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Zusammenfassung

Diese Dissertation beschäftigt sich mit der Problemstellung der Bewegungs-
planung für automatische Fahrzeuge. Als Voraussetzung für den Einsatz im
realen Straßenverkehr müssen automatische Fahrzeuge ein angemessenes und
zuverlässiges Fahrverhalten im Mischverkehr mit menschgeführten Fahrzeu-
gen aufweisen. Neben den Unsicherheiten, welche aus fehlerbehafteter
maschineller Wahrnehmung, Verdeckungen und begrenzter Sensorreichweite
resultieren, müssen dabei auch Unsicherheiten im Verhalten anderer Verkehrs-
teilnehmer berücksichtigt werden.

Verwandte Ansätze zur Bewegungsplanung im Mischverkehr formulieren oft
ein deterministisches Optimierungsproblem. Dessen Lösung ist auf die Be-
stimmung einer einzelnen Trajektorie beschränkt. Fehlerhafte Vorhersagen
des Verhaltens anderer Verkehrsteilnehmer werden im Rahmen von fort-
laufender Neuplanung korrigiert, während größere Unsicherheiten in kon-
servativem, übervorsichtigem Fahrverhalten resultieren. Auf Grund der Un-
zulänglichkeiten dieser Problemformulierung in kooperativen und stark un-
sicherheitsbehafteten Szenarien werden zunehmend probabilistische Ansätze
vorgestellt. Die vollumfängliche Unsicherheitsbetrachtung führt im Kon-
text der Echtzeitanforderung jedoch häufig zu starken Einschränkungen in der
Modellierung derHandlungsmöglichkeiten automatischer Fahrzeuge. Darüber
hinaus werden Sicherheitsaspekte und Verkehrsregelkonformität oft nicht be-
trachtet.

In der vorliegenden Arbeit werden daher drei Bewegungsplanungsansätze
vorgestellt, welche den unterschiedlichen dominanten Unsicherheiten in ver-
schiedenen Szenarien Rechnung tragen, ohne dabei die Handlungsmöglich-
keiten des automatischen Fahrzeugs stark einzuschränken. Darüber hinaus
wird ein szenariobasierter Sicherheitsansatz vorgestellt. Dieser baut auf einem
bestehenden Ansatz auf, welcher garantiert, dass ein automatisches Fahrzeug
nie einen Unfall verursachen wird. Dieser Ansatz wird um die Betrachtung
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Zusammenfassung

von Verkehrsregeln für kreuzenden und zusammenlaufenden Verkehr, sowie
Verdeckungen, begrenzte Sensorreichweite und Fahrstreifenwechsel erweitert.

Für nicht-interaktive Szenarien mit definiertem Vorfahrtsrecht wird ein pro-
babilistischer Bewegungsplanungsansatz vorgestellt, welcher auf einer vorge-
lagerten Prädiktion anderer Verkehrsteilnehmer aufbaut. Das Planungsprob-
lem wird als teilweise beobachtbarer Markov-Entscheidungsprozess model-
liert. Im Gegensatz zu bisherigen Formulierungen wird jedoch davon ausge-
gangen, dass die Voraussage möglicher zukünftiger Verläufe der Unsicherheit
über die Bewegung anderer Verkehrsteilnehmer unabhängig von der Bewegung
des automatischen Fahrzeugs getroffen werden kann. Zusätzlich zu dieser
Prädiktion sichtbarer Verkehrsteilnehmer wird der Einfluss von Verdeckungen
und begrenzter Sensorreichweite betrachtet. Mit dem vorgeschlagenen Ansatz
ist trotz der umfänglichen Berücksichtigung der Unsicherheiten die Planung in
einem kontinuierlichen Aktionsraum möglich.

Zwei weitere Ansätze zielen auf die dominanten Unsicherheiten in interak-
tiven Szenarien ab. Zur Ermöglichung von Fahrstreifenwechseln in dichtem
Verkehr wird die Unsicherheit darüber, ob andere Verkehrsteilnehmer be-
reitwillig Raum für einen Wechsel bieten, in einem regelbasierten Ansatz
aktiv reduziert. Die dabei erzeugten Trajektorien sind ebenfalls sicher und
verkehrsregelkonform, gemäß des vorgestellten Sicherheitsansatzes. Für die
Ermöglichung von Kooperation in Szenarien ohne definiertes Vorfahrtsrecht
wird ein Multiagentenansatz vorgestellt. Dabei wird zunächst die global op-
timale Lösung des vorliegenden Multiagentenproblems hinsichtlich ihrer Ein-
deutigkeit überprüft. Ist die Lösung eindeutig, so wird diese verfolgt. Trotz-
dem wird geprüft, ob die anderen Verkehrsteilnehmer sich entsprechend des
angenommenen Kooperationsmodells verhalten, um im Falle einer Verletzung
der Modellannahmen auf eine konservative Alternativtrajektorie wechseln zu
können.

Die Leistungsfähigkeit der vorgestellten Ansätze wird in verschiedenen Sze-
narien mit kreuzenden und zusammenlaufenden Fahrstreifen, teils mit Verde-
ckungen und begrenzter Sicht, sowie Fahrstreifenwechseln und einer Engstelle
ohne definiertes Vorfahrtsrecht gezeigt.
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Abstract

This thesis targets the problem of motion planning for automated vehicles. As
a prerequisite for their on-road deployment, automated vehicles must show
an appropriate and reliable driving behavior in mixed traffic, i.e. alongside
human drivers. Besides the uncertainties resulting from imperfect perception,
occlusions and limited sensor range, also the uncertainties in the behavior of
other traffic participants have to be considered.

Related approaches for motion planning in mixed traffic often employ a deter-
ministic problem formulation. The solution of such formulations is restricted
to a single trajectory. Deviations from the prediction of other traffic partici-
pants are accounted for during replanning, while large uncertainties lead to
conservative and over-cautious behavior. As a result of the shortcomings of
these formulations in cooperative scenarios and scenarios with severe uncer-
tainties, probabilistic approaches are pursued. Due to the need for real-time
capability, however, a holistic uncertainty treatment often induces a strong
limitation of the action space of automated vehicles. Moreover, safety and
traffic rule compliance are often not considered.

Thus, in this work, three motion planning approaches and a scenario-based
safety approach are presented. The safety approach is based on an existing
concept, which targets the guarantee that automated vehicles will never cause
accidents. This concept is enhanced by the consideration of traffic rules
for crossing and merging traffic, occlusions, limited sensor range and lane
changes. The three presented motion planning approaches are targeted towards
the different predominant uncertainties in different scenarios, while operating
in a continuous action space.

For non-interactive scenarios with clear precedence, a probabilistic approach
is presented. The problem is modeled as a partially observable Markov de-
cision process (POMDP). In contrast to existing approaches, the underlying
assumption is that the prediction of the future progression of the uncertainty
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Abstract

in the behavior of other traffic participants can be performed independently of
the automated vehicle’s motion plan. In addition to this prediction of currently
visible traffic participants, the influence of occlusions and limited sensor range
is considered. Despite its thorough uncertainty consideration, the presented
approach facilitates planning in a continuous action space.

Two further approaches are targeted towards the predominant uncertainties
in interactive scenarios. In order to facilitate lane changes in dense traffic,
a rule-based approach is proposed. The latter seeks to actively reduce the
uncertainty in whether other vehicles willingly make room for a lane change.
The generated trajectories are safe and traffic rule compliant with respect to
the presented safety approach. To facilitate cooperation in scenarios without
clear precedence, a multi-agent approach is presented. The globally optimal
solution to the multi-agent problem is first analyzed regarding its ambiguity.
If an unambiguous, cooperative solution is found, it is pursued. Still, the
compliance of other vehicles with the presumed cooperation model is checked,
and a conservative fallback trajectory is pursued in case of non-compliance.

The performance of the presented approaches is shown in various scenarios
with intersecting lanes, partly with limited visibility, as well as lane changes
and a narrowing without predefined right of way.
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1 Introduction

The large potential of automated vehicles to change the future of mobility in
terms of safety, energy efficiency, accessibility and comfort has been known
for a long time. In recent years, the feasibility of automated driving along with
regular human-driven vehicles, so-called mixed traffic, has been investigated
and shown in various experimental vehicles.

The problem statement of motion planning for automated vehicles in mixed
traffic, the goal of this work and its outline are introduced in the following.

1.1 Problem Statement

Motion planning is key to every automated physical system, and a well inves-
tigated subject in the field of robotics. Analyses of human drivers show that
for humans, the driving task is commonly split into three subtasks: Naviga-
tion, guidance and stabilization [Don16, p.22]. Assistance in navigation, e.g.
through in-car or mobile navigation systems, and assistance in stabilization,
e.g. through anti-lock braking systems or electronic stability control, have al-
ready been available in series cars for decades. Guidance describes the task of
determining an appropriate path and velocity based on the road layout and the
motion of other traffic participants. In the field of automated vehicles, a similar
task distribution is common. The general goal of transportation, which is to
reach a certain position in the world, is commonly processed by a navigational
layer and turned into a route towards the destination. Along this route, the
task is to determine an appropriate trajectory, i.e. the state of the vehicle as a
function of time. The latter task is referred to asmotion planning for automated
vehicles. The decision is based on previously acquired knowledge about the
environment, such as the drivable area and detected objects, but also traffic
rules. The resulting trajectory is then passed to a controller, which determines
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1 Introduction

the input to the actuators in order to track the trajectory closely and compensate
for disturbance.

The key challenges in motion planning for automated driving arise from the
collision riskwith other traffic participants. Since human lives are at risk, safety
takes the top priority. On the other hand, over-cautious behavior, sometimes
referred to as “driving like a learner”1, is not only inconvenient but can also
cause dangerous situations, as this behavior might cause misunderstanding by
humans or entice them to risky overtaking maneuvers, for example.

1.2 Goal Description and Limitations

The goal of this work is to design motion planning approaches for automated
vehicles in mixed traffic. As the safety of passengers and other traffic partici-
pants must never be put at risk, the approaches must allow for a safety verifica-
tion w.r.t. reasonable assumptions. Still, they should yield convenient motion
plans, i.e. plans that are comfortable for the passenger but also useful w.r.t. the
desired destination. Thus, the motion plan should not be over-cautious, also in
order to not obstruct the traffic.

Throughout this work, the presence of a high definition map of the road layout
is assumed, including the traffic rules. Further, all objects within the sensor
range that are not occluded are assumed to be detected by the perception
module, and assigned a non-zero existence probability. Also, an independent
probabilistic prediction of the future trajectory of other traffic participants is
required, assuming they are not influenced by the ego vehicle. Since the first
decades of automated driving will be taking place alongside human traffic, the
approach is targeted towards this mixed traffic and does not rely on vehicle to
vehicle communication. Also, the approach is targeted towards road traffic that
is structured into lanes, excluding for example parking lots. Scenarios with
special traffic rules, such as zipper merges, and overtaking with oncoming
traffic are not considered.

1 Cf. Ziegler et al. [ZBS+14]: “Some passengers thus compared the robot to a human learner
taking driving lessons.”
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1.3 Contributions

1.3 Contributions

The contributions of this thesis are as follows:

• The concept of responsibility-sensitive safety (RSS) [SSS18], which is
targeted towards the guarantee that automated vehicles will never cause a
collision, is extended by considering of right-of-way rules for scenarios
with crossing and merging traffic, occlusions, limited sensor range and
lane changes.

• For driving scenarios with clear precedence, a new problem formulation
is introduced, exploiting the independence of the future trajectories of
prioritized traffic participants on the behavior of the ego vehicle. The
resulting formulation corresponds to a partially observable Markov de-
cision process (POMDP) with an ego-action-independent belief over the
trajectories of other traffic participants.

• In order to solve the introduced action-independent POMDP in real time,
a heuristic is proposed, employing driver models to generate reference
trajectories and a reaction analysis w.r.t. unfavorable behavior of pri-
oritized traffic participants. The approach determines safe trajectories
without the limitation to a discrete action space while considering uncer-
tainty in the current state of other traffic participants, their future route,
their behavior along the route and their existence. The consideration
particularly includes limited sensor range and occlusions.

• For lane changes, an approach that incorporates uncertainty regarding
the courtesy of other traffic participants is proposed. The approach
facilitates safe lane changes also in dense traffic.

• Lastly, an approach for scenarios that require mutual cooperation is
presented. As a cooperative motion plan, the solution to a multi-agent
formulation is determined. However, since the cooperative solution is
not always accomplished, the success probability and the convenience of
the fallback plan is incorporated into the decision of whether to attempt
the cooperative solution or to switch to the conservative fallback plan.

3



1 Introduction

1.4 Outline

The remainder of this work is structured as follows: In Chapter 2, the funda-
mentals of decision making and robot motion planning are explained, followed
by a review of relatedwork in the field. Subsequently, in Chapter 3, the problem
formulation of the underlying decision problem is deduced, before approaches
to solve the decision problem are presented in Chapter 4. These approaches
are evaluated in several scenarios in Chapter 5. Finally, the work is concluded
and future research directions are given in Chapter 6.
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2 Fundamentals and Related Work

Since the term motion planning describes various problems in the field of
robotics and beyond, Sec. 2.1 starts with an overview of existing formulations
of motion planning problems and algorithms to solve these. This includes the
definition of the terms and variables used in the remainder of thiswork. Further,
these problems are put in context to related areas, such as decision making and
control theory. Subsequently, related work from the area of automated driving
is presented in Sec. 2.2.

2.1 Fundamentals of Robot Motion Planning and
Decision Making

In robotics, the term motion planning is often used to describe the task of
finding the optimal sequence of configurations or states that move a robot from
a given source configuration/state to a destination. Similarly, the term decision
making is commonly used to describe the task of selecting the action out of a
(potentially infinite) set of actions, or deriving the policy to select this action,
depending on the current state, which ultimately leads to the largest reward.
In the course of a decision process, the previous task commonly results in a
sequence of actions. Control theory, as a third term, targets the task of finding
a control law which yields optimal inputs to a (dynamical) system, such that
the cost induced by both input to and state of the system is minimized. The
previous definitions presage that the field of motion planning overlaps, or is at
least related to, decision making and control theory. In the following, these
three fields are subsumed under the term planning.

Starting with basic components of planning and properties of planning al-
gorithms, the remainder of this section introduces planning in different state
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2 Fundamentals and Related Work

spaces, under uncertainty and differential constraints, as well as planning with
multiple agents and replanning.

2.1.1 Basic Components of Planning

In order to further distinguish between the problem formulations that are
common in the respective fields, we start by defining their basic components.
The following definitions are based on the book of LaValle [LaV06].

Agent The entity that takes decisions, pursues motion plans or controls is
commonly referred to as agent, robot or controller. Also, problem formulations
can include multiple agents, robots or controllers. In the latter case, the deci-
sion, plan or control can be made centralized or decentralized. Decentralized
approaches can include explicit communication between entities.

State Problem formulations in the above fields are commonly defined includ-
ing a state, which is a distinct configuration of the world, meaning the part of
the world that is relevant to the problem. The set of all possible states is called
state space. It can be discrete, i.e. finite or countably infinite, or continuous,
i.e. uncountably infinite. The definition of the state space is crucial to the
problem formulation, as it largely affects the choice or design of algorithms
to solve it. In motion planning and control, this state should be chosen to
cover at least the configuration of the agent or robot. Thus, it is often called
configuration space. In decision making, it commonly also covers the state of
the world around the agent.

State Transitions, Limitations and Constraints Arising from the different
state definitions, also the definitions of state transitions and their limitations
differ between the fields. In decision making, the transition from one state to
another is realized using actions. The action space might be limited, based
on the current state. Furthermore, as the state includes the description of the
world, an action does in general not lead to a deterministic state transition. A
common simplification is the Markov assumption, stating that the conditional
probability distribution of future states of the decision process only depends
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on the present state and not on previous states. In motion planning, both the
state space and the state transitions are in general subject to constraints. An
example for constraints that limit the state spaces itself are obstacles, while
the transitions might be limited by non-holonomic1 constraints. In control
theory, the state is manipulated by inputs and the state transition is described
by differential equations. Constraints can limit both the state and the input.

Sequences and Time While the solutions to the above problem formulations
might be abstract policies or control laws, their realization mostly involves a
sequence of states, actions or inputs. This sequence might be continuous or
discrete. Within this sequence, time might be explicitly modeled, especially if
the state of the world changes over time, but also if time is part of the objective.
Or time can be implicit, i.e. only the order of actions/inputs is important.
In case of continuous sequences, the parametrization of the solution is then
time independent. A sequence of states is referred to as path in case of
time independence. In case the sequence is parametrized using the time, it
is referred to as trajectory. Sequences that do not violate any constraint are
called feasible.

Initial and Goal States Usually, problem formulations start with the robot
or agent being in an initial state. In decision making, the definition of one or a
set of goal states is common. In case a set of goal states is defined, reaching it
is an additional condition for feasibility, i.e. solutions that lead from the initial
state to a goal state without violating any constraint are called feasible.

Optimality Criterion In order to distinguish the quality of different feasible
solutions, the problem formulations commonly include an optimality criterion.
This criterion can include multiple objectives, which might even be contradic-
tory, such as “be fast and consume little energy”. Mathematically, the criterion
can be formulated as cost, which is to be minimized, or as reward, which is to
be maximized.

1 Constraints that are only expressible via differential equations are called non-holonomic
[CHL+05, p.48].
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Depending on the constraints implied by the robot, the world around it and the
definition of optimality, the challenges differ largely. In robot motion planning,
high dimensional configuration spaces are mostly the challenging part, leading
to the necessity of discretization and approximative solutions. In decision
making, the unknown evolution of the future, commonlymodeled via transition
probabilities, is often key to the problem formulation. In optimal control,
complex dynamics of the system often make analytical solutions intractable,
resulting in helping frameworks, such as model predictive control. Some
common problem formulations of these fields are discussed in the following
sections.

2.1.2 Properties of Planning Algorithms

Having defined the basic components of the planning problem formulation,
this subsection introduces properties of planning algorithms. In the following,
the term planning algorithm is used to describe a sequence of instructions with
the goal of solving a planning problem. The quality and even applicability
of planning algorithms strongly depend on the underlying planning problem.
In order to distinguish planning algorithms later on, we start by introducing
common characteristics.

Completeness An algorithm is said to be complete, if it finds a solution
in case one exists, and is able to tell that no solution exists otherwise. For
sampling-based approaches, the relaxed property probabilistic completeness
is used for algorithms with which the probability of finding a solution (if it
exists) converges to one for infinite runtime.

Feasibility vs. Optimality Algorithms for feasible planning solely focus on
finding a feasible solution while not further distinguishing between multiple
feasible solutions. In optimal planning, additionally, the goal is to find the
feasible solution which is optimal w.r.t. a defined optimality criterion. While
solutions can be optimal within a local neighborhood of solutions (so-called
local optimality), the term optimality commonly refers to global optimality,
if not further specified. Planning algorithms focusing on finding local optima
are sometimes referred to as local planning algorithm or local planner.
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Online/Offline In general, an online algorithm is able to process parts of
the input, i.e. to start finding a solution without the need for the entire input.
On the other hand, offline algorithms compute the entire solution at once. In
motion planning, online algorithms allow the robot to execute motion before
the entire trajectory has been computed, i.e. the trajectory is updated during
motion. This is particularly important if the input is received from on-board
sensors of a robot, because this inherently only allows to gather necessary input
after the robot has moved. Online algorithms that focus on the solution for
only a certain horizon are said to operate with a receding horizon.

Open-Loop/Closed-Loop Algorithms that operate open-loop do not use
feedback for planning. Thus, all offline algorithms are by definition open-
loop. Closed-loop algorithms, on the other hand, do use feedback.

Replanning The term replanning is closely related to the online/offline and
open-loop/closed-loop properties: Replanning means that a found solution is
updated (replanned) over and over again. This is a common way to include
feedback into planning (closed-loop). It can be used to account for changes in
the environment that are not or hardly predictable, or to account for disturbance
or control errors. Receding horizon algorithms must replan in order to update
or at least extend the solution for the new horizon.

Anytime An anytime or interruptible algorithm can yield a valid solution
prior to its termination. Anytime algorithms commonly start by finding an
initial solution and improving it over time. The anytime property only makes
sense for optimal planning, as in feasible planning, there is no need to improve
an initial solution.

2.1.3 Planning in Discrete State Spaces

The most basic planning problems are those in discrete state spaces, i.e. with a
finite or countable infinite number of states. The action space is finite and state
transitions are deterministic. No uncertainty is incorporated in this section.
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Since the states along with their transitions can be represented in a graph, the
presented algorithms in this section are graph search algorithms.

Notation

For problem and algorithm formulation, we use the following notation: The
state space, i.e. the set of possible states s is denoted S with every distinct state
s being part of this set s ∈ S. The action space, i.e. the set of possible actions
a is denotedA, and might be limited depending on the current stateAs ⊆ A,
again with a ∈ A and furthermore A =

⋃
s∈S As . The state transition,

which is deterministic for now, can be expressed by a state transition function
f : S → S. We write s′ = f (s, a) meaning that action a applied in state s
leads to the new state s′. The set of goal states that are to be reached is denoted
SG with SG ⊂ S. Sequences of states and actions are denoted with s and a.

Discrete Feasible Planning

For discrete feasible planning, the task is to find a sequence of actions a to
reach a goal state sG ∈ SG from the initial state sI ∈ S. In general, there are
three ways to search for a solution in the graph: Forward search from the initial
state sI , backward search from goal states sG or the combination of both in a
bidirectional search. In the following, we focus on the forward search methods.

Breadth First The breadth first search algorithm grows the search tree in
a way that the depth difference in-between different branches stays minimal.
Only when all branches have the same depth k, meaning that all plans with
the same number of actions k have been investigated, the depth is increased,
meaning that plans with k + 1 actions are considered.

Depth First The opposite to breadth first is depth first, where the first branch
is fully investigated up to the point from where no new state can be reached
anymore, and only then another search branch is opened.
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Discrete Optimal Planning

In this section, feasible plans are additionally distinguished regarding their
quality. In other words, we are not looking for any action sequence that leads
to the goal region, but want the optimal one, w.r.t. some criterion. The term
l(s, s′) denotes the cost that is assigned to every state traversal s → s′. Due
to the deterministic state transition, it can also be expressed as l(s, a). This
cost is equivalent to edge cost in the graph representation. Given this traversal
cost, we can define optimal cost2 to reach state s from the initial state sI as
C∗(s). This yields C∗(sI ) = 0. Cost that is not (yet) known to be optimal is
denoted C(s). The cost computation can be done via C(s′) = C∗(s) + l(s, a).
Determining C∗(s′) is generally not trivial. As further notation, we enumerate
the sequences of states, starting with s1 = sI , such that an arbitrary action
sequence (a1, a2, ..., aK ) leads to a state sequence (s1, s2, ..., sK+1), where sk+1
can be iteratively computed from sk using f : sk+1 = f (sk, ak). In discrete
optimal planning, the following principle is key to most planning algorithms:

Definition 1 (Bellman’s principle of optimality). According to Bellman, “an
optimal policy has the property thatwhatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to
the state resulting from the first decision” [Bel57, p.83].

This facilitates breaking down optimization problems into simpler subprob-
lems. Methods which exploit this principle are called dynamic programming
methods. In the following, we introduce some basic algorithms. The state
space is assumed to be finite.

Fixed-Length Forward Value Iteration A straightforward algorithm to com-
pute the cost to reach states s starting at sI is to iteratively compute the optimal
cost C∗

k+1(s) to reach s in k + 1 steps starting at the optimal cost C∗
k
(s) for

k steps. This step being computed for all s in step k before moving on to
k + 1 induces the limitation to finite state spaces. This dynamic programming
method thus computes C∗1 → C∗2 → ...→ C∗K .

2 Cost to reach a state s from an initial state sI is sometimes referred to as cost-to-come in order
to distinguish it from cost to go to a goal state sG from the state s, which is then denoted as
cost-to-go.
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General Forward Value Iteration The generalization of fixed-length plans
to plans of arbitrary length requires the definition of a terminal action aT as a
special treatment for plans that have reached a goal state already. This terminal
action aT must lead to zero transition cost in goal states l(sG, aT ) = 0. With
this, instead of requiring plans with fixed length K , we can consider any plan
of length K or less. As an example, the plan (a1, a2) is equal to (a1, a2, aT , aT ).
The optimal plan can now be found as soon as the costs become stationary, i.e.
as they no longer change with ongoing value iteration stages. For this to occur,
the cost must be defined in a way that negative-cost cycles do not exist.3

Dijkstra’s Algorithm This algorithm also employs dynamic programming,
but its general approach is different: Instead of repeatedly revisiting states, it
systematically searches for optimal paths in a graph. In Dijkstra’s algorithm,
as with breadth first and depth first search, visited states are tracked. More
precisely, states whose cost is optimal, i.e. stationary already, are no longer
visited. The basic idea behind the algorithm is to always explore the edgewhich
leads to the vertex with minimal cost/distance (starting at the initial vertex).
Once the distance to a vertex is computed, it is never updated again. This is
why, in contrast to value iteration, where only negative cycles are prohibited,
Dijkstra’s algorithm requires all costs to be non-negative.

A-Star As an extension of Dijkstra’s algorithm, A* uses a heuristic to search
more efficiently, i.e. with visiting less states. The heuristic h used in A* is
an under-approximation of the cost from an arbitrary state to the goal state,
h(s → sG) ≤ C∗(s → sG). With this, instead of visiting the state (vertex)
with the least cost C(sI → s), the state with the smallest expected total cost
C(sI → s) + h(s → sG) is visited. In other words, Dijkstra’s algorithm
corresponds to A* without heuristic: h(s→ sG) = 0 ∀s.

3 Otherwise, they would be exploited repeatedly, leading to cost of −∞.
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2.1.4 Planning in Continuous State Spaces

With the generalization from planning in discrete state spaces to planning
in continuous state spaces, several challenges arise: The number of avail-
able states is uncountably infinite, i.e. value iteration or other graph-based
algorithms are not straightforward applicable. Moreover, the state space, in
this context more often called configuration space, is at the same time multi-
dimensional and constrained by (moving) obstacles. In this section, we focus
on problems without differential constraints. Here, sampling-based methods
for continuous spaces are introduced, which discretize the state space efficiently
but are generally not complete. Further, an introduction to non-stationary plan-
ning with time discretization is given. Problems with differential constraints
and continuous time will be covered in Sec. 2.1.6.

Sampling-Based Planning

In the context of planning, the term sampling can be used with two meanings:
Sampling as in signal processing means the discretization of a continuous
signal. Sampling as in statistics means selecting individual samples from
a potentially infinite set. For planning in a continuous but bounded state
space, such as a room or a parking lot, the first type of sampling makes the
graph-search methods from Sec. 2.1.3 applicable. As this involves building
a graph which can then be reused or queried multiple times, LaValle refers
to such methods as multiple-query methods [LaV06, p.217]. Two relevant
alternatives will be explained in the first two paragraphs. Contrary to this two-
step approach, single-query methods do not precompute a graph. With this,
they additionally cover open spaces. Thesemethods are also called incremental
sampling-based methods, rather referring to the second meaning of sampling.
The well-known method RRT along with its variant RRT* will be shortly
introduced later on.

Grid-Based Planning Grid-based planning is the most straightforward way
to apply existing graph searchmethods to bounded continuous state spaces. The
state space is subdivided into (multi-dimensional) grid cells and subsequently,
graph search is applied within the grid. While such grid-based methods cannot
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be complete, they can be resolution complete, i.e. guarantee to find a solution
if it exists and if the grid cells are sufficiently small.

Roadmaps In the concept of so-called roadmaps, which gained attention
through thework about probabilistic roadmaps (PRMs) [KSLO96], the graph is
created by random sampling (with subsequent collision checking), and attempts
to connect the vertices using a local planner, again checking for collisions. For
roadmap-based methods, probabilistic completeness, which was defined in
Sec. 2.1.2, can be reached.

Rapidly Exploring Random Tree (RRT) In contrast to grid-based planning
and roadmaps, RRT does not precompute the graph. Furthermore, as the name
suggests, the graph is a tree. It is grown by drawing random samples from the
configuration space. RRTs are probabilistically complete. This is reached as
the sample is always connected with its nearest neighbor in the tree, i.e. the
probability of expanding a state is proportional to its Voronoi region. In order
to prevent many far away but unreachable samples, the new state is commonly
chosen to be at a maximum distance from the nearest state. In case it is further
away than this distance, the random sample is replaced by the state that is at
this maximum distance in the direction of the random sample. This new state
is then connected to the tree. RRTs have been introduced for feasible planning
and are generally not optimal. This motivated RRT*, explained in the next
paragraph.

RRT-Star The suboptimality of RRT is overcome by the extension RRT*:
Instead of connecting the new state snew to its nearest neighbor in the tree,
all states within a certain distance (respectively, all states within a set Snear)
around the new state are checked, and it is connected to “the vertex that incurs
the minimum accumulated cost up until” this new state snew [KF11]. Further,
the new state is extended to those vertices/states in Snear that can be reached
with smaller cost through snew, which is called rewiring. With these additional
steps, RRT* is asymptotically optimal.
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Time Discrete Non-Stationary Planning

For non-stationary planning, the time has to be considered additionally. Thus,
the resulting plans of this section will be trajectories instead of paths. Neglect-
ing differential constraints, which will be covered in Sec. 2.1.6, non-stationary
planning is particularly interesting if goal or obstacle regions change over time.
Generally, these changes are assumed to be predictable and thus known in the
planning problem. Approaches to overcome these challenges can be split into
methods decoupling path planning and velocity planning, and direct methods,
which solve the problem without decomposing it.

Direct Methods Many incremental sampling-based methods can easily be
adapted to non-stationary problems. Here it is crucial that, during sampling or
during verification of the sample (collision checking), it must be ensured that no
trajectories travel backwards in time. Further, traveling at infinite velocities is
not meaningful, leading to the requirement of strictly monotonically increasing
time for every valid trajectory.

Decoupled Trajectory Planning As the time adds a further dimension to the
problem, it increases complexity. This can be reduced again by decoupling
path planning and velocity planning. Kant and Zucker proposed a well-known
approach to solve such non-stationary problems with a heuristic, called Path-
Velocity Decomposition (PVD) [KZ86]: PVD is the decomposition into first
path planning to avoid stationary obstacles and then velocity planning to avoid
moving obstacles. While this heuristic is not generally optimal, it allows for
the use of time-efficient algorithms within the subproblems. As the previously
presented incremental sampling-based planners are only asymptotically opti-
mal, PVDmight even lead to better results given limited runtime. Note that it is
also possible to improve the computed path and velocity profile iteratively, for
example. The iterative computation is referred to only as decoupled trajectory
planning, while PVD refers to the previously introduced heuristic.
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2.1.5 Planning under Uncertainty

While the previous sections modeled problems in a deterministic way, for both
the knowledge about the state and the state transition, this assumption is not
always reasonable. Planning under uncertainty, which is also referred to as
decision theoretic planning or decision making, focuses on finding optimal
decisions based on models that account for uncertainty. In order to allow for
the use of the Bellman equation (in other words: to allow for dynamic pro-
gramming), the state is commonly chosen such that the Markov assumption
holds4, i.e. that the probabilistic state transition function only depends on the
current state and the current action. The decision process is then calledMarkov
decision process (MDP), it will be further explained in the next section. Its
extension to also include uncertain knowledge about the state itself, called
partially observable Markov decision process (POMDP), is introduced subse-
quently. In this section, the state space is again assumed to be discrete. Note
that uncertainty introduced by multiple agents and their unknown behavior is
only dealt with in Sec. 2.1.7.

Markov Decision Processes (MDP)

As explained above, the formulation of MDPs differs from those of Sec. 2.1.3
in the state transition. Instead of modeling a deterministic transition, proba-
bilistic transitions are considered. The transition probability is described as
Pr(s′ |s, a) = Pr(si+1 = s′ |si = s, ai = a), i.e. Pr(s′ |s, a) is the probability that
action a applied in state s will lead to a transition to state s′ in the next step,
where integer i enumerates steps. Also, the cost has to be redefined to account
for this probabilistic transition: The term la(s, s′) denotes the immediate cost
for transitioning from s to s′ taking action a. In the decision making literature,
the cost is commonly turned into a reward ra(s, s′), which is to be maximized
for optimality.5 Yet, it can be reformulated to r(s), only depending on the
current state, without fundamentally changing the problem [RN16, pp.647].
With this probabilistic formulation, an optimal sequence of actions, also called

4 At least such that this assumption appears reasonable.
5 As suggested by LaValle, this does not change the core problem to any extend, and the transfer
can for example be done choosing ra (s, s′) = −la (s, s′) [LaV06, p.439].
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optimal plan, can no longer be determined, as it depends on the actual transi-
tion after each action in the sequence. Thus, the problem is reformulated from
finding a sequence of actions to finding a sequence of decisions, described
by a policy π : S → A, that determines which action a to choose when in
a specific state s. Note that the same policy starting at the same initial state
might lead to a different state and action sequence, due to the stochastic nature
of the problem. Consequently, policies cannot be compared by their future
reward, as the latter is not unique. As Bellman wrote, “it is now on the whole
meaningless to speak of maximizing the return6” [Bel57, p.85]. Rather, some
expected value E(·) has to be considered:

Definition 2 (Utility of a policy, expected utility). The utility Uπ of a policy
π in a state is defined as the expected utility of executing the policy:

Uπ(s) = E (U(s̃)) (2.1)

i.e. of the random sequence s̃ = (s, s′, ...) that arises from repeatedly applying
actions according to policy π starting in the initial state s.

This utility can then be maximized. However, it is noteworthy that “with a
finite horizon, the optimal action in a given state could change over time”, i.e.
the optimal policy is not stationary in this case [RN16, pp.648-649]. As an
example, consider you have to reach a train departing at a specific time. At a
point 200 m from the train station, you would probably walk if the departing
time was in 5 min, but rather run if it was in 2 min. For further details, we refer
to the book of Russell and Norvig [RN16]. Thus, we focus on problems with
an infinite horizon, where the optimal policy is not obviously non-stationary.
Under the reasonable demand of stationarity for optimal policies7, the utility
definition U(s̃) for infinite sequences of states s̃ = (s0, s1, s2, ...) is limited to
two options, according to Russell and Norvig [RN16, p.649]:

1. Additive rewards: Radd(s̃) = limN→∞
∑N

i=0 r(si).

2. Discounted rewards: Rdisc(s̃) = limN→∞
∑N

i=0 γ
ir(si) with discount fac-

tor γ, 0 ≤ γ < 1.

6 Return is a different word for reward.
7 That is, the action selection does not depend on the current step/time i.
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While the discounted reward is bounded for γ < 1 if the single rewards are
bounded, the additive reward is generally not bounded8. If the additive reward is
not bounded, wewould need to compare infinite rewards, which is notmeaning-
ful (other than saying that +∞ is better than −∞). One solution to circumvent
this, is to consider the average reward Ravg(s̃) = limN→∞

1
N

∑N−1
i=0 r(si) as util-

ity, which is also bounded given that the single rewards are bounded. Another
solution is to employ a limited but receding horizon. For every decision, only a
finite number NH of future steps are considered as utility: RRH(s̃) =

∑NH

i=0 r(si),
which is bounded by (NH + 1) · rmax. This finite receding horizon is not to
be confused with the previously discussed finite horizon. The optimal policy
for this problem will still be stationary, as the horizon is always the same and
therefore does not depend on i. However, similar to the discounted reward, the
optimal policy for this problem might differ from the actual optimal policy, as
illustrated in the example below.

Example 2.1.1. Consider a problem with 3 states: A with reward rA =
r(A) = 1, B with reward rB = r(B) = 0 and C with reward rC = r(C) = 2.
The available actions are to stay in the state or to change from A to B
or vice versa and from B to C and vice versa, where the state transitions
themselves do not affect the reward. The transitions are deterministic.

A
(+1)

B
(+0)

C
(+2)

The optimal policy is: “When in A move to B, when in B move to C and
when in C stay there” (denoted π2), leading to an average reward of 2 for

8 The additive reward is bounded if a terminal state exists and the policy is guaranteed to find one
(then called proper policy).
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N →∞. The optimal policy for a discounted reward with γ < 1
2 is “Stay

in A when in A” (denoted π1), as

Rπ1 (s0 = A) = lim
N→∞

N∑
i=0

γirA = rA
1

1 − γ
=

rA
1 − γ

and

Rπ2 (s0 = A) = rA + 0 +

(
lim
N→∞

N∑
i=2

γirC

)
= rA + 0 +

(
rC

1 − γ
− rC − γrC

)
=

rA − γrA + γ2rC
1 − γ

lead to
Rπ1 (s0 = A)
Rπ2 (s0 = A)

=
rA

rA − γrA + γ2rC
.

Thus, policy π1 is preferred if

Rπ1 (s0 = A)
Rπ2 (s0 = A)

=
rA

rA − γrA + γ2rC
> 1

⇔ γ2rC − γrA < 0

⇔
rA
γrC

> 1

which is true for all 0 < γ < 1
2 with rA = 1 and rC = 2.

The policy π1, however, leads to a lower overall average reward, as the
average reward is 1 for N →∞ and s0 = A. The same suboptimal policy
is generated with a finite receding horizon of NH = 1.

While formany applications, neither NH = 1 nor γ < 1
2 aremeaningful choices,

the example shows that with these alternative reward formulations, “optimal”
policies might lead to suboptimal results w.r.t. the original cumulative reward.
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The definition of the expected utility leads to the following principles and
formulations:

Definition 3 (Principle of maximum expected utility (MEU)). The principle
of maximum expected utility expresses that a rational agent should maximize
its expected utility when choosing actions:9

aselect = arg max
a∈A

E (U(a)) . (2.2)

Definition 4 (The optimal policy). According to our previous definitions,
determining the optimal policy π∗ can now be formulated as

π∗ = arg max
π

Uπ(s). (2.3)

With the above definitions, we can use Bellman’s principle of optimality to
state that

π∗(s) = arg max
a∈A(s)

∑
s′

Pr(s′ |s, a)Uπ∗ (s′) (2.4)

which is key to solving MDPs.

In the following, we give a short introduction to the application of value
iteration in the context of MDPs, to policy iteration, and to reinforcement
learning.

Value Iteration The value iteration algorithm, as introduced in Sec. 2.1.3, is
also applicable to MDPs. As the probabilistic transition prohibits the calcula-
tion of some optimal reward that will be reached with certainty, the algorithm
is adapted to iteratively compute an approximation for the utility Ũ(s) of states,
starting at their reward value Ũ0(s) = r(s). In step k, this update works as
follows:

Ũk+1(s) ← r(s) + max
a∈A(s)

∑
s′

Pr(s′ |s, a)Ũk(s′). (2.5)

Russell and Norvig refer to this step as Bellman Update [RN16, p.652]. As
with the deterministic equivalent, this step being computed for all s in step k

9 Note that humans do not always act accordingly, for example when they gamble [RN16, pp.619-
620].
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before moving on to k+1 induces the limitation to finite state spaces. This step
is repeatedly performed until Ũ converges. Given the optimal utility function
U∗, the policy can be computed using eq. 2.4, by substituting Uπ∗ = U∗.

Policy Iteration Another algorithm is to iteratively compute the best policy
directly. Starting point is any policy π0. This policy is then repeatedly
updated in a two-step process: First, evaluate the policy πk by computing
Uk = Uπk . This can be done by either computing the exact solution of
Uk(s) = r(s) +

∑
s′ Pr(s′ |s, πk(s))Uk(s′), or by using value iteration, but now

with the fixed policy πk . Second, improve the policy to πk+1 by evaluating
eq. 2.4 with the new utility Uk . The repetition is stopped once the policy
evaluation does not lead to a change in the utility and thus the improvement
does not change the policy anymore.

Reinforcement Learning For the previous algorithms, we assumedPr(s′ |s, a)
to be known. In reinforcement learning (RL), the idea is to combine learn-
ing Pr(s′ |s, a) and computing the optimal policy. LaValle also refers to this
concept as simulation-based dynamic programming or simulation-based plan-
ning [LaV06, p.528], since the required samples are commonly generated
using Monte Carlo simulation. Further, even the state space and the reward
of unvisited states do not have to be known. Only the set of available actions
in a visited state A(s) is required. While there are plenty of RL algorithms
explained in literature, we focus on the basic algorithms that are similar to
value iteration and policy iteration and use the model-free Q-learning. The Q-
function Q(s, a) is a state-action utility function, denoting the utility of taking
action a in state s. Related to the state utility function U, U(s) = maxa Q(s, a)
must hold. However, Q is not an inefficient way to store U, but it is a means
to model-free learning of the right policy, as no transition model Pr(s′ |s, a) is
needed.10 The Bellman equation for state-action utilities is

Q∗(s, a) = r(s) +
∑
s′

Pr(s′ |s, a) max
a′∈A(s′)

Q(s′, a′). (2.6)

10 It is not beneficial if Pr(s′ |s, a) and r(s) are known.
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While this approach again includes Pr(s′ |s, a), the latter can be circumvented
using the concept of temporal differences (TD), leading to

Q(s, a) ← (1 − α)Q(s, a) + α
(
r(s) + max

a′∈A(s′)
Q(s′, a′)

)
(2.7)

with learning or convergence rate α ≤ 1. This is, Q(s, a) is updated after a
was taken in s which leads to s′, without the need to know or estimate the
transition model Pr(s′ |s, a). The determination of which action a to choose
is a trade-off between exploration and exploitation. A well-known method to
tackle this trade-off is the ε-greedy algorithm: With a defined probability ε ,
the action is chosen derived from the Q-values, otherwise a random action is
chosen. For rather limited state and action spaces, Q can be stored in a table.
For large problems, a Q-function can be approximated using regular function
approximation or artificial neural networks.

Partially Observable Markov Decision Processes (POMDP)

Partially observableMarkov decision processes are the generalization ofMDPs
to uncertainty in the state. The name stems from the fact that the state is not
fully observable. Instead, the agent receives observations o ∈ Ω, where Ω is
the space of possible observations, and states are related with observations via
the conditional observation probability Pr(o|s′). To solve POMDPs, a belief
space is commonly introduced. The belief state b is a probability distribution
over all possible states where bi(s) = Pr(si = s) is the probability of being in s
at step i. The belief state update depends on the current belief b(s), the action
a, and the next observation o

b′(s′) = α Pr(o|s′)
∑
s

(Pr(s′ |s, a)b(s)) (2.8)

with an additional normalizing factor α that ensures
∑

s bi(s) = 1.

The key difference of a POMDP to an MDP is that the optimal action depends
only on the current belief state b and not on the actual state s. Thus, the optimal
policy maps from belief states to actions π∗ : B → A. However, POMDPs
can be reformulated as MDPs in the continuous belief state space B. This is
also, why the task of optimally solving POMDPs is sometimes referred to as
belief state planning or planning in belief space. For this reformulation, we
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need a belief space transition model Pr(b′ |a, b) and a reward function for belief
states ρ(b).

The transition model is

Pr(b′ |a, b) =
∑
o

(
Pr(b′ |o, a, b)Pr(o|a, b)

)
. (2.9)

With the probability that we observe o when taking action a in belief state b

Pr(o|a, b) =
∑
s′

(
Pr(o|s′)Pr(s′ |a, b)

)
(2.10)

=
∑
s′

(
Pr(o|s′)

∑
s

Pr(s′ |s, a)b(s)

)
(2.11)

we obtain

Pr(b′ |a, b) =
∑
o

(
Pr(b′ |o, a, b)

∑
s′

(
Pr(o|s′)

∑
s

Pr(s′ |s, a)b(s)

))
(2.12)

where Pr(b′ |o, a, b) is 1 if eq. 2.8 is fulfilled and 0 otherwise.

The reward function ρ(b) is

ρ(b) =
∑
s

b(s)r(s). (2.13)

The Bellman equation for belief states is then

U∗(b) = max
a∈A(b)

[
ρ(b) + γ

∑
b′∈B

Pr(b′ |b, a)U∗(b′)

]
(2.14)

regarding the discounted cumulative reward model for the utility.

An optimal policy for this observableMDP in the belief space is also optimal for
the underlying POMDP [RN16, p.660]. However, while the original POMDP
was on a finite physical state space, the state space of the belief MDP is
continuous. Thus, the previously introduced value iteration for finite spaces
is no longer applicable here. Apart from toy examples, solving POMDPs was
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Figure 2.1: Exemplary belief tree with two possible actions a1, a2 and two possible observations
o1, o2. The white circles denote belief states, which are updated on new observations.

considered intractable for a long time, amongst others due to the fact that the
belief space is continuous and (|S| − 1)-dimensional.

One algorithm to solve large POMDPs was presented by Silver and Veness
[SV10]. It is based on Monte Carlo Tree Search (MCTS): Possible future
evolutions of the belief are found using a particle filter, where the particles
are updated based on sampled observations. The tree structure that is built
during this search is called belief tree (cf. Fig. 2.1). This concept is used in
related work and will be revisited in Chapter 3. One strength of employing
a POMDP formulation is the ability to choose information gathering actions
to actively reduce the uncertainty in the belief. A method to solve POMDPs
approximately is called QMDP, it is based on the assumption that the state
will become fully observable in the next time step [Koc15, p.144]. With this
assumption, the state-action function (known from the concept of Q-learning)
of the underlying MDP can be used to determine the approximately optimal
action. For more algorithms to solve POMDPs, the interested reader is referred
to [Koc15], [KLC98] and [RN16].
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2.1.6 Planning under Differential Constraints

In this section, we go back to the deterministic world. In Sec. 2.1.3, the state
space was discrete, and instead of considering the time, we rather focused on
the order of actions in a decision sequence. In Sec. 2.1.4, the state space was
continuous, but it was assumed that neighboring configurations in obstacle-
free regions could easily be connected, i.e. a path between them was easy to
determine. In this section, we focus on problem formulations with differential
constraints, which can be seen as an extension of Sec. 2.1.4 to the continuous
time domain. This allows for example to consider kinematics, such as that cars
cannot move sideways, or dynamics, such as that velocities and accelerations
are generally limited.11 In this context, the introduction of a phase space is
common, which, in addition to the configuration space of a robot, also contains
derivatives, such as velocities and accelerations. The state transition equation
si+1 = f (si, ai) is replaced by the differential equation Ûs = f (s, a), which can
also include higher order derivatives of s. The theory behind finding optimal
plans for problems with differential constraints is also known as dynamic
optimization or optimal control.

As in Sec. 2.1.4, solution methods to optimal control problems can be split
into methods operating directly on the trajectory and methods that decouple
path planning from velocity planning. In the following, we focus on the
non-decoupled methods, as the idea of decoupled planning has already been
introduced in Sec. 2.1.4. Yet, some direct methods from this section can also
be applied to either path or velocity planning.

The methods for trajectory planning can be split into analytic methods for
simple cases, numericalmethods from optimal control and enhanced sampling-
based methods from Sec. 2.1.4.

Analytical Solutions

The solution of trajectory planning in both continuous space and time is a
function s : R→ S. In order to define optimality criteria for these trajectories,

11 It is also possible to model this with limited actions per state, to circumvent formulations using
differential constraints.
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we need functions of functions, called functionals. Extrema of functionals can
be found using the calculus of variations, more specifically using the Euler-
Lagrange equation. Using this equation, it can for example be shown that
jerk-optimal trajectories in free space are fifth-order polynomials [THNS89].
The extension of this calculus to include a system equation that relates input to
state is based on the method of Lagrange multipliers, that is known from static
optimization, i.e. optimization of functions, not functionals. The functional
of which the extremum is to be found is then called the Hamiltonian12. The
optimal control of a linear system with a quadratic cost functional, i.e. the
optimum of the Hamiltonian in this case, can be found solving the Riccati
differential equation. The respective controller is called Ricatti controller or
linear–quadratic regulator (LQR). Conditions for the optimal solution to the
Hamiltonian under input inequality constraints are known from Pontryagin’s
maximum principle [Pon87, p.17]. While this theory allows for analytic solu-
tions in some cases, it is in practice often used in combination with numerical
methods which facilitate at least the approximation of the optimal solution.

Numerical Methods

Numerical methods solve the previously described problem of optimal contin-
uous trajectory planning by approximation. They can be distinguished depend-
ing on where this approximation is used. Most significant is the distinction
between methods that numerically solve the optimality criteria derived in the
previous section (called indirect methods), and those that reduce the problem
to a static optimization problem (called direct methods). A known indirect
method is the numerical solution of theRicatti differential equation. For a linear
system with a quadratic cost function and linear constraints, the direct method
leads to a quadratic program which can be solved very efficiently. In presence
of non-linear constraints, the problem can be solved by sequential quadratic
programming (SQP), i.e. iteratively linearizing the constraints around the cur-
rent solution and then refining the solution by quadratic programming. The
extension of quadratic programming to combinatorial problems with multiple
optima can be realized using mixed-integer quadratic programming (MIQP).

12 For static optimization it was the Lagrangian.
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Sampling-Based Methods

The extension of the sampling-based methods of Sec. 2.1.4 to facilitate the
incorporation of differential constraints is possible and common in robotics.
One option is to discretize the state space into a lattice for subsequent graph
search in this state lattice [PK05]. Such approaches, however, can reach
resolution completeness at most. The integration of dynamically changing
constraints, such as dynamic obstacles, is also possible [ZS09]. Another option
is the integration of non-holonomic motion primitives into the incremental
RRT-based planners, which corresponds to discretized actions. To be able
to perform rewiring (cf. Sec. 2.1.4), the challenge is to have a fast local
planner to determine feasibility and eventually connect the closest samples in
the phase space. For path planning for wheeled robots, this can be realized
using Dubin’s curves [Dub57], for example. Generally, results from sampling-
based planning approaches can be smoothed by a local numerical planning
algorithm, for example a gradient-based algorithm.

2.1.7 Multi-Agent Planning

The previous sections all had in common, that one agent or robot was consid-
ered, while the environment was either considered known, also in the future, or
at least the probability over its evolution was known. Sometimes, however, this
assumption is not valid or at least questionable, such as in the presence of other
agents, robots or also in the presence of humans. In such situations, the agent
that is to be controlled is referred to as the ego agent. The study of interaction
among decision making agents is known as game theory. Russell and Norvig
state that the multi-agent perspective should be taken if the other agents also
try to maximize a reward, and the latter is affected by the ego agent’s behav-
ior [RN16, p.43]. Depending on the interdependence of the rewards, such a
multi-agent setting can be competitive, i.e. the agents have contradicting goals,
cooperative, i.e. the agents have a common goal, or a combination of both.

In case every agent has its own strategy, John Nash proved that there is at
least one equilibrium in every game, named Nash equilibrium after him, i.e. a
combination of policies inwhich no agent can benefit from switching strategies,
given that the others stick with their policy [RN16, p.669]. Often, cooperation
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based on mutual trust could lead to superior results. However, the Nash
equilibrium should be the choice of a rational agent.

The task can also be to control several agents or even all agents. Here,
the planning can be centralized, i.e. one plan is computed that all (controlled)
agents have to follow, or decentralized, i.e. agents plan on their ownbutmight be
able to communicate with each other and coordinate their actions. Centralized
planning for multiple agents is also referred to as multi-body planning, which
can be considered a single agent problem [RN16, p.425]. For the case of
multiple agents that choose their actions individually but share the same cost
function and each have perfect state knowledge, Boutilier uses the term multi-
agent Markov decision process (MMDP) [Bou96]. In case of uncertainty in the
state, the problem is called decentralized partially observable Markov decision
process (Dec-POMDP) [Koc15, p.159].

2.1.8 Replanning

The previous sections dealt with finding single plans or policies. As policies
per definition yield an action that is to be taken for every possible state, an
unexpected transition to another state does not affect the optimal policy, given
that it does not violate the transition model and thus the preliminary for the
policy to be found optimal. The open-loop control of a plan, however, easily
leads to deviating from it, for example due to disturbance. In addition to that,
the environment might be hardly predictable, and wrongly predicted changes
can also lead to plans becoming invalid or at least suboptimal.

The problem of disturbance and control errors can be solved with an under-
lying closed-loop controller that repeatedly tunes the control signal such that
the previously computed plan is pursued [LaV06, p.23]. The problem of un-
predictability is commonly tackled with replanning. Being aware of the fact
that replanning is necessary, this can be further exploited during planning, for
example with the following approach.
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Model Predictive Control (MPC)

The idea behindmodel predictive control is to iteratively consider a rather short
finite but receding horizon for problems with a long horizon and non-linear
dynamics. Therefore, it is also called receding horizon control. The plan, how-
ever, is only pursued for a small part of the considered horizon. This concept
certainly does not guarantee optimality. For non-linear systems, however, it
can lead to results that are superior to optimally solving the linearized problem,
given that the chosen horizon is large enough. In robot motion planning, a
similar concept is applied to deal with unpredictable future constraints, even
though the system dynamics themselves are often linearized. The approach is
also used in multi-agent problems. If the game theoretic view is intractable,
due to complexity or unknown desires of others, they are treated as obsta-
cles rather than agents. Wrong assumptions about their future movement are
corrected from new sensor input during replanning.

2.2 Related Work on Motion Planning for
Automated Driving

Having reviewed the fundamentals of motion planning and the related areas
decision making and control, we now focus on motion planning for automated
driving. In general, scenarios that have to be mastered by fully automated
vehicles can be split into driving in structured and unstructured environments
[Wer11, p.23]. Driving in unstructured or little structured environments is
commonly at low velocities, for example reaching a parking lot in a car park.
Here, graph search-based approaches are dominating and feasibility is already
a challenging goal, due to narrow gaps and the non-holonomic constraints.
Motion planning for this type of scenarios is not the focus of this thesis and
thus not further considered. Motion planning in regular on-road traffic largely
differs from the latter. It takes place in highly structured environments and
at higher velocities. Here, comfort and efficiency come into focus, and safety
becomes more challenging.

In order to depict the context and integration of motion planning for automated
driving, we start by giving a brief insight into system architectures of automated
vehicles in Sec. 2.2.1. Subsequently, we review existing approaches to motion
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planning for automated driving in Sec. 2.2.2 and Sec. 2.2.3. In Sec. 2.2.4,
safety approaches are introduced.

2.2.1 System Architectures of Automated Vehicles

While the design of system architectures for automated driving with an in-
creased need for redundancy and safety is a distinct field of study, we only
briefly introduce it in the following, to put the presented motion planning ap-
proaches in context. Afterwards, we shortly explain those modules that are
closest related to the motion planning module.

Overview Solving the motion planning problem discussed in this work is of
course no end in itself. For the resulting motion plan to be pursued, a closed-
loop trajectory controller determines the input to the actuators. In order to be
able to compute a plan at all, the environment must be perceived. From this
data, information about other objects and their state but also about occlusions
must be extracted. To gain a better understanding of the scene, this information
and the ego vehicle’s position are commonly set in relation to an existing high
definition map of the road network. Given this information and a desired
destination, the route can be planned using off-the-shelf navigation/routing
approaches. While there are highly interactive scenarios even in structured
road traffic, there are also many scenarios with clear precedence, such that
a separation into first prediction and then ego motion planning is applicable.
Thus, as already outlined in Sec. 1.2, we assume a prediction that is independent
of the ego motion as input to the motion planning module. In this case,
the prediction is said to be performed upstream of motion planning. An
overview of themodules is depicted in Fig. 2.2. The interfaces are intentionally
excluded, due to the large variety of possible implementations. Exemplary
implementations are presented in [TKZS16]. In the following, we shortly
introduce thosemodules that are most relevant for themotion planningmodule.

Navigation In the context of this work, the task of a navigation module is
to specify the route towards the goal on a lane level. In general, this problem
can be considered solved, with many mobile applications and dedicated GPS
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Figure 2.2: Exemplary system architecture of an automated vehicle. Based on sensor data, actions
are planned and communicated to the actuators. Commonly used modules are depicted
in blue.

navigation devices available. Algorithms to solve such problems are commonly
based on graph-search with sophisticated heuristics.

Prediction The prediction module is often considered to be part of the scene
understanding module which combines sensor information with the map and
some world knowledge to infer more information about the current situation
and also about the possible future evolution. While an independent prediction
and subsequent ego motion planning hinder interaction, this approach is well
suited for scenarios with clear precedence.

Control In automated driving, it is common to separate the trajectory gener-
ation, which is the topic of this work and commonly called motion planning,
from its tracking, called low-level control or trajectory control. This allows
for a more simple motion model in the motion planning problem formula-
tion. Further, perturbation due to wind or rough road surface can be corrected
immediately by a high frequency low-level controller. Note, however, that
consistency during replanning has to be ensured in order to facilitate smooth
control, i.e. the part of the trajectory that is currently controlled should not be
altered.
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2.2.2 Deterministic and Reactive Motion Planning

Events that attracted much attention in the field of motion planning for auto-
mated vehicles were the DARPA13 Grand Challenges. While the first challenge
in 2004 could not be completed by any team, five teams could finish the 2005
Grand Challenge, with the winner being “Stanley” from Stanford [TMD+06].
The motion planner of Stanley makes use of the fact that dynamic objects did
not have to be considered: The concept is based on the path-velocity decompo-
sition approach [KZ86], as explained in Sec. 2.1.4. As a rough global path was
predefined by the organizers, only a local planner is needed. To avoid obstacles,
several lateral offsets to the offline preprocessed base path are considered. The
path is then chosen by evaluating a cost function, accounting, amongst others,
for dynamic constraints, obstacles and the defined road border. Replanning
is performed with 10 Hz, deviations of the vehicle from the planned path are
entirely left to the controller. The velocity is controlled subsequently, based
on the map, the terrain and the vehicle dynamics.

In the DARPA Urban Challenge in 2007, “for the first time, 11 full-size au-
tonomous vehicles interacted with each other and human-driven vehicles on
a closed course” [FTO+08]. Yet, all but the winning team still used modi-
fied path planning approaches [Wer11, p.4]. In the following, we introduce
motion planning approaches that were employed during this challenge. For
BOSS [UAB+08], an approach similar to the one of Stanley is used for on-road
driving, with the distinction that the velocity is incorporated into planning and
not only added subsequently. As explained in more detail in [FHL08], they
employ the approach of Howard and Kelly [HK07]: Initialized from a table of
motion primitives, the motion is predicted using a non-linear model (MPC),
and then optimized using a linearization of the latter prediction. Since the goal
is to be reached by following a road network consisting of lanes, the target
states are chosen in vicinity of the lane center of the target lane. In order to ac-
count for planning and control delays, the common start state of the generated
trajectories is chosen by predicting the vehicle state at the time when the new
trajectory will be executed, based on the trajectories from previous planning
steps. The velocity is chosen from a set of profiles, with the goal to maximize
speed while not violating the motion model (too high speed combined with

13 US Defense Advanced Research Projects Agency
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high curvature) and braking smoothly for stop lines. From the generated set,
the best trajectory is chosen, based on metrics such as distance to obstacles
and smoothness.

Team AnnieWAY uses a hierarchical state machine [KZP+08]. While strongly
relying on GPS and the given road network definition files, smoothed with
splines, if possible, a tentacle-based approach is used for low speed colli-
sion avoidance or in case of poor GPS information [vHHH+08]. Intersection
scenarios, i.e. scenarios in which AnnieWAY potentially comes into conflict
with others, striving for the same space, are treated in a special way with the
assumption of fixed and known paths and known velocity profiles of others.

The team fromMIT also uses a hierarchical planning approach for their vehicle
Talos, with maneuvers and precedence at intersections being decided at a
higher level, called navigator, which then passes a desired short term goal to
the RRT-based motion planner [LHT+08]. The authors vividly describe this
concept saying “the goal acts as a ‘carrot’ to motivate the motion planner”
[LHT+08, Sec. 5.1]. Modifications to the RRT include closed-loop simulation
of the inputs using the controller, inherently ensuring dynamically feasible
trajectories, and biased sampling, for example based on the lane.

The Stanford team [MBB+08] apparently uses the approach of lateral offsets
to precomputed paths from the 2005 Grand Challenge. Since there was not
a single predefined global path, but a mission goal given by the organizers, a
global path planner based on dynamic programming is added to the approach.
This global planner operates on a discrete version of the map. Depending on
the current position in the road network, the options for the motion planner
include several principle paths, i.e. distinct route choices, and also several
paths with different lateral offset from the base path per principle path. The
best path is then chosen based on the cost of the local path with a distinct lateral
offset, determined by the local planner, and the cost from the end of this local
path to the goal, determined by the global planner. Similar to the approaches
of Team MIT and Team AnnieWAY, intersections and merges are treated in a
special way: The respective zones are derived from the map in advance and
particular states of the finite state machine are used to handle precedence for
those zones.

A combined optimization of steering and longitudinal motion based on a
prediction of dynamic objects, however, was not employed by any team of
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the DARPA Urban Challenge [Wer11, p.4]. In [ZS09], Ziegler and Stiller
present such an approach. It is an enhancement of the state lattice concept
to include the time domain. In order to limit the effect of the increased
dimensionality, they reparametrize the Cartesian space through a lane-based
coordinate system, being able to restrict the search to the interesting region
effectively. Subsequently, the state lattice created from jerk optimal quintic
polynomials is searched exhaustively, because of the lack of good heuristics
for this problem formulation.

Werling et al. [WZKT10] propose an optimal control approach to the problem.
Reparametrizing the Cartesian space, they propose to decouple lateral and
longitudinal motion14 and to create a set of jerk-optimal trajectories in each
dimension. Subsequently, infeasible trajectories are removed per dimension,
before they are combined to full trajectories. In the longitudinal direction,
the desired value for the computation of the jerk-optimal course is computed
multiple times for different assumptions, such as free driving or following a
vehicle ahead. As a heuristic to choose the optimal trajectory, they choose
the best solution of the created set that does not violate any constraint. Thus,
given that the best solution is not invalidated by constraints, they claim to be
temporally consistent. Details of the approach are also explained in [Wer11,
Chap. 4].

McNoughton et al. [MUDL11] present an approach similar to the one of Ziegler
and Stiller [ZS09], also based on a spatiotemporal state lattice. They agree
with Ziegler and Stiller that an exhaustive search is preferable, since the worst
case scenario is the crucial one for runtime considerations. For high velocities
such as on a highway, stopping and further evaluating possible trajectories,
which is fine for parking maneuvers, is not an option. In contrast to Ziegler
and Stiller, they do not restrict the velocities to discrete values. Instead, they
allow for a range of velocities (and thus also a range of time) at which a certain
vertex in the lattice can be reached, approximately. By doing so, they aim to
facilitate driving at a particular velocity in a gap between two vehicles, which
travel at a velocity that might differ significantly from the closest velocity in
the precomputed lattice.

14 Not to be confused with path-velocity decomposition. Here, both the lateral and the longitudinal
motion are parametrized in time, such that a change in either motion potentially changes the
path.

34



2.2 Related Work on Motion Planning for Automated Driving

In contrast to the previously described trajectory planning approaches that use
sampling, Ziegler et al. [ZBDS14] exploit the strong lane structure of urban
traffic to employ a local, continuous numerical optimization. Thus, errors
from discretization into lattices can be avoided. As explained in Sec. 2.1.6, the
problem of minimizing a cost functional is reformulated to minimizing a cost
function by employing the method of finite differences. Since the cost function
is chosen to be quadratic, this non-linear optimization problem with non-linear
inequality constraints can be solved using sequential quadratic programming
(SQP). The decision of whether to pass an obstacle on the left or on the right
is taken in a preprocessing step, yielding only one left and one right bound as
constraints to the local planner. In case of a blocked lane, a stop line is added
additionally. Consistency during replanning is ensured by binding or pinning,
i.e. not optimizing, points of the trajectory, such that the optimized part of the
trajectory isC2-continuous to the trajectory that is currently controlled. Further
details of this approach and its application during the Bertha Benz Memorial
Drive can also be found in [Zie17], [ZBS+14]. Note, however, that for some
maneuvers or situations, such as stopping or follow driving, the series ACC
was used for longitudinal control. Further, the combinatorial aspects which
have not been in focus of the previous approach are targeted in [BTZS15].

Schlechtriemen et al. [SWK16] propose a combination of the combinatorial
consideration of [BTZS15] and the jerk-optimal trajectory generation in lane-
based coordinates [WZKT10]. Assuming a given prediction of all dynamic
objects of interest, the areas of interest for certain maneuvers are identified
and a set of states within those areas is sampled. Consider for example a
lane change, where areas in both lanes must be free for the lane change to
be performed. The traversal of those areas as well as the trajectory towards
and from there are computed using the concatenation of jerk-optimal quintic
polynomials. Finally, the best trajectory is chosen as the one with lowest jerk
that does not violate any constraint.

Zhan et al. [ZCC+17] argue that the longitudinal motion is more decisive
than the lateral motion in structured road traffic. Thus, they propose to first
determine a rough longitudinal reference velocity using A*. They build a
topological map from the reference path and the motion prediction of others.
With this information, they determine whether boundary constraints are active
(such as objects in the ego lane), potentially active (such as, in case of a lane
change, objects in either lane), or inactive (such as objects in lanes that the
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ego vehicle certainly will not enter). On a shorter horizon, the previously
created velocity profile is then smoothed using quadratic programming. Next,
the lateral motion is investigated using A* again in a grid of several lateral
displacements from the reference path, similar to [TMD+06]. The result of
the smoothed longitudinal and the A* lateral motion is again smoothed using
quadratic programming.

Graf et al. [GSZD18] modify the approach of Ziegler et al. [ZBDS14] to
overcome the necessity to use ACC for car following or stopping. Instead
of minimizing the deviation from the lane center and a desired speed, they
propose to precompute a trajectory from a driver model such as the intelligent
driver model (IDM) [THH00], and subsequently minimize the deviation from
this trajectory along with minimizing jerk and acceleration.

Further approaches can be found in the comprehensive surveys of motion plan-
ning approaches for automated driving [KQCD15], [GPMN16] and [PČY+16].

The various approaches presented in this section presage the interest to the
field of motion planning for automated driving. Most approaches are based
on sampling, sometimes combined with optimal control and simple cost func-
tions. More recent approaches try to minimize more complex, but commonly
quadratic cost functions, using (sequential) quadratic programming. Interac-
tion with other traffic participants and the probabilistic nature of predictions,
however, is at most addressed by frequent replanning. Thus, maneuvers that
require cooperation, such asmerging into dense traffic, could at best succeed by
coincidence. Also, safety is only considered w.r.t some assumed predictions,
but not w.r.t. unforeseen events such as emergency brakings of vehicles ahead.

In the following, approaches that consider uncertainties and interaction are
presented.

2.2.3 Probabilistic and Interactive Motion Planning

Deterministic motion planning for automated vehicles is already challenging,
especially due to the need of real-time capability. More recent approaches
additionally account for the fact that the prediction of other traffic participants
and even their current state is subject to uncertainties. Furthermore, this
uncertainty is not necessarily independent of the ego vehicle’s behavior. Thus,
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the approaches can be split into either deterministic, considering the state
as a function of time s(t) per object, or probabilistic, considering multiple
functions or a probability distribution of states over time per object. In the
probabilistic case, also occlusions and limited sensor range can be modeled.
Regarding the consideration of interaction, the approaches can be split into
reactive, i.e. the future states of other vehicles are independent of the ego
actions, or interactive, i.e. they depend on the ego action. In the interactive
case, courteous and cooperative behavior can be considered.

We start by reviewing probabilistic but reactive approaches, before introduc-
ing deterministic interactive and eventually probabilistic and interactive ap-
proaches. Lastly, a brief insight into learning-based methods is given. As
the interest in this field has drastically grown in recent years, the following
summary only briefly overviews different ideas and approaches to modeling
and solving the problem of probabilistic and interactive motion planning for
automated driving.

Probabilistic Reactive Approaches

Xu et al. [XPWD14] model the sensing and control errors of the ego vehicle.
Trajectories of other traffic participants are predicted using a local planner with
constant velocity for all but the vehicle to be predicted. Uncertainties for these
trajectories are computed using Gaussian error propagation. As a result, larger
safety margins are planned for encounters with far away vehicles, since the
prediction uncertainty grows over time. On the other hand, one could argue
that, at the time of the actual encounter, the uncertainty stemming from control
errors is comparably small. Multi-modal uncertainties arising from several
maneuver options are not considered.

Zhan et al. [ZLCT16] focus on intersections. They state that “taking an imme-
diate action does not mean [...] to immediately make a final decision among
possible future actions”. Similar to Damerow and Eggert [DE15], they con-
sider multiple future trajectories which are equal at least until the subsequently
planned trajectory becomes effective. Focusing on binary yield/pass decisions,
they employ the SQP approach of Ziegler et al. [ZBDS14]: They plan two de-
terministic trajectories that are identical until the subsequent replanning step,
such that both options remain available. In the subsequent step, certainty about
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the decision is assumed, as in the QMDP approach (cf. Sec. 2.1.5). The cost
of the diverging trajectory segment is weighted according to the yield/pass
probabilities at the time of planning. A similar approach is pursued by Tas et
al. [THS18].

Bouton et al. [BCK17] also propose an online POMDP algorithmwith focus on
the uncertainty in the longitudinal behavior of other vehicles at intersections.
An interacting multiple model filter is used to estimate whether a vehicle
follows a constant velocity or a constant acceleration assumption. Interaction
is not explicitly modeled. The approach is compared to a time to collision
(TTC)-based heuristic regarding the time to cross and the collision rate and
yields similar results. In [BNFK18], Bouton et al. enhance their work by
considering static occlusions. The policy is computed offline, yet the approach
scales well with the number of potentially occluded traffic participants.

Banzhaf et al. [BDSZ18] tackle uncertainties in localization and control for
maneuvering in narrow scenarios. They extend the steering functions that
are commonly used in RRT* to include uncertainty propagation and propose
a method for fast probabilistic collision checking. With this approach, they
claim to reduce the collision risk by an order of magnitude in narrow scenarios.

Deterministic Interactive Approaches

Cunningham et al. [CGEO15] claim that they are the first to consider “ex-
tensively coupled interactions between agents” in their multi-policy decision
making approach. They choose the very general decentralized partially ob-
servable Markov decision process (Dec-POMDP) formulation to model their
problem. For the sampling-based solving of this Dec-POMDP, however, they
largely reduce the state space and only consider a set of known policies for the
ego and one particular policy per other vehicle. The available policies are then
evaluated using deterministic forward simulation. Further, as uncertainty in
the state of the ego or other vehicles is not consideredwhen solving the decision
problem, the employed formulation is similar to a deterministic multi-agent
MDP (MMDP). From the forward simulation results, the policy that leads
to the trajectory with minimum cost is chosen, where the cost function is a
weighted sum of multiple criteria. Deviations from the presumed policies are
handled by replanning (cf. Sec. 2.1.8).
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Lenz et al. [LKK16]model the problem also as a deterministicMMDP. In order
to solve thisMMDP, they applyMCTSwhere all agents decide rationally, based
on a cooperative cost function. The latter consists of cost for the respective
vehicle i plus discounted cost for all other relevant vehicles j, i.e. Ci,coop =
Ci + λ

∑
j,i Cj with 0 ≤ λ ≤ 1. The forward simulation is performed with the

IDM as default policy. They show the potential of their approach in simulated
highway on-ramp scenarios.

Damerow and Eggert [DE15] also target the uncertainty in the future behavior
of others. Depending on the observed scene, they predict different situations,
such as different future routes for others or possible violations of traffic rules.
For each situation that is of interest for the ego vehicle, they perform an
interactive trajectory prediction for each entity using the Foresighted Driver
Model (FDM) [EDK15]. Based on these predictions, they create risk maps
which are then used for the RRT*-based ego trajectory planning. In order
to avoid neglecting situations with low probability but high collision risks,
the planned trajectory is checked on each risk map, i.e. for each situation. If
necessary, an escape trajectory is planned, also described as a plan B, for the
that case this unlikely situation occurs.

Probabilistic Interactive Approaches

Brechtel et al. [BGD14] target the problem of uncertain information about
both the current state and the future evolution of the scene by formulating and
solving a continuous POMDP. The probabilistic transition model consists of
a (presumably almost deterministic) physics model p(x ′i |xi, ai) per non-ego-
vehicle and a decision making process per vehicle to determine the probability
of action ai . In order to keep the problem tractable, the road layout is considered
static knowledge and not covered in the state, and the policy is generated offline.
Thus, the problem has to be precomputed for various different road layouts
(including occlusions) and numbers of traffic participants in advance. The
transfer of policies to similar scenarios was not focused on in this work. Still,
they show promising results for a merging scenario under severe occlusions.

Bahram et al. [BLF+16] account for the interaction between the ego and other
vehicles by planning under the assumption of a fixed prediction and sub-
sequently predicting under the assumption of the ego plan. Planning and
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prediction are performed on a maneuver basis. The actual planning is done
via evaluation of the planning-prediction-cycle in a forward simulation and
determining the probability of such an evolution via collision risk assessment.
The most likely prediction for the ego vehicle is then chosen as the ego plan.

Sunberg et al. [SHK17] propose to extend the POMCP algorithm [SV10] by
progressive widening in order to solve POMDPs with continuous observation
spaces. They show the performance of this approach in a highway lane change
scenario. In their simulation, the behavior of other traffic participants is
modeled via the IDM and the lane change model MOBIL [KTH07], while
the parametrization varies from aggressive to timid driving. Considering
these parameters as hidden variables in their POMDP formulation, they show
promising results. For a strong correlation of the behavior parameters, they
are even close to an omniscient planner. Also, they account for safety w.r.t.
the vehicle ahead by guaranteeing to be able to come to a full stop even if the
vehicle ahead performs an emergency deceleration at the physical limits.

Hubmann et al. [HBA+17], [HSB+18] propose an online POMDP algorithm
for automated driving. They consider uncertainty in the state of other vehicles
and model their intended route as a hidden variable. For the interaction with
other vehicles along their potential paths, an interaction model considering the
acceleration to follow a reference velocity, an interaction based acceleration
and Gaussian noise is used. Even though the set of possible actions for solving
the POMDP using MCTS is limited to ensure the online capability, the results
in the presented intersection scenarios with up to four vehicles look promising.

Chen et al. [CTX+18] focus on longitudinal decision making in the presence of
one other vehicle. Similar to Zhan et al. [ZLCT16], the problem is reduced to
a binary decision of whether to go first or second through conflict zones. As an
extension to the previous work, the trajectory prediction for the other vehicle
is not fixed. Deviations from the non-interactive prediction are possible but
induce cost for the ego vehicle, which is called courtesy awareness and should
prevent reckless behavior. The safety guarantee that is addressed in this work
is limited to a horizon of 1 s which would not allow coming to a full stop in
the simulated examples.

In [HSX+18], Hubmann et al. apply their POMDP solver from [HSB+18] to
merging in congested traffic. Here, the information gathering actions that are
central benefit of the POMDP formulation come into play: The uncertainty of
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whether a vehicle in the target lane is cooperative or not is actively reduced
by approaching the gap in front of it. The path-velocity decomposition is
omitted to allow for a lateral deviation from the predefined path. The results
in simulation look human-like and highlight the strength of the approach.

In [HQS+19], Hubmann et al. apply their POMDP solver from [HSB+18]
to occlusions in urban intersections. Both occlusions from static but also
from dynamic objects are considered. During the forward simulation through
Monte Carlo sampling, the evolution of the occlusion situation is anticipated,
including the potential discovery of currently occluded vehicles. Depending
on the scenario configuration, the approach sometimes performs similar to a
planner with access to ground truth state information.

Learning-Based Motion Planning for Automated Driving

Since learning-based approaches achieved impressive results in robotics and
multi-agent games, they were also applied to the automated driving domain.
Two very common approaches to solve MDPs are reinforcement learning, as
discussed in Sec. 2.1.5, and imitation learning, i.e. trying to mimic demon-
strated behavior.

An imitation learning approach that gained attention is NVIDIA’s end to end
learning approach using a convolutional neural network (CNN) [BDTD+16].
The drawback of such approaches is that they cannot outperform the demon-
strators and that the generalization to unseen scenarios is at least questionable.
Details on the generalization issues, for example due to different input distri-
butions between the training set and the real world, can be found in [Sto09].
A known reinforcement learning approach is the one by Shalev-Shwartz et al.
from Mobileye [SSS16]. They propose to learn desires that are then pursued
by a conventional trajectory planner. Further, they introduce hard constraints
outside the learning framework such that unsafe decisions cannot be taken.
While this approach is able to achieve super-human performance, the learned
policy strongly depends on the environment in which the agent was trained.
Being trained in simulation, it only learns to interact with simulation agents.
Training on the road is time-consuming, as it cannot be accelerated faster than
real-time, and still a potential safety risk, as strange behavior that is still within
the safety limits might lead to human drivers acting scared and thus unsafely.
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While such approaches have large theoretic potential, a demonstration in public
road traffic is – to the best of the author’s knowledge – still to come, presumably
due to the above described difficulties.

2.2.4 Safety in Decision Making and Motion Planning

With the obvious motivation of human lives being at risk, safety is crucial
to the deployment and success of automated driving in public road traffic.
Due to the kinematic and dynamic constraints of a vehicle, decisions that
finally lead to a collision might have been taken seconds before. Fraichard and
Asama [FA03] define inevitable collision states as those states that inevitably
lead to a collision, in other words, from which a collision can no longer be
avoided. Such states must not be entered by automated vehicles.

In presence of other agents, safety in the meaning of collision-free operation
also depends on their behavior. Thus, the definition of inevitable collision states
is not straightforward applicable. Further, the guarantee of being collision free
is not possible for many scenarios, as depicted in Fig. 2.3.

Figure 2.3: Exemplary situation where the ego vehicle (blue) cannot prevent a collision: If the
front vehicle (right) decelerates but the rear vehicle (left) does not, the ego vehicle
eventually collides with one of the vehicles in case leaving the road is not possible, for
example due to jersey barriers.

Bouraine et al. [BFAS14] circumvent this problem by giving a passive safety
guarantee, i.e. they guarantee that, if a collision occurs, the ego robot is at
rest. This approach is applicable to unstructured environments such as parking
lots, where the velocity is commonly low. For structured road traffic at higher
velocities, however, some roads are prioritized over others and this right of way
must be accounted for in safety considerations.

The introduction of the notion of blame by Shalev-Shwartz et al. [SSS18] is
one approach to address this. Instead of guaranteeing that the ego vehicle
will not be involved in a collision, they propose to guarantee never to cause a
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collision, and call this concept responsibility sensitive safety (RSS). Still, if a
collision is inevitable for another vehicle, it is everyone’s responsibility to try to
avoid or at least mitigate the collision, also if they did not cause this situation.
The rule behind this is that “right of way is given, not taken” [SSS18]. In
case a situation becomes unsafe, they define a proper response to regain safety.
In RSS, the safety consideration is divided into longitudinal safety, along the
direction of the lane, and lateral safety, perpendicular to the lane boundaries.
The proper response in case of a violation of the longitudinal safety distance to
a vehicle in front is a deceleration. The proper response in case of a violation
of the lateral safety distance is so-called lateral braking, which can be steering
or deceleration.

The same notion is followed by Althoff and Dolan [AD14]. They compute
reachable sets for other traffic participants, but discard samples that break
traffic rules. Once a rule has been broken, or certainly will be broken soon15,
however, this rule is no longer taken into consideration. This method is close
to the idea of demanding to avoid or mitigate collisions even when not being
at fault in RSS. Orzechowski et al. [OML18] expand the concept of set-based
safety verification by the consideration of occlusions and limited sensor range.
Pek et al. [PZA17] expand the concept to lane changes and thus are, to the
best of the author’s knowledge, the first who proved the safety of lane change
maneuvers. In their approach, the responsibility for safety during lane changes
lieswith the lane changing vehicle until it has fully entered the target lane. Since
the reachable set methods are worst case considerations, full acceleration for
the following vehicle in the target lane is assumed. This leads to lane changes
in dense traffic being intractable with this approach.16

15 Observing a vehicle approaching a red light with high velocity which, even with full possible
deceleration, will run over the red light shortly, for example.

16 In their experiments, a fixed prediction for the following vehicle in the target lane is assumed
and uncompliant behavior of this vehicle is not considered. Thus, the approach is not suitable
for mixed traffic where compliance cannot be ensured.
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of Motion Planning in Mixed
Traffic

In this chapter, the problem of motion planning in mixed traffic is framed into
an appropriate model. The main contribution of this chapter is a new problem
formulation for scenarios with clear precedence, exploiting the independence
of the future trajectories of prioritized traffic participants on the behavior of the
ego vehicle. To recapitulate from the introduction, the goal of motion planning
for automated vehicles is to yield convenient motion plans, i.e. plans that are
comfortable for the passengers but also useful w.r.t. the desire of reaching a
destination within decent time. If the area that is dedicated to public road
traffic would be restricted to robots, central planning approaches could yield
the globally optimal plan which everyone had to follow. As central planning
is not an option for humans though, road traffic is commonly structured into
roads and lanes, and is controlled by traffic rules such as speed limits, right of
way rules and traffic lights, amongst others. Thus, those traffic rules must be
incorporated into the planning problem. Finally, the most important constraint
is that the safety of passengers and other traffic participants must never be put
at risk. With these goals and constraints in mind, the problem formulation for
motion planning in mixed traffic is derived, which is dominated by different
uncertainties.

After introducing the underlying model assumptions in Sec. 3.1, the formu-
lation for perfect knowledge is presented in Sec. 3.2. From Sec. 3.3 through
Sec. 3.7, the assumption of perfect knowledge is successively relaxed to better
approximate the actual problem.
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3.1 Underlying Model Assumptions

The problem of choosing actions based on states that are derived from sensor
measurements is inherently a partially observable decision process, as the
state of an object (such as a vehicle or a pedestrian) cannot be measured
directly, but is inferred from observations of different sensors with different
physical models. In a single agent POMDP formulation, the behavior of other
agents is commonly modeled by a probabilistic state transition model. The
underlying states can be hidden, such as the desired route of an agent. In this
context, a probability distribution over the current state of the world, including
all agents, is denoted belief. During planning, the state transition model in
conjunction with a probabilistic observation model is repeatedly queried to
estimate possible future evolutions of the belief, and thus, to choose optimal
actions. Here, the uncertainties from perception can be modeled by including
sensormodels into the observationmodel, while the underlying state transitions
of other agents are modeled in the probabilistic state transition model.

For road traffic, however, we argue that the trajectories of agents are their con-
scious decisions. Thus, we are faced with a multi-agent setting, as introduced
in Sec. 2.1.7. Assuming perfect trajectory control for the ego vehicle, its state
transition model can be considered deterministic, i.e. it can decide upon its
future trajectory xe by influencing its state change Ûxe through actions or control
inputs ue:

Ûxe(t) = f (xe(t), ue(t)). (3.1)

This model assumes collision free motion, subject to the constraints that arise
from the dynamics and kinematics of a vehicle. The latter constraints cannot
actually be violated, but their adherence must be ensured by the planner to
ensure the feasibility of the trajectory. Infeasible trajectories lead to inevitable
control errors and thus to the realization of a trajectory that was never consid-
ered regarding safety and optimality. Effects such as a bad road surface or an
altered friction coefficient (e.g. due to rain or snow) can be incorporated here,
but are outside the scope of this work. The same transition model is assumed
for other traffic participants i, denoted oi: Ûxoi(t) = f (xoi(t), uoi(t)), again
subject to the dynamics and kinematics. This corresponds to a deterministic
MMDP formulation.
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From the perspective of the ego vehicle, however, the future actions of other
traffic participants are unknown and the current state is subject to uncertainties.
Yet, for scenarios with clear precedence, the decisions of prioritized vehicles
are assumed to be taken independently of the ego trajectory. Only the observa-
tions of other traffic participants are partially influenced by the ego trajectory,
due to limited sensor range, for example.1 Thus, in such scenarios, estimates
for the probability of future trajectories are determined by an upstream pre-
diction module, i.e. a prediction module that operates independently of and
provides input to the motion planning module.

In order to distinguish different feasible ego trajectories xe regarding their
quality, a cost functional J is commonly used, as introduced in Chapter 2.
This cost functional is a mapping from ego trajectory xe including its time
derivatives and the ego dimensions2De, trajectories of other traffic participants
xo =

(
xo1, xo2, ...

)
including their time derivatives and dimensions Do =(

Do1,Do2, ...
)
and the static and dynamic environment (including the road

geometry) to a scalar quality indicator. The soft constraints from the traffic
rules and the destination are also incorporated in this cost functional.

Throughout this work, it is assumed that existing objects within the sensor
range that are not occluded are detected and assigned a non-zero existence
probability. Further, information about the traffic rules and the road layout is
assumed to be certain and complete.

1 Apart from sensor limitations, the influence of the ego trajectory on observations that indicate
the future behavior of others, such as a change in velocity or the use of the indicator, is assumed
to be negligible.

2 The dimensions can for example be described through a hull, defined via a list of points. Also,
a simplified definition via a bounding box is possible, besides other representations.
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3.2 Perfect Knowledge

In the most simple model, we assume to know the future trajectories of all
traffic participants and all other obstacles, as depicted in Fig. 3.1. With this
knowledge, the safety constraints are reduced to the avoidance of collisions.

Figure 3.1: The most simple problem formulation: The ego vehicle (blue) shall plan its motion
along the predefined route (blue), knowing the exact trajectory of the other traffic
participants (white). Exemplary scenario inspired by [HSB+18, Fig.1].

With the cost functional J, we choose the optimal trajectory xe∗ as the one that
minimizes the total cost while not violating any constraint:

xe∗ = arg min
xe

∫ ∞

t0

J
(
xe, xo, t

)
dt . (3.2)

The dimensions De, Do, the traffic rules, the environment and the destina-
tion are considered as parameters of J. This model of knowing the future
trajectories, i.e. having a single deterministic prediction per traffic participant,
corresponds to the model taken by the approaches of Sec. 2.2.2. Also, this
model assumes perfect control. A simple model to incorporate bounded posi-
tion control errors e ≤ emax in the collision avoidance constraint is to enlarge
the distance for collision avoidance from 0 to emax, which can be done velocity
dependent.
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3.3 Uncertainty in Future Trajectories of Others

The first assumption to relax is the exact knowledge of the trajectory of other
traffic participants. In structured road traffic, the future trajectory can be
subdivided into the future route of the traffic participant, commonly determined
in a navigational layer, the future path along that route and the velocity along
that path. Large parts of everyday driving consist of following a vehicle within
a lane, where the route and the path of that vehicle are assumed to be known,
but its future velocity is uncertain. This uncertainty is even addressed in the
traffic rules, where a safe distance (often a certain time headway) is demanded.
In Germany, for example, the rule of thumb is to keep a distance of at least half
the current velocity, i.e. dmin =

v
2

m
km h−1 , which corresponds to a time headway

of 1.8 s. The traffic rule behind that rule of thumb is that one should in general
be able to stop behind a vehicle, even if it suddenly brakes [StVO (D), §4 I]. To
account for this uncertainty, we consider a probabilistic prediction of all traffic
participants, as depicted in Fig. 3.2, which is independent of the ego trajectory.

Figure 3.2: Motion planning problem formulation: The ego vehicle (blue) shall plan its motion
along the predefined route (blue). While the current pose of other vehicles (white)
is known, their future trajectories are subject to uncertainties (depicted with black
ellipses: larger corresponds to higher uncertainty).
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The course of the state of object i over time is then a stochastic process Xoi .
The state for every point in time t is a random variable Xoi(t). Its PDF is
denoted pXoi (t). For each object i, we still assume to know the current state xoi

0
such that

pXoi (t0)

(
xoi(t0)

)
= δ

(
xoi(t0) − xoi

0

)
, (3.3)

with the Dirac delta δ.

Meaningful stochastic processes account for the kinematic and dynamic con-
straints of the object. Thus, the object states always lie within a bounded set
Xoi(t), such that

Pr
(
xoi(t) ∈ Xoi(t)

)
=

∫
Xoi (t)

pXoi (t)

(
xoi(t)

)
dxoi(t) = 1 (3.4)

for all t. The stochastic processes of several objects should not be considered
independent, for example to exclude mutual collisions. We again employ the
notation Xo = (Xo1,Xo2, ...) for all objects. The PDF of the process for all
objects is denoted pXo .

With this probabilistic model, collisions can no longer be analyzed determin-
istically. Instead, probabilistic collision checking has to be performed. Here,
the motion constraints can be used (cf. eq. 3.4). Further, minimizing the cost
J is then no longer possible, but the expected cost

Jexp (
xe,Xo, t

)
= E

(
J
(
xe,Xo, t

) )
=

∫
pXo (xo)J

(
xe, xo, t

)
dxo (3.5)

can be minimized. In order to compare different costs over a time interval
T , we introduce the cost integral J

(
xe, xo,T

)
=

∫
T

J
(
xe, xo, t

)
dt, and the

respective expected cost

Jexp (
xe,Xo,T

)
=

∫
pXo (xo)

∫
T

J
(
xe, xo, t

)
dtdxo. (3.6)

Minimizing Jexp with a single deterministic ego trajectory is possible. Yet, con-
secutive replanning with replanning interval ∆tplan, as introduced in Sec. 2.1.8,
facilitates better results. It exploits the fact that the uncertainty in the future
trajectory of others is likely to be reduced in the future. At the same time, the
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t0 − ∆tperc t0 t0 + ∆tplan t0 + 2∆tplan

Perception Planning

t

x(t)

Figure 3.3: Replanning: Based on the previously planned trajectory (gray), at t0 (•) a new trajectory
for the interval [t0 + ∆tplan, t0 + 2∆tplan) is planned in the hatched interval. This plan
is based on perception information from t0 − ∆tperc (o). The planned trajectory is
depicted in blue. From t0 + 2∆tplan onwards, different possible trajectories can be
considered (blue dotted).

latency and processing time of perception3 ∆tperc and planning ∆tplan, called
delay, must not be neglected. A plan that has been computed in the interval
[t0, t0 +∆tplan) based on the perception information from t0 −∆tperc is executed
from [t0 + ∆tplan, t0 + 2∆tplan). For the interval [t0, t0 + ∆tplan), the previously
planned trajectory is assumed to be controlled. Consequently, we only have to
decide for a trajectory in [t0 + ∆tplan, t0 + 2∆tplan) at t0 and can consider differ-
ent trajectories from t0 + 2∆tplan onwards (cf. Fig. 3.3). The decision for one
particular trajectory from [t0 + 2∆tplan, t0 + 3∆tplan) is taken in the subsequent
replanning step.

In this subsequent replanning step, we will again be faced with uncertainty.
Simply assuming that the exact trajectory ensemble xo is known by then is
a strong simplification.4 While the previously introduced stochastic process
represents the current belief over the future trajectories of others, this belief
is updated in subsequent planning steps due to new observations of the other
traffic participants. In addition to the belief over states in classical POMDP
formulations, this belief over trajectories also includes knowledge about the
state transition and observation probabilities. The motivation behind this

3 Including localization, scene understanding, amongst others.
4 This simplification corresponds to the QMDP assumption (cf. Sec. 2.1.5) combined with the
assumption of deterministic state transitions.
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formulation is that the trajectories of others are conscious decisions of other
agents which do not depend on the ego action. Thus, a scene understanding
or prediction module should be able to generate appropriate joint estimates of
the belief over states and the respective transition probabilities, independent of
the planning problem. Different possibilities for new beliefs can then already
be integrated into the planning problem formulation, as shown in the example
below.

Example 3.3.1. Imagine, there were only two discrete trajectories pos-
sible for the white vehicle in Fig. 3.2: One for turning right and one
for going straight. In case the velocity profiles of the two trajectories
differ significantly at t0 + ∆tplan, certainty would be reached in the next
planning step. The decision could be postponed by ∆tplan, since the prob-
ability distribution is believed to become singular in either turning right
or going straight. In case the two discrete trajectories are identical until
tidentical � t0 + ∆tplan, certainty about the route of this vehicle will not be
reached soon, and the probability distribution does not change. Instead
of postponing the decision to the next planning step, both routes have to
be taken into consideration also beyond the next planning step.

The belief over the future trajectories of other objects at a particular time
corresponds to a probability distribution of Xo. The stochastic process with
the probability distribution according to the current belief bxo is denoted Xo

b .
The set of possible new beliefs b′xo in the subsequent replanning step (∆tplan
later) is denoted B, the respective PDF is denoted pb′ |b .

The expected total cost over the entire planning horizon Jexp
total

(
xe1, bxo

)
of xe1 ,

which is pursued in Txe1 = [t0 + ∆tplan, t0 + 2∆tplan), is:

Jexp
total

(
xe1, bxo

)
= Jexp

(
xe1,X

o
b,Txe1

)
+

∫
B

pb′ |b
(
b′xo |bxo

)
Jexp

total

(
xe∗2 , b

′
xo

)
db′xo,

(3.7)

where xe∗2 is the optimal trajectory continuation of xe1 . In words, the expected
total cost consists of the expected cost of the pursued trajectory xe1 in Txe1 , and
the expected cost of its optimal continuation for the time beyond t0 + 2∆tplan.
To determine xe∗2 and its expected total cost, recursive computation with the
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t0 t0 + ∆tplan t0 + 2∆tplan t0 + 3∆tplan

t

x(t)

Figure 3.4: Recursion during planning: Based on the previously planned trajectory (gray), at t0
(•) a new trajectory for the interval [t0 + ∆tplan, t0 + 2∆tplan) is planned (cf. Fig. 3.3).
To determine the optimal trajectory, possible future belief updates for every replanning
have to be considered. However, new information can only be incorporated at the times
of replanning (dashed).

respective b′xo is necessary (cf. Fig. 3.4). This accounts for the fact that we
are able to replan repeatedly in intervals of ∆tplan, and that the belief will
have been updated with new measurements by then. Consequently, the term
Jexp

total
(
xe1, bxo

)
is based on the full possible future progress of the belief, similar

to the recursion in the Bellman equation for belief states (cf. eq. 2.14).

Based on the principle of maximum expected utility (cf. eq. 2.2), the optimal
trajectory part is to be chosen as

xe∗1 = arg min
xe1

Jexp
total

(
xe1, bxo

)
. (3.8)

The pursued trajectory xe eventually consists of xe1 , determined at t0, continued
by xe2 , determined at t0 + ∆tplan, continued by xe3 and so forth.
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3.4 Uncertainty in State of Others

In the previous section, the current state of other traffic participants xoi(t0)
was still assumed to be known. At least for far away objects, this assumption
is not reasonable. Consequently, we relax the assumption from eq. 3.3. The
additional uncertainty is depicted in Fig. 3.5. Also, the dimensions of an
object Doi are subject to uncertainties, such that we need to use a probability
distribution there. Note that, while this relaxation appears minor compared
to the uncertainty in the future trajectory, it affects the bounds of the possible
trajectories Xoi(t), which are critical to the safety constraints.

Figure 3.5: Motion planning problem formulation: The ego vehicle shall plan its motion along the
predefined route. In addition to Fig. 3.2, the current pose of other vehicles is subject
to uncertainties, commonly leading to an increased uncertainty in the future trajectory
(depicted with multiple black ellipses).
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3.5 Uncertainty in Existence of Others

Another uncertainty regarding the current state is the existence of an object,
depicted in Fig. 3.6. Again, especially for far away objects, the existence of an
object cannot be guaranteed by the perception of the vehicle. In fact, so-called
ghost objects5 are a common phenomenon and thus, the existence uncertainty
should not be neglected. This uncertainty has to be included in the beliefs
and the belief updates. If one object exists, another object cannot be at the
same position at the same time, at least for meaningful predictions. If the other
object was a ghost and does not actually exist, however, it could be there.

Figure 3.6: Motion planning problem formulation: The ego vehicle shall plan its motion along
the predefined route. In addition to Fig. 3.5, even the existence of other objects is
uncertain (depicted with a question mark).

5 One source of ghost objects for RADAR sensors are reflections of radio waves at planes, such
as walls, for example.
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3.6 Occlusions and Limited Sensor Range

Besides the existence probability of objects due to ambiguous observations,
the range of sensors is generally limited. Further, occlusions shadow certain
areas from the sensors. While previously, the uncertainties in existence and
position could be considered on an object-level, there is an uncountably infinite
number of possible vehicle configurations in unobserved areas, each with an
infinitesimal existence probability. Exemplary unobservable areas are depicted
in Fig. 3.7. Instead of an object-level consideration of hypothetical objects in
unobservable areas, we propose to explicitly include the unobservable areas
into the problem formulation. Further, while the pursued trajectory of others
is still assumed to be independent of the ego trajectory, the belief depends
on whether or not an object is observable, and thus on the pose of the ego
vehicle. Wedenote this dependency pb′ |b,xe1

(
b′xo |bxo, xe1

)
, similar toPr(b′ |b, a)

in eq. 2.14, which has to be substituted into eq. 3.7.

Figure 3.7: Motion planning problem formulation: The ego vehicle (blue) shall plan its motion
along the predefined route (blue). In addition to the uncertainties depicted in Fig. 3.6,
occlusions (due to the building depicted in black) and limited sensor range impose
additional uncertainties (unobservable areas are shaded).

While for perfect knowledge, it was theoretically possible to precompute the
trajectory until the final destination, the consideration of uncertainty in the
future trajectory of others already strongly limited the possibilities for safe
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open-loop plans. With the consideration of limited observability, however,
safety can impossibly be guaranteed for destinations outside the observable
area. To overcome this issue, replanning must be used, as formulated in
eq. 3.7.

Due to the limited visibility, the computation can further be limited to an
appropriate planning horizon6 ∆tH with tH = t0 + ∆tH . The cost beyond tH
is approximated as so-called end cost Jend (xe) ≈

∫ ∞
tH

J (xe, t) dt. With this
approximation, the recursive computation of xe∗2 in eq. 3.7 ends at t = tH .
Further, J and thus also Jend now are additionally subject to the visible area.

6 The planning horizon ∆tH must be larger than the replanning interval ∆tplan. Usually, it is
chosen to be much larger ∆tH � ∆tplan.
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3 Formulating the Decision Problem of Motion Planning in Mixed Traffic

3.7 Interaction

Lastly, interaction between the ego vehicle and other traffic participants must
be considered, as depicted in Fig. 3.8. In this case, not only the observability
of other vehicles, but also their trajectories potentially depend on the ego
trajectory.

Figure 3.8: Motion planning problem formulation: The ego vehicle (blue) shall plan its motion
along the predefined route (blue). In addition to the uncertainties depicted in Fig. 3.7,
the plan might depend on interactions (depicted with blue arrows) with vehicles of
uncertain existence (white).

On one hand, interaction cannot be neglected in some situations. On the other
hand, deriving general models for the complex interdependence between the
ego’s and the objects’ trajectories, with unknown goals and desires, unknown
sensing limitations of other objects and possible future interaction with not
yet visible objects, or objects that are visible to others but not to the ego, is
intractable. Consequently, further simplifications or heuristics are necessary
to solve this motion planning problem, which will be the focus of Chapter 4.
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4 Solution to the Decision Process

In this chapter, the problem formulation from Chapter 3 is simplified using
further assumptions and subsequently, solutions to the simplified problem are
presented. The contributions of this chapter are the extension of the RSS-
framework [SSS18] to right-of-way rules and the proposal of three motion
planning approaches, targeted towards scenarios with clear precedence, sce-
narios that require courtesy of other traffic participants and scenarios that
require mutual cooperation with other traffic participants. The need for fur-
ther assumptions or simplifications can be derived from eq. 3.7, where the
integration over the set of possible beliefs is required. In addition to that, the
dependence of the cost function J on the observable space needs to be modeled
and safety considerations have to be included.

We first review the key challenges of automated driving in mixed traffic and
propose to prioritize safety considerations in Sec. 4.1, before we introduce a
safety concept employing a decomposition into scenarios in Sec. 4.2. Subse-
quently, approaches to convenient motion planning are presented in Sec. 4.3
with explicit courtesy and cooperation consideration in Sec. 4.4 and Sec. 4.5.
Insights into the transition in-between those approaches are given in Sec. 4.6.

This chapter is based on and was partially previously published in [3, 6, 8, 9]:
Prioritizing safety over comfort and convenience (Sec. 4.1) has been proposed
in [6]. The safety consideration for intersections with crossing traffic from [8]
is extended by merging traffic in Sec. 4.2. The safety consideration for parallel
lanes (Sec. 4.2) has been presented in [9]. The courtesy-aware approach to lane
changes (Sec. 4.4) has also been introduced in [9]. The approach to mutual
cooperation (Sec. 4.5) has been proposed in [3, 6].
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4 Solution to the Decision Process

4.1 Prioritizing Safety over Comfort and
Convenience

The key challenges originate in the collision risk with obstacles and other
traffic participants, including vulnerable road users (VRUs). Due to the high
velocities in public road traffic, such collisions put human lives at risk. This
collision risk can be eliminated in enclosed environments, such as subways
with automatic sliding doors, where access to the track and the behavior of the
vehicles can be controlled centrally. In public road traffic, however, the space is
shared with many other traffic participants who plan their actions individually.
Regarding their detection, we face challenges due to imperfect perception
regarding other objects’ state and even their existence, limited sensor range
and occlusions, as outlined in the previous chapter. Additionally, we have to
cope with uncertainties regarding their route, their behavior along that route
and their willingness to be courteous or cooperative. Even their traffic rules
compliance is not ensured, non-compliance can for example be caused by
inattention. One attempt to reduce the collision risk or at least the collision
severity in open environments would be to lower the velocity. While this might
help in certain scenarios, such as on parking lots, it is not an option for on-road
driving. There, it is inconvenient, but also might even increase the collision
risk, as it might entice people into risky overtaking maneuvers, for example.
Also, the behavior of the ego vehicle should be comprehensible for other traffic
participants, in the meaning of not obviously confusing them. Driving at very
low velocities would violate this objective. Furthermore, this behavior might
even be unlawful, as vehicles must not hinder traffic flow by driving slowly
without compelling reason [StVO (D), §3 II].

Convenience and safety appear to be mutually exclusive, because safety is
easier to ensure at very low velocities, but the latter is not convenient, at least
not as a default behavior. The goals of safety and convenience are inherently
very different. Safety needs guarantees, becausewe certainly do not want to put
human lives at risk. Thus, we are limited to approaches that are complete and
real-time capable. Optimality, however, is not necessary, one feasible safe plan
is sufficient. Convenience, on the other hand, should consider probabilities:
Occasional uncomfortable behavior is acceptable, guarantees are not necessary,
but on average, the behavior should yield convenient results.
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These severe differences can be accounted for with different approaches as
follows. Safety is targeted by one approach that only intervenes in case safety
is at risk. The approach to ensure convenience can operate within the safe
bounds that are determined by the safety approach. This facilitates running
the safety planner with a higher frequency, leading to a smaller reaction time
and consequently a larger scope for comfort planners. Most importantly, safety
can be guaranteed with a complete and verifiable approach, as requested in
Sec. 1.2, while incomplete methods without guarantees remain applicable for
the independent comfort planners.

4.2 Ensuring Safety: Incorporating Traffic Rules

At first glance, there appear to be multiple approaches to validate the safety of
a motion planning and decision making approach for automated vehicles. The
safety of road traffic is commonly measured in fatalities per distance or time
traveled. However, the comparability of suchmeasures is only given for similar
traffic volume and road layout, as driving through intersections with unclear or
even confusing layout is more challenging than driving along straight roads,
for example. Besides driving many miles, either on-road or in simulation, and
measuring accidents or disengagements therein, formal safety validation is an
option. Shalev-Shwartz et al. [SSS18] elaborate that driving enough miles to
statistically prove reasonable safety claims is intractable, especially because any
code change would result in the need for reevaluation. Regarding simulation,
they argue that validating the simulator is as challenging as validating the
approach itself: Even if the real world accident probability can be reproduced
for some driving policies, a different policy might introduce behaviors that lead
to different results in simulation and in real world traffic. Thus, to guarantee
safety, formal methods should be used.

While the introduction and formal proof of a comprehensive safety concept that
complies with all aspects of traffic law is beyond the scope of this thesis, we
propose enhancements to the RSS concept of Shalev-Shwartz et al. [SSS18], as
introduced in Sec. 2.2.4. The enhancements include the consideration of traffic
rules at intersections with crossing and merging traffic, occlusions and parallel
lanes. To shortly recapitulate [SSS18]: Instead of guaranteeing that the ego
vehicle will not be involved in a collision, which is intractable for real road
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traffic, the guarantee is never to cause a collision. This guarantee is given w.r.t.
any other vehicle, but the relation to every vehicle is considered separately
to allow for scalability. Yet, the ego vehicle should behave cautious enough
to be able to “compensate for reasonable mistakes of other drivers” [SSS18].
Shalev-Shwartz et al. claim that their concept is sound, i.e. complies with
human understanding of traffic rules, useful, i.e. not overly defensive, and
efficiently verifiable. We enhance their concept and partially deviate from it,
based on our interpretation of the German traffic law. Note that we can of
course not guarantee conformity with the traffic rules, but only propose one
possibility to translate the traffic rules into machine readable rules.

Shalev-Shwartz et al. list five so-called common sense rules on which RSS is
based (direct quote from [SSS18]):

1. Do not hit someone from behind.

2. Do not cut-in recklessly.

3. Right-of-way is given, not taken.

4. Be careful of areas with limited visibility.

5. If you can avoid an accident without causing another one, you must do
it.

Rule 1 is easy to formulate mathematically, at least for structured roads, as we
will see in the next subsection. For rule 4, Shalev-Shwartz et al. define two
so-called unreasonable situations. The first one is to exceed certain speeds
in areas with limited visibility. They assume that occlusions are symmetric,
and request all vehicles to drive within reasonable limits. These limits are
not further specified, but should depend on the priority rules, amongst others.
While the definition of such limits is not part of this work, we follow a similar
concept, as outlined in the next section. The second unreasonable situation
is when vehicles that are visible to us violate safe distances to other vehicles.
Rule 2, the non-reckless cut-in, is not further specified, but it is mentioned that,
for a safe cut-in, the vehicle behind is expected to adjust its velocity. In case
the safe cut-in refers to a cut-in where the vehicle behind has just more than
the safe distance to the ego vehicle, we deviate. While this would indeed still
guarantee collision free traffic if all traffic participants would follow this rule, it
does not reflect the traffic rules. Essentially, vehicles that have the right of way
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“must neither be endangered nor be significantly impeded” [StVO (D), §8 II 2].
A vehicle entering a priority road with 10 km/h just before a vehicle that drives
50 km/h, however, clearly impedes this vehicle by forcing it to sharply brake
in order to maintain a safe longitudinal distance, and thus violates its right of
way. Rule 3, to not take right of way, is essentially motivated by rule 5: Do
avoid accidents if possible, also if you had right of way. Waiving the right
of way is unusual and requires a prior arrangement with the prioritized traffic
participant [StVO (D), §11 III]. This is challenging for automated vehicles,
especially for perception, and not focused on in this work. Finally, rule 5
should be extended to: If you can mitigate an accident without causing another
one, you must do it.

As motivated in the previous chapter, the road layout and traffic laws are
man-made rules that have evolved over time to make traffic safer and more
efficient. Since the responsibility for accidents depends on compliance with
the traffic rules, the proposed safety concept must account for the traffic rules.
Notationwise, a lane describes the part of a road or carriageway that is to be
used by a single line of vehicles in a particular direction. Thus, roads with
traffic in both directions commonly have at least two lanes. In the following,
we distinguish different scenarios based on the lane structure of roads. We start
with the single lane consideration in Sec. 4.2.1, before we consider intersecting
lanes in Sec. 4.2.2 and parallel lanes in Sec. 4.2.3. In Sec. 4.2.4, we briefly
discuss further scenarios.

4.2.1 Single Lane

The simplest case, which is also the basic example in [SSS18], is driving
within a lane without the necessity to consider traffic in other lanes or outside
of lanes. In this case, path-velocity decomposition, as proposed by Kant and
Zucker [KZ86] and presented in Sec. 2.1.4, can be applied. Lateral safety
can be ensured by staying within the lane boundaries, longitudinal safety can
be ensured by guaranteeing RSS rule 1, not to hit someone from behind. To
reformulate Definition 1 of [SSS18], this can be ensured for the ego vehicle
by guaranteeing to not collide with its predecessor in the following worst
case: The predecessor, previously traveling with velocity vp, decelerates with
a defined maximum deceleration amax,brake until it reaches a full stop. During
a reaction time ρe, the ego vehicle, previously traveling at ve, accelerates
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with a maximum acceleration amax,accel, and subsequently it decelerates with a
minimal assured deceleration amin,brake. If, in this worst case, the ego car does
not collide with its predecessor, the distance to the predecessor is considered
safe. This minimum safe distance according to this scenario can be computed
as

d ′min,safe = veρe +
1
2

amax,accelρ
2
e +
(ve + ρeamax,accel)

2

−2amin,brake
−

v2
p

−2amax,brake
, (4.1)

where the first three terms denote the distance until the ego vehicle is at a
full stop, and the last term is the distance in which the predecessor is at
a full stop. If, due to a very large velocity of the predecessor, d ′min,safe is
negative, the safe distance must still be non-negative, as a negative distance
would mean a collision. Thus, minimum safe distance is generally dmin,safe =
max(d ′min,safe, 0). For the proof by induction, we refer to [SSS18]. In contrast
to [SSS18], we always use a < 0 for decelerations, and thus, the stopping
distance is sstop =

v2
0

−2adecel
.

Regarding occlusions and limited sensor range, wemust always be able to come
to a full stop within our visible range [StVO (D), §3 I 4]. This corresponds to
expecting a static obstacle just behind the visible range dvis. With amax,accel = 0,
because we may no longer accelerate when at the maximum allowed velocity
ve,max, eq. 4.1 leads to

dvis = dmin,safe = ve,maxρe +
v2

e,max

−2amin,brake
, (4.2)

with solution

ve,max = amin,brakeρe ±

√
(amin,brakeρe)2 − 2amin,brakedvis. (4.3)

With dvis > 0 we know −2amin,brakedvis > 0 and thus, subtracting the root leads
to a negative maximum safe velocity, which is not reasonable. Consequently,
the maximum safe velocity is

ve,max = amin,brakeρe +

√
(amin,brakeρe)2 − 2amin,brakedvis. (4.4)
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When driving within a lane with a predecessor that drives in the same direction,
there is typically no interaction and the state uncertainty is generally low. Even
though the uncertainty in the future behavior of others is high, assuming that
the predecessor will not decelerate uncomfortably without compelling reason,
we can simply follow this vehicle.1 In case of occlusions and limited visibility,
however, driving at the maximum safe velocity necessitates sharp braking
maneuvers whenever a vehicle appears at the edge of the visible range. This
issue will be targeted in Sec. 4.3. The special case of narrow roads without
right of way, where cooperation is necessary, is covered in Sec. 4.5.

Even if no other lanes intersect our lane, it is still possible that other traffic
participants enter our lane, such as cars parked at the side of the road, or
pedestrians crossing the street. Thus, also for driving within a lane, we need
to consider lateral evasive maneuvers, as described in [SSS18]. Moreover, for
areas where pedestrians have priority, we have to consider that they enter the
lane from occluded areas. Shalev-Shwartz et al. proposed in version 5 of the
RSS whitepaper [SSS18, v5], that a vehicle is not responsible for an accident
arising from such a situation in the following case: It did not accelerate from
the time the pedestrian became visible, braked at least after the reaction time
ρe and was on average slower than the pedestrian in the time between exposure
and collision. This proposal, has been removed in version 6 [SSS18, v6]. In
this work, we do agree that the proper behavior in such cases must incorporate
a limitation of the ego velocity. This limitation should depend on the danger
arising from an occlusion, which again depends on the lateral distance of
the ego vehicle to the relevant occlusion. The trade-off between the law to
not hinder traffic flow by driving slowly without compelling reason [StVO
(D), §3 II] and lowering velocity to preempt endangering children [StVO (D),
§3 IIa], is not a pure technical question and therefore not further investigated
throughout this work.

4.2.2 Intersecting Lanes

At points where lanes intersect each other, we distinguish between crossing
traffic, where vehicles originating from different lanes continue in different

1 Advanced cruise control, which provides this functionality, is already available in series vehicles.
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lanes, and merging traffic, where vehicles originating from different lanes
continue in the same lane. Note that at most junctions, both crossing and
merging traffic is possible. For diverging traffic, where vehicles originating
from the same lane continue in different lanes, the previously introduced single-
lane consideration is sufficient. Special road layouts, such as roundabouts, can
be broken down into these three basic categories. As the overlapping area
between lanes is an area of potential conflict between traffic in these lanes, we
call this area conflict zone. For crossing and merging traffic, the right of way
has to be defined. The concept of path-velocity decomposition is generally
well applicable to scenarios with intersecting lanes. Thus, at intersections, we
focus on longitudinal safety, i.e. on the distance to the conflict zone along the
path.

From the perspective of a vehicle with right of way, vehicles that enter its path
could be crossing or merging. This ambiguity has to be accounted for in the
safety consideration. As previously stated, vehicles that have the right of way
“must neither be endangered nor be significantly impeded” [StVO (D), §8 II 2].
Thus, disregarding occlusions, we propose that prioritized vehicles have to
regularly maintain a safe longitudinal distance to objects entering their lane
only in the following case: If, at the time when the intersecting traffic enters
the prioritized lane, the prioritized vehicle can come to a safe stop in front
of the conflict zone when constantly decelerating with a reduced required
deceleration amin,brake,row > amin,brake after a reaction time ρ, similar to eq. 4.1
with vp = 0. Additionally, once an intersecting vehicle is observed to not be
able to ensure safety, the prioritized vehicle has to maintain safety according to
RSS rule 5. This is assumed if the intersecting vehicle either merges into the
lane of the prioritized vehicle or, in case of crossing, under both the assumption
of constant velocity and constant acceleration, it will not have left the conflict
zone by the time the prioritized vehicle arrives. This rule is illustrated in the
following examples.

Example 4.2.1. A vehicle enters the conflict zone such that the required
deceleration to stop in front of the conflict zone for the prioritized vehicle
is only areq ≥ amin,brake,row. The prioritized vehicle has to maintain a safe
longitudinal distance to this vehicle, independent of whether this vehicle
is crossing or merging.
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Example 4.2.2. A vehicle starts crossing closely such that the required
deceleration to stop in front of the conflict zone for the prioritized vehicle
is areq < amin,brake,row. The crossing vehicle ensures that it can leave the
conflict zone before the prioritized vehicle enters. The prioritized vehicle
does not have to react to this vehicle.

Example 4.2.3. A vehicle starts crossing closely such that the required
deceleration to stop in front of the conflict zone for the prioritized vehicle
is areq < amin,brake,row, but then, the crossing vehicle decelerates and stops
within the conflict zone. The prioritized vehicle only has to react if under
both, the assumption of constant velocity for the crossing vehicle and the
assumption of constant acceleration for the crossing vehicle, the latter will
not have left the conflict zone by the time the prioritized vehicle arrives.
If a collision can only be mitigated but no longer be avoided, only the
crossing, but not the prioritized vehicle is to blame for the accident.

Example 4.2.4. A vehicle enters the conflict zone closely such that the
required deceleration to stop in front of the conflict zone for the prioritized
vehicle is areq < amin,brake,row, and then merges in front of the prioritized
vehicle. The prioritized vehicle only has to react once the non-prioritized
vehicle leaves the conflict zone in direction of the prioritized vehicle’s
lane. If a collision can only be mitigated but no longer be avoided, only
the merging, but not the prioritized vehicle is to blame for the accident.

In order to prevent marginal cases, we further define an expectable deceler-
ation abrake,row,exp that is at most assumed by non-prioritized vehicles, with
amin,brake,row < abrake,row,exp. For safety distances that would lead to a deceler-
ation a such that amin,brake,row < a < abrake,row,exp, the non-prioritized vehicle
has to ensure safety, but also the prioritized vehicle has to maintain a safe
distance.

In the following, we further distinguish between crossing and merging traffic.
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Crossing

Westartwith the consideration from the perspective of a non-prioritized vehicle
that intends to cross. When intending to cross, safety can be ensured by either
of two conditions:

C1 Ensure to come to a safe state before the conflict zone.

C2 Ensure to safely pass the conflict zone.

The traversal from condition C1 to condition C2 leads trough their intersection,
in which both conditions are fulfilled. This intersection has to be non-empty:
C1 ∩ C2 , {}.2

To satisfy condition C2, one option is to check the required deceleration of
prioritized vehicles at the time the non-prioritized vehicle enters the conflict
zone, leading to:

C2(a) Entering the conflict zone such that the prioritized vehicle is at suf-
ficient distance, i.e. its required deceleration to stop in front of the
conflict zone is acceptable areq > abrake,row,exp, is considered safe for
the non-prioritized vehicle.

For large velocities, however, condition C2(a) leads to large safety distances,
as shown in the example below.

Example 4.2.5. Assuming a reaction time for the prioritized vehicle
ρrow = 1 s and an expectable deceleration abrake,row,exp = −1 m/s2. If
the vehicle on the prioritized road is traveling at the speed limit vrow =
28 m/s ≈ 100 km/h, safely entering according to condition C2(a) is only
possible if the distance of the prioritized vehicle to the conflict zone is
larger than dsuff,row ≈ 28 m + 392 m = 420 m.

If the vehicle on the prioritized road is traveling at vrow = 14 m/s ≈
50 km/h, the distance is dsuff,row ≈ 14 m + 98 m = 112 m, and with
vrow = 9 m/s ≈ 32 km/h it is only dsuff,row ≈ 9 m + 41 m = 50 m.

2 Empty intersections might arise in presence of severe occlusions. Here, a third safety condition
is necessary to allow for carefully advancing into a conflict zone, but the latter is out of the
scope of this work.
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(a) Both vehicles in
front of the CZ.

(b) The white vehicle
has left the CZ.

(c) The gray vehicle
enters the CZ.

Figure 4.1: The desired paths (green) of two vehicles overlap (a). The conflict zone (CZ) is depicted
in gray. The time of zone clearance (TZC) or post-encroachment time (PET) is the
time that elapses between one vehicle leaves the conflict zone (b) and the subsequent
vehicle enters it (c).

Under condition C2(a), entering the conflict zone is safe, since the prioritized
vehicle has to react in case the non-prioritized vehicle is unable to leave the
conflict zone. In some cases, however, the intersection is well visible and clear
of other traffic participants, such that the non-prioritized vehicle can guarantee
to clear the conflict zone even prior to entering it. Thus, we propose a further
option for safely crossing a conflict zone:

C2(b) Entering the conflict zone is considered safe if the non-prioritized
vehicle can guarantee to have left the conflict zone by the time the
prioritized vehicle can enter it the earliest, w.r.t. amax,accel.

While condition C2(b) is sufficient for safety, drivers of prioritized vehicles
might still feel endangered. Thus, we propose to additionally consider critical-
ity measurements as constraint for reasonable behavior of automated vehicles.
As such, the time between the first vehicle leaves the conflict zone and the
second vehicle arrives at it, called post-encroachment time (PET) or time of
zone clearance (TZC) and visualized in Fig. 4.1, is used. It indicates how
closely the vehicles approached each other [ASC78].

The TZC accounts for the velocity of the second vehicle through a spatial
distance that is proportional to its velocity. Given a possible ego trajectory
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and a reasonable prediction of other vehicles, such as constant velocity on the
prioritized lane, we propose to only cross the intersection if the expected TZC
is larger than a predefined tTZC,min. In other words, we propose that if we plan
considering this minimum TZC, we did not endanger the prioritized vehicle
and are not responsible for overreactions to our crossing, even if violating
C2(a).

Example 4.2.6. The vehicle on the prioritized road is traveling at
vrow(t0) = 28 m/s ≈ 100 km/h. The non-prioritized ego vehicle is at
a full stop vego(t0) = 0.

Further assume a width of the conflict zone of scz = 4 m from the per-
spective of the ego vehicle, and a length of the ego vehicle of lego = 5 m.
If the ego vehicle intends to accelerate with aego = 1.8 m/s2, it takes

∆t =
√

2 scz+lego
aego

≈ 3.2 s to pass the conflict zone.

With a minimum required time of zone clearance of tTZC,min = 2.5 s,
the ego vehicle can start to cross if the prioritized vehicle is further than
dsuff,TZC ≈ 28 m/s · 5.7 s ≈ 160 m away, if it can ensure to leave the
conflict zone in 3.2 s. The prioritized vehicle may ignore the longitudinal
safe distance to the ego vehicle in this case (cf. ex. 4.2.2).

If the vehicle on the prioritized road is traveling at vrow = 14 m/s ≈
50 km/h, the distance is dsuff,TZC ≈ 80 m, and with vrow = 9 m/s ≈
32 km/h it is dsuff,TZC ≈ 52 m. For large velocities of the prioritized
vehicles, option C2(b) facilitates crossing with less distance. For small
velocities, however, this option is not beneficial.

Merging

For merging traffic, the paths overlap from a certain point on. Consequently, in
case the non-prioritized vehicle has a lower desired velocity than the prioritized
vehicle, a deceleration of the latter is inevitable, no matter how large the time
gap was at the time of merging. In such cases, instead of evaluating the overall
impact on the prioritized vehicle for its entire journey, we can only evaluate
the impact at or around the merging point. Generally, for accelerating from
zero up to the maximum velocity on roads without on-ramps, which is up to
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100 km/h ≈ 28 m/s in Germany for example, times of 15 s are not unusual.
During this time, however, a vehicle driving at 100 km/h travels more than
400 m. Thus, observing those vehicles prior to merging is unrealistic.

Condition C1, being able to ensure to come to a safe state in front of the conflict
zone, remains unchanged for merging. To safely enter the conflict zone, first of
all, a merge maneuver must not be so close that the longitudinal safety distance
of the prioritized vehicle is violated.

Example 4.2.7. The vehicle on the prioritized road is traveling at
vprio(t0) = 28 m/s ≈ 100 km/h. The ego vehicle that intends to merge
is at a full stop vmerge(t0) = 0 just at the merge point. Assuming a reac-
tion time for the prioritized vehicle ρprio = 1 s, and a minimum required
deceleration amin,brake = −7 m/s2, and further assuming that the latter
vehicle may no longer accelerate as it is already at the speed limit, the
required safe distance at the point where the ego vehicle merges (with
approximately velocity zero) can be computed as

dmin,safe = vprio(t0)ρprio +
(vprio(t0))2

−2amin,brake
= 28 m + 56 m = 84 m.

Further, as the requirement to obey the right of way is to not significantly
impede prioritized vehicles, the imposed deceleration for those vehicles must
not exceed the previously defined expectable deceleration abrake,row,exp. The
computation of this deceleration for the case of the almost stopped merger is
of theoretic nature, as the desire of the merging vehicle is to accelerate to a
certain velocity after merging.3 Thus, we propose the following concept to
ensure smooth merges.

The merging vehicle intends to accelerate with some minimum acceleration
amin,accel,merge, which would only be violated due to the behavior of other
vehicles.4 The prioritized vehicle facilitates the merging by decelerating with

3 The consideration of the merging vehicle (constantly) driving approx. 0 km/h leads to large
required distances, such as 420 m when the prioritized vehicle is driving at 100 km/h (cf.
ex. 4.2.5).

4 Such vehicles, for example another vehicle merging in front performing an emergency braking
maneuver, would also affect the prioritized vehicle. Thus, we disregard reactive decelerations
of the merging vehicle here.
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4 Solution to the Decision Process

abrake,row,exp after the merging vehicle has merged plus the usual reaction time
ρprio. The time of merging can be defined in multiple ways. If merging is the
only available maneuver for the merging vehicle, the maneuver is obvious from
the time when the merging vehicle enters the prioritized lane (cf. Fig. 4.2b).
If, from the perspective of the prioritized vehicle, the merging vehicle could
also intend to cross, the maneuver is obvious from the time when the merging
vehicle enters the common path (cf. Fig. 4.2c).5

The safety reserve for the prioritized rear vehicle along its lane to the front
vehicle, assuming the front vehicle is already in this lane, is

dreserve(t) = s−merge(t) − s+prio(t) − dsafe,prio(t), (4.5)

where dsafe,prio is the longitudinal safe distance required by the prioritized
vehicle, and s−merge and s+prio are visualized in Fig. 4.2d.

The critical time tcrit of minimum safety reserve over the merging maneuver
can be found via differentiating dreserve(t) w.r.t. t and setting this term equal to
zero:

∂dreserve(t)
∂t

!
= 0. (4.6)

The minimum required initial distance of the prioritized vehicle d+init,prio,min
can be found by requiring that the reserve at the critical point is zero

dreserve(tcrit)
!
= 0 (4.7)

and rearranging the equation for d+init,prio. Thus, the condition for safe merging
is

C2(c) If the actual distance d+init,prio at the time of merging is larger than
d+init,prio,min, merging in front of the prioritized vehicle is considered
safe and not significantly impeding when accelerating with at least
amin,accel,merge.

5 Beyond that, definitions including the point of no return for the merging vehicle, or the merging
vehicle being fully in the common area are possible, but not further considered throughout this
work. Adopting the following formulas to those considerations is straightforward.
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4.2 Ensuring Safety: Incorporating Traffic Rules

(a) Vehicle configuration before the merging.

d−init,merge

d+init,prio

(b) One possibility to define the time of merg-
ing: The time when the non-prioritized ve-
hicle enters the prioritized lane. Applicable
if merging is obvious, for example when the
merging vehicle has no option to cross the
prioritized lane.

d−init,merge

d+init,prio

(c) Another possibility to define the time of
merging: The time when the non-prioritized
vehicle enters the area fromwhere prioritized
lane and merging lane are equal. Applicable
if merging is not already obvious by the time
the non-prioritized vehicle enters the prior-
itized lane, for example when the merging
vehicle could also cross the prioritized lane
(crossing option not visualized here).

ss+prio s−merge0

(d) Vehicle configuration after themerging: Both
vehicles are in the prioritized lane. The origin
for the s-coordinate is the point from where
prioritized lane and merging lane are equal.

Figure 4.2: Positions and distances during merging: The straight lane is prioritized, vehicles in
the lane arriving at an angle have to yield.
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4 Solution to the Decision Process

Thus, in case this vehicle hits us from behind, it is to blame even though it
had right of way. By implication, the prioritized vehicle can assume that we
accelerate at least such that comfortably decelerating with amin,brake,row suffices
for not violating the longitudinal safe distance at any time. For the detailed
calculation we refer to Appendix A.1. An example is given below.

Example 4.2.8. The vehicle on the prioritized road is traveling at
vprio(t0) = 28 m/s ≈ 100 km/h. The ego vehicle is at a full stop
vego(t0) = 0 just before entering the prioritized lane. The safety pa-
rameters are ρprio = 1 s, amin,brake = −7 m/s2, amax,brake = −8 m/s2,
amin,accel,merge = 1.8 m/s2, abrake,row,exp = −1 m/s2. Both merging and
crossing are possible from the perspective of the prioritized vehicle, the
latter only has to react ρprio after the merging vehicle entered the common
path (cf. Fig. 4.2c). The distance along the path of the ego vehicle to
this merge point is d+init,merge = 7 m and the length of the ego vehicle is
lego = 5 m. When starting to accelerate, the ego vehicle reaches the merge
point in approx. 2.8 s at approx. 5 m/s. During this time, the prioritized
vehicle travels approx. 78 m. The critical time is tcrit ≈ 5.8 s after the
merge point, independent of the position of the prioritized vehicle. The
safe distance for the prioritized vehicle at this time is dsafe,rear(tcrit) ≈ 47 m,
with the prioritized vehicle traveling at approx. 23 m/s and the merging
vehicle at approx. 15 m/s. Thus, demanding that dreserve(tcrit) > 0, we
obtain d+init,prio > 143 m. With the distance traveled until the merging
vehicle reaches the merge point, this maneuver can be safely started if
the initial distance of the prioritized vehicle to the point from where the
paths overlap is larger than 222 m (cf. Fig. 4.3a).

If crossing is not an option, and thus, the merging is obvious from the time
the ego vehicle enters the prioritized lane (cf. Fig. 4.2b), this distance is
reduced to 194 m (cf. Fig. 4.3b).

With the prioritized vehicle driving at vprio = 20 m/s ≈ 70 km/h, these
distances reduce to 131 m and 112 m, and with vprio = 14 m/s ≈ 50 km/h
to 79 m and 66 m, respectively.
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(a) Merging is only obvious once the merg-
ing vehicle enters the common path (cf.
Fig. 4.2c). The first dashed vertical line is
at the time of merging, the second is at ρprio
after, the third line is the time of minimal
safety reserve tcrit.
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(b) Merging is obvious once themerging vehicle

enters the prioritized lane (cf. Fig. 4.2b) at
t = 0. The first dashed vertical line is at ρprio
after, the second line is the time of minimal
safety reserve tcrit.

Figure 4.3: Positions including the safe distance during a merging maneuver, as visualized in
Fig. 4.2.

Approaching an Intersection

In order to surpass the maximum allowed velocity according to condition C16,
i.e. to enter the conflict zone without stopping beforehand, the safe passage ac-
cording to the above requirements for condition C2(a/b/c) must be guaranteed
for some time in the future. Here again, reasonable worst case assumptions for
the behavior of other vehicles have to be considered, such as full acceleration
up to the speed limit or even some margin above it. Given the current position
and velocity of a prioritized vehicle, the result is a minimum average ego ve-
locity, for which a safe passage can be guaranteed w.r.t. this vehicle. Further
given a guaranteed minimum ego acceleration amin,accel up to a certain velocity
vmax, a minimum ego velocity for which a safe passage can be guaranteed can
be computed. Note that, to be able to guarantee the minimum ego accelera-
tion amin,accel, we must be able to guarantee that there will be no need for a
deceleration as a reaction to the behavior of other traffic participants.

6 Violating condition C1 is also called passing the point of no return.
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4 Solution to the Decision Process

Several overlapping conflict zones can be treated as follows: Condition C1 is
taken from the earliest conflict zone, such that stopping in front of one conflict
zone, but within another, is prevented. To pass all the overlapping conflict
zones, all conditions C2 must be satisfied simultaneously.

Occlusions and Limited Sensor Range

Traffic participants that are currently occluded or outside the sensor range have
to be incorporated in the safety consideration. Condition C1 remains a limi-
tation on the maximum safe velocity, as previously introduced. For condition
C2, the worst case assumption is a non-observable vehicle at the maximum
considered velocity7 just at the edge of the occlusion, again resulting in a
minimum velocity for the non-prioritized that allows safe passing. Traveling
along the edge of condition C1 consists of traveling at constant velocity at the
speed limit when far enough away from the conflict zone and full deceleration
just before the conflict zone. This behavior is obviously uncomfortable. The
probability-based comfort consideration will be covered in Sec. 4.3.

4.2.3 Parallel Lanes

The remaining scenario besides single-lane driving and intersecting lanes is
driving in parallel lanes, where lane changes are possible and sometimes nec-
essary. RSS rule 2 requires to “not cut-in recklessly”. Neglecting lane changes
of other vehicles, the safe distances to four vehicles have to be considered,
as depicted in Fig. 4.4. While path-velocity decomposition (PVD) is not
straightforward applicable for lane changes, it can be facilitated by a velocity-
dependent transition path between the source and the target lane. PVD within
the lanes before and after the lane change is straightforward again.

As previously stated, we propose to require more than just the longitudinal
safe distance as cut-in margin for performing a lane change. According to the
German law, a lane change may only be performed if the risk of endangering
other traffic participants can be preempted [StVO (D), §7 V]. Further, a

7 Speed limit or some margin above.
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lane change has to be indicated, including the use of the direction-indicator
lamps [StVO (D), §7 V]. Pek et al. propose for example that the follower in
the target lane is responsible from the time where the lane changing vehicle
is entirely within the target lane [PZA17]. This, however, would motivate fast
lane changes, as they require a smaller distance to the follower in the target lane
to be able to start the lane change. Instead, we propose to grant an additional
response time ρLC for the following vehicle in the target lane, such that a safe,
non-reckless lane change can be performed via:

• Indicating the lane change desire using the direction-indicator lamps.
• Monitoring that a safe longitudinal distance to the ego vehicle was
maintained by the following vehicle in the target lane for at least a lane
change response time ρLC, before the lane change is performed.

• Maintaining a safe longitudinal distance to the leading vehicle in the
source lane until the lane change is performed.

• Maintaining a safe longitudinal distance to the leading vehicle in the
target lane from the time when the lane change is performed.

As the lane changemight need to be abandoned during the lane change response
time, for example due to tailgating of the following vehicle in the target lane,
the longitudinal safe distance to the following vehicle in the source lane is still
necessary. Thus, in order to prevent the following vehicle in the source lane
from the belief that the lane change of the ego vehicle is certain, and that a
lateral safe distance is sufficient, we propose to restrict omitting longitudinal
safety because of lateral safety to the case where the lane changing vehicle
has left the lane with a certain proportion of its geometry (cf. Fig. 4.5).
By implication, the lane changing vehicle must only leave the lane with that
proportion, if the lane change will be completed certainly, in order to be able
to return safely. In case the gap is large enough, such that the safe distance
for the following vehicle in the target lane is also satisfied for the extended
reaction time ρextended = ρ+ ρLC, the lane change is safe from the start and can
be commenced straightaway. The influence of limited sensor range might be
that an immediate lane change is not possible, as vehicles with a safe distance
w.r.t. ρextended are outside the sensor range. If the sensor range is so low, that
even vehicles for which the regular safe distance would be satisfied are not
visible, a lane change is not possible with this sensor setup. The same holds
for limited visibility due to occlusions. In this case, however, the visibility
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Figure 4.4: Safe longitudinal distances throughout the lane change process: The red safety dis-
tances are the responsibility of the ego vehicle (blue) throughout the lane change.
The following vehicle in the source lane is responsible to maintain the green safety
distance. The responsibility for the yellow safety distance changes throughout the lane
change: For a certain time, it is to be maintained by the ego vehicle, subsequently, the
responsibility is with the following vehicle in the target lane.

Figure 4.5: Continuation of Fig. 4.4: From the perspective of the following vehicle in the source
lane, the situation is both longitudinally (green) and laterally safe (transparent exten-
sion). However, omitting longitudinal safety through lateral safety is only allowed
once the ego vehicle (blue) has left the source lane with a certain proportion of its
geometry, because returning back might still be necessary at the start of a lane change.

might be increased by moving to the very edge and maybe even slightly across
the lane boundary.

In reverse, the ego vehicle must react to lane changing vehicles. Thus, a safe
longitudinal distance must be maintained to vehicles that indicate their lane
change, at the latest when the lane change has been indicated for the time ρLC,
incorporating the own processing delay.

The planning approach considering interaction and potential courtesy of other
vehicles is presented in Sec. 4.4. The uncertainty about whether a particular
traffic participant is courteous, which is linked to the uncertainty in its future
trajectory, is the dominant uncertainty in challenging dense traffic.
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4.2.4 Further Scenarios

The previously introduced scenarios cover large parts of the road network.
Whether or not additional scenarios are necessary for specific areas can be
checked offline in the map. Further scenarios include the merging of parallel
lanes, called zipper merge, which can be symmetric or asymmetric, and where
all vehicles are required to facilitate the zippermerge for vehicles from the other
lane, such that the progress alternates between the two lanes. The execution of
a lane change on a multi-lane road where additionally yielding to intersecting
traffic is required is not intended for safety reasons, thus, the reaction to other
lane changers is enough in such combined scenarios.

4.3 Probabilistic Motion Planning based on
Independent Predictions

In this section, we describe the approach to deal with uncertainties that do not
depend on interaction between the ego vehicle and other traffic participants.
Thus, the prediction of other traffic participants can be performed in an up-
stream module, independent of the planning problem formulation. While the
trajectory planning approach is generally backed up by a safety planner (cf.
Sec. 4.1), an intervention of the latter mostly involves high decelerations and
thus is very uncomfortable. The goal of the probability consideration is to
plan comfortable and convenient trajectories, without causing safety planner
interventions. In the following, after introducing the basic idea to deal with
these uncertainties, we focus on the different sources of uncertainty and their
treatment.

4.3.1 General Approach

The underlying assumption for the uncertainty considerations in this section is
that the pursued trajectories of prioritized traffic participants do not depend on
the ego trajectory. Due to the uncertainties from the unknown future behavior
of others, but also due to the lack of knowledge from occlusions and limited
sensor range, replanning (cf. Sec. 2.1.8) is crucial to motion planning for
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automated vehicles. This consideration leads to the problem formulation of
eq. 3.8, as introduced in Chapter 3.

Solving eq. 3.8 for xe∗1 in the general case involves considering infinitely
many belief updates during the recursive computation of alternative trajectory
continuations xe∗2 . Further, the evaluation of xe1 involves the integration over
all possible trajectory ensembles for others, weighted with a PDF (cf. eq. 3.6).

To solve the POMDP efficiently, we propose to focus on several likely trajec-
tory ensemble sets X for other traffic participants. Instead of describing the
trajectory of an object as stochastic process Xoi , i.e. as a mapping from time t
to a random variable Xoi(t) for the state, a trajectory set Xoi is used. That is,
a trajectory is described with a mapping from time t to a bounded set of states
Xoi(t) per object i, without any information regarding the probability distribu-
tion within this set. Thus, a trajectory ensemble set Xo contains information
about the bounds of the states of all objects over time. Initial beliefs are de-
scribed as trajectory ensemble setsXo

k . As in Sec. 3.3, in addition to the belief
over states in classical POMDP formulations, these beliefs over trajectories
also include knowledge about the state transition probabilities. A trajectory
ensemble set Xo

l , along with the timestamp tl that specifies the start of its
consideration and a probability pl that it has to be considered, is called belief
update (tl, pl,Xo

l )w.r.t. a prior trajectory ensembleXo
k . That is, with probabil-

ity pl , we have to considerXo
l instead ofX

o
k , and the information leading to this

update is available at tl . The set of all considered belief updates w.r.t. a base
set Xo

k is denoted Lk . A base trajectory ensemble set Xo
k along with possible

belief updates is denoted belief progression Xo
k
= {Xo

k, (tl, pl,Xo
l ), l ∈ Lk}.

The set of all considered belief progressions k is denoted K.

This simplification, which can be performed independently of the planning
problem by the upstream scene understandingmodule, corresponds to selecting
possible paths through a belief tree, while not allowing recursive branching
for now. Unfavorable ensembles can often be subsumed because they lead to
the same result, such as stopping in front of an intersection. Further, the cost
estimation is only performed up to a certain planning horizon tH .
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For a base trajectory ensemble set Xo
k along with belief updates to Xo

l at time
tl > t0 with probability pl , l ∈ Lk , the cost estimation is

Jexp
total,k

(
xe1

)
=

∫ tH

t0+∆tplan

J
(
xe1,X

o
k, t

)
dt

+
∑
l∈Lk

pl

∫ tH

tl+∆tplan

J
(
xe∗l ,X

o
l , t

)
− J

(
xe1,X

o
k, t

)
dt,

(4.8)

where Pr(xe1)+
∑

l∈Lk
pl = 1 must hold, such that all possible future trajectory

ensemble evolutions are considered.

In words, the cost of xe1 over the full planning horizon is only considered
weighted with probability 1 −

∑
l∈LK

pl . For each possible reaction l, the cost
of xe1 is only considered as long as it is expected to be pursued, i.e. up to
tl + ∆tplan. For the remaining time within the planning horizon, the cost of
the alternative continuation xe∗

l
is considered. The cost for each reaction l is

weighted with probability pl .

Recursive branching can be incorporated as follows. Instead of updating to
trajectory ensemble sets Xo

l in the belief progressions Xo
k
, the updates include

another belief progression, such that Xo
k
= {Xo

k, (tl, pl,Xo
l
), l ∈ Lk}. For

the computation of the term
∫ tH

tl+∆tplan
J
(
xe∗
l
,Xo

l , t
)

dt in eq. 4.8, we recursively
evaluate eq. 4.8, now starting at tl instead of t0. The recursion ends when the
belief progression consists only of a trajectory ensemble set, i.e. onceLk = {}.

The different considered belief progressions Xo
k
, k ∈ K are independent sim-

plifications of the belief tree. Since they each underestimate the available
information from the belief tree, the expected cost can be approximated as the
minimum of the cost estimations over all considered belief progressions, i.e.

Jexp
total

(
xe1

)
= min

k∈K
Jexp

total,k
(
xe1

)
. (4.9)

Finally, the optimal trajectory xe∗1 is the one that minimizes this cost, i.e.

xe∗1 = arg min
xe1

Jexp
total

(
xe1

)
. (4.10)
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For the probability of a belief update pl , the history of previous belief updates
has to be accounted for, as illustrated in the example below.

Example 4.3.1. Recall ex. 3.3.1: Imagine, there were only two discrete
trajectories possible for the white vehicle in Fig. 3.2: One for turning
right Xo

r and one for going straight Xo
s . They diverge in 4 s, such that

after 4 s, we have certainty about the path. Let the probability that the
vehicle turns right be 50%.

When attempting a trajectory based on the right turn assumption, there is
one possible belief update that the vehicle does not turn right, but goes
straight instead, with p = 50% at t = 4 s:{

Xo
r ,

(
4 s, 50%, {Xo

s , ()}
)}
.

Further knowing that 90% of the vehicles that turn right indicate within
2 s from now, and all vehicles that indicate turn certainly, another possible
belief update is that we do not have certainty that the vehicle turns right
after 2 s, with p = 100% − 90% · 50% = 55%. In the latter case, the
probability of the belief update after 4 s changes to 50

55 ≈ 91% for Xo
s :{

Xo
r ,

(
2 s, 55%,

{
Xo

r ,
(
4 s, 91%, {Xo

s , ()}
)})}

.

The belief tree for the latter scenario is depicted in the following:

?

Xo
r

Xo
r

drives right, 100%t = 4 s:

t = 2 s: indicates right, 45%

?

Xo
r

drives right, 9%

Xo
s

drives straight, 91%

¬indicates right, 55%
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The planning horizon tH should be chosen such that trade-offs of whether to
stop at or continue through an intersection, or obligations such as to stop at a red
light, are realized early enough to allow for comfortable decelerations.8 On the
other hand, Ziegler proposed to treat stopping outside classical optimization,
with a control approach [Zie17, p.93]. Following this proposal, stopping
trajectories along with their duration can be computed by forward integration
of such a control approach. Further, in the relevant scenarios for this probability
consideration, path-velocity decomposition is applicable, and we propose its
usage to reduce the dimension of the optimization problem.

Comparing the cost of a trajectory that likely allows convenient passing of an
intersection but might result in an uncomfortable deceleration with the cost
of a trajectory that certainly stops comfortably in front of the intersection is
not trivial. Stopping at an intersection is convenient if prioritized vehicles
are currently passing, but it is not convenient if continuing would be safely
possible, for example. In the analysis of human driving behavior in [11],
we argued that cost functions that do not yield zero cost for some trajectory
parts can hardly be recovered using inverse reinforcement learning. Similarly,
it is questionable whether the stopping/deceleration behavior of a human is
different when having to wait for 10 s compared to having to wait 15 s at a
stop sign, which would be the case if waiting would induce cost. With the
previously stated insights from [Zie17], we propose the following heuristic
instead of performing this trade-off between comfort and convenience based
on cost: Based on reference trajectories xe1 , that are computed using forward
integration of a driver model, and that are safe and traffic rule compliant
w.r.t. trajectory ensemble set Xo

k , we compute the necessary decelerations as
reactions to belief updates (tl, pl,Xo

l
) and verify the safety of those reactions.

In presence of intersections, the point of no return is the focus of the safety
consideration, since this point may only be passed if the intersection can be
entered safely. The pursued trajectory is chosen as the fastest feasible reference
trajectory where the maximum necessary decelerations do not violate comfort
margins. The comfort margins are defined via the following rules:

8 The availability of emergency maneuvers is always monitored by the safety planner, including
the execution of those maneuvers, if necessary. Thus, a lower bound for ∆tH is not mandatory
to ensure safety. Yet, the horizon to allow for comfortable decelerations is commonly larger
than this fictive lower bound.
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Rule 1. Given a function pmax : R− → [0, 1] that defines themaximumallowed
probability over decelerations. A reactive deceleration areact with probability
preact is only accepted if

preact ≤ pmax(areact). (4.11)

Since the reference trajectories can already include decelerations themselves,
only reactive decelerations with larger absolute value than the decelerations
of the reference trajectories are considered. Also, the additionally required
decelerations (areact,add = areact,max − areference,max) are checked as follows.

Rule 2. Given a function pmax,add : R− → [0, 1] that defines the maximum
allowed probability over decelerations. An additional deceleration areact,add
with probability preact is only accepted if

preact ≤ pmax,add(areact,add). (4.12)

Further, the comfort margins reflect elements of perceived safety:

Rule 3. Comfortable trajectories must not violate the minimum time of zone
clearance.

Other comfort aspects such as amaximum lateral and longitudinal acceleration,
a maximum jerk and a minimum time and space headway to other vehicles
are already considered in the creation of the reference trajectories, such that
no reference trajectory violates them. The result is basically a trade-off be-
tween smaller, but potentially unnecessary early decelerations in the reference
trajectory, and potentially larger reactive decelerations in the future.

Using this heuristic, the belief updates (tl, pl,Xo
l
) can be limited to those that

are unfavorable compared to Xo
k , i.e. that require a reactive deceleration. In

case a belief update allows for a reactive acceleration, this does not violate the
defined comfort margins. Further, very rare cases are always covered by the
safety planner and thus do not necessarily need to be considered here.9

9 If, for example, an emergency braking maneuver as reaction to the emergency braking of the
vehicle ahead would be considered uncomfortable even if it only occurs with probability 10−10,
driving with reasonable time or space headway would not be possible at all.
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Note that the knowledge about the future progression of uncertainties is particu-
larly important to probabilistic motion planning, as illustrated in the example
below.

Example 4.3.2. Assume a pure V2X-based perception. We know that
there is a persistent adversarial attack with one false object per existing
object in the object list. Even though we know that this lowers the
existence probability of every object to 50%, we have to act as if the
existence probability of every object was 100%. This is due to the fact
that, besides knowing the current existence probability of every object
is 50%, we also know that this probability will not change within the
planning horizon, due to the adversarial attack. In other words, since there
is no belief update available, we can only consider the belief progression
{Xo

all} with a single trajectory ensemble set that contains all objects.

Regarding the future path of an object, reactions to the other objects’ trajectories
along all possible paths have to be included via belief updates (tl, pl,Xo

l
) up

to points in time where it is expected that some paths can be excluded with
certainty. From these points on, reactions to particular behavior of others can
be excluded: If the initial trajectory xe1 is still pursued by then, these behaviors
did not occur. Otherwise, the ego vehicle would already have reacted with
a new trajectory, and xe1 would no longer be valid. The decision to exclude
paths can for example be based on or derived from the (missing) usage of the
direction indicator lamps. As, however, this decision is safety relevant, these
conclusions have to be drawn with care and the responsibility in case of false
or missing indicator usage has to be agreed upon as part of the general safety
concept.

In contrast to the proposed approach, some approaches that perform decision
postponing only consider the current probability estimate and implicitly expect
reaching certainty at the time of the subsequent replanning, corresponding to a
QMDP approach. For specific combinations of cost weighting and probability
progression, this yields promising results, as in [ZLCT16]. However, cases
where certainty is never reached or reached too late are not considered. In edge
cases, for example where the probability of a particular path for an object is
constantly very low but non-zero, such approaches only react once the safety
constraints due to an imminent collision come into play. Under these hard
constraints, the cost is neglected and the reaction is most likely very harsh
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and uncomfortable. If this constant uncertainty over time was known from the
beginning, as in the previous example, the resulting behavior is suboptimal.

4.3.2 Single Lane

The dominating uncertainty in single-lane scenarios is the existence uncer-
tainty. Frequent decelerations due to so-called ghost objects, i.e. objects that
do not actually exist, but are detected by the perception module, have to be
avoided to ensure a comfortable ride. A similar uncertainty arises from the
missing information outside the visible range. As previously said, the uncer-
tainty in the current state or the future trajectory of other objects is commonly
not hampering a comfortable ride, as presented by seriesACC systems. The lat-
ter, however, deal with ghost objects simply by tuning for a low false-positive
rate, such that almost no ghost detections occur, while false-negatives, i.e.
missing detections, are to be dealt with by the driver.

With the presented approach, the existence uncertainty can be treated by con-
sidering several reference trajectories between ignoring and incorporating the
potential ghost object in planning. Given the sufficient comfort of lane fol-
lowing models such as ACC or IDM, reference trajectories can be planned by
forward integration of such models for the cases of non-existence and exis-
tence, and linearly interpolating in-between both cases. As explained before,
the heuristic is then to choose the fastest reference trajectory that does not
violate comfort margins (cf. Sec. 4.3.1, rules 1-3). Note that the important
information are belief updates that lead to certainty about the non-existence
of the potential ghost. If the existence probability remains non-zero, since
safety is never put at risk, the safety planner would eventually react and cause
a clearly uncomfortable emergency deceleration.

Limited Visibility

With this approach, uncertain information about far away objects, for example
from camera only, can be used for comfortable deceleration also to objects
outside the so-called visible range. To recapitulate, in the visible range we re-
quire the detection of actually existing objects with a non-zero probability for
safety reasons. Still, information beyond the visible range might be available.
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4.3 Probabilistic Motion Planning based on Independent Predictions

Note, however, that this planning approach in general assumes valid existence
probabilities without systematic errors, while the determination of those prob-
abilities is to be done externally, independent of the planning problem. Due to
the fact that safety distances must be maintained to all objects with non-zero
existence probability, volatile close objects inevitably lead to a jumpy and jerky
behavior of an automated vehicle.

Regarding limited visibility beyond the sensor range or due to occlusions, such
that no sensor information is available, general traffic data can be used. Such
data can include the knowledge about frequent traffic jams behind certain bends,
but also live traffic data, allowing for an early and more comfortable reaction
to reported traffic jams. In addition to that, information about frequently
occurring slow traffic, such as trucks leaving a construction site, can be made
use of. Including this information in the approach is realized by adding possible
belief updates (tl, pl,Xo

l
). The reaction to such possible belief updates is an

appropriate reduction of the velocity.

4.3.3 Intersecting Lanes

At intersecting lanes, multiple route options of others enlarge the uncertainty
in their future behavior. Further, the influence of occlusions and limited sensor
range along prioritized roads must be considered.

For a vehicle that has unrestricted right of way along its desired route10, the
single-lane consideration is applicable. Additional probabilistic reasoning is
necessary for traffic turning away from this lane, traffic merging onto this lane
and potential violation of the right of way. For all of those cases, eq. 4.8 is
applicable.

Further, analytic solutions to simplified problem formulations, for example
assuming constant acceleration for a vehicle merging in front and constant
deceleration for the ego vehicle, as requested by the safety concept, can be
computed, as introduced in the previous section. Similarly, for vehicles that

10 Vehicles turning from a priority lane commonly have right of way over vehicles entering an
intersection from other lanes, except if they turn through oncoming prioritized traffic. In the
latter case, they have to yield to oncoming vehicles, so their priority is not unrestricted.
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can be ignored according to the safety concept11 unless an accident is imminent,
dangerous misbehavior of the crossing vehicle can be considered as a possible
belief update with low probability. For diverging lanes, far-away objects that
decelerate to turn away from the prioritized lane should not cause an over-
cautious reaction in case it is likely that they have left the lane anyway by the
time the ego vehicle would arrive there. This consideration is already included
in eq. 4.8.

For vehicles that have to yield at intersecting lanes, meaningful reference trajec-
tories only enter the conflict zone at times when it is not occupied by prioritized
vehicles. Apart from this additional requirement for the reference trajectory
generation, the general approach as in eq. 4.8 is applicable. Yet, the safety
verification w.r.t. all vehicles along their potential routes is more complex. For
intersections with many vehicles involved, a meaningful restriction to likely
but also distinct trajectory ensemble sets along with possible belief updates is
crucial to avoid a multitude of similar computations.

Limited Visibility

Considering limited visibility at intersections, an object-based approach is not
expedient. An appropriate reaction to occlusions, even if no vehicle actually
appears from behind them, is commonly a deceleration below the desired
velocity for the non-occluded case. This ensures a comfortable stop in case
an object appears. The deceleration is followed by an acceleration back to
the desired velocity, which is only pursued in case no object appeared. The
reaction to objects appearing at the sensing edge is then a further deceleration
to let this object pass, in case going first is not safely possible. The maximum
velocity with which an occluded intersection can be passed is defined by
the safety concept. Traveling along the edge of the safety limit, however,
consists of constant velocity at the speed limit, when far enough away from
the conflict zone, and full deceleration just before the conflict zone, which is
clearly uncomfortable. Once the visibility is sufficient and no object appeared,
the vehicle can accelerate again. In case an object occurs which the ego vehicle
needs to yield to, the full deceleration has to be continued to a full stop.

11 Vehicles that cross the path of the ego vehicle closely have to ensure that they leave the path
before the ego vehicle arrives (cf. ex. 4.2.2).
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Figure 4.6: Exemplary occupancy of a conflict zone for crossing traffic (from [8], © 2019 IEEE):
Black denotes the times in which the zone is occupied/blocked by prioritized traffic.
The time of zone clearance before and after this occupancy is marked in orange. The
expected duration of the passage of the ego vehicle is marked in blue. The scope for
the ego vehicle’s passage is the remaining time (blank).

A comfortable trajectory should decelerate earlier and to a lower velocity. For
the choice of a comfortable trajectory, a trade-off is to be made. In case no
object appears, any deceleration to a velocity below the safety constraint was
unnecessary. While a gentle deceleration might not cause discomfort, it is
certainly inconvenient to frequently decelerate unnecessarily. On the other
hand, any deceleration above the one leading to a comfortable stop leads to an
uncomfortable deceleration in case we have to yield.

While this consideration is similar to eq. 4.8, the variety of possible object
configurations within the occlusion and the dependency of the visibility on
the ego motion call for a different treatment. We recall the idea of subsuming
configurations of others that lead to the same xe∗

l
from eq. 4.8 and use a

simplified reaction model. Further, in addition to the approach presented
in [8], the knowledge of the replanning moments in time is incorporated.
These are the only moments when newly detected objects can be considered.
This reaction model corresponds to a belief update containing a virtual object
that blocks the intersection.

In order to estimate the probability that we have to react in a certain replanning
step, the occupancy density of the conflict zone can be employed, i.e. the
fraction of time the conflict zone is occupied by prioritized vehicles. This
information can be inferred from monitoring particular intersections or from
fleet data, for example. From every gap in the occupancy of the conflict zone,
we subtract the desired time of zone clearance for the prioritized vehicles and
the ego vehicle. Subsequently, we subtract the time that the ego vehicle needs
to pass the conflict zone. If the gap time is still positive, it now represents the
potential scope ∆tscope gap i for our traversal of gap i, as visualized in Fig. 4.6.
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4 Solution to the Decision Process

With this information, the probability that an arbitrary trajectory xe1 can be
pursued unaffectedly is

Pr(xe1 is unaffected) =
∑

i ∆tscope gap i

∆ttotal
, (4.13)

where the numerator denotes the potential scope for the traversal from all
available gaps i in ∆ttotal. The probability that we have to deviate from our
desired trajectory,

preact = Pr(ego must react) = 1 − Pr(xe1 is unaffected), (4.14)

can be subdivided into probabilities that we have to react per replanning step:
With the probability pvis,k that a relevant vehicle12 is visible at replanning step
k, and the general reaction probability preact, the probability of a reaction in a
certain replanning step can be computed as

preact,k = preact ·
(
pvis,k − pvis,k−1

)
, (4.15)

where
(
pvis,k−pvis,k−1

)
is the probability that a relevant vehicle becomes visible

at replanning step k. In the following, an exemplary approach to compute pvis,k
is presented.

The computation is realized using information about the visible area at a
certain replanning moment, and information about where relevant vehicles
might be located. The latter consideration is limited to vehicles in a certain
velocity range [vmin, vmax]. While vmax can be taken from the safety concept,
for example some margin above the speed limit, vmin should lie below the
speed limit. Choosing vmin too high, however, only leads to the estimation of
later reactions and thus to an over-approximation of the probabilities of higher
decelerations. From this velocity range, we can compute the bounds of relevant
areas, which are visualized in Fig. 4.7. Close to the conflict zone, there is an
area where vehicles do not affect the ego vehicle, because even slow vehicles
in this area will already have left the conflict zone early enough (light gray in
Fig. 4.7). Its bound depends on vmin, the maximum considered vehicle length
lmax, and the time of zone clearance for the ego vehicle. Similarly, there is a
distance from where even vehicles at vmax will only arrive at the conflict zone

12 A vehicle that causes a reaction.
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at the required time of zone clearance13 after the ego vehicles has left it (dark
gray in Fig. 4.7). The relevant area is in-between those bounds. Far away from
the conflict zone, we most likely have no visibility of the relevant area. At the
latest just before the conflict zone, we should have full visibility of the relevant
area14, such that a reaction at a subsequent replanning step can be excluded.

Neglecting the length of objects, which again leads to an over-approximation15,
and assuming a uniform distribution over the relevant area, the probability that
the relevant object is visible in step k is

pvis,k =
dvisible,k

drelevant,k
, (4.16)

with the area dvisible,k that is relevant and visible at step k (green in Fig. 4.7)
and the area drelevant,k that is relevant at step k (orange and green in Fig. 4.7).16

The computed reactive decelerations and their estimated probability are then
added to the reactive decelerations due to belief updates. The presented heuris-
tic to determine the optimal trajectory remains unchanged (cf. Sec. 4.3.1, rules
1-3).

13 In case of merging instead of crossing, the distance is computed using the required initial
distance for merging with vmax as explained in Sec. 4.2.2.

14 Otherwise, approaches to slowly advance into the conflict zone to gain more visibility have to
be applied.

15 The rear end of an object, and thus its length, is only relevant for those objects that leave the
conflict zone before the ego vehicle enters. If this length is neglected, we assume that we could
only react once the rear end of the object becomes visible. Consequently, a later reaction is
assumed, leading to a stronger deceleration.

16 Better estimates of the distribution of relevant vehicles, if available, can be incorporated here.
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(a) No visibility of the relevant area.

(b) Partial visibility of the relevant area.

(c) Full visibility of the relevant area.

Figure 4.7: Relevant visibility over the course of the trajectory of the blue ego vehicle through an
intersection occluded by a building (black): The current visibility of the ego vehicle is
depicted with a dashed line, originating in the vehicle center. Only vehicles in specific
areas affect the planned ego trajectory. The part of the relevant area that is visible is
depicted in green, the occluded part is depicted in orange. Vehicles that are further
away (dark gray zone) would not reach the conflict zone before the ego vehicle has
left, even at the maximum considered velocity. Vehicles that are closer (light gray
zone) will have left the conflict zone by the time the ego vehicle arrives, even at the
minimum considered velocity.
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4.4 Courtesy-Aware Lane Changes

In scenarios where courtesy is necessary, such as lane changes in dense traffic,
an independent prediction of other traffic participants is no longer expedient.
On the other hand, since waiving the right of way is rather unusual and requires
a prior arrangement with the prioritized traffic participant [StVO (D), §11 III],
the courtesy consideration is limited to lane changes.

The decision for a lane change is assumed to be taken by an upstream module
and not part of this work. Examples for approaches to determine whether
or not optional lane changes are beneficial are given in [9]. Mandatory lane
changes are determined in the navigational layer. Assuming the need for a lane
change was determined, the lane change process itself is commonly divided
into gap selection, gap approach, gap evaluation and the subsequent merge into
the gap [HSX+18]. The focus of this section is the gap evaluation and the
subsequent merge into the gap, while a simple heuristic for gap selection and
gap approach is implemented to show the potential of the approach.17

The basic idea behind the proposed solution is as follows. The key uncertainty
in lane change scenarios is whether or not vehicles in the target lane are
courteous. While the courtesy of others certainly also depends on the behavior
of the lane changing vehicle, we assume that this influence is negligible if
the lane change approach is well indicated and would not induce a large
deceleration on the suspectedly courteous vehicle. Further, we want to ask
for courtesy, but not force it. Thus, cutting in just in front of other vehicles,
even if we could anticipate that it would be safe since other vehicles certainly
want to avoid collisions and would react appropriately, is not regarded. As a
result, the lane change desire is clearly communicated. Subsequently, unless
the target lane is free, the reaction is investigated in order to find out whether
the respective traffic participant is courteous or not, i.e. in order to reduce the
key uncertainty. Moreover, granting an additional reaction time is part of the
safety concept for lane changes, as proposed in Sec. 4.2.3.

17 As the gap selection is not safety critical, but the probability that a certain traffic participant is
courteous potentially depends on various features, machine learning might be well-suited for
the upstream module.
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Figure 4.8: Lane change process overview (from [9], © 2019 IEEE).

An overview over this rule-based approach is given in Fig. 4.8. After a gap has
been approached longitudinally, the lane change desire is indicated. While the
use of the direction-indicator lamps is mandatory according to the traffic rules,
additional communication, such as moving towards the target lane within the
source lane, can be used.18 After the desire has been indicated, the safety of the
lane change has to be investigated. Here, three situations can be distinguished:

1. The situation is safe, even w.r.t. the enhanced lane change reaction time
ρ + ρLC (cf. Sec. 4.2.3). We can perform the lane change immediately.

18 A thorough investigation of how the desire can be communicated effectively fromapsychological
perspective is outside the scope of thiswork. Yet, additional hints from this field can be integrated
into the approach.
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2. The situation is currently safe w.r.t. the target lane, and assuming the
most likely prediction (independent of the ego vehicle) it will still be
safe in ρLC. This situation is called probably safe. We still have to wait
but presumably do not need courteous behavior of the following vehicle
in the target lane. We can already attempt the lane change, for example
by moving further towards the target lane.19

3. The situation is currently not safe w.r.t. the target lane. We rely on
the following vehicle in the target lane being courteous. In this case,
a cooperative prediction approach must be used, with a repeated check
whether the respective traffic participant complies with that model. In
case of compliance, the situation will eventually become probably safe.
Otherwise, the abandonment of the lane change into this gap has to be
communicated, and the approach has to be repeated for another gap.

While we hope for courtesy of other traffic participants to facilitate lane change
maneuvers, the same courteous behavior is expected by the ego vehicle. Using
lane following models, an exemplary solution is to check the necessary decel-
eration, regarding the vehicle with lane change desire as the leading vehicle. If
this deceleration is within a comfortable range, we can decelerate accordingly.
Note, however, that the desire of others, along with an estimation of whether
they actually intend to merge just in front of us, is a prerequisite to facilitate
courtesy of the ego vehicle.

To summarize, the approach is based on trial and error regarding the courtesy
estimation of others. Regarding the lane change itself, it is rule-based, such that
the behavior can be designed in a way that is comprehensible and pleasant for
humans. Exploiting the sense of security of other traffic participants in order
to force “courtesy”, which could be the result of egocentric reinforcement
learning or the solution to egocentric POMDP formulations, is precluded.

19 Here again, a thorough investigation of how the attempt can be communicated effectively from a
psychological perspective, in contrast to simply communicating the desire, is outside the scope
of this work. Yet, additional hints from this field can be integrated into the approach.
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4.5 Cooperative Global Optimum Approach with
Model Compliance Consideration

In some scenarios, where the right of way is not clearly defined, mutual co-
operation between traffic participants is required to find convenient solutions,
similar to the previous section, where courtesywas required. Again, as waiving
the right of way is rather unusual and requires a prior arrangement with the pri-
oritized traffic participant [StVO (D), §11 III], we do not focus on cooperation
that violates the prescribed right of way.

Since the interaction with other traffic participants is key to cooperative scenar-
ios, the prediction has to be integrated into the planning problem. As known
from game theory, globally optimal solutions can be unveiled if the agents trust
each other. Thus, one of the goals of this approach is, similar to the previous
sections, to behave comprehensibly for others. In order to model the behavior
of other traffic participants, we assume that they are rational agents that also
seek for a convenient, comfortable and safe trajectory. With this assumption,
we strive to find the globally optimal solution to the multi-agent planning prob-
lem. Yet, we have to keep in mind that, if this solution is ambiguous, or if we
misestimate the behavior or intend of other vehicles, others might deviate from
our notion of the globally optimal solution. The same might happen if our
behavior is misinterpreted by others. Thus, a fallback needs to be considered,
along with the probability that it becomes effective.

In the following, we first derive the solution to the ideal case of cooperation
based on a knownmulti-agent cost function, before we generalize the approach.
As generalizations, we consider uncertainties regarding the current state and
the ambiguity of the global optimum. To deal with these uncertainties, we
include a model compliance check with fallback plan consideration.
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Global Optimum

The multi-agent cost function20 for the globally optimal case, mapping from a
trajectory ensemble x to a scalar, is defined as

Jgo
total

(
x
)
=

∑
i

(
Ji,0total

(
xi

)
+

∑
j,i

Ji, jtotal

(
xi, xj

))
(4.17)

with cost term Ji,0total for the singleton trajectory cost of vehicle i and cost
term Ji, jtotal for pairwise cost for vehicle i due to vehicle j. Here, the cost
Jgo,e

total = Je,0total+
∑

j,e Je, jtotal corresponds to the cost Jtotal for the ego vehicle i = e,
that was used in previous sections.

The globally optimal trajectory ensemble is the one that minimizes Jgo
total

(
x
)
.

For complex cost functions Ji,0total and especially Ji, jtotal, analytic solutions to
the minimization might not exist. Further, since the decision to be taken is
most likely of combinatorial nature (“Who goes first?”), local optimization
approaches are not applicable. On the other hand, strict optimality in the
solution of this ideal case is not necessary, since we can only trust in this
solution in case it is unambiguous, as explained in the next section. Thus,
approximate solutions, such as Monte Carlo sampling approaches, suffice:
The approximate solution k∗ out of K samples {x1, ..., xK } must fulfill

Jgo
total

(
xk
∗ )
≤ Jgo

total
(
xk

)∀k ∈ [1,K]. (4.18)

Impact of Uncertainties

Previously, we assumed that the global optimum is unique and will be pursued,
such that the cost is definitely Jgo

total, respectively the proportion of the ego
vehicle Jgo,e

total. Uncertainties were not considered. In mixed traffic, however,
we face several uncertainties that might jeopardize the optimal solution, as
outlined in Chapter 3. In ambiguous situations, even slight differences in the
sensed statemight lead to the global optimum lyingwithin a different homotopy

20 Reminder: Jtotal denotes the cost over the whole planning horizon.
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class. Further reasons for deviations from the previously approximated globally
optimal solution include:

• A traffic participant does not act according to a stationary policy.

• Wrong estimation of the quality measure or destination of a traffic par-
ticipant by the ego vehicle.

• Wrong estimation of the qualitymeasure or destination of the ego vehicle
by a traffic participant.

As a consequence of this non-compliance with our model, the optimal cost is
not reached with certainty.

Reaction to Uncertainties

Knowing that we might have to deviate from the globally optimal plan, we
have to consider how likely this deviation is, and what cost we face in case of
a deviation. Denoting the probability that the globally optimal plan will be
pursued with pgo, the expected cost can be defined as

E(Je
total) = pgoJgo,e

total +
(
1 − pgo

)
E(J¬go,e

total ). (4.19)

However, pgo as well as E(J¬go,e
total ) are unknown. The probability of exactly a

certain trajectory ensemble xk is infinitesimal. Thus, instead of distinguishing
whether or not xgo is exactly followed, we propose to consider the probability
that our model is correct in the sense that it yields a result in the correct
homotopy class. This probability is denoted by pmc. For the expected cost in
case ourmodel is incorrect, we consider a conservative fallback plan (cfb). The
latter is scenario-dependent. The cost estimation with this model compliance
consideration is then

E(Je
total) = pmcJgo,e

total + p¬mcE(Jcfb,e
total ). (4.20)

We argue that trust and comprehensibility are crucial to cooperation. Thus, in
contrast to Sec. 4.3, where we could modify our ego trajectory to minimize the
expected cost, we only choose between pursuing the globally optimal solution
xgo or switching to the fallback. The idea behind this distinct choice is that
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the latter is believed to be obvious to the other traffic participants such that,
for example, in case we switch to the fallback, they can use this information to
avoid deadlocks. When following the global optimum xgo, at a certain point
of no return the original conservative fallback plan becomes infeasible, for
example because braking in front of the conflict zone is no longer physically
possible. Still, because we never enter states that are unsafe, we can decelerate
and come to a full stop within the conflict zone. This behavior involves the
same uncomfortable full braking, but is even less convenient because one
of the vehicles would have to back up out of the conflict zone and this takes
significantly more time than just waiting for the other to pass. Hence, the trade-
off is whether (a) to hope for the cooperative solution but risk an inconvenient
stop (potentially even within the conflict zone) or (b) to certainly pursue the
also inconvenient stop in front of the conflict zone.

For the determination of the probability pmc whether our model is correct and
the expected cost of the reaction E(Jcfb,e

total ), many approaches are conceivable.
In order to show the potential of the proposed method, we present one heuristic
approach, in addition to the one presented in [6], in Sec. 5.2.3.

4.6 Transitions between Scenarios

In the previous sections, we presented approaches to enhance the concept of re-
sponsibility sensitive safety and to plan comfortable and convenient trajectories
in different scenarios. The transition between scenarios can be implemented
using state machines or arbitrators, but is outside the scope of this work. Yet,
we want to briefly explain why their interoperation should not impose any
problems.

Firstly, the influence of upcoming scenarios is limited by themaximum allowed
velocity and the comfortable deceleration. In other words, knowing that there
is a stop sign in 1 km does not affect the motion planning decisions in the very
moment. Further, the single-lane scenario is the basis of both multi-lane and
intersecting lane scenarios, such that single-lane safety is considered in both
other scenarios. The combination of multi-lane and intersection scenarios does
occur, but often such that the multi-lane road has right of way or such that the
intersection is controlled by traffic lights. In scenarios where prioritized traffic
is intersecting with the ego vehicle’s multi-lane road, ego lane changes can be
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avoided while the reaction to other lane changers is still possible. Lastly, as
alreadymentioned for the safety concept in Sec. 4.2.4, all information about the
road layout and the traffic rules is available in the map, such that the scenario
transitions for any desired route can be checked up front.
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As described in Sec. 1.2, the goal of this work is to design a motion planning
framework that yields convenient motion plans for automated vehicles inmixed
traffic, while accounting for the need of safety guarantees. In order to show
the potential of our approaches, we evaluate them in several scenarios. A
key point throughout our reasoning is that striving for strict optimality w.r.t.
certain performance indicators is not expedient, as the latter often involves
significant simplifications. Rather, an appropriate treatment of the inherent
uncertainties is needed, as their influence often jeopardizes seemingly optimal
solutions. In conjunction with an appropriate uncertainty consideration, the
heuristic comparison of different possible trajectories is sufficient. While
uncertainties can easily be reduced to zero in simulation, the performance in
deterministic or quasi-deterministic scenarios does not allow for conclusions
about the performance in mixed traffic. Thus, in contrast to other control
or decision making approaches, a pure numerical evaluation is not possible.
Instead, we focus on showing the performance of our approaches in hand-
crafted exemplary scenarios. Furthermore, a common prejudice against safety
approaches in the area of automated vehicles is that they inevitably lead to
conservative and over-cautious behavior. Thus, a secondary objective of this
scenario-based evaluation is to show that the presented safety approach allows
for convenient behavior.

In the following, we first outline the implementation that was used to evaluate
the approaches in Sec. 5.1. Next, the evaluation of different scenarios, separated
by their dominating uncertainties, is performed in Sec. 5.2.

5.1 Implementation

In order to show the potential and to evaluate the presented approaches, they
were implemented inC++. As stated in the previous chapter, all approaches rely
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on high definition semantic map information to extract the route, the driveable
area and the traffic rules, such as the speed limit or the right of way. Regarding
this map information, the implementation employs the lanelet2 library [7].
For matching the ego vehicle to the lanelet map, we utilize the probabilistic
approach presented by Petrich et al. in [PDK+13]. For path generation, we
employ the method proposed by Thrun et al. [TMD+06] as implemented by
Poggenhans [Pog19]: The curvature of the path is minimized, while deviations
from the (non-smooth) analytically computed centerline are punished. With
this approach, the path for the full route can be precomputed and sanity checks
can be performed. In presence of static obstacles at the border of the ego lane,
circumventing paths can be generated online.

For the lateral and longitudinal trajectory control, we employ the concept
presented by Ziegler et al. [ZBS+14]. Instead of only providing the trajectory
planned within the horizon, we additionally provide the planned future path
for lateral control. This way, the steering angle can also be controlled when
waiting at a red traffic light, even though the planned trajectory over the
planning horizon spatially consists only of a single support point, for example.

The integration into our experimental vehicle (Sec. 5.1.1) and our simulation
framework (Sec. 5.1.2) is realized using the middleware Robot Operating
System (ROS) [QCG+09,HWT+16]. Implementation details of the different
approaches are explained in Sec. 5.2.

5.1.1 On-Road Testing

On-road tests were performed in our experimental vehicle BerthaOne (cf.
Fig. 5.1). Besides changing to the middleware ROS, running under Ubuntu
18.04, the vast amount of changes since the comprehensive report in [ZBS+14]
include using the map library lanelet2 [7] as the successor of the formerly used
liblanelet [BZS14], enhancing the visual localization to amulti-drive andmulti-
camera approach [SS18], and including multiple LIDARs into the perception
stack [RWKS19].
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Figure 5.1: Experimental vehicle BerthaOne.

5.1.2 Simulation

For the development and evaluation of motion planning approaches, simulation
frameworks are an essential tool. In contrast to the research area of perception,
datasets are not suitable, because the feedback loop is important: For control,
but also for cooperative motion planning that focuses on interaction between
traffic participants. The ROS-based simulation framework CoInCar-Sim [5]
has been developed and implemented particularly for cooperative motion plan-
ning. Details about the simulation framework can be found in [5], and the
framework is accessible open-source at https://github.com/coincar-sim.

5.2 Scenario-Based Evaluation

In this section, we start by evaluating the approach to probabilistic motion
planning from Sec. 4.3 in Sec. 5.2.1. This approach, that is based on an inde-
pendent prediction of other traffic participants, covers mostly urban scenarios.
Subsequently, the approach to lane changes from Sec. 4.4, applicable to urban
multi-lane scenarios and highways, is evaluated in Sec. 5.2.2. The section con-

103

https://github.com/coincar-sim


5 Evaluation

cludes with the evaluation of the approach to mutual cooperation from Sec. 4.5
in Sec. 5.2.3.

5.2.1 Clear Precedence

The approach presented in Sec. 4.3 is targeted towards scenarios with clear
precedence. It is evaluated in single lane scenarios and scenarios with in-
tersecting lanes, such as intersections or roundabouts. The evaluated plan-
ning approach relies on the prediction and uncertainty estimation of upstream
modules being meaningful, and its performance depends on the latter. Note
that, since the times of replanning are explicitly incorporated in the approach,
changing those times or the replanning frequency would potentially alter the
solutions, which is deliberate.

Implementation Details

Along the defined route, the conflict zones are extracted using the lanelet2
library. As driver model for the trajectory generation via forward integration,
the enhanced IDM [KTH10] is used. The desired velocity vdes for this driver
model is computed as the minimum of the speed limit and a limitation from the
lateral acceleration due to the curvature κ(s) along the path s as in [LKB+13],
i.e.

vdes(s) = min
(
vspeedlim(s),

√
amax,lat

κ(s)

)
. (5.1)

Further, the course of the desired velocity is smoothed by limiting positive
and negative acceleration and jerk. While testing on our experimental vehicle
BerthaOne, we decided to further remove short phases of acceleration and sub-
sequent deceleration for comfort reasons: If an acceleration started at vaccel,start,
and the velocity dropped below vaccel,start again in less than ∆taccel−decel, this
acceleration phase is removed. Such behavior occurred for example in round-
abouts.

For the generation of reference trajectories, the driver model is forward inte-
grated based on the vehicles in the ego lane of trajectory ensemble set Xo

k . In
presence of a conflict zone, its occupancy inXo

k is analyzed. Starting at the time
when the conflict zone would be reached without considering its occupancy,
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possible times of arrival are sampled equidistant in time up to the planning
horizon. The trajectories that reach the conflict zone at these desired times are
computed by minimizing the squared acceleration while the velocity is limited
by the desired velocity from eq. 5.1. The optimization is implemented using
Google’s Ceres Solver1. From this arrival at the conflict zone, the trajectory is
continued using forward integration of the driver model, incorporating those
vehicles in Xo

k that leave the conflict zone along the ego vehicle’s route. The
safety of each trajectory is checked w.r.t. the point of no return regarding the
conflict zone. Based on these reference trajectories, the reactions to the belief
updates Xl are recursively computed from the earliest possible replanning step
after the belief update is expected to be available. Similarly, the reactions to
potentially occluded vehicles are computed. As heuristic, the trajectory that
arrives earliest at the conflict zone without violating the comfort margin is pur-
sued. The comfort margins are defined by a lookup-table, relating acceleration
bounds to a maximum probability with which they would still be considered
comfortable (cf. Table A.3).

In case no vehicles are present at an intersection, the reference trajectories for
the occlusion consideration are computed in a simplified way: A fixed number
of trajectories is interpolated between the best case, i.e. the approach with no
occlusions, as above, and theworst case, i.e. stopping at the conflict zone, again
computed via forward integration of the driver model. For these trajectories,
starting with the best case, the reactive decelerations due to occurring objects
and their probabilities are computed. Once a trajectory is found for which the
comfort margins are not violated, it is pursued. In presence of vehicles with
uncertain existence in the ego lane, the reference trajectories are also generated
as interpolation between the best case, i.e. the vehicle does not exist, and the
worst case, i.e. the vehicle exists. Based on these reference trajectories, again,
the reactive decelerations and their probabilities are computed. The fastest
trajectory that does not violate the comfort margins is pursued. The planning
parameters can be found in Appendix A.2.
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(a) The intersection scenario. Imagery © 2020
Google, map data © 2020 GeoBasis-
DE/BKG (©2009).

(b) The roundabout scenario. Imagery © 2020
Google, map data © 2020 GeoBasis-
DE/BKG (©2009).

Figure 5.2: Aerial images of the evaluation scenarios.

Evaluation Scenarios

Startingwith unlimited sensor range and perfect perception, more andmore un-
certainties are added throughout this section. First, the only uncertainty lies in
the unknown destination, i.e. the unknown future path of other vehicles. Next,
uncertainty in the existence of particular objects is added, before existence
uncertainty due to occlusions and limited sensor range is considered, which is
no longer based on particular object configurations. Lastly, the combination
of those uncertainties is evaluated in one scenario.

In this section, we consider a four way intersection and a roundabout as basic
scenarios. The intersection scenarios are based on the map of the Common-
ROAD [AKM17] scenario DEU_Ffb-1, which is depicted in Fig. 5.2a. The
roundabout scenarios are based on themap of the INTERACTIONDataset [10]
scenario DR_DEU_Roundabout_OF, which is depicted in Fig. 5.2b.

1 http://ceres-solver.org by Agarwal, Mierle et al., last retrieved 2020-05-28.
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Trajectory Visualization

The trajectory plots in the following sections visualize the position of the
vehicle center of all relevant objects. Further, the velocity and the acceleration
of the ego vehicle are visualized. An exemplary plot with a crossing vehicle
is Fig. 5.4. The units are [t] = s, [s(t)] = m, [v(t)] = m

s and [a(t)] = m
s2 .

The conflict zone, if present, is depicted in gray. Different possible options for
the ego trajectory are depicted in blue, solid or dashed. For particular plans
or attempts, the attempted ego trajectory is visualized in solid blue. Possible
reactions in future replanning steps are visualized in dashed or dotted blue.
Alternative trajectories at the current planning step are visualized in dashed or
dotted light blue (cf. Fig. 5.5). For other vehicles, the visualization depends
on their path. For vehicles in the ego path, the position is visualized without
modification. For vehicles in merging paths (cf. obj2 in Fig. 5.6), the position
is visualized without modification when in the common path, i.e. beyond the
end of the conflict zone. Prior to this point, their fictive position along the ego
path is also visualized, but an overlap with the ego trajectory does not indicate
a collision. For vehicles in crossing paths (cf. obj1 in Fig. 5.6), the position is
visualized opposite to the ego vehicle’s driving direction, such that the center
of the conflict zone along the conflicting path and along the ego path are at the
same position. Since the conflict zones are usually of similar size along both
paths, overlapping trajectories in the conflict zone would denote collisions.

Perfect Perception with Unlimited Range

In this first part of the evaluation, perfect perception and perfect prediction of
objects along each possible path are assumed, but there is uncertainty in the
path that they actually drive. The possible paths for the intersection scenarios
are adopted from [HSB+18, Fig. 7 and Fig. 10], they are depicted in Fig. 5.3.

The velocity profile for the objects is planned using the enhanced IDM
[KTH10], extended by incorporating a maximum lateral acceleration as
in [LKB+13]. The vehicle configurations are chosen such that the ego ve-
hicle’s intended trajectory in case of a free road is impeded by the existing
objects.
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ego

obj1

(a) Crossing scenario with one vehicle: Obj1
can either go straight or turn right.

ego

obj1

obj2

(b) Merging scenario with two vehicles: Obj1
can either go straight or turn right. Obj2 can
only go straight. The ego vehicle potentially
crosses the path of obj1, and merges into the
path of obj2.

Figure 5.3: Possible paths for the intersection scenario: The ego vehicle (blue) has to yield to
vehicles from either side.

In the crossing scenario (Fig. 5.3a), the setup is chosen such that, if obj1
drives straight, the ego vehicle would have to decelerate to let it pass. If the
vehicle turns right, the ego vehicle can unimpededly pass (cf. Fig. 5.4).

As a consequence, the behavior of the ego vehicle depends on both, the prob-
abilities assigned to the different possible paths as well as the time when
certainty about the path is expected. In case the right turn is very likely (e.g.
95%), and certainty about the path decision is expected in 1 s, for example due
to the use of the indicator2, the ego vehicle does not decelerate (cf. Fig. 5.5a).
For the same path probability, but with certainty expected only in 3 s, the ego
vehicle decides to decelerate as if obj1 would go straight (c.f. Fig. 5.5b). This
behavior results from the insight that, if the ego vehicle would not decelerate,
but obj1 would still go straight (5% of the cases), the ego vehicle’s reaction
would have to be very harsh. Consequently, the deceleration is started straight-
away, as certainty will not be reached soon enough to be able to avoid this
potentially unnecessary deceleration without risking a very sharp braking. If
certainty is only expected to be reached once the paths split up, the behavior
is the same. To summarize, even with identical path probabilities, the motion

2 As explained in Sec. 4.3, the possibility of the usage of the indicator for safety relevant decisions
has to be decided upon in the safety concept.
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Figure 5.4: Possible trajectories in the crossing scenario: In case obj1 turns right, the ego vehicle
can unimpededly pass (solid line). In case obj1 goes straight, the ego vehicle has to
yield (dashed line).

plan strongly depends on the point where certainty about the path is expected
to be reached.

If the probability of a right turn is very high (e.g. 99.99%), the deceleration is
avoided if certainty is expected sooner than in 4 s (c.f. Fig. 5.5c), because more
deceleration is tolerated for very unlikely cases. If certainty is expected at 4 s
or later, the ego vehicle will decelerate because then, regularly planning a full
stop for the crossing vehicle is no longer possible and the safety planner would
prompt an emergency deceleration. In case the right turn is rather unlikely
(e.g. 15%), the ego vehicle plans to decelerate, regardless of when certainty
will be reached, because already in the next replanning step, the additionally
needed deceleration for the reaction to straight driving exceeds the limits of
what is tolerated with 85% probability (c.f. Fig. 5.5d).

Compared to the work of Zhan et al. [ZLCT16], the presented approach ex-
plicitly considers the current estimate for the uncertainty progression in the
future. This enables an early and comfortable reaction to persistent uncer-
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(a) The right turn of obj1 is likely and certainty
is expected soon, such that an unimpeded
passage of the conflict zone is planned.
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(b) The right turn of obj1 is likely but certainty is
not expected early enough, such that yielding
to obj1 is planned.
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(c) The right turn of obj1 is very likely and cer-
tainty is expected late, but still soon enough,
such that an unimpeded passage of the con-
flict zone is planned.
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(d) The right turn of obj1 is unlikely. Even
though certainty is expected soon, yielding
to obj1 is planned.

Figure 5.5: Planned ego trajectories for different expected future uncertainty progression along
with the possible reactions for the crossing scenario. The planned trajectory is depicted
in solid blue. The conflict zone is depicted in gray. The possible reaction in case obj1
does not turn right is depicted in dashed blue, if applicable. The alternative option at
the current planning step is depicted in dashed light blue.
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tainties, which is not considered in [ZLCT16]. Safety was not part of the
optimization problem in their approach. Only the given prediction, but no
deviations from it were considered. Consequently, the point of no return is
passed regardless of whether safety can be guaranteed for malicious behavior
of others.

The POMDP-based approach of Hubmann et al. [HSB+18] is inherently con-
sidering the uncertainty progression. Due to the lack of so-called information
gathering actions for this path uncertainty, however, jointly solving the uncer-
tainty analysis and motion planning does not lead to benefits over the presented
approach. Rather, the discrete action space is very limited to ensure real-time
capability of the employed sampling-based solver. A trade-off for very unlikely
but large ego decelerations is not possible with the action space that was used.
Also, the uncertainty estimation is solely based on the vehicle’s position and
velocity. Information such as the usage of the indicator or traffic fleet data
is not incorporated. With a decoupled prediction and uncertainty analysis,
as proposed in our approach, the incorporation of such information does not
affect the state space of the motion planner. Lastly, the approach of Hubmann
et al. does not focus on safety w.r.t. deviations from the expected prediction of
others, as opposed to the presented approach.

In the merging scenario (Fig. 5.3b), the setup is chosen such that the ego
vehicle is able to merge in front of obj2, in case obj1 turns right. Otherwise, it
has to yield to obj1 and can no longer merge in front of obj2 (cf. Fig. 5.6). In
case the right turn is likely (e.g. 75%), and certainty about the path decision is
expected in 1 s, the merge in front is attempted (cf. Fig. 5.7a). If certainty is
only expected in 3 s, the merge in front is discarded. Instead, merging behind
is planned (cf. Fig. 5.7b). For a very high probability of the right turn (e.g.
99%), the merge in front is still attempted for certainty in 3 s (cf. Fig. 5.7c). If
certainty is only expected later, however, the merge is not attempted regardless
of the probability (cf. Fig. 5.7d).

Merging scenarios were not considered by Zhan et al. [ZLCT16]. In the
approach of Hubmann et al. [HSB+18], the reaction of vehicles to others
merging in front is only based on the estimated arrival of both vehicles at the
conflict point, assuming constant velocity and assuming that the path of the
merging vehicle is known. The right of way is not incorporated there. In
contrast to this, the presented approach checks for violations of the right of
way by considering the imposed deceleration on prioritized vehicles, i.e. the
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Figure 5.6: Possible trajectories in the merging scenario. In case obj1 turns right, the ego vehicle
can merge in front of obj2 (solid line). In case obj1 goes straight, the ego vehicle has
to yield (dashed line).

deceleration that is necessary for them to maintain a longitudinal safe distance
to the ego vehicle. Also, this deceleration is only expected once the non-
prioritized vehicle has merged, i.e. once it has passed the conflict point that is
used in [HSB+18].
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(a) The right turn of obj1 is likely and certainty
is expected soon, such that merging in front
of obj2 is planned. The possible reactive
yielding resembles the current alternative.
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(b) The right turn of obj1 is likely but certainty

is not expected early enough, such that yield-
ing is planned. Alternative and reaction are
merging in front of obj2.

100

200

300

s
[ m

]

0

10

v
[ m s

]

0 10 20
time t [s]

−5
0

a
[ m s2

]

(c) The right turn of obj1 is very likely and cer-
tainty is expected late, but still soon enough,
such that merging in front of obj2 is planned.
The possible reaction in case obj1 does not
turn right is harsh.
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(d) The right turn of obj1 is very likely but cer-
tainty is only expected once the paths di-
verge, such that yielding is planned. There
is no alternative to this plan.

Figure 5.7: Planned ego trajectories for different expected future uncertainty progression along
with the possible reactions for the merging scenario. The planned trajectory is depicted
in solid blue. The conflict zone is depicted in gray. The possible reaction in case of
a belief update is depicted in dashed blue, if applicable. The alternative option at the
current planning step is depicted in dashed light blue, if applicable.
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The roundabout scenario is depicted in Fig. 5.8. In case obj1 leaves the
roundabout before our entrance, we can enter unimpededly. In case it continues
through the roundabout, we have to yield and merge in behind. Here again,
the ego motion plan largely depends on the time and probability of certainty
about whether obj1 will leave the roundabout before our entrance. Let the
probability that we know within 2 s that obj1 leaves be p2s, and the probability
that we have certainty in 4 s in case we did not know it after 2 s be p4s. The
probability that we still do not know whether obj1 will continue or leave after
4 s is 1 − p2s − (1 − p2s)p4s = (1 − p2s)(1 − p4s), which at the same time is
the maximum probability that obj1 will continue in the roundabout. In case
p2s = 60% and p4s = 50%, the ego vehicle attempts to enter, and decelerates
again in case certainty is not reached after 2 s (cf. Fig. 5.9a). In case p2s = 20%
and p4s = 90%, entering before obj1 is still attempted, but a short deceleration
is needed to still be able to stop in the unlikely event that obj1 does not leave
(cf. Fig. 5.9b). In case p2s = 10% and p4s = 10%, entering before obj1 is not
attempted, because the probability of decelerating is too high for the necessary
deceleration (cf. Fig. 5.9c).

ego

obj1

Figure 5.8: Possible paths for the roundabout scenario: The ego vehicle has to yield in case obj1
stays in the roundabout.
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(a) The ego vehicle plans in expectation of cer-
tainty after 2 s (A).
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(b) With the probability of certainty after 2 s (A)

being only 20%, the ego vehicle plans for
certainty after 4 s (B).
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(c) With the probability of A and B being low,
the ego vehicle plans to merge behind obj1,
as certainty is not expected after 4 s (C).

Figure 5.9: Planned ego trajectories for different expected future uncertainty progressions along
with the possible reactions for the roundabout scenario. The planned trajectory is
depicted in solid blue. The conflict zone is depicted in gray. The possible reaction in
case of a belief update is depicted in dashed blue, if applicable. The alternative option
at the current planning step is depicted in dashed light blue. The considered events are
A: certainty that obj1 leaves after 2 s; B: certainty that obj1 leaves after 4 s; C: no
certainty that obj1 leaves after 4 s.
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Uncertain Existence

Uncertainty in the existence of objects at intersections is treated similar to the
uncertainty in their future path: Both certainly non-existing and certainly non-
conflicting objects do not have to be considered. In case of uncertainty, they
have to be considered at least in the safety approach. For convenient planning,
the probability that they impede the ego motion plan along with the severeness
of the reaction is considered. More specifically, in the scenarios depicted in
Fig. 5.3 and 5.8, the probability that the non-existence of an object is certain at
time t leads to the same motion plan as the probability that we have certainty
at time t that the vehicle turns and does not conflict with our path.

The phenomenon of ghost objects, however, also occurs in regular single-lane
driving, as described in Sec. 4.3.2. In order to show the potential of our
approach for such situations, we consider the following scenario: Driving at
70 km/h ≈ 20 m/s on a road with speed limit 100 km/h ≈ 28 m/s, there is
an uncertain detection of a fully stopped vehicle 100 m ahead (cf. Fig. 5.10).
The considered options in this case are to continue as if there was no object,
to immediately react to the object, or to perform some trade-off in-between,
as shown in Fig. 5.11. The chosen trajectory now depends on the probability
that we have to react to this object, either because the object actually exists,
or because we are unable to reach certainty regarding its non-existence. This
information is provided by the perception or the scene understanding module.
The reactions to different possible belief updates are provided in Fig. 5.12. To
summarize, as for the previous intersection consideration, more deceleration
is tolerated as reactive behavior the less likely this reactive behavior is.

ego obj1 (?)

Figure 5.10: Ghost object scenario: There is an uncertain vehicle detection ahead in the ego lane.

In [TS20], an approach to dealing with uncertain object existence is presented.
However, by allowing for different reactions for either case (object exists or
not) in the next replanning step, the authors implicitly assume that certainty
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Figure 5.11: Possible trajectories as reaction to obj1with uncertain existence: Linearly interpolated
in-between continuing as if there was no object (uppermost blue trajectory) and
reacting to this object according to the driver model (lowermost blue trajectory).

about the object existence is reached in the next replanning step.3 Contrasting
to that, the approach proposed in this work accounts for the fact that reaching
certainty that an object detection was a false-positive might take several sec-
onds, depending on the sensor configuration and the measurements that lead to
the object assumption. Besides [TS20], to the best of the author’s knowledge
and also stated in [TS20], there is no comparable approach that incorporates
potential future updates of the existence uncertainty of objects, which could
be used as a baseline for the evaluation.

3 This simplification corresponds to the QMDP assumption (cf. Sec. 2.1.5), leading to suboptimal
results (cf. ex. 4.3.2).

117



5 Evaluation

100

200

300

s
[ m

]
ego egoreact,exists egoreact,¬exists obj1

0

25

v
[ m s

]

0 2 4 6 8 10 12
time t [s]

−5
0

a
[ m s2

]

100

200

300

s
[ m

]

0

25

v
[ m s

]

0.0 2.5 5.0 7.5 10.0
time t [s]

−5
0

a
[ m s2

]

(a) With a reaction probability of 1% in 2 s,
the ego vehicle decelerates with more than
−2 m/s2, limiting the reactive deceleration
in case of the reaction to −5 m/s2.
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(b) With a reaction probability of 20% in 1 s,

the ego vehicle decelerates with more than
−3 m/s2, limiting the reactive deceleration
in case of the reaction to −4 m/s2.
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(c) With a reaction probability of 20% in 1 s, a
further reaction probability of 1% in 2 s does
not alter the velocity profile. The reaction to
the latter from the attempted velocity profile
is less severe than the reactionwhen pursuing
5.12a.

Figure 5.12: Attempted velocity profiles in case of an uncertain detection of a fully stopped vehicle
100 m ahead, along with the possible reactions. The planned trajectory is depicted in
solid blue. The reaction in case of a certainty that the object was a false detection is
depicted in dotted blue. The reaction in case the object exists or certainty regarding
its non-existence could not be reached is depicted in dashed blue.
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Occlusions and Limited Sensor Range in Single-Lane Scenarios

With the presented approach, general information about potential objects even
beyond the sensing horizon can be included: We again consider driving at
70 km/h ≈ 20 m/s, with limited visibility due to the sensor range. With the
visible range being 100 m, we consider a belief update including a stopped
vehicle at 100 m from the ego vehicle, with reaction probability 0.01% in 1 s,
i.e. in the next replanning step. This corresponds to the notion that a stopped
object on a road with speedlimit 70 km/h is unlikely (0.01%), and if there was
one, it would detected until the next replanning step (1 s). This scenario is

ego obj1 (?)

(a) A hypothetical stopped object just behind the edge of the sensing horizon. Certainty about
whether this object exists is expected in the next replanning phase.

ego obj1 (?)

(b) A hypothetical stopped object, waiting to turn left at an upcoming intersection. Certainty about
whether this object exists is only expected once the ego vehicle is close enough.

ego ?

(c) An upcoming traffic light with an unknown state. Certainty about the traffic light state is only
expected once the ego vehicle is close enough.

Figure 5.13: Reactions to hypothetical upcoming objects or other events that require a reaction of
the ego vehicle. The sensing horizon is depicted in blue.
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(a) With a reaction probability of only 0.01% in
1 s, the ego vehicle continues at its desired
velocity. The reaction in case obj1 actually
exists would be very harsh.
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(b) With a reaction probability of 5% in 100 m,

the ego vehicle decides to slightly decelerate
already. The reaction in case obj1 actually
exists would be less strong. In case obj1
does not exist, the ego vehicle can accelerate
again.

Figure 5.14: Attempted velocity profiles in case of hypothetical upcoming events. The planned
trajectory is depicted in solid blue. The reaction in case there is a stopped vehicle is
depicted in dashed blue. The reaction in case there is no stopped vehicle is depicted
in dotted blue, if applicable.

depicted in Fig. 5.13a. As visible in Fig. 5.14a, the velocity is not reduced in
this case. This mimics human driving behavior in the sense that we do not
expect the worst case, i.e. a stopped object, behind every bend.4

Similarly, future information that is only available after a certain distance is
traveled can be incorporated. Assume we know that there is an unprotected left
turn outside the visible range, where vehicles are frequently waiting to turn, due
to much oncoming traffic for example (cf. Fig. 5.13b). The knowledge about
the future unprotected left turn is incorporated by considering a hypothetical
stopped vehicle in 200 m with 5% reaction probability. Further, we know that
we can only react in 100 m, because only then it would become visible to us.
With this information, the vehicle decides to slightly decelerate already, to
minimize the impact of an actual reaction in 100 m, as visible in Fig. 5.14b.

4 The visible range for humans is generally larger than 100 m, but sometimes also limited due to
occlusions, such as on curvy roads.
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Similarly, uncertain information about a traffic light state can be incorpo-
rated, where certainty is only available at a closer distance to the traffic light
(cf. Fig. 5.13c). Also, with people walking towards a pedestrian crossing,
the probability of whether they cross or walk past the crossing can be in-
corporated. Furthermore, live traffic data can be used for an early and more
comfortable reaction to reported traffic jams, where the information about the
position is uncertain and can be subdivided into different positions along with
a probability.

To the best of the author’s knowledge, there is no comparable approach that in-
corporates information about traffic light states, frequent traffic jams or similar,
which could be used as baseline for the evaluation.

Occlusions at Intersections

The approach to occlusions at intersections, explained in Sec. 4.3.3, is evalu-
ated in the scenario proposed by Orzechowski et al. [OML18]: The scenario
DEU_Ffb-1 is enhanced by a building in the south east, which occludes the
view on the east branch of the junction (cf. Fig. 5.15). In the work of Orze-
chowski et al. [OML18], the reaction to occlusions is a deceleration with a
priorly defined maximum deceleration. Comfort is only considered by choos-
ing this deceleration as a trade-off between a comfortable and the maximum
possible deceleration. Yet, their approach is, to the best of the author’s knowl-
edge, the only approach that guarantees safety w.r.t. meaningful assumptions,
i.e. accounting for the traffic rules. Thus, it is considered as baseline for the
presented approach. The trajectory for the baseline approach is visualized in
Fig. 5.16: Independent of whether we approach a priority road with much traf-
fic, or a rural road where only one vehicle exits per day, the vehicle continues
at constant velocity and only starts to decelerate with −4 m/s2 once necessary
to maintain safety.

With the proposed approach, the attempted trajectory depends on the proba-
bility that the attempt will be impeded by vehicles that are currently occluded.
The considered velocity profiles, visible in Fig. 5.16, vary from ignoring the
occlusion to expecting that a full stop is necessary. For all these options, start-
ing with the fastest, the probability and severity of the reaction to potentially
occluded objects are analyzed. In case the attempted velocity profile violates
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ego

????

Figure 5.15: Scenario DEU_Ffb-1, enhanced by occlusions, as proposed by Orzechowski et al.
[OML18]. Note that the actual occlusions at this intersection are even more severe.
Potentially as a result, the real intersection is controlled by traffic lights.

the safety constraints, the emergency planner will take over with certainty,
which corresponds to an emergency deceleration with a probability of 100%.

With a reaction probability of 1%, the vehicle already slows down to approxi-
mately half the initial velocity, yet risking decelerations of approx.−4 m/s2 (cf.
Fig. 5.17a). With a reaction probability of 10%, the vehicle slows down even
further, reducing the risked decelerations to approx. −2 m/s2 (cf. Fig. 5.17b).
With a reaction probability of 80%, the vehicle actually attempts a full stop. As,
however, passing is safe from a certain point on, the vehicle attempts to accel-
erate again from this point, in case no vehicle appears behind the occlusion (cf.
Fig. 5.17c). If a vehicle appears, the deceleration is continued, and the driven
velocity profile is equal to the one of approaching a stop sign, for example.
Contrasting to that, if the probability is very low, such as 10 s

day ≈ 0.01%, i.e. only
one or two vehicles drive this road per day, the velocity is not slowed down at
all, risking a potential emergency brake (cf. Fig. 5.17d). Note that, in contrast
to a violation of the safety constraints, which leads to an emergency brake
with a probability of 100%, in the presented approach, the probability of an
emergency brake is < 0.01%, i.e. only if a vehicle appears unfavorably. Again,
the presented behavior shows the key idea of the probability treatment within

122



5.2 Scenario-Based Evaluation

100

200

300
s
[ m

]
ego
baseline
cz

0

5

v
[ m s

]

0 5 10 15 20 25 30 35
time t [s]

−5.0

−2.5

0.0

a
[ m s2

]

Figure 5.16: Possible trajectories for the occlusion scenario: Linearly interpolated in-between
continuing as if there was no occlusion (uppermost blue trajectory) and reacting to
this occlusion by attempting to stop in front of the intersection according to the driver
model (lowermost blue trajectory). Once the occlusion does no longer compromise
the safe passage of the conflict zone, the ego vehicle accelerates again. As visible in
the acceleration diagram, this decision is only possible at the predefined replanning
times in 1 s distances. In the baseline approach by Orzechowski et al. [OML18], a
predefined deceleration of −4 m/s2 is used to maintain a safe velocity, independent
of the probability that the ego vehicle actually has to react to currently occluded
vehicles.

this work: While safety is never put at risk, occasional high decelerations
are tolerated for the benefit of mostly convenient and not overly conservative
motion plans.
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(a) With the reaction probability being only 1%,
the ego vehicle only decelerates slightly,
keeping the reactive deceleration at all re-
planning times when a reaction might still
be necessary below −5 m/s2.
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(b) With the reaction probability being 10%, the

ego vehicle decelerates, keeping the reactive
deceleration at all replanning times when
a reaction might still be necessary below
−2.5 m/s2.
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(c) With the reaction probability being 80%, the
ego vehicle plans to stop in front of the con-
flict zone and only accelerates again once a
safe passage is possible. In the expected case
that a currently occluded vehicle hinders its
passage, it stops smoothly.
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(d) With the reaction probability being
< 0.01%, the ego vehicle continues at
its desired velocity. In the very unlikely
case that the ego vehicle has to stop,
the necessary deceleration might exceed
−5 m/s2.

Figure 5.17: Attempted velocity profiles in presence of occlusions. The attempted velocity profile
is visualized in solid blue, the reactions at the different replanning steps in dashed
blue. The conflict zone is depicted in gray.
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All Uncertainties Combined

Finally, we present a scenario with all the different types of uncertainties. In
the previously evaluated occluded intersection scenario, we now consider five
certainly existing vehicles and one potential ghost object (cf. Fig. 5.18). Obj1
and obj6 use the indicator, such that their paths are assumed to be certain.
Obj2 is a potential ghost object. If it exists, it is assumed to be at full stop.
Obj4 is already in the intersection, at a velocity such that only going straight is
feasible. For obj3 and obj5, multiple paths are considered. Beyond that, there
might be vehicles occluded behind the building, with the same route choices
as obj5. As explained in Sec. 4.3.3, those potentially occluded objects are
not considered on an object basis but with a simplified reaction model. The
probability of being impeded by occluded vehicles is set to 1%. Since obj6 has
to yield to the ego vehicle, obj6 is not considered in any trajectory ensemble set
Xo. Unfavorable trajectory ensemble sets, that lead to the intersection being
blocked, are subsumed by introducing a virtual object objV along the ego path
just before the intersection.

ego

obj1

obj2 (?)

obj3

obj4 obj5

obj6

????

Figure 5.18: Possible paths of objects in a crowded intersection scenario. The existence of obj2
is uncertain. Objects 3-5 are on the prioritized road. Objects 1 and 6 are using the
indicator. There might be further vehicles, occluded by the building (dark gray).
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The considered possible belief progressions {Xo
k, (tl, pl,Xo

l ), l ∈ Lk}, that
are to be provided by an upstream prediction module, are hand-crafted for this
scenario, based on the following assumptions: Obj3 goes straight with 80%,
left and right with 10% each. Obj2 exists with 10%. Obj5 turns left with 30%.

With these assumptions, the three considered possible belief progressions are
as follows:

1. Xo
10: Obj3 turns right, obj4 and obj5 go straight, obj1 turns unimpededly,

obj2 does not exist. p10 = 6%. Considered possible updates:

• Xo
11: Obj3 does not turn right: unfavorable, approximated with

objV, leading to a full stop. p11 = 90%, t11 = 2 s.

• Xo
12: Obj5 wants to turn left and has to wait: unfavorable, approx-

imated with objV, leading to a full stop. p12 = 3%, t12 = 1 s.

• Xo
13: Obj2 exists: obj2 is added to the objects in Xo

10. p13 = 1%,
t13 = 4 s.

2. Xo
20: Obj3 goes straight, obj4 and obj5 go straight, obj1 turns unimped-

edly, obj2 does not exist. p20 = 36%. Considered possible updates:

• Xo
21: Obj3 does not go straight: unfavorable, approximated with

objV, leading to a full stop. p21 = 20%, t21 = 2 s.

• Xo
22: Obj5 wants to turn left and has to wait: unfavorable, approx-

imated with objV, leading to a full stop. p22 = 24%, t22 = 1 s.

• Xo
23: Obj1 yields to obj3: unfavorable, approximated with a full

stop of obj1. p23 = 16%, t23 = 1 s.

• Xo
24: Obj2 exists: obj2 is added to the objects in Xo

20. p24 = 4%,
t24 = 4 s.

3. Xo
30: Obj3 turns left, obj4 and obj5 go straight, obj1 turns unimpededly,

obj2 does not exist. p30 = 19%. (Obj3 turning right is subsumed here.)
Considered possible updates:

• Xo
31: Obj3 does not turn left: unfavorable, approximated with

objV, leading to a full stop. p31 = 80%, t11 = 2 s.
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• Xo
32: Obj3 has to wait: unfavorable, approximated with objV,

leading to a full stop. p32 = 1%, t32 = 4 s.

As visible in Fig. 5.19, the set Xo
20 leads to the fastest approach. Since the re-

active decelerations along with their probabilities are considered comfortable,
this approach is pursued. The considered decelerations include those to belief
updates w.r.t. certainly existing objects and also those to potentially occurring
objects behind the occlusion. The runtime of the planner for this scenario
with the presented belief progressions on a single core of an Intel® Core™
i7-8565U was below 100 ms. Parallelized computation for the different belief
progressions could further lower the computation time. Yet, runtime analysis
or optimization is not the focus of this work. To summarize, the approach
works well in presence of many objects, given that the prediction module
provides suitable belief progressions.
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(a) Attempted velocity profile, assuming obj3 goes straight and
obj2 does not exist (Xo

20). The reactions to the possible belief
updates are depicted dashed. The two reactions that lead to
a full stop in front of the CZ (Xo

21,X
o
22) are almost alike, as

they start only 1 s apart from each other (slight deviations in
a from 2 s to 6 s).
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(b) Alternative velocity profile, assum-
ing obj3 turns right (Xo

10,egoalt10).
Since certainty about this right turn
is only reached once it turns, a
change to going straight is not ne-
glected in the safety checks, leading
to a slow down compared to the at-
tempted profile.
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(c) Alternative velocity profile, assum-
ing obj3 turns left (Xo

30,egoalt30).
The ego vehicle has to slow down
further to merge in behind obj3.

Figure 5.19: Attempted velocity profile and alternatives for the scenario from Fig. 5.18. Since sets
are considered, the objects’ positions are depicted with an area instead of a line.
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5.2.2 Lane Change

In this section, the approach to courtesy-aware lane changes from Sec. 4.4 is
evaluated in an urban lane change scenario.

Implementation Details

The implementation presented in [9] was integrated into a lanelet2-based rout-
ing state machine and the previously explained modified control (cf. Sec. 5.1)
has been employed. Further, cases with only one or no vehicle in the target
lane have been added to the lane change state machine. As heuristic for the
gap selection, the gap that can be reached earliest in space along the target
lane with a trajectory within the comfortable acceleration limits is selected.
The approach to the gap is computed analytically as a sequence of constant
acceleration, constant velocity and constant acceleration. If the gap is currently
ahead, regarding position and velocity difference, the vehicle accelerates up to
a certain velocity v+peak to catch up, before decelerating to the gap velocity. If
the gap is behind, the vehicle decelerates to a velocity v−peak before accelerating
to the gap velocity. The path for the lane change is computed as transition
from the path in the source lane to the path in the target lane using the sigmoid
function tanh. The planning parameters can be found in Appendix A.2.

Evaluation Scenario

The general performance of the approach to facilitate lane changes is shown
in a mandatory lane change at Haid-und-Neu-Straße in Karlsruhe, Germany
(cf. Fig. 5.20), as presented in [9]. The success of approaches relying on
cooperation or courtesy of other traffic participants inherently depends on
whether the respective agents are willing to cooperate or not. Instead of
providing velocity or acceleration profiles for this multi-lane scenario, we
perform a qualitative evaluation of the lane change behavior: If the vehicle
behind us in the target lane is courteous, the lane change is assumed to be safe
after the additional lane change response time has been granted and thus can be
performed. Courtesy of the vehicle behind was modeled using the enhanced
IDM [KTH10] for the motion planning of this vehicle and considering the ego
vehicle as front vehicle as soon as it indicated its lane change desire. In case
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the respective vehicle does not open a gap of sufficient size for RSS safety,
even though the desire to change the lane has been communicated using the
indicator and moving left within the current lane, the lane change is aborted
after waiting for∆twait. The non-courteous behavior wasmodeled by refraining
from considering vehicles in other lanes as front vehicle.

This experiment shows the general applicability to scenarios where approaches
with an independent prediction would lead to overly conservative behavior, i.e.
waiting for large gaps without “asking for them” via clear communication of
the lane change desire. Besides this advantage in comfort and convenience,
safety is ensured w.r.t. the defined assumptions of the presented RSS concept
for non-reckless lane changes. Since the reaction time for the ego vehicle
can be significantly lower than the commonly granted one second for human
drivers, the safety distance to the front vehicle can be significantly smaller than
the one that has to be granted to the vehicle behind (cf. Fig. 5.21). This leads
to less additional space needed for lane changes. Both lane change attempts
are also shown in the video5 provided along with [9].

The runtime of the planner for this scenario on a single core of an Intel®
Core™ i7-8565U was below 2 ms for all plans throughout the simulation.
While runtime analysis or optimization is not the focus of this work, the
computation time underlines the general suitability of the approach for real-
time planning in automated vehicles. In order to further show the real-time
capability and applicability of the approach, it has also been implemented on
our experimental vehicle BerthaOne.

5 Also available via http://www.mrt.kit.edu/z/publ/download/2019_LaneChange_Naumann.mp4,
last retrieved 2020-05-28.
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Figure 5.20: Aerial image of the lane change scenario. Imagery © 2020 Google, map data © 2020
Stadt Karlsruhe VLW, GeoBasis-DE/BKG (©2009).

Figure 5.21: Screenshot of the lane change in the simulation frameworkCoInCar-Sim [5] (from [9],
© 2019 IEEE). The other vehicles are depicted in blue. The ego vehicle is depicted
in black. Its trajectory is visualized with the colored circles at equidistant times.
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5.2.3 Mutual Cooperation

In addition to the sampling-based implementation presented in [3,6], we show
the performance of the approach to mutual cooperation from Sec. 4.5 with a
C++ implementation in a narrowing scenario.

Implementation Details

In contrast to the implementation presented in [3,6], the global optimum is no
longer found via sampling, but via employing the enhanced IDM [KTH10].
For the globally optimal trajectory ensemble, vehicles are no longer expected to
accelerate beyond the velocity that they would have chosen if no other vehicle
was present. The actual human behavior in cooperative situations is to be
investigated further by experts in this field and is not part of this work. Yet,
this second implementation shows the flexibility of the approach regarding
different models of cooperation.

In order to investigate whether cooperation is possible, i.e. whether the globally
optimal solution is not ambiguous, the homotopy classes of the solutions for
different driver models are analyzed. In case they unambiguously yield that
the ego vehicle should go first, a predefined model compliance probability pmc
is assumed. As model compliance check for other drivers, the deviation from
the expected velocity ∆vmc is considered. A model compliance violation is
expected to be measurable by the time when the predictions for the different
homotopy classes of the cooperative vehicle differ by ∆vmc. For this point
in time, we compute the necessary deceleration to switch to going second.
With this information, the heuristic presented in Sec. 4.3 is employed to check
whether attempting the globally optimal solution violates the comfort margin,
as the expected deceleration for the fallback plan is too high. In case the
comfort margin is not violated, the globally optimal solution is attempted. The
expected velocity profile for the other vehicle is stored.

If the ego vehicle is still far away from the conflict zone, however, the situation
might be currently ambiguous, or the velocity difference in-between the ho-
motopy classes might be not detectable, but the situation might become clear
later. Thus, it is checked whether continuing in the hope of the cooperative
solution is convenient. Since the time and the probability of a positive decision
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for the cooperative solution are hard to estimate, the decision is only postponed
if (a) the necessary deceleration for going second in the next step is below a
certain value adecel,low or (b) the maximum deceleration remains unchanged,
for example as a deceleration due to significant curvature is upcoming anyway.

If neither attempting to go first, nor decision postponing is considered com-
fortable, the ego vehicle attempts to go second. In case the model compliance
is violated, i.e. the velocity of the cooperative vehicle is more than ∆vmc higher
than expected, the ego vehicle switches to go second as the globally optimal
solution is no longer believed to be realized.

The planning parameters can be found in Appendix A.2.

Evaluation Scenario

The approach is evaluated at an artificial narrowing in Karlsruhe (cf. Fig. 5.22,
Fig. 5.23). The vehicle configuration is chosen such that the desired trajectories
for both vehicles, each assuming the other vehicle was not there, would result in
a collision inside the conflict zone (cf. Fig. 5.24). For such scenarios, mutually
predicting the other vehicle independently, for example with constant velocity
or with the IDM, commonly results in a deadlock, at least until one vehicle
comes to a full stop. Fig. 5.25 shows the planning result of both vehicles with
independent prediction after 8 s. A similar approach was for example used by
Ziegler et al. [ZBS+14]. With the presented approach, cooperation is possible
in this scenario, in case the other driver behaves cooperatively. Meaningful
malicious behavior, i.e. egoistic behavior, can also be detected and dealt with
comfortably (cf. Fig. 5.26). Adversarial behavior of others, such as provoking
deadlocks, is still possible, but not expected and not the focus of this work. The
runtime of the planner for this scenario on a single core of an Intel® Core™
i7-8565U was below 20 ms for all plans throughout the simulation. While
runtime analysis or optimization is not the focus of this work, the computation
time underlines the general suitability of the approach for real-time planning
in automated vehicles.
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Figure 5.22: Aerial image of the narrowing scenario. Imagery © 2020 Google, map data © 2020
Stadt Karlsruhe VLW,GeoBasis-DE/BKG (©2009).
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Figure 5.23: Paths in the narrowing scenario.
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Figure 5.24: Possible solutions from the ego perspective: Expected is the solution depicted in solid,
with the ego vehicle going first. The trajectory for the other vehicle acting egoistic
is depicted in brown dashed. The reaction to this behavior, by the time a model
violation is expected to be detectable, is depicted in blue dashed. The alternative
of assuming straightaway that the other will act egoistic, and thus attempting to go
second, is depicted in light blue dashed.
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Figure 5.25: Trajectories for mutually predicting each other with constant velocity: The already
driven part is visualized with a solid line, the prediction for the other vehicle is dotted,
the own plan is dashed.
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Figure 5.26: Driven trajectories with the proposed approach: In case obj1 behaves cooperatively
as expected, the ego vehicle drives first (solid). In case obj1 acts egoistically, the ego
vehicle detects this and reacts early and comfortably (dashed).
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6 Conclusions and Future
Directions

6.1 Conclusions

In this work, several contributions to motion planning for automated vehicles
in mixed traffic have been presented. At first, the different sources of uncer-
tainties and common problem formulations in the context of motion planning
for automated vehicles are outlined. This consideration exposed that, while
optimal control approaches with one deterministic trajectory as result are ap-
plicable, they can be outperformed by approaches that account for the repeated
replanning. Particularly in cases where the possible future evolutions of a
scene largely differ, for example due to multiple route options for other traffic
participants, considering multiple future trajectories is beneficial. Yet, prob-
abilistic approaches that attempt a comprehensive uncertainty treatment with
limited runtime are often operating on a largely restricted action space. Also,
many approaches do not consider safety and compliance with the traffic rules.

Regarding the safety verification, recent frameworks focus on the notion of
responsibility. That is, instead of guaranteeing to never be involved in an
accident, automated vehicles should guarantee that they will never cause an
accident. The traffic rules and the right of way defined therein have to be
accounted for when defining responsibility. Thus, the safety of a motion plan
does not only depend on the road layout and the current vehicle configurations,
but also on the priorities of lanes and roads over each other. This motivates the
decomposition of the safety concept into scenarios: As a contribution to safety
in motion planning, in Sec. 4.2, the existing responsibility sensitive safety
(RSS) framework [SSS18] is enhanced by the consideration of traffic rules
at intersections with crossing and merging traffic, including occlusions and
limited sensor range, as well as lane changes. In particular, the consideration
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of right-of-way rules at intersections leads to an upper bound for the velocity
to ensure safety in presence of occlusions and limited sensor range.

Given these hard constraints from safety and the traffic rules, the goal is to
generate convenient motion plans, i.e. plans that are comfortable but not over-
cautious. Towards this goal, this work relies on the assumption that, due to the
complexity of road traffic, different scenarios can comprise inherently different
types of uncertainties that have to be taken into account. These differences
largely affect the suitability of different problem formulations. While some
uncertainties have to be actively reduced, others can hardly be influenced,
for example. Thus, the main contribution of this work is the introduction of
three motion planning approaches, targeted towards the different predominant
uncertainties in different scenarios.

For scenarios with unimpeded sight and unambiguous routes for all traffic
participants, where mutual cooperation is required, a global optimum approach
with model compliance consideration is presented in Sec. 4.4. The approach
is based on a multi-agent formulation, where other vehicles are expected to
cooperate and to have a similar understanding of a globally optimal solution.
At the same time, it is checked whether the global optimum is unique, also
for different measures of optimality, being aware that the cooperation model
might be violated. In case the global optimum is unambiguous and the other
traffic participant behaves within our model bounds, cooperation is facilitated,
resulting in globally optimal trajectories. Otherwise, the ego vehicle reacts
early and pursues a comfortable fallback solution.

For lane change scenarios, in which courtesy of others is required in case
of dense traffic, a second approach is presented in Sec. 4.5. The approach
is rule-based, and also explicitly modeling other drivers’ behavior as part
of the decision problem. Even for gaps that are currently too narrow for a
safe lane change, the lane change desire is indicated and the response of the
potentially courteous vehicle is awaited. In case this vehicle opens a gap for
us that is large enough for a safe lane change according to the enhanced RSS
framework, the lane change is pursued. Otherwise, the next available gap is to
be approached. The approach facilitates the design of gap approach and desire
indication according to results from human behavior studies. Furthermore,
to the best of the author’s knowledge, the presented approach is the first lane
change approach that examines safety also w.r.t. unexpected but lawful human
behavior, such as emergency decelerations or closing a gap that would have
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allowed a lane change. It facilitates lane changes on urban multi-lane roads as
well as on highways.

Large parts of the urban and rural road network consist of a single lane per
driving direction and intersections with predefined right of way. The most
significant contributions of this thesis are the formulation of this problem as
a partially observable Markov decision process (POMDP) with an ego-action-
independent belief over the trajectories of other traffic participants in Chapter 3
and the presentation of an approach to simplify and solve this problem formu-
lation in Sec. 4.3. The approach generates trajectories based on uncertainty
estimates for the trajectories of other traffic participants. The uncertainties
include their current state and their desired route, for example. Not only the
current uncertainty estimate, but also possible future progressions are incor-
porated. Furthermore, occlusions and limited sensor range, along with an
estimate of their future evolution, and even potential ghost objects or estimates
of objects behind the sensing horizon are considered. Also, appropriate re-
actions to uncertain traffic light state classifications or pedestrians that walk
towards a crosswalk can be determined by the approach. Safety is ensured
based on the enhanced RSS framework. Related approaches that solve this
POMDP in a belief space with algorithms based on Monte Carlo tree search
(MCTS) build an action-dependent belief tree during planning. In this pro-
cess, knowledge about the behavior of others is commonly modeled via a
probabilistic transition model, hidden states, and a probabilistic observation
model. The assumption behind the presented approach is that the behavior
of prioritized vehicles is independent of the ego behavior. The observations
that facilitate a behavior prediction are only influenced by occlusions and the
sensor range, which again depend on the position of the ego vehicle along its
route. Yet, the belief tree can be built independently of the ego motion plan in
an upstream prediction module. Here, more sophisticated behavior and obser-
vation models can be employed, since they are not repeatedly queried during
planning. Instead, only the result of those sophisticated models, provided
through selected belief progressions, is used during planning. To the best of
the author’s knowledge, the presented approach is the first to comprehensively
consider uncertainties regarding the current state and future trajectory of other
traffic participants, including multiple routes, and regarding their existence,
based on object detections within the field of view, but also beyond the sensor
range and in occluded areas, while operating in a continuous action space and
while guaranteeing safety w.r.t. to the enhanced RSS framework. Lastly, the
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approach is suitable for scenarios with several traffic participants, since the
combinatorial burden can be largely reduced through the limitation to selected
belief progressions.

6.2 Future Directions

On the way towards safe and convenient motion planning for automated vehi-
cles in mixed traffic, several research directions are promising. The presented
approaches can be extended to scenarios that are subject to special traffic laws,
such as the zipper merge, or overtaking with oncoming traffic.

Further, to allow for more efficient cooperation, the models of human behavior
can be improved using naturalistic driving datasets, such as the recently pre-
sented INTERACTION dataset [10]. Fundamental work on how to reveal cost
functions from parts of human-driven trajectories has been presented in [11].

Another research direction is a planning-focused scene understanding and
prediction. Computing a full trajectory for all potential trajectories of others,
alongwith the fallback trajectories in case of deviations, is infeasible. Thus, the
behavior of otherswas grouped into belief progressionswith a set-basedmotion
prediction. Here, the right granularity has to be found as a trade-off between
keeping the problem formulation feasible and solvable in real-time, while
not discarding promising maneuver ensembles. With this input, the presented
belief-dependent planning approach can be evaluated in experimental vehicles.

Further work in the area of scene understanding and prediction includes heuris-
tics for cooperation probabilities with other traffic participants, in order to im-
prove the gap choice for desired lane changes, but also to get a better confidence
estimate for mutually cooperative scenarios.
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A Appendix

A.1 Safe Distance for Merging

As stated in eq. 4.5, for the time t > 0 after the front vehicle has merged, the
safety reserve for the prioritized rear vehicle to the front vehicle is

dreserve(t) = s−merge(t) − s+prio(t) − dsafe,prio(t). (A.1)

It is assumed that the rear vehicle no longer accelerates from the time the front
vehicle merges, visualized in Fig. 4.2, as this maneuver is foreseeable. Still,
the usual reaction time ρprio is granted before the vehicle is expected to start
decelerating.

For t > ρprio, the position of the front bumper of the prioritized vehicle is

s+prio(t) = −d+init,prio + v0,priot +
1
2

a0,prio(t − ρprio)
2. (A.2)

The position of the rear bumper of the merging vehicle is

s−merge(t) = −d−init,merge + v0,merget +
1
2

a0,merget2. (A.3)

The safe distance for the prioritized vehicle is

dsafe,prio(t) = ρ(v0,prio + a0,prio(t − ρprio)) (A.4)

+
(v0,prio + a0,prio(t − ρprio))

2

−2amin,brake
−
(v0,merge + a0,merget)2

−2amax,brake
.
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The time derivatives of those terms are

Ûs+prio(t) = v0,prio + a0,prio(t − ρprio), (A.5)

Ûs−merge(t) = v0,merge + a0,merget (A.6)

and

Ûdsafe,prio(t) = a0,prioρprio +
2(v0,prio + a0,prio(t − ρprio))a0,prio

−2amin,brake
(A.7)

−
2(v0,merge + a0,merget)a0,merge

−2amax,brake
.

Setting the time derivative of the safety reserve to zero yields

tcrit =
−v0,merge + v0,prio −

v0,prioa0,prio
amin,brake

+
a2

0,prioρprio

amin,brake
+

v0,mergea0,merge
amax,brake

a0,merge − a0,prio +
a2

0,prio
amin,brake

−
a2

0,merge
amax,brake

. (A.8)

From demanding the critical, i.e. smallest, safety reserve to be at least zero

dreserve(tcrit)
!
> 0, (A.9)

such that no emergency maneuver is to be performed, we can compute the
required initial distance of the rear vehicle d+init,prio, such that the merging can
be performed safely when accelerating with at least a0,merge from the time of
merging t = 0.
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A.2 Evaluation Parameters

A.2 Evaluation Parameters

A.2.1 Safety Parameters

Table A.1: RSS Parameters.

Ego response time ρego 0.3 s
Others’ response time ρother 1 s
Additional lane change response time ρLC 2 s
Max. accel. during response time amax,accel,ego 2 m/s2

Max. accel. during response time amax,accel,other 3 m/s2

Max. emergency decel. amax,brake −8 m/s2

Min. emergency decel. amin,brake −7 m/s2

Min. req. decel. for prior. vehicles amin,brake,row −1.5 m/s2

Exp. decel. for prior. vehicles abrake,row,exp −1 m/s2

Time of zone clearance granted to prior. vehicles TZCrow 3 s
Time of zone clearance to drive behind others TZCego 2 s

A.2.2 Comfort and Convenience Parameters

Table A.2: General Planning Parameters.

Time between trajectory support points ∆t 0.5 s
Replanning interval ∆tplan 1 s
Planning horizon ∆tH 20 s-40 s
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Table A.3: Accepted deceleration probabilities.

More than areact with max. preact More than areact,add with max. preact

−2 m/s2 10% −0.5 m/s2 50%
−3 m/s2 2% −1 m/s2 10%
−4 m/s2 1% −1.5 m/s2 5%
−5 m/s2 0.2% −2 m/s2 1%
−6 m/s2 0.1%
−7 m/s2 0.01%
−8 m/s2 0%

Table A.4: Parameters for the computation of vdes.

Desired velocity lookahead ∆tlookahead,vDes 1 s
Max. lateral accel. amax,lat 1.5 m/s2

Max. free road accel. amax,free 1.5 m/s2

Max. free road decel. abrake,free −1.5 m/s2

Max. pos. jerk jmax,pos 5 m/s3

Max. neg. jerk jmax,neg −5 m/s3

Min. duration for accel.-decel.-phases ∆taccel−decel 4 s

Table A.5: IDM Parameters.

Desired velocity vdes see Tab. A.4
Max. accel. a 1 m/s2

Desired time gap T 2 s
Desired decel. b (-)2 m/s2

Jam distance s0 2 m
Coolness factor c 0.99
Accel. exponent δ 4
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Table A.6: Updated parameters for the lane change experiment, since lane changes in dense traffic
require driving more dynamically.

Max. accel. a 1.4 m/s2

Desired time gap T 0.7 s
Ego response time ρego 0.1 s
Waiting time for courtesy ∆twait 8 s

Table A.7: Additional parameters for the narrowing experiment.

Assumed probability that the model is correct pmc 98%
Margin for deviation from expected velocity ∆vmc 3.6 km/h
Tolerated decel. adecel,low -0.5 m/s2
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This work targets the problem of motion planning for automated vehi-
cles. As a prerequisite for their on-road deployment, automated vehicles 
must show an appropriate and reliable driving behavior in mixed traffi c, 
i.e. alongside human drivers. Besides the uncertainties resulting from im-
perfect perception, occlusions and limited sensor range, also the uncer-
tainties in the behavior of other traffi c participants have to be considered.

Related approaches often employ a deterministic problem formulation, 
where large uncertainties lead to conservative and over-cautious behav-
ior. On the other hand, due to the need for real-time capability, a holistic 
uncertainty treatment in probabilistic approaches often induces a strong 
limitation of the action space of automated vehicles. Moreover, safety 
and traffi c rule compliance are often not considered.

Thus, in this work, three motion planning approaches and a scenario-
based safety approach are presented. The safety approach enhances 
an existing concept - which targets the guarantee that automated vehi-
cles will never cause accidents - by the consideration of traffi c rules for 
crossing and merging traffi c, occlusions, limited sensor range and lane 
changes. The three presented motion planning approaches are targeted 
towards the different predominant uncertainties in different scenarios, 
while operating in a continuous action space. The performance of the 
presented approaches is shown in various scenarios.
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