors its location
(t2, t3) and simultaneously waits for information about a burglary at the other
location (t4, t5). When a burglary is detected at the location of the component

386 M. Gieseking et al.

then it first informs the other component (t4, t5) and then outputs an alarm for
the current location (t7, t8). When a component is informed about a burglary
at the other location, it outputs an alarm for the other location (t6, t9).

Features for Petri Games AdamSYNT [12] is a command-line tool for Petri
games [14]. The synthesis problem for Petri games with a bounded number of
system players, one environment player, and a safety objective is reduced to the
synthesis problem for two-player games. A winning strategy in the two-player
game is translated into a winning strategy for the Petri game. Both can be vi-
sualized in the web interface. Here, the web interface provides the same features
for visualizing, manipulating, and automatically laying out the elements as for
model checking. It uses the order of nodes of the Petri game to heuristically pro-
vide a positioning of the strategy and allows simulating runs of the strategy. The
winning strategy of the two-player game provides an additional view on the im-
plementation to check if it is not bogus due to a forgotten case in the Petri game
or specification. For an unrealizable synthesis problem, the web interface allows
analyzing the underlying two-player game via a stepwise creation of strategies.
This guides the user towards changes to make the problem realizable.

4 Implementation Details

The server is implemented using the Sparkjava micro-framework [23] for incom-
ing HTTP and WebSocket connections. The client is a single-page application
written in Javascript using Vue.js [25], D3 [5], and the Vuetify component li-
brary [26]. We constructed libraries out of the tools AdamMC and AdamSYNT
and implemented one interface handling both libraries. Common features like the
physics control of nodes share the same implementation. All components of the
libraries and the web interface [2] are open source and available on GitHub [1].

5 Conclusion

We presented a web interface for two tools: AdamMC, a model checker for data
flows in asynchronous distributed systems represented by Petri nets with transits,
and AdamSYNT, a synthesis tool for local controllers from safety specifications
in asynchronous distributed systems with causal memory represented by Petri
games. The web interface makes the modeling and debugging of Petri nets with
transits and Petri games user-friendly as it presents visual representations of
the input, all intermediate steps, and the output of the tools. The interactive
features are a great assistance for correctly modeling distributed systems.

We plan to extend the web interface and tool support to model checking
Petri nets with transits against Flow-CTL∗ [11], to other classes of Petri games
with a decidable synthesis problem [13,3], to the bounded synthesis approach for
Petri games [7,8,19,18], and to high-level Petri games [17]. As our web interface
is open source and easy to extend, we also plan to connect it to other tools for
Petri nets like APT [24], LoLA [27], or TAPAAL [6].

A Web Interface for Petri Nets with Transits and Petri Games 387

References

1. Adam: https://github.com/adamtool/ (2020)

2. AdamWEB: https://github.com/adamtool/webinterface (2020)

3. Beutner, R., Finkbeiner, B., Hecking-Harbusch, J.: Translating asynchronous
games for distributed synthesis. In: 30th International Conference on Concurrency
Theory, CONCUR. LIPIcs, vol. 140, pp. 26:1–26:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019), https://doi.org/10.4230/LIPIcs.CONCUR.2019.26

4. Casado, M., Foster, N., Guha, A.: Abstractions for software-defined networks. Com-
mun. ACM 57(10), 86–95 (2014), https://doi.org/10.1145/2661061.2661063

5. D3: https://d3js.org/ (2020)

6. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In:
Tools and Algorithms for the Construction and Analysis of Systems - 18th Inter-
national Conference, TACAS. Lecture Notes in Computer Science, vol. 7214, pp.
492–497. Springer (2012), https://doi.org/10.1007/978-3-642-28756-5 36

7. Finkbeiner, B.: Bounded synthesis for Petri games. In: Correct System Design
- Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th
Birthday. Lecture Notes in Computer Science, vol. 9360, pp. 223–237. Springer
(2015), https://doi.org/10.1007/978-3-319-23506-6 15

8. Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.: Symbolic vs.
bounded synthesis for Petri games. In: Sixth Workshop on Synthesis, SYNT@CAV.
EPTCS, vol. 260, pp. 23–43 (2017), https://doi.org/10.4204/EPTCS.260.5

9. Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.: Model checking
data flows in concurrent network updates. In: Automated Technology for Veri-
fication and Analysis - 17th International Symposium, ATVA. Lecture Notes in
Computer Science, vol. 11781, pp. 515–533. Springer (2019), https://doi.org/10.
1007/978-3-030-31784-3 30

10. Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.: AdamMC:
A model checker for Petri nets with transits against Flow-LTL. In: Computer
Aided Verification - 32nd International Conference, CAV. Lecture Notes in Com-
puter Science, vol. 12225, pp. 64–76. Springer (2020), https://doi.org/10.1007/
978-3-030-53291-8 5

11. Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.: Model checking
branching properties on Petri nets with transits. In: Automated Technology for
Verification and Analysis - 18th International Symposium, ATVA. Lecture Notes
in Computer Science, vol. 12302, pp. 394–410. Springer (2020), https://doi.org/10.
1007/978-3-030-59152-6 22

12. Finkbeiner, B., Gieseking, M., Olderog, E.: Adam: Causality-based synthesis of
distributed systems. In: Computer Aided Verification - 27th International Confer-
ence, CAV. Lecture Notes in Computer Science, vol. 9206, pp. 433–439. Springer
(2015), https://doi.org/10.1007/978-3-319-21690-4 25

13. Finkbeiner, B., Gölz, P.: Synthesis in distributed environments. In: 37th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS. LIPIcs, vol. 93, pp. 28:1–28:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017), https://doi.org/10.4230/LIPIcs.FSTTCS.2017.28

14. Finkbeiner, B., Olderog, E.: Petri games: Synthesis of distributed systems with
causal memory. Inf. Comput. 253, 181–203 (2017), https://doi.org/10.1016/j.ic.
2016.07.006

https://github.com/adamtool/
https://github.com/adamtool/webinterface#readme
https://doi.org/10.4230/LIPIcs.CONCUR.2019.26
https://doi.org/10.1145/2661061.2661063
https://d3js.org/
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-319-23506-6_15
https://doi.org/10.4204/EPTCS.260.5
https://doi.org/10.1007/978-3-030-31784-3_30
https://doi.org/10.1007/978-3-030-31784-3_30
https://doi.org/10.1007/978-3-030-53291-8_5
https://doi.org/10.1007/978-3-030-53291-8_5
https://doi.org/10.1007/978-3-030-59152-6_22
https://doi.org/10.1007/978-3-030-59152-6_22
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.28
https://doi.org/10.1016/j.ic.2016.07.006
https://doi.org/10.1016/j.ic.2016.07.006

388 M. Gieseking et al.

15. Förster, K., Mahajan, R., Wattenhofer, R.: Consistent updates in software de-
fined networks: On dependencies, loop freedom, and blackholes. In: IFIP Network-
ing Conference. pp. 1–9. IEEE Computer Society (2016), https://doi.org/10.1109/
IFIPNetworking.2016.7497232

16. Gieseking, M., Hecking-Harbusch, J., Yanich, A.: AdamWEB: A
Web Interface for Petri Nets with Transits and Petri Games (2020).
https://doi.org/10.6084/m9.figshare.13089800

17. Gieseking, M., Olderog, E., Würdemann, N.: Solving high-level Petri games. Acta
Informatica 57(3-5), 591–626 (2020), https://doi.org/10.1007/s00236-020-00368-5

18. Hecking-Harbusch, J., Metzger, N.O.: Efficient trace encodings of bounded syn-
thesis for asynchronous distributed systems. In: Automated Technology for Ver-
ification and Analysis - 17th International Symposium, ATVA. Lecture Notes in
Computer Science, vol. 11781, pp. 369–386. Springer (2019), https://doi.org/10.
1007/978-3-030-31784-3 22

19. Hecking-Harbusch, J., Tentrup, L.: Solving QBF by abstraction. In: Ninth Inter-
national Symposium on Games, Automata, Logics, and Formal Verification, Gan-
dALF. EPTCS, vol. 277, pp. 88–102 (2018), https://doi.org/10.4204/EPTCS.277.7

20. McKeown, N., Anderson, T.E., Balakrishnan, H., Parulkar, G.M., Peterson, L.L.,
Rexford, J., Shenker, S., Turner, J.S.: Openflow: enabling innovation in campus
networks. Comput. Commun. Rev. 38(2), 69–74 (2008), https://doi.org/10.1145/
1355734.1355746

21. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and do-
mains, part I. Theor. Comput. Sci. 13, 85–108 (1981), https://doi.org/10.1016/
0304-3975(81)90112-2

22. Reisig, W.: Petri Nets: An Introduction, EATCS Monographs on Theoretical Com-
puter Science, vol. 4. Springer (1985), https://doi.org/10.1007/978-3-642-69968-9

23. Sparkjava: http://sparkjava.com/ (2020)
24. University of Oldenburg: APT – Analyse von Petri-Netzen und Transitionssyste-

men. https://github.com/CvO-Theory/apt (2012)
25. Vue.js: https://vuejs.org/ (2020)
26. Vuetify: https://vuetifyjs.com/ (2020)
27. Wolf, K.: Petri net model checking with LoLA 2. In: Application and Theory

of Petri Nets and Concurrency - 39th International Conference, PETRI NETS.
Lecture Notes in Computer Science, vol. 10877, pp. 351–362. Springer (2018), https:
//doi.org/10.1007/978-3-319-91268-4 18

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1109/IFIPNetworking.2016.7497232
https://doi.org/10.1109/IFIPNetworking.2016.7497232
https://doi.org/10.6084/m9.figshare.13089800
https://doi.org/10.1007/s00236-020-00368-5
https://doi.org/10.1007/978-3-030-31784-3_22
https://doi.org/10.1007/978-3-030-31784-3_22
https://doi.org/10.4204/EPTCS.277.7
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1007/978-3-642-69968-9
http://sparkjava.com/
https://github.com/CvO-Theory/apt
https://vuejs.org/
https://vuetifyjs.com/
https://doi.org/10.1007/978-3-319-91268-4_18
https://doi.org/10.1007/978-3-319-91268-4_18
https://creativecommons.org/licenses/by/4.0/

Momba: JANI Meets Python�

Maximilian A. Köhl1 (�), Michaela Klauck1 , and Holger Hermanns1,2

1Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2Institute of Intelligent Software, Guangzhou, China

{koehl,klauck,hermanns}@cs.uni-saarland.de

Abstract. JANI-model [6] is a model interchange format for networks
of interacting automata. It is well-entrenched in the quantitative model
checking community and allows modeling a variety of systems involving
concurrency, probabilistic and real-time aspects, as well as continuous
dynamics. Python is a general purpose programming language preferred
by many for its ease of use and vast ecosystem. In this paper, we present
Momba, a flexible Python framework for dealing with formal models cen-
tered around the JANI-model format and formalism. Momba strives to
deliver an integrated and intuitive experience for experimenting with for-
mal models making them accessible to a broader audience. To this end,
it provides a pythonic interface for model construction, validation, and
analysis. Here, we demonstrate these capabilities.

1 Introduction

Dealing with formal models encompasses a variety of tasks which can be chal-
lenging from time to time—especially for newcomers. Everything starts with
the construction of a model or a family thereof. Often a textual or other, more
formal, description of the scenario to be modeled is already existing, such as a
rough sketch of the desired behavior or a circuit diagram. Then, after a formal
model has finally been conceived, one has to validate that the model actually
adequately models what should be modeled. In this regard models are just like
any other human artifact, inadequate initially but over time it gets better. Only
after confidence in the model has been established, one is able to harvest the
benefits by handing over the model to analysis tools, e. g., a model checker.

In this paper, we present Momba, a flexible Python framework for dealing
with formal models. Momba strives to deliver an integrated and intuitive ex-
perience to aid the process of model construction, validation, and analysis. It
provides convenience functions for the constructions of models effectively turn-
ing Python into a syntax-aware macro language enabling the construction of
models in a modular fashion. Momba’s built-in simulation engine allows gaining
� This work was partially supported by the ERC Advanced Investigators Grant

695614 (POWVER), by the German Research Foundation (DFG) under grant
No. 389792660, as part of TRR 248, see https://perspicuous-computing.science,
and by the Key-Area Research and Development Program Grant 2018B010107004
of Guangdong Province.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 389–398, 2021.
https://doi.org/10.1007/978-3-030-72013-1_23

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

https://doi.org/10.5281/zenodo.4431780
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_23&domain=pdf
http://orcid.org/0000-0003-2551-2814
http://orcid.org/0000-0002-6353-227X
http://orcid.org/0000-0002-2766-9615
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-72013-1_23

390 M. A. Köhl et al.

confidence in a model, for instance, by rapidly prototyping a tool for interactive
model exploration and visualization, or by connecting it to a testing framework.
Finally, thanks to the JANI-model [6] interchange format, several state-of-the-
art model checkers and other tools are readily available for analysis. The latest
version of Momba is always available on GitHub [1] and the evaluated artifact
of this tool demo paper can be found on Zenodo [27].

Why Momba? The idea to harvest a general purpose programming environment
for formal modelling is not new at all. For instance, the SVL language com-
bines the power of process algebraic modelling with the power of the bourne
shell. As part of many CADP installations [12,13], it is in daily use since its in-
ception [11]. Many formal modeling tools also already provide Python bindings
[23,10]. Momba tries not to be yet another incarnation of these ideas.

While the construction of formal models clearly is an integral part of Momba,
Momba is more than just a framework for constructing models with the help of
Python. Most importantly, it also provides features to work with these models
such as a simulator or an interface to different model checking tools. At the same
time, it is not just a binding to an API developed for another language, say C++.
Momba is tool-agnostic and aims to provide a pythonic interface for dealing with
formal models while leveraging existing tools. Momba covers the whole process
from model creation through validation to analysis. To this end, it is centered
around the well-entrenched JANI-model interchange format.

Why JANI? Traditionally, most analysis tools for formal models came with
their own modeling languages and formats. The resulting fragmentation hindered
interoperability between and comparability across different tools. JANI-model
[6] has been conceived with the vision to put an end to this fragmentation. It
has since been adopted by many quantitative model checkers [20,21,9] while for
others translators have been developed [20,9] enabling cross-tool comparability
and fostering competition within the community [22,19,7]. Recently, JANI has
also been discovered by the planning community [24,25].

Momba supports all features of the JANI-model specification and some of its
optional extensions. JANI is the natural foundation for a project like Momba. It
provides a solid, well-established, and powerful modeling formalism for a variety
of different kinds of systems involving concurrency, probabilistic and real-time
aspects, as well as continuous dynamics. A JANI model is a network of interacting
automata with variables. Attached to a model one can also specify various kinds
of probabilistic and timed properties which can then be checked by several model
checkers, e. g., ePMC [20], The Modest Toolset [21], and Storm [23]. The broad
tool support for JANI models enables us to build upon existing research and to
outsource computation-intensive tasks via unified interfaces.

Why Python? Python is a popular high-level programming language, preferred
by many for its ease of use and ecosystem. Especially within the data-science
community, Python is the go-to language for data analysis and machine learn-
ing leaveraging tools such as TensorFlow [2] and scikit-learn [29]. Around these
tools, scientific general purpose tools such as Jupyter [26] have emerged. Jupyter

Momba: JANI Meets Python 391

provides a platform for documenting scientific experiments and their results in
a reproducible way combining code, data, and documentation.

Our vision is to harvest Python’s ecosystem and the tools developed by the
scientific community for dealing with formal models. Imagine, a Jupyter note-
book documenting a model, including the code to construct it, with interactive
visualizations of the model itself and various analysis results.

By basing our efforts on a popular language that is appreciated by scientists
and established in the scientific community, we hope to lower the entry barrier,
especially for those outside the formal methods community.

The User Perspective. In what follows, we demonstrate multiple facets of Momba
using a variant of Racetrack, a well-known benchmark in autonomous AI decision
making [4,31] which has recently found its use in several model checking contexts
[16,3,15]. too. We go through the entire process from the construction of a family
of models through their validation to their analysis. For each step, we highlight
what Momba has to offer in terms of effectively supporting the process.

Originally Racetrack has been a pen-and-paper game [14]. A track is a two-
dimensional grid comprising start, goal, wall, and blank cells (cf. Fig. 1) [4]. A
vehicle starts off with some initial velocity from a start cell, with the objective
to reach a goal cell as fast as possible without crashing into a wall. The vehi-
cle is controlled by nine possible actions modifying the current velocity vector.
Racetrack naturally lends itself as a benchmark for sequential decision making
in risky scenarios, in particular, when extended with probabilistic noise. In a
variety of such noisy forms, it has been adopted as a benchmark for Markov
Decision Process (MDP) algorithms in the AI community [4,5,28,30,31].

For our demonstration, we consider multiple variants of Racetrack giving rise
to a family of MDPs, studied recently [3] from a feature-oriented perspective [8].
For example, there are different tank options and fuel is consumed according to
various consumption models. In addition, there are different undergrounds induc-
ing probabilistic noise modeling slippery road conditions. Clearly, this modeling
scenario is beyond what is possible with mere model parametrization, especially
so because we are interested in the car’s performance on different tracks each
inducing its own MDP [4].

2 Scenario-Based Model Construction
Usually, formal models are not constructed out of thin air but based on some
kind of scenario description existing upfront. Such descriptions usually comprise
an operational characterization of the behavior to model together with additional
and sometimes more formal information about the specific case. Our use case is
no exemption, here a textual description of the behavior of the car is provided
together with a specific track and a specification of the variant.

Naturally, Python can be used to nicely capture the formal parts of a sce-
nario description in various data structures. Combined with a domain-specific
parser for configuration files, scenario descriptions are interchangeable and easy
to interface with the code for model construction. In our case, a textual represen-
tation of the track (cf. Fig. 1) [4] is provided and parsed together with additional

392 M. A. Köhl et al.

dim: 12 35
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxggg
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
s..................................
s..................................
s..................................
s..................................
xxxx...............................
xxxxxxxx...........................
xxxxxxxxxxxx.......................

Fig. 1. Textual representation (left) and picture of a track (right): start cells in blue
(s), goal cells in green (g), and wall cells marked with x.

parameters, like the size of the tank and the type of the underground, into a
data structure tailored to that purpose.

Now, how does Momba support the construction of models from such data
structures? A distinguishing feature of Momba is that it effectively turns Python
into a syntax-aware macro language enabling the modular construction of models.
For our Racetrack use case different fuel consumption models can be captured
as macros from JANI expressions to JANI expressions:
linear = lambda dx, dy: expr("abs($dx) + abs($dy)", dx=dx, dy=dy)
quadratic = lambda dx, dy: expr("$linear ** 2", linear=linear(dx, dy))

A macro is simply a Python function. Upon execution, these macros construct
JANI expressions using a straightforward syntax inspired by Python expressions.
In this case, both functions take expressions for the current velocity of the vehicle
in and y dimension and return an expression for the resulting fuel consumption
which is either linear or quadratic in the velocity. In contrast to how macros work
in languages like C, syntax-aware macros using Momba’s expr function prevent
surprises from mere text-based expansion. Being Python functions, macros can
be easily passed around and used elsewhere:
assignments = {

"fuel": expr(
"min(TANK_SIZE, max(0, fuel - floor($consumption)))",
consumption=fuel_model(car_dx, car_dy),

)
}

Here, we update the fuel level by taking whatever macro has been provided
for computing the fuel consumption. This code is part of constructing an edge
for the tank automaton in a modular fashion in the sense that the consump-
tion model is exchangeable. Momba provides further functions, for instance, for
declaring variables, like fuel, and constructing automata, networks, as well as
other model objects. Most of these functions provide all kinds of comforts, for
instance, directly checking the types of the involved expressions.

Using syntax-aware macros and Momba’s other convenience functions, we
arrive at a Python script racetrack.py [27] generating a collection of JANI
models from scenario descriptions comprising a track and specifying a variant.
Iterating over possible scenario descriptions, hundreds of JANI models can be
generated fully automatically and consequently be analyzed.

Momba: JANI Meets Python 393

3 Validation by Simulation

Having our models ready, we have to somehow gain confidence that they actually
model what we want them to, before handing them over to analysis tools. One
way of gaining confidence into a model is by simulating its behavior and manually
checking it for consistency with the own understanding of what the model should
do. Just like any kind of debugging, this can be a tedious and frustrating process,
especially with text-based traces generated by some generic simulator. Momba
instead comprises a built-in simulation engine, enabling rapid development of
interactive visualizations. This effectively allows us to steer a vehicle through
a track thereby exploring a model’s behavior, testing edge cases as in a racing
game, and ultimately gaining confidence in the model.

Momba’s built-in simulation engine supports the simulation of a variety of
different JANI models including timed models. It has been written completely
from scratch with easy accessibility from Python in mind. Non-determinism can
be resolved by uniform random sampling or by querying an external oracle such
as, in the case of our interactive visualization, the user, a testing framework,
or even a neural network as done for DSMC [16]. For each step, the simulator
provides all the necessary information like the binding of variables to values,
the locations the various automata of a network are in, and the possible actions
(and time delays for timed models) that can be taken. This information can then
be extracted and used to display whatever is of interest for understanding and
investigating the behavior of the model under scrutiny.

Fig. 2 shows a simple interactive visualization of the Racetrack example based
on Momba’s simulation engine where the user can steer the vehicle (indicated by
the yellow asterisk) through the track by entering acceleration values. Certainly,
there is ample room for beautification of this simulator (see TraceVis [15] for
example) but for rapid model development this is not needed. After playing
around with the interactive simulation for a while and testing various edge cases,
we are confident that the model is adequate.

Fig. 2. Interactive visualization using Momba’s simulation engine.

394 M. A. Köhl et al.

4 Harvesting the Benefits
Having constructed the models and gained confidence in their adequacy, we are
now ready to harvest the benefits of formal modeling and to apply various state-
of-the-art analysis tools, exploiting the JANI-model interchange. Again, Momba
provides the necessary functions to define properties and hand our models, with
the respective properties attached to them, over to common analysis tools.

Imagine that we are interested in the property Pmax (♦ on_goal ∧ fuel > 0),
i. e., the maximal probability of reaching a goal cell with a non-empty tank from
a given start cell. Using Momba’s syntax-aware macros, we first construct a
disjunction over all goal cells and then define the property using the concise
syntax provided by Momba’s prop function:
on_goal = reduce(lor, (expr("car_pos == $g", g=g) for g in goal_cells), False)
define_property(

prop("min({ Pmax(F($on_goal and fuel > 0)) | initial })", on_goal=on_goal),
name="goalProbabilityFuel",

)

After generating a model with the vehicle starting from position (0, 7) on the
track depicted in Fig. 1 and with sand as underground, the value iteration engine
mcsta [18] of The Modest Toolset calculates a probability of 87.5% taking 153 s
when invoked by Momba with the model. Momba also cross-checks the results
for us, by invoking Storm’s dd engine [9] (the fastest engine for this model) and
obtains the same result in 107 s. These experiments have been carried out on a
standard laptop with an Intel Core i7 at 2.7GHz.

5 Conclusion
We presented Momba, a Python framework for dealing with quantitative models
covering the whole process of model creation, validation, and analysis provid-
ing an integrated and intuitive experience. In a user story on Racetrack, we
demonstrated how Momba’s capabilities can be used throughout all stages of
the development process of cyber-physical models.

We demonstrated how Momba enables scenario-based model construction
with Python code in a concise and modular way with syntax-aware macros. Using
Momba’s simulation engine, we were able to rapidly prototype an interactive
visualization thereby gaining confidence in our models and, finally, thanks to
JANI-model, we demonstrated how to analyse our models with state-of-the-art
model checkers directly invoked and cross-checked by Momba.

By basing Momba on Python, we aim to harvest the tools developed by the
data-science community. Especially, when combined with Jupyter [26], Momba
enables literate programming [32] combining code, data, and documentation for
reproducible experiments and process documentation.

We hope that Momba helps to open up the world of formal modeling towards
a broader community by lowering or removing barriers otherwise obstructing the
application of formal models. Momba’s infrastructure is implemented in such a
way that it can easily be extended into other directions and for connections to
other research areas, e. g., model checking policies machine learned with Python
libraries [16,17].

Momba: JANI Meets Python 395

References

1. Momba on GitHub, https://github.com/koehlma/momba
2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-

mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu,
Y., Zheng, X.: Tensorflow: A system for large-scale machine learning. In: Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and Implemen-
tation. p. 265283. OSDI’16, USENIX Association, USA (2016)

3. Baier, C., Dubslaff, C., Hermanns, H., Klauck, M., Klüppelholz, S., Köhl, M.A.:
Components in probabilistic systems: Suitable by construction. In: Proceedings of
the 9th International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation. X by Construction. (2020)

4. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-
time dynamic programming. Artificial Intelligence 72(1), 81 – 138 (1995).
https://doi.org/10.1016/0004-3702(94)00011-O

5. Bonet, B., Geffner, H.: Labeled RTDP: improving the convergence of real-time
dynamic programming. In: ICAPS. pp. 12–21 (2003)

6. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: Quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 23rd Interna-
tional Conference, TACAS 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10206, pp.
151–168 (2017). https://doi.org/10.1007/978-3-662-54580-5_9

7. Budde, C.E., Hartmanns, A., Klauck, M., Kretinsky, J., Parker, D., Quatmann, T.,
Turrini, A., Zhang, Z.: On Correctness, Precision, and Performance in Quantitative
Verification (QComp 2020 Competition Report). In: Proceedings of the 9th Inter-
national Symposium On Leveraging Applications of Formal Methods, Verification
and Validation. Software Verification Tools. (2020)

8. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: Profeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Aspects Com-
put. 30(1), 45–75 (2018). https://doi.org/10.1007/s00165-017-0432-4, https://
doi.org/10.1007/s00165-017-0432-4

9. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: A modern prob-
abilistic model checker. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Ver-
ification - 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10427,
pp. 592–600. Springer (2017). https://doi.org/10.1007/978-3-319-63390-9_31

10. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0a framework for ltl and ω-automata manipulation. In: International Sym-
posium on Automated Technology for Verification and Analysis. pp. 122–129.
Springer (2016)

11. Fernandez, J., Garavel, H., Kerbrat, A., Mounier, L., Mateescu, R., Sighireanu,
M.: CADP - A protocol validation and verification toolbox. In: Alur, R., Hen-
zinger, T.A. (eds.) Computer Aided Verification, 8th International Conference,
CAV ’96, New Brunswick, NJ, USA, July 31 - August 3, 1996, Proceedings.
Lecture Notes in Computer Science, vol. 1102, pp. 437–440. Springer (1996).
https://doi.org/10.1007/3-540-61474-5_97

https://github.com/koehlma/momba
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/3-540-61474-5_97

396 M. A. Köhl et al.

12. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

13. Garavel, H., Lang, F., Mounier, L.: Compositional verification in action. In: Howar,
F., Barnat, J. (eds.) Formal Methods for Industrial Critical Systems - 23rd Inter-
national Conference, FMICS 2018, Maynooth, Ireland, September 3-4, 2018, Pro-
ceedings. Lecture Notes in Computer Science, vol. 11119, pp. 189–210. Springer
(2018). https://doi.org/10.1007/978-3-030-00244-2_13

14. Gardner, M.: Mathematical games. Scientific American 229, 118–121 (1973)
15. Gros, T.P., Groß, D., Gumhold, S., Hoffmann, J., Klauck, M., Steinmetz, M.: Trace-

Vis: Towards Visualization for Deep Statistical Model Checking. In: Proceedings of
the 9th International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation. From Verification to Explanation. (2020)

16. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep statis-
tical model checking. In: Gotsman, A., Sokolova, A. (eds.) Formal Techniques for
Distributed Objects, Components, and Systems - 40th IFIP WG 6.1 International
Conference, FORTE 2020, Held as Part of the 15th International Federated Con-
ference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta,
June 15-19, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12136, pp.
96–114. Springer (2020). https://doi.org/10.1007/978-3-030-50086-3_6

17. Gros, T.P., Höller, D., Hoffmann, J., Wolf, V.: Tracking the race between deep
reinforcement learning and imitation learning. In: Gribaudo, M., Jansen, D.N.,
Remke, A. (eds.) Quantitative Evaluation of Systems - 17th International Con-
ference, QEST 2020, Vienna, Austria, August 31 - September 3, 2020, Proceed-
ings. Lecture Notes in Computer Science, vol. 12289, pp. 11–17. Springer (2020).
https://doi.org/10.1007/978-3-030-59854-9_2

18. Hahn, E.M., Hartmanns, A.: A comparison of time- and reward-bounded prob-
abilistic model checking techniques. In: Fränzle, M., Kapur, D., Zhan, N. (eds.)
Dependable Software Engineering: Theories, Tools, and Applications - Second
International Symposium, SETTA 2016, Beijing, China, November 9-11, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 9984, pp. 85–100 (2016).
https://doi.org/10.1007/978-3-319-47677-3_6

19. Hahn, E.M., Hartmanns, A., Hensel, C., Klauck, M., Klein, J., Kretínský, J., Parker,
D., Quatmann, T., Ruijters, E., Steinmetz, M.: The 2019 comparison of tools for
the analysis of quantitative formal models - (QComp 2019 competition report). In:
Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems - 25 Years of TACAS: TOOLympics,
Held as Part of ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceed-
ings, Part III. Lecture Notes in Computer Science, vol. 11429, pp. 69–92. Springer
(2019). https://doi.org/10.1007/978-3-030-17502-3_5

20. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasmc: A web-based
probabilistic model checker. In: Jones, C.B., Pihlajasaari, P., Sun, J. (eds.) FM
2014: Formal Methods - 19th International Symposium, Singapore, May 12-16,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8442, pp. 312–317.
Springer (2014). https://doi.org/10.1007/978-3-319-06410-9_22

21. Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment for
quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems - 20th International
Conference, TACAS 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014.

https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-030-00244-2_13
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.1007/978-3-030-59854-9_2
https://doi.org/10.1007/978-3-319-47677-3_6
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-319-06410-9_22

Momba: JANI Meets Python 397

Proceedings. Lecture Notes in Computer Science, vol. 8413, pp. 593–598. Springer
(2014). https://doi.org/10.1007/978-3-642-54862-8_51

22. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The Quan-
titative Verification Benchmark Set. In: Vojnar, T., Zhang, L. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 25th International Con-
ference, TACAS 2019, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 11427, pp. 344–350.
Springer (2019). https://doi.org/10.1007/978-3-030-17462-0_20

23. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic
model checker storm. CoRR abs/2002.07080 (2020), https://arxiv.org/abs/
2002.07080

24. Hoffmann, J., Hermanns, H., Klauck, M., Steinmetz, M., Karpas, E., Magazzeni,
D.: Let’s learn their language? A case for planning with automata-network lan-
guages from model checking. In: The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020. pp. 13569–13575. AAAI Press (2020)

25. Klauck, M., Steinmetz, M., Hoffmann, J., Hermanns, H.: Bridging the gap be-
tween probabilistic model checking and probabilistic planning: Survey, compi-
lations, and empirical comparison. J. Artif. Intell. Res. 68, 247–310 (2020).
https://doi.org/10.1613/jair.1.11595

26. Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B.E., Bussonnier, M., Frederic,
J., Kelley, K., Hamrick, J.B., Grout, J., Corlay, S., et al.: Jupyter notebooks-a
publishing format for reproducible computational workflows. In: ELPUB. pp. 87–
90 (2016)

27. Köhl, M.A., Klauck, M., Hermanns, H.: (TACAS21 Artifact) Momba: JANI Meets
Python. https://doi.org/10.5281/zenodo.4431780

28. McMahan, H.B., Gordon, G.J.: Fast exact planning in Markov decision processes.
In: ICAPS. pp. 151–160 (2005)

29. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. the Journal of machine Learning research 12, 2825–2830 (2011)

30. Pineda, L.E., Lu, Y., Zilberstein, S., Goldman, C.V.: Fault-tolerant planning under
uncertainty. In: IJCAI. pp. 2350–2356 (2013)

31. Pineda, L.E., Zilberstein, S.: Planning under uncertainty using reduced models:
Revisiting determinization. In: Chien, S.A., Do, M.B., Fern, A., Ruml, W. (eds.)
Proceedings of the Twenty-Fourth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2014, Portsmouth, New Hampshire, USA, June 21-26,
2014. AAAI (2014)

32. Ruys, T.C., Brinksma, E.: Experience with literate programming in the mod-
elling and validation of systems. In: Steffen, B. (ed.) Tools and Algorithms for
Construction and Analysis of Systems, 4th International Conference, TACAS ’98,
Held as Part of the European Joint Conferences on the Theory and Practice
of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceed-
ings. Lecture Notes in Computer Science, vol. 1384, pp. 393–408. Springer (1998).
https://doi.org/10.1007/BFb0054185

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-030-17462-0_20
https://arxiv.org/abs/2002.07080
https://arxiv.org/abs/2002.07080
https://doi.org/10.1613/jair.1.11595
https://doi.org/10.5281/zenodo.4431780
https://doi.org/10.1007/BFb0054185

398 M. A. Köhl et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

SV-Comp Tool Competition Papers

C
o
n
si
st

en
t *

Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se

* *Evaluated

*
TA
C
A
S
*

Ar
tifact * SV-CO M

P
Software Verification:

10th Comparative Evaluation (SV-COMP 2021)

Dirk Beyer �

LMU Munich, Munich, Germany

Abstract. SV-COMP 2021 is the 10th edition of the Competition on
Software Verification (SV-COMP), which is an annual comparative eval-
uation of fully automatic software verifiers for C and Java programs.
The competition provides a snapshot of the current state of the art in
the area, and has a strong focus on reproducibility of its results. The
competition was based on 15 201 verification tasks for C programs and
473 verification tasks for Java programs. Each verification task consisted
of a program and a property (reachability, memory safety, overflows,
termination). SV-COMP 2021 had 30 participating verification systems
from 27 teams from 11 countries.

Keywords: Formal Verification · Program Analysis · Competition ·
Software Verification · Verification Tasks · Benchmark · C Language ·
Java Language · SV-Benchmarks

1 Introduction

Among several other objectives, the Competition on Software Verification (SV-
COMP, https://sv-comp.sosy-lab.org/2021) showcases the state of the art in the
area of automatic software verification. This edition of SV-COMP is already the
10th edition of the competition and presents again an overview of the currently
achieved results by tool implementations that are based on the most recent ideas,
concepts, and algorithms for fully automatic verification. This competition report
describes the (updated) rules and definitions, presents the competition results,
and discusses some interesting facts about the execution of the competition
experiments. The objectives of the competitions were discussed earlier (1-4 [16])
and extended over the years (5-6 [17]):

1. provide an overview of the state of the art in software-verification technology
and increase visibility of the most recent software verifiers,

2. establish a repository of software-verification tasks that is publicly available
for free use as standard benchmark suite for evaluating verification software,

This report extends previous reports on SV-COMP [10, 11, 12, 13, 14, 15, 16, 17].
Reproduction packages are available on Zenodo (see Table 4).
Funded in part by the Deutsche Forschungsgemeinschaft (DFG) – 378803395 (ConVeY).
� dirk.beyer@sosy-lab.org

© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 401–422, 2021.
https://doi.org/10.1007/978-3-030-72013-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_24&domain=pdf
https://orcid.org/0000-0003-4832-7662
https://www.sosy-lab.org/people/beyer/
https://sv-comp.sosy-lab.org/2021
http://gepris.dfg.de/gepris/projekt/378803395
https://www.sosy-lab.org/people/beyer/

402 Dirk Beyer

3. establish standards that make it possible to compare different verification
tools, including a property language and formats for the results,

4. accelerate the transfer of new verification technology to industrial practice
by identifying the strengths of the various verifiers on a diverse set of tasks,

5. educate PhD students and others on performing reproducible benchmarking,
packaging tools, and running robust and accurate research experiments, and

6. provide research teams that do not have sufficient computing resources with
the opportunity to obtain experimental results on large benchmark sets.

The previous report [17] discusses the outcome of the SV-COMP competition
so far with respect to these objectives.

Related Competitions. Competitions are an important evaluation method
and there are many competitions in the field of formal methods. We refer to
the previous report [17] for a more detailed discussion and give here only the
references to the most related competitions [9, 19, 55, 56].

Quick Summary of Changes. We strive to continuously improve the compe-
tition, and this report describes the changes of the last year. In the following
we list a brief summary of new items in SV-COMP 2021:

• SPDX identification of licenses in SV-Benchmarks collection
• WitnessLint: New checker for syntactical validity of verification witnesses
• Upgrade of the task-definition format to version 2.0
• Addition of several verification tasks and whole new sub-categories to the

SV-Benchmarks collection
• Elimination of competition-specific functions __VERIFIER_error and
__VERIFIER_assume from the verification tasks (and rules)

• Change in scoring schema: Unconfirmed results not counted anymore (when
validation was applied)

• CoVeriTeam: New tool that can be used to remotely execute verification
runs on the competition machines

• Automatic participation of previous verifiers

2 Organization, Definitions, Formats, and Rules

Procedure. The overall organization of the competition did not change in com-
parison to the earlier editions [10, 11, 12, 13, 14, 15, 16, 17]. SV-COMP is an open
competition (also known as comparative evaluation), where all verification tasks
are known before the submission of the participating verifiers, which is necessary
due to the complexity of the C language. The procedure is partitioned into the
benchmark submission phase, the training phase, and the evaluation phase. The
participants received the results of their verifier continuously via e-mail (for
pre-runs and the final competition run), and the results were publicly announced
on the competition web site after the teams inspected them. The Competition
Jury oversees the process and consists of the competition chair and one member
of each participating team. Team representatives of the jury are listed in Table 5.

Software Verification: 10th Comparative Evaluation (SV-COMP 2021) 403

Table 1: Tools for witness-based result validation (validators) and witness linter

Validator References Represent./Developer Affiliation

CPAchecker [22, 23, 25] Martin Spiessl LMU Munich, Germany
UAutomizer [22, 23] Daniel Dietsch Uni Freiburg, Germany
CPA-w2t [24] Thomas Lemberger LMU Munich, Germany
FShell-w2t [24] Michael Tautschnig Queen Mary U. of London, UK
NITWIT [78] Philipp Berger RWTH Aachen, Germany
MetaVal [29] Martin Spiessl LMU Munich, Germany
WitnessLint Sven Umbricht LMU Munich, Germany

License Requirements. Starting 2018, SV-COMP required that the verifier
must be publicly available for download and has a license that

(i) allows reproduction and evaluation by anybody (incl. results publication),
(ii) does not restrict the usage of the verifier output (log files, witnesses), and
(iii) allows any kind of (re-)distribution of the unmodified verifier archive.

During the qualification phase, when the jury members inspect the verifier
archives, several issues with licenses (missing licenses, incompatibilities) were
detected that the developers were able to address the issues on time.

With SV-COMP 2021, the community started the process of making the
benchmark collection REUSE compliant (https://reuse.software) by adding SPDX
license identifiers (https://spdx.dev). A few directories are properly labeled al-
ready, and continuous-integration checks with REUSE ensure that new con-
tributions adhere to the standard.

Validation of Results. This time, the validation of the verification results was
done by seven validation tools, which are listed in Table 1, including references to
literature. The validators CPAchecker and UAutomizer support the competition
since the beginning of its result validation in 2015. Execution-based validation was
added in 2018 using CPA-w2t and FShell-w2t. Two new validators participated
since the previous SV-COMP in 2020: Nitwit and MetaVal. A few categories
were still excluded from validation because no validators were available for
some types of programs or properties.

For SV-COMP 2021, the new validator WitnessLint was added for vali-
dating witnesses regarding their syntax. It checks the witnesses produced by
the verification tools against the specification of the format for verification
witnesses (https://github.com/sosy-lab/sv-witnesses/tree/svcomp21). For example,
WitnessLint ensures that a verification witness is a proper XML/GraphML
file and contains the required meta data. This means that the validators can
focus on the validation of the verification result, assuming that the verification
witness is syntactically valid. If the witness linter deems a verification witness
as syntactically invalid, then the answers of the result validators are ignored
and the result is not counted as confirmed.

Task-Definition Format 2.0. The format for the task definitions in
the SV-Benchmarks repository was recently extended to include a set of

https://reuse.software
https://spdx.dev
https://github.com/sosy-lab/sv-witnesses/tree/svcomp21

404 Dirk Beyer

options that can carry information from the verification task to the verifi-
cation tool. SV-COMP 2021 used the task-definition format in version 2.0
(https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0).
More details can be found in the report for Test-Comp 2021 [19].

Properties. Please see the 2015 competition report [13] for the definition of
the properties and the property format. All specifications are available in the
directory c/properties/ of the benchmark repository.

Categories. The updated category structure is illustrated by Fig. 1. The
categories are also listed in Tables 7 and 8, and described in detail
on the competition web site (https://sv-comp.sosy-lab.org/2021/benchmarks.php).
Compared to the category structure for SV-COMP 2020, we added
the sub-categories XCSP and Combinations to category ReachSafety, and
the sub-categories DeviceDriversLinux64Large ReachSafety, uthash MemSafety,
uthash NoOverflows, and uthash ReachSafety to category SoftwareSystems.

Another effort was to integrate some of the Juliet benchmark tasks [31]
into the SV-Benchmarks collection. We requested a license for the Juliet
programs that properly clarifies the license terms also outside the USA. We
thank our colleagues from NIST for releasing their Juliet benchmark (which
is declared as public domain) under the Creative Commons license CC0-1.0
(https://github.com/sosy-lab/sv-benchmarks/blob/svcomp21/LICENSES/CC0-1.0.txt).
SV-COMP 2021 used many verification tasks from Juliet, in particular
for the memory-safety properties CWE121 (stack-based buffer overflow),
CWE401 (memory leak), CWE415 (double free), CWE476 (null-pointer
dereference), and CWE590 (free memory that is not on the heap) (see
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp21/c/MemSafety-Juliet.set).

All those new contributions to the benchmark collection lead to the growth
of the number of verification tasks from 11 052 in SV-COMP 2020 to 15 201
in SV-COMP 2021.

Verification Tasks. The previous verification tasks and competition rules used
special definitions for the functions __VERIFIER_error and __VERIFIER_assume.
These special definitions were found to be unintuitive and inconsistent with ex-
pectations in the verification community, and repeatedly caused confusion among
participants. A call of function __VERIFIER_error() was defined to never return.
A call of function __VERIFIER_assume(p) was defined such that if expression p
evaluates to false, then the function loops forever, otherwise the function returns
without any side effects. This led to unintended interactions with other properties.

We eliminated these two functions in two steps. In the first step, each
function call was replaced by a C-code implementation of the intended be-
havior. In most of the cases, __VERIFIER_error(); was replaced by the C code
reach_error(); abort();, where reach_error is a ‘normal’ function, i.e., one
whose interpretation follows the C standard [3].

Eliminating __VERIFIER_assume was more complicated: In some
tasks for property memory-cleanup, __VERIFIER_assume(p); was re-
placed by the C code assume_cycle_if_not(p);, which is implemented

https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp21/c/properties/
https://sv-comp.sosy-lab.org/2021/benchmarks.php
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp21/LICENSES/CC0-1.0.txt
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp21/c/MemSafety-Juliet.set

Software Verification: 10th Comparative Evaluation (SV-COMP 2021) 405

Fig. 1: Category structure for SV-COMP 2021; category C-FalsificationOverall
contains all verification tasks of C-Overall without Termination; Java-Overall con-
tains all Java verification tasks; compared to SV-COMP 2020, there are two new
sub-categories in ReachSafety and four new sub-categories in SoftwareSystems

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

ProductLines

Recursive

Sequentialized

XCSP

Combinations

ReachSafety

Arrays

Heap

LinkedList

Other

MemCleanup

Juliet

MemSafety

MainConcurrencySafety

BitVectors

Other
NoOverflows

MainControlFlow

MainHeap

Other

Termination

AWS-C-Common ReachSafety

BusyBox MemSafety

BusyBox NoOverflows

DeviceDriversLinux64 ReachSafety

DeviceDriversLinux64Large ReachSafety

OpenBSD MemSafety

uthash MemSafety

uthash NoOverflows

uthash ReachSafety

SoftwareSystems

C-Overall

Java-Overall

C-FalsificationOverall

406 Dirk Beyer

Table 2: Scoring schema for SV-COMP 2021 (new: no point for unconfirmed
correct results anymore)

Reported result Points Description
Unknown 0 Failure to compute verification result
False correct +1 Violation of property in program was correctly found

and a validator confirmed the result based on a witness
False incorrect −16 Violation reported but property holds (false alarm)
True correct +2 Program correctly reported to satisfy property

and a validator confirmed the result based on a witness
True incorrect −32 Incorrect program reported as correct (wrong proof)

Fig. 2: Visualization of the scoring schema for the reachability property (adjusted
from a previous report [15])

as if (!p) while(1);, while for other tasks, __VERIFIER_assume(p);
was replaced by assume_abort_if_not(p);, which is implemented as
if (!p) abort();. The solution nicely illustrates the problem of the spe-
cial semantics: Consider property memory-cleanup, which requires that all
allocated memory is deallocated before the program terminates. Here, the
desired behavior of a failing assume statement would be that the program
does not terminate (and does not unintendedly violate the memory-cleanup
property). Now consider property termination, which requires that every
path finally reaches the end of the program. Here, the desired behavior of a
failing assume statement would be that the program terminates (and does
not unintendedly violate the termination property).

In the second step, the specifications for functions __VERIFIER_error and
__VERIFIER_assume were removed from the competition rules (because no such
functions exist anymore in the SV-Benchmarks collection).

Scoring Schema and Ranking. Table 2 provides an overview and Fig. 2 visu-
ally illustrates the score assignment for the reachability property as an example.

TASK

VERIFIER
true-unreach

VERIFIER

false-unreach

WITNESS_VALIDATOR

true

0
unknown

-16
false

2true (witness confirmed)

0unconfirmed (false, unknown, or ressources exhausted)

0invalid (error in witness syntax)

-32true

0

unknown

WITNESS_VALIDATOR

false 0invalid (error in witness syntax)

0unconfirmed (true, unknown, or ressources exhausted)

1false (witness confirmed)

Software Verification: 10th Comparative Evaluation (SV-COMP 2021) 407

The scoring schema was changed regarding the special rule for unconfirmed
correct results for expected result True. There was a rule during the transi-
tioning phase to assign one point if the answer matches the expected result
but the witness was not confirmed. Now score points are only assigned if the
results got validated (or no validator was available).

As in the last years, the rank of a verifier was decided based on the sum
of points (normalized for meta categories). In case of a tie, the rank was de-
cided based on success run time, which is the total CPU time over all verifica-
tion tasks for which the verifier reported a correct verification result. Opt-out
from Categories and Score Normalization for Meta Categories was done as
described previously [11] (page 597).

3 Reproducibility

To allow independent reproduction of the SV-COMP results, we made all ma-
jor components that were used in the competition available in public version-
control repositories. An overview of the components that contribute to the
reproducible setup of SV-COMP is provided in Fig. 3, and the details are given
in Table 3. We refer to the SV-COMP 2016 report [14] for a description of
all components of the SV-COMP organization.

We have published the competition artifacts at Zenodo (see Table 4) to
guarantee their long-term availability and immutability. These artifacts comprise
the verification tasks, the competition results, the produced verification witnesses,
and the BenchExec package. The archive for the competition results includes the
raw results in BenchExec’s XML exchange format, the log output of the verifiers
and validators, and a mapping from file names to SHA-256 hashes. The hashes
of the files are useful for validating the exact contents of a file, and accessing
the files inside the archive that contains the verification witnesses.

Competition Workflow. The workflow of the competition is described in
the report for Test-Comp 2021 [19].

CoVeriTeam. The competition was for the first time supported by
CoVeriTeam [26] (https://gitlab.com/sosy-lab/software/coveriteam/), which is a
tool for cooperative verification. Among its many capabilities, it enables remote
execution of verification runs directly on the competition machines, which was
found to be a valuable service for trouble shooting.

4 Results and Discussion

The results of the competition experiments represent the state of the art in fully
automatic software-verification tools. The report shows the results, in terms of
effectiveness (number of verification tasks that can be solved and correctness of
the results, as accumulated in the score) and efficiency (resource consumption
in terms of CPU time and CPU energy). The results are presented in the same
way as in last years, such that the improvements compared to last year are easy

https://gitlab.com/sosy-lab/software/coveriteam/

408 Dirk Beyer

Fig. 3: Benchmarking components of SV-COMP and competition’s execution flow
(same as for SV-COMP 2020)

Table 3: Publicly available components for reproducing SV-COMP 2021

Component Fig. 3 Repository Version

Verification Tasks (a) github.com/sosy-lab/sv-benchmarks svcomp21
Benchmark Definitions (b) gitlab.com/sosy-lab/sv-comp/bench-defs svcomp21
Tool-Info Modules (c) github.com/sosy-lab/benchexec 3.6
Verifier Archives (d) gitlab.com/sosy-lab/sv-comp/archives-2021 svcomp21
Benchmarking (e) github.com/sosy-lab/benchexec 3.6
Witness Format (f) github.com/sosy-lab/sv-witnesses svcomp21

Table 4: Artifacts published for SV-COMP 2021

Content DOI Reference

Verification Tasks 10.5281/zenodo.4459126 [20]
Competition Results 10.5281/zenodo.4458215 [18]
Verification Witnesses 10.5281/zenodo.4459196 [21]
BenchExec 10.5281/zenodo.4317433 [82]

to identify. The results presented in this report were inspected and approved by
the participating teams. We now discuss the highlights of the results.

Participating Verifiers. Table 5 provides an overview of the participat-
ing verification systems (see also the listing on the competition web site at
https://sv-comp.sosy-lab.org/2021/systems.php). Table 6 lists the algorithms and
techniques that are used by the verification tools.

Automatic Participation. To ensure that the comparative evaluation continues
to give an overview of the state of the art that is as broad as possible, a rule was
introduced before SV-COMP 2020 which enables the option for the organizer to
reuse systems that participated in previous years for the comparative evaluation.
This option was used three times in SV-COMP 2021: for Coastal, PredatorHP,
and SPF. Those participations are marked as ‘hors concours’ in Table 5.

(a) Verification Task

(e) Verification Run

(b) Benchmark Definition (c) Tool-Info Module (d) Verifier Archive

FALSE UNKNOWN TRUE(f) Violation
Witness

(f) Correctness
Witness

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp21/c
https://gitlab.com/sosy-lab/sv-comp/bench-defs/-/tree/svcomp21
https://github.com/sosy-lab/benchexec/tree/3.6/benchexec/tools
https://gitlab.com/sosy-lab/sv-comp/archives-2021/tree/svcomp21/2021
https://github.com/sosy-lab/benchexec/tree/3.6
https://github.com/sosy-lab/sv-witnesses/tree/svcomp21
https://doi.org/10.5281/zenodo.4459126
https://doi.org/10.5281/zenodo.4458215
https://doi.org/10.5281/zenodo.4459196
https://doi.org/10.5281/zenodo.4317433
https://sv-comp.sosy-lab.org/2021/systems.php

Software Verification: 10th Comparative Evaluation (SV-COMP 2021) 409

Table 5: Competition candidates with tool references and representing jury members

Participant Ref. Jury member Affiliation

2ls [32, 63] Viktor Malík BUT, Brno, Czechia
Brick Lei Bu Nanjing U., China
Cbmc [60] Michael Tautschnig Queen Mary U. of London, UK
Coastal [79] (hors concours) –
CPA-BAM-BnB [4, 81] Vadim Mutilin ISP RAS, Russia
CPALockator [5, 6] Pavel Andrianov ISP RAS, Russia
CPAchecker [27, 41] Stephan Holzner LMU Munich, Germany
Dartagnan [48, 68] Hernán Ponce de León U. Bundeswehr Munich, Germany
Divine [8, 61] Henrich Lauko Masaryk U., Brno, Czechia
ESBMC-incr [36, 39] Felipe R. Monteiro Amazon Web Services, USA
ESBMC-kind [46, 47] Lucas Cordeiro U. of Manchester, UK
Frama-C [40] Martin Spiessl LMU Munich, Germany
Gazer-Theta [1, 74] Ákos Hajdu BME, Hungary
Goblint [73, 80] Simmo Saan U. of Tartu, Estonia
Java Ranger [76, 77] Soha Hussein U. of Minnesota, USA
JayHorn [59, 75] Hossein Hojjat U. of Tehran, Iran
Jbmc [37, 38] Peter Schrammel U. of Sussex / Diffblue, UK
JDart [62, 64] Falk Howar TU Dortmund, Germany
Korn [45] Gidon Ernst LMU Munich, Germany
Lazy-CSeq [57, 58] Omar Inverso Gran Sasso Science Institute, Italy
PeSCo [71, 72] Cedric Richter Paderborn U., Germany
Pinaka [35] Saurabh Joshi IIT Hyderabad, India
PredatorHP [54, 67] (hors concours) –
Smack [51, 70] Zvonimir Rakamaric U. of Utah, USA
SPF [65, 69] (hors concours) –
Symbiotic [33, 34] Marek Chalupa Masaryk U., Brno, Czechia
UAutomizer [52, 53] Matthias Heizmann U. of Freiburg, Germany
UKojak [44, 66] Dominik Klumpp U. of Freiburg, Germany
UTaipan [43, 49] Daniel Dietsch U. of Freiburg, Germany
VeriAbs [2, 42] Priyanka Darke Tata Consultancy Services, India

Computing Resources. The resource limits were the same as in the previous
competitions [14]: Each verification run was limited to 8 processing units (cores),
15GB of memory, and 15min of CPU time. Witness validation was limited
to 2 processing units, 7GB of memory, and 1.5min of CPU time for violation
witnesses and 15min of CPU time for correctness witnesses. The machines
for running the experiments are part of a compute cluster that consists of
168 machines; each verification run was executed on an otherwise completely
unloaded, dedicated machine, in order to achieve precise measurements. Each
machine had one Intel Xeon E3-1230 v5 CPU, with 8 processing units each,
a frequency of 3.4GHz, 33GB of RAM, and a GNU/Linux operating system
(x86_64-linux, Ubuntu 20.04 with Linux kernel 5.4). We used BenchExec [28]
to measure and control computing resources (CPU time, memory, CPU energy)
and VerifierCloud (https://vcloud.sosy-lab.org) to distribute, install, run, and
clean-up verification runs, and to collect the results. The values for time and

https://vcloud.sosy-lab.org

410 Dirk Beyer

Table 6: Algorithms and techniques that the competition candidates used

Participant C
E
G

A
R

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

S
ym

b
ol

ic
E
xe

cu
ti

on

B
ou

n
d
ed

M
od

el
C

h
ec

ki
n
g

k-
In

d
u
ct

io
n

P
ro

p
er

ty
-D

ir
ec

te
d

R
ea

ch
.

E
xp

li
ci

t-
V

al
u
e

A
n
al

ys
is

N
u
m

er
ic

.
In

te
rv

al
A

n
al

ys
is

S
h
ap

e
A

n
al

ys
is

S
ep

ar
at

io
n

L
og

ic

B
it

-P
re

ci
se

A
n
al

ys
is

A
R

G
-B

as
ed

A
n
al

ys
is

L
az

y
A

b
st

ra
ct

io
n

In
te

rp
ol

at
io

n

A
u
to

m
at

a-
B

as
ed

A
n
al

ys
is

C
on

cu
rr

en
cy

S
u
p
p
or

t

R
an

ki
n
g

F
u
n
ct

io
n
s

E
vo

lu
ti

on
ar

y
A

lg
or

it
h
m

s

A
lg

or
it

h
m

S
el

ec
ti

on

P
or

tf
ol

io

2ls � � � � � �

Brick � � � � �

Cbmc � � �

Coastal �

CPA-BAM-BnB � � � � � � �

CPALockator � � � � � � � �

CPAchecker � � � � � � � � � � � � � � �

Dartagnan � � �

Divine � � � � � �

ESBMC-incr � � � �

ESBMC-kind � � � � �

Frama-C �

Gazer-Theta � � � � � � � � �

Goblint � �

Java Ranger � �

JayHorn � � � � � �

Jbmc � � �

JDart � � �

Korn � � � �

Lazy-CSeq � � �

PeSCo � � � � � � � � � � � � � � �

Pinaka � � �

PredatorHP �

Smack � � � �

SPF � � �

Symbiotic � � � � � �

UAutomizer � � � � � � � � � �

UKojak � � � � �

UTaipan � � � � � � � � � � �

VeriAbs � � � � � � � �

Software Verification: 10th Comparative Evaluation (SV-COMP 2021) 411

energy are accumulated over all cores of the CPU. To measure the CPU energy,
we used CPU Energy Meter [30] (integrated in BenchExec [28]).

One complete verification execution of the competition consisted of
163 177 verification runs (each verifier on each verification task of the selected
categories according to the opt-outs), consuming 470 days of CPU time and
126 kWh of CPU energy (without validation). Witness-based result validation
required 961 919 validation runs (each validator on each verification task for cate-
gories with witness validation, and for each verifier), consuming 274 days of CPU
time. Each tool was executed several times, in order to make sure no installation
issues occur during the execution. Including preruns, the infrastructure managed
a total of 1.33 million verification runs consuming 4.16 years of CPU time, and
7.31 million validation runs consuming 3.84 years of CPU time.

Quantitative Results. Table 7 presents the quantitative overview of all tools
and all categories. The head row mentions the category, the maximal score
for the category, and the number of verification tasks. The tools are listed in
alphabetical order; every table row lists the scores of one verifier. We indicate
the top three candidates by formatting their scores in bold face and in larger
font size. An empty table cell means that the verifier opted-out from the respec-
tive main category (perhaps participating in subcategories only, restricting the
evaluation to a specific topic). More information (including interactive tables,
quantile plots for every category, and also the raw data in XML format) is
available on the competition web site (https://sv-comp.sosy-lab.org/2021/results)
and in the results artifact (see Table 4).

Table 8 reports the top three verifiers for each category. The run time (column
‘CPU Time’) and energy (column ‘CPU Energy’) refer to successfully solved
verification tasks (column ‘Solved Tasks’). We also report the number of tasks for
which no witness validator was able to confirm the result (column ‘Unconf. Tasks’).
The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number of verification
tasks for which the verifier reported wrong results, i.e., reporting a counterexample
when the property holds (incorrect False) and claiming that the program fulfills
the property although it actually contains a bug (incorrect True), respectively.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [11, 28] because these visualizations make it eas-
ier to understand the results of the comparative evaluation. The web site
(https://sv-comp.sosy-lab.org/2021/results) and the results archive (see Table 4)
include such a plot for each (sub-)category. As an example, we show the plot for cat-
egory C-Overall (all verification tasks) in Fig. 4. A total of 10 verifiers participated
in category C-Overall, for which the quantile plot shows the overall performance
over all categories (scores for meta categories are normalized [11]). A more de-
tailed discussion of score-based quantile plots, including examples of what insights
one can obtain from the plots, is provided in previous competition reports [11, 14].

Alternative Rankings. The community suggested to report a couple of al-
ternative rankings that honor different aspects of the verification process as
complement to the official SV-COMP ranking. Table 9 is similar to Table 8, but

https://sv-comp.sosy-lab.org/2021/results
https://sv-comp.sosy-lab.org/2021/results

412 Dirk Beyer

Table 7: Quantitative overview over all results; empty cells represent opt-outs; an
asterisk after the tool name marks hors-concours participation

Participant

R
ea

ch
S
af

et
y

78
44

po
in

ts
49

27
ta

sk
s

M
em

S
af

et
y

49
81

po
in

ts
32

96
ta

sk
s

C
on

cu
rr

en
cy

S
af

et
y

14
13

po
in

ts
11

30
ta

sk
s

N
oO

ve
rfl

ow
s

68
2

po
in

ts
45

2
ta

sk
s

T
er

m
in

at
io

n
38

97
po

in
ts

22
12

ta
sk

s
S
of

tw
ar

eS
ys

te
m

s
56

08
po

in
ts

31
84

ta
sk

s
F
al

si
fi
ca

ti
on

O
ve

ra
ll

61
73

po
in

ts
12

98
9

ta
sk

s

O
ve

ra
ll

23
77

8
po

in
ts

15
20

1
ta

sk
s

Ja
va

O
ve

ra
ll

69
3

po
in

ts
47

3
ta

sk
s

2ls 3021 1100 0 414 1315 -7 1436 6219
Brick

Cbmc 3395 -725 486 279 872 565 2609 5289
CPA-BAM-BnB 491
CPALockator -819
CPAchecker 4764 2992 1050 531 1356 736 4356 12217
Dartagnan 309
Divine 2012 95 391 0 0 124 306 2083
ESBMC-incr -134
ESBMC-kind 4486 1281 37 317 832 694 2002 6656
Frama-C 172
Gazer-Theta

Goblint 777 46 156 331
Korn

Lazy-CSeq 1206
PeSCo 4526 878 4329 12208
Pinaka 3408 -200 669
PredatorHP* 2187
Smack 894
Symbiotic 3864 3125 0 373 1043 2001 2947 9268
UAutomizer 3502 1615 943 512 3019 359 3432 11769
UKojak 1768 925 0 441 0 298 1800 4332
UTaipan 2743 1436 937 506 0 282 3336 7676
VeriAbs 5771
Coastal* 298
Java Ranger 630
JayHorn 369
Jbmc 603
JDart 623
SPF* 409

Software Verification: 10th Comparative Evaluation (SV-COMP 2021) 413

Table 8: Overview of the top-three verifiers for each category (measurement values for
CPU time and energy rounded to two significant digits)

Rank Verifier Score CPU CPU Solved Unconf. False Wrong
Time Energy Tasks Tasks Alarms Proofs
(in h) (in kWh)

ReachSafety
1 VeriAbs 5771 130 1.5 3 526 725
2 CPAchecker 4764 100 1.2 2 922 251 6
3 PeSCo 4526 53 0.48 2 820 272 7

MemSafety
1 Symbiotic 3125 1.6 0.021 370 8
2 CPAchecker 2992 7.8 0.069 3 092 0
3 UAutomizer 1615 4.1 0.046 160 2

ConcurrencySafety
1 Lazy-CSeq 1206 4.0 0.051 985 34
2 CPAchecker 1050 16 0.13 903 0 1
3 UAutomizer 943 9.6 0.087 775 176

NoOverflows
1 CPAchecker 531 1.2 0.012 366 3
2 UAutomizer 512 1.7 0.015 358 0
3 UTaipan 506 1.9 0.018 355 0

Termination
1 UAutomizer 3019 22 0.24 1 581 9
2 CPAchecker 1356 17 0.20 1 078 70 10
3 2ls 1315 2.5 0.021 977 363 3

SoftwareSystems
1 Symbiotic 2001 0.55 0.0075 1 024 128
2 Smack 894 14 0.14 1 362 58 2
3 PeSCo 878 27 0.27 1 484 234 1

FalsificationOverall
1 CPAchecker 4356 71 0.76 3 814 98 8
2 PeSCo 4329 47 0.41 3 798 106 9
3 UAutomizer 3432 30 0.30 1 585 215 1

Overall
1 CPAchecker 12217 190 2.1 9 835 514 18
2 PeSCo 12208 120 1.2 9 743 579 19
3 UAutomizer 11769 99 1.0 5 980 489 1 1
JavaOverall
1 Java Ranger 630 4.9 0.056 427 0
2 JDart 623 0.93 0.0093 437 0
3 Jbmc 603 0.22 0.0022 423 0

contains the alternative ranking categories Correct and Green Verifiers. Column
‘Quality’ gives the score in score points, column ‘CPU Time’ the CPU usage of
successful runs in hours, column ‘CPU Energy’ the CPU usage of successful runs
in kWh, column ‘Solved Tasks’ the number of correct results, column ‘Wrong Re-

414 Dirk Beyer

Fig. 4: Quantile functions for category C-Overall. Each quantile function illustrates
the quantile (-coordinate) of the scores obtained by correct verification runs
below a certain run time (y-coordinate). More details were given previously [11].
A logarithmic scale is used for the time range from 1 s to 1000 s, and a linear
scale is used for the time range between 0 s and 1 s.

Table 9: Alternative rankings for catagory Overall; quality is given in score
points (sp), CPU time in hours (h), kilo-watt-hours (kWh), wrong results in
errors (E), rank measures in errors per score point (E/sp), joule per score point
(J/sp), and score points (sp)

Rank Verifier Quality CPU CPU Solved Wrong Rank
Time Energy Tasks Results Measure

(sp) (h) (kWh) (E)

Correct Verifiers (E/sp)
1 UAutomizer 11 769 99 1.0 5 980 2 .00017
2 UKojak 4 332 46 0.48 2 476 1 .00023
3 CPAchecker 12 217 190 2.1 9 835 18 .0015
worst 48 .023

Green Verifiers (J/sp)
1 Symbiotic 9 268 21 0.26 4 999 16 100
2 2ls 6 219 26 0.24 3 372 12 140
3 Cbmc 5 289 26 0.31 5 596 52 210
worst 630

sults’ the sum of false alarms and wrong proofs in number of errors, and column
‘Rank Measure’ gives the measure to determine the alternative rank.
Correct Verifiers — Low Failure Rate. The right-most columns of Table 8 re-
port that the verifiers achieve a high degree of correctness (all top three ver-
ifiers in the C-Overall have less than 2‰ wrong results). The winners of cat-
egory Java-Overall produced not a single wrong answer. The first category in

 1

 10

 100

 1000

M
in

.
ti

m
e
 i
n
 s

2LS
CBMC

CPAchecker
DIVINE

ESBMC-kind
PeSCo

Symbiotic
UAutomizer

UKojak
UTaipan

-2000 0 2000 4000 6000 8000 10000 12000

Cumulative score

Software Verification: 10th Comparative Evaluation (SV-COMP 2021) 415

Table 10: New verifiers in SV-COMP 2020 and SV-COMP 2021

Verifier Language First Year Sub-categories

Frama-C C 2021 4
Gazer-Theta C 2021 9
Goblint C 2021 25
Korn C 2021 13
Brick C 2020 1
Dartagnan C 2020 5
Gacal C 2020 1

Coastal Java 2020 1
Java Ranger Java 2020 1
JDart Java 2020 1

Table 11: Confirmation rate of verification witnesses in SV-COMP 2021

Result True False

Total Confirmed Unconf. Total Confirmed Unconf.

2ls 2 252 2 245 99.7% 7 1 591 1 127 70.8% 464
Cbmc 3 875 3 498 90.3% 377 3 772 2 098 55.6% 1 674
CPAchecker 5 992 5 646 94.2% 346 4 357 4 189 96.1% 168
Divine 1 673 1 649 98.6% 24 1 317 986 74.9% 331
ESBMC-kind 4 954 4 901 98.9% 53 1 736 1 625 93.6% 111
PeSCo 5 973 5 570 93.3% 403 4 349 4 173 96.0% 176
Symbiotic 3 351 3 149 94.0% 202 2 166 1 850 85.4% 316
UAutomizer 4 121 3 856 93.6% 265 2 348 2 124 90.5% 224
UKojak 1 816 1 796 98.9% 20 690 680 98.6% 10
UTaipan 2 602 2 542 97.7% 60 1 637 1 417 86.6% 220

Table 9 uses a failure rate as rank measure: number of incorrect results
total score , the number of

errors per score point (E/sp). We use E as unit for number of incorrect results
and sp as unit for total score. The worst result was 0.032E/sp in SV-COMP 2020
and is now improved to 0.023E/sp.
Green Verifiers — Low Energy Consumption. Since a large part of the cost of
verification is given by the energy consumption, it might be important to also
consider the energy efficiency. The second category in Table 9 uses the energy
consumption per score point as rank measure: total CPU energy

total score , with the unit J/sp.
The worst result from SV-COMP 2020 was 2 200 J/sp, now improved to 630 J/sp.
New Verifiers. To acknowledge the verification systems that participate for
the first or second time in SV-COMP, Table 10 lists the new verifiers (in
SV-COMP 2020 or SV-COMP 2021).

Verifiable Witnesses. Results validation is of primary importance in the compe-
tition. All SV-COMP verifiers are required to justify the result (True or False)
by producing a verification witness (except for those categories for which no wit-
ness validator is available). We used six independently developed witness-based
result validators and one witness linter (see Table 1).

416 Dirk Beyer

Fig. 5: Number of evaluated verifiers for each year (first-time participants on top)

Table 11 shows the confirmed versus unconfirmed results: the first column
lists the verifiers of category C-Overall, the three columns for result True reports
the total, confirmed, and unconfirmed number of verification tasks for which the
verifier answered with True, respectively, and the three columns for result False
reports the total, confirmed, and unconfirmed number of verification tasks for
which the verifier answered with False, respectively. More information (for all
verifiers) is given in the detailed tables on the competition web site and in the
results artifact; all verification witnesses are also contained in the witnesses
artifact (see Table 4). The verifiers 2ls and UKojak are the winners in terms
of confirmed results for expected results True and False, respectively. The
overall interpretation is similar to SV-COMP 2020 [17].

5 Conclusion

The 10th edition of the Competition on Software Verification (SV-COMP 2021)
had 30 participating verification systems from 11 countries (see Fig. 5 for the
participation numbers and Table 5 for the details). The competition does not only
execute the verifiers and collect results, but also validates the verification results
using verification witnesses. We used six independent validators to check the
results and a witness linter to check if the verification witnesses are syntactically
valid (Table 1). The number of verification tasks was increased to 15 201 in the
C category and to 473 in the Java category. The high quality standards of the
TACAS conference, in particular with respect to the important principles of
fairness, community support, and transparency are ensured by a competition jury
in which each participating team had a member. The results of our comparative
evaluation provide a broad overview of the state of the art in automatic software
verification. SV-COMP is instrumental in developing more reliable tools, as well
as identifying and propagating successful techniques for software verification.

Data Availability Statement. The verification tasks and results of the
competition are published at Zenodo, as described in Table 4. All compo-
nents and data that are necessary for reproducing the competition are avail-
able in public version repositories, as specified in Table 3. Furthermore, the
results are presented online on the competition web site for easy access:
https://sv-comp.sosy-lab.org/2021/results/.

https://sv-comp.sosy-lab.org/2021/results/

Software Verification: 10th Comparative Evaluation (SV-COMP 2021) 417

References

1. Ádám, Zs., Sallai, Gy., Hajdu, Á.: Gazer-Theta: LLVM-based verifier portfolio
with BMC/CEGAR (competition contribution). In: Proc. TACAS (2). LNCS 12652,
Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_27

2. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar,
S., Venkatesh, R.: VeriAbs: Verification by abstraction and test generation. In:
Proc. ASE. pp. 1138–1141 (2019). https://doi.org/10.1109/ASE.2019.00121

3. American National Standards Institute: ANSI/ISO/IEC 9899-1999: Programming
Languages — C. American National Standards Institute, 1430 Broadway, New
York, NY 10018, USA (1999)

4. Andrianov, P., Friedberger, K., Mandrykin, M.U., Mutilin, V.S., Volkov, A.: CPA-
BAM-BnB: Block-abstraction memoization and region-based memory models for
predicate abstractions (competition contribution). In: Proc. TACAS. pp. 355–359.
LNCS 10206, Springer (2017). https://doi.org/10.1007/978-3-662-54580-5_22

5. Andrianov, P., Mutilin, V., Khoroshilov, A.: CPALockator: Thread-modular
approach with projections (competition contribution). In: Proc. TACAS (2).
LNCS 12652, Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_25

6. Andrianov, P.S.: Analysis of correct synchronization of operating
system components. Program. Comput. Softw. 46, 712–730 (2020).
https://doi.org/10.1134/S0361768820080022

7. Balyo, T., Heule, M.J.H., Järvisalo, M.: SAT Competition 2016: Recent develop-
ments. In: Proc. AAAI. pp. 5061–5063. AAAI Press (2017)

8. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H., Mrázek, J., Ročkai, P.,
Štill, V.: Model checking of C and C++ with Divine 4. In: Proc. ATVA. pp. 201–207.
LNCS 10482, Springer (2017). https://doi.org/10.1007/978-3-319-68167-2_14

9. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,
G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

10. Beyer, D.: Competition on software verification (SV-COMP). In: Proc. TACAS. pp.
504–524. LNCS 7214, Springer (2012). https://doi.org/10.1007/978-3-642-28756-
5_38

11. Beyer, D.: Second competition on software verification (Summary of SV-
COMP 2013). In: Proc. TACAS. pp. 594–609. LNCS 7795, Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_43

12. Beyer, D.: Status report on software verification (Competition summary SV-
COMP 2014). In: Proc. TACAS. pp. 373–388. LNCS 8413, Springer (2014).
https://doi.org/10.1007/978-3-642-54862-8_25

13. Beyer, D.: Software verification and verifiable witnesses (Report on SV-
COMP 2015). In: Proc. TACAS. pp. 401–416. LNCS 9035, Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0_31

14. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (Report on SV-COMP 2016). In: Proc. TACAS. pp. 887–904. LNCS 9636,
Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_55

15. Beyer, D.: Software verification with validation of results (Report on SV-
COMP 2017). In: Proc. TACAS. pp. 331–349. LNCS 10206, Springer (2017).
https://doi.org/10.1007/978-3-662-54580-5_20

https://doi.org/10.1007/978-3-030-72013-1_27
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-030-72013-1_25
https://doi.org/10.1134/S0361768820080022
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-642-54862-8_25
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-54580-5_20

418 Dirk Beyer

16. Beyer, D.: Automatic verification of C and Java programs: SV-COMP
2019. In: Proc. TACAS (3). pp. 133–155. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_9

17. Beyer, D.: Advances in automatic software verification: SV-COMP
2020. In: Proc. TACAS (2). pp. 347–367. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_21

18. Beyer, D.: Results of the 10th Intl. Competition on Software Verification (SV-COMP
2021). Zenodo (2021). https://doi.org/10.5281/zenodo.4458215

19. Beyer, D.: Status report on software testing: Test-Comp 2021. In: Proc. FASE.
LNCS 12649, Springer (2021). https://doi.org/10.1007/978-3-030-71500-7_17

20. Beyer, D.: SV-Benchmarks: Benchmark set of 10th Intl. Compe-
tition on Software Verification (SV-COMP 2021). Zenodo (2021).
https://doi.org/10.5281/zenodo.4459126

21. Beyer, D.: Verification witnesses from SV-COMP 2021 verification tools. Zenodo
(2021). https://doi.org/10.5281/zenodo.4459196

22. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

23. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

24. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23.
LNCS 10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

25. Beyer, D., Friedberger, K.: Violation witnesses and result validation for multi-
threaded programs. In: Proc. ISoLA (1). pp. 449–470. LNCS 12476, Springer (2020).
https://doi.org/10.1007/978-3-030-61362-4_26

26. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative
verification systems. unpublished manuscript (2021)

27. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable soft-
ware verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

28. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

29. Beyer, D., Spiessl, M.: MetaVal: Witness validation via verification. In: Proc.
CAV. pp. 165–177. LNCS 12225, Springer (2020). https://doi.org/10.1007/978-3-
030-53291-8_10

30. Beyer, D., Wendler, P.: CPU Energy Meter: A tool for energy-aware algorithms
engineering. In: Proc. TACAS (2). pp. 126–133. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_8

31. Black, P.E.: Juliet 1.3 Test Suite: Changes from 1.2. Tech. Rep. NIST TN - 1995,
NIST (June 2018). https://doi.org/10.6028/NIST.TN.1995

32. Brain, M., Joshi, S., Kröning, D., Schrammel, P.: Safety verification and refutation
by k-invariants and k-induction. In: Proc. SAS. pp. 145–161. LNCS 9291, Springer
(2015). https://doi.org/10.1007/978-3-662-48288-9_9

33. Chalupa, M., Jašek, T., Novák, J., Řechtáčková, A., Šoková, V., Strejček, J.:
Symbiotic 8: Beyond symbolic execution (competition contribution). In: Proc.
TACAS (2). LNCS 12652, Springer (2021). https://doi.org/10.1007/978-3-030-
72013-1_31

https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.5281/zenodo.4458215
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.5281/zenodo.4459126
https://doi.org/10.5281/zenodo.4459196
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-030-61362-4_26
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-45237-7_8
https://doi.org/10.6028/NIST.TN.1995
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-030-72013-1_31
https://doi.org/10.1007/978-3-030-72013-1_31

Software Verification: 10th Comparative Evaluation (SV-COMP 2021) 419

34. Chalupa, M., Strejček, J., Vitovská, M.: Joint forces for memory safety checking.
In: Proc. SPIN. pp. 115–132. Springer (2018). https://doi.org/10.1007/978-3-319-
94111-0_7

35. Chaudhary, E., Joshi, S.: Pinaka: Symbolic execution meets incremental solv-
ing (competition contribution). In: Proc. TACAS (3). pp. 234–238. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_20

36. Cordeiro, L.C., Fischer, B.: Verifying multi-threaded software using SMT-based
context-bounded model checking. In: Proc. ICSE. pp. 331–340. ACM (2011).
https://doi.org/10.1145/1985793.1985839

37. Cordeiro, L.C., Kesseli, P., Kröning, D., Schrammel, P., Trtík, M.: JBmc: A
bounded model checking tool for verifying Java bytecode. In: Proc. CAV. pp. 183–
190. LNCS 10981, Springer (2018). https://doi.org/10.1007/978-3-319-96145-3_10

38. Cordeiro, L.C., Kröning, D., Schrammel, P.: JBmc: Bounded model checking for
Java bytecode (competition contribution). In: Proc. TACAS (3). pp. 219–223.
LNCS 11429, Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_17

39. Cordeiro, L.C., Morse, J., Nicole, D., Fischer, B.: Context-bounded model check-
ing with Esbmc 1.17 (competition contribution). In: Proc. TACAS. pp. 534–537.
LNCS 7214, Springer (2012). https://doi.org/10.1007/978-3-642-28756-5_42

40. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J.,
Yakobowski, B.: Frama-C. In: Proc. SEFM. pp. 233–247. Springer (2012).
https://doi.org/10.1007/978-3-642-33826-7_16

41. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive programs
and floating-point arithmetic (competition contribution). In: Proc. TACAS. pp.
423–425. LNCS 9035, Springer (2015). https://doi.org/10.1007/978-3-662-46681-
0_34

42. Darke, P., Agrawal, S., Venkatesh, R.: VeriAbs: A tool for scalable verification
by abstraction (competition contribution). In: Proc. TACAS (2). LNCS 12652,
Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_32

43. Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schüssele, F.: Ultimate
Taipan with symbolic interpretation and fluid abstractions (competition con-
tribution). In: Proc. TACAS (2). pp. 418–422. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_32

44. Ermis, E., Hoenicke, J., Podelski, A.: Splitting via interpolants. In: Proc. VMCAI.
pp. 186–201. LNCS 7148, Springer (2012). https://doi.org/10.1007/978-3-642-27940-
9_13

45. Ernst, G.: A complete approach to loop verification with invariants and summaries.
Tech. Rep. arXiv:2010.05812v2, arXiv (January 2020)

46. Gadelha, M.Y.R., Monteiro, F.R., Cordeiro, L.C., Nicole, D.A.: Esbmc v6.0: Ver-
ifying C programs using k -induction and invariant inference (competition con-
tribution). In: Proc. TACAS (3). pp. 209–213. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_15

47. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k -induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (Feb 2017). https://doi.org/10.1007/s10009-015-0407-9

48. Gavrilenko, N., Ponce de León, H., Furbach, F., Heljanko, K., Meyer, R.: BMC
for weak memory models: Relation analysis for compact SMT encodings. In: Proc.
CAV. pp. 355–365. LNCS 11561, Springer (2019). https://doi.org/10.1007/978-3-
030-25540-4_19

49. Greitschus, M., Dietsch, D., Podelski, A.: Loop invariants from counterexamples. In:
Proc. SAS. pp. 128–147. LNCS 10422, Springer (2017). https://doi.org/10.1007/978-
3-319-66706-5_7

https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-030-17502-3_20
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1007/978-3-030-17502-3_17
https://doi.org/10.1007/978-3-642-28756-5_42
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-642-27940-9_13
https://doi.org/10.1007/978-3-642-27940-9_13
http://arxiv.org/abs/2010.05812v2
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-319-66706-5_7

420 Dirk Beyer

50. Hajdu, Á., Micskei, Z.: Efficient strategies for CEGAR-based model checking. J.
Autom. Reasoning 64(6), 1051–1091 (2020). https://doi.org/10.1007/s10817-019-
09535-x

51. Haran, A., Carter, M., Emmi, M., Lal, A., Qadeer, S., Rakamarić, Z.:
SMACK+Corral: A modular verifier (competition contribution). In: Proc. TACAS.
pp. 451–454. LNCS 9035, Springer (2015). https://doi.org/10.1007/978-3-662-46681-
0_42

52. Heizmann, M., Chen, Y.F., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz,
A., Musa, B., Schilling, C., Schindler, T., Podelski, A.: Ultimate Automizer and
the search for perfect interpolants (competition contribution). In: Proc. TACAS (2).
pp. 447–451. LNCS 10806, Springer (2018). https://doi.org/10.1007/978-3-319-
89963-3_30

53. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people
who love automata. In: Proc. CAV. pp. 36–52. LNCS 8044, Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_2

54. Holík, L., Kotoun, M., Peringer, P., Šoková, V., Trtík, M., Vojnar, T.: Predator
shape analysis tool suite. In: Hardware and Software: Verification and Testing. pp.
202–209. LNCS 10028, Springer (2016). https://doi.org/10.1007/978-3-319-49052-6

55. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS grey-box
challenge 2012: Analysis of event-condition-action systems. In: Proc. ISoLA. pp.
608–614. LNCS 7609, Springer (2012). https://doi.org/10.1007/978-3-642-34026-
0_45

56. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis 2012: A program verification
competition. STTT 17(6), 647–657 (2015). https://doi.org/10.1007/s10009-015-
0396-8

57. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: A lazy
sequentialization tool for C (competition contribution). In: Proc. TACAS. pp. 398–
401. LNCS 8413, Springer (2014). https://doi.org/10.1007/978-3-642-54862-8_29

58. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model
checking of multi-threaded C programs via lazy sequentialization. In: Proc. CAV.
pp. 585–602. LNCS 8559, Springer (2014). https://doi.org/10.1007/978-3-319-08867-
9_39

59. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: A framework for
verifying Java programs. In: Proc. CAV. pp. 352–358. LNCS 9779, Springer (2016).
https://doi.org/10.1007/978-3-319-41528-4_19

60. Kröning, D., Tautschnig, M.: Cbmc: C bounded model checker (competition
contribution). In: Proc. TACAS. pp. 389–391. LNCS 8413, Springer (2014).
https://doi.org/10.1007/978-3-642-54862-8_26

61. Lauko, H., Ročkai, P., Barnat, J.: Symbolic computation via program transformation.
In: Proc. ICTAC. pp. 313–332. Springer (2018). https://doi.org/10.1007/978-3-030-
02508-3_17

62. Luckow, K.S., Dimjasevic, M., Giannakopoulou, D., Howar, F., Isberner, M.,
Kahsai, T., Rakamaric, Z., Raman, V.: JDart: A dynamic symbolic analy-
sis framework. In: Proc. TACAS. pp. 442–459. LNCSS 9636, Springer (2016).
https://doi.org/10.1007/978-3-662-49674-9_26

63. Malík, V., Schrammel, P., Vojnar, T.: 2ls: Heap analysis and memory safety (com-
petition contribution). In: Proc. TACAS (2). pp. 368–372. LNCS 12079, Springer
(2020). https://doi.org/10.1007/978-3-030-45237-7_22

64. Mues, M., Howar, F.: JDart: Portfolio solving, breadth-first search and smt-lib
strings (competition contribution). In: Proc. TACAS (2). LNCS 12652, Springer
(2021). https://doi.org/10.1007/978-3-030-72013-1_30

https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-662-46681-0_42
https://doi.org/10.1007/978-3-662-46681-0_42
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-319-49052-6
https://doi.org/10.1007/978-3-642-34026-0_45
https://doi.org/10.1007/978-3-642-34026-0_45
https://doi.org/10.1007/s10009-015-0396-8
https://doi.org/10.1007/s10009-015-0396-8
https://doi.org/10.1007/978-3-642-54862-8_29
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-030-02508-3_17
https://doi.org/10.1007/978-3-030-02508-3_17
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-030-45237-7_22
https://doi.org/10.1007/978-3-030-72013-1_30

Software Verification: 10th Comparative Evaluation (SV-COMP 2021) 421

65. Noller, Y., Păsăreanu, C.S., Le, X.B.D., Visser, W., Fromherz, A.: Symbolic
Pathfinder for SV-COMP (competition contribution). In: Proc. TACAS (3).
pp. 239–243. LNCS 11429, Springer (2019). https://doi.org/10.1007/978-3-030-
17502-3_21

66. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: Ultimate Kojak with
memory safety checks (competition contribution). In: Proc. TACAS. pp. 458–460.
LNCS 9035, Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_44

67. Peringer, P., Šoková, V., Vojnar, T.: PredatorHP revamped (not only) for
interval-sized memory regions and memory reallocation (competition contri-
bution). In: Proc. TACAS (2). pp. 408–412. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_30

68. Ponce-De-Leon, H., Haas, T., Meyer, R.: Dartagnan: Leveraging compiler optimiza-
tions and the price of precision (competition contribution). In: Proc. TACAS (2).
LNCS 12652, Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_26

69. Păsăreanu, C.S., Visser, W., Bushnell, D.H., Geldenhuys, J., Mehlitz, P.C., Rungta,
N.: Symbolic PathFinder: integrating symbolic execution with model check-
ing for Java bytecode analysis. Autom. Software Eng. 20(3), 391–425 (2013).
https://doi.org/10.1007/s10515-013-0122-2

70. Rakamarić, Z., Emmi, M.: SMACK: Decoupling source language details from
verifier implementations. In: Proc. CAV. pp. 106–113. LNCS 8559, Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9_7

71. Richter, C., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng. 27(1), 153–186
(2020). https://doi.org/10.1007/s10515-020-00270-x

72. Richter, C., Wehrheim, H.: PeSCo: Predicting sequential combinations of veri-
fiers (competition contribution). In: Proc. TACAS (3). pp. 229–233. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_19

73. Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler, R., Vojdani, V.:
Goblint: Thread-modular abstract interpretation using side-effecting constraints
(competition contribution). In: Proc. TACAS (2). LNCS 12652, Springer (2021).
https://doi.org/10.1007/978-3-030-72013-1_28

74. Sallai, Gy.: LLVM IR-based Transformations for Software Model Checking. Master’s
thesis, Budapest University of Technology and Economics (2019)

75. Shamakhi, A., Hojjat, H., Rümmer, P.: Towards string support in JayHorn
(competition contribution). In: Proc. TACAS (2). LNCS 12652, Springer (2021).
https://doi.org/10.1007/978-3-030-72013-1_29

76. Sharma, V., Hussein, S., Whalen, M.W., McCamant, S.A., Visser, W.: Java Ranger
at SV-COMP 2020 (competition contribution). In: Proc. TACAS (2). pp. 393–397.
LNCS 12079, Springer (2020). https://doi.org/10.1007/978-3-030-45237-7_27

77. Sharma, V., Hussein, S., Whalen, M.W., McCamant, S.A., Visser, W.:
Java Ranger: Statically summarizing regions for efficient symbolic
execution of Java. In: Proc. ESEC/FSE. pp. 123–134. ACM (2020).
https://doi.org/10.1145/3368089.3409734

78. Svejda, J., Berger, P., Katoen, J.P.: Interpretation-based violation witness valida-
tion for C: NitWit. In: Proc. TACAS. pp. 40–57. LNCS 12078, Springer (2020).
https://doi.org/10.1007/978-3-030-45190-5_3

79. Visser, W., Geldenhuys, J.: Coastal: Combining concolic and fuzzing for Java (com-
petition contribution). In: Proc. TACAS (2). pp. 373–377. LNCS 12079, Springer
(2020). https://doi.org/10.1007/978-3-030-45237-7_23

https://doi.org/10.1007/978-3-030-17502-3_21
https://doi.org/10.1007/978-3-030-17502-3_21
https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1007/978-3-030-45237-7_30
https://doi.org/10.1007/978-3-030-72013-1_26
https://doi.org/10.1007/s10515-013-0122-2
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-72013-1_28
https://doi.org/10.1007/978-3-030-72013-1_29
https://doi.org/10.1007/978-3-030-45237-7_27
https://doi.org/10.1145/3368089.3409734
https://doi.org/10.1007/978-3-030-45190-5_3
https://doi.org/10.1007/978-3-030-45237-7_23

422 Dirk Beyer

80. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static race
detection for device drivers: The Goblint approach. In: Proc. ASE. pp. 391–402.
ACM (2016). https://doi.org/10.1145/2970276.2970337

81. Volkov, A.R., Mandrykin, M.U.: Predicate abstractions memory modeling method
with separation into disjoint regions. Proceedings of the Institute for System
Programming (ISPRAS) 29, 203–216 (2017). https://doi.org/10.15514/ISPRAS-
2017-29(4)-13

82. Wendler, P., Beyer, D.: sosy-lab/benchexec: Release 3.6. Zenodo (2021).
https://doi.org/10.5281/zenodo.4317433

83. Wetzler, N., Heule, M.J.H., Jr., W.A.H.: Drat-trim: Efficient checking and trim-
ming using expressive clausal proofs. In: Proc. SAT. pp. 422–429. LNCS 8561,
Springer (2014). https://doi.org/10.1007/978-3-319-09284-3_31

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1145/2970276.2970337
https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://doi.org/10.5281/zenodo.4317433
https://doi.org/10.1007/978-3-319-09284-3_31
http://creativecommons.org/licenses/by/4.0/

C
o
n
si
st

en
t *

Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se

* *Evaluated

*
TA
C
A
S
*

Ar
tifact * SV-CO M

P
CPALockator: Thread-Modular Analysis

with Projections

(Competition Contribution)

Pavel Andrianov �1 , Vadim Mutilin1,3 , and Alexey Khoroshilov1,2,3,4

1 Ivannikov Institute for System Programming of RAS, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia

3 Moscow Institute of Physics and Technology, Moscow, Russia
4 Higher School of Economics, Moscow, Russia

Abstract. Our submission to SV-COMP’21 is based on the software
verification framework CPAchecker and implements the extension to the
thread-modular approach. It considers every thread separately, but in
a special environment which models thread interactions. The environ-
ment is expressed by projections of normal transitions in each thread.
A projection contains a description of possible effects over shared data
and synchronization primitives, as well as conditions of its application.
Adjusting the precision of the projections, one can find a balance between
the speed and the precision of the whole analysis.

Implementation on the top of the CPAchecker framework allows combining
our approach with existing algorithms and analyses. Evaluation on the
sv-benchmarks confirms the scalability and soundness of the approach.

Keywords: Multithreading · Projection · Thread-modular approach

1 Verification Approach

The main challenge for verification of industrial multithreaded software is to
consider a potential thread interaction efficiently. Our verification approach is
based on the thread-modular technique [4,5]. The approach allows avoiding a
cartesian product of thread states by considering each thread state separately.
Thus, an abstract state is not a complete one anymore and represents only one
thread in a partial abstract state. However, due to this, the analysis has no
information about transitions in other threads, which are strongly required for
the soundness of the analysis. Thus, to not lose soundness we have to take into
account the influence of other threads to the considered thread. For that purpose,
we compute a special representation of the environment, which consists of a set of
thread transitions, so-called projected transitions, or projections. The projections
may be more or less precise, which strongly affects the precision and speed of
the whole analysis. Note, the projections are independent and thus, a correct

� Representing jury member, corresponding author: andrianov@ispras.ru

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 423–427, 2021.
https://doi.org/10.1007/978-3-030-72013-1 25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_25&domain=pdf
http://orcid.org/0000-0002-6855-7919
http://orcid.org/0000-0003-3097-8512
http://orcid.org/0000-0002-6512-4632
https://doi.org/10.1007/978-3-030-72013-1_25

424 P. Andrianov et al.

sequence is missed. Potentially, all projections may affect the other thread in any
time. It is an overapproximation, leading to an imprecise analysis.

Let us explain, how we increase precision considering only compatible projec-
tions.

Fig. 1. Computation of a thread environment and its application

The figure 1 shows one step of the analysis. After computation of an abstract
state in the first thread, we should spread the effect (x is a shared variable) to the
other threads. Thus, we compute a projection of the operation. The projection
is a part of the environment and affects the other threads through it. Then we
apply a new effect to the other threads.

In the example, we lose the precision of the effect, abstracting from the
assigned value (x = ∗). One of the key ideas of the proposed approach is to
extend abstraction not only to states but also to operations, i.e. transitions. Thus,
the projection may look like x = 1 and ∗ = ∗ in other configurations. That
allows adjusting the level of abstraction of the environment for a specific task.
By adjusting the configuration it is possible to vary not only an abstraction level
but also to construct an algorithm that may be closer either to data-flow analysis
or to software model checking.

To be able to construct precise analysis we suggest to encode not only abstract
operations but also some conditions of its application, so-called guards. The guards
are related to a predecessor abstract state, but they are not required to be equal
to it. The guards store some information about variable values, locks, threads, or
even abstract predicates. In the figure 1 the guard contains information about the
initial value of the modified variable x (x == 0). A projection may be applied to
a particular state if the guards allow it. We say, that the projection is compatible
to an abstract state of the other thread. In our example the effect x = ∗ may be
applied to the other thread only if the corresponding state does not contradict
the condition x == 0.

More information about the approach and theoretical preliminaries can be
found in [1]. Practical application of the theory to the Linux kernel drivers can
be found in [2].

2 Software Architecture

CPALockator is based on the CPAchecker framework and has the same software
architecture. Its key concept is CPA [3]. Each abstract domain is implemented in
its own CPA. CPAs in the framework, i.e. value analysis or predicate analysis,
can be combined to build an efficient and more precise approach. A configurable

Thread1 Environment

x = 0

x = 1
x = 1; [x == 0] x = *

Thread2

x = 0

x = *
x = *;

...

...

...
...

...

...

Project Apply

CPALockator (competition contribution) 425

algorithm, CEGAR in case of CPALockator, uses CPAs to construct a set of
reachable states. In the figure 2 current configuration is presented. The highlighted
components are implemented and used only in CPALockator. Lock analysis
tracks acquired locks. It helps to compute thread effects that can be applied to
a particular thread. Thread analysis determines whether two code blocks may
be executed in parallel. Predicate analysis is extended to handle environment
actions. It allows constructing a predicate abstraction in a thread-modular case.
More information about CPALockator may be found in [1,2].

Fig. 2. Different CPAs in CPALockator configuration

3 Strengths and Weaknesses

First, we need to emphasize that the tool is targeted and used in practice for
finding bugs in large industrial software systems, for example, operating system
cores. We applied the tool to the Linux kernel and a number of private kernels of
real-time OS. The main challenge is scalability there. And results on small but
tricky sv-benchmarks look poor, just because of trade-off scalability vs. precision.
Our tool is not so precise as other participants, but we show our scalability on a
small set of complicated sv-benchmarks. However, it is useful for the community
to have such comparison.

The thread-modular approach cannot solve tasks that contain control de-
pendencies in the environment, as we consider all projections independently
from each other and thus we lose their order. This is also a problem for witness
validation, as the tool provides a path only in a single thread. It is a limitation
of the approach, not only the tool itself. In practice we use more user-friendly
format to analyze, visualize and evaluate error traces than witness validation [6].
However, the approach allows to simplify thread interaction, and the benefit is
considerable for large complicated tasks, which cannot be analyzed with precise
model checkers.

As the approach shows benefit for complicated tasks, like in ldv-linux-3.14-
races directory. CPALockator correctly solves 4 of 7 those benchmarks and for
one more obtains an imprecise counterexample. The rest of two tasks may be
solved in the other, more faster, CPALockator configuration. The other tools
mostly have problems with the benchmarks due to their complexity and size.
The explanation of the results is rather evident. Most of the tools try to consider
precise interaction between threads, while CPALockator abstracts from it and
considers each thread separately. Note, the benchmarks have a strong hint for
verifiers: there is only one assert to check while in the real world nobody knows
where the bug may be located.

ThreadModularCPA
ARGCPA

CompositeCPA
LocationCPA CallstackCPA LockCPAThreadCPA PredicateCPA

426 P. Andrianov et al.

Overall results are not so good because of problems related both to the
approach itself and its implementation. The majority of unknowns are related
to unsupported atomic operations, like atomic functions, compare and swap
and so on. Currently, our tool supports only synchronization operations based
on locks, as the industrial software mostly contains them. Another problem is
related to predicate analysis and interpolation. The current implementation of
an interpolation procedure cannot produce interpolants for other threads, which
limits the power of predicate analysis. Other problems are also present, but they
are not so significant.

Anyway, CPALockator does not produce incorrect true verdicts, which
confirms the soundness of the approach. All produced true verdicts are confirmed
by validators, however, its amount is not so numerous, as we skip all tasks with
unsupported functions. Thus, the presented approach may be used in combination
with more precise techniques.

4 Tool Setup and Configuration

We submitted CPALockator5 built from svn revision 36155 for participation
in the category Concurrency. The tool requires a Java 11 runtime environment.
CPAchecker has to be executed with the following command line:

scripts/cpa.sh -svcomp21-lockator -spec reach.prp program.i

or via BenchExec tool.

5 Project and Contributors

The CPAchecker project is mainly developed by an international research group
from the Ludwig-Maximilian University of Munich. CPALockator is based on
CPAchecker and is developed and supported by researchers from Ivannikov
Institute for System Programming of the Russian Academy of Sciences. We thank
Dirk Beyer and the CPAchecker team for their work and fruitful discussions.

References

1. Andrianov, P.: Analysis of correct synchronization of operating system components.
Programming and Computer Software 46, 712–730 (2020)

2. Andrianov, P., Mutilin, V.: Scalable thread-modular approach for data race detection.
In: Bruel, J.M., et al. (eds.) Frontiers in Software Engineering Education. pp. 371–385.
Springer, Cham (2020)

3. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Proceedings
of CAV. pp. 504–518. Springer (2007)

4. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: A constraint-based verifier for
multi-threaded programs. In: Proceedings of CAV. pp. 412–417. Springer (2011)

5 https://doi.org/10.5281/zenodo.4486117

CPALockator (competition contribution) 427

5. Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread-modular abstraction
refinement. In: Proceedings of CAV. pp. 262–274. Springer (2003)

6. Novikov, E., Zakharov, I.: Verification of operating system monolithic kernels without
extensions. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification and Validation. Industrial Practice. pp. 230–248 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/

C
o
n
si
st

en
t *

Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se

* *Evaluated

*
TA
C
A
S
*

Ar
tifact * SV-CO M

P

Dartagnan: Leveraging Compiler
Optimizations and the Price of Precision

(Competition Contribution)

Hernán Ponce-de-León 1��, Thomas Haas 2, and Roland Meyer 2

1Bundeswehr University Munich, Munich, Germany
2TU Braunschweig, Braunschweig, Germany

hernan.ponce@unibw.de, t.haas@tu-braunschweig.de, roland.meyer@tu-bs.de

Abstract. We describe the new features of the bounded model checker
Dartagnan for SV-COMP’21. We participate, for the first time, in
the ReachSafety category on the verification of sequential programs. In
some of these verification tasks, bugs only show up after many loop iter-
ations, which is a challenge for bounded model checking. We address the
challenge by simplifying the structure of the input program while pre-
serving its semantics. For simplification, we leverage common compiler
optimizations, which we get for free by using LLVM. Yet, there is a price
to pay. Compiler optimizations may introduce bitwise operations, which
require bit-precise reasoning. We evaluated an SMT encoding based on
the theory of integers + bit conversions against one based on the the-
ory of bit-vectors and found that the latter yields better performance.
Compared to the unoptimized version of Dartagnan, the combination
of compiler optimizations and bit-vectors yields a speed-up of an order
of magnitude on average.

1 Overview

Dartagnan is a bounded model checking (BMC) tool for reachability analysis.
It takes a program and converts it to an SMT formula representing all its execu-
tions up to a given bound. This formula, together with a reachability condition
representing assertions, is passed to an SMT solver (we use Z3 as a backend). If
the formula is satisfiable, an execution violating an assertion exists.

Dartagnan was initially developed to verify small concurrent programs
(written in the .litmus format) under weak memory models. Since 2020, it also
supports Boogie intermediate verification language as its input language. For C
programs, we use SMACK [8] to compile to LLVM and transform the compiled
code to Boogie. Dartagnan’s architecture, and main verification techniques
(in particular how to efficiently handle different memory models) are described
in [3,4,7]. Version 2.0.7 participating in SV-COMP’21 [1] can be downloaded
from https://github.com/hernanponcedeleon/Dat3M directly as a java archive
(.jar) or built from source code using the Maven build system. Dartagnan’s
� Jury member.
c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 428–432, 2021.
https://doi.org/10.1007/978-3-030-72013-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_26&domain=pdf
http://orcid.org/0000-0002-4225-8830
http://orcid.org/0000-0002-3176-8552
http://orcid.org/0000-0001-8495-671X
https://github.com/hernanponcedeleon/Dat3M
https://doi.org/10.1007/978-3-030-72013-1_26

Dartagnan: Leveraging Compiler Optimizations and the Price of Precision 429

int main(void) {
unsigned int x = 1;
unsigned int y = 0;

while (y < 1024) {
x = 0;
y++;

}

__VERIFIER_assert(x == 0);
}

Fig. 1. Benchmark const_1-1.c from the ReachSafety-Loop category.

verifier archive to reproduce the results of SV-COMP’21 is published at Zenodo
under DOI 10.5281/zenodo.4483224.

Last year Dartagnan only participated in the ConcurrencySafety category.
What is new for SV-COMP’21 is that Dartagnan also participates in (part of)
the ReachSafety category for single threaded programs. Many tasks in that cat-
egory contain loops of large bounds which impacts Dartagnan’s performance.
To address the problem, we propose to leverage compiler optimizations.

2 Leveraging Compiler Optimizations

BMC techniques are very sensitive to the program syntax. The loop structure
and the number of variables directly impact the size of the SMT formula (which
tends to relate to solving times). Our approach is to simplify the structure of
the program (while preserving its semantics) before performing the verification.
We do this by using compiler optimizations.

Consider the program in Fig. 1 from the ReachSafety-Loop category. A BMC
tool has to unroll the program 1024 times to prove the program correct. However,
since the value of x is constant at every loop iteration, the assignment can be
moved outside the loop. Since the value of y is never read, the instruction y++
can be removed (using dead store elimination) leading to an empty loop which
can also be removed. Finally, using constant propagation, the assertion can be
re-written as __VERIFIER_assert(0 == 0) which is trivially true.

All these optimizations are implemented in most optimizing compilers. Since
we perform the verification after compiling to LLVM, we get them for free. Due
to the high number of loop iterations, Dartagnan needs more than 15 minutes
to verify the program above. However, by using the -O3 optimization flag in the
C-to-Boogie transformation, the verification task can be solved within seconds.

Using an optimizing compiler has its risks. Most optimizations are unsound
for concurrent programs [9] and we do not use any for ConcurrencySafety. Even
for sequential programs, there is a price to pay. Some optimizations introduce
bitwise operations (e.g. multiplications tend to be compiled to shift operations)

https://zenodo.org/record/4483224

430 H. Ponce-de-León et al.

which were not present in the original program. We thus have to encode the
semantics of such operations precisely.

3 The Price of Precision

To guarantee soundness when using the aforementioned compiler optimizations
in the ReachSafety category, we use two precise encodings of integers. The first
is a new implementation based on the theory of bit-vectors, where we get bit-
precise reasoning for free. The second was our original implementation and it
is based on the theory of integers. It does an on-demand conversion to bit-
vectors and back (Int2Bv and Bv2Int). We are able to solve more benchmarks
with the theory of bit-vectors than with the theory of integers plus conversion,
which suggests that converting between the theories is expensive. For concurrent
programs, the combination of bit-vectors with Dartagnan’s memory-model-
dependent encoding significantly degrades performance, and we use the theory
of integers throughout the ConcurrencySafety category.

The trade-off between the efficiency of a theory and the precision in modeling
semantics is well-known. In the context of symbolic execution, it was explored
in [6]. SMACK implements an approach to diagnose spurious counterexamples
caused by over-approximations and gradually refines the precision of reasoning
about bitwise operations [5].

4 Evaluation

We evaluated how compiler optimizations and different integer encodings affect
Dartagnan’s verification capabilities for some benchmarks in the ReachSafety
category. We support two levels of optimization: -O0 (no optimization) and -O3
(enables most optimizations). For integer encodings we use two different ap-
proaches: theory of integers + bit conversions (QF_LIA + QF_BV logics) and pure
theory of bit-vectors (QF_BV logic).

The results are given in Fig. 2. We use Benchexec [2] for reliable benchmark-
ing. The graph shows the verification time w.r.t the verification score. Following
the competition scheme, correct counter-examples and proofs give +1 and +2
points respectively. Wrong counter-examples and proofs give -16 and -32 points.
The absolute score values for incorrect results are higher because a single correct
answer should not compensate for a wrong answer.

It can be seen that, regardless of the chosen integer encoding, using compiler
optimizations allows us to verify many more benchmarks, thus obtaining a higher
score. The total number of solved tasks with no optimizations (O0+Bit-vectors
and O0+Int-exact configurations from Fig. 2) is 89 with 77 correct and 12 in-
correct results. When using optimizations (O3+Bit-vectors and O3+Int-exact
configurations), we solved 336 tasks with 326 correct and 10 incorrect results.

The experiments show that combining theories to achieve precision is more
expensive than using pure bit-vectors. The total number of solved tasks when
using QF_LIA + QF_BV (configurations O0+Int-exact and O3+Int-exact) is 201

Dartagnan: Leveraging Compiler Optimizations and the Price of Precision 431

Fig. 2. Comparing the performance of Dartagnan with different optimization flags
and integer encodings.

with 187 correct and 14 incorrect results. When using QF_BV (configurations
O0+Bit-vectors and O3+Bit-vectors) we solved 224 tasks with 216 correct
and 8 incorrect results. All encodings are guaranteed to be sound, the incorrect
results are due to bugs in the verifier.

We used the evaluation described above to decide the configuration for SV-
COMP’21. For category ConcurrencySafety, we use the integer encoding and no
compiler optimizations. For categories ReachSafety-Loop, ReachSafety-BitVectors
and ReachSafety-Arrays, Dartagnan uses the theory of bit-vectors and -O3 op-
timizations. These configurations are internally decided by the tool based on the
use of the pthreads library. Compared with SV-COMP’20, we solved 60 more
tasks in ConcurrencySafety (55% increase) and 474 more tasks overall (582%
increase).

Acknowledgement: We thank the SMACK developers for their constant sup-
port with the C-to-Boogie transformation. We also thank Yun Zhang for her
contributions to the development of the witness generation.

References

1. D. Beyer. Software verification: 10th comparative evaluation (SV-COMP 2021). In
Proc. TACAS (2), LNCS 12652. Springer, 2021.

2. Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: require-
ments and solutions. STTT, 21(1):1–29, 2019. doi:10.1007/s10009-017-0469-y.

3. Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. Dartag-
nan: Bounded model checking for weak memory models (competition contribu-
tion). In TACAS (2), volume 12079 of LNCS, pages 378–382. Springer, 2020.
doi:10.1007/978-3-030-45237-7_24.

4. Natalia Gavrilenko, Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and
Roland Meyer. BMC for weak memory models: Relation analysis for compact SMT

http://dx.doi.org/10.1007/s10009-017-0469-y
http://dx.doi.org/10.1007/978-3-030-45237-7_24

432 H. Ponce-de-León et al.

encodings. In CAV, volume 11561 of LNCS, pages 355–365. Springer, 2019. doi:
10.1007/978-3-030-25540-4_19.

5. Shaobo He and Zvonimir Rakamaric. Counterexample-guided bit-precision selection.
In APLAS, volume 10695 of LNCS, pages 534–553. Springer, 2017. doi:10.1007/
978-3-319-71237-6_26.

6. Timotej Kapus, Martin Nowack, and Cristian Cadar. Constraints in dynamic sym-
bolic execution: Bitvectors or integers? In TAP@FM, volume 11823 of LNCS, pages
41–54. Springer, 2019. doi:10.1007/978-3-030-31157-5_3.

7. Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. Porta-
bility analysis for weak memory models. PORTHOS: One tool for all models.
In SAS, volume 10422 of LNCS, pages 299–320. Springer, 2017. doi:10.1007/
978-3-319-66706-5_15.

8. Zvonimir Rakamaric and Michael Emmi. SMACK: Decoupling source language
details from verifier implementations. In CAV, volume 8559 of LNCS, pages 106–
113. Springer, 2014. doi:10.1007/978-3-319-08867-9_7.

9. Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and
Francesco Zappa Nardelli. Common compiler optimisations are invalid in the C11
memory model and what we can do about it. In POPL, pages 209–220. ACM, 2015.
doi:10.1145/2676726.2676995.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1007/978-3-030-25540-4_19
http://dx.doi.org/10.1007/978-3-030-25540-4_19
http://dx.doi.org/10.1007/978-3-319-71237-6_26
http://dx.doi.org/10.1007/978-3-319-71237-6_26
http://dx.doi.org/10.1007/978-3-030-31157-5_3
http://dx.doi.org/10.1007/978-3-319-66706-5_15
http://dx.doi.org/10.1007/978-3-319-66706-5_15
http://dx.doi.org/10.1007/978-3-319-08867-9_7
http://dx.doi.org/10.1145/2676726.2676995
http://creativecommons.org/licenses/by/4.0/

C
o
n
si
st

en
t *

Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se

* *Evaluated

*
TA
C
A
S
*

Ar
tifact * SV-CO M

P

Gazer-Theta: LLVM-based Verifier Portfolio
with BMC/CEGAR (Competition Contribution)

Zsófia Ádám1 , Gyula Sallai2 , and Ákos Hajdu1�(�)

1 Budapest University of Technology and Economics, Budapest, Hungary
hajdua@mit.bme.hu

2 SonarSource S.A., Geneva, Switzerland

Abstract. Gazer-Theta is a software model checking toolchain in-
cluding various analyses for state reachability. The frontend, namely
Gazer, supports C programs through an LLVM-based transformation
and optimization pipeline. Gazer includes an integrated bounded model
checker (BMC) and can also employ the Theta backend, a generic ver-
ification framework based on abstraction-refinement (CEGAR). On SV-
COMP 2021, a portfolio of BMC, explicit-value analysis, and predicate
abstraction is applied sequentially in this order.

1 Verification Approach and Software Architecture

Gazer-Theta is a software model checking toolchain with two main compo-
nents: Gazer, an LLVM-based frontend and Theta, a generic model checking
framework. An overview of the architecture and the verification approach can
be seen in Figure 1.

C code

clang
compiler

LLVM
IR

LLVM
passes

Automata
translation

Gazer
BMC

z3 solver

Theta
CEGAR

Predicate
analysis

Explicit
analysis

R
es
u
lt

p
ro
ce
ss
in
g

�/ ?/ �

Witness

Harness

Fig. 1. Overview of the architecture. Solid arrows represent the workflow, dashed ar-
rows indicate dependency. Gazer and Theta components are denoted by lighter and
darker backgrounds, respectively.

� Jury member representing Gazer-Theta at SV-COMP 2021.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 433–437, 2021.
https://doi.org/10.1007/978-3-030-72013-1 27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_27&domain=pdf
http://orcid.org/0000-0003-2354-1750
http://orcid.org/0000-0002-3370-3226
http://orcid.org/0000-0001-8001-8865
https://doi.org/10.1007/978-3-030-72013-1_27

434 Zs. Ádám et al.

Gazer. Gazer [7] is a verification frontend for C programs written in C++17,
using the LLVM compiler infrastructure.3 The input is a C program (possi-
bly consisting of multiple source files) that is first translated to the LLVM IR
(intermediate representation) using the clang compiler. Next, various built-in
and custom LLVM passes are executed to perform optimizations (e.g., inlining,
constant propagation, assertion lifting) and transformations (e.g., adding trace-
ability information) on the IR. The LLVM IR is then transformed into different
variants of control flow automata (CFA), depending on the backend to be used.
Gazer includes a built-in variant [5,7] of bounded model checking [2], relying on
the z3 SMT solver [6]. The other supported backend is Theta (to be presented
below). Currently, both backends provide analysis for reachability properties.

In the final step, the “raw” results of the backends are processed to produce
a verdict (safe, unsafe, unknown) and a witness. Currently, Gazer only sup-
ports violation witnesses, both in a user-friendly syntax and in the format of
SV-COMP. Furthermore, Gazer is also capable of generating executable test
harnesses that can be used, e.g., in a debugger to reach the property violation.

Theta. Theta [8] is a generic and modular model checking framework written
in Java 11, providing abstraction- and CEGAR-based analyses [4] for various
formalisms, including CFA. Theta is highly configurable, supporting different
abstract domains (such as explicit-value analysis [1] or predicate abstraction [3])
and refinement strategies, mostly based on interpolation (using SMT solvers such
as z3 [6]). In the explicit-value analysis, only a subset of program variables is
tracked, while predicate abstraction keeps track of logical facts and relationships
instead of concrete values.

Verification portfolio. Based on our preliminary experiments, at SV-COMP 2021,
we apply a sequential portfolio consisting of 3 steps, as illustrated by Figure 2.
The portfolio is implemented as a Python script, which calls the tools described
previously. First, bounded model checking is performed with a 150s time limit,
which – in our experience – can already solve many unsafe instances. If BMC is
inconclusive, we move on to an explicit-value analysis with a 100s limit, which
can be effective for simpler, mostly deterministic programs. Finally, if the result
is still unknown, we move on to the more heavyweight method of predicate ab-
straction. If any of the phases reports an unsafe result, as an additional step,
we generate an executable test harness from the counterexample and check if
the program actually reaches the property violation. This allows us to filter out
some false positives (by reporting unknown instead of unsafe).

2 Strengths and Weaknesses

Gazer-Theta currently targets reachability analysis so we participate in the
ReachSafety category, excluding subcategories Arrays, Heap and Sequentialized,
due to features with limited support (e.g., pointers). The strength of the tool is

3 https://llvm.org/

https://llvm.org/

Gazer-Theta 435

Gazer BMC Theta expl. Theta pred.

Execute cex. Execute cex. Execute cex.

� Unsafe

? Unknown

� Safe

?

�

�

�

?

?

�

�

�

?

?

�

�

�

?

900s

150s 100s

150s 150s 150s

Fig. 2. Overview of the portfolio approach. Symbols �, ?, � indicate safe, inconclusive
and unsafe results, respectively. Numbers indicate the time limit of each phase.

its modularity and configurability, combining the advantages of different anal-
yses into a diverse portfolio. Out of the 3679 tasks, there are 1722 confirmed
correct (1079 safe, 643 unsafe), 4 unconfirmed correct, and 13 incorrect (false
positive) results. A majority of the solved tasks (86% of 1722) come from the
BMC phase; with a few exceptions, the CEGAR analyses need to be utilized only
for safe instances (though they could also handle most of the tasks solved by
BMC based on our experiments). The explicit-value analysis handles further 100
tasks in the ECA subcategory, while predicate abstraction solves 130 additional
instances from Loops and ProductLines. Surprisingly, BMC can actually solve
a significant amount (857) of safe instances as well, which can be attributed to
LLVM optimizations and enhancements in the algorithm [7]. Furthermore, we
also observed that executable harnesses could rule out many (142) false positives.

The weakness of Gazer-Theta is its limited support for certain features,
such as arrays, bit-precise reasoning (only available for BMC), and pointers. We
also observed that the LLVM IR representation often results in large CFA (e.g.,
many temporary variables due to SSA form), which makes reasoning harder
via CEGAR (as witnessed, e.g., by the ECA subcategory). Currently, the tool
gives empty correctness witnesses only meeting syntactical requirements, but
surprisingly most of them were accepted. Furthermore, our violation witnesses
are quite “sparse” due to heavy usage of optimization passes, but some validators
can still prove their correctness. The 13 false positive results are caused by
unsupported library functions (related to floats) treated as external calls with
undefined (arbitrary) behavior.

3 Tool Setup and Configuration

The competition contribution is based on Gazer v1.2.14 and Theta v2.5.0.5

Additionally, the BMC backend of Gazer uses z3 version 4.8.6, while Theta
is based on z3 version 4.5.0. The projects’ repositories contain instructions on
building the tools, but an archive can be found on Zenodo6 with pre-built binaries

4 https://github.com/ftsrg/gazer/releases/tag/v1.2.1
5 https://github.com/ftsrg/theta/releases/tag/v2.5.0
6 http://doi.org/10.5281/zenodo.4483627

https://github.com/ftsrg/gazer/releases/tag/v1.2.1
https://github.com/ftsrg/theta/releases/tag/v2.5.0
http://doi.org/10.5281/zenodo.4483627

436 Zs. Ádám et al.

for Ubuntu 18.04 or 20.04. The toolchain requires packages clang-9, libgomp1,
llvm-9, openjdk-11-jre-headless and python3 to be installed. The entry
point of the toolchain is scripts/gazer starter.py, which takes the verifi-
cation task (C program) as its only mandatory input and runs the portfolio. No
other parameters or configuration is required. Optionally, the output directory
can be set (--output) and the version can be queried (--version).

4 Software Project

Gazer and Theta are maintained by the Critical Systems Research Group7 of
the Budapest University of Technology and Economics with various contributors.
The projects are available open-source on GitHub8 under an Apache 2.0 license.

Acknowledgment. The authors would like to thank Tamás Tóth, László Radnai,
Mihály Dobos-Kovács, István Majzik, Zoltán Micskei, András Vörös and Vince
Molnár for their contributions to the projects; and the competition organizers,
especially Dirk Beyer for their help during the preparation for SV-COMP.

This research has received funding from the EU ECSEL JU under the H2020
Framework Programme, JU grant nr. 826452 (Arrowhead Tools project) and
from the partners’ national funding authorities.

References

1. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: FASE 2013, LNCS, vol. 7793, pp. 146–162. Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1 11

2. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking with-
out BDDs. In: TACAS 1999, LNCS, vol. 1579, pp. 193–207. Springer (1999).
https://doi.org/10.1007/3-540-49059-0 14

3. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: CAV 1997,
LNCS, vol. 1254, pp. 72–83. Springer (1997). https://doi.org/10.1007/3-540-63166-
6 10

4. Hajdu, Á., Micskei, Z.: Efficient strategies for CEGAR-based model
checking. Journal of Automated Reasoning 64(6), 1051–1091 (2020).
https://doi.org/10.1007/s10817-019-09535-x

5. Lal, A., Qadeer, S., Lahiri, S.: Corral: A solver for reachability modulo
theories. In: CAV 2012. LNCS, vol. 7358, pp. 427–443. Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7 32

6. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS 2008, LNCS,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

7. Sallai, Gy.: LLVM IR-based Transformations for Software Model Checking. Master’s
thesis, Budapest University of Technology and Economics (2019)

8. Tóth, T., Hajdu, Á., Vörös, A., Micskei, Z., Majzik, I.: Theta: a framework for
abstraction refinement-based model checking. In: FMCAD 2017. pp. 176–179 (2017).
https://doi.org/10.23919/FMCAD.2017.8102257

7 https://ftsrg.mit.bme.hu
8 https://github.com/ftsrg/gazer and https://github.com/ftsrg/theta

https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-642-31424-7_32
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.23919/FMCAD.2017.8102257
https://ftsrg.mit.bme.hu
https://github.com/ftsrg/gazer
https://github.com/ftsrg/theta

Gazer-Theta 437

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

C
o
n
si
st

en
t *

Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se

* *Evaluated

*
TA
C
A
S
*

Ar
tifact * SV-CO M

P

Goblint: Thread-Modular Abstract
Interpretation Using Side-Effecting Constraints

(Competition Contribution)

Simmo Saan1(�)�, Michael Schwarz2(�),
Kalmer Apinis1, Julian Erhard2, Helmut Seidl2,

Ralf Vogler2, and Vesal Vojdani1

1 University of Tartu, Tartu, Estonia
{simmo.saan, kalmer.apinis, vesal.vojdani}@ut.ee
2 Technische Universität München, Garching, Germany

{m.schwarz, julian.erhard, helmut.seidl, ralf.vogler}@tum.de

Abstract. Goblint is a static analysis framework for C programs spe-
cializing in data race analysis. It relies on thread-modular abstract in-
terpretation where thread interferences are accounted for by means of
flow-insensitive global invariants.

1 Verification Approach

Goblint is a static analyzer for C programs based on the framework of ab-
stract interpretation [5]. It performs flow- and context-sensitive interprocedural
analysis, using partial tabulation to handle procedure calls. The analysis of con-
current programs is thread-modular: analyzing each thread in isolation, as op-
posed to analyzing their interleavings. This scales well to larger programs with
many threads. Interferences between threads happen through global variables,
which are abstracted by a context- and flow-insensitive global invariant. When
no other thread can interfere, copies of global variables are privatized within
the local state. Their values may deviate from the global invariant due to local
updates, thereby improving precision [11].

The analysis is specified using a side-effecting constraint system [3], in which
right-hand sides of constraints can, during their evaluation, make additional con-
tributions (side effects) to other constraint system variables. These side effects
can be conveniently used both to express partial context-sensitivity of function
calls and to add contributions to the global invariant. Such a constraint system
is solved using a local generic solver, which yields a (post-)solution for just the
reachable program points and contexts [1,8]. Solving is not strictly separated
into widening and narrowing phases, but these may be intertwined instead [1].
Results of the analysis are reported only at the end based on the computed
solution, as widening during the fixpoint computation might lead to spurious
property violations, which later disappear due to narrowing.
� Jury member
c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 438–442, 2021.
https://doi.org/10.1007/978-3-030-72013-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_28&domain=pdf
https://doi.org/10.1007/978-3-030-72013-1_28

Goblint: Thread-Modular Abstract Interpretation 439

Reachability Safety. Reachability is mainly determined using value analysis,
which, for integers, employs abstract domains based on intervals and exclusion
sets. The value analysis also handles pointers (computing points-to information),
heap memory (using allocation-site abstraction), structs, unions and arrays. The
abstraction of arrays employs partitioning by the symbolic expression that is used
to index into the array. On top of that, both global variables and heap-allocated
memory are partitioned into disjoint regions [9].

No Overflows. The sound interval analysis is implemented using arbitrary pre-
cision integers. If the interval for an expression lies completely in the value range
of its signed integer type, no overflow can occur at this location.

No Data Race. The main goal of Goblint is data race detection and its anal-
yses have been optimized for this purpose. Mutexes may be handled both path-
sensitively and symbolically. Memory accesses are partitioned (e.g., by heap re-
gion [9]), while locking expressions and access expressions are correlated using
address equalities (e.g., a domain of affine and Herbrand equalities [10]) in order
to analyze more sophisticated locking patterns [11].

2 Software Architecture

Goblint is implemented in OCaml and uses an updated fork of CIL [6] as
its parser frontend for the C language. Since the latter requires preprocessed
code, GCC is executed for preprocessing the input, although this step should be
unnecessary on the SV-COMP benchmarks. No other major libraries or external
tools are required.

The architecture of Goblint [2] is designed to be modular. Analyses, which
are defined by their abstract domains and transfer functions, can be activated via
runtime configuration options. A flexible query system allows for communication
between analyses. Together, the combined analyses and the control-flow graphs
of the functions in the program provide the side-effecting constraint system,
which is solved by some local generic solver. While a number of solvers are
available, the improved top-down solver TD3 [8] was employed for SV-COMP
2021. Post-processing the solution yields results for the analysis.

3 Strengths and Weaknesses

Due to over-approximation, abstract interpretation as employed by Goblint
can only determine whether the correctness specification must hold or may be
violated, but not whether a concrete violating execution exists. Therefore, to
avoid a large number of false alarms due to imprecision in SV-COMP, Goblint
only reports results “true” and “unknown” respectively. This is a clear limitation
of our approach, as all competing tools do report definite violations. The strength
of our approach, on the other hand, is that it aims to be sound by design (up
to out-of-scope features of the input program as, e.g., inline assembler). This is

440 S. Saan et al.

evidenced by the fact that Goblint does not produce any incorrect results in
the competition.

Goblint performs best in the SoftwareSystems and ReachSafety-Product-
Lines categories that consist of larger real-world programs, for which our ap-
proach is well suited. On the downside, our verifier performs poorly in reacha-
bility safety categories that contain smaller programs with intricate correctness
conditions which our abstract domains cannot express.

Even though the support for checking overflows is very new in Goblint, it
has some success in the NoOverflows category. Unfortunately, the tool has no
success in SoftwareSystems-*-NoOverflows.

Although Goblint specializes in concurrency, it performs quite poorly in
the ConcurrencySafety category. We believe this is because most benchmarks in
the category require rather precise analysis of thread interleavings, which is not
done in our thread-modular approach.

As Goblint has been optimized for data race detection, it unsurprisingly
performs better in the NoDataRace demo category. It must be noted that the
majority of benchmarks in the category were submitted from our own test suite,
consisting of racy and race-free programs.

While the analyses can be fine-tuned via configuration options, the parame-
ters are static and do not currently depend on the property nor the input pro-
gram. A more granular and dynamic configuration system would allow increased
precision, by enabling more expensive analyses where necessary, or decreased
resource usage, by disabling unnecessary analyses, e.g., concurrency analyses on
single-threaded programs. Furthermore, integrating counterexample-guided ab-
straction refinement (CEGAR) into our framework might allow Goblint to also
report violations, while avoiding false alarms and gaining more precision.

4 Tool Setup and Configuration

Goblint version svcomp21-0-g82e03b87 participated in SV-COMP 2021 [4,7].
It is available in both binary (Ubuntu 20.04) and source code form at our GitHub
repository under the svcomp21 tag.3 The only runtime dependency is GCC.
Instructions for building from source can be found in the README.

Both the tool-info module and the benchmark definition for SV-COMP are
named goblint. They correspond to running the tool as follows:

./goblint --conf conf/svcomp21.json --sets ana.specification
property.prp input.c

Goblint participated in the following categories: ReachSafety, Concurrency-
Safety, NoOverflows, SoftwareSystems (while opting-out from SoftwareSystems-
*-MemSafety) and NoDataRace (demo category).

3 https://github.com/goblint/analyzer/releases/tag/svcomp21

https://github.com/goblint/analyzer/releases/tag/svcomp21

Goblint: Thread-Modular Abstract Interpretation 441

5 Software Project and Contributors

Goblint development takes place on GitHub,4 while related publications are
listed on its website.5 It is an MIT-licensed joint project of the Technische Uni-
versität München (Chair of Formal Languages, Compiler Construction, Software
Construction) and University of Tartu (Laboratory for Software Science).

Acknowledgements. This work was supported by Deutsche Forschungsgemein-
schaft (DFG) – 378803395/2428 ConVeY and the Estonian Research Council
grant PSG61. We would like to thank everyone who has contributed to Goblint
over the years.

References

1. Amato, G., Scozzari, F., Seidl, H., Apinis, K., Vojdani, V.: Efficiently intertwining
widening and narrowing. Science of Computer Programming 120, 1–24 (May 2016).
doi: 10.1016/j.scico.2015.12.005

2. Apinis, K.: Frameworks for analyzing multi-threaded C. Ph.D. thesis, Technische
Universität München (2014)

3. Apinis, K., Seidl, H., Vojdani, V.: Side-Effecting Constraint Systems: A Swiss Army
Knife for Program Analysis. In: APLAS ’12. pp. 157–172. Springer (2012). doi:
10.1007/978-3-642-35182-2_12

4. Beyer, D.: Software Verification: 10th Comparative Evaluation (SV-COMP 2021).
In: Proc. TACAS (2). LNCS 12652, Springer (2021)

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL ’77.
pp. 238–252 (1977). doi: 10.1145/512950.512973

6. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: CC ’02. pp. 213–228.
Springer (2002). doi: 10.1007/3-540-45937-5_16

7. Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler, R., Vojdani, V.:
Goblint at SV-COMP 2021 (Dec 2020). doi: 10.5281/zenodo.4485853

8. Seidl, H., Vogler, R.: Three improvements to the top-down solver. In: PPDP ’18.
pp. 1–14 (2018). doi: 10.1145/3236950.3236967

9. Seidl, H., Vojdani, V.: Region Analysis for Race Detection. In: SAS ’09. pp. 171–
187. Springer (2009). doi: 10.1007/978-3-642-03237-0_13

10. Seidl, H., Vojdani, V., Vene, V.: A Smooth Combination of Linear and Herbrand
Equalities for Polynomial Time Must-Alias Analysis. In: FM ’09. pp. 644–659.
Springer (2009). doi: 10.1007/978-3-642-05089-3_41

11. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static Race
Detection for Device Drivers: The Goblint Approach. In: ASE 2016. pp. 391–402.
ACM (2016). doi: 10.1145/2970276.2970337

4 https://github.com/goblint/analyzer
5 https://goblint.in.tum.de

http://dx.doi.org/10.1016/j.scico.2015.12.005
http://dx.doi.org/10.1007/978-3-642-35182-2_12
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.5281/zenodo.4485853
http://dx.doi.org/10.1145/3236950.3236967
http://dx.doi.org/10.1007/978-3-642-03237-0_13
http://dx.doi.org/10.1007/978-3-642-05089-3_41
http://dx.doi.org/10.1145/2970276.2970337
https://github.com/goblint/analyzer
https://goblint.in.tum.de

442 S. Saan et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

C
o
n
si
st

en
t *

Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se

* *Evaluated

*
TA
C
A
S
*

Ar
tifact * SV-CO M

P

Towards String Support in JayHorn
(Competition Contribution)

Ali Shamakhi1 (�), Hossein Hojjat1,2 , and Philipp Rümmer3

1 University of Tehran, Tehran, Iran
{ali.shamakhi,hojjat}@ut.ac.ir

2 Tehran Institute for Advanced Studies, Tehran, Iran
3 Uppsala University, Uppsala, Sweden

philipp.ruemmer@it.uu.se

Abstract. JayHorn is a Horn clause-based model checker for Java pro-
grams that has been competing at SV-COMP since 2019. An ongoing re-
search and implementation effort is to add support for String data-type
to JayHorn. Since current Horn solvers do not support strings natively,
we consider a representation of (unbounded) strings using algebraic data-
types, more precisely as lists. This paper discusses Horn clause encodings
of different string operations, and presents preliminary results.

1 The JayHorn Approach and Architecture

We start by summarising the approach used in JayHorn, and refer to earlier pa-
pers [5,6,7] for more details. JayHorn is a verification tool that encodes sequential
Java programs as sets of Constrained Horn Clauses (CHCs) in order to check
for possible assertion violations. The main CHC encoding in JayHorn is inspired
by refinement types [2] and liquid types [8], and characterises programs in terms
of method contracts, state invariants, and instance invariants of classes [5]. This
encoding is over-approximate, and can prove absence of assertion violations. In
order to find counterexamples, i.e., prove existence of violations, JayHorn also
offers a bounded, under-approximate program encoding.

JayHorn is entirely implemented in Java, and uses the Soot framework [10]
to process Java bytecode, and the CHC solver Eldarica [3] to solve Horn clauses.

2 Encoding of String Operations

In this paper, we focus on the handling of Strings and their operations, a feature
of Java that was not previously supported by JayHorn. Since JayHorn verifies
programs without imposing bounds on the number of execution steps or the
size of input data, our goal is to handle also unbounded strings. Unfortunately,
while there has been significant progress in SMT solving for strings, current CHC
solvers do not yet support strings natively. We therefore use recursive algebraic
data types to model strings, and follow the approach proposed in [4]: strings are
represented using lists, with a binary constructor cons and the constant nil.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 443–447, 2021.
https://doi.org/10.1007/978-3-030-72013-1 29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_29&domain=pdf
http://orcid.org/0000-0003-4392-3334
http://orcid.org/0000-0002-4743-8750
http://orcid.org/0000-0002-2733-7098
https://doi.org/10.1007/978-3-030-72013-1_29

444 A. Shamakhi et al.

There are two ways to encode a string using cons and nil. The Left-To-Right
(LTR) encoding starts with the leftmost character of the string. For example,
"Jay" = cons(‘J’, cons(‘a’, cons(‘y’, nil))). The Right-to-Left (RTL) encoding
starts with the rightmost character. Each encoding has its own benefits and
drawbacks in modeling various operations, an aspect we evaluate in this paper.

Three different LTR encodings of the concatenation operation are described
in [4], and equivalent RTL encodings are easy to define. Moving beyond concate-
nation, in this paper we show models of some of the more involved operations.

2.1 The CompareTo Operation

The String.compareTo method in Java returns an integer, which is the differ-
ence of the length of strings if one of the strings is a prefix of the other (e.g.,
"cat".compareTo("c") == 2), or the difference of their leftmost same-index
different characters otherwise (e.g., "card".compareTo("cash") == -1, since
their leftmost same-index different characters are ‘r’ and ‘s’, respectively).

The method is modeled using predicate Prec(left , right , comparison result)
under LTR encoding, which allows us to recursively remove leftmost characters
from both strings to reach a state which the comparison result is known.

Prec(x, nil, len(x)) ← true
Prec(nil, y,−len(y)) ← true

Prec(x, x, 0) ← true
Prec(cons(j, x), cons(k, y), j − k) ← j �= k

Prec(cons(h, x), cons(h, y), d) ← Prec(x, y, d)

The predicate under RTL encoding needs an extra argument to keep track
of whether the comparison result is based on character difference or not, so the
predicate is P

′
rec(left , right , comparison result , char diff). The clauses use the len

function to compute the length of a string, which is a built-in function in Eldarica.

P
′
rec(x, nil, len(x), false) ← true

P
′
rec(nil, y,−len(y), false) ← true

P
′
rec(x, x, 0, false) ← true

P
′
rec(cons(h, x), y, d+ 1, false) ← P

′
rec(x, y, d, false) ∧ len(x) ≥ len(y)

P
′
rec(x, cons(h, y), d− 1, false) ← P

′
rec(x, y, d, false) ∧ len(x) ≤ len(y)

P
′
rec(cons(j, x), cons(k, x), j − k, true) ← j �= k

P
′
rec(cons(h, x), y, d, true) ← P

′
rec(x, y, d, true)

P
′
rec(x, cons(h, y), d, true) ← P

′
rec(x, y, d, true)

2.2 Integer to String conversion

The integer to string conversion relies on extracting digits one by one, which is
done using integer arithmetic. Under LTR encoding, during the conversion pro-
cess, the pre-condition stores the rest of the input after removing the converted
digits so far starting from the lowest position. For example, if the number is

Towards String Support in JayHorn (Competition Contribution) 445

i = dn−1· · ·d0 and the converted string so far is s = “dk−1· · ·d0”, the rest of the
number will be r = dn−1· · ·dk which is stored at the pre-condition.

The pre-condition in RTL encoding stores the offset of the next digit that
needs to be extracted, since extracting digits from highest place values requires
knowing their positions.

2.3 StartsWith and EndsWith

The encoding of String.startsWith method needs to consider different states
of both strings and their relation, which leads to multiple recursive relations.

For example, if x starts with y, we can prepend c to both strings under LTR
encoding (to get x′ and y′) and the condition holds on the resulting strings
(i.e. x′ starts with y′). For another example, if x does not start with y and
len(x) ≥ len(y) we can append c to x under RTL encoding (to get x′) and the
condition holds on the resulting string (i.e. x′ does not start with y).

Srec(x, nil, true) ← true
Srec(x, x, true) ← true

Srec(nil, y, false) ← len(y) > 0
Srec(cons(j, x), cons(k, y), false) ← Srec(x, y, false)

(LTR) Srec(cons(h, x), cons(h, y), true) ← Srec(x, y, true)
(LTR) Srec(cons(j, x), cons(k, y), false) ← j �= k
(RTL) Srec(cons(h, x), y, true) ← Srec(x, y, true)
(RTL) Srec(cons(j, x), cons(k, x), false) ← j �= k
(RTL) Srec(cons(h, x), y, false) ← Srec(x, y, false) ∧ len(x) ≥ len(y)
(RTL) Srec(x, cons(h, y), false) ← Srec(x, y, false)

The RTL encoding of endsWith is the same as LTR encoding of startsWith,
and the LTR encoding of endsWith is the same as RTL encoding of startsWith.

2.4 CharAt

The encoding definition of String.charAt relies on the fact that prepending
a character to a string under LTR encoding increases indices of all previous
characters by one, while appending a character to a string under RTL encoding
does not change those indices.

(LTR) ChAtrec(cons(h, t), 0, h) ← true
(LTR) ChAtrec(cons(h, t), i+ 1, c) ← ChAtrec(t, i, c) ∧ 0 ≤ i < len(t)
(RTL) ChAtrec(cons(h, t), len(t), h) ← true
(RTL) ChAtrec(cons(h, t), i, c) ← ChAtrec(t, i, c) ∧ 0 ≤ i < len(t)

3 Performance of the String Encoding

The following table shows the results of JayHorn on the 53 problems in the SV-
COMP Java track that involve strings. Many of the programs contain string

446 A. Shamakhi et al.

operations that are not yet handled in JayHorn, but the results already make
it possible to compare encoding choices. Uniformly, RTL performs better than
LTR (probably because appending characters to strings is more common than
adding characters in the beginning), and the under-approximating CHC encod-
ing of JayHorn performs better than the over-approximate encoding (probably
because over-approximation too often loses information about string contents).
The choice between Iterative, Recursive, or Recursive-with-precondition [4] for
string concatenation surprisingly had no effect on the results.

Encoding
Choices

Iterative Recursive RecursiveWithPrec
U-Approx O-Approx U-Approx O-Approx U-Approx O-Approx
LTR RTL LTR RTL LTR RTL LTR RTL LTR RTL LTR RTL

Solved 4 6 1 3 4 6 1 3 4 6 1 3
Avg. Time (s) 81 79 7.5 16 79 78 7.6 16 77 78 7.7 16

In other respects, JayHorn performed similarly in SV-COMP 2021 [1] as in
the two previous years. JayHorn gave one incorrect answer, for the problem
UnsatAddition02 and due to the use of unbounded integer arithmetic instead
of correct Java machine arithmetic semantics. JayHorn could correctly prove
125 benchmarks safe, and 151 benchmarks unsafe. Changes compared to 2020
include 59 of the 64 MinePump benchmarks (by encoding enums, see Section 4)
and 6 of the 53 string benchmarks that JayHorn solves now.

The biggest factor influencing the performance of JayHorn in SV-COMP is
still the incomplete model of the Java API in JayHorn, given the large number
of API tests among the SV-COMP Java benchmarks. Our work on supporting
Strings, described in this paper, is one of the efforts to address the situation.

4 Tool Setup

The version submitted to SV-COMP 2021 is JayHorn version 0.7.5-strings,4

which is also available on Zenodo [9]. In the configuration used in the compe-
tition,5 JayHorn only applies the Horn solver Eldarica. The Benchexec tool info
module is called jayhorn.py and the benchmark definition file jayhorn.xml.
JayHorn competes in the Java category.

Since JayHorn only has incomplete support for Java enums, in this year we
added a small source transformation tool6 to JayHorn that has the purpose of
replacing enums with simple integer variables. The script used in the compe-
tition applies the transformation tool to the benchmark source code prior to
compilation to bytecode.

4 https://github.com/jayhorn/jayhorn/releases/tag/v0.7.5-strings
5 Java options: -Xss40000k -Xmx12g

JayHorn options: -inline-size 50 -conservative -specs -string-encoding

recursiveWithPrec -string-direction rtl
6 https://github.com/jayhorn/jayhorn/tree/devel/enum-eliminator

https://github.com/jayhorn/jayhorn/releases/tag/v0.7.5-strings
https://github.com/jayhorn/jayhorn/tree/devel/enum-eliminator

Towards String Support in JayHorn (Competition Contribution) 447

5 Software Project and Contributors

JayHorn was initially developed by Temesghen Kahsai, Philipp Rümmer, and
Martin Schäf, with contributions by Daniel Dietsch, Rody Kersten, Huascar
Sanchez, and Valentin Wüstholz [6,7]. Further development of the tool is at the
moment mainly carried out by the authors of this paper. JayHorn is open source,
and distributed under MIT license on https://github.com/jayhorn/jayhorn.

Acknowledgements. The work on JayHorn has been supported by the Swedish
Research Council (VR) under grant 2018-04727, by the Swedish Foundation for
Strategic Research (SSF) under the project WebSec (Ref. RIT17-0011), and by
grants from Microsoft and Amazon Web Services.

References

1. D. Beyer. Software verification: 10th comparative evaluation (SV-COMP 2021).
In Proc. TACAS (2), LNCS 12652. Springer, 2021.

2. T. Freeman and F. Pfenning. Refinement types for ML. In PLDI, pages 268–277,
New York, NY, USA, 1991. ACM.

3. H. Hojjat and P. Rümmer. The ELDARICA Horn solver. In FMCAD. IEEE, 2018.
4. H. Hojjat, P. Rümmer, and A. Shamakhi. On strings in software model checking.

In APLAS. Springer, 2019.
5. T. Kahsai, R. Kersten, P. Rümmer, and M. Schäf. Quantified heap invariants for

object-oriented programs. In LPAR. EasyChair, 2017.
6. T. Kahsai, P. Rümmer, H. Sanchez, and M. Schäf. JayHorn: A framework for

verifying Java programs. In CAV. Springer, 2016.
7. T. Kahsai, P. Rümmer, and M. Schäf. JayHorn: A Java model checker — (compe-

tition contribution). In D. Beyer, M. Huisman, F. Kordon, and B. Steffen, editors,
TACAS: TOOLympics, volume 11429 of LNCS, pages 214–218. Springer, 2019.

8. P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In R. Gupta and S. P.
Amarasinghe, editors, PLDI, pages 159–169. ACM, 2008.

9. A. Shamakhi, H. Hojjat, and P. Rümmer. JayHorn artifact at SV-COMP 2021.
Zenodo: https://doi.org/10.5281/zenodo.4485702.

10. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -
a Java Optimization Framework. In CASCON, 1999.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://github.com/jayhorn/jayhorn
https://doi.org/10.5281/zenodo.4485702
https://creativecommons.org/licenses/by/4.0/

C
o
n
si
st

en
t *

Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se

* *Evaluated

*
TA
C
A
S
*

Ar
tifact * SV-CO M

P

JDart: Portfolio Solving, Breadth-First Search
and SMT-Lib Strings (Competition Contribution)

Malte Mues (�) and Falk Howar

TU Dortmund University, Dortmund, Germany
{malte.mues, falk.howar}@tu-dortmund.de

Abstract. JDart performs dynamic symbolic execution of Java pro-
grams: it executes programs with concrete inputs while recording sym-
bolic constraints on executed program paths. A portfolio of constraint
solvers is then used for generating new concrete values from recorded con-
straints that drive execution along previously unexplored paths. For SV-
COMP 2021, we improved JDart by implementing exploration strate-
gies, bounded analysis, and path-specific constraint solving strategies,
as well as by enabling the use of SMT-Lib string theory for encoding of
string operations.

1 Overview

JDart is a dynamic symbolic execution engine for the Java virtual machine
(JVM) built on top of Java PathFinder (JPF) [12]. We first entered SV-COMP
2020 with JDart. Our corresponding report gives a short overview of JDart’s
architecture and internals [9]. In this paper, we focus on the description of the fol-
lowing three improvements that were explicitly motivated by SV-COMP 2021 [2].

1. The re-implementation of the internal constraints-tree enables bounded anal-
ysis and exploration strategies (e.g., breadth first search instead of depth first
search),

2. A new CVC4 backend in JConstraints is the basis for path-based selection
of constraint solvers and sequential portfolio solving (using Z3 and CVC4).

3. We integrate recent advances in string constraint solving [3,10] by modeling
string operations as SMT-Lib string constraints instead of bit vectors.

While all three changes contribute to an improved performance of JDart, port-
folio solving has by far the biggest impact on the number of analyzed benchmark
instances of SV-COMP 2021. In this paper, we focus on the description of the
changes for (1) and (2).

2 Tool Improvements for SV-COMP 2021

JDart runs as an extension of the JPF software model checker [12], using the
Java virtual machine implemented by JPF and its capabilities for annotating
© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 448–452, 2021.
https://doi.org/10.1007/978-3-030-72013-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_30&domain=pdf
http://orcid.org/0000-0002-6291-9886
http://orcid.org/0000-0002-9524-4459
https://doi.org/10.1007/978-3-030-72013-1_30

JDart: Portfolio Solving, Breadth-First Search and SMT-Lib Strings 449

JDart Bounding
Solver

Path-Specific
Solver

Portfolio
Solver

CVC4

Z3Z3

else

string ∨
cast ∨ fp

first

after timeout

Fig. 1: The architecture and call hierarchy in the constraint solving backend.

values on the stack and the heap with symbolic information. The tool itself
is written in Java and uses JConstraints [6] for encoding SMT problems.
Moreover, JConstraints acts as a frontend to the Z3 [5] or CVC4 [1] SMT
solver used for finding concrete values that drive the analysis.

Exploration Strategies. JDart has two main components: the Executor and
the Explorer. While the Executor runs the concrete analysis and records sym-
bolic constraints during concrete execution, the Explorer is responsible for explo-
ration strategies and management of constraints. We re-designed the central data
structure of the Explorer, the constraints tree, for SV-COMP 2021: The new tree
supports different exploration strategies (e.g., breadth-first search) and bounds
on the depth of exploration. In the past, JDart relied on unbounded depth-first
exploration which would often ‘get trapped’ unrolling unbounded loops or re-
cursion. Breadth-first search prevents this behavior and is more effective on the
SV-COMP benchmark set.

Portfolio-Solving. Figure 1 demonstrates the architecture of the constraint
solving backend used by JDart and JConstraints for SV-COMP; dashed
components and control-flow have been added for SV-COMP 2021: The bounding
solver (developed for SV-COMP 2020) calls subsequent solvers with successively
weaker bounds on numeric variables. For SV-COMP 2021, we use upper bounds
2, 8, 13, 21, 200, 600, ∞ and symmetric negative lower bounds. The new path-
specific solver selects the most promising solving approach for every concrete
path constraint: Currently, constraints involving string operations, type casts,
or floating-point numbers are handed to the portfolio solver as we expect bet-
ter performance. The portfolio solver wraps the CVC4 solver, starting repeated
solving attempts in the case of (fairly frequent and random) segmentation faults
as well as invocation of Z3 after a fixed timeout of 60 seconds. All other path
constraints are passed directly to the Z3 solver as JDart used to do with all
constraints at SV-COMP 2020.

3 Strengths and Weaknesses

JDart scored 623 points (max. of 693) in the Java track and was declared
second winner for Java, after Java Ranger (630 points) [11]. Next best is
JBMC [4] with 603 points. As Java Ranger and JBMC, JDart did not report

450 M. Mues and F. Howar

a single incorrect verdict. JDart exhibits the general strengths and weaknesses
of dynamic and symbolic analysis approaches for Java programs:

Fast search for counterexamples. Driven by concrete execution, the analysis
is fairly fast. JDart (950s)is overall the second fastest tool in cases where it
can provide an answer after JBMC (650s). Notably, JDart successfully found
counterexamples in 251 of 253 instances. The second-best tool in this respect is
JBMC with 243 correct false verdicts. Of the two instances for which JDart
did not produce counterexamples one uses the split operation for strings that
JDart does not yet model, leading to an unknown result. For the other instance,
stack unrolling triggers an out of memory exception during the concolic execution
of one path through the recursive Ackermann function.

Path Explosion. JDart is affected by path explosion in programs with long
sequences of branching instructions with mutually unrelated conditions. Such
sequences are common in code generated from models in the realm of embedded
systems, e.g., by the Alarm benchmark instances in SV-COMP 2021. For these
instances, JDart does not manage to explore all paths in the given time limit.

Unbounded Behavior. Based on principles of symbolic execution, JDart will
only terminate on unbounded loops or in case of unbounded recursion when us-
ing manually configured bounds. In addition, the concolic execution might be
configured to stop on property violations. As a consequence, assertion errors
might be used as analysis bounds. For SV-COMP 2021, we used a search depth
of 270 recorded decisions on paths in the constraints tree which we deemed con-
servative after initial experiments on the benchmark set: While in 13 instances
true verdicts were given after exploring exhaustively up to the depth bound,
there remain 30 problem instances for which JDart timed out exploring the
search space up to the depth bound and 6 instances raising unknown verdicts
(including the two mentioned above).

4 Tool Setup

The source code of JDart used for the competition artifact [8] is available on
GitHub1. JDart is designed as a plug-in for JPF and relies on ant as a build sys-
tem. One of its dependencies is the jpf-core project [12]. The other dependency
is the JConstraints library, which was configured to use Z3 [5] and CVC4 [1] for
SV-COMP 2021. For the competition, JDart is wrapped by the run-jdart.sh
shell script which generates .jpf configuration files, specifying which benchmark
to analyze and the global configuration options of JDart. For SV-COMP 2021,
we choose termination on the first assertion error, a depth bound of 270 (deci-
sions on paths in the constraints tree) for exploration, breadth first search as
exploration strategy, and the described path-specific solver together with itera-
tive weakening of bounds on values in models as described in Section 2. Z3 is
configured to run with the sequence solver for strings. The shell script records
and interprets the output of JDart and can also report the version of JDart.
1 https://github.com/tudo-aqua/jdart, Commit 4a9cc43

https://github.com/tudo-aqua/jdart

JDart: Portfolio Solving, Breadth-First Search and SMT-Lib Strings 451

5 Software Project

JDart, as used in SV-COMP 2021, is maintained by the Automated Quality
Assurance Group at TU Dortmund University (in particular by the authors of
this paper) and is available under the Apache License, version 2.0, on GitHub1.
An initial version of JDart was developed by the authors of [7] at NASA Ames
Research Center and Carnegie Mellon University. The original version of JDart
is available on GitHub2.

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King,
T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer,
S. (eds.) Computer Aided Verification. pp. 171–177. Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_14

2. Beyer, D.: Software verification: 10th comparative evaluation (SV-COMP 2021).
In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer (2021)

3. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 307–321. Springer (2009).
https://doi.org/10.1007/978-3-642-00768-2_27

4. Cordeiro, L., Kroening, D., Schrammel, P.: JBMC: Bounded model checking for
Java bytecode. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. pp. 219–223. Springer
International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-17502-
3_17

5. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3_24

6. Howar, F., Jabbour, F., Mues, M.: JConstraints: A library for working with
logic expressions in Java. In: Models, Mindsets, Meta: The What, the How, and
the Why Not?, pp. 310–325. Springer (2019). https://doi.org/10.1007/978-3-030-
22348-9_19

7. Luckow, K.S., Dimjasevic, M., Giannakopoulou, D., Howar, F., Isberner, M., Kah-
sai, T., Rakamaric, Z., Raman, V.: JDart: A dynamic symbolic analysis framework.
In: Proceedings of TACAS 2016. pp. 442–459 (2016). https://doi.org/10.1007/978-
3-662-49674-9_26

8. Mues, M., Howar, F.: JDart artifact used in SV-COMP 2021 (Dec 2020).
https://doi.org/10.5281/zenodo.4327551

9. Mues, M., Howar, F.: JDart: Dynamic symbolic execution for Java bytecode
(competition contribution). In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 398–402. Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_28

10. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling
up DPLL(T) string solvers using context-dependent simplification. In: Interna-
tional Conference on Computer Aided Verification. pp. 453–474. Springer (2017).
https://doi.org/10.1007/978-3-319-63390-9_24

2 https://github.com/psycopaths/jdart

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-030-17502-3_17
https://doi.org/10.1007/978-3-030-17502-3_17
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-22348-9_19
https://doi.org/10.1007/978-3-030-22348-9_19
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.5281/zenodo.4327551
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-319-63390-9_24
https://github.com/psycopaths/jdart

452 M. Mues and F. Howar

11. Sharma, V., Hussein, S., Whalen, M., McCamant, S., Visser, W.: Java Ranger
at SV-COMP 2020 (competition contribution). In: Tools and Algorithms for
the Construction and Analysis of Systems. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_27

12. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model check-
ing programs. Automated Software Engineering 10(2), 203–232 (Apr 2003).
https://doi.org/10.1023/A:1022920129859

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-45237-7_27
https://doi.org/10.1023/A:1022920129859
http://creativecommons.org/licenses/by/4.0/

C
o
n
si
st

en
t *

Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se

* *Evaluated

*
TA
C
A
S
*

Ar
tifact * SV-CO M

P
Symbiotic 8: Beyond Symbolic Execution∗

(Competition Contribution)

Marek Chalupa1 �, Tomáš Jašek1, Jakub Novák1,
Anna Řechtáčková1, Veronika Šoková2 , and

Jan Strejček1

1 Masaryk University, Brno, Czech Republic
2 Brno University of Technology, FIT, Brno, Czech Republic

Abstract. Symbiotic 8 extends the traditional combination of static
analyses, instrumentation, program slicing, and symbolic execution with
one substantial novelty, namely a technique mixing symbolic execution
with k-induction. This technique can prove the correctness of programs
with possibly unbounded loops, which cannot be done by classic sym-
bolic execution. Symbiotic 8 delivers also several other improvements.
In particular, we have modified our fork of the symbolic executor Klee
to support the comparison of symbolic pointers. Further, we have tuned
the shape analysis tool Predator (integrated already in Symbiotic 7)
to perform better on llvm bitcode. We have also developed a light-weight
analysis of relations between variables that can prove the absence of out-
of-bound accesses to arrays.

1 Verification Approach

Symbiotic is a program analysis framework that combines fast static analyses
with code instrumentation and program slicing to speed up the code verification
which is then performed by symbolic executor Klee [3] (or, alternatively, by
another supported verification tool). The main improvement in Symbiotic 8 is
a new verification technique combining symbolic execution with k-induction [8]
that we call KindSE.

Symbolic execution with k-induction (KindSE) KindSE applies the idea
of k-induction [8] to paths of the control flow graph. The approach can be roughly
described by the following three steps.

1. Set k to 1. Let P be the set of all paths in the control flow graph of length
k that end in an error location.

2. Use symbolic execution to execute every path π ∈ P . If the symbolic execu-
tion says that π is infeasible, remove π from P . If π is feasible and it starts
in the initial location, report that the program is incorrect.

∗ This work has been supported by the Czech Science Foundation grant GA20-07487S.
� Jury member and the corresponding author: chalupa@fi.muni.cz.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 453–457, 2021.
https://doi.org/10.1007/978-3-030-72013-1 31

https://doi.org/10.5281/zenodo.4483882
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_31&domain=pdf
http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0003-1980-7245
http://orcid.org/0000-0001-5873-403X
https://doi.org/10.1007/978-3-030-72013-1_31

454 M. Chalupa et al.

3. If P is empty, the control flow graph contains no feasible path of length k
(or more) leading to an error location and thus we report that the program
is correct. If P is not empty, we replace each path π ∈ P by paths of length
k + 1 that have π as its suffix, increase k by one, and go to step 2.

To improve the performance, we further extended the algorithm to summarize
loop iterations. If we process a program location that is a loop header, we start
unwinding the loop backwards. We over-approximate the states that we get
in every loop iteration to cover more than one iteration if possible. If we are
successful, the summarized loop states form an inductive invariant, which can
help to prove that no error location is reachable from the loop header in k steps.
Our loop summarization does not handle nested loops (in this case we fall-back
to the algorithm without loop summarization) and calls of functions. To fix the
latter restriction, we inline all procedures (if possible) before running KindSE.

KindSE is implemented in our prototype tool Slowbeast [1] which we inte-
grated into Symbiotic 8. The tool now supports only the unreach-call prop-
erty. Slowbeast can also work as a standard symbolic executor (without k-
induction), but it is noticeably slower than Klee and it has some limitations.
However, it supports symbolic floating point arithmetics, which Klee does not.

Workflow of Symbiotic 8 As the first step, a given program is translated to
llvm [6]. If the program contains a call to pthread create, Symbiotic returns
unknown as it cannot handle parallel programs. The rest of the workflow then
depends on the verified property, as indicated in Figure 1.

For unreach-call property, we call slicer to remove instructions that have
no influence on the property and run Klee. If Klee does not decide in 222
seconds, we run KindSE in Slowbeast. If it fails, we run Klee again and if it
also fails, we run Slowbeast as a standard symbolic executor. If some tool says

Fig. 1. The workflow of Symbiotic 8

Symbiotic 8: Beyond Symbolic Execution 455

that the specified call is unreachable, we return true with the trivial witness. If
we detect that the specified call is reachable, we try replaying the error path on
the unsliced program. If the replay confirms that the call is reachable, we return
false with the error witness generated from the replay.

For other properties, we instrument the program with the help of various
analyses. For example, when checking memory safety, we use Predator [5],
DG [4], and a values-relations analysis to detect potentially unsafe instructions.
If Predator says that all instructions are safe, we directly return true. Oth-
erwise, we slice the program with respect to potentially unsafe instructions and
call Klee. The rest of the process is identical to the previous case.

2 Software Architecture

All components of Symbiotic 8 use llvm 10 [6]. Scripts that call and control
the components according to a given configuration are written in Python.

Instrumentation module is written in C++. In Symbiotic 8, we have newly
integrated a values-relations analysis as a plugin into instrumentation. This anal-
ysis is able to prove valid some accesses into arrays. We have also improved llvm
frontend of Predator [5] to perform similarly well as the gcc frontend.

Program slicing module is written in C++ and is build around the library
DG [4]. This year, we sped up the slicer by using more efficient data structures in
pointer analysis and by using function summaries in data dependence analysis.

We use our own fork of Klee [3] that differs from the upstream Klee mainly
in using segment-offset pointer representation which allows for better handling of
symbolic pointers and symbolic-sized allocations. This year, we mended handling
of symbolic pointers and added support for comparison of symbolic addresses.

Tool Slowbeast [1] is written in Python. Both, Klee and Slowbeast use
Z3 [7] as the SMT solver.

3 Strengths and Weaknesses

Symbolic execution may be very efficient in finding bugs but suffers from the path
explosion problem which may prevent it from fully analyzing programs with high
level of branching. We alleviate this problem by using program slicing. However,
in the presence of unbounded loops or infinite execution paths, program slicing
does not help unless it removes the unbounded computation from the program.
Indeed, classical symbolic execution is unable to verify such programs at all.

To fight the inability of symbolic execution to verify unbounded programs,
we use KindSE. However, its implementation in Slowbeast is still not fully
matured and it handles only a very restricted set of programs.

Results of Symbiotic 8 in SV-COMP 2021 Symbiotic 8 won MemSafety
and SoftwareSystems categories [2]. In the MemSafety category, we lost many
points in the new MemSafety-Juliet subcategory. These benchmarks contain

456 M. Chalupa et al.

threads and Symbiotic immediately answered unknown due to the syntactic
check mentioned in Section 1. However, most of these benchmarks actually do
not spawn any thread and thus Symbiotic could analyze them. The victory in
SoftwareSystems category is mainly due to the dominance on the new uthash
benchmarks.

This year, over 500 correct answers produced by Symbiotic were not con-
firmed. Some of these cases must be accounted to the fact that Symbiotic gen-
erates only trivial correctness witnesses. However, there are also unconfirmed
answers because of missing witnesses, which turned out to be a bug in Slow-
beast integration. Unfortunately, these include all 99 benchmarks that were
newly proved correct by KindSE, from which 85 were in the ReachSafety-Loops
subcategory. We had also many unconfirmed witnesses for non-termination vio-
lation that still need to be investigated.

Symbiotic had 16 incorrect answers: 14 incorrect true in Termination cat-
egory and 2 incorrect false in ReachSafety-Floats. All of them were caused by
last-minute commits that were fixed shortly after the submission deadline. Be-
cause of these mistakes, Symbiotic ended up on the 4th place instead of on the
2nd in the Termination category.

In the Overall meta-category, Symbiotic traditionally took the 4th place as
every year since 2018.

4 Tool Setup and Project Contributors

The archive is available at https://doi.org/10.5281/zenodo.4483882. Run Sym-
biotic as:

bin/symbiotic --sv-comp --prp <prpfile> [--32] <source>

The option --prp sets the verified property and --32 tells Symbiotic to assume
32-bit architecture (64-bit architecture is assumed by default).

5 Software Project and Contributors

Symbiotic 8 for SV-COMP 2021 has been developed by Marek Chalupa, Tomáš
Jašek, Jan Novák, and Anna Řechtáčková under the supervision of Jan Strejček.
Veronika Šoková provided a valuable help with adjusting Predator modifica-
tions. Symbiotic is available under the MIT license. All the external components
that the tool uses are also available under open-source licenses that comply with
SV-COMP’s policy for the reproduction of results. The source code of Symbi-
otic can be found at:

https://github.com/staticafi/symbiotic

https://doi.org/10.5281/zenodo.4483882
https://github.com/staticafi/symbiotic

Symbiotic 8: Beyond Symbolic Execution 457

References

1. Slowbeast. https://gitlab.fi.muni.cz/xchalup4/slowbeast/ (2020)
2. Beyer, D.: Software verification: 10th comparative evaluation (SV-COMP 2021). In:

TACAS 2021. LNCS 12652, Springer (2021)
3. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation of

high-coverage tests for complex systems programs. In: OSDI. pp. 209–224. USENIX
Association (2008), http://www.usenix.org/events/osdi08/tech/full papers/cadar/
cadar.pdf

4. Chalupa, M.: DG: analysis and slicing of LLVM bitcode. In: ATVA 2020. LNCS, vol.
12302, pp. 557–563. Springer (2020), https://doi.org/10.1007/978-3-030-59152-6 33

5. Dudka, K., Peringer, P., Vojnar, T.: Predator: A practical tool for check-
ing manipulation of dynamic data structures using separation logic. In: CAV
2011. LNCS, vol. 6806, pp. 372–378. Springer (2011), https://doi.org/10.1007/
978-3-642-36742-7 49

6. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: CGO 2004. pp. 75–88. IEEE Computer Society (2004),
https://doi.org/10.1109/CGO.2004.1281665

7. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS
2008. LNCS, vol. 4963, pp. 337–340. Springer (2008), https://doi.org/10.1007/
978-3-540-78800-3 24

8. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: FMCAD 2000. LNCS, vol. 1954, pp. 108–125. Springer (2000),
https://doi.org/10.1007/3-540-40922-X 8

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://gitlab.fi.muni.cz/xchalup4/slowbeast/
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-030-59152-6_33
https://doi.org/10.1007/978-3-642-36742-7_49
https://doi.org/10.1007/978-3-642-36742-7_49
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-40922-X_8
http://creativecommons.org/licenses/by/4.0/

VeriAbs: A Tool for Scalable Verification
by Abstraction (Competition Contribution)

Priyanka Darke� (�), Sakshi Agrawal, and R Venkatesh

TCS Research, Pune, India
{priyanka.darke, agrawal.sakshi4, r.venky}@tcs.com

Abstract. VeriAbs is a strategy selection-based reachability verifier for C pro-
grams. The selection of a suitable strategy is from a pre-defined set of strategies
and by taking into account the syntax and semantics of the code to be verified.
This year we present VeriAbs version 1.4.1 in which a novel preprocessor to
strategy selection is introduced. The preprocessor checks for the feasibility of
performing a lightweight slicing of the input code using function call graph and
variable reference information. By this if the program is found to be sliceable,
sub-programs or slices are generated, and the known strategy selection algo-
rithm of VeriAbs is applied to each slice. The verification results of each slice
are then composed to derive that of the entire program. This compositional
verification has improved the scalability of VeriAbs and presented in this paper.

1 Verification Approach

VeriAbs is a C program verifier using a portfolio of twelve verification techniques [2].
These techniques are organized into four strategies as shown in Figure 1. Each of the
strategies is defined such that it benefits verification of a specific type of programs. A
program type is identified by a strategy selector based on the following code-structural
and variable-data properties: (1) unstructured control flow, (2) loops with arrays, (3)
short input ranges, and (4) numerical loops in code. The strategy selector looks for
these properties in the given order and assigns a verification strategy to the code. For
this it uses code-structure and interval analyses [2]. If the assigned strategy is unable
to verify the program, it exits unless if the program contains arrays. In that case it
selects the default strategy corresponding to numerical loops. Kindly refer to [2,3]
for details on each verification technique implemented in VeriAbs.

The colored blocks in Figure 1 indicate the enhancements to the tool made this
year and are explained next. The colored block with a dashed outline indicates
that the component has been added for the first time in VeriAbs, and that with a
solid outline indicates that a block that existed in older versions has been modified.
The dashed arrows indicate information flow added this year. This information is
the verification result of the respective strategy passed back to the slicer-analyzer
explained in the next section. Besides these, there are changes in witness generation
strategies and explained in the next section.

� Jury member

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 458–462, 2021.
https://doi.org/10.1007/978-3-030-72013-1 32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_32&domain=pdf
http://orcid.org/0000-0001-6104-9033
https://doi.org/10.1007/978-3-030-72013-1_32

VeriAbs: A Tool for Scalable Verification by Abstraction 459

Fig. 1. VeriAbs Architecture (S: Program Safe, F: Property Fails, U: Unknown)

1.1 Tool Enhancements

Slicer-Analyzer. It has the following responsibilities: (1) checking the sliceability
of input program P , (2) generating slices P1,P2, ... ,Pr if P is sliceable, and (3)
computing the verification result R of P . Accordingly, the slicer-analyzer comprises
of three parts. The first part checks for sliceability. Let main be the entry function
of P . We define P to be sliceable with respect to main if all distinct functions
f1,f2, ... ,fr directly called from main are defined in P , and are independent of
each other. We define the functions called from main independent iff main is non-
recursive; contains no loops or unstructured control flow [2]; there is no transitive
dependence (made up control and data dependence) between calls to f1,...,fr in
main; no two functions in f1,f2,...,fr transitively call the same function; and if
F(fi) is the union of fi and functions transitively called by fi, then no two sets
in F(f1),F(f2),...,F(fr) refer to the same global variable in the program. That
is, if V (F(fi)) is the set of global variables referred by functions in F(fi) then
∀m,n | 1≤m≤r, 1≤n≤r, m �=n=⇒ V (F(fm))∩V (F(fn))=∅. The call graph and
referred variables information is computed using call-trees, and a light-weight flow
insensitive pointer analysis.

void main () {
b=30,c=10;
if(!a) f1();
else if(b) f2();
...

}
f1(){c++;}
f2(){b=0; assert(b);}

Fig. 2. Input Code

If above stated conditions are satisfied then using
concepts presented in [10], the body of main is sliced
with respect to call(s) to fi to create the entry function
maini of the executable slice Pi. Since main is sliced
with respect to calls to fi, Pi will only have functions in
F(fi) and maini. That is, the set of functions in slice Pi

is given by F(fi) ∪ maini. This way the set of all slices
are generated by the second part of the slicer-analyzer.

The proposed technique of slicing has the potential to greatly reduce the state space
of the input program. This hypothesis is supported by experimental results presented
later. The proposed slicing function uses control- and data-flow information local to
main, hence it is lightweight.

Consider the example in Figure 2. One slice from this code is given in Figure 3.
As seen, function main has been sliced with respect to the call to f2 in Figure 3

Pi

S
tr

at
eg

y
 S

el
ec

to
r

Default

Numerical loops

k-Path Interval Analysis (k=1)

Loop Abstraction

Loop Summarization

k-Path Interval Analysis (k=500)

Bounded Model Checking

k-Induction

{S,F}

{S,U}

U

U

U

U

U

Strategy 1:

Unstructured loops
{S, F, U}k-Induction

Strategy 2:

Loops with arrays

ULoop Shrinking  Array Pruning 

Full Program Induction

Strategy 3:

Short input ranges

UExplicit State Model

Checking

Loop Invariant

Generation

{S, F, U}

{S, F}

U

P

S
li

ce
r -

A
n
a
ly

ze
r

P1

P2

Pn

…
…

{S, F, U}

460 P. Darke et al.

which contains the error. Function f1 need not be analyzed to find the error. This
type of slicing is helpful in analyzing large code in which the verifier may run out of
resources while analyzing an irrelevant function like f1.

void main () {
b=30,c=10;
if(!a) ;
else if(b) f2();
...

}
f2(){b=0; assert(b);}

Fig. 3. One Slice

Next, VeriAbs applies its strategy selection to each
slice Pi,∀i,1≤i≤r sequentially. The results of each slice
are composed to compute R, the verification result of P ,
by the third part of the slicer-analyzer as follows: if an
error trace is realized for any slice then R is set to failure;
if all slices are proved to be safe, then R is set to safe;
otherwise if none of the slices are found to be erroneous
and there exists a slice that could not be verified, then R

is set to unknown.

This idea of slicing based on function call and variable reference information has
been proposed for the first time. It is similar to a concept of clustering presented in [12].
Both these techniques partition a given application into independently executable
slices. But [12] forms clusters with respect to un-called functions in the code base.
The proposed sliceability criterion on the other hand focuses only on functions called
from a given (entry) function main. It uses control- and data-flow analyses local
only to the given function to slice it with respect to calls in its body. This in turn
removes all functions not called from main. Another technique generates multiple
backward slices at every calling context with respect to a property to be verified [8].
The proposed slicing technique however produces slices with respect to functions
defined in P and called from main.

Witness Generation From Slices: VeriAbs stores slices in the form of separate
C programs. To generate a valid witness from a slice it is critical to report the
correct line numbers in the witness [5]. The slicer-analyzer maintains correct line
numbers in the slice with respect to the original code by adding #line directives to
it. The directives are added at every point in the slice which reads values from the
environment, starts a block of code, or contains a branching condition. The witness
generated from such a slice in VeriAbs is valid with respect to the original program.

Experimental results: The proposed slicing led to VeriAbs successfully analyzing
120 additional programs in ReachSafety in SV-COMP’21. On the other hand it runs
out of time while verifying eighteen programs that it could successfully analyze earlier.
This is due to the additional time required to slice. Overall these values demonstrate
the feasibility of this approach.

Next we present modifications made to existing components of VeriAbs.

Strategy 1: Unstructured Control Flow. The first strategy meant for programs
with unstructured control flow, thus far executed two verification techniques in
parallel. The two techniques were evolutionary test generation algorithms using grey
box fuzzing [13], and k-induction with continuously refined invariants [6]. This year
we do not use the first algorithm in strategy 1. The reason being that the time taken
by it to generate useful error traces is very large. We observe that as the program
complexity increases with the number of constraints, branching conditions, and/or
non-determinism, so does the time to reach the error by the test evolution algorithm.
This leads to the effect of no apparent advantage of the algorithm when applied in

VeriAbs: A Tool for Scalable Verification by Abstraction 461

parallel with k-induction. We present our experimental observations of the given
algorithm in [2]. On the other hand, not using this algorithm led to time savings
and verification of a few additional programs. We continue to use this algorithm for
non-reactive loops and for programs with inputs of short ranges (strategy 3) [2]. Here
we allocate it an independent thread with no time limits, while results are obtained
quickly for non-reactive loops.

Witness Generation. This year VeriAbs uses the same strategies as last year to
generate violation witnesses [3]. For correctness witnesses VeriAbs derives invariants
from the over-approximation techniques in its portfolio. To save time this year VeriAbs
does not extract invariants from k-induction [6] and interpolation [11] to generate
correctness witnesses. From amongst the impacted witnesses, this led to 12 fewer
witnesses being validated than last year.

2 Software Architecture

VeriAbs uses Vajra to perform full program induction [7], American Fuzzy Lop [13]
to perform test evolution with fuzzing, and CPAchecker v1.8 [6] in the first strategy
for k-induction. For bounded model checking VeriAbs uses the C Bounded Model
Checker (CBMC) v5.10 [9] with the Glucose Syrup SAT solver v4.0 [4]. All remaining
program analyses are implemented in the TCS Research group’s program analysis
framework called Prism [12]. The slicer-analyzer and the strategy selector are partly
implemented in perl.

3 Strengths and Weaknesses

The main strengths of VeriAbs lie in its (1) portfolio of sound verification techniques,
and its ability to (2) perform a lightweight slicing, (3) classify programs based on
structural and variable data properties of code, and (4) match these code properties
with suitable verification techniques. The main weakness of VeriAbs lies in its lack of
an integrated implementation of witness generation that can utilize invariants derived
across all strategies or techniques. This is because the invariants are to be derived
from various abstractions, some of which are generated by off-the-shelf tools, and not
yet extracted.

4 Tool Setup and Configuration

The VeriAbs SV-COMP 2021 executable is available for download at https://gitlab.

com/sosy-lab/sv-comp/archives-2021/-/tree/master/2021/veriabs.zip. To install the tool,
download the archive, extract its contents, and then follow the installation instructions
in VeriAbs/INSTALL.txt. To execute VeriAbs, the user needs to specify the property
file using the --property-file option. The witness is generated in the current working
directory as witness.graphml. VeriAbs participated in the ReachSafety category of
SV-COMP 2021. The BenchExec wrapper script for the tool is veriabs.py and the
benchmark description file is veriabs.xml. A sample command is as follows:
VeriAbs/scripts/veriabs --property-file reach-safety.prp a.c

https://gitlab.com/sosy-lab/sv-comp/archives-2021/-/tree/master/2021/veriabs.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2021/-/tree/master/2021/veriabs.zip

462 P. Darke et al.

5 Software Project and Contributors

Few members of the Foundations of Computing group at TCS Research [1] maintain
VeriAbs. They can be contacted at veriabs.tool@tcs.com. We thank past developers of
VeriAbs, creators of Prism [12], Vajra, CPAchecker and CBMC. We specially thank
Bharti Chimdyalwar, Shrawan Kumar and Ulka Shrotri for their insightful reviews.

References

1. Foundations of Computing Group at TCS Research. https://www.tcs.com/
designing-complex-intelligent-systems.

2. M. Afzal, A. Asia, A. Chauhan, B. Chimdyalwar, P. Darke, A. Datar, S. Kumar, and
R Venkatesh. VeriAbs: Verification by Abstraction and Test Generation. In ASE, pages
1138–1141, 2019.

3. M. Afzal, S. Chakraborty, A. Chauhan, B. Chimdyalwar, P. Darke, A. Gupta, S. Kumar,
C. Babu M, D. Unadkat, and R. Venkatesh. Veriabs : Verification by abstraction and
test generation (competition contribution). In TACAS (2), pages 383–387, 2020.

4. G. Audemard and L. Simon. On the glucose sat solver. IJAIT, 27(01), 2018.
5. D. Beyer. Software verification: 10th comparative evaluation (SV-COMP 2021). In

Proc. TACAS (2), LNCS 12652. Springer, 2021.
6. D. Beyer, M. Dangl, and P. Wendler. Boosting k-induction with continuously-refined

invariants. In CAV, pages 622–640, 2015.
7. S. Chakraborty, A. Gupta, and D. Unadkat. Verifying array manipulating programs

with full-program induction. In Proc. TACAS (1), pages 22–39, 2020.
8. B. Chimdyalwar, P. Darke, A. Chavda, S. Vaghani, and A. Chauhan. Eliminating static

analysis false positives using loop abstraction and bounded model checking. In FM,
pages 573–576, 2015.

9. E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs. In
TACAS, pages 168–176, 2004.

10. Mark Harman and Robert M. Hierons. An overview of program slicing. Software Focus,
2(3):85–92, 2001.

11. M. Heizmann, Y. Chen, D. Dietsch, M. Greitschus, J. Hoenicke, Y. Li, A. Nutz, B. Musa,
C. Schilling, T. Schindler, and A. Podelski. Ultimate automizer and the search for
perfect interpolants - (competition contribution). In TACAS (2), pages 447–451, 2018.

12. S. Khare, S. Saraswat, and S. Kumar. Static program analysis of large embedded code
base: an experience. In ISEC, pages 99–102, 2011.

13. M. Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl/.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which

permits use, sharing, adaptation, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Cre-

ative Commons license, unless indicated otherwise in a credit line to the material. If material is

not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

mailto:veriabs.tool@tcs.com
https://www.tcs.com/designing-complex-intelligent-systems
https://www.tcs.com/designing-complex-intelligent-systems
http://lcamtuf.coredump.cx/afl/
https://creativecommons.org/licenses/by/4.0

Author Index

Abate, Alessandro I-370
Abbasi, Rosa II-242
Ádám, Zsófia II-433
Agrawal, Sakshi II-458
Ahmed, Daniele I-370
Ahrendt, Wolfgang II-242
Alur, Rajeev I-430
Amir, Guy II-203
André, Étienne I-311
Andrianov, Pavel II-423
Andriushchenko, Roman I-191
Apinis, Kalmer II-438
Arias, Jaime I-311
Ashok, Pranav II-326

Backenköhler, Michael I-210
Baek, Seulkee I-59
Bansal, Suguman I-20
Barrett, Clark I-113, II-145, II-203
Bendík, Jaroslav I-291
Beneš, Nikola II-64
Beyer, Dirk II-401
Biere, Armin I-133, II-357
Biewer, Sebastian II-365
Bisping, Benjamin I-3
Blondin, Michael II-3
Bonakdarpour, Borzoo I-94
Bortolussi, Luca I-210
Brim, Luboš II-64
Bryant, Randal E. I-76
Budde, Carlos E. II-373

Carneiro, Mario I-59
Černá, Ivana I-291
Češka, Milan I-191
Chalupa, Marek II-453
Chatterjee, Krishnendu I-20
Chattopadhyay, Agnishom I-330
Chen, Ran II-262
Christakis, Maria II-43
Cohen, Aviad II-87

Darke, Priyanka II-458
Darulova, Eva II-43, II-242

Erhard, Julian II-438
Ernst, Gidon II-24

Fedyukovich, Grigory II-24
Felgenhauer, Bertram II-127
Ferreira, Margarida I-152
Finkbeiner, Bernd II-365
Furuse, Jun II-262

Ganesh, Vijay II-303
Gieseking, Manuel II-381
Giesl, Jürgen I-250
Gol, Ebru Aydin I-291
Gorostiaga, Felipe II-349
Griggio, Alberto I-113
Großmann, Gerrit I-210

Haas, Thomas II-428
Haase, Christoph II-3
Hajdu, Ákos II-433
Hark, Marcel I-250
Hartmanns, Arnd II-373
Hausmann, Daniel I-38
Hecking-Harbusch, Jesko II-381
Hermanns, Holger II-365, II-389
Heule, Marijn J. H. I-59, I-76, II-223
Hojjat, Hossein II-443
Howar, Falk II-448
Hsu, Tzu-Han I-94
Huang, Cheng-Chao I-389

Igarashi, Atsushi II-262
Irfan, Ahmed I-113

Jackermeier, Mathias II-326
Jašek, Tomáš II-453

Jeangoudoux, Clothilde II-43
Junges, Sebastian I-173, I-191

Katoen, Joost-Pieter I-173, I-191, I-230
Katz, Guy II-203
Kaufmann, Daniela II-357
Kawata, Akira II-262
Khoroshilov, Alexey II-423
Klauck, Michaela II-389
Köhl, Maximilian A. II-365, II-389
Křetínský, Jan II-326

Lam, Wing I-270
Lepiller, Julien II-105
Li, Jianlin I-389
Li, Renjue I-389
Li, Yahui I-430
Lochmann, Alexander II-127
Lohar, Debasmita II-43
Loo, Boon Thau I-430
Lynce, Inês I-152

Majumdar, Rupak I-449
Mamouras, Konstantinos I-330
Mann, Makai I-113
Marinov, Darko I-270
Martins, Ruben I-152
Meyer, Fabian I-250
Meyer, Roland II-428
Middeldorp, Aart II-127
Mitterwallner, Fabian II-127
Mues, Malte II-448
Mutilin, Vadim II-423
Myreen, Magnus O. II-223

Nadel, Alexander II-87
Nejati, Saeed II-303
Nestmann, Uwe I-3
Niemetz, Aina II-145, II-303
Nishida, Yuki II-262
Novák, Jakub II-453

Offtermatt, Philip II-3
Osama, Muhammad I-133

Padon, Oded I-113
Pastva, Samuel II-64
Peruffo, Andrea I-370
Petrucci, Laure I-311
Piskac, Ruzica II-105

Platzer, André II-181
Pol, Jaco van de I-311
Ponce-de-León, Hernán II-428
Preiner, Mathias II-145, II-303

Quatmann, Tim I-230

Řechtáčková, Anna II-453
Reger, Giles II-164
Reynolds, Andrew II-145
Rümmer, Philipp II-443
Ryvchin, Vadim II-87

Saan, Simmo II-438
Šafránek, David II-64
Saito, Hiromasa II-262
Sallai, Gyula II-433
Sánchez, César I-94, II-349
Santolucito, Mark II-105
Schäf, Martin II-105
Schiffl, Jonas II-242
Schmid, Stefan I-411
Schnepf, Nicolas I-411
Schnitzer, Yannik II-365
Schoisswohl, Johannes II-164
Schröder, Lutz I-38
Schwarz, Michael II-438
Schwenger, Maximilian II-365
Scott, Joseph II-303
Seidl, Helmut II-438
Sencan, Ahmet I-291
Shamakhi, Ali II-443
Shi, Lei I-430
Sobel, Joshua II-43
Šoková, Veronika II-453
Sotoudeh, Matthew II-281
Spel, Jip I-173
Srba, Jiří I-411
Strejček, Jan II-453
Suenaga, Kohei II-262
Sun, Jun I-389

Tan, Yong Kiam II-181, II-223
Terra-Neves, Miguel I-152
Thakur, Aditya V. II-281
Thinniyam, Ramanathan S. I-449
Tinelli, Cesare II-145

Ulbrich, Mattias II-242

464 Author Index

Vardi, Moshe Y. I-20
Venkatesh, R. II-458
Ventura, Miguel I-152
Vogler, Ralf II-438
Vojdani, Vesal II-438
Voronkov, Andrei II-164

Wang, Jingyi I-389
Wang, Zhifu I-330
Wei, Anjiang I-270
Weinhuber, Christoph II-326
Weininger, Maximilian II-326
Weiss, Gail I-351
Wijs, Anton I-133

Wolf, Verena I-210
Wu, Haoze II-203

Xie, Tao I-270
Xue, Bai I-389

Yadav, Mayank II-326
Yang, Pengfei I-389
Yanich, Ann II-381
Yellin, Daniel M. I-351
Yi, Pu I-270

Zetzsche, Georg I-449
Zhang, Lijun I-389

Author Index 465

	ETAPS Foreword
	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Verification Techniques (not SMT)
	Directed Reachability for Infinite-State Systems
	1 Introduction
	2 Preliminaries
	3 Directed Search Algorithms
	4 Directed Reachability
	4.1 Distance Under-approximations
	4.2 From Petri Net Relaxations to Distance Under-approximations
	4.3 Directed Reachability Based on Distance Under-approximations

	5 Experimental Results
	References

	Bridging Arrays and ADTs in Recursive Proofs
	1 Introduction
	2 Preliminaries
	3 Synthesis of Recursive Relational Invariants
	3.1 Overview
	3.2 Classifying Operations

	4 Recipe 1: Linear Scan
	4.1 Motivating Example
	4.2 Algorithm Description

	5 Recipe 2: Noop-based synthesis
	5.1 Motivating Example
	5.2 Algorithm details

	6 Evaluation
	7 Related Work
	8 Conclusion and Outlook
	References

	A Two-Phase Approach forConditional Floating-Point Verification
	1 Introduction
	2 A Two-Phase Approach
	2.1 First Phase: Whole Program Analysis
	2.2 Second Phase: Numerical Kernel Analysis
	2.3 Soundness Guarantees

	3 First Phase: Whole Program Analysis
	4 Second Phase: Static Analysis with Daisy and CBMC
	5 State of the Art on Real-World Programs
	6 Evaluation of our Two-Phase Approach
	7 Related Work
	8 Conclusion
	Acknowledgements
	References

	Symbolic Coloured SCC Decomposition
	1 Introduction
	1.1 Related Work

	2 Problem Definition
	2.1 Graphs and Strongly Connected Components
	2.2 Coloured SCC Decomposition Problem

	3 Algorithm
	3.1 Symbolic Computation Model
	3.2 Forward-backward Algorithm
	3.3 Lock-step Algorithm
	3.4 Coloured Lock-step Algorithm
	3.5 Correctness and Complexity of the Coloured Lock-step Algorithm

	4 Experimental Evaluation
	4.1 Implementation
	4.2 Experiments

	5 Conclusions
	References

	Case Studies
	Local Search with a SAT Oracle for Combinatorial Optimization
	1 Introduction
	2 Background
	2.1 Constraint Optimization Program (COP)
	2.2 The Cell Placement Problem
	2.2.1 Constraint Optimization Program for Cell Placement

	2.3 Solving COP with SAT
	2.3.1 Bit-vector Solving and SAT.
	2.3.2 Extending Bit-vector Solving to Optimization.

	2.4 Local Search Algorithms
	2.4.1 Basic Local Search Strategy.
	2.4.2 Neighbourhood Functions.
	2.4.3 Advanced Versions of Local Search

	3 Local Search with SAT Oracle (LSSO)
	4 LSSO Algorithms for the Cell Placement Problem
	4.1 Neighbourhood Generators
	4.1.1 Neighbourhood Generator
	4.1.2 N₂: a Family of Neighbourhood Generators
	4.1.3 Hill-climbing Neighbourhood Generator N₃.

	4.2 LSSO-based Algorithms for Placement

	5 Experimental Results
	6 Conclusion
	References

	Analyzing Infrastructure as Code to Prevent Intra-update Sniping Vulnerabilities
	1 Introduction
	1.1 Proof of Concept
	1.2 Detecting Intra-update Sniping Vulnerabilities

	2 A Model for Infrastructure as Code
	2.1 CloudFormation Infrastructures
	2.2 Model of a CloudFormation Infrastructure
	2.3 Execution Semantics
	2.4 Upgrade Semantics and Security Policy

	3 Architectural Design of the Hayha Tool
	3.1 Upgrade States
	3.2 Splitting Dependencies
	3.3 Finding Vulnerabilities

	4 Experiments
	5 Related Work
	6 Conclusion
	Acknowledgement
	References

	Proof Generation/Validation
	Certifying Proofs in the First-Order Theory of Rewriting
	1 Introduction
	2 Preliminaries
	3 Formulas
	4 Certificates
	5 FORTify
	6 FORT-h
	7 Experiments
	8 Conclusion
	References

	Syntax-Guided Quantifier Instantiation
	1 Introduction
	2 Background
	3 SyGuS Quantifier Instantiation (SyQI)
	3.1 Grammar Construction
	3.2 Implementation Details

	4 Experiments
	5 Conclusion
	References

	Making Theory Reasoning Simpler
	1 Introduction
	2 Preliminaries and Related Work
	3 Gaussian variable elimination
	4 Arithmetic subterm generalization
	5 Evaluation
	6 Cancellation
	7 Experimental evaluation
	8 Conclusion
	References

	Deductive Stability Proofs for Ordinary Differential Equations
	1 Introduction
	2 Background: Di�erential Dynamic Logic
	3 Asymptotic Stability of an Equilibrium Point
	3.1 Mathematical Preliminaries
	3.2 Formal Specification
	3.3 Lyapunov Functions
	3.4 Asymptotic Stability Variations

	4 General Stability
	4.1 General Stability and General Attractivity
	4.2 Specialization

	5 Stability in KeYmaera X
	6 Related Work
	7 Conclusion
	References

	Tool Papers
	An SMT-Based Approach for Verifying Binarized Neural Networks
	1 Introduction
	2 Background
	3 Extending Reluplex to Support Sign Constraints
	4 Optimizations
	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgements.
	References

	cake_lpr: Verified Propagation Redundancy Checking in CakeML
	1 Introduction
	2 Background
	2.1 HOL4 and CakeML
	2.2 SAT Problems and Clausal Proofs

	3 Linear Propagation Redundancy
	4 CakeML Proof Checking
	4.1 Verification Strategy
	4.2 Verified Optimizations

	5 Benchmarks
	5.1 SaDiCaL PR Benchmarks
	5.2 SAT Race 2019 Benchmarks
	5.3 Mutilated Chessboard RAT Microbenchmarks

	6 Related Work
	7 Conclusion
	Acknowledgments.
	A Correctness Theorem for cake_lpr
	References

	Deductive Verification of Floating-Point Java Programs in KeY
	1 Introduction
	2 Background
	2.1 Introduction to KeY
	2.2 Floating-Point Arithmetic in Java

	3 Floating-Point Support in KeY
	3.1 Arithmetics
	3.2 Transcendental Functions

	4 Evaluation
	4.1 Benchmark Programs
	4.2 Proof Obligation Generation
	4.3 Evaluation of SMT Floating-Point Support
	4.4 Evaluation of Support for Transcendental Functions in KeY
	4.5 Discussion and insights

	5 Related Work
	6 Conclusion
	Acknowledgements
	References

	Helmholtz: A Verifier for Tezos Smart Contracts Based on Refinement Types
	1 Introduction
	2 Overview of Helmholtz and Michelson
	2.1 Helmholtz
	2.2 An Example Contract in Michelson
	2.3 Specification

	3 Refinement Type System for Mini-Michelson
	3.1 Operational Semantics
	3.2 Refinement Type System

	4 Tool Implementation
	4.1 Annotations
	4.2 Case Study: Contract with Signature Verification
	4.3 Experiments

	5 Related Work
	6 Conclusion
	References

	SyReNN: A Tool for Analyzing Deep Neural Networks
	1 Introduction
	2 Preliminaries
	3 A Symbolic Representation of DNNs
	4 Computing the Symbolic Representation
	4.1 Algorithm for Extend
	4.2 Representing Polytopes

	5 SyReNN tool
	6 Applications of SyReNN
	6.1 Integrated Gradients
	6.2 Visualization of DNN Decision Boundaries
	6.3 Patching of DNNs

	7 Related Work
	8 Conclusion and Future Work
	References

	MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers
	1 Introduction
	2 Background
	2.1 A Brief Overview of Algorithm Selection
	2.2 Supervised Learning, Adaptive Boosting, Curse of Dimensionality, and K-Fold Cross-Validation
	2.3 Unsupervised Learning and Principal Component Analysis

	3 An overview of MachSMT
	3.1 Features, Preprocessing, and Learning
	3.2 Variants of MachSMT
	3.3 Using MachSMT
	3.4 User-defined Features

	4 Experimental Evaluation of MachSMT on SMT-COMP 2019 and 2020 Data
	4.1 Experimental Setup and Methodology
	4.2 Experimental Results

	5 Analysis and Discussion of Results
	6 Related Work
	6.1 Key di�erences between SATZilla and MachSMT
	6.2 Algorithm Selection for Logic Solvers and Their Applications

	7 Conclusions and Future Work
	References

	dtControl 2.0: Explainable Strategy Representation via Decision Tree Learning Steered by Experts
	1 Introduction
	2 Decision tree learning for controller representation
	3 Tool
	4 Predicate domain
	4.1 Categorical predicates
	4.2 Algebraic predicates

	5 Predicate selection
	6 New insights about determinization
	7 Experiments
	8 Conclusion
	References

	Tool Demo Papers
	HLola: a Very Functional Tool for Extensible Stream Runtime Verification
	1 Introduction
	2 The HLola Tool
	3 Example Specifications
	References

	AMulet 2.0 for Verifying Multiplier Circuits
	1 Introduction
	2 Circuit Verification using Computer Algebra
	3 Usage
	4 AMulet 2.0
	5 Evaluation
	6 Conclusion
	References

	RTLola on Board: Testing Real Driving Emissions on your Phone
	1 Introduction
	2 RDE Monitoring on Android
	3 User Experience
	4 Conclusion
	References

	Replicating Restart with ProlongedRetrials: An Experimental Report
	1 Introduction
	2 Restart with Prolonged Retrials
	3 Experiments
	4 Conclusion
	References

	A Web Interface for Petri Nets with Transits and Petri Games
	1 Introduction
	2 Web Interface for Petri Nets with Transits
	3 Web Interface for Petri Games
	4 Implementation Details
	5 Conclusion
	References

	Momba: JANI Meets Python
	1 Introduction
	2 Scenario-Based Model Construction
	3 Validation by Simulation
	4 Harvesting the Benefits
	5 Conclusion
	References

	SV-Comp Tool Competition Papers
	Software Verification: 10th Comparative Evaluation (SV-COMP 2021)
	1 Introduction
	2 Organization, Definitions, Formats, and Rules
	3 Reproducibility
	4 Results and Discussion
	5 Conclusion
	References

	CPALockator: Thread-Modular Analysis with Projections
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Project and Contributors
	References

	Dartagnan: Leveraging Compiler Optimizations and the Price of Precision (Competition Contribution)
	1 Overview
	2 Leveraging Compiler Optimizations
	3 The Price of Precision
	4 Evaluation
	Acknowledgement:
	References

	Gazer-Theta: LLVM-based Verifier Portfolio with BMC/CEGAR (Competition Contribution)
	1 Verification Approach and Software Architecture
	2 Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project
	References

	Goblint: Thread-Modular Abstract Interpretation Using Side-Effecting Constraints
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References

	Towards String Support in JayHorn (Competition Contribution)
	1 The JayHorn Approach and Architecture
	2 Encoding of String Operations
	2.1 The CompareTo Operation
	2.2 Integer to String conversion
	2.3 StartsWith and EndsWith
	2.4 CharAt

	3 Performance of the String Encoding
	4 Tool Setup
	5 Software Project and Contributors
	References

	JDart: Portfolio Solving, Breadth-First Search and SMT-Lib Strings (Competition Contribution)
	1 Overview
	2 Tool Improvements for SV-COMP 2021
	3 Strengths and Weaknesses
	4 Tool Setup
	5 Software Project
	References

	Symbiotic 8: Beyond Symbolic Execution
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Project Contributors
	5 Software Project and Contributors
	References

	VeriAbs: A Tool for Scalable Verification by Abstraction (Competition Contribution)
	1 Verification Approach
	1.1 Tool Enhancements

	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References

	Author Index

