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Οὐδέποτε ὠρέχθην τοῖς πολλοῖς ἀρέσκειν.  
ἅ μὲν γὰρ ἐκείνοις ἤρεσκεν, οὐκ ἔμαθον.  
ἅ δ᾽ ᾔδειν ἐγώ, μακρὰν ἦν τῆς ἐκείνων αἰσθήσεως.

TO THE FOND 
MEMORY OF 
ATHANASIOS  
AND ANASTASIOS



φύσις κρύπτεσθαι φιλεῖ.
ἁρμονίη ἀφανὴς φανερῆς κρείττων.

ἓν τὸ σοφόν · ἐπίστασθαι γνώμην ὅκη  
† κυβερνῆσαι † πάντα διὰ πάντων.
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PPRROOLLOOGGUUEE  
  
The main motivation behind setting up and articulating the theoretical 
model of “Natural Communication” in a book of this form proceeds from 
the intention of the author to criticize, and transcend the current, 
“target-oriented” paradigm of complexity science, by proposing and 
elaborating an alternative one, envisioning and implementing a 
fundamental architectonics of communication. The proposed model of 
“Natural Communication” encapsulates modern theoretical concepts 
from mathematics and physics, in particular category theory and 
quantum theory respectively, not for the sake of a technical 
formalization, but in order to abstract accurately basic notions that lead 
to a conceptual appreciation of this theory. Additionally, this makes it 
possible to re-consider and re-evaluate novel ways of thinking about 
complexity deeply-rooted in the past, which have been unfortunately, 
either oversimplified and distorted, or forgotten and left to oblivion. The 
author believes that only by looking to the past, does it become possible 
to establish a continuity and coherence in our current way of thinking, 
in particular regarding complexity, which is the pre-condition for any 
serious future development on these matters. 

The fundamental realization underlying the generative reason of 
this treatise is that a certain architectonics of relations based on 
communication is ultimately necessitated in all cases, where direct 
accessibility to sharply distinguishable domains of objects and their 
behaviour is not feasible, due to obstacles or obstructions of any 
particular type. In these domains, objects are intrinsically shaped 
according to foamy or cloudy patterns, and they are characterized by 
topological plasticity, emergent properties and generically probabilistic 
attributes. The application of pre-specific, readily-tailored design 
ontologies to these domains, based on the reductive notion of some 
hypothetical sharply-distinguishable elementary constituency, not only 
distorts the architectonics of their non-trivial connectivity patterns, but 
limits and restricts, albeit inadvertently, the potential to unravel their 
rich computational capacities. In light of this, the notion of computation 
cannot be disentangled from the architectonics of relations based on 
communication. In the opposite case, complexity is reduced to a 
particular form of complicatedness due to mixing hypothetical 
elementary constituents, with the end result that information is treated 
exclusively in terms of statistical data attributes, effectively depriving 
these domains from the possibility of manifesting genuine novelty. 

The basic idea proposed in this book is the following; to address 
and utilize the architectonic modelling of not directly accessible, or more 
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generally, obstacle-laden domains. Instead of analysing them in terms of 
constituent set-based elements and their hypothetical absolute 
relations, the approach is to adjoin to them other adequately-understood 
or directly accessible domains, which can provide pointers and open up 
communication channels with the originals. The process of adjoining 
should not be ad-hoc and should not depend on artificial choices, 
meaning that it should be qualified as structurally-respecting, at least, 
locally or partially. This refers to the “naturality requirement” of the 
model, a term which is exemplified in the context of category theory. 
Technically, this adjunction process can be always abstracted properly 
in terms of a pair of adjoint functors between the categorical domains 
involved. The essence of adjoining in order to open up or potentiate 
communication channels is based on the idea of partial or local 
structural congruence, and implies a certain type of modularity in the 
treatment of obstacle-laden domains. It is deeply rooted in the old art of 
“Gnomonics”, i.e. in the masterful articulation of sundials, calendars, and 
atlases, to probe some domain inaccessible by direct means and obtain 
information in modular relation with respect to the gnomon adopted, by 
forcing or effecting a certain similarity or congruence relation. 

In practice, the process of adjoining a controllable domain to 
another one, initially not directly accessible, or obstacle-laden 
categorical domain, amounts to viewing these domains as different 
categorical levels in a stratified universe of discourse, which are 
bi-directionally connected by means of oppositely-orientated bridges, to 
be thought of as communication channels. The architectonics of 
communication targets precisely the conception and explicit 
construction of these bridges, once suitable probing domains have been 
structurally delineated for adjunction to the directly inaccessible 
domain. The bridge directed to the controllable domain plays the role of 
an encoding bridge, whereas its inverse plays the role of a decoding 
bridge. 

These connecting bridges effect the communication between the 
domains in question, in the sense that they naturally establish universal 
bidirectional communication channels through which a holonomic 
schema of “metaphora” is accomplished, based on the notion of an 
“obstacle-encircling” flow. In topological terms, the initially inaccessible 
categorical domain is resolved cyclically by a process of unfolding with 
respect to the probing domain that has been adjoined to it. In this 
manner, the invariants emerging by the process of unfolding depict the 
invariant characteristics of the reciprocal communication flow between 
these domains. Consequently, the complexity of the not directly 
accessible, or obstacle-laden, domain is not specified constitutively on 
the basis of a pre-assumed or axiomatic elementary ontology, but 
relationally, modularly, and, in the technical sense naturally, in terms of 
the invariants emerging in the bidirectional communication flow 
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established with some appropriate probing domain. From an algebraic 
viewpoint, these invariants can be qualified in terms of structural 
group-type ciphers for the symbolic encryption/decryption of the 
induced flow. 

The obstacle-embracing schema of “metaphora” giving rise to this 
cyclic flow, called the “logical conjugation method”, is always 
implemented on the basis of a legitimate logical manoeuvre through 
controllable or directly accessible domains, which are adjoined to an 
obstacle-laden domain as markers or pointers, providing eventually the 
means of specifying it indirectly through communication. The logical 
conjugation method should be thought of in terms of a “motivic key” that 
bears the capacity to unlock harmonically the complexity of the 
inaccessible domain depending on the nature and type of the obstacle 
encountered. The thing to be emphasized is that it always gives rise to a 
partition spectrum of the latter. Each cell of this spectrum is 
characterized completely by the pair of encoding/decoding bridges 
utilized for communicating an aspect of the directly inaccessible domain 
with respect to some probing domain. 

The creative art consists in the innovation of genuine 
bidirectional encoding and decoding bridges between these two domains 
that make possible the instantiation of a cyclic communication flow 
capable of embracing the present obstacle. In this manner, the 
theoretical model of “Natural Communication” is deeply rooted 
conceptually to the old art of “Gnomonics”, and it is meant as a 
continuation of this paradigm, articulating a schema of an “abstract 
gnomonics” in a modern theoretical scientific context. 

For all practical purposes, the model of “Natural Communication” 
can be implemented briefly as follows: We consider a problem in the 
context of a domain whose objects and relations are inaccessible by 
direct means. It is instructive to think of this domain as a particular level 
in a broad universe of discourse, which can engulf other possible levels 
as well. First, we move out of the context of the problem, formulated at 
the level of the inaccessible domain, by adjoining to it another 
controllable domain, assuming existence within the same universe. In 
order to accomplish this, we have to set-up an encoding bridge from the 
level of the inaccessible domain to the level of the accessible domain, 
such that some certain form of congruence can be established between 
these domains. Once we have succeeded in setting up this bridge, we are 
able to mirror the initial problem at the level of the controllable domain, 
where we have the means to address it effectively. The process is 
completed by setting up an inverse decoding bridge from the level of the 
controllable domain to the level of the inaccessible one. In this way, the 
available means or knowledge pertaining to the controllable domain can 
be lifted at the initial context of the problem. Thus, the pertinent 
problem can be effectively resolved in the context of its initial 
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formulation by the embracing of the obstacle it engulfs via the 
communication channels established with the other domain. The 
reciprocal encoding and decoding bridges constitute the means of a 
novel architectonics of communication. It has to be stressed that this 
procedure can be iterated by the adoption of more than one controllable 
domain complementarily adjoined to the inaccessible domain. The 
skeleton of this spectral resolution process remains invariant under the 
adjunction of deeper levels, and most important, it always gives rise to a 
partition spectrum of the inaccessible domain, amenable to possible 
refinement, whose cells are indexed by the respective pairs of 
encoding/decoding communication bridges. 

The present treatise consists of eleven chapters. These chapters 
run in no linear order. Rather, the reader may discern a multiplicity of 
navigation paths through the exposed landscape depending on the type 
of questions, insights, topics, and depth, she or he wishes to be engaged 
with in this exploration. Faithful to its communicational roots this book 
does not intend to install any pre-assigned order for the mind of the 
reader. The hope is there will always be certain widths of spectral 
frequencies to resonate with readers coming from diverse backgrounds. 
Although the development is based on mathematical and physical ways 
of thinking and arguing, essential care has been taken for quite detailed 
conceptual articulations of the treated subjects, which may appeal to 
readers not wishing to delve into the more technical aspects of this 
work. The main novelty consists in the attempt to transcend the strict 
linear chronological order, imposed by a misconceived sense of historical 
coherence, and establish bonds among ideas, notions, and thinkers, 
which are seemingly unrelated if not viewed through a gnomonic 
perspective. In this manner, a new view of coherence emerges, which in 
the author’s opinion characterizes the diachronic value and persistence 
of all these elements. Since the method of the book is mainly synthetic, 
traditional divisions among mathematical and physical concepts, as well 
as divisions within a discipline playing a mere organizational, less than 
organic role, are systematically avoided, or they are bridged together 
appropriately, focussing on the coherence in the functioning of a body of 
knowledge. 

Undoubtedly, the most suitable mathematical framework to 
express the model of “natural communication” is the framework of 
category theory. The major problem, beyond the technicality of this 
framework, is that it is usually introduced in an ad hoc axiomatic 
fashion, as unifying together all the most important parts of 
mathematical thinking and knowledge. This approach to the framework 
of category theory dangerously predisposes to a view of its formalism 
and concepts merely as the means of generalization and unification, and 
not as the means of innovation in relation to the whole body of 
mathematical thinking. Rather, it is the deep roots of category theory in 
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canonics and gnomonics, going back to the generative forces shaping 
mathematical thinking itself that underlies the value of this framework. 
Unfortunately these roots, which emerged only after the fundamental 
theory of adjoint functors shone through the whole endeavor, remained 
nevertheless suppressed creating the artificial distorted unifying 
generalization of an “abstract nonsense”, a humoristic expression used 
more or less seriously by the insiders in the field. This bias can be 
remedied only by tracing back the roots of category theory in canonics 
and gnomonics, i.e. by viewing this framework as a continuation of the 
old schools on gnomonics that historically re-emerged as an emergency 
exit out of the set-theoretic paradise that threatened to absorb 
everything mathematical and physical, although never acknowledged as 
such. For this reason, category theory is introduced officially only after 
Chapter 8, and after the reader has acquired a quite thorough 
acquaintance with the notions of “abstract gnomonics”, and “natural 
communication”. Moreover, the presentation of the powerhouse of this 
framework follows an inverted order, in comparison to the usual 
account. The reason for this is that category theory shines through the 
crystallization of the notion of adjunctions, and in this sense, it is a 
higher level, structural continuation of the old art of gnomonics, based 
on the same conditions of metaphora and communicability between 
different structural species. 

Besides the role of category theory in formalizing “natural 
communication” in modern structural algebraic and topological terms, 
the conceptual compass of the book is especially sensitive to the 
currents of thinking of our ancient predecessors who initiated the whole 
endeavor of “Natural Philosophy”, not as an internalized closed mental 
systematics of encompassing the workings of the whole world, but 
mainly as a means to qualify their dialogue with Physis, i.e. primarily as 
an open-ended means of experimentation and communication with what 
is directly inaccessible in order to unveil and remember it. The same 
stance is also necessary to re-examine and re-evaluate major modern 
advances in mathematics and the physical sciences in order to unravel 
the invisible threads of continuity and coherence through historical 
time. 

Essentially all the mathematical and physical notions introduced 
in this work are associated with the names of the thinkers who first 
conceived of them, or played a major role in their establishment. 
Notwithstanding this, all these notions are scrutinized in light of their 
emergence from the gnomonic perspective permeating the whole 
volume, i.e. all these notions are recast in relation to their role in a 
corresponding process of communication. One of the artifacts of this 
association is that citation becomes particularly simple. Direct 
numerical citations in the text are avoided, and the reader may find 
bibliographical references in endnotes, directly after the name of the 
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person involved appearing in the main text. In this manner, the credit 
goes to the innovators themselves, and not to textbooks, as is usually the 
case. As a general rule, the original works, although more difficult to 
read, and in many cases more fuzzy in comparison to latter formulations, 
expositions, simplifications, and appropriations, contain the real gems 
shaping a new field. It goes without saying that self-citations are 
intentionally completely suppressed in this work. 

An aspect of this book that may disturb some readers is that it 
contains a significant amount of seeming neologisms in English. This is 
only apparent, since all the non-standard English terms used are actually 
rooted in the ancient Greek language. The difficult choice was to settle 
for a standard term, or to introduce a neologism at some point, as a 
viable way to emphasize some basic concept. The dilemma essentially 
originates through the linguistic loan of a term into English, and the 
subsequent appropriation of this term in the context of a specific 
discipline that, in many cases, delimits and even distorts the original 
meaning and functional applicability of this term. This is the case, 
especially, regarding the basic notions of “analogia”, and “metaphora”, 
employed in the text, since in English, the corresponding terms of 
“analogy”, and “metaphor” have either a general meaning, or are used in 
specific linguistic or logical contexts unrelated to the etymological 
underpinnings of the original Greek terms. Additionally, in 
mathematical phraseology, the prefixes “homo” in algebra, and “homeo” 
in topology, have been adopted to characterize certain types of mappings 
associated with particular types of equivalence. Since the notion of an 
equivalence relation is formulated in set-theoretic terms, the abstract 
gnomonic type of these mappings is captured here by the term 
“homeotics”. As another example, the mathematical term “monodromy”, 
is widely used in a sense opposite to the meaning of this term, i.e. 
“monodromy” is used instead of “polydromy”, which would be the 
correct usage. Finally, in category theory the term “topos” is used, the 
plural of which is even conjugated in the absurd form “toposes”, without 
the realization that this is a term originating from rhetoric. In other 
words, a topos is meaningful only through the lines of argument or 
communication permeating it, the so called “geometric morphisms” in 
the technical context. The same applies for the notion of an “object of 
truth values” characterizing a topos, which is absurd if not qualified 
through the term “aletheia”, encapsulating the energetic act of unveiling 
in Time and remembering. 

I would wholeheartedly like to thank Vera Bühlmann and Ludger 
Hovestadt for their kind invitation to include this treatise in their Book 
Series, and most of all, for their genuine friendship, and their active 
interest and engagement, during long and exhausting series of 
discussions that took place in various spaces and times, on 
communication, computation, information, and gnomonics. The present 
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form of this book owes much to all these. It should also be mentioned 
that the term “gnomonics” itself has been suggested in the context of our 
conversations by Vera Bühlmann. A special thanks also goes to all my 
students, who patiently followed my long series of lectures on these 
subjects during the last four years in the context of the postgraduate 
teaching and research modules on “Gnomonics” and “Mathematical 
Thinking”, and attempted to obtain a deep conceptual and applicable 
comprehension of all the relevant subjects. Last, but not least, I would 
like to thank my family, and especially my wife Anna, who created the 
conditions for undisturbed work on this book, and who managed to 
reconcile with my peculiar sense of time. 
 

Elias Zafiris 
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11..11  CCOOMMMMUUNNIICCAATTIIOONN  AANNDD  OOBBSSTTAACCLLEESS::  AA  PPEERRCCOOLLAATTEEDD  DDIISSTTIILLLLAATTIIOONN  

 
The present treatise arose out of a curiosity to delve deeper into the 
nature of obstacles or obstructions that prevent a single, uniform, and 
linear approach to dealing with systems, entities or, more generally, 
beings, and their communication. The current motivation comes from a 
certain degree of dissatisfaction with the overflow of scientific 
production on what is called “science of complexity” and the 
qualification of what counts as “information of complex systems” based 
exclusively on specific “target-oriented approaches”. 

The thread of this amphiboly starts from questioning what is 
considered to be “complex” in contradistinction to what is considered 
“simple”. Usually these terms are implicitly pre-loaded with an 
ontological meaning, which essentially identifies complexity with 
certain aggregations of elementary sharply distinguishable constituents 
developing emergent properties that are behaviourally observed under 
specific interactions or conditions. This approach is assumed to be valid 
irrespectively of scale, depending on what is axiomatically baptized as an 
elementary constituent, so that certain statistical patterns can be 
applied upon them targeting the simulation of their behaviour. A natural 
set of questions in this setting is the following: What makes an entity a 
constituent, how an entity can be characterized as elementary, and most 
important, how can an entity be sharply distinguishable? 

The afterthought of these considerations is that the epithet 
“complex” arises from the opposition to what is called “simple”, where 
what is “simple” is identified with the “axiomatic elementary” in the 
context of the vast majority of these “target-oriented approaches”. 
Notwithstanding these scientific tendencies of the present, this is not 
actually the way that humankind came to terms with complexity. The 
targets were not predefined, but rather they always emerged out of a 
necessity to cope with obstacles in communication of every particular 
sort. In this respect, the meaning of complexity is altered dramatically if 
theorized from an “obstacle-oriented” standpoint instead of a 
“target-oriented” one. More precisely, the ability to locate obstacles or 
obstructions forcing a deviation from some standard condition of 
uniformity becomes the primary task. In contrast, “target-oriented” 
approaches are based on the shaky foundations of some pre-given 
axiomatic elementarity, usually identified with the foundations of set 
theory, on the top of which, pre-designed statistical methods claim to 
provide universal truths as the feeding source of policy-making on a 
larger scale. In this type of approach, where the form of the target is 
well-defined itself ab initio, precluding any chance for genuine novelty, 
even the standards of congruence effecting the condition of inertial 
variation in some domain are not determined with respect to the 



21CIRCULATION: ENCODING-PARTITIONING-DECODING

14 
 
singularities of this domain, but on the basis of general classification 
methods applied in a more or less ad hoc manner. 

In an “obstacle-oriented” approach the presence of an obstacle 
necessitates, firstly, the localization of this obstacle, and secondly, the 
unfolding of the obstacle into an appropriate partition spectrum that 
allows its indirect embracing by means of resonance with the marked 
frequencies of this spectrum, or reciprocally, but equivalently, 
synchronization with its corresponding temporal periods. By inversion, 
the first of the above, points to a viable understanding of what 
intelligence is about, whereas the second points to a viable 
understanding of the notion of an irreducible duration, together with its 
role in what memory refers to. Of course, the ability to obtain such a 
partition spectrum is always conditioned to the ability to identify a 
suitable gnomon, which actually provides the means to resonate or 
synchronize with the obstacles in question. This leads inevitably to a 
valuable association of gnomonics with the old art of harmonics. We will 
examine this association in detail in what follows, together with the 
intervening notion of canonics. 

At present, a basic fact worth pondering at is that the localization 
and unfolding of an obstacle, requires a process of metaphora around this 
obstacle, i.e. a potential circular flow around it that allows its embracing. 
If the obstacle is considered as merely an obstacle in space, then the 
potential flow clearly takes place within the space where the obstacle is 
located. The drawback of this is that the notion of space is pre-assumed 
in relation to the localization of the obstacle, whereas the opposite 
should be the case; rather the notion of space should emerge out of the 
nature of the obstacle, or else, should be cohomologous to the nature of 
the obstacle with respect to the employed gnomon of measurement. Put 
simply, the labyrinth is not pre-existing in any sense, but it is the space 
opened up by all these meandering paths which serves to embrace its 
sacred center. This is at any rate the route we have to take in case the 
obstacle is an obstacle in time. 

Actually this is always valid, even in the simplest case whereby 
we think of an obstacle as a hole in a single linear dimension, where the 
latter is considered as the line of inertial variation, i.e. the straight path 
of motion with constant velocity. The attendant need for an imaginary 
dimensionality, orthogonal to the initial real dimension, to bring into 
central focus the “unit circle” enunciated in potential or power terms via 
the exponential function, and culminating in the arithmetics and 
geometry of the complex numbers, should be properly thought of in 
temporal terms and not in spatial ones. In other words, the imaginary 
unit, or imaginary ring, supplying the complex structure, is a precise 
symbolon of metaphora through another level of hypostasis that allows 
the embracing of the obstacle localized at the zero point of the complex 
plane. 
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The notion of a symbolon bears a periodic temporal connotation, 
as opposed to its static reflective spatial manifestation as a symbol, 
which is further deteriorated to a mere formal sign. This connotation 
amounts to the instantiation of a rhythm that bears the potential to 
persist covariantly and resolve a moment of time, as manifested in the 
linear real dimension, into a vertical, orthogonally placed, spectrum of 
imaginary-valued frequencies. This resolution induces a metabole in 
both the qualitative and quantitative conceptions of time around the 
obstacle that spatially are manifested as relative phases on the unit 
circle, functioning in this sense as the homeostatic symbolic imaginary 
locus, i.e. the base sign-recording indexing of the metabole. Simply put, 
this is the subtle difference between an icon as a temporal and rhythmic 
symbolon and its spatial image as a semiotic indexing snapshot. From 
this viewpoint, an indexing real-valued sign should be never considered 
independently of its spectral depth in terms of the associated 
imaginary-valued frequencies. In all interesting cases, this frequency 
spectrum is actually quantized, i.e. it is displayed in terms of discrete 
quanta engulfing the integer multiples of some fundamental period, for 
instance, the period of circulation around the obstacle. 

From a purely topological standpoint, the localization and 
unfolding of an obstacle may be equivalently thought of as a process 
which exchaustively encompasses and universally covers the obstacle. In 
the case of a single obstacle, manifested as a hole on the plane, the 
universal covering space is displayed as a helix, whose different layers 
correspond to the different frequencies comprising the universally 
covering or unfolding spectrum. The underlying topological idea is that 
an obstacle is the source of multiple-connectivity, enacted by all 
different types of paths embracing it, which are classified by their 
characteristic winding number. The universal covering space in this case 
may be thought of as a discretely fibred space, i.e. over any real-valued 
point on the base there is a discrete fiber above it consisting of the 
frequencies of the spectrum. A fiber is the carrier of the spectral depth of 
a base point in the sense that a loop based at this point and embracing 
the obstacle is uniquely lifted to the universal covering space, such that 
its starting and ending point belong to the same fiber above the base 
point and their relative spectral difference on this fiber qualifies the 
winding type of the base loop. All fibers of the universal covering space 
are not disconnected from each other, but cohere; there is a connectivity 
structure that binds them all together, giving rise to a helix. The 
important thing is that the helix is simply connected, i.e. the universal 
covering space is actually a geometric space, meaning that it bears a 
geometric form, and as such it resolves the multi-connectivity issue of 
the base induced by the obstacle. It is precisely in this spectral manner 
that the simply-connected obstacle-covering geometric form 
topologically unfolds the obstacle. 
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The topological unfolding process of universally covering an 
obstacle, giving rise to a simply-connected geometric spectral form, can 
be properly supplemented with the complex structure induced 
fiber-wise by the imaginary unit bearing the function of the symbolon of 
metaphora through another level of hypostasis. The setting here pertains 
to a multi-valued complex function deemed to be analytic; there exists a 
power series expansion of this function locally, and the purpose is to 
extend this local domain of definition by a method called analytic 
continuation, effectively furnishing a connection expressed locally by 
means of imaginary-valued gauge potentials. Singularities appear, for 
instance, in terms of poles where the function becomes infinite. Then, 
the unfolding procedure can be implemented in this context with the 
exception of these singular points of ramification, where branching 
behavior appears. Intuitively, the fiber over this point becomes 
degenerate collapsing to a single point, through which different 
branches collide together and reciprocally open up into well-defined 
multiplicities. 

The significance of the complex structure in this setting, or 
equivalently, the conformal structure, properly lies in the domain of 
harmonics. The imaginary ring, i.e. the gnomon qualifying the conformal 
structure, gives rise to a type of resonator, where the unfolded branches, 
like bounded helical strings of a musical instrument vibrate under the 
action of the imaginary gauge potentials. In this way, a discrete series of 
harmonics is instantiated that have the capacity to resolve a moment of 
real-valued time, together with their consonances and dissonances. This 
rhythmic enunciation of the imaginary ring together with the harmonic 
series admits a choreographic interpretation in terms of oriented 
angle-preserving transfigurations, called conformal morphisms, looking 
like global metamorphoses from a geometric perspective that respect 
only the relative angles so as to maintain the rhythm. Another viable 
way to think of this choreography is in the terms of a helical standing 
wave and its associated harmonics, where this wave is not thought of as 
being in space in any sense, but rather, space arises out of its vibrations, 
periodicities, and resonances conformally in historical time. The latter is 
not comprised by the real-valued moments of events, but rather, it 
pertains to the coherent aggregation of all fibers bearing the harmonics 
over these moments, or equivalently, the quanta of resonance and 
synchronization. In a nutshell, complex harmonics is an expression of 
the economy of historical time in its entirety as it is unfolding through 
metaphora. 

In this manner, and referring to the domain of complex 
harmonics, the imaginary ring is like the translocal imaginary umbilical 
cord, which as a symbolon of metaphora through another level of 
hypostasis, forces the translocal homeosis of the local with the global in 
terms of angle-preserving periodically repeating, and thus, homeostatic 
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iconic tessellation of the whole by the part; In the two-dimensional case 
of an unfolded epiphaneia, this gives rise to only three distinct universal 
covering, simply-connected, geometric forms characterized by constant 
positive, zero, or negative curvature respectively. Simply put, the 
geometric form arises out of complex harmonics as a homeostatic 
crystalline epiphaneia of the choreography subordinate to the imaginary 
rhythm. It is a crucial fact that the domain of complex harmonics does 
not bear any distinctive ontology, rather its nature is akin to a magma. 
Notwithstanding this fact, emanating from the reciprocal and 
complementary relation between the chords and the potentials with 
respect to the imaginary resonator-symbolon in the acoustic articulation 
of the pure harmonics, a magma has entelechy, which is precisely 
manifested geometrically in one of three universal distinctive curvature 
forms. 

The geometric, hence visual, form of the universal covering 
epiphaneia in the setting of complex harmonics, requires for its 
articulation a canon of metalepsis, effecting a transgression from the 
acoustic domain of pure harmonics to the visual domain of colours. This 
requires the detuning of the pure harmonics within equally-partitioned 
chromatic intervals. In this sense, the canonics from the acoustic domain 
to the visual domain amounts to a process of imaginary logarithmization 
with respect to equally-distanced angular intervals, so that any pitch in 
the chromatic domain is situated at equal distance from its nearest 
neighbours. The canonics of this heteromorphism, which essentially 
arises out of the adjunction of the chromatic to the harmonic domain, 
transfuses an affine character to the rhythm in its chromatic 
manifestation that allows its generation and progression infinitesimally 
and differentially in a continuous manner. The suppression of the pure 
harmonics determined by the type of the obstacle, i.e. the quotient of the 
induced chromatic spectrum by the module of pure discrete harmonics, 
leaves a trace for imprinting a memory element on the imaginary ring of 
metaphora revealing thereby its global role. More precisely, this trace is 
a global non-integrable relative phase factor, i.e. a global irreducible 
residual phase marking the anholonomy of the metaphora due to the 
embraced obstacle. As such, it incorporates both topological and 
geometric information. On the other side, the suppressed pure 
harmonics, as the implicit harmonic invariants, guide the extraction of 
the complex roots of unity on the imaginary ring. In a well-defined way, 
the complex roots of unity negate the punctual character of any 
real-valued moment, in the sense that they open up channels of 
potential resonance via the harmonics with other non-locally related 
moments, recorded as geodesic paths of connectivity in the 
corresponding universally unfolded curved geometric form. 

In all cases concerning the embracing of an obstacle, the 
metaphora is effective if the cyclic flow is communicative, i.e. it 
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establishes bidirectional bridges connecting any two hypostatic levels. It 
is in this sense that an “obstacle-oriented” approach is not a directly 
“problem-solving” approach, but an indirectly “problem-embracing” one. 
The different levels are not in any relation of hypotaxis of one to 
another, but only in a relation of parataxis, and what really matters is 
the facility in the passage from one level to another in a bidirectional 
way via the bridges. This facility requires that the bidirectional bridges 
should not be ad hoc, i.e. they should not be designed as referring to 
particular subjective choices, but they should apply under covariant 
variations on their respective inversely related hypostatic domains and 
codomains. This requirement is captured by the adjective “natural”, 
which pertains to a double articulation of an algebraic nature: First, the 
hypostatic domains and codomains should be though of as categorical, 
and second, the bridges between them should be functorial, i.e. not 
depending on particular choices of objects in the interrelated categorical 
domains and codomains of the bridges. 

Generally speaking, algebra pertains to a structural enunciation 
of the “obstacle-embracing”, communicative process of metaphora 
between any two hypostatic levels. This enunciation is formulated 
operationally in terms of symbolic algebraic structures like groups, rings, 
modules, and categories. The notion of an algebraic symbol does not 
bear, neither the temporal connotation of a symbolon, nor the spatial 
connotation of a sign. For this reason, an algebraic structure maintains 
an independence from both the harmonic, and the geometric 
connotation of its symbols, although it may properly mediate between 
them and abstract from both of them. The key idea is that an algebraic 
structure, in the context of the “obstacle-oriented approach”, plays the 
role of a structure expressing both the invariant, and the covariant 
characteristics of the metaphora with respect to some specified notion of 
unity or equivalence displayed as an algebraic identity. For instance, in 
the case of a group structure it is the notion of a neutral element with 
respect to the implied operation that characterizes the algebraic 
identity. This becomes prominent in the case of structure-preserving 
morphisms, like homomorphisms and isomorphisms that transfer the 
group structure in some particular way. In this sense, the concept of a 
unit implicated by a gnomon, like a gnomon of discrete counting or 
rational measuring, is imprinted symbolically in the neutral element of 
the associated group structure. This is indispensable, since inversion of 
an operation is not feasible without the specification of the neutral 
element in any group-type structure. The ability to form inverses in 
achieving the closure requirement of a group-type structure is 
conditioned on the extension of elements into algebraic power domains, 
which elevates the exponentiation operation to a place of prominance, 
subsuming the operations of addition and multiplication. Its inversion, 
i.e. the logarithmization operation, cannot be performed unconditionally. 
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More precisely, the expression of the irrational numbers via the real 
logarithm requires a topological continuity condition, whereas the 
expression of the imaginary numbers via the complex logarithm requires 
a local topological simple-connectivity condition. In other words 
algebraic operational definability and topological continuity or 
connectivity become inextricably intertwined and inseparable in the 
transcendental realm. This is exactly the reason that a group-type of 
structure is, in principle, capable of expressing invariants of a topological 
nature. 

The transcendental realm, as the cumulative realm of algebraic 
powers and their inversion or reciprocation, is particularly suited to 
express symbolically potential circular flows embracing obstacles of any 
type. This leads to the idea that there should exist a minimal, in the 
sense of the most economical, algebraic symbolic description of a 
metaphora between any two hypostatic levels that can be qualified as 
structural. In other words, any metaphora with respect to an obstacle 
should, in principle, be expressible in terms of a symbolic “motivic key” 
capable of unlocking operationally the communication capacity between 
the domains it is applied to. Thus, its function is doubly significant: 
First, since the key is symbolic, it always allows the structural 
encapsulation of the metaphora in terms of invariants, which can be 
qualified effectively by means of standard algebraic structures; Second, 
since the key is motivic, its economy is not subordinate to artificial 
choices pertaining to the bridging of the hypostatic domains, and thus, it 
should ne natural, fulfilling the requirement of covariance. 

Regarding the issue of “naturality” in the specification of this 
symbolic motivic key, in the general case that the communicative 
domains-levels are heteronymous if hypostasized structurally, it is 
essential that the structural qualification follows from a deeper algebraic 
categorization that admits the possibility of heteronymous bridging via 
heteromorphisms. This is not imposed on the basis of some universal 
axiomatic system, but it arises out of necessity when operating in the 
heterogenous symbolic. The reason is that heteronymous domains 
cannot be bridged together directly, but require a certain canonics that 
makes them partially structurally adaptable to each other. We have 
already introduced this notion in relation to bridging together the 
harmonic with the geometric domain, or the acoustic with the visual 
domain. Here, algebraic canonics of metalepsis assumes a particular type 
of heteromorphisms between the concomitant categorical 
characterization of these domains, which can be internalized 
homonymously, i.e. expressed in terms of homomorphisms within each 
category, under the existence of initial or terminal objects via which the 
potential cyclic flow factors through. In categorical language, they are 
called adjunctions, expressed in terms of natural isomorphisms arising 
from the bidirectional bridging of the relevant categorical domains via 
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adjoint functors. It is important to emphasize that this is how “natural 
communication” inverts the usual understanding of category theory, 
since it is the canonics between heteronymous domains that entails the 
category-theoretic characterization of those domains. In other words, 
the latter appears out of the metaleptic economy characterizing the 
“natural communication” between heteronymous domains in the terms 
of adjoint functors, and not as an appeal to any type of structuralist 
foundations. 

Since the central issue is the notion of an obstacle and the 
metaphora required to embrace it via different hypostatic domains 
capable of entering into “natural communication”, the notion of a 
foundation is totally misconceived. Instead, what is crucial always is the 
notion of an architectonic scaffolding that potentially is able to bridge 
together these domains so that the metaphora leading to the 
communication between these domains can be elucidated. The 
framework of adjoint functors in category theory pertaining to the 
symbolic and operational aspects of this metaphora can be appreciated if 
evaluated properly in its function as a sophisticated abstract 
architectonic scaffolding. The harmonic, topological, and geometric 
aspects of the metaphora, as explicated concisely above, also bear an 
indispensable role in the articulation of “natural communication” and 
the efficacy of abstract gnomonics in this fashion, which would be 
impossible by restricting only to the categorical and the symbolic realm. 
Put equivalently, the algebraic symbolic “morphe” should be consistently 
elaborated and ingrained by the harmonic symbolon of the metaphora, 
together with its topological schematism, and eventual geometric 
spectral form. 

At a further stage, and as a result of this elaboration, the bridges 
between different hypostatic domains in the most economical 
articulation of “natural communication” in the terms of a motivic key 
can be thought of as cobounding the conditions of communication 
between these domains. Since cobounding is always of a local or even 
infinitesimal nature, these conditions transcribe the norms of harmonic 
congruence that can be eventually unfolded multi-periodically in some 
simply-connected geometric form. The important thing is that the 
norms of harmonic congruence allow the evaluation of any other 
possible metaphora between the domains involved with respect to this 
norm, i.e. cohomologically. This means that the qualification of 
information under a process of metaphora involving the communication 
between two domains is essentially cohomological, or else, entropy as a 
measurable magnitude of this information is cohomologically quantifiable. 
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11..22  ““NNAATTUURRAALL  CCOOMMMMUUNNIICCAATTIIOONN””::  UUBBIIQQUUIITTYY  OOFF  AA  MMOOTTIIVVIICC  KKEEYY  

 
The model of “natural communication” envisions an architectonics of 
communication as the most prominent conceptual stance in tackling the 
problem of complexity. The founding realization is that such an 
architectonics of structural relations, which are based on 
communication between appropriate correlated domains, poses itself as 
a necessity in all these cases, where obstacles and obstructions of any 
particular type prohibit or prevent the direct accessibility to 
hypothetical sharply distinguishable elements of complex domains. The 
shaping of objects in these domains takes place according to foamy 
patterns, characterized by topological plasticity, emergent properties 
and generically probabilistic attributes. The application of pre-specified, 
ready-tailored constitutional and elemental design ontologies to these 
complex domains, according to analytic methods designed for those ideal 
cases where sharp elemental distinguishability is feasible, not only 
distorts the architectonics of their intricate connectively weaving 
patterns, but limits and restricts, even inadvertently, their potential 
computational capacities. 

The basic idea to address and utilize the architectonic modelling 
of these domains is the following: Instead of following the standard 
analytic method of dissecting ontologically complex objects, i.e. objects 
situated in non-directly accessible domains, in terms of the collections of 
their hypothetical set-based elements and their concomitant absolute 
relations, we adopt a synthetic method: We let them unveil themselves 
by adjoining to them other adequately-understood, or directly accessible 
domains, which can provide pointers and open up communication 
channels with the complex ones. The difficulty in this synthetic act rests 
on the fact that an adjoined domain should be capable of opening up 
such a communication channel, otherwise its adjunction is vacuous. The 
crucial condition that should be fulfilled for this approach is the viability 
of setting up a bidirectional bridging scaffolding of encoding/decoding 
relations between these domains. 

These relations may be thought of as giving rise to a sieve 
through which the eventual unveiling of the connectivity patterns 
characterizing the objects of the complex domain becomes effective. In 
this sense, the study of the architectonics of communication is 
tantamount to the realization of the possibilities of unveiling a complex 
or obstacle-laden domain through an appropriate weaving sieve. A sieve 
with this function bears the capacity to reveal the intricate bonds 
beyond direct access, which give rise to the coherence of the complex 
domain. Therefore, complex objects are unveiled via percolation through 
a sieve of communication relations, an invariant process which is 
depicted precisely by the ancient Greek term “aletheia”. In this setting, 
the synthetic act of adjoining a domain for communication should not be 
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ad-hoc, and should not depend on artificial choices, meaning that it 
should be designed to respect any structure encountered, at least, locally 
or partially. This refers to the “naturality requirement” of the model, a 
term which belongs to the register of category theory. Technically, as it 
will turn out as the argument develops, the adjunction process is 
concretely modelled in terms of a pair of adjoint functors between the 
involved categorical domains. 

In practice, the process of adjoining a controllable or directly 
comprehensible domain to a complex, or obstacle-laden, categorical 
domain, is tantamount to considering these domains as different 
categorical levels in a broad stratified universe of discourse, which are 
amenable to bi-directional correlation by means of oppositely or 
reciprocally oriented bridges. The architectonics of communication 
targets precisely the conception, explicit construction, and 
manifestation of these bridges, once suitable probing domains have been 
structurally delineated, due to their partial or local congruence 
properties, to be adjoined to the directly inaccessible complex domain. 
The bridge directed from the latter to an adjoined controllable domain 
plays the role of an encoding bridge, whereas its inverse or reciprocal 
plays the role of a decoding bridge. These level-interconnecting bridges 
effect the communication between the involved domains, in the sense 
that they bear the capacity to open up and establish natural and 
universal bidirectional communication channels through which a 
schema of metaphora can be accomplished, which is based on the notion 
of an “obstacle-encircling” flow. 

From a topological standpoint, the initially inaccessible 
categorical domain is being spectrally resolved in the fashion of a spiral, 
i.e. by a process of cyclic unfolding with respect to the various probing 
domains that have been adjoined to it, corresponding to different layers 
of spectral resolution. In this manner, the invariants emerging by the 
process of unfolding depict the substantive characteristics of the 
reciprocal communication flow between the domains involved. 
Consequently, the complexity of the non-directly accessible, or 
obstacle-laden, domain is not specified constitutionally on the basis of a 
pre-assumed or axiomatic elementary ontology, but relationally and 
functorially, in terms of the spectral invariants emerging in the 
bidirectional communication flow established with suitable probing 
domains. From an algebraic viewpoint, these invariants can be described 
in terms of structural group-type ciphers for the symbolic 
encryption/decryption of the induced flow. 

The obstacle-embracing schema of metaphora giving rise to this 
transitory multi-levelled cyclic flow, called the “logical conjugation 
method”, is always implemented on the basis of adjoining controllable or 
directly accessible domains to an obstacle-laden domain in their role as 
markers, or pointers, or more generally gnomons, providing eventually 
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the means of unveiling it indirectly through communication. This 
constitutes a legitimate synthetic logical manoeuvre in the specification 
of a complex domain that has the capacity to unveil it by means of 
metaphora through the weaved sieve of encoding/decoding relations. 
The temporal percolation due to this sieve constitutes the –aletheia– of 
the complex domain, that is, what is unveiled and should not be 
forgotten about the coherence of this domain. The logical conjugation 
method effectuating the metaphora plays the functional role of a motivic 
key that bears the potential to harmonically unlock the complexity of 
the inaccessible domain, depending on the nature and type of the 
obstacles located. The creative art consists in the innovation of the 
reciprocal encoding/decoding bridges acting as the means of 
communication between an obstacle-laden domain and a conjugate 
accessible domain. 

The function of the gnomon, enunciated through the 
encoding/decoding bridges, is instrumental in the eventual schematism 
of a partition spectrum pertaining to the obstacle-laden domain. Each 
partition block or cell of this spectrum is characterized completely by 
the equivalences induced by this pair of encoding/decoding bridges 
utilized for communicating an aspect of the non-directly accessible 
domain with respect to the probing conjugate domain. An important 
stipulation for the role of a probing domain, bearing a gnomon of partial 
congruence with respect to the obstacle-laden one, is that it is not to be 
considered, in any sense, as the foundational background of the latter, 
namely in terms of absolute elemental constitution, as would be the case 
in mathematical set theory. Rather, the functional role of a probing 
domain is to open up a communication channel with the complex 
domain, such that the partial congruence between them can be properly 
thought of as a resonance within certain intervals of frequencies 
comprising the induced partition spectrum. In other words, a probing 
domain, endowed with a gnomon enunciating the encoding/decoding 
capacity of the associated communication bridges with the complex 
domain, gives rise to an architectonic scaffolding for the qualification 
and quantification of the information gained by the embracing of an 
obstacle characteristic of the complex domain. 

The simplest possible articulation of the proposed schema invites 
us to consider a problem in the context of a complex domain, i.e. a 
domain whose objects and relations are non-directly accessible due to 
various types of obstacles. First, we have to move out of the context of 
the initially posed problem, formulated at the level of this domain, since 
it is not directly accessible, due to obstacles preventing any possible type 
of sharp analysis. For this purpose, we act synthetically by adjoining to 
the complex domain another controllable probing domain at least locally. 
In order to accomplish this, we have to set-up an encoding bridge from 
the level of the inaccessible domain to the level of the accessible probing 



31CIRCULATION: ENCODING-PARTITIONING-DECODING

24 
 
domain. Once, we have succeeded in setting up this bridge, we are able 
to transfer the initial problem, even locally, at the level of the 
controllable domain, where the means to resolve it effectively exist. This 
is tantamount to the construction of a resolving partition spectrum that 
covers the complex domain, and groups its communicable attributes 
with the probing domain into distinctive blocks, i.e. communication 
channels. The schema is completed by setting up an inverse decoding 
bridge from the level of the controllable domain to the level of the 
inaccessible one. In this way, the resolving spectral capacity of the 
controllable domain can be raised at the initial context of the problem, 
and thus, the problem is indirectly resolved through decoding in the 
context of its initial formulation. The reciprocal encoding and decoding 
bridges constitute the means of a novel architectonics of 
communication. It should be emphasized that the procedure 
implemented above can be iterated by the involvement of more than one 
controllable domains, which are adjoined respectively to the inaccessible 
domain. The skeleton of this algorithmic procedure of resolution 
remains invariant under the adjunction of deeper spectral levels. In all 
cases, there emerges a partition spectrum of the inaccessible domain, 
whose cells are indexed by the respective pairs of encoding/decoding 
bridges. The procedure of resolution conducted by synthetically 
adapting motivic keys to an inaccessible domain, according to the above 
schema, is technically called logical conjugation, whence the 
communicating domains, represented by levels inter-connected by the 
encoding/decoding bridges, are called conjugate domains. The adjective 
“logical” adopted for the conjugation method, is intrinsically related to 
the fact that the unveiling of the complex domain in this way, 
constitutes its -aletheia-, a notion that extends and enriches 
conceptually the standard bare logical notion of “truth”. 
 
11..33  TTHHEE  ““OOBBSSTTAACCLLEE--OORRIIEENNTTEEDD””  AAPPPPRROOAACCHH::  IINNVVAARRIIAANNCCEE,,  AACCTTIIOONN,,  
  AANNDD  GGNNOOMMOONNSS  

 
First of all, it is worth focussing on two interrelated aspects of what we 
term the “obstacle-oriented” standpoint of enquiry. The first issue refers 
to the nature of metaphora around an obstacle. Simply stated, in what 
way is a cyclic flow initiated, giving rise to communication between two 
heterogeneous levels of hypostasis by connecting them through 
bidirectional bridges? The second issue refers to the specification of an 
obstacle as a source of invariance with respect to the specific context of 
its localization. These two issues are closely related by the temporal 
notion of action. In turn, it is the notion of action that qualifies the 
notion of connectivity independently of any spatial instantiation. 

We start following the thread that identifies an obstacle as a 
source of invariance. The notion of invariance is not absolute, but it is 
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modular, meaning that invariance is meaningful only within the specific 
context of localization of an obstacle. Invariance can be operationally 
characterized only through action directed initially away from the level 
or context of the obstacle. The effect of action is to initiate a stream flow 
that is capable of retracting the inaccessibility or obstruction imposed by 
the obstacle to some generic situation at another level through which a 
passage becomes viable, and then re-direct the flow black toward the 
initial level, so that the obstacle can be embraced. Successfully 
embracing an obstacle always leaves a residue, to be thought of in terms 
of “countable quanta of metabole by periodic action”. These quanta are 
spectral quantities, denoting rhythmic arrangements within regular 
temporal cycles, to be thought respectively as frequencies. Most 
important, these quanta encode the invariance of the obstacle they refer 
to with respect to all possible embracing circular flows initiated by 
temporal actions. 

The crucial issue is that a residue of a cyclic stream flow is 
something associated with a differential, i.e. it is the result of an 
integration procedure along a temporal cycle surrounding the obstacle. 
This has the following consequences: 
 
i Temporal cycles can be distinguished only by the countable 

number of winding actions around the obstacle, and thus, the 
frequency spectrum is indexed or quantized by an integer 
number; 

ii A differential is a quantity that does not assume any value at a 
point, meaning that it is viable only in germinal form with 
respect to a cloud or foam surrounding any point around the 
obstacle; 

iii As a consequence of the above, an indistinguishability or 
ambiguity is induced in relation to the stream flow, expressed by 
the notion of the multiple-connectivity associated with an 
action; 

iv In turn, this multiple-connectivity is annihilated by unfolding 
the domain of action continuously in successive branches,  
giving rise to a helicoidal staircase until uniformity or 
simple-connectivity prevails; 

v The universal helicoidal staircase as the unfolded domain of all 
temporal actions to embrace the obstacle constitutes the 
quantized spectrum of these actions; 

vi The nature of metaphora is explicated by the connectivity 
bridges between the level of the obstacle and any level of the 
helicoidal staircase together with the associated countable 
quanta of metabole; 
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vii In terms of metaphora, the invariance of the obstacle is expressed 

in a unequivocal way upon perpetual completion of all temporal 
action in terms of the anholonomy of metaphora; 

viii The anholonomy of metaphora serves as the memory element of 
the process of encompassing the obstacle. 

 
In context of the obstacle-oriented approach, there are two further 
intertwined issues that deserve special attention. The first has to do 
with the fact that the notion of quanta requires something that 
distinguishes among them, meaning a mark or a gauge or a boundary. 
The second has to do with the conditions of qualification of a quantum 
as a spectral information unit. These two issues open up the vast subject 
we address by the term “gnomonics”, i.e. creatively devising gnomons 
suited to the physis of obstacles that allow flow streams of 
communication, or else chains of connectivity, to bind together different 
levels of hypostasis. 

The gnomonic enrichment of the obstacle-oriented approach is 
inseparable from the conception of obstacles as modular sources of 
invariance. This has been the case since the beginning of natural 
philosophy and natural science initiated by the magnitude measurement 
of the height of a pyramid by Thales. It was his innovation to use a 
vertically placed measuring stick as a gnomon, which to the theory of 
homeothesis connecting the level of actual objects with the level of their 
shadows by means of proportionality, or invariance of angle, under the 
temporal action of light fixed at the same time of the day. The notion of 
an appropriate gnomon in the context of any type of obstacle is always 
instrumental for obtaining a spectrum, consisting of distinct equivalence 
classes, or partition cells, or fibers, or finally, distinguishable orbits of a 
multiply-connected temporal action generating a stream flow around an 
obstacle. 

The abstraction of the initial connotation of a gnomon from its 
association with the sun-dial of a stick emerged early during the 
flourishing period of the Alexandrian school of mathematics. A gnomon 
with respect to an obstacle becomes any suitable form with the following 
property: If the gnomon is adjoined to the obstacle-laden form it gives 
rise to a new form self-similar to the original one. This conception of the 
function of a gnomon in relation to an obstacle is not only ingenious, but 
it paves the way to a gnomonic derivation of the whole framework of 
category theory, which represents undoubtedly the most abstract part of 
modern mathematics. At this early stage, we mention for the sake of the 
curious and eager reader that the notion of adjoint functors forming an 
adjunction in category theory is nothing else than a technical 
elaboration of the way a specific category of frames serves as a gnomon 
with respect to another obstacle-laden and non-directly accessible one. 
For the time being, it is enough to highlight that the invention of a 



34 NATURAL COMMUNICATION

27 
 
suitable gnomon with respect to an obstacle always gives rise to 
bidirectional bridges binding together the level where the obstacle is 
located with another level of hypostasis whose meaning derives only 
from relation to this gnomon. This constitutes the algebraic 
manifestation of the function of a gnomon. In cases where the bridges 
are exact inverses to each other, a group structure is generated, where 
the gnomon is enciphered as the neutral element of this group. In case 
that the bridges are only conceptually inverse, or else, adjoint to each 
other, what is generated is rather a categorical monad structure. 

It is necessary now to examine in more detail the relation 
between these different conceptions of obstacles as modular sources of 
invariance and gnomonics. We consider the case that the algebraic 
manifestation of the function of a gnomon gives rise to a group of 
temporal actions. The notion of a group is associated with the 
conception of symmetry relations established by the action-elements of 
this group. Symmetry means common measure with respect to a 
standard of measurement, or a standard of demarcation, which is to say a 
gnomon. In other words, the idea of symmetry is subordinate to the 
function of a gnomon. Coming back to the context of our inquiry, 
symmetry of temporal actions can be established only with respect to a 
standard of partitioning for these actions into distinct classes of 
equivalence with respect to this standard. Given that these temporal 
actions initiate cyclic stream flows around the obstacle, such a standard 
of partitioning can be enunciated only in terms of boundaries for these 
flows. As such, the notion of a boundary serves as the cipher, or 
equivalently, the neutral element of the group structure partitioning 
symmetric temporal actions into distinct cells, and thus, forming a 
spectrum. 

In more technical terms, we obtain for our purposes, a metabasis 
from homothesis to homology and cohomology by inventing a new 
gnomon bearing the property of topological deformation invariance with 
respect to the obstacle. This new gnomon is more potent in power than 
the homothetic one, since 
 
a boundaries form an Abelian group structure, meaning that the 

cipher becomes of a structural type, and 
b the gnomon detects and operates on germs of actions due to the 

deformation invariance property. 
 

Due to these properties, the modular source of invariance forced 
by the obstacle is qualified in terms of symmetric, and thus, 
equivalence classes of germs of temporal actions with respect to 
the gnomon giving rise to a spectrum. Therefore, the pairing 
between homology and cohomology is spectrally induced, 
providing countable means of distinguishing among different 
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quanta. Each quantum, namely each symmetric class of germs of 
temporal actions, specifies a concrete rhythmic arrangement 
within a regular temporal cycle surrounding the obstacle; it is of a 
certain harmonic nature. 

 
The above brings us to the second fundamental issue of gnomonics in the 
context of the obstacle-oriented approach, the one pertaining to the 
conditions of qualification of a quantum as a spectral information unit. 
More precisely, we have seen how the function of this deformation 
invariant gnomon induces a spectrum, each cell of which is indexed 
harmonically in terms of “countable quanta of metabole by periodic 
action”. The first crucial thing to stress is that the whole spectrum 
appears only through the simply-connected universal helicoidal covering 
of the obstacle. Since this universal covering is the global and uniform 
unfolded domain of all temporal actions embracing the obstacle, we 
conclude that a quantized spectrum becomes manifest only in a 
simply-connected domain. 

In other words, the manifestation of a spectrum necessitates the 
gnomonic annihilation of multiple-connectivity associated with a 
temporal action. In turn, multiple-connectivity is of a foamy and 
ambiguous nature, that is, it prevents the distinction among streams of 
flows around the obstacle. Given that these streams amount to chains of 
connectivity, it is only through boundaries that this fog of objective 
probabilistic ambiguity may be gradually lifted in time. Note that this 
form of ambiguity is of an objective character, since it is not based on 
any type of subjective ignorance. This lifting is enacted by the perpetual 
completion of all germs of temporal action until simple-connectivity 
prevails gnomonically and the spectrum of distinguishable quanta 
becomes manifest. 

The second crucial thing to stress is that a distinguishable 
quantum of the spectrum does not constitute a unit of spectral 
information yet. It becomes such if and only if it is actually 
distinguished. Put differently, the spectrum is only the pre-condition for 
conveying information in terms of quantum units, but it does not qualify 
any of its elements as pre-existing units of information without any act 
of actual distinction among them. This can be explained by the fact that 
the spectrum constitutes the articulation of the symmetry of the 
gnomon, and as such, the spectrum is precisely the bearer of the simple 
connectivity emancipated by the gnomon. On the other side, the 
objectification of a quantum of a certain frequency from the spectrum as 
the bearer of in-formation, requires an actual distinction that breaks its 
connectivity bridges with all other symmetrically connected ones with 
respect to the gnomon. We conclude that a spectral information unit 
amounts to breaking the symmetry in the connectivity pattern of the 
gnomon, the latter being the price for information. Note that, by the 
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principle of gnomonic constitution of the spectrum, a spectral 
information unit pertains to germs of temporal actions, and thus, it is a 
modular unit of actual distinction between different cells. Henceforth, 
maximal symmetry amounts to minimal information, whereas minimal 
symmetry amounts to maximal information. Put differently, connective 
symmetry and spectral information constitute a Galoisian complementary 
pair with respect to the function of the gnomon in the context of the 
obstacle-oriented approach. 
 
11..44  HHOOMMEEOOTTIICCSS  OOFF  CCOOMMMMUUNNIICCAATTIIOONN::  OOBBSSTTAACCLLEE--EEMMBBRRAACCIINNGG  MMEETTAAPPHHOORRAA  

 
The notions of analogia and metaphora are considered in their broadest 
possible meaning, where a quantity, or an object, or a structure, or even a 
category, is amenable to a certain process of comparison with another of 
the above kinds. In this sense, analogia and metaphora are detached from 
the restricted cognitive and linguistic connotations that the widely used 
notions of analogy and metaphor carry with them. Notwithstanding this 
fact, the former notions are included as special cases of analogia and 
metaphora, which are endowed with a well-defined mathematical 
content, being at the basis of what we call “-natural communication-”. 
The underlying basic idea is that the purpose of this process of 
comparison is to embrace the obstacles, which are associated in some 
specific manner with some domain occupied by any of the above kinds 
through transference to another conjugate domain. The transference is 
thought of bidirectionally, which means it involves both an encoding and 
a decoding bridge from some domain to its conjugate domain. The 
obstacle-embracing function of analogia and metaphora is articulated 
through congruence or similarity of relationship between instances and 
not as similarity between the instances themselves pertaining to any of 
the above kinds. This is a subtle difference that needs to be emphasized, 
since it discloses the basic characteristic of any analogia or metaphora 
underlying the power of this function and binding it with the notion of 
communication between conjugate domains. 

Thinking in terms of instances in two different domains between 
which a congruence or similarity of relationship is established, one is 
generally not directly comprehensible or accessible, while the other is 
assumed to be better or more easily tractable. It is important to clarify 
that according to the above, an analogia pertains to a congruence 
relation not between two instances, but between the relations of these 
two instances. Thus, an analogia as a congruence relation between 
relations, involves (at least) two terms, each of which is itself a relation. 
This congruence relation between relations is called a homeotic relation. 

As a simple first example, if we use the scaffolding of naive set 
theory, such that a simple relation is thought of as a binary relation 
between two sets, then an analogia requires four terms in order to be 
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expressible. The four terms are distributed in two distinct levels or 
domains, where two of the four terms are placed on the same level so as 
to express a simple relation. Furthermore, three of the four terms are 
assumed to be known or directly measurable, or accessible, or more 
generally, determinable by some method, and the purpose is to 
determine the fourth. 

The primary example of the notion of analogia emanates from 
Thales’ theory of homeothesis or proportionality. It is important to 
emphasize that the purpose of Thales’ theory of proportions had been 
the measurement of non-directly accessible magnitudes. More 
concretely, the objective of Thales was to find the directly inaccessible 
height  of a pyramid, given the length  of its accessible shadow, as 
well as the height , and the shadow length , of an accessible object 
placed vertically as a reference stick, which plays the role of a 
measurement rod in homeothesis. The analogia devised by Thales for the 
resolution of this problem is based on the idea that light coming from the 
sun induces a congruence relation between the level of heights and the 
level of shadows for each specific time recording the magnitudes of all 
the four variables involved. The analogia of homeothesis is expressed 
symbolically as follows: 
 

 
 

(   to  ) is as (   to  ) 
 
In algebraic terms, the above analogia is expressed by the simple 

equation , from which the non-directly accessible magnitude x 

can be determined indirectly as . Note that the four terms of 

this proportion between magnitudes are arranged into two distinct 
levels according to some qualifying characteristic, i.e.  and  
occupy one level as vertical heights, whereas  and  occupy the 
other level as horizontal shadows. 

In point of fact, Thales provided a geometric solution to the 
problem addressed by homeothesis, since the set-up involving the 
algebraic equation of proportionality of magnitudes together with its 
simple algebraic solution presented above, was not available at that time. 
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The important fact is that the solution of the proportionality equation 
involves the group-theoretic operations of multiplication and, inversely, 
division of positive integer magnitudes. Thus, from the viewpoint of 
natural communication, the geometric theory of proportions, i.e. the 
theory of homeothesis, contains all the seeds of abstraction leading to 
the conception of the modern algebraic structure of a multiplicative 
group. 

In particular, given the multiplicative monoid structure of the 
positive integers, the solution of the Thalesian problem of 
proportionality or analogia of magnitudes requires the option to invert 
the multiplication operation, i.e. it requires the operation of division. In 
turn, since this is not possible in the context of positive integers, the 
operation of division entails their algebraic extension to the wider 
context of the rationals, culminating in the multiplicative group 
structure of the rationals. 

Conclusively, the determination of an unknown magnitude in the 
Thalesian setting, by analogia, interpreted now algebraically, requires 
the introduction of the multiplicative group structure of the rational 
numbers in order to provide a solution to the associated proportionality 
of magnitudes equation expressing that analogia. In a suggestive 
manner, we can rewrite the solution of this equation as follows: 
 

 
 
meaning that to obtain the non-directly accessible magnitude , 
“multiply by ” (denoted by ) the magnitude , and then, divide 

by  (denoted by ). Thus, the determination of inaccessible 
magnitudes by means of analogia, algebraically necessitates the 
introduction of the group-theoretic closure structure on magnitudes, 
equipped with the operation of multiplication and possessing an inverse, 
which is division. 
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By extrapolating, we may assume that the resolution of a more 
general problem, based on analogia (not restricted to the situation of 
proportionality of magnitudes) implicitly requires for its algebraic 
manipulation the following: 

Firstly, the distribution of the four terms of an analogia into two 
distinct levels, two of the four on each level, where three of the four 
terms are assumed to be directly determinable, and the purpose is to 
determine the fourth. 

Secondly, the introduction of an appropriate closed algebraic 
structure with respect to a process that bridges together the two distinct 
levels, playing a similar role to the operation of multiplication (between 
magnitudes at different levels). This multiplicative adjunctive process 
can be thought of as a directed bridge which connects the upper level 
with the lower one, where each level is occupied by things belonging to 
the same class, or domain, or universe of discourse. 

Thirdly, the possible determination of the inverse to the 
multiplicative adjunctive process, called the division process. In many of 
the cases an exact inverse process (being suggestive of the global 
schematism of reversibility via another level) may not be attainable, and 
thus, partially or locally inverse processes should be employed, satisfying 
appropriate conditions. 

According to the above, in the case that an exact inversion 
process is available or globally constructible, facilitating an effective 
exact round-trip between two delineated levels, we call the analogia a 
metaphora. This conception has an Aristotelian origin, formulated in the 
statement in Poetics, according to which: “Metaphora is the substitution 
of the name of something else, and this may take place from genus to 
species, or from species to genus, or from species to species, or according 
to proportion.” 

Projecting this statement back to the general environment of 
analogical relations, we conclude that a general analogy between 
instances may be concerned with class membership or class 
characterization. 

In a nutshell, an analogia, formulated as a relation among four 
terms distributed at two distinguished domains or levels follows a 
unifying conceptual thread: Starting from a term at some level the 
determination of an inaccessible term with respect to the first, at the 
same level, via a cyclical global round-trip process through another 
understandable level, involving three stages: 

First, setting up an encoding multiplicative adjunctive bridge of 
correspondence of the initial term at the first level with another term 
conceived as an instance at the other level. Second, processing the 
required task at this other level. Third, devising a decoding bridge of 
correspondence, inverse to the multiplicative one, which facilitates the 
return at the initial level, and simultaneously resolves indirectly the 
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problem of inaccessibility, or equivalently embraces the obstacle 
encountered at the initial level. 

Subject to the above, characterizing the general thought pattern 
of an analogia or metaphora, as an attempt to extract the conceptual 
essence of the Thalesian theory of proportions of magnitudes, and then, 
abstract it algebraically, we express an analogia or metaphora in terms of 
the following symbolic relation: 
 

 
 

 
 
where, the unknown , at the obstacle-laden level, may be specified 
by an ordered three-stage process, through some quite easily 

determinable  at another viable level mediated via the opposite 
pointing bridges  and  connecting the two levels. In case where 

the bridges  and  are exact inverses, and  is considered to 
be noise-free or homeorhetic, we say that the analogy is effective, 
characterized as a metaphor. In the general case, where the bridges  
and  are not exact inverses to each other, but only conceptually 
inverse, they are called adjoint. 

The underlying idea in all these cases is that a communication is 
established between these two levels capable of embracing the obstacles 
encountered at the initial level. The characteristic feature of an analogia 
is that a problem, located at a domain or level, requires for its effective 
treatment to move away from the context of this domain, i.e. to transfer 
the problem into another non-obstacle-laden domain. This is possible by 
designing appropriate encoding and decoding bridges between these two 
domains and following the three-stage process indicated previously, in 
the specified order. The effect of this, is that, as a result of the 
established congruence between the domains involved, the return to the 
initial domain, carries within itself the indirect solution to the problem 
that has been actually derived at the non-obstacle laden domain. Of 
course, the designation of the encoding/decoding bridges, being either 
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exactly inverse or adjoint, is of fundamental significance for the 
operational or computational manifestation of a round-trip between 
these levels, interpreted as a process of communication. Note that 
communication is possible if and only if a specific global, or local, or even 
partial, congruence becomes attainable between the involved domains. 
The requirement is that the bridges are somehow stable, i.e. they are not 
dependent on ad hoc choices or oversimplifying assumptions. This is 
expressed by the adjective natural, which obtains a well-defined 
meaning in mathematical category theory, as we will discuss later. 

From an algebraic viewpoint, the symbolic relation  
admits a dual interpretation, namely one in terms of substances and 
another in terms of operations. In the context of communication, the 
operational interpretation is preferable, since it places the emphasis on 
the process devised for overcoming the initial inaccessibility. In this 
sense, the symbol  (indirectly determinable by analogia), followed 
by the sign of equality, may be interpreted as signifying the total ordered 
series of the three actions needed for its effective determination via 
another level, connected to its own by two bridges in opposite 
directions. It is also instructive to notice that the meaning of the 
operational interpretation can be captured even from its dual 
substantive viewpoint, under the convention that the symbolic relation 
of analogia can be extended in the notational form: 
 

 
 
where, the symbols  and  denote some kind of base locality or base 
indexing parameter. 
 
11..55  AALLGGEEBBRRAA  OOFF  MMEETTAAPPHHOORRAA::  CCOONNJJUUGGAATTIIOONN  BBEETTWWEEEENN  HHYYPPOOSSTTAATTIICC  DDOOMMAAIINNSS  
 
In general mathematical terms, the presentation of an effective analogia, 
or metaphora, in the symbolic form 
 

 
 
defines  to be conjugate to  under , where  is 
considered to be the conceptual inverse of . This is a useful 
observation because it associates the algebraic principle of conjugation 
with the functional role of a metaphora. Since a specific algebraic 
structure is not pre-supposed ab initio, we call the principle leading to 
the algebraic expression of a metaphora as the principle of logical 
conjugation operating between two hypostatic domains. 

The algebraic expression  consists of two basic 
organic structural parts: The first part is delineated by the two 
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conceptually inverse vertically displayed arrows  and , forming 
the outer part, or the boundary of the analogia or metaphora, interpreted 
abstractly as a bidirectional bridge of information encoding/decoding 
between two different levels entering into a communication with each 
other. The second part is constituted by the horizontally displayed arrow 

, forming the inner part of the analogia, and interpreted as a directed 
process of rhesis or stasis, i.e. transfer or storage, within the level 
specified by the first vertical directed bridge. Rhesis or stasis always give 
rise to a partition spectrum at the obstacle-free level, which contains the 
blueprint for embracing the obstacle of the initial level under the action 
of the decoding bridge. Note that the functionality of an analogia or 
metaphora is always crucially dependent on the interpolation of some 

appropriate inner part  between the succession of the actions of the 
inversely pointing bridges. More precisely, if the inner part  is 
absent, then the outer part simply collapses since it cancels out. Based 
on this fact, we can formulate the basic properties of logical conjugation 
as pertaining to an effective analogia as follows: 
 
1 Horizontal Extension of Metaphora in Length: This is equivalent 

to the juxtaposition of two metaphoras, i.e. two metaphoras 
sharing the same bridges can be combined horizontally simply by 
juxtaposing one with another as follows: if  and 

, then ; 
2 Vertical Extension of Metaphora in Depth: This is tantamount to 

the stacking of two metaphoras arising from the substitution of 
the inner part of a metaphora by another metaphora, such that, 
the initial metaphora can be accomplished via a splitting into a 
deeper level of hypostasis, and so on, as follows: if  

and , so that, , then ; 

3 Inversion of Metaphora: This means that if a process  is 
conjugate to a process  at another level under the action of a 

bridge , then  is conjugate to  under , as follows: if 
, then . 

 
An interesting type of logical conjugation arises in cases where a bridge 

 equals its own inverse, that is . An immediate consequence is 
that if the inter-level transformation  is repeated twice in succession, 
then it gives the identity, viz. . In this case the bridge  is called 
an involution bridge. The most well known example of an involution 
bridge is provided by any device operating strictly between two states, 
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represented by the simplest Boolean algebra containing two truth values 
(True and False, or 0 and 1).  

Then, if the bridge  represents the transformation from the 
one state to the other (acting like a Boolean negation operator between 
the levels of truth and falsity), its repeated application for a second time 
brings us back to the original state. In logical terms, the negation of 
negation is equivalent to the identity, and therefore, an involution 
bridge functioning between two states distributed in two distinct levels 
is a picturesque way of expressing the law of excluded middle in Boolean 
logic. 

Due to the properties listed above, and making temporary use of 
the scaffolding of naive set theory, an effective analogia expressed by 
means of logical conjugation can be presented in the form of an 
equivalence relation, namely as: 
 

 
 
stating that  is conjugate to  under . This is an equivalence 
relation because it is reflexive, transitive and symmetric: First, due to 

the property of metaphora extension in length if  and 

, then . Second, due to the property of 
metaphora extension in depth, the transitivity condition is established 

since, if  and , then, . Finally, due to the 
property of metaphora inversion, the symmetry condition is established 

since, if , then . 

 
11..66  PPAARRTTIITTIIOONN  SSPPEECCTTRRUUMM  AANNDD  CCIIPPHHEERRSS::  VVIIRRTTUUAALL  AANNDD  AACCTTUUAALL  DDIISSTTIINNCCTTIIOONNSS  
 

The equivalence relation  stating that the process  is 

conjugate to  under , gives rise to a finite partition of all possible 
processes into blocks or cells constituting the observable spectrum of 
this partition. Each block of the partition is algebraically the equivalence 
class of  under some , denoted by . In other words,  

is the class of all processes  that are equivalent to  under . In 
this sense,  is in the equivalence class of  if and only if 

. Note that the cells of a partition are non-overlapping, and 
more precisely, they are mutually exclusive and jointly exhaustive. This 
is the crucial property that characterizes the notion of the induced 
observable spectrum, indexed or classified below in terms of different 
colours: 
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It is important to point out that a metaphora involving two hypostatic 
levels pre-supposes implicitly that these two levels can be in principle 
differentiated. Of course, this is only possible in terms of the inversely 
pointing bridges and . Concomitantly, two processes and 

, which are equivalent under , i.e. they belong to the same cell of the 
partition, can be differentiated within this cell by the intervention of 
and , although they cannot be actually distinguished. The 
underlying reason is that a cell of the partition should be properly 
thought of as an intrinsically indistinguishable element by itself, which 
however, can be potentially differentiated internally (e.g. by enforcing 
the encoding and decoding bridges and ), and most important, 
can actually be resolved, refined, and distinguished externally (e.g. by 
external acts of distinction).

For this purpose, in the context of a finite partition, it is 
instructive to introduce the difference between virtual and actual 
distinctions. An actual distinction is characterized by pairs , 

where and belong to distinct cells of the partition. In contrast, 
a virtual distinction is a differentiation internally within some cell of the 
partition, which is invoked by the explicit enforcement of and . 
The interesting question, which has far reaching consequences in 
relation to the notion of information, is when a virtual distinction 
becomes an actual distinction. This is only possible by means of refining 
the partition. Equivalently, partition refinement requires a decoupling of 
the encoding and decoding bridges, since for a pair qualified as 

an actual distinction and belong to distinct cells, which entails 
that there are no bridges between them in force. If we adopt the 
provisional definition that information emerges through actual 
distinctions of a partition in the present context, then the procedure of 
partition refinement amounts to decoupling bridges of metaphora, and 
in this way, obtaining new information.

As a consequence, the notion of metaphora expressed through 
conjugation, incorporates three distinct types of structural ciphers. The 
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first is the structural cipher of an algebraic group that expresses the 
notion of symmetry. In particular, an encoding bridge  together with 
the inverse decoding bridge  differentiating a process  from a 

process  within a cell of the partition they enforce, make  and  
symmetric to each other. The second is the structural cipher of a partial 
order that expresses the notion of distinguishability. In particular, 
external acts of refinement, i.e. acts of refining the grain of resolution in 
a spectrum to obtain actual distinctions -and thus- discern new 
information, induce a partial ordering relation among partitions. The 
third is the structural cipher of a category as a common abstraction 
between the notions of a group and a partial order. In particular, in our 
context the notion of a category is the algebraic cipher required to 
express the duality between sets and partitions, which emerges simply 
from qualifying the differentiation within a cell of a partition, given the 
bridges  and , as a set of virtual distinctions. 

It is worth focussing, at this stage, on these structural ciphers in 
more detail. The structural cipher of an algebraic group is tantamount to 
the identification and classifications of the cells of a partition defined by 
metaphora, i.e. through conjugation. A group  is closed with respect 
to an operation, i.e. addition or multiplication, and it always contains an 
identity element, called the neutral element of the group. In this manner, 
the structural action of a group as a cipher is encoded in its neutral 
element. It is because of the neutral element that for any  in the 
group , there exists a unique inverse  such that their 
operational composition results in this element. A group is characterized 
via its action, i.e. it is the notion of a group action that structurally 
expresses the notion of equivalence in the cells of the partition. In this 
manner, the notion of a partition cell, under a group action that realizes 
it, is equivalent to the notion of an orbit or fiber of this group action. 

Next, we may consider the totally indiscrete partition that can be 
potentially differentiated under a group action, which essentially 
involves the enforcement of the encoding and decoding bridges in this 
partition. Since this partition is indiscrete by hypothesis, all virtual 
distinctions within it are symmetric to each other. In other words, we 
derive that the state of maximal symmetry equals a state of maximal 
indistinguishability. Equivalently, since there are not any actual 
distinctions in the indiscrete partition that constitutes a single block of 
the same colour, e.g. black colour, there is zero information that is 
extractable from it without any refinement. 

The procedure of refinement of the indiscrete partition is 
possible by symmetry breaking; in other words, actual distinctions in a 
refinement of the indiscrete partition require the breaking of the 
maximal symmetry of that partition. Symmetry breaking makes 
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information discernible in terms of the actual distinctions of the refined 
partition. On the other side, maximal refinement destroys all symmetry, 
i.e. it breaks all the bridges, and in this way is equivalent to maximal 
information, since everything becomes actually distinct in the discrete 
partition. Refinement is definable as a relation of partial order among 
partitions, where the indiscrete partition is the minimal element, and 
the discrete partition is the maximal element of this partial order. 
 

 
 
To sum up, given a group action, we think of differentiation within a cell 
of the induced partition in terms of the set of virtual distinctions 
belonging to an orbit or fiber of this action. Moreover, we consider the 
partial order of refinement in terms of virtual and actual distinctions. 
Then, in the simple case comprising three elements amenable to actual 
distinctions, the order of refinement looks as follows: 
 

 
 
The partial order of partition refinement is dual to the partial order of 
subsets of a set, and this fact renders the respective categories dual to 
each other. Thus, starting from metaphora and its properties as 
expressed through conjugation, we derive the categorical duality 
between partitions and sets. Note that the dual partner of an element of 
a subset is given by an actual distinction of a partition. Clearly the 
indiscrete partition does not have any actual distinctions, whereas all 
the possible actual distinctions are the actual distinctions of the discrete 
partition. 
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Moreover, since differentiation within a partition cell is qualified by the 
set of virtual distinctions that can be made within this cell, and due to 
the fact that a partition cell is identified with an orbit of a corresponding 
group action, based on the notion of symmetry induced by the inverse 
bridges of a metaphora, the duality between sets and partitions arises 
from the inverse correlation between symmetry and information. In 
particular, this inverse correlation boils down to the existence of two 
partial orderings that are in cadence with each other but the first is 
increasing whereas the other is decreasing. Note that both of these 
partial orders are bounded from above and below, such that the state of 
maximal symmetry in the first ordering corresponds to the state of null 
actual distinctions, and thus minimal information, in the second 
ordering, and so much is equally true of the converse. These two 
inversely correlated partial orders may be thought of as orthogonal to 
each other, if depicted jointly, since symmetry and information are 
complementary in the context of metaphora. 

Now, suppose that  is the equivalence relation 

induced by logical conjugation on a set of processes or relations . We 
may consider a category  in which  is the set of objects 

(standing for processes),  is the set of arrows, and the source and 
target maps  are given by the first and second projection. Then 

given  and  in , there is precisely one arrow  if  

and  are in the same equivalence class, viz. they are metaphorically 
related by conjugation, while there is none if they are not. Then 
transitivity assures us that we can compose arrows, while reflexivity tell 

us that over each process  in  there is a unique arrow , 
which is the identity. Finally symmetry tells us that any arrow  
has an inverse . Thus,  is a groupoid (category in which 
all arrows are isomorphisms) such that, from a given object of this 
category (process) to another there is at most one arrow (if they are 
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metaphorically related). Conversely, given a groupoid, such that from a 

given object to another there is at most one arrow, if we denote by  
the set of objects and by  the set of arrows, the source and target 
maps induce an injective morphism , which gives an 

equivalence relation on  with the concomitant interpretation. 
 
11..77  IINNTTEELLLLIIGGIIBBIILLIITTYY  OOFF  TTHHEE  CCOOSSMMOOSS::  SSTTRRUUCCTTUURRAALL  EEXXTTEENNSSIIOONN    

OOFF  AALLGGEEBBRRAAIICC  SSCCAALLAARRIITTYY  

 
Let us now examine the functionality of logical conjugation from a 
structural algebraic standpoint. We have already claimed previously that 
the resolution of the Thalesian problem of determination of an 
inaccessible magnitude by the method of proportions, implicitly contains 
the seeds of discovery of the multiplicative group structure of the 
(positive) rationals. More precisely, multiplication is an essential 
operation that can be performed on the integers endowing them with 
the closed structure of a multiplicative monoid. Division, the inverse 
operation to multiplication, is nevertheless not a total operation on 
integers, and thus, the determination of inaccessible magnitudes on the 
basis of proportion cannot be effectively performed within the reference 
domain of integers. 

To achieve a total operation of division, to resolve the Thalesian 
problem, we are obliged to extend the initial domain into a new domain 
of numbers, where the required inverse operation can be always 
implemented. This means that the resolution of the problem requires an 
appropriate extension of the initial closed structure (integers) with 
respect to the operation of multiplication into a new structure 
(rationals), which is closed with respect to both multiplication and its 
inverse operation of division. This is a recurring theme in universal 
algebra and thus it deserves a closer analysis in order to explain the 
particulars of its implementation by means of the logical conjugation 
strategy. 

For this purpose, let us state explicitly the ordered series of three 
processes that have to be performed, according to the general pattern 
characterizing metaphoras, for the construction of the field of rationals 
from the ring of integers. We recall that the rationals constitutes the set 
of all fractions ,  and  integers,  with the usual 
relation  if , which makes invertible every 
non-zero element of the integers. 

The basic ingredient for the construction of the field of fractions 
is the fact that the set of non-zero elements of the integers is 
multiplicatively closed. The structural metaphora characterizing 
completely this construction is technically called the process of 
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localization of the commutative unital ring of the integers  with 
respect to the multiplicative closed subset of the non-zero integers. The 
whole purpose of this structural metaphora by conjugation is to make 
every element of the multiplicative closed subset of non-zero integers 
invertible, such that the new structure of numbers obtained in this 
manner, fulfills the following objectives: First, it bears a structural 
similarity to the initial domain of numbers, viz. it is also a commutative 
unital ring with respect to addition and multiplication. Second, the 
operation of division (inverse to multiplication) can be performed by the 
existence of inverses of non-zero integers, which have been 
incorporated in the new extended closure domain of numbers. Third, as 
a consequence of the above, the initial domain of numbers together with 
their arithmetic can be embedded in the new one. 

We consider the commutative unital ring of integers  and let 
 be the multiplicative closed subset of non-zero integers. The first 

step is to set up a directed bridge from the level of commutative unital 
rings to the level of sets, encoding the process of extending the 
underlying set-theoretic domain of integers  into a new domain 
formed by the cartesian product of sets . Note that the ordered 
pairs of integers  with , are not supposed to have any a priori 
structure, since their existence is required at the level of sets by means 
of the encoding directed bridge connecting the structural levels 
involved. In this extended new set-theoretic domain the initial task can 
be facilitated by imposing the homological equivalence criterion, 
according to which the ordered pair of integers  should be 
equivalent to  for any non-zero integer . Technically this 
condition is described in the following way: 

In the set  we define the following binary relation:  

  if and only if there exists    such that: . 

The relation  is an equivalence relation, partitioning the set  

into equivalence classes. We will denote the quotient set by , and the 

equivalence class of  by the fraction symbol . Thus, the 

quotient set  contains elements which can be interpreted as 
fractions, bearing the semantics of numbers allowing division by 
non-zero integers. 

The structural metaphora is completed via logical conjugation  
by setting up an inversely directed decoding bridge from the level of  
sets to the level of commutative unital rings, effectuating the    
indirect round-trip as follows: We set , 

 for every ,   . The operations are 
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well defined and endow  with the structure of a ring. The zero and 

unit elements are, respectively,  and , for every   . 

Finally, we define the canonical morphism of rings , given by 

, for every   . Note that for any    we have 

that  is the inverse of  in . Hence,  is the smallest 

ring containing , in which every element of the multiplicative closed 
subset of non-zero integers  is invertible. 

Thus, the extension of scalars of the commutative unital ring of 
integers  by means of algebraic localization, with respect to the 
multiplicative closed subset of non-zero integers, is understood as a 
structural algebraic metaphora implemented by logical conjugation. The 
structural effect of this metaphora by conjugation is the addition of 
multiplicative inverses to the elements of the multiplicative closed 

subset , such that the extended ring , consists of fractions 

, where , . Moreover, the conceptualization of algebraic 
localization as a structural metaphor for the resolution of the general 
problem of making division a total operation by congruent extension of 
structure via the logical process of conjugation, permits its application in 
generalized structural environments as we shall see in the sequel. 

 
11..88  SSTTRRUUCCTTUURRAALL  MMEETTAAPPHHOORRAA::  AADDJJOOIINNIINNGG  --  PPAARRTTIITTIIOONNIINNGG  --  QQUUOOTTIIEENNTTIINNGG  

 
It is instructive to explicate in more detail the conjugation strategy 
related with the efficient functioning of the above structural metaphora. 
First, we observe that the encoding process of the underlying 
set-theoretic domain of , utilized as an architectonic scaffolding, into 
the new domain formed by the cartesian product of sets  takes 

place by means of extending the scalars of  with respect to the scalars 

of the multiplicative closed subset  of . This means that the 
extension of scalars of the set-theoretic domain of  is effectuated by 
adjoining to  the scalars of a well-defined internal algebraic part  

of  distinguished by its anticipated operational role. 
Second, the level of sets can be thought of as a temporary 

underlying scaffolding via which logical conjugation can be effectively 
applied. More precisely, at the level of sets the operational role of the 

distinguished part  of  can be implemented by the imposition of an 
appropriate homeotic equivalence relation on the previously extended 
set-theoretic domain . The conceptual underpinning of this 
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process is the identification of those elements of the extended domain 

, which exhibit a certain homeotics of behaviour, which we 

symbolize by the relation . Any suitable criterion of homeotic 
indiscernibility must lead to a partition of  into disjoint classes of 

elements bearing the imposed homeotic relation , and hence  must 
be an equivalence relation. Since, the imposition of such a relation  
effectuates a classification of the elements of  into disjoint classes 
of equivalent elements, partitioning it in the particular way determined 
by , the latter can be thought of as a homeotic perspective. It follows 
that an equivalence class modulo the homeotic perspective , consists 

of all the elements of , indiscernible with respect to , and thus 
homeotically identical. 

More specifically, the homeotic perspective  imposed on 
, requires that the ordered pair of integers  should be 

homeotically identical to  for any non-zero integer , under the 
intended interpretation of the homeotic class of  by the fraction 

symbol . Note that the homeotic classes  are metaphorically 

interpreted as elements , being assigned a new name, viz. fractions, 

of a new set, namely of the quotient set . It is important to notice 

that consequent to the transition from  to  is the replacement 

of equivalence modulo , viz. -perspective homeotics, by equality 

(identity) of elements in the quotient . 
Third, the structural metaphora realizing the result of the applied 

logical conjugation is completed by means of the inversely directing 
bridge from the level of sets back to the initial level of commutative 
unital rings. The semantic aspect of this bridge amounts to a re-casting 

of the elements of the quotient set , as elements of a new ring, viz. as 

elements of the same closed structural genus as the initial . This is 
accomplished by modifying appropriately the addition and 
multiplication operations referring to these new elements (fractions). 
This modification takes place according to the principle that the new 
operations should incorporate and reproduce the effect of the old ones, 
when restricted to the old elements, being dressed in the new form 
imposed by the adopted homeotic perspective. 

The important thing to notice is that the completion of the 
structural metaphora according to the logical conjugation strategy 
described above, accomplishes the task of making the operation of 
division total, and thus, resolves the geometric problem of homeothesis 
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in a structural way. In this way, from the standpoint of the ring of 
integers, the structural metaphora permitting the unconstrained action 
of the division operation on magnitudes, belonging now to an extended 
closed partially congruent structure of the same algebraic genus (ring of 
rationals), accomplishes the interpretation of division as an emergent 
well-defined total operation. This is due to the fact that the operation of 
division acts properly on this new kind of species (fractions), which 
remains closed with respect to its action. The logical conjugation 
resolves the original Thalesian problem structurally because fractions 
are formed at the set-theoretic level, and then lifted at the ring-theoretic 
level by means of encoding/decoding bridges. In particular, fractions are 
formed by the inverse processes of extending the set-theoretic domain 

 to the larger one  with respect to the part , and then 
restricting this extended domain by collapsing it, viz. by partitioning it 
homeotically into disjoint classes, with respect to the imposed internal 
homeotic perspective subsumed. 

In more general terms, the above algebraic localization structural 
metaphora is a particular application of the logical conjugation strategy 
designed for the resolution of a specific problem involving (at least) two 
delineated structural hypostatic levels, and based on the existence of a 
pair of inversely pointing bridges connecting these two levels, as follows: 
First, by means of an extension bridge, encoding the information of a 
structural domain into a new extended one assuming existence at a 
different level. Second, performing the required task at that level by 
realizing an appropriate equivalence relation, and subsequently forming 
the associated quotient structure. Finally, by means of a reciprocal 
bridge, decoding the acquired information in a structural form congruent 
to the form of the structural domain we started with, according to the 
specification of the initial level. 
 
11..99  IINNDDIIRREECCTT  SSEELLFF--RREEFFEERREENNTTIIAALL  MMEETTAAPPHHOORRAA  AANNDD  HHOOMMEEOOTTIICC  CCRRIITTEERRIIOONN  

 
At a further stage of development of these ideas, we realize that the 
successful implementation of the conjugation strategy, concerning 
structural metaphoras, necessitates primarily the investigation of the 
meaning of an effective analogia within the same algebraic structural 
genus. This task is important, because it clarifies the nature of an 
indirect analogical self-referential relation taking place within a certain 
closed structural genus. From the general context of the preceding 
analysis, it has become clear that at least, referring to the set-theoretic 
level of magnification, a set can be related to a distinguished part of it by 
the imposition of an equivalence relation on their jointly formed 
cartesian product with respect to a homeotic perspective, which 
reciprocally required the delineation of that distinguished part, in the 

Z S´Z S
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first place. The total process can be cast into the pattern assumed by a 
self-referential structural metaphora as follows: 

Initially, we assume that a set of elements, considered as an 
individual object within the genus of sets (characterized by the 
membership relation), can relate to itself by separation of a well-defined 
part of it, viz. a subset bearing the functional role subsumed by a 
particular homeotic perspective. In turn, this homeotic perspective can 
be applied to the extended object obtained from the initial object by 
adjoining the distinguished part. Finally, using the quotient 
construction, we collapse the extended object into a new partitioned 
object belonging to the same genus. Of course, this is only possible if all 
of the following conditions can be fulfilled: First, if the initial object can 
split its substance between two internal levels or hypostases within the 
same genus, such that the latter, formed by extension with respect to a 
part, is also an object of the same genus encoding the former. Second, if 
the application of the homeotic perspective on the extended object 
partitions it into equivalence classes, forcing in this way a homeotic 
criterion of identity, or equivalently, an indiscernibility relation with 
respect to this homeotic perspective, at the same level. Thirdly, if the 
equivalence classes of the quotient can be re-interpreted as elements of 
a new object of the same genus, being formed at the initial level by 
identifying equivalent elements with respect to the homeotic 
perspective. 

It is important to realize that an indirect self-referential relation, 
implicated by logical conjugation within the same genus, accomplishes 
precisely the satisfaction of the above conditions. This is possible by 
means of two inverse internal bridges connecting these two separate 
levels of hypostasis into a non-contradictory circular pattern as follows: 
the first bridge carries out the extension process of an object to another 
level of hypostasis, being formed by adjoining to it a distinguished part, 
delineated by the functional role subsumed under a homeotic 
perspective. At the new level, an appropriate equivalence relation on the 
extended object implements the functional role of the homeotic 
perspective, that is, implements a homeotic criterion of identity. As a 
result, we end up with a partitioning of the extended object into a set of 
equivalence classes constituted by indiscernible elements with respect 
the imposed criterion. Finally, an inverse bridge performs the transition 
back to the initial level, by collapsing the extended object with respect 
to the homeotic perspective, and thus, transforming the homeotic 
relation into an equality (identity) of elements in the quotient set, 
formed back at the initial level. Notice the crucial point that the 
quotient structure formed by returning to the initial level has to be again 
a set-theoretic object, that is, it must be congruent to the structural 
specification of the initial object we started with. 
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After this series of remarks, there arises the natural problem of 
applying the logical conjugation strategy realizing an indirect 
self-referential metaphora into the context of objects belonging to some 
algebraic structural genus, like groups, rings and algebras. This becomes 
possible, if we formalize the notion of a homeotic perspective as an 
equivalence kernel of a comparison morphism (homomorphism) 
between structures of the same algebraic genus. Note that the functional 
role subsumed by a homeotic perspective, elevates the relation of 
equivalence among elements belonging into the same equivalence class 
at the level reached by descending the first bridge, to a relation of 
equality (homeotic identity) at the initial level regained by ascending 
back through the inverse bridge. In turn, this constitutes the precise 
implementation of what we call a homeotic criterion of identity. 

Set-theoretically speaking, this amounts to the implication that if 
two elements  and  of the extended set, at the new internal level 

of hypostasis, are equivalent with respect to a homeotic perspective , 
viz. , then their images inside the quotient set, interpreted as new 

elements, at the initial level, are identical, viz. . Based on this 
argument, we can deduce the modeling of the notion of a homeotic 
perspective between structures of the same algebraic genus, by passing 
into some appropriately restricted type of equivalence relation by means 
of logical conjugation, depending on the algebraic genus considered. 

 
11..1100  EEQQUUIIVVAALLEENNCCEE  AANNDD  HHOOMMEEOOTTIICC  KKEERRNNEELLSS  OOFF  AALLGGEEBBRRAAIICC  GGEENNUUSS  

 
In a general context, the minimum requirements for an algebraic system 
include the existence of a set  with an equality relation for which 
there is defined a binary law of composition, namely, a single-valued 
function of pairs ,  such that  is in  for ,  in . 
Adopting this as our starting point, we superimpose an equivalence 

relation  on  in order to investigate how a desired restricted type of 
equivalence relation arises. Namely, denoting by  the set of equivalence 

classes , we raise the following question: Can an operation  

be defined in  based upon the composition operation in ? 
We proceed along the lines of what might be a first attempt to 

investigate this question by defining: 
 

 
 
The above apparently makes the product dependent upon the choice of 
class representatives. This deficiency can be amended by requiring that, 
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if  and , then . This amounts to the 

assertion, if  and , then . Equivalently stated, 

we obtain the condition:  implies that  and 

 for all . We call regular those equivalence relations which 
satisfy the condition above. The latter constitutes a necessary and 

sufficient condition upon  in order that 
 

 

 
stands for a well-defined operation. Then, we can easily deduce that the 

correspondence  of  onto  defined by:  if and only if 

   is an algebraic homomorphism, called the natural 
homomorphism. Essentially, from a reciprocal standpoint,  should be 
a homomorphic image of  under a correspondence, mapping all 
elements of  belonging to an equivalence class onto an element of . 
But the existence of such a homomorphism immediately implies the 

existence of one mapping the class containing  upon , and the 

homomorphism property then requires that  holds true. 

The central idea explained previously can be now easily applied 
to structures of some algebraic genus, for example, to groups. In this 
case, we consider a group  together with a regular equivalence 

relation . Then, defining an operation in  according to 

the composition rule , we obtain a homomorphic image of 

. Since a homomorphic image of a group is necessarily a group, we 

deduce that  is actually a group whose identity element is , where 

 is the identity element of the group . 
The above construction shows that the process of shrinking a 

group  with the aid of a regular equivalence  produces a 
homomorphic image  of  being also a group, thereby preserving 
the structural specification of its algebraic genus. Conversely, given a 
homomorphic image  of , there is defined a partition, and 

therefore, an equivalence relation  on . Moreover, the 
homomorphism property implies that  is a regular equivalence relation. 

In a nutshell, we conclude that in the case of groups, the problem 
of finding all homomorphic images of  reduces to that of finding all 
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regular equivalence relations over . For this purpose, we make use of 

the coset decomposition of a group  with respect to a subgroup . 
More precisely, we define,  if and only if , where,   

. 
We can easily show that  is actually an equivalence relation, 

such that the equivalence class , called the right coset of . 

Moreover, since  implies that , the equivalence 

relation  is right regular. 
But conversely, starting with a right regular equivalence  in 

 we find that  is a subgroup and , since  implies 

that ; Hence   , or,    and conversely. 
Thus, the problem of finding the various right regular equivalence 

relations in  is reduced to the problem of determination of the right 
coset decompositions of  with respect to its subgroups. 

Precisely analogous considerations establish that the various left 
regular equivalence relations in  are completely determined by the 
left coset decompositions of  with respect to its subgroups. Thus, we 

conclude that, if  is a regular equivalence relation, then, on the one 
side, it defines a left coset decomposition with respect to the subgroup 

 of all elements  such that , and on the other side, it defines a 
right coset decomposition with respect to the same subgroup. Hence  
stems from a subgroup for which the left cosets are identical with its 
right cosets. Such a subgroup  is called a normal subgroup of , 
satisfying:  for all  in . 

Thus, a regular equivalence relation  in  stems from a 
normal subgroup  of , viz., a subgroup remaining invariant under 
logical conjugation, meaning that  for all  in . 
Conversely, a normal subgroup of  defines a regular equivalence 
relation on . Now, if  is a normal subgroup of , then its cosets 

 form a group with the following composition rule of closure: 
 

, 
 
or equivalently,  holds. The resulting quotient  

is a group homomorphic to  and constitutes that group, which 
collapses the normal subgroup  of  to the identity element of . 
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Conversely, every homomorphic image of  can be duplicated by, 
hence it becomes isomorphic to, such a quotient group. 

The completely analogous analysis for the case of rings yields the 
corresponding homomorphism theorem with the same efficiency. Thus, 
we have deduced the modeling of the notion of a homeotic perspective 
between structures of the same algebraic genus, by the concept of 
regular equivalence relations. Consequently, the implementation of 
self-referential metaphoras within the context of objects belonging to 
some algebraic structural genus, becomes possible if we formalize the 
notion of a homeotic perspective precisely as a regular equivalence 
kernel of a comparison morphism (homomorphism) between structures 
of the same algebraic genus. 

More concretely, in the case of groups, we have the following: Let 
 and  be groups and let  be a group homomorphism from  to 

. If  is the identity element of , then the kernel of  is the 

subset of  consisting of all those elements of  which are being 

mapped by  to the element : 
 

 
 
Since a group homomorphism preserves identity elements, the identity 

element  of  must belong to . By the preceding analysis, it 

turns out that  is actually a normal subgroup of . Thus, we can 
form the quotient group , which is naturally isomorphic to 

, viz. the image of  (which is a subgroup of ). 
Analogously, in the case of rings with a unit element we have the 

following: Let  and  be rings and let  be a ring homomorphism 

from  to . If  is the zero element of , then the kernel of  is 

the subset of  consisting of all those elements of  which are being 

mapped by  to the element : 
 

 
 
Since a ring homomorphism preserves zero elements, the zero element 

 of  must belong to the kernel. It turns out that, although  

is generally not a subring of , since it may not contain the 
multiplicative identity, it is nevertheless a two-sided ideal of . Thus, 
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we can form the quotient ring , which is naturally isomorphic 

to , viz. the image of  (which is a subring of ). 
The effective generation of self-referential structural metaphoras 

via logical conjugation in the context of some algebraic genus, implicated 
by the action of regular equivalence relations within this genus, provides 
a powerful methodological device for the resolution of a wide range of 
problems. Moreover, a self-referential structural metaphora may be 
combined with another type of metaphora, for instance a genus to 
species metaphora. 

As an example, we may consider the case of the genus of (finite) 
groups. We have already seen previously that a regular equivalence 
relation on a group corresponds to a normal subgroup of this group, 
interpreted as an internal homeotic perspective. More precisely, this 
homeotic perspective constitutes the regular equivalence kernel of the 
homomorphism from the group to its corresponding quotient group. A 
natural problem arising in this context refers to the possibility of 
decomposition of a group into a finite series of non-further 
decomposable groups (simple groups) using the method of division with 
respect to internal homeotic perspectives, namely, with respect to 
normal subgroups. This is the problem of solvability of a group-theoretic 
structure, which has been first posed in the context of Galois theory. If 
solvability is attainable, then the initial group can be thought of as being 
decomposed into a finite series of irreducible group layers (factor 
groups) adjoined to each other in a proper way. 

This problem can be successfully tackled by means of the 
conjugation strategy, if we combine the previously explained 
self-referential structural metaphora with a genus-to-species metaphora 
between the genus of multiplicative groups and the species of the 
integers. In the context of the latter metaphora, if a group corresponds 
to an integer, then a normal subgroup corresponds to a divisor of this 
integer and the associated quotient group corresponds to the quotient of 
the integer by the divisor. Furthermore, a non-further decomposable 
group (simple group) corresponds to a prime integer number, and finally, 
the notion of decomposition of a group into a finite series of simple 
groups using the method of division with respect to normal subgroups 
corresponds to the Euclidean algorithm for divisibility of the integers. 
 
11..1111  LLOOGGIICCAALL  CCOONNJJUUGGAATTIIOONN  VVIIAA  AA  GGNNOOMMOONN::  HHOOMMEEOOTTIICC  CCRRIITTEERRIIOONN  OOFF  IIDDEENNTTIITTYY  

 
It is instructive to emphasize that the appropriate operational 
implementation of all different manifestations of the logical conjugation 
strategy rests only on two prerequisites: 

First, the ability to induce a meaningful stratification into 
different hypostatic domains or levels which can be connected by means 
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of encoding and decoding bridges. In the general case, we may think of 
these levels as structural ones. The stratification may even involve 
substructures of an initially given structure, delineated according to a 
specific characteristic and adjoined to the initial structure, as separate 
levels. The latter is particularly suited to the resolution of 
self-referential problems through a cyclical conjugation process by 
means of the reciprocal and reflexive techniques of descending and 
ascending. 

Second, the ability to establish a congruence, or a homeotic 
relation among the stratified levels. It is precisely the ingenuity of a 
homeotic criterion that provides the seed for the successful 
implementation of the logical conjugation strategy. Put differently, an 
effective analogia or metaphora subsumed by logical conjugation 
requires an appropriate criterion of homeotics among stratified levels in 
order to operate. We point out that the notion of metaphora literally 
means transference or transportation. Thus, logical conjugation can be 
conceived as a logical transportation process involving at least two 
separate levels according to a specific homeotic relation among these 
levels. We also note that metaphora may refer to transportation of 
information or structure or matter or energy or whatever else this notion 
can refer to, whereas the logical conjugation strategy via which it takes 
place is indifferent to its particular qualifications. This provides the 
sought for universality in the application of logical conjugation to 
different fields. 

From the above, we deduce that what is crucial for the logical 
conjugation method is the establishment of some appropriate homeotic 
criterion operating among the stratified hypostatic levels. Then, based 
on this homeotic criterion it becomes more tractable to devise 
appropriate encoding and decoding bridges reciprocally connecting all 
different levels and effectuating a metaphora. It is interesting to note 
that from the present viewpoint the notion of homeotics bears a logical 
function although it is usually introduced and implemented by 
topological means. At least, it is important to stress that a homeotic 
criterion is independent of local metrical spatiotemporal notions of 
distance. For this reason, it can operate non-locally or among different 
scales. The ubiquity of a homeotic criterion is that it establishes some 
particular measure of invariance among the stratified levels. This 
measure can be expressed as an arithmetic invariant, like a ratio or a 
fraction, or even in structural terms like a group or groupoid. The 
essential thing is that inter-level connectivity and congruence obtained 
by metaphora, requires a homeotic criterion in order to be expressed via 
the logical conjugation strategy, just as the homeotic criterion rests 
conversely on such inter-level connectivity. 

In standard mathematical terminology, what we call a homeotic 
criterion appears in a variety of different formulations, which are unified 
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conceptually from our perspective. This unification is facilitated by 
means of logical conjugation and its net effect, which is metaphora 
according to some qualification, and ultimately serves as an effective 
means of coping with complexity and self-reference. For instance, a 
homeotic criterion may be expressed in the simplest possible 
manifestation as a relation of homeothesis or proportionality of integer 
magnitudes as in the original Thalesian conception. It may also be 
expressed as a relation of similarity between two square matrices, where 
the homeotic criterion is the representation of the same linear 
transformation with respect to two different bases of a vector space. In 
this case, the logical conjugation strategy resolves the problem of 
diagonalization via the method of eigenvalues. 

In the field of differential topology and differential geometry a 
homeotic criterion is provided by the notion of a local homeomorphism 
or local diffeomorphism correspondingly. We may note parenthetically 
that from the perspective of logical conjugation the notions of 
topological or differential manifolds defined by descending to simpler 
spaces like the Euclidean ones and then ascending back via the method 
of gluing from the local to the global level, are solely needed for the 
formulation of the metaphora process of differentiation, called covariant 
parallel transport, and giving rise to the invariants of curvature. Finally, 
a homeotic criterion may be literally expressed in standard algebraic 
topological terms, namely by means of homology and cohomology theory. 
In broad terms, homology theory establishes invariant measures of 
topological similarity in terms of a series of groups stratified into 
different scales or dimensions. The topological similarity is defined by 
means of classifying chains of connectivity into two classes, called cycles 
and boundaries correspondingly. More precisely, two cycles are 
homologically equivalent if they differ by a boundary. The dual theory, 
called cohomology theory, is based correspondingly on the notion of 
cochains of connectivity, which are classified respectively into cocycles 
and coboundaries. In this case, two cocycles are cohomologically 
equivalent if they differ by a coboundary. For example, in the case of de 
Rham cohomology theory, the cocycles are represented as closed 
differential forms and the coboundaries as exact differential forms. 

A natural question arising in this context is the following: 
Notwithstanding the technicalities involved, for example in the setting 
of homology and cohomology theories of various forms, is there a guiding 
concept that lends itself to a proper and efficient depiction of a homeotic 
criterion? In other words, what is the common thread between the 
homothesis equivalence relation and the more sophisticated 
algebraic-topological homology equivalence relation which renders them 
both amenable to the logical conjugation strategy? 

We argue that the common conceptual thread for establishing a 
proper homeotic criterion is provided by the use of a gnomon. The 
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intuitive idea of a gnomon also makes more easily conceptualized the 
quite abstract notion of a homeotic algebraic kernel. The best definition 
of the notion of a gnomon has been given by the great mathematician 
Heron of Alexandria in the following terms: A gnomon is that entity 
which, if it is adjoined to some originally given entity, results in a new 
augmented entity becoming homeotic, or partially congruent, or even 
similar, to the original one. In order to understand the depth of this 
simple-seeming definition of a gnomon it is necessary to start from its 
initial conception in the context of the Thalesian theory of homeothesis. 
In this context, the gnomon is, literally speaking, the part of the sundial 
that casts the shadow.

We can easily see that it is exactly the adjunction of the gnomon to the 
pyramid, which induces a homeothetic equivalence relation between the 
level of objects and the level of their shadows with reference to their 
magnitudes at the same time of the day, and consequently makes logical 
conjugation operative for the determination of the non-directly 
accessible magnitude of the height of the pyramid in terms of proportion. 
In its simplest possible form the general process of adjoining a gnomon 
in order to obtain a relation of homeothesis may be visualized as follows:

Formally, the relation of homeothesis is an equivalence relation, and 
thus induces a partition spectrum consisting of equivalence classes 
standing for the blocks or cells of this partition. The quotient structure 
obtained by factoring out this equivalence relation incorporates a new 
homeotic criterion of identity in comparison to the initial one, which is 
precisely characterized in terms of the chosen gnomon of homeothesis. 
In other words, the notion of logical identity is relativized with respect 
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to the gnomon, such that the unit element of the quotient structure 
expresses equivalence modulo the gnomon.

In the case of homeothesis or proportionality of magnitudes, the 
metaphorical aspect of logical conjugation may be easily visualized in 
terms of a recursive or periodic application of a gnomon. This leads 
naturally to the dynamical notions of gnomonic growth or unfolding and 
reciprocally gnomonic subdivision or folding by means of logical 
conjugation. A particular well known example is provided by the 
function of the golden mean gnomon, depicted graphically as follows:

The conclusion obtained from the analysis of the notion of a 
homeothetic gnomon can be extrapolated to more complex situations, 
where a more general homeotic criterion is required for the effective 
application of logical conjugation. The abstraction consists in thinking of 
a gnomon as a means to indicate, or discern, or distinguish, or to set a 
boundary. The function of a gnomon is again to induce a certain type of 
modularity incorporating a homeotic criterion of identity.

For instance, in the case of a manifold, the gnomon is a local 
Euclidean space and the homeotic criterion is subsumed by the notion of 
a local homeomorphism. The modularity type is expressed by the gluing 
conditions of local Euclidean patches adjoined homeotically to a globally 
intractable space endowing it with the structure of a manifold. The 
logical conjugation strategy is used as a means to resolve a difficult 
problem for manifolds in terms of simpler problems, which can be solved 
at the level of local Euclidean patches and their amalgamations. 
Equivalently put, this logical method conjugates a complex problem at 
the manifold level to a simpler problem at the local Euclidean level 
where it can be directly resolved. The efficiency of logical conjugation 
rests on the fact that we are able to descend and ascend between these 
levels due to the homeotic criterion enforced by the associated gnomon.
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Finally, it is worth explaining the notion of gnomon employed in 
standard homology theory, as it is conceptualized in algebraic topology. 
In this case, the role of a gnomon is played by the notion of a boundary. 
We recall that chains of connectivity in homology theory are classified in 
terms of cycles and boundaries. Intuitively, a boundary at some 
dimension is a bounding chain of a higher dimensional topological form, 
whereas a cycle stands for a non-bounding chain. Visually, 
non-bounding chains may be thought of in terms of holes or punctures or 
higher dimensional cavities, whereas boundaries may be thought of in 
terms of filled, and thus bounding chains. The basic idea of a boundary as 
a gnomon, establishing the homeotic criterion of homology, such that 
logical conjugation can operate, is that adjoining a boundary to a cycle 
gives a topologically similar or homologous cycle. Thus, two cycles 
differing by a boundary belong to the same homology equivalence class 
as depicted visually below. 
 

 
 
In this sense, homology equivalence classes, which are actually abelian 
groups due to the algebraic operations involved in composing chains and 
orienting boundaries, enfold the invariant information of holes and 
cavities of topological forms. We emphasize again that these group 
invariants are obtained solely by the logical conjugation strategy on the 
basis of the homological criterion of identity set up by the notion of a 
gnomonic boundary. 
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22..11  EEXXTTEENNSSIIOONN  BBYY  IINNVVEERRSSIIOONN::  FFOORRGGEETTTTIINNGG  AANNDD  RREEMMEEMMBBEERRIINNGG  

 
One basic characteristic of the process of extension of the algebraic 
structure by means of metaphora through the scaffolding of sets is that 
the conceptually inverse bridges employed to achieve conjugation bear 
some particular meaning that is worth focussing on. More concretely, 
the encoding bridge is actually a forgetful bridge (“lethe”) in relation to 
to the initial algebraic structure, whereas the decoding bridge is one of 
recollection (“anamnesis”) that re-establishes the algebraic structure at 
the initial level. The reason is that the appropriate homeotic criterion of 
identity is established in terms of an equivalence relation at the level of 
set elements, following which, the algebraic structure is enforced in a 
suitable way. The other basic characteristic is that the extended 
algebraic structure, does not discard, but rather incorporates the initial 
one. This means that the restriction of the structure extended from our 
initial one serves to ensure agreement with it. This is clear already from 
the algebraic treatment of the Thalesian problem that required the 
extension of the integers into the rationals in order to solve the pertinent 
proportionality equation between magnitudes and their shadows. In the 
extended algebraic structure of the rationals the integers are qualified as a 
particular type of rationals, such that the restriction of the rationals to the 
integers is feasible. 

From an algebraic viewpoint the metaphora realizing the 
extension of the integers to the rationals addresses the issue that 
division is not possible within the domain of the integers. It becomes 
possible only via the extension of the integers to the rationals, since the 
latter assume a group structure with respect to the operation of 
multiplication, which is absent in the case of the integers. In this sense, 
this extension in entailed by the necessity of determining the algebraic 
domain, where the inverse operation to multiplication becomes a total 
operation and can be performed without obstruction. The perspective of 
inverting an algebraic operation, which anyway proves indispensable in 
solving algebraic equations, is very fruitful and elucidating in 
understanding the emergence of arithmetics and algebraic structures. 
From this perspective, a structural algebraic metaphora provides the 
means to evade the obstacle of inverting an operation in an initially 
specified algebraic domain. 
 
22..22  TTWWOOFFOOLLDD  IINNVVEERRSSIIOONN  OOFF  PPOOWWEERRSS::  RROOOOTTSS  AANNDD  LLOOGGAARRIITTHHMMSS  

 
A very important case presents itself in the consideration of the notion 
of taking powers. It is well known that the notion of power is defined by 
recursion on the operation of multiplication. The complexity in the 
notion of a power is that it involves two numerical entities assuming 
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different operational roles. More concretely, we have the base of the 
power and the power itself, such that the operation of raising the base to 
a power is not a commutative operation, i.e. the result is not invariant 
where the roles of bases and powers are exchanged. In this sense, the 
non-commutativity appearing for the first time algebraically in the 
procedure of raising a base to a power, requires the consideration of two 
distinct inverses; one referring to the base, and the other referring to the 
power. If we call this non-commutative operation with respect to the 
base and the power the operation of exponentiation, then its inversion is 
twofold: Inverting with respect to the base is the procedure called root 
extraction, whereas inverting with respect to the power is the procedure 
called logarithmization. 

Therefore, two distinct types of conjugation are needed in order 
to invert exponentiation. The first, referring to the powers with respect 
to a base obliges us to extend the field structure of the rationals to the 
field structure of the reals. As a result, logarithmization becomes a total 
operation in the domain of real numbers. The second, referring to the 
roots, necessitates the extension of the field structure of the rationals to 
the field structure of the complex numbers, if we include the roots of 
negative numbers. Both of these inversions are unified in the field 
domain of the complex numbers under the notion of the complex 
logarithm. It is important to highlight that both of these inversions are 
not purely algebraic, but entrain topological arguments for the 
effectuation of the respective metaphoras. The first requires an 
argument of continuity, whereas the second requires additionally a 
topological argument of evasion of the obstacle of multiple connectivity, 
to which we will come back later. 

At this stage, it is worth considering first, real logarithmization in 
functional and algebraic terms. If we consider that  is any positive 
base different from the unit 1, then the exponentiation equation 

, where , is solved in terms of  by logarithmization, i.e. 
. Equivalently, the power  is expressed as the real logarithm 

of  in the base or root . It is clearly not allowed to take the real 
logarithm of zero or a negative number. If we think of  as a function 
of , then this function is a continuous (and differentiable) function of 
the variable , whose inverse is the continuous (and differentiable) real 
logarithm function . Note the intervention of this 
topological qualification required for the performance of the required 
inversion that requires the explicit consideration of the irrationals 
besides the rationals, in other words, the meaningful inclusion of limit 
processes, in order to achieve the extension to the domain of the reals. 
The real logarithm function is characterized as the unique monotonically 
increasing function from the positive reals to the reals, such that: 

b
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Note that the real logarithm function converts multiplication of positive 
reals to addition of reals and it is order preserving. 

A natural question emerging in the functional context regarding 
the real logarithm function is how to express the procedure of raising to 
a power independently of the base employed. For this purpose, we define 
the exponential function , from the reals to the 
positive reals, i.e. the value is never zero and never negative, 
characterized by the property that 
 

 
 
meaning that it converts addition of reals to multiplication of positive 
reals. Then, the problem of raising to any power  with respect to a 
base , where  is thought of as a variable, is resolved by regarding 
the exponential and logarithm functions as inverse bridges between the 
group theoretic domains of the positive reals with respect to 
multiplication and the reals with respect to addition. More concretely, 
these inverse bridges, are inverse homomorphisms between these two 
groups, and thus, constitute the group of the reals under addition 
isomorphic to the group of the positive reals under multiplication. In 
other words, the real exponential function and the real logarithm 
function are not only inverse functions, but more important, they are 
inverse group homomorphisms. 

In this fashion, we may define the real logarithm function  

as the group homomorphism from the multiplicative group  to the 

additive group  since  is satisfied for 

any positive reals  and . Inversely, the real exponential function 

 is a group homomorphism from the additive group  

to the multiplicative group  satisfying 

. 
As such these two group homomorphisms are inverse to each other; they 
establish an isomorphism between these two different group structures. 
The most important consequence of this isomorphism is that the 
additive group structure of all real numbers, i.e. of the values of the 
logarithm function under addition, is indistinguishable from the 
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multiplicative group structure of the positive reals, i.e. of the values of 
the exponential function under multiplication. Consequently, the 
difficult operation of raising to a power can be conjugated to the easy 
operation of multiplication by metaphora from the additive group of the 
reals to the multiplicative group of the positive reals, where and 

play the role of the inverse bridges. Symbolically, we have:

Conversely, the capacity of the above metaphora to solve the problem of 
raising to a power by conjugating it to multiplication is equivalent to the 
group isomorphism induced by the inverse bridges identified with the 
real exponential and the real logarithm function.

22..33 TTRRAANNSSCCEENNDDEENNTTAALL GGNNOOMMOONNSS:: BBRRIIDDGGIINNGG TTHHEE HHAARRMMOONNIICC WWIITTHH 
 TTHHEE GGEEOOMMEETTRRIICC 

Both the exponential bridge and its inverse logarithmic bridge are 
characterized by self-similarity. Thus, they can be conceived in 
gnomonic terms. More concretely, since both of them are transcendental 
functions they act as inverse bridges between the transcendental or 
harmonic domain and the geometric domain, which is to say that the 
exponential is a bridge from the geometric to the harmonic, and 
inversely, the logarithm is a bridge from the harmonic to the geometric 
domain. If we consider the well-known example of the logarithmic 
spiral, it clearly provides an example of gnomonic growth, which is 
encountered in the natural world, for instance in the case of the Nautilus 
shell. The logarithmic or equiangular spiral differs from the 
Archimedean spiral in the sense that the distances between successive 
windings are not constant, but they increase in geometric progression.

exp
log

1= exp[ ]log( ) = exp[ ]exp ( )a a a -  ! ! !
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Coming to the exponential bridge, if we consider the arithmetic mean of 

the exponentials and , i.e. , then we 

obtain a well-known curve, called the catenary curve, which can be also 
thought of in gnomonic terms. The origin of this curve is physical, and 
more precisely, it is the solution to the least action problem referring to a 
chain in a gravitational field. Put simply, the catenary curve composed 
by the arithmetic mean of two exponential bridges according to the 
above, is the natural shape of a hanging chain under the pull of gravity.

The inverted shape of the catenary is the well-known catenary arch in 
architectonics with myriad of applications. The catenary arch by its 
specification through the real exponential bridges stands by itself 
without any support, defying in a sense the pull of gravity as the inverse 
of the shape assumed by a hanging chain.

The most interesting aspect of these transcendental gnomons, which is 
absent from the initial rational conception of the geometric ones, is the 
appearance of curvature. Moreover, the pattern of gnomonic growth is 
not a linear trapezium as in the former case, but an angular trapezoidal 
sector, depicted for comparison below.

exp( )x ( )exp x- exp( ) exp( )
2

x x+ -
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22..44 IINNTTRRIINNSSIICC GGEEOOMMEETTRRIICC CCUURRVVAATTUURREE 

The blueprint of the different types of local curvature in two dimensions 
is already evident by considering the catenary curve. The geometric way 
of detecting the local curvature involves the consideration of the 
tangent and the normal at a point. The normal may be thought of as the 
radius of a circle at the specified point, whereas the tangent is the 
orthogonal to the normal, identified with the tangent of the circle at this 
point. We now imagine another curve that bears the inverse 
specification of tangents and normals, whereby the former tangents are 
the normals of the new curve and the former normals are the tangents of 
the new curve. Then, we obtain a geometric inversion with respect to 
the local curvature referring to these two curves. If we apply this to the 
case of the catenary, then we obtain another curve called the tractrix as 
depicted below:

The surface of revolution emerging by rotating the tractrix about its 
asymptote is a pseudosphere, which is a surface with constant negative 
intrinsic curvature, characterized as a hyperbolic surface. The analogia 
with the sphere comes from the fact that a sphere has constant positive 
curvature , where R is the radius of the sphere, whereas the 
pseudosphere has constant negative curvature . They can be 

21/ R
21 / R-
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treated on an equal footing by considering the radius of the 
pseudosphere as an imaginary radius, i.e. , such that its curvature 
becomes the negative magnitude . This is a non-trivial step that 
requires an imaginary metaphora between the harmonic and the 
geometric domain culminating in the role of the imaginary unit, a subject 
to which we will come later.

The revolution of the catenary around an axis can be performed in two 
ways, both concavely and convexly. The surface of revolution obtained 
in the first case is a catenoid, while in the second it is a catenary dome. 
The catenoid is a minimal surface; it occupies the least area when 
bounded from above and below, e.g. by two circular rings. Because of this 
fact, it has mean curvature zero everywhere. As such it should be 
thought of as the curved abstraction of the plane, which is also a minimal 
surface considered as a surface of revolution. The catenary dome should 
be thought of as the optimal correction to the shape of an ideally 
symmetric spherical dome when subject to acceleration due to gravity.

iR
21 / R-

65

treated on an equal footing by considering the radius of the 
pseudosphere as an imaginary radius, i.e. , such that its curvature 
becomes the negative magnitude . This is a non-trivial step that 
requires an imaginary metaphora between the harmonic and the 
geometric domain culminating in the role of the imaginary unit, a subject 
to which we will come later.

The revolution of the catenary around an axis can be performed in two 
ways, both concavely and convexly. The surface of revolution obtained 
in the first case is a catenoid, while in the second it is a catenary dome. 
The catenoid is a minimal surface; it occupies the least area when 
bounded from above and below, e.g. by two circular rings. Because of this 
fact, it has mean curvature zero everywhere. As such it should be 
thought of as the curved abstraction of the plane, which is also a minimal 
surface considered as a surface of revolution. The catenary dome should 
be thought of as the optimal correction to the shape of an ideally 
symmetric spherical dome when subject to acceleration due to gravity.

iR
21 / R-

65

treated on an equal footing by considering the radius of the 
pseudosphere as an imaginary radius, i.e. , such that its curvature 
becomes the negative magnitude . This is a non-trivial step that 
requires an imaginary metaphora between the harmonic and the 
geometric domain culminating in the role of the imaginary unit, a subject 
to which we will come later.

The revolution of the catenary around an axis can be performed in two 
ways, both concavely and convexly. The surface of revolution obtained 
in the first case is a catenoid, while in the second it is a catenary dome. 
The catenoid is a minimal surface; it occupies the least area when 
bounded from above and below, e.g. by two circular rings. Because of this 
fact, it has mean curvature zero everywhere. As such it should be 
thought of as the curved abstraction of the plane, which is also a minimal 
surface considered as a surface of revolution. The catenary dome should 
be thought of as the optimal correction to the shape of an ideally 
symmetric spherical dome when subject to acceleration due to gravity.

iR
21 / R-



73TRANSCENDENTAL CIRCULATION

66

22..55 TTHHEE HHEELLIICCOOIIDD:: DDEESSCCEENNTT OOFF TTHHEE IIMMAAGGIINNAARRYY UUNNIITT FFRROOMM HHAARRMMOONNIICCSS 

Topologically the catenoid is non-simply connected due to the hole it 
bears in the middle; if we make a cut, then it can be deformed 
periodically to a simply-connected helicoid, which is also a minimal 
surface, although not a surface of revolution. In particular, it occupies 
the least area when bounded sideways by two helices. In this way, the 
catenoid becomes locally isometric to the helicoid. A two-dimensional 
entity could not locally distinguish the catenoid from the helicoid. The 
fact that this locally isometric deformation exists is a strong motive to 
explore the implications of the exponential and logarithmic bridges 
when extended to the imaginary and complex number domains. The 
crucial observation is that after half a period a mirror image of the same 
helicoidal surface arises, which may be qualified topologically as a 
twisting. For example, we may think of a belt as a toy model whose two 
sides are coloured differently. The closed belt is an approximation to the 
region around the equator of the catenoid. If we open the belt and move 
the left end up and the right end down we have an approximate model of 
a helicoid. On the other side, if we move the left end down and the right 
end up we obtain the mirror or twisted image of the former helicoid.

Note that the rotation axis of both the helicoid and its mirror is 
orthogonal to the equator of the catenoid, since there is a 
rotation counterclockwise or clockwise in relation to the equator. This is 
a strong indication about the role of the imaginary unit from a 
transcendental viewpoint.
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The extension of the real exponential function to the imaginary domain 

takes place via the complex exponential function , where 

denotes the unit circle, whose elements are described by Euler’s 
formula as . Note the appearance of the imaginary 
unit, which is interpreted as a rotation by making the imaginary 
axis orthogonal to the real axis in the domain of the complex numbers. 
Given together with the imaginary unit, there is always its mirror image, 
described as its complex conjugate. Since the unit circle is coordinatized 
by means of the imaginary unit, we think of this circle as an imaginary 
ring. Its emergence will be elaborated as we go on. At this stage, it is 
useful not to adopt the more conventional geometric, but rather to 
favour the harmonic interpretation. Simply expressed, the imaginary 
ring is actually a harmonic ring, i.e. it descends not from the domain of 
geometry but from the transcendental domain of harmonics. 
Notwithstanding this fact, the image of the ring in the geometric domain 
of forms may be visualised as a circle, more precisely, as a circular 
shadow of a harmonic entity. The latter is expressed transcendentally 
through the complex exponential function as its imaginary power.

For the consistency of this metaphorical interpretation it is 
necessary to explicate the qualification of a harmonic entity as well as its 
expression as an imaginary power. The intuition comes from the dual 
consideration of the helicoid along with its mirror image as constituting 
a harmonic entity. Firstly, the helicoid unfolds continuously by parallel 
translation of its tangent planes, and after half a period of rotation a 
mirror image of the same helicoidal surface arises. We may think of the 
helicoid together with its mirror image as helical waves propagating in 
opposite directions such that the mirror image is the reflection of the 
first. This is possible if these helical waves are bounded from above and 
below for temporal length of one period so as to give rise to a helical 
standing wave. Here, this condition is equivalent to the requirement 
that within this bounded interval the helical wave is in unison with its 
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reflection, its mirror image. Being in unison means that they are 
consonant in the fundamental harmonic frequency corresponding to the 
frequency ratio , which in turn, would correspond to an angular 
temporal interval of one whole period . 
 
22..66  HHAARRMMOONNIICC  SSEERRIIEESS  OOFF  AA  TTEEMMPPOORRAALL  HHEELLIICCAALL  CCHHOORRDD  
  AANNDD  FFRREEQQUUEENNCCYY  SSPPEECCTTRRUUMM  

 
It is instructive to highlight the difference between a vibrating straight 
chord whose length is spatial, and a vibrating helical chord whose length 
is temporal as in the preceding. The unison ratio in the former case 
corresponds to a zero length spatial interval, whereas it corresponds to a 

 temporal interval in the latter case. Notwithstanding this fact, we 
are able to establish the whole harmonic series in the helicoidal case, 
such that there is an inverse relationship between frequency and 
temporal extent or duration. The visual imaginary ring in this context is 
the unit circle descending from the harmonic domain of relations 
between a variably bounded helicoid and its mirror image into the visible 
geometric domain as its observable shadow. It serves to spatialize 
temporal extents by means of the imaginary unit and its conjugate to 
allow for twofold directionality. The spatialization records temporal 
extents in a twofold imaginary axis, qualified by both a positive and a 
negative direction as usual, as simultaneously extended imaginary 
spatial lengths at the present of the emergent shadow. Equivalently, 
these spatialized extents can be viewed as angular sectors of the 
imaginary circle via the complex exponential function. In this manner, 
being in unison in the harmonic context of a helical standing wave has a 
shadow in the visible geometric domain quantified by the imaginary 
spatial length , which is identical to the period of the complex 
exponential function. Alternatively, through the complex exponential 
function, being in unison corresponds to the whole  angular sector 
of the circumference of the imaginary ring. 

It is worth pondering on some specific characteristics of the 
harmonic domain that make it different from the visible geometric one. 
If we think ontologically in terms of substances, then in the harmonic 
domain the twisted or mirror image, or simply the reflection is of the 
same substance as the original, since it can interact and interfere with it 
to produce a standing helical wave bounded from above and below. The 
latter is not traveling in space at all. In contrast, it resolves time in terms 
of the harmonics series and the concomitant harmonic ratios of 
frequencies, i.e. by means of consonances and dissonances. As such a 
standing helical wave in the context of its resonating environment is not 
an ontological entity in physical space, although it has a shadow 
quantified through the imaginary ring. Its most crucial aspect is that it 
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resolves time periodically in terms of the harmonics, in such a way that 
time and frequency are reciprocally correlated. Thus, in the same way 
that time is spatialized via the imaginary axis, to give an imaginary 
length, frequency is spatialized orthogonally to the former as speed or 
momentum. What really matters is the orthogonal placement of 
frequency and spatialized temporal duration due to the intervention of 
the imaginary axis. As such, the opposite convention of indexing 
frequencies as imaginary quantities and spatialized temporal intervals as 
real is also valid and acceptable. Keeping in mind the above 
correspondences it becomes evident that the exponential function is 
qualified as eigenfunction of the differentiation operator, as well as a 
kernel of an integral transform, for example, the Fourier transformation 
between functions of these reciprocal variables. Note that an arbitrary 
angle in its expression as a power in the complex exponential is a 
product of the reciprocal variables.

Keeping the former convention, we identify the stairs of any 
bounded portion of the helical wave, unfolding orthogonally to the 
imaginary ring that constitutes its shadow, or present epiphaneia 
determined by the bounds of the resonator, with the harmonic series, 
being able to induce any harmonic ratio. In this manner, the harmonics 
are qualified as powers for the actualization of consonances and 
dissonances. The negative harmonics, setting up the whole frequency 
spectrum, correspond to the harmonic series of the reflection. Therefore, 
the whole frequency spectrum of a bounded helical standing wave does 
not bear any ontological role, but its role may be thought of as 
teleological. More precisely, the whole harmonic series depicted by the 
helical stairs is the entelecheia of the standing wave that accompanies 
the transcendental domain of time, as expressed in terms of the complex 
exponential function.
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22..77  NNOONN--GGLLOOBBAALL  IINNVVEERRTTIIBBIILLIITTYY  OOFF  IIMMAAGGIINNAARRYY  PPOOWWEERRSS  AANNDD  BBRRAANNCCHHIINNGG  

 
Considered structurally, which means here group-theoretically, the 
complex exponential is a group homomorphism from the additive group 

 to the multiplicative group  satisfying 

. The homeotic criterion of identity is 

encapsulated in the kernel of this group homomorphism, which is . 
Note that the homeotic criterion of identity is established in terms of the 
angular temporal interval of one whole period  times the harmonic 
series, which belong to the group of the integers. In this sense a single 
moment of time, identified with the present of the imaginary ring 
shadow, making it a unity, is resolvable homeotically by the whole 
spectrum of harmonics, so that consonances can occupy this moment. 

The existence of this homeotic kernel  of the complex 

exponential group homomorphism  has a price. The 
price is that the complex exponential is not invertible globally, but only 
locally. This broaches the significance of the domain of sheaves into 
which we will encounter later on. At present, the fact that it is not 
possible to have a well-defined global notion of a complex logarithm as 
the inversion of the complex exponential entails the novel phenomenon 
of branching. In other words, the projection from the helix to the circle, 
although it bears well defined local sections inverting it locally, does not 
possess a global inverse. We may assert that branching is the geometric 
way to engage with the issue of homeotic consonance in the harmonic or 
transcendental domain. Topologically, the latter gives rise to what is 
called multi-connectivity. Branching is the geometric way to evade 
multi-connectivity by a process of cutting, bounding, and unfolding, 
until everything becomes simply connected. 

Considering the complex logarithm, we realize that an inverse 

homomorphism from the multiplicative group  to the additive 
group  can be defined only locally, i.e. by restricting the values of 

the angle within a period, i.e. from  to , , or from 
 to , , which depicts a branch by cutting. The 

meaning of the branch is that the complex logarithm is single-valued 
within this branch. The whole issue arises from the multi-valuedness of 
the angle, because the complex exponential has the same value for angle 

, and , where  is an integer. This is precisely what is 
encapsulated in the homeotic kernel of the complex exponential group 
homomorphism that is understood, as established above, by the nature of 
the helicoid. Epigrammatically, we may say that if the harmonic domain 
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is associated with multiplexing and knotting, the geometric domain is 
associated with branching and weaving. Topologically, the main theme is 
connectivity, and the metaphora pertains to the unfolding of harmonic 
multi-connectivity into geometric simple-connectivity. 
 
22..88  CCAANNOONNIICCSS::  MMEETTAAPPHHOORRAA  FFRROOMM  HHAARRMMOONNIICCSS  TTOO  GGEEOOMMEETTRRYY  VVIIAA  TTOOPPOOLLOOGGYY  

 
Since the harmonic and the geometric domain incorporate different 
principles of organization, we may consider the transcendental 
exponential and logarithmic functions not only from a gnomonic 
standpoint, but more accurately, from the perspective of canonics. The 
notion of a canon incorporates the requirements for an analogia or 
metaphora between two structurally, or organizationally different, 
domains that can communicate to each other covariantly by conjugation, 
which means by the enforcement of appropriate encoding and decoding 
bridges. The notion of canonics emanates from Pythagoras’ vibrating 
monochord that embodied the idea of descending from the harmonic to 
the geometric domain and ascending back. Conceptually it refers to the 
transfiguration of an acoustic chord to an optical fiber involving the 
instantiation of a scale that is able to transform acoustic frequency 
ratios to visual length intervals. The conception of relative frequencies 
as powers that can be perceived by the ear implies that the bridge from 
the harmonic to the geometric is of a logarithmic nature. In other words, 
the logarithm function transfigures frequency ratios to length intervals, 
since it converts division to substraction. Inversely, the transfiguration 
from the geometric to the harmonic domain is of an exponential nature. 
This fact has been implicated in the impossibility of setting up a rational 
scale of musical intervals. In turn, this bears the consequence that the 
discovery of the irrationals does not come from the geometric domain, 
most typically presented via the Pythagorean theorem, which targets the 
incommensurability of the diagonal with the sides of an orthogonal 
triangle, but derives rather from harmonics. The notion of the 
equally-tempered, based on the equipartition of musical intervals, 
ending up on the chromatic geometric scale, is a geometric solution to 
evade this problem at the price of sacrificing the pure harmonics. 

The conceptualization of the imaginary ring set out here, allows 
the exemplification of canonics from the viewpoint of complex 
geometric function theory, especially as pertaining to the complex 
exponential and complex logarithm functions. More precisely, the 
complex exponential is an encoding bridge from the geometric to the 
harmonic domain, whereas the complex logarithm is a decoding bridge 
from the harmonic to the geometric domain, which is actually inverse to 
the former only locally, giving rise to the phenomenon of branching. The 
complex logarithm bridge of this metaphora may be thought of as the 
means of unfolding harmonic multi-connectivity into geometric 
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simple-connectivity. From a structural algebraic viewpoint, the complex 
exponential defined in terms of a group homomorphism from the 

additive group  to the multiplicative group  is extended 
now to a group homomorphism from the additive group of complex 
numbers  to the multiplicative group of non-zero complex 

numbers . Considering the complex logarithm, an inverse 

homomorphism from the multiplicative group  to the additive 
group  can be defined only locally, which obliges us to restrict the 
values of the angle within a period. The period in question is either, from 

 to , ; or from  to , , which 
depicts a branch where the complex logarithm is continuous and 
single-valued. 
 

 

 
 
The harmonic multiple-connectivity is encapsulated precisely in the 
homeotic kernel  of the complex exponential group 
homomorphism that is intrinsic to the nature of the helicoid. 
Consequently, the homeotic criterion of identity is expressed in terms of 
the angular temporal interval of one whole period  times the 
harmonic series, being identified structurally with the multiplicative 
group of the integers. We stress that the integers in this setting are 
manifested as powers. Topologically these powers are utilized for 
counting the number of windings. Thus, topologically, the above 
homeotic criterion of identity amounts to a homological criterion of 
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identity. More concretely, the multiplicative group of the integers plays 
the role of the first homology group of the topological circle, e.g. the first 
topological structural invariant of multiple-connectivity expressed by 
means of a commutative group. Not only this, but additionally, in the 
case of the topological circle, the first homology group is isomorphic 
with the first homotopy group, or fundamental group, since both are 
identified with the multiplicative commutative group . In this 
manner, the homeotic criterion of identity, serves not only as a 
homological criterion of identity, but also as a homotopic criterion of 
identity in relation to the topological circle. Of course, the imaginary 
ring endows the topological unit circle with the complex structure by 
which the complex exponential and logarithm functions are defined. 
 
22..99  SSPPHHEERRIICCSS::  TTHHEE  PPLLAANNIISSPPHHEERREE  PPRROOJJEECCTTIIOONN  

 
Given the identification of the topological unit circle endowed with the 
complex structure with the imaginary ring, culminating in the polar grid 
scaffolding of the complex plane, via the Euler representation, we realize 
that this grid actually descends from the sphere endowed with the 
complex structure, called currently, the Riemann sphere. 
 

 
 
This is elucidating, since the original framework of Pythagorean 
harmonics and canonics was called spherics. A simple geometric 
perspective offering a glimpse to spherics consistent with our 
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interpretation of metaphora is incorporated in the stereographic 
projection of a sphere onto a plane. This projection is described first in 
Ptolemy’s Planisphaerium, called originally, the planisphere projection. 
This projection is defined on the whole surface of the sphere with the 
exception of a single point (usually taken as the North pole) that is 
identified with the locus of projection, or the point through which light 
rays enter the sphere, propagate through it, until eventually they emerge 
out of the sphere by crossing it at a point, which is mapped one-to-one 
on a point on the plane. The stereographic projection is bijective and 
smooth with the exception of the single point of projection. It preserves 
neither distances nor areas. Its major characteristic though is that it 
preserves oriented angles between any two paths on the sphere, hence it 
is not only isogonal but also conformal. It is precisely this characteristic 
emerging out of the metaphora from the sphere to the plane through the 
stereographic projection that provides the crucial insight on what 
geometrically qualifies the complex structure emanating from the 
imaginary ring, as we are going to clarify below. At this point, if we think 
of this projection as the encoding bridge from the sphere to the plane, it 
is just as important to consider the decoding bridge from the plane to the 
sphere.
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The main observation is that the further out on the plane a point is, the 
closer its inverse image point on the sphere is to the North pole. But no 
point on the plane has as its inverse image the North pole itself. Rather, 
as a sequence of points move out towards infinity on the plane, their 
inverse images tend towards the North pole on the sphere. Therefore in 
the setting of this metaphora, the notion of infinity on the plane entrains 
the North pole of the sphere as its inverse image, so that there is a 
continuous one-to-one correspondence between the plane together with 
infinity and the sphere. In this sense, the sphere is homeomorphic 
topologically with the compactification of the plane emerging by the 
addition of a virtual point, called the ideal point at infinity. 
 
22..1100  SSTTEERREEOOGGRRAAPPHHYY::  TTHHEE  CCOONNFFOORRMMAALL  QQUUAALLIITTYY  OOFF  CCOOMMPPLLEEXX  SSTTRRUUCCTTUURREE  

 
Next, the basic concept that we intend to pursue is that the conformal 
quality of the stereographic projection is equivalent to endowing both 
the plane and the sphere with a complex structure. For this purpose, it is 
worth pondering in more detail on the conformal character of this 
projection. The crucial aspect is that the projection preserves on the 
plane the angles at which paths on the sphere cross each other, and more 
precisely the angles at a crossing point between the tangent vectors of 
these paths at the crossing point. On the other side, the stereographic 
projection does not preserve area, i.e. the area of a region on the sphere 
is not generally equal to the area of its stereographic projection onto the 
plane. A precise geometric way to understand this phenomenon can be 
expressed by means of the notion of intrinsic Gaussian curvature. 

More concretely, since the sphere and the plane have different 
intrinsic curvatures, there cannot exist a projection from the sphere to 
the plane that preserves both oriented angles and areas, since in that 
case, the curvature would be preserved. Therefore, a projection from the 
sphere to the plane can be either conformal or area-preserving, but not 
both simultaneously. According to the preceding the stereographic 
projection is only conformal. In consequence, circles on the sphere that 
do not pass through the North pole, i.e. the locus of projection, are 
projected to circles on the plane, whereas circles on the sphere that do 
pass through the North pole are projected to straight lines on the plane. 
Equivalently, these lines may be thought of as circles through the virtual 
point at infinity, or as circles of infinite radius. Inversely, all lines on the 
plane being transformed to circles on the sphere by the inverse of the 
stereographic projection meet at the North pole. In particular, parallel 
lines, which do not intersect on the plane, are transformed to circles, 
tangent at the North pole, whereas intersecting lines are transformed to 
circles intersecting transversally at two points on the sphere, one of 
which is the North pole. The loxodromes on the sphere, by which we 
mean the paths of constant compass bearing on the sphere, or the paths 
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having invariant angle with the corresponding parallels of latitude and 
meridians of longitude, project onto paths intersecting radial lines on the 
plane in an equiangular way, i.e. they project onto logarithmic spirals on 
the polar grid. 

The naturality of the complex differentiable structure on the 
sphere emerges as follows through the stereographic projection: We 
notice that although the stereographic projection from a single point on 
the sphere to the plane fails to map this single point of projection from 
the sphere to the plane, nevertheless if we consider two simultaneous 
projections from different points of the sphere to the plane, e.g. the first 
one from the North pole and the second from the South pole of the 
sphere, then the entire sphere can be mapped conformally on two copies 
of the plane. The first one may be thought of as tangent to the South 
pole, while the second as tangent to the North pole of the sphere. Clearly 
this double stereographic projection contains redundant information 
about the sphere. 

The idea is that each copy of the plane is a local patch of the 
sphere, which actually covers the whole sphere with the exception of the 
projection point, such that each patch is identified with the inverse 
image of the corresponding projection. In this manner, it is evident that 
two distinct but overlapping patches afford a complete covering of the 
sphere in their descriptive terms. The implicated metaphora of structure 
from the plane to the sphere through these two locally covering patches 
is that they exchange information compatibly about the sphere, or else 
they are compatible on their overlaps. Each copy of the plane is endowed 
with a complex structure induced by the imaginary ring in two distinct 
ways. 

For simplicity, we may identify both copies of the plane with the 
equatorial plane of the sphere and induce the complex structure in the 
first case by the complex parametrization , while the second 
is given by the complex parametrization . Then, a transition 
map from one patch to the other, i.e. from the -parameterized copy of 
the complex plane to the -parameterized copy of the complex plane, 
both identified with the equatorial plane of the sphere, asserts how these 
two copies are glued together by restriction to their overlapping regions. 
The gluing takes place by the identification of each non-zero complex 

number  of the first copy with the non-zero complex number  of 

the second copy, and conversely. In this sense, what plays the role of 
origin in the -parameterized copy, assumes the role of infinity in the 
second -parameterized copy, equally and conversely. The important 
thing is that the transition maps so-defined from one complex patch to 
the other are holomorphic maps. This means that a transition map as 
specified above is complex differentiable on its domain of definition. 
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Thus, we obtain a holomorphic atlas on the sphere endowing it with a 
complex differentiable structure, i.e. the sphere becomes a 
one-dimensional complex manifold, called the Riemann sphere. 

It remains to show the equivalence of the complex structure on 
the sphere with the conformal characterization of the sphere emanating 
from the stereographic projection. For this purpose, let us denote the 
complex structure by , such that analogously with the action of the 
imaginary unit on the complex plane, it rotates vectors in each tangent 
plane at a point of the sphere by . Then, if we consider the 
stereographic projection from the North pole of the sphere, denoted by 

, the conformal characterization in complex differentiable terms with 
respect to a tangent vector  at a point of the sphere, amounts to the 
prescription that , i.e.  is a complex linear map. 

Equivalently, this informs us that the conformal projection map 
is a non-degenerate holomorphic map; a complex differentiable map such 
that the differential never becomes zero. Henceforth, the complex 
structure  on the sphere is equivalent to the conformal 
characterization of the sphere by the stereographic projection, in the 
precise sense that the differential map  is complex linear. This 
implies a further equivalence: The operation of first rotating a tangent 
vector at a point of the sphere by  followed by the operation of 
pushing forward this vector from the sphere to the plane by  is 
indistinguishable from the operation of first pushing forward the 
tangent vector from the sphere to the plane by  followed by the 
operation of rotating the latter by the imaginary unit . In other words, 
these two distinct operations commute, such that on the complex plane 
of projection , called the Cauchy-Riemann equation. 

Thus, the complex structure on the sphere making it a complex 
manifold is equivalent to the conformal characterization of the sphere 
via the stereographic projection, which in turn, is algebraically 
equivalent to the commutativity of the operations of imaginary rotation 
and pushing forward by the differential of the projection with respect to 
the plane of this projection. Note that if  is the stereographic 
projection from the North pole of the sphere, then  is the complex 
linear map from the tangent plane at a point of the sphere to the plane of 
projection to be thought of as pushing forward tangent vectors from the 
former to the latter. 
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22..1111  IIMMAAGGIINNAARRYY  RRIINNGG  EEQQUUAATTOORR::  DDIIAACCHHRROONNIICC  PPRREESSEENNTT  AANNDD  HHOOMMEEOOSSTTAASSIISS  

 
It is important now to stress that the metaphora induced by the 
stereographic projection of the sphere should not be considered as 
independent from the original framework of harmonics and canonics 
that made this same metaphora necessary in the first place. This means 
that the actual depth of the stereographic projection, together with the 
threefold correspondence established previously, can be properly 
appreciated from a temporal standpoint, rather than a spatial one. The 
objective is to think of the sphere in temporal or chronological terms so 
as to achieve an insight on the temporal status of the projection plane. 
What really matters is the fact that the projection plane is capable of 
representing the sphere completely by inverse stereographic projection, 
if and only if we employ two distinct complex-parameterized copies of it, 
standing for projection planes with respect to the North and South pole 
of the sphere correspondingly, and so long as they are amalgamated 
compatibly -continuously and holomorphically- together, on their 
overlapping regions. With these conditions, the projection plane, 
identified with the equatorial plane of the sphere, binds together 
antipodally the northern with the southern hemisphere, such that the 
imaginary ring in the patch corresponding to the projection from the 
North pole is glued together antipodally with the imaginary ring in the 
patch corresponding to the projection from the South pole, and both are 
identified with the equator of the sphere. 

Thus, in view of the doubly articulated stereographic projection, 
the projection disk bounded by the equator of the sphere with the 
complex structure, i.e. in its function as an imaginary ring, is 
conceptualized temporally as an epiphaneia of the present, which binds 
together what is included inside the ring with what is outside the ring by 
means of inversion with respect to this ring. This is geometrically 
termed circle inversion, meaning geometric inversion with respect to the 
equator in our context, which is accomplished by means of complex 
inversion followed by reflection on the W-axis, where the latter is 
simply complex conjugation. Taking into account that complex inversion 
is actually physically implemented by a -rotation about the W-axis, 
we conclude that what appears on the epiphaneia of the present is a 
binding of a point inside the projection disk with a point outside it 
obtained from the first via a -rotation about the W-axis followed by 
reflection in the W-axis. 

There are now two interrelated issues that we have to elucidate 
in order to make viable the sought after temporal interpretation. The 
first issue targets the nature of the above binding; what is the physical 
process corresponding to the shadow of this binding that is 
accomplished on the epiphaneia of the projection disk bounded by the 
imaginary ring of the equator of the sphere? The second issue targets the 
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nature of what we call the present in the context of the temporal 
interpretation of the stereographic projection. It turns out that these 
two issues are not independent of each other. We just have to focus 
carefully on the domain of harmonics in order to make sense of the 
implicated geometry on the epiphaneia of the disk. 

What is actually involved is the helicoid together with its mirror 
image as constituting a harmonic entity. We recall that the helicoid 
unfolds continuously by parallel translation, orthogonally and away from 
the epiphaneia, and after half a period of rotation a mirror image of the 
same helicoidal surface arises. In this way, we think of the helicoid 
together with its mirror image as helical waves propagating in opposite 
directions such that the mirror image is the reflection of the first. This is 
possible if these helical waves are bounded from above and below for a 
temporal length of one period so as to give rise to a helical standing 
wave. Equivalently, within this bounded interval the helical wave is in 
unison with its reflection, its mirror image. Being in unison means that 
they are consonant in the fundamental harmonic frequency 
corresponding to the frequency ratio , pertaining to an angular 
temporal interval of one whole period . Therefore, the pertinent 
kind of binding appearing on the epiphaneia of the disk expresses the 
harmonic resonances of the helical standing wave in question, whence 
the bounding of this standing wave is provided by the sphere in terms of 
the temporal length of its periods of rotation. 

The above leads to a novel meaning in relation to the notion of 
the present. A single moment of time is resolvable homeotically by the 
whole harmonic series capable of being instantiated within the posed 
bounds at this moment. Moreover, the harmonics persist diachronically, 
that is for each conceivable present, being able to induce any harmonic 
ratio in that present. In this way the harmonics are qualified as powers 
for the actualization of consonances in each present. Consequently, the 
diachronic, harmonically persistent present manifesting on the 
epiphaneia, constituted by the invariants of the helical standing wave 
homeorhesis, that is the points of homeostasis depicted by the 
harmonics, is identified with the bounding imaginary ring, which in turn 
is the equator of the sphere endowed with the complex structure by 
virtue of the conformality of the stereographic metaphora. Hence, in the 
context of the present, the harmonics appear through the complex roots 
of unity of the imaginary ring equator. 
 
22..1122  AARRCCHHIIMMEEDDEEAANN  SSPPIIRRAALL::  MMEETTAAPPHHOORRAA  FFRROOMM  TTHHEE  CCIIRRCCUULLAARR  TTOO  TTHHEE  LLIINNEEAARR  

 
There are two fundamental questions that have to be addressed in the 
preceding framework. The first concerns the clarification of the precise 
manner that the sphere bounds the helical standing wave. This is 
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fundamental because it elucidates the temporal interpretation of the 
sphere in terms of its periods of rotation. The second concerns the 
problematic of how the present can be thought of as the imaginary axis 
of the complex plane in its rectangular manifestation in relation to a 
possible conformal projection of the sphere derived from the 
stereographic projection that manifests in the polar grid of the 
projection plane. 

Both of these questions can be dealt with in a satisfactory 
manner if we pay attention to the significance of the major problem of 
ancient Greek mathematical enquiry, i.e. the problem of squaring the 
circle. We view this problem as a problem of natural communication, and 
for this reason the method proposed by Archimedes to address it bears 
great significance. We call this method Archimedes’ metaphora because 
the Archimedean method does not supply a constructible solution to this 
problem by straightedge and compass. Instead, Archimedes having 
realized that there does not exist a constructible solution, he invents a 
metaphora from the circular to the linear domain. It is this metaphora 
that deserves a proper emphasis and appreciation. 

The problem of squaring the circle, refers to the instantiation of a 
square that has the same area as that of the disk bounded by a circle. In 
the first stage, Archimedes considers an isomorphic problem. Namely, 
the problem of geometrically unfolding the perimeter of a circle to a 
linear length. This more fundamental problem conceptually can be cast 
isomorphic to the original as follows: If the geometric unfolding of the 
perimeter of a circle to a linear length is possible, then the area of a circle 
can be made equivalent to the area of an orthogonal triangle whose sides 
are given by the radius of the circle and the perimeter of the circle. 

The main problem arises from the irrationality of , which is 
actually a transcendental number. For every conceivable circle of some 
radius,  is an invariant characterizing the perimeter through the 
radius. The incommensurability of the circular domain with the linear 
domain is precisely captured by the irrationality of . In the 
“Measurement of the Circle” Archimedes devised an ingenious 
approximation to the perimeter of the circle involving the method of 
exhaustion by means of inscribed and superscribed polygons. This is in 
effect to march toward the perimeter both from inside and outside using 
polygonal approximations involving up to 96 sides. In relation to the 
pertinent problem of squaring the circle, Archimedes devised the means 
of metaphora from the circular domain to the linear domain in terms of 
the Archimedean spiral. In other words, the Archimedean spiral is 
introduced relationally with respect to these incommensurable domain; 
in our terms as a bridge of metaphora from the circular to the linear and 
inversely. 

The spiral is conceived in physical terms by Archimedes. He 
considers a point particle, located initially at the centre of the circle, 
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which starts to move uniformly from the centre to the periphery of the 
circle along the radius. Simultaneously, Archimedes considers that the 
radius rotates uniformly counterclockwise around the centre of the 
circle. Thus, the particle movers according to the composition of these 
two uniform motions, the first linear, and the second circular. The 
composition of these two uniform motions is a non-uniform motion, 
which describes the trajectory of the considered particle. It is this 
trajectory that bears the geometric form of the Archimedean spiral. The 
spiral is devised as a means of metaphora from the circular to the linear 
domain, more precisely, as a means of geometric linear unfolding of the 
perimeter of the circle into a measurable linear length. This is 
accomplished by realizing the tangent to the spiral after one turn, i.e. at 
the point where it intersects the circle after one turn. Archimedes 
showed that the tangent line to the spiral at this point crosses the 
vertical axis at a point whose distance from the origin is exactly , 
where is the radius of the circle. As a result, the tangent to the spiral 
at the point of its intersection with the circle corresponding to a 
rotation, accomplishes the required unfolding of the perimeter into a 
linear length, which is provided by the distance of the point of 
intersection of this tangent with the vertical axis from the origin. The 
important thing to notice is that the recording of this linear length 
corresponds to the time needed by the particle to complete one turn of 
its spiral trajectory; to all intent the perimeter of the circle is unfolded as 
a temporal length. This form of temporal unfolding is periodic and can be 
analogously recorded for all higher turns of the spiral. Note also that the 
radius of the spiral at each point of the trajectory of the particle is 
determined by the angle with respect to the horizontal axis.
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According to the above, the perimeter of the circle is unfolded into the 
linear length , which is recorded at the vertical axis as the vertical 
side of an orthogonal triangle whose horizontal side is the radius  of 
the circle. Then, the area of this triangle is half of the area of the 
parallelogram having the same sides, which is clearly . Thus, the 
area of the circle is the same as the area of the above triangle, i.e. . 
 
22..1133  HHAARRMMOONNIICC  RREESSOOLLUUTTIIOONN  OOFF  TTIIMMEE::  IIMMAAGGIINNAARRYY  IIMMPPRRIINNTT  
  OOFF  TTHHEE  PPOOLLYYSSTTRROOPPHHIICC  SSPPIIRRAALL  

 
It is elucidating to attempt an interpretation of Archimedes’s method in 
the terms of the imaginary ring. For simplicity, we may consider the 
circle as the unit circle in the complex plane. Then, the two-dimensional 
Archimedean spiral unfolds the unit circle into the imaginary axis by the 
above procedure. The question is how we qualify the imaginary axis in 
this setting. There are two stages to address this issue. The first refers to 
the conception of the imaginary axis as a spatialized temporal dimension 
through the intervention of the imaginary unit. Accordingly, the 
spatialized temporal length corresponding to the time needed for the 
completion of one turn of the spiral becomes imaginary, and thus, 
negative if squared. The second stage takes into account the periodicity 
that is implicit in the successive turns of the spiral. More precisely, 
Archimedes’ method allows the unfolding of the perimeter of the circle 
multiple times recorded by the turns of the spiral, which means the 
Archimedean spiral is polystrophic and not only monostrophic. This fact 
forces the conception of time in this setting as a helix in three 
dimensions unfolding orthogonally to the complex pane, and which is 
projected epimorphically on the imaginary ring, i.e. on the unit circle on 
the complex plane, endowed with the polar grid via Euler’s 
coordinatization. This is nothing else than the exponential group 

homomorphism , whose kernel is . Thus, topologically 
the winding number counts the integer number of turns around the 
origin, which is excluded from the complex plane. 

If we consider Archimedes’ spiral as the means of metaphora 
from the circular to the linear domain, according to the preceding, the 
counterclockwise oriented spiral is the encoding bridge, whereas the 
inversely oriented clockwise spiral is the decoding bridge. Thus, we may 
invoke harmonic considerations in our setting, as pertaining to the 
helical conception of time, by means of a helix and its mirror image, if 
bounded appropriately. The leading idea again is that a single moment of 
time, identified with the present of the imaginary ring shadow, can be 
resolved homeotically by the whole spectrum of harmonics, giving a 
precise meaning to the polystrophic quality of the Archimedean spiral in 
the two-dimensional projection. 
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The effect of this manoeuvre through the domain of harmonics is 
that we can now qualify the integers as a quantum spectrum of 
frequencies on the imaginary axis of the complex plane via branches of 
the complex logarithm. We emphasize that this is viable due to the fact 
that both the complex exponential and its local inversion in terms of a 
branch of the complex logarithm are conformal, meaning they preserve 
oriented angles. In light of this fact, the homeotic criterion of identity 
can be imprinted on the imaginary axis in terms of the angular temporal 
interval of one whole period  times the harmonic series. 
Consequent on the periodic resolution of time in terms of the harmonics, 
time and frequency become reciprocally correlated, and represented 
orthogonally to each other. Time in the form of the helix in three 
dimensions unfolds orthogonally to the complex plane. The helix 
considered together with its mirror image give rise to a helical standing 
wave bounded by temporal intervals of integer periods. The latter 
projects down to the complex plane with the origin removed on an 
annular strip of the polar grid. Applying a corresponding branch of the 
complex logarithm transforms this strip conformally to a rectangular 
region on the complex plane. The imaginary axis is marked in this way 
by the harmonic frequencies corresponding to the integer number of 
cycles per unit of time, where the latter is taken to correspond to the 
temporal length of one whole period . 

Henceforth, it is instructive to note that the bounding in the 
complex analytic setting takes place via logarithmic branch cutting, 
which stems from the fact that no global complex logarithm function 
exists by which to invert the complex exponential function. 
Notwithstanding this fact the restriction to branches preserves the 
conformal character mapping annular strips to rectangular regions on 
the complex plane and inversely. As a side remark, we come to an 
understanding of the finite topological coverings of the circle by itself 
corresponding to all different integer powers as emanating from the 
universal unfolding of the circle by the helix, considered together with 
the above described process of bounding that reveals the harmonics. 
Therefore, the topological winding number physically descends from the 
harmonics, which are qualified as powers for the actualization of 
consonances, i.e. harmonic ratios. Finally, it is the action of the 
logarithm through its single-valued branches that transforms these 
ratios into spatialized spectral intervals measured on the imaginary axis, 
as outlined above. 
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22..1144  HHAARRMMOONNIICCSS  OOFF  TTHHEE  AARRCCHHIIMMEEDDEEAANN  SSCCRREEWW  
  AANNDD  TTHHEE  EEQQUUIIAARREEAALL  PPRROOJJEECCTTIIOONN  

 
An adequate mechanical model that captures all of the above aspects is 
the Archimedean screw in three-dimensional space. If we consider a 
finite portion of the screw, then the projection of the screw onto the 
plane thought of as perpendicular to the central axis of the screw, 
depicts an annular strip of the polar grid on the complex plane with the 
origin removed. Again, if we apply the complex logarithm this strip is 
transformed conformally to a rectangular region on the complex plane. 
We may now imagine the bounding of such a finite portion of the screw 
by an open cylinder. 

This is particularly elucidating in relation to Archimedes’s 
method of determination of the surface of a sphere on the basis of his 
method of unfolding the perimeter of the circle into a linear length. We 
recall that the latter leads to the conclusion that the area of a circle is 
equal to the area of an orthogonal triangle whose sides are equal to the 
radius of the circle and the perimeter of the circle respectively. Since the 
area of the sphere is , this area is the same as the area of four 
circles of the same radius , or equivalently, the same as the area of four 
orthogonal triangles fitting compatibly together, whose big side is  
and small side is , where  is identified with the radius of the 
sphere. 

Necessarily these circles should be considered as great circles 
passing through the North and South pole of the sphere, so as their 
radius is the same as the radius of the sphere. The unfolding of any such 
circle into a linear length equals the equatorial length of the sphere, or 
the length of the perimeter of the equator, given by . Thus, all four 
orthogonal triangles should have a big side equal to the equatorial length 
of the sphere  and small side equal to the radius of the sphere. 

It follows directly that these four triangles fit together in a plane 
region divided in two halves by the horizontal equatorial line of length 

, such that the small side of each triangle  equals the vertical side 
of a half of this plane region. Conclusively, this plane region has a 
horizontal side equal to the equatorial length of the sphere  and a 

vertical side equal to . Each horizontally conceived half divided by 
the equatorial line has sides  and  respectively. In each half 
there fit two orthogonal triangles sharing the same diagonal of sides  
and  respectively. Thus, the area of the sphere equals the area of 
these four orthogonal triangles, each one of which equals . 

In order to obtain a proper insight on the above Archimedean 
method of determining the area of a sphere it is significant to realize 
what it implies. Precisely, it implies that there exists an equiareal 
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projection of a sphere onto a cylinder, which we call the Archimedean 
projection. Note that this projection of the sphere is not conformal, as is 
the stereographic projection, but it does preserve areas. It is realized as a 
horizontal radial projection emerging by placing the sphere within an 
open cylinder touching it along the equator. In this sense, the 
Archimedean projection should be considered as complementary to the 
stereographic projection of the sphere onto a plane.

Topologically, we may easily see that if we cut the sphere along a 
meridian passing through both the North and South pole of the sphere, 
we unwrap the sphere onto an open cylinder of height . The area of 
this cylinder equals the area of a plane region on which it can roll for the 
temporal length corresponding to one rotation, , identified with the 
equatorial length of the sphere.

Hence, the sphere excluding its North and South pole can be 
projected in an area-preserving manner onto a open cylinder, and vice 
versa. Rolling the cylinder as above, we obtain an equiareal projection of 
the sphere on a planar region whose horizontal side is the equatorial 
length of the sphere and whose vertical side is , together with a 
rectangular and straight weaving grid of meridians and parallels.

The inverse equiareal projection from the open cylinder to the sphere is 
very important in relation to the first of the previously posed questions 
concerning the clarification of the precise manner that the sphere 
bounds a helical standing wave. It was conceivable simply as a finite 
portion of an Archimedean screw, characterized by its harmonics. As we 
mentioned before, this is fundamental because it elucidates the temporal 
interpretation of the sphere in terms of its periods of rotation, recorded 
eventually in terms of spectral lengths on the imaginary axis of the 
complex plane due to the Archimedean linear unfolding of the equatorial 
circle of the sphere. Since the latter bounds the epiphaneia of the 
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concerning the clarification of the precise manner that the sphere 
bounds a helical standing wave. It was conceivable simply as a finite 
portion of an Archimedean screw, characterized by its harmonics. As we 
mentioned before, this is fundamental because it elucidates the temporal 
interpretation of the sphere in terms of its periods of rotation, recorded 
eventually in terms of spectral lengths on the imaginary axis of the 
complex plane due to the Archimedean linear unfolding of the equatorial 
circle of the sphere. Since the latter bounds the epiphaneia of the 
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present by the conformal stereographic projection of the sphere onto the 
plane, the inverse equiareal projection reveals the resolution of the 
present into the pertinent harmonics according to the bounding role of 
the sphere. For these reasons, all bearing on the posited temporal 
interpretation, the conformal stereographic projection of the sphere 
onto the plane cannot be considered independently from the equiareal 
Archimedean projection of the sphere onto the cylinder unrolling onto 
another plane. 
 
22..1155  TTEEMMPPOORRAALL  DDIIAASSTTAASSIISS::  SSYYNNTTHHEESSIISS  OOFF  CCOONNFFOORRMMAALL    
  WWIITTHH  EEQQUUIIAARREEAALL  MMEETTAAPPHHOORRAA  

 
We argued that the present manifesting on the epiphaneia is expressed 
by the equator of the sphere, endowed with the complex structure by 
virtue of the conformality of the stereographic metaphora, and thus 
identified with the bounding imaginary ring of the horizontal disk of this 
projection. If we think in terms of Leon Battista Alberti’s veil metaphora 
of Renaissance perspectivism, then the veil is the epiphaneia of the 
metaphora, whereas the eye corresponds to the projection point, i.e. 
either the North pole or the South pole in the case of the stereographic 
projection. If we identify the veil with the equatorial disk of the sphere, 
the interesting thing is that the sphere, which plays the role of the scene 
in this metaphora, lies both in front and behind the veil. 

We recall that the pertinent kind of binding appearing on the 
epiphaneia of the disk descends from the harmonic domain; it expresses 
the harmonic resonances of a helical standing wave, whence the 
bounding of this standing wave is provided by the sphere in terms of the 
temporal length of its periods of rotation. It is precisely this fact that is 
encoded in the Archimedean equiareal projection of the sphere onto the 
cylinder, according to the preceding. 

We emphasize that the consequence of this synthesis combining 
the stereographic with the Archimedean metaphora from the sphere to 
the plane and inversely, implies that the present is resolvable 
homeotically by the whole harmonic series capable of being instantiated 
within the pertinent temporal spherical bounds. Additionally, since the 
harmonics persist diachronically, that is, for each conceivable present, 
they are qualified as powers for harmonic resonance in each present. 

Hence, in the context of the present, the harmonics appear 
through the complex roots of unity on the imaginary ring equator. The 
diachronic persistence of the harmonics, elevating them to invariants 
from a homology-theoretic topological viewpoint, has the effect that 
they appear as points of stasis geometrically. In this sense, the temporal 
helical axis of unfolding perpendicular to the epiphaneia bears the 
meaning of a temporal diastasis. As we have shown, any appropriate 
finite bounded portion of this diastasis can be transfigured conformally, 
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by means of a branch of the complex logarithm on the imaginary axis of 
the complex plane equipped with the rectangular grid, as a spatialized 
spectral interval. This settles completely the second question 
concerning the problematic of how the present can be thought of in 
terms of the imaginary axis of the complex plane in its rectangular 
manifestation. 

A significant observation regarding the complementary roles of 
the stereographic and Archimedean projections of the sphere is that the 
achieved synthesis actually pertains to any conformal and equiareal 
projection of the sphere. We should nevertheless recognize that a 
projection of the sphere on the plane that is both conformal and 
equiareal is not possible due to the curvature of the sphere. Reciprocally, 
the geometric characteristic of the curvature can be explicated from the 
synthesis of these two complementary types of metaphora, which are 
both indispensable in order to derive the notion of the present 
introduced here, e.g. from the temporal interpretation of these 
projections. For instance, we may consider another conformal projection 
of the sphere on the plane different from the stereographic one, but 
bearing the same oriented angle-preserving character, called the 
Mercator projection. 
 

 
 
In this projection parallels of latitude on the sphere correspond to 
horizontal lines and meridians of longitude to vertical lines on a 
rectangular grid. The importance of this projection is that loxodromes on 
the sphere correspond to straight lines, making this projection very 
useful in navigation. Note that in the context of the stereographic 
projection loxodromes appear as logarithmic spirals whose center is 
either the North or the South pole. Loxodromes are not defined at the 
poles of the sphere, but they spiral from one pole to the other. They may 
be thought of as winding around each pole an infinite number of times as 
they approach it, but the distance they cover is finite. The Mercator 
projection is a conformal projection that maps the unit sphere within 
rectangular strips of width  excluding the North and South pole of 
the sphere, such that loxodromes appear as straight lines. 

Using both the Mercator and stereographic projections we can 
easily realize the conformal character of the complex exponential and 
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the complex logarithm. For this purpose, first we consider the inverse 
Mercator projection from the plane to the sphere, and then the 
stereographic projection from the sphere to the plane. Both of them are 
conformal, thus their composition is conformal as well. This composition 
can be expressed in terms of the complex exponential, which maps a 
rectangular strip of width  to an annulus on the complex plane 
with the origin removed, since the pole is excluded from the Mercator 
projection. 

This argument shows that the complex exponential is a 
conformal map through the considered conformal projections of the 
sphere. The same argument can be used in reverse to show that the 
complex logarithm, through its principal branch for instance, is also 
conformal from the plane of the stereographic projection to the plane of 
the Mercator projection. With this approach, our basic conclusions 
pertaining to the synthesis of any conformal and equiareal projection of 
the sphere, thought of as complementary types of metaphora from the 
sphere to the plane, are confirmed for the proposed temporal 
interpretation of these projections. 
 
22..1166  CCYYCCLLOOTTOOMMYY::  CCOOMMPPLLEEXX  RROOOOTTSS  OOFF  UUNNIITTYY  OONN  TTHHEE  IIMMAAGGIINNAARRYY  RRIINNGG  

 
We recall that since the harmonics persist diachronically they bear the 
status of powers for harmonic resonance in each present. Therefore, in 
the context of the present, the harmonics appear through the complex 
roots of unity on the imaginary ring equator. There are always  
different complex -th roots of unity, that is, complex numbers whose 

-th power is equal to unity, equally spaced around the perimeter of the 
unit circle in the complex plane. Since, they are equally spaced they 
constitute a well-tempered scale on the epiphaneia of the present. Roots 
of unity are manifested geometrically as the vertices of a regular polygon 
that connects them together. 
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Of particular importance are the primitive roots of unity. More 
precisely, on the unit circle with equally spaced rays, there is now a 
mark on ray , denoting a primitive root of unity, if and only if and 

are relatively prime, having no common divisors other than .

An equally-tempered scale marking the unit circle leads to cyclotomy
and is manifested geometrically on the epiphaneia in terms of regular 
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polygons inscribed in the unit circle. We consider now the temporal 
helical axis of unfolding perpendicular to the epiphaneia bearing the 
meaning of a temporal diastasis, as above. It is important to examine the 
means of subdivision of this diastasis. 

For this purpose, it suffices to adopt a topological standpoint and 
consider the integer winding numbers of this helical diastasis evenly 
covering the circle on the epiphaneia. We recall that finite bounded 
portions of this diastasis qualify these windings in terms of harmonics, 
corresponding to finite covering spaces of the circle, and expressed as 
powers in the complex analytic setting. First, we point out that the 
square power in relation to the unit circle corresponds to doubling the 
angle, and so on for all higher integer powers. Let us consider the finite 
double covering of the circle by the circle. This corresponds spectrally to 
doubling the frequency, and thus by inversion dividing the unit circle 
into half. Similarly, if we consider the finite triple covering, it 
corresponds to tripling the frequency, thereby dividing the circle into 
three parts. 

We treat all higher integer powers analogously, and by inversion, 
that is in terms of the roots of unity, we are able to subdivide the circle. 
The cyclotomy corresponds spectrally to the generation of regular 
polygons. The deeper the resolution of the cyclotomy is, the higher the 
number of vertices appearing equi-distantly on the unit circle, giving an 
ever-higher number of sides of the inscribed regular polygon. In this 
manner, the harmonic subdivision of the unfolding helical diastasis, is 
manifested geometrically as regular polygons inscribed in the circle. The 
further this subdivision is pursued by ascending to higher harmonics, 
resolving the circle in a more refined way, the higher the number of 
polygonal sides inside the circle. 
 
22..1177  SSHHEEAAVVEESS::  MMEETTAAPPHHOORRAA  FFRROOMM  DDEESSIIGGNN  TTOO  AARRCCHHIITTEECCTTUURREE  
  AANNDD  CCOOLLUUMMNN  CCAANNOONNIICCSS  

 
The previous analysis provides an ideal starting point in order to think of 
the relation between design and architecture. The basic idea is that 
design descends from the domain of harmonics, whereas architecture 
descends from the domain of geometry. In this light, they can be 
characterized as reciprocally related to each other. Equivalently, there 
exists a metaphora from design to architecture, and vice versa, which 
should be though of as a metaphora from the domain of harmonics to the 
domain of geometry, as mediated through the topological level. From 
this perspective, the notion of a purely geometric design as well as its 
antipode, i.e. the notion of a purely harmonic architecture appear as 
degenerate conceptions that ignore the metaphora from the one to the 
other. Our distinction will be elaborated, in particular, by considering 
the fundamental notion of a column in terms of the proposed metaphora. 
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For this purpose, it is preferable to start working at the 
topological domain, considered as the mediating level between 
harmonics and geometry. The basic topological distinction is the 
part-whole, or more concretely, the local-global distinction. In the case 
of design, the global is envisioned in its totality, and the local parts are 
organized in a way to fulfill the global. The basic constraint of design is 
tantamount to the restriction of the local parts by the global. Thus, the 
local parts are passive, and the global is active restricting the local parts 
appropriately. Reciprocally, in architecture the local parts are selected in 
the form of atomic elements, which have to be jointly organized together 
geometrically so as to open up a new space.

In this sense, the basic constraint of architecture is how a local 
part can be extended by joining it together with another compatible 
local part, and so on toward the global. In consequence, in the latter case, 
the local parts are active, and the global is passive. Of course, in order 
that the opening up of a new space becomes possible, the local parts 
cannot be assembled randomly together. Rather their assemblage in 
space should conform to some pre-conceived global vision topologically, 
which allows the opening up of such a new space. In short, what is 
required is a metaphora from the domain of design to the domain of 
architecture.

If we characterize topologically the architectural assemblage that 
achieves the opening up of a new space as a sheaf, then the natural 
communication scheme between these domains, requires that at the 
level of design this assemblage bears the character of a presheaf. The 
difference between these notions is that in the case of the presheaf only 
the global-to-local compatibility is required, whereas in the case of the 
sheaf, the reverse local-to-global compatibility must also hold. Note that 
the first does not necessarily imply the second.

The idea that design, as conceptualized above, descends from harmonics 
is based on the fact that design is characterized by finality, or better, by 
entelecheia, since it carries its final purpose implicitly within itself
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according to the Aristotelian conception. Reciprocally, architecture is 
characterized by elementarity, and efficient causality in the organization 
of the local parts towards the global, subject to the constraints of 
geometry. Thus, architecture, although operating within the domain of 
geometry, implicating simple connectivity, is capable of opening up a 
new space only if the atomic elements are able to achieve a certain 
consonance with the whole, which in turn, presupposes the envisioning 
of such a whole: in other words the metaphora from design to 
architecture.

In this sense, the action of design may be though of as the action of a 
resonator that accomplishes the harmonic resonance of the actively 
envisioned global with the local through powers or spectral frequencies. 
Also in this sense, the assemblage of the active atomic elements 
geometrically should comply with the spectral compatibility of these 
elements in order that the opening up of a new geometric space in 
agreement with the harmonically envisioned global becomes feasible.

Note that beyond the topological level, in architecture, the active 
local parts can be joined together by admissible geometric 
transformations, in particular by translation and rotation, which in 
three-dimensional space can combine together in the form of a screw, a 
simply-connected finite portion of a helicoid. In the case of design, the 
envisioned global may be thought of harmonically as bearing the 
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characteristic of the imaginary ring. We emphasize that this is not a 
visual, but a harmonic characterization, which means that the active 
global in design is not an already formed geometric entity, since this 
would contradict the essence of the metaphora. The active global in its 
harmonic conception should be able to restrict the suitability of the local 
parts only on the condition of harmonic resonance with them at each 
present, i.e. diachronically. This condition can be met only if the local 
parts can be qualified as complex roots of unity, which they synchronize 
as a polygonal totality with the global via powers up to a certain depth of 
spectral frequential resolution.

As a particular example of the above metaphora from design to 
architecture, together with their topological characterization in terms of 
the notions of a presheaf and a sheaf respectively, we consider the case 
of a column. We are going to examine the active global in design through 
the -th complex roots of unity, displayed below.

The basic idea is that the active local parts in this architectural 
implementation of the harmonics instantiated by design synchronize as 
a polygon of eight sides with the global via corresponding powers up to 
the depth of this spectral resolution. These active local parts can be 
amalgamated by the admissible geometric transformations of translation 
and rotation, which combine to a helicoidal screw in three dimensions. If 
we assume that these atomic elements admit the geometric form of 
graphs of primitive roots of unity, expressed as polygons, then in the 
considered case of the -th complex roots of unity, we instantiate a 
geometric template consisting of the superposition of a square together 
with another tilted square, together comprising an octagon.
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In this manner, the active local parts in architecture give rise to a 
geometric template. We consider the screw motion of this template 
along the temporal diastasis orthogonally to the superscribing imaginary 
ring marked by the -th complex roots of unity. Since we view the 
template as a superposition of two squares, it is instructive to consider 
the geometric template as an 8-star, whose sharp nodes may be rounded. 
The idea is that this star constitutes the basis of a column. Note that the 
8-star template as a constellation is amenable to a screw motion with 
respect to two orientations; it can ascend according to the 
counterclockwise orientation and descend back according to the 
clockwise orientation, thereby providing the ichnography of a helical 
standing wave comprised of the harmonics under consideration.
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Therefore, the double screw motion of the 8-star template in three 
dimensions gives rise to a weaving pattern of two oppositely oriented 
helicoids, which topologically they overlap compatibly on the harmonics. 
Thus, they comprise a sheaf that admits the precise geometric 
manifestation of a part of a column. 
 

 
 
Note that the above realized part of a column bears 8 striations. Clearly, 
it emerges from a quite low spectral resolution of the global imaginary 
ring involving only eight roots. We bear in mind that a pretty faithful 
approximation, according to the original construction of Archimedes, 
would involve 96 striations. Thus, either we increase the resolution 
implementing more and more striations, all at once, following 
geometrically the same pattern of double screw motion, or we treat the 
above realized part of a column as a branch of the whole column. 
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The latter is possible, since the whole column comprises a sheaf, and 
thus, we may legitimately consider its amalgamation through joining 
together distinct branches compatibly. We emphasize that joining 
branches together furnishes a resembling a tree. The basic notion is that 
when different logarithmic branches, constituted according to the 
preceding, join together, the number of roots doubles at each joint 
section. This branching tree-like structure of a column is iterated until 
the global section approximates a circle, completing in this sense the 
metaphora from design to architecture. 
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33..11  HHAARRMMOONNIICCSS  TTOO  GGEEOOMMEETTRRYY::  EENNCCOODDIINNGG  LLOOGGAARRIITTHHMM--DDEECCOODDIINNGG  
  AALLGGOORRIITTHHMM  

 
It is elucidating to consider in more detail the temporal aspects of the 
metaphora from harmonics to geometry along the lines already 
established. The temporal helical axis of unfolding perpendicular to the 
epiphaneia bears the meaning of a temporal diastasis. Any appropriate 
finite bounded portion of this diastasis can be transfigured conformally, 
via a branch of the complex logarithm on the imaginary axis of the 
complex plane equipped with the rectangular grid, as a spatialized 
spectral interval. In the context of each present, the harmonics appear as 
powers through their corresponding action on the complex roots of 
unity, in accord with the cyclotomy of the circle, or equivalently, the 
imaginary ring in the complex analytic setting. The diachronic 
persistence of the harmonics, elevates them to topological invariants 
that manifest as points of stasis geometrically. In this sense, a point of 
stasis bears temporal depth, since harmonic resonance is qualified in 
terms of such points diachronically. The crucial issue is that a spatialized 
spectral interval is not merely a geometric interval, but carries 
topological and harmonic information that manifests in discrete or 
quantum terms with respect to the temporal unfolding diastasis. More 
precisely, the implicated geometry is the one arising out of a 
cohomological spectrum, congredient with the sheaf localization 
structure. We qualify this geometry simply as spectral geometry to avoid 
further technicalities at this stage. The objective is to foreground the 
metaphora from harmonics to geometry in relation to the temporal 
aspects of this metaphora, not to focus exclusively on the terms of the 
complex analytic function-theoretic setting of our previous discussion. 

The motivation for this reflection follows from the idea that the 
complex analytic function-theoretic setting is based on and presupposes 
for its consistency a certain notion of generalized number domain; the 
domain of complex numbers, which is an algebraically closed field. In a 
well-defined sense, the metaphora from harmonics to geometry cannot 
be consistently implemented without reference to the arithmetic cosmos 
of the complex number field. We recall that we employ two distinct 
types of metaphora in order to invert exponentiation. The first, referring 
to the powers with respect to a base necessitates the extension of the 
field of the rationals to the field of the reals, so that logarithmization 
becomes a total operation in the domain of real numbers. The second, 
referring to the roots, calls for the extension of the rationals to the 
complex numbers, to accommodate the roots of negative numbers. Both 
of these inversions are unified in the field domain of the complex 
numbers under the notion of the complex logarithm. But, in turn, the 
complex logarithm inverts complex exponentiation only locally, namely 
by considering a branch of this multi-valued function corresponding to 
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the interval between two consecutive harmonics. As a result, the 
inversion of the logarithmic encoding bridge from harmonics to 
geometry, i.e. the decoding bridge from geometry back to harmonics, 
requires the algorithmic instantiation of the harmonics as powers acting 
on the roots of unity. Therefore, the notion of arithmos pertains to the 
metaphora from harmonics to geometry in terms of the logarithm notion 
in the encoding direction, and in terms of the algorithm notion in the 
decoding direction. 
 

 
 
In the above setting, arithmos via its dual connotation as a logarithm and 
algorithm correspondingly, in relation to the encoding of harmonics to 
geometry and, inversely to the decoding from geometry back to 
harmonics, provides the bridges of the metaphora from harmonics to 
geometry. We may assert that the domain of harmonics directs the 
global choreography, the domain of arithmetics in its double role, as 
previously, directs the scenography and the orthography respectively, 
while the domain of spectral geometry directs the ichnography. The 
latter interprets a point of stasis as the trace of its temporal depth in 
each present. Taking into account the concomitant weaving pattern on 
the geometry depicted by the rectangular grid of the complex plane via 
the branched action of the logarithm, we realize that it descends from 
the epiphaneia conceived in its polar Euler representation bounded by 
the imaginary ring. 
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33..22 HHAARRMMOONNIICCSS--AARRIITTHHMMEETTIICC--GGEEOOMMEETTRRYY:: TTHHRREEEEFFOOLLDD MMEETTAAPPHHOORRAA 
 AASS AA SSTTAATTIICC TTRRIIPPOODD 

According to our argument, the spectral geometry on the epiphaneia 
manifests itself like the spider’s web, called “arachne” in ancient Greek. 
It is telling that in nature the spider ascends and expands its web by 
means of the logarithmic spiral, i.e. following the geometric progression, 
whereas it descends back to the center and stabilizes its web along a 
radius, i.e. following the arithmetic progression.

The ancient Greek naming is very interesting since all three of the 
involved notions -armonia, arithmos, and arachne- bearing the 
correspondence with harmonics, arithmetic, and spectral geometry 
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respectively, emanate from the same linguistic root. We argue that this 
phenomenon is not accidental, but it is intimately correlated with the 
personification of Time in mythology. This provides a very elucidating 
conceptual insight on all the preceding. Before going to this matter, it is 
significant to point out a fundamental symmetry property pertaining to 
the metaphora from harmonics to geometry through arithmetics. This 
symmetry property, which is of a topological origin, is that the round trip 
at the level of harmonics via the level of geometry under the arithmetic 
bridges can equivalently and isomorphically be conceived as a round trip 
via the level of arithmetic under geometric bridges. 

The latter is feasible if the level of arithmetic is identified simply 
as a spectrum characterized by the integer frequencies, whereas the 
encoding and decoding geometric bridges are identified on the 
epiphaneia in terms of the ascending logarithmic spiral and the 
descending Archimedean spiral respectively. In the latter setting, the 
domain of harmonics still directs the global choreography, the domain of 
the geometry in its double role, as above, directs the scenography and 
the orthography respectively, and the domain of arithmetic directs the 
ichnography. 

We realize that in the initial setting arithmetic is exemplified 
through its algebraic or operational aspect, whereas in the latter setting 
it is exemplified through its spectral discrete aspect. Analogously, in the 
initial setting geometry is exemplified through its spectral, quantum 
qualification, in the form of points of stasis, whereas in the latter setting 
it is exemplified through its kinematic qualification whose forms are 
spiral progressions. It is not difficult to realize that there exists a further 
symmetry, which can be considered a metaphora from arithmetic to 
geometry via encoding and decoding bridges belonging to the domain of 
harmonics. The encoding bridge is the extraction of the roots of unity, 
whereas the decoding bridge is the utilization of the harmonics as 
powers for synchronization of the points of stasis with the unity. We 
conclude that there exists a threefold canonical metaphoric 
communication among the domains of harmonics, arithmetic, and 
geometry, such that any one of them gives rise to a pair of 
encoding/decoding bridges with respect to a metaphora establishing the 
canonics between the other two. In this case, we say that these three 
domains constitute a static tripod, in accordance to the ancient Greek 
term. 
 
33..33  TTRRIIPPOODD  OOFF  TTIIMMEE::  WWIINNDDIINNGG--MMEEAASSUURRIINNGG--BBOOUUNNDDIINNGG  

 
Since a tripod of this nature and function is balanced on the notions of 
armonia, arithmos, and arachne, according to the above, it is worth 
revisiting briefly the cosmogonical context of the pre-socratic 
philosophy, where these threefold canonical communication relations 
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were first conceived and explicated. The notion of the static tripod is of 
Delphic origin, where it stands stably over the omphalos symbolizing the 
primordial obstacle. In this sense, the static tripod is the generator of a 
threefold stable communication relation embracing the obstacle.

The very first abstract tripod incorporating the characteristics 
described above, is the tripod [thauma(state of wonder)/ananke
(necessity)/ aletheia(truth)]. Thaumazein is the act of looking upward 
to the sky and wondering in the attempt to unveil what is true. The 
encoding and decoding bridge between these two levels, of thauma and 
aletheia is enacted by necessity. Note the bidirectionality of necessity in 
this metaphora, which is not restricted to some type of efficient 
causality, but it incorporates the entelecheia inversely as well. 
Moreover, aletheia is not identified with what we call today logical 
truth. Aletheia refers to unveiling what is diachronically true, where the 
latter is identified with what should not be forgotten after being 
unveiled; in other words aletheia is tantamount to mnemosyne, the 
faculty of memory and remembrance, personified by the mother of the 
nine muses.

Since thaumazein is the act of looking upward and aletheia is 
meaningful with respect to lethe which comes first, we can easily 
consider them as bidirectional bridges between the two other legs of the 
tripod, thereby completing the circuit of the threefold metaphoric 
communication. We may think of the tripod as follows:

Concomitantly, we think of each leg of the above tripod as a melos, 
meaning a breaking in the continuity associated with the omphalos in 
the middle. Each melos in its rendering as a bidirectional bridge with 
respect to the other two, may be thought of in terms of an umbilical cord 
emanating from the omphalos, serving as a means of establishing its 
diachronic identity. A melos is distinguishable as such, i.e. 
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independently from its participation in the tripod, by bounding and 
cutting the cord, breaking the continuity in this way, to be
re-established by its re-habilitation within the tripod that re-activates 
its cord. The re-activated cord bears the mark of its breaking as a root of 
its unity that allows a melos to synchronize with its cord via powers, to 
be thought of as harmonic frequencies giving rise to a spectrum that 
translates a cord into a chord.

Each distinguishable melos of the initial tripod gives rise to 
another tripod embracing the obstacle that its associated discontinuity 
imposes. The state of wonder gives rise to the tripod [philosophy/ 
mathematics/ architectonics], which is resolved further to the tripod 
[logos/ orthos doxa/ arche], to the tripod [ratio/ arithmos/ architecture], 
and to the tripod [armonia/ arithmos/ arachne], we encountered 
previously.

The aletheia as mnemosyne gives rise to a triad of tripods 
capturing the metaphoric communication among the nine muses, the 
first composed of [epic poetry/ lyric poetry/ hymn], the second of
[choral dance/ comedy/ tragedy], and the third of [music/ history/ 
astronomy]. We come finally to necessity, the melos from which the 
tripod of time emerges out of its spindle and the thread it spins as an axis 
mundi, i.e. as a cosmic helical axis of unfolding perpendicular to the 
epiphaneia.
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The tripod of time consists of [Clotho/ Lachesis/ Atropos], together 
called the Moirai. Clotho is the one who winds the thread, Lachesis is 
the one who unfolds and measures the thread, and Atropos the one who 
bounds and cuts the thread. Especial care is needed in comprehending 
the tripod of time specifically, as a means of threefold metaphoric 
communication among Clotho, Lachesis, and Atropos, and not as a 
literal spatial representation of different actions. The key is especially 
provided by the domain of harmonics, without which a literal geometric 
representation becomes untenable and distorting. 

In particular, the discrete marking or quantization of the thread 
by Lachesis in terms of the integer periods of winding around by Clotho 
is not accidental, but it is subordinate to the bounding of the thread by 
Atropos, so as to reveal the harmonics. In this manner, the winding of 
the thread as a temporal diastasis of unfolding is complemented by the 
harmonics of a bounded helical standing wave appearing in the caduceus 
(kerykeion) of Hermes, the father of the Moirai and personified God of 
communication, which in turn, qualifies the measurement of the thread 
by Lachesis as a spectral measurement. This brings us back to the tripod 
[harmonics/ arithmetic/ geometry], which has been already analyzed in 
detail. It is an amusing realization that the tripod of time harbours such 
an articulating relevance for these mathematical considerations 
pertaining to metaphora and natural communication. 
 
33..44  SSIINNGGLLEE  TTEEMMPPOORRAALL  DDIIAASSTTAASSIISS::  CCHHAANNGGEE  OOFF  TTIIMMEE  AASS  CCHHAANNGGEE  OOFF  PPHHAASSEE  

 
It is worth examining the major difference between the notion of a 
temporal diastasis, i.e. the notion pertaining to a helical temporal axis of 
unfolding perpendicular to the epiphaneia, and the standard notion of a 
real temporal dimension totally ordering events. An interesting analogia 
is emerging from the domain of music pertaining to the difference 
between harmony and melody. Whereas melody refers to the sequential 
horizontal ordering of notes, harmony refers to the vertical, consonant 
or synchronized listening to the notes at each present. 

We recall that the concept of the epiphaneia can either be 
thought of as a disk in the complex plane equipped with the polar grid 
and bounded by the unit circle, identified with the imaginary ring, or 
under a conformal transfiguration via a branch of the complex logarithm, 
as a rectangular strip on the complex plane, where the imaginary axis 
bears the information of spatialized spectral intervals. The important 
thing to keep in mind is that the imaginary ring or the imaginary axis, 
model the present diachronically. The reason is that a spatialized 
spectral interval is not merely a geometric interval, but bears topological 
and harmonic information that manifests in discrete or quantum terms 
with respect to the temporal unfolding diastasis. 
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To recapitulate, at each present, the harmonics lead to the 
cyclotomy of the circle, bearing the status of powers for harmonic 
resonance in each present. This is why the meaning of the imaginary 
axis, as an axis spatializing time spectrally in each present, is very 
different from a real dimension ordering events. In the latter case, 
events appear as geometric points on this axis, which are sequentially 
totally ordered from the past to the future on a geometric linear 
continuum. In the former case, the geometric points on the imaginary 
axis are points of stasis bearing temporal depth, characterized by their 
power to synchronize or resonate with the present. Notice that from the 
perspective of the present, and given that the same helical temporal axis 
applies to each present isomorphically, the difference between past and 
future is a difference in orientation, which is to say that past and future 
appear symmetrically with respect to the present differing in orientation. 

From a topological viewpoint, we have the phenomenon of 
multiple-connectivity of the past with the future with respect to the 
present. In particular, the past can be connected to the future in a 
multiplicity of possible ways in the present, if we take into account the 
symmetric appearance of roots of unity in the present differing in 
orientation, as well as the significance of the primitive roots of unity for 
this purpose. We argue that the notion of a temporal diastasis presents 
interesting results even in the case, where we restrict our attention to 
the spectral interval referring to a single harmonic. Within such an 
interval change of time may be simply thought of as a continuous change 
of phase. If we assume that the same interval applies for each present, 
then we have to distinguish only two cases. The first case applies when 
the continuous rate of change is the same for each present, whereas the 
second applies when this continuous rate of change differs from present 
to present. 
 
33..55  CCOONNSSTTAANNTT  RRAATTEE  OOFF  PPHHAASSEE  CCHHAANNGGEE  AANNDD  CCOONNTTRRAACCTTIIOONN  OOFF  LLEENNGGTTHH  

 
First, let us consider a kinematical model of Special Relativity in the 
complex plane, where the real horizontal axis is a spatial axis, whereas 
the imaginary axis is a spatialized temporal axis. According to this 
theory, the maximal speed of electromagnetic signal transmission is 
defined by the speed of light , which is constant in all directions. 
Moreover, the spatiotemporal metric relations are constant at every 
point-event leading to the group of Lorentz transformations as the 
kinematical symmetry group of the theory. The metric measuring 
distances is expressed as , which takes the form 

 on the complex plane, where the imaginary unit  is 
used in the conversion of the temporal factor into the spatialized form, 
which the metric relation refers to. 

c

2 2 2 2=dS dx c dt-
2 2 2= ( )dS dx icdt+ i
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Note that the temporal metric factor appears in imaginary 
spatialized form by the adoption of the speed of light  through the 
intervention of the imaginary unit . The metric relation 

 on the complex plane is subordinate to the upper 
bound in geometric information signaling defined by the speed of light 

, and thus, it pertains to phenomena approximating that speed. 
Furthermore, this type of continuous temporal unfolding at very high 
speeds takes place at a constant rate in each present given by the speed 
of light . 

We would like to study the connectivity between the past and 
the future in the present in this case. The basic idea is not only that the 
speed of light is constant, but that the chrono-geometric relations 
induced by this upper bound are constantly the same at each present, 
since the metric is not variable. This means that the imaginary ring, 
thought of as the unit circle with the complex structure, by normalizing 
the speed of light to unity, persists isomorphically at each present 
regarding both its shape, and the continuous rate of change upon it. It 
follows that, from the viewpoint of each present the difference between 
future and past is a difference in orientation only, subsumed by the 
imaginary unit and its complex conjugate. 

Thus, in this case, change of time from the view of the present 
amounts to continuous change of phase, and this is isomorphically the 
same in each present for both the past and the future, differing only in 
orientation with respect to the present. As a consequence, we obtain the 
Lorentz contraction of lengths in the direction of motion. If we consider 
motion along the horizontal real spatial direction at a high speed below 
the speed of light, then spatial extension in the real horizontal linear 
dimension by  unit of length will appear contracted with respect to the 
present at “0”, i.e. with respect to the imaginary ring centered at “0”, 
since it amounts to a change of phase on the unit circle equal to the 
passage of spatialized time, measured by the angle with respect to the 
real horizontal dimension. Hence, the length contraction (depending on 
the speed of motion) with respect to the present at “0” is just the 
projection on the horizontal linear spatial dimension of the 
corresponding phase change on the unit circle. Interestingly, at the 
speed of light, the length is contacted to zero with respect to the present 
at “0”. 

c
i

2 2 2= ( )dS dx icdt+

c

c
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33..66  VVAARRIIAABBLLEE  RRAATTEE  OOFF  PPHHAASSEE  CCHHAANNGGEE  AANNDD  MMEETTRRIICC  AANNHHOOLLOONNOOMMYY  

 
In the case of General Relativity, the spacetime metric becomes variable 
from point-event to point-event, depending on the distribution of 
matter in its vicinity. In this way, General Relativity is reducible to 
Special Relativity only in the infinitesimal vicinity of every point-event. 
Thus, the metric, and therefore, the chrono-geometric relations are not 
constant as in Special Relativity, but become variable. In turn, the 
variability of the metric requires that a standard of comparison is 
required at each point-event. This gives rise to the infinitesimal process 
of parallel transport, induced by a connection, involving small round 
trips around each point according to a prescribed rule of parallelism, 
characterized by the metric-compatibility of the connection. These 
round trips detect the change of orientation of a transported vector, 
expressed by means of a relative geometric phase factor, called the 
metric anholonomy of the connection, explicating locally the curvature 
associated with uneven matter distributions. 

In this case, in the infinitesimal vicinity of any point-event the 

metric assumes the form, , but this form is not 
retained constantly as we move from point-event to point-event. Thus, 
the rate of phase change is not constant between the past and the future 
with respect to the present. Concomitantly, although change of time 
amounts to continuous change of phase from the view of the present, the 
rate of phase change is differentiated between the past and the future. In 
this manner, past and future differ not only in orientation with respect 
to the present, but there is also a relative geometric phase difference 
between them, i.e. their metric anholonomy. 

We conclude that the notion of a temporal diastasis presents 
interesting results even in the case, where we restrict our attention to a 
single spectral interval, qualified metrically. Within such an interval 
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change of time corresponds to a continuous change of phase, and 
assuming that the same interval applies for each present, then, either the 
continuous rate of change is the same for each present, or the 
continuous rate of change differs from present to present giving rise to a 
relative geometric phase factor. 

Actually, the analogous type of effects considered in the case of 
Special Relativity and General Relativity, that have been concisely 
discussed above from our perspective, may be thought of as emerging 
naturally in seemingly unrelated contexts, just by abstracting the 
relevant constraints. In the kinematical case of Special Relativity the 
constraint emanates from the constancy of the speed of light as an upper 
bound characterizing the propagation of electromagnetic signals. The 
crucial thing is that this upper bound speed is used as a universal 
metrical factor for the spatialization of time in the present along the 
imaginary axis on the complex plane in two dimensions. In this way, 
another type of constant speed pertaining to an upper bound for a 
different kind of propagation characterized metrically as above, would 
also correspond to a change of time as a change of phase, giving rise to an 
analogous effect of length contraction in the present referring to the 
direction of propagation. 

Let us consider the case of propagation of an army in the 
battlefield. Initially, the notion of an armored vehicle was simply 
conceived as a means of protecting the infantry following it. As such the 
upper bound in the speed of propagation was set by the infantry. The 
strategic transmutation of the role of an armored vehicle into a unit of 
armored vehicles moving independently from the infantry amounts to a 
change in the syntaxis of time in the battlefield. This is because the 
speed of propagation of the army is altered by the upper bound set by the 
unit of armored vehicles. Thus, at speeds of propagation near this upper 
bound, change of time amounts to change of phase in the battlefield, 
where time in the present is spatialized on the imaginary axis due to this 
upper bound. Then, assuming that the continuous rate of change 
remains constant for each present, we obtain the phenomenon of length 
contraction in the direction of motion of the army in the battlefield from 
the view of the present of the resting infantry. In a similar fashion, 
effects of local curvature out of a relative geometric phase factor may 
appear in the present at the battlefield. This is the case if the continuous 
rate of change of phase does not remain constant for each present. For 
example, consider the case of a cavalry unit in comparison to an armored 
unit. Although change of time amounts to continuous change of phase 
from the point of view of the present in both cases, the rate of phase 
change is differentiated between the past and the future, e.g. at the 
present where a cavalry unit is substituted by an armored unit. In terms 
of this example, past and future do indeed differ not only in orientation 
with respect to the present, but there is also a relative geometric phase 
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difference between them, which locally curves the battlefield to the 
advantage of the armored unit. In this case, we may think of the change 
of time as a “massive” one in analogy to the geometrized gravitational 
effect. 
 
33..77  PPAAIIRR  OOFF  LLIINNKKEEDD  TTEEMMPPOORRAALL  DDIIAASSTTAASSEESS::  DDOOUUBBLLYY--PPEERRIIOODDIICC  
  SSPPEECCTTRRAALL  WWEEAAVVIINNGG  

 
From a topological viewpoint, the most interesting phenomenon 
accompanying the notion of a temporal diastasis is the 
multiple-connectivity of the past with the future with respect to the 
present. We examined previously only the metrical case involving a 
single spectral interval, where change of time corresponds to a 
continuous change of phase in the ring of the present. Additional 
challenges naturally arise in the case of listening and comprehending a 
piece of music, or in the case of reading a book and trying to understand 
its content. 

Clearly, the process of acquiring meaning and understanding 
cannot be reduced to the sequential order of time. More precisely, at 
each and every present, we rather instantiate temporal bonds between 
the memorized past and the anticipated future, where the present plays 
the role of a modulus for this type of bond. Due to topological 
multiple-connectivity these bonds allow information amalgamations 
irrespectively of any notion of distance or proximity in the text.  

In particular, things in the very far past may form a temporal 
bond in the present with anticipated things in the very near future. If 
both the past and the future comply to the same temporal diastasis, in 
our terms if the ring in the epiphaneia of the present persists, through 
unfolding on the same helical axis perpendicular to the epiphaneia, then 
a temporal bond in the present can be formed from the primitive roots of 
unity on the persisting ring between the past and the future. In other 
words, there are roots from the past, which are relatively prime with 
anticipated roots in the future. Both past and future roots are elicited 
bidirectionally to the same diachronically persisting ring of the present, 
as seeds bearing corresponding powers, capable of forming a bond in the 
present. This bond is articulated in the same ring by the demarcation of 
the primitive roots. As such, change of time amounts to the relative 
phase difference that is subordinate to new root primitivity. This is how, 
the present is synchronized with the whole constellation of consonant 
spectral intervals, whence the primitive roots account for temporal 
bonds. 

We will now think of the general case, where the same temporal 
diastasis does not persist diachronically, in the sense that change of time 
in the present cannot be accounted for in terms of a relative phase 
difference. This possibility already presents itself where we have two 
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different temporal diastases that act jointly, in the sense of imposing two 
different periodic rules. We have to be careful to distinguish two 
possibilities in this setting. 

The first refers to the case that these temporal diastases are 
characterized by different, but directly interlinked rings in the present. 
The second refers to the case that these temporal diastases are unlinked 
in any direct way to each other, but at some present they get linked 
together through a third ring, such that if any of these three rings is 
eliminated then everything becomes totally unlinked. The latter case 
will present the major interest for us, since here, thinking from the view 
of the present, change of time is not merely a change of relative phase, 
but a change of circle. Additionally, this case depicts the depth of a 
temporal bond, and a posteriori captures the essence of a tripod based on 
a diachronically stable natural communication constituted by means of 
tripartite metaphora. 

Before we study in detail the synergetic metaphora that gives rise 
to a change of circle, it is worth making some remarks concerning the 
first paradigm, where two directly linked temporal diastases are acting 
jointly at the same place. Recall that in the case of a single temporal 
diastasis, meaning a helically unfolding temporal axis, the imaginary 
ring, or its conformal logarithmic transfiguration to the imaginary axis of 
the complex plane serves to model the present on the epiphaneia. In 
those cases where we have another temporal diastasis directly linked 
with the former, then the only way that we can model it in the context of 
the two-dimensional epiphaneia is in terms of the orthogonal axis to the 
former one. These diastases are linearly independent over the real 
numbers and the whole complex plane tesselated by rectangles, whose 
orthogonal sides correspond to the periodic rules of the two diastases, 
i.e. their spectral measures, models the present. 

In this manner,  gives rise to a lattice on the complex plane, 
and we obtain instead of spectral measures on the imaginary axis, 
spectral measures on the integer lattice on the complex plane. The 
functions defined on the complex plane bearing this spectral lattice are 
doubly periodic, called elliptic functions. Analogously to the 
trigonometric functions culminating to the simply-periodic complex 
exponential function parameterizing the circle, the doubly-periodic 
elliptic functions parameterize two directly linked circles. In this 
fashion, note that complex analytically the unit circle is identified with 
the imaginary ring in the first case. In the second, due to the direct chain 
linkage, only one of the rings is thought of as imaginary. This is also clear 
if we think of the parametrization of the spectral lattice taking place in 
the complex plane bearing one imaginary and one real dimension. If we 

denote these two periods by , and , then their ratio is imaginary. 

2Z

1w 2w



119TEMPORAL BONDS

111

The fundamental parallelogram on the complex plane is the one with 

vertices , , , .

33..88 TTOORRIICCSS:: TTHHEE QQUUIINNCCUUNNCCIIAALL PPRROOJJEECCTTIIOONN 

From a topological perspective, the above case of the two directly linked 
chain-like temporal diastases, descends from the torus. Topologically, 
we may think of them as two linked cycles on the torus constituting the 
homology basis of its first homology group.
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Analogously to the case of a single temporal diastasis descending from 
the sphere, two directly linked temporal diastases descend from the 
torus. Note that the torus is topologically different from the sphere, 
since it bears the central hole in the middle, i.e. it has topological genus
in comparison to the sphere whose genus is . So once more, we may 
think of the topological genus temporally, as emanating from the notion 
of a temporal diastasis. If we think of this link in terms of the sphere, 
then we would need a sphere bearing four poles. This is explained 
complex-analytically by saying that the torus constitutes a double 
branched covering of the sphere.

The above has been conceived by Charles Sanders Peirce as a way 
of mapping the sphere on the epiphaneia, called the quincuncial 
projection. If we think of the above as the fundamental parallelogram on 
the complex plane, we see that it bears two poles whose residues cancel 
each other. Considering the elliptic functions determined by their values 
on a fundamental parallelogram as above, we realize that they can not be 
holomorphic, since in that case they would be constant as bounded 
functions; called for this purpose, meromorphic functions instead.
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It is interesting to compare the stereographic with the quincuncial 
projection. The latter enfolds two copies of the sphere bearing four 
branch points. These can be identified with the points where the 
displayed axis pierces the torus. The two different projections on the 
epiphaneia of the complex plane are correlated as follows: Using the 
inverse quincuncial projection we obtain a conformal mapping of the 
fundamental region on the torus, which then can be projected to the 
Riemann sphere by means of the branched double cover of the sphere by 
the torus. Then, the stereographic projection of the sphere accomplishes 
the sought after metaphora. 
 
33..99  PPAAIIRR  OOFF  NNOONN--DDIIRREECCTTLLYY  LLIINNKKEEDD  TTEEMMPPOORRAALL  DDIIAASSTTAASSEESS    
  AANNDD  TTEEMMPPOORRAALL  BBOONNDDSS  

 
Next we consider the general case of two temporal diastases, which have 
no direct link to each other, but at some present they get linked together 
indirectly giving rise to a temporal bond. On the epiphaneia, this type of 
linking of two rings is possible only through a third ring, such that if any 
of these three rings is eliminated then all linkage is completely lost. The 
first important thing to realize is that a temporal bond cannot be 
constituted within two dimensions; an additional dimension is needed. 

Alternatively, we have to consider two unlinked imaginary rings, 
each of which lies on its own copy of the complex plane. The feasibility 
of a temporal bond in three imaginary dimensions implies that two 
imaginary rings can be amalgamated together with respect to a third 
imaginary ring, otherwise they remain unlinked. Thus, a temporal bond 
cannot be modelled on the complex analytic plane, requiring rather the 
four dimensional quaternionic analytic setting, where three of the four 
axes are imaginary. In much the same way that a single imaginary axis is 
meaningful together with a real axis orthogonal to it, three imaginary 
axes are meaningful together with a real axis being orthogonal to all 
three of them. Note that the three imaginary axes are orthogonal to each 
other, but any one of them emerges from the product of the other two. 
As such this product is not commutative, showing that the algebraic and 
analytic modelling of a temporal bond is non-commutative. This means 
that the articulation of a temporal bond is based on non-reversible 
temporal actions. It is due to this irreversibility that the bond becomes 
stable. Since we do not intend to enter the domain of non-commutative 
quaternionic analysis, we call the site involving three imaginary axes a 
crystalline site. 

We are going to restrict ourselves to the simplest topological 
rendering of a temporal bond not involving any analytic considerations. 
Keeping the temporal perspective, and in particular, thinking in terms of 
the present, change of time is not merely a change of relative phase, but 
a change of circle, where each circle is viewed here as a topological 
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circle. Since the circle at present is assumed to amalgamate together the 
two other unlinked a priori circles, which entails the linking should take 
place in modular relation to the circle of the present, it is necessary to 
examine the conditions that make this feasible. We note that 
topologically no distinction pertains between the circles with respect to 
the temporal before and after relation that enters only by identifying a 
particular circle with the present, according to our previous analysis. In 
other words, topologically speaking, a temporal bond is threefold 
symmetric with respect to three circles linked in this way. The 
distinction comes from identifying one circle as the circle of the present, 
so that the other two can be temporally amalgamated together in 
modular relation to the marked one. The topological distinction that 
matters is whether two circles are directly linked or not, but even when 
not is the case, if they can be linked through a third one appropriately. 
 
33..1100  CCHHAANNGGEE  OOFF  TTIIMMEE  AASS  AA  SSYYNNEERRGGEETTIICC  CCHHAANNGGEE  OOFF  CCIIRRCCLLEE    
  IINN  TTHHEE  LLIIVVIINNGG  PPRREESSEENNTT  

 
In the course of this problematics, the change of time as a change of 
circle from the past to the future in modular relation to the present, 
should be thought of as a synergetic change of circle belonging to the 
conceptual domain of synectics in the Aristotelian meaning of this term. 
At a first stage, we may conceptualize a synergetic change of circle as a 
higher connectivity interface, binding cohesively together the past with 
the future, independently of their metrical linear distance, in modular 
relation to the present, considered as their unity. At the event level, 
such a symmetric treatment of the past and the future with respect to 
the present is not possible. But the connectivity interface we examine 
currently does not refer to the level of events, where past and future 
stand in an asymmetrical ordered relation with respect to the present. 

This interface capable of giving rise to a temporal bond mediates 
the metaphora of both the past and the future with respect to the 
present at this present. In this sense, the metaphora of the past to the 
future through the present via change of circle by means of a temporal 
bond should qualify these terms as three different circles capable of 
being linked together. Since the linking is meaningful in the present 
where a change of circle takes place, a metaphora of both the past and 
the future must be in play at this present. Of course, this metaphora is 
not in the nature of a metaphora of events that would be in any case 
impossible. The mental strain concerns especially the notion of the 
future appearing absurd from a standard perspective if not conceived 
through its metaphorical essence. 

More precisely, one of the main functions of the human brain is 
to act as a metaphora from the future to the present, in the sense of 
gnomonically anticipating and envisioning the future. This is possible 
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exactly because of the symmetry of a metaphora in terms of encoding 
and decoding bridges. Thus the vision of the future in relation to a 
change of circle from the past that takes place in the present is qualified 
topologically as the metaphora of this envisioned circle in the present. 
The same actually holds symmetrically for the past through the faculty 
of memory, which functions topologically as the metaphora of the circle 
of the past in the present. Consequently, memory and vision are 
symmetrically articulated with respect to the circle of the present, from 
the viewpoint of gnomonics and natural communication, although it is 
not obvious at all how it is possible to form a bond in the present that 
will allow the concomitant change of circle from the past to the future. 

Since we have established, that this bond pertains to a higher 
connectivity interface in the present it cannot be expressed at the level 
of events. In other words, from the naive view of a simply-connected 
linearly ordered one-dimensional continuum of events a temporal bond 
amounts to a wormhole that can connect very distant events 
non-locally, something impossible given only the conceptual apparatus 
of, say, a Markov chain connecting these events. Essentially, such 
wormholes qualify as metrically non-local bridges of connectivity that 
can instantaneously bind the very far past with the very near future. 
Although this is paradoxical if considered at the ordered event level, the 
human brain utilizing mental metaphora performs it unproblematically.  

The issue is that the metaphora takes place not at the level of 
events, but at the level of topological germs, or simply elicited seeds, of 
events that bear a meteoric nature. For this reason, the present does not 
play the role of a pathetic point on a line ordered by means of succession, 
but its role becomes energetic in the sense of binding the remembered 
past with the gnomonically or canonically envisioned future that 
precisely characterizes its invisible depth. The claim is that this notion 
of the present is a living one, whereas the former is a dead one. It is the 
same with the articulation of some given history at any present as a 
living or as a dead one. 

In other words, the qualification of the living present is 
metaphorically equivalent to its ability to give rise to temporal bonds. It 
is clear from this discussion that this does not apply to any past and to 
any envisioned future in the present. Put differently, there are certain 
conditions that allow a change of circle in the present from a circle of the 
past to a circle of an anticipated future. From the standpoint that 
harmonics takes prior place to topological considerations, these circles 
may be though of as unlinked chords bearing their harmonics as elicited 
seeds in the present, and the issue is how they can be tuned together in 
the present so as to give rise to a temporal bond through which change of 
circle takes place. 
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33..1111  PPRRIIMMIITTIIVVIITTYY  OOFF  EELLIICCIITTAATTIIOONN::  TTEEMMPPOORRAALL  LLEEVVEERRAAGGIINNGG  TTOO  TTHHEE  FFUULLCCRRUUMM  

 
The notion of a temporal bond is qualified as follows: First, it should not 
be conditioned by relations of metrical proximity of the elicited seeds 
from the past and the future in the present, where a change of circle can 
take place; Second, a temporal bond between elicited seeds from the past 
and the future, always bears a modular relation with the present acting 
as their unity. Equivalently, a temporal bond should not be thought of as 
a direct pair-wise gluing, but as a modular gluing, that takes place in 
relation to the present, and together with the present; Third, a temporal 
bond induces a synergetic circle change, if and only if the pertinent 
elicited seeds from the past and the future, in their capacity for 
amalgamation together in modular relation to the present, are both 
relatively prime with respect to the present. Equivalently, they should 
be neither analyzable nor localizable to any other common factors with 
respect to the present; Fourth, a temporal bond as a synthetic unity that 
takes place in the present, characterized symmetrically and 
bidirectionally by relative primeness, or primitivity, with respect to the 
present, specifies the syntaxis of a compounded temporal unfolding 
encapsulated by synergetic circle change in the present; Fifth, a 
temporal bond should be a Tripodal link of least action, since it 
corresponds to an inseparable tripartite correlation, which cannot be 
analyzed to any pairwise correlations. 

It is crucial to make some further remarks in relation to the 
property of primitivity, or relative primeness, required bidirectionally 
from the elicited seeds in their capacity to enter into a modular gluing 
relation with the present, characteristic of a temporal bond. This notion 
is analogous to the one in integer modular algebra conceived by Gauss, 
where the absolute notion of an integer prime number becomes 
relativized with respect to a modulus. The significance of this 
generalization, in the case of integer modular systems, is that any integer 
can assume the role of a prime, but only in relation to another integer 
acting as a modulus. The idea here is that the quality of relative 
primeness in relation to the present is crucial for the realization of a 
temporal bond. In more intuitive terms, the assertion is that, relatively 
to the present, a seed from the past becomes spectrally spontaneously 
recognizable, and thus, capable of being elicited in the present, without 
any possible factorization through anything else. The same, 
symmetrically, holds for an envisioned seed in the anticipated future in 
its capacity to enter into a temporal bond with a seed from the past in 
the present, which acts as the modulus of unity for this Tripodal link. 

It is instructive to recall that the realization of such a temporal 
connectivity interface becomes effective only on the condition of 
topological non-degeneracy of the temporal unfolding between the past 
and the future in the present, acting as their modulus of unity. 
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Equivalently, the different winding stairs of the helices corresponding to 
the a priori unlinked temporal diastases should be spectrally 
distinguishable in the present. Topologically, this spectral 
distinguishability amounts to quantized action. In other words, the 
winding stairs indexed by the group of the integers, count quanta of 
action. Again, spectral distinguishability should be always relativized 
with respect to the pertinent present, where a temporal bond is 
instantiated as a least action solution to the indirect linking of the past 
with the future. 

The most important consequence of relative primeness conceived 
this way, is that the pertinent seeds of the past and the future entering 
into a temporal bond, become, both symmetrically, relationally inverse 
with respect to the present, and relationally conjugate with respect to 
each other, in the present. In turn, the present is qualified through an 
Archimedean fulcrum relative to these seeds or, more precisely, relative 
to their respective a priori unlinked topological circles. Thus, seeds from 
the past and the future become eliciting seeds in their power to enter 
into a temporal bond in the present, if and only if they can be leveraged 
metaphorically to the present, relationally to each other, with respect to 
the fulcrum of the present. 
 
33..1122  RREESSOONNAANNCCEE  OOFF  TTEEMMPPOORRAALL  CCHHOORRDDSS::  TTHHEE  TTRRIIPPOODDAALL  LLIINNKK  OOFF  AA  BBOONNDD  

 
If we consider a seed either in the past or in the future, it becomes 
spectrally spontaneously recognizable from the fulcrum in the present, 
i.e. not factorizable through any other simpler common factor, by means 
of a loop, and more precisely, a simple tame closed curve, which is based 
at the fulcrum. This means that it starts and ends at the fulcrum, and 
passes through the topological circle corresponding to its temporal 
diastasis. Since we refer to a seed, it is better to consider the whole 
equivalence class of such loops that can be continuously transfigured to 
each other. It is enough to recognize a single representative of this class 
by means of a based loop at the fulcrum. If we denote the relevant 
topological circle by , then a based loop at the fulcrum passing through 

, may admit two distinct orientations: If the loop passes through  
with direction away from the fulcrum , it is denoted by , whereas 

if it passes with direction toward the fulcrum , it is denoted by . 
Therefore, oriented loops based at the fulcrum of the present and 
crossing unlinked topological circles encapsulate the reflexive principle 
of seed recognition from the past and the future, depending on their 
orientation. 
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In other words, reflexive recognition of a seed in the past or in the 
future, in its power to enter into a temporal bond in the present, is not 
enough for the establishment of the bond. What is required additionally 
is the metaphoric leveraging of these seeds to the fulcrum of the present 
by utilizing the property of relative primeness, so that they become 
elicited seeds in the present capable of modular amalgamation. This 
condition leads to the notion of a temporal chord in the present, through 
which the expression of a temporal bond becomes explicit.  

Consider a recognized seed from the past, identified either with 
the based oriented loop at the fulcrum, , or with , by means 

of crossing the topological circle , depending on the orientation. 
Analogously, consider a recognized seed in the future, identified either 

with the based oriented loop at the fulcrum, , or with , by means 

of crossing the topological circle , depending again on the orientation. 

For instance, if  and  are recognized, they both become eligible 
to be elicited seeds in the present by metaphoric leveraging with respect 
to the fulcrum. For this purpose, they should be relationally conjugate to 
each other by the requirement of relative primeness with respect to the 

present. This means that  and  should play the role of 
bidirectional bridges for the leveraging of , and also symmetrically 
that  and  should play the role of bidirectional bridges for the 

leveraging of . It is elicited seeds that give rise to temporal chords in 
the present. Therefore, a temporal chord in the present is enunciated by 
interpolating a recognized seed from the past, for example, , between 

the bridges  and , i.e. by metaphora through  and , which 

leverages the seed  with respect to the fulcrum, e.g. . 
The significance of temporal chords in the present is that they 

can resonate together harmonically in the present. More precisely, a 
temporal chord emanating from a recognized seed in the past can be 
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fused together with a temporal chord from a recognized seed in the 
future by harmonic resonance in the present. The latter is instantiated 
by means of new topological circle in the present capable of 
amalgamating together the circles  and  in a non-pairwise fashion. 

For this purpose, we consider a recognized seed from the past, 
identified with the based oriented loop at the fulcrum, , by means of 
crossing the topological circle  in the prescribed orientation, and 
symmetrically, a recognized seed from the future, i.e. an envisioned seed 
in the present, identified with the based oriented loop at the fulcrum, 

, by means of crossing the topological circle  also in its respective 

prescribed orientation. Note that  and  are a priori unlinked 
corresponding to two different temporal diastases. These oriented 
fulcrum-based loops  and  can be composed, either in the order 

, or in the order , and these compositions are non-commutative. 
In this manner, composed actions of seed recognition from unlinked 
temporal diastases are order irreversible with respect to the fulcrum. 

Let’s consider the composition in the order . The basic idea is 
to extend this composition in consecutive stages and express it in terms 
of temporal chords with respect to the fulcrum. If we adjoin by 

composition  to , we obtain the temporal chord , which 
amounts to the metaphora of  with respect to the fulcrum, utilizing 
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since starting from the ordered non-commutative composition  we 
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identified thereby, as the circle of the present. It is only through the 
Tripodal link instantiated in the present by  that a synergetic change 

of cycle from  to  takes place. 

The topological circle , involves four 

crossings of the circles  and , more concretely, two of the circle  

and two of the circle , with opposite orientations and in an alternating 
order. Notice that the structure of  does not depend on what we 
consider as an initial composition, like  in the case presented. If 
we consider any other initial composition from all possible ones, we will 
again arrive at a cycle of the same structure, i.e. to a resonance of a 
“temporal chord” from the “past” with a “temporal chord” in the “future” 
with respect to the fulcrum. In other terms, the compositional structure 
of the topological circle , amalgamating  and  in modular 
relation with respect to the present, is the invariant of resonance 
between a temporal chord from the past with a temporal chord from the 
future, that qualifies change of time as a synergetic change of cycle from 

 to  in the present, and giving rise to a temporal bond. 
The crucial observation is that a temporal bond induces a 

particular type of topological linking of the cycles ,  and , which 
we call a Tripodal topological link. Equivalently, a synergetic change of 

cycle from  to  in the present is tantamount to a Tripodal link of 
the cycles ,  and , qualified by the property that if any one of the 
cycles is removed from this link the remaining two come completely apart. 

1 1= ,C aba b- -

ab

1 1( )( ) = ( ).Caba b ab ab- -

1 1= ( ) := [ , ],C aba b a b- -

a b
1aba- 1 1ba b- -

C
A B

C
A B

1 1= ( ) := [ , ]C aba b a b- -

A B A
B

C
( )ab

C A B

A B

A B C

A B
A B C



129TEMPORAL BONDS

121 
 
33..1133  TTOOPPOOLLOOGGIICCAALL  QQUUAALLIIFFIICCAATTIIOONN  OOFF  TTHHEE  TTRRIIPPOODDAALL  LLIINNKK  

 
Topologically, a Tripodal link may be simply thought of as an 
interlocking family of three loops, such that if any one of them is cut, 
then the remaining two become completely unlinked. Each loop is 
considered a tame closed curve. The property of tameness means that 
the closed curves considered can be deformed continuously and without 
self-intersections into polygonal curves, which are those formed by a 
finite collection of straight-line segments. 

Moreover, a loop, as a topological object, discloses the following 
properties: First, a loop is not separated into two pieces by cutting it at a 
point, which is rather achieved by cutting it at two points; Second, a loop 
is an intrinsically one-dimensional object though of as a figure in three 
dimensions; Third, a loop is bounded, i.e. it is contained in some sphere 
of sufficiently large radius. Moreover, a loop is called knotted if it cannot 
be continuously deformed into a topological circle in three dimensions 
without self-intersection. Therefore, each one of the three interlocking 
loops of the Tripodal link should be considered as an unknotted tame 
closed curve. We refer to them simply as loops keeping in mind that each 
one of them is unknotted. To sum up, in terms of loops, a Tripodal link is 
depicted as the configuration displayed on the left below, which is to be 
contrasted with a different type of configuration consisting of three 
interconnected loops displayed on the right. 
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The Tripodal link configuration of loops on the left is such that if any of 
the loops is cut at a point and removed, then the remaining two loops 
become completely unlinked. In contrast, the configuration on the right 
is such that each loop actually links each of the other two. 

The topological notion of a link pertains to the connectivity 
among a collection of loops. In general, an -link is a collection of  
loops in three dimensions, where  is a natural number. Regarding 
the connectivity of a collection of  loops, the crucial property is that 
of splittability of the corresponding -link. We say that an -link is 
splittable if it can be deformed continuously in three dimensions, such 
that part of the link lies within  and the rest of the link lies within , 
where ,  denote mutually exclusive solid spheres (balls) in three 
dimensions. 

Intuitively, the property of splittability of an -link means that 
the link can come at least partly apart without cutting. Complete 
splittability means that the link can come completely apart without 
cutting. On the other side, non-splittability means that not even one of 
the involved loops, or any pair of them, or any combination of them, can 
be separated from the rest without cutting. As an illustration, we 
consider the following -link: 
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The above 3-link consists of three loops, denoted by ,  and . 
Clearly, this is a splittable 3-link, which is not completely splittable. As 

can easily be seen in the above figure, the loops  and  cannot be 
split apart without cutting. Notwithstanding this fact, it is a splittable 
3-link because the loop  can be separated from the rest without 
cutting. Thus, the above 3-link can come at least partly apart, and 
therefore is splittable. 

The property of splittability of a topological link, is adequate to 
completely characterize the Tripodal link. First, the Tripodal link is a 
3-link, since it is consists of 3 loops. Second, the connectivity of this 
3-link in terms of the splittability property, implies that the Tripodal 
link is a non-splittable 3-link, such that every 2-sublink of this 3-link is 
completely splittable. More precisely, it is a non-splittable 3-link 
because not even one of the three loops, or any pair of them, can be 
separated from the rest without cutting. A 2-sublink is simply any 
sub-collection of two loops obtained by removing the loop that does not 
belong to this sub-collection. Since, the Tripodal link is characterized by 
the property that if we erase any one of the three indirectly interlocking 
loops, then the remaining two loops become unlinked, it follows that 
every 2-sublink of the initial 3-link is completely splittable, according to 
the figure below: 
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33..1144  TTHHEE  FFRREEEE  NNOONN--AABBEELLIIAANN  GGRROOUUPP  SSTTRRUUCCTTUURREE  OOFF  OORRIIEENNTTEEDD  BBAASSEEDD  LLOOOOPPSS  

 
Our objective is to discover an appropriate algebraic structure capable of 
encoding the connectivity type of the Tripodal link, that is to say we 
seek a metaphora from the domain of topology to the domain of algebra, 
which will enable us to disclose the essence of a Tripodal link. 

First, we consider an unknotted tame closed curve in three 
dimensions. Since any such curve can be continuously deformed to a 
topological circle it is enough to consider such a circle in three 
dimensions, denoted by . Second, we think of a based oriented loop 
which may pass through this circle a finite number of times, each one 
with a prescribed orientation. A based loop means simply that it starts 
and ends at a fixed point . The orientation of the loop is defined as 
follows: If it passes through the circle one time with direction away from 

 it is denoted by , whereas if it passes one time with direction 

towards  it is denoted by . Thus, in the algebraic symbols of the 
generic type “ ” we encode: First, the passage or not of a based loop 

through a circle , which qualifies or not the naming of the loop by the 
corresponding symbol . Second, the number of times that this loop 
passes through the circle , which is encoded as a power of the symbol 

. Third, the orientation of the loop with respect to , which is 
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encoded by a “ ” sign if a passage through the circle takes place away 
from  and by a “ ” sign if a passage takes place towards . 
 

  

 
 
The first figure from the left depicts a loop based at , beginning at , 

then passing through the circle  once directed away from , then 

curving around the circle , and finally returning to . According to 

the above, this loop in relation to the circle  should be denoted by 
, which we write simply as . Note that any other loop with the 

same behavior can be continuously deformed to the loop . Thus, the 
algebraic symbol “ ” actually denotes a partition block, i.e. the 
equivalence class  of all loops of the kind , passing through the 

circle  once with the prescribed orientation. Any loop in the block 
 can be continuously deformed to an equivalent one in the same 

class. Taking into account this remark, we still keep using the symbol  
as above, where  is thought of as a representative of the equivalence 
class . 

In the middle figure, we have a loop based at , such that; it 

starts at , then passes through the circle  twice directed away from 

, then it curves around the circle , and finally returns to . This 

loop, in relation to the circle , should be denoted by , 
which we write simply as . 

In the last figure from the left, we find a third loop based at , 

such that; it starts at , then curves around the circle , then passes 
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through the circle  once directed towards , and finally it returns to 

. This loop, in relation to the circle , should be denoted by 

. 
Next, we need to consider the composition of based oriented 

loops of the generic type “ ” in relation to circles of the generic type 

“ ”. The composition of two loops is viable if both of the loops are 
based on the same point . Then, the composed based oriented loop 
should also be a loop of the same generic type in relation to the two 
circles of the composing ones. 
 

 
In more detail, let us consider two based oriented loops, which are both 
based at the same point . Taking into account the orientations, we 

denote the first loop by  (in relation to the circle ) and the second 
loop by  (in relation to the circle ). Then, we can define their 
composition denoted by  respecting the order of tracing the loops, 
viz. we first trace , and then we trace . Thus, the rule of 
composition produces a based oriented loop  in relation to the 

circles  and , which is interpreted as follows: It starts at , then 

passes through the circle  once directed away from , then it passes 

through the circle  once directed away from , and finally returns to 
. We note that it is allowed topologically to remove the end of  and 

the beginning of  from the base point , and then join them together 
at a nearby point. We interpret the composition rule  as the 
multiplicative product of the oriented loops  and  based at the 
same point , which we denote simply as . This establishes the 
closure of the elements of the generic type “ ” under multiplication as 
above. 

We note also that the above multiplicative product is not 
commutative, i.e. . This is due to the fact that the rule of 
composition of based oriented loops at a point is order dependent, such 
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that . The underlying topological reason is that the based 
oriented loop  cannot be continuously deformed to the based 
oriented loop , meaning that the order-dependence of the 
composition rule makes the corresponding multiplicative product 
non-commutative. Notwithstanding this fact, multiplication is an 
associative operation, i.e. , so we skip the 
parentheses in multiple compositions of based oriented loops. 

Next we look for the existence of a neutral element, and inverses 
with respect to this product operation. Clearly, for each based oriented 
loop , there exists the inverse loop , such that both compositions 

 and  give as their multiplication product the loop 
based at the same point that does not pass through any circle at all. 
Thus, we call the latter loop the neutral element, or equivalently the 
multiplicative identity , such that . We verify 
immediately that , where the equality sign is interpreted as 
an equivalence of based oriented loops under continuous deformation, 
according to the preceding. 
 

  

 
 
We conclude that the set of symbols of the generic type “ ” 

representing based oriented loops in relation to topological circles , 
endowed with the non-commutative multiplicative product expressing 
the ordered composition of loops based at the same point, bears the 
algebraic structure of a non-commutative group, denoted by . Since 

a b b a¹! !

a b!
b a!

( ) = ( )a b g a b g! ! ! !

a 1a-

1a a -
!

1a a-
!

1 1 1= =1aa a a- -

1 = 1=a a a

c
X

Q

127 
 
that . The underlying topological reason is that the based 
oriented loop  cannot be continuously deformed to the based 
oriented loop , meaning that the order-dependence of the 
composition rule makes the corresponding multiplicative product 
non-commutative. Notwithstanding this fact, multiplication is an 
associative operation, i.e. , so we skip the 
parentheses in multiple compositions of based oriented loops. 

Next we look for the existence of a neutral element, and inverses 
with respect to this product operation. Clearly, for each based oriented 
loop , there exists the inverse loop , such that both compositions 

 and  give as their multiplication product the loop 
based at the same point that does not pass through any circle at all. 
Thus, we call the latter loop the neutral element, or equivalently the 
multiplicative identity , such that . We verify 
immediately that , where the equality sign is interpreted as 
an equivalence of based oriented loops under continuous deformation, 
according to the preceding. 
 

  

 
 
We conclude that the set of symbols of the generic type “ ” 

representing based oriented loops in relation to topological circles , 
endowed with the non-commutative multiplicative product expressing 
the ordered composition of loops based at the same point, bears the 
algebraic structure of a non-commutative group, denoted by . Since 

a b b a¹! !

a b!
b a!

( ) = ( )a b g a b g! ! ! !

a 1a-

1a a -
!

1a a-
!

1 1 1= =1aa a a- -

1 = 1=a a a

c
X

Q



136 NATURAL COMMUNICATION

128 
 
this group is generated by two non-commuting elements, and there are 
no further relations imposed on its algebraic structure,  is identified 
with the non-abelian group in two generators. 
 
33..1155  FFRROOMM  TTOOPPOOLLOOGGYY  TTOO  AALLGGEEBBRRAA::  EENNCCOODDIINNGG--DDEECCOODDIINNGG  TTHHEE  TTRRIIPPOODDAALL  LLIINNKK  

 
Using the multiplication operation we may form any permissible string 
of symbols in the group , which can be shortened into an irreducible 
form by using only the standard group-theoretic relations 

, ,  and so on. Two arbitrary 
strings of symbols, i.e. words in the group , are equal if they can be 
brought into the same irreducible form in , meaning that the 
corresponding product loops, are equivalent under continuous 
deformation. 

The property of irreducibility of a string of symbols in the group 
, which amounts to the irreducibility of a product loop in , is the 

leading idea for the algebraic encoding of the Tripodal link in terms of 
the group structure of . Note that any multiplicative concatenation 
of symbols in the group , when translated in product loop terms is 
always thought of in relation to corresponding circles, forming the 
collection of all circles that a product loop is associated with. 

We proceed by investigating what kind of topological 
information the property of irreducibility of a string of symbols in the 
group  encodes in algebraic terms. We will show that algebraic 
irreducibility encodes the topological property of non-splittability of a 
link. Bearing in mind that a link corresponds generally to a collection of 
loops. The topological connectivity of a link is expressed by the property 
of splittability. In particular, the Tripodal link is a non-splittable 3-link, 
such that every 2-sublink formed by erasing one of the three loops of 
this 3-link is completely splittable. 
 

 
 
The idea is to encode the Tripodal link group-theoretically in terms of an 
appropriate product loop in the group , which is associated with two 

circles  and . Note that erasing this hypothetical product loop 
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would leave the two circles unlinked, since that removal results in a 
completely splittable 2-sublink. In algebraic terms, this situation 
depicted by the above figure on the right is described by the neutral 
element, i.e. the identity  of the group . Hence, complete 
splittability of this 2-sublink is encoded by the identity  of . For 
reasons of symmetry, the same behavior appears if we erase any of the 
circles  or , since the neutral element of  is unique. 
Nevertheless, in order to prove it algebraically we need the explicit 
formula describing the product loop in the terms of elements of . 

At the next step, since the product loop should be expressed in 
relation to the circles  and , it is necessary to involve at least a 
string of symbols consisting of ,  and their group inverses , 

 in some specific order, which does not involve any consecutive 

appearance of , , , , since all of the latter are 

reduced to . The reason for the appearance of both , , and their 

group inverses , , lies in our expectation that erasing any of the 

circles  or  would collapse the product loop to the neutral . This 
is the desired case referring to the Tripodal link because every 2-sublink 
is completely splittable. If the circle  is erased, for example, then in 
the sought after product loop formula both instances of  and  
should be deleted, since both  and  have a meaning with respect 

to . The same holds symmetrically for  and  in relation to the 

circle . Finally, since the fact that every 2-sublink of the Tripodal link 
is completely splittable is encoded algebraically by reducibility to the 
neutral element of , the requirement is that the non-splittability of 
the total 3-link should be encoded by the irreducibility of the product 
loop formula. 

We conclude that only one combination of symbols exists that 
fulfills our requirements, namely: 
 

 
 

Thus, the irreducible formula  represents the loop  as a 
product loop composed by the ordered composition of the four based 

oriented loops . We call the product loop  the 

“Tripodal loop” and the formula or multiplicative string  the 
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“Tripodal loop formula”. The algebraic irreducibility of  in the 

group  encodes the non-splittability of the Tripodal link. Deletion of 

both  and  (corresponding to removal of the circle ) reduces 
the formula to the identity  (and the same happens symmetrically for 

both  and  in relation to the circle ). Thus, every 2-sublink of 
the Tripodal 3-link is completely splittable. 
 

 
 

 
 
In the above figure, we imagine that we continuously pull apart the two 
upper topological circles of the Tripodal link displayed on the left. Then, 
we obtain the configuration on the right, which is interpreted in 
group-theoretic terms as a product loop, that is, the irreducible 
“Tripodal loop” associated with these two circles. Hence, we have a 
geometric representation of the “Tripodal loop formula”. The algebraic 

irreducibility of this formula  in the group  encodes the 
non-splittability of the 3-link in the Tripodal topological configuration. 

If we cut the “Tripodal loop”, or remove any of the circles  or , we 
obtain a completely splittable 2-sublink. The “Tripodal loop formula” 
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reads as follows: First, it passes away from  through  (represented 

by ); Second it passes towards  through  (represented by ); 

Third it passes again towards  through  (represented by ); 

Fourth, it passes away from  through  (represented by ). 
Thus, the topological information of the Tripodal link has been 

completely encoded in terms of the algebraic structure of the 
non-commutative multiplicative group . In this way, we have 
obtained a bi-directional bridge between the topological connectivity 
model of the “Tripodal rings” expressed in terms of links and the 
algebraic algorithmic information model expressed in terms of the 
structure of the group . This is of fundamental significance because it 
allows the translation of a hard topological problem into algebraic terms, 
which becomes the encoding of the problem in group-theoretic terms, 
where it can be solved quite easily, and then inversely, the decoding of 
this solution into topological terms, which provides the solution of the 
topological problem posed initially. An illustration of this powerful 
method, which generalizes the case of the ”Tripodal link” to higher 
non-splittable links whose all sublinks are completely splittable, in 
analogy to the Tripodal case, will be presented as we progress. 
 
33..1166  HHIIGGHHEERR  TTEEMMPPOORRAALL  BBOONNDDSS  FFRROOMM  TTHHEE  TTRRIIPPOODDAALL  LLIINNKK  

 
It is instructive to clarify that the algebraic structure of the group  is 
not only restricted to the typical Tripodal configuration, explained in 
the previous section, but it can encode the topological information of 
higher links since we are free to construct product loops composed of 
any number of factors according to the composition rule we have 
defined. This presents the challenge of using the group  in order to 
solve the harder topological problem of identifying a non-splittable 
4-link, all of whose 3-sublinks are completely splittable. Clearly, this 
problem constitutes the immediate higher generalization of the Tripodal 
link, which involves a non-splittable 3-link for which all 2-sublinks are 
completely splittable. The main interest in such a generalization lies in 
the intuition that the Tripodal link acts as a kind of a building block for 
the substantiation of higher order links of this type. 

The method we will follow in order to attack this topological 
problem is the use of the bi-directional bridge between topology and 
algebra we have established in this context. Namely, we will translate 
the problem in terms of the algebraic structure of the group , we will 
try to solve it in group-theoretic terms, and then decode the solution 
back into topological terms. Intuitively, the notion of a link involves the 
gluing conditions among its constituents. It is precisely these gluing 
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conditions that are expressed algebraically in terms of the group , as 
the fundamental case of the Tripodal link has revealed by means of the 

“Tripodal loop formula”  in relation to the circles  and . 
The starting point is the analogous one to the standard Tripodal 

link case. Namely, since all 3-sublinks of the sought after non-splittable 
4-link are completely splittable we will consider three circles , ,  
and look for a product loop composed of the products of , ,  and 

their group inverses , , , in some specific order, which does 

not involve any consecutive appearance of , , , , 

, , because all of them are reduced to the identity . The 

crucial point again is that the product loop formula should reduce to  

in the group  in case of removal of any of the circles , , or , 
which is encoded algebraically by the deletion of all instances of both , 

, or , , or , , which follows whenever , or  or  
respectively are erased. This is again the algebraic encoding of the fact 
that every 3-sublink of the total non-splittable 4-link should be 
completely splittable. Clearly, the non-splittability of the 4-link is again 
encoded by means of irreducibility of the product formula describing 
this 4-link. 

 
 
Algebraically, this problem can be solved quite easily. The most elegant 
solution, which also trivializes the algebraic encoding of even higher 
links of this type, is to use the Tripodal link, viz. the algebraic “Tripodal 

loop formula”  in the group  as a building block and 
iterate it self-referentially. We will explain how this works for the case 

at issue. First, by inspecting the “Tripodal loop formula”  we 

realize that it can be written as the commutator in the group , that is 
defined as follows 
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This means that the commutator  of the elements  and  

in the group  producing the “Tripodal loop formula” encodes 
algebraically both the gluing condition of the non-splittable 3-link as 
well as of the completely splittability of all 2-sublinks, according to the 

preceding analysis. We may also re-define the element  as b, viz. 

 in the group  in order to obtain the commutator: 
 

 
 
in the group  equivalently. Thus, the idea of using the Tripodal link 
as a building block for analogous links of a higher type means employing 
the group commutator iteratively as an encoding device for these higher 
links of the same type. Therefore, in the case of a total non-splittable 
4-link all 3-sublinks of which are completely splittable that involves the 
gluing of the three circles ,  and  of the above figure by a “higher 
Tripodal loop” we proceed as follows: 

First, we glue the circles  and  by the standard “Tripodal 
loop” and then we glue this product analogically with . Algebraically 

speaking, the first step is simply the commutator . 
The first iteration of this procedure, which involves the gluing of the 
product  with  (in relation to the circle ), reads simply as the 
commutator of  with . We conclude that a “higher Tripodal loop” 
that solves the problem is given in the structural terms of the group  
simply as follows: 
 

 
 
If we expand this formula, by using the definition of the group 
commutator as well as the group theoretic relation 
 

 
 
where ,  may stand for arbitrary strings of elements of the group 

, we obtain the following unfolded expression for the “higher Tripodal 
loop formula”: 
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From the above expanded “higher Tripodal loop formula” it also becomes 
clear how the Tripodal link becomes a building block via terms of the 

form  for expressing higher order links of the Tripodal 
type. We can also see that deletion of all incidences of any of the symbols 
(which involves the simultaneous deletion of the inverse symbol as well, 

as we have seen) reduces the formula to the identity  in the group . 
As a final step, we decode the obtained algebraic solution back 

into topological terms by using the inverse bridge, and the obtained 
topological solution of the problem of finding a non-splittable 4-link 
whose all 3-sublinks are completely splittable by means of “Tripodal 
building blocks” is illustrated as follows: 
 

 
 
We conclude with the observation that although the topological solution 
of the problem is quite hard to obtain in a straightforward manner, as 
evidenced by the above figure, the same problem can be solved quite 
easily by using the algebraic structure of the group , and in 
particular, the notion of the group commutator and its iterations. It is a 
remarkable fact that the Tripodal link is encoded in terms of the 
commutator of . In this way, the Tripodal link can be efficiently used 
as a building block for the encoding of higher-order links of the type 
described above, by iterating the formation of commutators for product 
loops. 

1 1 = [ , ]lµl µ l µ- -

1 Q

Q

Q

134 
 
From the above expanded “higher Tripodal loop formula” it also becomes 
clear how the Tripodal link becomes a building block via terms of the 

form  for expressing higher order links of the Tripodal 
type. We can also see that deletion of all incidences of any of the symbols 
(which involves the simultaneous deletion of the inverse symbol as well, 

as we have seen) reduces the formula to the identity  in the group . 
As a final step, we decode the obtained algebraic solution back 

into topological terms by using the inverse bridge, and the obtained 
topological solution of the problem of finding a non-splittable 4-link 
whose all 3-sublinks are completely splittable by means of “Tripodal 
building blocks” is illustrated as follows: 
 

 
 
We conclude with the observation that although the topological solution 
of the problem is quite hard to obtain in a straightforward manner, as 
evidenced by the above figure, the same problem can be solved quite 
easily by using the algebraic structure of the group , and in 
particular, the notion of the group commutator and its iterations. It is a 
remarkable fact that the Tripodal link is encoded in terms of the 
commutator of . In this way, the Tripodal link can be efficiently used 
as a building block for the encoding of higher-order links of the type 
described above, by iterating the formation of commutators for product 
loops. 

1 1 = [ , ]lµl µ l µ- -

1 Q

Q

Q



143TEMPORAL BONDS

135 
 
33..1177  DDEEPPTTHH  OOFF  HHIIGGHHEERR  TTEEMMPPOORRAALL  BBOONNDDSS::  NNEESSTTEEDD  SSTTAACCKKIINNGG  
  OOFF  TTRRIIPPOODDAALL  LLIINNKKSS  

 
In the previous Section we proposed the idea of using the Tripodal link 
as a building block for analogous links of a higher type by making higher 
order iterations of the group  commutator. We have explained 
already how this method works in the case of a total non-splittable 
4-link all 3-sublinks of which are completely splittable. The crucial 
insight is that the group commutator acts as an encoding device for 
these higher links of the same type in two ways: First, the commutator 
provides the gluing scheme of link-formation by means of “Tripodal 
loops”. Second, due to fact that deletion of all incidences of any of the 
involved symbols reduces the commutator to the identity  in the group 

, the commutator also encodes the information of complete 
splittability of any remaining sublink after removing any of the 
constituents of the total non-splittable link. 

In order to proceed more efficiently, we need to systematize our 
terminology as follows: The notion of the commutator of the simple 
oriented based loops , , that is , is used as synonymous to the 

algebraic “Tripodal loop formula” in the group  and it is decoded in 
topological terms as the concept of a Tripodal link, equivalently 
identified as a Borromean link. We denote the latter by  
meaning that it is a total non-splittable 3-link all 2-sublinks of which are 
completely splittable. In this way, the symbol  denotes a total 
non-splittable 4-link all 3-sublinks of which are completely splittable. 

By induction, the symbol , where , denotes a 

total non-splittable -link all -sublinks of which are 
completely splittable. We have shown that a  link can be 
constructed in terms of the “Tripodal link building block” simply by one 
iteration of the commutator formation. This means that starting with 
three symbols , , , we first glue a with b together by means of the 
commutator , and then we glue their glued product  with  
to obtain the stacked commutator . This final glued product 

gives the required fourth symbol in the group , which decodes 
topologically as a  link. In an analogous manner, by iterating the 

commutator formation twice, starting with four symbols , , , , 
we obtain a  link. The same process can be clearly repeated 
inductively, so that we finally can construct any  link by 
means of Tripodal building blocks, or more precisely, “Tripodal 
connectivity units”, where . We may summarize this process in 
the following table: 
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We note that the process of iterating the commutator formation 
in the group , so as to obtain any link of the form , can be 
realized as an algorithmic procedure of commutator stacking in 
consecutive nested levels. Semantically, this procedure may be thought 
of as an operation of self-referential unfolding. The reason is that if we 
start iterating the commutator formation from level-0 (Tripodal link 

) which involves simple loops, then already at level-1 (link 
), the symbol  in the composite stacked commutator 

 plays a dual role: First, it is the symbol of a loop, namely the 

product “Tripodal loop” of  and , and second, it is the symbol of a 
gluing operator acting on  and . Thus, the unfolding from level-0 to 
level-1 takes place self-referentially by identifying a loop as an argument 
of the stacked commutator at level-1 with the result of a gluing operator 
at the previous level-0. Clearly, the same phenomenon repeats at all 
higher levels. 

It is instructive to explain in more detail the algebraic operation 
of commutator stacking. Recall that a commutator of two symbols  
and  produces a new symbol  in the group , where  

denotes the gluing of  and  together to produce a new symbol, 
such that the triad of symbols ,  and  constitute a Tripodal 
link of the type . Thus, a  link involves a commutator in 
2 symbols standing for the gluing operator of these two symbols 
according to the Tripodal constraint. Similarly, a  link involves 
a stacked commutator in 3 symbols. The commutator is stacked because 
first we have to glue  with , and then we have to glue their product 

 with  in order to produce a new symbol , such that 

the tetrad of symbols , ,  and  constitute a  
link. 

We stress again that deletion of any of the symbols involved in 
the stacked commutator collapses it to the unity of the group , 
meaning that erasing any one of them causes the rest to come apart. 
Thus, by induction a  link involves a stacked commutator in 

 symbols, where . For convenience, we call it a stacked 
commutator of order . Note that the order of the stacked 
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commutator in any link of the form  coincides with the 
number of symbols that separate if we remove any symbol from the total 
non-splittable -link. For example, a  link is expressed via a 
stacked commutator of order 6, meaning that it should be a commutator 
in 6 symbols of the form . For reasons of simplicity, 
we define a stacked commutator of order  as a “Tripodal stack” 
of order . 
 
33..1188  TTEEMMPPOORRAALL  MMUULLTTIIPPLLIICCAATTIIOONN::  CCHHAAIINNSS  OOFF  TTRRIIPPOODDAALL  LLIINNKKSS  
 
First, we introduce another definition to our series for terminological 
convenience. This refers to the characterization of a link of the general 
form . A link of the form  is defined as a link of  

loops in 3-d space, such that each -sublink is completely splittable, 
but each -sublink, -sublink, , -sublink up to 

the -link itself, is non-splittable. For example, a  link is a 
link of 7 loops, such that each 3-sublink is completely splittable, but 
each 4-sublink, 5-sublink, 6-sublink and the 7-link itself, is 
non-splittable. The natural question emerging in this context is if it is 
possible to express a general link  in terms of “Tripodal 
building blocks”, or equivalently “Tripodal functional units” encoded 
algebraically by the gluing operator of symbols, that is, by the 
commutator in the group . We already know the answer in case that 

. Namely, we have shown that the algebraic operation of 
commutator stacking of order  is enough to express any 

 link. In other words, an arbitrary  link is simply 
a “Tripodal stack” of order . So we need to consider what 
happens in the general case, where . 

We will show in the sequel that there exists another natural 
operation on “Tripodal building blocks”, which is described by taking an 
appropriate product of commutators in the group . Intuitively 
speaking, this natural operation should express a procedure of Tripodal 
extension in length, or simply the formation of a “Tripodal chain” of 
some appropriate length. In order to motivate the notion of a “Tripodal 
chain” it is necessary to start with the simplest example of this type, 
namely the  link. This is a link of 4 loops, such that each 
2-sublink is completely splittable, but each 3-sublink and the 4-link 
itself, is non-splittable. From this definition, we immediately deduce 
that if we remove any loop from a  link we obtain a 3-sublink 
which is non-splittable. Moreover, since each 2-sublink is completely 
splittable, we deduce that if we remove any loop from a  link we 
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actually obtain a  link, viz. a Tripodal link. Furthermore, if we 
remove any two loops from a  link the remaining two fall 
completely apart because again each 2-sublink of a  link is 
completely splittable. Therefore, by encoding this information in the 
group , we attack the problem as follows: Consider three symbols , 

, and . We seek a formula expressing the fourth symbol, such that 
deletion of all incidences of any of the symbols  or  or  causes 
the formula to reduce to the “Tripodal loop formula” (that is the 
commutator of the remaining two symbols), whereas deletion of all 
incidences of any two of the three symbols, viz. , or , or  
causes the formula to reduce to the unity 1. 

It is instructive to emphasize that the algebraic encoding of the 
problem referring to a  link paves the way to its solution. The 
problem is whether it is possible to express a  link in terms of 
“Tripodal building blocks”, that is, in terms of suitable operations on 
commutators in the group . By the defining properties of a  

link, if a formula in three symbols , ,  actually existed fulfilling 
the two requirements laid out in the previous paragraph, and also 
expressed exclusively in terms of commutators built from these three 
symbols, then it would be true that the  link can be constructed 
in terms of “Tripodal building blocks”. Now, considering the symbols , 

, and , we may construct the “Tripodal stack” of order 3, viz. the 
stacked commutator formula . Clearly, although this expresses 
a  link as we have seen in the previous Section, it is not an 
appropriate formula to express a  link because deletion of any 
of the three symbols causes the formula to reduce to 1. What we need is 
another operation, which hopefully can involve only commutators and 
have the desired properties. A simple observation is that given three 
symbols , , and , we may construct out of them three distinct 
commutators, namely ,  and . Since each of these 

commutators gives a new symbol in the group , we may take their 
product which is also a new symbol in the group . 

Notice that each of the commutators , , , gives 
separately a Tripodal link. Thus, their product  is 

actually a composition of three separate “Tripodal links” in the group : 
 

 
 
which gives rise to a “Tripodal chain” of length 3. The formation of this 
“Tripodal chain”  provides the sought after operation on “Tripodal 
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building blocks” to express a  link, and therefore solve the 
posed problem. We can immediately see this as follows: First, we notice 
that deletion of any one of the symbols , , , in the “Tripodal 
chain”  of length 3, , reduces this chain to a 
Tripodal link. For instance, if we delete the symbol , what remains is 
the Tripodal link , and analogously for the other two cases. Second, 

we notice that deletion of any two of the symbols , , , reduces 
this chain to unity. Hence, we conclude that the “Tripodal chain” of 
length 3, defined by the product of commutators  , 

provides the formula for the fourth symbol  in the group , such 
that the defining properties of a  link are satisfied, and 
moreover, this link is expressed in terms of “Tripodal building blocks”. 
An interesting observation that we will put to use as we progress is that 
the length of the “Tripodal chain” solving the problem is given by the 
number of combinations of 2 symbols out of 3, where a combination is 
simply the formation of the commutator of 2 symbols in this case. 
  
33..1199  PPRRIIMMAALL  RROOLLEE  OOFF  TTHHEE  TTRRIIPPOODDAALL  LLIINNKK  IINN  AALLLL  HHIIGGHHEERR  TTEEMMPPOORRAALL  BBOONNDDSS  

 
Regarding the possibility of expressing arbitrary links in 3-d space of the 
general form  in terms of “Tripodal building blocks”, or 
equivalently “Tripodal connectivity units” we have proved up to present 
the following: First, the algebraic operation of commutator stacking of 
order  is enough to express any  link. In other 
words, an arbitrary  link is simply a “Tripodal stack” of 
order . For instance, a  link is simply a “Tripodal stack” 
of order 3. Second, we have shown that the expression of a  link 
requires the consideration of another operation on “Tripodal building 
blocks”, which is interpreted as the operation of extension of length 3, 
called the formation of a “Tripodal chain” of length 3. Based on these 
findings, the next question posing itself naturally in this context is if 
these two operations on “Tripodal building blocks”, namely the 
formation of “Tripodal stacks” of some suitable order and the formation 
of “Tripodal chains” of some suitable length are adequate in order to 
express any arbitrary link in 3-d space of the general form . 

This would be certainly of significance in our understanding of 
the whole universe of links, because it would prove that any  
link can be constructed by means of “Tripodal connectivity units” via 
the combinatorial formation of “Tripodal stacks” and “Tripodal chains”. 
Moreover, due to the algebraic modelling scheme instantiated 
structurally by the non-commutative group , the process of analysis 
and synthesis of arbitrary links in terms of prime elements, which is to 
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say in terms of “Tripodal connectivity units” would be implementable 
algorithmically, and thus at hand as a valuable tool for making 
evaluations and predictions. 

Before we consider the general case of a  link, it will 
embellish our intuition to examine the case of a  link. The 
reason is that a  link has enough complexity so as to pave the 
way for the treatment of the general case of a  link. From the 
definition of a  link, the crucial observation is that if we remove 
any of the loops, what remains is a  link, which we already 
know is expressed by means of a “Tripodal stack” of order 3, by the 
stacked commutator formula  in 3 symbols. Thus, in order to 

express the formula of a  link, if we consider 4 symbols , , 

, , we require a formula such that deletion of any of them causes it to 
reduce to one of a  link, to a “Tripodal stack” of order 3. 

The important concept solving this problem is based on the 
observation that we can form “Tripodal chains” of arbitrary length using 
“Tripodal stacks”. In the particular case of a  link considered, 

since we require that deletion of any of the four involved symbols , , 
, , reduces the formula to a “Tripodal stack” of order 3, we just need 

to form a “Tripodal chain” of “Tripodal stacks” of order 3, where the 
length of the chain should be 4. This is explained easily by the fact that 
the length of the “Tripodal chain” is given by the number of 
combinations of 3 symbols (which is the number of symbols involved in a 
“Tripodal stack” of order 3) out of 4 symbols , , , . We 
immediately conclude that the sought after formula expressing a 

 link is given by the “Tripodal chain” of length 4, composed by 
“Tripodal stacks” of order 3, and described explicitly by the following 
formula: 
 
   
 
In more detail, we see that the above formula is given by the composition 
of 4 “Tripodal stacks” of order 3 (since they involve 3 symbols each), and 
thus produces a “Tripodal chain” of length 4, such that deletion of any of 
the four involved symbols , , , , reduces this chain to a 
“Tripodal stack” of order 3 as required. Thus, we have completely 
resolved the problem of a  link in terms of prime “Tripodal 
connectivity units”. 

Now, having understood in detail the case of a  link, we 
are ready to state the following theorem: 
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An arbitrarily complex link of the general form , where 

, can be enunciated solely in terms of Tripodal links, by means 
of combining nested stacking and multiplicative chaining of Tripodal 
links of appropriate depth order and length respectively. 

We consider an arbitrarily complex link of the general form 
, where , and prove that it can be constructed solely 

in terms of “Tripodal building blocks” within the group . For any , 
we already know that the link  is expressed by means of a 

“Tripodal stack” of order . Next, we consider  symbols in 

, and we wish to construct a  link. The crucial 
observation is that if we remove any topological circle from a 

 link, what remains is a  link. Thus, we treat 
this case in complete analogy to the case of a  link, discussed 
previously. More precisely, we form a “Tripodal chain” out of “Tripodal 
stacks” of order , where the length of this chain is given by the 
number of combinations of  symbols out of  symbols. The 
formula expressing this “Tripodal chain” provides the sought after 

 symbol. Now, we consider  symbols, and we wish to 
construct a  link. We just have to form a “Tripodal chain” 

out of “Tripodal stacks” of order , where the length of this chain is 

given by the number of combinations of  symbols out of  
symbols. The formula expressing this new “Tripodal chain” provides the 
sought after  symbol in . We continue the same process of 
formation of new “Tripodal chains” of appropriate combinatorial length 
composed by “Tripodal stacks” of order , stage by stage, until we 
reach . This completes the proof of the theorem that an arbitrarily 
complex link of the general form  can be constructed solely in 
terms of “Tripodal building blocks”, or equivalently, “Tripodal 
connectivity units”. 

We may consider as an application of this theorem the case of a 
 link. The link  is expressed by means of a “Tripodal 

stack” of order 4. Next, we consider 5 symbols, and we wish to construct 
a  link. Let us call these symbols , , , , . Next, we 
form a “Tripodal chain” of “Tripodal stacks” of order 4, where the length 
of this chain is given by the number of combinations of 4 symbols out of 
5 symbols, which is 5. Let us denote by f the new symbol provided by 
this “Tripodal chain” of length 5. Thus, we have constructed a  

link. Now, we consider these six symbols , , , , , , and we 
wish to construct a  link. We just have to form a “Tripodal 
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chain” of “Tripodal stacks” of order 4, where the length of this chain is 
given by the number of combinations of 4 symbols out of 6 symbols, 
which is 15. The product formula expressing this new “Tripodal chain” 
of length 15, provides the sought after 7th symbol. Therefore, we have 
constructed a link by means of prime “Tripodal connectivity 
units” using only the combinatorial formation of “Tripodal stacks” and 
“Tripodal chains”.

33..2200 IIMMAAGGIINNAARRYY SSUURRFFAACCEE OOFF TTEEMMPPOORRAALL CCOOHHEESSIIOONN AANNDD EENNTTAANNGGLLEEMMEENNTT 

The modeling of a prime temporal bond as a topological “Tripodal link” 
enables us to comprehend the process of “synergetic cycle change”, 
effected by the “modular gluing” of a seed from the “past” with an 
anticipated seed in the “future” with respect to the “present”, upon 
establishment of this temporal bond. This threefold metaphora provides 
the necessary topological means to elucidate how a holographic 
boundary of temporal cohesion can be adjoined to 3-d spatial space in 
the present that this bond is realized. The adjunction of this synectic 
boundary of temporal cohesion in 3-d space permit the holographic 
connectivity and entanglement of a seed from the “past” with an 
envisioned seed in the “future” topologically, independently of their 
proximal distance. This is achieved by demarcating an imaginary 
oriented compact and connected surface of temporal cohesion in the 
present.

We consider the compact, connected and oriented surface with 
boundary to constitute the “Tripodal link”. This surface is visualized as 
follows:
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Thus, the imaginary surface of temporal cohesion generated by a prime 
temporal bond is equivalent to a torus bearing three punctures 
(corresponding to the aphaeresis of three disks). The significance of this 
imaginary surface of temporal cohesion instantiated by a temporal bond 
is that it gives rise to a global curvature topological effect characterized 
as a minimal surface. In other words, it is the least-action connectivity 
solution, and thus, the most economical solution to the modular 
amalgamation instantiated by a prime temporal bond.

A simple method to visualize this surface spatially is to consider 
the “minimal surface” formed by a soap film, when three wire rings 
linked together as the “Tripodal link” are immersed into a solution of 
soapy water and then taken out. This surface is a “least-action” solution 
to the shape that a soap film acquires in this case, since it minimizes the 
area. Interestingly enough, every point in this “surface of cohesion” is 
locally similar to a saddle, i.e. its local curved geometry is of the 
hyperbolic type, whereas its global topology is of the toroidal type.
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44..11  IINNDDIIRREECCTT  LLOOGGIICCAALL  MMEETTAAPPHHOORRAA::  GGÖÖDDEELL’’SS  FFIIRRSSTT  IINNCCOOMMPPLLEETTEENNEESSSS  
  TTHHEEOORREEMM  

 
The conceptual essence of Kurt Gödel’s first incompleteness theorem 
may be summarized in the assertion that if a formal system containing 
arithmetic, meaning any arithmetic structure endowed with the 
operations of addition and multiplication, is consistent, then it contains 
undecidable propositions, namely statements whose truth or falsity 
cannot be expressed within the language of this formal system. 
According to Gödel, the reason for the existence of undecidable 
propositions in a formal system containing arithmetic is that a complete 
epistemological description of a language  cannot be given in the 
same language , because the concept of “truth” of sentences of  

cannot be defined within . Thus, the “truth” of the propositions of a 
language cannot be expressed in the same language, while provability, 
which is an arithmetic relation can. In a nutshell, true  provable. 

Gödel’s proof of the first incompleteness theorem is based on the 
explicit construction of an arithmetical formula that asserts its own 
non-provability, and thus, it is undecidable within the language of its 
formal system. From our viewpoint, the particular interest in Gödel’s 
proof stems from three factors: 
 
1 According to a remark of Gödel himself, there exists an analogia 

between his undecidable proposition within a formal system 
containing arithmetic and classical semantic paradoxes, like the 
Liar paradox. The analogia is based on the existence of direct 
self-referentiality; 

2 The correct solution of these semantic paradoxes derives from 
the method of proof that Gödel devised in order to evade the 
logical obstacle of direct strong self-referentiality within the 
language of his formal system. Concisely put, this method of 
proof involved an argument requiring a stratification into two 
hypostatic levels, one of which is called the mathematical level 
and the other the metamathematical level. In other words, the 
circumvention of self-referentiality required a metaphora into 
another level of hypostasis, such that the direct obstruction is 
avoided by dint of ascending to another level and then 
descending back. In this way, indirect self-reference, leads to a 
well-defined legitimate statement and not to a paradox. 

3 The process of ascending from the mathematical to the 
metamathematical level and then descending back, or the other 
way round symmetrically, effecting indirect self-reference, and 
thus eventually, producing a legitimate statement asserting its 
own unprovability, required a metaphora, i.e. the instantiation of 

A
A A

A
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encoding/decoding bridges for translating between these two 
levels. This is precisely the role of “Gödel’s numbering” or 
“Gödel’s ordering” idea. 

 
From our viewpoint, “Gödel’s numbering” is actually “Gödel’s gnomon”, 
utilized as a means to indicate or label propositions at both the 
mathematical and the metamathematical level, in such a way that a 
certain type of homeotic equivalence can be established between these 
two levels. In other words, the role of “Gödel’s gnomon” is to logically 
conjugate the intractable problem of direct, strong self-referentiality at 
one level of hypostasis by a definite tractable process at the other level 
of hypostasis, where the latter is qualified in terms of Cantor’s 
diagonalization method, as we shall show below. 

Henceforth, the key to understanding Gödel’s argument from our 
view, consists in delineating the stratification of the argument into 
levels and identifying the “gnomon” which induces an appropriate 
“homeotic criterion” permitting the “metaphora by logical conjugation”, 
or else, descending and ascending between these levels. Gödel’s 
argument requires a stratification into two levels: the mathematical 
level involves general propositions about numbers and the 
metamathematical level involves general propositions about general 
propositions about numbers. 

Gödel’s argument refers to a true proposition at the 
metamathematical level, whose truth is established by “logical 
conjugation” through the mathematical level. It is clear that this 
argument involves an indirect self-reference, which is legitimate since it 
is arrived at by descent to and re-ascent from the mathematical level, as 
we have stressed previously. Gödel’s gnomon is a gnomon of numbering 
or ordering and it is utilized to establish encoding and decoding 
reciprocal translation bridges between these two levels. In terms of 
Gödel’s theorem, the possibility of establishing a true proposition at the 
metamathematical level, is proved by descending to the mathematical 
level, such that a particular argument can be formulated by means of an 
infinite closure operator, qualified in terms of “Georg Cantor’s 
diagonalization”, which is then transferred back to the metamathematical 
level by means of ascending the inverse bridge to prove the theorem. 
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Since the alphabet of arithmetic is countable, it is possible to instantiate 
a fixed schema of numbering or ordering, which assigns a unique positive 
integer to every legitimate arithmetic formula. The same schema can be 
extended to order finite strings of arithmetical formulas. Of course, 
many such appropriate schemas of ordering or numbering exist, but the 
essential idea is that by fixing any one of them the function of ordering 
or numbering can be carried out. For example, we may fix the ordering 
gnomon provided by the natural numbers’ sequence, such that every 
arithmetic formula and every finite string of arithmetic formulas is 
assigned a unique number in this sequence, called its Gödel number. It 
follows directly that in the way described the ordering structure of the 
natural numbers may be adjoined to the structure of an arithmetic. In 
particular, the proof of an arithmetic formula  constitutes a finite 
string ending with  itself, and thus proofs are naturally assigned 
Gödel numbers in the ordering. 

Gödel starts his argument by considering the proposition 
 at the metamathematical level stating the following: 

 
“ :  is the Gödel number of an arithmetic formula 

whose proof has Gödel number ”. 
 

Then, still at the metamathematical level, he considers the 
associated proposition, 
 

, 
 
which reads as follows: 
 

“ : No number  is the Gödel number of a proof of 
the arithmetic formula whose Gödel number is ”. 

 
The last proposition simply means that the -th formula in our 

ordering schema is not provable. 
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The crucial idea in the last proposition boils down to the fact that 
the variable  is a free variable. Then, the natural question to ask is the 
following: Is the proposition 
 

 
 
at the metamathematical level Gödel-numberable itself? Equivalently 
stated, does Gödel’s gnomon apply to this proposition? This is the crux 
of the matter because, as we already know, a gnomon is effective if it 
induces a “homeotic criterion” to the structure it is adjoined to, that 
permits the descent and ascent between the metamathematical and the 
mathematical level. 

Clearly, such a criterion is feasible in the present case, only if 
Gödel’s gnomon actually assigns a unique number to the proposition 

, where  is a free variable. 
We realize from this reasoning why the major part of Gödel’s 

paper is devoted to showing that the aforementioned proposition is 
indeed Gödel-numberable. Let us denote the Gödel number of the 
metamathematical level proposition 
 

, where  is free, 
 
by the number  at the mathematical level. The criterion can now be 
implemented using Gödel’s gnomon by applying Cantor’s 
diagonalization process at the mathematical level in order to achieve 
closure. This simply amounts to substituting the free variable  in the 
proposition  by the definite number  to obtain now at 
the mathematical level the proposition 
 

, 
 
which means that the concrete -th formula in our ordering schema is 
not provable. 

The role of Gödel’s gnomon is enunciated as follows: If we apply 
this gnomon the metamathematical level proposition 
 

, where  is free, 
 
is precisely mirrored at the number  at the mathematical level. This 
means that the above metamathematical level proposition is 
symmetrical, and thus equivalent, to a certain arithmetic formula at the 
mathematical level whose sequential number is  modulo the gnomon 
employed. 
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Henceforth, the metamathematical level proposition , 
where is free, is symmetrical modulo the gnomon, and thus 
homeotically identical, with the -th arithmetic formula in the 
ordering induced by the gnomon at the mathematical level.

It is important to notice that the process of Cantorian 
diagonalization at the mathematical level involves a reflexive action, 
since we feed this fixed ordering number as an argument in the place 
of the free variable of .

In this manner, we obtain a legitimate proposition at the 
mathematical level

,

which states that the concrete -th formula in our ordering schema is 
not provable, since no number is the Gödel number of a proof of the 
arithmetic formula whose Gödel number is .

Finally, using the homeotic criterion established by Gödel’s 
gnomon in reverse, we ascend back to the metamathematical level, 
where we finally obtain a proposition that ascertains its own 
unprovability. It is precisely this proposition that expresses Gödel’s 
incompleteness theorem itself, since this proposition is undecidable 
given the consistency of our arithmetic.

Gödel’s gnomon and the previously described metaphora by means of 
logical conjugation between the metamathematical and mathematical 
levels is operative with respect to the whole structure of an arithmetical 
formal system, that is with respect to both the additive and 
multiplicative structure of an arithmetic system. In case that only the 
additive structure is considered, Gödel’s gnomon does not induce a 
homeotic criterion between the metamathematical and mathematical 
levels, and it can be shown that the incompleteness theorem is not valid.
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Gödel’s gnomon and the previously described metaphora by means of 
logical conjugation between the metamathematical and mathematical 
levels is operative with respect to the whole structure of an arithmetical 
formal system, that is with respect to both the additive and 
multiplicative structure of an arithmetic system. In case that only the 
additive structure is considered, Gödel’s gnomon does not induce a 
homeotic criterion between the metamathematical and mathematical 
levels, and it can be shown that the incompleteness theorem is not valid.
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Epigrammatically, Gödel’s gnomon effects an indirect 
self-reference at the metamathematical level by means of the descent to 
and re-ascent from the mathematical level. The indirect self-reference is 
conducted through the mathematical level by utilizing the infinite 
closure operation of Cantor’s diagonalization process. In other words, 
employing Gödel’s gnomon renders indirect self-reference feasible by 
conjugating the initial intractable problem to an infinite closure 
operation, and thus circumventing it appropriately.

The far-reaching consequence of the above is that Turing’s 
argument, according to which, the halting problem inherent to a 
universal Turing machine is undecidable, should be viewed as the 
computational variant of Gödel’s first incompleteness theorem. The 
reason is that Turing’s argument can be also considered as a logical 
conjugation argument of the same form, meaning that indirect 
self-reference at the level of a universal Turing machine is feasible by 
conjugating it to the infinite closure operation of Cantor’s 
diagonalization. “Turing’s gnomon” is similarly a gnomon of ordering or 
numbering programs by means of the natural numbers’ sequence.

44..22 IINNDDIIRREECCTT FFOORRCCIINNGG IINN LLOOGGIICC:: GGEENNEERRIICC FFIILLTTEERRSS 
 AANNDD CCOONNTTEEXXTTUUAALLIIZZEEDD TTRRUUTTHH 

Since the formulation of Gödel’s first incompleteness theorem, it is well 
known that for any comprehensible list of set theoretic axioms, there 
will be statements neither provable nor unprovable from those axioms. 
What is really interesting, however, is how many of the most natural 
questions about sets are not decidable by the standard axioms of 
Zermelo-Fraenkel-Choice (ZFC) set theory, and how many ways of 
deciding these questions there are available.
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In this state of problematics, Paul Cohen managed to establish 
the independence of the Axiom of Choice (AC) from Zermelo-Fraenkel 
(ZF) and the independence of the Continuum Hypothesis (CH) from 
ZFC. This became possible by developing a novel technique, called 
forcing, that constitutes a far-reaching generalization of the logical 
notion of implication, which he used for extending a standard model of 
set theory. Cohen’s extension method constitutes another significant 
case of the paradigmatic schema of analysis we developed in the 
previous Section in relation to Gödel’s first incompleteness theorem. 
This schema involves a process of indirect self-reference through 
extension to a new logical level of hypostasis by a metaphora providing 
bidirectional bridges for translating between the initial standard model 
of set theory and some novel model of set theory internally 
distinguishable from the former one. 

Epigramatically, Cohen discovered the precise means of 
operationally extending a standard model of set theory to some other 
admissible one bearing specific properties without altering the ordinals. 
The central technical innovation was based on the notion of a forcing 
condition, through which satisfaction for the extension could be 
approached in the ground standard model. 

In general terms the method of forcing consists in the 
instantiation of a novel model of set theory from a standard model by the 
adjunction of certain sets with particular properties via “forcing 
conditions” encoding information about those sets. Intuitively, some 
conditions are stronger than others, and this serves as a criterion for 
partially ordering them within the ground standard model. In this state 
of affairs, proving general results about how the elements of a partially 
ordered set  force certain conditions to hold allows one to prove 
statements referring to the novel constructed models, without looking 
closely at the forcing conditions themselves anew in each particular 
case. It is this generality that lends the method its efficiency and 
universality. 

Let us start with a ground model  of set theory (countable and 

transitive) and consider a specific partially ordered set (poset)  in . 
The set  is to be interpreted as a partial order of forcing conditions, 
ordered by means of their strength. In this way, a nonempty poset 

 in induces a notion of forcing, whose elements will play the role 
of “forcing conditions”. In general, if , and , we say that  is 
stronger than . That is,  represents a stronger condition than . It 

is customary for the poset to have a largest element, denoted , such 
that all elements of  are stronger than . The elements  and  
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are compatible if there exists an element  in  stronger than 
both  and , otherwise they are incompatible. 

It is important to note that the poset and its ordering must be 
elements of . However, the idea is to utilize the poset  as a 
partial order of forcing conditions, so as to construct and eventually 
adjoin to  certain sets that are not already in . In particular, by 
adjoining a “generic set”  to the ground model , a new model 

 can be consistently formed by extension. 

A dense subset of  is defined as a set  such that for all  
 , there is    stronger than . A filter on a poset  is a 

nonempty subset  of  such that: (a) if    and , 
then    and (b) if ,    there is    extending 

both p and q. If this filter intersects every dense set  in the ground 
model , then it is called a “generic filter”. 

Considering that the subset  is a “generic filter”, 

meaning that  contains members from every dense subset of  in 
, one proceeds to build the forcing extension of the ground standard 

model  by , denoted by , such that  by requiring 
closure under all elementary set-theoretic operations. 

Consequently, the forcing extension has adjoined the “ideal” 
object  to , in much the same way that one might build an 
algebraic extension of a ring by means of an ideal. In particular, every 
object in  has a name in  and is constructed algebraically from 

its name and the generic filter . Remarkably, the forcing extension 
 is always a model of ZFC. Nevertheless, the crucial point is that it 

can exhibit different set-theoretic properties in a way that can be 

precisely controlled by the choice of the poset of forcing conditions . 
More precisely, one may proceed by defining the forcing relation 

on a proposition , denoted by , which holds whenever every 

generic filter  containing the forcing condition  implies 
. For this purpose, it is important to consider the complete 

Boolean algebra , which functions as the completion of the selected 
poset of forcing conditions . We say that a condition    forces 

 if and only if  is less or equal to the “Boolean value” of  in . 
It is worth recalling that in a standard model of set theory, all 

propositions are evaluated as “true” or “false”, meaning that they are 
strictly evaluated with respect to the two-valued Boolean algebra 

. In comparison, referring to a non-standard model, propositions 
can take values on any element of the Boolean algebra under 
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consideration. The concrete meaning of this logical maneuver will be 
examined subsequently. Presently, if we take for granted the notion 
referring to the “Boolean value” of  in , the notion of forcing 
implicates that if the proposition  is being forced by , then it is 
going to be also forced by any condition that is stronger than . 

The fundamentally significant elements of the method of forcing, 
pioneered by Cohen, are the following: 
 
1 The forcing extension of the ground standard model  by , 

namely , satisfies the axioms of ZFC set theory. 
2 Every proposition  that holds in , is forced by some 

condition  in . 
3 The forcing relation  is definable in the ground model for 

fixed . 
 
Of course, the crux of the matter, is the delineation of an appropriate 
generic filter that actually accomplishes the required extension. In the 
case of a countable and transitive ground model , for any chosen 
partial order  of elements from , to be interpreted as forcing 
conditions, there exist only countably many dense subsets of , which 

may be enumerated externally as , , , and so on. Then, we may 

pick in order any condition   , then    below , 
and so on. With this procedure, and using the method of diagonalization, 

we can construct a descending sequence , such that  

 . Then, the filter  generated by this sequence is generic, and 
therefore, suitable for the construction of the forcing extension . 

The restriction that  stands for a countable and transitive 
model ground model of set theory can be effectively lifted. In this case, it 
is not possible to delineate a generic filter as described above, and 
consequently, the method of “Boolean values” seems to provide the most 
general approach, to the semantics to which we now turn our attention. 

Cohen’s main innovation lies in the distillation of the notion of 
forcing by means of a chosen partial order in the ground model, and the 
positing of a generic filter in this partial order containing elements not 
already grasped in the ground model. This innovation made it possible to 
secure suitable properties of a novel set, which emerged through the 
extension of a standard model by a generic filter, without having 
distinguished all of the members ab initio. According to this conception, 
the generic set  will not be determined completely, but in spite of 
this, properties of  will be completely determined on the basis of 
very incomplete information about . This is phenomenally 
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contradictory, because how could one decide whether a statement about 

 is true, before we have determined  itself? The seeming 
contradiction stems from the standard conception of truth in terms of 
evaluations of a priori distinguishable elements with respect to the 
two-valued Boolean algebra . The method of forcing requires a 
re-conceptualization of the notion of truth in a novel way. Actually this 
novelty re-enforces the ancient conception of truth as “aletheia”. In this 
manner, truth emerges temporally, in the precise sense of being 
unveiled, through a process of percolation through the generic filter. 

The main idea is that in the ground model , the devised set of 

forcing conditions , where each condition is the carrier of partial 
information toward an eventual generic filter , is precisely ordered 
according to the potential amount of information. In the case of a 
countable ground model , a complete sequence of stronger and 

stronger conditions , , ,  is applied, so that every 
proposition, or its negation, is forced by some member of this sequence. 
Therefore, it is owing to this sequence that a generic object  is 
eventually manifested bearing the appropriate properties. 

In the general case, a new meaning is elucidated in relation to the 
notion of truth, which may be described as follows: Working inside the 
ground model , we consider the set of elementary conditions  
which forces a given set either to lie in the generic set , or not in . 
Because of the fact that forcing is defined in the ground model , we 
can examine all the possibilities of assigning sets of elementary 
conditions , which force the members of  to lie in an arbitrary . 
This set of elementary conditions is the “truth value” of the statement. 
As we mentioned above, the notion of truth in this context bears the 
meaning of “aletheia”, in the sense that the “truth value” is identified 
with the set of conditions that unveil the statement. Conclusively, in a 
standard model of set theory a subset of  is determined by a 

two-valued function on  applied to the members of . In a 
non-standard model, a subset is determined by a function taking its 
values in the subset of the elementary conditions. Since these values are 
all in the ground model , quantification is possible over all possible 
truth values. 

The precise connection with the idea of evaluating propositions 
in the complete Boolean algebra  obtained by the completion of the 

poset of forcing conditions  emerges in the following manner: The 
subsets of the set of elementary conditions , which determine the 
truth or falsity of each statement, are thought of as elements of a 
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Boolean algebra. Then, a Boolean-valued model of set theory arises, in 
the sense that the truth values are identified with the elements of the 
concomitant Boolean algebra, which is different from the bivalent 

. The notion of forcing is expressed by saying that the set  

forces a statement , if no extension of  forces the negation of ”. 
In the above setting, the essential idea is that the conceptual 

maneuver of evaluating statements by means of the Boolean algebraic 

completion  of the chosen set of forcing conditions  in the ground 
model , provides the means to embrace the obstacle; namely, that the 
elements of the generic set  are not specified ab initio. This gives 
rise to a non-standard Boolean-valued model of set theory, denoted by 

. In other words, a Boolean-valued model, besides the crystallized 
elements, contains elements that are “partially or locally 
distinguishable”, where the extent of their distinguishability in the 
percolation process of unveiling is provided by the “truth value” they are 
assigned in , thought of as a domain of truth values, and not in the 
bivalent domain . This logical maneuver in the specification of the 

Boolean-valued set  allows us to think of it as a set of fluid potential 
members in the process of eventual crystallization. 

In this state of affairs the role of the generic set  is precisely 
to determine which elements of  will eventually be crystallized 
giving rise to a novel standard model of set theory satisfying the axioms 
of ZFC. Henceforth, the generic set  plays the role of Cohen’s 
gnomon for extending a standard ground model of set theory to a novel 
standard model obeying ZFC, which is nonetheless internally 
distinguishable from the former one. This is accomplished by means of 
indirect self-reference through the level of Boolean-valued models of set 
theory as follows: 
 
1 The encoding bridge is from the level of standard ZFC models of 

set theory to the level of non-standard Boolean-valued models 
obtained by completion of any chosen partial order of forcing 
conditions in the ground standard model we are starting with; 

2 At the level of a Boolean-valued model , an appropriate 
equivalence relation is formulated by utilizing Cohen’s gnomon, 
i.e. a generic set  in . This establishes a homeotic criterion 
of symmetry for the members of the Boolean-valued set  in 
the sense of a common logical measure provided by  giving 
rise to a partition spectrum. In particular, the generic set  is 

qualified as a generic ultrafilter in . The ultrafilter 
characterization means that: 
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a   , 
b  not  , 
c if ,   , then   , 
d if   , and , then   , 

e For all   , either    or   . 
 

Then, the common logical measure implied by a generic 
ultrafilter , i.e. the symmetry, or homeotic criterion, for 
elements of the Boolean-valued model  with respect to the 
gnomon , is formulated in terms of the following equivalence 
relation: 

For all ,   , 

 iff   , 
 

where,  denotes the “Boolean value” characterizing the 

extent to which  for all ,   . 

Since, the generic set  (not required to be in ) is an 

ultrafilter in , the equivalence classes of elements of , i.e. 
the blocks of the corresponding partition spectrum, with respect 
to the above symmetry criterion provided simply by means of 
membership in  or not, that is, in a bivalent manner, are the 
candidates for forming the elements of the new standard model 
of set theory, constituted or crystallized by the forcing extension 
of the ground standard model  by , i.e. . 

3 The decoding bridge is from the level of Boolean-valued models 
of set-theory back to the level of standard ZFC models of set 
theory. The standard ZFC model obtained by imposition of the 
above equivalence relation on elements of  with respect to 
Cohen’s gnomon  is the quotient set of equivalence classes 

, which is bivalent. The ingenuity of Cohen’s proof rests 
on the requirement of generic status for his gnomon, in the sense 
that the quotient set  is actually a standard ZFC model, 
if the utilized ultrafilter  is a generic one. Actually, if  is 

a generic ultrafilter then  is the smallest standard 

ZFC model containing both  and . 
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Finally, it is noteworthy that Cohen’s method of forcing has been 
adapted in category-theoretic language. The relevant context is 
the topos of sheaves over a partially ordered set bearing the 
semantics of Cohen’s forcing conditions. In this manner, it turns 
out that a non-standard Boolean-valued model of set theory can 
be equivalently represented as a sheaf over the considered 
“complete Boolean algebra” completion. Consequently, the 
internal logic of this topos of sheaves can be adequately depicted 
by means of the above diagram of metaphora between the 
indicated levels, from the viewpoint of natural communication.

44..33 AALLGGOORRIITTHHMMIICC CCOOMMPPLLEEXXIITTYY AANNDD TTHHEE HHAALLTTIINNGG PPRROOBBAABBIILLIITTYY 

In the context of algorithmic or program-size complexity theory, 
Gregory Chaitin came to focus on the implications of Gödel’s first 
incompleteness theorem, which finally lead to a refinement of the 
former in a computational context. The algorithmic complexity of a 
string is essentially defined by the length of the shortest program that 
generates this string and then halts. In this way, a finite string is 
characterized as random if its complexity is equal approximately to its 
length. There are strings with arbitrarily large algorithmic complexity 
and the problem of program-size complexity is undecidable. In this 
context, Chaitin’s incompleteness theorem states that given a consistent 
arithmetic, there exists a number depending upon that arithmetic, 
such that any proposition of the form “the program-size complexity of 
the string is greater than ” is not provable. Thus, since there are 
true instances of such propositions, it follows that there are propositions 
of the above form which remain undecidable within the context of the 
given arithmetic.
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Chaitin’s argument constitutes a refinement of Gödel’s first 
incompleteness theorem because it involves a metaphora extension in 
depth. First, Chaitin’s gnomon is based on counting the number of bits in 
a program, whence the homeotic criterion is applied for self-delimiting 
programs, defined as strings having the property that one can tell where 
they end. Second, Chaitin’s program-size counting gnomon is modified 
probabilistically, by a deeper stage logical conjugation at the 
measure-theoretic level involving the probability  that a program 
will give a number  at the higher level, while preserving the same 
homeotic criterion as applied to self-delimiting programs. 

This is called the algorithmic probability of , and a summation 
of probabilities over all possible outputs  yields the halting 

probability , where  is interpreted as a random 

infinite sequence of bits. In particular, the halting probability  is a 
random real number. The most intuitive conception of randomness is 
tied to the notion of absence of predictability. In other words, if one 
knows the first -bits of a random sequence it is not possible to predict 
the next -bit. Here, the central objects of our attention are 

elements of the continuum . 

Elements of  may be viewed either as infinite sequences of 
bits (infinite strings) or as sets of natural numbers, which can be 
identified with their characteristic functions. We denote the set of finite 
binary strings as . The set  can be canonically identified with 

, so that subsets of  may be thought of as sets of strings. We also 
denote the length of a finite string  by . Using finite binary 

strings, we may define a topology on  as follows: First, we define the 
extension of a finite string  by the clopen set 

, where  denotes the operation of 

restriction. Second, we consider clopen sets of the form , where 

 is a finite binary string, as the base of a topology on , where each 
 is a basic clopen set, to be thought of as an interval in the 

continuum. In particular, we may identify  with the interval of real 
numbers  by associating each real number with its usual binary 
representation. If we regard  as the Lebesgue measure on , then 

we have that . Now, we expect that non-random 
sequences form a set of measure zero. Intuitively, using the above 
defined topology, we require that the extensions of longer and longer 
initial segments  of a string  become arbitrarily small. In this 
manner, random sequences are defined from a complementary viewpoint 
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measure-theoretically on the basis of the fact that non-random 
sequences should form sets of measure zero. 

Next, if we recall the intuitive conception of randomness as 
related with the absence of predictability, we may require that there is 
no algorithm  which can ever compute, and thus uniformly measure, 

 from any sorter string. Here an algorithm is considered as a 

function . 
The above idea constitutes, in effect, a complexity measure based 

on program-size. The notion of program-size complexity introduced by 
Chaitin to this effect, regards  as a self-delimiting program, i.e. as a 
program delimited by an end-marker. Clearly, no extension  of a 
self-delimiting program can be a self-delimiting program, since the 

end-marker will not be in the right place. If  is a partial 
recursive function with prefix-free domain, which means computable by 
a self-delimiting reference universal Alan Turing machine, the Chaitin 
complexity of , or the algorithmic information content of  is 
defined by . This is the length of the shortest 
program  of the self-delimiting universal Turing machine that 
outputs . Then, we define an infinite sequence  to be random 
if all its extensions have high Chaitin complexity, capturing in this way 
the above intuitive conception of randomness. 

More precisely, an infinite sequence  is random if and only if 

there exists a constant , such that . The infinite 
sequences that satisfy this condition form a set of measure one, and thus 
random sequences form a set of measure one. This result is in good 
compatibility with the measure theoretic characterization of 
non-random sequences as sets of measure zero derived in the previous 
paragraph. In this sense, the characterization of random sequences 
according to Chaitin or program-size complexity is in agreement with 
the measure-theoretic characterization completing the logical 
conjugation. 

Chaitin’s incompleteness theorem constitutes not only a 
refinement of Gödel’s first incompleteness theorem due to the deeper 
stage logical conjugation at the measure-theoretic level, or equivalently 
via the program-size complexity level, but it also contains the seeds of 
two powerful generalizations: The first comes from an even deeper level 
conjugation via the level of generic sets and Cohen’s forcing conditions, 
based on an effective analogical relation between the notions of random 
sets and generic sets. The second comes from an interpretation of the 
constant involved in the definition of random sequences in terms of an 
uncertainty relation between two logically conjugate domains in the 
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spirit of Werner Heisenberg’s uncertainty principle in quantum 
mechanics. 
 
44..44  BBOOOOLLEEAANN--VVAALLUUEEDD  SSEETTSS::  FFRROOMM  RRAANNDDOOMMNNEESSSS  TTOO  GGEENNEERRIICCIITTYY  

 
Regarding the first of the previously stated issues, the deeper stage 
metaphora takes place through the hypostatic level of Boolean-valued 
sets. The concomitant logical conjugation utilizes the effective 
analogical relation between random sets and generic sets. Both of them 
can be formulated as Boolean-valued models of set theory, or 
equivalently as variable sets, called sheaves, over a Boolean algebra. In 
the first case, the Boolean algebra is identified with the Borel algebra of 
clopen sets, which comprehends both closed and open sets, defined 
above, modulo the sets of measure zero (non-random sequences). In the 
second case, it is identified with the Boolean algebra of Cohen forcing 
conditions. In this manner, the proposed deeper level logical conjugation 
is based on the consideration of random sequences as Cohen forcing 
conditions with respect to a Boolean measure algebra, in the context of a 
Boolean-valued model of set theory containing a consistent arithmetic. 
Intuitively stated, the sets in this Boolean-valued model, or equivalently 
the sheaves over the Boolean measure algebra, are to be thought of as 
sets, whose elements are not evaluated to the two-valued Boolean 
algebra , but are evaluated on the clopen sets of the Boolean measure 
algebra. 

The basic idea can be put as follows: Let us think that we start 
from a standard model of set theory, which we agree to call constant 
sets. The elements of constant sets are characterized by valuations in 
the two-valued Boolean algebra . Then we adjoin a multiplicative 
encoding bridge from the level of constant sets to the level of variable 
sets, which in this case are the sets varying over a Boolean algebra. From 
Marshall Harvey Stone’s representation theorem for Boolean algebras, 
the spectral representation of a Boolean algebra is a totally disconnected 
and compact Hausdorff space, called the Stone space. Then, we are able 
to think of the pertinent variation in terms of measurable functions over 
this space. 

If we arrest the variation at a point of this space, i.e. at a principal 
ultrafilter of the associated Boolean algebra, then we force a homeotic 
criterion of identity, by the stipulation that two functions are equivalent 
if their measurable values agree at this point. Thus, after having 
identified the partition spectrum, representing the equivalence classes 
induced by this criterion, we can ascend back to the level of constant 
sets. In other words, the quotient set obtained is a standard set at the 
initial level. If we arrest the variation at an ideal point of the Stone space 
instead, i.e. at a non-principal ultrafilter of the Boolean algebra, then a 
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new possibility arises. More concretely, if we apply the same homeotic 
criterion for ideal points, we obtain a new quotient set at the level of 
constant sets, which is an extension of the constant set we started with, 
called a Boolean ultrapower of this set. The Boolean ultrapower is a new 
constant set, which is internally indistinguishable from the initial set we 
started with. 

In this light, Cohen’s forcing employing the gnomon of generic 
filters is a refinement of the method of evaluation at ideal points aiming 
toward the construction of new constant sets internally distinguishable 
from the set we started with. Instead of ideal points, one considers a 
partially ordered set  of forcing conditions. Arresting the variation 
with respect to these forcing conditions, one obtains a generic 
distinguishable extension of the initial set at the level of constant sets, 
such that a proposition is true in the generic extension if and only if it is 
forced by some generic forcing condition in . Note that the generic set 
of forcing conditions is not contained in the initial constant set, and thus 
Cohen’s forcing requires logical conjugation through the deeper level of 
variable sets. Moreover, Cohen’s method of forcing via some generic set 
is equivalent to forcing with respect to a Boolean algebra, which in the 
present case is identified with a Boolean measure algebra. This is why, 
the notion of random sets involved in applying Chaitin’s gnomon may be 
interpreted by logical conjugation via the notion of generic sets 
underpinning Cohen’s gnomon. 
 
44..55  QQUUAANNTTUUMM  UUNNCCEERRTTAAIINNTTYY  AANNDD  CCOOMMPPLLEEMMEENNTTAARRIITTYY  

 
In quantum mechanics, Heisenberg’s uncertainty relation involves a 
limit or bound, which is defined in terms of Max Planck’s constant, 
pertaining to the simultaneous determination of two conjugate 
observables, for example, the position and momentum of a quantum 
system. 

We note that observables in quantum mechanics are defined as 
self-adjoint operators, bearing thus a spectral resolution in terms of 
projection operators. In this way, each observable is associated with a 
complete Boolean algebra of projection operators obtained by its 
spectral decomposition. If two observables commute, then they can be 
resolved by means of a common Boolean algebra of projectors. In other 
words, a commutative algebra of observables is logically characterized by 
means of the Boolean algebra of projectors (idempotent elements of the 
commutative algebra), which simultaneously resolve all the observables 
belonging in this algebra. The non-commutativity of observables like the 
position and the momentum of a quantum system, quantified by means 
of Heisenberg’s uncertainty principle, signifies the fact that there does 
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not exist a universal Boolean algebras of projectors resolving all the 
observables in quantum mechanics. 

Thus, the internal logic of a quantum system is not a Boolean 
logic of projection operators, but a globally non-Boolean amalgam of 
local Boolean patches, where each patch covers the extent of a maximal 
commutative algebra of simultaneously measurable observables. 
Non-commutative observables like position and momentum belong to 
two different Boolean patches, which cannot be amalgamated together 
simultaneously under a bigger Boolean patch. Notwithstanding this fact, 
a position observable can be transformed to a momentum observable by 
means of a unitary transformation and conversely; these are the 
well-known Joseph Fourier’s transform and its inverse. Hence, the 
position and momentum Boolean patches constitute two conjugate 
logical domains, which cannot be subsumed under a universal Boolean 
domain, and thus are complementary in the standard terminology. 

These conjugate Boolean domains correspond to conjugate 
Boolean projection-valued measure algebras. Note that each Boolean 
algebra of projectors gives rise, using Cohen’s gnomon in this context, 
meaning logical conjugation through the level of variable sets as above, 
to a generic set of forcing conditions. Then, a proposition is true in the 
generic extension, obtained as we have seen, if and only if it is forced by 
some generic forcing condition. This is suited to understanding the 
measurement process of an observable in quantum mechanics, where a 
proposition refers to the result of a measurement on this observable and 
the generic forcing condition corresponds to the projection operator of a 
measurement device which clicks upon registration of this result. 

The difference in comparison to the previous case, appearing for 
the first time in quantum mechanics, is that distinct local generic sets of 
forcing conditions corresponding to conjugate observables exist, which 
cannot be subsumed under a universal global generic set. Hence, in a 
well-defined sense, which can be made precise using the theory of 
sheaves, the logical treatment of quantum mechanics requires a 
localization of Cohen’s gnomon of forcing, with respect to local Boolean 
domains, thereby giving rise to generalized local models of set theory 
called topoi. In turn, this logical localization with respect to conjugate 
Boolean valued sets gives rise to the phenomena of contextuality in 
quantum theory. We interpret Heisenberg’s uncertainty principle as 
setting the bound (in terms of Planck’s constant) of the simultaneous 
determination of two conjugate observables with respect to the same 
Boolean domain of measurement. This is expressed in terms of the 
standard deviations in the expectation values of conjugate observables 
in the form , where  in the case of position and 
momentum observables. Each of these observables is considered as a 
Boolean homomorphism from the Emile Borel measure algebra of the 

/ 2x pd d× ³ ! := / 2h p!
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real line (where the results of measurements are recorded) to the 
corresponding Boolean patch containing the respective projections in 
the spectral resolution of these observables. 
 
44..66  UUNNCCEERRTTAAIINNTTYY  IINN  AA  SSEELLFF--DDEELLIIMMIITTIINNGG  UUNNIIVVEERRSSAALL  TTUURRIINNGG  MMAACCHHIINNEE  

 
Let us now examine if Chaitin’s gnomon can be presented in a form 
giving rise to an uncertainty relation between two conjugate Boolean 
domains. The first Boolean domain we consider is the domain of random 
real numbers in the continuum . Bearing in mind that we identify 

 with the interval of real numbers  by associating each real 
number with its binary representation. Moreover, if we regard  as the 

Lebesgue measure on , we have that , where  is a 
finite binary string, to be thought of as a program of a self-delimiting 
universal Turing machine . For an output  of this machine, we have 
immediately that the probability of  is given by: 
 

 
 

Chaitin’s  is a random infinite sequence of bits, and thus a 

random real in  of Lebesgue measure one. It is interpreted as the 
halting probability of , defined as the probability that  halts when 
its binary input is chosen randomly bit by bit, such as by flipping a coin. 

In practice, we may only compute finitely many digits of . 
The second Boolean domain we consider is the domain of 

program-size complexity. If  is a partial recursive 
function with prefix-free domain, that is, computable by a 
self-delimiting universal Turing machine, the Chaitin or program-size 
complexity of , or even the algorithmic information content of  is 
defined by: 
 

 
 
The complexity measure  is the length of the shortest program  
of the self-delimiting universal Turing machine that outputs . 
Moreover, an infinite sequence  is random if and only if there exists a 
constant , such that: 
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The infinite random sequences that satisfy this condition form a set of 

measure one, and thus for Chaitin’s  we obtain: 
 

 
 
The above inequality is interpreted clearly as an uncertainty relation 
pertaining to the conjugate Boolean domains of random real numbers in 

 and program-size complexity length measures. Since it is an 
uncertainty relation between two conjugate Boolean domains, these 
domains cannot be embedded in a universal Boolean domain 
simultaneously subsuming both of them. Thus, the constant  is 
interpreted as setting the bound of the simultaneous determination of 
two conjugate observables, viz. the random real  in  and the 

program-size complexity length measure . 
 
44..77  LLOOGGIICCAALL  CCOONNJJUUGGAATTIIOONN  CCYYCCLLEESS  

 
We have shown previously that both Heisenberg’s and Chaitin’s logical 
conjugation methods give rise to uncertainty relations between two 
conjugate or complementary Boolean domains which cannot be 
subsumed under a common universal Boolean domain simultaneously 
with absolute precision. Moreover, if we consider each Boolean domain 
separately we may interpret it as a Boolean algebra of generic forcing 
conditions, descend to the level of Boolean valued sets, then apply a 
Cohen-type criterion of homeotic identity with respect to these forcing 
conditions, and finally ascend back to the initial level of constant sets, 
obtaining in this manner a generalized model internally distinguishable 
from the one we started with. The latter reflects the intervention of a 
suitable measurement procedure for obtaining information with respect 
to an observable logically classified by this Boolean domain. The logical 
classification takes place via the procedure of spectral resolution in 
terms of a Boolean algebra of projectors in the context of operator 
functional analysis, or more generally according to, the procedure of 
measurability in terms of a Borel measure algebra, which can even be 
projection-valued. The important point to be emphasized is that the 
Cohen-type strategy of logical conjugation cannot be implemented 
simultaneously with respect to two complementary Boolean domains. 

A natural question arising in this context is if it possible to 
implement the strategy of logical conjugation in such a way that 
circumvents the above obstacle. We may think of each logical Boolean 
domain as giving rise to a separate gnomon of conjugation. If we consider 
two complementary Boolean domains, we cannot apply the method of 
logical conjugation with respect to both of them simultaneously, but the 
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possibility remains of composing these two gnomons in an appropriate 
way. Since we consider these two gnomons as complementary in a 
precise sense, justified by the existence of an uncertainty relation as 
above, then the most economical hypothesis is to assume that each 
gnomon may conjugate the complementary one. In other words, the 
hypostatic levels between which each gnomon operates should function 
as the encoding/decoding bridges of the complementary gnomon. 

We may explicate this idea in more detail as follows: We recall 
that the method of logical conjugation expressing a metaphora requires, 
first, a certain stratification into different levels and, second, the 
delineation of encoding/decoding bridges between these levels in order 
to be able to descend and re-ascent. Each Boolean domain of discourse 
provides a natural stratification as well as a natural 
descending/ascending bridging between the strata, which can be 
conceptualized in accordance with Cohen’s gnomon. But, what if there is 
no intrinsic way of distinguishing between strata and bridges? 
Reciprocally put, the distinction between strata and bridges is 
meaningful only under the specification of a Boolean domain. If two 
complementary gnomons pertaining to two complementary Boolean 
domains are utilized simultaneously the only way that logical 
conjugation can function is by reversing the role of strata and bridges 
with respect to these two gnomons, such that a closure is achieved. 
Algebraically, the only way that these two complementary gnomons may 
be amalgamated together simultaneously is by temporarily suspending 
the rigid distinctions between strata and bridges, and just iterating the 
process of logical conjugation with respect to the composition of these 
two gnomons until we reach a closure. The closure corresponds to a 
non-trivial logical cycle of compositions. It turns out that the formation 
of this cycle is equivalent to composite logical conjugation where the 
levels of one gnomon correspond to the bridges of its complementary 
gnomon. We present this simple algebraic argument as follows: 

A logical conjugation is generally expressed in the symbolic form 
 

 
 
which defines  to be conjugate to  under , where  is 
considered to be the conceptual inverse of . Now we consider the first 
two symbols of the conjugation , that is, , as a string, and 
extend this string by adding new symbols at the end, such that every 
three consecutive symbols pertain to a logical conjugation, or 
equivalently, establish a metaphora. We iterate this operational 
procedure until we generate a cycle, which means until the last two 
symbols are  again that we started with. In more detail we obtain 
successively:  

1=X S A S -! !

X A S 1S -

S
1S A S -! ! S A!

S A!
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Since the iteration has produced the string , where 
the last two symbols are  again, our initial terms, we have 
generated a closure, viz. a non trivial conjugation cycle that in linear 
sequential unfolding reads as follows: 
 

 
 
By a slight abuse of notation we may identify the complementary 
gnomons by the symbols ,  correspondingly, whence their 
composition or gluing is denoted by the conjugation cycle . Note 
that the order of composition cannot be reverted, viz. , 
hence the operation of composition of complementary gnomons is 
non-commutative. Thus, it is significant to impose an orientation on the 
conjugation cycle, which reflects the specified cyclic order of 
composition. 

In the case that ,  are elements of a non-commutative 
group, the composition  is referred as the commutator of , . 

In this case the symbols  and  stand for the group-theoretic 
inverses of ,  respectively. This observation leads to the conjecture 
that the complementarity of conjugate Boolean domains pertains to 
their Boole group theoretic structures, or else it is of a group-theoretic 
origin. A Boole group is a group-structure on the topological spectrum of 
a Boolean algebraic domain. Thinking of two complementary Boolean 
group domains as local patches of a non-abelian global structure the 
notion of a conjugation cycle provides a natural method of logically 
gluing them together simultaneously. 
 
44..88  SSOOLLVVAABBIILLIITTYY  VVIIAA  NNIILLPPOOTTEENNCCYY::  CCIIRRCCUUMMVVEENNTTIINNGG  NNOONN--CCOOMMMMUUTTAATTIIVVIITTYY  
 
Before we examine the aspects of this logical gluing by conjugation 
cycles of complementary gnomons it is instructive to start from a 
reciprocal viewpoint and leverage the existing knowledge about the 
structure of groups. This will provide the method to locate the existence 
of complementary gnomons from a group-theoretic perspective. The 
central notion of significance for our problem has to do with the 
Galoisian notion of solvability of a group. In particular, the 
understanding of Évariste Galois’ theory of groups by the strategy of 
logical conjugation uses the gnomon of solvability. This will be discussed 
in more detail as we go on, but for the time being it is enough to convey 
the basic idea. 

1 1S A S A S A- -
! ! ! ! !

S A!

S ! A! S −1 ! A−1 := [S ,A] :=! (S ,A) := S ! A

S A
S ! A
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The triumph of Galois theory is based on the theorem that a 
polynomial equation is solvable by radicals if and only if the 
corresponding Galois group of the equation is solvable. Now a general 
group is solvable if it can be derived by the method of group extensions 
of Abelian (commutative) groups. Reciprocally, a solvable group is a 
group whose derived series terminates in the trivial subgroup. 
Intuitively, the derived series is a stratification into group levels 
together with a descending staircase among these strata formed by 
identifying each subgroup in the descending series with the commutator 
subgroup of the previous one. In turn, the commutator subgroup of a 
group is the group generated by all the commutators of this group. The 
importance of the commutator subgroup of a group rests on the fact that 
it provides the most economical way, i.e. it is the smallest normal 
subgroup, such that the quotient of the initial group by the commutator 
subgroup is an abelian group. Thus, a group is solvable if by descending 
into lower and lower subgroup strata by division with the commutator 
subgroup we end up with the trivial subgroup that completely 
annihilates the complexity of the group we started with. 

It is well-known that all Abelian groups are solvable, as well as 
that all nilpotent groups are solvable. The first is trivial, but the second is 
very important, for example, in quantum mechanics. It is worth 
explaining the latter in more detail. A nilpotent group is one that may be 
thought of as an almost-Abelian group, in the sense that the commutator 
subgroup is almost trivial. For instance, we know that in quantum 
mechanics we have complementary Boolean algebraic domains, like 
those pertaining to position and momentum. The bounded form of these 
conjugate observables, called the Hermann Weyl form, are constrained 
to obey the canonical commutation relations expressed by means of the 
infinitesimal Planck’s constant, and hence almost commute. These give 
rise to a nilpotent group, called the Heisenberg group. The Heisenberg 
group is of fundamental importance in quantum mechanics and 
essentially constitutes the solvability of the theory in group-theoretic 
terms. In other words, the non-commutativity induced by any two 
conjugate or complementary Boolean domains in quantum mechanics is 
circumvented in an almost-commutative manner by the nilpotency of 
the Heisenberg group, and its attendant solvability. This circumvention 
is technically possible in all cases where we have at our disposal the 
structure of a vector space equipped with a symplectic form. In other 
words, the structure of a nilpotent group, induced symplectically, 
transforms the intrinsic insolvability of two conjugate domains into a 
solvable case. From the perspective of logical conjugation this amounts 
to considering conjugation cycles as infinitesimally small, and thus, 
behaving like covariant differential operators in a precise differential 
geometric sense. 
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The above analysis requires the investigation of the source of 
intrinsic insolvability in groups. It is enough to consider the case of 
finitely generated linear groups, i.e. matrix groups, which are used as a 
concrete representation of abstract groups. In this case, according to a 
well-known theorem of Jacques Tits, called the Tits alternative, a 
finitely generated linear group is either virtually solvable, meaning that 
it contains a solvable subgroup involving a finite descending staircase, or 
it contains a non-Abelian (non-commutative) free subgroup in two 
generators. Thus, we are able to locate the free group in two 
non-commuting generators, denoted by , as the actual source of 

intrinsic insolvability. From the view of logical conjugation,  should 
be associated with non-trivial and non-reducible logical conjugation 
cycles between two complementary Boolean domains. The only way that 
non-solvability can be leveraged or circumvented is through nilpotency, 
as in the case of the Heisenberg group in quantum mechanics. We bear in 
mind that uncertainty relations will always pertain between the 
observables of two complementary Boolean domains. If the associated 
constant of interrelation can be made either infinitesimally small or 
reciprocally very big, then the resultant logical conjugation cycles vanish 
in higher order iterations and the complexity is reducible. It is not an 
accident that both of our fundamental physical theories, to wit the 
theory of relativity and quantum mechanics involve this type of 
constants between conjugate Boolean domains. Thus, from the 
perspective of logical conjugation, the free group in two generators is the 
source of logical conjugation cycles and the group-theoretic property of 
nilpotency is the “golden mean” between non-commutativity and 
commutativity. 
 
44..99  CCAANNOONNIICCSS  FFRROOMM  TTHHEE  LLOOGGIICCAALL  TTOO  TTHHEE  TTEEMMPPOORRAALL  DDOOMMAAIINN  

 
Therefore, it is of high priority to focus our attention on the fundamental 

significance of the non-Abelian free group . The surprising and 
counterintuitive result is that the non-Abelian free group in two 
generators contains copies of all other non-Abelian free groups in any 
finite number of generators as finite index subgroups! Thus, the 
complexity of non-reducible logical conjugation cycles and their 
iterations generated by two complementary (in some appropriate sense) 
gnomons subsumes the whole complexity we may get from any number 
of obstacles! A way to qualify this proposition, whose reference is 
algebraic and derives from logical considerations, is to consider the 

representation of  in three dimensions. 
From this representation, we obtain a valuable and novel 

connection between logic and time, thereby providing the canonics from 
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the logical domain to the temporal domain. More specifically, the notion 
of a logical conjugation cycle is mirrored on the notion of a tripodal link 
that expresses the quality of a prime temporal bond between two 
temporal diastases. In the same way that a logical conjugation cycle 
amalgamates two complementary Boolean domains simultaneously, a 
temporal bond amalgamates two unlinked temporal diastases in the 
present. Moreover, and most importantly, the nilpotency condition of 
solvability transferred to the temporal domain through bonds, provides 
the origin of geometric differential calculus under the algebraic 
commutation rule of two infinitesimal flows at a fulcrum point, being 
bounded at this point. We will examine this path later on in detail, 
together with its ramifications, starting from Hermann Grassmann’s 
theory of extension and its relation with Gottfried Wilhelm Leibnitz’s 
infinitesimal analysis, and culminating with sheaf cohomology. 

The canonics from the logical to the temporal spectral domain, 
through the group , is particularly important in relation to 
algorithmic information theory, and more generally, the concept of 
programs and computability. There are two reasons on which we base 
our claim. The first is the fact that elements of  can be assigned 

complexity lengths. Since every element of  can be uniquely 
expressed as a freely reduced word in the generators and their inverses, 
we may simply define the length of an element as the number of terms in 
this freely reduced expression. This notion of length has the property 
that the length of an element equals that of its inverse element in this 

group. The second is related to the fact that, although the group  has 
exponential growth rate, a deep theorem of Mikhail Gromov shows that 
a nilpotency circumvention, in agreement with the preceding, reduces 
the growth rate to a polynomial one, and thus proves economical for 
computational purposes. 
 
44..1100  QQUUBBIITT  CCOOMMPPUUTTAABBIILLIITTYY::  SSEELLFF--DDEELLIIMMIITTIINNGG  PPRROOGGRRAAMMSS  AASS  CCYYCCLLEESS  
  OONN  TTHHEE  SSPPHHEERREE  

 
The initial motivation of this investigation is based on the profound idea 
conceived by Chaitin, according to which, a key technical point that 
must be stipulated in order for  to make sense is that an input 
program must be self-delimiting. Its total length in bits must be given 
within the program itself. Chaitin points out essentially that this 
seemingly minor point, which paralyzed progress in the field for nearly a 
decade, is what entailed the redefinition of algorithmic randomness. 
Real programming languages are self-delimiting, because they provide 
constructs for beginning and ending a program. Such constructs allow a 
program to contain well-defined subprograms, which may also have 
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other subprograms nested in them. Because a self-delimiting program is 
built up by concatenating and nesting self-delimiting subprograms, a 
program is syntactically complete only when the last open subprogram is 
closed. In essence the beginning and ending constructs for programs and 
subprograms function respectively like left and right parentheses in 
mathematical expressions. 

If programs were not self-delimiting, they could not be 
constructed from subprograms, and summing the halting probabilities 
for all programs would yield an infinite number. If one considers only 
self-delimiting programs, not only is  limited to the range between 

 to  but also it can be explicitly calculated in the limit from below. 
Our main interest in this section focusses on the metaphora 

considering the beginning and ending constructs of self-delimiting 
programs and subprograms in analogy to the left and right parentheses 
in mathematical expressions. It is true that our linear representation of 
strings or words implicates the self-delimiting property by means of left 
and right parentheses. A natural generalization would be to complete 
each such pair of parentheses in the 1-dim line to a circle in the 2-dim 
plane, or equivalently the 1-dim complex line. This extremely simple 
generalization generates two conjugate domains immediately, where 
each one of them corresponds to the choice of orientation on the circle. 
If we do not impose any orientation on a circle, it is as though we are 

working in the modular arithmetic , that is, we recover the bit 
representation of linear strings. Even better, we may complete each pair 
of parentheses in the 1-dim line to a circle in the one-point 
compactification of the 1-dim complex line, i.e. on the 1-dim complex 
projective space, or equivalently the Bernhard Riemann sphere . Can 
we imagine representing self-delimiting programs by means of circular 
strings on the sphere ? 

The choice of the sphere  is not accidental. Without loss of 
generality we may consider the unit sphere , that is imply the 
normalization according to which all points lying on the sphere are of 
unit distance from the origin. The unit 2-sphere  constitutes the 
space of pure states, or equivalently rays, of a 2-level quantum 
mechanical system, called currently a qubit. The unit 2-sphere may be 

thought of as embedded in the usual 3-dimensional space . The 
David Hilbert space of normalized unit state vectors of a qubit is the 
3-sphere , and thus the unit 2-sphere is considered as the base space 
of the topological Heinz Hopf fibration: 
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We note that each pair of antipodal points of  corresponds to 
mutually orthogonal state vectors. The north and south poles are chosen 
to correspond to the standard orthonormal basis vectors  and  

correspondingly. In the case of a spin-  system, these simply 

correspond to the spin-up and spin-down states of this system. 
We consider the unit sphere  as the set of points of 

3-dimensional space  that lie at distance 1 from the origin. Then, the 
non-commutative group  denotes the group of rotation operators 

on  with center at the origin, viz. linear transformations from  
to  represented as  matrices with determinant one. These are 
called orthogonal matrices, characterized by the fact that their columns 

form an orthonormal basis of . Rotations around an axis going 
through the origin are the isometries of 3-dimensional Euclidean space 

 leaving the origin fixed. Note that a  orthogonal 
transformation preserves the inner product for any pair of vectors in 

, and moreover it is an isometry of  that takes the unit sphere  
to itself. 

In this context, we ask the following question: Does there exist a 

representation of the non-Abelian free group in two generators  on 

the unit sphere , which lifts to a unitary representation on ? We 
recall that the existence of such a representation would imply the action 
of non-trivial logical conjugation cycles on  and  respectively. 
Moreover, these logical conjugation cycles would be representable by 
means of the Tripodal link topology. Such a representation definitely 
exists if we are able to locate a subgroup of the non-commutative group 

, which is isomorphic to . 
We will show further on that this is indeed the case. The proof is 

based on the observation that there actually exist rotation operators  
and  about two independent axes through the origin in  
generating a non-commutative subgroup of , which is isomorphic 

to the free group . In other words, there exists an isomorphic copy of 

 in  generated by two independent rotations  and . The 
term independent refers to the requirement that all rotations performed 

by sequences of  and  and their inverses are distinct strings in . 
Actually, we realize that most pairs of rotations in  are 

independent in the above sense, so that even picking  and  
randomly would do. For instance, one could consider two 
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counterclockwise rotations  and  about the -axis and the 

-axis respectively of the same angle . The proof is based 

on showing that no reduced string in the symbols  and  and their 
inverses collapses to the identity transformation (  identity 

matrix). Intuitively, if we choose two counterclockwise rotations  
and  about the -axis and the -axis of the same angle, then this 
specific angle needs to be an irrational number of degrees. More 
precisely, given an initial orientation, if the specified angle is an 
irrational number of degrees, then none of the distinct strings of 

rotations in  performed by sequences of  and  and their 
inverses can give back the initial orientation. Thus, no reduced word in 

 collapses to the identity transformation. 
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non-commutative free subgroup  of  fixes two points in the 

unit sphere , namely the intersection of  with the axis of 
rotation passing through the origin. If we take the union of all these 
points, they form a countable set of points. This reveals not only that an 

action of  on the unit sphere  (as a subgroup of  

generated by  and ) must exist, but that this action is actually free 
on  modulo the countable set of fixed points . 

Thus, we can partition  into a disjoint union of orbits for 

the action of . If we choose a base point for an orbit we may identify 

this orbit with  due to the freeness of the action. Moreover, if a 

countable collection  of points as above is removed from  they 
can be restored by rotations around an axis through the origin which has 

zero overlap with . In this way, the action of the group  via 
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. The crucial point again is that the algebraic irreducibility of the 

commutator  of the rotations  and  generating an 

isomorphic copy of  in  expresses a non-trivial logical 
conjugation cycle. In turn, such a logical conjugation cycles express the 
fundamental property of topological Tripodal non-splittability, or 
non-separability, of these three rotations belonging to the subgroup of 
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Most important, this interpretation provides a topological 
justification of the fact that one cannot specify a finitely additive 
rotation-invariant probability measure on all subsets of the unit sphere 

 simultaneously. In the same vein of ideas, if we consider  

embedded in 3-dim space , we deduce that it is not possible to 

specify a finitely additive measure on  that is both translation and 
rotation invariant, which can measure every subset of , and which 
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invariant, and gives the unit ball a non-zero measure, cannot measure 
every subset of . Thus, it has to be carefully restricted to only 
measuring subsets that can be Lebesgue measurable. 

According to the preceding analysis, since the group of rotation 
operators  contains an isomorphic copy of the free 
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is that topologically, the simply-connected special unitary group 

 is a covering space of the non-simply connected group of 
rotations , and in particular it is a double cover. More concretely, 
there exists a two-to-one surjective homomorphism of groups: 
 

 

whose kernel is given by . 
 

Hence, it follows that there must be an isomorphic copy of  

in . More precisely, if  and  are rotations generating an 

isomorphic copy of  in , and  is the 

covering projection, then  and  generate a free subgroup of the 

form  in , for any  and  with  and . 
Since  is a double cover of  there can only be exactly two 
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The representation of the group  on the unit sphere  is given by 

the free subgroup of rotations of  generated by  and  
according to the above. Concomitantly, this representation lifts to a 
unitary representation on  by the free subgroup of unitary operators 

of  generated by  and . 
Thus, the Hilbert space of normalized unit state vectors of a qubit 

or of a spin-  system carries a unitary representation of the group . 

This means that the algebraic irreducibility of the commutator  

of the unitary operators  and  generating an isomorphic copy of 

 in  expresses non-trivial conjugation cycles. Moreover, 

since the action of the group  by strings of rotations in two 

generators allows to resolve, such that the same lifted action resolves 
 as well, by strings of corresponding unitary operators, we can make 

a conclusion. It is the Tripodal link topological connectivity - by means 
of conjugation cycles – that is transferred through these actions to the 
space of rays  and the space of unit state vectors  of a qubit. 
This is the crux of the non-classical behavior of a qubit and the problem 
arising here is whether the existence of non-trivial conjugation cycles 
can be turned to a novel computational possibility. 

We will outline the first steps towards implementing such a 
computational paradigm. For this purpose, our guiding principle will be 
the implementation of Chaitin’s uncertainty relation. We recall that the 
form of Chaitin’s uncertainty relation reads: 
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coefficients and unit determinant, they also contain a copy of the group 

. So we are going to identify two complex matrices acting as the 

generators of this copy of  using Chaitin’s uncertainty relation in 
the present setting. For this purpose, we assume the existence of a 
positive integer  playing the role of string length measure, such that 

for all , the powers  and , where ,  are 

complex matrices, generate a copy of . This is possible using the 
method of dominant eigenvalues and dominant eigenvectors of matrices. 

We observe that for this purpose we have to diagonalize these 
matrices, a technique which is also based on logical conjugation. In 

particular, we look for two matrices  and , such that:  has 
the dominant eigenvalue  corresponding to a dominant eigenvector 

. This means that the eigenspace of  is -dimensional and all 

other eigenvalues of  have modulus less that . Similarly, let  
take the dominant eigenvalue  corresponding to a dominant 
eigenvector . Finally, we denote the dominant eigenvalues and 
corresponding dominant eigenvectors of  and  by , , and 

, , respectively. Next, we consider the dominant eigenvectors as 
points on the 1-dim complex projective space, viz. equivalently on . 
Then, the dominant eigenvalues/eigenvectors implement the 
requirement that there exist disjoint open sets containing the points , 

, , , denoted by , , , , respectively, such that: There is 
some  with the property that,  sends each of these open 

sets to , and correspondingly for the others, viz.  to ,  to 
 and  to . Now, we think of a finite state computer, with four 

states labelled by , , ,  and an alphabet , , 
,  and transitions rules as described above. It is 

clear that the matrices  and  now generate a copy of the free group 

, and thus we obtain logical conjugation cycles for the formation of 
strings using our alphabet with the prescribed transition rules. 
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55..11  AAPPHHRROOGGEENNEEIIAA::  MMYYTTHHSS  AANNDD  TTHHEEOORREEMMSS  

 
If the history of humankind is viewed from the standpoint of the 
“obstacle-oriented approach” to complexity, pertaining to localizing and 
embracing obstructions of any particular type, a naturally arising 
problematics complicates the border-lines of the most persistent and 
covariant forms of this stance. The character of temporal persistence 
and covariance is meant to serve as a criterion for the Platonic “ousia 
ontos ousa” of history, or “being that truly is”. Surprisingly enough, this 
criterion filters out only two kinds of entities, namely myths and 
theorems. At a first encounter with this provocative claim, there seems 
to be a contradiction, but this is only apparent, stemming mainly from a 
certain type of pre-occupation with “target-oriented” methods instead 
of “obstacle-oriented ones”. Indeed, both myths and theorems become 
noematic if they are obstacle-embracing, they are just different types of 
metaphora in relation to communication. Myths and narratives 
constitute an embodied symbolic process of metaphora around a 
localized obstacle. Mathematical theorems constitute an abstract 
symbolic process of metaphora around a localized obstacle. Although 
“myth” and “math” deceptively seem to occupy opposite sides of the 
linear spectrum forced by “analytic reason”, they are, in fact, antipodally 
inter-related and topologically may be glued together in the projective 
geometric rooting of this linear spectrum, centered around the notion of 
an obstacle. 

In order to articulate this claim, we will consider the dual pair of 
concepts consisting of ambiguity and information in relation to 
communication. On the side of the myth, we will scrutinize the narrative 
referring to the genesis of Goddess Aphrodite according to Hesiod’s 
Theogony. On the side of the mathematical logos, we will scrutinize the 
theorem referring to the genesis of the roots of a polynomial equation by 
radicals according to Galois’ Theory and its far-reaching articulations. 
The remarkable conclusion is that in both cases information emerges as 
“anadyomene” from another level of hypostasis, being in communication 
with the level where the initial obstruction is localized by means of 
bidirectional bridges. 

Following the narrative of Hesiod’s Theogony, the genesis of 
Goddess Aphrodite took place in an extraordinary manner. She emerged 
in the form of a fully grown female figure rising out of the sea foam 
(aphros). Her name Aphrodite, or Aphrogeneia, according to Hesiod, 
originates from the fact that she grew and formed amid the sea foam. 
The epithet anadyomene uncovers the metaphora of Aphrodite’s 
genesis. This is a process of circulation between the Heavenly level 
(Uranus), and the Earthly level (Gaia), which is meant to embrace the 
obstacle of heterogeneous, chimerical and intrinsically incongruent 
constituency of these two levels. The initiator of this obstacle-embracing 
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communicative process is the Titan Chronos, who stands for the 
personification of Time as a unitary circular flow reciprocally bridging 
these two levels into a germinal syzygy. 

According to the myth, Chronos forced the transposition of the 
sperm of Uranus into the sea water, and out of this syzygy a white foam 
spread around the locus of germination in the sea from the immortal 
flesh. In this foam there grew the maiden Aphrodite virtualized, to 
emerge as a fully grown in-formed spectral figure by inverse 
transposition to the level of Gods, thereby completing the temporally 
circulating metaphorical process of anadyomene initiated by Chronos. It 
is important to highlight that the two levels of the myth are not 
hierarchically ordered, meaning that there is no relation of hypotaxis or 
subordination of one level to the other. 

On the contrary, the two levels exist autonomously in parataxis 
and only the unitary circular flow of Chronos binds them through 
reciprocal bridges. The bridge from the Heavenly to the Earthly level is 
the germination bridge, whereas the reciprocal or conceptually inverse 
one is the virtual growth bridge. The latter is characterized as virtual 
because the growth of the figure to emerge as Aphrodite is always 
surrounded by the sea foam, and thus, the growing figure is 
indistinguishable and inseparable from the foam. 

This is crucial for conceiving, both the symmetry implicated by 
the circular unitary flow-action of Chronos, and the emergence of 
Aphrodite as a fully grown in-formed figure only after breaking the 
symmetry of this inter-level communicative flow. Thus she becomes 
separated from the sea foam and distinguished or discerned spectrally 
from it at the level of Gods. 
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55..22 AAMMBBIIGGUUIITTYY:: FFRROOMM GGAALLOOIISS GGRROOUUPPSS TTOO RREESSOOLLVVIINNGG SSPPLLIITTTTIINNGG FFIIEELLDDSS 

Galois’ monumental work focus on the resolution of the problem of 
algebraic solvability of polynomial equations, i.e. equations of the form 

. Of most interest is Galois’ paper entitled “Memoir On the 
Conditions for the Solvability of Equations by Radicals”. In this 
algebraic treatise, he proves that no general formula for the roots of a 
fifth, or any higher degree polynomial equation can possibly be found if 
we employ the usual algebraic operations of addition, subtraction, 
multiplication, division, and applying radicals, i.e. taking roots of the 

degree.
The first novelty of Galois’ method consists in the introduction of 

the group concept, which he devised as a structure that encodes the 
permutations of the roots of a polynomial , which map each 

root onto a conjugate of it, where is a field, called the ground field of 
coefficients.

The second novelty of Galois’ method consists in employing the 
structure of the above group together and in relation to the 
structure of its invariant subgroups under conjugation, in other words,
its self-conjugate or normal subgroups. The underlying reason is that the 
notion of structural divisibility of a Galois group becomes possible only 
with respect to its normal subgroups.

The third novelty of Galois’ method consists in the notion of 
group solvability. The triumph of Galois theory is based on the theorem 
that a polynomial equation is solvable by radicals if and only if the 
corresponding Galois group of the equation is solvable. A solvable group 
is a group whose derived series terminates in the trivial subgroup. 
Intuitively, the derived series is a stratification into group levels 
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together with a descending staircase among these strata formed by 
identifying each subgroup in the descending series with a normal 
subgroup of the previous one. Thus, a group is solvable if by descending 
into lower and lower subgroup strata by division with normal subgroups 
we end up with the trivial subgroup. 

In this state of affairs, the Galois group  corresponding to a 
polynomial , where  is the ground field, can be though of 
as a non-numerical, but structural measure of complexity of this 
polynomial. In turn, the repeated process of division involved in setting 
up the derived series of , by means of normal subgroups, can be 
thought of as a process of complexity reduction until the trivial subgroup 
of  is eventually reached. It is important in this frame of thinking to 
clarify what we mean by a structural measure of complexity as this is 
encoded in the Galois group of a polynomial . The general 
notion of a group is associated with a criterion of symmetry under its 
action. What is the implicated notion of symmetry in this case, and how 
can it be associated with a measure of complexity? 

The answer lies in the observation that the Galois group , 
being the group of permutations of the roots of a polynomial 

, which maps each root onto a conjugate of it, where  is 

the ground field, actually encodes these -transformations of the roots 
of  that cannot be distinguished from the resolution capacity 

afforded by the ground field . In other words, the Galois group  of 
 is an ambiguity group with respect to , and this ambiguity 

structure amounts to a measure of complexity of  in relation to 

the resolving means afforded by . Henceforth, the symmetry 
encapsulated by the Galois group  of  in relation to  can be 
reduced only by possible successive symmetry reductions, by the process 
of divisibility with normal subgroups in a descending fashion, until the 
total symmetry constituting the structural measure of -complexity is 
completely reduced. 

Reciprocally, the same effect can be achieved by successive 
extensions of the ground field  to larger fields that increase the 
resolution capacity afforded by the ground field itself, until eventually 
all roots can become distinguishable. More precisely, given a polynomial 

 of degree , it can be shown that a minimal extension of 

, exists, called the splitting field  of , in which all  roots of 
 can be distinguished (counted with multiplicity). The splitting 

field  of  constitutes in this way the smallest field extension of 

 over which the polynomial  splits or decomposes into linear 
factors. 

G
( ) [ ]p x xÎF F

G

G

( ) [ ]p x xÎF

G

( ) [ ]p x xÎF F
F

( )p x
F G

( )p x F
( )p x

F
G ( )p x F

F

F

( ) [ ]p x xÎF n

F pF ( )p x n
( )p x

pF ( )p x
F ( )p x



192 NATURAL COMMUNICATION

182 
 

For instance, let us consider the classical case of the polynomial 

, i.e. , where  is the ground field of 
coefficients of . We know that this polynomial does not have any 

roots in the field of real numbers . In particular, the two roots of the 
polynomial equation , namely  and , do not belong into 
the ground field of coefficients of , but can be located in the 

minimal field extension of  into . In any case, we also 

know that the field  is algebraically closed. In other words, if  is an 
algebraic extension of , then . Conceptually, the roots  and 

 are not distinguishable from the resolution capacity afforded by the 
ground field , so that the minimal field extension from the ground 
field  to the algebraically closed field , i.e. , is required to 
make these two roots distinguishable. 

Let us explore now, how the Galois group of the minimal field 
extension  emerges. There are two equivalent ways to describe 
it. The first one is the original method devised by Galois, to describe the 
Galois group of the field extension  as a group of permutations 

of the roots of the polynomial equation , which map 
each root onto a conjugate of it. The second one is the method devised 
by Richard Dedekind, i.e. to consider the group of automorphisms of the 
splitting field , obtained by the minimal field extension , 
which leaves the ground field  fixed. We note that an automorphism 
of this form is a one-to-one and onto homomorphism from  to itself 
that leaves  fixed, or equivalently, invariant. The connection 
between these two equivalent viewpoints, comes into force if we 
interpret the Galois group of permutations of roots as a subgroup of a 
symmetric group. In general, thinking about the Galois group of a 

polynomial with degree  as a subgroup of the symmetric group  
captures the original viewpoint of Galois, and provides the connection 
with Dedekind’s reformulation of Galois theory. 

The symmetric group on  letters is realized as a group of 
permutations of these  letters, so may identify a symmetric group 
element  with the corresponding permutation. In general, associating 
to each element of the Galois group its permutation on the roots of the 
polynomial, viewed as a permutation of the subscripts of the roots of the 

polynomial when we list them in a particular order as , ,   
is an injective homomorphism from the Galois group to the symmetric 

group . Two different choices for indexing or ordering the roots of 
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the polynomial can lead to different subgroups of the symmetric group 

, but they will always be conjugate subgroups. 

In general, let , ,   be the  distinct roots of 

 in the minimal field extension of , i.e. in the splitting field 

 of , in which all distinct  roots of  can be 
distinguished. Then the Galois group  permutes these roots. Now, 
any polynomial expression in these roots, which is left invariant under 
any permutation of the roots, and thus is a symmetric polynomial 
expression thereof, is located in the ground field . The basic examples 
of such expressions are the elementary symmetric functions in the roots. 
It is precisely in this sense that the  roots of  are 
indistinguishable from the resolution capacity afforded by the ground 
field of coefficients , that is, in terms of all polynomial expressions 
symmetric with respect to  in the roots of . In other words, 
and considering the simple case of two roots, the existence of at least 
one non-symmetric polynomial expression with respect to , meaning a 
polynomial expression not preserved by the permutation of these roots, 
would provide the means to distinguish between them. 

We are ready now to come back to our initial problem; how to 
describe the emergence of the Galois group of the minimal field 
extension . From Dedekind’s perspective, only two 
automorphisms of the splitting field  exist, obtained by the minimal 
field extension , which leaves the ground field  invariant, 
namely the identity automorphism , and the complex conjugation 
automorphism . In particular, if  is such an automorphism of 

, then it is completely determined by the action of  on , ; i.e. 

if , then  for all , whereas if , then 

 for all . Thus, the Galois group of  over  is a 
group consisting of two elements, namely complex conjugation and the 
identity map. From Galois’ perspective, the Galois group of the field 
extension  is the group of permutations of the roots of the 

polynomial equation , which map each root onto a 
conjugate of it. There are only two permutations, namely the identity 
permutation and the complex conjugation permutation, and clearly any 
polynomial expression in the roots  and , which is left invariant 
under any permutation of these two roots, and thus provides a 
symmetric polynomial expression in these roots, is located in the ground 
field . Thus, the ground field  remains invariant under the action 
of the Galois group  consisting of the identity and the complex 
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conjugation permutation, and therefore, the two roots  and  are 
indistinguishable from the resolution capacity afforded by . 

We conclude that the Galois group  of the polynomial 

equation  is an ambiguity group with respect to , 
and this ambiguity structure, induced by the two possible permutations 
of the roots in the present case, defines a measure of complexity of  

in relation to the resolving means afforded by . This 
group-theoretical measure of complexity expresses that the two roots  
and  are indistinguishable from the resolution capacity afforded by 

. They eventually become distinguishable only by a process of field 
extension, which terminates in the minimal field extension , 
where  is identified as the splitting field of . In turn, the 

ambiguity group  is identified as the group of automorphisms of the 

splitting field , which leaves the ground field of coefficients  
invariant, and thus fixes it. 

Let us now consider a general polynomial equation of the form 
. The proper starting-level to settle the question referring to 

the idea of algebraic solvability of  by radicals is the theory of 
algebraic fields. More precisely, if we start with the ground field of 

coefficients , we may produce an unfolding sequence of 

successive field extensions ,    by the adjunction of surds, 

so that eventually  emerges as the splitting field for . The 
theory of algebraic groups, on the other side, due to their multiplication 
and division properties, set the proper level to examine the structure of 

such extensions by surds, as follows: When the field  arises from  

by the adjunction of the surd , then the corresponding group  

is a normal subgroup of the group , with an Abelian factor group. 
Eventually, one obtains the principal theorem of Galois theory, 
formulated as follows: 

The polynomial equation  is solvable by radicals if and 
only if its Galois group  is solvable, that is if a descending series of 

groups exists, such that  is a normal subgroup of the group  

with an Abelian factor group, and  is , while  consists of 
the identity alone. 
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We stress that the Galois group  is identified with the 

group of those automorphisms of the splitting field  for  that 

preserve the ground field of coefficients , and thus they fix it. 
According to our interpretative scheme, the descending series of groups 

starting from the Galois group  until the trivial group  is 
eventually reached, represents all the successive stages of symmetry 
reduction. That is to say all the successive stages of complexity or 

ambiguity reduction with respect to the ground field  until all 
the roots of  become distinguishable in the inverse ascending 

series of field extensions from the ground field  to the splitting 

field . 
We conclude that an inverse correspondence obtains between 

the descending series of groups starting from the Galois group  

and terminating at the trivial group  with the ascending series of 

fields starting from the ground field  and terminating at the 

splitting field  with respect to any polynomial equation of the form 
 solvable by radicals. The crucial points to notice are the 

following: 
 
i As the Galois group is the group of all those automorphisms of 

the splitting field for  that preserve the ground field of 
coefficients, in the same way a subgroup of the Galois group is a 
group of automorphisms of the splitting field for  that 
preserve an intermediate extension of the ground field of 
coefficients; 

ii The internal symmetry or structural complexity reduction of the 
Galois group takes place by division with a normal subgroup. 
Intermediate extensions of the ground field corresponding to a 
normal subgroup of the Galois group are called Galois field 
extensions; 

iii There is a one-to-one correspondence between Galois field 
extensions and normal subgroups of the Galois group; 

iv The Galois group -with normal subgroups structure- corresponds 
bijectively in an inverse manner to the ground field -with Galois 
extensions- structure. 
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55..33 EEQQUUIIVVAALLEENNCCEE:: FFRROOMM TTRRAANNSSFFOORRMMAATTIIOONN GGRROOUUPPSS TTOO GGEEOOMMEETTRRIICC KKIINNDDSS 

The central conceptual aspect of the so called Erlangen program, 
conceived by Felix Klein, is expressed by the thesis that the objective 
content of a geometric theory is captured by the group of 
transformations of a space. The crucial insight of Klein’s program is that 
transformation groups constitute an algebraic encoding of a criterion of 
equivalence for geometric objects. Moreover, a transformation group 
determines the notion of what it is to be a meaningful property of a 
concrete geometric figure. Therefore, from the Erlangen perspective, a 
geometric figure may be conceived from an abstract algebraic viewpoint 
as a manifold acted upon transitively by a group of transformations. The 
decisive aspect of the criterion of equivalence that a transformation 
group furnishes is its use in characterizing kinds or types of geometric 
figures and not particular instances of these figures.

The above leads to the idea that geometry, in an abstract sense, 
refers to kinds of figures, which are specified by the transformation 
group of the space. Each kind can have infinitely many instantiations, 
thus the same geometric form may be manifested in many different 
ways, or else assume multiple concrete realizations. This reveals an 
important ontological dimension of Klein’s program, since a 
transformation group of a space provides an efficient criterion to 
abstract a geometric kind from particular geometric instantiations, 
whereas the specific details of these instantiations, irrespective of their 
features as instances of a geometric kind, is irrelevant. In the light of 
this, a geometry is specified by a group and its transitive action on a 
space, which remarkably can be presented in a purely algebraic way as a 
group homomorphism from the transformation group to the group of 
automorphisms of the underlying space. Conceptually speaking, the 
form of a geometric theory is encoded in the transitive action of a 
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respective transformation group. Different particular geometric 
configurations are the same in form if and only if they share the same 
transformation group. In other words, the transitive group action 
provides a precise characterization regarding matters of geometric 
equivalence. 

Mathematically, the above thesis is expressed as the principle of 
transference, or principle of isomorphism, induced by a transitive group 
action on a space. A transfer of structure is taking place by means of an 
isomorphism providing different equivalent models of the same 
geometric theory. Philosophically, an Aristotelian conception of space 
underpins this thought, according to which space is conceived as being 
matter without form. The form is brought about by the action of a 
concrete transformation group. Still, more important, the space itself 
may be considered as the quotient of the transformation group over a 
closed subgroup of the former. A change in algebraic form, or else, a 
change of transformation group signifies a change in geometry, in the 
sense that the equivalence criterion encoded in the group action is altered. 

Thus, moving from a group to a larger one amounts to a change in 
the resolution unit of figures, expressed as a relaxation of the geometric 
equivalence criterion involved in the procedure. In effect, the criterion 
of equivalence serves as a powerful classification principle for 
geometries in relation to group hierarchies. A crucial aspect of the 
Erlangen program is that it does not specify which underlying manifolds 
exist as spectra of corresponding observable algebras, but deals with the 
possible existence of geometric structures on these manifolds in relation 
to the action of form-inducing transformation groups upon them. This 
leads naturally to a bidirectional relation of dependent-variation 
between transformation groups and geometric structures on manifolds. 
This bidirectional relation conveys the information that two spaces 
cannot have different transformation groups without differing as 
geometric structures, whereas the converse is clearly false. 
 
55..44  MMUULLTTII--CCOONNNNEECCTTIIVVIITTYY::  FFRROOMM  OOBBSSTTAACCLLEESS  TTOO  TTHHEE  FFUUNNDDAAMMEENNTTAALL  
  GGRROOUUPP  OOFF  LLOOOOPPSS  

 
In the early 19th century, Jules Henri Poincaré attempted to probe the 
connectivity problem of a topological space by using paths, and in 
particular, loops based at a point of this space. This approach gave rise to 
homotopy theory, and in particular, led to the notion of the fundamental 
group of a topological space. The fundamental group at a point of a space 
is defined in terms of the set of based loops at this point modulo 
homotopies. The notion of homotopy is based on a homeotic criterion of 
identity of based loops, which is expressed in terms of invariance under 
continuous distortion and shrinking. 
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The most basic example is the example of the unit circle . If we 
consider homotopy classes of based loops winding around the circle, then 
they are classified by the number of times winding around the circle. 
Thus, the fundamental group of the circle is the additive group of the 
integers . If we think of the real line  as a helix in 3-d space 
covering the unit circle  depicted in 2-d space below, then the 

continuous surjective group homomorphism  is the covering 
projection, which is given by the exponential map. In other words, the 
exponential map wraps the real line anticlockwise around the unit circle. 
We notice that the real line  is simply connected, thus it is a universal 
covering space of . Moreover, the symmetries of  leaving the circle 

 invariant is given by , where  in  is the winding 

number, obtaining in this manner the group isomorphism . 
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In general, the set of equivalence classes of based loops with respect to 
continuous distortion and shrinking can be always endowed with a 
multiplicative group structure under the operation of composition of 
paths. If the topological space is path-connected, meaning that any two 
points may be joined by a path, then the isomorphic class of the 
fundamental group does not depend on the selection of the base point, 
since the respective fundamental groups at two different base points can 
be made isomorphic. A path-connected space is always connected. The 
crucial thing is that it is simply-connected, and thus a geometric space, if 
it has a trivial fundamental group. 
 
55..55  DDIISSCCRREETTEE  FFIIBBRRAATTIIOONN::  FFRROOMM  CCOOVVEERRIINNGGSS  TTOO  TTHHEE  MMOONNOODDRROOMMYY  AACCTTIIOONN  

 
A covering space of a base topological space is a local homeomorphism, 
such that for each point on the base space, the inverse image of an open 
set containing this point is a disjoint union of open sets in the covering 
space lying over the base, each of which is mapped homeomorphically on 
this open set, as it is displayed schematically below. In particular, if the 
base space  is connected, then the fibers of the covering space 
projection  are all homeomorphic to the same discrete space 

, such that locally,  is isomorphic with . 
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The most important examples of covering spaces arise from group 
actions on topological spaces. Let  be a group acting continuously 
from the left on a topological space . The action of  is even if each 
point  has some open neighborhood  such that the open sets 

 are pairwise disjoint for all . 
We recall that if a group  acts from the left on a topological 

space , one may form the quotient space  whose underlying set 
is the set of orbits under the action of the group  and the topology is 
the finest one that makes the projection  continuous. If  
is connected, then the qualification of the action of  on  as even, 
according to the above, makes the surjective projection  a 
covering one, or equivalently,  becomes a covering space of . 
For example, let the group  act on the space of the reals  by 
translations . In this case, we obtain  as a covering space 
of the space of orbits , where the latter is homeomorphic to the 
circle . 

Given a covering projection , where the base  is 
locally connected, we may consider the group of automorphisms of the 

G
Y G

y YÎ U
gU g GÎ

G
Y /Y G

G
Y!Y /G Y

G Y
Y!Y /G

Y /Y G
Z R

x x n+! R
/R Z

1S
p :Y! X X



201CIRCUMVENTING COMPLEXITY

191 
 
covering space  compatible with the projection , denoted as 

. We note that for each , the fiber  is mapped 
onto itself under the (left) action of the group . The 

important thing is that if the covering space  is connected, then the 
action of the group  on  is an even action. Not only this, 
but inversely, if  is a group whose action is even on a connected 
space , the group of automorphisms of the covering space  
compatible with the projection , i.e.  is identical 
with . 

The objective posed by Alexander Grothendieck was to explore 
how Galois’s theory can admit a natural instantiation in this context. 
The initial simple observation is that in the Galois theory of field 
extensions if we think of the base field as a base point, then a finite 
separable extension of this field should be thought of as a discrete set of 
points mapping to this base point. Galois theory then furnishes this 
discrete set of points with a continuous action of the Galois group which 
leaves the base point fixed. In this state of affairs, it is a naturally 
emerging idea to consider as a base not just a point but a more general 
topological space. The role of field extensions would then be played by 
certain continuous surjections of the type discussed above, called 
covering space projections, whose fibers are discrete spaces. 

The main thing to highlight in Grothendieck’s perspective on 
Galois theory is that he follows the original Galois conception of the 
Galois group of a field extension as a group of permutations of the roots 
of a corresponding polynomial equation, which map each root onto a 
conjugate of it. Thus, there exists an action of the Galois group of the 
considered field extension via permutation of the roots of the 
corresponding polynomial equation. Grothendieck observed that this 
action is characterized by two important properties. First, it is a 
transitive action, and second, it is a continuous action if the Galois group 
is viewed as a topological group. Based on these two properties of the 
action of the Galois group on the finite set of roots of the polynomial 
equation, he proved the following correspondence, setting up the ground 
for generalizing the initial context of application of Galois theory: 

There is a one-to-one correspondence between isomorphism 
classes of finite (separable) extensions of a base field and finite sets 
equipped with a continuous and transitive action of the Galois group by 
permutations. 

The generalization amounts to introducing the notion of a Galois 
covering space  as analogous to the notion of a Galois 
extension of a base field, which is enforced by considering the even 
action of the group of topological automorphisms  as 
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analogous to the action of the corresponding Galois group in the field 
case. In this manner, a connected covering space  is qualified 
as a Galois covering space if and only if the group  acts 
transitively and continuously on each fiber of  playing the 
role of a topological Galois group in this setting. Equivalently, we have a 
Galois covering space if and only if each orbit of the quotient 

 is identical to a whole fiber of . 
Then, the fundamental theorem of Galois theory in the case of 

(finite) field extensions, according to which, the Galois group-with 
normal subgroups structure- corresponds bijectively and inversely to the 
ground field-with Galois extensions structure, can be transcribed in the 
topological setting as follows: 

The topological Galois group -with normal subgroups structure- 
corresponds bijectively in an inverse manner to the base topological 
space -with Galois covering spaces structure. 

The next step is to examine how the covering principle, fits and 
gets naturally unified with the Galois metaphora in the context of the 
topological generalization of Galois theory by Grothendieck, according 
to the above. Ultimately, the covering principle targets the eventuation 
of the universal covering space, characterized uniquely by the property 
of simple-connectivity. This is the key notion in the present case if it can 
be qualified appropriately through some group theoretic structure that 
can assume the role of a topological Galois group. Recalling from 
Poincaré’s metaphora that a path-connected topological space is 
simply-connected if it has a trivial fundamental group, the eventuation 
of the universal covering space can be transcribed group-theoretically 
thanks to the notion of the fundamental group of the base space, as 
targeting the annihilation of the fundamental group of the base. 

The annihilation of the fundamental group of the base space can 
be interpreted as a process of complexity contraction, or symmetry 
reduction, in the Galois theoretic sense, if and only if there exists an 
even, transitive and continuous action of the fundamental group on each 
fiber of the universal covering space . If this is the case then 
the fundamental group of the base space actually plays the role of a 
topological Galois group, whose symmetry is reduced in successive 
stages by division with normal subgroups corresponding to Galois 
covering spaces; Ultimately the whole symmetry is completely reduced 
by unfolding to the universal covering space characterized by 
simple-connectivity, which thus bears a trivial fundamental group. 

In other words, the maximal ambiguity engulfed in the 
fundamental group of the base space at a marked point, interpreted as a 
structural measure of multiple-connectivity characterizing the 
homotopic complexity of the base at this point due to its prospective 
qualification as a topological Galois group, can be entirely eliminated by 

p :Y! X
( | )Aut Y X

p :Y! X

/ ( | )Y Aut Y X p :Y! X

p :Z! X



203CIRCUMVENTING COMPLEXITY

193 
 
unfolding to the simply-connected universal covering space of the base 
topological space. 

It remains to examine if there actually exists an even, transitive 
and continuous action of the fundamental group on each fiber of the 
universal covering space , qualifying it as a topological Galois 
group. The fact that such an action actually exists is due to the two most 
important properties of a covering space, namely the path-lifting 
property and the homotopy-lifting property from the base to the fibers of 
a covering space. 

The main idea is that both paths and loops (belonging to a 
homotopy class of the fundamental group) on the base space can be lifted 
uniquely from the base to the fibers of a covering space. In particular, if 
we consider a based loop at a marked point of the base space, then its 
unique lift on a covering space is not necessarily a loop, but it is always 
going to be a path whose starting and ending point belong to the same 
fiber of the covering space that projects to the marked point of the base, 
where the loop is based. Since such a based loop is an element of a 
homotopy class in the fundamental group at the marked point, the 
transition from the starting to the ending point of the fiber over the 
marked point induced by the lift of this based loop, amounts to an even, 
transitive, and continuous action of the fundamental group at the 
marked point on the fiber of the covering space over this point. This 
action is called the monodromy action of the fundamental group (at the 
marked point) on the fiber of the covering space over this point. 

Grothendieck proved that the monodromy action actually gives 
rise to a functor from the category of covering spaces over the base space 

, where a marked point has been depicted, towards the category of 
sets equipped with a left action of the fundamental group at this point. 
This takes place by sending a covering space  to the fiber 

 over this marked point, called the fiber functor at the marked 
point. Essentially the fiber over a marked point encapsulates the global 
connectivity depth of this point in the presence of topological obstacles. 

There is a subtle indirect self-referential metaphora regarding 
the notion of a point in a topological space that is worth explicating. 
More precisely, the notion of a point in a topological space is only 
implicitly assumed, and thus it needs to be articulated through the basic 
topological characteristic, which is connectivity in the presence of 
obstacles. The metaphora from the topological domain of connectivity to 
the algebraic domain of the fundamental group, culminating in the 
notion of a covering space, pertains to the level of points by means of the 
monodromy action that eventually indirectly articulates a point through 
its fiber. 

The fiber functor at a marked point of the base space, induces the 
following categorical equivalence: 
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There exists an equivalence between the category of covering 
spaces over the base space  and the category of sets equipped with a 
left action of the fundamental group at the marked point, such that 
connected covering spaces correspond to sets with a transitive left 
action of the fundamental group at the marked point, and Galois 
covering spaces correspond to coset spaces of normal subgroups of the 
fundamental group at the marked point. 

In this way, we obtain the following unification of the covering 
principle with Galois theory in the current topological setting: 

The fundamental group of a base topological space (where a 
marked point has been depicted) -with normal subgroups structure- 
corresponds bijectively in an inverse manner to the base topological 
space -with Galois connected covering spaces structure-. 

The only condition for the validity of Grothendieck’s theorem, 
establishing the role of the fundamental group as a Galois group in the 
setting of connected covering spaces, is that the base space is connected 
and each point of this space has a basis of simply connected open 
neighbourhoods. 

Now, if the Galois covering space is a universal simply-connected 
covering space of the base space  where a marked point  has been 

depicted, denoted by means of the covering projection , 
then it corresponds to a set equipped with a left transitive action of the 

whole fundamental group at this point , or else a -set. 
This action is of the Galois-type since it induces permutations of all the 
elements of the universal covering space fiber projecting to the marked 
point  in the base. Thus, conceptually, it is naturally isomorphic with 

the group of automorphisms of the universal covering space  

compatible with the projection , denoted as . In this way, 

the Galois action of  of the universal covering space fiber 
projecting to the marked point  in the base is identified with the 
monodromy action of the fundamental group (at the marked point) on 
the fiber of the universal covering space over this point. 
 

X

X x

p : Xx
!! X

1( , )X xp 1( , )X xp

x

Xx
!

p Aut(Xx
! | X )

Aut(Xx
! | X )

x



205CIRCUMVENTING COMPLEXITY

195

 
55..66 LLOOCCAALLIIZZAATTIIOONN:: SSHHEEAAVVEESS AANNDD TTHHEE CCIIRRCCUULLAATTIIOONN FFRROOMM TTHHEE LLOOCCAALL 
 TTOO TTHHEE GGLLOOBBAALL 

The concept of a sheaf is based on two fundamental pillars. The first 
refers to the notion of a locally defined element of an algebraic structure, 
whence the second refers to the gluing or pasting conditions of these 
locally defined elements together. The concept of locality is introduced 
by means of an appropriate topology, or more generally, in terms of an 
appropriate covering system. The sheaf is understood as ubiquitious to 
address the precise manner in which locally defined elements, organized 
in terms of the structure of groups, or modules, or algebras, or even sets, 
can be topologically extended from the local to the global. They are thus 
collated compatibly into global elements over a partially ordered covering 
system, like the one defined by the open covers of a topological space.

In this sense, a sheaf may be thought of as a continuously variable 
algebraic structure, whose continuous variation is expressed in terms of 
its sections over the local covers of a global topological space. The 
existence of the latter is only implicitly assumed, since the actual 
objective of a sheaf is the topological articulation of the points of this 
space through the compatible amalgamation and extendibility of the 
sections from the local to the global. Thus, essentially the notion of a 
sheaf targets the nature of points in a topological space in the presence 
of obstacles to connectivity.

The amalgamation, this process of gluing, is conducted by the 
formation of appropriate equivalence classes, called germs of sections of 
a sheaf, which are defined over a partially ordered family of covers of the 
implicitly assumed global topological space. A section of a sheaf, which is 
defined over a local cover may be thought of as a partially defined, 
continuously variable functional relation, whose degree of specificity 
depends on the spectral resolution afforded by the corresponding cover.
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One of the most interesting aspects of the sheaf concept in 
comparison to the former set-theoretically articulated notion of a 
topological space is that a sheaf actually captures the model of a 
topological space in its spectral becoming. Given that a topological 
space, for instance a manifold, is physically utilized to represent the 
event or state structure of a physical theory corresponding to the 
evaluation of observables, its associated sheaf model pertains to its 
actual taking place, i.e. to its actual constitution by amalgamating 
compatibly local observables into global ones. This is because the 
underlying notion of a global topological space, referring to its structure 
of points, both standard and singular, is initially only implicitly assumed, 
and then, step-by-step induced indirectly by completion via the germs of 
the sheaf. This culminates in extracting the invariant information 
pertaining to these germs after their integration. 

In this sense, we should emphasize that a sheaf model of a space 
does not have a local structure defined by its points, which are assumed 
to be absolute and pre-existing according to former set-theoretic lines of 
reasoning. In contrast, the local structure is considered as being 
intrinsically continuous with respect to the partially ordered covers of 
this space. A closed partially ordered family of intersecting local covers, 
capable of gradually unraveling the invariant information that germs 
bear at a point, acquires the meaning of a temporal order. The algebraic 
structure of germs at a point subsumes in this way all the contextual 
information in relation to this point. 

The sheaf completion property at a point is tantamount to the 
integration of these germs, though of as expressing differentially the 
local or infinitesimal variations around this point. Eventually, this is 
precisely the spectral resolution process that characterizes not only the 
underlying point itself sheaf-theoretically, but also its genetic 
constitution and variation in relation to the considered temporal order. 
This is because the global characterization of a point, for example of a 
physical state or an event, is the final result, the ichnography, or 
technically the trace of a continuous unfolding process of genetic 
constitution in terms of granular elements. These granules are precisely 
the germs of sections around that point, each one of which bears the 
resolution capacity of their cover-horizon. Therefore, germs incorporate 
all their compatible subcovers within the pertinent temporal order. 

Since Jean Leray’s initial conception of the notion of a sheaf, and 
Grothendieck’s articulation of the same concept, the various examples 
and applications of sheaves have come to play a major role in such 
diverse fields of mathematics as several complex variables, algebraic 
geometry, algebraic topology, and differential geometry. This is 
especially true for Grothendieck’s contribution, which generalized the 
notion of sheaves beyond the realm of topological spaces, making it 
applicable over general category-theoretic sites. In sum, categories 
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equipped with covering systems, called Grothendieck topologies, has 
created a wealth of new models enriched with the power of the methods 
of homological algebra. 

The algebraic topological ubiquity of the sheaf concept is based 
on the realization that, since it is possible to localize standard algebraic 
notions, such as homomorphism, kernel, image, subobject and quotient 
object sheaf-theoretically, in such a way that these concepts have 
essentially the same meaning as in abstract algebra, one can interpret 
them from a categorical standpoint, and infiltrate all the constructions 
of homological algebra through sheaf theory. The resulting category of 
sheaves has the same classical properties as the category of Abelian 
groups, or the category of modules. More precisely, one can define for 
sheaves direct sums, direct products, tensor products, inductive limits, 
and all other related concepts. 

For this reason, the apparatus of sheaf theory is able to penetrate 
into various fields of mathematics providing an effective algebraic tool 
especially in those areas which ask for global solutions to problems 
whose hypotheses are local. This is due to the fact that there is a natural 
definition of the cohomology of a site, that is, in the simplest case of a 
topological space with coefficients in a sheaf. In particular, 
Grothendieck’s insights and formulations led to the crystallization of the 
idea that the natural argument of a cohomology theory is a pair 
consisting of a global topological space, or more generally a 
category-theoretic site, together with a sheaf of coefficients defined over 
it, rather than just the space itself. In point of fact, and since the 
topological space is only implicitly assumed, the major role is played by 
the means of measuring and spectrally resolving this space over its local 
covers, i.e. by the pertinent sheaf of coefficients. This realization has 
been transferred to the field of complex analysis, and more recently to 
the field of differential geometry by the development of the geometric 
theory of vector sheaves, which are equipped with a connection, 
according to the framework of Anastasios Mallios, called Abstract 
Differential Geometry (ADG). Since then, it is a common topos that the 
sheaf gauge of algebraic-topological localization and extendibility 
sought-after is always provided by sheaf cohomology. 

Cohomology has been invented as an efficient algebraic 
technique of assigning global invariants to a topological space, or more 
generally, to a categorical site, for the purpose of capturing 
group-theoretically its most important shape-related characteristics in a 
homotopy-invariant way. In particular, the cohomology groups encode 
the global obstructions for extending sheaf sections from the local to the 
global level, for example, extending local solutions of a differential 
equation to a global solution. 

For instance, Georges de Rham cohomology theory measures the 
extent that closed differential forms fail to be exact, and thus, it qualifies 
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the obstruction to integrability group-theoretically, since according to 
the lemma of Poincaré, every closed differential form is locally exact. 
The de Rham theorem asserts that the homomorphism from the de 
Rham cohomology ring to the differentiable singular cohomology ring, 
which is given by the integration of closed forms over differentiable 
singular cycles, is a ring isomorphism. The sheaf-theoretic understanding 
of this deep result came after the realization that both the de Rham 
cohomology and the differentiable singular cohomology are actually 
special isomorphic cases of sheaf cohomology with values in the constant 
sheaf of the reals. In particular, it has been also clarified that the de 
Rham cohomology of a differential manifold depends only on the 
property of paracompactness of the underlying topological space. 

Aside from the cohomological machinery associated with the 
algebraic theory of sheaves, the general process of transition from the 
constant to the variable takes place by substituting global rigid 
set-theoretic algebraic structures with localized continuous 
sheaf-theoretic algebraic structures. It is in this precise sense that a 
sheaf may be thought of as a continuously variable set, whose 
continuous variation is enacted over the employed local covers of a 
topological site, such that local sections bear the capacity to interlock 
together in their extendibility from the local to the global. These local 
covers are required to obey certain topological closure conditions, which 
in fact, generalize the definition of a topology formulated in terms of 
open sets covering a classical topological space. 

From a physical standpoint, we are forced to consider the 
conditions of localization of physical observability, to elevate 
observables from the topos of sets to an appropriate topos of sheaves 
with respect to a covering system of a global site. The idea is that the 
global is not directly accessible, and thus, information can only be 
qualified and quantified sheaf theoretically, i.e. in terms of pasting 
conditions, from local measurements taking place over the covers of this 
site. Intuitively speaking, this amounts to a new type of relativization 
pertaining to the local behavior of observables as opposed to their 
classical point behavior due to the obstacle erected by objective 
indistinguishability, or intrinsic randomness, or non-subjective 
uncertainty. 

It is useful here to recall that in the guiding case of a topological 
space, the notion of a topology provides the means to talk about what a 
continuous function is between topological spaces. A function is said to 
be continuous if and only if the inverse image of every open cover of the 
range is an open cover of the domain topological space. This formulation 
is an attempt to capture the intuition that there are no breaks or 
separations in a continuous function. This being so, it is instructive to 
highlight the following: 
 



209CIRCUMVENTING COMPLEXITY

199 
 
i The definition of a topology on a space is solely used for the 

formalization of what a continuous function is on that space, 
ii the continuity of a function is a property which is determined 

locally, that is only by reference to the open covers of a space. 
 
This means that due to the variability of open covers in the topology the 
property of continuity of a function should respect the inverse algebraic 
operations of restriction and unique extension with respect to the open 
covers of a covering system. Thus, a continuous function can be 
restricted consistently to open subcovers of any open cover in the 
topology and inversely extended by gluing uniquely together all its local 
restrictions. This is the crucial conceptual insight in relation to the notion 
of continuity that is incorporated in the technical definition of a sheaf. 

The above insight referring to the precise formulation of the 
property of continuity may be generalized in two directions: Firstly, 
instead of open covers of a topological space we may consider 
generalized covers under the constraint that they collectively obey 
topological closure conditions analogous to the ones used for open 
covers. Secondly, instead of functions varying continuously over local 
covers, we may consider generalized functional relations, which are 
precisely the sections of a sheaf. We note that local sections of a sheaf 
depict functional relations relatively to a local cover. From this 
viewpoint, a sheaf is essentially the totality of its sections, 
comprehending both the local and the global in case that the latter 
actually exist. 

Thus, in terms of sections, what actually matters is their 
consistent interrelation as well as their respective pairwise interlocking 
properties with respect to the local-global distinctions subsumed by the 
underlying covers. In particular, the operation of restriction of sections 
is meaningful with respect to nesting local covers under intersection, 
whereas the operation of extension or gluing of sections is meaningful 
with respect to compatible pairwise intersections of sections over their 
respective local covers, followed by extendibility of a section by another 
section over the union of their covers. We note that if only the 
compatibility property of sections under restriction for nested local 
covers is satisfied, then we obtain a weaker structure called a presheaf. 
In cases where the compatibility property of sections under extension is 
also satisfied, then we obtain a separated presheaf. Only in case that the 
operation of extension results in a unique gluing of sections, that is local 
sections can be uniquely glued together, a separated presheaf becomes a 
sheaf. 

As a result, in general, there will be more locally defined or partial 
sections than globally defined ones, since not all partial sections need be 
extendible to global ones. Nevertheless, a compatible family of partial 
sections uniquely extends to a global one, or in other words, any 
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presheaf uniquely defines a sheaf. More precisely, for the leading 
example of localization with respect to the open covers of a topological 
space we have the following basic notions: 

A presheaf  of sets on a topological space , is constituted as 
an information structure in relation to this space, as follows: 
 
i For every open set  of , there is defined a set of elements 

denoted by ; and 

ii For every inclusion  of open sets of , there is defined 
a restriction morphism of sets in the opposite direction: 

 
 (1) 

such that: 
 

a  = identity at  for all open sets  of ; and 

b  for all open sets . 
 

Usually, the following simplifying notation is used: 

. 

A presheaf  of sets on a topological space , is defined to be 

a sheaf if it satisfies the following two conditions, for every family , 

, of local open covers of , where  open set in , such that 

: 
 
i Local identity axiom of a sheaf: Given  with 

 for all , then ; and 

ii Gluing axiom of a sheaf: Given , , , 
such that: 

 
 (2) 

 
for all , then there exists a unique , such that: 

 and . 

If we consider the partial order of open covers of a topological 
space  as a category denoted by , where all arrows are 

inclusions, then  denotes the contravariant presheaf/sheaf functor 
that assigns to each open set  a set in the category . We 
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note that the above definitions hold if instead of presheaves/sheaves of 
sets we consider presheaves/sheaves of algebraic structures, for example 
groups, algebras over a field, vector spaces over a field or modules over 
an algebra. 

As the most basic example, if  denotes the contravariant 
presheaf functor that assigns to each open set , the commutative 
and unital algebra of all real-valued continuous functions on , then 

 is actually a sheaf. This is clear since the specification of a topology 
on , and hence, of a topological localization system on ), is 

solely used for the definition of the continuous functions on , to be 
thought of physically as observables on . 

Thus, the continuity of each function can be determined locally. 
This means that continuity respects the operation of restriction to open 
sets, and moreover that continuous functions can be collated in a unique 
manner, as is required for the satisfaction of the sheaf condition. More 
precisely, the sheaf condition in this case means that the following 
sequence of commutative algebras is left exact; 
 

 (3) 

 
Let us further assume implicitly that  is a point of a 

topological space . Moreover, let  be a set consisting of open 
covers of , containing , such that the following condition holds: 
For any two open covers , , containing , there exists an open 

cover , contained in the intersection . We may say that  

constitutes a basis for the system of open covers around . We form the 
disjoint union of all , denoted by; 
 

 (4) 

 
Then we can define an equivalence relation in , by requiring that 

 for , , provided that they have the same 

restriction to a smaller open cover contained in . Then we define; 
 

 (5) 
 
It is clear that the above definition is independent of the chosen basis of 
open covers , and thus corresponds to an inductive limit construction. 

The inductive limit obtained is denoted by , and referred to as the 
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stalk of  at the point . We identify an element of  of sort 

 with a local section of  over the open cover . 

Then the equivalence relation, used in the definition of the stalk  at 

the point  is interpreted as follows: Two local sections 
, , induce the same contextual information at  in 

, provided that they have the same restriction to a smaller open cover 

contained in the basis . Then, the stalk  is the structure 
containing all contextual information at , that is the structure of all 
equivalence classes. 

Moreover, the image of a local section  at the stalk , 

denoted by , that is the equivalence class of this local section , is 
precisely the germ of  at the point . We deduce that the fibration 

corresponding to a sheaf of sets  is a topological bundle, called an 
étale bundle, defined by the continuous mapping , where; 
 

 (6) 

 (7) 
 
The mapping  is locally a homeomorphism of topological spaces. The 

topology in  is defined as follows: for each local section , 

the cover  is open, and moreover, an arbitrary open cover is 
a union of covers of this form. Obviously, the same arguments hold in the 
case of a sheaf of sets  endowed with some algebraic structure, for 
example -algebras (where  is a field). Finally, the sheaf  can 
be canonically identified as the sheaf of cross-sections of the 
corresponding étale bundle . 

We stress that the notion of a sheaf depends on the fact that we 
require the gluing condition with respect to all covers of any local cover. 
In principle, one could select some covers of a local cover and require the 
gluing condition only with respect to the selected covers. In this way, 
the notion of sheaf would be meant with respect to the selected family of 
covers. On the other hand, there is no restriction in considering only 
hereditary or genetically descending covers, that is covers containing all 
their subcovers. More precisely, any cover can be made hereditary (by 
adding to each cover all its considered subcovers), and compatible 
(uniquely glued) families of sections on the original cover are in bijective 
correspondence with compatible families of sections on the new one. 
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This fact provides an important insight on the nature of the 
topological localization process of observables implicated by the sheaf 
concept. First, let us think of a local cover as a partial information 
carrier. Then, the idea of considering hereditary covers can be 
implemented according to a procedure of refining the resolution grain of 
information via localization through sieving. More concretely, a sieve on 
a local cover can be thought of as consisting of spectral horizons 
distributed across different nested layers, such that, every partial 
information which is compatible with respect to one of these horizons 
passes through it but not otherwise. 

The conception of covering sieves as hereditary covers used for 
localizing, and thus sharpening, information with respect to intersecting 
local covers at deeper ordered depths, gives rise to localization systems 
of global observable algebras which induce a semantic transition of 
events from the set-theoretic to the sheaf-theoretic level. In this 
manner, events are just the traces of the process of sharpening 
observable resolution by the way of sheaf-theoretic localization. The 
operation which assigns to each local cover a collection of covering 
sieves satisfying the appropriate transitivity and stability properties 
under localization into deeper ordered depths, defines a topology, which 
is technically called a Grothendieck topology. 

The notion of a Grothendieck topology formulated in terms of 
covering sieves is significant for the following reasons: First, it 
elucidates precisely the topological concept of locality in relational 
order-theoretic terms, such that this concept becomes distinguished 
from its usual spacetime connotation. Second, it permits the 
amalgamation of local information into global by utilization of the 
notion of sheaf with respect to the defined topology. 

In more detail, the extension of observable information from the 
local to the global takes place through a compatibly glued family of 
sections over a covering sieve constituted of local covers of sharper and 
sharper resolution, giving rise to an inductive localization system upon 
its closure that ia tantamount to the completion of the localization 
process. A sheaf assigns a set of sections to each local cover of a 
localization system. A selection of sections from these sets, one for each 
local cover, forms a compatibly glued family with respect to a 
localization system, if the selection respects the operation of restriction, 
and additionally, if the sections selected agree whenever two local cover 
of the localization system overlap. If such a locally compatible selection 
of sections extends uniquely to a global one, then the sheaf conditions 
are satisfied. We note that in general, there will be more local sections 
than global ones (if they exist), since not all local information need be 
extendible to global ones, but a compatible family of local information 
uniquely extends to a global one with respect to a localization system. It 
is crucial that sheaf-theoretic localization takes place in terms of 
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continuous granular elements, i.e. the sections of a sheaf, which 
gradually, and in terms of the temporal order they are associated with, 
expressed by a closed sieve of covers, genetically unfold the becoming of 
point-events. 

It is essential to clarify that the sheaf model of a space takes place 
in three steps, after the specification of a covering sieve: The first step 
organizes compatibly the local cover-infiltrated information of sections, 
such that the latter can be compatibly restricted from the global to the 
local. This process produces a structure that is only a presheaf. Note that 
conceptually the implicitly assumed global, from the presheaf-theoretic 
viewpoint, refers to the global in its potentiality to germinate in the 
context of some temporal order, and eventually produce facts. The 
second step involves the process of functional localization of the 
sections of the presheaf. This is necessary because the sections of the 
presheaf are not a priori functional elements. It is accomplished by 
means of the topological realization of the presheaf of sections as a 
display space constituted by disjoint stalks of germs over each point of 
the underlying base space. The third step involves the completion of the 
presheaf, or equivalently the completion of its associated display space, 
such that the germs belonging to each stalk can be evaluated and 
produce a fact, temporalizing in this way the pertinent point of the stalk, 
by disclosing genetically the temporal order they descent from. In this 
way, it is realized a sheaf, incorporating all the necessary and sufficient 
conditions for the bidirectional compatibility of information under 
restriction or reduction from the global to the local, and inversely under 
unique extension or induction from the local to the global. The latter 
sheaf-theoretic conceptualization of the global refers now to this term in 
its actual propensity to explicate points globally in terms of events 
following the germination of sections with respect to the temporal order 
they participate and descend from. 

Clearly, both of these connotations depend on the role of the 
covers of a covering sieve, since it is true both, that the production of 
facts is pre-conditioned by their existence, and their interconnection is 
possible only via the sheaf-theoretic gluing procedure conducted over 
these covers. Hence, the local covers can be thought of as both, localities 
of contextualized potentiality (under restriction from the global to the 
local), and as localities of relativized facticity (under extension from the 
local to the global), with respect to which point-events are localized, 
actualized, and eventually, interconnected consistently. 

Due to the dual articulating role of the term global, in relation to 
both potentiality and actuality, pertaining to the conception of the sheaf 
model of a topological space as a complete presheaf, according to Leray, a 
logical scheme of indirect self-referentiality is induced, whence locally 
all the information is sieved through an appropriate family of local 
covers. The uniquely defined sheaf-theoretic extension from the local to 
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the global takes place thanks to the formation of germs, i.e. equivalence 
classes of locally or partially defined section compatible by our criteria. 
Due to the process of extensive connection and the formation of 
continuous histories in terms of germs in purely topological terms 
(without assuming any pre-existing metrical linear sequence of an 
external time line), the notion of a sheaf resolves the self-referentiality 
induced by the dual role of the topological global in a spiral-like form. 
The two possible ways of orientation on this spiral-like form represent 
the inverse processes of ascending (extending from the local to the 
global) and descending (restricting from the global to the local). Ascent 
corresponds to indirect self-referential constitution of the global in 
terms of events, from the local, via the extensive connection of their 
corresponding germs. This means that the global (in actuality) can be 
genetically and connectively, that is, historically, accessed only through 
the germs of observables over the corresponding point-events. Descent 
corresponds to indirect self-referential resolution of the global (in 
potential) with respect to a multiplicity of local covers, such that the 
inversely constituted global (in actuality) achieved by evaluating germs, 
is compatible with the former. The basic idea pertaining to the above 
may be simply put as follows: Since the evaluation of a section over a 
cover gives rise to an observed event, this event is simultaneously 
implicitly correlated with a germ, i.e. with the whole family of sections, 
which are compatible with the considered one under restriction, or more 
generally, under pulling back. Thus, we can access the historicity of an 
event from a topological perspective through the connective extension 
of a continuous germ, which indirectly correlates this event to all 
antecedent events. 
 
55..77  AANNAALLYYTTIICC  CCOONNTTIINNUUAATTIIOONN::  RRAAMMIIFFIICCAATTIIOONN  OOFF  MMUULLTTII--VVAALLUUEEDD  FFUUNNCCTTIIOONNSS  

 
Geometric function theory on a Riemann surface, culminating in the 
thriving field of complex analysis, traces its germ of conception and 
initial development back to Bernhard Riemann’s principles for dealing 
with the notion of a multiply-extended or multi-fold magnitude. This 
notion, called simply today a multi-valued function, takes hold because 
the analytic continuation of a given holomorphic function element along 
different paths on the complex plane, due to the presence of an obstacle, 
leads to different branches of that function. 

The basic idea of Riemann, giving rise to the covering principle, 
consists in the replacement of the initial domain of definition of the 
function with a multiple-sheeted covering of the complex plane, or more 
generally, of the Riemann sphere, so that this function becomes 
eventually single-valued on the universal covering space of the initial 
domain. In this manner, a multiply-extended variable magnitude on the 
complex plane is unfolded into a simply or uniformly-extended variable 
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magnitude on the universal covering space. Thus, the covering principle 
is essentially based on the idea of metaphora from an obstacle-laden 
domain to the universal covering of this domain. The latter is qualified as 
the maximal, simply-connected and obstacle-free unfolding space, where 
uniform extendibility of an equivalence class, a locally-defined germ of a 
holomorphic function element, becomes feasible. 

Uniform extendibility in the universal covering or unfolding 
space is thought of in terms of the process of analytic continuation of a 
multi-valued function along loops surrounding obstacles. Riemann 
conceived of an infinitely thin sheet propagating along a loop of this kind 
such that, when one returns to the starting point, one arrives on a 
different sheet whenever the value of the function obtained by analytic 
continuation is different from its initial value.  

In this way, by performing the analytic continuation along all the 
possible loops, one may associate a many sheeted smooth compact 
surface which covers the Riemann sphere with the given multi-valued 
function, where the former functions become uniform and single-valued. 
If the covering surface is constructed so that it has as many points lying 
over any given point in the complex plane (or the Riemann sphere) as 
there are function elements at that point, then on the universal covering 
Riemann surface, the analytic function unfolds completely and becomes 
single-valued. This process of unfolding a multi-valued function by 
means of spreading out into a multiplicity of branches constituting the 
universal covering is called the ramification of a multi-valued function. 

Consequently, according to Riemann’s covering principle, when a 
multi-valued function unfolds, the covering surface will also unfold with 
it. In a region where two or more unfoldings of the function occur, the 
covering surface will be double or multiple. It will consist of two or 
several sheets, each one of them corresponding to a branch of this 
function. Around a ramification point of the function, a sheet of the 
covering surface will unfold to another sheet, and in such a way that, in 
the neighborhood of this point, the surface may be thought of as a 
helicoid whose axis is perpendicular to the complex plane at that point. 
But when, after several windings around the ramification value, the 
function takes back its initial value, one must assume that the superior 
sheet of the surface connects to the inferior one by traversing the rest of 
the sheets. At each point of a surface which represents the way it 
ramifies, the multi-valued function admits a single determined value, 
and may therefore be looked upon as a perfectly determined function of 
the place (of a point) on this surface. It is important to highlight that the 
different covering branches can be joined together only at points, not 
along lines. 

In modern terminology, a covering Riemann surface gives rise to 
a holomorphic map with codomain the complex plane, or the Riemann 
sphere, which is characterized topologically as a ramified covering 
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projection or, equivalently, as a branched covering space of the latter. In 
other words, it is a local homeomorphism, such that for each point on the 
plane or the sphere, the inverse image of an open set containing this 
point is a disjoint union of open sets in the covering Riemann surface, 
each of which is mapped homeomorphically on this open set. This holds 
universally with the exception of the ramification points, which are 
inverse images of branch points on the plane or the sphere. At these 
points, the various branches of the covering Riemann surface, thought of 
as a helicoid winding around the various corresponding branch points, 
are alternated or interchanged in winding cycles. 

We note that if we forget the fact that these concrete surfaces are 
spread out over the complex plane (or the Riemann sphere) as branched 
covering spaces referring to the process of unfolding of a many-valued 
function, we obtain the notion of an abstract Riemann surface, defined 
as a two-dimensional real analytic manifold equipped with a 
holomorphic structural atlas, which is considered as the natural domain 
of definition of analytic functions in one complex variable. In this 
manner, the notion of a concrete covering Riemann surface is used only 
with reference to a many-valued function. Recalling Weyl’s suggestive 
formulation, a concrete Riemann surface is not merely a visual 
representation of a many-valued function. Quite the opposite, it must 
throughout be thought of as the prius, as the mother earth in which 
functions, like plants, can first of all grow and flourish. 

If we recall the complex exponential covering projection from  

to : 
 

 
 
then, a determination of its inverse many-valued function  is 
only locally feasible, it can take place only in terms of local sections of 
the exponential covering . More precisely, each section defined 
on  constitutes an inversion of  only locally, and thus 
contributes, to a local determination of the logarithm. Each section bears 
the form , where  is an integer. The compatible gluing 
of all these local determinations over their non-trivial overlaps gives rise 
to the Riemann surface of the many-valued function , as follows: 
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The multiply-extended aspect of a many-valued function of one complex 
variable lead naturally to the first topological considerations regarding 
the connectivity of surfaces. In particular, a piece of a surface is 
connected when any two points in it can be joined by a path. Riemann’s 
method of probing the connectivity of surfaces is based on the notion of 
boundary cuts, which are simple paths joining two points on the 
boundary. A surface is simply connected if any boundary cut dissects it 
into two simply connected pieces rendering it disconnected.  

In general, the type of connectivity of a surface involves the 
counting of the number of boundary cuts and the number of simply 
connected pieces obtained after performing these cuts. The basic idea is 
that if a surface is cut into  simply connected pieces by  
boundary cuts, then the number , for  and  variable, 
remains constant. According to Riemann, this constant captures the 
order of connectivity of the surface. 

With this stipulation, a connected surface is judged to be -fold 
connected if a system of  boundary cuts are required to make it 
simply connected. Of course, these considerations pertain to a surface 
with boundary. In order that they become applicable to a closed surface 
it is necessary the metamorphosis of this surface to another one with a 
boundary. In particular, if we make a puncture at any point of a closed 
surface, then the analysis takes place by considering a cross section 
starting from this point and returning to it, giving rise to a loop, or closed 
curve. 

Thus, whenever it is possible to draw  closed curves , , 

,  on a surface , which, either taken separately, or taken 
together, do not form the complete boundary of part of the surface, but 
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which, joined to any other closed curve, do form the boundary of part of 
the surface, then the surface is. -ply connected. 

The next fundamental notion refers to the topological genus of a 
closed surface, especially concerning its relation with the connectivity 
order of a closed surface. If  is the maximum number of closed 
curves (being allowed to intersect) which may be drawn on a closed 
surface  without rendering it disconnected, then  is the genus of 
this surface. 

The genus is characterized as a complete homeomorphism 
invariant, meaning that two (compact and orientable) surfaces without 
boundary are homeomorphic, if and only if they have the same genus. 
Moreover,  is identified as the rank of the first homology group of 

, i.e. its first Betti number. Finally, it is straightforward to obtain the 
relation of the connectivity order  of a closed surface  with the 
genus  of this surface, namely . 

According to William Kingdon Clifford, a closed curve on a 
surface should be thought of as a circuit. If it is possible to move a circuit 
continuously on the surface until it shrinks up into a point, the circuit is 
called reducible; otherwise it is irreducible. In general, there is a finite 
number of irreducible circuits on a closed surface which are 
independent. An independent circuit is characterized as one that by 
continuous motion cannot be made to coincide with a curve made out of 
the others. 

In particular, for a surface bearing  holes there are  
independent irreducible circuits; one around each hole, and one through 
each hole. 

Conclusively, Riemann’s metaphora addressing the ramification 
of a many-valued function, may be summarized as follows: 
 
a eventuation of obstacles until each closed curve that embraces 

them plays the role of a boundary for a portion of the universal 
covering surface;  

b application of boundary cuts; 
c spreading out into all possible distinct covering branches; and, 
d amalgamation of all the covering branches to obtain the 

simply-connected universal covering surface. 
 
In the context of this metaphora, the relation between two different 
simply connected regions is expressed through Riemann’s mapping 
theorem. More specifically, any two simply connected regions can be 
mapped conformally, that is, in an oriented angle-preserving way, onto 
one another. In particular, any such simply connected plane region can 
be mapped conformally onto the unit disc . 
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The generalization of the Riemann mapping theorem to what is 
called the uniformization theorem for Riemann surfaces, proved by 
Henri Poincaré and Paul Koebe, states that any simply connected 
Riemann surface is isomorphic, meaning conformally equivalent in this 
context, to the Riemann sphere, to the complex plane, or to the unit 
disk. The term uniformization accords to the process of unfolding a 
multiply-extended variable magnitude to the universal covering, 
simply-connected, Riemann surface of this function, where it becomes 
uniformly valued. The type of uniformization applicable to a surface 
with holes depends on the genus of this surface. More precisely, those of 
genus are their own universal covering Riemann surfaces, 
isomorphic to the Riemann sphere; those of genus are universally 
covered by the complex plane; and all those of genus at least are 
universally covered by the unit disk.

The basic idea here is the following: If we think of a hole on a 
surface as an obstacle, then the emergent simply-connected geometric 
unfolding of the great majority of these surfaces, involving all cases 
where we have two or more obstacles, conforms to the norms of neither 
the spherical, nor the flat geometry, but to those of the hyperbolic 
geometry.

55..88 HHYYPPEERRBBOOLLIICCIITTYY:: LLOOGGAARRIITTHHMMIICC CCRROOSSSS RRAATTIIOO OONN TTHHEE CCOONNFFOORRMMAALL DDIISSKK 

The hyperbolic plane bears four different models by means of which it 
can be explicated. The first is the upper half complex plane model, the 
second is the Beltrami-Klein projective disk model, the third is the 
Lorentz hyperboloid model, and the fourth is the Poincaré conformal
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unit disk model in the complex plane. We are going to focus on the 
conformal disk, and the upper half plane model, in what follows.

The points of the Poincaré disk model of the hyperbolic plane are 
the points which are interior to the unit disk in the complex plane, and 
the lines are the diameters and the arcs of circles which are orthogonal
to the boundary of the disk. The definition of the distance between two 

points and in the interior of the disk is secured by constructing 

the hyperbolic line joining them. We also take into account that and 

are the endpoints of the diameter or arc of circle determining the 

hyperbolic line. Then the distance between the points and is:

where denotes the cross-ratio of these four points, which 
is real and positive, so that the logarithm is definable. The geodesics in 
the unit disk are the circles and the lines in the plane that are orthogonal 
to the unit circle at two points.

Poincaré assumes the existence of a world enclosed in a large boundary
circle and subject to the following law: The temperature in this world is 
not uniform; it is largest at the center, and it diminishes as one moves 
away from the center, so that it reduces to absolute zero when one 
reaches the boundary circle where this world is enclosed. He considers 
the non-uniform variation of the temperature as follows: Let be the 
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radius of the limit boundary circle, and let r be the distance from the 
point under consideration to the centre of this circle. The absolute 
temperature will be proportional to . He additionally assumes 
that, in this world, all bodies have the same coefficient of dilatation, in 
such a way that the length of any ruler shall be proportional to its 
absolute temperature. Finally, he assumes that an object transported 
from one point to another, whose temperature is different, shall 
immediately reach thermal equilibrium with its new location. A moving 
object will then become smaller and smaller as it approaches the 
boundary circle. If this world is finite from the point of view of our 
customary geometry, it will appear infinite to its inhabitants. In fact, 
when they intend to approach the boundary circle, they will get colder 
and become smaller and smaller. The steps they take are therefore also 
smaller and smaller, so that they can never actually reach this boundary. 

In the same geometric context, Harold Scott Coxeter remarks 
that the conformal disk model is an inversive model of the infinite 
hyperbolic plane geometrically, using a circular “nutshell” figure to stand 
for the Absolute. When Hamlet exclaims (in Act II, Scene II) “I could be 
bounded in a nutshell and count myself a king of infinite space” he is 
providing a poetic anticipation of Poincaré’s disk model. 

Note that angles in the unit disk model of the hyperbolic plane 
are measured in the Euclidean way, so that the measure of the angle 
between two hyperbolic lines is the Euclidean measure of the angle 
between their tangents. Moreover, it is not adequate to consider only 
the hyperbolic plane disregarding its boundary. In the disk model, the 
boundary is realized by the unit circle. 

Let us consider now the upper half plane model of the hyperbolic 
space. Here the points of the geometry are the points in the upper half 
plane, and the lines are either vertical rays from points on the real axis or 

semicircles with diameter on the real axis. Given two points  and  
in the upper half plane, the Euclidean perpendicular bisector of the 
Euclidean segment joining them meets the real axis at the center of a 
semicircle through the two points. 

If we consider that  and  are the endpoints of the 
semicircle, we can define the notion of distance in this model as in the 

Poincaré disk model, i.e. . Since an August 
Möbius transformation exists, which maps the unit disk model to the 
upper half plane model of the hyperbolic plane, there is a one-to-one 
mapping of one model to the other, which preserves all the hyperbolic 
distances and constitutes these two models of the hyperbolic plane as 
isometric images of one to the other. 
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The Uniformization theorem encapsulates, via the notion of conformal 
equivalence, the geometry of the universal covering space, where the the 
complete unfolding of a multi-valued function takes place. In particular, 
since the universal covering is a simply-connected geometric space, the 
function becomes uniformly-valued on this space. From the 
algebraic-topological view of the first homotopy or, equivalently, 
fundamental group, Riemann’s metaphora to the universal covering 
space of a base topological surface bearing holes targets the annihilation
of the fundamental group of the base by continuous unfolding until 
trivialization.

Concomitantly, from an information-theoretic perspective, the 
same metahora may be thought of as a temporal process of complexity 
contraction, or symmetry reduction, in the Galois theoretic sense. More 
specifically, the monodromy action of the fundamental group on the 
fiber of the universal covering space over a marked point amounts to the 
Galois group-theoretic encoding of Riemann’s covering principle 
utilizing Poincaré’s first homotopy group as a Galois group.

According to the Uniformization theorem, the type of 
uniformization applicable to a topological surface bearing holes depends 
on the genus of this surface. Precisely, those of genus constitute 
their own universal covering Riemann surfaces, which due to 
simple-connectivity, are all isomorphic to the Riemann sphere; those of 
genus are universally covered by the complex plane; and those of 
genus at least are universally covered by the unit disk.

Poincaré’s conception of uniformization is enacted in terms of a 
metaphora from the topological and complex analytic domain to the 
geometric domain. In the latter domain only three types of geometric 
spaces exist distinguishable by their curvature; the three classical 
geometries of constant curvature. Namely, the Riemann sphere bearing 
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positive curvature, the Euclidean (or complex) plane bearing zero 
curvature, and the hyperbolic plane bearing negative curvature. 
Analogously to the case of elliptic functions, i.e. doubly-periodic 
functions, becoming uniformly valued on the complex plane, another 
type of functions, becoming uniformly valued on the hyperbolic plane, 
exist. These functions are called Fuchsian functions, since they have 
been first introduced by Lazarus Immanuel Fuchs in relation to the 
solution of differential equations with singular points. In this manner, 
the Fuchsian functions are to the geometry of the hyperbolic plane what 
the doubly-periodic functions are to the geometry of the Euclidean plane. 

The metaphora from the geometric to the complex-analytic and 
topological domain emerges through the action of a certain group of 
symmetries or, automorphisms, on one of these three classical geometries 
of constant curvature. Geometrically, the group of symmetries is an 
isometry group of transformations that induces a tessellation on the 
simply-connected universal covering space, identified with one of the 
three types. In particular, tessellation implies the existence of a 
fundamental polygon that periodically tiles the universal covering space. 
In the case of doubly-periodic functions, the fundamental polygon is a 
parallelogram that tiles the complex plane, thus analogously, in the case of 
Fuchsian functions the fundamental polygon always possesses more than 
four sides tiling the hyperbolic plane. 

The metaphora from geometry to analysis emerges by the 
consideration of this group as a group of conformal symmetries. In the 
case of the hyperbolic plane, this group is called a Fuchsian group. 
Finally, the metaphora from geometry to topology emerges by the 
consideration of this group in terms of the fundamental group of the 
underlying topological surface bearing holes, and which is universally 
covered by the corresponding tessellated geometric space. 
Concomitantly, a metaphora also emerges from geometry to algebra by 
identifying the same group of symmetries as the Galois group of covering 
automorphisms of the universal covering space. In this way, every 
Riemann surface can be realized as the topological quotient with respect 
to the action of a certain group of conformal symmetries on the three 
types of geometric spaces. 

Concerning all of these three types, the conformal symmetries 
are Möbius transformations, i.e. fractional linear transformations, or 
else, homographies. In more detail, the only group acting on the sphere is 
the trivial group, so the only Riemann surface that we obtain is the 
sphere itself with the conformal structure. For the complex plane, the 
group of conformal symmetries is either cyclic, or a group generated by 
two independent translations on the complex plane, which captures the 
elliptic functions. Therefore, the only surfaces that can emerge by taking 
the quotient are the complex plane itself, considered as equivalent to the 
sphere bearing one puncture, the sphere bearing two punctures, and the 
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torus. Every other Riemann surface is actually the quotient of the 
hyperbolic plane by a group of conformal symmetries of the hyperbolic 
plane. Such a group, a Fuchsian group, must be discrete and should act 
properly discontinuously. 

The important idea is that, since a Fuchsian group is also a group 
of isometries of the hyperbolic geometric plane, the geometric structure 
descends under the quotient morphism to the Riemann surface. Due to 
this property, every Riemann surface comes equipped with a natural 
intrinsic geometry, completing the metaphora from geometry to complex 
analysis. Note that in the generic case, this geometry is non-Euclidean, 
namely it is of the hyperbolic type. Moreover, since the action of a 
Fuchsian group, as a discrete group of conformal isometries, does not 
have any fixed points, the Fuchsian group is isomorphic with the 
fundamental group of the Riemann surface, so completing the 
metaphora from geometry to topology as well. 

We conclude that, essentially every Riemann surface, with the 
exception of the sphere, the plane, the punctured plane, and the torus, 
arise as quotients of the hyperbolic plane by a discrete and properly 
discontinuous group of conformal isometries, inheriting its own 
characteristic hyperbolic geometry by projection in this way. 
Conversely, the hyperbolic plane, instantiates the universal covering 
space of all those Riemann surfaces arising in the above manner, whose 
Galois group of covering automorphisms is identical with the 
fundamental group of the Riemann surface it covers universally, being in 
turn, identical with the pertinent Fuchsian group of conformal 
isometries. 

Let us consider the subgroup of Möbius transformations, defined 
on the Riemann sphere, that map the unit disk into itself. The 
composition of any Möbius transformation in this subgroup with 
complex conjugation also maps the unit disk onto itself. Thus, we may 
consider the subgroup  of the group of extended Möbius 
transformations (including antihomographies) mapping the unit disk 
onto itself. Since automorphisms in the unit disk belonging to this 
subgroup map lines and circles to lines and circles and are also 
conformal, the hyperbolic line between any two points in the interior of 
the unit disk will be mapped to a hyperbolic line between their 
respective images. Moreover, since transformations in  preserve the 
cross-ratio of four points on the same line or on the same circle, they 
preserve the hyperbolic distance between two points in the unit disk. 
Therefore, the conformal automorphisms of the unit disk are isometries 
of the Poincaré disk model of the hyperbolic plane, and thus,  is the 
isometry group of the Poincaré disk model of the hyperbolic plane. 
Notice that the action of the isometry group  on the open unit disk is 
a transitive group action. 
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Restricting our focus only on Möbius transformations, that is, on 
homographies, these symmetries of the extended real line preserving the 
upper half plane are characterized as linear fractional transformations 
with real parameters , , , and , where . This group 
is isomorphic to the projective group , the group of  

matrices with real coefficients, whose determinant is equal to , and 
each matrix  is considered as equivalent to . Additionally, it 
follows that, each of these Möbius transformations is an isometry of the 
upper half plane with its hyperbolic metric that preserves the 
orientation as well. In this model of the hyperbolic plane, the geodesics 
are the semicircles orthogonal to the real line including the vertical 
semilines. 

Coming back to the Poincaré disk model of the hyperbolic plane, 
a group of conformal isometries  of the disk is a Fuchsian group if it is 
equipped with the discrete topology. Let us consider the action of a 
Fuchsian group on the hyperbolic disk. We say that a subset of the disk 
is a fundamental set for the Fuchsian group, if this subset contains 
exactly one point from every orbit or fiber of the Fuchsian group. The 
idea is to obtain a fundamental domain, an open subset of the disk 
contained in the closure of a fundamental set, which under the action of 
the Fuchsian group is able to tessellate the hyperbolic plane. It is easy to 
see that a connected convex hyperbolic polygon plays the role of a 
fundamental domain for the action of a Fuchsian group on the disk. 
Hence, for any given Fuchsian group there is a corresponding convex 
hyperbolic polygon that tessellates the disk. The Poincaré polygon 
theorem tackles the inverse issue, i.e. given a convex hyperbolic polygon, 
what are the conditions ensuring the existence of a Fuchsian group for 
which this polygon functions as a fundamental domain of its action? 

For a hyperbolic polygon  a side pairing of  is an injective 
morphism from the set of sides of  to the group of all isometries of the 

hyperbolic disk, such that for sides , ,  is an isometry with 

, , and  has an empty intersection with  
for all sides . Then the Poincaré polygon theorem states that 
considering  a compact and connected hyperbolic polygon of the disk 
with a side pairing that generates a Fuchsian group of isometries, if 
every angle of  is equal to , for some   , then  is a 
fundamental polygon for this Fuchsian group. 

The process of relating the symmetries of tessellations of the 
hyperbolic disk to the annihilation of the fundamental group of the 
underlying Riemann surface is based on the conception of the hyperbolic 
disk that is being tessellated as the simply connected universal covering 
surface of this Riemann surface. The latter emerges by taking a quotient 
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topology of the hyperbolic disk based on a specific fundamental domain 
hyperbolic polygon together with the procedure of side pairing. Thereby, 
the tessellated hyperbolic disk is the universal covering space of that 
particular quotient surface and the set of all covering transformations 
becomes isomorphic to the Fuchsian group that induces this tessellation. 
It is thus, also isomorphic to the fundamental group of the quotient 
space, the underlying Riemann surface. 

In sum, a Fuchsian group represents a single Riemann surface, 
and inversely, every Riemann surface (modulo the exception of the cases 
mentioned in the beginning) is uniformizable by a concrete Fuchsian 
group acting on the hyperbolic disk up to conformal equivalence. 
Henceforth, all Riemann surfaces of topological genus greater than or 
equal to two can be identified with a quotient of the hyperbolic disk by a 
discrete group of conformal isometries. The precise connection between 
the conformal and the hyperbolic metric structure is expressed by the 
Schwarz-Pick theorem, asserting that every conformal automorphism of 
the hyperbolic disk is contracting for the hyperbolic metric. 

The important notion characterizing Poincaré’s metaphora in 
this setting is that a Fuchsian group used to set up a certain tessellation 
of the hyperbolic disk by hyperbolic polygons is isomorphic to the 
fundamental group of the quotient Riemann surface made with that 
same polygon by isometric side pairings. 

This culminates in the threefold isomorphic manifestation of the 
same uniformizing group, comprehending simultaneously, the isometry 
group inducing a tessellation on the hyperbolic disk, the group of 
covering transformations of the universal covering space identified with 
the tessellated hyperbolic disk, and the fundamental group of the 
underlying quotient Riemann surface. The unifying power of this 
threefold isomorphic manifestation of the group concept in relation to 
unveiling the nature of a Riemann surface is illuminated by the 
realization that the first of these manifestations is of geometric type (in 
particular, it pertains to the tessellation of the hyperbolic disk by 
isometries), the second is of the Galois type in a topological setting, and 
the third is of a homotopic type. 

For example, we consider a regular hyperbolic octagon , which 
is centered in the hyperbolic disk . We notice that a regular octagon 
in the Euclidean space has each angle equal to , thus its hyperbolic 
analogue must be less than that. In particular, since  has eight sides, 
the Poincaré polygon theorem dictates that considering  to be a 
compact and connected hyperbolic polygon of the disk with a side 
pairing that generates a Fuchsian group of isometries, every angle of  
must be equal to , where  is a fundamental polygon for this 
Fuchsian group, denoted by . Since the action of  must be free 
and properly discontinuous, after fixing one vertex of  there can be 
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exactly distinct elements of that map each vertex of to the 
fixed vertex.

Equivalently, this means that a Fuchsian group that has 
as its fundamental domain polygon, can be identified as a group of 
covering automorphisms of the universal covering space identified with 
the tessellated hyperbolic disk by hyperbolic octagons. Such a Fuchsian 
group is realized by isometric side pairings of , and is cast 
isomorphic to the fundamental group of the underlying Riemann 
surface, obtained by the quotient . The latter is being 
covered universally by the octagonally tessellated hyperbolic disk, and is 

identified as a genus two surface , isomorphic with the double torus.
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Since  is realized by isometric side pairings of , we have a 
generator for each pair of sides, i.e. we have  generators, denoted by 

, , , . Accordingly, the underlying Riemann surface  is 

manifested in terms of the hyperbolic octagon  with sides identified 
in pairs according to the boundary relation  under the 

action of . Thus, in turn, the Fuchsian group  that has  as its 
fundamental domain, is cast isomorphic with the fundamental group of 

, i.e. the group generated freely by the  generators , , ,  
subject to the boundary relation . 
 
55..1100  CCOONNSSTTEELLLLAATTOORRYY  RRAAMMIIFFIICCAATTIIOONN::  TTHHEE  UUNNIIVVEERRSSAALL  CCOOVVEERRIINNGG  TTRREEEE  
  OOFF  AA  BBOOUUQQUUEETT  

 
The abstract algebraic notion of a group is amenable to an elucidating 
metaphora that crosses from algebra to geometry by the encoding bridge 
constituted by the action of a group. In the simplest case of a group 

action on a set, if  denotes the symmetric group of a set , i.e. the 

group of permutations of the set , then the action of a group  on 

 is equivalent to a group homomorphism from  to , denoted by 

. 

From this correlation, each element of  gives rise to a 
permutation of  by acting upon it, in such a way that the 
composition and the identities are preserved in both groups. The 

permutation group  should be thought of geometrically as the group 

of symmetries of , thus a group action of  on  provides the 
means of realization of  in terms of the group of symmetries of . 
If no fixed point emerges under the action of  on , we say that 
this action is free. Additionally, if we consider the orbit or fiber of the 
action of  on  at , i.e. the set , and this set reproduces 
the whole set  under the action of , then this action is 
characterized as transitive. 
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Most important is the fact that a group may act on itself, and this 
can happen in two ways. First, a group may act on itself by left 
multiplication, defined by . Second, a group may act on itself by 

conjugation, defined by . We recall that the second action 
distinguishes the normal subgroups of a group as well, as those that 
remain invariant under conjugation. Only the first action is free and 
transitive, in general. Since, the self-action by left multiplication is 

realized as a group homomorphism , every group is realized 
isomorphically as a subgroup of some symmetric group. 

The above metaphora from algebra to geometry is based on the 
idea of realization of a group in terms of its action on a set, including the 
cases of self-action. The issue is whether or not we can identify another 
geometric realization of a group that is more intrinsic, in the sense that it 
is capable of geometrizing the notion of a group itself. For this purpose, 
we have to consider a group not in terms of its action on a set, but in 
terms of its action on a graph, called the Arthur Cayley graph of this 
group. This task is enunciated by adopting the combinatorial perspective 
on group theory, which refers to the characterization of a group in terms 
of generators and relations, or equivalently, in terms of a presentation of 
the group. In the combinatorial setting, there appears first of all, the 
fundamental notion of a free group. 

A free group is characterized by a certain number of generators 
without any additional defining relations beyond the existence of an 
inverse for each generator, according to the general requirements of the 
notion of a group. Therefore, every morphism of a set of free generators 
onto a set of elements of any group, is tantamount to a homomorphism 
of the free group into this group. Consequently, a presentation of a 
finitely generated group can be expressed as a quotient group of a certain 
free group of finite rank with respect to the congruence relations defined 
among the generators. 

We consider that  is a generating set of a group . Then the 
Cayley graph of  with respect to the generating set  is a directed, 
labelled, or even colored, graph  whose set of vertices is the set 
of elements of , such that there exists a directed edge from  to  

for every  in  and  in , labelled by . Hence, if , , , 

 is an ordered sequence of labels on an edge path in  from 

the identity  to , then . Conversely, if , 

then an edge path on  from the identity  to  exists, whose 

labels or colors are , , ,  in this order. Thus, we obtain a 
correspondence between edge paths in the Cayley graph from the 
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identity  to  and words in the generators representing  in this 
manner. 

Each element of a group  induces a symmetry, i.e. an 
automorphism of the Cayley graph  of  with respect to the 

generating set  in the following way: The automorphism  

associated with the element  in  is defined on the vertices of the 

Cayley graph by , identified with the left action of  on 

itself. Since there exists at most one directed edge connecting any two 
vertices, and since no edges connect a vertex to itself, there can be one 
and only one way to extend this action to an automorphism of the entire 
directed, labelled (colored) graph, i.e.  sends the edge  to 

the edge . Further, considering that the word length of an 
element  in  with respect to the generating set  is the length 

of the shortest word in  that is equal to , we derive that the 

group morphism  is an isomorphism. In this 
combinatorial setting, the notion of word length bears a geometric 
signification, in that the word length of  is the minimum number of 

edges in an edge path from the identity  to . 
The notion of the free group on two non-commutative generators 

bears a fundamental role. The simplest way to describe a free group is 

the following: We consider the set of elements  in a 

group . A word or ordered string  is said to be freely 
reduced if it does not contain a substring consisting of an element 
adjacent to its formal inverse. For instance, the ordered string 

 is freely reduced, while  is not. The 
group  is a non-Abelian or, equivalently, a non-commutative free 
group with basis  if  is a set of generators for  and no freely 

reduced string in the  nor their inverses represents the identity of 

the group. The rank of a free group with basis  is the number of 

elements of . We denote a free group of rank 2 by . It can be easily 
shown that all free groups of the same rank are isomorphic replicas of 
each other. So we may identify all of them and talk universally of the 

non-Abelian free group on two generators . 
The objective is to characterize the non-Abelian free group on 

two generators  as a group of symmetries, expressed as 
automorphisms of its Cayley graph with respect to any generating set. 
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For this, we may consider  and  as the standard non-commuting 

generators of . If we start with the vertex corresponding to the 

identity  in , the empty word, then we have to consider four 

directed edges containing , namely the edges connecting  with the 
vertices , , , and , exhausting in this way all four different 

elements of  with word length . For each one of these four acquired 
vertices, there are going to be three new vertices connected to it, or 
equivalently, three new edges incident to it, according to the following: 
 

 
 
Notice that each new vertex is a reduced word on the generators  and 

, and moreover, since distinct reduced words provide distinct elements 

of , there is no vertex that emerges as new more than once in this 

procedure. Hence, the Cayley graph of the free group  with respect 
to any generating set is actually a tree. This is precisely the qualification 
of a Cayley graph characteristic of freeness in two non-commuting 
generators. 

In more detail, the Cayley graph of the free group  is a tree 
whose vertices have valence four. From the perspective of this 
metaphora from algebra to geometry, the free group on two 

non-commuting generators  is characterized as the symmetry group 
of a 4-valent tree. A 4-valent tree is simply connected topologically, 
since there are no cycles, and can be also endowed with a metric making 

a b

2Q

1 2Q
1 1

a b 1a- 1b-

2Q 1

a
b

2Q

2Q

2Q

2Q

222 
 
For this, we may consider  and  as the standard non-commuting 

generators of . If we start with the vertex corresponding to the 

identity  in , the empty word, then we have to consider four 

directed edges containing , namely the edges connecting  with the 
vertices , , , and , exhausting in this way all four different 

elements of  with word length . For each one of these four acquired 
vertices, there are going to be three new vertices connected to it, or 
equivalently, three new edges incident to it, according to the following: 
 

 
 
Notice that each new vertex is a reduced word on the generators  and 

, and moreover, since distinct reduced words provide distinct elements 

of , there is no vertex that emerges as new more than once in this 

procedure. Hence, the Cayley graph of the free group  with respect 
to any generating set is actually a tree. This is precisely the qualification 
of a Cayley graph characteristic of freeness in two non-commuting 
generators. 

In more detail, the Cayley graph of the free group  is a tree 
whose vertices have valence four. From the perspective of this 
metaphora from algebra to geometry, the free group on two 

non-commuting generators  is characterized as the symmetry group 
of a 4-valent tree. A 4-valent tree is simply connected topologically, 
since there are no cycles, and can be also endowed with a metric making 

a b

2Q

1 2Q
1 1

a b 1a- 1b-

2Q 1

a
b

2Q

2Q

2Q

2Q



233CIRCUMVENTING COMPLEXITY

223 
 
it into a geometric space. The considered metric is the path metric, i.e. 
the metric imposed on the set of its vertices such that the distance 
between two vertices is the length of the shortest path made through 
edges connecting these two vertices. Thus, we conclude that a group, 
together with a generating set, gives rise to a metric space, in such a way 
that its actions take place through isometries. 

The action of the free group  on its Cayley graph, on the 
corresponding 4-valent tree, is an action without any fixed points, 
meaning that it is a free group action. It turns out that this property 
characterizes a group uniquely as a free group. Equivalently, if a group 
acts freely on a tree, then this group is a free group. Therefore, the 
qualification that a group is free amounts to the condition that this 
group acts freely on a tree, and in sum can completely characterized by 
its free action as a group on a tree. The consequence of this equivalence 
is called the Nielsen-Schreier theorem, stating that any subgroup of a 
free group is also free. 

We recall now that the free group in two non-commuting 
generators has been utilized for the articulation of a temporal bond in 
terms of a Tripodal link, where the generators of this group are 
identified with two temporal actions whose composition is irreversible, 
and thus, non-commutative. 

We conclude that, if the group , i.e. the non-commutative 
group in two generators is enunciated in terms of its temporal actions, 
then it is characterized uniquely as the symmetry group of a 4-valent 
tree and conversely. In this sense, the 4-valent tree deciphers the 
universal form of joint unfolding taking place by means of all possible 
combinatorial compositions of these temporal actions. The 4-valent tree 
is a simply-connected geometric space, identified in this way, as the 
universal covering or unfolding space generated by two non-commuting 
temporal actions. We note that the growth of this 4-valent tree is 
exponential and boundless. The fundamental role of the free group in 
two non-commuting generators rests on the fact that a free group in any 
number of generators bigger than two is actually included as a subgroup 

of . 
In turn, the 4-valent tree, being simply connected and amenable 

to the metric structure of its natural path metric, qualifies as a geometric 

space whose group of symmetries is . Taking into account that the 

action of  on this 4-valent tree is free and transitive, it qualifies as a 

Galois action, which in turn, means that  is manifested as a group of 
covering automorphisms of this tree in its role as a universal covering 
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space that annihilates the fundamental group of its quotient by this 
action. 

We can elucidate further by considering the free group  in its 
function as the fundamental group of a bouquet of two unlinked circles 
(equivalently called a 2-rose, or a rose with two petals) whose universal 
simply-connected geometric covering space is a 4-valent tree. 

The fact is that the non-commutative free group in two 

generators , expresses a genuine and non-reducible type of 
non-commutativity. To grasp this, it is indispensable to stress the 
behavior of the group commutator. The group-theoretic commutator 

induced by the generators of : 
 

 
 
produces an irreducible non-commutative and ordered string of symbols 

in . This string represents a based loop  as a product loop, which is 
composed by the ordered composition of the based oriented loops 

. The crucial observation is that deletion of both symbols 

 and , reduces the group commutator to the identity . Clearly, 

the same behavior is encountered symmetrically for both  and . 
 

 
 

In particular, the group-theoretic commutator  in , 
algebraically encodes the modular gluing condition of the based oriented 

loops  and , which in three dimensions corresponds to the 
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Tripodal link. Because of this, the commutator  constitutes the 
basic element of the fundamental group of a bouquet of two circles, 

identified with the group , from which the non-commutativity of this 
group is based on. The annihilation of this fundamental group takes 
place by means of the universal simply connected geometric covering 
space of the bouquet, identified as a 4-valent tree, whose Galois group of 

covering automorphisms is precisely . 
We have deduced that the non-commutative ordered product 

 is not contractible to the identity, due to the 
homotopic non-deformability of the commutator product loop to a 
trivial loop. Equivalently,  belongs to the non-trivial homotopy class 
of the fundamental group defined on the complement of two disjoint, or 
directly unlinked, topological circles  and . Conversely, we realize 

that  is actually reducible to the identity if  commutes with . 
Hence, the vanishing of the commutator  amounts to the 
Abelianization of the fundamental group, which in turn is identified 
with the Abelian first homology group. 

The above provides a crucial insight into the working of 
Hurewicz’s theorem, regarding the interrelation between the 
fundamental group and the first homology group in algebraic topology. 
According to Witold Hurewicz, the concept of homotopy is a 
mathematical formulation of the intuitive idea of a continuous transition 
between two geometrical configurations, whereas the concept of 
homology gives a mathematical precision to the intuitive idea of a curve 
bounding an “area”, or a surface bounding a “volume”. The crucial idea is 
that the basic process of homology theory consisting in decomposing a 
space into smaller pieces with simpler homology structure has no 
counterpart in homotopy theory. 

In the preceding setting, the first homology group arises as the 
Abelian quotient of the fundamental group with respect to its normal 
subgroup generated by all commutators. In this way, reciprocally, 
non-trivial commutator elements in the fundamental group give a 
measure of deviation from its Abelian shadow manifested by its first 
homology group. Essentially, the based loops ,  in the fundamental 

group are viewed as oriented and commuting -cycles representing 
homology classes, and as such generate the first homology group by 

means of defining a canonical free -module basis. 
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55..1111  FFRRAACCTTAALLIITTYY::  NNEESSTTIINNGG  DDIISSKKSS  AANNDD  EEMMEERRGGEENNCCEE  OOFF  CCAANNTTOORRIIAANN  DDUUSSTT  

 
Every Riemann surface corresponds to the action of a unique 
discontinuous group of conformal transformations on the Riemann 
sphere. More precisely, this is a claim regarding the issue of 
uniformization of Riemann surfaces by means of a free, transitive, and 
discontinuous group action. We have already seen that that a Fuchsian 
group can be used to set up a certain tessellation of the hyperbolic disk 
by hyperbolic polygons, where this group is isomorphic with the 
fundamental group of the quotient Riemann surface emerging from this 
polygon by isometric side pairings. In this sense, the conformal 
symmetries effected by a discontinuous group action are actually 
isometries of the hyperbolic disk. 

Of especial interest here is the case of a figure bounded by a 
certain number of non-intersecting circles on the Riemann sphere, 
attention to which was first drawn by Friedrich Hermann Schottky, and 
then by Christian Felix Klein, concerning the new light it throws on 
matters of uniformization. 

We recall that homographies or, Möbius transformations, are the 
conformal symmetries of patterns on the Riemann sphere. More 
specifically, Möbius transformations are classified into three types as 
loxodromic, parabolic, or elliptic. Loxodromic transformations have two 
fixed points, one of which may be physically thought of as attracting 
whereas the other one as repelling, and are conjugate to scaling by 
complex numbers except for scaling by unit complex numbers. These 
ones, whose multiplier is a positive real number, are also called 
hyperbolic transformations. Parabolic transformations have one fixed 
point and are conjugate to parallel translations. Elliptic transformations 
have two fixed points and are conjugate to rotations. 

Since Möbius transformations are the symmetries of patterns on 
the Riemann sphere, we are interested on the type of pattern obtained, 
characterized as simultaneously symmetrical under the action of two 
non-commuting loxodromic Möbius transformations. The initial set-up 
consists of a single loxodromic transformation  and a pair of 
non-overlapping disks  and , selected by the criterion that  
maps the outside of  to the inside of . 

In this setting, we say that  effects a pairing between  and 
. Since, the Möbius transformation  is loxodromic, we consider 

that the repelling fixed point is inside , and that the attracting fixed 
point of the transformation is inside . We denote the inverse of  
by . In this manner, we apply the notational convention that 

the outside of the disk  is mapped by  to the inside of the disk 
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, and the inside of the disk  is mapped to the outside of the disk 

. In the same way, the bounding circle  of the disk  is mapped 

by  to the bounding circle  of the disk ; whence the attracting 

fixed point of , , is inside , and the repelling fixed point of 

, , is inside . 

We note that successive images of  and  under respective 
iterative loxodromic actions are nesting down toward the attractive and 
the repelling fixed points of these actions. More concretely, iterative 

powers of  contract the disk  to smaller and smaller disks 

containing , whereas iterative powers of  contract the 

disk  to smaller and smaller disks containing . 
At the next stage, we consider two non-commuting loxodromic 

transformations  and  which act jointly on a constellation of four 

non-overlapping disks, denoted by , , , , where  

and , according to the generalization of the preceding. Note, that 
since Möbius transformations always map circles to circles, when any of 
the four transformations , , ,  is applied to any of the four 
respective disks, all four images are disks themselves. Thus, the 

transformation  maps the outside of  to the inside of , and the 

inside of  absorbs everything except , i.e. 

, where  is the region outside the four 
disks. 

Analogous considerations hold for the action of the loxodromic 
 and its inverse. It is clear that the two non-commuting loxodromic 

transformations  and  acting jointly on this constellation of four 
non-overlapping disks, and without imposing any further relations, 

generate a free non-commutative group, i.e. the group , called in this 
context the Schottky group on two generators. Repeated application of 
all the four transformations, i.e. applying  and  and their inverses 

to form words in the free group , leads to an action of this group on 
the constellation of four non-overlapping disks that is characterized by a 
repetitive pattern at all different levels of magnification. 

More precisely, each of the disks involved contains three smaller 
disks, each of which in turn contains three smaller disks, and so on ad 
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infinitum. As a result, disks within disks come to nest down leaving 
invariant at the limit a type of Cantorian dust, consisting of those points 
that belong to the disks at every single level of the process. We may 
think of a single particle of dust at the limiting end point of each infinite 

chain of disks nested within each other by the action of . In this 
sense, the limit-set of this group action consists of these particles of 
dust, and hence, this limit-set is the invariant pattern under the action 

of  in the Schottky setting identified with the closure of all 
attracting and repelling points. 
 
55..1122  HHYYPPEERRBBOOLLIICC  BBOOUUNNDDAARRYY::  IINNVVAARRIIAANNTT  PPAATTTTEERRNN  OOFF  FFRREEEE  GGRROOUUPP’’SS  AACCTTIIOONN  

 

We remind that the non-commutative group  is realized by its free 
action on a 4-valent tree, giving rise to a boundless exponential schema 
of growth. In turn, this 4-valent tree is simply connected and amenable 
to the metric structure of its natural path metric. Thus, it qualifies as a 

geometric space whose group of symmetries is . Taking into account 

that the action of  on this 4-valent tree is free and transitive, it 
qualifies as a Galois action. 

Thereby,  is realized as a group of covering automorphisms of 
a 4-valent tree in the role of the latter as a universal covering space 

annihilating the fundamental group of its quotient by the action of . 

In the present setting, the action of  as a free group generated by 

two non-commuting loxodromic transformations  and  which act 
jointly on a constellation of four non-overlapping disks on the Riemann 
sphere may be comprehended by means of the concomitant 4-valent 
tree. Equivalently, this 4-valent tree is able to record the associated 

pattern of nesting disks within disks under the action of , by 
explicating graphically the organization pattern of nested disks at 
different levels of semantic unfolding. 

If we consider  and  as the standard non-commuting 

generators of , and we start with the vertex corresponding to the 

identity  in  at level , i.e. the empty word, then we have to 

consider four directed edges containing , i.e. the edges connecting  
with the vertices , , , and , exhausting in this way all four 

different elements of  with word length , at level . In the present 
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setting, we may identify these four vertices with the representation of 

the four disjoint disks , , ,  respectively. For each one of 
these four acquired vertices, there are going to be three new vertices 
connected to it, or equivalently, three new edges incident to it at level 

, according to the following diagram: 
 

 
 
We note that the representation of each new disk is formed by the 

application of a certain reduced word in the group  to one of the 

initial four disjoint disks , , , . Moreover, the name of each 
new disk at a level remembers the original disk at the previous level from 
which it emamantes, together with the action applied to the latter, so 

the disk  at level 2 is tautologous to , and so on. Therefore, 
the unfolding of the 4-valent tree represents the nesting of disks, for 

instance the disk  at level 3, is inside the disk 

 at level 2, which correspondingly is inside the disk  at level . 
In consequence, we obtain a nested chain of disk inclusions 

. 
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The limit-set of the action of  consisting of a type of Cantorian dust, 

and hence representing, the invariant pattern under the action of  
identified with the closure of all attracting and repelling fixed points of 
loxodromic transformations on the four disjoint disks on the Riemann 
sphere, may be thought of as the boundary of the 4-valent representing 
tree. The region on the Riemann sphere, which is outside the initial four 
disjoint disks, denoted by , is the fundamental domain of the group 

action of . The region of the Riemann sphere that is filled up by the 

copies of the fundamental domain  under the action of  is called 

the domain of discontinuity of this group action because all replicas of  
remain separated from each other without getting stacked. 

Each of the loxodromic transformations generators of , i.e. , 

, and their inverses , and , replicate conformally the 
fundamental domain  within each of the four involved disjoint disks 

accordingly. By these means, under the action of  the fundamental 

domain  tessellates the whole Riemann sphere except the limit-set, 
identified with the boundary of the infinite 4-valent tree of unfolding. 
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It was Klein’s student Walther von Dyck, who first realized that Klein’s 
emphasis on Schottky’s model, involving a group acting on the Riemann 
sphere where no reduced nontrivial combination of elements fixes the 
sphere, corresponds to the action of a free group, providing this group 
with its name. In this context, what is called “Klein’s criterion”, 
furnishes the conditions under which a group acting on a set is 
characterized as a free one. “Klein’s criterion” assumes that and 
generate a group acting on a set . If has disjoint nonempty subsets 

and , and as well as , then this group is 

isomorphic to . Klein’s criterion has been employed in the context of 
the group of Möbius transformations, i.e. the conformal automorphisms 
of the Riemann sphere, characterized as linear fractional 
transformations with complex coefficients , , , and , where 

. This group is isomorphic to the projective group , 

the group of matrices with complex coefficients, whose 
determinant is equal to , and each matrix is considered as 
equivalent to . Note also that the projective group is the 
group of metrical symmetries, i.e. orientation-preserving isometries of 
the three-dimensional hyperbolic space. Klein formulated his criterion 
in order to identify a Schottky group as a free subgroup generated by 
two loxodromic generators of the projective group .
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55..1133  UUNNIIFFOORRMMIIZZAATTIIOONN::  FFRREEEE  GGRROOUUPP’’SS  GGEENNEERRAATTOORRSS  AANNDD  TTHHEE  GGEENNUUSS  

 
A natural question arising in the context of Riemann surfaces is whether 
it is possible to consider the free non-commutative group on two 
generators as a uniformizing group in terms of its action on the 
fundamental domain  and the induced tessellation of the Riemann 
sphere except the identified limit-set, i.e. the closure of the attracting 
and repelling fixed points of the two non-commuting loxodromic 
generators of this free group, identified as a Schottky group in the 
setting of our discussion. Notice that the free group on two generators is 
manifested here as a discrete subgroup of . 

This should be compared with the action of a Fuchsian group, i.e. 
a group of conformal isometries of the extended real line that preserve 
the upper half plane, identified as a discrete subgroup of , and 
used to set up a certain tessellation of the hyperbolic disk by hyperbolic 
polygons. We emphasize that the same group is isomorphic to the 
fundamental group of the quotient Riemann surface made with that 
same polygon by isometric side pairings, culminating on the threefold 
isomorphic manifestation of the same uniformizing Fuchsian group: as 
an isometry group inducing a tessellation on the hyperbolic disk; as the 
group of covering transformations of the universal covering space 
identified with the tessellated hyperbolic disk; and as the fundamental 
group of the underlying quotient Riemann surface. 

For the purpose of uniformization in the Schottky setting, we 
consider the region  on the Riemann sphere being outside the four 
disjoint disks, or equivalently, the fundamental domain of the group 

action of , generated by , , where their inverses are , 

and . We may glue each point  on the boundary circle  of 

the missing disk  with its symmetrical point  on the boundary 

circle  of the missing disk  under the action of the generator  

of . The same goes for the two other boundary circles  and  

of the missing disks  and  respectively, under the action of the 

generator . The first gluing gives rise to a handle on the Riemann 
sphere, and analogously the second gluing gives rise to another handle. 

Thus, we obtain a Riemann surface bearing two handles, i.e. a 
Riemann surface of genus two, identified with the double torus. In this 
manner, the double torus admits uniformization by means of the action 

of the free group  on the Riemann sphere without four disjoint disks. 

Note that in this case, the action of the free group on two generators  
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is not considered on the simply connected universal covering space of 
the double torus, but on the covering space depicted by the domain of 
discontinuity of this free group action. 

More generally, the retrosection theorem of Koebe, states that 
every compact Riemann surface  can be represented as the quotient 

, where  is the free group on  generators,  is the genus 

of the Riemann surface, and  is the domain of discontinuity of this 
free group action. Not only this, but additionally, the image of the  
boundary circles on the Riemann sphere under the quotient morphism 
may be identified with  oriented loops and their inverses in the 
fundamental group of . 

Note that for a compact Riemann surface of genus , its 
fundamental group is generated by  oriented loops  and 

 modulo the commutator relations . Hence,  

from the generators of the fundamental group of , for instance , and 

, in the genus-two case, may be identified with the images of the 
corresponding boundary circles on the Riemann sphere under the 

quotient morphism . Moreover, the latter is a covering space 

projection morphism, such that its group of covering automorphisms 
constitutes the smallest normal subgroup of the fundamental group of 

 containing the generators . In this way, the free group on  

generators, , where  is the genus of the Riemann surface, is 

identified with the quotient of the fundamental group of  modulo the 
above-defined normal subgroup. 
 

 
 
We conclude that while Fuchsian uniformization, utilizes the universal 
covering space of a Riemann surface with the Fuchsian group 
corresponding isomorphically to the fundamental group of this Riemann 
surface, Schottky uniformization, expressed in terms of the action of the 
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free non-commutative group, as we have seen, corresponds to the 
intermediate covering space obtained by means of the quotient of the 
Fuchsian group by the normal subgroup generated by half of the 
generators of the fundamental group. Finally, using the fact that  is a 

subgroup of  for every , we realize the universal role of the 

free non-commutative group in two generators  in the 
uniformization of Riemann surfaces by means of covering spaces. 

gQ

2Q > 2g
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66..11  PPEERRSSPPEECCTTIIVVIITTYY::  IIDDEEAALLSS  OOFF  RRIINNGGSS  AANNDD  GGEEOOMMEETTRRIICC  
  SSCCHHEEMMAATTIIZZAATTIIOONN  

 
Gottfried Wilhelm Leibniz’s notion of infinitesimal analysis, culminating 
in the development of the theory of differentials, targets the development 
of a genuine type of “geometric calculus” by algebraic means, one based 
not on artificial choices of coordinates and other subjective conventions, 
but pertaining to the geometric objects themselves, as an articulation of 
an extension process from the infinitesimal to the global. The notion of a 
geometric object is conceived in terms of the spectrum of a commutative 
ring or, an algebra over a field, like the real or complex numbers. The idea 
of a spectrum, originating from physics, refers to what can be observed 
through this ring by evaluating it into a field of measurement scales. In 
this sense, the ring or, algebra, on which a differentiation procedure may 
be applied, as pertaining to an infinitesimal type of extension, is qualified 
as an algebraic structure whose elements are observables. 

In this line of thought, the ideal theory of rings, conceived first by 
Richard Dedekind, provides the necessary additional conceptual and 
technical metaphorical means for a precise rendering of Leibniz’s ideas in 
modern terms. 

A non-empty subset  of a commutative ring  is called an 
ideal if the following properties hold: 
 
i  is an additive subgroup of , i.e. for every ,   , we 

have   ; 

ii  is stable with respect to multiplication with elements of the 
ring , viz., for every    and for every   , the 

product  is being absorbed in , viz.   . 
 
It is clear that for every ring , the subsets  and  itself are ideals 
of , the trivial ideals. Moreover, if  contains an invertible element 
of , then . Then, the only ideals of a field are  and the field 
itself. Let us now consider a homomorphism of rings , to be 
physically thought of as a measurement procedure of a ring of observables 

, by a ring of measurement scales . We recall that the kernel of  is 
defined as follows: 
 

 
 
Then  is clearly an ideal of . The kernel of the homomorphism 

 depicts the set of observables in , whose evaluation is the neutral 

I A

I A x y Î I

x y- Î I
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additive element of the rings of scales . Hence, the ideal  of the 

ring of observables , can be interpreted geometrically as a 
schematization perspective, with respect to which the measurement 
procedure  is effectuated. Obviously, the set of all observables 
in  constituting a perspective, identified as the ideal  of , in 

relation to a measurement procedure , are being evaluated to the 
 of the ring of scales . 

Epigrammatically, we may say that a geometric schematization 
perspective related with a measurement procedure of a ring of 
observables, constitutes the kernel of its evaluation at a ring of scales 
identified with the inverse image of the additive neutral element in , 
which is the zero scale. 

This basic conceptual point can be further clarified by introducing 
the notion of a quotient ring. More concretely, if we have at our disposal 
a ring  and an arbitrary ideal , then, we can define the 
quotient ring . The essence of this construction amounts to 
declaring equal to zero everything that is in . We can transform this idea 
into something precise by remarking that, if every element of  has to 
be considered as zero, then two elements ,  of  whose 

difference  is in the ideal  have to be considered as equal. 
This procedure produces a new ring, the pertinent quotient ring as 

follows: We define the following equivalence relation in :    if 

and only if   , where ,   . The key feature of the 
equivalence relation defined above, is that it is compatible with the ring-
theoretic operations on , or else, it is being preserved by addition and 
multiplication in , formally, if    and   , then  

  and   . Therefore, we can legitimately define two 

operations on the quotient set , and hence,  becomes 
a ring with respect to these operations, that is, the quotient ring . 

In order to translate the information encoded into the ring , 
into the quotient ring  we employ a morphism of rings 

. In fact, the canonical morphism  given by 
 is a surjective morphism of rings, the canonical 

epimorphism. Thus, we finally have: 
 

 
 
The above clarifies the essential idea behind the construction of the 
quotient ring, of declaring equal to zero everything that is in . Put 
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simply, when we change the ring from  to  by means of the 
canonical epimorphism , then everything in  goes to zero. 
Thus, in relation to the intended interpretation, we form the following 
conclusion: a geometric schematization perspective related with a 
measurement procedure of a ring of observables , identified as an ideal 

 of , constitutes the kernel of its evaluation at a ring of scales, 
identified, in turn, as the quotient ring . 

From then on, based on the information encoded in the quotient 
ring  we can easily obtain the following classifications: an ideal  
is maximal if and only if  is a field, whereas an ideal  is prime if 
and only if  is an integral domain, or equivalently, a ring without 
divisors of zero. Obviously, every maximal ideal is a prime ideal. 

Intuitively, a maximal ideal is an ideal which is second only to the 
entire ring. A prime ideal can be conceived as a measure of the complexity 
of a ring. This is based on the observation that if a ring  is a field, then 
there is only one prime ideal, namely the zero ideal, since it is the only 
ideal besides , and moreover, it is prime since  is an integral domain. 
Thus, prefixing the ring of measurement scales to a field, as in classical 
physical theories, where the field is that of the real numbers, we assume a 
zero complexity of scales. A scale of zero complexity is unable to register 
a stable irreducible process, or a process of indistinguishability between 
the observed and the means of observation, and hence, it coordinatizes 
the geometric spectral point-states, corresponding to maximal ideals in 
the ring of observables, in terms of numbers. Hence, the state-manifolds 
constructs of classical theories are geometric spaces built on the 
assumption of zero complexity of measurement scales, and consequently, 
constitute a kind of an arithmetic continuum, which, incorporates the 
hypothesis of a pre-assigned demarcation boundary between the 
observed and the observational means. 

If we consider instead the ring of the integers  as a ring of 
measurement scales, the prime ideals are the maximal ideals , where 

 is a prime number, as well as the zero ideal. Then, it is not a coincidence 
that prime integer measurement scales coordinatize stable and not 
further reducible spectral perspectives, represented geometrically as pure 
states. More generally, the notion of a prime ideal in an abstract ring of 
measurement amounts to a stable, and not further reducible spectral 
perspective, playing exactly the role of a measure of irreducible 
complexity. 

In this line of reasoning, any ideal in a ring expresses a stable 
perspective geometrically, capable of being decomposed or factorized into 
perspectives of irreducible complexity enunciated by prime ideals. 
Equally from this viewpoint, the algebraic theory of factorization of rings 
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into prime or even primary ideals deserves special attention. We point out 
that the notion of a primary ideal generalizes that of a prime ideal, in the 
sense that it is characterized by a quotient ring that is allowed to have 
zero divisors, but constrains them to be strictly nilpotent. Moreover, both 
primary and prime ideals, in contradistinction to maximal ideals, are 
characterized by a covariance property under homomorphisms of rings, 
meaning that they have inverse images that are still primary or prime, 
hence, they behave well under base ring change. 
 
66..22  SSPPEECCTTRRAALLIITTYY::  PPRRIIMMEE  IIDDEEAALLSS  AANNDD  GGEEOOMMEETTRRIICC  PPUURREE  SSTTAATTEESS  

 
The duality between commutative algebras of observables and geometric 
state-spaces, is based primarily on the idea that evaluating an observable 

 at a state  is the same as evaluating  at the observable : 
 

 
 
More precisely, if we consider the simplest possible case, where,  is 
the -algebra of functions on a set  with values in a field , any 
element    defines a morphism  by assigning to a 
function  its value at . The kernel of this morphism is a maximal 

ideal  in , suggesting in this way that it is possible to recover the set 

 as the set of maximal ideals in . In case that, , the 

maximal ideal  is the ideal consisting of all smooth functions 
vanishing at the point : 
 

 
 
Notice that the definition above, forces a decomposition of the algebra 

 into a direct sum of linear vector spaces: 
 

 

 
 

and furthermore, the quotient ring  is isomorphic to the field 

of real numbers . 
We proceed by defining more concretely the notion of a pure state 

over a ring of measurement scales. Let us assume that  is a 
commutative, unital -algebra of observables, where  is an 
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arbitrary field, and moreover, let    be a ring without zero 
divisors (integral domain), interpreted as a ring of measurement scales. 

We define a pure state of  over the ring  as a surjective 
morphism of -algebras . The notion of a pure state of  
over  instantiates a schematizing, stable, and irreducible natural 
perspective, encoded geometrically, via the scales of , by means of 
evaluations of observables of  into , within the context of a 
corresponding measurement procedure. 

Moreover, we say that two pure states, defined over the rings,  

and  respectively, specified as above, are identical, if there exists an 

isomorphism of -algebras , effecting an isomorphism between 

the corresponding measurement scales. Hence, we may define a -pure 
state of an -algebra of observables , as an equivalence class of 
surjective morphisms of -algebras , where, the ring  

  is called the coordinatizing frame of the pure state . 
Notice that according to the definition introduced, each pure state 

of an -algebra of observables  may have a different coordinatizing 
frame, depending upon the integral domain of scales employed for 
measurement. Thus, the new notion of a geometric state-space, being 
built from pure states, is a multi-valued one, in the sense that its 
generalized point-states may be coordinatized by means of different 
scales, namely scales belonging to different integral domains. 

At this stage, it is essential to emphasize for reasons of clarity, that 
the identification of pure states with generalized points of a multi-valued 
geometric state space, corresponding to irreducible perspectives of 
observation or measurement, is precisely established by the existence of 
a bijective correspondence between -pure states of an -algebra of 
observables , where,    is a coordinatizing ring without zero 
divisors, and the prime ideals of the algebra . The bijection can be 
established by defining the following assignment: 
 

 
 
It is easy to verify, if we consider a prime ideal  of , that the 
quotient ring  must be an integral domain, and that the canonical 
epimorphism  is an -pure state of the algebra , 
such that, . 

Thus, we identify the set of all pure states of an -algebra of 
observables  with the set of all prime ideals of , or equivalently, 
with the prime spectrum of , denoted by . This term denotes 
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the set of all equivalence classes of stable and irreducible spectral 
schematization perspectives, coordinatized through the measurement 
scales of integral domains, by means of evaluations of observables of  
into .  

The definition of  allows us to think of an observable  

 , intuitively, as a function on , in the sense that we have 

values , defined for each state   . However, these 
functions have the property that the space where their values live varies 
depending on the state where the evaluating is being performed.  

Therefore, we may summarize briefly the conceptual shift 
involved in the definition of a pure state by comparison with the classical 

definition as follows: In the case of the algebra of observables , 

viz., an -algebra of smooth real-valued functions on a compact real 

differential manifold , the value of a function    at a state 

, corresponding to a maximal ideal  of  lives in the quotient 

ring , and all of these quotient rings can be canonically 

identified with the field of real numbers . In contradistinction, the 
notion of a generalized pure state introduced here stands opposed to the 
absolute representability principle of the classical theory over the 
coordinatizing field of real numbers. In its own terms, rather, it allows the 
geometric representation of stable and irreducible spectral perspectives, 
in terms of generalized points of a multi-valued geometric state space, and 
the evaluation of observables at these points. This is achieved by 
relativizing representability over a multitude of measurement scales, 
belonging to different coordinatizing rings without zero divisors, giving 
rise eventually to the above multi-valued geometric state space, 
constructed as the prime spectrum of the corresponding ring of 
observables. 
 
66..33  IINNFFIINNIITTEESSIIMMAALL  EEXXTTEENNSSIIOONN::  NNIILLPPOOTTEENNTT  OOBBSSEERRVVAABBLLEESS  
  AANNDD  DDIIFFFFEERREENNTTIIAALL  FFOORRMMSS  

 
It is particularly elucidating to clarify the peculiar nature of this multi-
valued geometric state space. For this purpose, we consider an observable 
that vanishes at all states. We will show, by using a simple example, that 
such an observable is not necessarily zero. Consider the -algebra of 

dual numbers  over . 

Formally, the elements of the algebra  are constituted 

by the linear combinations , where ,    and  is a 
formal symbol, enunciated as follows: The addition is given by adding 
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coefficient-wise, whereas the multiplication is given by applying , 
thus algebraically rendering ε an infinitesimal unit. Hence, we have that 

, but . Then, the prime spectrum of this algebra, 

 consists of a single generalized point-state, 
corresponding to the unique prime ideal . 

The -algebra of dual numbers is the smallest ring with 
nilpotent elements. Hence, we may consider an observable  on 

 that is nilpotent, namely the observable  itself is 

not the zero function, but its square  is the zero function. Note that 
in this example, the fact that  means that the observable  takes 

the value  at every (the) state of , but  is not 
considered to be the zero function. 

Generalizing, we state that any observable vanishing at all states 
might not be zero, but some power of it will be zero. In conclusion, 
observables on the multi-valued geometric space  will not be 
entirely determined by their values at states, and thus, we no longer 
distinguish observables based on their values at states. Hence, 
observables on  will have values at states, but are not going to 
be determined by those values, instead, they will be entirely determined 
by their germs. In order to explain the situation clearly, it is necessary to 
endow  with a sheaf structure, that intuitively constitutes an 
encoding of observables which is local and global in a compatible way, as 
we shall see as we go on. 

At this point, we must study the generation of the -algebra of 

dual numbers  from  in more detail. Since this extension 

pertains to any algebra of observables defined over , as an infinitesimal 
extension, it is important to examine the general case, where for 
simplicity the scalars can be identified with the real numbers, meaning 
that , in this case. 

In general algebraic terms, the process of extending the 
observables of an -algebra  is described by means of a fibration, 
defined as an injective homomorphism of -algebras . Thus, 
the -algebra  is considered as a module over the algebra , 
analogously to a vector space over a field. A section of the fibration 

, is represented by a homomorphism of -algebras  

such that . 

The fundamental extension of observables of the -algebra  
is obtained by tensoring  with itself over the subalgebra of the base 
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field, that is . Trivial cases of extensions, in fact 

isomorphic to , induced by the fundamental one, are obtained by 

tensoring  with  from both sides, that is , 

. 
The basic idea of Leibniz in conceptualizing infinitesimal analysis 

as a geometric calculus, which was further elaborated by Riemann in 
relation to the development of differential geometry, is that it should be 
thought of in terms of the extension from the infinitesimal to the global. 
For this purpose, we consider the extension of the algebra of observables 

 by infinitesimal quantities, defined as the fibration: 
 

 (1) 
 (2) 

 
where  is understood as the infinitesimal part of the 
extended observable, and  denotes the infinitesimal unit obeying 

. The algebra of infinitesimally extended observables  is 
called the algebra of dual numbers over  with coefficients in the -
module . It is immediately evident that the algebra , as an 
Abelian group is just the direct sum , whereas the multiplication 
is defined as follows: 
 

 (3) 
 
It is also required that the composition of the augmentation 

, with  is the identity. 
Equivalently, the above fibration defined by the injective 

homomorphism of algebras , can be reformulated as a 

derivation, that is in terms of an additive -linear morphism: 
 

 (4) 
 (5) 

 
that satisfies the Leibniz rule: 
 

 (6) 
 
Seen in this light, the Leibniz rule descends from the linearization of the 
above fibration. Since the formal symbols of differentials , are 
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reserved for the universal derivation, the -module  is identified as 

the free -module  of differential -forms generated by 
these formal symbols, modulo the Leibniz rule, where the scalars of the 
distinguished subalgebra , that is the real numbers, are treated as 
constants. 

The fundamental insight of Erich Kähler in this algebraic setting 
consists in the realization that the free -module  can be 
constructed explicitly through the tensor product self-extension of , 

that is  by considering the homomorphism: 
 

 (7) 

 (8) 

 
Then, by taking the kernel of this homomorphism of algebras, that is, the 
ideal: 
 

 (9) 
 
we obtain the following: The homomorphism of -modules 
 

 (10) 

 (11) 
 
is an isomorphism. 

Thus, the free -module  of -forms is isomorphic with the 

free -module  of Kähler differentials of the algebra of observables 

 over , conceived as distinguished ideals within the algebra of 
infinitesimally extended scalars , according to the following 
split short exact sequence: 
 

 (12) 
 
equivalently formulated as: 
 

 (13) 
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By dualizing, we obtain the dual -module of , that is, 
. Consequently, we have at our disposal, expressed in 

terms of infinitesimal extension of the algebra , semantically 
intertwined with the generation of geometry from the infinitesimal to the 
global new types of observables related with the incorporation of 
differentials and their duals, identified as vectors. 

If the geometry is generated by a metric, then there is an associated 
unique dual to a vector, meaning an isomorphism  between the -

module  and its dual -module , that is: 
 

 (14) 
 
such that: 
 

 (15) 

 (16) 
 
Equivalently, a metric  stands for an -valued symmetric bilinear 

form on , that is , yielding an invertible -linear 

morphism . Notice that for ,   , a symmetric 
bilinear form  acts, via , on  to give an element of the dual, 

  , which then acts on  to give , 

or equivalently,   . Also note that the invertibility 

of  amounts to the property of non-degeneracy of , meaning that for 

each   , there exists   , such that 

. 

 
66..44  LLIINNEEAALL  EEXXTTEENNSSIIOONN::  MMUULLTTIIPPLLIICCAATTIIOONN  OOFF  DDIIRREECCTTEEDD  LLIINNEE  SSEEGGMMEENNTTSS  

 
The geometric essence of Leibniz’s infinitesimal analysis, independently 
of any notion of absolute pre-existing space in the original sense of a 
geometric calculus, can be enunciated utilizing the metaphora involved in 
the development of Hermann Grassmann’s theory of lineal extension. The 
latter emerged out of Grassmann’s struggle to establish a universal 
apparatus for research in geometry by algebraic means, based on the 
notion of extension. The latter is implemented as a lineal process of 
unfolding geometric observables in a series of hierarchically organized, 
and nested layers. This process is expressed in terms of the conceptually 
inverse geometric actions of joining and separating, involving the ascent 
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and descent respectively, from one layer to another layer. The crucial 
aspect of this theory is that the algebraic encapsulation of lineal extension 
necessarily requires the operation of multiplication, i.e. the product 
operation specifying the composition type of geometric observables from 
layer to layer. 

In Grassmann’s conception the process of extension is initiated at 
the first geometric layer, which is occupied by directed line segments, to 
be thought of in modern terms, as vectors. It is very important that the 
existence of a zero geometric layer, identified with the scalars, is also 
assumed, but only implicitly, and not explicitly, as is the case starting with 
the first layer. The significance of the above is that lineal extension theory 
actually constitutes an indirectly self-referential schema for the 
articulation of the notion of a geometric point through a many-layered 
metaphora conducted by means of ascending to higher and higher 
geometric layers, and then descending back. We argue that it is precisely 
this feature that sheds light on the geometric essence of calculus, in such 
a way that Grassmann’s theory cannot be viewed independently from 
Leibniz’s infinitesimal analysis. 

The algebraic operation of multiplication that allows ascending is 
conceived indirectly in relation to the operation of addition. More 
specifically, if there is an operation identified as addition, which is 
operative within a single layer, then any operation satisfying the 
distributive law in terms of this addition is called multiplication. In this 
manner, Grassmann introduced the operation of multiplication of 
directed line segments, called the exterior product, as a means of their 
composition, according to the satisfaction of the distributive law with 
respect to the addition of directed line segments. 

The exterior product is an associative, multiplicative operation 
described as follows, when applied at the first geometric layer: It takes 
two directed line segments  and  at the first layer, and produces a 
directed area or parallelogram at the second layer. This can be 
accomplished in two different ways that are not equivalent to each other. 
Either the parallelogram  is the product of replicating  a total 
of  times along the linear extension of , and then concatenating or 
adding these based replications, or the parallelogram  is the 
product of replicating  a total of  times along the linear extension 
of  and then adding these based replications again. 

Consequently, we obtain two oppositely-oriented extension 
processes from the linear layer to the bilinear or area-bounding layer. 
They mutually cancel each other in the precise sense that their product is 
oriented oppositely, meaning that . The fact that the 
multiplication product area of the linear extensions  and  is 
directed or signed, according to the above, means that this geometric 
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product is non-commutative. Unfortunately in the literature, the “join- ” 
composition operation expressed by the exterior product is denoted by 
the “conjunction- ” sign, whose symbolism is the exact opposite to the 
one intended by this operation. Keeping in mind this cautious remark, we 
may switch to the “wedge-notation” used in exterior algebra in order to 
conform with that convention in the literature, according to which 

. 
We recapitulate that the multiplicative exterior product of two 

linear directed segments is non-commutative; it depends on the order of 
their composition, and this can take place in two possible, oppositely-
oriented ways. Henceforth, the orientation of the produced signed area is 
dependent on the order of composition, and thus it is signed. If we identify 
the first geometric layer in which the independent linear extensions  
and  are located as the first exterior power space, then the layer that 
the product signed area is located is identified as the second exterior 
power space. In a totally analogous fashion, the lineal extension process 
proceeds to higher exterior power spaces using the property of 
associativity of the exterior product and the property of distributivity 
with addition. 

Analogously to the directed area element , the lineal 
extension process instantiates, at the third geometric layer, the directed 
volume element  for three independent linear extensions , 

, . Due to the associativity property, this should also be thought of in 
a temporally ordered way, by replicating the directed area of two of them 
along the linear extension of the third, and then concatenating to obtain 
the directed volume element. Note that, due to the antisymmetric 
property of the exterior product, if two elements at a layer have a common 
element of a lower layer, then their product is zero. This provides a 
conceptual understanding of the lineal extension process driven by the 
application of this multiplicative product. More precisely, it is named 
exterior because the non-nullity of the product of two extensive 
geometric magnitudes requires that each one of them is located 
geometrically to the exterior of the other making them independent. 
 
66..55  EEXXTTEERRIIOORR  AALLGGEEBBRRAA::  AASSCCEENNDDIINNGG  TTHHEE  LLAADDDDEERR  OOFF  EEXXTTEERRIIOORR  PPOOWWEERR  
  VVEECCTTOORR  SSPPAACCEESS  

 
If we consider a finite dimensional vector space  of dimension  over 
a field , then the first layer is identified with the first exterior power 

vector space , the second layer with the second exterior power 

vector space , and so on. The characteristic of this extension 
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process is that in the  exterior power vector space, where , we 
have: 
 

 
 
expressing the pertinent alternating property. In each exterior power 
space layer, addition of exterior products located at this layer is allowed, 
so the general elements of these power spaces are linear superpositions of 

products of elements descending to lower layers. Moreover, the vector , 

, ,   are linearly independent in , where , if and only if 

 

 
 
The exterior product underlying the lineal extension process from layer 

to layer may be considered as a bilinear map from , where 

, to , where . Hence, for   , and   

, their exterior product is an element   , meaning 
that this is a bilinear operation on , . As an immediate consequence 
of the alternating property of the exterior product, we obtain that 
 

 
 
Being endowed with the exterior multiplication product, which is 
associative and distributive over addition, the direct sum of all exterior 
power vector spaces forms a non-commutative algebra over  (we 
exclude the case that  in ): 
 

 
 

Note that , and the direct sum terminates at 

. Consequently, the top exterior power is one-dimensional, and 

. 

For example, consider that  is a real vector space of dimension , 

with basis , , . Then, we obtain that 
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The exterior algebra  is the direct sum of the above exterior power 

vector spaces and its dimension is . 
In the same manner that Grassmann’s lineal extension process 

applies to vectors, it analogously applies to their dual objects, called co-
vectors or linear forms. Moreover, it also applies to a linear transformation 

 of a vector space, where in this case, the top exterior power of , i.e. 

, is scalar multiplication with the determinant of . 
Furthermore, the same extension process can be transferred to free 
modules, and finitely generated locally free modules, over a commutative 
algebra of observables. 

We emphasize that the total exterior algebra of a vector space  
is characterized universally by an intrinsic feature that is independent of 
its constituent layer-by-layer exterior power vector spaces. More 

precisely, if we consider any -algebra  and a -linear map from 

 to , i.e. , such that the square of the image elements of  
in  is zero, it can always be extended uniquely, up to a unique 

isomorphism, to an -algebra map from  to . This is a 
universal property, and thus characterizes  uniquely in the fashion 

of category theory. In other words, every linear map from  to  
having the square zero property in the image, factorizes uniquely through 
the exterior algebra . This intrinsic feature of  plays a 
decisive role in what is to follow. 

Each exterior power vector space, considered within the exterior 
algebra , delineates a homogenous part of this total algebra, in the 
sense that its elements instantiate the homogenous elements of the 
degree specified by the specific exterior power. The homogenous 
elements of a degree injected into the total exterior algebra may be 
thought of as the rays corresponding to the pertinent exterior power in 
the lineal extension process forming this total graded algebra. 
Reciprocally, the whole process descends back to the level of directed 
linear extensions, where we should recall that the scalars occupying the 
zero layer are only implicitly assumed. 
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Conceptually, we may think of a directed linear extension in 
temporal terms, in the sense of a provisional order of actions referring to 
the replication of another independent linear extension along it, 
according to the exterior product composition we described previously. 
We may simply say that a directed linear extension assumes the role of a 
temporal order for another independent linear extension to be composed 
with it by means of the exterior product. Equivalently, the replication 
procedure itself may be thought of as an one-parameter flow over the 
considered temporal order. Notice also that the origin of this order does 
not have to be fixed a priori, since the replication flow of an independent 
directed linear extension along it does not depend on where the origin is 
positioned, or else, it is of an affine character. 

If we take the universality property into account, we realize that 
the exterior algebra pertaining to a directed linear extension, as above, is 
isomorphic with the -algebra of dual numbers over . More 
precisely, we have the isomorphisms: 
 

 
 
where the square of  is zero, . The important fact is that  

is a commutative algebra over . Note that the nullity of the exterior 
product operation of the single directed linear extension  with itself, 
i.e.  implies that the directed area of  along itself is zero. 
Thus, the non-commutative exterior product has a commutative shadow 
in the exterior algebra  expressed by the unit  whose square 
vanishes. 
We identify this unit as an infinitesimal unit with respect to which the 
flow over the considered temporal order takes place. This flow is 
expressed in commutative algebraic, and thus, spectrally geometric terms 
by means of . In turn, this is equivalent to a first order 

infinitesimal variation or infinitesimal flow along the -parameterized 
variable running along the directed linear extension of , interpreted as 
a temporal order in this direction. 

We conclude that the exterior product operation applied to a 
single directed linear extension  is reflected in the commutative 
algebraic shadow of this extension as an ordinary multiplication of its 
scalar image , and moreover, the nullity of the directed area of  along 
itself is reflected as the vanishing of , granting it the role of an 
infinitesimal unit with respect to which an one-parameter potential flow 
along the temporal order of ’s directed extension can be initiated. 
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Equivalently phrased, and conclusively, directed linear extensions 
are reflected as infinitesimals in their respective commutative spectral 
shadows. 

We stress that the non-commutativity of the exterior product 
operation applied to two independent directed linear extensions is due to 
the antisymmetry in the order of their composition, which gives rise to a 
specific orientation (clockwise or anticlockwise) of the completed 
parallelogram area. The crucial thing in this case is that each of these 
directed linear extensions serves as a temporal order for the 
transportation or flow of the other along its extension. 

Therefore we have two distinct temporal orders with respect to 
which the parallelogram area can potentially be completed, but they are 
not equivalent, they differ in the way they induce an orientation on this 

area. Let us consider two independent directed linear extensions  and 

, then the ordered composition  stipulates the replication of  

a total of  times along the linear extension of , considered as a 
temporal order for this purpose. In the course of this replication 
procedure, whereas we may think of a transportation from a determinate 

point to another determinate point along the linear extension of  in 
terms of a sharply defined scalar parameterizing variable, the directed 

segment  has to be taken in its totality, in other words, as a potentially 
simultaneous whole. This means that it assumes potentially all the points 
of its linear extension in a kind of “tautochrone” superposition. In this 
sense, it is objectively totally indeterminate in the course of its replication 

along the determinate extension of  from point to point. To be sure, 
the directed linear extension of a segment is not considered to consist of 
determinate spatial points, rather the latter are implicitly instantiated in 
the process of replicating another directed segment along the former’s 
extension. Precisely analogous considerations pertain to the oppositely 

oriented case, referring to the ordered composition , which 

requires the replication of  a total of  times along the linear 

extension of , considered as a temporal order in its turn. 
The above procedure actually constitutes the cornerstone of the 

partial derivation method underlying geometric analysis, that is to say, 
the two-variable geometric calculus expressed in terms of differential 
forms and their integration, which is generalized to multiple variables by 
means of the rules of exterior products. In this way, the geometric 
manifestation of the exterior product in terms of an one-parameter flow 
along a directed linear extension is expressed locally by way of a partial 
derivation along this extension, i.e. a one-parameter partial 
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differentiation procedure. The fact that the differentiation procedure can 
be enacted in two ways that differ by a sign is expressed by the Leibniz 
rule for differentiating products. The Leibniz rule of differentiation is a 
formal expression of the replication procedure we have already described. 

Given that directed linear extensions are reflected as 
infinitesimals in their respective commutative spectral shadows, we need 
also to grasp in what way the infinitesimal commutativity underlying the 
mixed partial derivations with respect to the two independent temporal 
orders, in the case of two composed linear extensions, reflects the non-
commutativity of the exterior product of these extensions, which finally 
is manifested as a sign difference in the orientation of the composed 
parallelogram area. 

Up to present, we have already seen that the nullity of the exterior 
product of a single directed linear extension  with itself, , has 
a commutative shadow in the exterior algebra  expressed by the 
unit  whose square vanishes. We have identified this unit as an 
infinitesimal unit, with respect to which the flow over the considered 
temporal order takes place and expressed in commutative algebraic, and 
thus, spectrally geometric terms, by means of . The 
pertinent question is how the commutative shadow displays in case of two 
independent linear extensions. An answer to that will allow an easy 
generalization in all cases involving any finite number of independent 
linear extensions. 

In the context of the above, consider two independent linear 
extensions in a two-dimensional vector space  over the real numbers. 
Then, we may define a bilinear map , where 

, such that 
 

 
 

Clearly, we obtain that , , thus  is 
alternating. Therefore, a unique linear map exists in this case 

, such that: 
 

 
 
Next, we consider the same vector space  and its exterior algebra 

. The latter is an -algebra generated by the images of  and , 

denoted by , , subject to the relations , , and 

. Note that ,  anti-commute, and thus  is a non-
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commutative -algebra in striking contrast to the case of a single 
directed linear extension. 
Therefore, the exterior algebra  cannot be considered as the 
infinitesimally-generated commutative shadow we are looking for here. 
Note that, generally speaking, the commutative shadow always admits of 
a local description, since infinitesimal quantities are meaningful only 
within a local context. Globally only their integrated products are 
observable. 

Analogously to the case of a single directed linear extension the 
sought-after commutative shadow should be thought of as a commutative 

extension with respect to two infinitesimal units, , , together with a 

mixed commutative term of the form  as follows: 
 

 
 

where the squares of both  and  are zero, i.e. , , and 
the two infinitesimal units commute, i.e. they are scalars in the 

commutative -algebra . Note that instead of the field  

considered here, we may similarly think of another field . 
Note that  may written equivalently in the form 

, since we are dealing with two independent linear 

extensions. Then,  as a vector space over , denoted by  
to distinguish it from the same space equipped with the non-commutative 
algebra structure , takes the form: 
 

 
 

We notice that both  and  are not only vector spaces, 

but they are commutative algebras over . Thus,  is also a 

commutative -algebra with respect to the standard -tensor product, 

identical with the algebra . Thus, the exterior algebra  has a 

commutative spectral shadow represented by the algebra . 

The significance of the commutative spectral shadow  of 
 consists in the fact that the unique linear map from the top 

exterior power in this case, i.e. , such that: 
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descends in the commutative shadow to the map 
 

 
 

Therefore,  belongs to the kernel of this unique linear map after its 

descent to the commutative shadow . Hence, the commutativity 

condition of the infinitesimals  and  is obtained, given as 

, which is nothing else but the standard commutation rule of 
the mixed partial derivatives. 

There is an analogous relation here. Just as the non-commutative 
exterior algebra  is an algebraic encoding of Grassmann’s lineal 
extension process from layer to layer, starting from directed linear 
extensions, where the scalars or points are only implicitly assumed, so the 

commutative spectral shadow  affords a conceptual inversion, in 
the form of a decoding of this process, which takes place in terms of 
commuting infinitesimal units, where each one corresponds to an 
infinitesimal directed extension, culminating in the determination of 
points according to distinct linear infinitesimal extensions that become 
dependent at that point. 

The crucial aspect of this metaphora is that points are only implicit 
in the ordered extension process, in the sense that they are instantiated 
in the procedure of replicating a linear extension along another 
independent one. They become explicit only in the inversion of the 
extension in the commutative shadow, and only locally and 
infinitesimally, by means of making two infinitesimal flows in distinct 
directions dependent at that point. In this manner, a point becomes 
explicit as an element bounded by distinct temporal orders manifested as 
infinitesimal directional flows that meet or become dependent at that 
point. The necessary condition for the temporal explication of points in 
this way, according to two different or even a whole multiplicity of 
temporal determination modes, is that the units of these flows becoming 
dependent at a point-instant locally commute in the infinitesimal vicinity 
of that point. 

Henceforth, the lineal extension process cannot be conceived 
independently of its inversion, taking place by means of the commutative 
spectral shadow of the exterior algebra. In point of fact, in an attempt to 
reach beyond the exterior multiplication product, called a progressive 
product, bearing the analogous role of the logical join operation, 
Grassmann strived for the definition of another type of product, called a 
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regressive product, bearing a role analogous to the logical meet operation, 
and thus constituting the inversion of the former. There is a not a clear 
consensus in the literature regarding the definition of the regressive 
product. The proposed metaphora from the non-commutative domain to 
the commutative spectral shadow of this domain, instantiated as it is 
infinitesimally, shows that Grassmann’s lineal extension cannot be 
understood independently of Leibniz’s infinitesimal analysis. 
 
66..66  CCOOBBOOUUNNDDAARRYY  LLAAWW::  DDEESSCCEENNDDIINNGG  AANNDD  TTHHEE  DDIIFFFFEERREENNTTIIAALL  
  RREESSOOLLUUTTIIOONN  OOFF  AA  PPOOIINNTT  

 
It is worth emphasizing the potent, and non-contradictory, indirect self-
referential strategy underlying the conception of points or scalars 
according to this metaphora. It initiates by means of an ascent from the 
layer of independent directed linear extensions, where points are only 
implicitly assumed, to the layer of oriented areas, volumes and so on, being 
followed by a descent back to lower and lower layers, and culminates in 
the explication of points as bounds of distinct temporal orders becoming 
dependent infinitesimally at that point. This type of indirect self-
referentiality arising from the process of ascending and then descending 
back in order to explicate temporally and multi-linearly what a point is in 
the context of Grassmann’s geometric lineal analysis, is not void. Quite 
the reverse, it contains the germ of cohomological analysis in general 
topological spaces or even categorical sites, arguably, one of the most 
powerful and fruitful methods of modern mathematics and theoretical 
physics. 

There are three basic conceptual issues underlying the dramatic 
generalization of this metaphora. The first issue pertains to the 
generalization of Grassmann’s exterior algebra from the context of vector 
spaces defined over a field, to the context of locally free modules defined 
over an algebra of observables (in particular, locally free sheaves of 
modules defined over a sheaf of algebras of observables). The second issue 
pertains to conceptualizing algebraically the previously described 
metaphora as a process of spectral resolution of the constant scalars. The 
third issue pertains to viewing this process of resolution of the constants 
in terms of the notion of an algebraic-topological complex. The definition 
of the latter is based on the action of an operator, called the coboundary 
or, exterior derivation operator , characterized by the property that 

, i.e. it is a nilpotent operator of the second degree. 
The notion of the coboundary operator that effects differentiation 

in this setting, is based precisely on the articulation of a point as a bound 
of distinct temporal orders becoming dependent infinitesimally, i.e. in 
terms of commuting one-parameter infinitesimal flows, at that point. The 
specification of the coboundary operator can actually be extracted from 

d
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the constitution of the commutative shadow  of the exterior 
algebra . 

The idea is to unfold the infinitesimal irreducible parts of  
as modules, or simply vectors spaces, of differentials of different orders. 
In particular, in the two-dimensional case we have examined in detail, we 
consider the vector space of differentials of the first order, which contains 

only the pure infinitesimal units , and , and then, the vector space 
of differentials of the second order, which contains the mixed terms. Since 
the latter are vector spaces of differentials of the first and second order 
correspondingly their elements, while infinitesimals, are directed 
geometric magnitudes. Then, we may symbolically consider 
 

 

 
 
which demonstrates the “coboundary law” of constitution of a complex of 
vector spaces in cohomology theory. Note that the coboundary operator 
is defined locally, whose purpose is to resolve the points, or else the 
constant scalars, by way of the concomitant ascent-descent process of 
Grassmann’s lineal geometric analysis. 
In the context of locally free modules defined over observable algebras the 
“coboundary law” expresses the law of “inertial variation” in physical 
terminology. The discrepancy from inertial variation in the transition 
from the local to the global conceived topologically, is measured by certain 
equivalence classes, called cohomology classes. These classes are defined 
precisely through the notion of coboundary, and they capture in 
infinitesimal commutative terms some invariant global aspect obtained 
by their integration. 
 
66..77  CCOOHHOOMMOOLLOOGGYY::  GGRROOUUPP  SSHHEEAAVVEESS  AASS  CCOOEEFFFFIICCIIEENNTT  SSYYSSTTEEMMSS  
  FFOORR  CCAALLCCUULLUUSS  

 
The far-reaching applicability of Grassmann’s lineal geometric analysis 
can be adequately appreciated only if it can be raised appropriately from 
the level of a vector space to the level of a “locally free module”, defined 
over a smooth manifold or, more generally, over an arbitrary topological 
space, called accordingly a vector sheaf. The essential aspect of this 
generalization marking the powerful unifying combination of methods 
and ideas from the fields of geometry, topology, analysis, and homological 
algebra, is the notion of localization of a mathematical form, which 
reaches its greatest heights with the invention of sheaf theory and its 
subsequent application in the machinery of cohomology theory. 
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Conceptually, the invariant transference of Grassmann’s lineal 
extension framework from the level of vectors to the level of locally free 
modules, necessitates the consideration of locally-definable and variable 
mathematical entities. At the first stage, the natural generalization of the 
notion of a vector space defined over a field of scalars is carried over by 
the notion of a module defined over a commutative algebra of scalars in 
which the underlying field of definition of this algebra is injected as the 
constant scalars. The scalars of the algebra may be thought of in a physical 
sense as the observable quantities. 

In this sense, they assume at least the role of continuous functions 
defined over a topological space. For instance, the algebra of scalars may 
be generally considered as the -algebra, or more generally -algebra, 
of continuous functions evaluated in this field. The notion of evaluation 
also bears a physical semantics, since it refers to the evaluation of the 
observables at the states of the base topological space, that is, the 
recording of events in terms of values in the field of definition. Since the 
vectorial quantities defined over the algebra of scalars should be in 
principle expressible in terms of a basis, as in the case of vector spaces, 
the modules are required to be finitely generated or free. 

Notwithstanding this fact, there are two essential issues that have 
to be dealt with in this generalization: 

The first pertains to the realization that the operative 
manifestation of Grassmann’s lineal geometric analysis requires both the 
commutativity, and the infinitesimally-generated nature of the algebraic 
structural shadow of the extension process. In the context of the 
generalization we are dealing with the base field is substituted by the 
algebra of scalars, whereas the infinitesimals of all orders are included as 
ideals in this commutative shadow. In an analogous fashion, they give rise 
to modules of differentials, that is, continuous differential forms of 
various orders, such that the pertinent coboundary operator is defined in 
terms of them. In this way, the latter may be simply identified as an 
exterior derivative operator from the algebra of scalars to the modules of 
differentials of the first degree obeying the Leibniz rule, and subsequently 
generalized to all higher order by means of Grassmannian calculus, such 
that the coboundary law is satisfied. Technically, the base topological 
space is assumed to be paracompact and Hausdorff. 

The conceptual problem arising in this setting is that continuous 
functions are defined by their values at the points of the base topological 
space. This is quite at odds with the unfolding of Grassmann’s geometric 
analysis, since the points are only implicitly assumed in the initiation of 
the extension process, whereas they are actually explicated as bounds of 
criss-crossing temporal orders becoming dependent at a point, and most 
importantly, this is enacted only in terms of infinitesimal flows. The latter 
are only locally defined, they just require a local cover of this point. 

R C
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Therefore, to introduce here, in the generalized scheme of geometric 
analysis scalars as continuous functions determined by their values at 
points of the assumed topological space would be to beg the question. 
There is a way around this serious issue that makes the generalization of 
Grassmanian analysis proceed in a meaningful way preserving the 
unfolding semantics we have explicated previously. 

The essentially simple idea required for this purpose, notably also 
of a physical descent, is to consider the localization of the whole scheme. 
This is something already mandated from the origin of Grassmannian 
analysis, since the commutative shadow of the non-commutative exterior 
algebra, generated as it is infinitesimally can only be of a local character. 
This localization procedure of all scalar and vectorial quantities as well as 
geometric forms bears the name of sheaf theory. 

Instead of thinking in terms of globally defined continuous 
functions or forms of any order, we think in terms of locally defined 
functions, called sheaf sections, and their corresponding germs, as 
detailed in the preceding. Accordingly, the base topological space is 
considered only implicitly in the beginning of geometric analysis, with no 
reference required at all on its point determination. Instead what matters 
is the local covering structure of this space, which consists of the open sets 
covering the implicitly assumed points, that become explicable only in the 
culmination of the analysis in terms of the commutative shadow, or 
equivalently the algebra of scalars together with the cohomological 
temporal unfolding of the coboundary operator to higher orders of 
infinitesimal germs to be integrated appropriately as potential bearers of 
global information. Thus, under this essential localization requirement, 
the generalization of geometric analysis takes place in terms of a sheaf of 
commutative algebras of scalars or observables and locally free sheaves of 
modules defined over it so that the notion of basis persists in this context 
as well. 

The second issue pertaining to this generalization has to do with 
the doubly articulated semantics of the unfolding of geometric analysis 
given the necessary condition of topological or sheaf-theoretic 
localization, as established. Since, the point structure of the base 
topological space is only implicitly assumed what really matters is what 
plays the role of a topology, i.e. the role of a local covering structure of the 
points that allows the formulation of the concept of a continuous function 
with respect to these covers. Traditionally, this is implemented in terms 
of a collection of open covers of a topological space that is closed under 
arbitrary unions and finite intersections. 

Grothendieck generalized the notion of a covering family 
consisting of open sets by the notion of a covering sieve, not necessarily 
consisting of injective open covers, but allowing the definition of 
continuity in these generalized terms. The idea of generalized covers is 
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inspired essentially by Riemann’s covering principle together with its re-
conceptualization from the perspective of Galois theory. 

In a Grothendieck topology the open covers of a space are maps 
into this space, where instead of their pairwise intersections we have to 
look at their fibered products, or pullbacks, while unions play no essential 
role. In this conception, the idea of a cover is thought of as an observation 
horizon of a point, represented as an opening in a sieve that infiltrates 
observable information compatibly at different resolution layers by 
refinement until its temporal completion, thanks to which the essence of 
a point as a bearer of some globally irreducible, quantifiable, and invariant 
information may be unfolded cohomologically. The defining requirements 
of these generalized covers are the following: Covers are transitive 
meaning that covers of covers are also covers; covers are stable under 
pullback operations conforming to the stability of the notion of a cover 
under change of base; and finally, isomorphisms are qualified as covers. 

Note that the present type of cohomological unfolding is not 
typically the same as the one implemented by Grassmanian analysis in 
terms of differential forms, or more precisely, de Rham cohomology. It is 
a differently conceived kind of unfolding by means of another suitably 
defined coboundary operator, called Čech cohomology. Recalling that the 
notion of a coboundary operator is the encoding of a multiplicity of point-
bounding temporal orders in infinitesimal terms, subject to the 
coboundary law, the conception of Čech cohomology is based on a 
different articulation of what a temporal order is, independently of the 
concept of a local linearly extended geometric magnitude or form as in the 
de Rham case. 

The amazing fact that these two different types of cohomological 
unfolding can be unified, an insight that lies deeply at the heart of local 
gauge invariance that will be expanded later, is based on Grothendieck’s 
vision that a locally variable sheaf of coefficients is actually the natural 
argument of all cohomological theories in this context. 

In other words, the natural argument of a cohomology theory is not 
just a space, as it was initially thought of, but a space together with an 
observable sheaf of coefficients, such that the space constitutes the 
observed spectrum of the sheaf employed cohomologically for this 
purpose. The global nature of points of this spectrum is typically 
determined, as it is actually expected, by a constant sheaf of coefficients, 
namely, a sheaf of locally constant sections valued in the integers, or the 
reals, or the complex numbers. In this sense, a commutative observable 
sheaf of coefficients plays locally the equivalent role of a measurement 
procedure, or apparatus in physical terminology, that is capable of 
capturing some global invariant feature only by cohomological means. 

In Grothendieck’s phraseology, we read the following excerpt (in 
English translation) from his autobiographical reflections contained in 
Récoltes et semailles: Réflexions et témoignages sur un passé de 
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mathématicien: “Consider the set formed by all sheaves over a (given) 
topological space or, if you like, the formidable arsenal of all the “rulers” 
that can be used in taking measurements on it. We will treat this 
“ensemble”, or “arsenal” as one equipped with a structure that may be 
considered “self-evident”, one that crops up “in front of one’s nose”: that 
is to say, a Categorical structure  It functions as a kind of 
“superstructure of measurement”, called the “Category of Sheaves” (over 
the given space), which henceforth shall be taken to incorporate all that 
is most essential about that space. This is in all respects a lawful 
procedure, (in terms of “mathematical common sense”) because it turns 
out that one can “reconstitute” in all respects, the topological space by 
means of the associated “category of sheaves” (or “arsenal” of measuring 
instruments”). 

Having already described the process of continuous unfolding 
from the local to the global achieved by the theory of sheaves, it is 
worthwhile for our purposes to focus on the basic ideas of Čech 
cohomology theory, as a basic predecessor of the later developments. This 
is particularly interesting in relation to the notion of double articulation 
laid out briefly above, since it introduces a novel way of thinking about 
the global nature of the points of a topological space in terms of the idea 
of coverings, which for reasons of simplicity, we may currently identify 
with the typical open covers of a topological space, whose global aspects 
are only implicitly assumed ab initio. 

The basic characteristic of these open coverings is that they are 
partially ordered by inclusion. Note that this is just a partial and not total 
order of open covers, meaning that it is capable of subsuming a variety of 
potential local directed total orders or chains. The crucial idea is to force 
an inductive system out of these open covers that is capable of resolving 
points in terms of a corresponding dual projective system of Abelian 
groups of locally defined function elements, more precisely sections of a 
sheaf, over these covers at varying resolution horizons. Note that a 
section is conceived extensively as a whole over its domain or locus of 
definition. 

In the initial conception of this theory these function elements 
were considered constants, for instance constant real-valued functions, 
or the constant coefficient system . In this sense, an extension of 
function elements is initiated by gluing them together through a process 
of joining together open covers, which has to be compatible with the 
inverse process of restriction of these elements to smaller open covers. For 
this purpose, it is required that for any pair of them there exists an 
infimum expressed by their intersection, or meet, or more generally pull-
back operation, such that their overlap is totally contractible. Clearly, for 
every sub-collection of these covers there also exists a supremum with 
respect to their partial order relation. This implicitly also leads us to posit 

!
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a minimal cover to serve as the inductive limit of all pairwise intersections 
of all covers forming a chain. 

Thinking in temporal terms, we seek an articulation of points 
through this extension-restriction process in terms of an infinitesimally, 
and thus locally, generated commutative shadow, which can be 
equivalently expressed by means of a locally variable sheaf of coefficients 
(which can obviously be the constants) together with an appropriately 
defined coboundary operator. The latter should act on cochains of 
function elements in such a way that all function elements in the image of 
its action should form coboundaries, that is, local infinitesimally-
generated flows over the directed temporal orders represented by the 
respective dual chains of covers, called in turn boundaries. 

The first thing to note is that although coboundaries are locally 
defined entities, boundaries are globally defined entities with respect to 
the implicit base topological space. Thus although the coboundary 
operator is a locally defined operator on cochains, its dual boundary 
operator is a globally defined operator on chains. This eventually leads to 
the marking difference between cohomological and homological entities 
providing the appropriate hint required to pair them together in a suitable 
manner. At this stage, there is a second important thing we should also 
take into account, namely that in order that coboundary infinitesimal 
flows over distinct directed temporal orders can bound points by means 
of crisscrossing, they should be clearly alternating. Thus, both chains and 
cochains should be directed in the order-theoretic sense and alternating; 
something that it is implicitly assumed from the beginning usually, but 
has to be stressed at this stage. 

The most important idea now is that in a topological space, in 
sharp distinction to a linear space, this procedure does not exhaust the 
ontology of points. The reason is that this implicitly postulated global 
topological space is generally neither contractible, nor simply connected. 
Thus, there appears a new kind of ontology of points, which may be 
characterized in terms of a variety of singular points, for instance holes, 
singularities, poles, branching points, sources, residues, degeneracies, 
foams, and so on. All these types of singular points should be accounted 
for indirectly, through metaphora, in terms of some global invariant 
information they eventually give rise to with respect to the local 
commutative spectral shadow, instantiated by the locally variable sheaf 
of coefficients together with the locally defined coboundary operator. 
Since the global nature of these singular points cannot be probed and 
exhausted at the infinitesimal level, meaning that singular points cannot 
be bounded via crisscrossing infinitesimal flows locally, the type of 
cochains needed for their description cannot be coboundaries as in the 
former case, but cochains which are annihilated by the coboundary 
operator, or equivalently cochains that are vanishing over boundary 
chains, called in turn cocycles. 
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In this case, the crucial issue is that we require a novel notion of 
directed temporal order to be applied for distinguishing singular points, of 
a different quality from the one conceptualized in terms of boundary 
chains. It is intuitive enough to think that a singular point, since it cannot 
be bounded by infinitesimal flows meeting at this point, can only be 
amenable to a process of repeated circulations around it, where all these 
circulations are not equivalent, but are in principle distinguishable in 
terms of different global attributes. 

Dually thinking, the type of global chains needed for this purpose, 
called cycles, are clearly not boundaries, and most significantly, they 
encapsulate a novel type of temporal order that it is qualitatively different 
from the former one. More precisely, the type of temporal order 
encapsulated by cycles is characterized in terms of the periods of the 
locally-generated process of cocyclic circumscription, to be thought of as 
a global integration procedure, and not in terms of instants as in the 
former case. 

The only issue remaining after making this qualitative difference 
is to discern the internal relation that cocycles bear with coboundaries, or 
equivalently cycles with boundaries. We can immediately see that due to 
the validity of the coboundary law for alternating cochains, all 
coboundaries are trivially cocycles as well. Equivalently, all boundary 
chains are trivially cycles as well, showing that the spectral unveiling of 
singular points is deeper than that of standard points, since the type of 
temporal order needed to account for the latter is trivially subsumed by 
the former. 

Hence, at each degree, we may consider the quotient of the space 
of all cochains that are cocycles by the space of all cochains that are 
coboundaries to obtain the notion of a corresponding cohomology class. 
From this viewpoint, we realize that coboundaries function as bridges in 
statu-nascendi for the transition from one cocycle to another of the same 
cohomology class. We conclude that it is the concept of a cocycle that 
epitomizes the notion of a gauge in a topological context, whence the 
notion of gauge invariance is expressed through the concept of a 
cohomology class, as we shall elaborate in more detail later. 

We proceed with a brief technical exposition to accompany the 
above conceptual undertaking of Eduard Čech theory. We emphasize that 
this cohomology theory is based on the intersection properties of open 

covers. Let , be a system of open covers of the implicitly 

assumed global topological space . For , , ,   , we 
denote: 
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and define a degree -cochain with real coefficients for the covering  

as a totally ordered collection of function elements , where  

is totally ordered with  elements, and each  is constant, real-
valued and alternating. 

We denote the set of all degree -cochains with real coefficients 

obtained from a covering  of  by . Then, pointwise 

addition over the real numbers makes  an Abelian group, 
and scalar multiplication provides it with the structure of a real vector 

space. According to the above definition, an element of  
corresponds to the assignment of a constant real-valued function to each 
open cover in . We consider that the covering  is finite, say of 

cardinality , hence we obtain . Analogously, the 

elements in  correspond to constant real-valued functions 
defined on the overlap of two open covers, and so on. 

The coboundary map, or Čech differential is a linear map 
 

 
 
for every index , which sends each -cochain  to a -
cochain , i.e. to a coboundary, that is a set of constant real-valued 

functions defined on intersections of  open covers, each expressed 
as an alternating sum of restrictions of ’s to these covers. The 
coboundary operator by construction satisfies the coboundary law, 

. 

We say that a cochain  in  is closed, or a cocycle, 

if , whereas we say that a cochain  in  is a 

coboundary if it is in the image of the coboundary operator , i.e. there 

exists a cochain  in , such that . Then, we define 
the -cohomology Abelian group of equivalence classes of cocycles 
modulo coboundaries with coefficients in , as the quotient: 
 

 
 
Superficially, it seems that the above cohomology groups depend on the 
covering  chosen. This is not true, but this wrong impression can be 
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rectified by applying the inductive limit construction over a refinement of 

. Practically, it suffices to consider all open covers of  which are 
contractible, so that all their intersections are contractible as well. 

It is important to notice that the structure of the real numbers is 
not constraining in any way for the establishment of Čech’s theory. All 
the arguments can be carried out for constant functions in any Abelian 
group. It follows that, we obtain Abelian cohomology groups with values 
in  for any Abelian group of coefficients . Most appropriately, 
because of the pertinent localization philosophy, we should focus on a 
locally variable Abelian group structure of coefficients, i.e. an Abelian 
group sheaf of coefficients, which is usually an Abelian group sheaf of 
locally constant functions. 

After this clarification, we may examine in more detail the 

structure of the  Abelian cohomology group . This 

group emanates purely from -cocycles, that is, from cochains , 

where  contains only  element, and each  is a locally constant, 
real-valued function. We have: 
 

 
 

on the intersection  of the open covers  and . 

Therefore,  is the Abelian group of locally constant real-

valued functions. In this way, the group  detects the 

connected components of the topological space . If  is connected 

then . In this case,  is identified as the 
Abelian group of all globally defined constant functions. 

Let us now examine the  Abelian cohomology group 

. This group emanates from -cocycles, i.e. from cochains 

, where  contains  elements, and each  is a locally 
constant, real-valued function. Equivalently, we consider the family 

, such that , and the following cocycle 
relation is satisfied: 
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on the triple intersection of open covers . These -cocycles 

 yield cohomology classes in  by taking them up to the 
addition of a coboundary. Equivalently, for any two cocycles , , we 
have that: 
 

 
 

for some -cochain . 
After our interlude among the workings of Čech cohomology 

theory, the essential thing to keep in mind is that the natural argument of 
a cohomology theory is not a global topological space or a manifold, which 
after all is initially only implicitly posited, but a space together with an 
observable sheaf of coefficients, such that the point constitution (both 
standard and singular) of the former arises as the spectrum of the sheaf 
cohomological analysis. It is an established fact that in the case of 
paracompact topological spaces the calculation of cohomology with 
coefficients into a typical sheaf of coefficients is equivalent to the 
calculation of Čech cohomology theory with values in the corresponding 
sheaf (complete presheaf). 

In this context, the calculation of cohomology with values in a 
constant group sheaf is of particular significance; such a group sheaf 
consists of locally constant sections, as well as the interrelation among 
constant sheaves in their function as cohomology coefficients. The most 
important tool in this respect, is provided by the exponential short exact 
sequence of constant group sheaves. The validity of this exact sequence of 
group sheaves conceptually descents from Riemann’s covering principle, 
that we have already seen in the context of complex function theory on 
Riemann surfaces in relation to the complex exponential function and its 
local inverse complex logarithm function. 

In terms of constant Abelian group sheaves, we have locally a 
certain interrelation of coefficients, expressed via the exact sequence: 
 

 (1) 
 (2) 

 
where  is the constant additive Abelian group sheaf of the integers,  
is the constant additive Abelian group sheaf of the complexes, and  is 
the constant multiplicative Abelian group sheaf of non-zero complexes. 

The above exponential short exact sequence can be specialized 
further to the following short exact sequence of constant Abelian group 
sheaves: 
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 (3) 
 
where  is the constant additive Abelian group sheaf of the reals, and 

 is the constant multiplicative Abelian group sheaf of unit modulus 
complexes (phases). 

The applicability of Grassmann’s lineal geometric analysis is 
finally generalized and empowered to its full strength under the program 
of sheaf-theoretic localization, that marks the essential semantic 
transition from the level of vector spaces to the level of vector sheaves. 
The important thing is that Grassmann’s analysis permeates the level of 
vector sheaves, meaning that it is invariant under localization, or 
equivalently exhibits a functorial behavior that justifies its universal 
relevance and applicability. For reasons of completeness, it is worth 
including the basic definition of the notion of a vector sheaf that 
characterizes the correlative generalization. 

We consider a pair  consisting of a paracompact 

(Hausdorff) topological space  and a soft sheaf of commutative rings 
 localized over . The above pair is considered as the Gelfand 

spectrum of a corresponding algebra of observables . We remind that if 
 is the field of complex numbers, then an -algebra  is a ring  

together with a morphism of rings  (making  into a vector 
space over ) such that, the morphism  is a linear morphism of 
vector spaces. Notice that the same holds if we substitute the field  
with any other field, for instance, the field of real numbers . We also 

assume that the stalk  of germs is a local commutative -algebra for 

any point . A typical example is the case, where  is a smooth 
manifold of and  is the -algebra sheaf of germs of smooth functions 
localized over . Together with a -algebra sheaf  we also 
consider the Abelian group sheaf of invertible elements of , denoted 
by . 

An immediate generalization of the exponential short exact 
sequence of constant Abelian group sheaves is provided by the following 
short exact sequence of variable Abelian group sheaves, which models 
sheaf-theoretically the process of exponentiation in terms of the variable 
sheaves of coefficients  and : 
 

 (4) 
 
where  is the constant abelian group sheaf of integers (sheaf of locally 
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 (5) 
 

An -module  is called a locally free -module of finite 
rank m, or simply a vector sheaf of states, if for any point  there 
exists an open set  of  such that: 
 

 (6) 
 

where  denotes the -terms direct sum of the sheaf of -

observable algebras  restricted to , for some . We call 

 the local sectional frame of  associated via the open covering 

 of . 

In case that the rank is , the corresponding vector sheaf is called 
a line sheaf of states, that is locally for any point  there exists an 
open set  of  such that: 
 

 (7) 
 
Furthermore, if for any point  there exists an open set  of  
such that: 

 (8) 

 
then we call any locally free -module  of finite rank , for some 

, a complex linear local system of rank . 
The notion of a vector sheaf of states generalizes the notion of a 

vector space in the sense that locally every section of a finite rank vector 
sheaf can be written as a finite linear combination, or superposition of a 
basis of sections with variable coefficients from the local observable 
algebra. For example, if  is a smooth manifold and  is the -
algebra or -algebra sheaf of germs of smooth functions on , then 
every section can be locally written as a finite superposition of a basis of 
sections with coefficient being real-valued smooth functions. We note 
that the set of sections of every vector bundle on a topological space (not 
necessarily a smooth manifold) forms a vector sheaf of sections localized 
over this space. 

Given a vector sheaf of states , there is specified a Čech -

cocycle with respect to a covering  of , called a coordinate -
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cocycle in  (with values in the sheaf of germs of sections 
into the complex general linear group ), as follows: 
 

 (9) 

 (10) 

 

Thus, for every  we have a stalk isomorphism: 
 

 (11) 
 

and similarly for every . If we consider that , then we 

obtain the isomorphism: 
 

 (12) 

 

The  is thought of as an invertible matrix of germs at . 

Consequently,  is an invertible matrix section in the sheaf of germs 

 (taking values in the general linear group ). 

Moreover,  satisfies the cocycle conditions  on triple 

intersections whenever they are defined. 
It is clear in this way that we obtain a vector bundle with typical 

fiber , structure group , whose sections form the vector 

sheaf of states we started with. In particular, for , we obtain a line 

bundle  with fiber , structure group  (the non-zero 

complex numbers), whose sections form a line sheaf of states . Clearly, 
by imposing a unitarity condition the structure group is reduced to . 
Thus, particularly in the case of a line sheaf of states we have a bijective 
correspondence: 
 

 (13) 

 

where  is the group sheaf of invertible elements of 

 (taking values in ), and  is the set of coordinate -

cocycles. In physical terminology, a coordinate -cocycle effects a local 
frame transformation, or equivalently a local gauge transformation of a 
vector sheaf of states . 
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Every -cocycle can be conjugated with a -cochain  in the 

set  to obtain another equivalent -cocycle: 
 

 (14) 
 
If we consider the coboundary operator: 
 

 (15) 
 

then the image of  gives the set of 1-coboundaries of the form  

in : 
 

 (16) 
 

Thus, we obtain that the 1-cocycle  is equivalent to the 1-cocycle 

 in  if and only if there exists a -cochain  in the set 

, such that: 
 

 (17) 

 
where, the multiplication above is meaningful in the Abelian group of 1-

cocycles . 
Due to the bijective correspondence of line sheaves with 

coordinate -cocycles with respect to an open covering , we 
immediately obtain the following: 

The set of isomorphism classes of line sheaves of states over the 
same topological space , denoted by , is in bijective 

correspondence with the set of cohomology classes : 
 

 (18) 
 

Furthermore, each equivalence class  in  
has an inverse, defined by: 
 

 (19) 
 

1 0 ( )ta
0 ( , )C !U A 1

1=g t g tab a ab b
-¢ × ×

0 0 1: ( , ) ( , ),C CD ®! !U A U A

0D 0 1( )ta
-D

1( , )B !U A

0 1 1( ) :=t t ta a b
- -D ×

gab¢

gab
1( , )Z !U A 0 ( )ta

0 ( , )C !U A

1 0 1= ( )g g tab ab a
- -¢ × D

1( , )Z !U A

1 U

X ( )( )Iso XL
1( , )H X !A

1( )( ) ( , )Iso X H X@ !L A

[ ] ºL L ( )( )Iso XL

1 := ( , )Hom-
AL L A



282 NATURAL COMMUNICATION

255 
 
where,  denotes the dual line sheaf of . This is 
actually deduced from the fact that we can define the tensor product of 
two equivalence classes of line sheaves over  so that: 
 

 (20) 
 
Hence, we conclude that the set of isomorphism classes of line sheaves of 
states over the same topological space , , has an Abelian 
group structure with respect to the tensor product over the observable 
algebra sheaf , and isomorphically the set of cohomology classes 

 is also an Abelian group, where the tensor product of two line 
sheaves of states corresponds to the product of their respective 
coordinate -cocycles. 
 
66..88  SSIINNGGUULLAARR  DDIISSCCLLOOSSUURREE::  IINNTTEEGGRRAATTIIOONN  OOVVEERR  CCYYCCLLEESS  
  AANNDD  IINNVVAARRIIAANNTTSS  

 
In the context of Grassmann’s lineal geometric analysis we reached the 
following conclusion: In the same way that the non-commutative exterior 
algebra  is an algebraic representation of Grassmann’s lineal 
extension process from layer to layer starting from directed linear 
extensions, where the scalars or points are only implicitly assumed, the 

commutative shadow  provides an inversion of this process, in 
terms of commuting infinitesimal units, where each one of them 
corresponds to a directed extension, culminating in the determination of 
points according to distinct linear extensions becoming dependent at that 
point. 

More precisely, the constitution of the commutative shadow 

 of the exterior algebra  is elucidated by means of the 
locally defined coboundary operator, based on the idea of semantically 

unfolding the infinitesimal irreducible parts of  as modules or 
simply vectors spaces of differentials of different orders. In this manner, 
the notion of the coboundary operator is actually based precisely on the 
articulation of a point as a bound of distinct temporal orders becoming 
dependent infinitesimally, that is, in terms of commuting one-parameter 
infinitesimal flows, at that point. 

The coboundary operator gives rise to an exterior derivation 
operator , characterized by the property that , in other words, 
it is a nilpotent operator of the second degree. More concretely, the 
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exterior derivation operator is thought of as acting on modules of 
differentials, called differential forms. 

In order that Kähler’s algebraic extension method becomes 
suitable as a generator of a universal mechanism of differential geometric 
analysis it should be susceptible to the process of sheaf-theoretic 
localization of an observable algebra. In turn, this would allow the 
complete disassociation of the differential mechanism from any 
underlying spatial substratum opening up the way for a functorial 
formulation of differential geometry. 

The localization of Kähler’s algebraic extension method in sheaf 
theoretic terms requires first of all the notion of a universal derivation of 
the observable algebra sheaf  considered as an algebra sheaf over the 
constant sheaf of the reals , or more generally, as an algebra sheaf over 
the constant sheaf of the complexes . 

The universal -derivation of the observable algebra sheaf  

to the universal -module sheaf , called the -module 

sheaf of differential -forms, is the universal -linear sheaf morphism 
(natural transformation) : 
 

 (1) 
 
such that the Leibniz condition is satisfied: 
 

 (2) 
 
for any continuous local sections ,  belonging to , with  an 

open set in . Notice that all the above definitions are strictly local, 
which means they are considered stalk-wise. We may also use the 
following notational convention: . 

The major ingredient in setting up a universal mechanism of 
differential geometric analysis is the validity of the Poincaré Lemma: 
 

 (3) 
 

For each , , the -fold exterior product is defined as 

follows:  where . We notice that 

there exists an -linear sheaf morphism: 
 

 (4) 
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for all . Let , then  has the form: 
 

 (5) 

 

with , ,   for all integers , . Further, we define: 

 

 (6) 

 
From the above, we immediately obtain that the composition of two 
consecutive -linear sheaf morphisms vanishes, that is , 
abbreviated in the symbolic form , expressing the coboundary law 
in this context. 

The sequence of -linear sheaf morphisms: 
 

 (7) 
 
is a complex of -vector space sheaves, called the sheaf-theoretic 
differential complex of . 

Moreover, given the validity of the Poincaré Lemma, 

, and the fact that  is a soft observable algebra sheaf, we 
obtain: 

The sequence of -vector space sheaves is exact: 
 

 (8) 
 
Thus, the sheaf-theoretic differential complex of the observable algebra 
sheaf  constitutes a resolution of the constant sheaf  by soft 
sheaves (which are acyclic with respect to the global sections functor). 

The preceding observations elucidate the three basic conceptual 
issues underlying the generalization of Grassmann’s lineal geometric 
analysis under the prism of sheaf-theoretic localization: 

The first pertains to the generalization of Grassmann’s exterior 
algebra from the context of vector spaces defined over a field to the 
context of vector sheaves defined over a sheaf of algebras of observables. 

The second pertains to conceptualizing and expressing 
Grassmann’s scheme algebraically as a process of resolution of the 
constants, represented by the field of definition, the coordinatizers of 
points. 
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The third pertains to viewing this process of resolution of the 
constants in terms of the notion of a differential complex, where the latter 
is based on the action of the exterior derivation operator , 
characterized by the property that , that is, the coboundary law. 

Most important, in cases where the observable algebra sheaf is the 
sheaf of smooth functions defined on a differential manifold, the above 
sheaf-theoretic process of resolving the constants provides a clear 
manifestation of de Rham’s cohomological scheme. In precise terms, the 
sheaf cohomology with coefficients in the constant sheaf , is 

isomorphic with the de Rham cohomology of . We emphasize that  
denotes the domain of constants (locally constant sections) of the 
observable algebra sheaf of smooth functions  defined on a smooth 

finite dimensional manifold , identified as the spectrum of . The 
same is equally true of the Čech cohomology with values in the constant 
sheaf . In short, all the respective cohomology groups are isomorphic: 
 

 (9) 
 

The above isomorphism, first proved by André Weil, establishes 
the sheaf-theoretic formulation of de Rham’s theorem. In order to gain a 
deeper insight it is of value to describe de Rham’s initial motive and follow 
the type of cohomological unfolding it implements in terms of differential 
forms. 

The essential issue is the disclosure of singular points on a 
manifold, given that its point structure is only implicitly assumed initially, 
according to the preceding. This disclosure may be though of in terms of 
a coboundary operator giving rise to a differential complex, where it is 
considered as an exterior derivation operator acting on differential forms 
that obey the rules of Grassmann’s lineal geometric analysis. The basic 
idea is that differential forms are objects which can be temporally 
integrated over chains in a way that is compatible with pull-back 
operations. If the result of this integration procedure is not trivial, then 
the obtained residue characterizes invariantly a singular point encycled by 
an appropriate chain in terms of periods. 

According to de Rham, we consider differential forms of degree , 
, on a finite dimensional smooth manifold of dimension . These 

differential forms constitute a real vector space, denoted by . The 
exterior differential operator acts on forms , such that  is a form 
in , via the linear mapping of real vector spaces 
 

 (10) 
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satisfying the condition that . 

The notion of the differential complex arising in this manner, 
called the de Rham complex, encapsulates the idea that the image  
of the real vector space  in  via , lies in the kernel of the 
following linear mapping , denoted by . Then, by 
means of quotienting the de Rham cohomology groups 
 

 (11) 
 
are defined, and they are real vector spaces as well. A form  that 
belongs to , whereby  is called a closed differential form, 
whereas a form in  expressed as the differential of a form in  is 
called an exact differential form. Clearly, every exact form is also closed, 
but the inverse does not hold. Thus, the de Rham cohomology group of 
some degree structurally measures the discrepancy from exactness at this 
degree in terms of closed forms failing to be exact. 

At a further stage, we consider that  is subdivided into cells, 

and let  be the vector space of -chains. This is a real vector space of 

linear combinations of -cells with real coefficients. The boundary  

of a -cell  is a -chain with coefficients . This extends by 
linearity to a boundary operator 
 

 (12) 

 
such that . 

Next, we consider the vector space of real linear forms defined on 

-chains, that is the real vector space  of -cochains, dual to . 
For these, there is associated the coboundary operator 
 

 (13) 
 
satisfying the condition that . More precisely, since the 
coboundary operator  acting on cochains is dual to the boundary 

operator  acting on chains, for a cochain  in  
 

 (14) 
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where  is a chain  . We conclude that the image  of 

the vector space  in  via , lies in the kernel of , 
denoted by . Then, the cohomology groups 
 

 (15) 
 
are defined by means of quotienting, and they are real vector spaces. 

In this context, de Rham’s theorem not only proves the 
isomorphism: 
 

 (16) 
 
but additionally, it shows explicitly that the above isomorphism is 
implemented and realized by the integration of differential forms. In 

particular, a -cell  is considered as smooth so as to serve as the 

domain of integration of a corresponding differential form. For instance, 

for an -differential form , the expression  stands for the line 

integral of  along the -cell . In an analogous manner, the integral 

 extends by linearity to all -chains , such that: 

 
 (17) 

 

defines a linear form  identified as a cochain in . Thus, for every 
degree  there emerge linear mappings 
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such that we have 
 

 (19) 
 
culminating into the theorem of George Stokes: 
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for all   . Notice that the linear mappings  map the groups 

 and  into the groups  and  correspondingly. We 
obtain thereby a linear mapping of the quotient groups: 
 

 (21) 
 
that de Rham’s theorem asserts is an isomorphism. 

De Rham’s considerations additionally involve the homology 

groups  defined as the quotient groups: 
 

 (22) 
 

where  is the kernel of . These chains  in  

satisfying the condition  are called cycles, whereas those 

satisfying the condition  are called boundaries. In this 

manner, an element of the homology group  denotes an 

equivalence class of -cycles differing by a boundary. The connotation 
of a cycle is tantamount to a closed region of integration. 

Consider a cochain  in , i.e. , called a -cocycle. 
Then we obtain that 
 

 (23) 

 

meaning that  is  on . In this way, we obtain an -valued 

linear form on  that is identically  if  is a -coboundary. 

In the inverse direction, all -valued linear forms on  are 

produced likewise, meaning that 
 

 (24) 

 

In other words,  is identified as the dual to , i.e. the 

vector space of all -valued linear forms on . Hence, the linear 

mappings  can viewed equivalently as: 
 

 (25) 
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which maps a closed differential form to an -valued linear form 
defined on the -cycles, and is on the -boundaries. According to 

de Rham’s theorem is an isomorphism, and the -values of this 
linear form are called the periods of the differential form . The 
injectivity of means that if all periods of the closed differential form 

are , then is an exact form, i.e. it is the differential of a form 

, equivalently . The surjectivity of means that 

given periods , then there always exists a closed 

differential form , that it is associated with these periods.
Again the essential issue of de Rham cohomological analysis is the 

disclosure of singular points on a manifold in terms of invariant quantities 
obtained by the integration of differential forms. More precisely, closed 
differential forms are the natural integrands over cycles, i.e. they can be 
temporally integrated over closed chains encircling a singular point, such 
that the result of this integration procedure leaves a residue 
characterizing this singular point invariantly in terms of periods.

From the dual homology-theoretic viewpoint, the Abelian group 

measures the number of connected components of . In turn, the 

Abelian group measures how many independent cycles, or -

dimensional holes has, modulo the bounding cycles, meaning the 
boundaries. Since the cohomology groups are dual to their respective 
homology groups we have the following: The Abelian group 

measures the connected components of in terms
of real valued functions that are locally constant over these components. 

This is reflected on the dimension of the real vector space . The 

Abelian group is constituted by closed differential -
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forms that can be integrated over -cycles enclosing -dimensional holes 
or singular points, allowing them to be characterized in terms of periods. 

The most characteristic example is provided by the angular 
differential -form , which is a closed form but not exact, since it 
cannot be expressed as an exact differential , where  denotes 
the angle in polar coordinates of a -dimensional Euclidean space. Note 
that the angle is defined modulo , where   . In cartesian 
coordinates the angular differential -form  is expressed as follows: 
 

 (26) 

 
It is defined everywhere on  except the point , which is thus a 

singular point. In this sense, the integration of  over oriented -cycles 
encircling the singularity , i.e. the line integral of the closed 
differential form : 
 

 (27) 

 

over any closed curve  defined on  measures its period or 
winding number around the singular point , thus disclosing this 
singular point invariantly. 

It is instructive to remember that differential forms  
constitute the natural entities to be integrated over cycles of the same 

dimension. Moreover, if we consider two forms  in , and  

in , then their exterior product  is a form in . This 

differential form can be integrated over , considered as a closed, 
connected and orientable smooth manifold of finite dimension : 
 

 (28) 

 
giving rise to a bilinear pairing: 
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under which  and  become dual spaces. In turn, the above 
provides an equivalent expression of Poincaré’s duality, 
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 (30) 

 
We close this circle of ideas related to de Rham cohomology by 

revisiting the sheaf-theoretic form of de Rham’s theorem. We recall that 
the Čech cohomology with values in the constant sheaf , where  
is the domain of constants (locally constant sections) of the observable 
algebra sheaf of smooth functions  on a smooth finite dimensional 
manifold , conceived as the spectrum of , is isomorphic with the de 
Rham cohomology of . This led to the conclusion that all the 
respective cohomology groups are isomorphic: 
 

 (31) 
 

We recall that the  abelian cohomology group 

 emanates purely from -cocycles, i.e. from cochains 

, where  contains only one element, and each  is a locally 
constant, real-valued function. We have: 
 

 
 

on the intersection  of the open covers  and . Therefore, 

 is the Abelian group of locally constant real-valued 

functions. Thus,  detects the connected components of 

. More concretely, the dimension of the real vector space 

 provides the number of connected components of . If 

 is connected then . In this case,  is 
the Abelian group of all globally defined constant functions. 

For simplicity, we may consider an open cover  of an -

dimensional Euclidean space  and recall how we obtain . 

Then, the locally constant real-valued smooth functions in  over  

constitute the Abelian group . These locally constant real-

valued smooth functions  over  are exactly the solutions of the 
differential equation: 
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Generalizing, for any smooth manifold the Abelian group 

, where  is an open cover, may be interpreted as the real 

vector space of local solutions on  of the differential equation , 
where  is qualified accordingly as a locally constant real-valued smooth 

function over . 

Most important, since  at all orders, the 

constant sheaf of the reals , in its role as an Abelian coefficient sheaf 
of cohomology, should furnish the description of all higher cohomology 

groups in a way analogous to the above case. In this manner,  
can be viewed as the real vector space of solutions of the differential 
equation , where  is a closed differential -form in , 
modulo the exact differential forms, by which we mean these solutions 

, where  in , considered trivial due to the validity of the 
coboundary law. Note that the difference between closed forms and exact 
forms is a global feature of  reflecting the topological complexity of 
singular points of . 

If  is a smooth manifold, we may express  in the form 

, where the coordinate functions  are smooth functions. 
Recalling that  constitutes the natural entity to be integrated over 
cycles of the same dimension, we consider  as a function on cycles: 
 

 (33) 

 
The important thing is that since the evaluation of this integral gives the 
period of  with respect to an integration cycle , the above function is 
a locally constant real-valued function on homologous cycles. 

Conversely, considering a general differential -form , we think 
of it as a function on smooth paths : 
 

 (34) 

 
and examine when the above function is a locally constant real-valued 
function on . In other words, we are interested in those  for which 

the line integral  remains constant under perturbations of , while 

keeping its endpoints fixed. This happens only if  is a closed 
differential -form, i.e. , meaning that the required condition is 
fulfilled by the solutions of the differential equation  modulo the 
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solutions , where  in , satisfying trivially the local 
constancy condition. 

Thus,  is a real vector space determined by the real-valued 

locally constant integrals of closed differential -forms modulo those 
that are trivially locally constant of exact differential -forms. The same 
prescription can be generalized to all higher order cohomology groups by 
the replacement of line integrals by their higher dimensional analogues. 
In conclusion, we realize that the constant Abelian sheaf of the reals  
determines by the localization of the notion of constancy to local 
constancy all de Rham cohomology groups in its function as a coefficient 
sheaf of Čech cohomology. 
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77..11  AARRTTIICCUULLAATTIIOONN  OOFF  MMAATTTTEERR::  FFRROOMM  LLOOCCAALL  GGAAUUGGEE  SSYYMMMMEETTRRYY  
  TTOO  GGAAUUGGEE  PPOOTTEENNTTIIAALLSS  

 
Physical geometry may be thought of as the outcome of a measurement 
procedure, where the interwoven notion of a group action discloses a 
particular act of measurement. The general conceptual attitude towards 
physical geometry emanating from Felix Klein’s Erlangen program 
requires that the geometric configuration of states of a physical system 
and the symmetry group of transformations of those states should be 
considered equivalent through the free and transitive action of the 
symmetry group on the space of states. 

Gauge-invariant field theories of material interaction are modeled 
in terms of fiber bundle geometries endowed with a connectivity 
structure, which integrate Klein’s group theoretical conception of 
geometry with Riemann’s infinitesimal metrical viewpoint. These 
physical models are based on the fundamental notion of a connection on a 
fiber bundle, which generalizes Weyl’s viewpoint of a purely 
infinitesimally geometry, generated by means of an affine connection that 
can be made metric-compatible. The notion of a connection, in relation to 
a fiber bundle geometry, is indispensable for the effectuation of a 
covariant derivative operator, which acts on the local sections-states of 
the bundle. This operator expresses analytically in infinitesimal terms the 
process of parallel translation along paths on the base space of the bundle 
induced by this connection. 

In this manner, the infinitesimal expression of the connection is 
interpreted as a local gauge potential corresponding to a physical field. It 

is expressed by means of a differential -form, which takes values in the 
Sophus Lie algebra of the symmetry group. In turn, the observable, and 
thus measurable, effects of the potential are expressed invariantly via a 
tensor, which is called the curvature of the connection. The latter is 
physically identified locally with the observable strength of the 
corresponding physical field. In the setting of gauge theories the 
symmetry group is modeled locally on the fibers of a principal fiber 
bundle, which is defined over spacetime. Concomitantly, the state space 
of a gauge theory is identified with the group sheaf of sections of this 
bundle, or equivalently, with the vector sheaf of sections of its associated 
vector bundle. We note that the above setting of a gauge field theory 
constitutes a concrete expression of the principle of sheaf-theoretic 
localization, referring to both, the physical state space, and the pertinent 
free and transitive group action. 

The genesis of gauge theory can be traced back to Hermann Weyl’s 
conception of the interrelation between some type of material source and 
the corresponding field governing a physical interaction. According to 
Weyl, analogously to the fact that charge may be conceived as an 
electromagnetic effect, mass may be conceived as a gravitational effect. In 

1
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particular, mass is the flux of the gravitational field through a surface 
enclosing a particle in the same sense that charge is the flux of the electric 
field. Thus, in the same way that it is impossible to introduce charge 
without the electromagnetic field, it is also impossible to introduce a non-
vanishing mass without the gravitational field. In this respect, Weyl’s 
fundamental idea concerning the notion of a local gauge interaction 
pertaining to a type of matter source with a corresponding physical field 
stems from the requirement of invariance. 

More concretely, the crucial realization is that the localization of 
an internal symmetry in the physical description pertaining to a material 
form always gives rise to a corresponding gauge potential of a field, in 
order that the physical description remains invariant. Therefore, physical 
geometry in the setting of a gauge theory as a result of an interaction 
always proceeds from the localization of a global symmetry pertaining to 
the description of a material form. The demand of invariance under this 
process of localization requires the instantiation of a gauge field potential 
transferring an interaction, which thus couples the material form with the 
gauge field. Therefore, the localization of symmetry in relation to a 
material form constitutes the necessary condition for expressing both, the 
notion of an interaction field via its gauge potentials, and the minimal 
coupling of these potentials with the matter sources, under the demand 
of invariance. 

The principle of sheaf-theoretic localization, which forces the 
functorial transference of Grassmann’s lineal extension framework from 
the level of vector states to the level of vector sheaves of states, by which 
we mean locally free modules of states over a commutative algebra sheaf 
of observables, gives the possibility of a precise description of the physical 
geometry derived as a result of the interaction between a physical field 
and some type of a matter source, according to the preceding. For this 
purpose, the base space of the sheaf-theoretic localization procedure, 
pertaining to both, the symmetries, and the physical states, is identified 
with the spacetime manifold. Nevertheless, its construal as a base space 
is only implicit, in the sense that its point structure is not explicit ab 
initio, but has to be articulated by physical means. 

The basic idea is that the information regarding the point 
constitution of this space, which points are occupied by some material 
form, or the space is penetrated by some current, can be expressed by 
means of some global invariant characterizing the physical interaction 
field whose sources are precisely these material forms. In the same 
context, the notion of physical geometry is always induced by the 
localization of some free and transitive group action, which expresses a 
fundamental internal symmetry in the description pertaining to a 
material form, in the sense that it is tantamount to a conservation law. 
The culmination of this conceptual setting bears the name derived by the 
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principle of gauge invariance leading to the modeling of physical 
interaction geometries in terms of gauge theories. 

The localization of the internal symmetry of a material form 
simply means that it may vary independently from point to point of the 
base space, within the range of ambiguity determined by the 
corresponding symmetry group. In this sense, a copy of the same 
symmetry group is replicated from point to point of the base space, in such 
a way that, at each of these points, a symmetry element is subsumed in 
total independence from all the others at any other point. It is precisely 
due to this freedom of independent symmetry variation from point to 
point that a proper means of following this variation from the 
infinitesimal to the global is required. These means establish the 
standards of congruence according to an imposed rule of parallelism, 
which is to say a rule of parallel transport along temporally parameterized 
paths on the base space. The latter derives from the notion of a connection 
on the corresponding principal group sheaf of symmetry coefficients, or 
equivalently, by a connection on the associated vector sheaf of states, 
where the latter assumes the role of the state representation space of the 
symmetry group. 

In a standard way, a connection always gives rise to a covariant 
derivative operator, i.e. to a covariant means of differentiating the 
sections of this sheaf. The physical interpretation is that a field can be 
covariantly detected in terms of its differentiating effects on the section-
states of the vector sheaf, and thus it should be locally characterized in 
terms of its gauge potentials. Henceforth, gauge field potentials are 
instantiated as necessary elements proceeding from the localization of the 
internal symmetry group of a material form, and being minimally coupled 
with the latter, such that the physical description remains always 
invariant with respect to the algebra sheaf of observables. 

In the setting of a gauge theory the invariance in the description 
of physical geometry is always meaningful with respect to a commutative 
algebra sheaf of observables. It is this requisite invariance that demands 
our focus once again on the commutative shadow of the exterior algebra 
of the vector sheaf of states. According to the qualification of geometric 
calculus in relation to the sheaf-theoretic localization of Grassmann’s 
lineal extension method, the commutative shadow is of a cohomological 
origin. 

More concretely, it is enunciated by means of the locally defined 
coboundary, or exterior derivative, operator of the observable algebra 
sheaf. It is precisely based on the idea of unfolding and separating the 
infinitesimal irreducible parts of the commutative shadow, as modules of 
differentials of different orders. Recalling that the notion of the 
coboundary operator is based on the articulation of a point as a bound of 
distinct temporal orders becoming dependent infinitesimally, i.e. in terms 
of commuting one-parameter infinitesimal flows, at this point, it is 
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necessary to account for the modification of these flows by the effect of 
localization of the internal symmetry of a material form occupying the 
point itself. In the descriptive capacity of the commutative shadow, this 
type of modification needs to be expressed in an invariant manner locally 
around this point by means of the associated gauge field potentials, which 
become minimally coupled with the material form. 

Therefore, the coboundary operator is covariantly adapted to the 
additional requirement of localizing matter symmetry, and thus extended 
to act on the representation vector sheaf of states of the internal 
symmetry group, as a covariant derivative operator stemming from a 
connection on this sheaf. As a result, and in terms of the commutative 
shadow, the articulation of a point where some matter form is pertinent 
can be accounted for by the failure of this modified coboundary operator 
to extend to a differential de Rham complex as in the former case. This 
obstruction to extendibility of the modified coboundary operator to the 
next higher order is interpreted physically as the encoding trace of the 
field strength, associated with the curvature of the employed connection 
on the vector sheaf of states. The curvature bears the transformation 
properties of a tensor, and thus behaves covariantly with respect to the 
commutative algebra sheaf of observables. 
 
77..22  CCOOVVAARRIIAANNCCEE::  GGAAUUGGEE  TTRRAANNSSFFOORRMMAATTIIOONNSS  OOFF  
  LLOOCCAALL  PPOOTTEENNTTIIAALLSS’’  SSTTRREENNGGTTHHSS  

 

A connection  on the vector sheaf of states  is a -linear 
sheaf morphism: 
 

 (1) 
 
referring to -vector space sheaves, such that the following Leibniz type 
of condition is satisfied: 
 

 (2) 
 

At the next stage, and since we are interested in the local form of 

a connection, we will show that every connection , where  is a 

finite rank-  vector sheaf of states on , can be decomposed locally as 
follows: 
 

 (3) 
 

:=ÑE ED E C
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where  denotes an  matrix of sections of local -forms, 

called the matrix potential of . 

Moreover, under a change of local frame matrix , we will 

demonstrate that the matrix potentials transform as follows: 
 

 (4) 
 

If we consider a coordinatizing basis of sections of the vector sheaf 

 of rank- , defined over an open cover  of , denoted by: 
 

 (5) 
 
called a local sectional frame, or equivalently, a local gauge of , then 
every continuous local section , where,   , can be 
expressed uniquely with respect to this local frame as the following 
superposition: 
 

 (6) 

 

with coefficients  in . The action of  on these sections of  
is expressed as follows: 
 

 (7) 

 (8) 

 

where  denotes an  matrix of sections of local -forms. 
Consequently we have; 
 

 (9) 

 

Thus, every connection , where  is a finite rank-  vector sheaf on 

, can be decomposed locally as follows: 
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 (10) 
 

In this context,  is identified as a covariant derivative operator acting 

on the sections of the vector sheaf of states . This operator can be 
decomposed locally as a sum consisting of a flat or integrable part 
identical with , and a generally non-integrable part , called the local 
frame (gauge) matrix potential of the connection. 

The behavior of the local potential  of  under local frame 
transformations constitutes the transformation law of local gauge 
potentials and is obtained as follows: 

Let  and  be two local frames of 

 over the open sets  and  of , such that . Let us 

denote by  the following change of local frame matrix: 
 

 (11) 

 

Under such a local frame transformation , we easily obtain that the 

local potential  of  transforms as follows in matrix form: 
 

 (12) 
 
The above is clearly a metaphora, which is expressed in terms of 
conjugation through the bridge  and its inverse: 
 

 (13) 
 

Further, if we assume that the pair  denotes a complex 

vector sheaf of states endowed with a connection, , then  induces 

a sequence of -linear morphisms: 
 

 (14) 
 
or equivalently: 
 

 (15) 
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where the morphism: 
 

 (16) 
 
is given by the formula: 
 

 (17) 
 

for all   ,   . Immediately it follows that . 

The composition of -linear morphisms  is called the 

curvature of the connection : 
 

 (18) 
 

Consequently, we derive that the curvature  of a connection 

 on the vector sheaf of states  is an -linear sheaf morphism, that 

is, an -covariant morphism, or equivalently, an -tensor. The -

covariant nature of the curvature  can significantly be contrasted 

with the connection , which is only -covariant and not -
covariant. 

The sequence of -linear sheaf morphisms, 
 

 (19) 
 
defines a complex of -vector space sheaves if and only if the following 
condition is satisfied: 
 

 (20) 
 

Thus, the curvature -covariant tensor  expresses the obstacle, or 
the obstruction for the above sequence to qualify as a complex. We say 

that the connection  is an integrable, or equivalently, a flat 

connection if . In this case, we refer to the above complex as the 

sheaf-theoretic de Rham complex of the integrable connection  on 
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the vector sheaf . Note that the universal -derivation  on  
always defines an integrable or flat connection. 

A flat connection expresses a maximally unobstructed process of 
dynamical variation associated with the corresponding field. From a 
physical viewpoint, a flat connection sets up the standards of congruence 
under replication of the local internal symmetry group point by point. 
Thus, a non-vanishing curvature expresses covariantly the existence of a 
certain type of deviation from the maximally unobstructed form of this 
variation. Equivalently, curvature effects can be cohomologically 
identified as obstructions to deformation caused by the matter sources 
coupled to the field. 

In case that, additionally, the representability principle over the 
field of the complex, or the real numbers is required at a point-event, the 
existence of uniquely defined duals is necessary. In this case, the physical 
field is identified with a linear connection on the -vector sheaf of 

states , which is cast isomorphic with , by means of a 
bilinear form that plays the role of a metric: 
 

 (21) 
 
In this case, a physical observable geometry is considered with respect to 
a metric. Consequently, the physical field is properly expressed by the pair 

. The required metric compatibility of the connection is 
formulated as follows: 
 

 (22) 

 
Taking into account the requirement of representability over the 

complex, or the real numbers, and thus considering the concomitant 
evaluation trace operator by means of the metric, we arrive at the 
analogue of Albert Einstein’s field equations, which in the absence of 
matter sources with respect to , are expressed as follows: 
 

 (23) 
 

where  denotes the relevant Ricci scalar curvature. More 

precisely, we first define the curvature endomorphism   , 

called the Ricci curvature operator. Since the Ricci curvature  is 
locally matrix-valued, by taking its trace using the metric, that is, by 
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considering its evaluation or contraction by means of the metric, we 

arrive at the definition of the Ricci scalar curvature  obeying 
the above equation. 

Thus, the metric describing the physical geometry, as a result of 
field interactions, is dynamically determined as a solution of the above 
equation in relation to the metric compatible connection on the vector 

sheaf . 
Finally, it is necessary to investigate the local form of the 

curvature  of a connection , where  is a locally free finite rank-

 sheaf of modules (vector sheaf)  on , defined by the following 
-linear morphism of sheaves: 

 

 (24) 
 
Due to its property of -covariance, a non-vanishing curvature 
represents in this context, the -covariant, and thus, geometrically 
observable deviation from the inertial form of variation corresponding to 
an integrable connection. 

Further, since the curvature  is an -linear morphism of 

sheaves of -modules, that is an -tensor,  may be thought of as 

an element of , as follows: 
 

 (25) 
 

Hence, the local form of the curvature  of a connection , consists 

of local  matrices taking local -forms for entries. In particular, 

the local form of the curvature , where  open in , in terms of 
the local potentials  is expressed by: 
 

 (26) 
 
as can easily be shown by substitution of the local potentials in the 
composition . Furthermore, by application of the differential 
operator  on the above we obtain: 
 

 (27) 
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The behavior of the curvature  of a connection  under 
local frame transformations constitutes the transformation law of the 

gauge potentials’ strength. If we agree that  denotes the change 

of local frame matrix that we considered in the discussion of the 
transformation law of the local gauge potentials previously, we derive the 
following local transformation law: 
 

 (28) 
 
that is, the strength transforms covariantly by conjugation with respect 
to a local frame transformation. 

Thus, we may summarize the preceding as follows: 
 

i The local form of the curvature , where  open in , in 
terms of the local matrix potentials  , is given by: 

 

 (29) 
 

ii Under a change of local frame matrix  the local form of 

the curvature transforms by conjugation with respect to g. 
Therefore, g and its inverse, are the bridges enunciating the 
metaphora of the field strength locally: 

 

 (30) 
 
We note that the above holds for any complex vector sheaf . Let us now 
specialize to the particular case of a line sheaf of states  endowed with 
a connection, denoted by the pair . In this case, due to the 
isomorphism: 
 

 (31) 
 
we obtain the following simplifications: the local form of a connection 

over an open set is just a local -form or a local potential, identified as a 
local continuous section of the sheaf , whence the local form of the 

curvature of the connection over an open set is a local -form. The 
significant result obtained by the local transformation law in this case is 
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that the curvature is actually a local frame invariant, i.e. it does not change 
under any local frame transformation. 
 

 (32) 
 

Thus, we obtain a global -form  defined over , which is also a 

closed -form since: 
 

 (33) 
 
Therefore, we conclude that for a line sheaf of states  equipped with a 

connection , denoted by the pair , the curvature  of the 

connection is a global closed -form. 
 
77..33  IINNVVAARRIIAANNCCEE::  GGAAUUGGEE  EEQQUUIIVVAALLEENNTT  GGEEOOMMEETTRRIICC  SSPPEECCTTRRAA  

 
The essence of a geometric equivalence problem in physical geometry 
refers to the determination of the conditions under which two geometric 
spectra of the same type are equivalent under an appropriate group of 
transformations. The most fruitful approach to geometric equivalence 
problems concerns the appropriate association of invariants with a type 
of geometric spectra, by which we mean attributes that do not change 
under an isomorphism. The idea is that invariants are capable of 
determining geometric spectra uniquely up to isomorphism. 

In general, a physical geometric spectral type is expressed by an 
equivalence class of state spaces, each of which constitutes the geometric 
spectrum of a commutative algebra sheaf of observables. A state space 
incorporates the totality of potential states of a physical system, and is 
vectorial with respect to the algebra of observables of this system. In the 
case of a gauge theory, the notion of a state space arises from, and it is 
therefore equivalent, to the transitive group action space of an internal 
symmetry group, at least locally, in the sense that the symmetry group 
delineates locally the range of potential attributes that a physical geometric 
type can assume. Being a member of a geometric type, a physical matter 
entity can be in any of the permissible potential states locally. 

This is the cornerstone of the local gauge freedom and constitutes 
a concrete physical manifestation of the criterion of geometric 
equivalence that a local gauge group furnishes in the case of gauge 
theories. The sheaf-theoretic formulation of gauge theories captures 
precisely the formation of physical geometric types under equivalence 
criteria constituted by the actions of local symmetry groups. In this state 
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of affairs, a physical geometric spectral type is expressed by means of an 
equivalence class of vector sheaves endowed with a connectivity structure. 
The base manifold of a vector sheaf of states equipped with a connection 
is an integral part of the coupling between a gauge field and the matter 
sources occupying its points. For this reason, its point constitution is only 
implicitly posited, specified neither ab initio nor a priori. Rather, it is just 
the base carrier of the geometry by which matter is transformed, 
understood in this framework as a structural quality of the corresponding 
physical field. 

The strategy to tackle the problem of equivalence of physical 
geometric spectra in the setting of gauge theories involves the 
determination of invariant global characteristic classes associated with 
vector sheaves of states endowed with a connection. A characteristic 
class is represented analytically in the pertinent geometric context in 
terms of an appropriate differential form stemming from the connection. 
For instance, in the case of a line sheaf, the global curvature differential 
form provides the seed for the articulation of the observable geometric 
spectrum, congredient with the field strength, via its global de Rham 
cohomology class. 

We recall that the essential aspect of the de Rham cohomological 
analysis is precisely the disclosure of singular points on an implicitly 
assumed manifold, or more generally, a nice topological space, in terms of 
invariant quantities obtained by the integration of differential forms. In 
particular, closed differential forms are the natural integrands over cycles, 
meaning that they can be temporally integrated over closed chains 
encycling a singular point, such that the result of this integration 
procedure unveils a residue characterizing invariantly the presence of this 
singular point in terms of its spectral periods. 

With this concept we reach the culmination of a key idea, an idea 
which addresses the specific problem of grasping the nature and essence 
of a singular point when some form of matter is in play. Since such a point 
cannot be bounded by infinitesimal flows converging on it, it can only be 
amenable to description by means of processes which circulate around it. 
These circulations are not equivalent, but they are in principle 
distinguishable in terms of some recognizable global attribute. Such an 
attribute obtained through integration is a spectral period, as above. Of 
especial significance is the resolving domain of spectral periods 
corresponding to the curvature form of the circulating connection. We 
stress the fact that cycles are not boundaries, since they generate 
homology classes encapsulating a novel type of temporal order with 
reference to singular points that is qualitatively different from 
boundaries. More concretely, the type of temporal order encapsulated by 
cycles is precisely characterized in terms of spectral periods via a global 
integration procedure, and not in terms of instants as in the former case. 
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77..44  GGLLOOBBAALLIIZZAATTIIOONN::  IINNVVAARRIIAANNTT  IINNTTEEGGEERR--VVAALLUUEEDD  SSPPEECCTTRRAALL  PPEERRIIOODDSS  

 
In the context of the equivalence problem of gauge geometric spectral 
types, we consider two line sheaves of states which are equivalent due to 
an isomorphism . Because of the bijective correspondence 
between line sheaves and coordinate -cocycles with respect to an open 
covering  of the base topological space , which is considered to be 
paracompact, the set of isomorphism classes of line sheaves over , 
denoted by , is in bijective correspondence with the set of 

cohomology classes : 
 

 (1) 
 
Moreover, the set of isomorphism classes of line sheaves of states over 

, , is an Abelian group with respect to the tensor product 

over the observable algebra sheaf . The tensor product of two line 
sheaves corresponds to the product of their respective coordinate -
cocycles. Thus,  is isomorphic with the Abelian group of 

cohomology classes . In this setting,  is considered as a soft 

sheaf, meaning that every section over some closed subset in  can be 
extended to a section over . 

Then, the process of exponentiation, in local sheaf-theoretic 
terminology, is expressed by the following short exact sequence of Abelian 
group sheaves: 
 

 (2) 
 
where  is the constant abelian group sheaf of the integers, namely the 
sheaf of locally constant sections valued in the group of integers, such 
that: 
 

 (3) 
 
Note that all the elements in the above short exact sequence are Abelian 
group sheaves generalizing the corresponding short exact sequences of 
constant Abelian group sheaves: 
 

 (4) 
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As an outcome, we obtain a long exact sequence in sheaf 
cohomology, which is reduced to a long exact sequence in Čech 
cohomology because of paracompactness of : 
 

 (6) 
 
Furthermore, since  is a soft sheaf: 
 

 (7) 

 (8) 
 
Thus, we obtain the following isomorphism of Abelian groups, called the 
Shiing-Shen Chern isomorphism: 
 

 (9) 
 
Finally, since , is in bijective correspondence with the Abelian 

group of cohomology classes , we have: 
 

 (10) 
 

Therefore, the Chern isomorphism establishes that an equivalence 
class of line sheaves of states is in bijective correspondence with a 

cohomology class in the integral -dimensional cohomology group of , 
called a Chern class of . Taking into account that a line sheaf of states 
is actually the representation vector sheaf of states of the internal 
symmetry group sheaf of some corresponding matter form occupying a 
singularity, the Chern isomorphism reveals that this matter form is 
encoded in terms of a two dimensional integral cohomology class of . 

In other words, if we integrate a representative two dimensional 
cocycle of this class over a two dimensional cycle in  enclosing it, we 
obtain a characteristic spectral period, qualified in terms of a -
invariant. The pertinent problem, in relation to the equivalence problem 
of gauge geometric spectral types, is whether such an integer cohomology 
class can be expressed in terms of the cohomology class of a two-
dimensional differential form, namely a de Rham cohomological 
invariant. The underlying reason is that the decoding of an integral 
cohomology class in dynamical terms, that is, in terms of the gauge 
potentials of the field, and by extension, in terms of the potentials’ 
strength, or curvature, as a flow induced by this matter form, can be 
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expressed only by means of an appropriate corresponding differential de 
Rham cohomology class. 
 
77..55  TTHHEE  OOBBSSTTAACCLLEE  OOFF  AA  MMAATTTTEERR  SSOOUURRCCEE::  HHAARRMMOONNIICCSS  OOFF  SSPPEECCTTRRAA  
  AANNDD  QQUUAANNTTIIZZAATTIIOONN  

 
Initially, we observe that there exists a natural injection : 
 

 (11) 
 
where any Čech cohomology class belonging to the image of the above 
map is called an integral cohomology class. 

Next, we have to take into account the compatibility of the above 
short exact sequence of Abelian group sheaves with the short exact 
sequence of -vector sheaves, 
 

 (12) 
 
arising as a fragment of the de Rham resolution of the constant sheaf , 
such that: 
 

 (13) 
 

 
 
Thus we obtain the following key relation: 
 

 (14) 
 

The dynamical, gauge field-theoretic, decoding of an integral 
cohomology class, or Chern class, of  requires to extend the notion of 
equivalence of two line sheaves to the corresponding one of two line 
sheaves equipped with a connection, which is induced locally by gauge 
potentials,  and . 
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If we consider an isomorphism  of line sheaves of 
states, we say that  is frame or gauge equivalent under metaphora to  
if they are conjugate connections under the action of the isomorphism : 
 

 (15) 
 
Thus, we may consider the set of equivalence classes on pairs of the form 

 under an isomorphism  as previously, denoted by . It 
is necessary to investigate the relation between  and the 
Abelian group . For this purpose, we need to make use of the local 
form of the pair . 

We call a line sheaf  endowed with a connection  a 
differential line sheaf, and we denote it by the pair . Then, The local 
form of a differential line sheaf is given by: 
 

 (16) 
 

Moreover, an arbitrary pair  determines 

a differential line sheaf if the transformation law of local gauge potentials 
is valid: 
 

 (17) 

 
where, 
 

 (18) 

 
and  denotes the 0-th coboundary operator 

, such that: 
 

 (19) 

 
In more detail, we note that a line sheaf is expressed in local coordinates 

bijectively in terms of a Čech coordinate -cocycle  in  

associated with the covering . A connection  is expressed 
bijectively in terms of a -cochain of gauge potential -forms, denoted 

by  with respect to the covering  of , that is . 
Therefore, the local form of a differential line sheaf is the following: 
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 (20) 

 

Conversely, an arbitrary pair  

determines a differential line sheaf if the transformation law of local 
gauge potentials is satisfied by this pair, that is: 
 

 (21) 

 (22) 

 

Thus, given an open covering , a 0-cochain  valued in 

the sheaf  determines the local form of a connection  on the line 
sheaf , where the latter is expressed in local coordinates bijectively in 

terms of a Čech coordinate -cocycle  valued in  with respect 

to , if and only if the corresponding local 1-forms  of the 0-

cochain with respect to  are pairwise inter-transformable, meaning 

locally gauge-equivalent on overlaps  through the local gauge 

transition functions, namely the local isomorphisms  

according to the transformation law of local gauge potentials. 
Next, we consider two line sheaves which are equivalent via an 

isomorphism , such that their corresponding connections 
are conjugate under the action of : 
 

 (23) 
 
Under these conditions the differential line sheaves  and  
are called gauge or frame equivalent. Thus, we may consider the set of 
gauge equivalence classes  of differential line sheaves as above, 
denoted by . Then, it is easy to show that the set of gauge 
equivalence classes of differential line sheaves , is indeed an 
Abelian subgroup of the abelian group . 

If we consider the local form of the tensor product of two gauge 
equivalent differential line sheaves we have: 
 

 (24) 

 
which satisfies the transformation law of local gauge potentials: 
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 (25) 

 

Moreover, the inverse of a pair  is given by , 

whereas the neutral element in the group  is given by , 

which corresponds to the trivial standard differential line sheaf . 
The most important consequence of the above characterization of 

gauge equivalent differential line sheaves in local terms with respect to 
an open covering , is that all gauge equivalent geometric spectral types 
are characterized by the same curvature. We denote the curvature of a 
gauge equivalence class of differential line sheaves by . The differential 
form  is a global -form on  since it is invariant under a gauge 
transformation. Moreover,  is also a closed global -form on , 
because of the fact that: 
 

 (26) 
 

Thus, the global -form , which belongs to , called 

, identified as a -vector sheaf subspace of , determines a global 
differential invariant of gauge equivalent differential line sheaves. This is 
due to the fact that the global -form  determines a 2-dimensional 
complex-valued de Rham cohomology class . In turn, by virtue of the 
de Rham isomorphism,  is isomorphically identified as a 2-

dimensional complex Čech cohomology class in . 
Most important, if we consider a differential line sheaf, the 

differential invariant de Rham cohomology class  is independent of 

the connection used to represent  locally. Equivalently, a particular 
connection of a differential line sheaf provides the means to express this 
global differential invariant locally in terms of the corresponding gauge 
potentials of the field, whereas the latter is independent of the particular 
means used to represent it locally. 

The fact that any two gauge equivalent differential sheaves have 
the same curvature, means that they are physically indistinguishable. 
Hence, the Abelian group  is spectrally partitioned into orbits 

over the image of  into , where each orbit, or fiber of this 

partition, is labelled by a closed -form  of : 
 

 (27) 
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Thus, the Abelian group of equivalence classes of differential line sheaves 

fibers over those elements of , by which we mean that it fibers over 

those closed global -forms in , which can be identified in terms of 
the curvature of the field. 

Recapitulating the problem of gauge equivalent geometric spectra, 
the main issue is the decoding of a two-dimensional integral cohomology 
class, that is, the decoding of a Chern class, in dynamical terms expressed 
via the gauge field potentials. We bear in mind that a Chern class encodes 
the singular presence of a matter form via the Chern isomorphism. 

This issue boils down to the idea of decoding a Chern class in terms 
of the curvature of the corresponding gauge field, which essentially 
amounts to decoding by means of the flow induced by the implicated 
singular matter form. According to this, the Chern class dynamical 
decoding takes place in an invariant manner through the differential de 
Rham cohomology class corresponding to the curvature of the field. In 
particular, since  is a global and closed -form on  it actually 
determines a 2-dimensional complex-valued de Rham cohomology class 

, or equivalently a 2-dimensional complex Čech cohomology class in 

. 
In the setting of gauge equivalent geometric spectra, the sheaf-

theoretic formulation of the Chern-Weil integrality theorem states that 
the global closed -form is the curvature  of a differential line sheaf if 
and only if its -dimensional de Rham cohomology class is integral, more 

precisely, . 
This theorem establishes the cohomological condition for the 

consistency of the preceding encoding/decoding procedure, that is, the 
process of metaphora pertaining to gauge equivalent geometric spectra. 
More precisely, the singular presence of a matter form in gauge theory, 
encoded by means of a two-dimensional integral cohomology class 
according to the Chern isomorphism, is decoded dynamically by means of 
the two-dimensional cohomology class of the curvature of the gauge field, 
in such a manner that the latter is completely characterized intrinsically 
by the integrality cohomological condition. 

It is precisely the above integrality condition that gives rise to 
quantization in the physical state of affairs. In other words, quantization 
is the condition that resolves the problem of equivalence of gauge 
geometric spectra. More precisely, a global closed -form is qualified as 
the curvature of a gauge field in its function to disclose the observable 
spectral periods of a singular matter form, if and only if it is quantized, 
meaning that the integrality condition is interpreted physically as a 
quantization condition, where the intrinsic characterization of the latter 
is purely of a cohomological nature. 

2
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The fact that the curvature cohomology class  of any 

differential line sheaf in  is in the image of a cohomology class 

in the integral -dimensional cohomology group  into 

 provides an intrinsic criterion for recognition of all those 

global closed -forms in , which are instantiated as curvatures of 
gauge equivalence classes of differential line sheaves, according to the 
fibration: 
 

 (28) 

 
The proof of this theorem is based on the following commutative 

diagram in our set-up: 
 

 
 

Note that the image of a cohomology class of  into an integral 

cohomology class of  corresponds to the cohomology class 

specified by the image of the 1-cocycle  into , viz. by 

the 1-cocycle . Moreover, due to the exactness of the 

exponential sheaf sequence of Abelian group sheaves: 
 

 (29) 

 (30) 

 

where , and by means of the Chern isomorphism: 

 

 (31) 

 

Explicitly, we may consider , so that: 
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 (32) 

 
The formulation of the Chern-Weil integrality theorem in sheaf-theoretic 
terms is the following: 
 

 (33) 

 (34) 

 (35) 
 
Thus, there exists an intrinsic invariant characterization of those global 

closed -forms in , which are instantiated as curvatures of gauge 

equivalence classes of differential line sheaves, denoted by . 

Concretely, a global closed -form is the curvature  of a differential line 
sheaf if and only if it is quantized, i.e. its -dimensional de Rham cohomology 

class is integral, meaning that . Therefore 
the unveiling of a gauge field’s observable geometric spectrum as a means 
to qualify the implicit presence of a singular matter form with which the 
field interacts with entails quantization. 

To conclude, the quantization condition expresses the harmonics 
of gauge equivalent geometric spectra. The harmonics in their 
manifestation in terms of integral spectral periods are obtained 
dynamically by the integration of a global closed differential -form 
qualified as the curvature, which represents the potentials’ strength of the 
corresponding gauge field. In particular, the integration of such a closed 
differential -form over a two dimensional cycle in  enclosing a 
material form with which the field is coupled to, gives rise to a 
characteristic integral spectral period. This can be grasped equivalently 
as a harmonic serving as the invariant of all gauge equivalent differential 
line sheaves sharing this form as their curvature. 
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Čech cohomology theory is characterized by the fact that the group 
coefficient structure of the real or the complex numbers does not 
constrain the validity of Čech’s theoretical framework in any way. Hence, 
all the steps of the Čech construction can be carried out for constant 
functions in any Abelian group, giving rise to Abelian cohomology groups 
with values in  for any abelian group of coefficients . In particular, 
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we may also consider a locally variable Abelian group of coefficients, i.e. 
an Abelian group sheaf of coefficients.  

Since in the case of a paracompact topological space the 
calculation of cohomology with coefficients into a typical sheaf of 
coefficients is equivalent to the calculation of Čech cohomology theory 
with values in the corresponding sheaf, the calculation of cohomology 
with values in an Abelian group sheaf of locally constant functions is of 
major importance. The basic idea is that the natural argument of a 
cohomology theory is not just a global topological space or a topological 
manifold, which it is invoked only implicitly in our considerations, but a 
space together with an observable algebra sheaf of coefficients, in such a 
way that the point constitution of this space, including both standard and 
singular points, is unveiled via the spectrum of our geometric calculus, by 
which we mean, in terms of the pertinent cohomological analysis. 

Prior to the modern formulation of sheaf theory, the significance 
of the notion of homology with local coefficients has been treated in 
relation to the fundamental group of a connected topological space , 
an approach pioneered by Norman Steenrod. 

For any point  of  we consider the fundamental group  

of  based at . If  is a curve from  to , the class of curves 

from  to  homotopic to  is denoted by . Its inverse is denoted 

by . In this way, the elements of  are denoted by , , 

and so on. Moreover, the product  denotes the element of  

obtained by first traversing a curve of the class , and then of the class 

. The class  determines an isomorphism of groups , 
denoted by the same symbol, and defined by conjugation, i.e. 

. In this context, the combination of two 
isomorphisms of the above form is also an isomorphism. 

Then, we may define a system of local groups in  in terms of 
the following three conditions: 

First, for each point  of , there is given a group ; 

Second, for each class of paths , there is given a group 

isomorphism , denoted by the same symbol; 

Third, the result of the isomorphism  followed by  is the 

isomorphism corresponding to the path . Note that the identity 

path from  to  is the identity transformation in the group . 

X

x X xF
X x G x y
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1 :=xy yxg g-

xF xa xb
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We note that a closed path  of  determines an 

automorphism of . From the third property, it follows that  is a 

group of automorphism of . Now, the invariant subgroup of  

acting as the identity on  is denoted by . 

Then, we define a system of local groups  in  to be 

simple if every . Moreover, if this happens for one , it will be 

true for all  in . If  is a simple system of groups, then the 

isomorphism  is independent of the path from  to . Choosing a 

fixed point  as origin, each  is uniquely isomorphic to . Thus, 

the local system consists of one  and as many copies of  as there 

are points . In this context, the collection  is a simple system 
of local groups if and only if it is Abelian. Furthermore, the abelianization 
of the fundamental group gives rise to a simple system of local groups 
consisting of isomorphic copies of the same abelian group, identified as 
the first homology group of . 

From the perspective of sheaf theory, the main objective consists 
in the operative role of a cohomology theory with values in a locally 
constant group sheaf of coefficients, namely a group sheaf on  for 
which every point  in  has an open cover  such that the 
restriction of this sheaf to  is a constant sheaf. Local coefficients may 
be extended to Čech cycles by constructing a system of local groups in the 
simplicial nerve of a finite open covering of , and then, demonstrating 
the isomorphism of cohomology -taking values in a system of local groups- 
as above, with Čech cohomology. 

If we consider vector sheaves of rank , i.e. line sheaves, we recall 
that locally, for any point , an open cover  of  exists such 

that: . Furthermore, if for any point  an open cover  

of  exists such that , meaning that it is isomorphic to the 

constant sheaf , then the locally free -module  of finite rank  
is a complex linear local system of rank ; a line local system. 

A very important observation is that a constant -cocycle 

 can be interpreted as the coordinate -cocycle of a 

particular type of a line sheaf with respect to an open covering . Since 

the coordinate -cocycle  is constant, the bijectively 
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corresponding to it line sheaf is a complex linear local system of rank , 
or a line local system. The natural question arising in this context is from 
where do line local systems descend from and what is their role in the 
spectrum unveiling conducted through cohomological analysis. 

A first observation regarding line local systems is that if the 
underlying space  is simply-connected, then they are actually 
constant. More generally, if  is s path-connected and paracompact 
base topological space, then the pullback of a line local system on  to 
the universal covering space of  becomes a constant sheaf. In relation 
to the physical framework of gauge theory, the pertinent issue refers to 
the means of instantiation of a line local system in dynamical terms, that 
is, in terms of a differential line sheaf. It turns out that a bijective 
correspondence pertains between differential line sheaves equipped with 
an integrable connection and line local systems. Given that an integrable 
connection subsumes the covariantly constant, by which we mean the 
inertial structure of a gauge field, we derive that the inertial structure is 
encoded cohomologically in terms of a corresponding line local system in 
its function as a coefficient sheaf for cohomology. 

For this purpose, let us consider any differential line sheaf , 

which lacks curvature and whose connection  is thereby integrable. 
Then, the set of sections of , which reside in the kernel of the 
connection , that is: 
 

 (1) 
 
forms a line local system. We call the sections of  covariantly 

constant, or equivalently, inertial sections of  with respect to . 
Inversely, given a line local system, denoted by , we may define a 

differential line sheaf  by the prescription , and for 

every pair of local sections , , . 
The above defined connection is integrable, and therefore we conclude 
that a bijective correspondence exists between differential line sheaves 

with an integrable connection, denoted by  and line local systems. 
Most important, every line local system may be identified with the sheaf 
of inertial sections of an integrable differential line sheaf, meaning of a line 
sheaf  with respect to an integrable connection  on , hence with 

. 
Therefore, we derive the following equivalences: 
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 (3) 
 

Since the underlying topological space  is locally path-
connected, then the above series of equivalences is refined as follows: 
 

 (4) 
 
where the first term denotes the set of representations of the fundamental 
group of the topological space  to . 

All the previous considerations are immediately extended to the 
case of isomorphism classes of Hermitian line sheaves, that is, line sheaves 
equipped with a Hermitian inner product structure. More specifically, 

given a line sheaf  on , an -valued Hermitian inner product on 
 is a skew- -bilinear sheaf morphism: 

 
 (5) 

 (6) 
 
for any ,   , ,   ,  open in . Moreover, 

 is skew-symmetric, viz. . 

A line sheaf  on , together with an -valued Hermitian 
inner product on  constitute a Hermitian line sheaf. A line sheaf is 
expressed in local coordinates bijectively in terms of a Čech coordinate 

-cocycle  in  associated with the open covering . A 

Čech coordinate -cocycle  corresponding to a Hermitian line sheaf 

consists of local sections of , the special unitary group sheaf of 

 of order . 

This is simply a coordinate -cocycle  in , such 

that the unitarity condition  is satisfied. Clearly, in the case that 

a coordinate -cocycle  is constant, we have  in , 

or equivalently  in . Next, a connection  on  is called 

Hermitian if it is compatible with : 
 

 (7) 
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for any ,   ,  open in . A Hermitian differential line 

sheaf, denoted by , is a Hermitian line sheaf equipped 

with a Hermitian connection. 

The global -form , which belongs to , 

called , identified as a -vector sheaf subspace of , determines a 
global differential invariant of gauge equivalent Hermitian differential 
line sheaves, because the global -form  determines a 2-dimensional 
de Rham cohomology class . The Hermitian connection of a 
Hermitian differential line sheaf provides the means to express this global 
differential invariant locally, whereas the latter is actually independent of 
the connection utilized to represent it locally. 

From the curvature recognition integrality theorem, the abelian 

group  is partitioned into orbits over , where each orbit is 

labelled by an integral global closed -form  of , providing the 

differential invariant  of this orbit in de Rham cohomology: 
 

 (8) 

 
If we restrict the Abelian group  to gauge equivalent Hermitian 
differential line sheaves we obtain an Abelian subgroup of the former, 

denoted by . It is clear that the latter Abelian group is also 

partitioned into orbits over , where each orbit is labelled by an 

integral global closed -form  of , where  is the curvature of 

the corresponding gauge equivalence class of Hermitian differential line 
sheaves. 

We call each Hermitian differential line sheaf , which 

belongs to an equivalence class, that is to an orbit  a unitary 

-ray. Concomitantly, we call the orbit itself a spectral -beam, which 
is characterized by the integral differential invariant . Each spectral 

-beam consists of gauge equivalent unitary -rays, which are 
indistinguishable from the perspective of their common curvature 
integral differential invariant , physically meaning that they are 
characterized dynamically by the same field strength. 

A natural question arising in the context of gauge equivalent 
quantum unitary -rays is how they are related to each other. In other 
words, although all gauge equivalent unitary -rays cannot be 

s t Î ( )UL U X
( , , ) := ( , )Ñ ÑL L !!

2 R 2 2 3( ) :Ker d W ®W
2
cW C 2W

2 R
[ ]R

( , )Iso ÑL 2
,cW Z

2 R 2
,cW Z

[ ]R

2
,

( , ) = ( , ) .R
R c

Iso Iso
ÎW

Ñ ÑåL L

Z

( , )Iso ÑL

( , )Iso ÑL !

2
,cW Z

2 R 2
,cW Z R

( , )ÑL !

( , )RIso ÑL !

R [ ]R

[ ]R

[ ]R R

[ ]R

R
R



322 NATURAL COMMUNICATION

294 
 
distinguished from the perspective of their curvature differential 
invariant, is there any other intrinsic way that we can distinguish among 
them? It is precisely at this point that the significance of the global 
inertial structure of a spectral -beam manifests in unveiling the 
constitution of gauge equivalent geometric spectra. 

Henceforth, the only intrinsic and invariant way of distinguishing 
among gauge equivalent unitary -rays is through their global inertial 
structure, which is induced by the action of a line local system of the form 

. Equivalently, there exists a free group action of the abelian group 

 on the abelian group , which is restricted to a free 

group action on each spectral -beam. 
First, we note that there exists a free group action of the Abelian 

group sheaf  on the Abelian group sheaf  of invertible 

elements of , where : 
 

 (9) 
 (10) 

 

with  and  for any open  in . This action is 
transferred naturally as a free action to the corresponding groups of 
coordinate -cocycles of the respective Abelian group sheaves: 
 

 (11) 

 (12) 

 

where , . This free action can be also 

extended to the corresponding cohomology groups still as a free action: 
 

 (13) 

 (14) 
 

where , . 

Next, we define a group action of  on the Abelian group 

 as follows: We consider , 

, and we define the sought group action as follows: 
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 (16) 

 

We see easily that the pair  satisfies the transformation 

law of local gauge potentials, i.e. . Given that 

, as a consequence of the Poincaré Lemma, it follows directly 

that the above defined group action of  on the abelian group 

 is actually free, where . 

Consequently, the free group action of  on  
is restricted to a free group action on its Abelian subgroup of unitary rays 

. Since the Abelian group  is partitioned into 

spectral -beams over  constituting its spectrum, we derive 

that the above free group action is finally transferred as a free group action 

of  on each spectral -beam. 

We call a cohomology class in the abelian group  a 
polarization phase germ of a spectral -beam. Our terminology 
derives from the fact that a cohomology class in the Abelian group 

 is evaluated through a representative cocycle at 

a homology cycle    by means of the integration pairing: 
 

 (17) 
 
to obtain a global observable gauge-invariant phase factor in the Abelian 
group . Thus, gauge equivalent unitary -rays are intrinsically and 
invariantly distinguished by means of a polarization phase germ, which is 

identified as a cohomology class in the group . 
The significant observation in this context is that a polarization 

phase germ of a spectral -beam is always realized via a representation 

of the fundamental group of the topological space  to . As an 
immediate consequence of the Hurewicz isomorphism: 
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Thus, a polarization phase germ, expressed in terms of a cohomology class 

in , is realized by a representation of the fundamental group of 

the topological space  to . 
We have demonstrated thus far that the action of the group 

 on each spectral -beam is a free group 
action. The encoding of the global inertial structure in group-theoretic 
terms requires the investigation of the conditions qualifying this free 
action as a transitive one as well in the context of gauge equivalent spectra 
of unitary rays. 

Given the validity of the Poincaré Lemma, we consider the 
following sequence of abelian group sheaves: 
 

 (20) 
 

The closed -forms  of , satisfying  are called 

logarithmically exact closed -forms. 
The significance of logarithmically exact closed -forms in 

relation to the global inertial structure lies on the fact that the above 
sequence of Abelian group sheaves is an exact sequence if restricted to 
logarithmically exact closed -forms. In this case, we obtain a 0-cochain 

 of logarithmically exact closed -forms: 
 

 (21) 
 

Hence, for a 0-cochain  of logarithmically exact closed -forms 

, a 0-cochain  in exists, such that . This 0-cochain 

 may be thought of as the representative of an integrable connection 

 of a differential line sheaf, whose coordinate 1-cocycle with respect to 

an open covering  is given by , i.e. it is a coboundary, which 
satisfies the transformation law of local gauge potentials 

. 

Next, we consider a spectral -beam, namely the spectral 

partition class, , consisting of gauge equivalent unitary -
rays, which are indistinguishable from the perspective of their common 

differential invariant . We also consider those closed -forms  

of , which qualify as logarithmically exact. If we take a pair of 
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equivalent unitary -rays, denoted by ,  

correspondingly, we obtain: 
 

 (22) 

 (23) 
 

We conclude that  is of the form  of , hence it is a 

logarithmically exact closed -form. Based on this fact, we derive that the 

free group action of  on a spectral -beam is also transitive 

with respect to logarithmically exact closed -forms. 
In conclusion, a spectral -beam becomes a 

-affine space, or equivalently, an affine space 
with structure group the characters of the fundamental group. The latter 
provides a complete characterization of the global inertial structure of a 
spectral -beam in group-theoretic terms. 

Each partition class of the spectrum, each orbit or fiber 

, labelled by the curvature differential invariant , which 

is to say each spectral -beam is an affine space with structure group 

. Thus, any two unitary -rays differ by an 

element of , and conversely any two unitary rays which differ 

by an element of  are characterized by the same differential 

invariant ; in short, they constitute -rays of the same spectral 
-beam. 

We conclude that, although all gauge equivalent unitary -rays 
cannot be distinguished from the perspective of their common curvature 
differential invariant, nevertheless a free and transitive action of the 

group exists, characterizing the global 
inertial structure of a spectral -beam cohomologically in group-
theoretic terms and corresponding bijectively to the respective line local 
system. Equivalently put, -rays of the same spectral -beam can be 

distinguished inertially via the characters of the fundamental group of . 
Inversely, from any one unitary -ray of a spectral beam we can 

generate its whole orbit, identified with the beam itself, by means of the 

free and transitive action of the abelian group  on the one 
depicted. Thus, whenever two unitary rays are characterized by the same 
differential invariant , thereby belonging to the same orbit under the 
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action of  on , which is actually the only orbit due 

to transitivity of this action, identified as a spectral -beam, then they 
differ by a character of the fundamental group of the carrier base 
topological space . 
 
77..77  IINNTTEERRFFEERREENNCCEE::  TTOOPPOOLLOOGGIICCAALL  PPHHAASSEE  AANNDD  TTHHEE  PPOOLLYYDDRROOMMYY  
  OOFF  AA  SSPPEECCTTRRAALL  BBEEAAMM  

 
A polarization phase germ of a spectral -beam, identified as a 

cohomology class in the Abelian group , is realized by a 
representation of the fundamental group of the base connected 
topological space  to . We observe that the evaluation of a 

representative cocycle of  at a homology cycle    
by means of the integration pairing: 
 

 (24) 
 
gives a global observable gauge-invariant phase factor in the Abelian 
group . In this sense, gauge equivalent unitary spectral rays bearing 
the same strength are intrinsically distinguished by means of a 
polarization phase germ. 

Consequently, the global polarization symmetry group of a 
spectral -beam is realized in terms of a unitary line local system. 
Equivalently formulated, there exists a bijective correspondence between 
the polarization phase germs of a spectral -beam and isomorphism 
classes of unitary line local systems, due to the following equivalences: 
 

 (25) 

 (26) 
 
The above equivalences read as follows in the case of Hermitian 
integrable differential line sheaves, or integrable unitary rays: 
 

 (27) 

 (28) 

 
Let us examine in more detail the realization of the polarization 

symmetry group of a spectral -beam at a point of the base space . 

At each point of the topological space , the polarization symmetry 
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group of a spectral -beam is realized thanks to the monodromy group 
of a unitary line local system at the depicted point, or equivalently by the 
group of monodromies of the corresponding integrable unitary ray whose 
covariantly constant sections form this unitary line local system. This is 
established as follows: 

We already know that a polarization phase germ of a spectral 

-beam is realized by a representation of the fundamental group of  to 
. Moreover,  is identified locally with the group of automorphisms 

of a line local system, . Thus, in the unitary case,  is 
identified locally with the group of automorphisms of a unitary line local 

system , which may be thought of as the locally constant sheaf of the 

inertial, or covariantly constant sections of a corresponding Hermitian 

integrable line sheaf (integrable unitary ray) . 

We may fix a base point  of , and consider a path 

, such that , . Thus, if  is a line local 

system on , then it is pulled back to  as a constant sheaf, 

denoted by . Hence, we obtain that: 
 

 (29) 
 
Henceforth, because of the isomorphisms  and 

, we have at our disposal a -vector space 

isomorphism , which depends only on the homotopy class of . 

Furthermore, this isomorphism may be thought of as being 
induced by the parallel transport condition of the corresponding 

integrable connection of the Hermitian integrable line sheaf . If 

we consider a loop based at the point  of , we obtain an Abelian 
group homomorphism: 
 

 (30) 

 
In the case of a unitary line local system, we correspondingly obtain the 
following Abelian group homomorphism: 
 

 (31) 
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The image of  in  is the monodromy group of the unitary local 

system . Thus, for each homotopy class of loops based at , we 

obtain a topological integrable phase factor, identified with the 
monodromy of the unitary local system . Equivalently, this is the 

same as the monodromy of the corresponding integrable quantum unitary 

ray , derived through the parallel transport along a loop based at 

 and belonging to a homotopy class in . 
The notion of monodromy originates from complex function 

theory on Riemann surfaces, and more specifically, from the theory of 
linear differential equations on Riemann surfaces. In general, a solution 
to a linear differential equation in the setting of analytic or holomorphic 
dynamics, is characterized as polydromic if the circulation around a loop 
enclosing a singularity produces a different value in comparison to the 
initial one. 

By contrast, it is called monodromic if this phenomenon does not 
arise. In this manner, the crystallized term “monodromy” constitutes a 
misnomer compared to the meaning enclosed in this Greek term, i.e. it 
should be properly called “polydromy”. This should also be in accordance 
with Riemann’s distinction between single and multi-valued magnitudes 
and the concomitant process of analytic continuation of a local solution 
along different paths or “dromoi”. Unfortunately, the term “monodromy” 
is currently established as such, so we will adopt the present usage modulo 
the present clarification. 

As an example, we may consider the differential equation 
, which is singular at the origin of the complex plane. As a 

consequence, the local solution , if circulated around the 
origin, for each closed path or “dromos”, its value is modified by an integer 
multiple of . For this reason, we need to invoke the universal covering 

space defined by the complex exponential . 
Accordingly, a polydromic solution to the given differential 

equation, that is, a determination of the many-valued function  
takes place only in terms of local sections of the complex exponential 
covering projection map . Each section defined on  
constitutes an inversion of , but only locally, and as such, it 
provides to a local determination of the logarithm. In particular, each 
section bears the form , where  is an integer. The 
compatible gluing of all these local determinations over their non-trivial 
overlaps gives rise to the Riemann surface of the many-valued function 

, represented below in helicoidal form: 
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A concrete observable manifestation of a global integrable phase factor in 
the context of quantum mechanics is provided by the effect discovered by 
Yakir Aharonov and David Bohm. This effect demonstrates the 
significance of the local electromagnetic gauge potentials of a spectral 
beam whose strength is null. More specifically, what constitutes the 
Aharonov-Bohm effect is an experimentally verified and observed global 
relative phase factor whose origin is topological, and thus expressed via 
an integrable connection pertaining to the description of the 
electromagnetic field.

The setting involves a very long solenoid restricting the magnetic 
field flux within its borders, in consequence rendering the region it 
occupies inaccessible to a charged particle. In this sense, the base 
topological space of localization that carries the field is multiply-
connected, bearing the homotopical symmetry of a circle. The evolving 
states are transported by an integrable connection because the 
propagation takes place in the field strength-free region outside the 
solenoid. The observed global phase factor measures the monodromy of 
this integrable connection due to the topological obstacle imposed by the 
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inaccessible region, which is enclosed by the boundary of the solenoid, 
where the flux of the magnetic field takes place. 

The Aharonov-Bohm effect constitutes a perfect demonstration of 
the nature and significance of global observable integrable phase factors 
arising from topological obstacles in quantum theory. In particular, it 
demonstrates the following: First, the local gauge freedom of the phase of 
a quantum state; Second, the mutually implicative roles of the local and 
global levels in the quantum field theoretic description pertaining to a line 
sheaf of states endowed with an integrable connection. This consists of 
an extensive integration process of the contributions of all local gauge 
potentials to monodromies from the local to the global, and inversely, of a 
differential localization process of the global topological phase invariant, 
characterizing all gauge equivalent rays, in terms of the whole multiplicity 
of local gauge potentials. Taken all together, these gauge potentials 
express the permissible contextual variability of the connection with 
respect to this invariant. 

Let us examine more specifically the details pertaining to an 
integrable topological phase factor from our viewpoint. We start from the 

observation that the Abelian group of quantum unitary rays  
constitutes a central extension of the Abelian group of integral global 

closed -forms  of  by the Abelian group of polarization phase 

germs . This is due to the exactness of the following sequence 
of Abelian groups: 
 

 (32) 

 
In particular, if we consider spectral -beams, each 

corresponding partition spectral block of equipotent rays  is 

an affine space with structure group . The integrality 
condition in this context is tantamount to Paul Dirac’s quantization 

condition, meaning cohomologically that  is a 2-dimensional 

integral cohomology class of . Moreover, a zero curvature spectral 

-beam  is isomorphic to the Abelian group of 

polarization phase germs , according to the preceding. 

We have that , where   . 

Therefore, due to the fact that  we obtain: 
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Consequently, a spectral -beam is an -torsor, by which 

we mean an affine space with respect to logarithmically exact closed -
forms. 

The Aharonov-Bohm global phase factor refers to the realization 

of a zero curvature spectral -beam . Equivalently, it is 
the experimentally realized global gauge-invariant phase characteristic of 
a gauge equivalence class of integrable Hermitian differential line 
sheaves, or integrable quantum unitary rays. Thus, we derive the 
following: 
 

 (34) 
 

In particular, for each point  of the base topological space , we have: 
 

 (35) 

 
Therefore, the global phase factor of the Aharonov-Bohm type is 

realized as the global monodromy group element    for 

each homotopy class of loops  based at . Note that in the 

experimental setting the base topological space  is homotopically 
contractible to the circle, and hence, its second integer cohomology is 
trivial. 

These features establish a gauge equivalence class of integrable 
Hermitian differential line sheaves, or equivalently a gauge equivalence 
class of line local systems on the circle, which form a zero curvature 
spectral beam. The global gauge-invariant phase factors by which this 
beam is realized is the monodromy group associated with it, which is 
identified with the image of the fundamental group of the circle; the 
integers  into . The monodromy depends only on the integer 
winding number and is observed as a shift in the interference pattern of 
the beam. Physically, the integer winding numbers obtained topologically, 
descend from the harmonics of the spectrum of the beam, whereas 
interference constitutes its observable geometric manifestation. 

We emphasize again that an Aharonov-Bohm type of phase for 
non-simply connected base space , due to the presence of obstructions 
such as those in our experimental case, refers to the global gauge-
invariant observable factor pertaining to a zero curvature beam, i.e. to a 
gauge equivalence class of zero curvature quantum unitary rays. From a 
cohomological perspective, the analysis of these types of phases proceeds 
as follows: 
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We notice that a zero curvature beam is actually isomorphic to the 

Abelian group . Hence, it can be grasped as follows: 
 

 (36) 

 
where we have inserted the corresponding physical units, and we 

consider  real-valued in the Lie algebra of . 
We conclude that a representative of the class identified with a 

zero curvature beam  is an element of , which is 

evaluated at a homology cycle    by means of the pairing of 
groups: 
 

 (37) 

 (38) 

 

where  is identified as a global Aharonov-Bohm gauge-
invariant topological phase factor of the beam in . 

For reasons pertaining to the significance of the partition 
spectrum under investigation, it is instructive to point out that if we 
consider any unitary ray of this beam, then we only obtain a real-valued 
phase, defined by: 
 

 (39) 

 
Due to the isomorphism of groups , we have to take the 

quotient of the set of all  for all unitary rays by the 

equivalence relation:  if   . 
In physical terms, this means that the interference phase patterns of 
quantum unitary rays differing by an integer cannot be distinguished 
experimentally, and thus the physically meaningful global gauge-
invariant information is only the topological phase factors of the form: 
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referring to the global realization of the beam, hence to the global 
realization of the whole gauge equivalence class of quantum unitary rays. 
 
77..88  AANNHHOOLLOONNOOMMYY::  GGEEOOMMEETTRRIICC  PPHHAASSEE  AANNDD  TTHHEE  MMEEMMOORRYY  
  OOFF  AA  SSPPEECCTTRRAALL  BBEEAAMM  

 
If the energy operator, the Hamiltonian of a quantum system, is 
functionally dependent on an underlying set of control variables, then a 
quantum state becomes localized parametrically on the base space 
constituted by these variables. The dynamical evolution of a quantum 
state is therefore driven by the implicit temporal dependence of the 
Hamiltonian through the control variables. Under the assumption that 
the set of these variables forms a smooth manifold, then the time 
dependence is depicted by means of differentiable paths on this space. 

In the approach pioneered by Michael Berry, the adiabatic cyclic 
evolution of a quantum state if of a fundamental significance. The cyclic 
evolution signifies the periodicity property of a quantum state with 
respect to the control variables, whence the adiabatic hypothesis is 
equivalent to the specification of a connection, a parallel transport 
condition on the evolution of normalized state vectors, which in general 
is considered to be path-dependent. Due to this path-dependency, a 
quantum state upon completion of cyclic path acquires a global non-
integrable geometric phase factor, called the anholonomy of the transport. 

The fibers of the induced spectral line bundle stand for the 
eigenspaces of the energy operator. Thus, the adiabatic transportation 
rule amounts to a non-integrable connection, according to which, an 
eigenstate of the Hamiltonian is required to remain in the eigenspace of 
the same instantaneous eigenvalue during the adiabatic evolution. In 
turn, the non-integrable connection gives rise to a covariant derivative 
operator on the sections of the corresponding Hermitian line sheaf, 
constituted by the eigenstates of the Hamiltonian. The non-dynamical, by 
which we mean non-Hamiltonian dependent, global phase assembled 
during a cyclic evolution along a closed path on the base space is thought 
of as the memory of the evolution, since it encodes the global geometric 
features of the space of control variables in the algebraic, and more 
specifically, group-theoretic structure of the anholonomy of the 
connection. 

The observable global phase factor is called geometric because it 
depends solely on the geometry of the base space pathway along which the 
quantum state is transported. If the eigenvalues of the Hamiltonian are 
degenerate or close to each other, then the adiabatic transportation 
constraint is not realistic and is substituted by another appropriate 
connection depending on the particular context. In this case, the gauge 
freedom of a state vector, localized at a fiber over an eigenspace of the 
Hamiltonian, is not an one-dimensional complex phase any more, but 
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rather is an n-dimensional complex matrix of phases, called a non-Abelian 
complex phase. It turns out that even the adiabatic transportation rule is 
not necessary for the experimental detection of a global phase factor. This 
has been demonstrated convincingly through the intrinsic line bundle 
formulation of the complex Hilbert space of states over the complex 
projective Hilbert space. In this formulation, analogously to the preceding 
approach, the one-dimensional projection operators play the role of 
control variables. This line bundle, or equivalently, the line sheaf of its 
sections is endowed with a natural connection obtained by differentiation 
of the Hermitian inner product of the normalized sections, which are the 
quantum state vectors, and the adiabatic hypothesis is not involved at all. 
Then, the global phase factor is identified in terms of the global 
anholonomy of this connection with respect to a closed path on the 
complex projective space. 

From the general perspective of our cohomological analysis 
pertaining to spectral beams, all observable geometric phase factors are 
actually generated by the curvature of a spectral -beam. In particular, 
the memory of a spectral beam is the global encoding of the fact that 

 is a 2-dimensional integral cohomology class of the base 

topological space of variables . As already established, global 
observable topological phase factors can be completely understood in 
terms of the monodromies of zero curvature beams. Again, it is instructive 
to emphasize that an observable anholonomy pertains to a partition class 

of equipotent unitary -rays; to a spectral -beam, rather than to an 
individual unitary -ray. 

A global geometric phase factor arises cohomologically as follows: 
For any real valued form  of degree  we define: 
 

 (1) 

where  is a -chain of  and  is a -cochain of  with 

values in . Next we consider the homomorphism of groups: 
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such that, a -form exists, which satisfies , or 
equivalently: 
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for any smooth map . We note that  stands for the 
standard -dimensional simplex, and the space of -chains is generated 

by . 
In this framework, the following relation emerges: 

 

 (4) 
 
and therefore,  is a closed -form. 

Next, we consider a unitary -ray  and apply the 

quantization condition, according to which,  is an integral global 

closed -form  of . Similarly to the definition of gauge 

potentials in the case of Hermitian differential line sheaves, we consider 
 as a purely imaginary closed -form, such that . Thus, 

according to the above, and since  is an integral global real-valued 
form of degree , we may instantiate the following group homorphism, 
which we call the anholonomy homomorphism: 
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 (6) 

 

for any smooth map . Equivalently, we have: 
 

 (7) 
 

We observe that for a fixed curvature  of , the same 

anholonomy homorphism  is defined for any other unitary -ray. 
Thus, it provides a characterization of the whole gauge equivalence class 
of unitary -rays classified by the differential invariant . 
Equivalently, it provides a characterization of a spectral -beam, and 

therefore, we obtain an anholonomy cohomology class in , as 
follows: 
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 (9) 
 
and the natural homomorphism: 
 

 (10) 
 

the anholonomy cohomology class in  of a spectral beam for 

fixed , is in the inverse image of the Chern characteristic class: 
 

 (11) 

 

under , or equivalently, it is located in the inverse image of the 

cohomology class  in , such that: 
 

 (12) 
 

Thus, we conclude that an -observable anholonomy, 
which formalizes the notion of a non-integrable geometric phase factor, is 
a global observable gauge-invariant characteristic of a spectral beam, 
qualified as the memory pertaining to the whole gauge equivalence class 
of quantum unitary rays having the same curvature, such that the above 
cohomological relation is satisfied. 
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88..11  CCAATTEEGGOORRYY  TTHHEEOORRYY  FFRROOMM  TTHHEE  SSTTAANNDDPPOOIINNTT  
  OOFF  NNAATTUURRAALL  CCOOMMMMUUNNIICCAATTIIOONN  

 
The development of category theory is a natural and perhaps inevitable 
aspect of the late 20th century emphasis on the conceptual clarification 
of what specifies and characterizes an object of a mathematical inquiry 
pertaining to a universe of discourse as a hypostatic entity. The major 
precursor of this development can be located in the fields of algebraic 
topology and abstract algebra, where the specification of complex spaces 
was not based at all on their set-theoretic point-element constitution, but 
rather on certain algebraic symbolic groups incorporating some invariant 
characteristic in relation to this complex space. 

This articulated a major change in the way of conceiving the 
conceptual form and function of mathematical objects, which departed 
from the axiomatic set-theoretic reductionist approach of analysis of 
objects in terms of pre-determined, or a priori distinguishable elements 
endowed with some particular externally imposed structure. The 
emphasis now has been put on the specification of objects in terms of the 
communicative relations they bear with other objects of the same species, 
where the notion of a species of structure is now derived from the whole 
homomorphic constitution of a certain mathematical universe of 
discourse, conceptualized in turn, by means of the notion of a category 
that respects or preserves this structural species. 

In this respect, the central focus of the categorical way of 
rethinking the notion of a mathematical object algebraically and 
structurally can be described as a major transition in the conception and 
interpretation of what actually characterizes algebraic symbolic 
structures. More precisely, it represents a transition from a substantial to 
a hypostatic concept of structure. In the substantial constitutional set-
theoretic mode of thinking, structures of any conceivable morphe are 
defined on a set-theoretic foundational basis, as sets of elements endowed 
with appropriate structural relations, like the ones characterizing a group 
structure. 

In the hypostatic communicative category-theoretic mode, the 
emphasis is placed on the kind of homomorphisms among the objects of a 
category devised to capture and preserve a certain structure as its 
instances, by means of the pertinent structural constraints on these 
homomorphisms. In this sense, the notion of structure does not refer 
substantially to a fixed universe of sets of predetermined elements, but 
hypostatically acquires a variable reference to other generalized 
universes, called topoi. 

In particular, the hypostatic structural elaboration of an object by 
way of its variable reference to a topos, to be thought of as a scaffolding 
entailed contextually by communication, and not as a foundation 
necessitated absolutely by constitutional needs, points to an indirect 
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“obstacle-oriented” approach to the specification of an object as an 
algebraic structure arising from the category to which it pertains in as an 
instance. Most important, the specification of objects of a structural 
species can be even enunciated in terms of the heteromorphic relations 
they bear with objects of another structural species, which are thought of 
as partial resolving probes or covers of the former, under the proviso that 
these relations can be appropriately internalized within the former 
category via adjunctions. 

The basic categorical principles can be expressed concisely as 
follows: 
 
i To each kind of mathematical symbolic structure, there 

corresponds a category whose objects have that structure, and 
whose homomorphisms preserve it. 

ii To any natural morphism on structures of one kind, yielding 
structures of another kind, there corresponds a functor from the 
category of the first kind to the category of the second. The 
implementation of this principle is associated with the fact that a 
morphism is not merely a function from objects of one kind to 
objects of another, but must preserve the essential structural 
relationships among objects. 

iii To each natural translation between two functors having identical 
categorical domains and codomains there corresponds a natural 
transfiguration, called a natural transformation between these 
functors that can be restricted to a natural isomorphism of 
functors. 

iv To any canonical bidirectional functorial correlation between two 
kinds of mathematical structures there corresponds an 
adjunction, expressed by a pair of adjoint functors between the 
corresponding categories. An adjunction is equivalent to a 
categorical process of metaphora effecting the natural 
communication between the correlated hypostatic structural 
kinds. 

 
Therefore, if the standard framework of mathematical category theory is 
to be thought of as a conceptual pyramid based on the notion of a category 
and converging at the top on the notion of a categorical adjunction, up 
through the intermediate layers of functors and natural transformations, 
the emphasis on natural communication by contrast requires a conceptual 
inversion of this form. Precisely speaking, it is the need for expressing the 
conceptual norms of natural communication between two different 
hypostatic levels - the norms of the metaphora between two different 
hypostases conceived algebraically and structurally from a non-absolute 
elemental standpoint - that requires the notions of natural 
transformations and functors, and ultimately the notion of a category. 
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As we shall discuss later on, the inverted pyramid of category 
theory, emphasizing the natural communication between two different 
hypostatic structural kinds, is intimately related to an “obstacle-oriented” 
approach to the notion of what a categorical object is. More concretely, 
the enunciation of the categorical structure of an object of an unknown, 
novel, or even not directly accessible species, requires a potential 
cyclically-embracing process of metaphora through another 
comprehensible categorical species, together with the canonics of this 
heteromorphic metaphora, so illuminating the former structure by 
natural communication, or equivalently, descending to and ascending 
from another covering or resolving structure. 

We outline below the standard basic definitions to be found in this 
order in standard formalist presentations of category theory, and further 
on, we are going to show how they actually arise inversely via the canonics 
and norms characterizing the natural-communication of non-absolute 
hypostatic structural kinds. 
 

CCAATTEEGGOORRIIEESS::  

A category  is a class of objects and morphisms of objects such 
that the following properties are satisfied: 
 
i For any objects ,  all morphisms  form a set 

denoted ; 

ii For any object  an element  is 
distinguished; it is called the identity morphism; 

iii For arbitrary objects , ,  the set mapping is defined 
 

 
 

For morphisms ,  the image of 
the pair  is called the composition; it is denoted . The 
composition operation is associative. 

iv For any  we have . 

For an arbitrary category  the opposite category  is 
defined in the following way: the objects are the same, but 

, namely all arrows are inverted. A 

category  is called small if the classes of its objects and 
morphisms form genuine sets respectively. 

  

C

X Y :f X Y®

( , )Hom X YC

X ( , )Xid Hom X XÎ C

X Y Z

( , ) ( , ) ( , )Hom X Y Hom Y Z Hom X Z´ ®C C C

( , )g Hom X YÎ C ( , )h Hom Y ZÎ C
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( , )f Hom X YÎ C = =Y Xid f f id f! !

C opC
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FFUUNNCCTTOORRSS::  

Let ,  be categories; a covariant functor  is a 
class mapping that transforms objects to objects and morphisms to 
morphisms preserving compositions and identity morphisms: 
 

 
 
A contravariant functor  is, by definition, a covariant functor 

. 
 

NNAATTUURRAALL  TTRRAANNSSFFOORRMMAATTIIOONNSS::  

Let ,  be categories, and let further , , be functors 
from the category  to the category . A natural transformation  
from  to  is a mapping assigning to each object  in  a 

morphism  from  to  in , such that for every arrow 

 in  the following diagram in  commutes; 
 

 
 
That is, for every arrow  in  we have: 
 

 
  

NNAATTUURRAALL  IISSOOMMOORRPPHHIISSMMSS::  

A natural transformation  is called a natural 

isomorphism if every component  is invertible. 
 

AADDJJOOIINNTT  FFUUNNCCTTOORRSS::  

Let  and  be functors. We say that  is 
left adjoint to  (and correspondingly that  is right adjoint to ), 
if there exists a bijective correspondence between the arrows  

in  and  in , which is natural in both  and . 
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Pictorially we have; 
 

 
 
where the left part is in  and the right in . Then, we say that the 
above pair of adjoint functors constitute a categorical adjunction. 
 

DDIIAAGGRRAAMMSS::  

A diagram  in a category  is defined as 

an indexed family of objects  and a family of morphisms sets 

. 

 
CCOOCCOONNEESS::  

A cocone of the diagram  in a category , 

consists of an object  in , and for every , a morphism 

, such that  for all   , that is, such that for 

every ,   , and for every    the diagram below 

commutes 
 

 
  

CCOOLLIIMMIITTSS::  

A colimit of the diagram  is a cocone with 
the property that for every other cocone given by morphisms 

, there exists exactly one morphism , such that 

, for all    (universality property). 

D C

,= ({ } ,{ } )i i I ij i j IX FÎ ÎX C

{ }i i IX Î

,{ } ( , )ij i j I i jF Hom X XÎ Í C

,= ({ } ,{ } )i i I ij i j IX FÎ ÎX C

X C i IÎ
:i if X X® =i j ijf f f! j Î I

i j Î I ijf Î ijF

,= ({ } ,{ } )i i I ij i j IX FÎ ÎX

:i if X X¢ ¢® :f X X ¢®

=i if f f¢ ! i Î I
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Reversing the arrows in the above definitions of cocone and 

colimit of a diagram  in a category , results in the 

dual notions called cone and limit of  respectively. Moreover, starting 

with a diagram  in a category , that consists only 

of the objects ,   , as nodes but without morphisms, that is all 

, we obtain the notion of the categorical coproduct,  (as a 

special colimit) and product,  (as a special limit) respectively. 

The morphisms  in the corresponding definitions are called canonical 
injections of the coproduct and canonical projections of the product, 
respectively. We emphasize that we can derive special notions of limits 
and colimits, corresponding to the shape of the base diagram . In this 
sense we obtain the following; an initial object is the colimit of the 
diagram consisting of the empty set. A coequalizer is the colimit of a 
diagram consisting of two parallel arrows . A pushout is the 
colimit of a diagram of the form: 
 

 
 
The dual notions are the following: a terminal object is the limit of the 
diagram consisting of the empty set. An equalizer is the limit of a diagram 
consisting of two parallel arrows . A pullback is the limit of a 
diagram of the form: 
 

 
  

,= ({ } ,{ } )i i I ij i j IX FÎ ÎX C

X
,= ({ } ,{ } )i i I ij i j IX FÎ ÎX C
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88..22  AARRTTIICCUULLAABBIILLIITTYY  OOFF  OOBBJJEECCTTSS::  HHYYPPOOSSTTAATTIICC  
  CCAATTEEGGOORRIICCAALL  CCAANNOONNIICCSS  

 
The natural communication between two different hypostatic structural 
kinds, conceptualized as different categories, is inextricably tied to an 
“obstacle-oriented” approach to the notion of what a categorical object is. 
It implies that the categorical structure of an object of a non-directly 
comprehensible or novel structural species, requires a potential cyclically-
embracing process of metaphora through another categorical species. 
Since these species occupy different hypostatic structural levels the 
metaphora is inevitably of a heteromorphic nature. This means that a 
certain structural canonics is required for the accomplishment of the 
metaphora. The basic idea is that the metaphora bears the potential to 
illuminate the unknown or obstacle-laden structure by heteromorhically 
descending to and ascending from another comprehensible categorical 
hypostatic level. 

The effectiveness of this metaphora is based on two factors: First, 
the directly comprehensible level should consist of categorical objects 
whose hypostasis should be somehow illuminating in relation to the ones 
of the obstacle-laden level. In this sense, ideally these categorical objects 
should manifest some local or partial structural spectral invariance 
characterizing the objects of the former species. In other words, their 
suitability should be based on their capacity to encode some local or 
partial structural invariant which is crucial for disclosing the structure of 
the former ones. It is precisely in this manner that they can be considered 
as structurally illuminating in terms of their categorical hypostasis. 
Secondly, since the metaphora is heteromorphic, a certain canonics must 
be in force that allows the natural communication between these levels. 
In other words, the objects of the comprehensible kind should be adjoined 
as probes or generalized pointers in the environment of the former ones 
not in a rigid, but in a plastic manner, so that connectively, and not only 
collectively, they can enforce a homeotic cobounding relation to an object 
of the unknown species that has the capacity to play the role of a 
structural canon for this object. 

In turn, this qualification serves to facilitate the inverse 
canonization of the employed probes as icons for the deployment of the 
ab initio unknown object at least within the symbolic algebraic milieu. 
Note that in this categorical context of thinking the notion of an icon is 
abstracted from its direct visual connotation and is elevated at the 
symbolic algebraic level as a local or partial invariant means of internal 
illumination through its canonization. Therefore, the symbolic and 
structural specification of the unknown via metaphora through the 
connective network of icons cobounding it structurally serves to establish 
the structural adaptability of the icons to the species of the unknown as 
its partially covering spectral structural invariants. In this sense, the 
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unknown object is illuminated connectively by this network of icons, 
while the latter are canonized reciprocally by their participation in the 
canon, which works metaphorically to unfold the structure of the former. 
Finally, and in terms of this canonization procedure, a gnomon emerges 
at the categorical level of the unknown structural species by the 
adjunction of the categorical level of its icons. 

It is precisely these factors that we maintain fundamental for a 
careful re-evaluation of the novel mode of object-specification induced by 
the development of category theory in mathematical thinking in relation 
to the objective of natural communication. More precisely, the notion of 
a structural symbolic icon is conceived as the principal means of probing 
or resolving an object of an obstacle-laden species in a canonical manner, 
independently of any a priori requirement of analysis of this object in its 
set-theoretic elements. This is the case because the notion of a canonized 
icon is not subordinate to any analytic reduction, but on the contrary, 
subsumes a well-defined structural characterization derived from its 
canonical internalization within the category deciphering the species of 
the object under investigation. In other words, a probe is qualified as an 
icon if and only if it can be canonized and thus internalized within the 
category in question. Technically, this simply means that it can give rise 
to a structure-respecting homomorphism within this category targeting 
the object of inquiry. An immediate consequence of this characterization 
is that a canonized action is structurally adaptable by means of adjunction 
to the species of the investigated object. 

The major issue arising in this state of affairs is the detection of 
the conditions that cast a probe into a canonized icon; these are the very 
conditions, conditions that render a probe canonically structurally 
adaptable to the object of inquiry, so that it can function as a source of 
local or partial spectral illumination on this object. Intuitively, since a 
probe should furnish a frame for resolving the unity of the investigated 
object, this frame can be structurally adapted to the species of the object, 
if and only if it encodes some structural invariant feature pertaining to the 
level of resolution or distinguishability of the investigated object with 
respect to the frame employed. The requirement of structural adaptability 
qualifies a probe as an illuminating symbolic icon, which plays the role of 
a local or partial structural frame for resolving or partitioning the 
investigated object under the action of this probe by virtue of the 
structurally invariant context it discloses. Concomitantly, the action of a 
canonized icon becomes co-extensive to a local or partial cover of the 
object of enquiry subordinate to the aphairetic filtering, or sieving, 
spectral invariant capacity of the icon. The covering action leads to a 
localization of the object of enquiry, thereby, it also gives rise to a topology 
on the object of enquiry only under the mild constraints of transitivity and 
compatibility of the covers under the operation of restriction to 
subcovers. 
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It has to be stressed that the implicated notion of localization with 
respect to an icon is derived internally and intrinsically only from the 
specific aphairetic structural invariant capacity of this icon in its function 
as a local cover, and not from any spatial embedding environment of any 
external kind. In this respect, an icon, although incomplete in its capacity 
to illuminate and resolve the investigated object globally or in its entirety, 
shapes this object locally or partially in a structurally adaptable manner. 
As a result, it can be inversely, internally extended beyond its compatible 
restriction as well, under the proviso that overlaps compatibly with some 
other icon deciphering another local cover of the investigated object. 

A crucial feature of this local iconic schematism of an object in a 
category is that it does not assume or require the existence of an all-
encompassing icon, meaning that any single particular icon should not be 
thought of as an independent part of an all-encompassing icon. In 
contradistinction, the iconic schematism of an object is based on the idea 
of a multiplicity of partially illuminating icons, covering the object 
connectively only under their joint canonic cobounding action. It is 
equally vital to point out that such a jointly covering multiplicity of icons 
is not merely a set of icons. It may be thought of as a colimiting, and hence, 
spectrally cobounding object, comprehending within itself the joint 
resolving spectral capacity of all contributing icons, participating in its 
integrity, coherently and compatibly synthesized in a way which does not 
require the treatment of those icons as independent parts. 

Rather it may be visualized as a multi-layered granulation weaving 
sieve, whose variable concatenated openings comprise the resolving or 
illuminating power of the corresponding icon, and which becomes 
structurally adaptable to the categorial species of the investigated object. 
This colimiting, or cobounding, object arises out of heteromorphic 
canonics, by means of a categorical adjunction, in the sense that the canon 
pertaining to the joint spectral capacity of all the partially illuminating 
icons induces a gnomon for the object of enquiry under homomorphic 
internalization within its categorical species of structure. 

In light of the above, it becomes possible to appreciate the 
significance of the central formal theorem of category theory - the 
Yoneda-Grothendieck lemma - for the proposed obstacle-oriented 
approach, referring to the means of articulability of an object in a 
category. More precisely, this theorem states formally that an object is 
completely specified by the network of all morphisms directed to this 
object by all other objects in the same category. In other words, an object 
in a category can be completely resolved, or partitioned, or even classified 
and retrieved, and thus become totally illuminated, by all internalized 
structure-respecting arrow-morphisms pointing towards it within the 
same category. The complete illumination promised by this theorem rests 
on the fact that the whole network of pointing morphisms specifies, and 
thus articulates, the object uniquely up to canonical isomorphism. Thus, 
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it provides the universal means of articulation of the object in relation to 
its categorical structural species, in the sense that its specification as 
outlined is unique up to equivalence, established by an explicitly 
demonstrable isomorphism. 

The ground-breaking consequence of this theorem is essentially 
that the object of interest can be legitimately subjugated or even 
conceptually substituted by the network of all internalized structure-
respecting relations or morphisms targeting it within the same category. 
For this reason, the object constitutes a formal symbolic representation of 
the whole network of relations directed to it within its categorial species, 
and inversely, this network becomes uniquely representable symbolically 
up to equivalence by the targeted object. Note that the term 
“representation” is used in the formal sense, meaning that the object 
becomes the symbolic placeholder of the network of morphisms pointing 
to it. We would like to enhance this non-spatial notion of representation 
with a temporal connotation that emphasizes its synthetic functional role 
in this setting. In particular, representation concerns the depth of the 
present in its capacity to instantiate an object by encapsulating all the 
morphism pointing to it. In other words, the synthetic act of 
representability in category theory is enunciated temporally by means of 
the capacity of an instantiated object to encapsulate all possible paths of 
arrows pointing toward it, which in turn, constitute its indexical 
iconization. From now on, this is precisely the meaning that we attribute 
to the technical term “representation” in the context of category theory. 

In practice, the specification of an object in a category by the 
network of all possible morphisms directed to it within the same category 
is redundant. It is precisely here that the notion of an internalized 
structurally adaptable, and thus structure-respecting, probing relation, 
emanating from another categorical species of structure, becomes 
significant. The underlying idea is that subject to theoretical, 
experimental, or computational reasons, a category of probes is always 
delineated in relation to an investigated object of some unknown, non-
directly accessible, or obstacle-laden categorial species. This category of 
probes may have the status of a subcategory of the category in which the 
investigated object is structurally placed, but this is no general 
requirement. What is crucial, is that the action of a probe can be 
structurally adapted as an internalized, and therefore, structure-
respecting directed morphism within the category of the investigated 
object. Henceforth, it is exactly this qualification of a probing relation 
that gives rise to the notion of an icon illuminating an investigated object 
of some category. 

The natural issue arising in this setting is to leverage the 
redundancy in the specification of an object in a category through the 
network of all possible relations directed to it, by restricting this network 
to a minimal but sufficient assemblage of icons capable of collectively and 
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connectively illuminating this object. Intuitively, the sufficiency condition 
pertains to the joint covering action of the object by the utilized 
assemblage of icons, as we have already seen. Under this restriction of the 
classifying network of internalized structure-respecting, directed 
morphisms on the investigated object in iconic schematic terms, the 
validity of the category-theoretic object-specification theorem remains 
intact. Namely, an object of a categorical structural species can be 
specified, classified, and retrieved by the assemblage of all partially 
illuminating icons upon it, uniquely up to equivalence. The objective is 
that this assemblage can be appropriately qualified as a heteromorphic 
canon capable of establishing natural communication between the 
categorical species of the object of enquiry and the species of the icons. 
The underlying idea again is that the heteromorphic canon naturally 
induces a gnomon for the investigated object under homomorphic 
internalization in its categorical species of structure. 

An immediate consequence of the above is that for a fixed object 
under investigation, the network or assemblage of all icons directed 
towards it can be objectified category-theoretically into a novel object of 
a higher structural species, i.e. an iconic schematism functor, called simply 
a representable functor. The root of this terminology is that an iconic 
schematism functor becomes symbolically representable by the 
investigated object up to equivalence. An iconic schematism functor is a 
structure-respecting morphism from the category of the investigated 
object into the category of sets. That is to say, for each internalized 
source-probe it assigns a set of icons capable of partially illuminating the 
unknown object from the specified source. Clearly, the iconic schematism 
functor of the investigated object varies over all possible internalized 
source-probes and is also evaluated at each one of them by producing the 
set of icons corresponding to it. Then, the meaning of the previously 
expressed object-specification theorem boils down to the fact that the 
categorical species of the investigated object can be fully and faithfully 
embedded into the category of functors from this species to sets, where 
the category of sets is used as a scaffolding for this purpose. Henceforth, it 
can be identified by means of the representable functors, i.e. the 
respective iconic schematism functors, technically symbolized as -
functors. It is instructive again to think of an iconic schematism functor, 
representable by the investigated object up to equivalence, as a multi-
layered granulation sieve whose variable concatenated openings comprise 
the resolving or illuminating power of the corresponding icons. 

The heteromorphic natural communication emerges in categorical 
terms from the conceptual inversion of an iconic schematism functor. In 
general, if an iconic schematism functor is considered as an encoding 
functor of the unknown categorical species to the species of its icons, then 
its inversion would be a decoding functor in the opposite direction. Pairs 
of encoding/decoding functors give rise to categorical adjunctions, where 

Hom
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these functors are called adjoint to each other. The notion of an 
adjunction as an expression of heteromorphic natural communication 
constitutes a far-reaching generalization of the algebraic notion of an 
equation. Precisely, the iconic schematism functor furnishes the algebraic 
variables of this equation with respect to the scaffolding of the category 
of sets, whereas its conceptual inverse decoding functor amounts to the 
solution of this equation, i.e. the specification of these variables. 

More concretely, we have already concluded that an investigated 
object of some categorial species can be conceptually substituted due to 
the amenability of its classifying iconic schematism functor to symbolic 
representation by the former up to equivalence. The important point is 
that the iconic schematism functor and the representing object of this 
functor, are located within different categorical species of structure. Thus, 
the pertinent issue again is how the iconic schematism functor, or 
equivalently, a whole sieve of icons directed towards an object of inquiry, 
becomes structurally adaptable as a totality to the categorial species of 
this object. The structural adaptability of the iconic schematism functor, 
and thus, the internalization of the whole sieve of icons within the 
categorial species of the investigated object, is possible only as a 
colimiting canon pertaining to the joint spectral capacity of all the 
partially illuminating icons. 

The pronounced inversion consists in the realization that the 
iconic schematism functor on an object of inquiry, after the selection of a 
certain category of probes - as structurally invariant iconic contexts of 
resolving and illuminating this object at various layers of 
distinguishability - is sufficient to depict, approximate, or even 
completely disclose the categorical species of the investigated object, up 
to equivalence. Note that in this setting, the categorical structural species 
of the investigated object, and not merely the investigated object itself, is 
considered an unknown variable. Thus, the proposed conceptual 
inversion can be utilized as a recognition principle of a new categorial 
species of structure. This becomes possible after the initial selection of a 
category of probes applied to a hypothetical object of a species 
unknowable a priori, which gives rise - modulo all the previously-stated 
requirements - to the iconic schematism functor of this object of inquiry. 

This constitutes a novel approach to revealing new categorial 
species of structure by means of heteromorphic natural communication, 
through the employment of an encoding iconic schematism functor 
defined in terms of structurally invariant contexts for resolution of this 
unknown species, and then inverting or decoding it back. We may 
schematically assert that the categorical recognition principle formulated 
in terms of natural communication turns the formal object-specification 
theorem of category theory onto its head, in the sense that, considering 
all practical or theoretical applications, it is the categorical species of the 
investigated object that is the real unknown and not the object itself. 
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Thus, we finally arrive at the crucial point of formulating the 
proclaimed recognition principle of some new categorical species of 
structure given the set-up of a representable functor, i.e. of an iconic 
schematism functor, as previously. A posteriori, this constitutes an 
interpretation of the category-theoretic syntax from the standpoint of 
natural communication. More tellingly, we read from Saunders MacLane, 
one of the two inventors of the categorical syntax, the following cryptic 
remark: “But I emphasize that the notions category and functor were not 
formulated or put in print until the idea of a natural transformation was 
also at hand”. 

This is at odds with the usual axiomatic presentation of the 
subject, more accurately to be read as its inversion. Of course, for reasons 
of systematic presentation of the category-theoretic syntax, the 
definition of a natural transformation, being a morphism of functors, has 
to be preceded by the definitions of what a functor is and what a category 
is. Notwithstanding this fact, the idea of a natural transformation is solely 
based on the concept of covariance, meaning that the associated 
morphism of functors to which it refers, is not subordinate to any ad hoc 
choice of underlying object to which these functors can be applied and 
evaluated. In other words, a natural transformation between two functors 
pertains to the categorial species of the underlying objects and not to the 
objects themselves. This is the decisive abstraction for the formulation of 
the recognition principle of obstacle-laden categorical species of 
structure in natural communication terms. 

Up to present, we have reached the conclusion that the 
recognition principle of some new categorical species of structure, should 
be properly expressed by means of a natural transformation of functors. It 
remains to examine the particularities of this natural transformation in 
detail, i.e. which precise morphism of functors is pertinent for the 
formulation of the recognition principle. What we have at our disposal is 
the set-up of an iconic schematism functor for each unknown 
hypothetical object of this new categorial species, after the selection of a 
category of probes, namely a category of structurally invariant contexts 
for resolution of these objects in terms of icons, according to the 
preceding argument. What we have also established is that given an iconic 
schematism functor on an object of inquiry, the associated sieve of all 
icons on this object becomes internalized as a totality in its categorial 
species by means of a novel colimiting or cobounding object, pertaining to 
the joint connective resolution capacity of all the involved icons 
illuminating this object. It is significant that this internalization process 
by means of a colimiting object is universal, in the sense that it is uniquely 
specified up to equivalence; it is unique up to a canonical isomorphism. In 
the terms of categorical natural communication, the universality property 
gives rise to a heteromorphic canon, which finally induces a homomorphic 
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gnomon for the investigated object under internalization in its categorical 
species of structure. 

Therefore, a colimiting object uniquely determines the universal 
terminus through which each one of the icons should factor in its function 
to probe and illuminate the species of the object of enquiry, being in this 
sense its gnomon. Clearly, the instantiation of such a colimiting object 
pertains to any iconic schematism functor associated with any object of 
the unknown categorial species. This prompts the realization that the 
iconic colimiting or cobounding process is actually a functor from the 
category of iconic schematism functors to the sought-after novel 
category. Most important, this colimiting functor conceptually inverts the 
iconic schematism functor on each object of the unknown species, 
because of the universality property characterizing the determination of 
the colimit object with respect to each object of the unknown species. 

Put equivalently, for each object of the unknown species the set of 
all its partially illuminating icons factors uniquely through the colimiting 
object of the corresponding iconic schematism functor pointing to it. 
Henceforth, any object of the unknown species can be recognized 
uniformly and universally only through such a corresponding colimiting 
object terminus of an iconic schematism functor on it. In more 
philosophical terms, this means that the colimiting functor actually 
determines the genus of the whole new categorical species of structure in 
relation to the underlying category of icons, those structurally invariant 
contexts for resolution or illumination of the objects of this new species. 
Note that the notion of genus incorporates the recognition principle of the 
whole new categorical species of structure and not only of the objects of 
this species. 

In a nutshell, for each object of the unknown categorical species of 
structure, after setting up an iconic schematism functor referring to it, we 
compute and apply the colimiting functor on the latter, thus, conceptually 
inverting it. This process is sufficient to determine the cobounding 
terminus uniquely up to equivalence, and thus, the universal 
homomorphic gnomon pertaining to the new categorical species through 
which the heteromorphic canonics of any icon has to factor in order to 
illuminate the object of inquiry. Since the same process applies uniformly 
and universally to any object of the unknown species, it is elevated to a 
process of articulation of the genus of the whole new categorical species. 
Henceforth, the unknown or obstacle-laden categorical species is 
recognized in iconic spectral terms by means of its genus determination 
through natural communication, where the iconic schematism and the 
colimiting functors play the role of the encoding and decoding bridges 
respectively. 

We are now ready to express the recognition principle of some new 
categorical species of structure through natural communication, by 
means of a natural transformation of functors that has been our main 
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objective. Conceptually, the leading idea is that object specification of an 
unknown categorical species in iconic terms always follows from genus 
determination of these species as a whole, as above. The unknown 
categorical species can equivalently be thought of, and objectified 
functorially, as the identity functor on itself. In this light, the recognition 
principle of this categorial species as a whole -irrespectively of any ad hoc 
choice of objects - should be expressed as a natural transformation of the 
identity functor induced by any appropriate selection of a category of 
probes to function as icons in relation to this categorical species. The 
suitability of a category of probes, furnishing structurally invariant 
contexts for resolving any object of the unknown species in iconic terms, 
is judged from its capacity to induce genus determination of this 
categorial species. This is possible if and only if a heteromorphic canon of 
natural communication is activated, which in turn, instantiates a 
universally cobounding gnomon of icons as a terminus of spectral 
recognition for each object of the sought-after species in a uniform 
manner. Equivalently, the heteromorphic canon is functorially tenable, if 
and only a colimiting functor exists whose action on the iconic 
schematism functor results in a natural transformation of the identity 
functor. Under these conditions, we say that the unknown categorical 
species is recognized by means of a natural communication monad, in the 
sense that the unveiling of these species emanates from the joint and 
interlinked illuminating capacity of its probes-icons. 

Consequently, the recognition principle of some new categorical 
species of structure, initially taken to be unknown, is expressed as a 
natural transformation of the identity functor on this species by the endo-
functor acting on the same species, which is obtained by composing the 
colimiting functor with the iconic schematism functor, depending on the 
appropriate selection of an underlying category of probes to act as icons. 
This natural transformation of the identity functor, determines the genus 
of the new categorical species in iconic terms, thereby establishing the 
sought-after recognition principle of this species. It is worth remarking 
that the above recognition-inducing natural transformation of the 
identity functor is equivalent to the conceptual inversion of the iconic 
schematism functor. More precisely, in technical terms, the colimiting 
functor that inverts the iconic schematism functor is called a left adjoint 
to the latter, since it acts on the left of it so that their composition 
provides the determining endofunctor on the unknown categorial species. 
It is precisely this determining endofunctor that plays the role of a 
heteromorphic canon of natural communication; it gives rise to a 
communicability monad between the species of the icons and the 
obstacle-laden species, which bears the capacity to unveil the latter in 
terms of the former. 

We note that the notion of adjoint functors was first conceived, 
abstracted, and formulated more than a decade after the introduction of 
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the category-theoretic framework in terms of categories, functors and 
natural transformations. Before the introduction of this notion category 
theory can be viewed as a useful tool for organizing, systematizing and 
classifying various species of already known mathematical objects. In 
other words, it served more as a theory of taxonomy than as a theory of 
invention and discovery. The notion of adjoint functors transformed its 
role completely and paved the way for forming bridges between seemingly 
unrelated mathematical disciplines; in short, it revealed its natural 
communication underpinnings. It is precisely this notion that discloses 
the philosophical significance of category theory, and at the same time, 
makes it suitable for solving difficult structural problems in the natural 
sciences. 

The formulation of the theory of adjoint functors in category-
theoretic terms has its roots in homology theory and algebraic topology. 
We arrived at this notion by following another more philosophical route 
involving the objective of heteromorphic natural communication, if 
expressed in terms of the category-theoretic syntax. Since the canonics 
characterizing this kind of natural communication, pertaining to 
categorical species of structure, is not to be taken for a merely taxonomic 
tool, but as a potent instrument of genuine emergent novelty, the basic 
problem posed is the means of recognition of an obstacle-laden 
categorical species in partial or local iconic terms. As we showed, this 
involves first, the setting-up of an iconic schematism functor, after the 
selection of an underlying category of probes in their function as icons, 
i.e. partially or locally congruent structural invariant contexts for 
illuminating and connectively resolving an object of the sought-after 
categorial species. The solution to this problem, which a posteriori 
characterizes the suitability of the selected category of probes and the 
sufficiency of the icons, requires the conceptual inversion of an iconic 
schematism functor. This conceptual inversion is equal in effect to finding 
a colimiting functor acting on a corresponding iconic schematism functor 
as a left adjoint, and thus, inverting it. 

In turn, the above inversion embraces and indirectly solves the 
problem posed by means of the heteromorphic canonics establishing the 
natural communication between the categorical species of interest, that 
is, by means of a pair of adjoint functors between these species. In turn, 
the solution amounts to a natural transformation of the identity functor 
on the unknown categorical species, which is thus, recognized 
gnomonically by means of the unique homomorphic termini induced by 
the colimiting functor for each object of the sought-after species. 
Accordingly, the conceptual inversion of an iconic schematism functor 
leads to the genus determination of the initially unknown categorical 
species by means of the established recognition principle. Under certain 
conditions, the natural transformation of the identity functor solving the 
problem of recognition of a new categorical species of structure, can be 
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restricted to a natural isomorphism. In this case, each object of this new 
species is specified uniquely up to equivalence by the corresponding 
colimiting or cobounding object emerging by the left adjoint to the iconic 
schematism functor referring to it. These conditions are usually 
implemented by imposing a particular categorical topology on the 
underlying category of probes, which amounts to localizing an assemblage 
of icons into a sheaf of icons for this topology. 
 
88..33  MMEEAASSUURRAABBIILLIITTYY::  TTHHEE  PPHHYYSSIICCAALL  RROOOOTTSS  OOFF  CCOOOORRDDIINNAATTIIZZAATTIIOONN  

 
The modus-operandus of physics as a natural science is based on 
observation and measurement. In particular, measurement is the process 
corresponding to a well-defined observational procedure, according to 
which, various attributes or magnitudes are assigned numbers, or more 
generally, “number-like” quantities. In this sense, the general notion of 
number is understood physically as the outcome of a measurement 
corresponding to an observational procedure. The abstraction of the 
measurement process gives rise to the notion of coordinatization or 
arithmetization. The power of the measurement process to arithmetize 
phenomena according to a well-defined underlying observational 
procedure is in essence the objectification of magnitudes, in the sense that 
they can be communicated to other observers, and thus become amenable 
to comparison and transformation, again according to prescribed rules. 
Furthermore, the “number-like” quantities obtained by the 
coordinatization process can be subjected to algebraic operations, so that 
they can form suitable algebraic structures closed under the action of the 
corresponding operations. 

Hence, from a physical perspective, algebraic structures of 
“number-like” quantities of any particular operational form, can be 
thought of as solutions to a physical measurement problem. Most 
commonly, the effectuation of the coordinatization process itself requires 
the conceptual extension of what can function as a “number-like" 
quantity. In turn, this is reflected in the algebraic process of extension of 
scalarity, which precisely extends the notion of a “number-like” quantity 
in a way that preserves the closure requirements under the application of 
algebraic operations characterizing some structure of already known 
“numbers”. In categorical terms this means that the algebraic process of 
extension of scalars, solving a physical coordinatization problem, is a 
functorial process. 

We recall that the father of the above described natural philosophy 
is Thales and his theory of measurement based on proportionality of 
magnitudes. The sole purpose of Thales’ theory of proportions had been 
the measurement of a not directly accessible magnitude using a gnomon. 
This refers to the height  of an inaccessible pyramid, given the length 

 of its accessible shadow, as well as, the height  and shadow length 
x

c a
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 of an accessible object, functioning as a measurement rod. The 
proportion between magnitudes resolving the Thalesian measurement 
problem reads as follows: 
 

to  is as  to  
 

Symbolically, the above proportion is depicted by the equation 

, from which the not directly accessible magnitude  can be 

obtained indirectly as . We remind that the geometric theory of 
proportions for the resolution of measurement problems of the Thalesian 
form, contains the seeds of conception of a group-theoretic structure, 
together with the concomitant formulation of an algebraic equation for 
the determination of unknowns. 

In this mode of thinking, the geometric resolution of the Thalesian 
problem, in terms of proportionality, implicitly anticipates the discovery 
of the multiplicative monoid structure of positive integers, and 
subsequently, the multiplicative group structure of the rationals and the 
real numbers. The meaning of this assertion boils down to the realization 
that the determination of an unknown magnitude in the Thalesian 
setting, interpreted algebraically, requires the introduction of the 
multiplicative group structure of the rational or the reals (standing for 
magnitudes), in order to provide a solution to the associated equation 
expressing the corresponding proportion. Thus, the determination of 
unknown magnitudes by the method of proportion, algebraically entails 
the introduction of the group-theoretic closure structure on magnitudes, 
equipped with the operation of multiplication and possessing an inverse, 
which is division. 

Up to now, we argued that algebraic structures of “number-like” 
quantities of any particular operational form, can be thought of as 
solutions to physical measurability problems. Until recently, these 
algebraic structures have been conceived as sets endowed with prescribed 
operations, like addition and multiplication, satisfying a closure condition 
with respect to the action of these operations on the elements of the 
underlying sets. Gradually the primary significance of considering the 
homomorphisms between algebraic structures of the same kind came to 
collective realization. In particular the existence of an isomorphism 
between two algebraic structures of the same kind essentially came to mean 
that these algebraic structures have exactly the same operational role. 

Thus, the conception of algebraic structures of some kind should 
be considered primarily in terms of the relations between them, 
conceptualized in terms of incoming or outgoing homomorphisms 
(structure-preserving morphisms), and not in the restricted terms of their 
elements. The decisive fact in this conceptual re-articulation of algebraic 

b
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structures has been the realization that their elements can be thought of 
as special homomorphisms from particular algebraic structures of the 
same kind. 

Note that the notion of homomorphism depends on the kind of 
algebraic structure considered, since it reflects the preservation of the 
operations between structures of the same kind. Here arises the pure 
algebraic notion of a “generalized element” of an algebraic structure 
conceived as an outgoing homomorphism from this algebraic structure 
into some other of the same kind. Of course, simultaneously the dual 
notion of a “generalized element” applies, conceived as an incoming 
homomorphism from some other algebraic structure of the same kind. The 
artifact of this re-conceptualization requires an interpretational shift in 
the semantics of structure. More concretely, it is reasonable to coin the 
term algebraic object of some kind and reserve the structural qualification 
for the environment where these objects are situated and are related to 
each other by means of homomorphisms. This is precisely the semantic 
transition required for the category-theoretic re-interpretation of set-
theoretic algebraic structures entailed by the primary role of 
homomorphisms (generalized elements and their duals) in the 
determination of algebraic objects of some kind. 

The definition of a category of algebraic objects of some kind with 
arrows being homomorphisms between them, constitutes an abstraction 
of the behavior of functions closed under the associative operation of 
composition. More precisely, the notion of a function is generalized to the 
notion of a homomorphism, whereas the associative operation of 
composition becomes an operation on sets of homomorphisms between 
algebraic objects of the same kind satisfying the same properties that 
functions and compositions satisfy. 

Note that the composition of two functions , , denoted as 
 is defined only in case that the codomain of  is the domain of . 

Moreover, the composition of a function  with the identity of either its 
domain or codomain gives  again. It is interesting then to notice that 
from a structural set-theoretic viewpoint, a category of algebraic objects 
of some kind, may be thought of as a partial algebra itself. More precisely, 
the elements of this algebra are the homomorphisms, and their 
composition is actually an associative binary operation which is only 
partial, being defined only when the composition of homomorphisms is 
meaningful. Then, the role of the objects is just that of labeling the 
homomorphisms for the determination of the domain of the binary 
operation of composition. 

In a nutshell, the notion of a category of algebraic objects of some 
kind is a conception based on the behavior of functions closed under the 
associative operation of composition, abstracted in terms of 
homomorphisms, which in turn, have been idealized as algebraic 

f g
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“generalized elements” (or their duals) completely determining the 
algebraic objects themselves. Because an obvious duality obtains between 
incoming and outgoing homomorphisms with respect to an algebraic 
object, this is built into the definition of a category so that the operation 
of arrows-reversal leaves the concept of a category invariant, meaning 
that this operation gives again a category in dual or opposite relation in 
comparison to the given one. 

A consequence of this fact is that all categorical constructions 
come in dual pairs corresponding to the dual viewpoints from which 
incoming or outgoing arrows with respect to a constituted algebraic 
object are seen. Apart from the duality property, we have seen above that 
the successful effectuation of the coordinatization process in more and 
more demanding physical measurement problems requires the conceptual 
extension of the meaning of a “number-like” quantity, described by the 
algebraic process of extension. For example, the resolution of the 
Thalesian measurement problem requires the extension of integer 
numbers into the rational numbers so that division becomes possible. 
Notably, the algebraic extension process provides algebraic objects of 
operationally extended “number-like” quantities including the initial 
ones. Note also that since we should always think in a dual way regarding 
the direction of arrows with respect to an algebraic object there is clearly 
an inverse algebraic process called restriction. The semantics of this 
inverse pair of algebraic processes will be explained in detail 
subsequently. 

Now, the design of the categorical framework of reasoning with 
respect to the algebraic process of extension provides the conception of 
the algebraic object of extended “number-like” quantities, of the same 
kind as the initial one, uniquely up to isomorphism by means of a universal 
property. More precisely, each outgoing homomorphism  from 
the initial object  into a set  endowed with the extra structure, 
extends to an outgoing homomorphism  from the algebraic 
object  newly constructed by extension (solving a corresponding 
measurement problem) into  Equivalently stated, every 
homomorphism  of the previous form uniquely factors through  
 
88..44  NNAATTUURRAALLIITTYY::  FFUUNNCCTTOORRSS  AANNDD  CCOOVVAARRIIAANNTT  TTRRAANNSSFFOORRMMAATTIIOONNSS  

 
We have seen that the idea of a category of algebraic objects of some kind 
for which arrows are homomorphisms incorporates from the start the 
basic idea of duality by arrow reversal, emanating from the fundamental 
role played by homomorphisms (algebraic “generalized elements”) and 
their dual distinction into incoming and outgoing kinds with respect to an 
algebraic object completely determined by them. Moreover, 
understanding algebraic objects as providing solutions to physical 
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coordinatization problems, the category-theoretic framework referring to 
algebraic objects of some kind, forces the conception of operationally 
extended objects of the same kind, not in terms of their set-theoretic 
constitution from given elements, but in terms of some universal property 
determining them up to isomorphism within the same category. 

Now, the establishment of the notion of a category of algebraic 
objects naturally raises the difficulty of defining the notion of a function 
whose domain and codomain are categories. Obviously such a function 
should preserve the composition operation binding a category as an 
associatively closed universe of discourse. This is precisely the notion of 
functor between categories. From an equivalent viewpoint, since a 
category may be considered as a partial algebra with respect to the binary 
operation of composition, the notion of a functor corresponds to the 
notion of such a partial algebra homomorphism. A covariant functor is a 
functor which preserves the directionality of an arrow in the domain 
category, whereas a contravariant functor is a functor which reverses it. 

Each object  of a category  determines a covariant 

functor , called the covariant -functor represented 

by , defined as follows: 
 

i For all objects  in , . 

ii For all homomorphisms  in , 
 

 
 

is defined as post-composition with , viz., . 
 

The covariant representable functor , can be thought of 

as constructing an image of  in  in a covariant way. 
Now, let us consider the opposite category , and let  be an 

object in this category. Then, the contravariant -functor 

represented by  is the contravariant functor , 
defined as follows: 
 
i For all objects  in , . 

ii For all homomorphisms  in , 
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is defined as pre-composition with , viz., . 
 

The contravariant -functor represented by , viz. 

, is called the functor of generalized elements (incoming 

homomorphisms) of . Moreover, the information contained in  is 

classified completely by its functor of generalized elements . Dually 

the covariant -functor represented by , viz.  is 
called the functor of generalized co-elements (outgoing homomorphisms) 
of . Similarly, the information contained in  is classified 

completely by its functor of generalized co-elements . 

Now, given a locally small category , that is, a category such 

that for all objects , , the -class  is a set, we 

may consider the -bifunctor: 
 

 
 
from the product category  to the category of sets, such that for 

objects ,  of ,  is the covariant representable 

functor (represented by ), and  is the contravariant 

representable functor (represented by ). 
Continuing in the same frame of thought, the next question arising 

is the following: Which is the proper notion of morphism to capture the 
notion of a transformation from some functor to another functor having 
both the same domain and the same codomain categories? Defining the 
proper notion of morphism between such functors is important because it 
would allow us to legitimate the notion of a functor category , where 
the algebraic objects would be functors  and the morphisms 
would be the sought transformations between such functors. 

The leading idea has to do with the requirement that a 
transformation of the sought form should compare two functorial 
processes having the same domain and the same codomain in a way that 
is not dependent on the specific objects and arrows involved, that is it 
should relate the processes themselves without the intervention of ad hoc 
choices. This is precisely the notion required for the formalization of the 
concept of naturality referring to the relation or comparison of two 
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functorial processes sharing the same source and the same target 
categories. Concomitantly the corresponding notion of morphism 
between functors of the above form is encapsulated in the notion of a 
natural transformation. 

More precisely, if , , are functors from the category  to 
the category , a natural transformation  from  to  is a 

function assigning to each object  in  a morphism  from 

 to  in , such that for every arrow  in  

the following diagram in  commutes: 
 

 
 
That is, for every arrow  in  we have: 
 

 
 
A natural transformation  is called a natural isomorphism (or 

natural equivalence) if every component  is invertible. Obviously, a 
natural isomorphism is an invertible natural transformation in the 
functor category . A natural isomorphism of functors defines precisely 
the categorical means of metaphora. Paraphrasing Hermann Weyl, we 
may say that a science can only determine its domain of investigation up 
to a natural isomorphism. In particular, it remains quite indifferent as to 
the “essence” of its objects. In this manner, the notion of a natural 
isomorphism demarcates the insurmountable boundary of cognition, in 
the sense that through the disclosure of natural isomorphisms of functors 
it is possible to transfer any insights gained in one domain to the 
isomorphic domain. 

This is a key concept and justifies a posteriori the whole categorical 
framework, since it captures precisely the criterion of naturality referring 
to the comparison of any two homoeoid functorial processes. For this 
purpose, it is instructive to adopt the following terminology: 

Suppose that  is an expression with an argument , such 

that given an object  in , the expression  holds for an 
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object in , and given an arrow  in the set of incoming or outgoing 

arrows from  the expression  holds for an arrow in . We say 

that  is functorial in , as  ranges over , if this 

assignment yields a functor from  to . For example for a category 

 the -set expression  is functorial in both  

ranging over  and  ranging over . Thus, the -set 

expression  is bifunctorial over the product category 

. Moreover, we say that the expressions ,  both 

functorial in , as  ranges over , are naturally isomorphic in , 
or equivalently, that there exists an isomorphism natural in , if and 

only if there is a natural isomorphism between the functors  and  

from the category  to the category . 
It is also useful to think of the category of all (locally small) 

categories and functors, denoted by . In  for any two categories 
, , we define the operation of exponentiation as follows: 

 

 
 
where  is the category of functors from  to  and 

natural transformations between them. From the perspective of  
the notion of natural transformation between functors allows to 

transform the -set  into a category with 
exponentials. In this setting we define the evaluation functor: 
 

 
 
such that for any category  and bifunctor  there is a 
functor  defined by transposition, such that: 
 

 
 
This is clearly the case if we define the functor , given the bifunctor 

 as follows: 
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As a simple application we may take the product category  and 
consider the first projection: 
 

 
 
Then, if we transpose it we get a functor: 
 

 
 
For an object  in , the functor  is the constant -valued 

functor, which for any object  of  gives the constant value , 
and for any arrow  of  gives the identity arrow on . 
 
88..55  CCAATTEEGGOORRIICCAALL  IINNVVAARRIIAABBIILLIITTYY::  FFUUNNCCTTOORRIIAALL  EEQQUUIIVVAALLEENNCCEE  
  AANNDD  DDUUAALLIITTYY  

 
Firstly, we introduce the notion of equivalence of two categories  and 

 as follows: An equivalence of two categories  and  is defined 
by means of a pair of oppositely directing functors; 
 

 
 

 
and a pair of natural isomorphisms; 
 

 

 
 
where  is a natural isomorphism of the identity functor on  in  
and  is a natural isomorphism of the identity functor on  in . 

In this case, the functorial process  is called inverse to the 
functorial process . 

The notion of equivalence of categories transcribes the concept of 
similarity, or analogia, in a categorical/functorial context. Furthermore, 
it makes precise the notion of duality between categories. More 
concretely, duality theorems can be expressed in the form , 
meaning that the category  is equivalent to the opposite of the 
category . The notion of duality between categories, formalized by 
means of an equivalence as above, is very important because it means that 
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two categories related by a duality transformation are similar in the sense 
that they play the same functional role. 

The interpretational consequences of this notion are far reaching 
and especially interesting from a physical viewpoint. We have argued 
previously that categories of algebraic objects can be considered as 
providing solutions to coordinatization processes (conceived within an 
associatively closed universe of discourse) arising from physical 
measurement problems. If a coordinatization process is modeled 
functorially as a functor , which encodes the information of 

 in terms of a category of algebraic objects , then the existence of 
an inverse functorial process  decodes the algebraic 
information of  back into the terms of , which in turn, is identified 
as the opposite or dual category of . 

In this way, a physical measurement problem presented in terms 
of a category of geometric objects  can be resolved by finding a 
duality, that is by establishing a natural equivalence between a category 
of algebraic objects  and the opposite of . This frame of thought 
can be extrapolated in formal terms of duality between geometric objects 
and algebraic objects. Then, keeping in mind the encoding functionality 
of a functorial coordinatization process as well as the decoding 
functionality of its inverse (if it exists), we may interpret algebraic objects 
as syntactical objects and their dual geometric objects as semantical or 
phenomenological objects. 

As a particular example we may cite the Stone duality established 
between the category of Boolean algebras (or equivalently Boolean unital 
rings) and the category of compact totally disconnected Hausdorff 
topological spaces (Stone spaces). In the finite case this duality restricts 
to an equivalence of the category of finite Boolean algebras and the 
opposite of the category of finite sets. In this way, each Boolean algebra 

 has an associated topological space , called its Stone space. The 
points of the Stone space  are the ultrafilters of the Boolean algebra 

, or equivalently the homomorphisms from  to the -element 
Boolean algebra. A basis of the topology of  consists of sets of the 

form  where . Conversely, given any topological 

space , the collection of subsets of which are compact open or 
equivalently clopen, that is, both closed and open sets, is a Boolean 
algebra. Now, the assignment of a Boolean algebra to its Stone space is 
functorial, that is it corresponds to the object part of a contravariant 
functor from the category of Boolean algebras to the category of Stone 
spaces: 
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where ,  are the categories of Boolean algebras and Stone spaces 

correspondingly. The functor  sends a Boolean algebra  to 

the Stone space , and a Boolean algebra homomorphism 

 to the continuous function , whose action is 

defined by precomposition with , by which we mean that it sends 

 of  to  of . Now, there exists an 
inverse functor: 
 

 
 
which sends a Stone space  to the set of continuous functions from  
to the Stone space , which is endowed with the structure of a Boolean 
algebra, and further identified as the Boolean algebra of its clopen sets. 

Moreover, it sends a continuous function of Stone spaces  to 

the homomorphism of Boolean algebras , whose action is 
defined by postcomposition with  correspondingly. 
Note that the duality between the category of Boolean algebras and the 
category of Stone spaces is based on a dual interpretation of the two-
element set , or in other words; as the two-element trivial Boolean 
algebra, or again as a two-point Stone space. Essentially, the functorial 
process of coordinatization corresponding to a measurement problem of 
classical physics can be presented in the form of an information encoding 

functor , and is resolved by specifying the inverse 

information decoding functor  which establishes 

the equivalence of the geometric phenomenological category  with 
the dual of the algebraic category . Again from a physical viewpoint, the 
geometric category  is understood as a category of geometric spaces 
of physical states (geometric state spaces), whereas the algebraic category 

 providing an operational solution to the corresponding measurement 
problem is understood as a category of algebras of observables. Now, the 
distinguished two-element trivial Boolean algebra acts, from the 
perspective of the algebraic category, as an evaluation number-like object, 
that is, as a binary measurement device, for the evaluation of Boolean 
observables. 
Concomitantly, the geometric state space observed by means of such a 
measurement procedure of observables is a Stone space, whose set of 
continuous functions into the Stone space  is identified as the Boolean 
algebra of its clopen sets. It is also important to notice that the above 
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duality factors through the associatively closed universe of sets, employed 
as a scaffolding. This is also clear from the dual interpretation that the 
two-element set  acquires by its conceptualization within the dual 
categories of Boolean algebras and Stone spaces. From this fact we can 
draw two conclusions: Firstly, the category of sets plays the role of 
Aristotelian substance in the categorical framework. The substance 
acquires hypostatic form only in relation to a specific category of algebraic 
objects or its dual category of geometric objects (if it exists) and most 
importantly, this process of form-acquisition is functorial. Then, its form 
is conceived in a dual sense, meaning that its algebraic and geometric 
manifestations are understood as complementary aspects related by 
means of the algebraic/geometric object duality. Secondly, the category of 
sets, understood as a category of Aristotelian substance, and due to its 
functionality for the enunciation of algebraic/geometric dualities, should 
play a fundamental role in the representable elaboration of more 
complicated functorial coordinatization processes. These encoding 
processes may not have an exact inverse decoding process, but still the 
latter can be approximated functorially as will be explained below. 

The purpose of explaining in detail the case of Stone duality, being 
the precursor of other dualities, such as the case of Gelfand duality, or 
Grothendieck duality, has to do with the fact that it is also related to logic. 
Of course, from the perspective of categorical logic, algebra is connected 
with logic, in the sense that logical theories may be understood from the 
perspective of algebraic categories. 

In particular, Boolean algebras correspond to classical proposition 
theories which describe the measurement procedures of classical physical 
theories. Thus, the category of Boolean algebras can be considered as the 
category of logical propositional theories of classical physics, whereas its 
dual category of Stone spaces can be seen as the category of geometric 
state-spaces observed by means of two-valued measurement procedures 
of Boolean observables. Hence, the set of geometric state models 
corresponding to a Boolean algebra in a classical measurement situation 
is obtained by taking homomorphisms from this algebra to the two-
element Boolean algebra , that is the functor: 
 

 
 
evaluated at  in , gives: 
 

 
 
Inversely, because of Stone duality, the definition of the appropriate 
topology on the set of geometric state models, gives a topological Stone 
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space, by means of which we are able to retrieve the Boolean algebra  
by taking morphisms in the category of Stone spaces from that space into 
the Stone space , that is: 
 

 
 
Again, it is instructive to observe the dual role that the two-element set 

 plays in the algebraic (logical)/geometric (phenomenological) Stone 
duality. By analogia, it is a natural question to ask if such a dual role can 
be played not from a set, like  in the case of Stone duality, but from a 
whole category of sets or even a diagram in . 

For example, if we consider as a dualizing object the small category 
of sets , then a logical theory should correspond to a category , 
whereas the category of logical theories would be an appropriate category 
of categories. Then, the category of -valued geometric state models 
of the logical theory , would be a corresponding category of functors 
from  to , that is: 
 

 
 
where  is the category of functors from  to  

and natural transformations between them. Then, the logical theory  

could be retrieved from the category of geometric state models  

as the category of suitable functors from  to  preserving 
the required properties, so that: 
 

 
 
The exercise of treating a diagram in  as a dualizing object, and in 
particular, a diagram in the category of finite sets (being equivalent to the 
category of finite Boolean algebras) can be used as a natural starting point 
for the analysis of quantum logic from the perspective of functorial 
duality. In this way, the transition from classical measurement procedures 
to quantum measurement procedures can be understood operationally as 
a transition from a Boolean algebra to a categorical diagram of Boolean 
algebras. This physical viewpoint will be developed in detail as we 
progress. 
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88..66  IINNDDEEXXIICCAALLIITTYY::  FFUUNNCCTTOORRIIAALL  RREEFFEERREENNCCEE  FFRRAAMMEESS  AANNDD  GGAAUUGGEESS  

 
The concept of algebraic/geometric duality also pertains to the 

notion of physical coordinate systems, or more generally, physical 
reference frames. More precisely a global coordinate system  can be 
understood as an isomorphism  between a geometric object 

 in some class and a standard object  in that class. A local 
coordinate system (such as the coordinate charts on a manifold) is an 
isomorphism between a local part of a geometric object in some class and 
a local part of a standard object in that class. 

Thus, keeping in mind the distinction between local and global 
coordinate systems we may use as a standard object  a real Euclidean 

-dimensional topological vector space. So if we identify the standard 
(local) geometric object as , then a (local) coordinate system is a 
(local) isomorphism . We can think of this (local) 
isomorphism as related with an algebraic/geometric duality, where the 
algebraic object is identified as an algebra of observables (corresponding 
to a (local) measurement procedure) evaluated on a dualizing object, such 
that the (local) observable geometric state models of this algebra 
constitute the standard geometric object . 

In the particular case that , we can see immediately that 
. Thus, the set  plays the role of a dualizing 

object, interpreted algebraically as an -algebra (field), and 
geometrically as a Euclidean space. Hence, the set of geometric state 
models corresponding to the algebra of smooth functions  in a 

classical smooth measurement situation is obtained by taking 
homomorphisms from this algebra to the field , that is: 
 

 
 
Inversely, the set of geometric state models viewed as the Euclidean space 

, allows us to retrieve  by taking morphisms in the category 

of Euclidean spaces from that space into the Euclidean space , that is: 
 

 
 
We have concluded above that the definition of a (local) coordinate 
system (for the example mentioned) is understood as a (local) 
isomorphism: 
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Thus, generally a (local) coordinate system identifies (in the sense of 
similarity induced by an isomorphism) a geometric object (locally) with a 
standard “number-like" object (like ), which is understood as a (local) 
space of geometric state models observed by means of evaluating an 
algebra of observables on a dualizing object (like the real numbers ) in 
the sense of functorial duality. Note that generally, the identification 
induced by a (local) coordinate system is not natural. This means that we 
may legitimately define a whole class of (local) coordinate systems 
depending on the operational means of observation. In this class, we may 
define an equivalence relation partitioning it into equivalence classes of 
(local) coordinate systems. 

Thus, arises the necessity to adopt a coordinate-invariant point of 
view, meaning that every expression formed in the descriptive terms of a 
(local) coordinate system should remain invariant under a transformation 
of this coordinate system into another in the same equivalence class. 

Equally, given a (local) coordinate system , where  is 
an algebra of observables suited to a measurement procedure, and 

identifying by duality , then by an isomorphism  

of the standard “number-like" object , we obtain a new (local) 
coordinate system of the geometric object  in the equivalence class of 

, that is,  by composition of the two (local) isomorphisms. 
Inversely, every other (local) coordinate system of , , is 
obtained in this way. Accordingly, we obtain a group of isomorphisms of 

, denoted as , called the gauge group of the class of 
geometric objects. 

Now, instead of taking a single geometric object, we may consider 
an indexed family of geometric objects. The indexing object, in the 
simplest case, is a set of parameters making a parameter space, or base 
space, over which the variation or parametrization of the family of 
geometric objects is conceived. This is equivalent to considering a discrete 
diagram of geometric objects in some appropriate category. Note that, the 
indexing object might be a category itself in the most general case. For 
example, if the indexing category is a set  which parameterizes 
geometric objects in the category of sets, then the functor category  
is the category of -indexed sets (category of discrete diagrams of sets). 

So the objects of  are -indexed families of sets  and 

the morphisms are -indexed families of functions: 
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The functor category  can be described equivalently as the 
“comma” , or slice category of sets  over the indexing set , 
denoted by . In this category, the objects are the morphisms 

 and the arrows are the commutative triangles over the 
indexing set . This is a very important example of an equivalence of 
categories, that is: 
 

 
 
The above functorial equivalence is described by means of the following 
inverse functors: 
 

 

 
 
such that: 
 

 
 
called the indexing projection morphism, and in the opposite direction: 
 

 
 
The advantage of the functorially equivalent slice category  
where  is an indexing set (base space), is that it conforms with the 
intuition of a -indexed family of objects of the category , or in 
short, an -indexed family of sets (considered as geometric objects). 
Moreover, the slice category  is meaningful for any object  in 
an arbitrary category (of geometric objects)  conforming also with 
the intuition of an -indexed family of objects of the category . 
Now, if the category  is complete, and in particular, it has pullbacks, 
then the process of re-parameterization along an arrow  in 

 is represented by the pullback (limit) functor: 
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In more familiar physical terms an -indexed family of sets 

 (discrete diagram of sets) constitutes a fiber bundle, where the 

fibers  are sets and  is the base space of the bundle. Usually, the 
fibers have some extra structure, and topological or geometrical or 
differential compatibility conditions pertain between the fibers 
depending on the corresponding specification of the base space . This 
is due to the natural requirement that the kind of variations in the fiber 
should conform to the kind of variations on the corresponding base point. 

The crucial observation is that each fiber  in a fiber bundle of 

set-theoretic geometric objects, that is to say each object  in an -

indexed family of set-theoretic geometric objects  , by virtue of 
belonging to a certain class of geometric objects, can be legitimately 
identified with a standard “number-like” object  in that class. This is 
possible by means of a parameterizing point -based coordinate system, 

expressed in terms of a point -based isomorphism . 
In this way, we obtain a separate coordinate system for each base 

point  in the base space . The complete family  
(conforming with the corresponding topological, geometrical or 
differential compatibility conditions), if it exists, constitutes a global 

gauge, or global trivialization, for the fiber bundle . 
Correspondingly, a local gauge refers to a local trivialization for the fiber 

bundle  obtained in the same manner. Usually, a global gauge is 
not possible or available, but local gauges do exist, trivializing only parts 
of a fiber bundle in a consistent way. Note that the trivial bundle has the 

same fiber  for each point , denoted as . Then, a 

function  has a graph . The 

analogous notion to the graph of a function  referring to the 

trivial bundle  is the notion of section referring to an arbitrary 
fiber bundle. 

In this sense, a (local) section of a fiber bundle may be thought of 

as a collection of representative elements  from the fibers of 

the fiber bundle . It is precisely sections of a fiber bundle that can 
be represented locally or globally in terms of “number-like" quantities by 
means of a local or global gauge correspondingly. Thus, a (local) gauge is a 

(local) fiber bundle isomorphism  from the bundle  to the 
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trivial bundle . Now, analogously to the case of (local) coordinate 
systems of single geometric objects, every family of (local) isomorphisms 

 of , provides a new (local) gauge , thus 

transforming the (local) gauge  into the (local) gauge 

. In this case we say that  constitutes a (local) gauge 
transformation. 

We may conclude the above discussion by noticing that the notion 
of a gauge corresponds to the notion of a varying coordinate system. In 
the example of fiber bundles presented above, the variation is over a 
parameter space (base space), such that the variation of coordinate 
system is dependent on the location of an observer occupying a point  
of the base space. In the context of the same example, a gauge 
transformation is a change of coordinate system applied to each such 
location  of the base space . 

From a categorical perspective, this is an example of a gauge 
theory formulated within the category of discrete diagrams of sets, namely 
the functor category , or equivalently, the category of -indexed 
sets  (or other set-theoretic geometric objects). The idea of 
gauge should not depend on the indexing object used for its manifestation, 
meaning that the indexing object might be a category itself. As an 
example, we may think of a partially ordered set, considered as a category 
with arrows being inclusions, corresponding to the partial order of the 
open sets on a topological space. Then, it becomes possible to formulate a 
gauge theory within the category of diagrams of sets indexed (or 
localized) by the category of open sets on a topological space. We will see 
later that this functor category is technically called the category of 

(pre)sheaves (of sets) on a topological space , denoted by . 
The analogy with the previous case is going to become evident 

after we prove that we may formulate the theory equivalently within the 
category of (étale) topological bundles, which is the category of -
indexed topological spaces denoted by . Therefore, when 
topology is involved it is appropriate to formulate the notion of a gauge 

theory within the category , where  is the indexing 

(localizing) category of open sets in the topology of . 
Hence, in the general case, where the indexing or localization is 

defined by a category, the notion of a gauge is that of a coordinate system 
(or more generally a reference frame) that varies depending on the base 
object of the indexing category over which it is defined. Then, a gauge 
transformation is a change of reference frame applied to each such base 
object of the indexing category, and a gauge theory is a theory describing 
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the behavior of a physical system to which such gauge transformations 
can be applied. Concomitantly, the physical requirement of gauge 
invariance is a statement of the fact that all physical observable attributes 
should transform naturally (or remain invariant) under gauge 
transformations. 

In order to understand the notion of a gauge within a general 

category of the form , where  is an indexing or localizing 
category, it is instructive to recall that the notion of a (local) gauge 
(coordinate system) for a set-theoretic geometric object in a class is 
understood as a (local) isomorphism with a standard geometric object in 
the same class: 
 

 
 
where the set of geometric state models (geometric state-space 
representing the standard geometric object) corresponding to a 
coordinatizing algebra of observables in a measurement procedure, is 
obtained by taking homomorphisms from this algebra to some appropriate 
dualizing object in the same category , denoted by  (like the real 
numbers ), that is: 
 

 
 

Thus, generally a (local) coordinate system identifies (in the sense 
of similarity induced by an isomorphism) a geometric object (locally) with 
a standard geometric object, which is understood as a (local) space of 
geometric state models observed by means of evaluating an algebra of 
observables on a dualizing object in the sense of functorial duality. Now, a 
natural question arising by analogia is the following: If the notion of a 
geometric object  in a class, is substituted by the notion of a 

contravariant functor  in a functor category , or 
by the notion of a covariant functor  in a functor category 

, where  is an appropriate category of algebras of observables, 
then can we define a corresponding notion of a functorial gauge for the 
functor ? 

Intuitively, the notion of a functorial (local) gauge for  would 
be a (local) natural isomorphism with a standard object in the same 
category. Again, this standard functor would correspond to a functorial 
geometric state space, obtained as a category of functorial state models 
corresponding to a coordinatizing algebras of observables , that is: 
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or equivalently, in the dual formulation: 
 

 
 
where  is a varying algebraic object in  (to be thought of as a 
varying dualizing object). Thus, intuitively a functorial (local) gauge of 

 should be expressed as a (local) natural isomorphism 
(invertible natural transformation) of -valued functors: 
 

 
 
when  is a contravariant -valued functor, and dually: 
 

 
 
when  is a covariant -valued functor. One might ask, why we 
have restricted our attention to the case of -valued functors. The 
reason is that the case of -valued functors is enough in order to 
perform the corresponding gauge formulation in the general case of 
functors valued in an arbitrary category, using the notion of 
parameterized functorial gauge. Conceptually, we have already seen the 
role that the category of  plays in the case of functorial duality to 
enable factorization of duality through the scaffolding of the category of 

, interpreted as a category of Aristotelian substance. 
 
88..77  IICCOONNIICCIITTYY::  GGAAUUGGEE  RREEPPRREESSEENNTTAABBIILLIITTYY  OOFF  FFUUNNCCTTOORRSS  

 
Before expanding on the notion of a functorial gauge for a functor of the 
form  it is essential to provide a brief overview of the 

functor category , where  is an indexing or localizing 

category. The functor category  may be thought of as the 
category of diagrams on the indexing category . Technically, it is 
called the category of presheaves on . 

For a category  the functor category of presheaves (of sets) 

 is the category of all contravariant functors from  to  
and all natural transformations between them. A functor  is a 
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structure-preserving morphism of these categories, that is, it preserves 

composition and identities. A presheaf functor in the category  
can be thought of as constructing an image of  in  
contravariantly, or as a contravariant translation of the language of  
into that of . 

Given another such translation (contravariant functor)  of 
 into  we need to compare them. This can be done by giving, for 

each object  in  a transformation  which 

compares the two images of the object . Not any morphism will do, 
however, as we would like the construction to be parametric in , 
rather than ad hoc. Since  is an object in  while  is in 

 we cannot link them by a morphism. Rather, the goal is that the 
transformation should respect the morphisms of , or in other words, 
the interpretations of  by  and  should be compatible 

with the transformation under . Thus,  is a natural transformation 

in the category of presheaves . 

An object  of  may be understood as a left categorical 
action of  on a set which is partitioned into sorts parameterized by 
the objects of , and such that whenever  is an arrow and 

 is an element of  of sort , then the pullback of  along 

, denoted by , is specified as an element of  of sort . 

Such a left action  is referred as a -variable set. 
The category of elements of a presheaf functor  (or categorical 

diagram of a presheaf functor ), denoted by  , is defined as 

follows: Its objects are all pairs , and its morphisms 

 are those morphisms  of  for which 

. Projection on the second coordinate of , defines a 

functor: 
 

 
 

 together with the projection functor  is called the split 

discrete fibration induced by , and  is the base indexing or 
localizing category of the fibration. We note that the fibers are categories 
in which the only arrows are identity arrows. If  is an object of , 

op
SetsA

A Sets
A

Sets
Q

A Sets
A A : ( ) ( )T ®P QA A A

A
A

A A ( )P A
Sets

A

:v ®C A P Q
T T

op
SetsA

P
op

SetsA
opA

A :v ®C A
p P A p
:v ®C A p v× P C

P opA

P
P ( , )ò P A

( , )pA
( , ) ( , )p p¢ ¢ ®A A :u ¢ ®A A A

=p u p¢× ( , )ò P A

: ( , )®ò òP
P A A

( , )ò P A òP
P A

A A



377ADJUNCTIONS

347 
 
the inverse image under  of  is simply the set , although its 

elements are written as pairs so as to form a disjoint union. 
Similarly, for a category  the functor category of copresheaves 

(of sets)  is defined as the category of all covariant functors from 
 to  and all natural transformations between them. 

Analogously, a copresheaf  may be understood as a right action of  
on a set which is partitioned into sorts parametrized by the objects of  
and such that whenever  is an arrow and  is an element of 

 of sort , then  is specified as an element of  of sort . Such 

a right action  is referred as a -variable set. The category of 
elements of a copresheaf functor  (or diagram of a copresheaf functor 

), denoted by  is defined as follows: Its objects are all pairs 

, and its morphisms  are those morphisms 

 of  for which . 
Notice that in both the functor categories of presheaves and 

copresheaves of sets standard objects are present. These are 
correspondingly the following: 
 

i The contravariant -functor represented by , that is: 
 

 
 

called the functor of generalized elements (incoming morphisms) 
of , which classifies completely the information contained in 

. 

ii The covariant -functor represented by , that is: 
 

 
 

called the functor of generalized co-elements (outgoing morphisms) 
of . Similarly, the information contained in  is classified 

completely by its functor of generalized co-elements . 
 

In this way, we obtain simultaneously both a contravariant functor  

and a covariant functor  valued on the category of copresheaves and 
presheaves (of sets) correspondingly as follows: 
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which constitute the exponential transposes of the -bifunctor: 
 

 
 
from the product category  to the category of  with 
respect to each of its arguments. 

The covariant functor  realizes the Nobuo 

Yoneda embedding of the category  into the category of presheaves 

. The term embedding means that the functor  is bijective 

when restricted to each set of morphisms with a given domain and 
codomain, and that it is injective on objects as well. The Yoneda 
embedding constitutes a representation of the category  within the 

functor category of presheaves (of sets) . In detail we have: 
 

 

 
 
where  is a morphism in . 

The importance of the Yoneda embedding is manifested by the so 
called Yoneda lemma, according to which, for any object  in a 

(locally) small category  and any presheaf functor  in  
there exists an isomorphism: 
 

 
 
written equivalently as: 
 

 
 
which is natural in both  and . 

The main application of the Yoneda lemma is the following: Given 
objects  and  in a (locally) small category , if 

, or equivalently, , then . 
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The advantage of working within the category of presheaves 

 instead of the category  is that it is both complete (has all 
small limits) and cocomplete (has all small colimits), and most 
importantly, this is so because the category of  is both complete 
and cocomplete. Moreover, for every object  of  the evaluation 
functor at , that is: 
 

 
 
preserves both all limits and colimits. 

Let us now return to the problem of understanding the notion of a 
functorial gauge (functorial reference frame) for a functor 

, where  is considered to be an appropriate category of 
coordinatizing algebras of observables. We have argued previously that a 
functorial gauge of  should be expressed as a natural 
isomorphism (invertible natural transformation) of -valued 
functors: 
 

 
 
where, the standard functor  in the category of 

presheaves  is physically equivalent to the functorial geometric 
state models of an algebra of observables , that is: 
 

 
 
In categorical terminology, we find the notion of representability of a 
(contravariant or covariant) -valued functor, defined as follows: A 
representation of a contravariant -valued functor of the form 

, where  is a (locally) small category, consists of an 
object  in  and a natural isomorphism: 
 

 
 
or equivalently: 
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where  is called the representing object of the functor 

. Thus,  is representable, if and only if such a 
representing object exists. Note that, representations of contravariant 

-valued functors are unique up to a unique isomorphism. Evidently, 
a dual formulation obtains, referring to a representation of a covariant 

-valued functor of the form . 
To be specific, the covariant functor  is representable if and only if 
there exists an object  in  and a natural isomorphism: 
 

 
 
or equivalently: 
 

 
 
It follows immediately from the above that the categorical notion of 
representability of a -valued functor is selfsame as the physical 
notion of a functorial gauge (functorial reference frame) of a -
valued functor in the intended interpretation. 

Furthermore, if we use the Yoneda lemma, we have: 
 

 
 
in the contravariant case, which is natural in both  and , and dually: 
 

 
 
in the covariant case, which is natural in both  and . 

If we consider, for instance, the covariant case in more detail, then 

if  is a natural transformation in , that is: 
 

 
 
the element  in  corresponding to  is defined by: 
 

 
 

A
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Sets : Sets®G A
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In the inverse direction, given any element  in  we define a 

natural transformation  as follows: 
 

 
 
where  is a generalized co-element of , which means  belongs to 

. Thus, as a consequence of the Yoneda lemma, given any 
element  in  we need to know when the induced natural 

transformation  is a natural isomorphism, because in this 

case the covariant -valued functor  is representable, or 
equivalently, there exists a functorial gauge for . 

This is actually the case if and only if there exists a pair  in 

, where  in  and  in , such that, for every pair 

 with  in , a unique morphism pertains, such 
that . This is technically called a universal element 

of  and is interpreted as a universal gauge of . A universal gauge 
 of  actually acts as an initial object in . Thus, we 

conclude that given any element  in  the induced natural 

transformation  is a natural isomorphism, if and only if 

 is a universal gauge of . Hence, representations, or functorial 

gauges (functorial reference frames) of , that is, natural isomorphisms 

, are in bijective correspondence with universal gauges  of 

. 
Precisely analogous conclusions hold in the dual case of a 

contravariant -valued functor , that is, representations or 
functorial gauges (functorial reference frames) of , or natural 

isomorphisms , are in bijective correspondence with universal 

gauges  of , where a universal gauge  of  acts now as 

a terminal object in . Note that in the intended physical 

interpretation, a universal gauge of  is provided by a pair , where 

 is a coordinatizing algebra in , and  in , which is acting as 
an initial (in the covariant case) or as a terminal (in the contravariant case) 
object in the corresponding category of elements . 
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88..88  UUNNIIVVEERRSSAALLIITTYY::  AADDJJOOIINNTT  EENNCCOODDIINNGG--DDEECCOODDIINNGG  
  FFUUNNCCTTOORRIIAALL  GGAAUUGGEESS  

 
We have seen previously that the problem of finding a functorial gauge 
for (a covariant or contravariant) -valued functor  is resolved 
by finding a corresponding universal gauge of . This in turn prompts 
the natural next step to find a concrete methodology with a sound 
physical interpretation by means of which we can define a functorial 
gauge for an arbitrary covariant functor  or contravariant 
functor . 

A starting point to resolve this problem focusses on the 
observation that given any category , the morphisms in , or 
equivalently the morphisms in , can be defined as the elements in the 

values of the -bifunctor: 
 

 
 
from the product category  to the category of sets. This is 
because  and  are considered to have the same objects and 

reversed morphisms. The -bifunctor operates in such a way that by 

fixing an object  in : 
 

 
 
is the covariant representable functor, or representable copresheaf of sets, 
represented by . Correspondingly by fixing an object  in : 
 

 
 
is the contravariant representable functor, or representable presheaf of 

sets, represented by . It is also instructive to keep in mind that  

defines a representable left action of  on a set which is partitioned 

into sorts parameterized by the objects of , whereas  defines a 

representable left action of  on a set which is partitioned into sorts 
parameterized by the objects of . 

Now we may consider oppositely directing functors: 
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which are tautological on objects and arrows-reversing. This being so, it 

is possible to rephrase the representability property of the -
bifunctor with respect to fixing one of its arguments as follows: 
 
i The bifunctor  is representable in  because for each 

-object  there exists a (tautological) -object , 

such that  is representable in , that is: 
 

 
 

which is natural in the argument  in . 
ii The bifunctor  is representable in  because for each 

-object  there exists a (tautological) -object , 

such that  is representable in , that is: 
 

 
 

which is natural in the argument  in . 
 
Thus, by combining the above, the representability of the bifunctor 

 with respect to the categories  and , or equivalently the 

birepresentability of the bifunctor  with respect to  and  
is expressed as follows: 
 

 
 
which is natural in both the arguments  in  and  in . 

Although the above is based on tautological functors, it contains 
the seeds for a powerful generalization in the case of general functors 
between categories pointing in opposite directions. This generalization is 
exactly the crucial step needed in order to tackle the problem of defining 
a functorial gauge (functorial reference frame) for an arbitrary covariant 
functor  or contravariant functor . Since the 
distinction between the two cases can be handled trivially by means of 
tautological functors, from here on we formulate the solution to the 
problem posed above by referring to an arbitrary functor . 

Before proceeding it is instructive to observe that in the above 
series of natural isomorphisms, the first term refers to morphisms taken 

HomA
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!"
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in  and the last term refers to morphisms taken in . Now, the 
middle term can refer either to morphisms in  or to morphisms in 

 because of the tautological nature of the objects in opposite 
categories. Beyond this, if we temporarily overlook this tautology, it is 
particularly interesting to consider an element of  as a signal-

transmitter from  in  to  in , or equivalently, as a signal-
receiver in the opposite direction. 

Note that, if we overlook again the object tautology of these 
categories, a signal-transmitter/receiver is not a morphism within any of 
the categories , , since it transfers a signal from some object in 

 to some object in . Notwithstanding this fact, a signal-
transmitter/receiver between objects in different categories can be made 
into a morphism in a new category, namely in the product category 

 by considering the embeddings  and 
. 

The important fact is that the set of signal-transmitter/receivers 
for any objects  in  and  in  can be represented as 
morphisms within both the categories in question,  and , using 
the oppositely directing functors ,  , by means of the first and the 
last term in the series of isomorphisms. Moreover, since these 
isomorphisms are natural, the translation process effectuating 
representability in both directions becomes possible because there exist 

functorial gauges for both  and , or equivalently, universal gauges 

,  of ,  correspondingly. 
By analogia, it is almost straightforward to proceed in the general 

case of a bifunctor: 
 

 
 
from the product category  to the category of sets. The elements 

in the values of  are considered as signal-transmitter/receivers 

between objects of ,  correspondingly. It is important to notice 
the directionality build into the process of signal transfer, by which we 
mean that it is understood as a transfer from an object of  to an 
object of . Again, a signal-transmitter/receiver between objects of , 

 correspondingly, can be made into a morphism in a new category, 
namely in the product category  by considering the embeddings 

 and . 
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We say that the bifunctor:  is 

birepresentable, i.e. it is representable within both the categories , , 
if and only if there exist two functors pointing into opposite directions, 
that is: 
 

 

 
 
and a series of isomorphisms: 
 

 
 
which is natural in both the arguments  in  and  in . 

Equivalently, we state that the bifunctor:  

is birepresentable, if and only if there exist two functors , 
 together with natural isomorphisms of bifunctors: 

 

 
 
In this case, we say that the two oppositely pointing functors ,  
form a categorical adjunction, which is induced by the requirement of 

birepresentability of the bifunctor: , where 

 is the left adjoint functor of the adjunction, and 
symmetrically,  is the right adjoint functor of the 
adjunction. The notion of a categorical adjunction was conceived and 
formulated by Daniel Kan. 
If we ignore the middle term in the above series, we obtain the natural 
isomorphism of the -bifunctors: 
 

 
 

where, the bifunctors ,  are obtained 

as follows: 
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Equivalently, we obtain the isomorphism: 
 

 
 
which is natural in both the arguments  in  and  in . The 
morphisms in ,  related to each other by the above isomorphism 
are called adjoint transposes. Hence, if we consider a morphism 

 in , we find by virtue of the adjunction isomorphism, it 

has an adjoint transpose morphism in , namely: 
 

 
 

In dual correlation, if we consider a morphism  in , we 
again find by virtue of the adjunction isomorphism, it has an adjoint 
transpose morphism in , namely: 
 

 
 

Now, we may consider the identity morphism at  in , that is 

 belonging to the set . The adjoint transpose of 

 is called the unit morphism at , that is: 

 

 
 
belonging to the set . Since the above is natural on 

the argument  in , we obtain a natural transformation of the 
identity functor on , called the unit natural transformation of the 
adjunction: 
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As a further dual correlation, we may consider the identity morphism at 

 in , that is  belonging to the set 

. The adjoint transpose of  is called the 

counit morphism at , that is: 
 

 
 

belonging to the set . Since the above is natural on 

the argument  in , we obtain a natural transformation of the identity 
functor on , called the counit natural transformation of the adjunction: 
 

 
 
From the unit and counit natural transformations of the adjunction we 
obtain the following identities, called triangular identities: 
 

 
 
The above identities may be written equivalently in equation form as 
follows: 
 

 

 
 

where, ,  denote the identity natural transformations on the 

functors ,  respectively. We conclude that the categorical 
adjunction being formed by ,  can be represented equivalently in 
terms of the unit and counit natural transformations obeying the 
triangular identities. 
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Next, we observe that if we consider a morphism  in 

, by virtue of the unit natural transformation, its adjoint transpose 
morphism in , namely: 
 

 
 
factors uniquely via the unit morphism at  as follows: 
 

 
 
or, more explicitly: 
 

 
 

Thus, the pair  constitutes a universal gauge for the functor: 
 

 
 

Equivalently stated, the pair  is an initial object in the 

category of elements of the -valued functor . 

In dual correlation, if we consider a morphism  in 

, by virtue of the counit natural transformation, its adjoint transpose 
morphism in , namely: 
 

 
 
factors uniquely via the counit morphism at  as follows: 
 

 
 
or, more explicitly: 
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Thus, the pair  constitutes a universal gauge for the functor: 
 

 
 

This is to say that the pair  is a terminal object in the 

category of elements of the -valued functor . 

Let us focus again on the bifunctor: . We 

see immediately that if the bifunctor  is birepresentable, then 

the set of signal-transmitter/receivers for any objects  in  and  
in  can be represented as morphisms within both the involved 
categories , , using the left and right adjoint functors ,  of 
the induced adjunction, by means of the first and the last term in the 
series of isomorphisms. Moreover, since these isomorphisms are natural, 
the translation process effectuating representability in both directions 
becomes possible, since there exist functorial gauges for both the 
functors: 
 

 

 
 
More concretely, for each  in , there exists a representing element 

 in , such that: 
 

 
 

which is natural in . For  we obtain: 
 

 
 

Now, we may consider the identity morphism at  in , that is, 

 belonging to the set . The image of  in 

 is called the -unit signal-transmitter/receiver at , that is: 
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belonging to the set . Since the above is natural on the 

argument  in , we obtain a natural transformation of the identity 

functor on , called the -unit natural signal-transmitter/receiver: 
 

 
 

We conclude that the pair  constitutes a universal gauge for 
the functor: 
 

 
 

Equivalently stated, the pair  is an initial object in the 

category of elements of the -valued functor . 

Similarly, for each  in , there exists a representing element 

 in , such that: 
 

 
 

which is natural in . For  we obtain: 
 

 
 

Now, we may consider the identity morphism at  in , that is 

 belonging to the set . The inverse image of 

 in  is called the -counit signal 

transmitter/receiver at , that is: 
 

 
 

belonging to the set . Since the above is natural on the 

argument  in , we obtain a natural transformation of the identity 

functor on , called the -counit natural signal transmitter/receiver: 
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We conclude that the pair  constitutes a universal gauge for 
the functor: 
 

 
 

which again provides that the pair  is a terminal object in the 

category of elements of the -valued functor . 
Therefore, if we consider a signal transmitter/receiver   

, the corresponding morphisms, induced by the birepresentability 
of the bifunctor: 
 

 
 
within ,  respectively, that is: 
 

 

 
 
play the role of conjugates with respect to the signal transmitter/receiver 

. 

As a consequence, if  is the -unit signal-

transmitter/receiver at , namely , then: 
 

 

 
 

are conjugates with respect to the -unit signal-transmitter/receiver at 

. Since the above is natural on the argument  in , we conclude 
that: 
 

 

 
 
Which is to say that the unit natural transformation of the adjunction , 
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conjugates with respect to the -unit natural signal-

transmitter/receiver . Similarly, we conclude that: 

 

 

 
 
meaning that, the counit natural transformation of the adjunction , and 

the -identity natural transformation  are functorial conjugates 

with respect to the -counit natural signal-transmitter/receiver 

. 
Furthermore, if we consider an arbitrary signal 

transmitter/receiver   , we obtain the following 
factorizations: 
 

 

 
 
presented equivalently, as follows: 
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transmitter/receiver . Denoting the conjugate of , that is , 

by , or equivalently, identifying the conjugate of  
(with respect to the signal transmitter/receiver ) with the adjoint 
transpose of , we obtain: 
 

 
 
Now, we are ready to tackle the problem of defining a functorial gauge 
(functorial reference frame) for an arbitrary functor. We say that a 
functor  has a functorial gauge relative to  if and only if 
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Equivalently, the functor  has a functorial gauge relative to 

 if and only if the functor: 
 

 
 
is representable, that is for each  in , there exists a representing 
element  in , such that: 
 

 
 
which is natural in . 
Equivalently, the functor  has a functorial gauge relatively to 

 if and only if the pair  is a universal gauge for the 

functor . 
Symmetrically, we say that an oppositely pointing functor 

 has a functorial gauge relative to  if and only if the 

bifunctor:  is representable within , that is, 
we have a natural isomorphism of bifunctors: 
 

 
 
Equivalently, the functor  has a functorial gauge relative to 

 if and only if the functor: 
 

 
 
is representable, that is for each  in , there exists a representing 
element  in , such that: 
 

 
 
which is natural in . 
Equivalently, the functor  has a functorial gauge relative to 

 if and only if the pair  is a universal gauge 

for the functor . 

We say that an arbitrary functor of the form  has a 
functorial gauge if and only if it has a right adjoint functor . 
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Equivalently, the functor  has a functorial gauge if 

and only if each functor  is representable for each object  in . 

If this is the case, a functor  right adjoint to  
assigns to each  in  an object  in  representing the 
functor: 
 

 
 
Moreover, any other functor right adjoint to  is naturally isomorphic 
with . 

Equivalently, the functor  has a functorial gauge if 
and only if there exists for each object  in  an object  in 

 and an arrow , such that the pair  

constitutes a universal gauge for the functor . 
Symmetrically, we say that an arbitrary functor of the form 

 has a functorial gauge if and only if it has a left adjoint 
functor . 

Equivalently, the functor  has a functorial gauge if 

and only if each functor  is representable for each object  in 

. If this is the case, a functor  left adjoint to  
assigns to each  in  an object  in  representing the 
functor: 
 

 
 
Moreover, any other functor left adjoint to  is naturally isomorphic 
with . 

Equivalently, the functor  has a functorial gauge if 
and only if there exists for each object  in  an object  in  

and an arrow , such that the pair  

constitutes a universal gauge for the functor . 
Finally, we say that two oppositely pointing functors between the 

same categories, that is, , , have mutual 
functorial gauges with respect to each other if and only if the functor  
is left adjoint to the functor  and the functor  is right adjoint to 
the functor , such that, the two oppositely pointing functors , 
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 form a categorical adjunction, expressed by the natural 
isomorphism of the -bifunctors: 
 

 
 
Equivalently, ,  have mutual functorial gauges with respect to 

each other if and only if the bifunctor  is 
birepresentable, that is, we have a series of natural isomorphisms of 
bifunctors: 
 

 
 
When this is the case, the two oppositely pointing functors ,  form 
a categorical adjunction, induced by the requirement of birepresentability 

of the bifunctor , where  is the left adjoint functor of the 

adjunction, and symmetrically,  is the right adjoint functor of the 
adjunction. 

Equivalently, ,  have mutual functorial gauges with 
respect to each other if and only if there exist a natural transformation of 
the identity functor on  (unit natural transformation): 
 

 
 
as well as a natural transformation of the identity functor on  (counit 
natural transformation): 
 

 
 

obeying the following identities: 
 

 

 
 

Equivalently, ,  have mutual functorial gauges 

with respect to each other if and only if, each functor  is 

representable (via ) for each object  in , and each functor 
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 is representable (via ) for each object  in , that is, if 
and only if: 

 
i There exists for each object  in  an object  in  

and an arrow , such that the pair  

constitutes a universal gauge for the functor . 

ii There exists for each object  in  an object  in  

and an arrow , such that the pair  

constitutes a universal gauge for the functor . 
 
Equivalently, ,  have mutual functorial gauges with 
respect to each other if and only if: 
 

i The functor  is representable, such that the 

pair  is a universal gauge for the functor . 

ii The functor  is representable, such that the 

pair  is a universal gauge for the functor . 
 
88..99  CCOOMMMMUUNNIICCAABBIILLIITTYY::  MMUUTTUUAALL  FFUUNNCCTTOORRIIAALL  GGAAUUGGEESS  AANNDD  MMOONNAADDSS  

 
Let us now present some important consequences of the existence of 
mutual functorial gauges for two oppositely pointing functors between 
the same categories. As a simple illustration we may consider the diagonal 
functor: 
 

 
 
For an object  in , the functor  is the constant -valued 

functor, which for any object  of a (locally) small category  gives 
the constant value , and for any arrow  of  gives the identity 

arrow on . Furthermore, if we consider that  is the category of 
, then  is the functor category of copresheaves (of sets), that 

is, the category of all covariant functors  from  to  and all 
natural transformations between them, where  is an indexing 
(locally) small category. 
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Thus,  is the constant -valued functor taking each object  

in  to the set , and each arrow  in  to the identity 

morphism . Now, if we consider the diagonal functor  as a functor 

of the above form , then it has a functorial gauge if and only if it has a 
right adjoint functor of the above form , denoted by: 
 

 
 
Moreover, the oppositely pointing functors ,  have mutual 
functorial gauges with respect to each other if and only if  is left 
adjoint to  and  is right adjoint to , such that, the functors 

,  form a categorical adjunction, expressed by the natural 
isomorphism of the -bifunctors: 
 

 
 
Equivalently, ,  have mutual functorial gauges with respect to 

each other if and only if the bifunctor  is 
birepresentable, that is, we have a series of natural isomorphisms of 
bifunctors: 
 

 
 

If we consider a signal transmitter/receiver   , then we 
realize that  is actually a cone. Hence, the corresponding morphisms, 

induced by the birepresentability of the bifunctor  within 

,  respectively, that is: 
 

 

 
 
are conjugates with respect to the cone signal transmitter/receiver . 

The morphism  is a natural transformation in  

from the constant -valued copresheaf  to the 

copresheaf . The conjugate morphism of  with 
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respect to the cone , that is,  is a morphism in  

(representing the cone ) from  to the set  obtained 

by the application of the sought right adjoint  on a copresheaf . By 
further taking into account that the functor  (as a right adjoint to ) 
should assign to each  in  an object  in  
representing the functor: 
 

 
 

or equivalently that the pair  should be a universal gauge for 

the functor , we conclude that: 
 

 
 
where 
 

 
 
is the sought right adjoint to . Actually, the identification of the right 
adjoint to  with the functor  is immediate from 

the identification of a signal transmitter/receiver    with 
a cone and the requirement of universality of the gauge formed by 

 for each  in . 

Dually, if we consider the diagonal functor  as a functor of the 
form , then it has a functorial gauge if and only if it has a left adjoint 
functor of the form , denoted by: 
 

 
 
Moreover, the oppositely pointing functors ,  have mutual 
functorial gauges with respect to each other if and only if  is right 
adjoint to  and  is left adjoint to , such that the functors 

,  form a categorical adjunction, expressed by the natural 
isomorphism of the -bifunctors: 
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Equivalently, ,  have mutual functorial gauges with 
respect to each other if and only if the bifunctor 

 is birepresentable, that is, we have a series 
of natural isomorphisms of bifunctors: 
 

 
 

If we consider a signal transmitter/receiver   , then we 
realize that  is actually a cocone. Hence, the corresponding 

morphisms, induced by the birepresentability of the bifunctor  

within , , respectively, that is: 
 

 

 
 
are conjugates with respect to the cocone signal transmitter/receiver . 

The morphism  is a natural transformation in  

from the copresheaf  to the constant -valued 
copresheaf . The conjugate morphism of  with 

respect to the cocone , viz.  is a morphism in  

(representing the cocone ) from the set  obtained by the 

application of the sought left adjoint  on a copresheaf  to a set . 
By further taking into account that the functor  (as a left adjoint to 

) should assign to each  in  an object  in  
representing the functor: 
 

 
 

or equivalently, that the pair  should be a universal gauge for 

the functor  we conclude that: 
 

 
 
where 
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is the sought left adjoint to . Again, the identification of the left adjoint 
to  with the functor  follows immediately from 

the identification of a signal transmitter/receiver    with 
a cocone and the requirement of universality of the gauge formed by 

 for each  in . 

We conclude that the functors , 
 are right and left adjoints correspondingly of the 

diagonal functor . More precisely: 
 
i The functors ,  have mutual 

functorial gauges with respect to each other forming a categorical 
adjunction, induced by the birepresentability of the bifunctor of 

cones , within ,  
respectively: 

 

 
 
ii The functors ,  have 

mutual functorial gauges with respect to each other forming a 
categorical adjunction, induced by the birepresentability of the 

bifunctor of cocones , within , 

 respectively: 
 

 
 

Furthermore, we can show immediately that right adjoint functors 
commute with limits, while left adjoint functors commute with 
colimits. It is instructive to think of these properties of left/right 
adjoint functors as preservation properties induced by the 
requirement that functorial gauges should apply. Obviously, these 
properties can be used conversely in order to prove that a given 
functor does not have a functorial gauge by showing that it does 
not preserve limits or colimits. Finally, the above arguments 
remain valid if we replace the category of  by any other 
complete category of algebras for the case [i], and by any other 
cocomplete category of algebras for the case [ii] respectively. 

 
Along the same lines, we can also show that for any small category 

, every presheaf  in the functor category of presheaves , is a 
colimit of standard (representable) functors, by which we mean that it 
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constitutes a colimit of functorial gauges. This is expressed as follows: We 

consider the category of elements of a presheaf  in , that is the 
category . Projection on the second coordinate of , gives 

a functor: 
 

 
 
defining the split discrete fibration induced by , where  is the base 
indexing or localizing category of the fibration. Then, as a consequence of 
the Yoneda lemma we obtain a natural transformation: 
 

 
 
which is a natural isomorphism. More precisely, we may consider a signal 
transmitter/receiver from  to , or equivalently from 

 to . This is actually a cocone, which for every  

in , provides a component , and thus, becomes representable 

within  in terms of the natural transformation . Now, by 
the Yoneda lemma we have a bijective correspondence between natural 

transformation  and elements  of . Thus, each arrow 

in the cocone of the form  for each  in  is a 
corresponding element  of . It is straightforward to see that this 

cocone in  is a universal one, and thus the natural transformation 
 is a natural isomorphism. 

Another important consequence of the existence of mutual 
functorial gauges for two oppositely pointing functors between the same 
categories is the following: We have seen that ,  
have mutual functorial gauges with respect to each other if and only if 
there exist a natural transformation of the identity functor on  (unit 
natural transformation) , as well as a natural 

transformation of the identity functor on  (counit natural 

transformation)  obeying the triangular identities: 

, . If both the unit and the counit natural 

transformations of the adjunction formed by the functors , , are 
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natural isomorphisms then we obtain an equivalence of the categories 

, , that is, we obtain a functorial duality: 
 

 
 
Thus, the notion of functorial duality is a consequence of the existence of 
mutual functorial gauges for two oppositely pointing functors between 
the same categories when both the unit and counit natural 
transformations of the formed adjunction are natural isomorphisms. 

We reached the conclusion that two oppositely pointing functors 
between the same categories,  and  form a 
categorical adjunction, induced by the requirement of birepresentability 

of the bifunctor , where  is the left adjoint functor of the 

adjunction and symmetrically  is the right adjoint functor of the 
adjunction, or equivalently  and  have mutual functorial gauges 
with respect to each other, if and only if there exist a natural 
transformation of the identity functor on  (unit natural 
transformation): 
 

 
 
as well as a natural transformation of the identity functor on  (counit 
natural transformation): 
 

 
 
obeying the following identities: 
 

 

 
 
The composite endofunctor , together with the 
natural transformations , called multiplication, and also, 

, called unit, where  is the identity functor on , is 

defined as a monad  on the category , provided that, the 

diagrams below commute for each object  of ; 
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From the above, we conclude that a monad  on the category  

can be understood as a monoid in the category of endofunctors of  
with the morphisms being the natural transformations between them. 

We have another dual relation; the composite endofunctor 
, together with the natural transformations 

, called comultiplication, and also, , called 

counit, where  is the identity functor on , is defined as a comonad 

 on the category , provided that the diagrams below commute 

for each object  of ; 
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For a comonad  on , a -coalgebra (comodule) is an 

object  of , being equipped with a structural map , such 
that the following conditions are satisfied: 
 

 

 
 

With the above obvious notion of morphism, this gives a category  of 

all -coalgebras. 
By dual correlation, if  is a monad on the category , 

we define the category of -algebras (modules) as follows: Its objects 

are pairs , where,  in , and,  is a morphism 

in , such that, the following conditions are satisfied: 
 

 

 
 
Since an adjunction between two categories , , defined by a pair of 
adjoint functors  and  always gives rise to a 

monad on the category , viz. , as well as to a 

comonad on the category , viz. , we say that  

and  have mutual functorial gauges with respect to each other, if and 
only if a monad-comonad pair exists as above. 
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99..11  FFUUNNCCTTOORRIIAALL  CCOOOORRDDIINNAATTIIZZAATTIIOONN::  CCAATTEEGGOORRIIEESS  OOFF  RRIINNGGSS  
  OOFF  OOBBSSEERRVVAABBLLEESS  

 
The first fundamental notion, which is necessary for the intelligibility of 
the modeling process of any natural system’s behavior is representation. 
Representation is expressed categorically as a canonical functorial 
relation for formulating the bidirectional process of categorical structural 
correspondence between natural systems and formal symbolic systems. 
The concept of a natural system refers to a deliberate abstraction that 
schematizes the external world in terms of a dyadic relationship between 
the former and its environment. 

Hence, it is suitable to adopt a flexible, non-rigid notion of what a 
natural system actually is which, eventually, allows a variability in the 
determination of the separating boundary between what constitutes a 
natural system and what its environment. The essential aspect of this 
relation amounts to representing a natural system, conceived in the above 
sense, by means of an appropriate formal system, capable of being 
effectively used for providing predictions about the behavior of the 
former. The notion of a formal system is formulated in the algebraic terms 
of rings capturing the structure of attributes of natural systems, encoded 
by means of generalized number-like quantities, called observables, 
where, the notion of observable signifies a physical attribute that, in 
principle, can be measured. 

The basic hypothesis underlying the bidirectional process of 
representation of natural systems by mathematical formal systems, is that 
the behavior of the former can be adequately understood by establishing 
an appropriate functorial congruence between the structures of 
phenomena corresponding to the behavior of natural systems and some 
suitable algebraic structures of generalized number-like quantities. The 
latter are enriched with the semantics of observable attributes of natural 
systems in various measurement situations. Hence, the essential aspect of 
representation amounts to a structure preserving process of 
coordinatization or arithmetization of attributes in terms of observables. 
The strategy of arithmetization will prove to be successful, if and only if, 
a formal system becomes capable of providing predictions about the 
behavior of the natural system which represents. 

Of course, as a condition required to substantiate that possibility, 
observables must amount to more than mere amorphous collections of 
coordinates; they must also be amenable to collective manipulations 
under the fundamental arithmetic operations of addition and 
multiplication, such that, the collection remains closed under these 
operations, preserving the algebraic morphe of such a structure of 
observables. Most significantly, the form of coordinatization of 
phenomena in the above sense, should not depend structurally on any 
particular natural system depicted in the external world. This means, that 
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the form of the arithmetization process, effectuated in terms of an 
appropriate associatively closed universe (category) of algebraic 
structures of observables, should be constructed covariantly with respect 
to a corresponding associatively closed universe (category) of natural 
systems abstracted from the external world. 

Categorically speaking, we mean that arithmetization should be 
properly expressed as a functorial process. More specifically, 
arithmetization is defined as a functor from the abstract category of 
natural systems to a concrete category of formal systems, identified 
algebraically, with structures of observables closed under the operations 
of addition and multiplication (rings). Note that, the notion of an 
observable denotes a physical attribute that, in principle, can be 
measured. The quantities admissible as measured results should belong to 
a number field, or more generally, to a ring of scalar quantities to be 
interpreted as generalized numbers in some context of observation. The 
latter defines the valuation codomain of observables in terms of 
measurement scales, conforming to the algebraic specification of, at least, 
the ring-theoretic structure. Note also that, the designation of both, the 
observables and the measurement scales, should be structurally on an 
equal footing, meaning that they should both be algebraic structures 
(rings) in a category of objects of the same kind (category of rings). 

In this sense, the process of measurement is precisely formalized 
by means of a surjective morphism of rings, within the corresponding 
category of formal systems. It is important to note that, from this 
perspective, an abstract ring of number-like elements (scalars) 
simultaneously incorporates a dual role within the categorical 
environment where it operates. More concretely, if it stands on the 
domain of a surjective morphism of rings it is interpreted as a closed 
algebraic structure of observables measured by means of a closed algebraic 
structure of the same form consisting of measurement scales or numbers 
in the codomain of this morphism, within that category. 

Equally, if it stands on the codomain of the rings morphism, it is 
interpreted as an algebraic structure of number-like values, which 
measure the observables belonging in the domain-ring. The essence of 
this duality of roles amounts to a symmetrization of the notions of 
observer and observed in an algebraic categorical framework of reasoning 
based primarily on the concept of structure preserving transformation 
between objects. 

From this perspective, the same algebraic object can serve 
simultaneously, as both an observer and as an observed, depending on the 
context of interpretation of morphisms in the algebraic category 
emulating formal systems. In more detail, the positioning of a ring of 
number-like elements in the codomain of a surjective morphism acquires 
the semantics of an observer, that coordinatizes the observables of the 
system it measures in terms of distinguishable measurement scales. On 
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the other hand, the positioning of that ring in the domain of a surjective 
morphism in the algebraic category, acquires the semantics of an 
observed, measured by means of evaluation of its observable attributes at 
the measurement scales of the codomain-ring. 

In this sense, we are able to capture the natural duality between 
the symmetric functional roles of observer-observed in a categorical 
context of interpretation of surjective algebraic morphisms of rings. 
According to this relational categorical framework, the description of 
attributes related to the behavior of a natural system should be covariant 
with respect to all rings of measurement scales implemented as 
observational means, or equivalently, covariant with respect to the base 
ring (of observer’s measurement scales) change. 

We conclude that, arithmetization or coordinatization constitutes 
a directed functorial process  of encoding attributes related 
to an abstract category of natural systems , in terms of a concrete 
category of formal systems , constructed algebraically as a category of 
rings of scalar number-like quantities (coordinates), interpreted as 
observables of natural systems, which can be measured by means of 
surjective morphisms (evaluations) in the latter algebraic category. We 
say that the modeling of the abstract category of natural systems by the 
concrete category of formal systems is proper, if an inverse functorial 
process  of decoding exists, which can be used for making 
predictions about the behavior of natural systems, such that, the pair of 
functorial processes  constitutes a categorical adjunction: 
 

 
 
Thus, the bidirectional functorial process of representation of natural 
systems by formal systems is defined accurately as a proper categorical 
relation of metaphora, according to the previous adjunction. Finally, the 
encoding arithmetization functor  is said to define an 
equivalence between the categories of natural systems and formal 
systems respectively, if a decoding functor exists, such that 

the composite functor  is isomorphic to  and the composite 

functor  is isomorphic to . 
 
99..22  RREEPPRREESSEENNTTAABBLLEE  FFUUNNCCTTOORR::  MMEEAASSUURREEMMEENNTT  AANNDD  CCOOMMMMUUNNIICCAATTIIOONN  

 
Let us now concentrate our attention on the category of formal systems 

, in an attempt to describe explicitly its representational functionality. 
The category  is defined as a category of unital rings of observables 
that coordinatize structurally the attributes of natural systems. The 
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observables are measured by means of evaluation morphisms in 
appropriately specified rings of measurement scales in the same category 

. A ring in  is commutative if and only if the multiplication is 
commutative. 

We will restrict ourselves intentionally to the case of commutative 
rings of scalars. This is due to the fact that the hypothesis of 
commutativity of the observable attributes of a natural system can be 
satisfied at least locally within the categorical environment for all natural 
systems, even if, globally their rings of observables are only partially 
commutative, or even non-commutative. 

For the sake of completeness, we should recall that, a ring is a 
division ring, if and only if, every non-zero element has a multiplicative 
inverse, whereas, in case that it is also commutative, it is called a field. 
Moreover, a commutative ring without non-trivial divisors of zero is 
called an integral domain. According to our previous comments, the 
morphisms in  are considered to be the additive and multiplicative 
identity-preserving homomorphisms of commutative rings. The 
surjective morphisms in  formalize the structure preserving process 
of measurement of observables (contained in the domain of a rings-
morphism) with respect to observers’ measurement scales (contained in 
the codomain respectively), according to the preceding physical 
interpretation. 

The essential aspect of casting the measurement process in a 
categorical form, as above, is twofold: Firstly, the categorical framework 
provides the means to state precisely a criterion of complete 
determination of a natural system’s behavior, formulated in terms of its 
coordinatization ring of observables, by way of measurements in variable 
rings of measurement scales, according to the Yoneda-Grothendieck 
philosophy. Secondly, the same framework, seen from a dual categorical 
perspective, permits the geometric encoding of the information acquired 
by evaluating a physical attribute at a measurement scale, in terms of the 
notion of state. Thus, it becomes possible to conceptually and technically 
unify, through duality transformations in the category of formal systems, 
the algebraic information acquisition by measuring observables at scales, 
together with, the geometric representation of that information in terms 
of state-spaces. 

The covariant description of the measurement process of natural 
systems in relation to the above two-fold interpretational schema renders 
a functorial formulation of that process. In turn, this is to be achieved 
using the machinery of representable functors. More precisely, we 
consider the category of formal systems restricted to surjective 
morphisms of unital commutative rings of observables, and let  be a 
ring of observables of a corresponding natural system. Then, the functor 

F F

F

F
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represented by  is the covariant functor , defined as 
follows: 
 

i For all rings  in , . 

ii For all rings-morphisms  in , 
 

 
 

is defined as post-composition with , viz., . 
 

The covariant representable functor , can be thought of as 

constructing an image of  in  covariantly, or equivalently, as a 
covariant translation of the information induced by measurement 
procedures in the category  into that of . The important thing 
to notice is that, if we set up some measurement procedure of the 
observables of a natural system, represented formally as a surjective 
morphism of rings , then we get an induced morphism of 

representable functors (natural transformation)  by pre-

composing with . 
Subsequently, the implementation of the Yoneda lemma in the 

current setting, gives that, if  is any natural transformation 
of covariant representable functors, then, there is a measurement 

procedure, a morphism of rings , such that, . This 

implies, in particular, that if two rings of observables represent 
isomorphic functors, then the corresponding formal systems themselves 
are isomorphic. 

The importance of this fact, constituting the cornerstone of the 
Yoneda-Grothendieck philosophy, is that a formal system conceived 
within the associatively closed structure of a category of objects and 
structure-preserving morphisms of the same form , encoded 
algebraically as a ring of observables of a natural system, can be classified 
completely up to unique isomorphism, by analyzing the set-valued 
functor that it represents. More precisely, the information encoded in the 
ring of observables of a natural system, can be recovered completely by 
means of all measurement procedures applied to that ring, incorporated 
in the definition of the corresponding representable functor as ring-
morphisms from that ring of observables towards variable rings of 
measurement scales of observers within the same category. 
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Consequently, this realization means that the behavior of a 
corresponding natural system within , can be reproduced in its 
entirety, by studying the totality of variable observational perspectives 
imposed upon it within , or equivalently, the totality of its interactions 
with all other natural systems within . Note that, the notion of variable 
observational perspective on a natural system in , is operationally 
realized by the instantiation of measurement procedures of the 
coordinatization ring of observables  of that natural system with 
respect to variable rings of measurement scales in , and consequently, 
modeled by means of the corresponding covariant representable functor 

. In the same vein of ideas, we may say conclusively that, 
the abstraction related to the notion of a natural system, within a closed 
categorical environment , is completely understood by the system of all 
relational referential viewpoints on it (variable observational 
perspectives) instantiated within , encoded as variable measurement 
procedures of its coordinatization ring of observables with respect to 
variable rings of measurement scales within the modeling category of 
formal systems . This is finally translated covariantly in  via the 
corresponding representable functor of that ring of observables. 
 
99..33  FFUUNNCCTTOORRIIAALL  SSPPEECCTTRRUUMM::  SSIIEEVVEESS  AANNDD  MMUULLTTII--LLAAYYEERREEDD  RREESSOOLLUUTTIIOONN  

 
At a further stage of development, the operational role of the covariant 
representable functor of a ring of observables, classifying it completely up 
to unique isomorphism, is equivalent to the functorial process of 
translating geometrically the information collected by all evaluations of 
that ring at all rings of measurement scales, in sum, the information 
collected by the totality of variable measurement procedures as above. In 
this manner, the geometric encoding of the information related to the 
behavior of a natural system is being generated functorially through the 
functioning of the covariant representable functor of the ring of 
observables arithmetizing the former. 

The key concept that explicates the geometric representation of 
natural systems in appropriate functorial terms is the notion of state. 
Subsequently, the geometric representation of natural systems in terms 
of state-spaces is generated functorially. Generally speaking, a state of a 
ring of observables  over a ring of measurement scales  (called a 

-state of ) signifies the geometric encoding of the information 
acquired by evaluating the physical attributes contained in the former 
ring at the measurement scales of the latter. Thus, any -state of  is 
a geometric representation of a morphism of rings  in the 
intended semantic interpretation. 

S
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Consequently, the set of all morphisms of rings , where 
the domain ring is considered as a ring of observables and the codomain 
ring as a ring of measurement scales, should be tautosemous with the set 
of all -states of . This set is called the -spectrum of the unital ring 
of observables , where the ring  is called the coordinatizing frame 
of that state. The geometric semantics of this connotation denotes the set 
of elements which can be -observed by a measurement procedure on 

. Eventually, that set of elements, constituting the -spectrum of 
, are properly identified with the -coordinatized points of a geometric 
state-space that can be observed by means of the ring . Obviously, the 
above conception of a geometric state-space of a natural system is 
functorial, since it admits a covariant description with respect to 
variation of the evaluation ring of measurement scales  in the category 

. This fact effectively means that, the geometric state space of a natural 
system is identified with the covariant representable functor 

 of the coordinatization ring of observables of that natural 
system. 

For this reason,  is called the functorial spectrum of , 

denoted by , which gives rise to a spectral sieve of . It describes 
functorially the multi-layered geometric state-space related to the 
behavior of a natural system under variable observational perspectives, 
where its evaluation at a layer , constituting the -spectrum of the 
ring of observables , gives the set of all -states of . In this vein of 
ideas, each ring of measurement scales, where the evaluation of a ring of 
observables takes place, by the effectuation of a corresponding 
measurement procedure, is the spectral carrier of a specific geometric 
layer of spatiality, corresponding to the ontological observational 
perspective of point-schematization dictated by the nature of 
measurement scales contained in that ring. 
 
99..44  RREELLAATTIIVVIIZZAATTIIOONN::  MMOODDUULLEESS  AANNDD  RREEPPRREESSEENNTTAABBIILLIITTYY  
  OOFF  CCOOMMPPOOSSIITTIIOONN  

 
A natural question arising in this categorical setting is the following: Is it 
possible to express the notion of a module of a commutative unital ring of 
observables  in the category , intrinsically with respect to the 
information contained in the category ? This can be accomplished by 
using the method of categorical relativization, which is based on the 
passage to the slice category . More concretely, the basic problem 
has to do with the possibility of representing the information contained 
in an -module, where  is a commutative unital ring of observables 
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in , by means of a suitable object of the relativization of  with 
respect to , namely with an object of the slice, or comma category 

. 
For this purpose, we define the split extension of the commutative 

ring  by an -module , denoted by , as follows: The 

underlying set of  is the cartesian product , where the 

group and ring theoretic operations are defined respectively as; 
 

 

 
 

Note that the identity element of  is , and also that, the 

split extension  contains an ideal , that 

corresponds naturally to the -module . Thus, given a commutative 
ring  in , the information of an -module , consists of an 

object  (ideal in ), together with a split short exact 

sequence in ; 
 

 
 
We infer that the ideal  is identified with the kernel of the 
epimorphism : 

 

 
 
From now on we focus our attention to the comma category , 

noticing that  is the terminal object in this category. If we 

consider the split extension of the commutative ring of observables , 

by an -module , that is , then the morphism: 

 

 

 
 
is obviously an object of . Moreover, it easy to show that it is 
actually an Abelian group object in the comma category . This 
equivalently means that for every object  in  the set of 
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morphisms  is an Abelian group in . Moreover, the 

arrow  is a morphism of Abelian groups in  , if and only 

if for every  in  the morphism: 
 

 
 
is a morphism of Abelian groups in . We denote the category of 

Abelian group objects in  by the suggestive symbol . 
Based on our previous remarks, it is straightforward to show that the 
category of Abelian group objects in  is equivalent with the 
category of -modules: 
 

 
 
Thus, we have managed to characterize -modules intrinsically as 
Abelian group objects in the relativization of the category of commutative 
unital rings of observables  with respect to , and moreover, we 
have concretely identified them as kernels of split extensions of . 

Let us now consider two -modules , . The tensor 

product of  and  over , denoted by  is the unique 

object in , which satisfies the following universal 

property: There exists a bilinear morphism  such 

that given any -module  and any bilinear morphism 
 there exists a unique -modules (linear) morphism 

 such that the bilinear morphism admits the 

factorization . Consequently, factorization via the tensor 

product of two -modules , , that is, , should be 

understood as the universal way to linearize any bilinear morphism form 
 to any other -module . Note that, since the tensor product 

construction is defined by a universal mapping property it is unique up to 
unique isomorphism, as a consequence of Yoneda’s lemma. 

The tensor product of two -modules , , viz. , is 

generated by elements of the form . This means that every element 

of  is of the form , where ,  for 

. Moreover, if ,  are free -modules of finite rank , 
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 correspondingly, then their tensor product over ,  is a 

free -module of finite rank . 
The tensor product in the category  is an associative, 

commutative and unital operation, that is: 
 
i If , ,  are -modules, then: 
 

 
 
ii If ,  are -modules, then: 
 

 
 
iii The commutative ring  is a unit for the tensor product, that is, 

for any -modules : 
 

 
 
Most importantly, the tensor product is a functorial operation, meaning 
that if  is an -module, then: 
 

 
 
is a functor, defined on objects as: 
 

 
 
and on morphisms  in  as follows: 
 

 
 
It is also defined on generators by: 
 

 
 

The functor  is right exact. More precisely, if we 

consider a short exact sequence of -modules: 
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then, tensoring by  over , we get the right exact sequence of -
modules: 
 

 
 
Note that, in general, the above sequence of -modules is not left exact 

as well. In case that the tensor product functor  

is exact (meaning that it is left exact as well) then the -module  is 
called a flat module. 

The conceptual meaning of the tensor product functor 

 and consequently of the tensor product 

operation on the category of -modules  arises if we consider 

the covariant representable functor in the category  
valued in the same category, that is the covariant functor: 
 

 
 
represented by the -module , defined as follows: 
 
i For all -modules  in , the covariant -

functor maps  to the -module . 

ii For all -modules  in , 
 

 
 

is defined as post-composition with , viz., 

. 
 
The advantage of considering the covariant representable functor in the 
category , that is,  , is that, by virtue of the 

categorical equivalence , we retain the physical 

interpretation of the -functor (enriched in the category of -
modules) in terms of measurement procedures relativized with respect to 
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a fixed ring of observables , according to the Yoneda-Grothendieck 
philosophy explained previously. 

The covariant representable functor in the category , viz. 
 is a left exact functor. More precisely, if we consider a 

short exact sequence of -modules: 
 

 
 
then, applying the covariant -functor, we get the left exact 

sequence of -modules: 
 

 
 
Note that, in general, the above sequence of -modules is not right 
exact as well. In case that the covariant -functor is exact 

(meaning that it is right exact as well) then the -module  is called 
a projective module. Analogously we may consider the contravariant 
representable functor in the category , that is, . If 

the latter functor is exact then the -module  is correspondingly 
called an injective module. Another immediate observation is that: 
 

 
 
The above properties of the covariant -functor, 

, and the corresponding properties of the tensor product 

functor  imply that they stand for inverse functorial processes 

in the category of -modules . This reveals the presence of an 

adjunction, that is,  and  are adjoint 

functors, described by the natural isomorphism: 
 

 
 
for any -modules ,  and , where the tensor product functor 
is the left adjoint and the covariant -functor is the right adjoint 

of the  adjunction. 
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Consequently, the physical meaning of the tensor product 

operation in the category of -modules  is obtained 

as follows: We consider the interpretation of the covariant -
functors  and  (enriched 

in the category of -modules) in terms of corresponding measurement 

procedures on the rings  and  relativized with respect 

to the fixed ring of observables . 

Then, the composition of the covariant -functors  and 

, by which we mean the composition of the corresponding 

measurement procedures with respect to the fixed ring , becomes 
representable in the category of -modules by the tensor product 
entanglement of  and , that is we have the natural isomorphism: 
 

 

 
99..55  CCOOMMPPAARRIISSOONN  OOFF  TTHHEE  FFUUNNCCTTOORRIIAALL  WWIITTHH  
  TTHHEE  CCLLAASSSSIICCAALL  RREEPPRREESSEENNTTAABBIILLIITTYY  

 
At this stage, a brief discussion of the formal model of a natural system 
idealized by classical theories will serve to throw light on the connection 
with the categorical generalization implied by the previous analysis. The 
basic postulate of classical theories stipulates in advance that the form of 
observation be globally expressible by real number representability, and 
subsequently, observables are modeled by real-valued functions 
corresponding to measuring devices calibrated to register real numbers. 

At a further stage of development of this idea, two further 
assumptions are imposed on the structure of observables: the first of them 
specifies the algebraic nature of the set of all observables used for the 
description of a natural system, by assuming the structure of a commutative 
unital ring, which is, a commutative unital algebra  over the real 
numbers. The second assumption restricts the content of the set of real-
valued functions corresponding to physical observables to those that admit 
a mathematical characterization as measurable, continuous or smooth. 

Thus, depending on the means of description of a physical system, 
observables are modeled by -algebras of measurable, continuous or 
smooth functions corresponding to suitably specifiable measurement 
environments in each case. Usually the assumption of smoothness is 
postulated because it is desirable to consider derivatives of observables 
and effectively set-up a dynamical framework of description in terms of 
differential equations. Moreover, since we have initially assumed that 
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real-number representability constitutes the prefixed form of observation 
in terms of the readings of measuring devices, the set of all -algebra 
unital morphisms , assigning to each observable in , the 
reading of a measuring device in , encapsulates all the states-related 
information collected about a system in measurement situations in terms 
of algebras of real-valued observables. 

Mathematically, the set of all -algebra morphisms  is 
identified as the -spectrum of the unital commutative algebra of 
observables . The physical semantics of this connotation denotes the 
set that can be -observed by means of this algebra. It is well known 
that, in case  stands for a smooth algebra of real-valued observables, 

-algebra morphisms  can be legitimately identified (thanks to 
the Gelfand duality) with the -coordinatized points of a space, which 
can be observed by means of . These are the points of a compact real 
differential manifold that, in turn, denote the states of the observed 
system. From this perspective, geometric state spaces in classical theories 
are compact real differential manifolds  consisting of sets of points 
being -observed by means of unital -algebras of smooth real-

valued functions, denoted by . 
If we attempt a comparison of the functorial with the classical 

case, outlined above, we notice that, according to the generalized 
definition of a geometric state introduced previously, each state of a ring 
of observables  may have a different coordinatizing frame, depending 
upon the ring of scales employed for measurement. Thus, the new notion 
of a geometric state-space, is a multi-valued one, in the sense that its 
generalized points may be coordinatized by means of different scales, 
namely scales belonging to different rings. Thus, in contradistinction to 
the classical conception, the notion of generalized state introduced, 
rejects the absolute representability principle of the classical theory over 
the coordinatizing field of real numbers, rather to allow, in this sense, the 
geometric representation of states, in terms of generalized points of a 
multi-valued geometric state space, as well as, the evaluation of 
observable attributes at those points. This is achieved by the 
relativization of representability over a multitude of measurement scales, 
belonging to different coordinatizing rings, giving eventually rise to the 
above multi-valued geometric state space. 
 
99..66  TTHHEE  GGEEOOMMEETTRRIICC  QQUUAALLIIFFIICCAATTIIOONN  OOFF  TTHHEE  SSPPEECCTTRRUUMM  FFUUNNCCTTOORR  

 
We have already concluded that, in the context of the functorial approach 
to modeling a natural system’s behavior, the geometric state space of a 
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natural system is identified with the covariant representable functor 

 of the coordinatization ring of observables of that natural 

system. For this reason, the functor  is called the spectrum of , 

and denoted as, . 
It is essential to examine the geometric semantics of the Spectrum 

functor in some detail. If we consider the opposite of the category of rings 
of observables, that is, the category with the same objects but with arrows 
reversed , each object in the context of this category can be thought 
of as the locus of states of a ring of observables, or else it carries the 
connotation of space. The crucial observation is that, any such space is 
determined, up to canonical isomorphism, if we know all morphisms into 
this locus from any other locus in that category. For instance, the set of 
morphisms from the one-point state locus to the locus  in the 
categorial context of  determines the set of point-states of the locus 

. The philosophy behind this approach amounts to treating any 
morphism in  with the locus  for target as a generalized point 
state of . 

Let us consider the category of loci of states , and let  be 
an object in this category. Then, the functor represented by  is the 

contravariant functor , defined as follows: 
 
i For all loci of states  in , . 

ii For all loci-morphisms  in , 
 

 
 

is defined as pre-composition with , viz., . 
 

The functor  being represented by the locus of states , 

is called the functor of generalized point states of . Moreover, the 
information contained in the locus of states  is classified completely 

by its functor of generalized point states . Hence, the functor  
gives a geometric form to the abstract extension of the spatial locus of 
states  in the environment of . From the above, the direct 
conclusion is that the Spectrum functor can be specified equivalently in a 
dual manner: it can be specified by means of the contravariant 
representable functor from the category of loci of states to the category of 
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sets, or equivalently, via the covariant representable functor from the 
category of rings of observables to the category of sets. Thus, it admits a 
well-defined operational determination in terms of measurement 
procedures referring to a coordinatization ring of observables, according 
to our preceding remarks. 
 
99..77  QQUUAANNTTUUMM  SSYYSSTTEEMMSS::  FFUUNNCCTTOORRIIAALL  GGEEOOMMEETTRRIICC  SSPPEECCTTRRAA  

 
At this stage there is every need to distinguish between classical and 
quantum systems. A category of classical natural systems, according to 
the above general description, admits a representation in terms of a 
category of formal systems (commutative, unital -algebras of 
observable attributes) whose qualitative features are well understood and 
can be simultaneously determined with precision by means of valuations 
to the field of real numbers. 

In this sense, a category of systems is characterized as a category 
of quantum systems in relation to the global complexity of the 
corresponding representing formal systems, with respect to those used to 
model the behavior of classical systems. This aspect of global complexity 
is, according to quantum theory, due to the inability of simultaneous 
precise measurement of all the attributes of the corresponding natural 
system within the same local measurement context. 

More concretely, Heisenberg’s uncertainty principle sets the limits 
of simultaneous precise measurement of incompatible observables by 
means of valuations in the field of real numbers, like position and 
momentum, within the same measurement context. On the other hand, 
maximal families of compatible observables can be simultaneously 
measured precisely within some appropriate measurement context, but 
these families stand in a complementary relation to each other with 
respect to the property of incompatibility of their observables. Thus, the 
behavior of a quantum system can be approximated in terms of maximal 
compatible families of simultaneously measurable observables within an 
appropriate local commutative measurement context, considered 
together with the notion of complementarity between such families.  

In this frame of reasoning, the functorial conception of natural 
systems proves to be particularly relevant for the representation of 
quantum systems. More specifically, in striking contrast to the global 
classical conception, the notion of generalized state of a natural system, 
rejects the absolute global and simultaneous representability of all 
observables of the classical theory over the coordinatizing field of real 
numbers, rather it allows, in this sense, the geometric representation of 
states, in terms of generalized points of a multi-valued geometric state 
space, as well as, the evaluation of observable attributes at those points. 
This is achieved by a process of local relativization of physical 
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representability with respect to a multitude of measurement scales, 
belonging to different local commutative coordinatizing rings, leading 
eventually to the above multi-valued geometric state space. 

In relation to quantum theory, if we further assume that local 
commutative rings of measurement scales, corresponding to maximal 
families of compatible observables, can co-finally be translated 
simultaneously into the field of real numbers by means of suitable event-
registering measuring devices, then the representation of quantum 
systems can be made possible by means of diagrams of simultaneously 
determinable commutative and unital local -algebras of compatible 
observables. 

This essentially means that the transition from the classical to the 
quantum representation of natural systems, is effectuated by the 
replacement of a category of commutative unital -algebras of 
observables evaluated globally and simultaneously to the field of real 
numbers, by a category of appropriate diagrams of local commutative 
unital -algebras of compatible observables, amenable to a local 
simultaneous translation into the field of real numbers. Most importantly, 
such a semantic transition becomes possible only via the functorial 
representational framework of natural systems, which entails the 
relativization of physical representability of observable attributes of 
natural systems with respect to varying local commutative coordinatizing 
frames of scale coefficients. 

The force of this present line of argument will be missed without a 
precise indication of the sense in which the qualifications of global and 
local nature are used here. We have seen that in the environment of the 
functorial representation of natural systems, a representing formal 
system stands for a structure specified concretely as a coordinatizing 
unital ring of observables of some corresponding natural system. Thus, 
the distinction between classical and quantum systems should also be 
reflected in the appropriate qualification of their corresponding rings of 
observables. 

The crucial distinguishing requirement with respect to the 
coordinatizing rings of observables has to do with the property of global 
commutativity. In this line of thought, a classical system is being globally 
represented by a commutative ring ( -algebra) of observable attributes, 
whereas, a quantum one is represented by a ring of observables attributes 
which is only partially commutative, and thus, globally non-commutative. 
The conceptual underpinning of this distinction, referring to the property 
of commutativity of observable coordinates, has to do with the fact that, 
a globally non-commutative or partially commutative ring of observables 
determines an underlying diagram of commutative rings. Then, each 
commutative ring can be locally identified with a ring of commutative 
scalar coordinates. Thus, there exists the possibility that the information 

R

R

R

R



425CANONICS OF FUNCTORIAL RELATIONS

393 
 
contained in a ring of a quantum system’s observables may be 
approximated or recovered by a sheaf-theoretic pasting construction 
referring to diagrams of commutative subrings, identified locally with 
commutative rings of compatible observables. 

The implications of these considerations are the following: Firstly, 
we claim that observational complexity is a property of a system’s 
behavior that is conceived topologically as a global attribute, admitting an 
algebraic description in terms (globally non-commutative but locally 
commutative) of its observables. Secondly, the behavior of a quantum 
system can be modeled in terms of well-defined families of local 
commutative algebras of compatible observables, such that the globally 
complex aspect of its behavior is due to the non-trivial interlocking of its 
local manifesting icons in commutative localization measurement 
environments. Thirdly, a suitable representational framework of 
quantum systems, taking into account the functorial interpretation of the 
measurement processes of natural systems, should not be a category of 
non-commutative rings of observables, but a category of appropriate 
diagrams of local commutative unital -algebras of compatible 
observables. This means that the behavior of a quantum system in relation 
to the measurement processes is not captured by a rigid non-commutative 

-algebra of observables, but by diagrams of local commutative unital 
-algebras of compatible observables. In turn, this is equivalent to the 

preconditional requirement for local variation of the coordinatizing 
frame-ring of coefficients to enable the capture of quantum phenomena, 
together with the requirement of amalgamation of locally compatible 
information into diagrams of such a form. Fourthly, according to the 
above, physical representability of observables of quantum systems 
should be relativized or localized with respect to local commutative 
reference frames of measurement, since simultaneous global 
determination of their attributes into the field of real numbers is 
impossible. We shall see later that the mathematical transcription of these 
ideas requires the explicit adoption of a topos-theoretic model of the 
physical continuum for the description of quantum phenomena, realized 
as a category of (pre)-sheaves over a base localizing category of 
commutative measurement contexts. 

By taking into account the previous distinction, we represent a 
category of quantum systems by means of a cocomplete category of formal 
systems , such that: Its objects (called quantum objects), , are 
quantum information structures, identified as partially commutative 
unital rings ( -algebras) of observables, whereas, its arrows are the 
structure-preserving morphisms between them. 

The basic idea is that the behavior of a quantum system can be 
comprehended in terms of a local to global contravariant functorial 
construction referring to its Spectrum functor. This can be realized for 
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each quantum structure  in , as an interlocking family of incoming 
morphisms from the loci of intentionally depicted commutative 
measurement structures, which, characterize the behavior of simple, 
sufficiently understood local systems. From this perspective, we consider 
a locally small category , whose objects, , are intentionally selected 

commutative unital rings ( -algebras) of scalar coordinates, called 
partial or local information carriers, whereas its arrows are structure-
preserving maps of these carriers. Their role is inextricably connected 
with the philosophy illustrating their attachment to a quantum 
information structure as localization devices, or information filters or 
even as modes of perception. 

The epistemological purpose of their introduction is, eventually, 
the construction of a covering system of a quantum information structure 
with respect to commutative domains of measurement. The notion of a 
covering system signifies an intentional structured decomposition of a 
globally non-commutative information structure in terms of partial or 
local commutative carriers, such that the functioning of the former can be 
approximated, or completely recovered, by the interconnecting machinery 
governing the organization of the covering system. Evidently, each local 
or partial information carrier, includes the amount of information related 
to a filtering process, objectified by a specified context, or a localization 
environment, and thus, it represents the abstractions associated with the 
intentional aspect of its use. A further claim, necessary for the 
development of the proposed functorial model, has to do with the 
technical requirement that the category of quantum information 
structures must meet a condition, phrased in category- theoretic 
language, as cocompleteness. This condition means that the category of 
quantum information structures has arbitrary small colimits. The 
existence of colimits expresses the basic intuition that a quantum object 
may be conceived as arising from the structured interconnection of 
partially or locally defined information carriers in a specified covering 
system. 

We recall that the formal system corresponding to a quantum 
system is completely determined by its Spectrum functor in the 
corresponding representing categorical environment . From the 
preceding discussion we have concluded that the Spectrum functor can 
be specified equivalently, either by, the contravariant representable 
functor from the category of partially commutative loci of states to the 
category of sets, or by means of, the covariant representable functor from 
the category of partially commutative rings of observables to the category 
of sets. 

The crucial thing to remember is that any locus of states of a 
quantum system is determined, up to canonical isomorphism, if we know 
all morphisms into this locus from any other locus in the same category. 
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For our purposes we consider the description of a locus  in terms of all 
possible morphisms from all other objects of  as redundant. For this 
reason, we may restrict the generalized point states of  to all those 
morphisms in  having as domains loci corresponding to 
commutative subrings of the globally non-commutative ring of 
observables of a quantum system. Variation of generalized point states 
over all loci of the subcategory of , consisting of commutative 
measurement loci, identified with , produces the Spectrum functor of 

 restricted to the subcategory of commutative loci. 
The Spectrum functor of , specified as above, stands as an object 

in the category of presheaves (variable sets) , representing a 
quantum object in the variable environment of the topos of presheaves 
over the category of its commutative subobjects. This methodology 
proves to be successful by the establishment of an isomorphic 

representation of  in terms of its generalized point states , 
considered as morphisms in the same category, and further, amalgamated 
by sheaf-theoretic means. 
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1100..11  LLOOCCAALLIIZZAATTIIOONN  AANNDD  OOBBSSEERRVVAATTIIOONN  

 
The codomain of evaluation of physical attributes with respect to some 
measurement scale is usually identified with the concept of the “physical 
continuum”. In standard approaches, the model used to represent these 
values is the real line  and its powers, specified as a set- theoretic 
structure of points, to be identified under instantiation as events, which 
are independent and distinguishable with precision. 

The standard model of the “physical continuum” identifying 
events globally with the point-elements of the real line faces serious 
shortcomings when cases of subjective uncertainty, as in standard 
probability theory, or cases of objective uncertainty and 
indistinguishability, as in quantum mechanics, have to be taken into 
account. In these case, the notion of the physical “continuum” does not 
rely on an assumed preexisting set-theoretic structure of points on the 
real line. Rather, the evaluation of observables require the prior 
instantiation of well-defined local measurement frames, or even local 
contexts of observation, that depend on the prior infiltration or 
percolation of events through these pertinent local frames of 
measurement, or spectral observation. It is precisely in the extensive 
correlations among these local frames that continuity of observables can 
be assigned and part-whole or local-global relations can be meaningfully 
formulated. 

In this sense, particular attention is needed in the clarification of 
what is meant by localization, and concomitantly, how it affects our model 
of the “physical continuum”. The basic premise is that only through a 
consistent localization process does it become possible to discern 
observable events and assign an individuality to them. Generally, such a 
process should not depend on the existence of points, and moreover the 
standard notions of space and time should be derivative from localization, 
rather than the other way round. 

Thinking in physical measurement terms, localization is 
tantamount to a process of filtering or percolating observables through an 
appropriate category of frames, such that the ordered structure of events 
emerging by their evaluation, fibers over the underlying local frames 
including their extensive correlations. In this sense, and from the 
reciprocal viewpoint, an event bears the depth of a sieve of local spectral 
frames through which it percolates, that resolve it compatibly at various 
frames of resolution through local observables. In turn, the latter defines 
a homologous physical procedure of observation or measurement. 

Since it is assumed that frames together with their structural 
morphisms give rise to a category, the localization process should be 
understood in terms of an action of the category of frames on the global 
structure of observed events, according to the above. Then, the event 
structure is qualified in terms of a partition spectrum; it is partitioned into 
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sorts parameterized by the objects of the category of frames. Thus, 
localization can be represented by means of a fibered structure, 
understood geometrically as a variable set over the base category of 
frames. The fibers are qualified, analogously to the case of the action of a 
group on a set of points, as the generalized orbits of the action of the 
category of frames. The notion of functional dependence incorporated in 
this action, forces the ordered structure of physical events to fiber over 
the base category of frames. 

The partition spectrum emerging out of this action is 
characterized by uniformity. More precisely, for any two events observed 
over the same frame, the structure of all frames that relate to the first 
cannot be distinguished in any possible way from the structure of frames 
relating to the second. Given this uniformity, the ordering relation 
between events should be induced from the base category of frames, that 
is, by lifting relations between frames at the base to the fibers. 
 
1100..22  FFUUNNCCTTOORRIIAALL  LLOOCCAALLIIZZAATTIIOONN::  SSHHEEAAVVEESS  OOFF  GGEERRMMSS  OOFF  OOBBSSEERRVVAABBLLEESS  

 
In order to clarify the functioning of a localization process we will 
describe in detail the important case of localization of a commutative, 
unital -algebra of observables of a natural system over a base 
localizing category , consisting of open loci  of a topological 

space , the arrows between them being inclusions. In this case, the 
frames are defined in terms of the open loci  of , partially ordered 
by inclusion. 

Since observables are conceived as global functions on the -
coordinatized state-space of this system, the process of localization forces 
the replacement of the algebra of observables  by an algebraic 
structure which will give us all local and global functional information 
together. All these functional elements should interlock compatibly 
together in an appropriate manner, which serves to respect the extension 
from local to global, as well as the restriction from global to local implied 
by the localization process. The structure at issue is precisely formalized 
by the notion of a sheaf of germs of a commutative, unital -algebra of 
observables, denoted by , which, incorporates all compatible local and 
global information together. Let us first introduce precisely the 
categorical notion of a sheaf on an abstract topological space, and then, 
examine its applicability in the current situation. 

For this purpose, we consider the category of open sets  in 

an abstract topological space, partially ordered by inclusion. If  

is the opposite category of , and  denotes the scaffolding 
provided by the category of sets, we define: 
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A presheaf of sets on  is a contravariant set-valued functor 

on , denoted by . For each base open set  of 

, (U) is a set, and for each arrow , 

(V) is a set-function. If  is a presheaf on  and (U), the 

value  for an arrow  in  is called the 

restriction of  along  and is denoted by . A 

presheaf  may be understood as a right action of  on a set. This 
set is partitioned into sorts parameterized by the objects of , and 

has the following property: If  is an inclusion arrow in  

and  is an element of  of sort , then  is specified as an 

element of  of sort . Such an action  is referred as an -
variable set. A variable set of this form is entirely determined by its 
category of elements. 

The category of elements of a presheaf , denoted by , 

is described as follows: The objects of  are all pairs , 

with  in  and (U). The arrows of , that is, 

, are those morphisms  in , such that 

. Notice that the arrows in  are those 

morphisms  in the base category , that pull a chosen 
element (U) back into . 

The category of elements  of a presheaf , together 

with, the projection functor  defines the  split 

discrete fibration induced by , where  is the base category of the 
fibration. We note that the fibers are categories in which the only arrows 
are identity arrows. If  is an open reference locus of , the 

inverse image of  under , is simply the set (U), although its 

elements are written as pairs so as to form a disjoint union. 
From a physical viewpoint, the purpose of introducing the notion 

of a presheaf  on , is the following: We identify an element of 

 of sort , that is (U), with a local observable, which, can be 
observed by means of a measurement procedure over the reference locus 

, being an open set of a topological space . This identification forces 
the interrelations of local observables, over all reference loci of the base 
category , to fulfill the requirements of a uniform and homologous 
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fibered categorical structure. We recall that the latter is understood 
according to the following requirements: 
 
a The reference loci used for observational purposes, together with, 

their structural morphisms, should form a mathematical category. 
b For any two local observables, both amenable to a measurement 

procedure, over the same open domain of measurement , the 
structure of all reference loci that relate to the first cannot be 
distinguished, in any possible way, from the structure of loci 
relating to the second. According to this, all the localized 
observables, within any particular reference locus, should be 
uniformly equivalent to each other. 

 
The split discrete fibration induced by , where  is the base 
category of the fibration, provides a well-defined notion of a uniform 
homologous fibered structure of local observables in the following sense: 
Firstly, by the arrows specification defined in the category of elements of 

, any local observable , determined over the reference locus , is 
homologously related with any other local observable  over the 

reference locus , and so on, by variation over all the reference loci of 
the base category. Secondly, all the local observables  of , of the 

same sort , determined over the same reference locus , are 
uniformly equivalent to each other, since all the arrows in  

are induced by lifting arrows from the base category , formed by 
partially ordering the reference loci. We conclude that the topological 
localization process is consistent with the physical requirement of 
uniformity. 

The next crucial step of the construction, aims at the satisfaction 
of the following physical requirement: Since, we have assumed the 
existence of reference contexts (open observational domains) locally, 
according to the operational requirements of a corresponding physical 
procedure of measurement, the information gathered about local 
observables in different measurement situations should be collated by 
appropriate means. Mathematically, this requirement is implemented by 
the methodology of completion of the presheaf , or equivalently, 
sheafification of . 

A sheaf is characterized as a presheaf  that satisfies the 

following condition: If ,  in , and elements   

,   :index set, are such that for arbitrary ,   , it 
holds: 
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where, , and the symbol  denotes the operation of 

restriction on the corresponding open domain, then there exists a unique 

element , such that  for each  in . Then, an 

element of  is called a section of the sheaf  over the open locus 

. The sheaf condition means that sections can be glued together 
uniquely over the reference loci of the base category . In particular, 
the sheaf-theoretic qualification of a uniform and homologous fibered 
structure of observables, as above, makes the latter also coherent, in terms 
of local-global compatibility of the information content it carries, under 
the operations of restriction and collation. 

Thus, we form the following conclusion: The structure of a sheaf 
arises by imposing on the uniform and homologous fibered structure of 
elements of the corresponding presheaf the following two requirements: 
 
i Compatibility of observable information under restriction from 

the global to the local level, and  
ii Compatibility of observable information under extension from the 

local to the global level. 
 
According to the first of the above requirements, a sheaf constitutes a 
separated presheaf (monopresheaf) of local observables over a global 
topological space, meaning that two observables are identical globally, if 
and only if, they are identical locally. In turn, according to the second 
requirement, locally compatible observables can be collated together in 
some global observable, which, is also uniquely defined because of the first 
requirement. 

Furthermore, it is obvious that each set of sort , , can be 

endowed with the structure of an -algebra under pointwise sum, 
product, and scalar multiplication, denoted correspondingly by ; in 

that case, the morphisms  stand for -linear morphisms 

of -algebras. In this algebraic setting, the sheaf condition means that 
the following sequence of -algebras of local observables is left exact; 
 

 
 
As an important example of the above, if  is the contravariant functor 
that assigns to each open locus , the set of all real-valued continuous 
functions on , then we will show that  is actually a sheaf. 
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Finally, it is important to explain the construction of the inductive 
limit (colimit) of sets (or rings, or -algebras) , denoted by 

, in order to explicate the physically important notions of 
stalks and germs of a sheaf. For this purpose, let us consider that  is a 
point of the topological measurement space . Moreover, let  be a 
set consisting of open subsets of , containing , such that the 
following condition holds: For any two open reference domains , , 
containing , an open set exists, contained in the intersection 

domain . We may say that  constitutes a basis for the system 

of open reference domains around . We form the disjoint union of all 
, denoted by; 

 

 
 
Then, we can define an equivalence relation in , by requiring that 

, for , , provided that, they have the same 

restriction to a smaller open set contained in . Then we define; 
 

 
 
Note that, if we denote, the inclusion mapping of  into  by; 
 

 
 
and also, the restriction morphism of sets from  to  by; 
 

 
 
we can introduce well-defined notions of addition and scalar 

multiplication on the set , making it into an -module, 

or even, an -algebra, as follows: 
 

 

 
 

where,  and  are elements in  and , and . 
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Now, if we consider that  and  are two bases for the system 
of open sets domains around , we can show that there are canonical 

isomorphisms between  and . In 

particular, we may take all the open subsets of  containing : 
Indeed, we consider first the case when  is arbitrary and  is the set 
of all open subsets containing . Then  induces a morphism; 
 

 
 
which is an isomorphism, since whenever  is an open subset 
containing , there exists an open subset  in  contained in . 
Since we can repeat that procedure for all bases of the system of open sets 
domains around , the initial claim follows immediately. 

Then, the stalk of  at the point , denoted by , is 
precisely the inductive limit of sets : 
 

 
 
where  is a basis for the system of open reference domains around , 

and  denotes the equivalence relation of restriction within an open 

set in . Note that the definition is independent of the chosen basis . 
For an open reference domain  containing the point , we obtain an 
morphism of  into the stalk at the point : 
 

 
 
For an element  its image: 
 

 
 
is called the germ of  at the point . 

The fibered structure that corresponds to a sheaf of sets  is a 
topological bundle defined by the continuous mapping , where; 
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The mapping  is locally a homeomorphism of topological spaces. The 

topology in  is defined as follows: for each , the set 

 is open, and moreover, an arbitrary open set is a union of sets 
of this form. Obviously, the same arguments hold in the case of a sheaf of 
sets  endowed with some algebraic structure, for example rings or 

-algebras (where  is a field). 
With respect to the physical interpretation, we remind that we 

have identified an element of  of sort , that is a local section of , 
with a local observable , which can be observed via a measurement 

procedure over the reference locus . Then the equivalence relation, 

used in the definition of the stalk  at the point  signifies the 
following: 

Two local observables , , induce the same 

contextual information at  in , provided that they have the same 
restriction to a smaller open locus contained in the basis . Then, the 

stalk  is the set containing all contextual information at , that is, 
the set of all equivalence classes. 

Moreover, the image of a local observable  at the stalk 

, that is, the equivalence class of this local observable , is precisely 
the germ of  at the point . Next, if we consider a local observable 

, it determines a function: 
 

 
 

whose domain is the open locus  and its codomain is the stalk , for 

each   . 
We may consider instead, the disjoint union  as the 

codomain of the function . From this perspective, every local 
observable , gives rise to some partial function: 
 

 
 
which, is defined on the open locus . Hence, all local observables 

, admit a functional representation, established by means of the 
following correspondence: 
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Stated equivalently, each local observable  can be legitimately 
considered a partial function: 
 

 
 
defined over the open reference locus , the value of which, at a point 

  , that is, , is the contextual observable information 
induced at  by the local observable . Furthermore, such a partial 
function  is identified with a cross section of the topological 
bundle of germs, defined by the continuous mapping , such 
that, 
 

 
 
Note that the mapping  is locally a homeomorphism of topological 
spaces, and thus, the bundle is étale. 

The previous discussion can be formalized categorically in terms 
of an adjunctive correspondence, defined fundamentally, between the 

category of presheaves of sets  on the category of open loci 
 of a topological space , and the category of topological bundles 

 over , as follows: 
 

 
 

where, in the above adjunction, the functor , called 
the cross sections-functor, assigns to each bundle  the sheaf of 

all cross-sections of , while its left adjoint functor 

, called the germs-functor, assigns to each presheaf 

 the bundle of germs of . The adjunction is characterized 
completely by the unit and counit natural transformations, defined 
respectively as follows: 
 

 

 
 

Moreover, if  is a sheaf, then, the unit  is an isomorphism, while, 

if  is étale, then, the counit  is an isomorphism. For these reasons, 
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the above adjunction is restricted to a natural equivalence between the 
categories of sheaves  on , and the category of étale 

topological bundles  over , as follows: 
 

 
 
Note that the above adjunction (natural equivalence) is still valid if we 
consider instead of presheaves (sheaves) of sets, presheaves (sheaves) of 
rings, or -algebras. Moreover, as a consequence of the categorical 
equivalence between sheaves on a topological space  and étale 
topological bundles over , every sheaf can be considered as a sheaf of 
cross-sections. 

It is also instructive to notice that the previous arguments can help 
us to understand the process of completion (or sheafification, or 
germification) of a presheaf. For this purpose, we realize that the notions 
of germ, stalk and étale bundle make sense for a general presheaf. More 
precisely, the germ at a point stands for an equivalence class of elements 
of the presheaf corresponding to open loci around that point, under the 
equivalence relation which follows from having the same germ. The stalk 
over this point is the set of all germs at this point. The étale bundle is the 
disjoint union of all stalks. The first crucial observation is that by the 
definition of a topology on the étale bundle, as described previously, it is 
legitimate to consider continuous sections of the étale bundle. 

Stated equivalently, this procedure amounts to transforming the 
elements of the presheaf into partial continuous functions (continuous 
sections) valued into the étale space. Hence, we manage to functionalize 
the initial presheaf, by defining a new presheaf, called the presheaf of 
sections of the initial presheaf as follows: It is the presheaf, which 
associates to each open locus of the base topological space the set of 
continuous sections from that open locus into the étale space. Now, there 
is an obvious morphism from the initial presheaf to its presheaf of 
sections, which maps each element of the category of elements of the 
initial presheaf to the continuous section, which sends each point in an 
open locus of the base space to the germ of this element at that point. 

The second crucial observation is that the associated 
functionalized presheaf of sections of a presheaf is actually also localized 
(locally determined), meaning that it is a sheaf, identified as the sheaf of 
cross-sections of the corresponding étale topological bundle. Thus, the 
latter sheaf is called the sheaf associated to the initial presheaf. Moreover, 
the process of completion of a presheaf into the sheaf of cross-sections of 
the corresponding étale topological bundle is functorial, meaning that for 
each presheaf there is a functor sending it to its completion, that is, to its 
associated sheaf of sections, called the sheafification functor. As a 
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corollary, we conclude that a presheaf is a sheaf, which means a complete 
presheaf, if and only if the morphism to its associated functional presheaf 
of sections is an isomorphism. 

Thus, the process of completion of a presheaf is equivalent to the 
combined processes of functionalization and localization of its elements. 
Consequently, the associated sheaf of sections of a corresponding 
presheaf, contains by its construction, the totality of local contextual 
information compatible with the one available from the initial presheaf 
due to its restriction property, and in this sense, it constitutes its 
completion. 

Now, let us consider a sheaf of -algebras of local observables, 
identified as a sheaf of real-valued continuous cross-sections of the 
corresponding étale bundle. Then, the set of germs of all these sections at 
a point, the stalk at this point, is also an -algebra. Most importantly, 
the stalk at this point is a local -algebra, meaning that it has a unique 
maximal ideal. In turn, this maximal ideal consists of all germs vanishing 
at the point in question. The quotient of the stalk by this maximal ideal is 
isomorphic to the field of real numbers. Equivalently, this means that the 
morphism evaluating a germ of the stalk at a point to the real numbers, 
which provides a real value at the corresponding non-vanishing 
equivalence class of sections at the base point of interest, is a surjective 
morphism of -algebras taking as kernel the maximal ideal of the stalk 
at this point: 
 

 

 
 
Thus the evaluation morphism of a germ of the stalk at a point of the base 
space is an -valued measurement of this observable germ, interpreted 
as an observed event of the corresponding natural system, and 
subsequently encoded by means of an -state of its topological state-
space. 

At a next stage of development of these ideas, the sheaf of germs 
of real-valued continuous functions on a topological space  is an 
object in the functor category of sheaves  on varying reference 

loci , being open sets of , partially ordered by inclusion. The 
morphisms in  are all natural transformations between sheaves. 
It is instructive to notice that a sheaf makes sense only if the base category 
of reference loci is specified, which is equivalent in our context to the 
determination of a topology on the space . The functor category of 
sheaves , provides an exemplary case of a construct known as 
topos. 
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A topos can be conceived as a local mathematical framework 
corresponding to a generalized model of set theory, or as a generalized 
algebraic space, corresponding to a categorical universe of variable 
observable information sets over the multiplicity of the reference loci of 
the base category. We recall that, formally a topos is a category, which has 
a terminal object, pullbacks, exponentials, and a subobject classifier, 
which in turn is understood as an object of generalized truth values. The 
particular significance of the sheaf of real-valued continuous functions on 

, is due to the following isomorphism: The sheaf of germs of continuous 
real-valued functions on , is isomorphic to the object of Dedekind real 
numbers in the topos of sheaves . The aforementioned 
isomorphism validates the physical intuition which reads a local 
observable as a continuously variable real number over its locus of 
definition. 
 
1100..33  TTOOPPOOSS--TTHHEEOORREETTIICC  RREELLAATTIIVVIIZZAATTIIOONN  OOFF  RREEPPRREESSEENNTTAABBIILLIITTYY  

 
The transition in the semantics of the physical continuum from the topos 
of  to the topos of sheaves  is an instance of the principle 
of topos-theoretic relativization of physical representability referring to 
the interpretation of observed events. We initially notice that, in the 
former case, observables are identified with (continuous) functions 
determined completely by their values at points. In the latter case, 
observables are identified with local continuous sections of the étale 
space determined completely by their germs. 

In order to analyze in more detail the transition in the semantics, 
we note that, in the former case, a continuous function from a base 
topological space  to the topological space  can be considered as 
a continuous section from  to the product space . This product 
space is set-theoretically isomorphic to a space containing a copy of the 
coordinatizing frame-field  at each point, being the inverse image of 
the projection from  to the base . The value that is taken at a 
point is the value taken by the function. Thus, this type of modeling the 
notion of an observable is only appropriate in capturing its point-
properties. 

In contrast, in the latter case we obtain local properties of 
observables. This is due to the fact that in the sheaf-theoretic local 
environment, we associate not with the value that a section takes at a 
point of the base space, but its germ. In this sense, instead of the product 
total space , we have the étale topological space, such that the 
inverse image of each point of the base space is not a copy of the 
coordinatizing frame-field , but the stalk at that point. 
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This essentially means that the transition of semantics from the 
topos of sets  to the topos of sheaves  amounts to shifting 
the focus from point-wise behavior of observables to local behavior of 
observables. Obviously the étale topological space is a much richer and 
bigger space than the rigid space , since the étale space provides 
information about the local behavior of observables around each point of 
the base space in terms of germs, instead of merely point-wise behavior of 
observables in terms of their values in the real numbers. 

Thus, observed events are not determined by the values of 
continuous functions at points of the base space, but by the evaluation 
morphisms of germs at those points, according to our previous remarks. 
We conclude that the meaning of the principle of topos-theoretic 
relativization of physical representability as effectuated by the transition 
from the topos of sets  to the topos of sheaves  amounts to 
a relativization with respect to the local behavior of physical observables 
as opposed to their point behavior. 

It is worth explaining in some further detail the important notion 
of relativization of physical representability by shifting the semantics of 
observables from the topos of sets  to the topos of sheaves . 
The absolute representability principle is based on the set-theoretic 
conception of the real line, as a set of infinitely distinguished points 
coordinatized by means of the field of real numbers. Expressed 
categorically, this is equivalent to the interpretation of the algebraic 
structure of the reals inside the absolute universe of , or more 
precisely inside the topos of constant . 

It is also well known that algebraic structures and mechanisms can 
admit a variable reference, formulated in category-theoretic jargon in 
terms of arrows-only specifications, inside any suitable topos of discourse. 
The relativization of physical representability with respect to the topos of 
sheaves , amounts to the relativization of both the notion and the 
algebraic structure of the real numbers inside this topos. Regarding the 
notion of real numbers inside the topos , this is equivalent to the 
notion of continuously variable real numbers over the open reference 
domains of , or else, equivalent to the notion of real-valued continuous 
functions on , when interpreted respectively inside the topos of . 

Equivalently stated, the internal object of Dedekind reals 
constructed within the logic of the topos  is isomorphic to the 

sheaf of germs of continuous real-valued functions on the space . 
Regarding the algebraic structure of the reals inside the topos , 
they form only an algebra in this topos, which is identified with the sheaf 
of commutative -algebras of germs of continuous real-valued 

Sets ( )XSh

X ´R

Sets ( )XSh

Sets ( )XSh

Sets
Sets

( )XShv

( )XShv

X
X Sets

( )XShv
X
( )XShv

R



443COMMUNICATION TOPOI

411 
 
functions on , where  corresponds in that case to the locally 
constant sheaf of germs of real numbers over . 

From a physical perspective, internally in the topos  the 
valuation algebra of real numbers is relativized with respect to the base 
category of open sets of a topological space . As a consequence it 
admits a description as a sheaf of of germs of continuous real-valued 
functions on . In particular, for each open reference context  of 

, we obtain a unital commutative algebra of continuous real-valued 
local sections. In this way, the semantics of localization of observables is 
transformed from a set-theoretic to a sheaf-theoretic one. More 
concretely, it is obvious that inside the topos  the unique 
localization measure of observables is a point of the -spectrum of the 
corresponding algebra of scalars, which is assigned a numerical identity. 

By contrast, inside the topos , the former is substituted by 
a variety of localization measures, dependent only upon the open sets in 
the topology of . In the latter context, a point-localization measure, is 
identified precisely with the ultrafilter of all opens containing the point. 
This identification permits the conception of other filters owing their 
formation to admissible operations between opens as generalized 
measures of localization of observables. In a wider context, the 
relativization of representability effected in  is physically 
significant, because the operational specification of measurement 
environments exists only locally and the underlying assumption is that 
the information gathered about local observables in different 
measurement situations can be collated together by appropriate means; a 
process that is precisely formalized by the notion of sheaf. 

Conclusively, we assert that localization schemes referring to 
observables may not depend exclusively on the existence of points, and 
thus should not be tautosemous with the practice of conferring a 
numerical identity to them. Therefore, the relativization of 
representability with respect to the internal reals of the topos of sheaves 

, amounts to the substitution of point-localization measures, 
represented numerically, with localization measures fibering over the 
base category of open reference loci, represented respectively by local 
sections in the sheaf of internal reals. 

The transition in the semantics of physical representability under 
relativization from the topos  to the topos  can be 
formalized via the concept of an admissible transformation between topoi, 
called a functorial geometric transformation, or simply a geometric 
morphism. More concretely, a functorial geometric transformation from 
the topos  to the topos  is defined as a pair of adjoint 
functors: 
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where the functor  is right adjoint to the functor , which in turn 

is left exact. Then, the functor  is called the direct image part of the 

functorial geometric transformation, while the functor  is called the 
inverse image part. 

The terminology arises from the simple realization that a 
continuous morphism between topological spaces  and , denoted 
by , induces a functorial geometric transformation between the 
categories of their sheaves as follows: 
 

 

 
 
such that: 
 

 
 
form an adjoint pair of functors, where, if  is a sheaf on , and  
is an open locus in , then: 
 

 
 
called the direct image of the sheaf  under the morphism . On the 
opposite side, the inverse image of a sheaf  under the morphism , 

denoted by  is defined as the sheaf on  such that the stalk at 

any point  is the stalk at . 
Most importantly, any functorial geometric transformation 

between the topos of sheaves on  and the topos of sheaves on  
necessarily arises from a unique continuous function between these 
spaces. The above is particularly useful, and can be demonstrated by a 
simple example as follows: the topos  can be considered as the 
topos of sheaves over the -point topological space, that is, . 
Thus, a point  of a topological space, i.e. a continuous morphism 

, gives rise to a geometric morphism described by: 
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such that: 
 

 
 
form an adjoint pair of functors, where if  is a sheaf over the one-
point topological space , which is just a set, and  is an open locus in 

, then: 
 

 
 
that is, the direct image of the set  under , gives the value  if 

 and the value  otherwise. The sheaf  on  is the 

skyscraper sheaf at the point , which is a totally discontinuous sheaf on . 

Thus, if  is the sheaf of internal reals on , that is, the set of real 

numbers, then the skyscraper sheaf  on  consists of a copy of 

the real numbers at the point  and is  at all other points. On the 

opposite side, the inverse image of a sheaf  under the morphism , 

denoted by  , is precisely the stalk of  at the point . Thus, if 

 is the sheaf of internal real numbers in the topos , then its 
inverse image under  is the stalk of the internal real numbers at , 
that is, the set (local ring) of germs of continuous real-valued sections at 

. This means in turn that the notion of a continuously variable real 

number over , which is a real number from the perspective of , 

is transformed via the inverse image functor  corresponding to 
, into the notion of a germ of continuous real-valued sections at 

 from the perspective of . 
This simple example illustrates the first fundamental aspect of the 

principle of relativization of physical representability with respect to the 
internal reals of a topos of the form , where  is a topological 
space. More precisely, since the sheaf of internal real numbers in the topos 

 is perceived via  by the set (local ring) of germs of 

continuous real-valued sections at  in , this means that the 
transition in the semantics of observable representability at a point of a 
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base topological space, as reflected within the topos of sets, amounts to 
the substitution of a point-localization measure of an observable, that is 
its real value at that point, encoding point-wise information, by its germ 
at the same point, encoding local information. 

The second fundamental aspect of the principle of relativization of 
physical representability with respect to the internal real numbers of a 
topos of the form , where  is a topological space, is 
implemented by means of the following functorial geometric 
transformation: 
 

 

 

 
 
where, 
 

 
 
is the global sections functor, which assigns to a sheaf  in  

its set of global sections (global elements) , where  is 
the terminal object in . 

In particular, if  is the sheaf of internal real numbers in the topos 
, then its set of global sections is the set of real-valued continuous 

functions on . This means that the notion of a continuously variable 
real number over , that is, a real number from the perspective of 

, is transformed by the inverse image functor  to the 

notion of a real-valued continuous function on  from the perspective 
of . 
Consequently, the semantics of observable representability globally, as 
reflected within the topos of sets, remains invariant under the 
relativization with respect to the internal reals of a topos of the form 

. Hence, the relativization of physical representability as above, 
forces the encoding of local observable information in terms of germs, and 
thus transforms the semantics of observables from the point level to the 
local level, while it leaves invariant their global interpretation. 

In the opposite direction, the functor: 
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assigns to each set  the corresponding constant presheaf . 

This constant presheaf sends each open set  of  to the same set . 
In particular, if  is the set or real numbers , then the constant 
presheaf sends each open set  of  to the set of real numbers . 
Thus, the corresponding étale space of the constant presheaf  is the 
projection . Therefore, for each open locus  of , 

 is the set of continuous functions from  to the discrete space 

. This is exactly the set of locally constant functions from  to . 
In this sense, the sheaf  is called the constant sheaf corresponding to 
the set of real numbers. 

A particularly interesting application of the above arises even in 
the case that the base topological space  is discrete, considered as an 
infinite set. We may consider the counit natural transformation of the 
corresponding pair of adjoint functors: 
 

 

 
 
If  is the set or real numbers , then we obtain: 
 

 
 
Note that the domain of the counit, is the set of global sections of the 
constant sheaf  in  as previously. This set is identified as the 
set of sections of the projection morphism from the cartesian product 

 (viewed as a set) to . It is denoted by , while its elements 

 are mappings . Therefore, we obtain: 
 

 
 
This is precisely the evaluation morphism of the set  to the set of 
real numbers, that is, the morphism evaluating the set of global sections 

 of  at a point  of the base space  to the set of real 

numbers. The result of evaluating the set  at a point  of  is 
equivalent to the process of identification of functions  in 

 under the condition that their values at  are the same; in short, 

we may define an equivalence relation on the set  as follows: 
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if and only if: 
 

 
 
This means in turn that the set, 
 

 
 
belongs to the principal ultrafilter of , that is, to the set: 
 

 
 
Now, if we identify the point  with its principal ultrafilter, we may 
reformulate the equivalence relation as follows: 
 

 
 
if and only if: 
 

 
 
Consequently, the result of evaluating all the elements of the set  at 

the point , or equivalently, at the principal ultrafilter , is the set of 

equivalence classes of  modulo the equivalence relation . This 

set is obviously isomorphic to the set of real numbers, that is: 
 

 
 
and the evaluation morphism is actually the following: 
 

 
 
The above procedure also give us the possibility of evaluating the set of 
global sections  of  at an arbitrary ultrafilter  of the base 
space , thought of as a virtual point of . More specifically, an 
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ultrafilter  is a point of the compactification of . In this way, we may 
define the following equivalence relation on the set : 
 

 
 
if and only if: 
 

 
 
Similarly, the result of evaluating all the elements of the set  at the 
ultrafilter (virtual point) , is the set of equivalence classes of  

modulo the equivalence relation . This set is not isomorphic to the 

set of real numbers, and is called the ultrapower of  with respect to 
the ultrafilter . Moreover, the set of real numbers can be naturally 
embedded in the ultrapower of  with respect to the ultrafilter . In 

this sense, the ultrapower of  with respect to , denoted by , 
contains the real numbers and additionally contains new generalized 
elements. 

Consequently we can imagine the elements of the ultrapower  as real 
numbers surrounded by a cloud of objective thickness. Of course, this 
procedure provides the possibility of a generalized interpretation of 
measurement states of the corresponding ring of global observables , 
by means of the surjective morphism of rings: 
 

 
 

Which is to say the legitimate consideration of -states of . 

Essentially, this means that the ring  can act as a ring of measurement 

scales for the evaluation of the observables in . This is another 
indication of the fact that absolute representability with respect to -
measurement scales should be abandoned, and instead a covariance 
principle referring to all legitimate rings of measurement scales should be 
substituted in its place for the evaluation of observables. 

Based on the above conclusion, we may extend these ideas by 
taking into account the following: Firstly, the set of global sections  
of  is actually a commutative -algebra as can easily be verified. 
Secondly, an injective correspondence exists between the proper ideals of 
the -algebra  and the filters of the discrete space  
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(considered as an infinite set). More concretely, if we recall that the 

elements  are mappings , then we can define the zero 
set of an element  as follows: 
 

 
 
Furthermore, if we denote by  an ideal in the -algebra , and 

by  a filter on the infinite set  we obtain the injective 
correspondences: 
 

 

 
 
The above correspondences are order-preserving and idempotent under 
iteration. It follows that every reduced power algebra , where  

is an ideal in the -algebra  is of the quotient form: 
 

 
 
for a unique generating filter  on the index set . 
Next, we note that reduced power algebras of the above form can be 
related to each other as follows: For two filters ,  on , such that 

, we obtain the surjective morphism of -algebras 
 

 

 
 

from which we conclude that the algebras  and  are 
isomorphic. A degenerate case refers to the power algebras obtained when 
a filter  on  is generated by a non-empty subset  of , that is, 

in case that . Then, we obtain the power algebras of 
the form: 
 

 
 
Further, if  is a finite subset of  having  elements we obtain: 
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Consequently, the -dimensional Euclidean spaces are power algebras 
of  of the form , where  is a finite subset of  having -
elements. The exclusion of all the degenerate cases, leading to the 
formation of power algebras, amounts to restricting the generating filters 
to those that are supersets of the Maurice Frechet filter on . The 
Frechet filter on , denoted by  is a cofinite filter on , where a 
cofinite filter on  consists of all subsets of  having finite 
complement in . Thus, non-degenerate reduced power algebras of  
are of the form: 
 

 
 
for a unique generating filter  on the index set , such that . 
Moreover, because of the relation , every non-degenerate 

reduced power algebra  of  is the surjective image of the 

reduced power algebra  corresponding to the Frechet filter on , 

and moreover, it is isomorphic to , that is: 
 

 
 
The two most important properties of all the non-degenerate reduced 
power algebras of  are that they have zero divisors, unless the 
dividing ideal is prime, and that they are non-Archimedean. Still, they can 
legitimately act as rings of measurement scales for the evaluation of the 
observables in . Thus, once again the absolute representability with 
respect to -measurement scales should be abandoned in favour of a 
covariance principle with respect to all legitimate rings of measurement 
scales for the evaluation of observables. 
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The transition in the semantics of the physical continuum from the topos 
of  to the topos of sheaves  as an instance of the principle 
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germs. Thus, in the latter case of localization within the environment of 
the topos of sheaves  we are naturally led to the introduction of 
the notion of a commutative ringed space of states. We note that the 
notion of ringed spaces is used extensively in Algebraic Geometry, in the 
theory of Abstract Differential Geometry, and in the theory of -
differentiable spaces. 

A commutative ringed space of states is a pair  consisting 

of a topological space  and a sheaf of commutative rings of 
observables  on . The space  is called the underlying state-
space of the ringed space, while the sheaf  is called the structure sheaf 

of observables. Now, for any open locus , the pair  is 
also a ringed space, called an open subspace of states of . A 
morphism of ringed spaces  from  to  consists 

of a continuous morphism of topological spaces  and also a 

morphism of sheaves of rings . 

We recall that if  is the field of real numbers, then an -
algebra of observables  is a ring  together with a morphism of 
rings  (making  into a vector space over ) such that, the 
morphism  is a linear morphism of vector spaces. Notice that the 
same holds if we substitute the field  with any other field, for 
instance, the field of complex numbers . 

Next, we introduce the notion of a commutative (locally) -
ringed (or -algebraized) space of states as a pair  consisting of 

a topological space  and a sheaf of commutative -algebras of 

observables  on , such that the stalk  of germs is a (local) 

commutative -algebra for any point . A morphism of -
ringed spaces  from  to  consists of a 

continuous morphism of topological spaces  and also a 

morphism of sheaves of -algebras , such that for every 

 the induced morphism of stalks at , that is,  is a 

morphism of -algebras. We denote the category of commutative 

(locally) -ringed (or -algebraized) spaces of states by . 
At this stage, we are able to introduce the notion of a category of 

models as a subcategory of the category , denoted by , which 
satisfies the following conditions: 
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i The base locus  of an object  of  is some model 

topological space; 

ii If  is an object of , and  an open locus, then 

 is also an object of  , and the injection 

 is a morphism in . 
 

We say that given a category of models , an -ringed (or -

algebraized) space of states  is an -manifold if the following 
conditions are satisfied: 
 
i Every point  has an open locus  together with an 

isomorphism of -ringed spaces, that is: 
 

 
 

We call the above isomorphism an -coordinate chart, or 
reference frame of  with respect to the category of models 

; 

ii For any pair of -coordinate charts: 
 

 

 
 

with , the induced isomorphism: 
 

 
 

is a morphism in the category of models , where: 
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The isomorphism  in the category of models  is called a 

gluing datum between overlapping -coordinate charts of 

 with respect to the category of models ; 
iii The following cocycle relations are satisfied whenever they are 

defined: 
 

1  

2  

3  
 
From the above, we conclude the following: Given a gluing datum 

between overlapping -coordinate charts of  with respect to 

the category of models , we consider the disjoint union: 
 

 
 

with its natural structure as an -manifold, where  is a 

corresponding indexing set. Then, we introduce on  a 

relation defined as follows: 
 

 
 
if and only if: 
 

i  

ii  

iii  
 
Then, according to the cocycle relations of the given gluing datum we 
obtain that: Because of  the relation is reflexive, because of  
the relation is symmetric, and because of  the relation is transitive. 

Hence the relation  defined on  is an equivalence 

relation, giving rise to a groupoid. The quotient space 
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with respect to this equivalence relation has the induced structure of an 

-manifold, such that the natural projection 
 

 
 

is a morphism of -manifolds. Moreover, the set  is 

defined as an -coordinate atlas on . 

An immediately obvious application of the notion of an -

manifold becomes clear if we consider as a category of models  the 

smooth category of models, denoted by . The category  has 

as objects pairs of the form , where  denotes the sheaf 

of real-valued smooth functions of class  on . We notice that in 
this case morphisms  are just smooth maps 

. 

Then, given the category of smooth models , an -ringed 

(or -algebraized) space of observables  is called a smooth -
manifold if it satisfies the conditions [I], [II], [III] given previously. We 
also notice that the structure of a smooth -manifold is obtained by the 
equivalence relation on the disjoint union of its coordinate charts induced 
by the corresponding gluing datum with respect to the category of smooth 

models. We denote a smooth -manifold by the pair , where, 

for every open subset  of ,  is the ring of 

smooth functions on . 
A morphism between smooth -manifolds is called a 

diffeomorphism when it is an isomorphism of the corresponding -ringed 

spaces. In this sense, some smooth functions  define a 

smooth coordinate system on  if the corresponding morphism 

 induces a diffeomorphism of  onto an open locus 

of the model smooth topological  for some appropriate . 
An interesting observation has to do with the fact that the 

definition of a smooth -manifold as an -ringed (or -

algebraized) space of states  obtained by means of a gluing 

datum with respect to the category of smooth models , takes into 
account the principle of relativization of physical representability with 
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respect to the internal reals of a topos of the form , where  is 
a topological space. We emphasize the significance of this principle 
concerning its dual aspect referring to both the local and the global 
behavior of observables. 

From the other side, we know that a smooth -manifold, is 
completely determined by the ring ( -algebra) of all global smooth 
functions (assuming that it is a Hausdorff topological space with a 
countable basis). This means that the semantics of a smooth -manifold 
is completely determined by the information encoded in the global 
observables only, or equivalently, its semantics is completely understood 
with respect to the constant topos of sets . 

We consider this fact as a serious drawback which affects the 
interpretation of our current physical theories to a very significant 
degree, on which we shall expand later. Most importantly, the localization 
properties of observables expressed in terms of observable germs are 
actually overlooked. In this sense, it is necessary to understand the 
procedure by means of which the -ringed (or -algebraized) space 

of states  can be reconstituted from the ring ( -algebra)  

of global real-valued smooth functions on . 
Firstly, the set  is recovered as the -spectrum of global 

observables (global real-valued smooth functions) , that is the set of 

all surjective morphisms of -algebras: 
 

 
 
Thus, we have that, set-theoretically: 
 

 
 
We recall that the -algebra (field)  is called the coordinatizing 

frame of each state of the formed state-space . The 
geometric semantics of this connotation denotes the set of elements 
which can be -observed by a measurement procedure on the ring of 

observables . Eventually, that set of elements, constituting the -

spectrum of , are identified with the -coordinatized points of a 
geometric state-space that can be observed by means of the ring of global 

real-valued functions . The next task is to endow the set (state-
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space)  with an appropriate topology, so that it bears the 
structure of a topological space. We consider the Israel Gelfand topology 

on , which is defined by the requirement that it is the 
smallest topology such that: 
 

 

 
 

is continuous for any . Thus, we get a morphism of -algebras: 
 

 

 

 
 
where the -set contains morphisms between continuous state 
spaces. Now, according to the Gelfand representation theorem, if  is a 
separated smooth -manifold whose topology has a countable basis, 
then the above morphism of -algebras is an isomorphism, and the 
morphism: 
 

 
 
is a homeomorphism of topological state-spaces. Note that if  is a 
smooth -manifold each point  defines a morphism of of -

algebras ( -evaluation): 
 

 

 
 

Equivalently stated, each point , defines a maximal ideal  of 

, that is: 
 

 
 
Consequently, we obtain a natural morphism 
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which is a homeomorphism of topological spaces. Thus, identifying the 

topological space  with the topological space  via , the 

topology of  coincides with the Gelfand topology, the morphism of 

-algebras , where , such that, 

 is an isomorphism, and the evaluation morphism  

is the same as , being identified with the maximal ideal  for each 

-state  in . 

Furthermore, if  is any open set in , then we 

require that , where: 
 

 
 

is the algebraic localization of , or ring of fractions of  with 
respect to the multiplicative set of all global real-valued smooth functions 
without zeros in , that is: 
 

 
 

The localization of  with respect to the multiplicative set of all 

global real-valued smooth functions without zeros in  corresponds to 

the localization of  at the ideal  of all real-valued smooth 

functions vanishing at a closed subset  of  (zero-set of the ideal 

), complementary to , that is: 
 

 
 

In this way, given the ring ( -algebra)  of global real-valued 

smooth functions on , we finally obtain a topological space 

 identified with , viz. the -spectrum of , together 

with a structure sheaf of rings ( -algebras) , identified with 
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the completion (sheafification) of the presheaf of rings ( -algebras) 

, denoted by , such that: 

 

 
 
Consequently, we have constructed the -ringed (or -algebraized) 
space of observables 
 

 
 

from the ring ( -algebra)  of global real-valued smooth functions on 

, where . If we apply this procedure to the ring ( -

algebra) , we obtain the local smooth model -ringed space 

, as an object in the smooth model category , by means 

of which we have defined the notion of a smooth -manifold previously 
within the topos of sheaves. 

An extremely significant observation has to do with the fact that 
the procedure of reconstitution of the -algebraized space of states 

 from the ring ( -algebra) of observables , 

where  is a smooth -manifold, can be applied for an arbitrary -
algebra of observables . Of course, in this case the -spectrum of 

, that is,  is not a smooth -manifold any more, meanong 

that it is not modeled on the local smooth model -ringed space 
. Still, the associated -ringed space  can be 

an -manifold for an appropriate choice of a category of models . 
A natural issue that arises in this setting is the conceptualization 

of an -ringed space  as an -manifold, where the 

category of models has objects (local models of an -manifold) of the 

form , where  is a quotient of  by an ideal  

of , that is: 
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for some natural number . Obviously,  refers to the completion of 
the presheaf  for  open locus in  obtained 

by the procedure of algebraic localization of the -algebra . We 
think of the ideal  as the ideal of all elements of  vanishing at a 

closed subset  of , that is: 
 

 
 
Then, evidently  is identified with the zero-set of the ideal , 
that is: 
 

 
 
We notice that, by analogia to the local smooth model case, we may call 

 a local differential model. This is due to the fact that, 

although  is not a smooth manifold, it can be interpreted 
as a differential space, whose global algebra of differentiable functions is 

. In this sense, differentiable functions on  

are thought of as restrictions of smooth functions on . This is due to 
the existence of the surjective morphism of -algebras: 
 

 
 
which is interpreted as a restriction morphism, that is for any  

the equivalence class  is said to be the restriction of the 

smooth function  to the differential function , or else, the 

restriction of  to the differential subspace  of the smooth space 

. In this manner, the notion of differentiability induced by local 
differential models of the form considered, and subsequently, the notion 

of an -differential manifold obtained, is much more general than the 
notion of smoothness induced by local smooth models and the associated 
smooth manifolds. Moreover, the notion of differentiability supersedes 
the notion of smoothness, which in turn, is obtained as a special case of 
the former. 

Motivated by the previous observation, we say that an ideal of a 
differentiable algebra is closed if and only if its quotient by this ideal is 
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also a differentiable algebra. In particular, since  is a differentiable 

algebra, and the quotient algebra  is also a differentiable algebra 

by restriction, the ideal  is closed. We also say that an -algebra  

is simple if  is the unique element of  vanishing at any point of 
. This is equivalent to saying that the morphism of -

algebras: 
 

 

 
 
is injective, so that any simple -algebra is isomorphic to an algebra of 
real-valued continuous functions on the topological space . It 

is clear that if  is of the form  where  denotes 

the closed ideal of all elements of  vanishing at a closed subset  

of , then  is simple. Now, we are ready to consider an extension of 
differentiable algebras to non-simple ones. 

Intuitively, these algebras are still of the form , where  

is a closed ideal, but now they contain nilpotent elements. This equivalently 

means that the ideal is of the form  for some power . For 

example, if  is the (maximal) ideal of all smooth functions of  

vanishing at  in , then  is considered a differential 

algebra containing nilpotent elements. Note that: 
 

 
 
but  contains nilpotent elements. In this sense, we can 

consider local differential model spaces of the form 
 

 
 
interpreted as the [  infinitesimal region of ] differential space, 
being a differential subspace of . These differential spaces 

have an interesting physical interpretation, since the restriction of a 
smooth function  to a differential space of the above form is 
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equivalent to the  Taylor expansion of  at . This is called the 

-jet of  at  and we obtain: 
 

 
 
According to the preceding analysis we can now conceptualize an -

ringed space  as an -manifold, called a differential -
ringed space, where the category of models has objects (local models of an 

-manifold) of the form . 

In this context,  stands for a differentiable algebra, since it is 
a quotient of  by a closed ideal  of , that is: 

 

 
 
for some natural number . In order to achieve the greatest generality 
we give the following preliminary definition: 

A (locally) -ringed space  is called an affine 

differential -ringed space of states if it is isomorphic to a differential 
-ringed space of the form , where  is a differentiable 

algebra of observables. Then, we consider as a category of models  

the category of affine differential -ringed spaces. 

Then, a differential -ringed space of states  is defined 

as an -manifold. This means that any point  has an open 

neighbourhood  in , called an affine open locus, such that 

 is an affine differential -ringed space of states. Such open 

loci of  are called affine open sets and they naturally define a basis for 

the topology of . The sections of  on an open locus  in  

are said to be differentiable (observable) functions on . The value of a 
differentiable function at a point  is identified with the residue 

class of its germ  at , that is, with . Then, any 

differentiable function  determines a continuous morphism 

, where , although  is not determined by . 
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An immediate consequence is the following: If  is a closed ideal 

of a differentiable algebra , then  is a closed 
differential subspace of . Inversely, any closed differential 

subspace of  is defined by a unique closed ideal of . 
For brevity of notation, if a differentiable algebra is denoted by 

, then we denote the corresponding affine differential -ringed 
space by . Now, there exists a categorical natural equivalence 
(duality) between the category of (commutative and unital) differentiable 

-algebras of observables , and the category of affine differential 
(commutative) -ringed spaces of states , which is defined 
functorially, as follows: 
 

 
 

where,  is the real spectrum functor, which assigns to a 

commutative and unital differentiable -algebra of observables  its 
dual affine differential -ringed space of states , and, 

 is the global sections functor in the opposite direction, which 
assigns to the structure sheaf  over the real spectrum topological space 

, its -algebra of global sections , 

identified with the differentiable -algebra of differentiable functions 
. 

The conceptual importance of this natural equivalence lies in the 
fact that the notion of a differential model object, incorporates a 
fundamental categorical duality, which, when interpreted physically, 
unifies the algebraic encoding of differentiable observable information 
expressed in terms of (commutative and unital) differentiable -
algebras of observables, together with, the geometric-topological 
representation of these model objects in terms of affine differential 
(commutative) -ringed spaces of states. Moreover, both, the algebraic, 
and, the equivalent dual geometric representation of differential model 
objects, implement and reciprocally respect faithfully the bidirectional 
localization-globalization process of observation within the topos of 
sheaves. 
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a commutative and unital coordinatization ring, thought of as a -
algebra of observables, whose representability is relativized with respect 
to the topos of sheaves , Then, the open sets of the global 

topological space , play the role of a category of extensional reference 
contexts of observation, partially ordered by inclusion. Consequently, the 
right action of this category on the ring of observables, partitions it into 
sorts parameterized by the base local contexts, inducing the uniform 
homologous fibered information structure of a presheaf of local 
observables over the base category of localizing contexts. In this sense, 
the geometric classification of the total information content included in 
the representation of the corresponding natural system by a formal 
system of the above form, through observation, which in addition respects 
the requirements of a coherent localization-globalization process, can be 
performed in a dually equivalent manner. 

More precisely, observable information organized in the form of a 
presheaf can firstly be contextualized at base points by application of the 
germs-functor, and then, glued together (by taking the disjoint union of 
the fibers and topologizing the formed space as an étale bundle), such that, 
the set of cross sections constitutes a sheaf obtained by the subsequent 
application of the cross-sections functor. Alternatively, observable 
information organized in the form of a presheaf can firstly be made 
compatible with respect to restriction from the global to the local, as well 
as, extension from the local to the global, by application of the 
sheafification functor, and then, be contextualized at the base points of 
the equivalent étale bundle, by subsequent application of the germs-
functor on the sheaf of local observables formed from the sheafification of 
the presheaf we started with. 

Thus, observation of natural systems preserving the requirements 
of a coherent localization-globalization process, can be implemented 
equivalently, given the initial organization of observable information in 
the form of a presheaf of rings of local observables, either, by firstly 
contextualizing information at base points of a topological space in terms 
of observable germs, and then, gluing appropriately, or, by firstly making 
locally observable information compatible with respect to restriction and 
extension, and then, contextualizing at those perspectives. Again, there is 
a key concept that unlocks the meaning of this equivalence, referring to 
the sequence of the operations needed, in order to make observation of 
natural systems preserving the requirements of a coherent localization-
globalization observation process; It is that, any sheaf of local observables 
can be conceived as a sheaf of cross-sections of its corresponding 
equivalent by duality étale bundle. 

The formalization of the above takes place, when we first recollect 
that there is a categorical natural equivalence between the categories of 

R

( )YShv
Y
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sheaves  on , and the category of étale topological bundles 

 over , as follows: 
 

 
 
Now, the crucial fact that a sheaf of local observables is identified as a 
sheaf of cross-sections of the corresponding étale bundle, is expressed 
functorially by the requirement that the unit natural transformation of 

this adjunction (natural equivalence) is an isomorphism . 

Moreover, in the case at issue, the counit  is also an 
isomorphism. Thus, the cross sections-functor  and 
the germs-functor  can be conceived as inverses to 
each other. 

Let us now extend this line of thought, by considering the above 
-algebra of observables as a differentiable -algebra  

corresponding to a model differential space of states . We intend to 
conceptualize the procedure of model differentiable observable 
information acquisition constituting a corresponding model differential 
observation process. The reason that we focus our attention on the notion 
of a model differential observation process is that we can extend it for the 

case of an -manifold by means of a gluing datum. 
We claim that a model differential observation process should be 

conceived categorically as a natural transformation of the identity of  
enacted through the multitude of all variable localization domains of its 
real spectrum topological space, which classifies its total information 
content. This natural transformation of the identity of  is expressed 
concretely, by the counit of the adjunction between the category of 
(commutative and unital) differentiable -algebras of observables , 
and the category of affine differential (commutative) -ringed spaces 
of states . 

Moreover, since the adjunction is actually a categorical natural 
equivalence (duality), the counit natural transformation is an 
isomorphism. In this sense, a model differential observation process, 
enacted through the multitude of all variable localization domains of its 
real spectrum topological space classifying its total information content, 
according to the localization-globalization process, is conceived as the 
operational implementation of the counit isomorphism: 
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In this sense, the composite endofunctor: 
 

 
 
may be called a model differential observation. Note that any 
differentiable -algebra of observables can be considered as a fixed 
point of a model differential observation functor . 

Next, let us consider a commutative (locally) -ringed (or -
algebraized) space of states denoted by the pair . An -module 

 is called a locally free -module of finite rank m, if for any point 
 there exists an open locus  of  such that: 

 

 
 

where  denotes the -direct sum of the sheaf of -

algebras of observables  restricted to , for some . 
Furthermore, if  is a constant sheaf of -algebras, then any locally 
free -module of finite rank m, for some , stands for a local 
system of coefficients. 

In case that we view a smooth -manifold as an -ringed (or 

-algebraized) space of states  obtained by means of a 

gluing datum with respect to the category of smooth models , then 

a (smooth) locally free -module of finite rank corresponds bijectively 

to a (smooth) vector bundle on . 
It is worth explaining the above stated bijective correspondence 

between locally free -modules of finite rank and vector bundles on 

 as follows: 

Firstly, we notice that since sections of  are smooth functions 

on , we may think of the corresponding sections of the -module 

 as vector-valued functions. 

Secondly, we notice that if we have a general locally free -

module  of finite rank, then by definition, it is locally isomorphic to 

 for some . We bear in mind that, if  is a point of , and 

 is the ideal of  consisting of germs of smooth functions at , 

vanishing at , we may consider for any  its image in 
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. Then, the evaluation morphism , which takes 

any smooth function  to its real value , provides an isomorphism 

of  with . Hence, the evaluation morphism of a smooth 

function  is equivalent to considering the image of  in . 

This observation leads us to the conclusion that, by analogia, the -

vector space  is the vector space in which the sections of 

 take values at the point . 
Thirdly, we notice that the essential difference between the case 

referring to  and the case referring to a locally free sheaf  lies in 

the fact that in the latter case the vector space  associated 

with  depends on the point  in comparison to the former case 
where such a dependence is not existent. Put differently, there is no 
natural isomorphism of these -vector spaces at two different points 

 and  of . 

Of course, we may consider the set-theoretic union of all , viz., 

. We notice that  has a natural projection morphism  into 

, such that . Moreover, for any  there exists an open 

locus  such that  is isomorphic to , so that  

may be identified with , just as we may identify the morphism 

 with the projection . In particular, the set 

 can be endowed with the smooth structure of the product space 

. Then it is straightforward to construct an appropriate gluing 

datum and thus obtain a corresponding -manifold if we consider as a 

category of models  the smooth category of vector models, denoted 

by . The category  has as objects pairs of the form: 
 

 
 

Then, given the category of smooth vector models , we may 

construct a smooth -manifold satifying the conditions [I], [II], [III] 

given previously. Again, we note that the structure of a smooth -
manifold is obtained by the equivalence relation on the disjoint union of 
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its coordinate charts induced by the corresponding gluing datum with 
respect to the category of smooth vector models. 

Now, the datum , consisting of a smooth -manifold  

(which is an -dimensional -manifold), a smooth -
dimensional -manifold  and a smooth projection morphism 

 with the above described properties instantiates a smooth 

vector bundle over  of rank . 

Thus, for any locally free -module  of finite rank we can 
construct an associated smooth vector bundle  of the same rank. 

Inversely, the sheaf of sections of any (smooth) vector bundle on  is a 

locally free -module of finite rank. Thus, the correspondence is 

bijective, and consequently, we can identify locally free sheaves of -
modules with sheaves of (smooth) sections of their associated vector 
bundles on . 

This bijective correspondence between locally free sheaves of 

-modules with sheaves of (smooth) sections of their associated vector 

bundles on , where  is a smooth -manifold, has 
received such close attention in order to provide the necessary geometric 
intuition underlying the general notion of a locally free sheaf of -
modules of finite rank. 

Note that the definition of a locally free sheaf of -modules (of 
finite rank) holds with respect to an arbitrary commutative (locally) -
ringed (or -algebraized) space of states denoted by the pair . 

Thus, it can be applied for example to the case of an affine differential -
ringed space of states, which is by definition, isomorphic to a differential 

-ringed space of the form , where  is a differentiable 

algebra of observables, or even to the case of a general differential -

ringed space of states , since it is definition an -manifold, 
but one which equally retains the analogous geometric intuition by means 
of associated differential vector bundles. 

Next, let us consider the category of differential -ringed spaces 

of states , and let  be an object in this category. Then, the 

functor represented by  is the contravariant functor , 
defined as follows: 
 

i For all differential spaces  in , . 
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ii For all differential spaces-morphisms  in , 
 

 
 

is defined as pre-composition with , that is, . 
 

The functor  represented by the differential spaces of 

states , is called the Grothendieck functor of generalized points 
(states) of . Moreover, the information contained in the differential 
space of states  is classified completely by its functor of generalized 

points (states) . 
In this sense, it is possible to extract geometric information 

without knowing whether there is actually a differential space in 
possession of a functor of the above form as its functor of generalized 
points. Pursuing the functorial approach one step further, we notice that 
the functor of generalized points of an -ringed differential space of 
states is completely determined by its restriction to the subcategory of 
-ringed affine differential spaces of states, together with, the gluing 
datum between any two -ringed affine differential spaces belonging 
to the covering family of that differential space. 

In this manner, it is specified by means of the contravariant 
representable functor from the category of -ringed affine differential 
spaces to the category of sets, or equivalently, via the covariant 
representable functor from the category of differentiable -algebras of 
observables to the category of sets (modulo the compatibility conditions), 
thus admitting a well-defined operational determination in terms of 
model differential observation processes, as previously outlined. 
Furthermore, the appropriate implementation of the corresponding 
gluing conditions, should again respect the localization-globalization 
process, conceived in this generalized categorical context. 

Hence, there is every need to secure compatibility of information 
under the operations of restriction (from the global to the local level) and 
extension (from the local to the global level), where, the notions of local 
and global receive a meaning only with respect to a suitable notion of 
topology (categorical Grothendieck topology) defined on the category of 
differential -ringed spaces of states. Conclusively, at this stage, we 
may say that a differential -ringed space of states constitutes the 
sheafification of the model differential observable information encoded in 
its functor of generalized points (restricted to affine differential -
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ringed spaces of states), with respect to a topology that explicates the 
localization-globalization process in a categorical context. 

Further on, we are going to examine in detail the semantic role of 
the notion of a categorical Grothendieck topology. At the moment, we 
should take note that, in relation to the functorial viewpoint on 
differential -ringed spaces of states, the Gelfand topology, which has 
enebled the sheafification of observables (taking values in the affine 
differential -ringed spaces of states), gives rise to a Grothendieck 
topology on the category of differential -ringed spaces of states. 
 
1100..66  TTOOPPOOLLOOGGYY  OOFF  SSIIEEVVIINNGG::  CCOOMMMMUUNNIICCAATTIIOONN  SSIITTEESS  

 
The notion of a categorical Grothendieck topology requires, first of all, 
the abstraction of the constitutive properties of localization in 
appropriate categorical terms, and then, the effectuation of these 
properties for the definition of localization systems. The crucial 
observation has to with the fact that the concept of sheaf, in terms of 
coverings, restrictions, and collation, can be defined and used not just in 
the spatial sense, namely on the usual topological spaces, but in a 
generalized spatial sense, on more general topologies (Grothendieck 
topologies). In the usual definition of a sheaf on a topological space we use 
the open neighbourhoods  of a point in a space ; such 
neighbourhoods are actually injective topological maps . The 
neighbourhoods  in topological spaces can be replaced by morphisms 

 not necessarily injective, and this can be done in any category 
with pullbacks. 

In effect, a covering by open sets can be replaced by a new notion 
of covering provided by a family of morphisms satisfying certain 
conditions. These conditions abstract the constitutive properties of a 
well-defined localization process in appropriate categorical terms. Our 
presentation applies to any small category , consisting of base 
reference categorical objects , with structure-preserving morphisms 
between them, as arrows. Of course, in the classical topological case,  
is tautosemous with  and the reference contexts  are 

tautosemous with the open sets  of , partially ordered by 
inclusion. 

For an object  of , we consider indexed families: 
 

 
 

R

R
R

U X
U X∞

U
V X®

B

B
B

( )XO B
U X

B B

={ : , }i iB B i Iy ® ÎS



471COMMUNICATION TOPOI

439 
 
of maps to , and we assume that for each object  of  we have a set 

 of certain such families satisfying conditions to be specified later. 

These families play the role of coverings of  under those conditions. 
For the coverings provided, it is possible to construct the analogue of the 
topological definition of a sheaf, where as presheaves on  we consider 
the functors . 

According to the topological definition of a sheaf on a space we 

demand that for each open cover  of some , every family of 

elements  that satisfy the compatibility condition on the 

intersections , are pasted together as a unique element 

. Imitating the above procedure for any covering  of an object 

, and replacing the intersection  by the pullback  in 

the general case, according to the diagram; 
 

 
 
we effectively obtain for a given presheaf  a diagram of 
sets as follows: 
 

 
 
In this case the compatibility condition for a sheaf takes the form: if 

 is a family of compatible elements, namely satisfy 

, then a unique element  is determined by the 

family such that , where the notational convention 

 has been used . Equivalently this condition can be 
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expressed in the categorical terminology by the requirement that in the 
diagram: 
 

 
 
the arrow , where: 
 

 
 
is an equalizer of the maps: 
 

 
 
and 
 

 
 
correspondingly. 

The specific conditions that the elements of the set , or else 

the coverings of , have to satisfy naturally lead to the notion of a 
Grothendieck pretopology on the category  as follows: 

A Grothendieck pretopology on  is an operation  which 
assigns to each object  in  a set . Each  contains 

indexed families of -morphisms with codomain : 
 

 
 
such that, the following conditions are satisfied: 
 

i For each  in ,  ; 

ii If  in  and  then: 
 

 
 

Note that  is the pullback in  of  along ; 

iii If , and for each : 
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then 
 

 
 

Note that  is an example of a double indexed object rather 

than the intersection of  and . 
 
The notion of a Grothendieck pretopology on the category  is a 
categorical generalization of a system of set-theoretical covers on a 

topology , where a cover for  is a set  such 

that . The generalization is achieved by noting that the topology 
ordered by inclusion is a poset category and that any cover corresponds 

to a collection of inclusion arrows . Given this fact, any family of 
arrows of a pretopology contained in  is a cover as well. 

Now, the notion of a Grothendieck topology on a small category 
, consisting of base reference categorical objects , can be presented in 

terms of appropriate covering devices admitting a functorial 
interpretation. We emphasize that the notion of a Grothendieck topology 
requires, first of all, the abstraction of the constitutive properties of 
localization in appropriate categorical terms, and then, the effectuation of 
these properties for the definition of localization systems. Regarding 
these objectives, the sought abstraction is implemented by means of 
covering devices on the base category of reference contexts, called in 
categorical terminology covering sieves. The constitutive properties of 
localization abstracted categorically in terms of sieves, qualified as 
covering ones, satisfy the following basic requirements, as we will see 
subsequently: 
 
i The covering sieves are covariant under pullback operations, that 

is, they are stable under change of a base reference context. Most 
importantly, the stability conditions are functorial; 

ii The covering sieves are transitive. 
 
From a physical perspective, we benefit from thinking of covering sieves 
as generalized measures of localization of states. The operation assigning 
to each reference context of the base category a collection of covering 
sieves satisfying the closure conditions stated previously, gives rise to the 
notion of a Grothendieck topology on the base category of contexts. The 
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construction of a suitable Grothendieck topology on the base category of 
contexts is significant for the following reasons: Firstly, it lays out 
precisely and unambigously the conception of the local in a categorical 
measurement environment, such that this conception becomes detached 
from its restricted spatial connotation in terms of geometric point-spaces, 
rather finding expression exclusively in relational information terms. 
Secondly, it permits the collation of local information into global by 
utilization of the notion of a sheaf for a suitable Grothendieck topology. 

Firstly, we shall explain the general notion of sieves, and 
afterwards, we shall focus more narrowly on the notion of covering sieves. 

A -sieve with respect to a reference context  in , is a 
family  of -morphisms with codomain , such that if  
belongs to  and  is any -morphism, then the composite 

 belongs to . We may think of a -sieve as a right -
ideal. We notice that, in the case of , since -morphisms are 

inclusions of open loci, a right -ideal equates to a downwards closed 
-subset. 

It is important to realize that a -sieve is equivalent to a 

subfunctor  in , where , denotes 

the contravariant representable functor of the reference locus  in . 
More specifically, given a -sieve , we define: 

 

 
 

This definition yields a functor  in , which is obviously a 
subfunctor of . Conversely, given a subfunctor  in 

, the set: 
 

 
 
for some reference loci  in , is a -sieve. Thus, epigramatically, we 
state: 
 

 -sieve:  =  Subfunctor of :   
 

We notice that if  is a -sieve and  is any arrow to 
the locus , then: 
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is a -sieve, called the pullback of  along , where,  
denotes the codomain of . Consequently, we may define a presheaf 

functor  in , such that its action on loci  in , is given by: 
 

 
 

and on arrows , by , given by: 
 

 
 
We notice that for a context  in , the set of all arrows into , is a 

-sieve, called the maximal sieve on , and denoted by, . 
At a next stage of development, the key conceptual issue to be 

settled is the following: How is it possible to restrict , that is the set 

of all -sieves for each reference context  in , such that each -
sieve of the restricted set can acquire the interpretation of a covering -
sieve, with respect to a generalized covering system? 

Equivalently stated, we wish to impose the satisfaction of 
appropriate conditions on the set of -sieves for each context  in , 

such that, the subset of -sieves obtained, denoted by , 

implement the constitutive properties of localization in functorial terms. 

In this sense, the -sieves of , for each locus  in , to be 

thought as covering -sieves, can legitimately be used for the 
implementation of localization processes. The appropriate conditions 
depicting the covering -sieves from the set of all -sieves, for each 
reference context  in , are the following: 
 
i We interpret an arrow , where ,  are contexts in , 

as a figure of , and thus, we interpret  as an extension of  
in . It is a natural requirement that the set of all figures of  

should belong in  for each context  in . 

ii The covering sieves should be stable under pullback operations, 
and most importantly, the stability conditions should be expressed 
functorially. This requirement means, in particular, that the 
intersection of covering sieves should also be a covering sieve, for 
each reference context , in the base category . 

iii Finally, it would be desirable to impose: (i) a transitivity 
requirement on the specification of the covering sieves, such that, 
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intuitively stated, covering sieves of figures of a context in 
covering sieves of this context, should also be covering sieves of 
the context themselves, and (ii) a requirement of common 
refinement of covering sieves. 

 
If we take into account the above requirements we can define a 
generalized covering system, called a Grothendieck topology, in the 
environment of  as follows: 

A Grothendieck topology on  is an operation , which assigns 
to each reference context  in , a collection  of -sieves, 

called covering -sieves, such that the following three conditions are 
satisfied: 
 
i For every reference context  in , the maximal -sieve 

 belongs to  (maximality condition). 

ii If  belongs to  and  is a figure of , then 

 belongs to  (stability 
condition). 

iii If  belongs to , and if for each figure  in , 

there is a sieve  belonging to , then the set of all 

composites , with , and , belongs to  
(transitivity condition). 

 
As a consequence of the definition above, we can easily check that any 
two -covering sieves have a common refinement, that is: if ,  
belong to , then  belongs to . 

It is important to notice that given a pretopology  we can 
define a topology  giving rise to the same sheaves on . More 
specifically, we say that for any , we have  belongs to  if 

and only if  contains a pretopology covering belonging to . 
As a first application we may consider the partially ordered set of 

open subsets of a topological space , viewed as the base category of 
open reference domains, . Then we specify that  is a covering 

-sieve if and only if  is contained in the union of open sets in . 
The above specification fulfills the requirements of covering sieves posed 
above, and consequently, defines a topological covering system on . 

Obviously, a categorical covering system, i.e. a Grothendieck 

topology  exists as a presheaf functor  in , such that: by 
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acting on contexts  in ,  gives the set of all covering -sieves, 

denoted by , whereas by acting on figures , it gives a 

morphism , expressed as: 
 

, for . 

 
A small category  together with a Grothendieck topology , is 

called a site, denoted by, . 

A sheaf on a site  is a contravariant functor , 

satisfying an equalizer condition, expressed, in terms of covering -
sieves , as in the following diagram in : 
 

 
 

If the above diagram is an equalizer for a particular covering sieve 
, we obtain that  satisfies the sheaf condition with respect to the 

covering sieve . The theoretical advantage of the above relies on the 
fact that it provides a description of sheaves entirely in terms of objects 
of the category of presheaves. 

A Grothendieck topos over the small category  is a category 
which is equivalent to the category of sheaves  on a site . 
The site can be conceived as a system of generators and relations for the 
topos. We note that a category of sheaves  on a site  is a 

full subcategory of the functor category of presheaves . 
The basic properties of a Grothendieck topos are the following: 

 
i It admits finite projective limits; in particular, it has a terminal 

object, and it admits fibered products. 

ii If  is a family of objects of the topos, then the sum 

 exists and is disjoint. 

iii There exist quotients by equivalence relations and have the same 
good properties as in the category of sets. 
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separable, complex Hilbert space. In this case, the quantum event 
structure is identified with the lattice of closed subspaces of the Hilbert 
space, ordered by inclusion, and carrying an orthocomplementation 
operation which is given by the orthogonal complement of the closed 
subspaces. In consequence, the quantum event structure is modelled in 
terms of a complete, atomic, orthomodular lattice. 

The quantum event structure is isomorphic to the partial Boolean 
algebra of closed subspaces of the Hilbert space of the system or, 
alternatively the partial Boolean algebra of projection operators of the 
system. It models the event structure of a quantum mechanical system, 
just as the event structure of a classical system is modelled in terms of a 
Boolean algebra isomorphic to the Boolean algebra of Borel subsets of the 
phase space of the system or, equivalently the Boolean algebra of 
characteristic functions on the Borel subsets of the phase space. 

The notion of an event is considered to be equivalent to a 
proposition regarding the behaviour of a physical system. The quantum 
logical formulation of Quantum theory is based on the identification of 
propositions with projection operators on a complex Hilbert space. 
Furthermore, the order relations and the lattice operations of the lattice 
of quantum propositions are associated with the logical implication 
relation and the logical operations of conjunction, disjunction, and 
negation of propositions. In effect, a non-classical, globally non-Boolean 
logical structure is induced which has its origins in Quantum theory.  

On the contrary, the propositional logic of classical mechanics is 
Boolean logic. This means that the class of models over which validity and 
associated semantic notions are defined for the propositions of classical 
mechanics is the class of Boolean logic structures. We stress that Boolean 
logic refers to a Boolean algebra of propositions in which the Boolean 
lattice operators of join, meet, and complement, correspond to the logical 
operations of disjunction, conjunction and negation respectively. 
Moreover, the ordering in the lattice is interpreted as a logical relation of 
implication between the propositions of the algebra, and also, 1 and 0 are 
used to denote the greatest and lower elements of the lattice respectively. 

It is a standard practice pertaining to the quantum-logical 
formalizations of quantum event structures that, due to the identification 
of quantum events with projection operators on a complex Hilbert space, 
the derived non-Boolean lattice structure is contrasted with the Boolean 
lattice structure referring to classical events. Although this is indeed the 
case globally, the pertinent problem is that every single observed event in 
the quantum domain requires taking explicitly into account the complete 
Boolean algebra of projection operators, which spectrally resolves the 
observable that this event refers to. Most significantly, such a complete 
Boolean algebra bears the status of a logical structural invariant 
characterizing a whole algebra of observables commuting with the one in 
question, and thus, potentially may give rise to the same event. 
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In other words, a complete Boolean algebra of projections is the 
logical structural invariant of a commutative subalgebra of observables, 
meaning that it instantiates the simultaneous spectral resolution of all 
these commuting observables. Given that observables exist which do not 
commute with any particular commutative subalgebra of observables, we 
encounter a multiplicity of possible Boolean algebras of orthogonal 
projections, which play the role of an invariant only in the context of all 
commuting observables that can be simultaneously resolved spectrally by 
this invariant. 

In sum, the conceptual peculiarity characterizing a quantum event 
structure pertains to the fact that in the quantum domain there is no such 
thing as a unique and universal logical structural invariant with respect to 
which all possible observables can be spectrally resolved simultaneously. 
On the contrary, there exists a multiplicity of spectral invariants 
associated with commutative subalgebras of observables. Therefore, 
although a quantum event structure is globally non-Boolean, it can be 
spectrally qualified only in terms of Boolean event structures attached to 
it, in their function as logical structural invariants of co-measurable 
families of observables. Since these spectral invariants are not global, we 
consider them local, where the locality requirement refers precisely to the 
physical context of all commuting observables that can be simultaneously 
resolved spectrally by an invariant of this form. 

We conclude that a complete Boolean algebra of projection 
operators in its function as a local spectral invariant of a commutative 
subalgebra of quantum observables plays the role of a Boolean frame with 
respect to which a quantum event can be qualified, and thus, lifted to the 
empirical level. Equivalently, each local Boolean frame serves as the local 
pre-conditioning invariant logical structure for the evaluation of events 
of all co-measurable observables in this frame. Due to the non-availability 
of a global uniquely defined Boolean frame, we must by default take into 
account all possible local Boolean frames together with their 
interrelations. The crucial problem is whether it is possible to identify a 
universal way to specify a quantum event structure through the literal 
adjunction of local Boolean spectral invariants to it, objectified in terms 
of local Boolean logical frames. 

The existence of a universal solution essentially renders the global 
orthomodular lattice structure of quantum events physically and 
empirically vacuous without the gnomonic adjunction of local spectral 
invariants to it, effecting the quantum-classical communication through 
observability and measurement. The role of each locally adjoined Boolean 
frame is the instantiation of a partial or local structural congruence with 
a Boolean event structure pertaining to a context of measurement. The 
multiplicity of applicable local Boolean frames effects the filtration, 
percolation, and separation of several resolution sizes and types of 
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quantum observable grain depending on the character of the 
corresponding spectral orthogonal projections. 

The objective of a universal solution is the derivation of the non-
directly accessible quantum kind of event structure by means of all 
possible partial or local structural congruences with the directly accessible 
Boolean kind of event structure, forced by means of adjoining local 
spectral invariants as probing frames to the former. In this setting, the 
major role is subsumed by all possible structural relations allowed among 
the probing Boolean frames, the spectra of which may be disjoint or 
nested or overlapping and interlocking together non-trivially. It is the 
realization that distinct Boolean frames may have non-trivial 
intersections, or more generally, non-trivial pullback compatibility 
relations that it is at the heart of the so called “quantum paradoxes”. 

The universality of the required solution poses the need to 
formulate the problem in functorial terms, to circumvent dependence on 
the artificial choice of particular Boolean frames. In turn, it requires a 
category-theoretic framework of interpretation, based on the 
aforementioned notion of partial or local structural congruence, which 
locally allows the conjugation of a quantum event structure by means of 
the spectral invariants adjoined as frames to it. 

A Boolean categorical event structure is a small category, denoted 
by , which is called the category of Boolean event algebras. The objects 
of  are complete Boolean algebras of events, and the arrows are the 
corresponding Boolean algebraic homomorphisms. 

A quantum categorical event structure is a locally small co-
complete category, denoted by , which is called the category of 
quantum event algebras. The objects of  are the non- directly 
accessible global quantum event algebras, and the arrows are the 
corresponding quantum algebraic homomorphisms. 

We consider a Boolean shaping functor of , , which 
is to say a forgetful functor assigning to each Boolean event algebra the 
underlying quantum event algebra and to each Boolean homomorphism 
the underlying quantum algebraic homomorphism. Because of the fact 
that an opposite-directing functor from  to  is not feasible, since a 
quantum event algebra cannot be realized within any Boolean event 
algebra, we seek for an extension of  into a larger categorical 
environment, where any such realization becomes possible. 

This extension should conform to the intended physical semantics 
adopted in adjoining a multiplicity of Boolean spectral invariants to a 
quantum event algebra, objectified as probing Boolean frames of the 
latter. For this reason, it is necessary to extend the probes from the 
categorical level of  to the categorical level of diagrams in , such 
that the initial probes can be embedded in the latter extended category. 

B
B

L
L

L : ®M B L

L B

B

B B



481COMMUNICATION TOPOI

449 
 

This is accomplished by means of the Yoneda embedding , 

which constitutes the free completion of  under the adoption of 
colimits of diagrams of Boolean structure probes, that is, of spectral 
invariants to be adjoined on a quantum event algebra. 

An object  of  is thought of as a right action of the 
category  on a set of observables, which is partitioned into a variety of 
Boolean spectral kinds parameterized by the Boolean event algebras  
in . Such an action  is equivalent to the specification of a diagram in 

, simply considered as a -variable set, called a presheaf of sets on . 
For each probe  of , (B) is a set, and for each arrow , 

(C) is a set-theoretic function such that if (B), the 

value  for an arrow  in  is called the restriction of 
 along  and is denoted by . 

Each Boolean probe  in  gives rise to a contravariant 

representable Hom-functor . This functor 

defines a -variable set on , represented by . The functor  is a full 

and faithful functor from  to the contravariant functors on , i.e.: 
 

 
 

giving rise to the Yoneda embedding . 
The category of presheaves of sets on Boolean probes, denoted by 

, has objects all functors , and morphisms all natural 
transformations between such functors, where  is the opposite 
category of , meaning all the arrows are inverted. In the setting of the 

functor category  it becomes possible to realize a quantum event 
algebra  in  in terms of a distinguished presheaf of Boolean event 
algebras, which models the spectral capacity of the latter to act as locally 
invariant logical probing frames of a quantum event algebra. These 
Boolean frames of an  in  are objectified as -targeting 
morphisms in : 
 

 
 
being interrelated by the operation of restriction. Explicitly, this means 

that for each Boolean homomorphism , if  is a 
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Boolean frame of , the corresponding Boolean frame  

is given by the restriction or pullback of  along , denoted by 

. Thus, we obtain a contravariant presheaf functor 

, called the functor of Boolean frames 

of . Since the physical interpretation of the functor  refers to 

the functorial realization of a quantum event algebra  in  in terms 

of Boolean probes  in , we think of  as the variable Boolean 

spectral functor of  through the Boolean frames adjoined to it as local 
invariants. 

Due to the categorical Yoneda Lemma, an injective 
correspondence obtains between elements of the set  and natural 

transformations in  from  to  and this correspondence 

is natural in both  and , for every presheaf of sets  in  
and probe  in . The functor category of presheaves of sets on 

Boolean probes  is a complete and cocomplete category. Thus, 

the Yoneda embedding  constitutes the free completion 

of  under colimits of diagrams of Boolean probes. 
The significance of this boils down to the fact that, if we consider 

a Boolean shaping functor  there can be precisely one unique, 

up to isomorphism, colimit-preserving functor , such 
that the following diagram commutes: 
 

 
 
Consequently, every morphism from a Boolean probe  in  to a 
quantum event algebra  in  factors uniquely through the functor 

category  and the specification of the colimit-preserving functor 

 is instrumental for understanding how the underlying 
structure of  in  emerges through communication, emerges in 
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other words, through the canonics of adjoining Boolean probes as local 
spectral invariants to it. 

More precisely, the functor  plays the role of a left adjoint , 

and thus serves as a colimit-preserving functor, from  to . 

Equivalently, the functor  is the left adjoint of the categorical 

adjunction between the categories  and , where the right 

adjoint , is interpreted as the realization functor of  in 
terms of variable Boolean probing frames. 

More specifically, the variable Boolean probes-induced realization 

functor of  in  is defined as follows: 
 

 
 
such that the contravariant presheaf functor 

 in the image of  into in , 

for a fixed  in , is the presheaf functor of Boolean frames of . 
We conclude that the problem of specification of a quantum event 

algebra  in  by means of diagrams of Boolean probes  has a 
universal solution, which is provided by the left adjoint functor 

 to the realization functor . Equivalently, 
the existence of the left adjoint functor  paves the way for an explicit 
inductive synthesis of a quantum event algebra  in  by means of 
appropriate diagrams of Boolean probes in a functorial manner. 
Therefore, a quantum event algebra is essentially generated, and 
indirectly completely specified, by the canonics of adjoining locally 
invariant Boolean spectral frames thereto for the qualification and 
measurement of events, in short, through quantum-classical 
communication. 

Technically speaking, a categorical adjunction pertains between 

the categories  and , called the Boolean frames–quantum 
adjunction. It is characterized by a pair of adjoint functors  as 
follows: 
 

 
 

Thus, we obtain a bijection, which is natural in both  in  and 
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abbreviated as follows: 
 

 
 
The “category of elements” of a presheaf plays an essential role in the 
canonics of this adjunction. We bear in mind that every presheaf functor 

 in  gives rise to a category, called the category of elements of 
 and denoted by . 

The objects of this category are all pairs , and the morphisms 

 are those morphisms  of the underlying 

category of probes , satisfying the condition that , namely 
that the restriction, or the pullback of  along  is . 

If we project onto the second coordinate of , we obtain a functor 

. Therefore, every presheaf functor  induces a split 

discrete and uniform fibration, where  is the base category of the 
fibration. 
The fibers are categories in which the only arrows are identity arrows. If 

 is a Boolean probe in , the inverse image under  of  is simply 

the set (B), although its elements are written as pairs so as to form a 
disjoint union. 
 

 
 
A natural transformation  between the presheaves  and  

on the category of Boolean probes ,  is equivalent to a 
family of compatible mappings between sets: 
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indexed by the probes  of . Each such mapping  is identical with 
the following mapping: 
 

 
 
Therefore, a natural transformation  between the presheaves  and 

 can be equivalently represented as a family of arrows of  

targeting , which is being indexed by the objects  of the 

category of elements of the presheaf , namely 
 

 
 

These arrows  considered jointly give rise to a cocone from the 

functor  to . The categorical definition of a colimit determines 

that each such cocone emerges by the composition of the colimiting 
cocone with a unique arrow from the colimit  to . Equivalently, a 
bijection exists, which is natural in  and : 
 

 
 
Hence, the Boolean probes-induced realization functor of , realized for 
each  in  by the presheaf of Boolean probing frames 

 in , has a left adjoint functor 

, which is defined for each presheaf of sets  in  
as the colimit . 

The pair of adjoint functors  formalizes category-
theoretically the functorial process of encoding and decoding information 
between diagrams of Boolean probes  and quantum event algebras  

through the action of Boolean probing frames . 
The existence of an adjunction between two categories always 

gives rise to a family of universal morphisms, called unit and counit of the 
adjunction, one for each object in the first category and one for each 
object in the second. Furthermore, every adjunction gives rise to an 
adjoint equivalence of certain subcategories of the initial functorially 
correlated categories. It is precisely this category-theoretic fact which 
determines the necessary and sufficient conditions for the isomorphic 
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representation of a quantum event algebra  in  by means of 
suitably qualified functors, forming sheaves of Boolean probing frames. 

For any presheaf  in the functor category , the unit of 
the adjunction is defined as follows: 
 

 
 
On the other side, for each quantum event algebra  in  the counit is 
defined as follows: 
 

 
 
We conclude that the problem of establishing a functorial representation 
of a quantum event algebra in terms of Boolean logical probes has a 
universal solution in terms of quantum-classical natural communication, 

which is provided by the left adjoint functor  to the 

Boolean realization functor . In other words, the 
existence of the left adjoint functor  paves the way for an explicit 
articulation of quantum event algebras by means of suitably qualified 
diagrams of Boolean probing frames based on partial or local congruences 
between the Boolean and quantum kinds of event structure. 

The counit natural transformation  defines the spectral 

enunciation of a quantum event algebra  in  through metaphora by 
means of the colimiting–interconnection of Boolean probing frames of , 
whose domains are partially congruent Boolean event algebras to . 

In more detail, the left adjoint functor of the Boolean frames–

quantum adjunction, , is defined for each presheaf  in 

 as the colimit . The functorial enunciation of a quantum event 

algebra  in  by means of the counit natural transformation requires an 
explicit calculation of the colimit  of the presheaf functor of Boolean 

probing frames of a quantum event algebra . The corresponding category 

of elements  has objects all pairs , where  is a 

Boolean event algebra and  is a Boolean frame of  

defined over . The morphisms of , denoted by 

, are those Boolean event algebra homorphisms 
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 of the base category  for which , that is, the 

restriction or pullback of the Boolean frame  along  is . 
The pertinent calculation of the colimit  is simplified by 

the observation that we have an underlying colimit-preserving faithful 
functor from the category  to the category . Thus, the sought 
colimit can be calculated by means of set-valued equivalence classes, or 
partition blocks in , under the constraint that the derived set of 
equivalence classes are able to carry the structure of a quantum event 
algebra: 
 

 
 
The indexing category corresponding to the functor  is the 

category of its elements , whence the functor  

defines the diagram  over which the colimit should be calculated. 
Since a colimit-preserving functor from the category  to  exists, 
the sought colimit is equivalent to the definition of the tensor product 

 of the set valued functors: 
 

 
 
where the contravariant functor  is considered a right -module 

and the covariant functor  a left -module, in analogia with the 
algebraic definition of the tensor product of a right -module with a left 

-module over a ring of coefficients . The above defines the functorial 
tensor product decomposition of the colimit in the category of elements 
of  induced by the Boolean shaping functor  of . 

Therefore, for a Boolean probing frame , 

 and  the elements of the set  are all 

of the form . This element can be written as: 
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We conclude that the set  is actually the quotient of the set 
 

 
 
by the smallest equivalence relation generated by the above equations, 

whence the elements  of the quotient set  are the 

equivalence classes of this relation. Since  denotes a probing Boolean 

frame of  and  denotes a projection operator , we 

conclude that the quotient set  is a set of equivalence 
classes, or partition blocks of pointed Boolean frames, called Boolean 
germs. 

Most important, this set can be naturally endowed with a quantum 
event algebraic structure by defining the orthocomplementation operator 

according to the assignment , and the unit element 

according to . Notice that two equivalence classes in the 

quotient set  can be ordered if and only if they have a 
common refinement. Consequently, the partial order structure is defined 
by the assignment, 
 

 
 
if and only if, 
 

 
 
where we have made the following identifications, 
 

 

 
 

with ,   , according to the pullback diagram, 
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such that , , and , 
 denote the pullback of  along 

 in the category of quantum event algebras. Thus, the 
ordering relation between any two equivalence classes of pointed Boolean 

frames in the colimiting set  requires the existence 
of pullback compatibility conditions between the corresponding Boolean 
frames. 

We conclude that the spectral constitution of a quantum event 
algebra  in  through the Boolean frames–quantum adjunction is 
based on the action of the endofunctor  on , defined by: 
 

 
 

 
which acts as the global spectral constitution endofunctor of a quantum 
categorical event structure  via Boolean probing frames. 

In particular, for each quantum event algebra  in  the counit 
universal morphism of the Boolean frames-quantum adjunction evaluated 
at  is expressed in terms of equivalence classes, or partition blocks of 
pointed Boolean frames, that is, in terms of Boolean germs: 
 

 
 

Thus, the counit  fits into the following diagram: 
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Accordingly, for every Boolean frame  the 

projection operator  is mapped to an event in  only through 

its factorization via the adjoined Boolean germ , i.e. through the 
partition spectral block of pointed Boolean frames it belongs to, according to: 
 

 
 
This epitomizes the means of communication between the Boolean and 
the quantum structural kinds of event structure by means of germinal 
partial structural congruence through the canonics of the established 
adjunction. The crucial idea here is that the information encoded in the 
quantum structural kind can be accessed, decoded, qualified, and 
quantified, only indirectly in terms of modulation by Boolean germs, or 
partition spectral blocks of equivalent pointed Boolean frames. 

In the same vein of ideas, it is revealing to examine the conditions 
that force the counit natural transformations of the identity functor in the 
category of quantum event algebras  into an isomorphism. The counit 
isomorphism expresses the property of invariance of a quantum event 
algebra under the two-step procedure of encoding in terms of appropriate 
families of Boolean event algebras through probing frames in , and 
then decoding back by means of the action of the left adjoint on the 
former, denoted by . 

Note that that if the counit evaluated at  is an isomorphism, 
then  can be considered as a fixed point of the corresponding global 
spectral constitution endofunctor of  through the action of Boolean 

probing frames. In general, the counit natural transformation  is a 
natural isomorphism, if and only if the right adjoint functor of the Boolean 
frames–quantum adjunction is full and faithful, or equivalently, if and 

only if the cocone from the functor  to  is universal for each 

 in . In the latter case, the functor  is characterized as a 
dense Boolean shaping functor. 

It is worth specifying in more detail the necessary and sufficient 

conditions which force the counit  to be an isomorphism. These 

conditions amount to the notion of sheaf-theoretic localization of  

through the probing frames . 

If the counit natural transformation  at  is restricted to an 
isomorphism: 
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then the quantum structural information of  is completely decoded in 
terms of its adjoined Boolean germs, that is, through spectral equivalence 
classes of pointed Boolean frames. This will rest on the satisfaction of 
appropriate conditions by restricted families of Boolean frames in , 

distinguished qualitatively by their function as local Boolean covers of . 
The requirements qualifying Boolean frames as local Boolean 

covers of  are the following: First, they should constitute a minimal 
generating class of Boolean frames instantiating a sieve, i.e. a subfunctor 
of the functor of Boolean frames  of . Second, they should 

jointly form an epimorphic family covering  entirely on their overlaps. 
Third, they should be compatible under refinement, or more generally 
pullback operations in . Fourth, they should be transitive such that 
subcovers of covers of  can be qualified as covers themselves. 

A functor of Boolean coverings for a quantum event algebra  in 
 is defined as a subfunctor  of the functor of Boolean frames  

of , i.e. . For each Boolean algebra  in , a subfunctor 
 is equivalent to a right ideal, or equivalently a spectral sieve 

of quantum homomorphisms , defined by the requirement 

that, for each  in , the set of elements of  is a set 

of Boolean frames  of , called Boolean covers of 

, satisfying the following property: 

If , i.e. it is a Boolean cover of , and 

 in  for  in , then [

, i.e. it is also a Boolean cover of }. 

A family of Boolean covers ,  in , is the 

generator of a spectral sieve of Boolean coverings , if and only if, this 
sieve is the smallest among all containing that family. The spectral sieves 
of Boolean coverings for an  in  constitute a partially ordered set 
under inclusion of subobjects. The minimal sieve is the empty one, namely 

 for all  in , whereas the maximal sieve is the set of all 

probing Boolean frames of  for all  in , considered as Boolean 
covers. 

We recall that the ordering relation between any two equivalence 

classes of pointed Boolean frames in the colimiting set  
requires the property of pullback compatibility between the 
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corresponding Boolean frames. Therefore, if we consider a functor of 
Boolean coverings  for a quantum event algebra , we require that 
the generating family of Boolean covers they belong to is compatible 
under pullbacks. 

The pullback of the Boolean covers  and 

, where  and  are Boolean event algebras in , 

with common codomain a quantum event algebra , consists of the 

Boolean cover , together with the two projections  

and , as shown in the diagram: 
 

 
 

If the Boolean probing frames  and  are injective, then their 
pullback is given by their intersection. Next, we define the pairwise gluing 

isomorphism of the Boolean probing frames  and , as follows: 
 

 

 
 
From the previous definition, we derive the following cocycle conditions: 
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where, in the first condition  denotes the identity of , in the 

second condition , and in the third condition 

. 
Thus, the gluing isomorphism between any two Boolean frames of 

a spectral sieve  assures that  and 

 probe  on their common refinement in a 
compatible way. This provides the sought-after criterion for the indirect 
isomorphic representation of a quantum event algebras in terms of a 
spectral sieve  adjoined to it, under the proviso that the family of 

all Boolean covers , for variable  in , generating this 

spectral sieve jointly form an epimorphic family covering  completely: 
 

 
 

where  is an epimorphism in  with codomain a quantum event 

algebra . 
A sieve adjoined to a quantum event algebra  is a Boolean 

localizing spectral sieve of , or equivalently a functor of Boolean 
localizations of , if and only if it is closed with respect to an epimorphic 
family of Boolean covers of  and the above cocycle conditions are 
satisfied. The conceptual significance of a Boolean localizing spectral 
sieve of  lies in the fact that the functor of Boolean probing frames 

 becomes a structure sheaf of local Boolean frames when restricted 
to it. Then, for a dense epimorphic generating family of Boolean covers in 
a Boolean localization functor  of , the counit of the Boolean 
frames-quantum adjunction is restricted to a quantum algebraic 
isomorphism, that is at once structure-preserving, injective and 
surjective. 

In turn, the right adjoint functor of the adjunction restricted to a 
Boolean localization functor is full and faithful. This argument is 
formalized more precisely in topos-theoretic terminology by means of the 
subcanonical Grothendieck topology consisting of epimorphic families of 
covers on the base category of Boolean event algebras. Consequently,  

becomes a reflection of the topos of variable local Boolean frames , 
and the structure of a quantum event algebra  in  is preserved by 
the action of a family of Boolean frames if and only if this family forms a 
Boolean localization functor of . In this case, any compatible family of 
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Boolean frames in the localized structure sheaf has a unique 

amalgamation, in the sense that there exists a unique colimiting Boolean 

frame , such that the restriction of along 

gives , that is .

jy

: ( )L Ly Ä ®T MB y ju

jy =j juy y×
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1111..11  DDIISSTTIINNGGUUIISSHHIINNGG  BBEETTWWEEEENN  SSPPAATTIIAALL  AANNDD  TTEEMMPPOORRAALL  
  CCOOVVEERRIINNGG  RREELLAATTIIOONNSS  

 
The functioning of a localization schema in the physical continuum is 
based on the operational specification of an appropriate covering 
categorical environment consisting of varying reference loci for the 
determination of observables. As we have already made clear previously, 
the functional role of localization systems serves to guarantee an efficient 
pasting code of the observable information between different localizing 
domains, effectuating the compatible transition from the local to the 
global regime. 

Until this stage, we have not established any particular 
interpretation of an abstract localization schema in a continuum of 
observable events in terms of spatial or temporal relations. From a 
physical viewpoint, since we have assumed that some localizing 
categorical environment admits an operational specification, we ought to 
expand on the functioning of a localization schema in spatiotemporal 
terms, so that, a reference to individuated observable events in these 
terms can be made possible. In this sense, it is necessary to struggle for a 
well defined notion of a category equipped with covering families 
admitting a viable interpretation in terms of spatial and temporal 
relations, which will in consequence be suitable to provide the necessary 
and sufficient means for the manifestation of some localization schema in 
the physical continuum in terms of observable events individuated from 
it in a spatial or temporal way. 

Significantly, we do not assume any spatialization of temporal 
concepts, as is usually the case. Accordingly, it becomes unavoidable to 
disentangle the defining requirements characterizing spatial covering 
systems, namely families consisting of spatial reference domains, from 
those characterizing temporal covering systems, that is, families 
consisting of temporal reference domains. This strategy will prove fruitful 
if we manage to associate, at a later stage, a localization schema in the 
physical continuum with notions of spatially and temporally 
distinguished events. The difference between spatial and temporal 
covering systems will be based on the distinctive meaning that the notion 
of extension acquires, when referring to temporal loci, as compared to 
spatial ones. 

If we consider a general categorical environment , and an object 
 in  to be interpreted as a spatial reference locus, then the 

extensional aspects of  are captured by the contravariant Hom-
functor of generalized point-elements of  in , denoted by 

, which is a representable presheaf in . The 
functor  gives a geometric form to the abstract extension of the 

B

B B

B
B B

[ ]:= ( , )B Hom B-y B

op
SetsB
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spatial locus  in the environment of the category . In this sense, an 
arrow , such that ,  in , is interpreted as a singular figure 
of . Stated differently,  is called a spatial extension of  in . 

Note that, in this sense,  stands for the spatial extension of 
many different spatial loci, not necessarily constrained by relation to each 
other in any particular fashion, except that of the concrete conditions 
characterizing  as a presheaf functor. Evidently, this is not the case 

if  is considered as a temporal reference domain. In this case, if  is 
considered as the temporal extension of , then, any other locus  
temporally extended by , in the sense that an arrow  exists, is 
extended in this manner, by necessarily factoring through . 
Equivalently stated, if a locus  is depicted in , and a locus  is 
considered to be a temporal extension of the specified locus , then, in 
this temporal reference context, any other locus  for which an arrow 
exists with codomain , must necessarily be a proper part of , i.e. a 
monic arrow , or a singular part of . 

Hence, in the case of temporal extension, if we specify the locus 
, as temporally extended to , then any other locus also temporally 

extended to , is so extended by factoring through . Of course, the 
definition of temporal extension of a locus  by some other locus  in 
the category does not depend on which locus  is specified as the one 
being extended by , but once a particular  is depicted as a reference 
domain, then the factorization condition of any other  -extended also 
by - through , guarantees the satisfaction of the quality of temporal 
extension. 

The definition of the notion of temporal extension as distinguished 
by that of spatial extension saves the underlying intuitions making up the 
idea of generalized history of a locus. From this perspective, if a locus  
temporally extends a locus , in the sense of being its generalized 
history, it can also serve as the temporal extension, i.e. the history of only 
what can be considered as being proper or singular parts of , that is, 
generalized point-elements of . 

Note that it is the distinct quality of spatial or temporal extension 
of a locus, by virtue of its relation to other loci in a categorical 
environment that points to a corresponding interpretation of its 
character as such, meaning as being spatial or temporal, and not any 
intrinsic ad hoc postulated character. In this sense, a locus in a categorical 
environment can be the referent of both spatial and temporal 
connotations depending on the way that it is related with other loci. 
Consequently, the construction of some covering schema in the depicted 
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categorical environment, utilized for the substantiation of some 
corresponding localization schema in the physical continuum, manifested 
in terms of spatial or temporal covering relations, will depend only on the 
relational characteristics of the loci of each covering family, in turn 
making requisite, a corresponding non-exclusive interpretation in spatial 
or temporal terms. 
 
1111..22  FFUUNNCCTTOORRIIAALL  SSPPAATTIIAALL  LLOOCCAALLIIZZAATTIIOONN  SSCCHHEEMMAATTAA  

 
We begin our exposition of the notions referring to functorial 
spatiotemporal localization by introducing, first of all, the conception of a 
spatial covering system. The general notion of a category , equipped 
with a spatial covering system, interpreted as a structured family of 
reference domains used for the spatial localization of physical continuum 
events in the environment of , is based on the definition of appropriate 
covering devices of a spatial character, called spatial covering sieves. Let 
us recapitulate the notion of a sieve, then examine the requirements for 
an intended interpretation of a family of sieves as a spatial covering 
schema. 

For a locus  in , a -sieve is a family  of -morphisms 
with codomain , such that if  belongs to  and  is 
any -morphism, then the composite  belongs to . We 
may think of a -sieve as a right -ideal. With reference to the functor 

of generalized points of  in , denoted by , we 

have already proved previously that a -sieve is equivalent to a 

subfunctor  in . Thus, epigrammatically, we state: 
 

 -sieve:  =  Subfunctor of :   
 

We recall that if  is a -sieve and  is any arrow to 
the locus , then: 
 

 
 
is a -sieve, called the pullback of  along . Consequently, we may 

define a presheaf functor  in , such that its action on loci  
in , is given by: 
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and on arrows , by , given by: 
 

 
 
We stress again that for a locus  in , the set of all arrows into  is 

a -sieve, called the maximal sieve on , and denoted by . 
The natural question that arises in our context of enquiry is the 

following: How is it possible to restrict , that is the set of -sieves 

for each locus  in , such that each -sieve of the restricted set can 
assume the interpretation of a spatial covering system of . In other 
words, we look for those appropriate conditions on the set of -sieves, 
for each locus  in , so that the subset of -sieves obtained, denoted 

by , respect the quality of spatial extension. In this way, the -

sieves of , for each locus  in , to be thought as spatial 

covering -sieves, can legitimately be used for the definition of a spatial 
localization scheme in the physical continuum. The clue for an answer 
comes from the following observations: 
 
1 We have seen in the discussion of the quality of spatial extension 

that it constitutes a relational property between reference loci  

in . In this sense, an arrow , such that ,  in , is 

interpreted as a singular figure of , and thus , is interpreted 

as a spatial extension of  in . It is a natural requirement that 

the set of all figures of  should belong in  for each locus 

 in ; 
2 It is important to keep in mind that each spatial covering sieve on 

a locus  in , is going to serve as a model of a spatial 
localization system in the physical continuum, such that localized 
events are endowed with an interpretation in terms of spatial 

relations in the environment of . If we recall the relevant 
discussion about localization systems and their compatibility 
requirements, we realize that spatial covering sieves should be 
stable under pullback operations, and most importantly, the 
stability conditions should be expressed functorially; 

3 Finally, it would be desirable to impose: 
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i a transitivity requirement on the specification of the spatial 

covering sieves, such that, spatial covering sieves of figures of a 
locus in spatial covering sieves of this locus should be spatial 
covering sieves of the locus themselves, and 

ii a requirement of common refinement of spatial covering sieves. 
 
If we take into account the above requirements we define a spatial 
covering scheme in the environment of  as follows: 

A spatial covering schema on  is an operation , which assigns 
to each locus  in , a collection  of -sieves, called spatial 

covering -sieves, such that, the following three conditions are satisfied: 
 

1 For every locus  in  the maximal sieve  

belongs to  (maximality condition); 

2 If  belongs to  and  is a figure of , then 

 belongs to  (stability 
condition); 

3 If  belongs to , and if for each figure  in  

there is a sieve  belonging to , then the set of all 

composites , with , and , belongs to  
(transitivity condition). 

 
As a consequence of the conditions above, we verify that any two spatial 
covering sieves have a common refinement: if ,  belong to , 

then  belongs to . 

The operation  satisfying the aforementioned conditions, can 
be equivalently characterized in terms of a Grothendieck topology on the 
category , where the covering sieves implicate the requirements of 
spatial extension. A Grothendieck topology  may be thought of in the 

shape of a presheaf functor  in , such that, by acting on loci  in 

,  gives the set of all spatial covering -sieves, denoted by , 

whereas by acting on figures , it gives a morphism of sets 
 

, 
 
expressed as: 
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, 
 

for . Clearly,  is a subobject of , that is, . 

 
1111..33  FFUUNNCCTTOORRIIAALL  TTEEMMPPOORRAALL  LLOOCCAALLIIZZAATTIIOONN  SSCCHHEEMMAATTAA  

 
Analogously with the conception of spatial covering schemata on the 
category , we can introduce the notion of temporal covering schemata 
on  consisting of temporal covering sieves. These covering systems 
should be construed in such a way that the relational quality of temporal 
extension between their reference domains is explicated properly. 
Accordingly, temporal covering sieves can be used for the temporal 
localization of physical continuum events in the environment of . 

We have seen previously that the effectuation of spatial covering 
sieves required the imposition of certain restrictive conditions on the set 
of all -sieves, for each locus  in , in order to qualify as denotations 
of spatial extension. In this sense, it is clear that an analogous 
interpretation of covering relations in terms of temporal extension 
between reference loci would require the satisfaction of all the relevant 
conditions. At a first stage, we may notice that the quality of temporal 
extension (in the sense of a generalized history of a locus) constitutes a 
constrained form of spatial extension, as discussed in detail previously. 
Thus, temporal covering -sieves for each locus  in , should satisfy 
the conditions obeyed by spatial covering -sieves, and additionally, a 
constraint signifying the temporal character of the relevant included 
extensive relations. Developing this line of reasoning, it is necessary to 
express the quality of temporal extension between reference domains in 
terms of sieves. 

We consider a Grothendieck topology  on , such that, the 
maximality, stability and transitivity conditions are satisfied among 
covering sieves of reference loci  in . Hence, if  is a -sieve that 
belongs to , we say that  is a covering -sieve. It is also 
convenient to provide the following definition: 

A -sieve  covers an arrow  in , if and only if 

 is a covering -sieve: 
 

 
 

*( ) ={ / ( ) = ,( ) }h S f cod f C h f S× Î

( )S BÎ ccWW ccWW WW ∞ccWW WW

B
B

B

B B B

B B B

B

J B

B B S B
( )J B S B

B S :h C B® B
*( )h S C

*[ : ] ( )S h C B h S Cá ® ñ Û á ñ! !



504 NATURAL COMMUNICATION

470 
 
We notice that, as a consequence of the stability condition, if the arrow 

 belongs to  itself, then  belongs to , 

and thus, , i.e.  is the maximal covering -sieve. 

We may formulate this observation, given a covering -sieve  
and any arrow , as follows: 
 

 
 
This is a very convenient setting to explicate the notion of temporal 
extension among reference loci  in  in terms of covering sieves, if 
we further define; 

A -sieve is -closed, if and only if, for all -arrows : 
 

covers the -arrow     
 

In a suggestive notation, given  we say: 
 

 
 
Given a Grothendieck topology  on , -closed sieves constitute a 

presheaf functor  in , such that, by acting on loci  in ,  

gives the set of all -closed -sieves, denoted by , whereas by 

acting on arrows , it gives a morphism of sets 

, expressed as: , 

for .  
 
Indeed, we can immediately verify the following: For any -sieve  
and any -arrow ; 
 

: -closed -sieve    : -closed -sieve  
 

In order to see that this is actually the case, we assume that  

covers a -arrow . This means, by definition, that  covers 

the composition ; taking into account that  is -closed -sieve, 

, or equivalently, . Hence, we obtain that  is -

closed -sieve. 
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Clearly,  is a subobject of , that is . 
The quality of temporal extension in terms of covering sieves is 

captured precisely by the defining requirement of -closed sieves, if we 
re-express it as follows: 

The locus  is a temporal extension of a locus  in , if a -
arrow  exists, which is covered by a -closed -sieve. 

Thus, all -arrows denoting the quality of temporal extension 
must necessarily be members of corresponding -closed covering sieves. 
Consequently, a temporal covering scheme on , has to be properly 
expressed in the restrictive terms of -closed covering sieves. These 
sieves obviously satisfy the maximality and transitivity conditions 
required. Moreover, since the property of being closed respects the 
stability condition under pullback operations, -closed covering sieves 
also remain stable under pullback. 

Now, by considering all the relevant requirements we can define a 
temporal covering schema in the environment of , as follows: 

A temporal covering schema on  is an operation , which 
assigns to each arrow  in  (interpreted as a temporal extent 

 - irreducible duration of ), a collection  of -sieves, to be 

called local time-forcing -sieves of temporal resolution unit , 
such that, the following four conditions are satisfied: 
 
i If  is -sieve and , then  is a covering -sieve 

(maximality condition); 
ii If  covers an arrow , it also covers the composition 

, for any arrow  (stability condition); 

iii If  covers an arrow , and  is a -sieve which 

covers all arrows of , then  covers  (transitivity 
condition); 

iv If  covers an arrow , then  belongs to  
(closure condition). 

 
We may again easily check that any two temporal covering sieves have a 
common refinement, that is: if  and  both cover , then 

 covers . 

A temporal covering schema on , formulated in the above 
arrow-form, obviously satisfies the equivalent conditions [1]-[3] 
specifying in this form a spatial covering schema, and also additionally the 
closure constraint [4]. Due to this constraint, characteristic of temporal 
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extension, we conclude that a -closed -sieve of temporal resolution 
unit  is necessarily the maximal -sieve. This is clear, if we consider 

the identity arrow  and apply the closure constraint. The 
concept of temporal resolution unit will be analyzed in detail further on. 

A maximal temporal covering scheme  on , exists as a 

presheaf functor  in , such that: By acting on loci  in , 

 gives , constituted only from the maximal -sieve for each , 

whereas by acting on arrows , it gives a morphism of sets 

, expressed as: 
 

 
 

where . Clearly,  is a subobject of , that is . 

It is useful to notice that from any given -sieve  we can 
construct a corresponding -closed -sieve, denoted by , simply 
as follows: 
 

 
 
where  is any -arrow with codomain , and the notation  

denotes that  covers . The above prescription means that the -

closed sieve , corresponding to a given sieve , is construed by 

adding in  all arrows that it covers. Furthermore,  is the smallest 

closed sieve that contains , named accordingly the closure of . 
 
1111..44  PPAARRAADDIIGGMMAATTIICC  CCAATTEEGGOORRIICCAALL  SSPPAATTIIOOTTEEMMPPOORRAALL  RREELLAATTIIOONNSS  

 
After having explicated the defining requirements of spatial and temporal 
covering schemata in the environment of , bearing in mind that they 
are going to provide precise functorial concepts of spatial and temporal 
localization in a continuum of observable events, it is appropriate to 
concentrate our attention to some consequences of their functioning. 

We suppose that  has a terminal object denoted by , that is for 

any locus  in  there exists a unique arrow . Then we can 

view the locus  as a domain of irreducible durations (of temporal 
extent ), if we define  as the temporal extension of , as follows: 
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The locus  is a domain of -irreducible durations in , if there 
exist -arrows , such that, each one of them is covered by a -
closed -sieve. 

We notice that, according to the above definition, a locus  
signifying a domain of durations by means of -arrows  cannot 
be conceived separately from all -closed -sieves covering its point-
durations. Put differently, an arrow  obtains the semantics of an 
irreducible duration by being a member of a -closed -sieve that 
covers it, and subsequently, the locus  is interpreted as a domain of 
point-durations (history of point-durations). From a converse 
perspective, the definition of a point-duration of the reference domain , 
forces an interpretation of the terminal object  as an instantaneous 

locus at point-duration , denoted as , by means of the unique 

arrow . Now, by definition, if we consider a -closed -sieve, 
covering , its pullback along  is the maximal sieve on the 
instantaneous locus at , denoted by . This fact has the following 

consequences: 
For every -closed -sieve covering , where  stands for 

a domain of point-durations,  consists of a snapshot of each and every 

locus in , a role which consolidates its interpretation as an 
instantaneous locus at point-duration  pretty clearly. Subsequently, 
the domain of point-durations  stands for the temporal extension of 
the instantaneous space at anyone of its specified durations . It 
is important to notice that, all the above arguments are independent of 
any specific locus  used to illustrate them, since only relational 
properties, expressed in terms -closed sieves, actually matter. 

Thus, any reference locus in , equipped with arrows from the 
terminal object  of , being covered by -closed sieves, acquires the 
status of a temporal domain of point-durations, and in each case,  
becomes the instantaneous locus for some depicted duration. 
Subsequently, the instantaneous locus at any point-duration cannot 
signify the temporal extension of any other locus except of its own 
identity, identified with that point-duration, hence, it signifies only the 
pure quality of spatial extension. 

This observation permits the characterization of  as an 

instantaneous space at . Concretely, the instantaneous space  

constitutes the spatial extension of all other loci  in , by means of 
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the unique arrows , contained in a -closed sieve covering 

. Precisely speaking, these unique arrows have been interpreted above 
as figurative snapshots at m corresponding to each and every locus in , 

displayed at . 
 
1111..55  SSIIMMUULLTTAANNEEIITTYY  OOFF  FFIIGGUURREESS  AANNDD  LLOOCCAALL  TTIIMMEE  DDOOMMAAIINNSS  
  OOFF  DDUURRAATTIIOONNSS  

 
We have seen above that a domain of point-durations is interpreted as the 
temporal extension of the terminal object in , characterized as the 
instantaneous space at any depicted duration. The instantaneous space 
displays the quality of spatial extension in the purest sense, since it is the 
referent of diminished temporal extension, substantiated in the form of 
an irreducible point-duration. 

In the intuitive sense, a domain of point-durations is the 
generalized history of the terminal locus, as instantiated at each duration 
in the form of an instantaneous space for that duration. Notice again that, 
by definition, an irreducible point-duration  of a temporal 
domain  is covered by a time-forcing -sieve of temporal resolution 
unit , such that, its pullback along  is the maximal sieve on the 
instantaneous space at , denoted by . Hence, in the perspective of 

a -closed sieve covering , the terminal  is conceived as a 

hole of the sieve, such that every locus  is extended to  by factoring 

through the hole . More precisely,  is the maximal hole of the -

closed -sieve covering m, and since there exist unique arrows 

, for every  in , all these  being extended to the 

temporal domain , achieve this translation by passing through the 

maximal hole  of this -closed -sieve. This observation permits 
the definition of the concept of simultaneity of figures with respect to a 
domain of irreducible point-durations  as follows: 

Two figures  and  of a domain of point-durations 
 are simultaneous at a moment , if and only if, they both factor 

through the maximal hole  (temporal resolution unit) of any -

closed -sieve covering . 
It is instructive again to clarify the truly relational spatiotemporal 

sense that a locus  acquires by means of the intended interpretation. 
In the case discussed above, the locus  is both; the denotator of 
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temporal extension of the terminal  by its specification as a domain of 
irreducible point-durations, and also, the denotator of spatial extension 
of the figures  and  at one of their respective moments. 

Furthermore, the same case concerning the concept of 
simultaneity, points to the conclusion that the decisive factor that 
determines simultaneity, with respect to a temporal domain of durations, 
is factorization through the maximal hole at a depicted duration of any -
closed sieve covering that duration. Nevertheless, it is important to clarify 
that temporal extension is not restricted exclusively to domains of point-
durations; the latter should be considered only as paradigmatic cases. In 
this sense, it is possible to expand our argumentation and talk about 
generalized durations. 

The locus  is a domain of generalized -durations (temporal 

extent -irreducible durations) in , if -arrows  exist, 

such that, each one of them is covered by a -closed -sieve. In that 

case, some -arrow  is interpreted as a temporal extent -

irreducible duration of  by means of being a member of a -closed -
sieve covering it. Subsequently, the locus  is interpreted as a domain 
(history) of durations of temporal extent . 

Again, in the perspective of a -closed -sieve covering , 

the locus  is considered a hole, such that every locus  that can be 
temporally extended to , extends via factorization through the hole . 
In this generalized sense, the hole  specifies the temporal resolution 
unit of a covering -closed -sieve, represented by the corresponding 

-durations, that in turn, can be considered as denotations of 
simultaneity relations with respect to the applied temporal resolution 
unit of the domain . 

Note that all the -closed -sieves covering all the generalized 
durations of  contain complete information about all questions 
concerning temporal extension with respect to , under varying 
temporal resolution units. In conclusion, the operational role of time in 
the present framework, is completely incorporated in the functioning of 

-closed sieves. Thus, given a covering scheme , for any -closed -
sieve we define: 
 

 
 
or equivalently, since  stands for a -closed -sieve; 
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The set  is interpreted as the set of generalized durations of  

covered by the -closed sieve , under varying temporal resolution 
units specified by the holes . We can immediately verify that 

actually  for every -closed -sieve. Thus the sets  and 

 respectively, stand for the active and passive interpretation of the 

same entity, being the operation of local time on loci  in , 
transforming them into local time domains of generalized irreducible 
durations in the environment of . Due to this identification, -closed 
sieves are interpreted as local time-forcing sieves for each locus  in . 

Moreover, the temporal resolution unit of a -closed sieve  is 
determined by the locus dom(h), specified as temporally extended to  
by means of , if the latter is covered by . The locus  can be 

thought of as a hole in the -sieve , that specifies the kind of 
generalized durations of a local time domain being covered by , with 
respect to the relation of temporal extension between loci. In this sense, 

we may define a local time operator , associated with a -closed -
sieve, for each locus  in  as follows: 
 

 
 

where . The local time operator  acting on a locus , 
denoted in the -so called- Dirac notation as the eigenstate , takes for 

eigenvalues the generalized durations being covered by . 
Consequently, the locus  is interpreted as a local time domain 
endowed with generalized durations under varying temporal resolution 
units. 
 
1111..66  SSIIEEVVIINNGG  SSPPAATTIIAALL  FFIIGGUURREESS  AATT  DDUURRAATTIIOONNSS  OOFF  LLOOCCAALL  TTIIMMEE  DDOOMMAAIINNSS  

 
A natural question that arises in this context of enquiry is the following: 
Given the means of functorial spatiotemporal localization, formulated in 
terms of spatial and temporal covering schemata, how is it possible to 
spectrally classify spatial figures of a reference locus  in  at 
generalized durations of that locus, considered as a local time domain? 

In order to tackle this fundamental problem, we are going to use 
the notion of subobject classifier in a topos. First of all, it is useful to clarify 

*
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the notion of subobjects in any categorical environment, since it is going 
to be the main conceptual tool in our argumentation. 

A subobject of an object  in any category , is an 
equivalence class of monic arrows targeting , denoted by . 

The set of all subobjects of  in the category , denoted by , 
is a partially ordered set under inclusion of subobjects. 

The functor  can be construed as a presheaf functor in the 

topos  by the operation of pulling back as follows; Given an arrow 
 in , the pullback of any monic arrow  along 

the arrow  is a new monic arrow , that is a subobject of 

, and obviously the assignment , defines a function 

. 
An immediate question that arises here is related to the possibility 

of representing the subobject functor  in the topos  by an 

object  in , considered as a category with pullbacks, such that for 
each  in , there exists a natural isomorphism: 
 

 
 
If the subobject functor becomes representable with representing object 

 in , then we say that, the category  is equipped with a 
subobject classifier. By this term we mean a universal monic arrow: 
 

 
 
such that, to every monic arrow,  in , there is a unique 

characteristic arrow , which, with the given monic arrow , forms a 
pullback diagram: 
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This is equivalent to saying that every subobject of  in , is 
uniquely a pullback of the universal monic . Conversely, satisfaction of 

this property amounts to saying that the subobject functor  is 

representable by the object , that is, isomorphic to . Note 

that the bijection  sends each subobject  of  to its 

unique characteristic arrow  and conversely. 
After these necessary introductory remarks, we turn to our main 

objective concerning the problem of classification of figures of reference 
loci  in , referring to -sieves of corresponding spatial schemata, 
which provide the functorial means for spatial localization in a continuum 
of events. The starting point of our enquiry is determined by the 

realization that a spatial covering schema on  exists as a presheaf  

in . 
Clearly, by the defining requirement of spatial covering sieves the 

following subobject relation holds: , where, , denotes the 

set of all -sieves for each locus  in . The connective link with our 
initial remarks appears if we recall that: 
 

 -sieve:  =  Subfunctor of :   
 

It is immediately evident that, because of the above 
correspondence, the presheaf functor  may be used, at a first stage, 

for classification purposes in , since in particular, it could classify 
subobjects, that is, subfunctors of  for each locus  in , 

according to the pullback square in : 
 

 
 
where: 
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by using the Yoneda lemma. The morphism  is a natural 

transformation in , given by components  for all reference 

loci  in . The functor  is given by the assignment  with 

the obvious restriction morphisms. It is clear that  is the terminal 

object in , and the components of the morphism  are 

defined by ; where , that is, the 

maximal -sieve. Thus,  is the map that picks out the maximal 

-sieve. 
For any subfunctor of , , the classifying arrow 

 is a natural transformation , given by components 

, such that for any figure  of the locus 

, belonging to the set , we have: 
 

 
 

where  is any -arrow with codomain . Then, obviously,  

is a -sieve. Note that a -arrow with codomain , for instance 
, determines a set theoretical morphism: 

 

 

 
 
that may or may not take the figure , by means of into 

. In this sense, the -sieve 

, contains all, and only those, -arrows  that actually 
take the figure  into the subobject . It is clear that 

, namely it is the maximal -sieve in the set , if and 
only if the figure  belonging to the set , belongs to  as 
well. 

Furthermore, if we replace the representable functor  by 

any presheaf functor , and the subfunctors  by 
corresponding subfunctors , entirely analogous arguments 
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lead to the conclusion that  is the subobject classifier in the category 

of presheaves , by which we mean that the diagram: 
 

 
 

is a pullback diagram in , where , namely the set 

of all -sieves for each locus  in , or equivalently the set of all 
subfunctors of . The set  for each locus  in , is a 

partially ordered set under the relation of inclusion of -sieves, whereas 
the maximal element of the poset  is the maximal -sieve. 

The crucial observation for our purposes is related to the fact that 
a spatial covering schema on the categorical environment  bears thr 
status of a presheaf subfunctor of , due to the subobject inclusion 

, established previously, and consequently it can be 

characterized in terms of some classifying arrow into . 
Before we specify the description of spatial covering schemata in 

 in terms of characteristic arrows into , it is convenient to 
introduce some terminology related to the semantics of the identity 
arrow, . Let us consider, a spatial covering -sieve , 

. Then, we define the identical assignment; 
 

 
 
According to the above,  acquires a dual interpretation, which can be 
expressed equivalently as both: 
 
i In the active sense  is interpreted as a spatial covering -

sieve; that is as a device that acts on the locus  by covering it in 
spatial terms. 

ii In the passive sense , that is , is interpreted as a 

generalized variable spatial point of the locus , where the latter 
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has obtained a spatial reference by means of , that covers it 
spatially. 

 
Thus, by means of the identity arrow , for each locus  in 

, what gets spatially covered is identified with what spatially covers. 
Let us call , the classifying arrow characterizing the 

subobject inclusion of a spatial covering scheme  according 

to the pullback diagram in  
 

 
 

Obviously, the characteristic arrow , such that , 

determines the spatial covering scheme  that classifies, and 

conversely, it is uniquely determined by that relation. In order to 
understand the semantics of , we consider a spatial covering scheme on 

the categorical environment , such that  denotes the set of 

spatial covering -sieves for each locus  in . Next, we define the 
natural transformation  as follows: 
 

 
 
or equivalently: 
 

 
 

that is,  denotes the set of all , such that  covers . 

Thus, for any  being covered by ,  belongs to ; 
 

 
 

Clearly, this prescription specifies  as a -sieve, that is; 
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We notice that the classifying arrow at the locus  serves to specify 
exactly what each -sieve covers with respect to a spatial covering 

scheme . If we focus our attention on the definition of   
, we notice the following: 

For any -arrow , we obtain the logical conjugation 
relation: 
 

 
 
for any -sieve, therefore  is actually a natural transformation 

 as required. Furthermore, if in the definition of , we 

employ the maximal -sieve   , that by its specification is a 

covering sieve of all arrows with codomain , we obtain: 
 

 
 
This relation holds for every locus  in , and thus in functional terms 
we further obtain: 
 

 
 

Moreover, the classifying arrow  clearly preserves order, in the sense 

that for -sieves , : 
 

 
 
Thus, for any -sieves  and  we obtain: 
 

 
 
and conversely: 
 

 
 
Hence, for each  in  we obtain the equality: 
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meaning that the operation of spatial classification commutes with the 
operation of intersection of sieves, expressed in suggestive functional 
terms as follows: 
 

 
 

Finally, since the classifying arrow  preserves order, and also 

, if we operate on this inclusion by acting with , we obtain: 
 

 
 

Conversely, if   , then by definition , that is 

 covers . Moreover, for each   , by definition, 
. If we bear in mind the transitivity property of a spatial covering 

scheme, then , or else,   . Thus, if   , 

then    or equivalently: 
 

 
 
Hence, for each  in  we obtain the equality: 
 

 
 
that is, the operation of classification is idempotent, expressed in 
functional terms simply as follows: 
 

 
 
Furthermore, if we consider a spatial covering -sieve , then, any 

 covered by , belongs to , that is, . Now, 

let us assume that,  covers an arrow . By definition of , 

 covers all arrows in . Thus, by the transitivity condition of 

covering sieves, we obtain that  covers the arrow , and hence, 

. We conclude, in this sense that: 
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If we recall that for any : 
 

 
 
we conclude that: 
 

 
 

The above condition means that,  is a -closed sieve; Most 

importantly,  is the closure of  in the covering scheme . 
This conclusion can be equivalently stated as follows: 
 

 
 
Returning to the interpretation given above, according to which the 
classifying arrow at the locus  serves to specify exactly what each -

sieve  covers, by means of the -sieve , we conclude that: 

Spatial generalized points of the locus , where the latter has 
obtained a spatial reference with respect to a covering sieve  of a 
spatial covering scheme  operating on , are being classified with 
respect to the generalized irreducible durations of , covered by . 

The -sieve , identified as a local time forcing -sieve, 

signifies the set of generalized durations of the locus , classifying 
spatial generalized points of  depicted through . Remarkably from 
this perspective, local time-forcing sieves have a dual role. On the one 
hand, they are the constituents of temporal covering schemata, and on the 
other, they are used as devices for spatial classification. 

This interpretation reveals the two-fold operational role of local 
time forcing in the categorical environment of  as both, the generator 
of a temporal covering schema endowing loci  with a relational 
temporal reference in terms of generalized durations, and also, as the 
generator of a classification schema characterizing spatial relations in 
terms of the durations they cover. 

Let us now concentrate our attention on the presheaf of time-

forcing sieves , being the presheaf of -closed sieves for a covering 
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schema . There is clearly a subobject inclusion . The 

classifying arrow characterizing , is denoted by  according to 

the pullback diagram in : 
 

 
 

Evidently, the characteristic arrow , such that,  

determines the subobject  that classifies, and conversely, is 
uniquely determined by that relation. We define the natural 
transformation  as follows: 
 

 
 

It is clear that  for every -closed -sieve. The set  

is interpreted as the set of generalized durations of  covered by a -
closed sieve , under varying temporal resolution units specified by the 
sieve holes . We notice again that the classifying arrow at the 

locus  serves to specify exactly what each -sieve covers with 
respect to . In an analogous fashion we obtain the conditions: 
 

 

 

 
 

It is instructive to define the map  for each -sieve , 

given a covering scheme , as follows: 
 

 
 
which, assigns to each locus  in , its set of generalized durations, if 
and only if the -sieve  is -covering them and is also -closed. 
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This assignment endows the reference domain  precisely with the 
semantics of temporal relations, that is generalized durations, and also, 
permits the interpretation of the locus  as a local time domain. 

Similarly, let us call , the classifying arrow 
characterizing the subobject inclusion of a maximal temporal covering 

schema  according to the pullback diagram in : 
 

 
 
We define the natural transformation  as follows: 
 

 
 

This prescription specifies  as the maximal -sieve, and 
obviously, the analogous conditions for the characteristic arrow  are 

trivially satisfied. The set  is interpreted as the maximal set of 

generalized durations of , identified with the set of generalized 
elements of  being covered by a -closed sieve covering the identity 
of . Clearly, such a -closed sieve possesses maximal temporal 
resolution capability. 

Under these circumstances, we define a complete local time-
domain as follows: If the generalized durations of a local time-domain are 
covered by a -closed sieve that covers the identity of , then we call it 
a complete local time domain. It is also evident from the explicit 
description of the classifying arrow referring to time-forcing sieves, that 
if such a sieve covers the identity of a locus  in , then it is necessarily 
the maximal temporal covering -sieve, and the locus  acquires the 
interpretation of a complete local time-domain. In this sense, a maximal 
temporal covering scheme on  is equivalent to the specification of 
complete local time-domains in the environment of , described 

functorially by means of . 
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1111..77  UUNNVVEEIILLIINNGG::  CCOOMMPPLLEETTEE  LLOOCCAALL  TTIIMMEE  FFRRAAMMEESS  AANNDD  AALLEETTHHEEIIAA  

 
From the above detailed description of the cases considered, we conclude 
that we may form a unified framework of classification, according to 

which, an arbitrary subobject  of  amenable to a spatial or 
maximal temporal covering qualification, denoted by the inclusion 

 can be characterized by means of a classifying arrow 

, defined by a pullback diagram in  as follows: 
 

 
 
where, the natural transformation  is defined for each locus 

 in  by the set; 
 

 
 
If  is a spatial covering -sieve we obtain its closure  in the 

image of the classifying arrow , whereas, if  is a time-forcing -
sieve, which, also covers the identity of , we obtain the maximal 

temporal resolution -covering -sieve , identifying the locus  

as a complete local time-domain. The classifying arrow  is order 
preserving, idempotent and commutes with the operation of finite 
intersections of covering sieves. 

It is important to emphasize that, from a logical point of view, the 
subobject classifier  is interpreted as a domain of truth values, 
partially ordered by inclusion, where the maximal truth value, for each 
locus  in , is represented by the maximal -sieve. Hence,  
extends and enriches the classical static, absolute, and rigid set-theoretic 
two-valued object of truth values. 

Since these truth values are sieves, which operate in the context of 
a communication topos, the proper and precise interpretation of the 
representing object  is in the logical terms of the ancient Greek term 
“aletheia”, which bears the meaning of unveiling temporally through the 
holes of a covering sieve. We conceive of unveiling as a process of temporal 
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percolation, which can be localized with respect to complete local time-
domains. For this reason, “aletheia” is amenable to localization 
enunciated in terms of both spatial and temporal sieving relations, and 
thus acquires the characteristics of a logical sheaf. 

From the preceding, we may draw the following conclusions: 
 
i The classifying arrow  can be interpreted as an 

operator of localization of “aletheia” with respect to a complete 
local time domain. Equivalently, the operator , together with 
the above prescribed properties, induces a topology on the 

communication topos . 
ii Since the maximal truth value for each locus  in  is the 

maximal -sieve , and also, in case  operated as a time-

forcing -sieve would have been -covering, the localization 

induced by the action of  on , encapsulates the association 
of a complete local-time domain with a local reference frame, 
where a complete local description of reality can be effectuated 
appropriately in the environment of , signified simultaneously 

in terms of the maximal truth value . 
 

In this sense, the maximal -sieve  plays three interwoven roles; (a) 

it is a maximal covering -sieve; (b) if considered as time-forcing, it 
forces the interpretation of the locus  as a complete local time-domain 

by means of its associated local time operator ; and (c) it unveils 
through its holes a complete local description of reality, being forced by 

, with respect to the complete local time-domain  in , the latter 
being subsequently called a local reference frame. 

Note that such a local reference frame has meaning only in time in 
its function as a complete local time-domain. It expresses the intuition 
that in a localization schema of the physical continuum events can be 
individuated simultaneously from the continuum only in time, that is, 
over complete local-time domains in the localizing environment, such that 
a complete local description of reality is legitimate in their own 
descriptive terms. It is worth stressing that the notion of simultaneity 

with respect to a complete local time-domain, , refers to  
as a totality, since the maximal temporal resolution unit or hole of the 

time-forcing -sieve covering , is clearly extended to extent . 
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In the following, we shall realize that the effectuation of a 
complete local description in every local reference frame can be 
implemented appropriately in terms of spatial covering sieves, that is, 
through variable generalized points of a locus  (interpreted spatially 
by means of each covering -sieve), classified by the generalized 
durations of  (interpreted accordingly as a complete local time-
domain). In order to substantiate this argument we need some further 
notions that we explicate in detail below. 

First of all, we note that we have defined the classifying arrow 
 as a localization operator on the functor  of “aletheia”. 

Of course, besides , we could obviously consider the identity arrow 

. Thus, it is reasonable to ask for their equalizer, denoted by 

, according to the diagram: 
 

 
 
where,  is defined, for each locus  in , as follows: 
 

 
 
The condition imposed on the defining requirement of , is satisfied 
only for those -sieves that are local time-forcing; that is for the -

sieves  that are -closed, , with respect to a spatial covering 

scheme  on . It is also clear that the maximal -sieve  belongs 

in . We furthermore notice that if a sieve  belonging to  

is also -covering, then it is necessarily the maximal -sieve , 

which forces and consolidates the interpretation of  as a complete 
local time-domain. 

From these observations, we conclude that the equalizer  

is actually the same as the subobject  consisting of local time-

forcing sieves , or equivalently, local time operators . 

Furthermore, since the operator  is idempotent, from the 
universal property of the equalizer  we derive the existence of a 
unique arrow, , such that  is the image of the operator ; 
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The above defines then the epimorphic-monomorphic factorization of the 
operator . 

Additionally, we may consider the following pullback diagram: 
 

 
 
Since we have that , the arrow  factors through 

 as 
 

 
 
where the equalizer arrow  actually characterizes the 
subobject , according to the above pullback diagram. 

Moreover, if  denotes an arbitrary subobject of , 

characterized by means of  then its closure with respect to a 

covering schema , denoted by  is characterized by , and 

also clearly,  is -closed, if and only if , that is, 

equivalently, if and only if  factors through . 
The above description can be formulated suitably, in order to apply 

to subobjects of an arbitrary functor  in the topos  if we define 

that a subobject  characterized by means of  is 

-closed, if and only if its -closure, specified by  satisfies the 

condition . 

Then we are able to claim that the functor  classifies the -

closed subobjects, in the sense that, for each functor  in , there 
exists a natural bijection: 
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where  denotes the set of -closed subobjects of , according 

to the pullback diagram: 
 

 
 
where , denotes the set of all -closed -sieves 

for each locus  in , or equivalently, the set of all -closed 
subfunctors of . In other words, this is precisely the set of local time-

forcing -sieves, or local time-forcing operators with respect to the 
localization operator  associated with the covering schema . 

It is important to notice that the notions of closure with respect to 
the localization operator  and the covering schema  respectively, 

are actually equivalent. The set , for each locus  in , is a 

partially ordered set under the relation of inclusion of -closed -

sieves. Moreover, the elements of  can be interpreted as truth 

values with respect to , where the maximal truth value is , which is 

-closed. 

Furthermore, , for each locus  in , can be endowed 
with the logical operations of conjunction, disjunction and implication, 
and thus, acquire the structure of an Arend Heyting algebra with respect 
to these operations. In this sense, we say that the functor  is a 

Heyting algebra object in the topos , which classifies, in particular, 
-closed subobjects of any presheaf functor in this category. 

Here it is essential to consider the pullback diagram that describes 
the classification of -closed subobjects of the representable functor 

 in , being precisely those subobjects that play the role of 

local time-forcing -sieves in the environment of . The characteristic 

arrow , such that , determines the local-time 

forcing -sieve  that classifies, and conversely, it is 
uniquely determined by that, as follows: 
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We introduce the following terminology: An arbitrary -sieve 

 is -dense in , if , or equivalently, if 

. This is the case if and only if  is an -covering -sieve. 

Thus, an arbitrary -sieve is -dense in , if and only if it belongs 

to the family of spatial covering -sieves of a spatial covering schema  
on . 

Consequently, since any spatial covering -sieve  in the 
schema  is -dense, in the sense that the induced local-time forcing 

-sieve  is an -covering -sieve, and thus, the maximal local 

time-forcing -sieve , we have the possibility of a complete local 

description of reality, identified as the maximal truth value in . This 
expresses the completed temporal percolation of “aletheia” with respect 

to the maximal local time-forcing -sieve . The latter is effectuated 

in terms of any depicted spatial covering -sieve  over the 

simultaneously substantiated - by means of  - complete local 

time-domain , identified previously with a local reference frame. 
Conclusively we say that: 

A complete local description of reality is legitimate for any 
covering -sieve of a spatial covering schema on , with respect to the 
correspondingly induced complete local time-frame . 

To slightly rephrase the above for reasons of clarity, we assert the 
following: 

A complete local description of reality is forced by the action of the 

maximal local-time operator  on a locus , generated from any 

spatial covering -sieve of a schema  by the process of -closure, 
that is, by the process of temporal percolation, and expressed in the 
descriptive terms of the spatially covering objects over the 
correspondingly induced complete local time-frame . 
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1111..88  TTEEMMPPOORRAALL  PPEERRCCOOLLAATTIIOONN::  SSHHEEAAFF  EENNCCAAPPSSUULLAATTIIOONN  
  AATT  AA  SSPPAATTIIAALL  CCOOVVEERRIINNGG  SSIIEEVVEE  

 
At this stage, it is necessary to make clear the precise manner in which 

the maximal truth value , for each locus  in , reflects a complete 

local description of reality, in case  stands for a complete local time-
frame, being induced by a spatial covering -sieve of a scheme , or by 
its associated localization operator . The clarification of this issue 
necessitates the introduction of the concept of -sheaf. 

In general, if  is a -sieve, then a presheaf  is 

defined to be a -sheaf if and only if the induced map 
 

 
 
is an isomorphism for every -dense subfunctor of . We mention 

that if we imposed on the map  as above, the relevant requirement 
according to which  was just a monomorphism, then the presheaf  
would be -separated. 

Taking into account our previous remarks on the notion of 
subobjects being -dense, a presheaf  is a -sheaf, if and only if the 
above map  is an isomorphism for every covering -sieve  of a 
spatial covering schema  on . The definition of a -sheaf 
essentially means that an arrow from a -dense subfunctor of , 

namely a spatial covering -sieve, to a functor  qualified as a -
sheaf, can be extended uniquely to an arrow on all of  targeting , 
such that according to the diagram below : 
 

 
 
In this setting, we impose the condition that for a spatial covering schema 

 on  all representable presheaves on  are -sheaves. Thus, 
spatial covering schemata correspond to the so called subcanonical and 
canonical Grothendieck topologies. 
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Let  be the full subcategory of , the objects of 

which are the -sheaves, and let  be the inclusion 
functor. A convenient way to think about the category  is 

provided by the insight that it is the subcategory of , which is closed 
under isomorphisms induced by the action of an operator-functor , 

commuting with pull-back operations, on the objects and arrows of , in 
the following sense: 

If an object in  is isomorphic to one in , then it is itself in 

. We express this idea, given a localization operator , by 

constructing an operator-functor  which is left adjoint to 

the inclusion functor  and also preserves pull-backs. The 
induced adjunction, i.e. the encoding/decoding functorial relations 

between the category of presheaves  and the category of sheaves 
 establishes concretely the functorial schema of metaphora 

characterizing the localization of “aletheia” through temporal 
percolation. 

By this specification we mean precisely that  reflects each 

functor in  into the subcategory , such that any  in  is a 

-sheaf, if and only if the map  is an isomorphism. 
Furthermore we define the set: 

 

 
 

where,  denotes the set of arrows of . We notice that an arrow 

 belongs to the set , if and only if it is taken by the action of , 

that is , to an isomorphism. Thus, for every  in  the map 

 belongs to the set . In this light we can also verify that: 
 

i Any presheaf  in  is a -sheaf if and only if for each 

, the induced map  is an isomorphism: 
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ii Any map  belongs to  if and only if for each 

-sheaf  in , the induced map  is an isomorphism: 
 

 
 

Taking into account the original definition of a -sheaf, in 
conjunction with propositions [i] and [ii] above, we conclude that 
the set  is completely determined by its restriction to -
dense subfunctors of . In other words,  is completely 

determined by its restriction to covering -sieves, whereas the 
operator-functor  expresses the process of -closure, or 
equivalently, the process of closure with respect to a spatial 
covering schema . From this perspective, the role of the 
localization operator  is precisely incorporated in the complete 
determination of the set  by its restriction to the set of 
covering -sieves for each locus  in . Furthermore, for any 
monic arrow  in , we say that, the subobject  

is -dense in . 
 
From the property of -closure, referring to -closed -sieves, as an 
operation preserved by pulling-back, we conclude that the operator-
functor  should commute with pull-backs. Thus, if we recall that -
closed -sieves, for each locus  in , stand for local time-forcing 
-sieves, or equivalently local time-forcing operators, we conclude that: 

The -sheaf reflection functor , which is left 

adjoint to the inclusion functor , and also commutes with 
pull-back operations, expresses precisely the functioning of Time as a 
process of -closure, which is to say a process of temporal percolation 
with respect to a spatial covering schema  on . Again, this is enacted 
by the generation of local-time forcing -sieves, for each locus  in 

, qualified as complete local time-frames if and only if they are also -
covering. 

In this sense, the process of -closure with respect to a spatial 
covering scheme , for every subobject , and in particular, for 
every -sieve , is simply expressed by the following 
pullback diagram: 
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We notice that since  commutes with pull-back operations, and thus 
preserves subobject inclusions, we obtain for each subfunctor , 
a new subfunctor , identified as the -closure of , such 

that  contains . In case that  is itself a -sheaf, then a 

subfunctor of  is also a -sheaf if and only if it is -closed. As a 
consequence, we reach the important conclusion that local time-forcing 

-sieves, for each locus  in , are -sheaves themselves. 
Let us now consider the subobject classifier of -closed 

subobjects, that is, the functor expressing the sheaf-theoretic localization 

of “aletheia” . We recall that for each functor  in , the 
following natural bijection pertains: 
 

 
 
where,  denotes the set of -closed subfunctors of , 

according to the pullback diagram: 
 

 
 
It is conceptually clear from the discussion above that the functor  is 
actually a -sheaf, which remarkably plays the role of the subobject 
classifier in the topos of -sheaves, such that the natural bijection above 
takes the following form, if restricted to the subcategory : 
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where,  denotes the set of -subsheaves of the -sheaf . 

 
1111..99  TTEEMMPPOORRAALL  GGAAUUGGEESS::  AALLEETTHHEEIIAA  IINN  TTHHEE  RREEFFLLEECCTTIIOONN  OOFF  SSHHEEAAVVEESS  

 
We shall provide a simple argument, which actually proves that  is a 

-sheaf, and also that it is the subobject classifier in . From the 

natural bijection referring to -closed subobjects of a functor  in  
it is evident that if  is a -sheaf, then the natural transformations 

 correspond to the subfunctors  which are also -

sheaves, if and only if  is a -sheaf itself. 
For this purpose, we consider an arrow , i.e. a 

natural transformation , qualified as an isomorphism 

, when  acts upon it. Then, the presheaf  in  

is a -sheaf, if we show that for  the induced map  
is an isomorphism: 
 

 
 
Equivalently, if we use the natural bijection characterizing  as the 
subobject classifier of -closed subobjects, and also further consider -
closed subobjects  and  of  and  respectively, i.e. 

; , it will be enough to show that there exists a surjective 
and injective correspondence between them, concluding thereby that 

 is actually a -sheaf. We consider the composition of pullback 
diagrams: 
 

 
 
If  is a -closed subfunctor of , then upon restriction 

to  along the arrow , it gives a -closed subfunctor 

of , that is, . Conversely, if  is a -closed 
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subfunctor of , then, by pulling-back  along the arrow 

, we obtain a -closed subfunctor of , i.e. 
. This completes the proof of the argument. 

After having established that the functor  is a -sheaf, and 
also operates as the subobject classifier in the category of -sheaves 

, it is instructive to consider the following pullback diagram, as 
reflected in : 
 

 
 
where, given a spatial covering schema  on ,  is a local time-

forcing -sieve, classified in the category of -sheaves by the 

characteristic arrow . Note that the classifier object 

 comprehends only the closed subobjects  of , identified 

as local time-forcing -sieves, actually being -sheaves themselves, and 
consequently characterizes them in terms of truth values. 

Thus, if  is any -sieve,  perceives and classifies only its 
-closure , given a covering scheme , as this is precisely reflected 

in  by the action of the left adjoint operator , providing a 
faithful manifestation of the temporal percolation process, that is, of the 
process of -closure. For reasons of clarity, we recall that from any given 

-sieve  we can construct a corresponding -closed -sieve, 
denoted by , simply as follows: 
 

 
 

where  is any -arrow with codomain , and the notation  

denotes that  covers  according to a covering scheme . Note that 

 is the smallest closed sieve that contains , called accordingly the 

-closure of . 
Let us examine, precisely what is expressed by the maximal truth 

value in the universe of -sheaves, where “aletheia” is localized. We 
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notice that, given a -sieve , if it has the property of being -dense, 

then ; in other words its -closure is assigned the maximal truth 

value in . Of course, this is the case if  is an -covering -

sieve, or simply, a spatial covering -sieve, specified according to a 
spatial covering schema . Stated equivalently, in the reflection of the 
subcategory of -sheaves, the -sieve  is perceived as being the 

maximal -sieve  through its -closure, and most importantly, this 

is the case if and only if  is a spatial covering -sieve. 

Thus, the maximal truth value  in , i.e. the maximal -

closed -sieve , interpreted as a truth value, for each locus  in , 

expresses the fact that it is , hence  in the -

sheaves reflection, that  is all of , if and only if  is a spatial 

covering -sieve. Consequently, the truth-values object  in 

, for each locus  in , perceives every spatial covering -sieve, 

as the maximal -closed -sieve . 

We bear in mind now that the maximal -closed -sieve, as the 

maximal -covering local time-forcing -sieve, forces the 

interpretation of the locus  as a complete local time-frame, where a 
complete local description of reality is feasible by means of its 

identification with the maximal truth value in . Thus, we form the 
following conclusion: 

In the “aletheia” localization-environment of the category of 
sheaves , we can substantiate a complete local description of 

reality, formulated in terms of every spatial covering -sieve  of a 
spatial covering schema , for each locus  in , qualified by the 
temporal -closure process of local-time forcing as a complete local 
time-frame. This is simply expressed by the equation: 
 

 
 

We also recall that the maximal -closed, -covering -sieve , 
can equivalently be thought of, in operator form, as the maximal local 

time-operator , which, by acting on the locus  forces the 

interpretation of  as a complete local time-frame. Moreover, every 
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other -closed, -covering -sieve , that is, time-forcing -
sieve covering durations , acts as a local-time operator 

 on the locus , identifying  in , with irreducible durations 

of the so-forced time-domain , according to the “eigenvalues” 
characteristic equation: 
 

 
 
where,  are the generalized irreducible durations of the local time 

domain , covered by , or equivalently, forced by . Moreover, 

each locus  is thought of as a hole in the -sieve , which 
specifies the kind of generalized durations of a local time domain covered 
by , under -varying temporal resolution units, with respect to 

the relation of temporal extension between loci. Obviously, , 

corresponding to the maximal -sieve , possesses the maximal set of 

“eigenvalues” , since it is covering the , being themselves elements 

of , and thus, durations of the forced local time-frame . 
In this setting, it must be stressed that the notion of a hole, or a 

temporal resolution unit, of a covering sieve is the denotator of a relation 
of simultaneity. This is an important notion that will permit us to 
understand precisely the meaning of all the truth values contained in 

. First of all, note that the notion of simultaneity with respect to a 

complete local time-domain, , refers to  temporally as a 
simultaneous totality, since the maximal temporal resolution unit or hole of 

the time-forcing -sieve covering , is obviously extended to level . 
In this sense, concerning the relation of simultaneity, a complete 

local time-domain  is completely characterized by its maximal 
temporal resolution unit, which is  itself. Hence, in the corresponding 

local time-frame , a spatial covering -sieve, that is an -covering 

 sieve, incorporating a complete description of reality in terms of the 

maximal truth value in , is perceived as a simultaneously-existing 

object in its -closure . This is precisely what we mean by 

characterizing it as a -dense object in its -closure. Thus, the maximal 

truth value in  encapsulates precisely the fact that an -  

l h B [ ]G B
: ( )h dom h B®

!
[ ]T G B h [ ]G

B

!
[ ] | = |T B h BG ñ ñ

[ ]hÎ G

B G !
[ ]T G

( )dom h B [ ]G

G ( )dom h
!
tBT

B Bt

h Bid

Bt B

( )BLWW
:Bid B B® B

B Bid B

B
B

B B Bid
B

( )BLWW
l Bt

l l

( )BLWW id B



535FUNCTORIAL GNOMONICS

501 
 
covering  sieve is a simultaneity in its - closure - forced complete 
local time-frame  by means of being -dense in its -closure. 

As a result, we establish a threefold association in the reflections’ 
topos of -sheaves for each locus  in : the maximal truth value in 

 is associated with a -covering -sieve  as a 

simultaneous object in its -closure;  is associated in its -closure 
as a simultaneity with the maximal hole  of ; the maximal hole  

of the -covering -sieve  is associated with the establishment of 

a complete local time-frame  in the -closure of . 

Of course, there exist -sieves  that are not necessarily -

covering. For example, we may consider a -sieve that spatially covers 

the arrow , meaning that  for a spatial covering 

schema  on . In the reflection of -sheaves it shows up as the 
corresponding -closed -sieve  covering , which 
consequently is interpreted as a generalized  -duration , 

denoted by    at temporal resolution unit . By 

saying that  is a temporal extension of , we fix the maximal 
temporal resolution unit of  at level , and associate the hole  
with the denotation of simultaneity at level . Parenthetically, note that 
a generalized duration at temporal resolution unit  is a complete local 
time-domain , and the term  -duration  expresses precisely 

the signified simultaneity at maximal hole , which is denoted by 

. 

From the perspective of the complete local time-frame , the -
sieve , comprehended through its -closure , is assigned a truth 

value , which means that it expresses a simultaneity at 

maximum temporal resolution unit equal to the hole . Hence, from the 
viewpoint of a complete local time-frame  the -sieve  spatially 
covering , where  stands for the maximal hole of , 
provides a partial description of reality up to simultaneity level, specified 
by the maximal hole . Of course, from the perspective of the 

complete local time-frame , the restriction of the -sieve  to , 

since it is -covering by means of , for , it 

provides a complete description of reality as perceived through its -
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closure, denoted by the maximal truth value , signifying 

simultaneity at maximal hole . Thus, we form the conclusion: 
The object of “aletheia”, identified as the truth-values object in the 

universe of sheaves incorporates the precise means of localization of 
“aletheia”, regarding local descriptions of reality with respect to local 
time-frames, on the basis of simultaneity relations, whose maximal extent 
is signified by the maximal holes of spatial covering sieves, perceived 
through their closure. 

Finally, in order to emphasize the meaning of simultaneity 

associated with the maximal hole  of a local time-forcing -
sieve  covering durations , we define for every local 

time operator  on the locus , identifying  in , with a 

duration of the so-forced time-domain , an associated local time-
operator  of the maximal extent of simultaneity relations 

incorporated in the action of  as follows: 
 

 
 

where,  denotes the maximal temporal resolution unit of 

the local time-operator . 
The development of the ideas regarding the gnomonic and 

functorial conceptualization of “aletheia”, as a process of temporal 
percolation, which can be localized sheaf-theoretically with respect to a 
variety of local time-frames, together with their logical relational 
descriptive rules, inspires the following claims: 

We claim that neglecting the relational functioning of local time-
frames in nature, together with their respective simultaneity relations 
and truth values assignments, is a source of paradoxes that subsequently 
generate defective epicyclic interpretations of various forms. It is enough 
to point out that reducing the temporal closure process to simultaneity 
relations at point-durations , thus accepting only the existence of 
point time-frames in nature, or equivalently only instantaneous spaces 
through which motion can be qualified, is the source of serious conceptual 
and technical problems in attempts to reconcile classical theories, 
including general relativity, with quantum theories. From this standpoint, 
we emphasize that spatial covering, as well as time-forcing schemata, 
have been developed both for the purpose of explicating, and qualifying in 
logical terms, the process of localization of physical continuum events in 
relational spatiotemporal terms within a suitably specified categorical 
environment. 

[ ] Ctrue lá ñ
C

( ) maxdom há ñ B
[ ]G : ( )h dom h B®

!
[ ]T G B h [ ]G

B
!
[ ]sT G

!
[ ]T G

!
[ ] | = ( ) |s maxT B dom h BG ñ á ñ ñ

( ) maxdom há ñ
!
[ ]T G

1 B®



537FUNCTORIAL GNOMONICS

503 
 

The further claim we wish to state concerns the ontology of 
localized events. We assert that it is precisely the local time-frame of 
simultaneity, or equivalently, the maximal hole of a local time-forcing 
covering sieve on a locus, forcing its former temporal interpretation, 
which determines the ontology of individuated events from the 
continuum by means of their localization over the locus. In this sense, 
continuum events are individuated as simultaneity-determined entities 
in the descriptive terms of local time-frames, where the maximal extent 
of simultaneity relations involved in the action of a time-forcing sieve 

 on a locus  is determined by the maximal hole-“eigenvalue” of 

the corresponding local time-operator  acting on . The ontology 

of individuated events, in this sense, is specified exactly by the nature of 
the maximal hole in the associated covering sieve. 

Thus, localized events are not restricted in any way to point-
events. The logical rules used for the understanding of the signified 
simultaneity-relations should comply with the sheaf-theoretic 
localization of truth-values assignments, expressing their spectral 
classification in local time-frames of corresponding temporal resolution 
units, and should never be reduced uncritically and exclusively to the 
descriptive terms of point time-frames. Otherwise, a variety of paradoxes 
of mixed ontological and logical inconsistencies arise, precisely as the net-
effect of the reduction of the temporal percolation process to time-frames 
of merely point-durations. 
 
1111..1100  NNAATTUURRAALL  SSPPEECCTTRRAALL  SSPPAATTIIOOTTEEMMPPOORRAALL  OOBBSSEERRVVAATTIIOONN  IINN  AA  TTOOPPOOSS  

 
Up to present, we have determined all the necessary spatial and temporal 
concepts needed for the individuation of observable events in the physical 
continuum through the localizing environment of a category of sheaves. 
Individuated events from the physical continuum become 
comprehensible through spatiotemporal observation that respects the 
norms of closed-sieve temporal percolation taking place over loci that 
have been qualified as local time-frames. In this manner, if we try to 
enunciate the means of functorial spatiotemporal localization in precise 
spectral terms, we can legitimately identify the above loci with the spectra 
of commutative observable algebras sheaf-theoretically. 

From this perspective, spatiotemporal observation is the process 
that detects, and subsequently, organizes the set of generalized points of 
a spatial -covering -sieve  on a locus , corresponding to events 

localized over that locus, by means of an -co-sieve  consisting of 

local -linear epimorphic representations  of commutative, 

associative and unital algebras , for , defined over an 

[ ]G B
!
[ ]sT G

B

h B R B

BA !

V B CA A®

CA :h C B®



538 NATURAL COMMUNICATION

504 
 
algebraic number field , whose elements are identified as observables 

taking co-final values in , as follows: in every -co-sieve  a local 

epimorphisms of -algebras , corresponds to an -state of 

, interpreted as the -state of an observable in  at duration 

 of the corresponding local time-frame , forced by the 
temporal closure  of . 

We call each commutative, associative and unital algebra without 

zero divisors, defined over an algebraic field , contained in an -co-
sieve , a commutative -arithmetic effectuating observation of events 

at duration  of a local time-frame , or equivalently, at 

temporal resolution unit  of the local time operator  acting 

on the locus . Without loss of generality, we may assume that the field 
 is identical with the field  of the real numbers, or its algebraic 

closure . 

Note that if the spatial -sieve is -covering, and 

consequently, the corresponding time-forcing -sieve is the maximal 

-closed -sieve, making  a complete local time-frame, then the -

co-sieve  contains the identity -linear representation 

. Thus, a complete local time-frame  is the simultaneity 

locus, or -duration of -evaluated observables in . 

Furthermore, the -states of observables in , that is, the -linear 

representations of  into the -algebra , namely , 

correspond to states at point-durations  of a local time-frame , 
identified with spectrally observable point-figures or spatial -points of 

the corresponding instantaneous spaces  at -durations . 

We call the set of all observable point-figures at all -durations of a local 
time-frame , the -spectrum of the commutative -arithmetic 

, meaning the set of individuated events at temporal resolution unit , 
which are precisely detectable by means of evaluations of observables into 
the -algebra . 

In a completely analogous fashion, we define the -spectrum of 

the commutative -arithmetic , where  is a commutative 
arithmetic in , as the set of individuated events at temporal resolution 
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unit , that are detectable as -figures at durations , by 

means of evaluations of observables belonging to  into the -

algebra . 

In general algebraic terms, all -states of the commutative -

arithmetic , where  are local -linear epimorphic 

representations of commutative -arithmetics in the -co-sieve , 

are in bijective correspondence with prime ideals of , as follows: 
 

 
 

The set of all prime ideals of the commutative arithmetic , specified as 

above, constitutes the prime spectrum of . Thus, the prime spectrum 

of  consists of all individuated events under varying temporal 

resolution units of the local time-frame , being detectable as figures at 
the corresponding durations of . We recall that the maximal spectrum 

of any commutative -arithmetic  is the set of maximal ideals of 

, where an ideal  is maximal if and only if  is an algebraic 
field. 

It is clear that spatiotemporal observation, understood as a process 
by means of which individuated events become spectrally detectable 
through evaluations of observables in local commutative arithmetics, 
constitutes a dual or opposite categorical perspective to the one 
corresponding to the localization of events in relational spatial and 
temporal terms. We may say that it constitutes the algebraic encoding of 
the information encapsulated in the spatial and temporal covering 
schemata, which in turn can be characterized accordingly as geometrical. 

In this sense, taking into account the duality between sieves and 
co-sieves, spatiotemporal observation is categorically equivalent to co-
localization of the covariant functor  , which is by specification a 

closed dense subobject of , namely a -co-sheaf 

locally isomorphic to the covariant representable functor  in the 

category . Most importantly, from the sheaf-theoretic perspective 

the elements of the -co-sieve , that is the observables, are identified 

with local sections of this -co-sheaf . We may refer to all relevant 
functors as sheaves, under the condition that the distinction of the 
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algebraic from the geometrical perspective becomes clear from the 
covariance or contravariance respectively of these functors. 

In conclusion, natural spatiotemporal observation is essentially 
the algebraic manifestation of the temporal percolation process with 
respect to a spatial covering schema, or equivalently, the algebraic 
transcription of the action of local time-operators on loci  in a 
categorical environment  by means of information encoding referring 
to event-figures at durations  of local time-frames , in 
terms of corresponding local commutative arithmetic evaluations of 

observables belonging to  into , which take place at respective 

durations  of . 
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