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Abstract

Combined heat and power plants (CHPs) enable an efficient co-generation of heat and
electricity and thus are crucial for a resource efficient energy supply. As the share of
renewable generation is increasing in electric grids, the operation of CHPs gets more
and more challenging. The traditional heat-driven operation of CHPs is not suitable
to react to the volatile availability of renewable energy, to variable electric demand as
well as to fluctuating electricity prices. However, flexible operation of CHPs requires
thermal storage. As an alternative to dedicated thermal storage tanks, the water in-
side a heating grid can be used as thermal storage if grid dynamics are considered
in operations planning. It is very complex to find good or, ideally, optimal opera-
tion schedules for CHPs when the dynamics of a heating grid are included. These
dynamics are dominated by a variable-dependent time delay, which results in a non-
convex problem formulation. Hence, common optimization approaches reach their
limits and do not find the global optimum when the thermal dynamics of a heating
grid are considered. This thesis presents the following new methods to neverthe-
less find optimal schedules for operation of CHPs considering heating grid dynamics:
i) the first method solving problems with variable-dependent time delays to global
optimality by proposing a novel outer approximation of the pipe outflow tempera-
ture in a primal-dual global optimization scheme, ii) a method introducing a hybrid
discrete-continuous time grid and discretized temperatures to enable an accurate rep-
resentation of the variable-dependent time delays in a mixed-integer linear program
and iii) an approach allowing a measurement based identification of the heating grid
dynamics that enables an easy application to real world grids.





Kurzfassung

Kraft-Wärme-Kopplung (KWK) ermöglicht eine effiziente Erzeugung von Wärme und
Elektrizität und spielt somit eine zentrale Rolle für eine ressourcenschonende En-
ergieversorgung. Mit stetig wachsender Einspeisung erneuerbarer Energieträger ins
Stromnetz steigt die Volatilität am Strommarkt und regelbare Erzeuger müssen flex-
ibel auf diese Schwankungen reagieren können. Die traditionell wärmegeführte Be-
triebsweise von KWK-Anlagen ist deshalb nicht mehr zeitgemäß. Für einen flexibleren
Betrieb von KWK-Anlagen sind jedoch Wärmespeicher notwendig. Nicht nur in Spe-
ichertanks, sondern auch im Wärmenetz selbst kann Wärmeenergie gespeichert wer-
den. Hierzu muss die Dynamik des Wärmenetzes in der Einsatzplanung der KWK-
Anlagen berücksichtigt werden. Die Modellierung und Optimierung dieser thermis-
chen Dynamik ist jedoch komplex, da sie auf einer variablen-abhängigen Verzögerung
beruht. Diese variablen-abhängige Verzögerung führt zu einer nicht-konvexen Prob-
lemstellung, für die herkömmliche Optimierungsverfahren nicht ausgelegt sind. Um
trotzdem optimale Lösungen zu erreichen, werden in dieser Arbeit folgende neue
Methoden zur optimalen Einsatzplanung von KWK-Anlagen unter Berücksichtigung
der Dynamik von Wärmenetzen entwickelt: i) die erste Methode, die Probleme mit
variablen-abhängigen Verzögerungen global optimal löst, indem eine neue äußere Ab-
schätzung der Rohraustrittstemperatur als duales Problem in einem iterativen, glob-
alen Optimierungalgorithmus eingesetzt wird, ii) eine Methode, die mit Hilfe einer
Diskretisierung der möglichen Vorlauftemperaturen sowie einem hybriden diskret-
kontinuierlichen Zeitstrahl eine exakte Formulierung der Verzögerung als gemischt-
ganzzahliges Problem erlaubt und iii) eine Methode, die eine messwertgestützte Mod-
ellidentifikation der Wärmenetzdynamik ermöglicht und somit einfach in realen Net-
zen eingesetzt werden kann.
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l,t right (volume) coordinate in pipe of the volume at temperature level l at
the end of time slot t

rc0
l right (volume) coordinate in pipe of the volume at temperature level l at

beginning of the optimization horizon
tt time of time point t (continuous)
tfxt fixed time points
Tsupply

l temperature of temperature level l
Vl,t volume at temperature level l in pipe in time slot t
v overall volume of pipe
v0

l volume at temperature level l in pipe at beginning of the optimization
horizon
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Symbol Description

XC
l,t binary indicating if temperature level l is produced in time slot t

XD
l,t binary indicating if temperature level l is consumed by load in time slot t

XP
l,t binary indicating if temperature level l is inside the pipe in time slot t

ZCl,t real variable allowing to reset the coordinates LCl,t and RCl,t in case
temperature level l is not inside the pipe

Variables and parameters of multiparametric disaggregation

Symbol Description

l position of digit
k value of digit
P upper bound of position of digit
p lower bound of position of digit
wi,j product (real variable)
∆wij slack variable for product term
xi, xj multipliers (real variables)
xL

i lower bound of multiplier xi
xU

i upper bound of multiplier xi
x̂ijkl real variable for multiplication per digit l
∆xj slack variable for multiplier xj
zjkl binary variables replacing xj





1 Introduction

The reduction of green house gas emissions and an efficient use of energy resources
are a major concern in today’s societies. District heating grids play an important role
for a sustainable energy supply as they enable efficient co-generation of heat and elec-
tricity in combined heat and power plants (CHPs) as well as the use of thermal energy
normally dissipated to the environment e.g. from industrial production processes or
waste incineration. District heating grids transport thermal energy from heat sources
to heat sinks using mostly water as transport medium. This water is heated at gen-
eration sites to a supply temperature chosen by the heating grid operators. Then the
hot water is transported via supply pipes to heat consumers. They cool down the
hot water to a return temperature and the water is transported back to the generation
sites via separate return pipes.

Worldwide there are about 80,000 heating grid systems supplying about 14 EJ ther-
mal energy per year of which 6,000 are located in Europe supplying about 2.5 EJ
thermal energy each year [Wer17]. The operators of these heating grids are facing
multiple challenges today. On the one hand, they need to supply the thermal demand
as resource-, energy- and cost-efficiently as possible. On the other hand, energy and
especially electricity markets are becoming more and more volatile due to a rising
share of renewable power generation. Hence, the traditional heat-driven operation
strategy for CHPs reaches its limits and operators need to consider intra-day fluctua-
tions of prices and availability of electricity. Thus, a closely coupled coordination of
co-generation of different energy forms is needed, which is one of the central topics
of 4th generation district heating [LWW+14].

In particular, a better integration of different energy sectors provides benefits for re-
newable power integration into electric grids. In electric power systems, generation
needs to equal demand at all times. As renewable generation is not fully controllable,
energy storage is of major importance to balance demand and supply in power grids
with a high share of renewable generation. Storage units that are able to store en-
ergy for minutes, hours, days and months are required to stabilize these future grids.
Pumped-hydro storage, the most affordable form of electric energy storage, as well
as thermal energy storage tanks are both very suitable for storage cycles of up to a
few days. However, investment costs for thermal energy storage tanks are orders of
magnitude cheaper than for pumped-hydro storage [LØC+16]. Hence, using ther-
mal energy storage instead of electric storage reduces investment costs importantly.
In addition, thermal energy can directly be stored in a heating grid for a few hours
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thanks to its dynamic behavior [Gro12]. Thus, every heating grid offers thermal stor-
age capacity without any investment costs, if the thermal dynamics of the grid are
considered in operations planning.

However, using this inherent grid storage in operations planning is a very complex
task, as the thermal dynamics of a heating grid are driven by a mass-flow dependent
transport time, which leads to a time delay in the arrival of an increase of temperature
from the beginning to the end of a pipe. When applying optimization approaches to
operations planning problems for district heating grids, this variable-dependent delay
results in a non-convex problem formulation. Due to its importance for future energy
systems, several publications have addressed this operational optimization of heating
grids. As shown in Chapter 2, iterative and sequential solution approaches have been
proposed to cope with the non-convex variable-dependent time delay. However, none
of these approaches prove global optimality of their solution. Thus, it is unknown if
they leverage the full potential of the heating grid as thermal energy storage capacity.
In addition, the algorithms that have been proposed in the literature are only rarely
used in real world applications as they are complicated to implement and use.

Therefore, this work addresses the following research questions:

• Can we develop an algorithm which reliably finds the global optimal solution for
operational optimization of combined heat and power plants whilst considering the
dynamics of heating grids?

• Can we find exact and easy to engineer algorithms which offer fast solution times
and thus are applicable for real world heating grids?

To tackle the first question, Chapter 3 presents “multiparametric delay modeling” the
first approach reaching global optimality for operational planning of heating grids.
“Multiparametric delay modeling” introduces binary variables that represent the cur-
rent transport delay and are used to derive an outer-approximation of the outflow
temperature of a pipe. Chapter 4 and Chapter 5 address the second question, facilitat-
ing optimization of heating grids in real-world operations planning. The hybrid-time
grid approach presented in Chapter 4 focuses on a fast to solve but still very accurate
model. It adapts optimization models recently developed for pipeline scheduling in
the petrochemical industry by introducing discrete temperature levels and a hybrid
discrete-continuous time grid. The main focus of the delay matrix approach presented
in Chapter 5 lies on an easy and fast parameterization of the optimization model. The
model dynamics are represented in a static delay matrix which can be calculated
using historic temperature and flow measurements. Chapter 6 then compares the op-
timization approaches presented in this thesis to each other as well as with a literature
approach using small example heating grids. In addition, a real-world case study is
presented that demonstrates the scalability and benefits of the approach of Chapter 5.
Finally, Chapter 7 summarizes and discusses the results of this work.
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As mentioned in the introduction, several past publications address the optimiza-
tion of heating grids. This chapter gives first an overview on the state of the art for
operational optimization of heating grids. Second, theory on global optimization of
non-convex problems is introduced with focus on non-convex problem classes that
are required to describe thermal dynamics of heating grids. In this literature review
it becomes apparent that current optimization theory does not provide suitable meth-
ods for global optimization of heating grid dynamics. Third, Section 2.3 introduces
pipeline scheduling for crude oil products which models similar flow dynamics as
found in heating grids.

2.1 Operational optimization of district heating grids

Trying to find optimal set points for operation of district heating grids has been stud-
ied in many past publications. Common goals in operational optimization of district
heating grids are the reduction of green house gas emissions as well as the reduc-
tion of operational cost. However, different optimization problems aiming at these
goals can be distinguished in literature: i) If multiple heat production units are part
of the grid, a key question is to find their schedules determining which unit produces
when [SP08]. ii) Finding the optimal supply temperature is of high interest, which
ensures security of supply for all consumers while reducing thermal and hydraulic
losses [AMP14, VTD17]. A combination of both problems is possible, resulting in a
fully dynamic optimization of the heating grid [BBR95].

In this thesis, the main focus lies on scheduling of production units. However, the
global optimization approach presented in Chapter 3 offers a fully dynamic optimiza-
tion.

2.1.1 Scheduling of CHPs without consideration
of thermal dynamics

For scheduling of CHPs, district heating grid dynamics are very often neglected and
a static heat load forecast is assumed. With these assumptions, it is common to use
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a mixed-integer linear programming (MILP)1 discrete time unit commitment model
like, e.g., in [Dot97, NNM00, ROGJ17]. This section introduces such a basic discrete
time MILP model for scheduling of CHPs without consideration of thermal dynamics.
Existing applications and extensions of this model are reviewed at the end of this
section.

With the discrete time representation we get a set St of time slots t of equal duration.
As input parameters do not vary within each time slot, model accuracy is not reduced.
In addition, variables are constant within every time slot t. All CHPs are collected in
set Sg. For every CHP i in each time slot t, we introduce non-negative real variables
representing the electric power output pi,t and the thermal power output qi,t as well as
the running status of the unit ni,t being a binary variable (0: off / 1: on). Lower limits
of power and heat output are PL

i and QL
i and the respective upper limits of power and

heat output are PU
i and QU

i . To enforce that the CHP only produces power and heat
when it is running (ni,t = 1) we get

ni,t · PL
i ≤ pi,t ≤ ni,t · PU

i ∀i ∈ Sg, ∀t ∈ St, (2.1)

ni,t ·QL
i ≤ qi,t ≤ ni,t ·QU

i ∀i ∈ Sg, ∀t ∈ St. (2.2)

Electric power output pi,t and heat power output qi,t of a CHP are not independent.
This relationship is influenced by the used generation technology. Gas turbines as
well as gas engines usually have a linear connection between heat and electric output
and hence a fixed power-to-heat ratio, whereas for CHPs with extraction condensing
turbine the power-to-heat ratio is flexible and limited by a capability region as shown
in Figure 2.1 [Cer02]. The feasible region of a CHP i with extraction condensing
turbine shown in Figure 2.1 can be described with inequalities

pi,t ≤ α1 − β1 · qi,t ∀t ∈ St,

pi,t ≥ α2 − β2 · qi,t ∀t ∈ St, (2.3)

pi,t ≥ −α3 + β3 · qi,t ∀t ∈ St

with α1, α2, α3, β1, β2 and β3 being parameters describing slope and offset of the
limiting lines.

Assuming that electric demand pdemand
t and thermal demand qdemand

t are known, en-
ergy balances for heat and electricity for every time slot t can be formulated. Because
CHPs are usually connected to a large electricity grid, it is assumed that electric en-
ergy can be sold and purchased. The volume of electricity sold in time slot t is psell

t ,
whereas the volume of electricity bought in time slot t is pbuy

t , both being non-negative
real variables. If no energy storage like battery or pumped-hydro storage is installed,

1 MILPs are optimization problems with real and integer (discrete) variables. The problem formulation
consists of a linear objective function to be minimized or maximized as well as linear equality and
inequality constraints linking real and integer variables. In many cases the integer variables are binary
taking only two values. There are many off-the-shelf solvers to solve MILPs such as [BEN05, Gur16,
FRV+18].
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Figure 2.1: Feasible operation region of a CHP i with extraction condensing turbine linking normalized
electric output pi,t/PU

i and normalized thermal output qi,t/QU
i following [Cer02].

electric energy needs to be produced at the same time it is consumed. Thus, the
electric power balance becomes

pdemand
t = ∑

i∈Sg

pi,t + pbuy
t − psell

t ∀t ∈ St. (2.4)

For thermal energy there are usually no open markets enabling hourly sales and
purchases, leading to

qdemand
t + qloss

t = ∑
i∈Sg

qi,t ∀t ∈ St. (2.5)

In this thermal energy balance, heat losses qloss
t of the heating grid are accounted for

as well.

In unbundled electricity markets (like all electricity markets in Europe) utilities pro-
ducing electricity do not need to consider transmission losses in the electric grid, as
this is the responsibility of grid operators. They purchase energy at the energy mar-
kets to compensate losses in transmission and distribution grids. Thus, for operations
planning of a power producer grid losses are not relevant and do not appear in the
electric power balance in (2.4).

To complete the MILP formulation for scheduling of CHPs, the objective function
is the last missing piece. As mentioned in Section 2.1, major goals for operation of
district heating grids are the reduction of CO2 emissions and the reduction of cost. If
CO2 emissions are considered in the generation cost, both goals can be combined by
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minimizing the objective function

min ∑
t∈St

(
priceel,buy

t · pbuy
t − priceel,sell

t · psell
t

)
+ ∑

t∈St

∑
i∈Sg

(
Cconst

i · ni,t + Cel,var
i · pi,t + Cheat,var

i · qi,t

)
. (2.6)

Here priceel,buy
t and priceel,sell

t are time varying prices for buying and selling electricity
and Cconst

i is the cost for running CHP i in one time slot. Cel,var
i and Cheat,var

i are the
variable cost for the production of electricity (el) and heat of CHP i.

Existing applications and extensions of the basic CHP scheduling model

Many publications use a scheduling model as introduced above. For example, in
[Dot97] the author proposes an economic dispatch model for CHPs which allows
flexible generation by extending the model with thermal storage tanks. Time vary-
ing cost of generation and time varying prices for sales to the energy markets are
considered in scheduling of decentralized CHPs in [NNM00]. As well considering
decentralized CHPs with thermal storage tanks, experiences from a real-world on-
line optimization are shared in [FKBV13]. Here, an intra-day optimization reacts to
unforeseen variations in generation or load. Another work investigates how future
electricity prices can influence the operations strategy of CHPs [ROGJ17]. A review
of different methods for short term operations planning of CHPs without considera-
tion of grid dynamics is given in [SP08]. Being not intended for large heating grids,
the algorithm proposed in [LM17] as well does not consider time delays in tempera-
ture propagation. It uses a Taylor series expansion around a given working point to
linearize the remaining non-linear heating grid dynamics.

2.1.2 Thermal dynamics of heating grids: the node method

The model and the approaches presented in the previous section do not consider grid
dynamics. To consider dynamics of a heating grid in simulation or optimization,
the node method [BBR95] is a very common approach of modeling. Besides many
academic works (e.g. [SFT+05, LWS+16, ZFZC18]), commercial simulation tools rely
on it [Sol06] and simulations show that it achieves a better performance than other
modelling approaches [Trö99].

Thus, this section introduces the basic principles of thermal dynamics of heating grids
using the node method according to [BBR95]. As this and other work [Gro12], this
thesis relies on the following assumptions:

• incompressible transport medium
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• no leakages

• perfect mixing in nodes (one single outflow temperature per node)

• heat propagates only with the mass flow (advection), no conduction, no diffusion

• return temperatures are constant

• pressure dynamics are not considered as they are too fast

• specific heat capacity and density of water are constant in the relevant temperature
range (50 °C to 130 °C)

• thermal demand of consumers is known and given for each time slot

The key concept of the node method is to track the propagation of a volume of water
at a certain temperature in the pipe. A district heating grid is described by nodes
and pipes connecting the nodes. Thermal energy can be injected or withdrawn from
the grid at nodes, if thermal generation sites or thermal loads are present. Besides
generator parameters and load profiles, additional technical information like heat ca-
pacities and pipe diameters is required. The node method is a discrete time approach
calculating temperatures at and mass flows between the nodes. Based on past tem-
peratures of nodes and past mass flows between the nodes, the node temperatures for
the next time step are calculated. Temperatures at intermediate points between the
nodes are not calculated.

With the aforementioned assumptions (incompressible transport medium and no leak-
ages) and assuming no storage tanks in nodes, there is a balance of mass flows ṁi,t
flowing into and out of a node:

∑
i∈in f low

ṁi,t = ∑
i∈out f low

ṁi,t ∀t ∈ St. (2.7)

Similarly, the mass flow into and out of a pipe are equal.

Assuming perfect mixing of inflow temperatures Tin
i,t results in a single outflow tem-

perature Tout
t for a node, which can be calculated as

Tout
t =

∑i∈in f low

(
Tin

i,t · ṁi,t

)
∑i∈in f low ṁi,t

∀t ∈ St. (2.8)

Thermal generation injecting heat into the system consumes water from a node of
the return pipe network, heats it and feeds it to a node of the supply pipe network.
Thermal loads withdrawing heat from the system consume water from a node in the
supply pipe network, chill it and feed it to a node of the return pipe network. Heating
and chilling of water leads to a change of its inner energy Qt which can be described
by

Qt = cpṁt

(
Tsupply

t − Treturn
t

)
∀t ∈ St (2.9)
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where ṁt is the mass flow between supply and return side and cp is the specific heat

capacity of the transport medium water (assumed to be constant). Tsupply
t and Treturn

t
are the temperatures at supply and return side.
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loss,return 

Qt
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Figure 2.2: A heating grid with one generation and one load. Red lines: supply pipes; blue lines: return
pipes; red arrows: thermal energy injection, retrieval and losses.

Figure 2.2 shows the most simple setup for a heating network with one thermal gen-
eration asset and one thermal load. Thermal losses occur in both supply and return
network. However, thermal losses in the supply network are more important than
in the return network due to the larger temperature difference to the surrounding
area. Thermal loads usually have a controller adjusting the mass flow from supply
to return side such that a given return temperature is reached for the arriving supply
temperature and the current demand. As there is a pump close to the generation site
with a constant pressure output, a valve at the load is sufficient for this mass flow
control. The supply temperature is controlled at thermal generation sites. The return
temperature depends on the return temperature arriving from the consumers. For
all but one generation unit, the mass flow is controlled to fit the scheduled thermal
energy supply of this generation unit. For the remaining generation unit, the mass
flow and heat output remain variable to cope with unforeseen changes in thermal
demand.

With this very common control strategy, the operators of a heating grid can control the
temperature levels only in the supply lines directly. The temperature level in return
pipes mainly depends on the controllers at the consumers whose behavior is hard to
predict. The ability to control the temperature is crucial for storing thermal energy
in a heating grid [Gro12]. Therefore, only the thermal dynamics in the supply lines,
which are under direct control of the heating grid operator, are considered in this
thesis and a constant return temperature is assumed.

As pressure dynamics travel with speed of sound in water (about 1200 m/s), they are
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a lot faster than the temperature dynamics which travel with flow velocity (at most
1.5 m/s to 2 m/s). Hence, pressure dynamics are neglected and only temperature
dynamics are explained in the following.

In the node method the outflow temperature Tout
t of a pipe is calculated with a linear

combination of past and present inflow temperatures Tin
t . Example 2.1 shows how

this linear combination represents the propagation of temperature in a pipe.

Example 2.1:
Figure 2.3 shows the temperature distribution inside a pipe of length L at the beginning of

a time slot t.

Δxt−1 Δxt−2 Δxt−3

L
Δxt

Tt−1
in Tt−2

in Tt−3
in

ൗ2 3 ൗ1 3

Figure 2.3: Scheme of pipe filled with different temperatures at beginning of a time slot t. The red-
dashed volume leaves the pipe in time slot t. The blue arrow indicates the flow direction
(left to right).

Tin
t−1, Tin

t−2 and Tin
t−3 are the inflow temperatures feeding the pipe in past time slots t− 1,

t− 2 and t− 3. ∆xt, ∆xt−1, ∆xt−2 and ∆xt−3 are the distance traveled by the water inside
the pipe in time slots t, t− 1, t− 2 and t− 3, respectively.
As in time slot t the water moves by ∆xt, the red-dashed volume in Figure 2.3 leaves the pipe
in time slot t. Hence, the average outflow temperature of this time slot Tout

t is the average
temperature of the red-dashed volume. If heat losses are not considered, the example shown
in Figure 2.3 leads to (2.10) mixing the two temperatures inside the red-dashed volume
with a weighted average:

Tout
t =

2
3

Tin
t−2 +

1
3

Tin
t−3. (2.10)

The propagation of the transport medium in the pipe ∆xt in time slot t can be cal-
culated using velocity vt or mass flow ṁt with ∆t being the duration of a time slot,
ρ being the density of the transport medium (water) and d being the diameter of the
pipe. The resulting equation is

∆xt = ∆t · vt =
∆t

ρπ
(

d
2

)2 ṁt ∀t ∈ St. (2.11)

Following Example 2.1, the pipe outflow temperature Tout
t in every time slot t can

be calculated as a linear combination of past inflow temperatures Tin
t with maximum
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transport delay τmax and weight factors ατ,t:

Tout
t =

τmax

∑
τ=0

ατ,tTin
t−τ ∀t ∈ St. (2.12)

To consider heat losses, let us first have a look at the conductive losses for a pipe filled
with a liquid at one temperature Tinside. Here, the heat losses qloss can be described
with

qloss = kVπdL
(

Tinside − Tamb
)

(2.13)

using diameter d and length L of the pipe, ambient temperature Tamb and heat loss
factor kV . This loss factor can be found in the pipe data sheet or be calculated based
on material and construction.

In a dynamic setup the temperature inside the pipe is not constant. Thus, to calculate
the pipe outflow temperature Tout

t as a function of the ambient temperature Tamb and
past pipe inflow temperatures, the heat (loss) balance for one infinitesimal volume el-
ement with length dx traveling through the pipe at position x needs to be calculated.
Now let us combine (2.9) and (2.13) and adapt both for an infinitesimal volume ele-
ment dx. With T(x) as the temperature of the infinitesimal volume element at position
x and dT(x) as the change of this temperature, we get

πdkVdx
(

T(x)− Tamb
)
= ṁcpdT(x). (2.14)

Solving this in-homogeneous differential equation for T(x) leads to

Tout
t = Tamb +

(
Tin

t−τt − Tamb
)

e
− 4·kV

ρcpd ·τt (2.15)

for the pipe outflow temperature Tout
t depending on ambient temperature Tamb, the

travel time needed to pass the pipe τt, the past inflow temperature Tin
t−τt

and pipe
parameters like heat loss coefficient kV and diameter d.

In a discrete time setting, the travel time τt can be calculated based on the number
of time slots needed to pass the pipe. Using a simulation environment supporting
continuous time equations like Modelica, (2.15) can be implemented directly in com-
bination with

τt+1 − τt = 1− vt

vt−τt

(2.16)

calculating the travel time τt based on the velocity vt [SFT+05, Gir16].

Extensions of the node method

An extension of the node method to a continuous time model is presented in [SFT+05,
Gir16] which enables exact formulations in the model and simulation environment
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Modelica. Oppelt presents a refinement of the discrete time node method in [Opp15],
which tracks the propagation of temperature not only across one but across several
pipes. Thus, averaging of temperatures occurs less often and results get more accu-
rate. However, this refinement of the node method addresses simulation and is not
straight forward to use in optimization of thermal grids.

2.1.3 Storing thermal energy in a heating grid

If the heating grid dynamics introduced in the previous section are used in a smart
way, thermal energy can be stored in a heating grid. In Example 2.2, this storage effect
is explained for a simple heating grid with one producer and one load. This example
follows our publication [MHH19].

Example 2.2:
We consider the most simple setup of a heating grid with one producer and one load

connected with a supply and a return pipe as shown in Figure 2.4. A supply temperature
profile at the producer is given with an increase of temperature in time step 3 and a decrease
of temperature in time step 8. Perfect control of return temperature is assumed at the
consumer leading to a constant return temperature. In average the supply temperature
is slightly lower at the consumer due to thermal losses in the pipe. A constant thermal
demand is assumed for the full time horizon.

As the flow velocity in the pipe is limited, the temperature increase reaches the consumer
with a transport delay. Hence, despite the temperature increase in time step 3 the mass
flow first remains unchanged which leads to an immediate increase of thermal generation
of the producer according to (2.9). As soon as the increased supply temperature reaches
the consumer after two time steps in time step 5, the controller at the consumer reduces
the mass flow to keep (2.9) in balance. As hydraulic dynamics are very fast (see Section
2.1.2) the mass flow is reduced almost immediately at the producer, leading to a reduction
of thermal energy output in time step 5. Thus, in time step 3 and time step 4, when the
increase of temperature did not reach the consumer yet, the thermal energy produced at the
producer exceeds the thermal demand of the consumer and the thermal losses. Hence, here
the thermal dynamics of the heating grid show a behavior similar to charging an energy
storage.

Reducing the supply temperature at the producer in time step 8 leads to an inverse behavior.
As the decrease of supply temperature is not seen at the consumer before time step 10, the
mass flow stays constant until time step 10 and, thus, the thermal energy output of the
producer is reduced proportionally to the supply temperature decrease. As soon as the
supply temperature decrease reaches the consumer, its controller will increase the mass flow
in order to supply the constant heat load. With this additional mass flow, the thermal energy
output of the producer is increased back to its original level. In the period of time step 8
and 9, the thermal energy output of the producer is below the thermal load plus thermal
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losses. Thus, it shows a similar behavior as a discharge of an energy storage. Hence, the
thermal dynamics of a heating grid show an energy-storage-like behavior where increases
of supply temperature lead to charging of the storage and decreases of supply temperature
lead to discharging of the storage.
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Figure 2.4: Storage behavior of a heating grid with one CHP and one consumer. a) Supply temperatures
at producer and load. b) Heat production of producer and heat consumption of consumer.

Remark: As the mass flow is reduced in times of high supply temperature at the consumer,
in reality the transport delay increases. Thus, the decrease of temperature in time step 8
would arrive slightly later at the consumer. For high temperature differences this effect is
more important than for small temperature changes.
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2.1.4 Optimization of heating grids using the node method

To utilize the storage effect explained above, several approaches in literature have
been proposed. Unfortunately, the mass flow dependent time delay induced by the
transport time in (2.15) as well as the bilinear terms in (2.9) lead to a non-convex
problem. Thus, finding optimal solutions is very complex.

A common approach used in many publications is to fix the mass flows or time delays
prior to optimization, as this leads to a linear and thus convex problem. Some publica-
tions assume directly that the mass flows in the heating grid are known upfront. This
is the case when they are operated with a different control strategy without valves at
the consumer side and, therefore, no changes in mass flow are induced by the con-
sumers [LWW+16, GWL+17, LWLL17, ZFZC18, ZZZW18]. Unfortunately, assuming
that consumers do not control the flow means that no thermostats are used, which
does not allow accurate local control of the indoor temperature. Hence, assuming
constant mass flow can be a valid assumption in some areas, but for most heating
grids worldwide this assumption is not valid.

To overcome this issue, several researchers propose to use an iterative or sequen-
tial solution approach. The authors of [BBR95] use a model with fixed time delays
in iteration with a model with fixed supply temperatures to optimize operations of
heating grids aiming for a fully dynamic optimization. Another iterative scheme is
used in [SFT+05]. Here parameters of an optimization model with fixed time delays
are iteratively updated using a simulation model. Robustness of the solution is in-
creased by requiring an additional heat injection. A similar iterative approach is used
in [Gir16, GMBV17] where results of a detailed simulation update the parameters
of a linear grid model. To get a linear model, fixed time delays from generation to
consumers are assumed for optimization. In [DCM+19] the authors as well use an
iterative optimization scheme where an optimization model with fixed delay times is
updated using a simulation of the heating grid. In addition, the thermal inertia of
buildings is considered as thermal storage opportunity .

An intra-day optimization approach using non-linear optimization models is pro-
posed in [LWS+16]. As intra-day approach it does not decide on generation unit com-
mitment and does not consider forecast uncertainty. To cope with transport delays it
uses an approach different from the papers mentioned before: Several complicating
variables are identified for a pipe model based on the node method (including inte-
ger time delays). Those complicating variables are fixed in a non-linear optimization
model which is updated using a simulation model in every iteration. Similarly, the
approach proposed in [Trö99] does not use fixed time delays. It relies on the prin-
ciple ideas of the node method for deriving suitable models, but uses an iterative
approach combining a static hydraulic, a static thermal and a dynamic thermal model
to optimize the dynamics of a heating grid.



14 2 State of the art

2.1.5 Optimization of heating grids: other approaches

Despite many publications using the node method to model the thermal dynamics
of a heating grid, there are a some papers using different approaches. Starting from
a general thermal energy balance a PID control approach considering the inherent
storage capacity of a heating grid is presented in [BJPS11]. No optimization, but a
parameter study is used to identify good times for charging or discharging the district
heating grid’s storage capabilities. Lesko and Bujalski propose to model thermal
dynamics of heating grids using a simple energy balance [LB17]. Here, the heating
grid is assumed to be one single water volume with perfect mixing. Increasing or
decreasing the supply temperature charges or discharges the thermal capacity of this
volume. This modeling approach is compared with a model derived by the node
method and parameterized for real-world data. It is shown that accuracy of both
modeling approaches depends on a good parameterization [LB17].

In [Gro12], a rather different approach is used: The heat storage capabilities of a
radial heating grid are approximated with a linear regression model which is trained
based on a high number of heating grid simulations. Those grid simulations require
a detailed physical model of the grid, whereas the resulting linear regression model is
a lightweight model linking the thermal energy stored inside the grid with past and
current supply temperatures and the current load factor of the grid. Hence, it enables
fast optimization runs as the computational effort is moved from optimization to
model parameterization.

In [VD15], a detailed simulation model built in MATLAB/Simulink derives heat de-
mands and mass flows in a meshed heating grid. Those results are used as inputs
for an optimization of the generation sites. This work is extended in [VTD17] with
a hybrid-evolutionary algorithm combining a MILP at lower level and a genetic al-
gorithm at upper level to minimize total operating cost of a meshed heating grid.
However, thermal dynamics of heating grids are only considered in steady state in
the simulation model run by the genetic algorithm.

A decomposition of the mixed-integer non-linear problem (MINLP)2 of district heat-
ing optimization into a unit commitment and an economic dispatch problem is pro-
posed in [SLM+17]. The unit commitment problem is formulated as mixed inte-
ger quadratic constraint program without consideration of the heating grid dynam-
ics leading to a problem similar the one presented in Section 2.1.1 except having a
quadratic instead of a linear cost function. The economic dispatch problem is a non-
linear program (NLP)3 which is formulated in the object-oriented modeling language

2 Like MILPs, MINLPs are optimization problems consisting of real and integer variables. However,
for MINLPs non-linear objective functions as well as non-linear equality and inequality constraints are
possible. As MINLPs are hard to solve, off-the-shelf solvers only exist for special types of non-linearity.

3 In difference to MINLPs, NLPs are optimization problems only consisting of real variables. Off-the-shelf
solvers finding local optima are available for NLPs.



2.2 Global optimization of non-convex problems 15

Modelica and considers full dynamics of the heating grid. A local solver is used to
solve this NLP.

As methods for optimization of district heating grids are usually computationally
expensive, there have been efforts to speed up simulation and optimization of heating
grids. A Danish and a German method for aggregation of the grid topology trying to
loose as little accuracy as possible have been proposed. A comparison of the two is
published in [LBW04, WBS05].

Considering different forms of energy beyond district heating, Geidl and Andersson
propose a joint optimal power flow for electricity, heat and gas networks [GA07].
To enable applicability to large scale systems, a decomposition scheme for the afore-
mentioned approach is presented in [MAAFFH14]. However, for both publications
heating grid dynamics are not in focus and variable transport delays in temperature
propagation are not considered. In [LM17, ZFZC18], a combination of electricity,
gas and heat networks is considered as well, whereas the building thermal inertia is
used as additional thermal energy storage besides the heating grid thermal inertia in
[LWLL17, GWL+17].

A completely different storage concept is proposed in [DMOK19]. Here, instead of
using the thermal dynamics induced by variations of supply temperature, the flow
direction is reversed in order to store thermal energy inside a heating grid. This
approach for thermal storage is only applicable if large thermal generation exists at
both sides of a pipe used for storage. Hence, it implies strong requirements on system
setup and grid topology and, therefore, is not considered further in this thesis.

2.2 Global optimization of non-convex problems

Global optimization of non-convex problems is a complex topic studied for many
decades [HT96]. A common, well-established approach proving global optimality of
a solution, is to transform the non-convex problem into a primal and a dual prob-
lem which both are easier to solve than the original non-convex problem [FV93]. The
primal problem leads to a feasible solution of the original problem, for example by
searching for a solution only inside a reduced solution space. For a minimization
problem, this solution of the primal problem represents an upper bound of the origi-
nal problem, as better solutions might be possible in the original solution space. The
dual problem is an outer-approximation of the original problem. Very often it is
chosen to be convex in order to ensure global optimality of its solution. It increases
the original solution space such that all feasible solutions of the original problem are
part of the solution space of the dual problem, but additional solutions are possi-
ble. Hence, for minimization problems, the solution of the dual problem represents
a lower bound of the original problem. Solutions of the original problem cannot be
better, but the dual solution might not be a feasible solution of the original problem.
To solve the original non-convex problem, the primal and dual problem are solved
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in multiple iterations. If primal and dual solution are equal, the globally optimal
solution is reached. If they are not equal, the primal solution is a feasible solution
of the original problem and the dual solution indicates the gap to global optimality.
If in every iteration the exactness of the dual and primal solutions is improved, this
gap is reduced. The iterations usually stop, when a specific numeric precision of the
solution is reached (e.g. a gap smaller than 1 %) [FV93].

For some non-convex problem classes like MILPs, solvers using such a primal-dual
algorithm reaching proven global optimality are available as open source [BEN05,
FRV+18] or commercial tools [Gur16].

In the following, only the problem classes relevant for modeling and optimization
of district heating grids are discussed where no off-the-shelf solvers exist. These are
bilinear terms like in (2.9) or (2.10) and a variable-dependent time delay as in (2.15).
Several approaches exist for global optimization of bilinear problems as discussed in
Section 2.2.1 and Section 2.2.2. Necessary conditions for a local optimum of variable-
dependent time delays are defined in [CGCP16] and a solution algorithm finding such
local optima is proposed in [CPB17]. However, for problems with variable-dependent
time delays, no approach proving global optimality of its solution has been presented
yet. Global optimization solvers for NLPs or MINLPs like BARON [Sah96] do also
not support solving variable-dependent time delays.

2.2.1 McCormick envelopes

McCormick envelopes are commonly used as outer-approximation or dual problem
for global optimization of bilinear terms with bounded multipliers, because they are
the tightest convex hull of a bilinear term with bound variables [McC76]. Figure 2.5
shows the product of two variables, each bounded by 1 and 5, with under-estimating
McCormick envelopes. It can easily be seen that combining the planes in the two
sub-figures provides a tight convex hull of the bilinear term. In combination with a
branching strategy or a piece-wise linear approximation, McCormick envelopes can
be used to build a global optimization scheme for bilinear terms.

Therefore, McCormick envelopes are employed in several approaches for global opti-
mization of bilinear terms. In [AKF83], a branch and bound solution algorithm using
McCormick envelopes as over- and under-estimators of a bilinear function is pre-
sented. A piece-wise McCormick relaxation is used in [dACZ+17] for handling bilin-
ear terms in a scheduling problem for operation of crude oil terminals. A piece-wise
linear relaxation with McCormick envelopes using bivariate partitioning is presented
in [HK10] to solve bilinear programs.
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Figure 2.5: Surface plots of product w = a · b with a, b ∈ [1, 5] and
planes of the McCormick under-estimators

2.2.2 Multiparametric disaggregation

In this thesis, multiparametric disaggregation [TCM12] is used for global optimiza-
tion of bilinear terms as it promises faster solution times than a piece-wise linear
approximation using McCormick envelopes [CT13].

The concept of multiparametric disaggregation is the discretization of one of the vari-
ables in a product wi,j = xi · xj. Like with floating point numbers in computing, every
digit of this variable is split into multiple binary variables which encode the value of
this digit. Here, variable xj is split into binary variables zjkl with l representing the
position of the digit and k taking values from 0 to 9 representing the value of this
digit. Hence, as every digit can take only one value, zjkl is non-zero only for one k for
all l and j [TCM12].

xj =
P

∑
l=p

9

∑
k=0

10l · k · zjkl + ∆xj (2.17)

9

∑
k=0

zjkl = 1 {∀l ∈ Z|p ≤ l ≤ P} (2.18)
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As l defines the position of the digit, p and P define the precision of approximation.
If p approaches negative infinity and P is large enough, (2.17) becomes exact. ∆xj is a
slack variable bounded by 0 ≤ ∆xj ≤ 10p which transforms the product wi,j according
to [TCM12] into

wi,j =
P

∑
l=p

9

∑
k=0

10l · k · x̂ijkl + ∆wij. (2.19)

Here x̂ijkl = xi · zjkl which is enforced with

xi =
9

∑
k=0

x̂ijkl {∀l ∈ Z|p ≤ l ≤ P} (2.20)

xL
i · zjkl ≤ x̂ijkl ≤ xU

i · zjkl {∀k ∈ Z|0 ≤ k ≤ 9} , {∀l ∈ Z|p ≤ l ≤ P} (2.21)

where xL
i and xU

i are the lower and upper bounds of variable xi [TCM12].

The slack variable ∆wij is linked to the slack variable ∆xj by ∆wij = xi · ∆xj and
accordingly [TCM12]

xL
i · ∆xj ≤ ∆ wij ≤ xU

i · ∆xj. (2.22)

Due to the slack variable ∆wij the solution space of (2.19) includes the original solution
of the product wi,j = xi · xj and, thus, it is an outer approximation [TCM12]. Hence,
this yields a MILP which is a dual (or lower bound) problem of the original problem.
The iterative scheme shown in Figure 2.6 is used to solve the bilinear problem to
global optimality, using the non-linear model as primal (or upper bound) problem
being solved with a local, non-linear solver [TCM12].

For ease of understanding, multiparametric disaggregation is introduced using a base
of 10 (k = 0 to 9) in this section. Choosing a different base is possible potentially
leading to faster solution times [TCM12].

2.3 Pipeline scheduling: modeling of
flow dynamics in other areas

In addition to the optimization approaches presented in Sections 2.1.4 and 2.1.5, opti-
mization models for related problems can inspire innovative solutions for heating grid
optimization. In this section, pipeline scheduling is introduced as it is a well stud-
ied field of research with many similarities to heating grid optimization. In pipeline
scheduling, liquid refined petroleum products need to be transported via a pipeline
system from refineries to depots. There are multiple products, but only a limited
number of pipes connecting refineries and depots.

In Figure 2.7 a pipeline scheduling example presented in [MC17] is shown. There are
three pipe segments in this example. Pipe segment S1 connects the input node with
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Figure 2.6: Iterative solution approach of multiparametric disaggregation

refinery R1 to the output node with depot D1. Segment S2 connects the output node
with Depot D1 to the dual purpose node DP1 with input by refinery R2 and output
to depot D2. Pipe segment S3 connects dual purpose node DP1 to the output node
with depot D3. There are five different products P1 to P5 which can be produced at
refineries R1 and R2. Depots D1, D2 and D3 each require a certain amount of these
products. The goal of optimal pipeline scheduling is to find an optimal product se-
quence transported in the pipes allowing to achieve all demands at minimum cost
or in minimum time. Pipeline scheduling for refinery products is having many simi-
larities with optimization of heating grids: There are nodes feeding into the pipeline
system and nodes consuming from the pipeline system. The dynamics of propaga-
tion of a liquid in a pipe are similar, too. The liquid propagates with the mass flow
and there is a transport time from entering to leaving the pipe. However, in pipeline
scheduling for refinery products there is a discrete set of different products which is
transported via the pipes, whereas in heating grids the supply temperature is a real
variable which can be chosen freely within its limits.

In [RP04], a discrete volume representation of the pipeline in combination with a
discrete time grid for the scheduling horizon is introduced to optimize the pipeline
scheduling problem for refinery products. However, using a continuous time for-
mulation of flow dynamics, [CC04] allows a MILP formulation. Today’s models for
pipeline scheduling are based on this concept and can handle reversible mass flows
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Figure 2.7: Pipeline distribution system for refined petroleum products after [MC17].

and different network topologies using a continuous time formulation as well as a
continuous representation of volumes [Cas17]. A major difference of this product-
centric model formulation to other model concepts like [RP04] is that the variable flow
rates are considered only implicitly without being an explicit optimization variable.
This allows a very efficient MILP continuous time formulation [CGZ18] avoiding non-
linearities in the optimization. However, it prevents an accurate modeling of pumping
cost [CCMC15].

2.4 Objective of this thesis

CHPs need to operate more and more flexible to react to volatile renewable genera-
tion, volatile demand and volatile energy prices which requires thermal storage. The
thermal dynamics of a heating grid allow to store thermal energy. Thus, they enable
a flexible operation of CHPs without requiring an investment in dedicated thermal
storage tanks. To leverage this potential, the thermal dynamics of a heating grid need
to be considered in operations planning. Model formulations for these dynamics
usually include bilinear terms and a variable-dependent time delay representing the
temperature propagation in a pipe. Thus, they result in non-convex problems and the
approaches proposed to solve these problems do not prove the global optimality of
their solution as shown in Section 2.1.4 and Section 2.1.5. In the literature on global
optimization, there are many approaches for bilinear problems (see Section 2.2.1 and
Section 2.2.2). However, there are no approaches for global optimization of problems
with variable-dependent time delays.

Thus, the approaches for heating grid optimization presented in the literature do not
offer a guarantee to reach the global optimum and the literature on global optimiza-
tion does not offer appropriate solution algorithms either. Nevertheless, it is essential
to find a solution as close as possible to the global optimum to operate a heating
grid as sustainable as possible and to leverage the full potential of using the thermal
dynamics of a heating grid as energy storage. Accordingly, this thesis aims at find-
ing the globally optimal solution for scheduling of CHPs considering heating grid
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dynamics.

In addition, current optimization approaches considering the thermal dynamics of
heating grids are only very rarely applied in real world installations. Thus, this the-
sis aims as well at finding real world applicable optimization models which enable
fast and reliable solutions. A model training using historic measurements would be
ideal to enable easy brown field installations without a major model parameterization
effort.

In summary, the following goals in modeling and optimization of heating grids will
be addressed in this thesis:

• Find a globally optimal solution for optimization of heating grids allowing to lever-
age the full potential of considering the thermal dynamics in operations planning

• Find fast and reliable approaches for optimization of heating grids with accurate
solutions and easy model parameterization enabling real world applications





3 Global optimization with
multiparametric delay modeling

Existing approaches as discussed in Section 2.1 do not prove global optimality of their
solutions as they simplify the non-convex heating grid dynamics in their optimization
models. Hence, it is not possible to judge the quality of their solution as it is unknown
if a better solution exists. Non-convexities in heating grid dynamics are bilinear terms
in (2.8) and (2.9) as well as a variable-dependent time delay in (2.15). Global optimiza-
tion of bilinear terms is a well studied field as discussed in Section 2.2. However, there
are no methods for global optimization of problems with variable-dependent time de-
lays. In the following, “multiparametric delay modeling” is presented, that is able
to deal with this problem using a primal-dual algorithm as discussed in Section 2.2.
Starting with the dual problem in Section 3.1, this chapter outlines two methods to
formulate the primal problem in Section 3.2 and proposes the resulting primal-dual
algorithm in Section 3.3.

“Multiparametric delay modeling” is the first approach for global optimization of sys-
tems with variable-dependent time delays. It enables to globally optimize the fully
dynamic problem of optimal operation of heating grids if combined with a global op-
timization approach for bilinear terms like multiparametric disaggregation presented
in Section 2.2.2. The basic idea of “multiparametric delay modeling” was first pub-
lished in [MH19]. More details are published in [MLH19] with a discussion of the
primal and dual problems and a presentation of proofs of convergence to the global
optimum. This chapter presents the enhanced model formulation as in [MLH19] as it
improved significantly solution quality and solution times.

The optimization model for global optimization of heating grids is based on the unit
commitment problem without thermal dynamics (Section 2.1.1) where the heat bal-
ance equation (2.5) is replaced with the dynamics of the node method (Section 2.1.2).
The following sections discuss how to model the non-convexities of this problem for-
mulation in the primal and the dual problem.

3.1 Dual problem

As a first step to a primal-dual global optimization algorithm, this section introduces
the outer approximation or dual problem of variable-dependent delay times based on
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the node method (Section 2.1.2) as in [MLH19]. The basic idea of this outer approx-
imation of the pipe outflow temperature with “multiparametric delay modeling” is
explained in Example 3.1.

Example 3.1:
As in Example 2.1, Figure 3.1 shows a temperature distribution inside a pipe at beginning

of time slot t. The pipe of length L is filled with volumes at temperature levels of past
inflow temperatures Tin

t−1, Tin
t−2 and Tin

t−3. Those volumes span a width of ∆xt−1, ∆xt−2
and ∆xt−3 being the propagation of water inside the pipe in the previous time slots t− 1,
t− 2 and t− 3.

Δxt−1 Δxt−2 Δxt−3

L Δxt

Tt−1
in Tt−2

in Tt−3
in

j1

Figure 3.1: Pipe filled with different temperatures at beginning of time slot t. The red-dashed volume
j1 leaves the pipe in time slot t. The blue arrow indicates the flow direction (left to right).

The red-dashed volume j1 in Figure 3.1 will leave the pipe in time slot t. Thus, its average
temperature is the average pipe outflow temperature in this time slot. The temperature of
this red-dashed volume j1 is a mixture of volumes being at temperatures Tin

t−2 and Tin
t−3.

Hence, the average outflow temperature Tout
t in time slot t needs to be between those two

temperatures. Thus, the following inequality leads to an outer approximation of the outflow
temperature Tout

t in time slot t.

min
(

Tin
t−2, Tin

t−3

)
≤ Tout

t ≤ max
(

Tin
t−2, Tin

t−3

)
(3.1)

To refine this outer approximation, the volume leaving the pipe in time slot t is divided into
two sub-volumes j1 and j2 of identical size in Figure 3.2.

Δxt−1 Δxt−2 Δxt−3

L Δxt

Tt−1
in Tt−2

in Tt−3
in

j1 j2

Figure 3.2: Pipe filled with different temperatures at beginning of time slot t. The volumes j1 (red) and
j2 (green) leave the pipe in time slot t. The blue arrow indicates the flow direction (left to
right).
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Now the outflow temperature of sub-volume j1 (red) Tout
t,j1

is known exactly as it only con-

sists of water at temperature Tin
t−2. The outflow temperature of sub-volume j2 (green) Tout

t,j2
can be estimated using a similar outer approximation as before for volume j1 in Figure 3.1:

Tout
t,j1 = Tin

t−2, (3.2)

min
(

Tin
t−2, Tin

t−3

)
≤ Tout

t,j2 ≤ max
(

Tin
t−2, Tin

t−3

)
. (3.3)

To get the pipe outflow temperature Tout
t in time slot t assuming perfect mixing of sub-

volumes j1 and j2, the average of the temperatures of the sub-volumes needs to be calculated
with

Tout
t =

1
2

Tout
t,j1 +

1
2

Tout
t,j2 . (3.4)

All in all, for the case shown in Figure 3.2 we get

1
2

Tin
t−2 +

1
2

min
(

Tin
t−2, Tin

t−3

)
≤ Tout

t ≤ 1
2

Tin
t−2 +

1
2

max
(

Tin
t−2, Tin

t−3

)
(3.5)

as outer approximation for the pipe outflow temperature Tout
t in time slot t.

In (3.5) the temperature of only half of the volume leaving the pipe in time slot t is estimated.
Hence, (3.5) is a tighter outer approximation than the outer approximation in (3.1) and
adding a sub-volume increased tightness of the outer approximation.

Example 3.1 shows a way to formulate outer approximations for the outflow tem-
perature of a pipe including a possibility to refine this outer approximation by intro-
ducing sub-volumes. Thus, if there is a way to formulate this approach in general
as a solvable problem, it can be used as dual in a primal-dual global optimization
scheme. The following presents a general MILP formulation of this concept as in
[MH19, MLH19].

The non-negative real variable ∆xt represents the distance traveled by the transport
medium inside the pipe in one time slot t. It is calculated using (2.11):

∆xt = ∆t · vt =
∆t

ρπ
(

d
2

)2 ṁt ∀t ∈ St. (3.6)

Based on this distance traveled ∆xt, we introduce the binary variable bτ,j,t representing
a discrete time delay. This binary variable bτ,j,t shall equal 1 if and only if sub-volume
j leaving the pipe in time slot t entered the pipe τ time slots ago. Hence, for every
time slot t and every sub-volume j exactly one time delay τ exists and all other bτ,j,t
have to be zero, which can be enforced by

t

∑
τ=0

bτ,j,t = 1 ∀t ∈ St, ∀j ∈ Sj. (3.7)
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Here, Sj denotes the set of sub-volumes j. This set is limited by the number of sub-
volumes np: Sj ∈

[
1, np

]
.

To ensure that the correct time delay τ is selected, the following inequalities are intro-
duced. They compare the sum of past distances traveled within the pipe (∆xt) with
the length of the pipe L adjusted by the sizes of the j sub-volumes. Using a sufficiently
large parameter M? allows to set the correct discrete delay variable bτ,j,t to 1 for every
sub-volume j in every time slot t with

L− j− 1
np

∆xt ≤
t−1

∑
tt=t−τ

∆xtt +
(
1− bτ,j,t

)
·M? ∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ , (3.8)

L− j− 1
np

∆xt ≥
t−1

∑
tt=t−τ+1

∆xtt −
(
1− bτ,j,t

)
·M? ∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ . (3.9)

The set Sτ contains all possible (discrete) time delays.

Next, we need to find suitable outer approximations of the outflow temperatures of
these sub-volumes Tout

t,j . Here several different cases need to be considered depending
on the number of possible temperatures within a sub-volume.

First, if the temperature inside the sub-volume is constant, as for sub-volume j1 in
Figure 3.2, the outflow temperature of the sub-volume Tout

t,j is known exactly. This
is the case when the discrete time delays bτ,j,t of two neighboring sub-volumes are
equal. Thus, with TU being the upper bound of the temperature we can assign the
correct past inflow temperature Tin

t−τ to the outflow temperature of the sub-volume
Tout

t,j using

Tout
t,j ≤ Tin

t−τ +
(
2− bτ,j,t − bτ,j+1,t

)
· TU ∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ (3.10)

Tout
t,j ≥ Tin

t−τ −
(
2− bτ,j,t − bτ,j+1,t

)
· TU ∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ . (3.11)

Second, two different temperature levels are possible, if the discrete time delays bτ,j,t
of two neighboring sub-volumes j and j + 1 are different by 1 (bτ,j,t and bτ−1,j+1,t are
non-zero). Thus, an outer approximation of the outflow temperature as proposed in
Example 3.1 can be used leading to

Tout
t,j ≤ max

(
Tin

t−τ , Tin
t−τ+1

)
+
(
2− bτ,j,t − bτ−1,j+1,t

)
· TU

∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ (3.12)

Tout
t,j ≥ min

(
Tin

t−τ , Tin
t−τ+1

)
−
(
2− bτ,j,t − bτ−1,j+1,t

)
· TU

∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ . (3.13)
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A linear formulation allows an efficient solution of a MILP problem. Thus, the func-
tions min(a, b) and max(a, b) need to be represented in linear equations. For this, we
note that for any real, non-negative variables a ∈ R≥0 and b ∈ R≥0 the difference
a − b can be decomposed into two real, non-negative auxiliary variables δ+ ∈ R≥0
and δ− ∈ R≥0 as follows:

a− b = δ+ − δ− (3.14)

Using these auxiliary variables we can enforce c ≤ max (a, b) with

c ≤ b + δ+. (3.15)

Similarly for c ≥ min (a, b) we get

c ≥ b− δ−. (3.16)

Third, if discrete delay times bτ,j,t of two neighboring sub-volumes j and j + 1 have a
distance of 2 (bτ,j,t and bτ−2,j+1,t are selected), the sub-volume outflow temperature is
a mix of three temperatures. Hence, the sub-volume outflow temperature needs to be
between the minimum and the maximum of those three temperatures. In line with
the outer approximation above we get

Tout
t,j ≤ max

(
Tin

t−τ , Tin
t−τ+1, Tin

t−τ+2

)
+ (2− bτ,j,t − bτ−2,j+1,t) · TU

∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ (3.17)

Tout
t,j ≥ min

(
Tin

t−τ , Tin
t−τ+1, Tin

t−τ+2

)
− (2− bτ,j,t − bτ−2,j+1,t) · TU

∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ . (3.18)

The formulation from (3.14) to (3.16) for min and max functions can be extended to
calculate the minimum or maximum of three variables using

min (a, b, c) = min (min (a, b) , c) ,

max (a, b, c) = max (max (a, b) , c) .

The implementation of cases with more than three temperature levels in a sub-volume
is not required. Indeed, by increasing the number of sub-volumes np we always obtain
a situation with at most two temperatures per sub-volume as proven in Theorem 3.1.
In early iterations of the optimization algorithm sub-volumes are still large. Thus,
they easily span more than two or three temperature levels. To increase tightness
of these early approximations, it is recommended to limit the sub-volume outflow

temperature
(

TL ≤ Tout
t,j ≤ TU

)
for all sub-volumes j and time slots t. In fact, the

outer approximation for three temperature levels in (3.17) and (3.18) is theoretically
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not required to reach the global optimum as with a high number of sub-volumes this
situation does not occur. However, it increases tightness of the formulation in early
iterations, too, and this tighter formulation reduces solution time.

Theorem 3.1 (Decreasing number of temperatures per sub-volume)
There is an n∗p ∈ N such that for all np ≥ n∗p there are at most two temperatures inside
any sub-volume j ∈ Sj.

Proof:
To prove Theorem 3.1, first note that the inflow temperature Tin

t into a pipe only
changes at the beginning of a time slot t having a discrete time model. Thus, the
distance between two neighboring temperatures Tin

t−1 and Tin
t in a pipe is the progress

of the transport medium within one time slot ∆xt which can be calculated according
to (3.6).

With the proposed approach, the volume leaving the pipe in time slot t is divided into
np equal-sized sub-volumes j. As the volume leaving the pipe in time slot t spans ∆xt,
the np sub-volumes j leaving the pipe in time slot t span ∆xj,t:

∆xj,t =
∆xt

np
∀j ∈ Sj, ∀t ∈ St. (3.19)

If the number of sub-volumes np is increased, the span of one sub-volume ∆xj,t de-
creases. Without any limitation on ∆xt we arrive at

lim
np→∞

∆xj,t = lim
np→∞

∆xt

np
= 0 ∀j ∈ Sj, ∀t ∈ St. (3.20)

Thus, there is always a number of sub-volumes n∗p big enough to guarantee

∆xj,t ≤ ∆xtt ∀t ∈ St, {∀tt ∈ St|tt ≤ t} . (3.21)

If more than two temperature levels are contained within a sub-volume j at time t,
there exist two temperatures in the past (∀tt ∈ St|tt ≤ t) having a smaller distance
∆xtt than the size of the sub-volume ∆xj,t. However, if the number of sub-volumes np
is increased above n∗p, inequality (3.21) holds for all sub-volumes j and time slots t and,
hence, more than two temperatures within any sub-volume j are not possible.

To calculate the pipe outflow temperature Tout
t in time slot t, the average of the tem-

peratures Tout
j,t of the np equal-sized sub-volumes j leaving the pipe in time slot t needs
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to be calculated like in Example 3.1. As outer approximation of the pipe outflow tem-
perature Tout

t we get

Tout
t ≤ 1

np

np

∑
j=1

Tout
t,j ∀t ∈ St, (3.22)

Tout
t ≥ 1

np

np

∑
j=1

Tout
t,j ∀t ∈ St. (3.23)

As motivated in Example 3.1 and proven in Theorem 3.2, an increase of the num-
ber of sub-volumes np leads to an improved precision of this outer approximation.
Thus, the outer approximation for variable-dependent time delays not considering
thermal losses presented in (3.10) to (3.23) can serve as a dual in a primal-dual global
optimization scheme as introduced in Section 2.2.

Theorem 3.2 (Increasing tightness of outer approximation)
If the number of sub-volumes approaches infinity

(
np → ∞

)
, the approximation of the

pipe outflow temperature presented in this section approaches its real value Tout
t .

Proof:
To prove Theorem 3.2, we note that the pipe inflow temperature Tin

t only changes at
the beginning of time slots t as a discrete time modeling approach is used. Hence,
at every time slot t, the number of past inflow temperatures is limited to the num-
ber of past time slots t − 1. Introducing a variable for the number of past inflow
temperatures nT,t in time slot t we can state accordingly

nT,t ≤ t < ∞ ∀t ∈ St. (3.24)

In reality, the number of past inflow temperatures nT,t is even more restricted, as
there are physical limitations on mass flows and velocity of the transport medium.
The number of possible temperatures inside a sub-volume leaving the pipe is bound
by the same number nT,t, as only past inflow temperatures can be inside a sub-volume
leaving the pipe.

Increasing the number of sub-volumes np we will always reach a situation where

np > nT,t. (3.25)

Hence, there are np − nT,t more sub-volumes than possible temperatures and for np −
nT,t sub-volumes there is at most one temperature possible. Thus, for these np − nT,t
sub-volumes the sub-volume outflow temperature Tout

t,j is known exactly. Having a
limited nT,t as shown in (3.24) for large np we get

np − nT,t � nT,t. (3.26)
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Recalling (3.22) and (3.23), the overall outflow temperature Tout
t in time slot t is the

average of the temperatures of sub-volumes Tout
t,j .

Tout
t =

1
np

np

∑
j=1

Tout
t,j ∀t ∈ St (3.27)

Increasing the number of sub-volumes np, the at least np − nT,t sub-volumes with
exactly known outflow temperatures Tout

t,j get increasingly more weight in (3.27) than
the at most nT,t sub-volumes with approximated outflow temperatures Tout

t,j . Thus,
the outer approximation is getting more tight and exact with increasing np and

lim
np→∞

1
np

np

∑
j=1

Tout
t,j = Tout

t ∀t ∈ St. (3.28)

So far, (3.10) to (3.13) and (3.17) to (3.18) approximate the outflow temperature of one
sub volume without consideration of thermal losses. To integrate thermal losses, these
equations need to be combined with (2.15). Thereby, (3.10) becomes

Tout
t,j ≤ Tamb +

(
Tin

t−τ − Tamb
)

e
− 4kV

ρcpd ∆t·τ︸ ︷︷ ︸
:=T̃in

t−τ

+
(
2− bτ,j,t − bτ,j+1,t

)
· TU

∀j ∈ Sj, ∀t ∈ St, ∀τ ∈ Sτ . (3.29)

As in (2.15), kV , cp, ρ and d are parameters of pipe and transport medium, ∆t is
the length of one time slot and τ is the discretized time delay coming with bτ,j,t.
For the remaining (3.11) to (3.13) and (3.17) to (3.18) approximating the sub-volume
outflow temperatures, heat losses can be integrated accordingly with T̃in

t−τ as defined
in (3.29):

Tout
t,j ≥ T̃in

t−τ −
(
2− bτ,j,t − bτ,j+1,t

)
· TU , ∀t ∈ St, ∀j ∈ Sj ∀τ ∈ Sτ (3.30)

Tout
t,j ≤ max

(
T̃in

t−τ , T̃in
t−τ+1

)
+
(
2− bτ,j,t − bτ−1,j+1,t

)
· TU

∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ (3.31)

Tout
t,j ≥ min

(
T̃in

t−τ , T̃in
t−τ+1

)
−
(
2− bτ,j,t − bτ−1,j+1,t

)
· TU

∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ (3.32)
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Tout
t,j ≤ max

(
T̃in

t−τ , T̃in
t−τ+1, T̃in

t−τ+2

)
+
(
2− bτ,j,t − bτ−2,j+1,t

)
· TU

∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ (3.33)

Tout
t,j ≥ min

(
T̃in

t−τ , T̃in
t−τ+1, T̃in

t−τ+2

)
−
(
2− bτ,j,t − bτ−2,j+1,t

)
· TU

∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ . (3.34)

The min and max functions are implemented using (3.14) to (3.16). Consideration of
heat losses does not change (3.22) and (3.23), the combination of sub-volume outflow
temperatures to the pipe outflow temperature Tout

t .

Combining (3.6) to (3.9), (3.22) and (3.23) as well as (3.29) to (3.34) we get an outer-
approximation of the pipe outflow temperature as MILP problem using the basic
concepts of the node method (Section 2.1.2). Thus, they can replace the equation for
temperature propagation and loss (2.15) in the dual problem of a global optimization
scheme for heating grids. To complete the MILP formulation of the dual problem, the
bilinear terms in the node method required for temperature mixing in nodes (2.8) and
change of inner energy at producers and loads (2.9) are modeled using multipara-
metric disaggregation introduced in Section 2.2.2 and the unit commitment equations
introduced in Section 2.1.1 are added. The resulting cost minimization problem of
heating grid operations is summarized in Model 3.1.

Remark: If the overall cost is minimized or profit or energy efficiency are maximized,
the MILP solver will favor to produce less thermal losses. Thus, for heating grids the
optimizer will maximize the pipe outflow temperature to avoid thermal losses and,
hence, (3.22), (3.29), (3.31) and (3.33) are sufficient. If the approach is adapted for
cooling grids only (3.23), (3.30), (3.32) and (3.34) need to be used as the optimizer will
try to reduce the pipe outflow temperature to avoid thermal losses. (3.6) to (3.9), (3.22)
and (3.23) are needed for both cases, heating and cooling grids.

Model 3.1: Dual problem of multiparametric delay modeling

Objective function

min ∑
t∈St

(
priceel,buy

t · pbuy
t − priceel,sell

t · psell
t

)
+ ∑

t∈St

∑
i∈Sg

(
Cconst

i · ni,t + Cel,var
i · pi,t + Cheat,var

i · qi,t

)

Generation and load constraints

ni,t · PL
i ≤ pi,t ≤ ni,t · PU

i ∀i ∈ Sg, ∀t ∈ St

ni,t ·QL
i ≤ qi,t ≤ ni,t ·QU

i ∀i ∈ Sg, ∀t ∈ St
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pdemand
t = ∑

i∈Sg

pi,t + pbuy
t − psell

t ∀t ∈ St

qi,t = cpṁi,t

(
Tsupply

i,t − Treturn
)

∀i ∈ Sg ∪ Sd, ∀t ∈ St

The constraints for the feasible regions of the CHPs need to be added matching
their type (e.g. (2.3) for CHPs with extraction condensing turbine).

Node balances

∑
i∈in f low

ṁi,t = ∑
i∈out f low

ṁi,t ∀t ∈ St

Tout
t =

∑i∈in f low

(
Tin

i,t · ṁi,t

)
∑i∈in f low ṁi,t

∀t ∈ St

Assignment of binary delay

∆xt =
∆t

ρπ
(

d
2

)2 ṁt ∀t ∈ St

t

∑
τ=0

bτ,j,t = 1 ∀t ∈ St, ∀j ∈ Sj

L− j− 1
np

∆xt ≤
t−1

∑
tt=t−τ

∆xtt +
(
1− bτ,j,t

)
·M? ∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ

L− j− 1
np

∆xt ≥
t−1

∑
tt=t−τ+1

∆xtt −
(
1− bτ,j,t

)
·M? ∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ

Pipe outflow temperature calculation

Tout
t,j ≤ Tamb +

(
Tin

t−τ − Tamb
)

e
− 4kV

ρcpd ∆t·τ︸ ︷︷ ︸
:=T̃in

t−τ

+
(
2− bτ,j,t − bτ,j+1,t

)
· TU

∀j ∈ Sj, ∀t ∈ St, ∀τ ∈ Sτ

Tout
t,j ≤ max

(
T̃in

t−τ , T̃in
t−τ+1

)
+
(
2− bτ,j,t − bτ−1,j+1,t

)
· TU

∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ
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Tout
t,j ≤ max

(
T̃in

t−τ , T̃in
t−τ+1, T̃in

t−τ+2

)
+
(
2− bτ,j,t − bτ−2,j+1,t

)
· TU

∀t ∈ St, ∀j ∈ Sj, ∀τ ∈ Sτ

Tout
t ≤ 1

np

np

∑
j=1

Tout
t,j ∀t ∈ St

All multiplications and divisions of variables are modeled using multiparametric
disaggregation (Section 2.2.2).

Function c ≤ max (a, b) is enforced using the following equations.

a− b = δ+ − δ−

c ≤ b + δ+

3.2 Primal problems

In addition to the dual problem presented in Section 3.1 a model for the primal prob-
lem is required to complete a primal-dual global optimization scheme. Because of the
variable-dependent time delay, it is unfortunately not possible to directly implement
the node method as presented in Section 2.1.2 for non-linear optimization solvers
like IPOPT [WB06]. Thus, to get a fast and easy to solve NLP as primal problem as
in [TCM12], in the following two different approaches are introduced to model the
variable-dependent delay. Both are first published in [MLH19] and adapt prior work
[vFR+17, BHW17]. The approach presented in Section 3.2.1 uses first order differ-
ential equations to model the transport delay. Section 3.2.2 presents a refinement of
this approach combining a static time delay calculated using the node method with a
variable delay model based on first-order differential equations. This leads to a sec-
ond formulation for the primal problem. The bilinear terms remain for the primal
problems presented in the following as they can be solved with local NLP solvers.

3.2.1 Finite-volumes pipe formulation

One common way to approximate dynamic time delays is to combine a series of first-
order differential equations (PT1 elements) [vFR+17]. This approximation is getting
more exact if the number of first-order differential equations increases. Applying
this approach to the mass-flow dependent transport delay of a pipe, each first-order
differential equation represents the energy balance of a volume element in the pipe.
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1 i − 1 i i + 1 n… …

0 Lx

Figure 3.3: Scheme of a pipe of length L split into n finite volumes i.

As shown in Figure 3.3 the pipe is split into a finite number of n volume elements i of
equal size. Assuming perfect mixing, the water inside each of these volume elements i
is at only one average temperature Tav

i,t . Hence, recalling (2.13) the thermal loss qloss
i,t

of one volume element i in a time slot t becomes

qloss
i,t =

kVπdL
n

(
Tav

i,t − Tamb
)

∀i ∈ Si, ∀t ∈ St. (3.35)

As for (2.13), kV , d and L are parameters of the pipe and Tamb is the ambient tem-
perature. The set Si denotes all volume elements. The transport of thermal energy
Q̇convection

i,t from one volume element i − 1 to the next volume element i is based on
convection at mass flow ṁt with the transport medium having a specific heat capacity
cp and, thus, can be described with

Q̇convection
i,t = cpṁt

(
Tav

i−1,t − Tav
i,t
)

∀i ∈ Si, ∀t ∈ St. (3.36)

The thermal energy balance for one volume element i is

Q̇i,t = Q̇convection
i,t − qloss

i,t ∀i ∈ Si, ∀t ∈ St. (3.37)

Combining the above equations with (2.9) for the inner energy change Q̇i,t we get the
energy balance of one volume element i with mass m = n/(ρπ(d/2)2L):

cpm ·
(
Tav

i,t+1 − Tav
i,t
)
= cpṁt

(
Tav

i−1,t − Tav
i,t
)
− kVπdL

n

(
Tav

i,t − Tamb
)

∀i ∈ Si, ∀t ∈ St<nt . (3.38)

With some minor reformulations, the resulting first-order difference equation is

Tav
i,t+1 = Tav

i,t +
n

cpρπ
(

d
2

)2
L

(
cpṁt

(
Tav

i−1,t − Tav
i,t
)
− kVπdL

n

(
Tav

i,t − Tamb
))

∀i ∈ Si, ∀t ∈ St<nt . (3.39)

For a flow direction from first volume element i = 1 to last volume element i = n
the outflow temperature of the pipe Tout

t is the temperature Tn,t of the last volume
element n. The inflow temperature of the pipe Tin

t replaces the temperature of the
previous volume element Tav

i−1,t in the energy balance equation (3.39) for the first
volume element i = 1.
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The resulting model formulation is shown in Model 3.2. It allows to find fast and
reliable solutions using local solvers for NLPs like IPOPT [WB06]. But as discussed in
[Trö99] introducing a finite number of volume elements, each at only one temperature
level, leads to increased averaging of the temperatures and, thus, smoothing of the
delayed variable. Thus, it is less exact than the node method. This effect decreases
with increasing number of volume elements n [Trö99]. However, a higher number of
volume elements n increases problem complexity and solution time.

Model 3.2: Primal problem using finite-volumes pipe model

Objective function

min ∑
t∈St

(
priceel,buy

t · pbuy
t − priceel,sell

t · psell
t

)
+ ∑

t∈St

∑
i∈Sg

(
Cconst

i · ni,t + Cel,var
i · pi,t + Cheat,var

i · qi,t

)

Generation and load constraints

ni,t · PL
i ≤ pi,t ≤ ni,t · PU

i ∀i ∈ Sg, ∀t ∈ St

ni,t ·QL
i ≤ qi,t ≤ ni,t ·QU

i ∀i ∈ Sg, ∀t ∈ St

pdemand
t = ∑

i∈Sg

pi,t + pbuy
t − psell

t ∀t ∈ St

qi,t = cpṁi,t

(
Tsupply

i,t − Treturn
)

∀i ∈ Sg ∪ Sd, ∀t ∈ St

The constraints for the feasible regions of the CHPs need to be added matching
their type (e.g. (2.3) for CHPs with extraction condensing turbine).

Node balances

∑
i∈in f low

ṁi,t = ∑
i∈out f low

ṁi,t ∀t ∈ St

Tout
t =

∑i∈in f low

(
Tin

i,t · ṁi,t

)
∑i∈in f low ṁi,t

∀t ∈ St

Temperature propagation in pipes

Tav
1,t+1 = Tav

1,t +
n

cpρπ
(

d
2

)2
L

(
cpṁt

(
Tin

t − Tav
1,t

)
− kVπdL

n

(
Tav

1,t − Tamb
))
∀t ∈ St<nt
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Tav
i,t+1 = Tav

i,t +
n

cpρπ
(

d
2

)2
L

(
cpṁt

(
Tav

i−1,t − Tav
i,t
)
− kVπdL

n

(
Tav

i,t − Tamb
))

∀i ∈ Si>1, ∀t ∈ St<nt

Tout
t = Tn,t ∀t ∈ St

3.2.2 Hybrid pipe formulation

To get a more accurate primal problem with still acceptable computational perfor-
mance a combination of a pipe model with a static transport delay, calculated using
the node method (Section 2.1.2), and a flexible transport delay, modeled using first-
order differential equations (as the model presented in Section 3.2.1), is introduced in
the following. This concept is based on [BHW17]. Because in real-world applications
there is always an upper bound on mass flow and velocity, there is a minimum of the
transport delay. This static minimum transport delay τmin can be calculated based on
pipe length L and upper bound of velocity vU or mass flow ṁU using

τmin =
L

vU = L
ρπ
(

d
2

)2

ṁU . (3.40)

If the upper bound of mass flow ṁU is used for calculation, pipe diameter d and
density of the transport medium ρ are required as additional parameters.

The overall transport delay τt in a time slot t is split into this static minimum part τmin

and a flexible delay τ
f lex

t which is modeled using first-order differential equations.
Hence, we arrive at a hybrid pipe model as shown in Figure 3.4 and the overall time
delay τt is calculated with

τt = τmin + τ
f lex

t . (3.41)

0 L

τmin τt
flex

Figure 3.4: Scheme of a pipe with hybrid pipe model

Modeling the remaining variable delay τ
f lex

t with a similar scheme as shown in Section
3.2.1 the maximum mass flow ṁU needs to be subtracted from the mass flow ṁt in
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the first-order differential equation in (3.39) resulting in

ρπ
(

d
2

)2
L

n

(
1

ṁt
− 1

ṁU

) (
Tav

i,t+1 − Tav
i,t
)
=
(
Tav

i−1,t − Tav
i,t
)

− kVπdL
cpn

(
1

ṁt
− 1

ṁU

)(
Tav

i,t − Tamb
)

∀i ∈ Si, ∀t ∈ St<nt . (3.42)

Compared to the finite-volumes model presented in Section 3.2.1, the inflow temper-
ature Tav

i−1,t for the first volume element i = 1 is here replaced with the pipe inflow
temperature Tin

t delayed by the constant minimum transport delay τmin. If heat losses
are considered we arrive at a formulation as in (2.15) and get

Tav
i−1,t = Tamb +

(
Tin

t−τmin − Tamb
)

e
− 4 kV

cpρ·d τmin
∀t ∈ St, i = 1. (3.43)

The average temperature Tn,t of the last volume element n remains the outflow tem-
perature Tout

t of the pipe in time slot t. The resulting model formulation for a primal
problem using the hybrid pipe model is presented in Model 3.3.
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Figure 3.5: Simulation results comparing finite-volumes and hybrid pipe models with an exact modeling
of the transport delay for a pipe with 13.5 km length and 0.7 m diameter. 100 volume elements
are used for the finite volumes model. 50 volume elements and a maximum flow of 3 m/s are
used with the hybrid pipe model.

This hybrid pipe model enables a more accurate representation of the pipeline dy-
namics than the finite-volumes model presented in Section 3.2.1, as the smoothing of
the delay only acts on τ

f lex
t . The temperature propagation including losses can be ex-

actly calculated for the static minimum delay τmin. This advantage of the hybrid pipe
model is illustration in a simulation in Figure 3.5. However, depending on the combi-
nation of discretization time, minimum delay time and pipe length the advantage of
the hybrid pipe model to the finite-volumes model (Section 3.2.1) varies.
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Model 3.3: Primal problem using the hybrid pipe model formulation

Objective function

min ∑
t∈St

(
priceel,buy

t · pbuy
t − priceel,sell

t · psell
t

)
+ ∑

t∈St

∑
i∈Sg

(
Cconst

i · ni,t + Cel,var
i · pi,t + Cheat,var

i · qi,t

)

Generation and load constraints

ni,t · PL
i ≤ pi,t ≤ ni,t · PU

i ∀i ∈ Sg, ∀t ∈ St

ni,t ·QL
i ≤ qi,t ≤ ni,t ·QU

i ∀i ∈ Sg, ∀t ∈ St

pdemand
t = ∑

i∈Sg

pi,t + pbuy
t − psell

t ∀t ∈ St

qi,t = cpṁi,t

(
Tsupply

i,t − Treturn
)

∀i ∈ Sg ∪ Sd, ∀t ∈ St

The constraints for the feasible regions of the CHPs need to be added matching
their type (e.g. (2.3) for CHPs with extraction condensing turbine).

Node balances

∑
i∈in f low

ṁi,t = ∑
i∈out f low

ṁi,t ∀t ∈ St

Tout
t =

∑i∈in f low

(
Tin

i,t · ṁi,t

)
∑i∈in f low ṁi,t

∀t ∈ St

Temperature propagation in pipes

τmin = L
ρπ
(

d
2

)2

ṁU

Tav
i−1,t = Tamb +

(
Tin

t−τmin − Tamb
)

e
− 4 kV

cpρ·d τmin
∀t ∈ St, i = 1

ρπ
(

d
2

)2
L

n

(
1

ṁt
− 1

ṁU

) (
Tav

i,t+1 − Tav
i,t
)
=
(
Tav

i−1,t − Tav
i,t
)

− kVπdL
cpn

(
1

ṁt
− 1

ṁU

)(
Tav

i,t − Tamb
)

∀i ∈ Si, ∀t ∈ St<nt

Tout
t = Tn,t ∀t ∈ St
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3.3 Global optimization algorithm

Given the dual problem presented in Section 3.1 and one of the primal problems pre-
sented in Section 3.2 we can now combine them to a primal-dual global optimization
algorithm for problems with variable-dependent time delays. For heating grids, there
are non-convex bilinear terms besides the variable-dependent time delay. Therefore,
to get a global optimization scheme for heating grids we extend the global optimiza-
tion scheme of multiparametric disaggregation (see Section 2.2.2) with the dual and
primal models presented in this chapter.

Solve dual MILP problem

Initialize primal non-linear problem 
with dual solution 

Solve primal problem (with fixed 
integers) using non-linear (local) 

solver

Check 
primal-dual 

gap

Done

decrease p and increase 
np (increase accuracy of 

dual problem)

Start

Gap ok

Gap too big

Figure 3.6: Iterative solution approach of multiparametric delay modeling

This extension of the iterative scheme of multiparametric disaggregation is shown in
Figure 3.6. The dual problem combines the outer approximations of multiparamet-
ric disaggregation (Section 2.2.2) and multiparametric delay modeling (Section 3.1).
Thus, an increase of the model precision requires a higher precision of approximation
of the bilinear terms (by a decrease of p) and a higher precision of approximation
of the variable-dependent delays (by an increase of np). One of the formulations pre-
sented in Section 3.2 is used as primal problem modeling the variable-dependent time
delay.

The number of iterations needed to achieve an acceptable gap between the solutions
of the primal and the dual problem depends on heating grid size and complexity. In
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theory, with unlimited computational power and time the solution gap approaches
zero. In reality, however, a gap will remain in most cases. For complex problems, a
gap of about 1 % is usually accepted being one order of magnitude above the default
gap of off-the-shelf MILP solvers (usually 0.1 %) [Gur16].

3.4 Summary of chapter

This chapter presented “multiparametric delay modeling”, the first approach proving
global optimality of its solution for optimization of district heating grids. “Multipara-
metric delay modeling” is a deterministic global optimization scheme based on the
decomposition of the original problem into a primal and a dual problem that are eas-
ier to solve than the original problem. First, Section 3.1 introduced a novel dual model
formulation to represent variable-dependent delays. It approximates the bounds of
the pipe outflow temperature by introducing binary variables representing the trans-
port time in every time slot. Thus, the resulting problem is a MILP problem which
can be solved with a variety of efficient off-the-shelf solvers like [Gur16]. The out-
flowing volume per time slot is split into sub-volumes to refine this approximation.
Theorem 3.1 and Theorem 3.2 prove that this outer approximation becomes more and
more accurate with increasing number of sub-volumes.

In Section 3.2, two different primal models were introduced which can be solved with
off-the-shelf NLP solvers using e.g. an interior point method [WB06]. In the first
primal model, the pipe is split into a number of equal-sized finite volumes. For each
volume a constant temperature and perfect mixing are assumed allowing to represent
the thermal dynamics of the volume in one energy balance. The second primal model
combines this finite volumes model with a static time delay leading to a hybrid pipe
model. This hybrid pipe model allows a more accurate representation of the transport
delay than the pure finite volumes approach of the first primal model.

Finally, Section 3.3 established an extension of the global optimization algorithm of
multiparametric disaggregation (Section 2.2.2), which enables to globally optimize the
fully dynamic problem of heating grid optimization. For this, multiparametric disag-
gregation for global optimization of bilinear terms is combined with “multiparamet-
ric delay modeling” for global optimization of variable-dependent time delays. The
dual problem presented in Model 3.1 and one of the primal problems (Model 3.2 or
Model 3.3) are used in this global optimization scheme.



4 Optimization with hybrid
discrete-continuous time grid

As the solution algorithm in the previous chapter is an iterative optimization scheme
with multiple solver runs, solution times can be quite long. This chapter aims at
finding an exact model which enables optimization in one solver run, promising faster
solution times than an iterative solution approach. Recent advances in modeling in
other areas help to achieve this goal. Here, we extend formulations from pipeline
scheduling for refined, liquid petroleum products (as presented in Section 2.3) to
become suitable for heating grid optimization. This approach was developed in a
collaboration with Pedro Castro from University of Lisbon, Portugal and is published
in [MC20]. It adapts the pipeline scheduling model presented in [Cas17].

As presented in Section 2.3, there are many similarities between pipeline scheduling
for refinery products and optimization of heating grids considering the grid dynam-
ics. Limiting the choice of supply temperature to a discrete set of temperature levels
allows to use pipeline scheduling approaches for district heating grid optimization. In
addition, a hybrid discrete-continuous time grid is introduced adapting the continu-
ous time formulation of pipeline scheduling models to time discrete energy prices.

4.1 Hybrid discrete-continuous time grid

The choice of an appropriate time representation is crucial for scheduling models
[HMB+14, MHI+15]. Looking at the literature review in Section 2.1.2, Section 2.1.4
and Section 2.1.5, discrete time models are dominating past publications on heating
grid optimization. However, for pipeline scheduling continuous time representations
have shown to be very efficient to model flow dynamics (see Section 2.3).

A combination of the two is presented in [WL18] where a hybrid discrete-continuous
time grid models thermal dynamics of a district heating grid. In particular, fixed time
points are used at every border between periods of constant demand and prices and
combined with floating time points to account for the variability of the time delay. As
the number of floating points between two fixed time points depends on the thermal
grid setup, an upper bound of two per thermal storage tank in the system is proven in
[WL18], but no model formulation suitable for optimization is presented. Therefore,
the hybrid-discrete continuous time model for district heating grid optimization is
introduced in the following as first presented in [MC20]. In this model thermal storage
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tanks are not considered, but the dynamics of the district heating grid are used as
thermal storage. Heuristically, one floating point is defined between two fixed time
points based on optimal performance in a small case study. In systems with a larger
number of pipes and nodes, a higher number of floating time points between two
fixed time points might be needed, increasing the complexity of the formulation.

Actual time

Time grid

Fixed points

Floating points

0:00 24:001:00 2:00 3:00 23:00

…

1 3 5 7 4947

2 4 6 8 46 48

Variables t1 𝑡3 t5 t7 t49t47t2 t4 t6 t8 t46 t48
L1

Figure 4.1: Hybrid discrete-continuous time grid

Figure 4.1 shows the hybrid discrete-continuous time grid. All odd-numbered time
points are located at hour marks tfxt and are thus fixed time points t ∈ S f x

t . All
even-numbered time points are floating time points allowed to move freely between
the neighboring fixed time points. For one day or 24 hours we get a total of nt = 49
time points (see Figure 4.1) and accordingly 48 time slots as every hour is split into
two time slots by the floating time point. A big advantage of this time representation
in comparison to a continuous time representation is that the electricity price priceel

t
for each time slot is known a priori and a complicated assignment of variables to time
slots as for example in [HH13] is not needed. The same applies to the heat demand
qdemand

t which is forecasted with hourly changing values.

Let us introduce non-negative real variables to model this hybrid discrete-continuous
time grid. tt represents the actual time at time point t, whereas Lt represents the
duration of the time slot.

tt+1 = tt + Lt ∀t ∈ St<nt (4.1)

allows to link the two. All even time points are fixed time points tfxt which is enforced
by

tt = tfxt ∀t ∈ S f x
t . (4.2)

All odd-numbered time points are floating time points t /∈ S f x
t which are allowed to

vary between the neighboring time points in interval [tt−1, tt+1]. This can be guaran-
teed by limiting the time slot length Lt to one hour, the distance between two fixed
time points. As a time point is needed, whenever there is a new batch of water enter-
ing or leaving a pipe and this does usually not happen at the hour marks, the floating
time points allow an exact representation of varying in- and outflows. In some cases
there will be no need for a floating time point between the hour marks e.g. when
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there is no change in the in- or outflow of the pipe. This leads to dummy time slots
with Lt−1 = 0 or Lt = 0 as the optimization chooses tt equal to either tt−1 or tt+1.

Remark: As explained in [MC20], choosing a continuous time grid where all hour
marks need to be assigned to a time point and all time points are floating time points
as proposed in [CHG09] does not lead to superior solutions. At least nt = 26 time
points are needed to get a feasible problem, being one above the minimum number
for one time slot per hour. But in comparison to the formulation using the hybrid
discrete-continuous time grid, this continuous time formulation has a larger problem
size, worse results and orders of magnitude longer solution times.

4.2 Supply node

Besides the hybrid discrete-continuous time grid another novelty in [MC20] is the
discretization of temperature levels that enables to adapt the product-centric pipeline
scheduling formulation [Cas17] to district heating grid optimization. The following
formulations are introduced for one CHP, but adding more CHPs is straightforward
by adding an additional index to all CHP variables and parameters.

In comparison to the basic unit commitment model presented in Section 2.1.1 the bi-
nary variable ni,t denoting the running state of CHP i is extended with one additional
index l, being the temperature level currently produced by the CHP. Thus, for each
CHP we now have a binary variable XC

l,t = 1 if in time slot t the CHP is producing
water at temperature level l. As at most one temperature can be produced in a time
slot, we get

∑
l∈Sl

XC
l,t ≤ 1 ∀t ∈ St<nt . (4.3)

The set Sl contains all possible temperature levels l. When the CHP is producing water
at temperature level l in time slot t, the volume FC

l,t (in m3) enters the pipe, being a
non-negative real variable with lower and upper bounds f L and f U . In comparison
to the lower and upper bounds QL and QU on thermal energy generation of the
CHP presented in Section 2.1.1, these are bounds on the volume injected by the CHP
which can be calculated for example based on minimum and maximum mass flow or
velocity:

f LXC
l,t ≤ FC

l,t ≤ f UXC
l,t ∀l ∈ Sl , ∀t ∈ St<nt . (4.4)

The change of inner energy of the transport medium at the producer (see (2.9)) needs
to account for the different temperature levels l as well. The thermal energy volume
qt produced in time slot t is calculated based on supply temperature levels Tsupply

l
and return temperature Treturn (assumed to be constant) with

qt = ∑
l

FC
l,t · ρ · cp ·

(
Tsupply

l − Treturn
)

∀t ∈ St<nt . (4.5)
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As before, cp is the specific heat coefficient of the transport medium (water) and ρ is
its density.

The equations for the electric generation as well as the cost function remain the same
as for the basic unit commitment model (Section 2.1.1), when both time slots within
one hour are assigned to the parameters of this hour. The equations linking electric
and thermal output of the CHP, however, need to consider the variable length of
the time slots. Thus, formulation (2.3) for the feasible region of CHP operation with
extraction condensing turbine is not suitable. To match the real feasible operation
region (Figure 2.1) the inequalities (2.3) are adapted to

pt

PU ≤ α1 · Lt − β1
qt

QU ∀t ∈ St,

pt

PU ≥ α2 · Lt − β2
qt

QU ∀t ∈ St, (4.6)

pt

PU ≥ −α3 · Lt + β3
qt

QU ∀t ∈ St

with parameters α1, α2, α3, β1, β2 and β3 adjusting slope and offset of the region
boundaries.

4.3 Demand node

Similar to the supply node, let us introduce a binary variable XD
l,t being 1, if the water

arriving at the demand node is at supply temperature level l in time slot t. Due to the
transport delay in the pipe, this is not necessarily the supply temperature level at the
CHP in time slot t. At most one temperature level l can arrive at the demand node in
one time slot t:

∑
l

XD
l,t ≤ 1 ∀t ∈ St<nt . (4.7)

The volume of water at supply temperature level l consumed by the demand node FD
l,t

(in m3) in time slot t is bound due to limitations in mass flow and velocity. Similar to
the volume produced by the CHP we get

f LXD
l,t ≤ FD

l,t ≤ f UXD
l,t ∀l ∈ Sl , ∀t ∈ St<nt . (4.8)

As the mass flow to the demand node is limited to interval [ṁL, ṁU ], the operating
volume flow needs to stay always within these bounds as well. Without an explicit
variable for the mass flow, we can ensure these bounds with

∑
l

FD
l,t

ṁU/ρ
≤ Lt ≤∑

l

FD
l,t

ṁL/ρ
+ 1−∑

l
XD

l,t ∀t ∈ St<nt . (4.9)



4.4 Pipe representation 45

This is possible, because mass and volume flow are connected via the density ρ of the
transport medium. For this equation it is important that no time slot is longer than 1
hour.

The energy balance for the demand node cooling water from supply temperature
level Tsupply

l to return temperature Treturn is explained by the change of inner energy
of the transport medium based on (2.9). As for the CHP, all different possible tem-
perature levels l need to be considered. In addition, the thermal demand needs to be
scaled according to time slot length Lt to guarantee a continuous delivery of thermal
energy:

qdemand
t · Lt = ∑

l
FD

l,t · ρ · cp ·
(

Tsupply
l − Treturn

)
∀t ∈ St<nt . (4.10)

If thermal losses are to be considered, the supply temperature level Tsupply
l in the pre-

vious equation needs to be adjusted to represent the temperature drop along the pipe.
As the supply temperature is the major influence on thermal losses (2.15) each supply
temperature level at the demand node must be corrected individually by introducing
new parameters representing the reduced supply temperatures per temperature level
at the demand node.

4.4 Pipe representation

To model the flow dynamics in a pipe, we introduce the non-negative real variable Vl,t
which represents the volume of water at temperature level l inside the pipe in time
slot t. It is assumed that there is only one volume of temperature level l inside the
pipe in every time slot t. In Figure 4.2 all scenarios changing this volume are shown:
If the CHP is feeding a volume FC

l,t at temperature level l into the pipe in time slot
t, the volume Vl,t at temperature level l inside the pipe increases as shown in Figure
4.2 a). If water at temperature level l arrives at the demand node, the volume Vl,t at
temperature level l inside the pipe decreases by FD

l,t as shown in Figure 4.2 c). Figure
4.2 b) shows a situation, where the volume Vl,t at temperature level l inside the pipe
does not change in time slot t. This is possible as well if Vl,t = 0 or Vl,t = v in a time
slot. The respective volume balance for the volume of water at a certain temperature
level l inside the pipe in time slot t is thus

Vl,t = v0
l |t=1 +

(
Vl,t−1 + FC

l,t−1 − FD
l,t−1

)
|t>1 ∀l ∈ Sl , ∀t ∈ St. (4.11)

Here v0
l |t=1 is the initial volume of water at temperature level l inside the pipe.

As water is non-compressible, the sum of all volumes inside a pipe needs to equal the
overall pipe volume v in all time slots t:

∑
l

Vl,t = v ∀t ∈ St. (4.12)
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a)

Vl,t

Fl,t
C

LCl,t RCl,t

v0

b)

Vl,t

LCl,t RCl,t

v0

c)

Vl,t

LCl,t RCl,t

v0

Fl,t
D

Figure 4.2: Volume Vl,t at temperature level l a) flowing in, b) being in and c) flowing out of a pipe with
overall volume v. Note that coordinates LCl,t and RCl,t are volume coordinates, not distance
coordinates.

As shown in Figure 4.2, the non-negative real variables LCl,t and RCl,t describe the
left and right coordinates of volume Vl,t having temperature level l in time slot t. Note
that these coordinates are not distance coordinates in m but volume coordinates in m3

describing the position of water at temperature level l inside the pipe with respect to
the overall pipe volume v. Accordingly, they are limited by pipe volume v:

LCl,t ≤ v ∀l ∈ Sl , ∀t ∈ St, (4.13)

RCl,t ≤ v ∀l ∈ Sl , ∀t ∈ St. (4.14)

The coordinates LCl,t and RCl,t need to be directly left and right of the volume at
temperature level l and, thus, have a difference of

RCl,t − LCl,t = Vl,t ∀l ∈ Sl , ∀t ∈ St. (4.15)

To complete the model some additional variables need to be introduced. Variables
LCend

l,t−1 and RCend
l,t−1 describe the coordinates of water at temperature level l at the

end of the last time slot t − 1. These coordinates are different from the coordinates
at the beginning of the time slot if water at a different temperature level entered or
left the pipe. To link the coordinates at the end of a time slot LCend

l,t and RCend
l,t with
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coordinates at the beginning of the time slot LCl,t and RCl,t, we use

LCend
l,t = LCl,t + ∑

l′ 6=l
FC

l′ ,t ∀l ∈ Sl , ∀t ∈ St<nt , (4.16)

RCend
l,t = RCl,t + ∑

l′ 6=l
FD

l′ ,t ∀l ∈ Sl , ∀t ∈ St<nt . (4.17)

We propagate coordinates LCend
l,t−1 and RCend

l,t−1 at the end of the previous time slot t− 1
to the coordinates LCl,t and RCl,t at the beginning of time slot t using

LCl,t = lc0
l |t=1 +

(
LCend

l,t−1 − ZCl,t

)
|t>1 ∀l ∈ Sl , ∀t ∈ St, (4.18)

RCl,t = rc0
l |t=1 +

(
RCend

l,t−1 − ZCl,t

)
|t>1 ∀l ∈ Sl , ∀t ∈ St. (4.19)

In addition, these equations initialize the coordinates at the beginning of the optimiza-
tion horizon to the initial values of the coordinates lc0

l and rc0
l for every temperature

level l.

Variable ZCl,t is needed to reset the coordinates if water at temperature level l is not
inside the pipe, such that it can enter the pipe. Hence, it is linked with the binary
variable XP

l,t indicating if a temperature level l is currently inside the pipe:

ZCl,t ≤ f U ·
(

1− XP
l,t

)
∀l ∈ Sl , ∀t ∈ St>1. (4.20)

Accordingly, the volume Vl,t of water at temperature level l inside the pipe in time
slot t as well as the corresponding left and right coordinates LCl,t and RCl,t need to
be zero, if there is no water at temperature level l inside the pipe (XP

l,t = 0).

Vl,t ≤ v · XP
l,t ∀l ∈ Sl , ∀t ∈ St>1 (4.21)

LCl,t ≤ v · XP
l,t ∀l ∈ Sl , ∀t ∈ St>1 (4.22)

RCl,t ≤ v · XP
l,t ∀l ∈ Sl , ∀t ∈ St>1 (4.23)

Finally, the conditions describing when water at a temperature level l can enter or
leave the pipe need to be defined. As it is assumed that only one volume of a tem-
perature level is possible inside the pipe, the left coordinate LCl,t for this temperature
level l has to equal zero if water at temperature level l should enter the pipe (XC

l,t = 1)
and we get

LCl,t ≤ v ·
(

1− XC
l,t

)
∀l ∈ Sl , ∀t ∈ St<nt . (4.24)

This equation covers both cases: if there is no water at temperature level l inside the
pipe (XP

l,t = 0 and Vl,t = 0) as well as if water at temperature level l is inside the
pipe (XP

l,t = 1 and 0 ≤ Vl,t ≤ v) and was entering in the previous time slot as well
(RCl,t = Vl,t).
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For water at temperature level l leaving the pipe (XD
l,t = 1) we need to ensure that its

right coordinate RCl,t is at the most right place and, thus, equal to the pipe volume
v:

RCl,t ≥ v · XD
l,t ∀l ∈ Sl , ∀t ∈ St<nt . (4.25)

4.5 Overview of hybrid time grid model formulation

Combining all equations presented in this chapter can replace the heat balance with-
out thermal dynamics (2.5) in the unit commitment problem presented in Section 2.1.1.
This results in a MILP formulation for the scheduling of CHPs considering heating
grid dynamics. This resulting model can be solved directly with off-the-shelf MILP
solvers and an overview of this model is given in Model 4.1.

Model 4.1: Hybrid discrete-continuous time grid model

Objective function

min ∑
t∈St

(
priceel,buy

t · pbuy
t − priceel,sell

t · psell
t

)
+ ∑

t∈St

∑
i∈Sg

(
Cconst

i · ni,t + Cel,var
i · pi,t + Cheat,var

i · qi,t

)

Hybrid time grid

tt+1 = tt + Lt ∀t ∈ St<nt

tt = tfxt ∀t ∈ S f x
t

Supply node

ni,t · PL
i ≤ pi,t ≤ ni,t · PU

i ∀i ∈ Sg, ∀t ∈ St

ni,t ·QL
i ≤ qi,t ≤ ni,t ·QU

i ∀i ∈ Sg, ∀t ∈ St

pdemand
t = pt + pbuy

t − psell
t ∀t ∈ St

qt = ∑
l

FC
l,t · ρ · cp ·

(
Tsupply

l − Treturn
)

∀t ∈ St<nt

∑
l

XC
l,t ≤ 1 ∀t ∈ St<nt

f LXC
l,t ≤ FC

l,t ≤ f UXC
l,t ∀l ∈ Sl , ∀t ∈ St<nt
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Feasible region of CHP with extraction condensing turbine:

pt

PU ≤ α1 · Lt − β1
qt

QU ∀t ∈ St

pt

PU ≥ α2 · Lt − β2
qt

QU ∀t ∈ St

pt

PU ≥ −α3 · Lt + β3
qt

QU ∀t ∈ St

Demand node

∑
l

XD
l,t ≤ 1 ∀t ∈ St<nt

f LXD
l,t ≤ FD

l,t ≤ f UXD
l,t ∀l ∈ Sl , ∀t ∈ St<nt

∑
l

FD
l,t

ṁU/ρ
≤ Lt ≤∑

l

FD
l,t

ṁL/ρ
+ 1−∑

l
XD

l,t ∀t ∈ St<nt

qdemand
t · Lt = ∑

l
FD

l,t · ρ · cp ·
(

Tsupply
l − Treturn

)
∀t ∈ St<nt

Pipe representation

Vl,t = v0
l |t=1 +

(
Vl,t−1 + FC

l,t−1 − FD
l,t−1

)
|t>1 ∀l ∈ Sl , ∀t ∈ St

∑
l

Vl,t = v ∀t ∈ St

LCl,t ≤ v ∀l ∈ Sl , ∀t ∈ St

RCl,t ≤ v ∀l ∈ Sl , ∀t ∈ St

RCl,t − LCl,t = Vl,t ∀l ∈ Sl , ∀t ∈ St

LCend
l,t = LCl,t + ∑

l′ 6=l
FC

l′ ,t ∀l ∈ Sl , ∀t ∈ St<nt

RCend
l,t = RCl,t + ∑

l′ 6=l
FD

l′ ,t ∀l ∈ Sl , ∀t ∈ St<nt

LCl,t = lc0
l |t=1 +

(
LCend

l,t−1 − ZCl,t

)
|t>1 ∀l ∈ Sl , ∀t ∈ St,

RCl,t = rc0
l |t=1 +

(
RCend

l,t−1 − ZCl,t

)
|t>1 ∀l ∈ Sl , ∀t ∈ St

Vl,t ≤ v · XP
l,t ∀l ∈ Sl , ∀t ∈ St>1

LCl,t ≤ v · XP
l,t ∀l ∈ Sl , ∀t ∈ St>1

RCl,t ≤ v · XP
l,t ∀l ∈ Sl , ∀t ∈ St>1

RCl,t ≥ v · XD
l,t ∀l ∈ Sl , ∀t ∈ St<nt
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ZCl,t ≤ f U ·
(

1− XP
l,t

)
∀l ∈ Sl , ∀t ∈ St>1

LCl,t ≤ v ·
(

1− XC
l,t

)
∀l ∈ Sl , ∀t ∈ St<nt

4.6 Summary of chapter

The model presented in this chapter and published in [MC20] is based on latest find-
ings in pipeline scheduling which are explained in Section 2.3. The supply temper-
ature was discretized to adapt these scheduling models, that have been designed for
scheduling transport of refined petroleum products via pipes, to heating grids. Thus,
only a discrete set of supply temperatures is allowed. Of course, this discretization
reduces the possible solution space possibly leading to worse results. However, if
enough temperature levels are introduced (e.g. every 5 Kelvin), the solution space
should remain big enough that this influence remains small. The original pipeline
scheduling model uses a continuous time representation [Cas17]. In contrast, our
model uses a hybrid discrete-continuous time grid (see Section 4.1) that enables an
efficient integration of energy prices and load forecasts that usually vary at discrete
time points (e.g. every hour or quarter hour). These two extensions, the discretization
of supply temperature and the discrete-continuous time grid, result in an optimiza-
tion model for heating grids which enables an accurate representation of transport
times with floating time points, while staying solvable with off-the-shelf solvers as
the resulting problem is a MILP and non-linearities are avoided.

The hybrid discrete-continuous time grid is unique in modeling of heating grids,
as approaches in literature usually use a discrete time representation. The pipeline
scheduling models presented in [Cas17] allow to consider meshed grids and reversible
flows. As the approach presented in this chapter is an extension of these models, the
additions allowing meshed grids and reversible flows could be applied for heating
grids as well. Consideration of pumping cost and an accurate representation of heat
losses will be difficult, as using a volume-centric model formulation there is no explicit
variable for mass flow or velocity. However, an integration of approximate heat losses
depending on the current supply temperature level is possible by introducing one new
parameter per temperature level which represents the reduced supply temperatures
at the demand node.

The hybrid time grid approach requires detailed knowledge of grid topology and pipe
parameters (e.g. length, diameter, heat loss coefficient). Thus, it seems not suitable
for distribution grids with many small pipes, but very suitable for heat transport
networks with few large pipes. With the innovative problem formulation it allows an
exact calculation of flow duration while resulting in a well to solve MILP problem.
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One of the major drawbacks of the optimization approaches considering heating grid
dynamics discussed in state of the art as well as in the previous chapters is that they
all require a detailed grid topology. For real-world use of these models, this leads to a
modeling error, because very often not all pipe parameters are known. Furthermore,
this requires a high engineering effort, as the heating grid needs to be modeled in de-
tail before an aggregation strategy or another simplification approach allows to build
suitable optimization models. In addition, most methods use either an extensive itera-
tive or sequential solution algorithm or strong assumptions (like constant mass flow).
Groß uses a different approach by proposing a function f directly linking thermal
energy stored in the heating grid qcharge

t with current and past supply temperatures of
generators Tsupply

t and the current overall load factor qdemand
t /qdemand,max [Gro12]:

qcharge
t = f

(
Tsupply

t , Tsupply
t−1 , Tsupply

t−2 , Tsupply
t−3 , . . . ,

qdemand
t

qdemand,max

)
∀t ∈ St. (5.1)

Using such a function as in (5.1) enables building a very fast and efficient optimization
model if added to a unit commitment and dispatch model without consideration of
grid dynamics (Section 2.1.1). In [Gro12] this function is built using a linear regression
trained with simulated data. Hence, the engineering effort needed to build a detailed
heating grid simulation model remains. Using linear regression mainly shifts compu-
tational effort from optimization runs to optimization model parameterization.

In the following, a similar function as (5.1) is derived. However, to reduce engineering
efforts for real-world applications, a more direct way to find this function is proposed.
Section 5.1 recalls the storage effect of thermal dynamics. Section 5.2 introduces an
outer approximation of the thermal energy stored in the heating grid which leads to
the delay matrix approach in Section 5.3. This approach was developed in a master
thesis [Hai18] and is published in [MHH19]. It allows to consider thermal dynamics
of heating grids with all thermal generation in one place. The integration of thermal
losses presented in Section 5.3.1 and a detailed real-world case study using this ap-
proach are described in [MKV+19]. Section 5.3.2 presents an extension to multiple
CHPs in different locations that was developed in an internship [Lor19].
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5.1 Dynamics of a heating grid with multiple loads

To recall the main principles of thermal dynamics and the thermal storage effect in a
heating grid we extend Example 2.2 with one producer and one load to Example 5.1
with one producer and two loads following [MHH19].

Example 5.1:
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Figure 5.1: Storage behavior of a heating grid with two consumers. a) Supply temperatures at producer
and loads. b) Heat production of producer and sum of heat consumption of consumers.
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A situation with one producer and two loads is shown in Figure 5.1. Here the increase of
supply temperature at the producer in time step 3 reaches the first consumer in time step 5
and the second consumer in time step 7. Thus, the increase of the thermal energy output
of the producer starts in time step 3 and is reduced to its original level in two steps. When
the increased supply temperature reaches the first consumer in time step 5 this consumer
reduces its mass flow. Thus, the overall mass flow is reduced, but the second consumer is
still supplied with increased mass flow. This reduction is proportional to the mass flow or
load share of consumer one. When the supply temperature increase reaches the second and
last consumer, the thermal energy output of the producer is back to its original level and,
hence, the charging of the grid ends.
For a decrease of supply temperature at the producer in time step 9 we can observe an
inversed behavior (similar as in Example 2.2). The thermal energy output of the producer
is reduced immediately leading to a discharge of the grid. The thermal energy production
gets back to its original level in two steps. When the first consumer is reached in time
step 11, the producer increases its output with the now increased mass flow of consumer
one. When the second consumer is reached in time step 13 the thermal energy output of the
producer reaches its original level and discharging of the grid ends. Similar to Example 2.2
thermal losses are represented in the reduced supply temperatures at the loads.

5.2 Outer approximation of grid storage behavior

To integrate the thermal storage behavior of a heating grid explained in the previ-
ous chapter into a basic scheduling problem for CHPs (see Section 2.1.1), we try to
extend the standard models for electric battery storage. Thus, we introduce one non-
negative, real variable representing the state of charge SOCheat

t in time slot t and one
real variable representing the thermal energy charged or discharged qcharge

t in time
slot t. Using these variables, the dynamic behavior of the state of charge is described
with

SOCheat
t+1 = SOCheat

t + qcharge
t ∀t ∈ St. (5.2)

To integrate thermal energy storage into the basic unit commitment problem (Section
2.1.1), we adapt the thermal energy balance (2.5) to

∑
i∈Sg

qi,t = ∑
i∈Sd

qdemand
i,t + qloss

t + qcharge
t ∀t ∈ St. (5.3)

For a battery, the state of charge SOCheat
t is limited by the capacity limits of the storage

and the energy of charge or discharge qcharge
t is limited by the maximum charging and

maximum discharging power. For dedicated thermal storage like storage tanks these
limits are usually known. However, it is more complicated to derive these limits for
the inherent thermal storage of a heating grids. In the following we introduce such
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limits suitable to approximate the thermal dynamics of a heating grid as we showed in
[MHH19]. Looking at Example 2.2 and Example 5.1 there is a clear upper limit on the
energy charged to as well as the energy discharged from the heating grid being linked

to the maximum possible supply temperature difference
(

TU − Tsupply
t

)
in time slot

t. With the equation for the change of inner energy (2.9) we can relate this maximum
temperature difference to a maximum energy volume charged to or discharged from
the grid and get

− cpṁt

(
TU − Tsupply

t

)
≤ qcharge

t ≤ cpṁt

(
TU − Tsupply

t

)
∀t ∈ St (5.4)

where TU is the maximum possible supply temperature, Tsupply
t is the originally

planned (minimum) supply temperature in time slot t, ṁt is the mass flow from the
generation site in time slot t and cp is the specific heat capacity of water.

The upper bound for the state of charge SOCheat
t of the thermal energy stored in the

heating grid in time slot t is more complicated to derive. Assuming we know the
maximum transport delay τmax to the last consumer in the heating grid, we can sum
up the maximum charging power over this time horizon to find an upper limit for the
state of charge SOCheat

t resulting in

0 ≤ SOCheat
t ≤

t

∑
tt=t−τmax

cpṁt

(
TU − Tsupply

tt

)
∀t ∈ St. (5.5)

However, with this upper bound of the state of charge SOCheat
t we only get an outer

approximation of the possible energy stored in the grid. In scenarios with multiple
loads not all consumers are served with the maximum transport delay τmax. Accord-
ingly, the thermal energy charged to the heating grid cannot reach the maximum level
for the full duration τmax. In Example 5.1 this formulation overestimates the storage
capabilities of the heating grid, as in time step 5 the supply temperature increase
reaches the first consumer (consuming 50 % of the thermal load) and in the following
charging the grid with thermal energy is reduced by half. With the representation
above it is assumed that maximum charging is still possible.

Thus, to derive a better representation of the thermal storage behavior of heating
grids, the delay matrix approach is presented in the following section as published in
[MHH19].

5.3 Delay matrix approach for co-located
thermal generation

From Figures 2.4 and 5.1 it seems to be possible to derive a function that directly links
supply temperature at the producer Tsupply

t and thermal energy charged or discharged
from the grid qcharge

t as in (5.1), if constant mass flow is assumed.
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Let us investigate the temperature and thermal energy variations in Example 2.2. The
temperature increase from time step 2 to time step 3 is

Tsupply
t=3 − Tsupply

t=2 . (5.6)

The mass flow ṁ does not change between these time steps, which leads to an in-
creased output of thermal energy of the producer of

cpṁ
(

Tsupply
t=3 − Tsupply

t=2

)
. (5.7)

When the increased supply temperature reaches the consumer in time step 5 after
a time delay τ = 2, the thermal output of the producer is reduced by the same
amount:

cpṁ
(

Tsupply
t=3 − Tsupply

t=2

)
= cpṁ

(
Tsupply

t=5−τ − Tsupply
t=4−τ

)
. (5.8)

As for the outer-approximation of the storage behavior in Section 5.2 we introduce
qcharge

t as thermal energy being charged to or discharged from the grid resulting in
the energy balance

∑
i∈Sd

qdemand
i,t + qloss

t + qcharge
t = ∑

i∈Sg

qi,t ∀t ∈ St. (5.9)

In Example 2.2 with a constant head load, changes in the heat output of the producer
directly influence the thermal energy stored in the grid qcharge

t . Hence, with (5.7) and
(5.8) we get

qcharge
t = qcharge

t−1 + cpṁ
(

Tsupply
t − Tsupply

t−1

)
− cpṁ

(
Tsupply

t−τ − Tsupply
t−τ−1

)
∀t ∈ St>1, (5.10)

where Tsupply
t is the supply temperature at the producer in time step t, τ is the trans-

port time from producer to consumer and ṁ is the constant mass flow. For time
varying mass flow ṁt considered to be a parameter, (5.10) becomes

qcharge
t = qcharge

t−1 + cp

(
ṁtT

supply
t − ṁt−1Tsupply

t−1

)
− cp

(
ṁt−τTsupply

t−τ + ṁt−τ−1Tsupply
t−τ−1

)
∀t ∈ St>1. (5.11)

However, the time varying transport delay coming with time varying mass flow is
not represented correctly in the above equation as there is only one transport delay τ
possible. To cope with this problem, we introduce a matrix M allowing flexible trans-
port delays. Every row l in this matrix represents the start of a temperature increase in
time step l. This allows to have different transport delays throughout the optimization
horizon in line with the varying mass flows ṁt. Rows l in matrix M have non-zero
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Table 5.1: Delay matrix M [l, t] for Example 5.1

l t 1 2 3 4 5 6 7

1 0 0 0.5 0 0.5 0 0
2 0 0 0 0.5 0 0.5 0
3 0 0 0 0 0.5 0 0.5
4 0 0 0 0 0 0.5 0
5 0 0 0 0 0 0 0.5

entries in columns t only if an increase of consumption in time step l reaches a con-
sumer in time step t. The value of this non-zero entry is the share of consumption of
the respective consumer.

In Table 5.1 the matrix for Example 5.1 is shown. As the transport delay to the first
consumer is two time steps, the increase of supply temperature at the producer in
time step l = 3 would reach the first consumer in time step t = 5. The second con-
sumer is reached after a transport delay of 4 time steps. Thus, the increase of supply
temperature at the first consumer in time step l = 3 reaches the second consumer in
time step t = 7. As both consumers are having equal load share, the non-zero entries
of delay matrix M in row 3 are 0.5 in column 5 and 0.5 in column 7. For all other time
steps l the rows are filled accordingly. If the transport delay is not an integer number
of time steps, the consumption share can be split up between two or more columns to
achieve a better representation of the real-world delay.

Adjusting the calculation of qcharge
t in (5.11) to integrate delay matrix M we get

qcharge
t = qcharge

t−1 + cp

(
ṁtT

supply
t − ṁt−1Tsupply

t−1

)
− cp

(
nt

∑
l=1

M [l, t] · ṁl · Tsupply
l −

nt

∑
l=1

M [l, t] · ṁl−1Tsupply
l−1

)
∀t ∈ St>1. (5.12)

As an alternative to this recursive calculation of qcharge
t , that we introduced in [MHH19],

an explicit formulation was developed in an internship [Lor19]. The energy charged
to or discharged from a pipe is the difference between the thermal energy flowing
into qin

t and out of qout
t the pipe:

qcharge
t = qin

t − qout
t ∀t ∈ St. (5.13)

As the thermal energy feeding the pipe is explained with the inner energy balance in
(2.9), we get

qin
t = cpṁt

(
Tsupply

t − Treturn
)

∀t ∈ St. (5.14)
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The thermal energy flowing out of the pipe is the inflowing thermal energy delayed
with transport time τt:

qout
t = qin

t−τt = cpṁt−τt

(
Tsupply

t−τt
− Treturn

)
∀t ∈ St. (5.15)

Hence, the energy charged into a pipe qcharge
t can be calculated with

qcharge
t = cp

(
ṁt · Tsupply

t − ṁt−τt · T
supply
t−τ

)
∀t ∈ St. (5.16)

Thus, using delay matrix M[l, t] a similar formulation as in (5.12) is possible:

qcharge
t = cp

(
ṁt · Tsupply

t −
nt

∑
l=1

M [l, t] · ṁl · Tsupply
l

)
∀t ∈ St. (5.17)

(5.12) or (5.17) in combination with (5.9) and delay matrix M (see Table 5.1 for Example
5.1) give a direct link between supply temperature at the producer Tsupply

t and thermal
energy charged to or discharged from the heating grid qcharge

t . Thus, they can extend
the optimization problem for production scheduling without consideration of grid
dynamics in Section 2.1.1 to an optimization problem considering the storage effect
induced by supply temperature changes. The consumption share of and transport
delay to consumers as well as the mass flow at the producer must be known for this
formulation. Model 5.1 shows an overview of this optimization problem at the end of
the next section as it includes thermal losses introduced in this section, too.

Remark: As many models in literature, this approach assumes fixed, given transport
delays. It does not account for the change in transport delay when a consumer reduces
its mass flow with an increased supply temperature arriving. Hence, there is a model
error being larger for longer and higher temperature increases. This model error
will reduce if variable mass flows are introduced. The approach presented in Section
5.3.2 to integrate a second CHP can be a starting point for this extension as here two
different mass flows are considered.

5.3.1 Integration of thermal losses

To consider the additional heat losses caused by the increase of supply temperature,
we introduced the following approach in [MKV+19]. In real-world heating grids,
there are usually only a few thermal generation points which are measured with high
sampling rate and hundreds of loads normally not measured with this accuracy. Thus,
thermal demand forecasts with high time resolution are usually predicted based on
measurements of past generation at different ambient conditions. Accordingly, those
load forecasts qdemand

i,t will include the thermal losses of the heating grid with the
typical supply temperature control. However, increasing the supply temperature to
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store thermal energy within the heating grid increases thermal losses. This should be
considered as qloss

t in (5.9). Recall (2.13) describing the heat losses of a pipe filled with
a liquid at one temperature:

qloss = kVπdL
(

Tinside − Tamb
)

.

As ambient temperature Tamb and pipe parameters do not change with an increase of
temperature, the increased losses are proportional to the temperature inside the pipe
Tinside. Thus, we can introduce a loss factor αloss and using a time discrete formulation
we get

qloss
t = αloss · Tinside

t . (5.18)

Now the question remains, how to best replace Tinside
t with a formulation using the

supply temperature at the producer Tsupply
t . Heat losses first lead to a reduction of

temperature of the transport medium. This does not effect the thermal energy output
of the generation until this lowered temperature arrives at the consumer and the
consumer increases its consumed mass flow. Using delay matrix M we can describe
this delayed arrival by

qloss
t = αloss ·

nt

∑
l=1

M [l, t] Tsupply
l ∀t ∈ St. (5.19)

In comparison to the dynamic thermal loss calculation in (2.15) this equation nei-
ther depends on mass flow ṁt nor on transport time τt. If Tsupply

l is the pipe inflow
temperature, it overestimates the thermal losses as in reality the temperature drops
along the pipe. However, for typical operation scenarios this linearized loss calcula-
tion should represent the thermal losses sufficiently well, as transport time τt has a
minor influence on thermal losses in comparison to inflow and ambient temperature.
The influence of transport time τt in (2.15) grows only for very slow velocity and thus
high transport times. Figure 5.2 shows the thermal losses for different pipe diameters
and different supply temperatures at different typical velocities in heating grids as
calculated from (2.15). It illustrates the behavior of thermal losses described above, as
the velocity is proportional to the mass flow and inverse to the transport time.

Model 5.1 summarizes the resulting model formulation for the delay matrix approach
considering additional thermal losses induced by the increased supply temperature.
These additional thermal losses should be considered in the operations planning prob-
lem, especially if a distribution heating grid with a high number of pipes with small
diameters is optimized. For transmission grids, which have only pipes with large
diameters, thermal losses are often insignificant.
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Figure 5.2: Thermal losses in a pipe with 5 km length and a) 0.1 m or b) 0.7 m diameter depending on
flow velocity for different inflow temperature levels in 10 K steps from 70 °C (lowest) to 130 °C
(highest)

Model 5.1: Delay matrix model for co-located CHPs with thermal losses

Objective function

min ∑
t∈St

(
priceel,buy

t · pbuy
t − priceel,sell

t · psell
t

)
+ ∑

t∈St

∑
i∈Sg

(
Cconst

i · ni,t + Cel,var
i · pi,t + Cheat,var

i · qi,t

)
Inequality Constraints

ni,t · PL
i ≤ pi,t ≤ ni,t · PU

i ∀i ∈ Sg, ∀t ∈ St

ni,t ·QL
i ≤ qi,t ≤ ni,t ·QU

i ∀i ∈ Sg, ∀t ∈ St

Equality Constraints

pdemand
t = ∑

i∈Sg

pi,t + pbuy
t − psell

t ∀t ∈ St

∑
i∈Sd

qdemand
i,t = ∑

i∈Sg

qi,t − qloss
t − qcharge

t ∀t ∈ St

qcharge
t = cp

(
ṁt · Tsupply

t −
nt

∑
l=1

M [l, t] · ṁl · Tsupply
l

)
∀t ∈ St

qloss
t = αloss ·

nt

∑
l=1

M [l, t] Tsupply
l ∀t ∈ St
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The constraints for the feasible regions of the CHPs need to be added matching
their type (e.g. (2.3) for CHPs with extraction condensing turbine).

5.3.2 Integration of distributed thermal generation

To reduce thermal losses, heating grids are usually supplied at minimum possible
temperature. As there is a limitation on velocity and flow in a pipe, this minimum
temperature can be calculated based on (2.9). To enable integration of distributed
thermal generation into the delay matrix approach assume in the following that all
CHPs will always feed at minimum temperature and, thus, maximum flow.

CHP1

CHP2

load area
pipe

Figure 5.3: A heating grid with a second smaller CHP

To introduce additional CHPs, first, we look at the situation shown in Figure 5.3.
Here, one long pipe is connecting one large CHP1 with a load area. A second smaller
CHP2 is directly located at the load area feeding the load area without important
transport delay. Assuming we always supply with minimum supply temperature and
thus maximum flow, we get two possible flows in the pipe in every time slot: One
higher flow if CHP2 is turned off and one slightly lower flow if CHP2 is running.

If CHP2 is switched on (n2,t = 1), it provides its maximum electric PU
2 and heat QU

2
output:

p2,t =

{
0 n2,t = 0
PU

2 n2,t = 1
∀t ∈ St, (5.20)

q2,t =

{
0 n2,t = 0
QU

2 n2,t = 1
∀t ∈ St. (5.21)

At times when the thermal energy storage of the grid is not used (times of constant
supply temperature), the thermal output of CHP1 q1,t is reduced accordingly, leading
to

q1,t =

{
qdemand

t + qloss
t n2,t = 0

qdemand
t + qloss

t − q2,t n2,t = 1
∀t ∈ St. (5.22)
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Hence, the mass flow ṁt in the pipes from CHP1 to the load area varies with the
commitment status n2,t of CHP2:

ṁt =


1

cp ·
(

Tsupply
t −Treturn

) (qdemand
t + qloss

t

)
n2,t = 0

1
cp ·
(

Tsupply
t −Treturn

) (qdemand
t + qloss

t − q2,t

)
n2,t = 1

∀t ∈ St. (5.23)

Thus, there is a limited amount of possibilities of temperature propagation in the pipe
depending on current and past commitment states of CHP2. Assuming a scenario
with a time delay limited to variations between two and three time slots, all possible
temperature propagations are shown in Figure 5.4. The running status of CHP2 n2,t
in past time slots is encoded with Combi as shown in Table 5.2.

Table 5.2: Running status of CHP2 in past time steps depending on Combi

i Combi n2,t n2,t−1 n2,t−2

1 000 0 0 0
2 001 0 0 1
3 010 0 1 0
4 011 0 1 1
5 100 1 0 0
6 101 1 0 1
7 110 1 1 0
8 111 1 1 1

For the situation shown in Figure 5.4, matrix M [l, t] has only two entries per row and
(5.17) becomes

qcharge
t = cp

(
ṁt · Tsupply

t − s1 · ṁt−1 · Tsupply
t−1 − s2 · ṁt−2 · Tsupply

t−2

)
∀t ∈ St. (5.24)

With lengths d1 and d2 defined as illustrated in the top pipe in Figure 5.4, parameters
s1 and s2 can be calculated with the propagation ∆xt of the transport medium in a
time slot t as follows:

s1 =
d1

∆xt−1
, (5.25)

s2 =
d2

∆xt−2
. (5.26)

There is one s1
i and one s2

i for every combination i of current and past commitment
states of CHP2 and thus current and past mass flows. As on the right side of Figure
5.4, the values of s1

i and s2
i can be calculated for every possible combination i of
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Combi si
1 si

2

000 0.6 0.4

001 0.6 0.48

010 0.52 0.57

011 0.52 0.68

100 0.43 0.4

101 0.43 0.48

110 0.32 0.56

111 0.32 0.68

Tt−2
inTt−1

inTt
in

Δxt−1 Δxt−2

L

Δxt

Δxt

Δxt

Δxt

Δxt

Δxt

Δxt

Δxt

Δxt

dt
1 dt

2

Figure 5.4: Possibilities of temperature propagation in a pipe with a major CHP1 at the beginning and a
smaller CHP2 at the end (close to the load area) for different running states of CHP2 (bright:
off, dark: on). The blue arrow indicates the flow direction.
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current and past commitment decisions for CHP2 (Combi). Introducing yt,i as a binary
variable being one if and only if case i is active, (5.24) becomes

qcharge
t = cpṁt · Tsupply

t

− cp

8

∑
i=1

yt,i ·
(

s1
i · ṁt−1 · Tsupply

t−1 + s2
i · ṁt−2 · Tsupply

t−2

)
∀t ∈ St. (5.27)

The mass flow ṁt in the pipe in time slot t depends on the combination of current
and past commitment decisions of CHP2, too. As for every case i we know this
combination of current and past mass flows, we can introduce new parameters sm,1

i
and sm,2

i combining s1
i and s2

i with the corresponding mass flow:

sm,1
i = s1

i · ṁt−1 ∀i ∈ Sc, (5.28)

sm,2
i = s2

i · ṁt−2 ∀i ∈ Sc. (5.29)

Sc denotes the set of all possible combinations to run or not run the CHPs in current
and past time slots.

With these parameters, (5.27) becomes

qcharge
t = cp

(
ṁt · Tsupply

t −
8

∑
i=1

yt,i ·
(

sm,1
i · Tsupply

t−1 + sm,2
i · Tsupply

t−2

))
∀t ∈ St. (5.30)

This equation still contains a multiplication of one binary variable (yt,i) with one real
variable (Tsupply

t−1 or Tsupply
t−2 ). Several MILP solvers, for example Gurobi [Gur16], are

able to handle such equations. If the chosen solver does not support this type of
equation, bigM constraints or generalized disjunctive programming can be used to
formulate this equation as MILP [RG94, GBS+12].

Of course, for every time slot t only one case i representing a combination of current
and past mass flows can be selected.

8

∑
i=1

yt,i = 1 ∀t ∈ St (5.31)

The following equations ensure that yt,i = 1 only if the correct combination of current



64 5 Delay matrix approach

and past mass flows is active. Matching Table 5.2 we get

n2,t + n2,t−1 + n2,t−2 + yt,1 ≥ 1 ∀t ∈ St

n2,t + n2,t−1 + (1− n2,t−2) + yt,2 ≥ 1 ∀t ∈ St

n2,t + (1− n2,t−1) + n2,t−2 + yt,3 ≥ 1 ∀t ∈ St

n2,t + (1− n2,t−1) + (1− n2,t−2) + yt,4 ≥ 1 ∀t ∈ St

...

(1− n2,t) + (1− n2,t−1) + (1− n2,t−2) + yt,8 ≥ 1 ∀t ∈ St.

(5.32)

With Combi as shown in the table in Figure 5.4, (5.32) can be reformulated more
generally as

3

∑
tt=1

n2,t−tt+1 · (1− Combi,tt) + (1− n2,t−tt+1) · Combi,tt + yt,i ≥ 1,

∀t ∈ St, ∀i ∈ Sc. (5.33)

(5.30), (5.31) and (5.33) allow to expand the delay matrix approach with a second CHP
if they replace (5.12) or (5.17). Model 5.2 presents the resulting MILP model. If the
mass flow varies more importantly with the switching of CHP2 as in the example
shown in Figure 5.4, additional parameters s1

i , s2
i , s3

i , . . . as well as more cases i are
needed. (5.30), (5.31) and (5.33) need to be adapted to match this additional number
of cases and parameters. Similar changes are needed if more CHPs are added to the
optimization. However, the general concept remains:

• enumerate all possible running state combinations of CHPs (Combi)

• for each state calculate parameters s1
i , s2

i , s3
i , . . .

• adapt (5.30), (5.31) and (5.33) to the increased number of combinations

Model 5.2: Delay matrix model for two CHPs considering thermal losses

Objective function

min ∑
t∈St

(
priceel,buy

t · pbuy
t − priceel,sell

t · psell
t

)
+ ∑

t∈St

∑
i∈Sg

(
Cconst

i · ni,t + Cel,var
i · pi,t + Cheat,var

i · qi,t

)
Inequality Constraints

ni,t · PL
i ≤ pi,t ≤ ni,t · PU

i ∀i ∈ Sg, ∀t ∈ St

ni,t ·QL
i ≤ qi,t ≤ ni,t ·QU

i ∀i ∈ Sg, ∀t ∈ St
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Equality Constraints

pdemand
t = ∑

i∈Sg

pi,t + pbuy
t − psell

t ∀t ∈ St

∑
i∈Sd

qdemand
i,t = ∑

i∈Sg

qi,t − qloss
t − qcharge

t ∀t ∈ St

qloss
t = αloss ·

nt

∑
l=1

M [l, t] Tsupply
l ∀t ∈ St

qcharge
t = cp

(
ṁt · Tsupply

t −
8

∑
i=1

yt,i ·
(

sm,1
i · Tsupply

t−1 + sm,2
i · Tsupply

t−2

))
∀t ∈ St

8

∑
i=1

yt,i = 1 ∀t ∈ St

3

∑
tt=1

n2,t−tt+1 · (1− Combi,tt) + (1− n2,t−tt+1) · Combi,tt + yt,i ≥ 1

∀t ∈ St, ∀i ∈ Sc

The constraints for the feasible regions of the CHPs need to be added matching
their type (e.g. (2.3) for CHPs with extraction condensing turbine).

5.4 Summary of chapter

This chapter presented the delay matrix approach, which offers a compact MILP for-
mulation and, thus, promises fast optimization runs. Section 5.1 recalled the thermal
dynamics of a heating grid and Section 5.2 showed how these dynamics are related
with batteries and thermal storage tanks. Based on these findings, Section 5.3 pre-
sented the delay matrix approach that summarizes the dynamics of the heating grid
in a delay matrix M which only requires share of consumption of and transport time
to loads as input parameters. Thus, it can easily be parameterized using measure-
ment data which allows applications to real-world heating grids as we showed in
[MKV+19]. This is a major benefit in comparison to other optimization models as
they usually require data of all pipes in the heating grid for parameterization (see
Section 2.1.4 and Section 2.1.5). Section 5.3.1 presented an extension of the delay ma-
trix approach that considers the additional thermal losses induced by storing thermal
energy in the heating grid. As the thermal losses mainly depend on the transport
medium temperature, a linear loss factor was introduced which can be estimated for
real-world grids using the grid topology as in [MKV+19]. As many approaches in
the literature, the delay matrix approach assumes constant transport delays. How-
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ever, multiple transport delays can be considered as shown in Section 5.3.2. Here, the
delay matrix approach for CHPs at one site was extended to a case with one major
CHP storing thermal energy in the heating grid and one minor CHP at another loca-
tion which is not storing thermal energy in the heating grid. To integrate this second
CHP, different cases for all possible mass flow combinations are introduced in the for-
mulation. This concept can be used to allow a flexible transport delay in the original
delay matrix approach or it can be extended to represent more generation sites.



6 Case studies

In this chapter, the modeling and optimization approaches for district heating grids
developed in Chapter 3, Chapter 4 and Chapter 5 are applied to different scenarios.
In Section 6.1 two small district heating grid cases are introduced and used to com-
pare the proposed optimization approaches as well as one approach from literature
in terms of performance and solution quality. The comparison of the global optimiza-
tion approach to the sequential approach from literature was published in [MLH19]
including an evaluation of the different primal problems. In Section 6.2 the delay ma-
trix optimization approach of Chapter 5 is applied to the district heating grid of the
city of Kiel, Germany. This detailed real-world case study shows potential benefits for
different generation setups and is published in [MKV+19].

6.1 Small heating grid examples

This section introduces to two small example heating grids, one with one CHP and
one with two CHPs, which follow [MLH19]. For these two example grids, we present
results for all optimization approaches introduced in this thesis and compare them
with results of a sequential optimization proposed in literature. A detailed discus-
sion of similarities and differences in performance of the algorithms concludes this
section.

6.1.1 Example cases

Both example cases use the same electricity price profile and the same thermal and
electric energy consumption profiles. For the electricity market it is assumed that
electric energy can be sold and purchased from the day-ahead electricity market with
a small premium for purchasing. As winter days are more promising for storing
thermal energy in a heating grid, the electricity price profile is taken from EPEX SPOT
DE/AT [EPE] for November 15th, 2017, a winter day with typical price variations, and
shown in Figure 6.1.

The thermal load profile in both scenarios is derived from a typical thermal demand
for a November day of a German city at ambient air temperatures of 5 °C to 10 °C. It
is shown in Figure 6.2. For the electric demand profile a scaled standard load profile
for households shown in Figure 6.3 is used.
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Figure 6.1: Electricity price profile (EPEX SPOT DE/AT, November 15th, 2017). Source: [EPE]
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Figure 6.2: Thermal load profile for a November day with ambient air temperatures of 5 °C to 10 °C
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Figure 6.3: Electric load profile (scaled standard load profile)
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One CHP case

CHP1 load area 
pipe: 10 km length 
 0.7 m diameter 

Figure 6.4: Example case with one CHP and one load area

The first scenario considers the most simple heating grid possible: one load area fed by
one combined heat-and-power generation plant (CHP1) via a pipe. Pipe dimensions
are inspired by the district heating pipeline connecting Mannheim and Heidelberg
[KC13] with a length of 10 km (length of Mannheim to Heidelberg connection is
13.5 km) and a diameter of 0.7 m as shown in Figure 6.4. CHP1 is assumed to have
a maximum output of 400 MW thermal and 500 MW electric power being generated
with an extraction condensing turbine. Thus, the power-to-heat ratio is variable while
being limited by the feasible operation region shown in Figure 2.1. CHP1 can heat
water to a maximum supply temperature of 130 °C4, but lower supply temperatures
are possible as well. With (2.6) a linear cost function for operating CHP1 is assumed.

Two CHPs case

CHP1

CHP2

load area
pipe: 10 km length

0.7 m diameter

Figure 6.5: Example case with two CHPs and one load area

The second scenario adds a second CHP to the first scenario. This CHP2 is located
directly at the load area as shown in Figure 6.5 feeding the load area without a trans-
port delay. CHP2 has typical characteristics of a gas turbine and can produce up to
20 MW of thermal and 20 MW of electric power with a fixed power-to-heat ratio (be-
ing 1). It heats water to a constant temperature of 110 °C. This setup is chosen as
it is quite common to have one major heat supplier outside the main consumption
area and additional smaller heat sources closer to the load area. Gas boilers or gas
turbines are common choices for this additional heat sources due to comparably low
investment cost, fast start-up and compact size. The characteristics of CHP1, the pipe
and the load area remain the same as in the first scenario. A linear cost function is

4 Heating grid pipes are under high pressure. Thus, water inside the pipes is liquid at 130 °C.



70 6 Case studies

assumed for both CHPs. Table 6.1 shows a summary of the parameter differences of
the CHPs.

Table 6.1: Main parameters of the CHPs in the example cases

CHP1 CHP2

Electric output in MW ≤ 500 ≤ 20
Thermal output in MW ≤ 400 ≤ 20
Supply temperature in °C ≤ 130 = 110
Power to heat ratio see Figure 2.1 constant

6.1.2 Global optimization results with
multiparametric delay modeling

In the following, the one CHP and the two CHPs cases presented in the previous sec-
tion are optimized to global optimality. Multiparametric disaggregation (Section 2.2.2)
is used to model bilinear terms and multiparametric delay modeling (Chapter 3) is
used to model the variable-dependent time delay in the dual problems leading to the
MILP formulation shown in Model 3.1. The primal problems are solved with a local
NLP solver with direct implementation of the bilinear terms and using the formula-
tions presented in Section 3.2 to model the variable-dependent time delays. For the
primal problem using the finite-volumes model (Model 3.2), 500 equally sized volume
elements are used to describe the pipe. Using the primal problem with the hybrid pipe
model (Model 3.3), again 500 elements for the remaining flexibility are used. Thermal
losses are considered in both the dual as well as the primal problems.

As computational effort for the global optimization approaches is high, all global
optimizations were run on an Intel Xeon CPU E5-2650 v3 with 2.3 GHz, 16 cores
and 16 GB RAM using the modeling environment Julia/JuMP [Ran16], MILP solver
Gurobi 8.1 [Gur16] for the dual problems and NLP solver IPOPT [WB06] to locally
solve the primal problems. This case study using the global optimization algorithm is
published as part of [MLH19].

One CHP case

The result of the global optimization of the one CHP case using the global optimiza-
tion scheme with the finite-volumes model as primal problem is shown in Figure 6.6.
This result is the solution of the primal problem after 4 iterations having an overall
objective value of 291,235.7e. The lower bound of the dual problem is 288,371.3e
which also provides a lower bound of the original problem. Hence, there is a global
optimality gap of 1 %. The result has been achieved in 146.19 s.
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Figure 6.6: Results of global optimization for 1 CHP scenario with finite-volumes model as primal problem.
a) Supply temperature at CHP and at load. b) Thermal output of CHP in comparison to thermal
load. c) Electric output of CHP, electric load and interactions with electricity market.
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Looking at the electric production in Figure 6.6 c), it can be noted that in the early
morning hours (hour 0 to hour 6) the electric output of the CHP varies a lot. Here, the
price of electricity is approximately at the marginal cost of production. Thus, in one
hour it is profitable to produce electricity whereas in the next hour it is not profitable
to produce electricity. Running such big ramps in output of a coal fired power plant
is usually not wanted. Therefore, in real-world operations one might choose either
producing as much as possible or producing as little as possible in this time. Starting
from hour 6 the CHP produces as much electricity as possible, as electricity prices are
above the marginal cost of production.

In Figure 6.6 a) and Figure 6.6 b) it can be noted that there are major drops in thermal
output and supply temperature at hours 8, 12 and 18. From the electricity price
profile (Figure 6.1) we note that these are times of higher electricity prices compared
to the previous hours. Hence, here the supply temperature at the CHP is lowered to
reduce the thermal output of the CHP enabling a higher electric output within the
feasible region of the CHP shown in Figure 2.1. As reducing the supply temperature
discharges the thermal storage capacity of the heating grid, there needs to be an
increase of supply temperature beforehand to store energy within the heating grid.
This increase is usually done as late as possible to decrease thermal losses. This can
be seen in hours 10 and 11 directly before high-price hour 12, where an important
increase of supply temperature charges thermal energy into the heating grid. At the
end of the time horizon in hours 21, 23 and 24 after the last price peaks, the supply
temperature remains at the lowest level, discharging the thermal energy stored in
the heating grid. This is reasonable as the model formulation does not account for
thermal energy stored in the heating grid at the end of the time horizon.

However, an unexpected issue can be observed in Figure 6.6 a): The supply temper-
ature is reduced to its minimum level at 60 °C several times within the optimization
horizon. This is not feasible in real-world, as mass flow demand would exceed the
maximum possible mass flow in a pipe if this temperature arrived at the load. How-
ever, with the finite-volumes pipe model these low temperatures at the beginning of
the pipe never reach the consumer due to the smoothing effect of the finite-volumes
model. Thus, as shown in Figure 6.6 a) the temperature at the load stays within ac-
ceptable bounds. Due to the same reason the temperature at the load does not look
like a delayed version of the temperature at the CHP in Figure 6.6 a), which it is in
real-world.

The hybrid pipe model presented in Section 3.2.2 should allow for a more accurate
representation of the temperature propagation. In Figure 6.7, the solution of the global
optimization scheme with the hybrid pipe model as primal problem is shown. This
result is the feasible solution of the primal problem after 4 iterations having an overall
cost of 294,386.0e. The corresponding global lower bound is 288,265.1e leading to a
global optimality gap of 2.1 %. This result was achieved in 125 s.

In Figure 6.7 a) it can be seen that the supply temperature profile at the load follows
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Figure 6.7: Results of global optimization for 1 CHP scenario with hybrid pipe model as primal problem.
a) Supply temperature at CHP and at load. b) Thermal output of CHP in comparison to thermal
load. c) Electric output of CHP, electric load and interactions with electricity market.
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the supply temperature profile at the CHP a lot better than for the finite-volumes
pipe model (Figure 6.6 a)). The electric output of the CHP shown in Figure 6.7 c)
shows a similar behavior as before with a highly variable profile in the early morning
hours up to hour 6 due to the electricity prices swinging around the variable cost
of production. After hour 6, the electric output is at its maximum. As shown in
Figure 6.7 b) the thermal storage effects are less important than with the previous
model. As before, there is some thermal discharge of the heating grid (CHP output
below load) around hours 8 and 18, and some charging of the heating grid with
thermal energy in the hours before (CHP output above load). However, the amount
of thermal energy charged to and discharged from the grid is less important than with
the finite-volumes model. This can be explained with the reduced amplitude of the
temperature changes at the CHP as smaller temperature changes directly lead to less
thermal energy stored in the heating grid.

Two CHPs case

Figure 6.8 shows the result of the global optimization scheme (Chapter 3) using the
finite-volumes model as primal problem (Section 3.2.1) for the two CHPs case pre-
sented in Section 6.1.1. This result was achieved in 4 iterations and 1,637.0 s. It has an
objective value of 348,252.9e and a lower bound of 330,871.1e. The global optimality
gap is at 4.99 % accordingly. The solution time for solving the dual MILP was limited
to 600 s in every iteration to limit the time spent solving one iteration.

The generation of electric energy using CHP1 turns profitable in hour 7. Accordingly,
the electric output of CHP1 is increased from minimum to maximum possible level
as shown in Figure 6.8 c). CHP2 is switched on in hour 3 and from hours 7 to 21,
being the higher price hours. This is reasonable as in contrast to CHP1 for CHP2 a
higher thermal output means a higher electric output. Thermal energy is stored in the
heating grid (generation of thermal energy above consumption) in the morning hours
until hour 6, in hour 11, in hours 13 to 15 and in hour 22 as shown in Figure 6.8 b). In
hours 8 to 10, hour 12, hours 18 to 19, hour 21 and starting hour 23 thermal energy is
discharged from the heating grid (production of thermal energy below thermal load)
with a reduction of supply temperature of CHP1 (see Figure 6.8 a)). As expected,
these are hours with local electricity price peaks. As for the one CHP case, due to
the smoothing effect of the finite-volumes model, the supply temperature at the load
does not follow the supply temperature at CHP1 and the supply temperature at CHP1
reduces to levels infeasible in real-world.

The result of the global optimization of the two CHPs case with the more accurate hy-
brid pipe model (Section 3.2.2) as primal problem is shown in Figure 6.9. Again with
a limitation of the solution time of the dual MILPs to 600 s per iteration, this results
was achieved in 6 iterations and 2,907.1 s. It has an objective value of 351,112.0e, a
lower bound of 334,785.9e and a gap of 4.6 %.
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Figure 6.8: Results of global optimization for 2 CHPs scenario with finite-volumes model as primal prob-
lem. a) Supply temperature at CHPs and at load. b) Thermal output of CHPs in comparison to
thermal load. c) Electric output of CHPs, electric load and interactions with electricity market.
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Figure 6.9: Results of global optimization for 2 CHPs scenario with hybrid pipe model as primal problem.
a) Supply temperature at CHPs and at load. b) Thermal output of CHPs in comparison to
thermal load. c) Electric output of CHPs, electric load and interactions with electricity market.
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It can be seen that drops in supply temperature to unreasonably low levels occur less
often with the hybrid pipe model as primal problem (Figure 6.9 a)) than with the
finite-volumes model (Figure 6.8 a)). However, two large drops remain: one in hour 2
and one in hour 11. The drop to 60 °C in hour 24 is reasonable for the optimization, as
this temperature level does not arrive at the load within the optimization horizon. Ac-
cordingly, thermal energy is discharged from the heating grid in hour 2 and hour 11.
Additional discharging caused by less important and real-world feasible temperature
drops occurs in hour 8, hour 13 and starting hour 17 as shown in Figure 6.9 b). Hence,
the heating grid is discharged in higher price hour 8 and around high price hour 18.
The discharge in hour 11, where the electricity price is lower than the surrounding
time slots, seems to be counterintuitive, but might be induced by the starting values
of the primal problem, which is only solved to local optimality, as the solver of the
dual problem was stopped due to its time limitation. CHP2 runs in hour 3, hour 6,
hours 8 to 12 and in hours 14 to 21 being the higher price times. Given the direct pos-
itive link between thermal and electric output this is a reasonable choice. As shown
in Figure 6.9 c) electric generation of CHP1 turns profitable in hour 7, as the electric
output of CHP1 is increased to its maximum at this point in time.

6.1.3 Optimization results with hybrid
discrete-continuous time model

The results for the optimization of the two scenarios using the hybrid discrete-con-
tinuous time model of Chapter 4 are presented in the following. Heat losses are
neglected, as for the studied cases with pipes of diameter 0.7 m they are of minor
importance.

These results were achieved on an Intel Silver 4110 CPU with 2.10 GHz and 16 GB
RAM using the modeling environment Julia/JuMP [Ran16] and MILP solver Gurobi
[Gur16].

One CHP case

Figure 6.10 shows the optimization result using the hybrid time grid model for the
one CHP case. To enable a direct comparison with the other optimization methods
this result is averaged on hourly bases in Figure 6.11. Allowing eight temperature
levels (90 °C, 95 °C, 100 °C, 105 °C, 110 °C, 115 °C, 120 °C and 130 °C) the solution
with a MILP gap of 0.0513 % was achieved in 800 s resulting in an overall cost of
292,565.9e.

In Figure 6.10 c) and Figure 6.11 c) we can observe that the electric output of the CHP
in the morning hours from hour 0 to hour 6 shows the same volatility as with the
global optimization in Section 6.1.2. This is caused by the same reason: The marginal
cost of production is above the electricity price in one hour whereas in the next it
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Figure 6.10: Results with exact timing for 1 CHP scenario with hybrid discrete-continuous time model.
a) Supply temperature at CHP. b) Thermal output of CHP in comparison to thermal load.
c) Electric output of CHP, electric load and interactions with electricity market.
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Figure 6.11: Hourly averaged results for 1 CHP scenario with hybrid discrete-continuous time model.
a) Supply temperature at CHP. b) Thermal output of CHP in comparison to thermal load.
c) Electric output of CHP, electric load and interactions with electricity market.
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is below. The CHP runs with maximum possible electric output after hour 6 where
generation of electricity becomes profitable for the CHP. Looking at Figures 6.10 a),
6.10 b), 6.11 a) and 6.11 b) the CHP runs with low supply temperatures and thus re-
duced thermal output around hour 8 and hour 18. As explained in Section 6.1.2, this
allows to increase the electric output during these hours of high electricity price. Ac-
cordingly, the heating grid is charged with thermal energy by the supply temperature
increases in hours 1 to 3 and hour 11 where electricity prices are lower than dur-
ing the discharging times. This price difference allows to create economic benefits.
As thermal losses are not accounted for, the time between charge and discharge of
the heating grid is comparably long. With consideration of losses, this duration will
reduce as every time slot with high supply temperature leads to increased thermal
losses.

To evaluate the accuracy of the hybrid time grid model, we compare the optimization
result q1,t of the thermal energy output of the CHP with the result of a simulation
q̂1,t of the studied case. This simulation uses the node method (Section 2.1.2) with
the optimization result of the supply temperature of the CHP and the thermal load as
input. The comparison shows that the thermal generation of the CHP in the optimiza-
tion result deviates with a root mean square deviation5 of 29.431 from the simulation
result.

Two CHPs case

To integrate CHP2 to the hybrid time grid approach, an energy balance between ther-
mal demand, thermal output of the pipe and thermal generation of CHP2 is added.
As before, eight temperature levels are allowed (90 °C, 95 °C, 100 °C, 105 °C, 110 °C,
115 °C, 120 °C and 130 °C). Figure 6.12 shows the optimization result for the scenario
with two CHPs being achieved in 800 s with an MILP gap of 0.0554 %. The objective
value is 346,490e. Figure 6.13 shows the same results but with hourly averaged values
to enable a direct comparison with the results of the other optimization approaches.

In the morning until hour 6 as well as from hour 11 to hour 17 the supply temperature
of CHP1 is increased to store thermal energy in the pipe. Around hour 8 and hours 18
to 22 the supply temperature is set to its minimum possible level, discharging thermal
energy from the heating grid. Thus, in these hours the thermal output of CHP1
is reduced and its electric output is increased to sell more or buy less electricity at
higher price times. In the morning at hour 7, the operation of both CHPs turns
profitable. Electric output of CHP1 is increased to its maximum possible level and
CHP2 is switched on. In the evening, at hour 23 CHP2 is switched off as electric
demand and electricity prices fall.

5 The root mean square deviation is calculated with
√

∑nt
t=1 (q1,t − q̂1,t)

2 /nt.
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Figure 6.12: Results with exact timing for 2 CHPs scenario with hybrid discrete-continuous time model.
a) Supply temperature at CHP1. b) Thermal output of CHPs in comparison to thermal load.
c) Electric output of CHPs, electric load and interactions with electricity market.
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Figure 6.13: Hourly averaged results for 2 CHPs scenario with hybrid discrete-continuous time model.
a) Supply temperature at CHP1. b) Thermal output of CHPs in comparison to thermal load.
c) Electric output of CHPs, electric load and interactions with electricity market.
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In comparison to a simulation using the node method (Section 2.1.2) with the opti-
mization results of supply temperature of CHP1, thermal output of CHP2 and thermal
load as input, the thermal output of CHP1 in the optimization result has a root mean
square deviation of 32.850.

6.1.4 Optimization results with delay matrix approach

In the following, the case study results of an optimization of the heating grids de-
scribed in Section 6.1.1 with the delay matrix approach introduced in Chapter 5 are
presented. As in the previous section, thermal losses are not considered being of
minor importance for the studied cases.

The computations for the delay matrix approach were run on the setup used in the
previous section (an Intel Silver 4110 CPU with 2.10 GHz and 16 GB RAM using
Julia/JuMP [Ran16] for modeling and Gurobi [Gur16] as MILP solver).

One CHP case

Figure 6.14 shows the results of the delay matrix approach for the one CHP case being
achieved in 0.035 s leading to an overall cost of 291,173.4e.

The electric output of the CHP presented in Figure 6.14 c) alternates between high
and low electric output in the early morning hours until hour 6. As for the previous
optimization results this is caused by an electricity market price swinging around the
marginal production cost. In Figure 6.14 b) there is a thermal discharge (CHP output
below load) of the grid around hours 4, 8, 12 and 18, being the high price hours.
The grid is charged (CHP output above load) around hours 2, 6, 11 and 13, where
electricity prices are lower. This charging and discharging is reasonable as a lower
thermal output allows the CHP to increase electric output (see Figure 2.1) and, thus,
revenues are increased as electric production is moved to higher price times. This load
shifting can as well be observed in Figure 6.14 a) showing the supply temperature
at the CHP. The supply temperature is increased to charge the grid and decreased
to discharge the grid. At the end of the time horizon after the last price peaks, the
supply temperature remains at the lowest level, discharging the thermal energy stored
in the heating grid completely. This is reasonable as the model formulation does not
account for thermal energy stored in the heating grid at the end of the time horizon.

A root mean square deviation of 49.159 for the thermal output of the CHP is obtained
when comparing the optimization result to a simulation that uses the node method
(Section 2.1.2). The inputs of this simulation are the optimization result of the supply
temperature of the CHP and the thermal load profile.
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Figure 6.14: Results for 1 CHP scenario with delay matrix approach. a) Supply temperature at CHP.
b) Thermal output of CHP in comparison to thermal load. c) Electric output of CHP, elec-
tric load and interactions with electricity market.
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Two CHPs case

The optimization result for the two CHPs scenario as introduced in Section 6.1.1 using
the delay matrix approach (Section 5) is shown in Figure 6.15. This result with an
objective value of 349,537e was achieved in 111 s having a MILP gap of 0.0044 %.

Comparing Figure 6.15 with the results for the one CHP scenario in Figure 6.14 we
observe a similar pattern of the supply temperature: Before hours 8, 12 and 18 the
supply temperature of CHP1 is increased to store thermal energy in the heating grid,
whereas at times 8 to 10, 12 and starting in hour 18 the supply temperature of CHP1
drops back to its original level, discharging the heating grid. In these periods of
discharging thermal energy from the heating grid the thermal output of CHP1 can
be reduced and its electric output can thus be increased (see Figure 2.1). The overall
benefit is increased by this charging pattern increasing the electricity output at higher
price times. For CHP2 there is a linear connection between electric and heat output.
Thus, it runs at all times when it is profitable to sell electricity to the market, except
in hour 11 where as much energy as possible should be stored in the heating grid by
CHP1. In hour 7 the electricity price jumps above the cost of production of CHP1 and,
thus, it increases electric output to its maximum level.

Running a simulation of the heating grid case using the node method (Section 2.1.2)
with optimization results of supply temperature of CHP1, thermal output of CHP2
and thermal load as input, results in a root mean square deviation of 51.160 for the
thermal generation of CHP1 between simulation and optimization result.

6.1.5 Reference case: sequential approach

As a reference case we use the approach proposed in [SLM+17] to compare its per-
formance with the approaches of this thesis. In this work, the optimization problem
is split into, first, a MILP unit commitment problem that does not consider thermal
dynamics of the heating grid and, second, a NLP economic dispatch problem with
fixed unit commitment but considering the thermal dynamics of the grid [SLM+17].
For the unit commitment problem the formulation presented in Section 2.1.1 is used.
As our cost function is linear without quadratic terms we get a MILP formulation
of the unit commitment problem in comparison to [SLM+17] using a quadratic cost
function. For the economic dispatch problem with fixed unit commitment the primal
problems of the global optimization presented in Section 3.2 are used. Like for the
global optimization, thermal losses are considered in the NLPs.

The reference case is run on an Intel Xeon CPU E5-2650 v3 with 2.3 GHz, 16 cores and
16 GB RAM using the modeling environment Julia/JuMP [Ran16] with Gurobi 8.1
[Gur16] as solver for the MILPs and IPOPT [WB06] as local solver for the NLPs.
This setup was used for the global optimization case study, too. The results for the
sequential approach are achieved in at most 30 min. Major solution time is required
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Figure 6.15: Results for 2 CHPs scenario with delay matrix approach. a) Supply temperature at CHP1.
b) Thermal output of CHPs in comparison to thermal load. c) Electric output of CHPs, electric
load and interactions with electricity market.
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for the NLPs. This is significantly longer than the NLP solver runs in the global
optimization scheme due to worse initial values. In the global optimization scheme,
the initial values are taken from the results of the dual solution and, hence, are closer
to the solutions than with standard initial values. This case study for the reference
case is published in [MLH19].

One CHP case

If only one CHP is available, it needs to run throughout the full optimization horizon
as the CHP is the only source to supply the heat demand. Thus, the CHP is always
running and solving a unit commitment optimization is obsolete. The economic dis-
patch problem is run directly without any special initial conditions for IPOPT [WB06].
The results for the optimization runs for the finite-volumes model (Model 3.2) as well
as the hybrid pipe model (Section 3.3) approach the same solutions as the correspond-
ing global optimization scheme using those models as primal problems.

Accordingly, Figure 6.6 and Figure 6.7 showing the result of the global optimization,
display the results of the reference case using the corresponding primal problem as
economic dispatch problem, too. Running only the economic dispatch NLP takes
about 2 to 3 seconds.

Two CHPs case

For the scenario with two CHPs the sequential approach following [SLM+17] does
not yield a feasible solution. The MILP unit commitment problem solves without
any issues, but when running the economic dispatch NLPs, the local solver (IPOPT
[WB06]) always converges to an infeasible solution for both NLP formulations, the
finite-volumes model (Model 3.2) as well as the hybrid pipe model (Model 3.3). This
is most likely caused by the start values of IPOPT: As the unit commitment problem
does not compute any suitable starting values for the economic dispatch problem be-
sides the commitment status, standard start values are taken. In contrast, the primal
problems in the global optimization are initialized with the results of the dual prob-
lem. Hence, this issue does not arise in the cases presented in Section 6.1.2 which use
multiparametric delay modeling with the same non-linear model formulations.

This situation might improve with an algorithm finding better start values. However,
the result will differ from the results of the global optimization, as the commitment
status of CHP2 after the unit commitment optimization in the sequential approach is
different from the commitment status of CHP2 achieved in the global optimization
runs as shown in Figure 6.16.

To further compare the sequential approach with the global optimization algorithm
an additional case study with both CHPs at the location of CHP1 is run. The other pa-
rameters of the two CHP scenario remain. Thus, CHP1 and CHP2 are jointly feeding
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Figure 6.16: Comparison of unit commitment of CHP2 between reference case and global optimization
approaches

into the 10 km pipe, which transports the thermal energy to the load area. Here, for
the global optimization with both primal models, we get the same unit commitment
decision as with the unit commitment in the sequential approach. In addition, with
the finite-volumes model in the sequential approach the economic dispatch converges
to the same overall solution as the global optimization scheme with the finite-volumes
model as primal problem. However, when using the hybrid pipe model for economic
dispatch in the sequential approach and as primal problem in the global optimization
scheme, the algorithms result in different solutions. As the NLPs are only solved with
a local solver, this is caused by the different starting values for the optimization of the
hybrid pipe model in the sequential scheme and in the global optimization scheme.

6.1.6 Discussion of results and comparison of modeling approaches

Overall, the optimization results of the different approaches show several similarities:
Electric generation of the CHP turns profitable in hour 6 in the one CHP case such that
its electric output is increased to the maximum possible value for the current thermal
output. In the two CHPs case the electricity generation becomes profitable one hour
later in hour 7. In the one CHP scenarios there is a large fluctuation of the electric
generation in the early morning hours as the electricity price is swinging around the
marginal cost independent of the optimization approach.

Furthermore, in all results, the thermal output of the coal fired power plant is reduced
around high price hours (hour 8 and hour 18) to allow a higher output of electric en-
ergy. Here, the thermal load is supplied by thermal energy stored in the heating grid
by an increase of supply temperature in previous time steps. The supply temperature
is decreased to its minimum level in order to discharge the thermal energy stored in
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the heating grid. The gas fired power plant in contrast is run in all higher price hours
at maximum capacity as electric and heat output are directly linked.

With all methods, the optimizer pushes the supply temperature at the CHP to its
boundaries leading to large supply temperature changes. In real-world situations
large variations in temperature are usually not wanted as larger variations in temper-
ature cause higher changes in volume requiring bigger buffer tanks and can increase
material fatigue.

Table 6.2: Results overview for one CHP case

Delay matrix Hybrid time
grid

Global:
finite-
volumes

Global:
hybrid pipe

Temperatures in °C 60 to 130
(Continu-
ous)

90, 95, 100,
105, 110,
115, 120, 130

60 to 130
(Continuous)

60 to 130
(Continu-
ous)

Objective in e 291,173.4 292,565.9 291,235.7 294,386.0
Lower Bound in e
(global)

- - 288,371.3 288,265.1

Solution Time in s 0.035 800 146.19 125.00
MILP Gap in % 0 0.0513 - -
Global Gap in % - - 1.0 2.1
Number of Vari-
ables (MILP)

403 Cont.
124 Int.

3,481 Cont.
1,319 Int.

8,738 Cont.
11,026 Int.

19,764 Cont.
11,026 Int.

Table 6.3: Results overview for two CHPs case

Delay matrix Hybrid time
grid

Global:
finite-
volumes

Global:
hybrid pipe

Temperatures in °C 60 to 130
(Continu-
ous)

90, 95, 100,
105, 110,
115, 120, 130

60 to 130
(Continuous)

60 to 130
(Continu-
ous)

Objective in e 349,537 346,490 348,252.9 351,112.0
Lower Bound in e
(global)

- - 330,871.1 334,785.9

Solution Time in s 111 800 1,637.0 2,907.1
MILP Gap in % 0.0044 0.0554 - -
Global Gap in % - - 4.99 4.6
Number of Vari-
ables (MILP)

506 Cont.
447 Int.

3,581 Cont.
1,462 Int.

9,489 Cont.
11,676 Int.

11,337 Cont.
15,076 Int.
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Comparing the results of the different methods for both cases studied in Table 6.2 and
Table 6.3, we can observe that the objective values have the same order of magnitude
and vary comparably little. This shows, that thermal losses, considered in the global
optimization approaches, but not considered in the delay matrix and the hybrid time
grid approach, are of minor importance for the studied scenarios with one pipe with
a large diameter. The lower bounds achieved with the global optimization approaches
are comparable, too. For the one CHP case, the global optimization approaches show
very good performance. For the two CHPs case, solving the dual problem becomes
a lot more challenging such that solution time and optimality gap increase. Both
however stay at a reasonable level.

Assuming delay times are given, the delay matrix approach results in the smallest
optimization model offering the fastest solution times. However, the extension to a
second CHP presented in Section 5.3.2 increases the solution time by multiple orders
of magnitude as it introduces many binary variables. Nevertheless, it still remains the
fastest solver for the two CHPs case. Problem size as well as solution times for the
hybrid time grid model are larger but still within an acceptable range for day ahead
planning problems. As this approach offers an exact modeling of the transport delays,
it produces results closer to the real-world situation as the delay matrix approach.
However, possible temperatures are limited to a discrete set of temperature levels.
For the case studies, steps of 5 K are assumed which should be accurate enough
for most real-world applications. This was validated with a simulation model: To
evaluate solution accuracy the optimization result of the thermal output of CHP1 was
compared with a detailed simulation using the optimized supply temperature profile
as input. The root mean square deviation between optimization result and detailed
simulation reduces from 49.159 to 29.431 for the one CHP case and from 51.160 to
32.850 for the two CHPs case, if the hybrid time grid model is used instead of the
delay matrix approach.

The temperature dynamics in the primal solutions using the finite-volumes model in
the global optimization scheme are not completely realistic, as the outflow tempera-
ture of the pipe varies less than the inflow temperature due to the smoothing effects
of the chosen models. The hybrid pipe model leads to a more accurate representa-
tion of the transport delay and to a larger objective value as shown in Table 6.2 and
Table 6.3. This is reasonable as a higher variability of the CHP supply temperature
allows to reach a better objective value of the primal problems with the finite-volumes
model.

The sizes of the dual problems in the global optimization algorithm strongly depend
on the number of iterations the algorithm needs to achieve a good solution. Solution
times for the one CHP case are competitive in comparison to the hybrid time grid
approach. The solution gap varies from 1.0 % to 2.1 % depending on the chosen
primal problem being achieved in less than 2.5 min. However, for the two CHPs case
solution times increase significantly even though the accepted global optimality gap
is increased to 5 %. About 30 min and 50 min are needed to reach this gap with the
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different primal problems. If the MILP solver time limit for solving the lower bound
problem is increased, the global optimality gap can be closed further. Nevertheless,
starting from iteration 3 the MILP solver struggles to find a feasible solution for the
lower bound problem. Thus, warm-starting the solving of the lower bound problem
might improve this situation. Especially when larger heating grids shall be optimized,
such improvements to the algorithm are required.

A unit commitment optimization using the basic MILP model presented in Section
2.1.1 not considering neither thermal dynamics of the heating grid nor thermal losses
reaches an objective value of 297,788.6e for the one CHP case and an objective value
of 355,059.0e for the two CHPs case. Thus, heating grid operators could achieve cost
savings between about 3,500e and 6,700e per day translating to relative savings of
about 1.2 % to 3.3 % using the heating grid as thermal storage.

6.2 Real-world case study

One of the goals of this thesis is to find optimization approaches for district heating
grids which can directly be applied to real-world cases. As the delay matrix approach
introduced in Chapter 5 enables a fast and efficient optimization of large grids, it is
applied to the district heating grid of the city of Kiel, Germany in this section. This
real-world case study is published in [MKV+19].

All calculations of this real-world case study are run on an Intel Xeon v2 with 2.6 GHz
(2 CPUs) and 4 GB RAM using the modeling environment Julia/JuMP [Ran16] and
MILP solver Gurobi [Gur16].

6.2.1 The district heating grid of Kiel

Kiel is a city at the German coast of the Baltic Sea with about 250,000 inhabitants.
The district heating grid of Kiel has a total pipe length of about 370 km serving about
7,000 building connection points [Sta15b]. With this size it is a very representative
large heating grid (defined as grids above 100 km length) being only slightly longer
than the average large heating grid in Germany [SDEW12]. The largest heat supplier
in Kiel was a coal fired power plant with about 354 MW electric output which was
replaced by a gas engine plant with twenty gas combustion engines each having an
electric and heat output of about 10 MW in 2019 [Sta15b, Sta16].

For this case study, 37 days in the periods January to March and November to Decem-
ber are selected from a full year of measurement data as in [MKV+19]. These days
have been chosen, as here the coal fired power plant supplies almost all heat demand
in the heating grid and, thus, flow directions are comparably stable. Therefore, it is
possible to identify a stable delay matrix. Based on measurement availability, several
consumption zones are introduced which split the demand of the heating grid among
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them. For each consumption zone, its share of the overall consumption as well as the
transport delay from the generation site are calculated allowing to create the delay
matrix M[l, t] introduced in Table 5.1 of Chapter 5. The transport time from genera-
tion site to the main consumption area including the city center is about one to two
hours for the studied days. Usually, all consumption areas in the heating grid are
reached by the hot water after at most 8 hours.

The formulation introduced in Section 5.3.1 is used to consider the additional heat
losses caused by the supply temperature increases chosen in the optimization. The
heat loss factor αloss is calculated using topology information giving installed lengths
and diameters of all pipes in the heating grid in combination with data sheet in-
formation on the heat loss coefficient of the pipes. For some (mostly older) pipes,
which have been insulated during the installation works, no data sheet information
is available. Thus, the heat loss coefficient largely varies and is worse than the heat
loss coefficient of pre-insulated pipes. Based on consultations with Stadtwerke Kiel,
the heat loss coefficient of those pipes is assumed to be the double of the heat loss
coefficient of a pre-insulated pipe with the same diameter.

For every day considered, prices from the German/Austrian price zone of the EPEX
spot day ahead market [EPE] are taken as electricity prices for sales and with a minor
offset for purchases. In the optimization these hourly varying prices are considered
as parameters.

Two different generation scenarios are used, which are inspired by past and new main
generators in the heating grid of Kiel, but do not reflect the exact real-world size and
setting. As in both scenarios only one CHP supplies the full demand, the thermal
output of the original CHPs is increased by adjusting size or number of units. In the
first scenario, the district heating grid is supplied by a coal fired power plant with an
extraction condensing turbine, 130 °C maximum supply temperature and maximum
output of 300 MW electric and 300 MW thermal power. In part-load operation, only a
minor drop of efficiency is assumed. As an extraction condensing turbine is installed,
electric and thermal output are linked with the feasible operation region shown in
Figure 2.1.

In the second generation scenario the district heating grid is supplied by a gas engine
plant consisting of thirty gas combustion engines each having a maximum thermal
output of 10 MW and a maximum electric output of 10 MW. The gas combustion
engines supply heat at a maximum temperature of 115 °C having a linear power-
to-heat ratio. In part-load operation, a linear efficiency drop is assumed, having the
highest efficiency at maximum output. The start up cost of the gas engines is assumed
to be low. An overview on the different parameters of the generation scenarios used
in the real-world case study is given in Table 6.4.
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Table 6.4: Generation scenarios in real-world case study

Coal fired plant Gas engine plant

Number of units 1 30
Electric output per unit in MW ≤ 300 ≤ 10
Thermal output per unit in MW ≤ 300 ≤ 10
Supply temperature in °C ≤ 130 ≤ 115
Part-load efficiency drop small big
Power to heat ratio see Figure 2.1 constant

6.2.2 Results for a December day

To show detailed results for one day, the delay matrix approach introduced in Section
5 is run for a December day for both generation scenarios presented in the previous
section. Using measurement data of the district heating grid of Kiel from this date,
the overall thermal energy consumption profile as well as the share of consumption
of the different consumption zones and the time delay from thermal generation to
these consumption zones are calculated. This information is used to parameterize the
delay matrix M[l, t]. All electric energy produced by the CHPs is sold at the energy
market. Figure 6.17 shows the relative price profile for this December day scaled with
the price peak of the day.
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Figure 6.17: Relative electricity price for a December day

It is assumed that the supply temperature before optimization is at the minimum
possible temperature according to the technical connection conditions of the heating
grid. Thus, the supply temperature profile before optimization is calculated based on
the outdoor air temperature. For the second generation scenario with the gas engine
plant it is additionally assumed that a temperature increase cannot exceed 10 K.
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Figure 6.18: Result of real-word case study for coal fired power plant (one day). a) Supply temperature
increases. b) Thermal energy stored in the district heating grid with supply temperature vari-
ations and additional thermal losses caused by supply temperature increase.

The optimization result for the first generation scenario consisting of the coal fired
power plant with extraction condensing turbine is shown in Figure 6.18. Thermal
energy is stored in the heating grid at hour 2, hours 6 to 7 and hours 15 to 16 with
an increase of supply temperature at the producer. These periods are followed by a
discharge of thermal energy from the heating grid. During this discharging phase, the
thermal output of the coal fired CHP is reduced enabling a higher output of electricity
of the CHP according to the feasible operation region of this CHP (Figure 2.1). Thus,
the supply temperature increases to charge the heating grid before peaks of electricity
price around hours 8 and 18. During these peak times the thermal energy stored
within the heating grid is used to supply the thermal demand and the CHP can
increase its electric output. Hence, electric generation of the CHP is moved to hours
where higher revenues are possible. The increase of thermal losses is comparably low.
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Nevertheless, it reduces overall profits of storing thermal energy in the heating grid.
This optimization using the delay matrix model finished in less than 5 ms increasing
the overall profit of operations by several hundred Euros (~0.2 %) in comparison to a
scenario without thermal storage.
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Figure 6.19: Result of real-word case study for gas engine plant (one day). a) Supply temperature increases.
b) Thermal energy stored in the district heating grid with supply temperature variations and
additional thermal losses caused by supply temperature increase.

The result for the second generation scenario consisting of a gas engine plant with 30
individual gas combustion engines is shown in Figure 6.19. In contrast to the coal fired
plant, output of thermal energy increases with output of electricity for the gas engine
plant. Hence, the optimizer increases supply temperature at high price times around
hours 8 and 18 storing thermal energy in the grid and increasing power output of the
CHP. However, there are many other variations in supply temperature which cannot
be explained with the volatile energy price. They are caused by the drop of efficiency
in part-load operations. As it is more efficient to run a gas combustion engine at
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maximum speed, the optimizer pushes to run gas units at maximum output if they
are running. But as the thermal demand is usually not at an integer multiplier of
the gas engine size, the thermal storage capacity of the heating grid is used to buffer
the differences. Thermal losses are less than for the coal fired power plant case as
the temperature increases are smaller. Despite these rather small supply temperature
increases, profits for the gas engine plant case are higher than for the coal fired power
plant case, achieving savings of several thousand Euros in this day (~2.5 % of overall
generation cost). Looking at the end of the optimization horizon it must be noted
that there is a rather late big supply temperature increase in hour 22, such that the
heating grid is not fully discharged at the end of the optimization horizon. Thus, if
this thermal energy could be used e.g. extending the optimization horizon, savings
might increase further. As more integer variables are involved, the optimization of
the gas engine plant case takes 1.7 s which is several orders of magnitude longer than
the optimization of the coal fired power plant case. Nevertheless, this remains an
acceptable solution time.

6.2.3 Evaluation of economic potential

To evaluate the economic potential of using the heating grid as thermal storage, the 37
days with feasible measurement data of the heating grid of the city of Kiel are grouped
into several scenarios. Grouping by different optimization horizons we get

• 37 scenarios for a one day (24 h) horizon,

• 27 scenarios for a two day (48 h) horizon,

• 19 scenarios for a three day (72 h) horizon and

• 14 scenarios for a four day (96 h) horizon.

Note that the scenarios are partly overlapping for multi day scenarios. Several cases
are studied running optimizations for both generation setups presented in Section 6.2.1
and for all scenarios mentioned above.

For the coal fired power plant the following four cases are run with differences in
the supply temperature level assumed before optimization and in consideration of
thermal losses.

• minimum supply temperature without thermal losses

• minimum supply temperature with thermal losses

• measured supply temperature without thermal losses

• measured supply temperature with thermal losses
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The minimum supply temperature is calculated with the outdoor air temperature ac-
cording to the technical connection conditions of the heating grid of Kiel [Sta15a].
Measured supply temperature cases take the actual measurement of supply tempera-
ture at the CHP in the scenario as optimization input.

For the gas engine plant three cases are studied. All of them consider thermal losses
and are using the minimum supply temperature calculated with the outdoor air tem-
perature according to the technical connection conditions of the heating grid of Kiel
[Sta15a]. It is not feasible to use the measured temperature profiles as they often are
above the maximum supply temperature of the gas engine plant. The cases studied
for the gas engine plant are:

• original part-load efficiency

• higher part-load efficiency

• original part-load efficiency and limitation of supply temperature increase to 10 K

Coal fired power plant

An overview on the case study results for the coal fired power plant is given in Fig-
ure 6.20. Comparing these results, three major influences on the relative savings of
using the heating grid as thermal storage in comparison to a scenario without thermal
storage can be identified.

First, it can be noted that increasing the optimization horizon increases the average
and decreases the variance of the savings for all cases. With a longer time horizon
the variance in the electricity prices between the scenarios decrease and, accordingly,
the variance of the relative savings decreases: If there is one very favorable electricity
price increase or decrease in a day, its impact is reduced, if not only this day, but
also the neighboring days without such a favorable electricity price development are
considered. The increase of the average and median relative savings with increasing
time horizon is most likely caused by inefficient usage of the thermal storage capa-
bility of the heating grid at the end of the optimization horizon: If the heating grid
is not fully discharged at the end of the optimization horizon, the remaining thermal
energy is considered lost in the optimization. Thus, storing energy at the end of the
optimization horizon is less interesting and changes in electricity price at the end of
the optimization horizon cannot be used efficiently. Having an optimization horizon
spanning multiple days allows to leverage the variations of electricity price in the
evening for all but the last day without limitations. Thus, the negative impact of this
problem decreases.

Second, it can be observed that the cases with minimum supply temperature are
creating higher benefits than the cases with measured supply temperature. As the
measured supply temperature always lies above the minimum supply temperature,
the maximum increase of supply temperature before reaching the technical limitations
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Figure 6.20: Relative savings achieved in real-world case study for the coal fired power plant for different
time horizons and cases: minimum supply temperature without thermal losses (blue) and with
thermal losses (gray); measured supply temperature without thermal losses (orange) and with
thermal losses (yellow). The boxes mark the lower and upper quartiles, hence 50 % of the data
lies inside the box. The crosses mark the average and the line inside the box the median of
the data. The whiskers show the variability of data within at most a distance from lower and
upper quartile of 1.5 times the inner quartile range. Points denote outliers being data outside
this range.

of the coal fired power plant is smaller. The thermal energy storage capacity of the
heating grid is proportional to the possible increase of supply temperature. Thus,
having a higher supply temperature before the optimization, reduces the thermal
storage capacity of the heating grid and, thus, less savings can be achieved.

Third, considering heat losses reduces the economic benefits. This connection is ex-
pected, as considering heat losses requires additional thermal generation increasing
cost without increasing revenues. As can be seen in the one day example in Sec-
tion 6.2.2, temperature increases in the coal fired power plant case can be high (up
to 30 K). Thus, the increase of thermal losses caused by this temperature increase re-
duces the relative savings. Thermal losses induced by temperature increases play an
important role for the considered heating grid in the city of Kiel, as the temperature
increases reach all pipes in the system, even the very small ones connecting single
houses. Hence, the surface of the heating grid network is very large in comparison to
its volume. For heating grids with only larger pipes the importance of thermal losses
is lower. The same applies to heating grids where the temperature in large pipes and
small pipes is decoupled. Here the storing of thermal energy can be limited to the
larger pipes where temperature increases lead to smaller thermal losses than in small
pipes with high surface to volume ratio.
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The solution times for all scenarios with the coal fired power plant are extremely fast,
never exceeding 50 ms.

Gas engine plant

Figure 6.21 shows an overview on achievable relative savings based on different sce-
narios and cases for the gas engine plant. Only cases considering thermal losses and
assuming the minimum supply temperature as pre-optimization supply temperature
are calculated for the gas engine plant. A similar trend as for the coal fired generation
can be observed regarding an increase of time horizon: In scenarios with a longer time
horizon, the average and median achieved relative savings increase and the variance
of the relative savings decrease. However, the second effect is less important, as for
the gas engine plant major savings are achieved running the combustion engines at
maximum efficiency rather than shifting generation based an varying energy prices
as discussed for the one day scenario in Section 6.2.2.
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Figure 6.21: Relative savings achieved in real-world case study for gas engine plant for different time hori-
zons and cases: original part-load efficiency (light blue); higher part-load efficiency (green);
original part-load efficiency and maximum temperature increase of 10 K (red). The boxes
mark the lower and upper quartiles, hence 50 % of the data lies inside the box. The crosses
mark the average and the line inside the box the median of the data. The whiskers show the
variability of data within at most a distance from lower and upper quartile of 1.5 times the
inner quartile range. Points denote outliers being data outside this range.

This implication, that the main benefits for the gas engine plant scenarios are drawn
from running the individual gas units at maximum efficiency, is supported if the cases
with original part-load efficiency and higher part-load efficiency are compared. The
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achieved benefits for the gas engine plant with higher part-load efficiency are signif-
icantly smaller than the relative savings achieved with original part-load efficiency.
Thus, for the gas engine plant cases using all running units at maximum efficiency is
the major reason for the savings generated.

In the third case studied for the gas engine plant, the temperature increase was lim-
ited to 10 K. Here, the achieved relative savings are only slightly reduced. Thus, the
temperature increases required to achieve benefits with the gas engine plant are com-
parably small and a lot less important than the temperature increases calculated for
the coal fired power plant. This is supported by the results for one example day dis-
cussed in Section 6.2.2. Despite this fact, the savings generated using the heating grid
as a thermal storage with the gas engine plant are importantly higher than the savings
generated with the coal fired power plant shown in Figure 6.20. This is remarkable as
thermal losses are considered for all gas engine scenarios. The major reason for this
is most likely that the coal fired plant can generate benefits only by shifting genera-
tion between different price time slots, which requires a rather large thermal storage.
The gas engine CHP can additionally generate savings by buffering thermal energy to
run its units at maximum efficiency if they run, which requires less thermal storage.
The gas engine plant has also a more direct link between thermal and electric output
than the coal fired CHP. Hence, changes in thermal output of the assumed gas engine
plant have stronger influence on its electric output than for the coal fired power plant.
Thus, smaller changes in thermal generation are required to achieve the same change
in electric output.

Note that part-load efficiencies and generation cost of the gas engine plant and the
coal fired power plant are estimated. Real-world behavior of a gas engine plant or a
coal fired power plant might vary.

Finally, in Figure 6.21 it can be noted that for the 24 h and 48 h scenarios there
are always some scenarios where no benefits can be achieved at all. This can be
explained by Figure 6.22 which shows that the days not achieving any benefits are
days with very low ambient air temperatures. At low ambient air temperatures the
heating grid must be supplied with high supply temperatures (at least 115 °C for
ambient air temperatures below -5 °C according to the technical connection conditions
[Sta15a]). Hence, there is no room for a temperature increase as the gas engine plant
can only produce up to 115 °C and no thermal energy can be stored in the heating
grid. Thus, the energy storage capabilities of the heating grid can mainly achieve
interesting economic savings at average ambient air temperatures above 0 °C.

Solution times for the scenarios with the gas engine plant are slower than optimiza-
tions for the scenarios with the coal fired power plant, as more integer variables rep-
resenting the commitment status of the individual gas engines are involved. For the
scenarios and cases presented in this section they are between 1 s for the 24 h scenar-
ios and reach up to 100 s being the MILP solver time limit for some of the 72 h and
96 h scenarios.
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Figure 6.22: Dependency of relative savings for the gas engine plant on daily average
ambient air temperatures for scenarios with 24 h horizon

6.3 Summary of chapter

This chapter contains the evaluation of the methods developed in this thesis. In Sec-
tion 6.1 all optimization methods developed in this thesis were compared using two
small test scenarios: one with one CHP and one with two CHPs. The delay matrix
approach (Chapter 5) proves its competitiveness being the fastest optimization model
in all studied cases, very often providing a solution in less than a second. Solving
the hybrid time grid model (Chapter 4) takes longer, but solution times stay within
an acceptable range for a day ahead planning problem being at most 10 minutes.
Comparing the optimization result with a simulation using the optimization result as
input, the results of the hybrid time grid model show a higher precision than the re-
sults using the delay matrix approach. This is expected as the hybrid time grid model
allows an accurate representation of the time delay.

The global optimization approach (Chapter 3) was run using both introduced primal
problems. Solution times of the global optimization approach are competitive only
for the one CHP case. For the two CHPs case, solution times increase to 30 min and
50 min. The same applies to the global optimality gap achieved: for the one CHP
case gaps of 1 % and 2.1 % are possible, whereas for the two CHPs case gaps of about
5 % are achieved. Thus, increasing the size of the studied heating grid increases the
computational effort drastically. The objective value with the finite-volumes model as
primal problem is always slightly smaller than the objective value with the hybrid pipe
model as primal problem. This can be explained by the less accurate representation
of the time delay in the finite-volumes model: As there is a smoothing of temperature
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introduced by the finite-volumes, the temperature at the CHP can vary more than with
the hybrid pipe model (sometimes even to values not possible in real-world). Thus,
variations in generation are larger allowing to create more benefits. In addition to the
approaches presented in this thesis, the sequential approach proposed in [SLM+17]
was run for both studied cases. This method reaches the same result as the global
optimization approaches for the one CHP case, but does not succeed in delivering
a solution for the two CHPs case. Overall, all approaches give comparable results,
being slightly above the calculated global lower bounds.

In Section 6.2 the delay matrix approach (Chapter 5) was applied in a real-world case
study using measurement data from the heating grid of the city of Kiel. The delay
matrix was created using transport delays to and share of consumption of load areas,
being extracted from this measurement data. A thermal loss factor was identified
using grid topology and pipe data sheet information. Two different generation cases
were considered: a coal fired power plant with extraction condensing turbine and a
gas engine plant consisting of 30 gas engines. Different scenarios were used based
on the real-world measurement data of 37 days in the periods January to March and
November to December. All results were compared with an optimization not consid-
ering the storage capabilities of the heating grid and corresponding relative savings
were calculated. After the presentation of results for one day in December in Sec-
tion 6.2.2, a summary of all studied scenarios and cases was presented in Section 6.2.3.
Several influences on the achievable savings using the heating grid as a storage have
been identified:

• A longer optimization horizon allows higher savings, as inefficiencies at the end of
the optimization horizon occur less often.

• Ambient air temperature has an important influence on achievable savings, because
no increases in supply temperature are possible when the heating grid operates
close to full load.

• Heat losses decrease the achievable savings. If smaller pipes are decoupled from
large pipes (with heat exchangers), this effect can be reduced.

• Shifting load/generation between time slots requires a large amount of thermal
storage, hence, temperature variations and the influence of thermal losses are big.

• Using the storage capacity to run plants at maximum efficiency requires less ther-
mal storage. Thus, temperature variations are smaller, thermal losses are less im-
portant and savings are higher.

All in all, the delay matrix approach proved to be capable to optimize real-world
heating grids. Optimization times stayed in an acceptable range mostly being solved
in less than a second. Only few larger scenarios with longer optimization horizon
took up to 100 s to solve. The resulting savings are up to 6 % or a few thousand
Euros per day and, thus, could easily reach more than 180,000e per winter season
(assuming average savings of 1,000e per day for half a year). However, they are
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dependent on the grid topology as well as on the generation setup. Hence, no general
recommendation on using the heating grid as thermal energy storage can be given
and an analysis of generation setup and grid topology is required to identify saving
potentials.





7 Conclusions

With increasing share of renewable power generation in electric grids, conventional
generation needs to become more and more flexible to react to fluctuating renewable
feed in and volatile electricity prices. As heat demand in heating grids is usually not
flexible, CHPs are facing major challenges. One way to enable a more flexible oper-
ation of CHPs is the installation of thermal storage tanks. A promising alternative,
that avoids installation effort and investment cost, could be to directly use the abil-
ity of the thermal dynamics of the heating grid to store thermal energy. However,
considering the thermal dynamics of a heating grid in operations planning of CHPs
is complex due to bilinear terms and a variable-dependent time delay. Several opti-
mization algorithms in literature address this non-convex optimization problem, but
no approach reaches the global optimum. In addition, such optimization of energy
flows considering heating grid dynamics is not widely used in practice.

Multiparametric delay modeling presented in Chapter 3 is the first optimization al-
gorithm proving global optimality of its solution. It introduces a new outer approxi-
mation of the variable-dependent time delay which is formulated as MILP problem.
Thus, it can be solved with off-the-shelf solvers. In combination with models of ther-
mal dynamics from literature sources, this outer approximation is used in a primal-
dual optimization scheme. Using this iterative approach, the solution converges to the
global optimum. In the case studies in Chapter 6 it is shown that for a small heating
grid with one CHP and one load the algorithm finds a solution with a global optimal-
ity gap of 1 % in less than two minutes. However, as soon as problem size increases
(e.g. adding one CHP) solution times increase importantly. Thus, multiparametric de-
lay modeling is a great approach to benchmark other optimization approaches with
respect to global optimality, but without further improvements it is not a suitable
solution for every day operations planning of a heating grid.

To reach a single, very exact model of the thermal dynamics in a heating grid, which
can be used for every day operations planning, the hybrid time grid approach was pre-
sented in Chapter 4. It adapts optimization models originally developed for pipeline
scheduling in the petrochemical industry. To suite the needs of heating grid optimiza-
tion a hybrid discrete-continuous time grid replaces the continuous time grid of the
pipeline scheduling model and discrete temperature levels for the supply tempera-
ture are introduced. This of course limits the choice of supply temperatures, but if
the number of temperature levels is high enough (e.g. every 5 Kelvin) the influence
of this discretization is limited. With these discrete temperature levels and the hybrid
discrete-continuous time grid, a MILP model formulation of the thermal dynamics
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is possible. The resulting MILP optimization model for the full problem setup can
be solved directly with standard solvers. Solutions times in the case studies (Sec-
tion 6.1.3) are acceptable. An extension to heating grids with several interconnected
pipes and reversible flow is possible, as extensions of the underlying scheduling mod-
els for pipeline scheduling already support such pipe networks. However, all pipe pa-
rameters need to be known to correctly parameterize the grid. Thus, the hybrid time
grid approach seems to be very suitable for transport grids with a limited number of
pipes.

For distribution grids with a high number of pipes with often unknown parameters,
a different approach is needed. In comparison to most literature approaches, the
delay matrix approach presented in Chapter 5 does not require a detailed model of
the heating grid. It can be parameterized from measurement data and hence is ideal
for brownfield installations. Only load share of and transport time to consumption
areas are needed. The delay matrix approach enables very fast solution times as it
assumes constant transport delays except for the extension to multiple CHPs. Here,
additional binaries representing the different velocities are introduced, enabling a
variable delay at the cost of slightly increased solution times. Nevertheless, compared
to the other algorithms developed in this thesis it is still very fast as shown in the case
study in Section 6.1. In Section 6.2 the delay matrix approach was applied to a real
world heating grid. To reduce modeling efforts the delay matrix was parameterized
using measurement data. The results show that the delay matrix approach can reduce
operational cost by up to 6 % or several thousand Euros per day which could easily
result in in savings of more than 180,000e for one winter season. The variations of the
savings are dependent on optimization horizon (the longer the better), grid topology
(a few larger pipes are better than many small pipes) and ambient air temperature
(at very low temperatures the heating grid is fully loaded and thermal storage is
not possible). In addition, the solutions in the real world case study were almost all
achieved in less than 1 s. Only few optimization runs took up to 100 s. Thus, the
delay matrix approach is suitable for every day operations planning.

Taken together, this thesis hopefully enables a wider usage of scheduling of CHPs
considering heating grid dynamics in heating grids worldwide to leverage its full
potential of economic and environmental benefits. Besides direct application of the
developed approaches, it might help researchers to improve their algorithms with a
globally optimal benchmark.
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Combined heat and power plants (CHPs) enable an eff icient co-generation of heat and elec-
tricity and thus are crucial for a resource eff icient energy supply. As the share of renewable 
generation is increasing in electric grids, the operation of CHPs gets more and more chal-
lenging. The traditional heat-driven operation of CHPs is not suitable to react to the volatile 
availability of renewable energy, to variable electric demand as well as to fl uctuating elec-
tricity prices. However, fl exible operation of CHPs requires thermal storage. As an alternative 
to dedicated thermal storage tanks, the water inside a heating grid can be used as thermal 
storage if grid dynamics are considered in operations planning. It is very complex to fi nd 
good or, ideally, optimal operation schedules for CHPs when the dynamics of a heating grid 
are included. These dynamics are dominated by a variable-dependent time delay, which re-
sults in a nonconvex problem formulation. Hence, common optimization approaches reach 
their limits and do not fi nd the global optimum when the thermal dynamics of a heating grid 
are considered. This work presents the following new methods to nevertheless fi nd optimal 
schedules for operation of CHPs considering heating grid dynamics: i) the fi rst method solv-
ing problems with variable-dependent time delays to global optimality by proposing a novel 
outer approximation of the pipe outfl ow temperature in a primal-dual global optimization 
scheme, ii) a method introducing a hybrid discrete-continuous time grid and discretized tem-
peratures to enable an accurate representation of the variable-dependent time delays in a 
mixed-integer linear program and iii) an approach allowing a measurement based identifi ca-
tion of the heating grid dynamics that enables an easy application to real world grids. 
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