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Zusammenfassung

Festkörperbatterien mit einer Lithium Metall Elektrode gelten in Bezug
auf die erreichbaren Energiedichten als die nächste Generation in der
Hochenergie-Batterietechnologie. Lithium Metall tendiert jedoch zu
Dendritenwachstum, das ein Zellversagen zur Folge haben kann. Der
Einsatz von Festelektrolyten ist ein vielversprechender Ansatz um die
Lithium Metall Grenzfläche zu stabilisieren, die Mechanismen und die
diesbezüglichen Materialanforderungen sind jedoch bisher weitgehend un-
bekannt. Im Rahmen dieser Arbeit wird ein elektro-chemo-mechanisches
Modell einer binären Festkörperbatterie hergeleitet, um die morphologis-
che Grenzflächenstabilität von Lithium Metall zu analysieren.

Das Modell beinhaltet eine Transporttheorie, welche die Elektrostatik,
den Massentransport und die geometrisch nichtlineare Mechanik, darunter
das Anschwellen des Elektrolyten beschreibt. Die Butler-Volmer Reak-
tionskinetik wird derart verallgemeinert, sodass sie mechanische Span-
nungen an der Grenzfläche berücksichtigt. Zudem wird eine Kinematik
vorgestellt, die die Anlagerungs- und Ablöseprozesse als auch mechanische
Deformationen während des Ladens und Entladens konsistent beschreibt.
Basierend auf der vorgestellten Theorie werden Einflussgrößen auf

die morphologische Stabilität von Polymerelektrolyten untersucht. Die
Ergebnisse dieser Analyse zeigen sowohl einen positiven Zusammenhang
zwischen den mechanischen Eigenschaften und der Stabilität, als auch,
dass bessere Transporteigenschaften die Anforderungen an die Mechanik
reduzieren. Die Resultate numerischer Studien sowie analytischen Be-
trachtungen lassen zudem den Schluss zu, dass Dendritenwachstum ins-
besondere durch inhomogene Grenzflächenwiderstände entsteht.
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Abstract

Solid state batteries with a lithium metal electrode are considered the
next generation of high energy battery technology. Unfortunately, lithium
metal is prone to harmful protrusion or dendrite growth which causes
dangerous cell failure. Although solid state electrolytes have shown a
promising potential to stabilize the interface morphology, a clear under-
standing of the related mechanisms and material requirements is still
missing. Within this work the problem of protrusion growth is tackled by
deriving a novel electro-chemo-mechanical theory tailored for binary solid
state batteries which is then used to discuss the impact of mechanics on
interface stability by extensive numerical studies.

An ion transport theory in finite strain continuum mechanics is devel-
oped that captures electrostatics, component transport and nonlinear
mechanical interaction such as swelling, stress driven diffusion and defor-
mation. An enhanced version of Butler-Volmer reaction kinetics enriched
by the influence of mechanics is carefully derive. Furthermore, a model is
proposed that consistently describes material deposition during charging
and coupled deformation of metal electrode and solid electrolyte.

The comprehensive theory then is used to analyze morphological stabil-
ity for polymer electrolytes. Quasi static simulations reveal not only that
increasing the mechanical stiffness favors interface stability but also that
the stiffness required for stability decreases with increasing transport
properties. The result of a transient numerical study and an analytical
network model show that inhomogeneous interface conductivities are a
likely reason for harmful protrusion growth.
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1 Introduction

1.1 Basics of Lithium Batteries

Batteries are electrochemical storage devices that convert chemical energy
into electric energy. Depending on the type of the electrochemical process
and the materials used, a number of classes of battery storage devices
are distinguished. Usually, one differentiates between primary batteries
in which discharge is possible only once due to irreversible processes,
and secondary batteries which can be operated reversibly in charge and
discharge direction. The sate of the art technology in today’s secondary
batteries is the lithium ion (Li-ion) technology, which dates back to 1970
by Whittingham at Exxon [1]. The first reversible lithium battery was
commercialized in the late 1980s by Moli Energy with a lithium metal
anode, a MoS2 cathode material and a liquid electrolyte [2]. Although
produced in millions, this early attempt of using a lithium metal anode
caused tremendous safety problems, e.g. fire accidents caused by dendrite
formation, and had to be recalled. In 1991, Sony was finally able to
build a reliable Li-ion secondary battery cell by using ionic lithium with
graphite as intercalation material and a liquid electrolyte. The basic
concept of this electrochemical storage device has not been changed since
then. The graphite material has become the quasi standard and the
research focus was shifted to the counter-electrode cathode material.

Recently, batteries with lithium metal anode in combination with solid
state electrolytes obtained much attention and might be the successor of
Li-ion batteries. These solid state batteries (SSB) feature metallic lithium
and solely solid components within the electrochemical cell to increase
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1 Introduction

energy density and safety beyond the classical Li-ion technology with
liquid electrolyte. Furthermore, SSB might pave the way to far-future
technologies such as lithium-sulfur and lithium-air where also elemental
lithium is utilized.

Although this work is mainly motivated by the challenges of the lithium
technology, we emphasize that many ideas can be transfered to alternative
materials such as sodium based batteries.

1.1.1 Fields of Application

The availability of high energy secondary battery systems enables con-
nectivity and electrification in daily life. Over the last decades, consumer
electronics tremendously changed the way we communicate and work.
Forecasts predict that the number of mobile phone users will rise to 4.8
billion people worldwide by 2020 [3]. Thereof, the more sophisticated
smartphones have a share of 60%. This success is closely related to
durable and affordable batteries with high energy densities. Despite the
large amount of devices, the capacity of a standard smartphone in 2018
is quite small with roughly 10 W h, which explains the low fraction in the
extrapolated market share, see Fig. 1.1. The rising market of the Internet
of Things [4] with several billions of small, connected and battery driven
devices will further boost the need for high energy batteries.

As can be seen in Fig. 1.1, most of the predicted battery demand will
arise from the mobility sector and especially the automobile market with
a single vehicle requiring 5 to 15 kW h [5]. Traditional gasoline and diesel
combustion engines exhaust greenhouse gases such as carbonate dioxide
and nitrogen oxides that are known to accelerate climate change and
harm the individual human health. Several countries therefore enforce the
reduction of exhaust emission by subsidizing new environmental friendly
technologies or even by banning cars with high exhaust output from
the streets [6]. A transportation system with an electrified powertrain

2



1.1 Basics of Lithium Batteries

Figure 1.1: The annual battery demand is predicted to increase by 32% per year from
2016 to 2030 according to a recent study by McKinsey [7]. This is strongly driven by
the mobility sector such as battery electric vehicles (BEV).

for motorcycles, cars, buses, trucks and even flying vehicles is therefore
a logical and necessary step into the future of mobility. Political and
economic factors such as oil price development and infrastructure invest-
ments further influence the future of mobility concepts. The requirements
for electrochemical energy storage in transportation systems are high.
The energy density, which is directly related to the driving range, has to
reach critical values, especially because the users are accustomed to the
high driving ranges of fossil fuels with their excellent energy densities,
e.g. gasoline with 1700 W h

kg [2]. For comparison, current Li-ion cells
exhibit an energy density of up to 250 W h

kg and lithium metal batteries
have the potential of the double density with up to 440 W h

kg [2]. Beyond
that, it is mandatory that electrochemical storage devices provide a high
level of safety. Hazards due to uncontrolled chemical reaction within
the battery e.g. due to production faults [8] or accidents [9] have to be
ruled out as far as possible. Other than mobile devices with a life span of
approximately two years, batteries in cars also have to last at least one

3



1 Introduction

decade before their capacity decreases below 80% [5]. Another important
aspect for the acceptance of batteries in transportation devices is fast
charging to enable reasonable waiting times for intermediate recharging
stops. All of that has to be achieved for an affordable price, the major
factor for the attractiveness of an electrified vehicle. Almost all major
automotive manufactures provide or have announced fully or partially
electrified vehicles, which can be distinguished in hybrid (HEV), plug-in
hybrid (PHEV) and battery electric vehicles (BEV). The ultimate goal
in the development of a BEV is to provide the same comfort and similar
ranges compared to combustion driven vehicles to gain high costumer
acceptance.

Other applications for battery systems are stationary energy storages in
combination with a smart grid infrastructure. Together with local energy
generation such as photovoltaic or wind plants, they can potentially enable
self-sustaining energy concepts for both single houses and communities
and eliminate dependence on fossil fuels. As can be seen, secondary
batteries play an increasingly important role in today’s innovation, which
explain the intense research activities.

1.1.2 Design and Working Principle

The working principle is very similar for a conventional battery with a
liquid electrolyte and a solid state battery with a solid electrolyte and
a lithium metal electrode. Fig. 1.2 shows the concept of both types
including a description of the electrochemical and mechanical processes.
We briefly describe the idea of a conventional battery before introducing
the concept and advantages of a solid state battery with a lithium metal
electrode.

An ordinary battery has three functional layers, two porous electrodes
and an electrically isolating porous separator in between. The three
layers are infiltrated by a liquid electrolyte to enable an ion conducting

4



1.1 Basics of Lithium Batteries

Figure 1.2: Conventional battery with a liquid electrolyte and graphite particles (grey)
on the left and a solid state battery with a solid electrolyte and a lithium metal anode
on the right. The dominant effects in a conventional battery are purely electrochemical
whereas solid state batteries require the additional description of mechanics.

pathway between the two electrodes. A standard liquid electrolyte in Li-
ion batteries is based on hexafluorophosphate (LiPF6) as conducting salt
and organic compounds, which are stable against the highly reactive ionic
lithium. The porous electrodes are a composition of storage particles,
binder and conductive carbon. The storage particles have both access to
an electric pathway (with the conductive carbon) and to an ionic pathway
(via the electrolyte). The storage particles determine the majority of the
electrochemical response of the electrode and therefore, when speaking
of electrode materials, one usually refers to the storage particles. The
binder is necessary to obtain the mechanical integrity of the porous
electrode. A commonly used combination of electrode materials is, for
example, lithium graphite LixC6 in the anode and lithium iron phosphate
Li1-xFePO4 in the cathode where x ranges between 0 and 1. The battery
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1 Introduction

is completely charged for x = 1 meaning that the majority of lithium is
intercalated in the graphite.
It can be seen that each Li-ion in a porous electrode is accompanied

by several other compounds, be it the active storage material or the
components to maintain electronic and ionic conductivity such that only
a fraction of the electrodes contributes to energy storage. As we will see,
one possibility to increase energy density is by substituting the porous
anode with metallic lithium.

The fundamental principle of energy storage of a secondary battery is
hidden in the electrode materials. The electrodes serve as the storage
of lithium. Depending on the chemical composition of the electrode
material, the electrochemical energy of the ions varies heavily. For
example, a lithium metal electrode has a higher energetic level compared
to the Li1-xFePO4 electrode. This means that Li-ions prefer to form
a compound with Li1-xFePO4 to being in the metal phase. If the two
electrodes are connected by an electronic and ionic pathway and no
external voltage is applied, the ions perform a spontaneous reaction
from the higher energetic level to the lower one. This is a consequence
of the second law of thermodynamics stating that reaction follows the
direction which minimizes the total energy. The process can be reversed
by applying an external voltage and thus charging the battery. The
corresponding reaction equation reads

Li + FePO4
discharge−−⇀↽−−
charge

LiFePO4 (1.1)

which is a reduction-oxidation process and can be split into two steps.
During discharge (charge) lithium is oxidized (reduced) at the metal
electrode,

Li
discharge−−⇀↽−−
charge

Li+ + e−. (1.2)
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1.1 Basics of Lithium Batteries

On the macroscopic level, this means that the amount of metal decreases
(increases) layer by layer or, in other words, lithium is stripped from
(deposited on) the metal electrode. In the second reaction, the Li-ion is
reduced (oxidized) to form lithium iron phosphate

FeP4 + Li+ + e−
discharge−−⇀↽−−
charge

LiFePO4. (1.3)

The involved ions and electrons are transfered between the electrodes
through the electrolyte and the external circuit, respectively. The process
of oxidation is also known as anodic reaction and reduction is known
as cathodic reaction. By definition, the electrodes are named during
discharge and therefore the lithium metal is denoted as anode and the
iron phosphate as cathode. Alternatively, one can utilize the reduction
potential (defined against a hydrogen electrode) and refer to the lithium
metal with its relatively small reduction potential as negative electrode
and the iron phosphate as positive electrode.

1.1.3 Dendrites and Solid State Electrolytes

Enabling batteries with metal electrodes instead of an intercalation
material might be one of the next milestones in increasing the energy
density in electrochemical energy storage. These systems do not require
a storage material at the negative electrode (e.g. graphite, see Fig. 1.2)
and therefore offer best in class energy density due to the lowest possible
anode potential in combination with the best theoretical gravimetric
(3860 A h

kg ) and volumetric capacity (2 A h
cm3 ) [2, 10]. However, pure lithium

metal is highly reactive and has a low melting temperature of 180.6 ◦C

[11]. It is therefore rarely applied and only few characterizations have
been executed to describe the complex mechanical response. The Young’s
modulus of lithium is reported to be E = 1.9− 8GPa [11–13]. It has a
low mechanical strength (the reported strengths ranges from 1 MPa [12]
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1 Introduction

to 105 MPa [14]), shows visco-plastic behavior [15], is likely to creep and
has an anisotropic micro-structure [14].
Unfortunately, a lithium metal electrode is highly unstable against

traditional liquid-based electrolytes such as LiPF6. Heterogeneous nucle-
ation, most likely due to a heterogeneous solid electrolyte interface (SEI),
causes an uncontrolled dendrite growth in form of mossy and needle-like
structures [16–18] that might cause the battery to fail by short-circuits.
For example, Steiger et al. [19] reports filaments of a diameter of approx-
imately 500 nm and complex growing patterns. Several approaches have
been presented to prevent dendrite growth in liquid electrolytes [10], e.g.
using micro/nanostructures [20], concentrated liquid electrolytes [21] as
well as coatings and additives [22] to modify the SEI.

An alternative approach is to substitute the liquid electrolyte and
the porous separator with a solid electrolyte to enable metal anodes.
The requirements on solid electrolyte materials in this context are a
sufficient ionic conductivity of Li-ions, negligible electronic conductivity,
a wide electrochemical stability window and mechanical stiffness which
is said to suppress harmful dendrites growth. Besides addressing the
issues of dendrites, solid electrolytes also have the potential to increase
safety, specifically by decreasing flammability compared to liquid based
systems [23]. A broad class of solid electrolytes, ranging from inorganic
ceramics to polymers, are currently under investigation [24, 25]. Inorganic
electrolytes, such as oxidic or sulfidic ceramics, belong to the class of single
ion conductors. Usually, they offer a very high ionic conductivity with up
to 1 S

m at a wide temperature range [25] and mechanical stiffnesses of up
to 20 GPa [26]. However, depending on the composition, they have issues
with stability against moisture, processing and cost [27]. Furthermore,
in combination with lithium metal, they are prone to dendrite growth
in the grain boundaries [28], suffer from adhesive problems [29] and are
therefore not yet ready for the mass market.
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1.1 Basics of Lithium Batteries

Figure 1.3: Protrusion growth in polymer electrolytes: (a) Photograph of a protrusion
growth in a PEO polymer at high current density (taken from Brissot et al. [30]). (b)
Three 3D renderings from a X-ray microtomopgraphy of a PS-PEO polymer (taken
from Harry et al. [31]).

This work focuses on the class of polymer electrolytes that act as a solid
solvent for a salt such as LiTFSi. In these electrolytes, both anions and
cations are mobile leading to the classification as a binary conducting
electrolyte. The most prominent polymer electrolyte is poly(ethylene
oxide) (PEO). It is thermodynamically stable against lithium (up to
100 ◦C [32]), less flammable than liquid electrolytes and is usually op-
erated at elevated temperatures in order to exceed the glass transition
temperature (∼60 ◦C) to obtain sufficient ionic conductivity (0.1 S

m [33]).
The ion transport is in that case supported by segmentation motion of
the PEO chains. However, at temperatures of e.g. 80 ◦C, PEO is viscous
and, hence, tends to lose its mechanical integrity. Nevertheless, it is
partially able to suppress classical mosslike dendrites but suffers from
lithium intrusion on the length scale of micrometers [30, 34, 35] as shown
in Fig. 1.3a.

Several polymer modifications have been suggested in order to increase
electrochemical properties as well as mechanical strength [32, 36, 37], e.g.
via adding ceramic nanoparticles [38], cross linking [39–41] or using gel
electrolytes such as double polymer networks [42], zwitterionic copolymers
[43] or ionic liquid-immobilized polymers [44]. Another approach are
block/triblock copolymers [45–48] such as PS-PEO which follow the idea
that a soft block (PEO) forms lithium conducting channels and a hard
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block of polystyrene (PS) provides the mechanical strength. Nanochannels
of ∼10 nm [45] are able to conduct ions but block the growth of the
beforementioned mosslike dendrites. Unfortunately, the microscopic
structure of block copolymers reduces the transport properties since non-
conducting material (PS) is added and also the segmentational motion
of PEO is hindered [32, 49].

Although block copolymers decrease the likelihood and speed of harmful
protrusion growth [31], the so-called globule and multi-globular structures
[50] remain a challenge (see Fig. 1.3b). Recent experimental studies
correlate their appearance with sub surface structures [51] and impurities
[50] in the lithium metal anode. However, the exact mechanisms causing
the undesired protrusion growth and the measures necessary to suppress
them are questions of ongoing research.

Exploring undesired dendrite growth in experiments as well as synthe-
sizing, processing and testing new kinds of solid electrolytes is complex,
time-consuming and costly. Therefore, it is beneficial to derive mathemat-
ical models that accurately describe relevant effects of electrochemistry,
mechanics and their coupling in order to increase the understanding of
the different phenomena in solid state batteries.

1.2 State of the Art of Battery Modeling

Different theoretical model description have been proposed to assess
the complex response in battery systems. One can distinguish models
for single ion conductors (e.g. [52]) and more sophisticated models for
binary electrolytes. Binary electrolytes are usually described by the
well-established concentrated solution theory [53], initially derived for
liquid electrolytes and later applied to binary solid state electrolytes [54].
The ion transport of non-ideal electrolytes is parametrized by four mea-
surable transport parameters, namely conductivity, transference number,
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1.2 State of the Art of Battery Modeling

diffusivity and thermodynamic factor [55–57]. Ferrese et al. [58] and
subsequent works [59, 60] combine the conventional concentrated solution
theory with a mechanical model to describe the in-plane redistribution
of lithium metal during cycling. However, effects of stress driven dif-
fusion, as e.g. known in active storage particles [61–67], are not taken
into account even though quite stiff materials are assumed. Bucci et al.
[68] propose a multi-component transport model of charged species in a
deformable host. Similar ideas are found e.g. in hydrogels, where small
molecules diffuse in a network of long fibers and where a change of local
component concentration leads to heterogeneous swelling or shrinkage of
the host material and consequently to mechanical stresses, which can in
turn provide an additional driving force for diffusion [69].

Another ingredient for the description of an electrochemical system is
the rate in which ions are deposited on and stripped from an interface.
The Butler-Volmer equation is a well established form of reaction kinetics
and relates the current density, to a jump of the electric potential along
an interface [70]. The most prominent extension of the Butler-Volmer
equation with respect to mechanics was proposed by Monroe and Newman
[71], describing a dependence of the exchange current density on the
mechanical stress of electrode and electrolyte. This serves as a starting
point for several numerical studies, e.g. [58, 72–74] on morphological
stability. Only some experimental evidence is available that indicates a
correlation of interface kinetics and mechanics [75, 76].
Various studies have been presented to gain better understanding of

dendrite growth in battery systems. Chazalviel [77] relates morphological
stability of lithium with liquid electrolyte with the electrochemical trans-
port properties of a binary electrolyte arguing that an anion depletion
and therefore large electric fields are the cause of dendrite growth. His
model predicts a correlation of dendrite growth time and the time until
an anion depletion occurs, the so called Sand’s time [29, 78]. Although
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this behavior is linked to high current densities, similar findings have
been observed for low current densities [78].

Other studies relate reaction kinetics at an SEI with the morphological
stability of a lithium metal electrode. Barton and Bockris [79] discuss
the impact of surface energies, which turns out to be of high relevance
for dendrite radii in the range of 5 nm [80], but not for classical dendrites
[81]. The model was extended by non-linear reaction kinetics [82], reeval-
uated with respect to thermodynamic reference points of PEO [83] and
extended with mechanics [72]. The work of Monroe and Newman [72] is
frequently cited and states that stable deposition can be achieved if the
shear modulus of the separator is twice as high compared to a lithium
metal electrode, and serves as starting point for more recently published
studies [73, 84, 85]. However, Barai et al. [86] recognized an unphysical
mechanical stress state in the analysis of Monroe and Newman [72] and
conclude that, according to this type of analysis, no stable deposition is
possible, only the growth speed can be slowed down. A follow up work
discusses the impact of the non-elastic material properties of lithium
for deposition [74]. Raj and Wolfenstine [87] describe the nucleation of
dendrites within a ceramic electrolyte as a function of fracture strength.1

Tikekar et al. [88] apply a perturbation analysis to study structured
electrolytes neglecting elastic stiffness. This work was extended in a
subsequent works Tikekar et al. [89, 90] by mechanics stating that modest
Young’s moduli are sufficient for morphological stability. Their result,
however, was questioned by McMeeking et al. [91] who determine an
analytic expression for the maximal wavelength of an heterogeneous metal
electrode in contact with a single ion conductor as a function of elasticity
and charging rate. Natsiavas et al. [92] deduce with an asymptotic analy-
sis a positive effect of prestress onto surface roughening during cycling.

1 Nucleation of Li-ions to lithium metal requires an supply of electrons which is not
considered by Raj and Wolfenstine [87].
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Klinsmann et al. [93] predict the requirements of ceramic electrolytes to
resist cracking due to lithium growth.
Transient models of deposition and stripping during charge and dis-

charge provide insights into the growing patterns of heterogeneous lithium
growth. Ferrese et al. [58] combined in the first step the concentrated
solution theory with an explicit model of boundary velocity and extended
the model in a second step with the mechanical response of a stiff sep-
arator [59, 60]. Further approaches to understand dendrite growth on
different length scales are phase field [94, 95], stochastic [96] and atomistic
models [97].

1.3 Objectives and Overview

In this work, we seek a deeper understanding of the morphological
interface stability of a solid state battery with a lithium metal electrode.
To do so, we have to understand the multi-physics of the interface between
lithium metal and solid electrolyte as well as the response of the adjacent
materials, the solid electrolyte and the metal electrode.
We aim for a sound description for a binary solid electrolyte. Three

properties of ions within the electrolyte have to be considered. First, the
ions carry electric charge and thus are affected by an electric field. Second,
diffusion of the different species has to be described and third, the size of
the ions has to be accounted for. The former two involve non-idealities
due to complex multi-component transport and require a concentration-
dependent parametrization as known from the concentration solution
theory [53]. Redistribution of ions of certain volume within a host
material yields to swelling that has to be accounted for. Furthermore,
the formulation has to capture the effect of deformation caused by e.g.,
an intrusion.
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Another key aspect to understand protrusion growth is the determination
of the deposition and stripping rate at the metal electrode. From an
electrochemical point of view, this is usually done via the Butler-Volmer
reaction kinetics describing the interface current density. However, it is
not trivial to answer the questions of whether and how mechanics influence
the reaction at an interface. We aim for a well defined formulation of the
Butler-Volmer equation considering both electrochemistry and mechanics.

Furthermore, we want to describe the deposition and stripping process
at the metal electrode involving geometrical changes. Together with an
adjacent solid electrolyte, we expect a deformation of both electrolyte
and the electrode if deposition occurs inhomogeneously. The complex
interplay of deformation and electrochemistry shall be described in the
course of this work.
Eventually, we want to deduce requirements for the electro-chemo-

mechanical properties of the solid electrolyte such that morphological
interface stability is achieved. Two comprehensive studies shall give
insights into the correlation of mechanics and transport. The findings
shall help to design robust solid electrolytes which are able to prevent
harmful protrusion growth and pave the way for the next generation of
energy storage.
This work is structured as follows: We briefly introduce some mathe-

matical preliminaries in the context of finite strain continuum mechanics
in Chapter 2. We then gradually increase the complexity of the battery
modeling.

Chapter 3 presents the derivation of an electro-chemo-mechanical
transport model of a binary solid electrolyte. Using conservation of mass,
momentum, energy and entropy in combination with the second law of
thermodynamics and Gauss’ law, we derive a generic framework for multi-
component transport in solid electrolytes. We then introduce constitutive
models for the solid electrolyte and derive a simplified model based on
the assumption of local electroneutrality in the spirit of concentrated
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solution theory but extended by mechanical driving forces induced e.g.
by swelling processes.
Thereafter, in Chapter 4, we introduce the electrochemical trans-

port properties that are used throughout this work and analyze the ion
transport in a solid electrolyte and its electro-chemo-mechanical coupling
mechanisms with three examples. A blocking electrode setup shows the
need of a model that solves the Poisson equation. The second exam-
ple deals with galvanostatic charging and determines the influence of
elasticity on the transport performance. The third example describes
an externally deformed solid electrolyte and highlights the need of the
comprehensive electro-chemo-mechanical model.

In Chapter 5, we present a rigorous derivation of an extended form of
the Butler-Volmer equation based on the transition state theory. We put
special emphasis on the mechanics of deposition and stripping. Further-
more, we present a novel concept which generalizes the Butler-Volmer
reaction kinetics by means of electrode, electrolyte and barrier energies.
This allows us to deduce standard formulations for reaction kinetics in
liquid and solid battery systems found in literature as well as a consistent
description of how mechanics influence the reaction kinetics.
Using the electro-chemo-mechanical transport model and the novel

interface description, we carry out a first interface stability analysis in
Chapter 6. We analyze the impact of the elastic stiffness at a perturbed
interface and study the correlation of the required mechanical stiffness
for stability and transport parameter using the parametrization of the
two polymer electrolytes PEO and PS-PEO. Moreover, we vary selected
transport and geometric parameters to determine their influence on the
morphological interface stability.

Chapter 7 deals with the description of the metal electrode. The
deposition and stripping of material is determined by the interface current.
Besides the formulation of finite strains within the metal electrode, we
discuss a second mapping to describe the growth of material. Two possible
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compatibility conditions between electrode and electrolyte are presented.
Furthermore, we describe Ohm’s law in finite strain.
In Chapter 8, we carry out a second stability analysis by which

the growth of lithium adjacent to a solid electrolyte is simulated. We
discuss several hypotheses for the trigger mechanism of protrusion growth.
Furthermore, we investigate the influence of the elastic stiffnesses on
the growth velocity for both polymer electrolytes PEO and PS-PEO. To
rationalize the findings, we present a analytical network model for an
in-plane current that causes protrusion growth.
We conclude this work and give a brief outlook in Chapter 9.
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2 Mathematical Preliminaries

In this chapter, we present mathematical preliminaries to lay the foun-
dation for the description of solid electrolytes (Chapter 3) and metal
electrodes (Chapter 7). Since solid electrolytes consist of a mechanically
stiff host with mobile components, we utilize concepts of solid mechanics
and mixture theory. We employ the concept of finite strain continuum
mechanics [98, 99] to describe the kinematics of the host material of the
solid electrolyte and the metal electrode. Hereby, the mathematical equa-
tions are written in a reference configuration associated to a undeformed
material state, which is also known as the Lagrangian point of view. The
motion of mobile components is commonly modeled within a mixture
theory [100] in the Eulerian point of view where a fixed control volume
acts as observer. We are going to combine both ideas by associating the
fixed control volume of the Eulerian representation with the deformable
host material. Furthermore, we link the motion of mobile components
with the Lagrangian description. We note that this chapter is partially
based on the work of Ganser et al. [101].

2.1 Kinematics of a Solid Material

2.1.1 Deformation Gradient

Following Holzapfel [98] and Truesdell and Noll [99], we employ the frame-
work of finite strain continuum mechanics, and describe the deformation
of a solid material at time t ∈ T by the mapping ϕt between a reference
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undeformed geometry deformed geometry
ϕt

X ∈ P0 ⊂ B0 x ∈ Pt ⊂ Bt

dV dv

n
N

dA da
F = ∂ϕt

∂X

Figure 2.1: The mapping ϕt correlates undeformed (material) and deformed (spatial)
geometry B0 and Bt, respectively. Each property in the spatial description such as the
volume element dv, area element da or normal vector n is related via the deformation
gradient F to the material description of the corresponding properties dV , dA and N .

configuration B0 ⊂ R3 with material coordinates X ∈ B0 and deformed
configuration Bt ⊂ R3 with spatial coordinates x ∈ Bt, such that

ϕt :=

 B0 × T → Bt
(X, t) 7→ x = ϕt(X),

(2.1)

as seen in Fig. 2.1. Accordingly, the material and spatial velocity of the
material are given by

V0 = ϕ̇t(X) :=
∂

∂t
ϕt(X) and v0 = ϕ̇t(ϕ

−1
t (x)). (2.2)

The displacement of the material is u = x−X. To describe local stretches
and rotations, we make use of the deformation gradient F defined by

F =
∂ϕt
∂X

=
∂x

∂X
= Grad (x) , Fij = Gradj(xi) =

∂xi
∂Xj

. (2.3)
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The determinant J = detF thereby describes the mapping between ma-
terial volume elements dV ⊂ B0 and their deformed spatial counterparts
dv ⊂ Bt, i.e.

dv

dV
= detF =: J > 0, (2.4)

where the positivity constraint is required to avoid interpenetration of
matter. The deformation gradient can be uniquely decomposed into a
rotation and a stretch according to

F = RU , (2.5)

where R is a orthogonal rotation tensor and U is the right stretch
tensor. The former describes rigid rotation (RTR = I) and the latter is
positive definite, symmetric (U = UT ) and measures the local stretch
(or contraction) along the orthogonal eigenvectors.

2.1.2 Volume and Surface Transformations

Note that all quantities and equations can be formulated both in the
referential and the spatial setting. Since the physical interpretation is
more intuitive in the spatial setting, we will usually formulate governing
equations in the spatial form and transform them to the material for-
mulation, which is the natural setting for a numerical treatment. From
here on, whenever possible, we use lower case symbols for the spatial
quantities (e.g. x, cα) and upper case symbols or diamond superscript
(e.g. X, c�α) for the material quantities.
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With the help of the deformation gradient F , one can describe the
mapping of tangential and normal vectors between material configuration
(N ,T ) and spatial configuration (n, t) as

t = FT and n = F−TN , (2.6)

see e.g. Holzapfel [98]. The integrals in the material and spatial config-
uration coincide for properly transformed quantities. The volume and
the surface integrals (with spatial and material surface element da ⊂ ∂Pt
and dA ⊂ ∂P0, respectively) thus are∫
Pt
ydv =

∫
P0

Y dV and
∫
∂Pt

ỹ · nda =

∫
∂P0

Ỹ ·NdA, (2.7)

where y is a scalar or vector field defined on the domain Pt and ỹ a
vector field defined on the boundary ∂Pt, respectively. The corresponding
material properties are

Y = Jy and Ỹ = JỹF−T . (2.8)

The latter is known as Nanson’s relationship.
Now consider a scalar quantity ŷ defined on a deformed surface. Its

scalar material counterpart Ŷ will differ because the effective size of
the material area element dA is different to the spatial area element da.
However, the identity ∫

∂P0

Ŷ dA =

∫
∂Pt

ŷda (2.9)
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has to apply. To obtain a relation between ŷ and Ŷ , we insert N ·N = 1

on the left hand side and n · n = 1 on the right hand side. We then use
Eq. (2.7) and multiply both sides with N to obtain

Ŷ = JnF−T ·N ŷ =
J

F : (n⊗N)
ŷ. (2.10)

The normals N and n are both normalized. Hence we have n 6= F−TN

and Eq. (2.10) cannot be simplified further.
Note that material points in P0 are usually associated with an unde-

formed material. Since P0 is a reference description, it is independent of
time and thus the integral operator and time derivatives are interchange-
able

d

dt

∫
P0

Y dV =

∫
P0

d

dt
Y dV =

∫
P0

Ẏ dV. (2.11)

The property of Eq. (2.11) does not hold for an integral formulated in
the spatial configuration.

2.2 Kinematics of Mobile Components

We describe the motion of mobile components with respect to a control
volume associated to a host material in both spatial and material config-
urations. Fig. 2.2 gives an overview of the various transformation steps
which will be discussed in the following.

2.2.1 Spatial Description

We assume that a species α is distributed as a continuum in a control
volume Pαt ⊆ Bt. Postulating that Pαt coincides at time t with a control
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Pt = Pαt

cα

P0

c�α
cα

Jα

Pt

cα

jα

δt

Pt 6= Pαt

F = ∂ϕt
∂X

¶ · ¸

Figure 2.2: Transformation steps: ¶ Host domain Pt and species domain Pαt underly
a different motion during a timestep δt. · With the Reynold’s theorem, one considers
the change of concentration within the host material in terms of a mass flux jα. ¸ All
quantities can be expressed with respect to a material, undeformed configuration P0.

volume Pt associated to a host material moving at velocity v0 = ϕ̇t,
volume and surface integrals coincide at time t:∫
Pαt
ydvα =

∫
Pt
ydv and

∫
∂Pαt

ỹ · ndaα =

∫
∂Pt

ỹ · nda, (2.12)

If the number of moles of species α in the control volume element dv is
given by dNα, we can define the spatial molar concentration as

cα =
dNα
dv

. (2.13)

The spatial concentration cα describes the amount of species of type α
per deformed volume dv.
Now, let the species in Pαt move at velocity vα, which is in general

different from v0. If we consider the rates, we have to take the different
time-dependencies of the integration domains Pαt and Pt into account
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(¶ in Fig. 2.2). To describe the relative motion as seen in · of Fig. 2.2,
we use Reynold’s theorem

d

dt

∫
Pαt
ydvα =

d

dt

∫
Pt
ydv +

∫
∂Pt

y ((vα − v0) · n) da

=
d

dt

∫
Pt
ydv +

∫
∂Pt

1

cα
y (jα · n) da,

(2.14)

where we have introduced the quantity

jα = cα (vα − v0) (2.15)

which will turn out to be the molar mass flux of species α. The second
term on the right hand side of Eq. (2.14) denotes the influx of volume
quantity y into the host domain due to a relative velocity of the species
with respect to the host.

2.2.2 Material Description

The third transformation in Fig. 2.2 is necessary to obtain a continuum
description of the mobile components with respect to the referential
configuration of the host material. Therefore, we define a material
concentration similar to Eq. (2.13) and link it to the spatial concentration
by Eq. (2.4), which yields

c�α =
dNα
dV

= Jcα. (2.16)

Furthermore, we use Eq. (2.8) to transform the spatial quantity jα from
Eq. (2.15) into the material configuration with

Jα = JF−1jα. (2.17)
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2.2.3 Reynolds Theorem in Finite Deformations

Combining Eq. (2.7) with Eq. (2.14) and using y
cα

= Jy
Jcα = Y

c�α
gives us

the transformation to link moving species within a reference description
of matter via

d

dt

∫
Pαt
ydvα =

∫
P0

Ẏ dV +

∫
∂P0

1

c�α
Y (Jα ·N) dA. (2.18)

The divergence theorem
∫
∂P0

Y ·NdA =
∫
P0

Div
(
Ỹ
)
dV with the def-

inition of the divergence operator Div
(
Ỹ
)

= ∂(Ỹα)i
∂Xi

. yields a fully
volumetric description with

d

dt

∫
Pαt
ydvα =

∫
P0

Ẏ + Div
(

1

c�α
Y ⊗ Jα

)
dV

=

∫
P0

Ẏ + Grad
(

1

c�α
Y

)
Jα +

1

c�α
Y Div (Jα) dV,

(2.19)

where we have applied the chain rule to obtain the second line. Eq. (2.19)
relates the rate of change of a quantity y in a moving domain Pαt to an
undeformed reference state.
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3 Theory of Ion Transport in a
Binary Solid Electrolyte

Within this chapter, we establish a consistent model for ion transport
in a deformable host. Based on the work of Ganser et al. [101], we
exploit concepts of finite strain continuum mechanics, rigorously consider
electrostatic influences and use standard notation of electrochemistry.
With the help of the thermodynamic framework of Helmholtz energy and
a series of consecutive steps deriving the physics and electrochemistry,
a clear and consistent picture of the interdependencies of electrochem-
istry and mechanics is drawn, leading to a combination of ideas from
multicomponent mass flow under the influence of an electric field with
finite deformation theory for the mechanical response of the host. Both
a treatment based on Gauss’ law for a system containing unbalanced
charges and an electroneutral version for a binary electrolyte are pre-
sented, thereby establishing a link to the well known concentrated solution

Figure 3.1: Representation of the coupling between multicomponent ion transport and
mechanics in a solid state electrolyte. Mechanical response in the form of geometry
changes and stresses is triggered by swelling or external forces. The ions are subject
to this change of geometry and mechanical driving forces give rise to stress driven
diffusion.
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theory [53] similar to Monroe and Delacourt [102] by introducing local
electroneutrality and by linking the commonly used transport parameters
conductivity, transference number, diffusivity and thermodynamic factor
to mobilities and chemical potentials. Non-idealities usually associated
with a concentrated solution are thereby accounted for.

Throughout the derivation, specific care is taken in considering coupling
mechanisms between ion transport and mechanics. In the spirit of Bucci
et al. [68], we include coupling mechanisms such as swelling, stress driven
diffusion and the change of geometry on which the transport takes place,
see Fig. 5.3. Similar couplings between transport and mechanics are
also present in hydrogels, where small molecules diffuse in a network of
long fibers and where a change of local component concentration leads to
heterogeneous swelling or shrinkage of the host material and consequently
to mechanical stresses, which can in turn provide an additional driving
force for diffusion [69]. Similar relations between swelling and transport
are also found in the context of battery active materials [61–67].
In the following, we present the fundamentals of conservation laws

in electro-chemo-mechanical systems, introduce Helmholtz energies and
their relation to constitutive material properties, discuss the swelling
mechanism and introduce thermodynamically consistent mass fluxes.
Eventually, we conclude the chapter with a theory for binary solid elec-
trolytes similar to those in concentrated solution theory [53] but extended
by mechanical driving forces.

3.1 Field Variables

For the description of the fully coupled electro-chemo-mechanical system
we distinguish between a solid host α = 0 and N species with indices
α = 1...N that can move relative to the host. The electroneutral host
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Bα

ϕely
t

Rα

Jα
Jq T

undeformed geometry deformed geometryF

tbα
jq

Φ ϕely
tcα

rα

jα

material description spatial description

Φ

X ∈ P0 ⊆ B0 x ∈ Pt ⊆ Bt

c�α

concentration el. potential deformationconcentration el. potential deformation

Figure 3.2: An undeformed geometry provides the material description where all
balance equations are solved. The deformed geometry as well as spatial field variables
are linked to material counterparts via the deformation gradient F .

provides the mechanical strength whereas the (ionic) mobile components
act as charge carrier.
As introduced in Section 2.1, we characterize the kinetics of the host

with a mapping ϕely
t , see Eq. (2.1). The deformation gradient F ely of

Eq. (2.3) depicts local stretches and rotations. For the sake of simple
notation, we will drop the index for the deformation gradient and continue
with F in this chapter. We emphasize that the host displacement with
velocity ϕ̇ely

t = v0 will serve as reference to which the species transport
will be defined.

Now we shift our attention to the solutes. We assume that N species
are distributed each as a continuum in the solid matrix consistent with a
mixture theory. If the number of moles of species α in an undeformed
volume element dV is given by dNα and its molar mass is Mα, we can
define together with Eq. (2.16) the partial material densities as

ρ�α =
dNαMα

dV
= c�αMα ∀α = 1..N. (3.1)
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3 Theory of Ion Transport in a Binary Solid Electrolyte

The spatial equivalent follows a similar definition and is linked to the
spatial concentration by Eq. (2.13) and to the material density by
Eq. (2.16), yielding

ρα =
dNαMα

dv
= cαMα =

ρ�α
J

∀α = 1..N. (3.2)

We assume that at each point of the host material, species α moves with
velocity vα. Recall that the velocity of the host is defined via Eq. (2.2)
and generally vα 6= ϕ̇t. The overall densities of the mixture, including the
host material in the undeformed and deformed configurations, respectively,
are given by

ρ�tot =

N∑
α=0

ρ�α, ρtot =

N∑
α=0

ρα. (3.3)

Since species α = 1..N can carry charges, whereas the host material is
assumed to be charge neutral, the material and spatial charge densities
for each species are

ρ�qα = Fzαc
�
α, ρqα = Fzαcα, (3.4)

where zα is the charge number associated with ion α. The total charge
density is computed via

ρ�q =

N∑
α=1

ρ�qα , ρq =

N∑
α=1

ρqα (3.5)

for the material and spatial configuration, respectively.

28



3.2 Balance Principles

3.2 Balance Principles

3.2.1 Balance of Mass

For the balance of mass, we distinguish between the host (α = 0) and
the chemical species (α = 1...N). The host material is assumed to have
constant mass which yields [98]

ρ̇�0 = 0. (3.6)

To derive the balance of mass for a single species α, we consider at time t
an arbitrary control volume Pαt ⊆ Bt with species velocity vα. The
only change in mass of α in that volume occurs due to a mass source rα
associated with chemical reaction and we can write

d

dt

∫
Pαt

cαdvα =

∫
Pαt

rαdvα ∀α 6= 0. (3.7)

To rewrite this in terms of the control volume Pt tied to the motion of
the host, we use the Reynolds theorem (2.14) and obtain

d

dt

∫
Pt
cαdv +

∫
∂Pt

cα (vα − v0) · nda =

∫
Pt
rαdv ∀α 6= 0. (3.8)

The second term on the left hand side denotes the mass flux
jα = cα (vα − v0) through the boundary ∂Pt as introduced in Eq. (2.15).
Hence, we describe naturally the mass flux of a species relative to the
velocity of the host v0. That distinguishes our description from multi-
component transport in liquids which usually utilizes the molar mixture
velocity [103], barycentric velocity [104] or the solvent velocity [102].
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3 Theory of Ion Transport in a Binary Solid Electrolyte

Now, we apply a transformation to the material setting, the divergence
and localization theorem, to obtain the local form of the balance of species
mass and total mass, respectively, as

ċ�α + Div (Jα) = Rα ∀α 6= 0 ⇒ ρ̇�tot + Div (J tot) = 0. (3.9)

The material species and total molar flux are Jα = JF−1jα, see
Eq. (2.17), and J tot =

∑N
α=1 Jα. The material concentration source is

Rα = Jrα and since a chemical reaction does not produce mass, we have∑N
α=1Rα = 0, which gives the second equation.

3.2.2 Balance of Charge and Gauss’ law

As we assume that charge is exclusively transported by ions without
involvement of electrons, the balance of charge can be directly derived
from the balance of mass

ρ̇�qα + Div (Jqα) = Rqα ∀α ⇒ ρ̇�q + Div (Jq) = 0, (3.10)

with charge flux Jqα = FzαJα and source Rqα = FzαRα. Since charge
cannot be generated in reactions, we have

∑N
α=1Rqα = 0, which —

together with the definition of current Jq =
∑N
α=1 Jqα— yields the total

balance of charge on the right hand side. Note that Eq. (3.10) is not
independent of the balance of mass as seen in Eq. (3.9). As a result, only
N − 1 mass fluxes Jα are independent for a given total current flux Jq .
The Gauss law relates the spatial electric displacement d to the total

charge density ρq . The spatial and material representations are

div (d) = ρq ⇔ Div (D) = ρ�q (3.11)

with the material electric displacement D = JF−1d. Further we follow
McMeeking and Landis [105] and introduce a surface charge ωSC = JDK ·N
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3.2 Balance Principles

as the jump of electric displacement. The electric field e is related to the
magnetic field by curl (e) = d

dtb = 0 due to Maxwell’s equations, where
we have assumed that the change of magnetic field b in time can be
neglected. To satisfy Maxwell’s equation1, we define the electric potential
Φ such that

e = −grad (Φ) = −F−TGrad (Φ) = F−TE (3.12)

with E = −Grad (Φ) the material electric field. The electric field is
related to the electric displacement by

d = ε0e + p = ε0εre, (3.13)

where p is the polarization. The quantities ε0 and εr are the vacuum and
relative permittivity, respectively. By inserting Eq. (3.12) in Eq. (3.11),
we obtain the well known Poisson equation

−div (ε0εrgrad (Φ)) = ρq . (3.14)

In the case of electroneutrality with ρq = 0 and in the absence of chemical
and mechanical driving forces, the electric potential is decoupled from
individual mobile components and Ohm’s law

jq = κe = −κgrad (Φ) (3.15)

in terms of the total current density jq becomes valid. In such circum-
stances the current is driven by an electric field through a conductivity κ.
An extended version of Eq. (3.15) that is valid for solid binary electrolytes
will be presented in Section 3.5.

1 Here we make use of the identity curl (grad (ξ)) = 0 ∀ξ.
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3 Theory of Ion Transport in a Binary Solid Electrolyte

3.2.3 Balance of Linear Momentum

To state the balance of linear momentum, we sum the rates of the partial
linear momenta of host and species and equate them with mechanical
(e.g. gravity), electrical and chemical body forces of each species bM

α , bE
α,

bC
α and effective tractions tM, tE, tC acting on the host material and

obtain

d

dt

N∑
α=0

∫
Pαt

ραvαdvα =

N∑
α=0

∫
Pt

bM
α + bE

α + bC
αdv +

∫
∂Pt

tM + tE + tCda.

(3.16)

We now have to carefully apply the time derivative on the left hand side.
Therefore, we apply Reynolds theorem in finite deformations (Eq. (2.19))
and obtain for the left hand side of Eq. (3.16)

d

dt

∫
Pαt

ραvαdvα =

∫
P0

d

dt
(ρ�αVα) + Div (MαVαJα) dV

=

∫
P0

ρ�αV̇α + Grad (MαVα) · Jα +MαVαRα︸ ︷︷ ︸
BVα

dV,

(3.17)

where we have utilized the balance of mass (Eq. (3.9)) for the second
line. The body force BV

α corresponds to an inertia force of component α
within the host material.

The total electric body force BE
tot =

∑N
α=0 JbE

α is expressed as a Piola-
type Maxwell stress tensor BE

tot := Div
(
PE
)
. The same procedure is used

for the chemical body forces. Further, we follow McMeeking and Landis
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3.2 Balance Principles

[105] and state that the mechanical, electric and chemical tractions are
balanced via a jump in mechanical stress, yielding∫

∂Pt
tM + tE + tCda =

∫
∂P0

TM+ TE+ TCdA

= −
∫
∂P0

JPMK ·NdA

=

∫
P0

Div
(
PM) dV.

(3.18)

Consequently, an expression for the balance of momentum of the host
material is

ρ�0ϕ̈
ely
t = BM

tot + Div

PM + PE + PC︸ ︷︷ ︸
P

− N∑
α=1

BV
α (3.19)

where we have introduced the effective total mechanical body force

BM
tot =

N∑
α=0

BM
α =

N∑
α=0

JbM
α (3.20)

and the total Piola stress P. The inertia, advection and reaction contri-
bution of the mobile components can be regarded as an additional body
force BV

α acting on the host material.

3.2.4 Balance of Angular Momentum

The balance of angular momentum

d

dt
L =M (3.21)
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3 Theory of Ion Transport in a Binary Solid Electrolyte

states that the rate of change of the angular momentum

L =

N∑
α=0

∫
Pαt
x× ραvαdvα (3.22)

is equal to the total torque

M =

N∑
α=0

∫
Pαt
x× bECM + oECdvα +

∫
∂Pt

x× tECMda (3.23)

with the body force bECM =
∑N
α=0 b

E
α + bC

α + bM
α and traction force

tECM = tM + tE + tC. Further, an angular momentum due to dipoles has
to be considered. Following McMeeking and Landis [105], we use oE =

oEi = εijkσ
E
kj , where εijk is the Levi-Civita symbol. Although a deviatoric

contribution of the chemical stress is unlikely, we set oC = εijkσ
C
kj , and

obtain by combination with the electrostatic contribution oEC = oE +oC.
The rate of angular momentum computes to

d

dt
L =

N∑
α=0

∫
P0

d

dt
(X × ρ�αVα) + Div

(
1

c�α
(X × ρ�αVα)⊗ Jα

)
dV

=

N∑
α=0

∫
P0

εijkXj

[
d

dt
(ρ�αV

α
k ) + Divm (MαV

α
k Jm) +MαεijkδjmV

α
k J

α
m

]
dV,

(3.24)

where we have used the index notation in the second line. The applied
torque in index notation is

M =
N∑
α=0

∫
Pt
εijkxjb

ECM
k dv +

∫
∂Pt

x× (σMn)da+

∫
Pt
εijkσ

EC
kj dv

=
N∑
α=0

∫
P0

εijkXj
(
BECM
k + Divm

(
PM
km

))
+ εijkδmjP

M
kl Fml + εijkP

EC
kl FjldV.

(3.25)
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3.2 Balance Principles

Combining Eq. (3.24) and Eq. (3.25) gives

N∑
α=0

∫
P0

εijkXj

[
d

dt
(ρ�αV

α
k ) + Divm (MαV

α
k Jm)−BECM

k −Divm
(
PM
km

)]
dV

=

N∑
α=0

∫
P0

εijk
(
PECM
kl Fjl −MαV

α
k J

α
j

)
dV.

(3.26)

The left hand side is equal to zero due to the balance of linear momentum,
see Eq. (3.17), and BECM = BM + Div

(
PC + PE

)
. The right hand side

results in the symmetry condition

PF T −
N∑
α=1

MαJα ⊗ Vα = FPT −
N∑
α=1

MαVα ⊗ Jα. (3.27)

Without component motion this reduces to

PF T = FPT , (3.28)

which is the standard result for balance of angular momentum in finite
strain solid mechanics.

3.2.5 Balance of Energy

Consider the balance of energy in an arbitrary volume Pt ⊆ Bt. The
change of total internal energy Eint, as well as kinetic energy Ekin, is
equal to the power supply in Pt due to heat LH, mechanics LM and
electricity LE:

d

dt

(
Eint + Ekin) = LH + LM + LE (3.29)
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3 Theory of Ion Transport in a Binary Solid Electrolyte

The left hand side of Eq. (3.29) describes the rate of internal energy eα
and kinetic energy 1

2ραvα · vα of each species

Eint :=

N∑
α=0

∫
Pαt

ραeαdvα,

Ekin :=

N∑
α=0

∫
Pαt

1

2
ραvα · vαdvα.

(3.30)

Note since each component α moves with its own velocity vα, we have to
again apply Reynolds transport theorem through Eq. (2.14) and obtain

d

dt
Eint =

N∑
α=0

(
d

dt

∫
Pt
ραeαdv +

∫
∂Pt

ραeα (vα − v0) · nda
)

=

N∑
α=0

∫
P0

d

dt
(ρ�αeα) +MαGrad (eα) · Jα +MαRαeα −Mαċ

�
αeαdV,

(3.31)

where we have used Eq. (2.19) together with Eq. (3.9) to obtain the
second version, involving the transformation to the material configuration,
the divergence theorem and balance of mass. The same procedure applies
to the kinetic energy

d

dt
Ekin =

N∑
α=0

∫
P0

BV
α · Vα −

1

2
Vα · VαMαRαdV, (3.32)

where we recall the definition of BV
α in Eq. (3.17). On the right hand

side of Eq. (3.29), we observe energy production due to heat sources
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3.2 Balance Principles

and heat fluxes. In terms of heat we treat host and components as one
system and get the contribution

LH :=

∫
Pt
rHdv −

∫
∂Pt

jH · nda, (3.33)

where we have introduced a homogenized heat flux jH and an external
heat source rH, e.g. an electromagnetic heating. Note that heat generated
due to chemical reactions is an internal process of conversion within the
internal energy. The reference description of Eq. (3.33) is

LH =

∫
P0

RH −Div
(
JH
)
dV. (3.34)

The rate at which mechanical work is done on the host material and the
species is

LM :=

N∑
α=0

∫
Pt

(
bM
α · vα

)
dv +

∫
∂Pt

(
tM · v0

)
da, (3.35)

where only the host material can support traction forces. The individual
body forces act on the host material as well as on each mobile component.
The result converts to

LM =

N∑
α=0

∫
Pt

bM
α · (vα − v0) dv +

N∑
α=0

∫
Pt

bM
α · v0dv +

∫
∂Pt

tM · v0da,

=

∫
P0

N∑
α=0

1

c�α
F TBM

α · Jα +
(
BM

tot + Div (P)
)
· V0 + P:Ḟ dV,

(3.36)

where we have made use of Eq. (3.18), the divergence theorem and the
notation of double contraction, meaning A:B = AijBij to obtain the
version with respect to the reference configuration.
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3 Theory of Ion Transport in a Binary Solid Electrolyte

The electrical energy supply due to transport of charged species at an
electric potential Φ by means of a current jq reads

LE :=−
∫
∂Pt

Φjq · nda =

∫
Pt

e · jq − Φdiv
(
jq
)
dv. (3.37)

Transformation to the reference formulation yields

LE =

∫
P0

E · Jq + ΦDiv
(

Ḋ
)
dV

=

∫
P0

E · Jq + E · ḊdV +

∫
∂P0

ΦJḊK ·NdA

(3.38)

where we have used Div
(
Jq + Ḋ

)
= 0, a consequence of Eq. (3.10)

and Eq. (3.11). The last term can be identified as a surface charge
ωSC = JDK ·N , see e.g. [105]. Since all free charges are carried by ions
and the host is electroneutral, we assume that the change of surface
charge is zero and hence ˙ωSC = JḊK ·N = 0 on ∂P0.

Combining Eq. (3.19), (3.32), (3.34), (3.36), (3.38), we obtain the local
material form for the balance of energy

d

dt

N∑
α=0

ρ�αeα =RH −Div
(
JH
)

+ P:Ḟ + E · Ḋ + E · Jq

+

N∑
α=1

Mαeαċ
�
α −

N∑
α=1

(
B̃α + Grad (Mαeα)

)
· Jα

−
N∑
α=1

(
Mαeα −

1

2
MαVα · Vα

)
Rα

(3.39)

with the extended specific body force B̃α = − 1
c�α
F T

(
BM
α + BV

α

)
. In

addition to the thermal and mechanical contributions, we see a power
supply due to electric interaction, e.g. Joule heating, species transport
and chemical reaction.
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3.3 2nd Law of Thermodynamics

3.2.6 Balance of Entropy

We proceed similarly with the balance of entropy and sum over the
component entropies ηα. We locally assume equal absolute temperature
Θ ≡ Θα for each constituent and obtain

d

dt

N∑
α=0

∫
Pαt

ραηαdvα =

∫
Pt

rH

Θ
dv −

∫
∂Pt

jH

Θ
· nda+

∫
Pt

ρ0δV
Θ

dv (3.40)

where δV is the dissipation density. Applying Reynold’s theorem through
Eq. (2.14) on the left hand side, divergence theorem on the right hand
side and switching to the material frame gives

d

dt

N∑
α=0

ρ�αηα =ρ�0δV +
1

Θ

[(
(RH −Div

(
JH
))

+
1

Θ
JH ·Grad (Θ)

]

−
N∑
α=1

[Grad (Mαηα) · Jα −Mαηαċ
�
α +MαηαRα]

(3.41)

as an expression for the rate of total entropy.

3.3 2nd Law of Thermodynamics

We now introduce the total Helmholtz energies ψ̃ and the species
Helmholtz energy ψα from the Legendre transforms of the internal
energies eα

ψ̃(F , c�α,Θ,D) =

N∑
α=0

ρ�αψα =

N∑
α=0

ρ�α (eα −Θηα) . (3.42)
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3 Theory of Ion Transport in a Binary Solid Electrolyte

Combining Eq. (3.39) and Eq. (3.41), making use of Eq. (3.42) and
solving for ρ�0δV, we obtain the so-called full dissipation inequality, also
known as the Clausius-Planck inequality [98] as

ρ�0δV =

(
−

N∑
α=0

ηα −
∂ψ̃

∂Θ

)
Θ̇ +

(
P− ∂ψ̃

∂F

)
:Ḟ

+

N∑
α=1

(
Mαψα −

∂ψ̃

∂c�α

)
ċ�α +

(
E− ∂ψ̃

∂D

)
· Ḋ

−
N∑
α=1

[
B̃α + Grad (Mαψα) + FzαE− (Mαηα)Grad (Θ)

]
· Jα

− 1

Θ
Grad (Θ) · JH −

(
Mαψα −

1

2
MαVα · Vα

)
Rα

≥ 0.

(3.43)

The left hand side has to be non-negative with ρ�0δV ≥ 0 due to the
second law of thermodynamics. Following the Coleman-Noll argument
[106], we assume independence of the rates Θ̇, Ḟ , ċ�α, Ḋ and therefore
require the parenthetical terms in Eq. (3.43) to vanish. This yields the
consistency conditions

N∑
α=0

ηα = − ∂ψ̃
∂Θ

, P =
∂ψ̃

∂F
,

µα := Mαψα =
∂ψ̃

∂c�α
, E =

∂ψ̃

∂D
,

(3.44)

where we have introduced the chemical potential (per mole) as
µα := Mαψα of species α, which is also sometimes referred to as the
convective potential [107], a measure for the energy required to insert
a mole of species α into a fixed volume dV . Consequently the total
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3.3 2nd Law of Thermodynamics

Helmholtz energy of Eq. (3.42) is a combination of the host energy and
the sum of the chemical potentials of the components

ψ̃ = ρ�0ψ0 +

N∑
α=1

c�αµα. (3.45)

Further, since ψ̃ is composed from of the individual ψα, the definition in
Eq. (3.44) has an implicit structure and can be resolved via

Mαψα =
∂

∂c�α

N∑
β=0

ρ�βψβ ⇔
N∑
β=0

ρ�β
∂ψβ
∂c�α

= 0

⇔
N∑
β=1

c�β
∂µβ
∂c�α

= −∂ψ0

∂c�α
,

(3.46)

where the last representation can be seen as a Gibbs-Duhem like equation
at constant temperature and deformation.

We continue with the evaluation of the dissipation inequality (3.43). If
all equations of Eq. (3.44) are fulfilled and Joules heating is reformulated
to

E · Jq = −
N∑
α=1

Grad (Φ) · FzαJα, (3.47)

we can reduce Eq. (3.43) to

0 ≤ −
N∑
α=1

(
Grad

(
B̃α + µα + FzαΦ

)
+MαηαGrad (Θ)

)
· Jα

− 1

Θ
Grad (Θ) · JH −

N∑
α=1

(
µα −

1

2
MαVα · Vα

)
Rα.

(3.48)

Eq. (3.48) constitutes a thermodynamic constraint for the molar fluxes
Jα (and therefore species velocities vα), the heat flux JH and the
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3 Theory of Ion Transport in a Binary Solid Electrolyte

reactions Rα. Under the assumption of each process being indepen-
dent, the first term on the right hand side of Eq. (3.48) relates molar
flux to chemo-electrical driving forces, inertial and body forces. Similarly,
when independent of other terms, the second term leads to the well
known Fourier’s law of thermal conduction and the third term guides the
direction of reactions.

Assuming uniform temperature (Grad (Θ) = 0), quasistatic conditions
for the host (ϕ̇ely

t ≈ 0), the absence of body forces (BM
α ≈ 0) and further

assuming that inertia related forces are small (BV
α ≈ 0), we obtain the

thermodynamic constraints

0 ≤ −
N∑
α=1

Grad (ωα) · Jα and 0 ≤ −
N∑
α=1

µαRα, (3.49)

where we have introduced the electrochemical potential

ωα = µα + FzαΦ. (3.50)

The first of Eq. (3.49) provides a constraint for all mass fluxes Jα as
discussed in the upcoming sections. The second of Eq. (3.49) constitutes
a requirement for chemical reactions within the bulk, e.g. degeneration
of electrolyte. This will not play a role in the following sections, where
Rα = 0 will be assumed.

3.4 Material Description

To complete the electro-chemo-mechanical description of ion transport,
we have to specify a material model for the solid electrolyte. Therefore,
we will introduce the swelling mechanism, define the Helmholtz energy
including mechanical, electrical and mechanical effects and derive the
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c�α
cα

F s
F e

F

Figure 3.3: The deformation gradient is composed of purely isotropic swelling F s due
to the pressure of ions and elastic deformation F e.

constitutive equations and prescribe thermodynamically consistent mass
fluxes.

In the following, we use the a decomposition of the deformation gradient
into swelling and elastic contributions as seen in Fig. 3.3 with the
multiplicative split

F = F eF s, (3.51)

where F e describes the elastic response of the material and F s corresponds
to a volumetric stress free expansion or compression due to swelling.

3.4.1 Swelling of the Host Material

The volumetric phenomenon of swelling occurs when species are inserted,
removed or relocated in a host material. Although we will assume that
swelling itself is stress free, it can eventually trigger an elastic response
due to constraints from the boundary or adjacent material. Take for
example a sponge. If it is clamped and cannot expand but additional
species are inserted, then either the host or the species are compressed.
The opposite effect is also possible when the host is already infiltrated
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by species and is again clamped. If species are removed, then the host
has to account for the missing material which eventually leads to tension
forces.
Here, we assume an isotropic swelling. The deformation gradient of

swelling then is

F s = Js
1
3 I (3.52)

with the Jacobian Js = detF s as an unknown function of i.e. the
concentration. With Eq. (2.4) we can deduce from a given material
volume element dV the spatial volume element dv with

dv = JeJsdV = JdV, (3.53)

where Je = detF e is the Jacobian of elastic deformation. Each of the
volume elements can be separated into a contribution from the host and
from the mobile species α. The unswollen and undeformed state is defined
by

dV = dV0 +

N∑
α=1

ΩαdN
ref
α , (3.54)

where dN ref
α = dV crefα denotes the amount of species α in dV and Ωα is

its molar volume, both defined in the in the initial, reference state. The
swollen and deformed volume is

dv = dv0 +

N∑
α=1

Ω̂αdNα, (3.55)

where we assume that the deformation of the host volume follows
dv0 = JdV0 and that the spatial molar volume of species α is given
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by Ω̂α. Further, the amount of species dNα in volume dv is determined
from the concentration either in material or spatial configuration as

dNα = cαdv = c�αdV. (3.56)

From Eq. (3.53), Eq. (3.55) and the knowledge that the host material
deforms only elastically we obtain

JeJsdV = JedV0 +

N∑
α=1

Ω̂αdNα. (3.57)

Rearranging Eq. (3.57), using dV0 = dV −
∑N
α=1 Ωαc

ref
α dV from

Eq. (3.54) and with Eq. (3.56) then yields

Js = 1 +

N∑
α=1

(
Ω̂α

1

Je
c�α − Ωαc

ref
α

)
=

1−
∑N
α=1 Ωαc

ref
α

1−
∑N
α=1 Ω̂αcα

, (3.58)

where the second equality is obtained with 1
Je = Js

J . An explicit model for
the deformed molar volume Ω̂α of species α is necessary to evaluate the
swelling of a material as seen in Eq. (3.58). We consider two assumptions
for the deformation of a species.
The first assumption is incompressibility of the inserted species such

that Ω̂α = Ωα. This gives

Js|incompressible =
1−

∑N
α=1 Ωαc

ref
α

1−
∑N
α=1 Ωαcα

(3.59)

and implies an upper bound for the concentration with
∑N
α=0 cαΩα < 1.

The denominator reaches zero for cα → 1
Ωα

, which leads to an infinite
swelling (Js → inf). The volume is completely occupied by the species α
in this case and the host is compressed to zero volume.
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incompressible incomp. (linearized) compressible

Js
1−
∑N
α=1 Ωαc

ref
α

1−
∑N
α=1 Ωαcα

1 +
∑N
α=1

Ωα

(
cα−crefα

)
1−Ωαcrefα

1 +
∑N
α=1 β

sΩα
(
c�α − crefα

)
λS Js

1−
∑N
α=1 Ωαcα

1

(1−
∑N
α=1 Ωαcrefα )J

βs

Table 3.1: The expressions for Js and λS for incompressible, linearized incompressible
and compressible models of isotropic swelling.

Developing Eq. (3.59) with a Taylor expansion around cα = crefα yields
the linearized form

Js|incompressible = 1 +

N∑
α=1

Ωα
1− Ωαcrefα

(
cα − crefα

)
(3.60)

which approximates swelling as a linear function of the spatial concentra-
tion.
The alternative assumption is compressibility of the inserted species

with Ω̂α = βsJeΩα. The molar volume increases or decreases proportional
to the mechanical deformation of the host. The factor βs thereby accounts
for non-ideality in swelling and could be determined experimentally or
by atomistic simulations [64]. Eq. (3.58) then yields

Js|compressible = 1 + βs
N∑
α=1

Ωα
(
c�α − crefα

)
(3.61)

and aligns with models in literature [108, 109]. Using λS as defined in
Tab. 3.1 we compute the derivative of Js with respect to the variable ξ as

∂Js
∂ξ

= λSΩα
∂c�α
∂ξ

. (3.62)

Tab. 3.1 sums up the expressions for Js and λS which follow from the three
model assumptions of swelling. Note that the reference concentration
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Figure 3.4: The graph illustrates the correlation of swelling and the concentration in
a clamped system (J = 1) infiltrated by a single species with concentration c with
cref = 1000 mol

m3 and Ω = 140 cm
mol

. The incompressible version of Eq. (3.59) diverges

at 1
Ω

= 7143 mol

m3 . No significant difference is observed for the compressible (Eq. (3.61)
with βs = 1) and the linearized incompressible case (Eq. (3.60)).

has to obey
∑N
α=1 Ωαc

ref
α < 1 due to the requirement of Js > 0, for all

of the three swelling assumptions. Fig. 3.4 illustrates the concentration
dependencies of the two incompressible and the compressible version.
The response is very similar around cref for all three assumptions. The
effect of incompressibility is, however, significant for highly concentrated
solutions. To reduce complexity, especially due to the factor λS, and
to be in alignment with similar theories [68, 69], we will consider the
compressible version of Eq. (3.61) in the upcoming sections.
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3.4.2 Constitutive Helmholtz Energy

We assume that the Helmholtz free energy of the electro-chemo-mechanical
system can be written as the sum of mechanical, electrical and chemical
contributions as

ψ̃ (F , c�α,D) = ψ̃M(F , c�α) + ψ̃E(F ,D) +

N∑
α=1

ψ̃C
α (F , c�α), (3.63)

where we have chosen the Helmholtz free energy of the host at reference
state to be zero.

Electrostatics

For the sake of simplicity, we use an isotropic formulation of electrostatics
in the spatial domain consistent with Eq. (3.13), which leads to

ψ̃E

J
:=

1

2ε0εr
d · d. (3.64)

The reference description is then given as

ψ̃E =
1

2ε0
(ε�r)

−1 : (D⊗ D) with ε�r = JF−1εrF
−T . (3.65)

We introduce the material description of the relative electric permittivity
as ε�r to keep the notation concise. With Eq. (3.65) we do not include
dissipative materials [110] or anisotropic polarization [105] and assume a
concentration independent permittivity.

Mechanics

In addition to the swelling of Eq. (3.52), we assume a Neo-Hookean
material law for the description of the elastic response of the host. The
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mechanical energy, which depends solely on F e = FF−1
s (c�α), then

becomes

ψ̃M(F , c�α) := ψ̃etr
NH(F e)

=
1

2
γNH (I1 − 3) +

1

2
λNH (log I3)

2 − γNH log I3,
(3.66)

with the Lamé constants γNH, λNH and the invariants

I1 = tr
(
F Te F e

)
, I3 = Je = detF e, (3.67)

see e.g. Ogden [111]. Note that the Lamé constants can be converted
from Young’s modulus E or shear modulus G and the Poisson ratio ν by

λNH =
Eν

(1 + ν)(1− 2ν)
=

2Gν

1− 2G
and γNH =

E

2(1 + ν)
= G. (3.68)

Hereby, E, G and ν have their conventional meaning relating infinitesimal
strain and change in stress.

Chemistry

The chemical contribution to the Helmholtz energy is assumed to be

ψ̃C
α = c�αµ

0
α +RΘ

∫ c�α

crefα

ln

(
fαcα
f refα crefα

)
dc�α. (3.69)

with the gas constant R and the standard chemical potential µ0
α which is

independent of concentration and deformation. In concentrated solutions,
a correction factor, the so called fugacity or activity coefficient fα is
introduced to incorporate non-idealities in the formulation [112, 113]. In
dilute solutions, an ideal gas response is obtained with fα = 1.

Definition (3.69) is formulated very similarly to classical mixture theo-
ries in fluids and solids, but there are two features we want to highlight.
In contrast to conventional usage in solids, where a vacancy motivated
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ψ̃Cα (cα)|t1 < ψ̃Cα (cα)|t2

tC

undeformed deformed

Figure 3.5: Consider an isolated system: The effective concentration cα changes
from the undeformed (t1) to the deformed state (t2). Therefore, the chemical energy
increases and gives rise to chemical stresses tC also known as osmotic stress or pressure.

chemical potential is a function of material concentration c�α [63], we
follow a concept used for fluids and postulate that the chemical energy
depends on the amount of ions per deformed volume, i.e. on the spatial
concentration cα. Therefore, material compression leads to a decrease of
spatial volume and hence an increase of effective spatial concentration
(Fig. ??). The importance of this assumption and its implications will be
illustrated in Example 4.5. The second feature is the integration domain
of the integral in Eq. (3.69) which represents the entropic contribution to
the chemical energy. We choose it to be zero at reference concentration
crefα . This will be beneficial for the description of the mechanical response
in the upcoming section.

3.4.3 Constitutive Equations

Following Eq. (3.44), we can deduce the stress tensor, the chemical
potential and the electric field from Eq. (3.65), Eq. (3.66) and Eq. (3.69).
The Piola stress tensor then follows as

P = PM + PE + PC (3.70)
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with the three contributions

PM = F−1
s :
(

(λNH log I3 − γNH)F−Te + γNHF e

)
, (3.71)

PE = F−T
(
E⊗ D− 1

2
(E · D) I

)
, (3.72)

PC =

N∑
α=1

−F−TRΘ

∫ c�α

crefα

(
1 +

∂ ln fα
∂ ln cα

)
dc�α. (3.73)

Note that the electric contribution PE is the Maxwell stress tensor as
derived in [110] or [105]2 and reduces to an electric body force in the
material and spatial representations

BE
tot = Div

(
PE) = ρ�qF

−TE ⇔ bE
tot = ρqe. (3.74)

The chemical contribution PC originates from the dependency of concen-
tration on deformation in the chemical energy (Jcα = c�α). Its equivalent
Cauchy stress

σC =

N∑
α=1

−RΘ

(
cα − crefα +

∫ cα

crefα

∂ ln fα
∂ ln cα

dcα

)
I (3.75)

is purely hydrostatic. It corresponds to the osmotic pressure

pC = −1

3
tr
(
σC) , (3.76)

which is typically introduced in the setting of a membrane permeable
for a solution but not for a solvent. The jump in concentration across
the membrane yields diffusion of solvent through it to minimize chemical
energy. Diffusion through the membrane stops when a critical pressure

2 McMeeking and Landis [105] formulate the mechanical response with Cauchy stresses
σ = 1

JPF
T .
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across the membrane is reached that balances the chemical driving force
[69]. An ideal solution with fα = 1 and crefα = 0 gives the familiar result
for an ideal gas pC =

∑N
α=1RΘcα [113]. In contrast to the case of fluids,

we formulate Eq. (3.69) such that a stress free state with σC(crefα ) = 0

holds for the reference concentration, thereby avoiding further complexity
with osmotic pressure having to be balanced in the reference configuration
by a mechanical response.
Now we evaluate the chemical potential with Eq. (3.44) through

µα = µCα + µMα with

 µCα =
∂ψ̃Cα
∂c�α

= µ0
α +RΘ ln

(
fαcα
frefα crefα

)
µMα = ∂ψ̃M

∂c�α
= JeλSΩαp

M.

(3.77)

The mechanical part of the chemical potential therefore depends on the
swelling assumption, see Tab. 3.1. We continue our analysis with the
underlying assumption of compressibility which yields λS = 1. The chem-
ical part µCα is in alignment with standard chemical potentials with an
energetic and an entropic contribution [53, 112]. The mechanical contri-
bution µMα due to the elastic part of the pressure pM = − 1

3 tr
(

1
JP

MF T
)

leads to stress assisted diffusion [114]. The factor Je is a consequence
of large strain considerations. Concentration-dependent properties of
elasticity and electrostatics would yield additional contributions to the
chemical potential [64].
Finally we evaluate the electric field from Eq. (3.44) and get

E =
1

Jε0
(ε�r)

−1 D, (3.78)

which gives together with Eq. (3.11) the Poisson equation

−Div (ε0ε
�
rGrad (Φ)) = ρ�q . (3.79)
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The description in the material configuration of Eq. (3.79) aligns with
the well known spatial Poisson equation, see Eq. (3.14).

3.4.4 Multicomponent Mass Flux in Finite Strain

Thermodynamically consistent transport models have to obey cross-
relations between driving force/mass flux couples. The Onsager theory
[115–117], the Maxwell-Stefan formalism [102, 103] or the Poisson-Nernst-
Planck equation are different approaches to satisfy thermodynamic con-
sistency. In our formulation this is equivalent to postulate, motivated
by the requirement of the reduced dissipation inequality (3.49), a linear
ansatz for the mass flux [68, 69, 118, 119] as

Jα = −
N∑
β=1

M�αβGrad (ωβ) , (3.80)

where we introduce a mobility matrix M�αβ , which we require to be
positive semi-definite to guarantee non-negativity of Eq. (3.49). The
mobility matrix

M�αβ :=


M�11 M�12 · · ·

M�21 M�22 · · ·
...

...
. . .


∣∣∣∣∣∣∣∣∣
αβ

(3.81)

with

(
aα ·M�αβ · aβ

)
≥ 0 ∀aα,aβ ∈ R3 (3.82)

consists of N ×N entries where each entry can be again a R3×3 tensor to
represent anisotropic properties. A deeper discussion of the implementa-
tion of anisotropy within this theory can be found in Section 3.4.5. The
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mobility matrix describes the influence of the driving force Grad (ωβ)

on the mass flux Jα. A low mobility is a result of high internal fric-
tion with respect to the host (on-diagonal terms) and with respect to
component-component interaction (off-diagonal terms). They are related
to drag coefficients and binary diffusion coefficients in the Maxwell-Stefan-
diffusion model as discussed in Section 3.4.6.
We would like Eq. (3.80) to be consistent with the spatial relation

jα = −
N∑
β=1

Mαβ grad (ωβ) , (3.83)

correlating the mass flux on the deformed geometry with a spatial gradient
of the electrochemical potential and obtain 3

M�αβ = JF−1MαβF
−T . (3.84)

The property Mαβ is the spatial mobility matrix, a parameter closely
related to measurable quantities and Eq. (3.84) effectively informs the
material configuration of changes of transport paths due to deformation.
Eventually, we solve the material mass flux in Eq. (3.80) with the material
mobility of Eq. (3.84) which is equivalent to the desired spatial mass
flux of Eq. (3.83). If the domain is deformed, the material mobility M�αβ
becomes anisotropic due to the conversion of Eq. (3.84), even if isotropic
material properties are assumed. This anisotropy is solely related to
deformation of transport paths. The requirement that the material
mobility matrix has to obey a positive semi-definite structure leads along
with Eq. (3.84) to the spatial mobility matrix having to be positive
semi-definite. This property can be checked in the manner of Eq. (3.82)

3 We deduce from jα · nda = Jα ·NdA the relation Jα = JF−1jα [98]. Further,
the material and spatial gradient operator are linked via Grad (·) = ∂x

∂X
grad (·) =

F grad (·).
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M�αβ

RU

F

M∗αβ

Mαβ

material frame spatial frame

Figure 3.6: M∗αβ is defined on an intermediate configuration, where the orientation is
linked to the material frame but the stretches and hence the length of the effective
transport paths are linked to the spatial frame.

or by the eigenvalues which are required to be non-negative. Furthermore,
we can conclude that the determinant of Mαβ has a non-negative value.

3.4.5 Modeling Anisotropy in Solid Electrolytes

In order to include anisotropic material properties as found e.g. in laminar
structures [37, 57] in our transport framework, we link transport paths
with the material configuration and use properties like the effective length
of a transport path from the deformed configuration. For illustration
purposes, imagine a set of parallel lines on a material which are associated
with the material points. Their shape and length will change with
deformation. Now consider an ion traveling through the material without
being able to cross the lines. The ion then has to follow the material
structure (the lines are borders) but needs to move the spatial length of
these lines (deformed geometry). To implement this in our framework,
we decompose the deformation gradient into F = RU with a right
stretch tensor U and a rotation tensor R, see Eq. (2.5). This defines an
intermediate configuration, where the material is stretched with U but
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not rotated. It serves for the definition of the transport properties, e.g.
anisotropic mobility matrix M∗αβ . If the structure rotates, the effective
spatial mobility Mαβ does so via

Mαβ = RM∗αβR
T . (3.85)

We get with Eq. (3.84) the material mobility matrix as

M�αβ = U−1M∗αβU
−T . (3.86)

The material mobility matrix is ultimately influenced only by stretches.
The mass flux stated in the material frame takes length changes of the
transport path into account, the orientation, however, is governed by a
path associated with the material.
If an electrolyte is isotropic, we can reduce the formulation by the

introduction of an isotropic mobility M∗αβ = MαβI, which results in

Mαβ = MαβRR
T = MαβI and M�αβ = J

(
F TF

)−1

Mαβ (3.87)

Therefore, the spatial mobility matrix coincides with the intermediate
definition. Nevertheless, the material mobility behaves anisotropic due to
deformation. This anisotropy is required because of the nature of finite
deformation where the partial differential equations are solved in the
undeformed configurations.

3.4.6 Relation to Maxwell-Stefan Theory

From Eq. (3.83), we can directly deduce the Maxwell-Stefan diffusion
model [103], which is also the foundation of Newman’s derivation [53,
102, 120]. For simplicity, we restrict ourselves to isotropic mobilities
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Mαβ = MαβI. Recalling Eq. (3.83), inserting Eq. (2.15) and multiplying
both sides with cβM−1

αβ yields

cβgrad (ωβ) =

N∑
α=1

K̃αβ (vα − v0) =

N∑
α=0

Kαβ (vα − vβ) , (3.88)

with the definition

K̃αβ = −cβM−1
αβcα with M−1

αβ =


M11 M12 · · ·

M21 M22 · · ·
...

...
. . .


−1
∣∣∣∣∣∣∣∣∣∣
αβ

(3.89)

where we identify Kαβ as the drag coefficient as introduced e.g. in [53].
The transformations between the two drag coefficient matrices are

K̃αβ =

 −
∑N
γ 6=α=0 Kαγ α = β

Kαβ α 6= β
(3.90)

Kαβ =



0 α = β

−
∑N
γ 6=0=0 K̃αγ α 6= β = 0

−
∑N
γ 6=0=0 K̃γβ β 6= α = 0

K̃αβ else.

(3.91)

Note that Kαβ ∈ RN+1×N+1 considers friction with the host but no self
or background friction. The matrices K̃αβ ∈ RN×N and Mαβ ∈ RN×N

have non-zero diagonal elements. These diagonal elements correspond
to interactions with the underlying media. All reformulations maintain
the symmetry of the matrices. The transformation of drag coefficients to
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mobilities is Mαβ = cαcβK̃
−1

αβ . The Maxwell-Stefan diffusion coefficients
Dαβ are related to the second drag coefficients with

Kαβ = RΘ
cαcβ
cTDαβ

, (3.92)

where cT =
∑N
α=0 cα is the total concentration. Further, a host con-

centration c0 is necessary within this description. For dilute solutions
with no component-component interaction (Mαβ = 0 ∀α 6= β), we ob-
tain the correlation Mββ =

cT cβ
RΘc0

D0β ∀β = 1..N . The Maxwell-Stefan
diffusion coefficients are similar to self-diffusion coefficients obtained by
experiments [57, 120] or MD simulations [121]. If cross dependencies are
present, the conversion within the concepts of mobilities and Maxwell
Stefan coefficients is not as trivial and we refer to Section 3.5.5 for a
binary electrolyte.

3.4.7 Ionic Current and Mass Fluxes

The driving force for mass transport in Eq. (3.80) is partially due to
the chemical potential and partially driven by gradients of the electric
potential, see Eq. (3.50). We now split the mass flux into a chemical and
an electrical contribution with

Jα = JC
α + JE

α with

 JC
α = −

∑N
β=1 M�αβGrad (µβ)

JE
α = −κ�αGrad (Φ) ,

(3.93)

where we have introduced the mass conductivity

κ�α = F

N∑
β=1

M�αβzβ , (3.94)
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which defines the impact of the electric field on mass transport.4 A
similar split for the electric current Jq =

∑N
=1 FzαJα from Eq. (3.10)

can be obtained by a rearrangement of the summation terms

Jq = JC
q + JE

q with

 JC
q = −

∑N
α=1 κ

�
αGrad (µα)

JE
q = −κ�Grad (Φ) .

(3.95)

We can identify the mass conductivity of Eq. (3.94) in the chemical part
of the current density and introduce the ionic conductivity

κ� =

N∑
α=1

Fzακ
�
α, (3.96)

which relates analog to Ohm’s law (Eq. (3.15)) the electric part of the
current density with the electric field. Together with Eq. (3.94) we
observe that the ionic conductivity κ� is directly related to the mobilities.
Further, we introduce a so-called transference number t�α with

t�αJ
E
q = FzαJ

E
α ⇒ t�ακ

� = Fzακ
�
α ⇔ t�α = Fzακ

�
α(κ�)−1,

(3.97)

as also introduced e.g. in [122, 123] for binary systems. Physically, the
transference number t�α represents the fraction of the overall current
transported by species α in case of pure migration with no diffusion
mechanism present (Grad (µα) = 0) [124]. The transference number
in Eq. (3.97) is therefore a representation of mobilities and thus a
well defined material property. Note that transference numbers are
in general anisotropic, their sum is the identity tensor (

∑N
α=1 t

�
α = I)

and, based on our derivation, we find that there is no thermodynamic

4 In the case of uncharged species—as found e.g. in active particles [63]—the conduc-
tivities from Eq. (3.93) are zero. Consequently, the electric portion JEα drops out
and only mass transport due to chemo-mechanics remains.
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restriction demanding positivity of the transference number. In fact,
negative entries in t�α are possible when one component is more strongly
affected by the chemical potential of another species, i.e. the component
under consideration is dragged along by one or more other components.
Recent experimental work [56, 123] confirms this theoretical result. We
also refer to Section 3.5.6 which gives further insights on how to test
thermodynamic consistency of the transport parameters.

In the following we assume that at least one species is charged (zα 6= 0).
In such systems, the conductivity and transference number are measurable
characteristic parameters and we can rewrite the current density of Eq.
(3.95) with the last term in Eq. (3.97) as

Jq = −κ�
N∑
α=1

1

Fzα
t�αGrad (µα)− κ�Grad (Φ) . (3.98)

Next, we rewrite the electric part of the mass flux of Eq. (3.98) as

JE
α =

1

Fzα
t�α

(
Jq − JC

q

)
, (3.99)

which gives us the possibility of decomposing the species mass flux into
three components

Jα = (I − t�α)JC
α − t�α

N∑
β 6=α=1

zβ
zα
JC
β +

1

Fzα
t�αJq (3.100)

namely, a self diffusion, a drag diffusion and a migration portion, re-
spectively. Note that Eq. (3.98) and Eq. (3.100) are generic versions of
Newman type equations for transport in concentrated solutions [53].
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Care has to be taken when evaluating the gradient of the chemical
potential of Eq. (3.77). With cα

(2.13)
= c�α/J

(3.51)
= c�α/(JeJs) due to the

effect of compression this gives rise to

Grad (µα) = ξcα
∂µCα
∂cα

Grad (c�α) + ξpΩαGrad
(
pM
)

+ ξJeα Grad (Je)

(3.101)

with the prefactors

ξcα =
1

J

(
1− ∂ ln Js

∂ ln c�α

)
,

ξp = Jeβs,

ξJeα = βsΩαp
M − c�α

JeJ
∂µCα
∂cα

.

(3.102)

The first term on the the right hand side of Eq. (3.101) drives classical
diffusivity, the center term is the mechanical driving force due to pressure
gradients, whereas the last term specifies a second order effect due to
volume change. In other words, if the volume changes due to elastic
deformation, the ions are packed closer and the chemical energy increases.
If the elastic deformation is inhomogeneous, the third driving force in
Eq. (3.101) originates.

3.5 Binary Electrolyte

Ionic charge in binary electrolyte systems is carried by a positively charged
cation and a negatively charged anion which we denote by α = {+,−}.
As we consider Lithium based binary electrolytes, we apply z+ = 1 and
z− = −1 henceforth. In solid electrolytes, these ions are embedded in a
solid host material, whose kinematics are described by the deformation
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map ϕt; this is fundamentally different from liquids where a third mobile
component, the solvent, is present. Therefore, we have only two mobile
species and obtain the binary mobility matrix

{Mαβ |α, β = {+,−}} =

M+ M±

M± M−

, (3.103)

with three independent mobilities (which can each be functions of con-
centration, stress, etc.). The diagonal contains the cation mobility M+

and the anion mobility M−. The off-diagonal term M± in addition to
the fugacity stems from the non-ideality of concentrated solutions and
can be associated with the motion of clusters of both cations and anions
with unlike charge that cause the constituting cations to be influenced
by the anion potential and vice versa. In the settings of ion-exchange
polymer-metal composites (IPMC) [125] for sensing and actuation, this
effect is known as electro-osmosis drag where water is shuttled along with
hydrogen [126, 127]. Another motivation for the off-diagonal term is a
counting argument. There are four constitutive quantities, namely the
chemical potential and the three mobilities. This is the same number of
parameters as for the standard parametrization of binary ion transport
[53], see Section 3.5.5.
In the following, we will present three approaches to compute the

motion of the mobile species {c+, c−, ρq}. The first is a straight forward
application of the previously derived theory for binary electrolytes. The
second approach is a reformulation introducing the balance of charge
and serves as the transition to the third, the electroneutral version that
constitutes simplifications of the first two. All of these formulations
describe transport and, hence, the underlying structure of the mechanics
with the Piola stress tensor P from Eq. (3.70), the material mobilities
M�αβ from Eq. (3.84) and swelling from Eq. (3.61), is unaffected and
remains the same in all versions.
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3.5 Binary Electrolyte

3.5.1 Full Formulation

For the full formulation in terms of {ϕt, c�+, c�−,Φ}, we state the balance
of linear and angular momentum, add mass conservation for positive and
negative ions derived from Eq. (3.83) and include Gauss’ law as

ċ�+ + Div (J+) = 0

J+ = −M�+Grad (ω+)−M�±Grad (ω−)

ċ�− + Div (J−) = 0

J− = −M�±Grad (ω+)−M�−Grad (ω−)

Div (P) = 0, PF T = FPT

Div (D) = ρ�q , D = −ε0ε�rGrad (Φ)

(3.104)

where the electrochemical potentials are given by

ω+ = µ+ + FΦ and ω− = µ− − FΦ. (3.105)

The equations in formulation (3.104) constitute the system of field equa-
tions necessary for the solution for the fields {ϕt, c�+, c�−,Φ}. The ini-
tial boundary value problem requires initial conditions for c�+, c�− and
boundary conditions (BC) for ϕt, c�+, c�− and Φ. Typical electrochemical
boundary values (BV) are those for blocking electrodes given by

−N · J+|∂B0 = −N · J−|∂B0 = 0, Φ|∂B0 = Φ̃, (3.106)

where Φ̃ is a prescribed, position dependent electrical potential on the
boundary. Also typical are galvanostatic BC specified by

−N · J+|∂B0 =
Japp

F
, −N · J−|∂B0 = 0, (3.107)
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3 Theory of Ion Transport in a Binary Solid Electrolyte

where a boundary current per undeformed area Japp is applied and only
cations leave the system. The boundary current is usually given by
reaction kinetics such as the Butler-Volmer equation [128]. Note that
for global electroneutrality, it is necessary that

∫
∂B0

Japp = 0, where
∂B0 denotes the boundary of the electrolyte. To within an additive
constant the electric potential is fully described due to its coupling to
ion transport.

3.5.2 Towards Balance of Charge

To reformulate Eq. (3.104), we recall the cation mass flux from Eq. (3.100)
and use its binary form as

J+ = t−J
C
+ + t+J− +

t�+
F
Jq

= −
(
t�−M

�
+ + t�+M�±

)
Grad (µ+)

−
(
t�+M�− + t�−M

�
±
)
Grad (µ−) +

t�+
F
Jq ,

(3.108)

where we identify an ambipolar mobility matrix as mentioned e.g. in
[119] as

M�amb := t�−M
�
+ + t�+M�± = t�+M�− + t�−M

�
±

= F 2
(
M�+M�− −M�±

2
)
κ�−1.

(3.109)

Note that in contrast to the treatment in [53], all concentration depen-
dencies are hidden in the mobilities. Further, we exchange the anion
concentration c�− with the field variable total charge density ρq via
c�− = c�+ −

ρ�q
F and obtain from Eq. (3.98) a statement for the charge flux

Jq = −κ
�

F

[
t�+Grad (µ+)− t�−Grad (µ−)

]
− κ�Grad (Φ) . (3.110)
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3.5 Binary Electrolyte

From Eq. (3.104) we deduce with

ρ̇�q = Fz+ċ
�
+ + Fz−ċ

�
−

= Div (Fz+J+) + Div (Fz−J−) = Div (Jq) ,
(3.111)

the electric potential Φ = ω+

F −
µ+

F and some rearrangements the second
set of transport equations

ċ�+ + Div (J+) = 0

J+ = −M�ambGrad (µ+ + µ−) +
t+
F
Jq

ρ̇�q + Div (Jq) = 0

Jq = −κ
�

F

((
t�+ − I

)
Grad (µ+ + µ−)

)
− κ

�

F
Grad (ω+)

Div (P) = 0, PF T = FPT

Div (D) = ρ�q D = −ε0ε�rGrad (Φ)

(3.112)

where the current density is driven by the electrochemical potential of
the cation, see Eq. (3.105). With respect to the BC, we exchange the
anion flux in Eq. (3.107) with a boundary current with

−N · Jq = Japp (3.113)

consistent with the cation flux of Eq. (3.107).

3.5.3 Electroneutral Description

Ion polarization occurs only in the double layer close to interfaces and
results in strong electric potential gradients. The width of this domain
can be approximated by the Debye length [104] and is usually of the order
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3 Theory of Ion Transport in a Binary Solid Electrolyte

of nanometers. Away from this region, electrostatic forces are dominant,
drawing unlike charges together, and therefore electroneutrality prevails.
The relationship

c�+ ≈ c�− (3.114)

is an adequate approximation for simplifying the transport equations and
the individual concentrations c�+ and c�− can be both replaced by a salt
concentration c�± = c�. Consequently, the charge density becomes zero
ρ�q = 0 everywhere and Poisson’s law decouples from mass transport [116].
Besides the replacement of c�+ and c�− by c�, it is beneficial to replace Φ

by the electrochemical potential of the cations

ω+ = µ+ + Fz+Φ, (3.115)

because it is directly accessible in probe measurements [53]. Consequently,
we reduce the set of field variables {ϕt, c�+, c�−,Φ} to
{ϕt, c�, ω+}. Conservation of charge, as given in the form of an ex-
tended Ohm’s law in Eq. (3.112), then serves as the governing equation
for the electrochemical potential.

Besides eliminating a field variable and thus saving computational effort,
another advantage of the electroneutrality assumption is the reduction in
the number of required parameters. This is significant especially since
individual ion properties are very difficult to measure. With the molar
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3.5 Binary Electrolyte

volume of the salt Ω± = Ω+ + Ω−, the chemical potential of the salt
µC± := µC+ + µC− [53] and considering Eq. (3.101), we obtain

ċ� + Div (J+) = 0

J+ = −D�Grad (c�) +
t�+
F
Jq

− ξpΩ±G
�Grad

(
pM
)
− ξJe±G

�Grad (Je)

Div (Jq) = 0

Jq = D�qGrad (c�)−κ
�

F
Grad (ω+)

+ ξpΩ±G
�
qGrad

(
pM
)

+ ξJe±G
�
qGrad (Je)

Div (P) = 0, PF T = FPT

(3.116)

with contributions of diffusion, migration, stress-assisted diffusion and
volumetric effects. The prefactors are given by

D� = ξc±M
�
amb

∂µC±(c)

∂c
,

G� = M�amb =
1

ξc±

(
∂µC±(c)

∂c

)−1

D�,

D�q =
ξc±
F

(
I − t�+

) ∂µC±(c)

∂c
κ�,

G�q =
1

F

(
I − t�+

)
κ�,

(3.117)

with the Fickian diffusion coefficientD� formulated in the material setting.
Choosing the chemical potential µC± to be of the form of Eq. (3.77) with
mean salt fugacity f± =

√
(f−)(f+) as introduced in Eq. (3.69), we

obtain

∂µC±(c)

∂c
=

2RΘ

c

(
1 +

∂ ln f±(c)

∂ ln c

)
, (3.118)
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where the expression in brackets is usually called the thermodynamic
factor.

The set (3.116) thereby constitutes an extended version of the classical
Newman theory [53, 129] with which it coincides for the case of ϕt = X

(no deformation) and Ω± = 0 (no swelling). Under these conditions the
last two terms on the right-hand side of the mass and current flux in
Eq. (3.116) drop out.
The osmotic stress in Eq. (3.75) becomes

pC = 2RΘ

∫ cα

cref

(
1 +

∂ ln f±
∂ ln c

)
dc, (3.119)

and thus is solely depended on the thermodynamic factor.
Other than the parameters associated with swelling in Eq. (3.61) due

to the salt molar volume, i.e. Ω± and the reference salt concentration
cref, no further properties than the standard electrochemical parameters
{D�,κ�, t�+, 1 + ∂ ln f±(c)

∂ ln c } are required to couple mechanics and ion
transport in this formulation.

3.5.4 Steady State Current in a Binary Electrolyte

Charging and discharging a battery involves cation shuttling through
the solid electrolyte. During this process, a concentration gradient of
the salt builds up, see discussion in Section 4.4. When the steady state
is reached, the concentration gradient has the highest slope eventually
determining a steady state conductivity. The steady state conductivity
property is important to judge the performance of an electrolyte and is
also easy to access in measurements.

Since the anions are restricted to the electrolyte domain and are, unlike
the cations, not inserted and extracted during operation, their dynamics
determine the steady state. In other words, when the driving forces
for anions are in equilibrium and their mass flux vanishes, i.e. J− = 0,
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3.5 Binary Electrolyte

then the system is in steady state. From the mass fluxes in formulation
(3.104), where we eliminate ω− in the expression for J+, we obtain with
(Jq)

SS
= FJ+ an expression of a steady state Ohm’s law as

(Jq)
SS

=− (κ�)
SSGrad

(ω+

F

)
(3.120)

with the steady state conductivity

(κ�)
SS

= F 2
(
M�+ −M�±

(
M�−

)−1 M�±
)
. (3.121)

Expression (3.121) shows the importance of off-diagonal mobilities. The
steady state conductivity would only be governed by the cation mobility if
M�± is assumed to be zero. It is worth noting that effects from mechanics
and the chemical potential do not enter the calculation explicitly. In the
case of an isotropic system (Mαβ = MαβI), we can deduce requirements
on the entries of the binary mobility matrix from Eq. (3.103) from a
positive steady state conductivity. To do so, we write the steady state
conductivity in the spatial form as

(
κiso
)SS

=
1

J
F (κ�)

SS
F T =

1

M−

(
M+M− −M2

±
)
I. (3.122)

The expression in brackets is the determinant of the spatial mobility
matrix. Since both the determinant and the steady state conductivity
are non-negative, we conclude M− ≥ 0. Due to the structure of the
determinant, one can further conclude that M+ has to be non-negative,
too.
Alternatively, on can follow Balsara and Newman [130] and use the

formulation (3.112) to derive the steady state conductivity. It is reached
when

J− = −M�ambGrad (µ+ + µ−)− t−
F
JSSq

!
= 0. (3.123)
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and gives a correlation between the steady state current JSSq and the
chemical potential. Rearrangement yields

(Jq)
SS

=
1

Ne

(
−t�−

κ�

F
Grad (µ+ + µ−)

)
, (3.124)

where we have introduced the so called Newman number

Ne =
(tiso− κiso)2

F 4 detMαβ
=

(M− −M±)
2

detMαβ
= ξc

κisotiso−
2

F 2Diso
∂µ±
∂c

. (3.125)

Here we have used Eq. (3.109) for M�amb and assumed isotropic transport
properties. Eq. (3.125) is in alignment with to work of Balsara and
Newman [130]. The Newman number is non-negative due to the ther-
modynamic constraint detMαβ ≥ 0. The right hand side of Eq. (3.124)
corresponds to the diffusion part of the electric current in Eq. (3.112).
Consequently, we obtain

(Jq)
SS

= − (κ�)
SSGrad

(ω+

F

)
with (κ�)

SS
=

κ�

1 +Ne
(3.126)

which is consistent with the result of Eq. (3.120).

3.5.5 Conversion of Transport Parameters

Binary electrochemical systems are usually characterized by macroscopic
measurements yielding isotropic transport parameter {κiso, tiso+ , Diso, 1 +
∂ ln f±(c)
∂ ln c }. We now want to correlate these parameters to the mobilities

and drag coefficients introduced in Section 3.4.4 and Section 3.4.6 as
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3.5 Binary Electrolyte

these give an idea of the interaction of the anions and cations in the solid
electrolyte. With Eq. (3.96), Eq. (3.97) and Eq. (3.117) we obtain

κiso = F 2 (M+ + M− − 2M±) ,

tiso+ =
M+ −M±

M+ + M− − 2M±

Diso =
M+M− −M2

±
M+ + M− − 2M±

2RΘξc±
c

(
1 +

∂ ln f±(c)

∂ ln c

)
.

(3.127)

The spatial properties transform into the material description with

κ� = J
(
F TF

)−1

κiso, t�+ = tiso+ I, D� = J
(
F TF

)−1

Diso.

(3.128)

Taking the inverse of Eq. (3.127), we deduce mobilities from measured
parameters as

Mγ =
Disoc

2RΘξc±

(
1 + ∂ ln f±(c)

∂ ln c

) + κiso
tisoγ

2

F 2
, γ = {+,−}

M± =
Disoc

2RΘξc±

(
1 + ∂ ln f±(c)

∂ ln c

) − κiso tiso+ tiso−
F 2

.

(3.129)

The first part in Eq. (3.129) describes the influence of diffusion, the
second equation reveals the diffusion and migration contributions to the
mobility. The ratio of both for the anion mobility M− is given by the
Newman number, see Eq. (3.125).

Further, if we assume f± = f+ = f−, we can compute from the fugacity
the thermodynamic factor by integration as

f± (c∗) = exp

(∫ c∗

0

∂ ln f±(c)

∂ ln c

1

c
dc

)
. (3.130)
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Eq. (3.129) and Eq. (3.130) therefore yield the transformation rules to
convert transport properties used in formulation (3.116) to the properties
used in Eq. (3.104). Using Eq. (3.90) with the inverse of Eq. (3.89) gives
the correlation between binary drag and diffusion coefficients for a binary
system as(

M+ M±

M± M−

)
=

1

c2 (K0+K0− + K± (K0+ + K0−))

(
K0− + K± K±

K± K0+ + K±

)
(3.131)

The on-diagonal mobilities Mαα stem from a complex interplay between
friction of host as well as the adjacent component. If the drag coefficients
are positive then the mobilities are also positive. Combining Eq. (3.127),
Eq. (3.131) and Eq. (3.92) provides us with

κiso =
F 2 (K0+ + K0−)

c2 (K0+K0− + K± (K0+ + K0−))

tiso+ =
K0−

K0+ + K0−
=

D0+

D0+ + D0−

Miso
amb =

c2

K0+ + K0−
=

cT c

RΘc0

D0+D0−

D0+ + D0−
=:

cT c

RΘc0
D

(3.132)

where we have linked the isotropic ambipolar mobility Miso
amb from

Eq. (3.109) and the thermodynamic diffusivity D = D0+D0−
D0++D0−

[53, 120].
It is worth noting that only the conductivity depends on the component-
component friction K±. Further, the transference number can only be
negative if one of the drag coefficients K0− or K0+ is negative.

It is important to note that measurements of electrochemical transport
parameters do not usually take the mechanical response into account. As
seen in the derivations, conductivity and transference number are not
influenced by mechanics. The steady state conductivity from Eq. (3.122)
is another measurable parameter without direct impact of mechanics.
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The diffusion coefficient is, however, usually identified by experiments
where quite large concentration gradients occur. In such measurements,
we expect a strong influence of mechanical driving forces which assist the
diffusion. The measured relaxation time can be then only associated to
an effective diffusion coefficient. An alternative approach to gain diffusion
coefficients without contributions of stress driven diffusions might be
atomistic simulations [131].

Finally, we want to point out that a third component would introduce
three new transport parameters due to the non-diagonal entries. In
general, havingN species requiresN(N+1)/2+1 independent measurable
parameters to account for all possible interactions between ions and the
chemical potential.

3.5.6 Thermodynamically Consistent Parameters

It is important to use thermodynamically consistent parameters in order
not to violate the fundamental second law of thermodynamics. Obviously,
this has to hold for both the formulation with mobilities (Eq. (3.104))
and the parameters of the concentrated solution theory (Eq. (3.116)).
For the former, we have concluded that the mobility matrix Mαβ has
to be positive semi-definite, see Eq. (3.81). The eigenvalues, therefore,
can be checked for validation. In binary isotropic electrolytes, an easier
assessment is possible. From Eq. (3.109), (3.117) and (3.118) we deduce
that the determinant is positive for positive conductivity, diffusivity and
thermodynamic factor. In isotropic systems, this reads

det (Mαβ) = Disoκiso
c

2RΘξc±

(
1 +

∂ ln f±(c)

∂ ln c

)−1

. (3.133)

Note that a positive determinant does not necessarily yield a positive
definite matrix. However, we know that the diagonal elements are positive
due to positive steady state conductivity in Eq. (3.122). If the symmetric
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mobility matrix has a strongly diagonally dominant structure, it has a
positive definite form. This feature is given with 0 < tiso+ < 1 as seen in
Eq. (3.127). Therefore, we can conclude that

0 < κiso, 0 <
(
κiso
)SS

, 0 < Diso,

0 < tiso+ < 1, 0 < 1 +
∂ ln f(c)

∂ ln c
,

(3.134)

is sufficient to fulfill the second law of thermodynamics. If not, the
eigenvalues of Mαβ have to be computed and checked for non-negativity.
Therefore, the transference number tiso+ cannot just independently take
any real value as proposed by Monroe and Delacourt [102].

3.6 Summary

In this chapter, we have presented a rigorous formulation of ion transport
in a solid electrolyte. Using the concept of finite strain, the Coleman-
Noll procedure and the Helmholtz energy, we derived in a consistent
manner the driving forces for species transport, the mechanical response
of the host material and their coupling mechanisms. We thereby chose
the transport description in the deformed geometry but solve it —as
common in continuum mechanics— in a reference description. The
influence of mechanics turned out to be broad. Most notable is the
consideration of ion size by means of swelling and eventually stress
driven diffusion. Further, we considered the effect of the change of
geometry on mass flux and in the chemical potential. The former was
also discussed for an anisotropic material and the latter gives rise to
an osmotic pressure and is closely related to the thermodynamic factor.
Using electroneutrality assumptions for a binary electrolyte, we have
derived an extended version of concentrated solution theory [53] taking
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diverse mechanical coupling mechanisms into account. We identified the
connections to the Maxwell-Stefan theory and presented the correlation
of mobilities, drag coefficients and transport parameters by means of
conductivity, diffusivity, transference number and thermodynamic factor
from concentrated solution theory. Further, the relation to the steady
state current was shown and thermodynamic consistency of transport
parameters was discussed. The off diagonal terms of the mobility matrix
and hence the anion-cation interaction were found to be significant.
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4 Understanding Ion Transport
in a Binary Solid Electrolyte

In this chapter, we complement the theoretical description of the coupled
electro-chemo-mechanical modeling of a binary solid electrolyte with
numerical studies as shown in Ganser et al. [101]. We utilize simulations
to highlight the coupling mechanisms between electrochemistry and
mechanics in solid electrolytes and some of their implications on battery
performance. Whenever possible and meaningful, we utilize full sets of
measured, concentration-dependent transport properties. Three studies
with polymer electrolytes and thus mobile anions and cations are shown.
In particular, we examine the influence of the changes of the mechanical
material properties on the response of the electrolyte, while keeping the
electrochemical properties fixed.

4.1 Simulation Environment

We utilize the finite element solver COMSOL Multiphysics® [132]. Pois-
son equation (from Eq. (3.104)), conservation of mass (from Eq. (3.104)
and Eq. (3.116), respectively) and balance of charge (from Eq. (3.116))
were implemented as partial differential equations in the "general form"
and discretized with quadratic Lagrange elements. Since no theory de-
velopment was done in the mechanical part of the transport theory in
Chapter 3, we were able to use the COMSOL modules ”structural mechan-
ics” and ”nonlinear structural materials” to solve the deformation field
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with cubic Lagrange elements. All equation were solved in a fully cou-
pled manner and all field variables involved were normalized to optimize
accuracy and convergence.

4.2 Material Data

The most common polymer electrolyte is poly(ethylene oxide) (PEO)
which shows sufficient transport and chemical stability. However, PEO
creeps rapidly at elevated temperatures and its mechanical response then
comes closer to that of a liquid than to that of a solid. Composite systems
such as the block copolymers PS-PEO are under investigation to combine
the transport property of PEO with enhanced mechanical properties
of polystyrene (PS). However, besides improving mechanical properties,
such compositing strategies generally reduce the volume fraction of the
conducting phase and thus lead to reduced transport properties. This
means that improving, e.g., mechanical stiffness generally negatively
impacts electrochemical transport. In the following studies where the
influence of mechanics is investigated, we keep the electrochemical param-
eters constant and thus do not account for these competing effects as we
are interested in highlighting the effect of mechanics on electrochemistry.
This is easier to study if electrochemical properties remain unchanged.

4.2.1 Electrochemical Transport Parameters

Only very few complete electrochemical characterizations are reported for
polymer electrolytes. We utilize a set of concentration-dependent param-
eters for sodium salt (NaCF3SO3) in a PEO polymer electrolyte [55] and
a recently published work [56] with lithium salt (LiTFSi). Furthermore,
we take data from Timachova et al. [57] for the PS-PEO polymer with the
lithium salt LiTFSi. In all cases, we assume a homogeneous material and
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4.2 Material Data

Figure 4.1: Transport properties data of PEO with sodium salt [55], with lithium
salt [56] and PS-PEO with lithium salt [57]: (a) ionic conductivity, (b) diffusivity, (c)
transference number and (d) thermodynamic factor.

define the concentration with respect to the overall PEO and PS-PEO
volume, respectively.

The concentration-dependent transport parameters are shown in
Fig. 4.1. In general, we can observe that the conductivity of PS-PEO
is almost one order of magnitude lower compared to that of the two
PEO electrolytes. The diffusivity of the sodium system varies almost
one order of magnitude depending on the concentration. In contrast
to that, PEO with lithium salt has an almost constant diffusivity of
Diso ≈ 1× 10−11 m2

s , which is much higher than the PS-PEO system.
The transference number as shown in Fig. 4.1c is strongly negative for
high concentrations of sodium salt while the other two lithium systems
show very similar response, where only tiso+ of PEO with LiTFSi is
slightly negative for higher salt concentrations. The strong deviation of
the sodium system compared to the lithium systems might be either a
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Figure 4.2: The graphs in the first row show the converted mobilities (a), drag
coefficients (b) and chemical stresses (c) from PEO polymer electrolyte with sodium
salt [55]. The graphs in the second row show the converted mobilities (d), drag
coefficients (e) and osmotic pressure (f) converted from PS-PEO block-copolymer
electrolyte [57]. Fig. (f) shows also the osmotic pressure from PEO with lithium salt
[56].

consequence of the different material or simply due to a different evalua-
tion method: Both Pesko et al. [56] and Timachova et al. [57] utilize the
recently introduced concept of the Newman number, see Section 3.5.4, to
measure transport properties. The thermodynamic factor is similar for
the lithium salt systems and increases almost linearly with concentration.
The sodium system on the other hand shows a very small thermodynamic
factor.

We now take the measured transport properties of Fig. 4.1 and convert
them into mobilities and drag coefficients. We do this for PEO with
NaCF3SO3 and for PS-PEO with LiTFSi salt. The mobilities of the
former are shown in Fig. 4.2a and were computed with Eq. (3.129).
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It can be observed that anions are slightly more mobile than cations
throughout the concentration range. Strong cross interactions between
the ions are present due to the high off-diagonal mobility M±. This is
confirmed by the drag coefficient K± in Fig. 4.2b obtained with Eq.
(3.90). The negative drag coefficient K−0 is a consequence of the negative
transference number. Although the negative sign is non-intuitive, one can
show by an eigenvalue analysis that the system is still thermodynamically
consistent, see Section 3.5.6.
The resulting mobilities of the PS-PEO/LiTFSi system are depicted

in Fig. 4.2d and show a low cation mobility in the concentration range of
interest. The mobile anion has a small drag coefficient (Fig. 4.2e). The
negativity of the off-diagonal mobility goes along with a negative drag
coefficient between anion and cation. Note that this negative mobility
is not related to a negative transference number. Again, these data are
admissible from a thermodynamic point of view, see Eq. (3.134).

4.2.2 Mechanical Properties

Measurements of mechanical properties of polymer electrolytes are chal-
lenging due to several reasons. The electrolyte layers used in batteries
are very thin, the operating temperature range is usually elevated and an
inert atmosphere is required. The few available characterization access
mostly the elastic properties, although mechanically irreversible and time-
dependent behavior is strongly expected. In the following, we will leave
the Young’s moduli as design parameters and disregard inelastic effects
due to a lack of information. The orders of magnitudes are as follows:
PEO provides a stiffness of roughly E = 10 MPa at room temperature
[133, 134]. However, its ability to resist deformation at elevated tempera-
tures decreases rapidly [48]. The mechanical properties for PS-PEO are
dominated by the PS-phase, leading to roughly E = 150 MPa [45, 48] at
operation temperatures of 80 ◦C. We assume a Poisson ratio of ν = 0.4
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for all electrolytes as found for e.g. polystyrene [135] and an isotropic
response throughout the work.
The reference value of the molar volume is Ω± = 140 m3

mol for LiTFSi
[136] and Ω± = 80 m3

mol for NaCF3SO3 [137]. Note that the ions are
assumed to be compressible in the swelling model used in this work,
see Section 3.4.1. The reference salt concentration for which swelling is
assumed to be zero is set to be cref = 1000 mol

m3 for PEO (both salts) and
cref = 1500 mol

m3 for PS-PEO. Fig. 4.2c and f shows the osmotic pressure
of Eq. (3.75) as a function of salt concentration. With values up to 2 MPa

for PEO with sodium salt it is small but not negligible. The chemical
stress in a PS-PEO electrolyte is an order of magnitude higher compared
to PEO with sodium salt and in the same order as PEO with lithium
salt. The similarities of the lithium salt systems come either from the
same salt or can be traced back to the experimental assessment of the
thermodynamic factor.

4.3 Double Layer in a Solid Electrolyte

In the first example we want to show the capabilities of the full model as
given by Eq. (3.104) that treats anions and cations separately and can
thus be applied to situations where electroneutrality cannot be assumed
everywhere and where the ions behave differently such as in a double
layer. This effect is characterized by local anion/cation polarization and
is most pronounced in the case of blocking electrodes. Related studies are
found for liquid electrolyte systems [104, 138], solid electrolytes with fixed
anions [139] and references cited therein. Double layer properties can be
obtained experimentally e.g. via impedance spectroscopy measurements
[140].
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Figure 4.3: (a): Setup of the boundary value problem for blocking electrodes solved
with Eq. (3.104). (b) illustrates the drop of electric potential over the whole domain
and (c) zooms into the double layer regions where the electric potential decreases and
the chemical potential increases. In systems with a high elastic modulus, mechanics
has an influence on the result.

4.3.1 Material

We will restrict our investigation to the impact of mechanics on the
ion distributions in a solid binary electrolyte. Note that concentration-
independent material parameters are used in this study since the avail-
able parametrization as discussed in the previous section resolves the
concentration dependency only with respect to the salt and does not
distinguish between anion and cation concentrations. With κiso = 0.01 S

m ,
Diso = 5× 10−12 m2

s , tiso+ = 0.3 a system similar to PS-PEO is utilized.
We assume an ideal mixture such that f+ = f− = 1, see Eq. (3.69).
These parameters transform with Eq. (3.129) to M+ = 1.1× 10−12 mol2

m J s ,
M− = 1.5× 10−12 mol2

m J s and M± = 7.6× 10−13 mol2

m J s , showing that the
anion is more mobile than the cation. The electric permittivity is set
to εr = 10 [141], the molar volume of the salt is Ω± = 140 cm3

mol [136].
Although ion sizes for some non-aqueous solvents are reported [142], there
is a lack of such information for solid state electrolytes and therefore
we assume Ω− = 10Ω+. The reference concentration is assumed to be
crefα = 1000 mol

m3 . As the influence of mechanics is the focus of this work,
we vary Young’s modulus in the range 10 MPa to 1000 MPa.
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4.3.2 Boundary Value Problem

We consider a blocking electrode (Fig. 4.3a) of width L = 0.5 µm with
no-flux conditions for anions and cations on the boundaries. We assume
that the right boundary is electrically grounded (Φr = 0) and on the left
boundary subject to Φl = 10 mV. The system is mechanically fixed on
both sides.

4.3.3 Results

A stationary solution exhibiting a double layer is reached within 1 ms.
Fig. 4.3b shows a constant electric potential for most of the domain. The
potential drops occur very locally at the two electrodes within the double
layer (Fig. 4.3c) which extends to a width of 0.5 nm, comparable to the
results in [139] and the Debye length of λD = 0.1 nm1.

Fig. 4.4a shows the related concentration profiles of anions and cations
within this double layer. Away from the electrode, the concentrations are
basically equal which confirms electroneutrality for the inner part of the
electrolyte. In the region close to the negative electrode the concentration
of anions decreases whereas the cations accumulate. The concentration of
cations is such that their chemical potential gradient balances the electric
field (Fig. 4.3c). Comparison of the results with different Young’s moduli
reveals that the anion concentration depends strongly on the mechanical
stiffness: The higher the material stiffness, the more pronounced is the
non-symmetric response of the ions (Fig. 4.4a). The reason for this is that
the large size of the anions leads to swelling that cannot be countered by
depletion of the smaller cations. Consequently, a pressure gradient builds
up and increases the mechanical contribution to the chemical potential
(Fig. 4.3c). Although both ions are affected by this driving force, the

1 The Debye length represents the length scale of the diffuse layer and is given by
λD =

√
εrε0Θ
F2c

[138].
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4.3 Double Layer in a Solid Electrolyte

Figure 4.4: The figures show the concentration (a) and the pressure profiles (b) in the
double layer for various material stiffnesses. The higher the elastic modulus, the more
pronounced is the pressure gradient which acts as a mechanical driving force and
yields a lower concentration of the anions. The impact on the smaller cations is less.

influence on bigger ions outweighs that on smaller ones and results in
a considerably lower increase of anion concentration at the electrode
for high Young’s moduli. The cation concentration, however, increases
slightly as the modulus is increased. This is a result of the lower drop of
the anion concentration. The size of the double layer region stays nearly
the same when the modulus is varied.

4.3.4 Discussion

In summary we see that the suggested full model of Eq. (3.104) is well
suited to describe double layers and can also predict the influence of the
mechanical properties of the electrolyte on the related electrochemical
phenomena. Note that of course mechanical effects on the double layer
are more pronounced in solid electrolytes than in liquid electrolytes,
where the solvent is mobile and can relax the constraints in liquids.

Finally we point out that the electroneutral transport model from
Eq. (3.116) cannot capture the potential drop associated with blocking
electrodes, since only a full model with dedicated Poisson equation and
separate concentration fields for anions and cation such as given by
Eq. (3.104) can accurately describe the situation, specifically at the
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4 Understanding Ion Transport in a Binary Solid Electrolyte

boundaries. However, in contrast to the case of blocking electrodes,
charge separation is negligible when flux boundary conditions are used
such as for galvanostatic charge and discharge (see Example 4.4). In
this situation, the discontinuities in electric potential adjacent to the
electrode are features of the redox reactions occurring at the interfaces
between the electrolyte and the electrodes. As such they are accounted
for by models like Butler-Volmer reaction kinetics (see Chapter 5) or Tafel
equations. As a result, the electroneutral model serves as an appropriate
approximation when flux BC are invoked. The blocking electrode BC
is therefore the condition that most strongly requires an approach that
accounts for local charge separation.

4.4 Galvanostatic Charging

When a battery is charged, cations pass from the positive electrode (cath-
ode) to the negative electrode (anode) through the electrolyte. When this
process occurs at a given current density it is referred to as galvanostatic
charging. In a binary electrolyte, both anions and cations act as carriers
of charge, but only one kind of ion (usually the cation) enters and leaves
the system. The other (usually the anion) accumulates against what
are effectively blocking electrodes. The cation is locally attracted to the
polarizing anions due to strong electrostatic forces (leading to effective
local electroneutrality) and eventually a salt concentration gradient builds
up. These profiles dictate the performance of a battery and are thus one
of the classical tasks for electrochemical simulations to predict. Locally
low concentrations are not favorable due to their influence in slowing
reaction kinetics on the interfaces, while locally high concentrations can
lead to phase separation, e.g. depletion of lithium. The concentration
gradient is usually governed by the diffusion coefficient, the transference
number and the thermodynamic factor. In this study, we emphasize
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4.4 Galvanostatic Charging

Figure 4.5: Setup of the boundary value problem of galvanostatic charging for (a) the
full model, Eq. (3.104) and (b) the reduced model, Eq. (3.116). (c): A concentration
gradient builds up during charging for E = 10 MPa. Both, model (3.104) and model
(3.116) lead to the same result.

that mechanical properties can also be important in controlling the salt
concentration gradient and thus the performance of the electrolyte. We
utilize isotropic parameters of the PEO polymer with NaCF3SO3 salt
[55] at 85 ◦C operating temperature, see Section 4.2.1. We will vary
the Young’s modulus in the range of 10 MPa to 500 MPa. For the full
description as given in Eq. (3.104), we utilize εr = 10, f+ = f− and
Ω− = 10Ω+.

4.4.1 Boundary Value Problem

We use both the full model without electroneutrality from Eq. (3.104)
and the extended Newman model from Eq. (3.116) to study the complex
interplay of electrostatics, chemistry and mechanics. The charging process
can be treated as a 1D problem where we assume a separator thickness
of L = 30 µm. We apply a current of Japp = 0.5 mA

cm2 and set Φ = 0 V

for the full and ω+ = 0 V for the electroneutral model on the right, see
Fig. 4.5. Again, we fix the left and the right boundary mechanically.
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4 Understanding Ion Transport in a Binary Solid Electrolyte

Figure 4.6: (a): Steady state concentration gradient which occurs during charging for
three different Young’s moduli. (b): Mechanical pressure pM, osmotic pressure pC

and total pressure p within the electrolyte.

4.4.2 Results - General Remarks

Focusing first on the electrochemical response, we carry out a simulation
with fixed Young’s modulus of E = 10 MPa. From the results we see
that a concentration gradient builds up due to migration of anions in
the first 100 s, see Fig. 4.5c. A stationary state is reached when the
chemical driving forces on the anions equal the electric driving forces and
hence J− = 0. Comparison of the extended Newman model and the full
formulation yield the same concentration and electrochemical potential
profile within numerical accuracy. In the full formulation, only a small
double layer develops with differences in anion and cation concentration of
≤ 0.01 mol

m3 . Note that spatial and material quantities are almost identical
in this example because mechanical deformation is small.

4.4.3 Results from the Full Model

To gain further understanding on the coupling mechanism, it is instructive
to investigate the driving forces for the ions grad (ωα) within the solid
electrolyte and their chemical, mechanical and electrical components.
The first order approximation of the gradient, e.g. grad (ωα) ≈ ∆ωα

L ,
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4.4 Galvanostatic Charging

enables us to access the driving force by measuring ∆ωα = ωrightα −ωleftα .2

For E = 10 MPa, we measure ∆ω+ = 13.2 mV for the cations and
∆ω− = −8.2 mV and hence a relatively high potential drop for the anions
although the mass flux j− vanishes in steady state. This can be confirmed
by using j− = 0 in Eq. (3.104) which gives

grad (ω−) =
M±

M+M− −M2
±
jSS+ . (4.1)

The cation mass flux ||jSS+ || = Japp/F is constant for a 1D-problem and
consequently, even though the anion flux vanishes in steady state (j− = 0)
the gradient of the anionic electrochemical potential can only be zero for
M± = 0.
To understand the influence of mechanics, we repeat the simulations

with E = 100 MPa and E = 300 MPa. We observe that concentration
gradients are less pronounced with increasing mechanical stiffness E, see
Fig. 4.6a. In general, the concentration polarization has two effects on
mechanics: (1) The osmotic pressure pC increases sightly for an increase
of salt concentration and (2) the swelling mechanism leads to a pressure
gradient (Fig. 4.6b). The mechanical pressure pM thereby shows different
characteristics for different moduli. It has a reversed slope with respect
to the concentration polarization for E = 10 MPa. This is a consequence
of the osmotic pressure pC which couples with the mechanical stress
via Div

(
PM + PC

)
= 0. For high moduli such as E = 300 MPa, the

picture changes such that the sign of the pressure gradient follows the sign
of the concentration gradient because the swelling mechanism becomes
dominant. Local volume change is observed to be small with J = 1±0.025.
Fig. 4.7a shows the potential drops with respect to the mechanical

moduli E. The electrochemical potential for the cation ∆ω+ is composed

2 We use the spatial description to motivate the findings and avoid therefore the formal
material anisotropy as discussed in Eq. (3.84).
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4 Understanding Ion Transport in a Binary Solid Electrolyte

Figure 4.7: (a): Potential drops across the electrolyte of the individual contributions
for various Young’s moduli computed with Eq. (3.104). (b): The cation mass flux J+

for different stiffnesses at X = 1
2
L is composed of diffusion (blue), migration (red),

stress driven diffusion (yellow) and a volume change contribution (purple), see Eq.
(3.116).

of ∆Φ, ∆µC+ and ∆µM+ . The chemical contributions ∆µC± for both ions
decrease with increasing stiffness. Note that the increased stiffness also
leads to a less pronounced salt concentration polarization, see Fig. 4.6a.
The mechanical contribution ∆µM− and ∆µM+ is in tandem with the me-
chanical pressure as shown in Fig. 4.6b. However, due to the small size of
the cation, ∆µM+ and therefore its contribution to the electrochemical po-
tential is small. The effect on the anion is substantially more pronounced,
see Fig. 4.7a.

There is a small decrease of ∆ω+, which comes from the concentration
dependencies of the mobilities. Integrating the left equation in Eq. (4.1)
we find that

∆ω+ =

∫
Pt

grad (ω+) dv = j+

∫
Pt

M−
M+M− −M2

±
dv, (4.2)

where the mobilities are concentration dependent. The integral can be
interpreted as a macroscopic steady state resistance. Using the concen-
tration profile from Fig. 4.6a we obtain a smaller value from the integral
and therefore a smaller ∆ω+ for an increase of E. Further, we see a small
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increase of ∆Φ for increasing E in Fig. 4.7a. To explain this behavior, we
consider the case of constant mobilities and therefore get from Eq. (3.83)
the estimation

j+︸︷︷︸
const.

∼ grad (ω+)︸ ︷︷ ︸
const.

= Grad
(
µC+
)

+ Grad
(
µM+
)︸ ︷︷ ︸

∼0

+FGrad (Φ) (4.3)

The gradient in electric potential has to compensate the gradient of the
chemical potential.

4.4.4 Results from the Extended Newman
Formalism

Now, we move our focus to the solution using the extended Newman
formalism as given in Eq. (3.116) and probe the contribution on the mass
fluxes in the middle of the separator (X = 1

2L). The cation mass flux
of −5.2 mol

m s2 is composed of diffusion, migration, stress driven diffusion
and a contribution from the effect of volume change, see Fig. 4.7b. The
fractions due to migration and the effect of volume change stay almost
constant for the range of investigated moduli. The stress driven contri-
bution gains importance for higher material stiffness and, therefore, the
diffusion contribution is less pronounced. The latter can be seen from
the smaller gradient of concentration in Fig. 4.6a. Note that probing
at a fixed location with varying concentration introduces an additional
contribution due to the concentration-dependence of the transport proper-
ties. Positivity of the migration originates from the negative transference
number (Fig. 4.1c).

4.4.5 Discussion

This example illustrates several aspects of the complex mechanisms
occurring during galvanostatic charging. Both models, Eq. (3.104) and
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Eq. (3.116), align and no pronounced double layer effects are observed.
The parametrization [55] shows strong interactions between anions and
cations by means of cross mobilities M±. They have a direct influence on
the steady state current of Eq. (3.120) and potential drop of Eq. (4.1)
and yield Grad (ω−) 6= 0 although J− = 0. Young’s modulus has a great
impact on the concentration profile. The decrease of chemical potential
drop with increasing Young’s modulus goes together with an increase
of electric potential drop. The mechanical contribution µM+ is found
to be small. Overall, the electrochemical potential drop ∆µ+ is barely
influenced by a change of Young’s modulus.
The mechanical driving forces in Eq. (3.116) due to swelling show a

pronounced influence on ion transport. Especially for stiffer systems,
the influence of stress driven diffusion is on the order of the diffusion
mechanism and must be accounted for. Although we see a strong impact
on the concentration distribution in the simulation, the absolute value
of mechanical stress is small and therefore not in the regime of inelastic
deformation. For soft materials, osmotic pressure leads to small strains
and stresses which induce (small) transport contributions in the direction
opposing the concentration increase. On the other hand, for stiffer mate-
rials, the importance of osmotic pressure is negligible for the parameter
set investigated. Transport effects due to volume change are small in all
cases.

4.5 Mechanically Deformed Electrolyte

For the last example in this chapter, we study a two dimensional problem
where the solid electrolyte undergoes an inhomogeneous external defor-
mation. This can be caused for example by inhomogeneous deposition on
a metal interface on one side of the electrolyte layer, i.e. the growth of
an intrusion penetrating the separator. The change of effective transport
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paths is an obvious outcome, but also a stress field in the host will
build up which couples with ion transport. With this example, we want
to demonstrate the importance of the large deformation formalism for
correctly predicting ion transport in a deformed solid electrolyte and we
want to show that external deformation has a strong influence on the
concentration distribution within a solid electrolyte.

4.5.1 Setup

We use the the full model as given in Eq. (3.104) to solve this problem.
The formulation includes various aspects of coupling between mechanical
deformation and electrochemistry. An analysis of the different contribu-
tions in the fully coupled system is difficult since all effects interplay with
each other. Therefore, in addition to the full model, we consider two
simplifications to isolate specific effects and to investigate the importance
of the individual coupling mechanisms:

Setting A βs = 0 (No swelling) µC(c�) (No spatial diffusion)

Setting B βs = 0 (No swelling) µC(c) (Spatial diffusion)

Setting C βs = 1 (With swelling) µC(c) (Spatial diffusion)

Both Settings A and B exclude the swelling mechanism and therefore
consider no contribution of stress driven diffusion. In addition to this
simplification, Setting A excludes the contribution of the change of volume
to the chemical energy with µC(c�) such that e.g. no osmotic pressure is
present. Therefore, Eq. (3.116) simplifies with ξcα = 1 and ξpα = ξJeα = 0

and only the change of transport path due to deformation is taken
into account. On the other end of the spectrum, Setting C includes all
features. For this calculation we use the electrochemical data measured
for a PS-PEO block-copolymer with LiTFSi [57], see Section 4.2.1, and
E = 300 MPa.
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Figure 4.8: Boundary conditions for Example 4.5. Mechanical deformation with
displacement BC is applied at Phase 3 . P1 and P2 mark the probe points for Fig.
4.9.

4.5.2 Boundary Value Problem

We consider a rectangular domain of size 50 µm× 30 µm with periodic
BC left and right, see Fig. 4.8, and apply plain strain conditions. The
top edge is fixed in space and grounded (Φ = 0). The bottom edge will
be deformed into a Gaussian-like shape with uBC = [X,APw(X/RP)],
where we utilize the Wendland function

w(r) = (1− ‖r‖)4(1 + 4 ‖r‖) ∀r ≤ 1 (4.4)

with amplitude AP and radius RP to define the protrusion with compact
support of size 2RP. The amplitude is chosen to be AP = 5 µm and the
radius is RP = 20 µm. Further, we impose a current density Japp on the
top and bottom edges. To highlight the results of our theory, we will
successively apply varying boundary conditions in six phases:
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Figure 4.9: Spatial concentration c and electrochemical potential ω+ measured at the
tip (P1) and the flank (P2).

Phase 1 Current flow t = [0, 250]s Japp = 0.175 mA

cm2 undeformed

Phase 2 Relaxation t = [250, 500]s Japp = 0 undeformed

Phase 3 Deformation t = [500, 505]s Japp = 0

Phase 4 Relaxation t = [505, 750]s Japp = 0 deformed

Phase 5 Current flow t = [750, 1000]s Japp = 0.175 mA

cm2 deformed

Phase 6 Relaxation t = [1000, 1250]s Japp = 0 deformed

Phase 1 serves as a comparison datum for a current flow on the deformed
geometry in Phase 5 . The relaxation Phase 2 is used to obtain a steady
state subsequent to a transient phase. In Phase 3 , we apply a deformation
much faster than the diffusion time to highlight the effect of mechanics.
Since we obtain via the next relaxation in Phase 4 a steady state once
more, the features in Phase 5 and Phase 6 are independent of the rate
of deformation as long as a purely elastic response is considered. The
outcome would coincide with a slowly penetrating protrusion.
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Figure 4.10: Color contour plots showing the salt concentration and the electrochemical
potential in the electrolyte immediately after deformation (end of Phase 3 ). The
spatial concentration shows a peak close to the protrusion tip. The electrochemical
potential shows no gradient for Setting A, small effect for Setting B and a strong one
for Setting C .

Figure 4.11: Color contour plots showing the salt concentration and mechanical
pressure in the deformed electrolyte for the relaxed state in equilibrium (end of
Phase 4 ). The concentration in Setting A does not relax, Setting B shows complete
relaxation and in Setting C the ions are pushed away from high pressure regions.

Figure 4.12: Color contour plots showing the salt concentration and the electrochemical
potential in the electrolyte during galvanostatic charging (Phase 5 ). Setting A still
shows a peak at the concentration tip, an almost linear concentration polarization
occurs in Setting B and Setting C shows, even during concentration polarization, a
depletion of salt at the tip.
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4.5.3 Results

Fig. 4.9 shows the evolution of electrochemical potential ω+ and spatial
concentration c at two probes attached to the boundary of the material.
One probe is associated with the tip of the protrusion (XP1 = [0, 0]) and
the other is on the flank (XP2 = [−15 µm, 0]), see Fig. 4.8.
During application of current in Phase 1 , a concentration gradient

builds up. Therefore, the concentration at probes P1 and P2 increases in
all settings, see Fig. 4.9. Since there is no deformation, the results for tip
probe P1 and the flank probe P2 coincide. The concentration gradient
is not as pronounced if stress-driven diffusion is taken into account and,
therefore, Setting C has the least increase of salt concentration. The
electrochemical potential is linked to the salt concentration and hence has
the same characteristics. Afterwards, in Phase 2 , the salt distribution
relaxes to the reference concentration cref for all settings.

In Phase 3 , the volume above the tip (P1) is compressed with Je ≈ 0.8,
where swelling effects are small (Js ≈ 1) due to the fast deformation
process. Therefore, the same amount of ions is located in a smaller
(compressed) volume. Fig. 4.10 shows contour plots of the salt con-
centration and electrochemical potential immediately after deformation.
If no swelling is considered, the salt concentration increases to a value
of c ≈ 1

0.8c
ref = 1.25cref. Indeed, this happens in Setting A (Fig. 4.9a),

but the electrochemical potential stays constant because of its material
description (Fig. 4.10a). For the other two settings, this value is not
reached. The diffusion mechanism due to increased chemical potential
counteracts the concentration build-up from the beginning of the defor-
mation. The peak of salt concentration at P1 in Fig. 4.9b increases
only up to c ≈ 1.08cref. The mechanical pressure locally reaches 50 MPa

and therefore, in Setting C , stress driven diffusion plays a major role,
increases ω+ locally and therefore grad (ω+) dramatically, and squeezes
ions away from the tip immediately. The snapshot, Fig. 4.10c, taken
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directly after deformation, shows depletion in the region of high pressure.
An opposite effect can be seen in P2. This region experiences a small
tension and thus an increase of volume (Je ≈ 1.02). Therefore, the ions
occupy more space and the concentration decreases.
During relaxation after deformation (Phase 4 , Fig. 4.11), no change

of salt concentration occurs in Setting A since the chemical potential
defined with respect to the material concentration is "not aware" of
the deformation. Its value stays constant as seen in Fig. 4.9a and
consequently the gradient, which drives transport, is zero. Setting B ,
in contrast, equilibrates the concentration profile to a value slightly
above cref. This is a consequence of the no-flux-boundary conditions and
conservation of mass in the deformed computational domain. Since Φ

is prescribed on the top boundary, the change of 50 mol
m3 also affects the

electrochemical potential which increases to 5 mV. The time constant to
reach steady state is comparable to Phase 2 . The response in Setting C
shows again a gradient in salt concentration throughout the electrolyte.
The salt concentration decreases at the tip with c ≈ 0.87cref (Fig. 4.11c)
and therefore goes even below the reference concentration. The high
pressure in this region makes the tip an energetically less favorable
place for the ions. On the other hand, the region of negative pressure
experiences a small increase of concentration.
In Phase 5 , we solve for galvanostatic charging on the deformed ge-

ometry (Fig. 4.12). All of the three settings account for the deformed
transport path associated with Eq. (3.84), i.e. the electrochemical poten-
tial at the tip (P1) needed for transport is 6 to 9 mV less than to that at
P2 (Fig. 4.9). A concentration polarization with less salt accumulation on
the tip (P1) and more ion accumulation on the flank (P2) originates and,
roughly speaking, is superposed to the steady state of Fig. 4.11. There-
fore, the very high concentration in Setting A is observed. Setting B -on
the other hand- shows a moderate increase of salt concentration at P1,
an effect of the shorter transport path (Fig. 4.12b). The gradient of
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concentration in the electrolyte is almost homogeneous and therefore,
one finds the highest concentration in the region furthest away from
the counter electrode, i.e. in P2. Setting C shows a similar increase of
concentration at both probes, P1 and P2, but the squeezing effect is still
dominant and the concentration difference between P1 and P2 remains
at 300 mol

m3 . Nevertheless, due to the additional contribution of pressure
in the electrochemical potential, the difference of ω+ between P1 and P2
is smaller compared to the other two settings.

4.5.4 Discussion

These examples lay out the complex coupling mechanisms for ion transport
in an inhomogeneously deformed solid electrolyte and illustrate the various
contributions to the coupling in our model. Each setting (the simplified
Settings A and B as well as the full Setting C ) with their different
assumptions shows not only qualitative, but also quantitative differences
in terms of the mechanical and electrochemical response to a given
penetration. The missing relaxation mechanism after deformation in
Setting A is not compatible with the understanding of mobile ions within
an electrolyte. Similarly, Setting B neglects the property of ion volume
and thus omit the energetic unfavorability of salt in high pressure regions.
Only Setting C provides a consistent coupling including considerations
of the change of transport path, appropriate relaxation and stress driven
diffusion. Therefore, we can predict a concentration and electrochemical
potential profile along a deformed separator.

4.6 Summary

Three examples illustrated the impact of mechanics on ion transport
by using both a transport model distinguishing cations and anions with
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full considerations of electrostatics and one that only describes the salt
concentration by assuming electroneutrality. Only the first is capable
of resolving the double layer at a blocking electrode. In the case of
galvanostatic charging, the electroneutrality condition holds throughout
the domain and both models align. Maxwell stresses therefore are neg-
ligible. Also the osmotic pressure was found to be small for relatively
stiff materials. Using electrochemical transport parameters from PEO
based electrolytes and extending them by mechanical stiffness gave us
the possibility of investigating the impact of Young’s modulus on double
layers (in blocking electrodes) as well as the salt concentration profile and
electrochemical potential (galvanostatic charging). The salt concentration
profile is strongly affected by the stiffness of the host material although
only small pressure gradients occur. The electrochemical potential, how-
ever, alters only little. Finally we have studied the response of a deformed
electrolyte. Only the comprehensive mechanical considerations of the
fully coupled model enabled us to obtain reasonable simulation results.
External deformation thereby influences the electrochemical transport
significantly. The concentration profile along the interface varies strongly
and suggests that a depletion of salt occurs in the region of highest
intrusion.
With a constant boundary current we have excluded interface effects

in these examples to analyze solely the bulk transport. Reaction kinetics
at the electrode-electrolyte interface and their coupling with the bulk
transport need to be described thoroughly for a comprehensive model of
charge and discharge and will be discussed in the upcoming chapter.

100



5 Extended Butler-Volmer
Interface Kinetics

Interface kinetics are a subject of non-equilibrium thermodynamics and
describe the speed of a reduction / oxidation process as given e.g. in the
context of reaction (1.2). Its generalized form is the monovalent reactions,
i.e.

M −−⇀↽−− M+ + e−, (5.1)

where an atomM reacts to a cation M+ and an electron e– . The reduction-
oxidation processes are influenced by electric fields and, potentially,
configurational entropy and mechanics. In analogy to the transport theory
of Chapter 3, we approach the interface kinetics on a macroscopic level
since the micro-structure of the interface is either barely understood, as
in the case of the composition of the so-called solid-electrolyte-interphase
(SEI) layer, or too difficult to treat computationally, e.g. requiring the
atomistic structure to be resolved.
This chapter follows Ganser et al. [128] and discusses in the first

section the state of the art of modeling reaction kinetics. We then use
transition state theory from a purely energetic point of view and derive
the generic form of the Butler-Volmer equation. This is then specialized
to various combinations of different types of electrode and electrolyte,
putting the presented theory in the context with commonly used formulas.
A special emphasis will thereby be placed on the impact of mechanical
stress and mechanics as they play varying roles depending on the specific
combination of electrode and electrolyte considered. The mechanisms
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behind deposition and stripping of a metal electrode will be discussed in
detail. In the course of our formulation of the electro-chemo-mechanical
reaction kinetics at the interface we suggest a new form of the Butler-
Volmer equation for describing the influence of mechanics.

5.1 State of the Art

The Nernst equation and the Butler-Volmer equation are two widely
used formulae for describing interface electrochemistry. The Nernst
equation —an equilibrium description— correlates the difference between
the energetic states of the adjacent materials, usually described by their
activities, and the difference in their electric potentials [143]. The Butler-
Volmer equation [70] on the other hand constitutes a non-equilibrium
description that links the current flux at the interface to the electric
potential drop across it via Arrhenius kinetics. If chosen consistently, the
Butler-Volmer equation should thus yield the same result in conditions
of equilibrium as stated by the Nernst equation. The Butler-Volmer
equation is therefore the more general formulation.

Different approaches have been used to derive Butler-Volmer reaction
kinetics. A prominent one is transition state theory, which is also our
choice in this work. Our derivation is, however, slightly different to the
derivations documented in literature so far. The basic idea of e.g. Bockris
et al. [143], Hamann and Vielstich [144] and Newman and Thomas-
Alyea [53] is as follows: The current density across the interface between
an electrode and an electrolyte is governed by three quantities, namely
concentration-independent reaction rate constants (ketr, kely) determining
the frequency of activation, the concentrations of the species present at
the interface (cM, c+) specifying the amount of species which can react,
and a contribution due to the activation energy, adjusted by the drop
in electric potential across both sides ot the interface Φetr − Φely, where
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Φetr, Φely denote the electric potentials at the surface of the electrode
and the surface of the electrolyte, respectively. Following this approach,
the net current density then reads

jBV =ketrcM exp

(
−
−−→
∆Gref + (1− β)F

(
Φetr − Φely

)
RΘ

)

− kelyc+ exp

(
−
←−−
∆Gref − βF

(
Φetr − Φely

)
RΘ

)
.

(5.2)

where jBV is the current density across the interface, defined to be
positive for ions moving from the electrode to the electrolyte,

−−→
∆Gref

is the activation energy barrier for the forward reaction,
←−−
∆Gref is the

activation barrier for the reverse reaction (both defined at reference
state), F is the Faraday constant, β is the symmetry factor, R is the
universal gas constant and Θ is the absolute temperature. Several authors
[71, 145, 146] use Eq. (5.2) as a starting point for deriving an extended
Butler-Volmer equation (e.g. to incorporate mechanics) - but each with
a slightly different model and outcome. In addition, most of the derived
theories are formulated in a way that makes their application to relevant
problems very cumbersome. For example, Bockris et al. [143] refer
to surface concentrations (i.e. moles per unit area) in the prefactors
of Eq. (5.2), whereas usually volume concentrations are utilized in its
application (i.e. moles per unit volume). Such volume concentrations are
commonly utilized in applications of the Butler-Volmer equations because
they are directly accessible from the theory of volumetric bodies.1

Furthermore, only the dilute version of the Nernst equation can be derived
from Eq. (5.2), as activity coefficients do not appear in its formulation.

1 To avoid issues with units, some authors simply define the rate constant as a reaction
velocity, see e.g. Christensen and Newman [61] or Hamann and Vielstich [144]. Other
authors set bulk and surface concentration equal [147] or leave inconsistencies in
their derivation [119].
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Bazant and coworkers resolve this issue by extending the reference Gibbs
energy by a non-ideality contribution, which is denoted as an excess
chemical potential [112, 148, 149]. The comprehensive work of Bazant
[112] describes various interfaces under non-ideal conditions with a special
emphasis on phase transition materials such as LiFePO4 in the framework
of non-equilibrium thermodynamics.

Other aspects of the formulation of electrochemical kinetics at interfaces
and their relationships to the Butler-Volmer equation have been addressed
and shall be outlined in the following. As an alternative approach to
transition state theory, one can use the law of mass action [150] to
derive the Butler-Volmer equation, as seen in Latz and Zausch [151].
A rigorous asymptotic analysis was deployed by Dreyer et al. [152] to
motivate the jump of electric potential in the interface region. Yang
[147] extends the Nernst equation to the non-equilibrium condition and
considers (surface) stresses in the overpotential via a Taylor expansion.
Lai and Ciucci [122] propose an exponential relation between the current
and the electrochemical potential drop across the interface. However, this
drop is not modeled as an energy landscape with an activation energy to
be overcome. We note that all the derivations mentioned above lead to
the same overall form of the Butler-Volmer equation. However, they yield
slightly different prefactors, especially when mechanical contributions are
of interest.
A somewhat more sophisticated formulation is the electron transfer

theory by Marcus and Hush, which assumes that the charge transfer
kinetics are dominated by a reorganization of the solutes in the adjacent
layers due to a change of charge. Well defined experiments on surface-
bound redox couples showed that the electron transfer theory is superior
to the Butler-Volmer equation, though both theories align for small
current densities [153]. Further extensions are possible including effects
such as electron tunneling in metal electrodes [153, 154], N-shaped free
energy landscapes in intercalation materials [155] or proton-electron
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interactions [156] to increase accuracy. A quantum mechanical approach
for the description of reaction kinetics provided by the Marcus theory is
also used e.g. in [112, 157–159]. Finally, we mention that the diffusive
layer at the interface can be explicitly resolved through a Poisson-Nernst-
Planck formalism. In this way only the remaining Stern layer needs to be
modeled by a Butler-Volmer equation [65, 160]. However, we will restrict
our analysis to the Butler-Volmer equation as it is commonly used and
parameterized in the field of energy storage, especially in contexts where
influences of mechanics are important such as solid state batteries.

5.2 General Framework

Following Bockris et al. [143], we utilize transition state theory to describe
the reaction kinetics on an electrode-electrolyte interface. We restrict
our considerations to a monovalent reaction, see Eq. (5.1). Intercalation,
de-intercalation, deposition and stripping of lithium serve as concrete
examples. As seen in Fig. 5.1, the material state changes from the
electrode phase on the left hand side (in this case a metal electrode)
to the electrolyte phase at the right hand side. This process follows a
specific energy landscape along reaction coordinates. Note that these
coordinates are a theoretical construct and are not necessarily related to
spatial dimensions. Proceeding along the reaction coordinate may thereby
describe various processes such as adsorption, electron transfer, transport
through an SEI layer, passivation etc. The energetic states of the reactants
in their reduced form Getr (in the electrode) and in their oxidized form
(in the electrolyte) Gely are specified by Gibbs energies which consist
of enthalpic, entropic and mechanical contributions. At this point, we
assume the absence of an electric potential and postpone consideration
of electrostatics. In the following, we use the notion of partial molar
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Figure 5.1: (a): Illustration of a metal electrode-electrolyte interface with a mechanical
contribution due to electrolyte pressure and normal stress at the interface. The energy
barrier G‡ is associated with the most likely deposition/stripping reaction ‡1 involving
the first atomic layer of the electrode. Reactions into hidden layers, e.g. reaction in
the second layer ‡2 are not considered. (b): Energy landscape for a reaction involving
the first layer at the interface between an electrode and electrolyte without an electric
contribution (black) and with an electric contribution (blue). The double headed
arrows indicate that the energetic level of electrode and electrolyte can change e.g. by
deposition Ψdp, swelling Ω+pely or configurational entropy RΘ ln (c+/cref+ ).

Gibbs energy instead of chemical potentials as it is commonly used in
the context of reaction kinetics.

5.2.1 Gibbs Energies of Electrode and Electrolyte

The most prominent representatives of electrolytes are binary ion con-
ducting systems as discussed in Chapter 3. We assume an additive split
of the Gibbs energy of the atoms in the electrolyte, in energy per mole,

Gely =
∑
k∈Iely

Gely
k , Iely = {ref, conf, ni,mech,V, ...}, (5.3)
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where the different contributions Iely such as reference value, configura-
tional entropy, non-idealities and mechanics are dependent on the chosen
electrolyte. Note that electrical effects are excluded.

Recalling the chemical potential of a solid electrolyte of Eq. (3.77), and
noting that for pure substances the partial molar Gibbs energy equals
the chemical potential, we define the different contributions

Gely
conf = RΘ ln(c+/c

ref
+ ), (5.4)

Gely
ni = RΘ ln(f+/f

ref
+ ), (5.5)

Gely
mech = Ω+p

ely, (5.6)

in addition to the reference value of the Gibbs energy per mole Gely
ref

defined at standard pressure and at a reference value of concentration of
the cation. If the concentration c+ deviates from cref+ , one has to take the
configurational entropy Gely

conf into account. The contribution of Eq. (5.4)
holds for dilute solutions. Eq. (5.5) describes non-idealities, as usually
present in concentrated solutions, see Section 3.4.2. The mechanical
contribution of Eq. (5.6) in a binary solid electrolyte is a consequence
of swelling and shrinkage of the electrolyte due to local change of salt
concentration. Note that we describe the reaction kinetics in the spatial
configuration and for simplicity we assume volume change in Eq. (3.77)
with JeλS = 1 in this chapter.

Electrodes in battery applications are often aggregates of active parti-
cles where the ions are intercalated and de-intercalated in a host material,
or metal electrodes where the ions are deposited and stripped layer by
layer. We will consider four representative situations — a metal electrode
with mechanical effects neglected, a metal electrode with mechanical
effects taken into account, an active intercalation particle in the limit of

107



5 Extended Butler-Volmer Interface Kinetics

dilute concentrations of stored cations without mechanics and an inter-
calation particle with a high concentration of stored cations and with
mechanics taken into consideration.

Similar to the electrolyte, we define an additive split of the Gibbs energy
of the atoms in the electrode, without considering electrical effects, in
energy per mole,

Getr =
∑
k∈Ietr

Getr
k , Ietr = {ref, conf,mech, ...}, (5.7)

where the different contributions in Ietr such as a reference value, config-
urational entropy and mechanics are dependent on the kind of electrode.
The contribution Getr

ref is a reference value of the Gibbs energy per
mole. If we assume that the electrode is at standard temperature and
pressure, then Getr

ref is the standard Gibbs energy per mole. The reference
values are specific for a system, i.e. we denote Getr

ref |M for a lithium metal
electrode (M) and Getr

ref |AP for an active particle (AP). It is also related to
a reference concentration crefM , in moles per volume, of intercalated atoms.
The configurational entropy is important if the atom concentration cM
deviates from crefM :

Getr
conf = RΘ ln(cM/c

ref
M ). (5.8)

For higher atom concentration cM in the active storage particle, one has
to take the maximum capacity of the storage particle in moles per unit
volume into account. Each spot is either occupied by an intercalated atom
or a vacancy. The latter has a concentration cV and the concentration of
total sites is given by cmax

M = cM + cV. The reaction (5.1) is then

M −−⇀↽−− M+ + e− + V. (5.9)
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Since the vacancies appear in the reaction as oxidation products, their
Gibbs energy

Gely
V = RΘ ln

(
(cmax

M − cM) /crefM
)
, (5.10)

is added to the electrolyte energy Gely of Eq. (5.3). A mechanical
contribution can be found in both active storage particle and metal
electrode. The former is

Getr
mech|AP = ΩMp

etr, (5.11)

where ΩM is the partial molar volume of the intercalated atoms in the
storage particle, and petr is the pressure in the storage particle minus
standard pressure [63]. For a metal electrode, we have

Getr
mech|ME = Ψdp, (5.12)

where the contribution Ψdp to the Gibbs energy due to deposition and
stripping will be discussed in Section 5.3.

5.2.2 Reaction Kinetics

Now consider the reaction and the path it takes, still in a setting where
the electric potential is zero everywhere so that electrostatics need not be
considered. The reaction itself is a complex and nonlinear phenomenon
with different multidimensional reaction paths possible. We choose the
most likely path and associate a reaction coordinate between 0 and 1

to the process, as shown in Fig. 5.1. The reaction coordinate is not
necessarily associated with a spatial length but, obviously, 0 corresponds
to conditions in the electrode and an energy per mole for the cation equal
to Getr and 1 to conditions in the electrolyte and an energy per mole for
the cation equal to Gely. Somewhere between 0 and 1 on the reaction
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coordinate axis there is an energetic barrier G‡ which is the highest point
in the energy landscape as seen in Fig 5.1.2 The higher the barrier, the
less likely is the successful completion of the reaction for each attempt.

Within transition state theory it is difficult to link a clear material state
to the reaction coordinate and consequently it is not trivial to model the
energetic state of the barrier. In analogy to the Bronsted-Evans-Polanyi
principle (used e.g. in Huang et al. [161] and Bazant [112]) one can
assume that the barrier has a relationship with the states of the electrode
and electrolyte such that the barrier energy can be fully dependent,
partially dependent, or completely independent of the energies of the
cation in the electrode and the electrolyte. We therefore introduce the
barrier energy, in energy per mole of the cation, as

G‡ = G‡ref +
∑
k∈Iely

δelyk Gely
k +

∑
k∈Ietr

δetrk Getr
k (5.13)

where G‡ref is independent of the reduced (electrode) and oxidized (elec-
trolyte) states and the prefactors δetrk and δelyk account for the relationship
between the barrier energy and that of the cation in the electrode and the
electrolyte. Eq. (5.13) can be regarded as an extension of Bazant [112],
who applies the Bronsted-Evans-Polanyi principle solely to the reference
energies. The prefactors have, as yet, an undetermined character, but
possible choices for them will be discussed and utilized below. In general,
the barrier can be expressed in terms of a transition state activity coeffi-
cient and it is explicitly dependent on the chemical or mechanical state of
the activated complex, see e.g. Bazant [112]. However, these properties
of the activated complex are not easily accessible. In the absence of
electric potential, G‡ −Getr is the energy barrier height standing in the
way of a successful anodic reaction (oxidation). Similarly, in the absence

2 The energy barrier corresponds to the state of an activated complex.
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of electric potential, G‡ −Gely is the energy barrier height standing in
the way of a successful cathodic reaction (reduction).
We now consider the energy landscape in the presence of an electric

potential. It changes if we consider charged species and electric potentials
Φetr on the electrode and Φely on the electrolyte.3 The Gibbs energies
for the electrode and electrolyte for monovalent reactions, including the
effects of electric potentials, are then, in energy per mole of cations,

Getr
Φ = Getr + FΦetr, Gely

Φ = Gely + FΦely, (5.14)

where the second term is equivalent to the electrochemical potential of
Eq. (3.115). Since the bulk properties of the interface regions (e.g. an
SEI layer) are unknown, classical bulk theories for electrostatics like the
Gauss law cannot be used to resolve the exact spatial distribution of the
electric potential. Nevertheless, we know that the electric potential has
to change continuously from the electrode to the electrolyte. Therefore,
we make the assumption that the electric potential varies linearly along
the reaction coordinates. Note that this assumption is tantamount to
use of the value of the potential as a reaction coordinate. The energetic
state of the barrier, due to electric potential, then becomes

G‡Φ = G‡ + F
(
Φely + β

(
Φetr − Φely)) , (5.15)

where β, the symmetry factor, expresses the position of the peak value
of energy in the energy landscape, i.e. the position of G‡ on the reaction
coordinate, see Fig. 5.1. Marcus-Hush theory indicates that β = 0.5

and aligns with several experimental findings on symmetric reactions
[153]. However, more recent studies have revealed cases of asymmetric

3 Most authors we found use only the electric potential drop instead of the absolute
values. We will see that only the drop is relevant and the absolute values do not
affect the reaction rates.
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heterogeneous electron transfer processes which do not allow an accurate
parameterization in terms of Marcus-Hush theory unless one assumes
unequal force constants for the solvent reorganization in reduced and
oxidized state [162, 163]. We will proceed with the symmetry factor as a
parameter.
If an ion is "sitting" on the electrode and attempts to jump into the

electrolyte (anodic reaction) or is "sitting" in the electrolyte and attempts
to jump onto the electrode (cathodic reaction), it has to overcome the
activation energies

−−→
∆GΦ = G‡Φ −G

etr
Φ ,

←−−
∆GΦ = G‡Φ −G

ely
Φ (5.16)

for the forward (anodic) and backward (cathodic) reactions, respectively.4

Use of Eq. (5.13), (5.14) and (5.15) yields

−−→
∆GΦ = G‡ref +

∑
k∈Ietr

(δetrk − 1)Getr
k +

∑
k∈Iely

δelyk Gely
k

+ (β − 1)F
(
Φetr − Φely) ,

←−−
∆GΦ = G‡ref +

∑
k∈Ietr

δetrk Getr
k +

∑
k∈Iely

(δelyk − 1)Gely
k

+ βF
(
Φetr − Φely) .

(5.17)

Having established the activation energy barriers, we can now compute
the rates of the reactions taking place at the interface. For this purpose,

4 Bockris et al. [143] use the opposite definition of the arrows. The right arrow in
their publication describes electronation which is a cathodic reaction.
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we use the Eyring theory [113] where the rates are determined from the
activation energy through

−→r =
kBΘ

h
exp

(
−
−−→
∆GΦ

RΘ

)
,

←−r =
kBΘ

h
exp

(
−
←−−
∆GΦ

RΘ

)
,

(5.18)

where −→r it is the success frequency for the forward (anodic) reaction, kB
is Boltzmann’s constant, h is Planck’s constant and ←−r is the success fre-
quency for the reverse (cathodic) reaction5. Note that the configurational
entropy contribution in

−−→
∆GΦ and

←−−
∆GΦ yields a concentration dependency

of −→r and ←−r . Excluding the configurational entropy, one can identify the
remainder of Eq. (5.18) with classical rate constants. The Boltzmann
factor, for the forward reaction exp

(
−
−−→
∆GΦ

RΘ

)
with temperature Θ and

universal gas constant R gives the probability of the ion successfully
accomplishing the jump, from the electrode to the electrolyte, with an
equivalent Boltzmann factor for the reverse reaction. The coefficient kBΘ

h

is the attempt frequency for such jumps, see. e.g. Bockris et al. [143].
Full consistency of Eq. (5.18) with Eyring theory requires the exclusion

of the dependency of G‡Φ on the configurational entropy of the reactants
by setting

δetrconf = δelyconf = δelyV = 0. (5.19)

This choice is based on the understanding that Gibbs energies of reactants
naturally depend on their concentrations, while a transition state only
exists at a single point in time and, in this instance, is not an ensemble
of states. We emphasize that values for δelyconf, δ

ely
V and δetrconf other than

5 The transmission coefficient occurring in the Eyring theory is assumed to be one.
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zero would lead to invalid kinetic rate laws even for simple chemical
reactions independent of electrical potential. See also Savèant [156] for a
critical discussion of previous studies that used invalid assumptions in
the context of electron transfer processes.

To obtain an interface current from the success frequencies in Eq. (5.18),
we introduce an area density cS, in moles per unit area, of active surface
sites. This property is independent of the actual amount of cations in the
electrolyte and atoms in the electrode. In the case of a metal electrode
this might be associated to the amount of atoms per area at the interface.
For a sufficiently smooth surface the density cS is directly related to the
lattice constant and therefore a material constant. Implicit in this choice
is the concept that only the outer layer (see ‡1 in Fig. 5.1) is able to
react with rate −→r ; the reaction in hidden layers (e.g. ‡2) are unlikely
to occur because their energy barrier is much higher than G‡Φ, and so
their reaction rates will be negligible. Therefore, for a metal electrode,
as shown in Fig. 5.1, the anodic reaction (stripping) then gives rise to a
current density

−→
j = FcS−→r . (5.20)

We now argue that the same area density, cS, controls the reverse (cathodic
deposition) reaction. Consider an attempted jump of an ion from the
electrolyte to the electrode. If the target site of that jump is already
occupied by an atom (e.g. of an inner layer), there exists an additional
energy barrier for completion of the jump in the form of repulsion from
that site. Thus the success rate for such a jump will be negligible.
Successful jumps are therefore only possible to sites on the surface whose
area density on the metal electrode is given by cS. Therefore, the current
density associated to the reverse (cathodic deposition) reaction is

←−
j = FcS←−r . (5.21)
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A similar argument holds for non-metallic active storage particles but
with the area density cS associated with the intercalation sites at the
interface. Note that the entropic energy contribution and not cS causes the
forward or backward current density to vanish if the volume concentration
approaches zero. For example, Eq. (5.8) and Eq. (5.4), respectively, yield

cM → 0 ⇒ Getr → −∞ ⇒
−−→
∆GΦ →∞ ⇒ −→r → 0

c+ → 0 ⇒ Gely → −∞ ⇒
←−−
∆GΦ →∞ ⇒ ←−r → 0.

(5.22)

In the case of a metal electrode, the anodic current density cannot vanish
since a reaction partner is always available on the surface. Surface
passivation, however, can decrease the amount of active surface sites cS

and limit the overall current density. But such aspects of the behavior
are outside the scope of this work.

Combining Eq. (5.20) and (5.21) with Eq. (5.16) and (5.18) yields the
anodic and cathodic current densities

−→
j = j00 exp

(
−
G‡ref +

∑
k∈Ietr(δ

etr
k − 1)Getr

k +
∑
k∈Iely δ

ely
k Gely

k

RΘ

)

exp

(
(1− β)F

(
Φetr − Φely

)
RΘ

)
,

←−
j = j00 exp

(
−
G‡ref +

∑
k∈Ietr δ

etr
k Getr

k +
∑
k∈Iely(δelyk − 1)Gely

k

RΘ

)

exp

(
−
βF
(
Φetr − Φely

)
RΘ

)
,

(5.23)
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where the prefactor is given by

j00 =
kBΘ

h
FcS. (5.24)

We note that Eq. (5.2) and Eq. (5.23) differ in that independent reaction
rates and cation concentrations appear as coefficients of the anodic and
cathodic current densities in Eq. (5.2), whereas they are identical in Eq.
(5.23). The concept that the forward and reverse current densities are not
explicitly a function of electrode and electrolyte cation concentrations is
also applied by Gutman [150] who derives the current densities via the
kinetic law of mass action.
Before evaluating the effective current densities, it is beneficial to

consider a steady state where forward and reverse current densities are
equal, and thus the net current density is zero. Under these conditions,
the electric potential difference equals the equilibrium or open circuit
potential V eq

Φ =
(
Φetr − Φely

)eq. The individual anodic and cathodic
current densities prevailing at this equilibrium potential difference are
then called the exchange current densities and read

j0 =j00 exp

(
−
G‡ref +

∑
k∈Ietr(δ

etr
k − 1)Getr

k +
∑
k∈Iely δ

ely
k Gely

k

RΘ

)

exp

(
(1− β)FV eq

Φ

RΘ

)
=j00 exp

(
−
G‡ref +

∑
k∈Ietr δ

etr
k Getr

k +
∑
k∈Iely(δelyk − 1)Gely

k

RΘ

)

exp

(
−
βFV eq

Φ

RΘ

)
.

(5.25)
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We deduce from the equality of the two lines in Eq. (5.25) a general
version of the Nernst equation between the electrode and electrolyte as

FV eq
Φ = Gely −Getr, (5.26)

in agreement with Bockris et al. [143] who derive the Nernst equation
from consideration of thermodynamic equilibrium.
We emphasize that the result connecting Eq. (5.25) and (5.26) is

a consequence of the equality of the prefactor j00 in Eq. (5.25) for
forward and reverse reactions. If the anodic and cathodic terms in Eq.
(5.25) had coefficients that differ from each other and that are not both
equal to j00, the prefactors would enter Eq. (5.26) as exponents and
a conventional Nernst equation would be unattainable. Note that the
equilibrium potential in Eq. (5.26) is independent of the barrier height,
the symmetry factor and the coefficients δetrk and δelyk .
Using Eq. (5.26) we rewrite the exchange current density from Eq.

(5.25) as

j0 =j00 exp

(
−G‡ref
RΘ

)
exp

(∑
k∈Ietr(β − δetrk )Getr

k

RΘ

)

exp

(∑
k∈Iely(1− β − δelyk )Gely

k

RΘ

)
.

(5.27)

It is not surprising that the exchange current density depends on the
energetic states of electrode and electrolyte. The consequence of this
will be discussed in the upcoming section. Note that the open circuit
potential (Eq. (5.26)) and the exchange current density (Eq. (5.27))
are both determined by the same energetic states of the electrode and
electrolyte and thus are not thermodynamically independent [112].
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Figure 5.2: The energy landscape at open circuit conditions (blue) attains an equal
level at electrode and electrolyte. In the case of an anodic reaction (η > 0), the
equilibrium of forward and reverse reactions are violated and a positive net interface
current arises.

Now we consider the non-equilibrium case where
−→
j 6=←−j . The net current

density in the direction from the electrode on the left side of the interface
to the electrolyte on the right is defined as

jBV =
−→
j −←−j . (5.28)

and is therefore anodic if positive and cathodic if negative. With the help
of Eq. (5.23) and Eq. (5.27), we obtain the well known Butler-Volmer
equation

jBV = j0

[
exp

(
(1− β)

F

RΘ
η

)
− exp

(
−β F

RΘ
η

)]
(5.29)

where we have introduced the surface overpotential

η = Φetr − Φely − V eq
Φ (5.30)
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as a function of the open circuit potential V eq
Φ given in Eq. (5.26). Note

that only the exchange current density j0 in Eq. (5.29) depends on the
barrier, and the term in the brackets does not. If the overpotential is
positive, the equilibrium given by the Nernst equation (5.26) is violated,
the Gibbs energy of the electrode increases and consequently, the an-
odic current density

−→
j dominates the cathodic current density

←−
j (see

Fig. 5.2). The net current density is then positive. If the overpotential
is smaller than zero, a negative current density prevails.

5.3 Mechanical Energy of Deposition

In the previous section we presented a generic concept to link the energetic
state of the electrode and electrolyte to the interface reactions which are
usually accessible from bulk theories. Active storage particles [63] and
solid binary electrolytes [101] have shown a strong coupling mechanism
between mechanical stresses and electrochemical transport due to a
swelling mechanism. Each ion inserted or removed displaces surrounding
material, i.e. the host, due to its molar volume. Consideration of these
concepts for solid electrolytes and for intercalation storage particles yield
the mechanical effects accounted for in Eq. (5.6) or Eq. (5.11). We note
that experimental verification for the influence of mechanical stresses
on electrochemical response has been obtained, for example, for silicon
active particles [164] and energy harvesting applications [76]. The work
of Pannikkat and Raj [165] on the correlation of mechanical stress and
equilibrium potential of a platinum-zirconium interface also proves that
mechanics influences reaction kinetics.

In contrast, deposition on and stripping from metal electrodes is quali-
tatively different from intercalation, de-intercalation and solid solution
in electrolytes. The stress free size of the electrode grows/shrinks atom
layer by atom layer at the oxidation/reduction process and thus cannot
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∆h

Electrode

Electrolyte

Figure 5.3: A sketch of a solid state half cell loaded by a dead load F. The weight is
lifted by ∆h during deposition.

be treated as a volumetric swelling process. This change of geometry
is likely to cause deformation and therefore contributes to the overall
energetic state of the metal electrode. In this section we consider the
mechanics of deposition on and stripping from metal electrodes and its
implications for electrochemistry.

5.3.1 Macroscopic Motivation

Imagine a half-cell consisting of an ion conducting solid electrolyte and a
metal electrode that rest on a rigid support. The electrolyte is connected
to a second electrode which serves as an ion supply. Furthermore, the
electrolyte is assumed to have very good transport properties such that a
homogeneous deposition on the metal electrode takes place when a current
is applied. A weight is placed on the solid electrolyte and consequently
a force F acts on the electrolyte. As the material is deposited on the
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electrode with a current density jBV, the thickness of the metal electrode
increases by

∆h =
ΩM

F
jBV∆t (5.31)

for each time increment ∆t, where ΩM is the molar volume (defined in
the undeformed state). As a consequence, the weight is lifted by this
amount and therefore, the potential energy of the weight rises by

∆W1 = F∆h = F
ΩM

F
jBV∆t. (5.32)

Obviously, the potential energy decreases in the case of stripping. To
capture the full mechanical response, we also have to take into account
the mechanical deformation within the newly deposited material. In
the case of a linear elastic response, we can use a spring model. The
stiffness is thereby k = EMEA/h with Young’s modulus of the electrode
EME, electrode thickness h and area A. The material will be compressed
following Hooke’s law

F = ku ⇔ u = F/k, (5.33)

by the displacement u. The new height of the metal is then h̃ = h−u and
the generated energy due to deposition is composed of potential energy
and elastic energy

∆W2 = F∆h̃+
1

2
ku2 = F(∆h− 1

2
u) = F∆h(1− 1

2

σetrn
EME ). (5.34)

In cases where σetrn
EME is small (i.e. if forces are small and stiffness high),

only the mechanical energy due to the displacement as in Eq. (5.32) is
relevant.
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Now move attention to the impact on the electrochemistry at the cell
level. To store the electrochemical energy ∆E by depositing a certain
amount of ions, one has to apply the voltage U . The energy supply in the
half cell is then jBVAU∆t and splits to electrochemical and mechanical
energy

∆E + ∆W1 = jBVAU∆t. (5.35)

Consequently, to store electrochemical energy ∆E at current density jBV

requires

∆E =

(
U − F

ΩM

AF

)
jBVA∆t. (5.36)

Hence, in order to store the same electrochemical energy in the cell, the
applied voltage must be higher if the electrolyte is loaded by a weight.

5.3.2 Deposition on Ion Scale

In the previous section we have motivated the fact that the mechanics
of deposition and stripping, have an effect on electrochemistry. We now
want to transfer our macroscopic insights to resolve the local energy
contribution due to mechanics that is required for transition state theory.
Assume a planar interface, where one layer of atoms is deposited on a
surface with area A. There are NM moles of atoms with volume ΩM

necessary to create this layer on the metal electrode and the interface
then moves by

∆hion =
NMΩM

A
. (5.37)
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We also assume a mechanical force F in the normal direction acting on the
interface with area A. The energetic contribution due to the deposition
of NM moles of atoms is then

WNM = ∆hionF =
NMΩM

A
F. (5.38)

The molar energy generated by displacing the interface is

Ψdp =
WNM

NM
=

ΩM

A
F = −ΩMσ

etr
n (5.39)

where the normal compressive stress σetrn = nTσn in the normal direction
n to the interface and σ is the Cauchy stress tensor evaluated at the
metal electrode interface. Note that the amount of atoms drops out in
Eq. (5.39) and the concept of discrete atom layers changed to a continuous
setting. As obvious from Eq. (5.34), we can neglect the elastic strain
energy contributions for σetrn

EME < 1.
The result of Eq. (5.39) is comparable with, for example, the findings

of Monroe and Newman [71] and Ma et al. [145] if making a few strong
assumptions. For example, we can assume we are dealing with a solid
that behaves like a fluid with σetrn = −petr. We then obtain

Ψdp = ΩMp
etr, (5.40)

where the mechanical contribution is identical to that arising from the
process of swelling during intercalation in an active particle [63].

5.4 Examples

The Butler-Volmer equation derived in Eq. (5.29) is independent of the
specific (interface) material system. However, the corresponding exchange
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current density and overpotential need to be adjusted accordingly. We
will do this for a selection of representative interface systems in the
following. In all upcoming equations the definition

jref00 |YZ = j00 exp

(
−G‡ref + (1− β − δelyref )G

ely
ref |Y + (β − δetrref )G

etr
ref |Z

RΘ

)
(5.41)

is used, where j00 is defined by Eq. (5.24). The quantity jref00 corresponds
to a reference state and hence is independent of changes in volume
concentrations of electrode and electrolyte and mechanical state. The
index Y represents the class of electrolyte and Z the class of electrode.
We further define

−−→
∆Gref|Z = G‡ref − δ

etr
refG

etr
ref |Z

←−−
∆Gref|Y = G‡ref − δ

ely
refG

ely
ref |

Y
(5.42)

as the activation energy barriers in the forward and reverse reaction,
respectively, at reference state and

∆Gref|YZ = Gely
ref |

Y −Getr
ref |Z (5.43)

as the difference of standard Gibbs energy between electrolyte and elec-
trode.

5.4.1 Dilute Electrolyte | Storage Particle (ideal)

With above framework at hand, we first investigate the reaction kinetics
between two ideal systems, namely an ideal active particle (Z=AP),
using contribution of Eq. (5.8) and a dilute binary ion conducting
electrolyte solution (Y=BIC), using contribution of Eq. (5.4) where
in both materials non-idealities and mechanics are neglected. Thus, we
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have Ietr = {ref, conf} and Iely = {ref, conf}. Making use of Eq. (5.23)
together with Eq. (5.28), we write the current density as

jBV =ketrcM exp

(
−
−−→
∆Gref|AP + (1− β)F

(
Φetr − Φely

)
RΘ

)

− kelyc+ exp

(
−
←−−
∆Gref|BIC − βF

(
Φetr − Φely

)
RΘ

) (5.44)

with the two rate constants

ketr =
j00

crefM
exp

(
−
∑
k∈Ietr δ

etr
k Getr

k +
∑
k∈Iely δ

ely
k Gely

k

RΘ

)
,

kely =
j00

cref+

exp

(
−
∑
k∈Ietr δ

etr
k Getr

k +
∑
k∈Iely δ

ely
k Gely

k

RΘ

)
.

(5.45)

With that, we have determined the exact form of the rate constants in
Eq. (5.2) from the introduction. Linear reaction theory implies concen-
tration independent rate constants which is in line with the finding that
the barrier is not affected by the configurational entropy of the adjacent
regions as discussed in connection with Eq. (5.19). Therefore, we use
Eq. (5.19) in Eq. (5.45) and henceforth throughout this work.

Eventually, we obtain for the Butler-Volmer equation (5.29) the open
circuit potential with respect to the electric potential Φ via Eq. (5.26) as

V eq
Φ =

1

F

[
∆Gref|BICAP +RΘ ln

(
c+/c

ref
+

cM/crefM

)]
. (5.46)

The exchange current density from Eq. (5.27) computes to

j0 = jref00 |BICAP

(
c+
cref+

)(1−β)(
cM
crefM

)β
. (5.47)
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The Butler-Volmer equation together with Eq. (5.46) and Eq. (5.47)
reassembles the form as derived in, for example, Newman and Thomas-
Alyea [53] and Bockris et al. [143]. Although we arrive at the same
outcome, we point out that we made the specific assumptions of a dilute
electrolyte and an ideal active particle. Therefore, if non-ideal systems are
of interest one has to adjust the formulation of the open circuit potential
and the exchange current density accordingly.

5.4.2 Dilute Electrolyte | Metal Electrode
(w/o mechanics)

Another idealized electrochemical system is an electrolyte at dilute con-
centration of cations, see Eq. (5.4), together with a pure metal elec-
trode (Z=ME), again without considering mechanics. Thus we have
Iely = {ref, conf} and Ietr = {ref}. We obtain from Eq. (5.27) and (5.30)
with Eq. (5.19) the open circuit potential with respect to the electric
potential and exchange current density as

V eq
Φ =

1

F

[
∆Gref|BICME +RΘ ln

(
c+
cref+

)]
, (5.48)

j0 = jref00 |BICME

(
c+
cref+

)(1−β)

. (5.49)

Thus we obtain the commonly used form of the Butler-Volmer equation
for metal electrodes [60].

5.4.3 Concentrated Electrolyte | Storage Particle

If we consider a high concentration of atoms intercalated in active stor-
age particles, we have to take the Gibbs energy of the vacancies into
account, see Eq. (5.10). This energy contributes to the electrolyte Gibbs
energy, as given in Eq. (5.4) and Eq. (5.5). Together with the Gibbs
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energy of the active particle, using Eq. (5.8) and (5.11) and taking me-
chanical effects into account we then have Iely = {ref, conf,ni,mech,V},
Ietr = {ref, conf,mech} and can derive the open circuit potential with
respect to the electric potential as

V eq
Φ =

1

F

[
∆Gref|BICAP +RΘ ln

(
c+f+ (cmax

M − cM)

cref+ f ref+ cM

)
+ Ω+p

ely − ΩMp
etr
]
.

(5.50)

Accordingly, applying Eq. (5.27), the exchange current density is given
by

j0 = jref00 |BICAP

(
c+
cref+

)(1−β)(
f+

f ref+

)(1−β−δelyni )(
cmax
M − cM
cref

)(1−β)(
cM
cref

)β
exp

(
(β − δetrmech)

RΘ
ΩMp

etr
)

exp

(
(1− β − δelymech)

RΘ
Ω+p

ely

)
,

(5.51)

where we have already applied Eq. (5.19). The dependence of the ex-
change current density on the fugacity f+ of the electrolyte and intercala-
tion concentration in the active storage particles aligns with the currently
available literature on the subject in regard to modeling if δelyni = 0 is
assumed [54, 63, 149, 166]6. The decline of the exchange current density
for fully charged (cM = cmax

M ) and fully discharged (cM = 0) particles as
predicted by Eq. (5.51) has been shown to occur for LiFePO4 [167].
Next, we turn our attention to mechanical effects. The mechanical

contribution for an active storage particle in Eq. (5.50) aligns with results
of Stein et al. [168]. The exchange current density depends on both the
pressure in the active particle petr and the pressure in the electrolyte pely.

6 Note that [149] and [166] treat the configurational entropy of the vacancies within
the activated state and thus differ from the treatment in Eq. (5.9). The symmetry
coefficient in the fourth expression of Eq. (5.51) then drops out.
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These pressures can be significantly different in magnitude. In liquid
electrolyte systems the pressure in the fluid is usually small. On the
other hand, active storage particles can experience high mechanical stress
magnitudes during the intercalation process [62, 63]. Thus the difference
in pressure between the electrode and the electrolyte must be taken into
account, see Eq. (5.50).

5.4.4 Concentrated Electrolyte | Metal Electrode

The study of pure metal electrode systems which are, for example, present
in solid state batteries requires, comprehensive consideration of electro-
chemistry and mechanics. Therefore, for a metal electrode subject to
mechanical stress we use the energy as defined in Eq. (5.39) and consider
a binary ion conducting electrolyte (e.g. a polymer) with utilization
of the energy contributions of Eq. (5.4), (5.5) and (5.6). Hence we
have Iely = {ref, conf, ni,mech} and Ietr = {ref,mech}. The result in
Eq. (5.26) then gives, together with Eq. (5.39),

V eq
Φ =

1

F

[
∆Gref|BICME +RΘ ln

(
c+f+

cref+ f ref+

)
+ Ω+p

ely + ΩMσ
etr
n

]
. (5.52)

Making use of Eq. (5.19), the exchange current density follows

j0 =jref00 |BICME

(
c+
cref+

)(1−β)(
f+

f ref+

)(1−β−δelyni )

exp

(
− (β − δetrmech)

RΘ
ΩMσ

etr
n

)
exp

(
(1− β − δelymech)

RΘ
Ω+p

ely

) (5.53)

and is consequently a function of the entropic state of the electrolyte and
the mechanical states of both the electrolyte and the electrode.
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To discuss the influence of deviatoric stresses, we split the normal stress
into a hydrostatic and a deviatoric portion with

σetrn = σetrn,d − pely with σetrn,d = n · σd · n (5.54)

where σd is the deviatoric stress tensor. If the molar volumes of the
cation in the salt and the metal electrode are such that Ω+ ≈ ΩM, then
Eq. (5.52) simplifies to

V eq
Φ =

1

F

[
∆Gref|BICME +RΘ ln

(
c+f+

cref+ f ref+

)
+ Ω+σ

etr
n,d

]
. (5.55)

The open circuit potential V eq
Φ is therefore independent of mechanical

contributions if σetrn,d is small. This follows because Gely
Φ and Getr

Φ increase
and decrease in the same magnitude if pely > 0 and pely < 0, respectively.
The difference of the energies remains constant. Note that, although
the mechanical stresses drop out in Eq. (5.55) if σetrn,d = 0, a gradient in
mechanical stress induces a change of concentration due to stress driven
diffusion and thus implicitly influences the open circuit potential. The
exchange current density reads

j0 = jref00

(
c+
cref+

)(1−β)(
f+

f ref+

)(1−β−δelyni )

exp

(
(1− δelymech − δetrmech)Ω+p

ely

RΘ

)

exp

(
−(β − δetrmech)Ω+σ

etr
n,d

RΘ

)
.

(5.56)

For small σetrn,d, the mechanical contribution in Eq. (5.56) is independent
of the symmetry factor β. Depending on the choice of prefactors, the
mechanical contribution in Eq. (5.56) may vanish (δelymech + δetrmech = 1),
decrease the exchange current density as the pressure increases (δelymech +

δetrmech > 1) or increase the exchange current density as the pressure in
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the electrolyte increases (δelymech + δetrmech < 1). The latter is a consequence
of a decrease in activation energies.

5.5 Application within Concentrated
Solution Theory

Recall that the Butler-Volmer equation obtained in the previous section,
Eq. (5.29), is derived via a difference in electric potentials. In the context
of concentrated solution theory [53], the field variable in the electrolyte
is, however, the electrochemical potential

ω+ = FΦely +Gely, (5.57)

see Eq. (3.115), and is therefore not directly compatable with the
definition of the overpotential of Eq. (5.30). With the help of Eq.
(5.57) and the Nernst equation (5.26), we rewrite the overpotential from
Eq. (5.30) as

η = Φetr − 1

F
ω+ − V eq

ω+
, (5.58)

where we have introduced the open circuit potential with respect to ω+

as

V eq
ω+

= − 1

F
Getr. (5.59)

This overpotential is independent of the energetic state of the electrolyte
Gely, i.e. its cation concentration or mechanical condition. Note that the
exchange current density (e.g. Eq. (5.27)) is not a function of the electric
potential, thus remains unchanged and, as before, is a function of Gely.
Open circuit potentials can be accessed by measurement in an equi-

librium state, i.e. in the absence of concentration gradients [169]. Both
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definitions of the open circuit potential, V eq
ω+

and V eq
Φ , differ only by the

additive constant Gely
ref in the equilibrium and stress free state. Concen-

trated solution theory as discussed in Chapter 3 considers implicitly the
electrolyte energy state in the field variable ω+ and thus only requires
knowledge of the electrode in the parametrization of the open circuit
potential V eq

ω+
.

At this point, let us briefly recall selected examples of Section 5.4 with
respect to a formulation with the electrochemical potential as electrolyte
field variable. Recall that the exchange current densities (Eq. (5.49),
Eq. (5.51) and Eq. (5.53)) remain unchanged. The metal electrode in
combination with a dilute electrolyte (Section 5.4.2) yields

V eq
ω+

= − 1

F
Getr
ref |ME. (5.60)

In experiments it is beneficial to select one material as datum and measure
only potential differences with respect to this material. This is achieved in
our formulation by setting Getr

ref |ME = 0. The open circuit potential V eq
ω+

for the metal electrode then vanishes. This concept is in agreement with,
for example, Newman and Thomas-Alyea [53] who use the metal electrode
as the reference potential. We emphasize that the specific choice of zero
open circuit potential is different to the notion of standard Gibbs energy
and further does not take mechanical effects into account. The system of
Section 5.4.4 with the electrode energy contributions Ietr = {ref,mech}
(see Eq. (5.7) and Eq. (5.39)) yields the open circuit potential with
respect to the electrochemical potential as

V eq
ω+

=
1

F

(
−Getr

ref |M + ΩMσ
etr
n

)
, (5.61)

with the stress dependency arising due to normal stresses. Eq. (5.59)
gives for they system of Section 5.4.3 that describes the combination of
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concentrated electrolyte and active particles with mechanics (Eq. (5.8),
Eq. (5.10) and Eq. (5.11)), the open circuit potential

V eq
ω+

= − 1

F

(
Getr
ref |AP +RΘ ln

(
cM

cmax
M − cM

)
+ ΩMp

etr
)
. (5.62)

The exchange current density is given by Eq. (5.51). Eq. (5.62) provides
a clear correlation of V eq

ω+
and cM based on the electrode model with

energy contributions of Eq. (5.8), Eq. (5.10) and Eq. (5.11). However in
battery application, direct measurements of V eq

ω+
as a function of cM (state

of charge) are feasible. Therefore one usually relies on the measured open
circuit potential instead of using e.g. Eq. (5.62) although the theoretical
formulation is able to resolve the mechanical contribution. We note
that Bohn et al. [63] and Christensen and Newman [61] have considered
deviations from ideal conditions in storage particles by inclusion, inter
alia, of an excess Gibbs energy for the intercalated cations.

5.6 Influence of Mechanics

We have defined a generic form of the energy barrier with respect to the
energy states of the adjacent electrode and electrolyte in Eq. (5.13). The
way that the parameters δetrk and δelyk are chosen has a strong impact on
the exchange current density. Recall that the overpotential (Eq. (5.30)
is independent of the barrier and is therefore not affected by δelyk and
δetrk . We have assumed that the energy barrier is independent of the
configurational entropy of the adjacent layers. In the following, we focus
on the mechanical contribution and discuss four assumptions for δetrmech

and δelymech as given in Table 5.1 and relate them to literature.
Before doing so, we note that G‡ref, as introduced in Eq. (5.13), might

also be stress dependent. In general, it is difficult to determine the
mechanical contribution to the activated state G‡ref due to its unknown
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δetrmech δelymech implication on the barrier similar work
0 0 barrier is independent [112, 145]
1− αM αM linear drop of Gibbs energies [71]
β 1− β equivalent to electric potential [71, 146, 161, 170]
0 1 only electrolyte affects barrier [71, 72]

Table 5.1: Different assumptions for the influence of mechanics in the electrode and
electrolyte energies on the energy barrier.

location on the reaction coordinate. Therefore we will not consider the
stress dependency of G‡ref in the following.

A barrier which is independent of the mechanical state of the electrolyte
and electrode is given by δelymech = δetrmech = 0. Mechanical stress influences
the exchange current density in this case, but not due to the Bronsted-
Evans-Polanyi idea, where the barrier height itself is a function of stress.
Here, mechanical stress stems from the stress-dependency of the open
circuit potential (see Eq. (5.62) and (5.61)). Ma et al. [145] follow the
concept of a fixed barrier, with both δetrmech and δelymech equal to zero, but
come to a slightly different Butler-Volmer formulation than we do since
they define the open circuit potential to be zero and thus independent of
stress. It also aligns with Bazant [112] where the Bronsted-Evans-Polanyi
principle is applied solely to the reference energies of oxidized and reduced
states.
A second assumption is to propose a linear drop of the mechanical

part of the Gibbs energy between the electrode and electrolyte with
δetrmech = 1 − αM and δelymech = αM where we have introduced a second
symmetry factor αM, again restricted to the interval between 0 and 1.
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The exchange current density of Eq. (5.27) as a function of electrode and
electrolyte energies then reads

j0 = j00 exp

(
−G‡ref
RΘ

)
exp

(
(αM − (1− β))(Getr −Gely)

RΘ

)
(5.63)

and, for the specific case of a metal electrode and a solid electrolyte (see
Eq. (5.53)), takes the form

j0 =jref00 |BICM

(
c+
cref+

)(1−β)(
f+

f ref+

)(1−β−δelyni )

(5.64)

exp

(
(αM − (1− β))

(
−ΩMσ

etr
n − Ω+p

ely
)

RΘ

)
. (5.65)

This structure with symmetry factors is similar to that of Monroe and
Newman [71], but with only mechanical effects taken into account.7

Motivated by the idea that mechanics should solely affect the equi-
librium potential, Monroe and Newman [71] assume in a second step
that αM = 1− β (which translates in our formulation to δetrmech = β and
δelymech = 1− β). Another motivation for this choice is the idea that the
difference in the mechanical part of the Gibbs energy along the reaction
coordinates parallels the difference in electric potential, see Eq. (5.17).
This approach is utilized e.g. by Lu et al. [146], Huang et al. [161] and
Joos [170].

A second simplification of the derivation used by Monroe and Newman
[71] is to set αM = 1, leading to δetrmech = 0 and δelymech = 1. This assumption
is, for example, used in [72] and several subsequent publications studying
the interface stability of a metal electrodes in solid state batteries. Here,

7 Monroe and Newman [71] introduces the term ∆µα,α
′

e−
as the change of the mechanical

energy drop at the interface between undeformed and deformed state. This is
equivalent to Getr

mech −G
ely
mech in our formulation.
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only the energetic state of the electrolyte influences the energy barrier
and implies a non-symmetric influence of electrode and electrolyte state
on the reaction.
Since all assumptions in Table 5.1 are thermodynamically consistent

from a theoretical point of view, only experimental validation will enable
comprehensive understanding of reaction kinetics and clarify which as-
sumption is most appropriate regarding the energy barrier. Until better
knowledge is available, we suggest the use of the simplest model with
δelymech = δetrmech = 0 because no further assumptions, such as the same
linear drop of energies between electrode and electrolyte, is required.
Furthermore, with a theory for the thermodynamics of the adjacent com-
ponents in hand, see Chapter 3, it seems to us more appropriate to treat
mechanical effects in the same manner as entropic ones. In Eq. (5.19)
we have seen that δetrconf = δelyconf = 0 and thus we conclude the mechanical
parameter to be δelymech = δetrmech = 0.

5.7 Interface Properties

We now want to deduce the interface properties of a polymer electrolyte
adjacent to a metal electrode. Within the formulation of the extended con-
centrated solution theory with electrochemical potential as field variable,
we utilize the equilibrium potential from Eq. (5.61), choose lithium metal
as reference and thus set Getr

ref |M = 0 under standard stress conditions.
Regarding the exchange current density, the interface resistivity RBV can
be experimentally measured by, for example, impedance spectroscopy.
The correlation to the exchange current density is given by linearization
of the Butler-Volmer equation (5.29) yielding

jBV = j0
F

RΘ
η, (5.66)
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where the symmetry factor β drops out. With the knowledge of Ohm’s
law η = RBVj

BV we obtain with

j0 =
RΘ

F

1

RBV
(5.67)

the correlation of exchange current density and the interface resistance.
Experimental data for an interfaces between lithium metal and a polymer
electrode, for example, showed an interface resistance in the range of
6.7 Ω cm2 and 27 Ω cm2 [171]. Under the assumption that the measure-
ments were done in a stress free environment, Eq. (5.67) then yields an
exchange current densities between 1.1 mA

cm2 and 4.5 mA
cm2 . These measure-

ments, however, do not take concentration dependencies into account.
To resolve that, we recall Eq. (5.53), use the electroneutrality condition
c = c+ and choose a symmetric reaction with β = 0.5. We then obtain

j0 = KBVc0.5 exp

(
−ΩMσ

etr
n

2RΘ

)
exp

(
Ω+p

ely

2RΘ

)
, (5.68)

where we have introduced KBV = jref00 |BICME

(
f+

fref+ cref

)0.5

. Eq. (5.68) is
similar to [58, 60] but extended by mechanical effects. Neglecting the
mechanical contribution and assuming an ideal solution with c = 1000 mol

m3

yields for the before mentioned interface resistances values for KBV

between 0.356 A√
m mol

and 1.437 A√
m mol

. For the upcoming investigation,
we will use with KBV = 0.589 A√

m mol
an intermediate value which is also

used in [58, 60]8.

8 Note that the exchange current density in [58, 60] miss the Faraday constant.
Therefore, one has to multiply the rate constant by the Faraday constant to achieve
the values presented in our work.
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5.8 Summary

This chapter dealt with a consistent derivation of the Butler-Volmer
equation including mechanics and together with the transport theory of
Chapter 3, it completes the electro-chemo-mechanical model for a solid
state electrolyte adjacent to a metal electrode.

We have used the Gibbs energies of cations in electrode and electrolyte
bulk and an energy barrier based on the Bronsted-Evans-Polanyi idea
to define activation energies for reaction kinetics. The reaction rates are
then related to a surface concentration of cations at the interface, which is
the same for both the forward and reverse reactions. This yields a generic
Nernst equation and resolves discrepancies between surface and volume
concentrations that are present in the literature. It also suggests that
interface kinetics depend strongly on the thermodynamic states of the
adjacent bulk materials, i.e. the coupling of open circuit potential, the
exchange current density and the chemical potential of active particles.
We have embedded the Butler-Volmer equation in concentrated solution
theory, where the electrochemical potential is used instead of the electric
potential as the field variable in the electrolyte.

We have additionally discussed the energetic contribution of the mechan-
ics of deposition and stripping at a metal electrode, which is conceptually
different from that of intercalation and de-intercalation processes. The
normal stress, not the hydrostatic pressure, is shown to be the variable of
interest for the thermodynamics of deposition and stripping, with an im-
pact on both the open circuit potential and the exchange current density.
We have elaborated the link between our very generic formulation and
other modified Butler-Volmer equations discussed in literature, with an
emphasis on mechanical stress. Although not definitive, we suggest inde-
pendence of the energy barrier from the Gibbs energy in the electrolyte
and electrode. This is a simple assumption but, with mechanics taken
into account, constitutes a new form of the Butler-Volmer equation.
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5 Extended Butler-Volmer Interface Kinetics

We now recapitulate the thoroughly derived reaction kinetics for a metal
electrode adjacent to a solid binary electrolyte which we are going to
apply in the morphological interface stability analysis in the upcoming
chapters. The Butler-Volmer equation for this system reads

jBV = j0

[
exp

(
Fη

2RΘ

)
− exp

(
− Fη

2RΘ

)]
η = Φetr − 1

F

(
ω+ + ΩMσ

etr
n

)
,

j0 = KBVc0.5 exp

(
−ΩMσ

etr
n

2RΘ

)
exp

(
Ω+p

ely

2RΘ

)
,

(5.69)

where we have repeated the Butler-Volmer equation (5.29), the overpoten-
tial of Eq. (5.58) with the mechanical contribution of a metal electrode
(Eq. (5.61)) and the exchange current density of Eq.(5.68).
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6 Morphological Stability:
A Quasi Static Analysis

After carefully deriving an electro-chemo-mechanical battery model in
the previous chapters, we now present our first assessment of morpho-
logical stability of a metal electrode in a solid state battery. Recall that
the mechanisms by which lithium dendriting and intrusion into solid
electrolytes may be suppressed are not fully understood. For example,
an open question concerning a polymer electrolyte such as PS-PEO is
whether there is a composition that provides reasonable transport prop-
erties and, at the same time, achieves sufficient mechanical stiffness and
strength to suppress intrusions. Other polymer systems struggle with
the same trade-off. It is widely believed that a stiffer electrolyte is more
likely to keep the lithium metal under control, but a full understanding is
still missing. Mechanical properties alone cannot explain morphological
stability because polymers under consideration have Young’s moduli that
are an order of magnitude lower than that of lithium. Therefore, it can
be inferred that coupling between electrochemistry and mechanics in the
battery plays a key role in any possible suppression mechanism.

To understand possible suppression mechanisms, we utilize the rigorous
formulation of coupled electro-chemo-mechanics for bulk ion transport as
introduced in Chapter 3 and for reaction kinetics as derived in Chapter 5.
Our approach allows us to utilize a full set of measured electrochemical
parameters and to solve for the ion transport in the deformed geometry
caused by lithium protrusion. The model is used to numerically analyze
the interface current density at a given deformation state. If the current
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6 Morphological Stability: A Quasi Static Analysis

Figure 6.1: The comprehensive simulation model in this study considers electro-chemo-
mechanical interaction in the electrolyte bulk as well as at the interface in order to
determine morphological interface stability of a metal electrode.

density is higher at the tip of the protrusion than at an undisturbed region,
we expect an unstable behavior and growth of the protrusion. Otherwise,
we expect stable behavior, see Fig. 6.1. Note that the basic definition
of stability used here is somewhat similar to that used by Monroe and
Newman [72] even though the further considerations and results differ
considerably. With the stability criterion at hand, we ultimately aim for
a morphological stability map.

6.1 The Boundary Value Problem

A protrusion of a metal electrode into a solid electrolyte stems either
from an initial geometry (surface roughness), from inhomogeneous electro-
chemical deposition or a combination of both. In this study, we prescribe
a pre-existing protrusion and study the response of the interface kinetics
without specifically identifying the source of deformation. For such a
protrusion, we can conclude that if the current density at the tip is higher
than a reference value on an undisturbed region, then the tip will grow
faster than the surrounding, indicating an unstable system.
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6.1 The Boundary Value Problem

We consider a similar setup to Section 4.5 with a two dimensional geome-
try of the solid electrolyte at plain strain, see Fig. 6.2a. The electrolyte
has a thickness of Lely = 30 µm [33] and the width of the computational
domain is chosen to be W = 100 µm. While the top side of the separator
is assumed to be held fixed, symmetry boundary conditions are applied on
the sides. The bottom boundary is deformed with a Gaussian shaped pro-
trusion. The displacement is uBC = [X,APw(X/RP)], where we utilize
the Wendland function of Eq. (4.4). We choose an amplitude AP = 4 µm

and radius RP = 15 µm for the deformation. The metal electrode is
assumed to be very stiff compared to the electrolyte and hence only the
separator undergoes mechanical deformation. Furthermore, we know
that lithium has a much higher electric conductivity compared to the
ionic conductivity of the electrolyte and therefore we set the electrode
electric potential as Φetr = 0 along the bottom interface of the separator.
Other than in Section 4.5 where we have assigned a fixed current density
for the top and bottom interface, we now apply a constant current of
Japp = 0.5 mA

cm2 only at the top of the solid electrolyte, see Fig. 6.2a, and
use the Butler-Volmer equation to determine the interface current density
on the bottom electrolyte-electrode interface. The current density at
the electrolyte-electrode interface is therefore the consequence of coupled
bulk and interface transport described by the extended concentrated
solution theory, see Eq. (3.116,) and reaction kinetics, see Eq. (5.69).
All upcoming results correspond to the steady state solution.

Polymer solid electrolytes are the main scope of this investigation.
We hence utilize two recently published sets of parametrization, one
for PEO [56], and one of the composite material PS-PEO [57], each
with the salt LiTFSi. The latter host material has a higher Young’s
modulus, dependent on the ratio of PS to PEO phase. The polystyrene
phase (PS) enhances stiffness but also degrades the electrochemical
transport properties since less ion conducting PEO material is available.
Fig. 4.1 shows the concentration-dependent transport parameters. The
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6 Morphological Stability: A Quasi Static Analysis

Figure 6.2: (a) Boundary value problem of the deformed solid electrolyte. (b) Color
contour plots showing the salt concentration and the mechanical part of the hydrostatic
pressure in the case of a PS-PEO electrolyte with E = 100 MPa.

operating temperature is set to Θ = 353 K. The interface conductivity
is KBV = 0.589 A√

m mol
. We assume a Poisson ratio of ν = 0.4 and will

vary the Young’s modulus E.
As in Chapter 4, the simulations are carried out with the finite element

tool COMSOL Multiphysics® 5.3a. All field variables are carefully scaled
to improve conditioning of the system matrix and thus gain appropriate
numerical convergence. The non-linear equations of mass transport,
balance of charge, mechanics and the non-linear boundary conditions
by means of the Butler-Volmer equation are solved in a fully coupled,
direct scheme. The outcome shows insensitivity to the width of the
computational domain and to mesh resolution for the fine meshes used
in the numerical analysis.

6.2 Effect of Deformation on Interface
Current Density

Fig. 6.2b shows the steady state solution for the deformed electrolyte
during galvanostatic charging in terms of the salt concentration and the hy-
drostatic pressure for one exemplary system (PS-PEO and E = 100 MPa).
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6.2 Effect of Deformation on Interface Current Density

Figure 6.3: The graphs show the response of the interface subjected to lithium
protrusion for selected Young’s moduli: (a) Current density jBV; (b) Exchange
current density j0. There is a qualitative change of the current density for increasing
Young’s moduli suggesting morphological stability.

The electro-chemo-mechanical coupling in the bulk is the superposition
of two mechanisms. First there is a vertical salt-concentration gradient
along the height of the separator due to the nature of the binary salt, see
also the discussion in Section 4.4. Recall that the electric field acts on
both the negatively charged anions and the positively charged cations.
However, anions are restricted to the electrolyte and cannot leave or
enter it. They then accumulate at the electrode where the cation enter
the electrolyte and become dilute at the other such that, at steady state,
diffusion equalizes the electrically driven transport.
The second effect is mainly driven by the external deformation. As

discussed in Chapter 4, a stress field builds up with a pressure peak
close to the tip. The hydrostatic stress causes a depletion of the salt
concentration due to the stress driven diffusion mechanism. The perimeter
shows the opposite response. We observe tension on the shoulders due to
the fact that the relatively stiff separator wants to follow the deformation
of the tip, but is constraint by the given displacement of the boundary
condition since we do not allow delamination. The increase in tension
leads to tensile stresses as also predicted by Harry et al. [31] and yields
an increase of the salt concentration. The findings show that the ion
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6 Morphological Stability: A Quasi Static Analysis

Figure 6.4: The graphs show the response of the interface under protrusion for selected
Young’s moduli: (a) mechanical contribution of hydrostatic pressure, (b) the surface
stress, (c) salt concentration, (d) open circuit potential, (e) electrochemical potential
in the electrolyte, (f) overpotential.

transport in the electrolyte is also strongly coupled with interface kinetics,
especially in the case of inhomogeneous deformation.

We now consider PS-PEO parameter values for the transport properties
and three Young’s moduli, namely E = {100, 300, 600}MPa. Fig. 6.3a
shows the current density at the interface for the three stiffnesses at
steady state. For a relatively small elastic modulus (E = 100 MPa), a
two times higher current density can be observed at the protrusion peak
compared to the flatter region. This changes when the Young’s modulus
is increased leading to a current density at the protrusion tip that is
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6.2 Effect of Deformation on Interface Current Density

almost equal to (E = 300 MPa) and smaller than (E = 600 MPa) the
current density in the flatter, undisturbed region. With E = 100 MPa the
simulation shows a faster deposition process at the tip which therefore
means an unstable surface. The opposite occurs for E = 600 MPa. The
qualitative change of current density for different Young’s moduli is an
indication of morphological stability and we will rely on this idea for the
upcoming analysis. Before proceeding, we wish to discuss the origin of the
change of current density distribution when the Young’s modulus is varied.

For the analysis of the current density at the electrolyte-electrode
interface we recall the Butler-Volmer equation from Eq. (5.69)

jBV = j0

[
exp

(
(1− β)

F

RΘ
η

)
− exp

(
−β F

RΘ
η

)]
(6.1)

as a function of the exchange current density j0 and the overpotential
η = − 1

F ω+ − V eq
ω+

with V eq
ω+

= 1
F ΩMσ

etr
n . The interface current density is

therefore dependent on the electro-chemo-mechanical state of the cation
in the solid electrolyte and the stress state of the electrode. In the
following, we systematically investigate the different contributions.
We first focus on the bulk transport in the solid electrolyte. The

protrusion leads to a positive hydrostatic pressure pM at the protrusion
tip as seen in Fig. 6.4a. The hydrostatic stress increases for higher
mechanical stiffness. We also observe a state of tension at the perimeter
of the protrusion. Fig. 6.4c shows the spatial salt concentration at the
interface for the three investigated Young’s moduli. There is a depletion
of salt concentration at the protrusion peak due to the effect of stress
driven diffusion as it is also observed in Fig. 6.2b. Recall that the driving
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6 Morphological Stability: A Quasi Static Analysis

force of the electrolyte for the reaction at the interface is the cationic
electrochemical potential

ω+= µ0
+ +RΘ ln

(
c+
cref+

)
+RΘ ln

(
f+

f ref+

)
+ JeΩ+p

M + FΦ, (6.2)

which has been derived in Eq. (3.115) and (3.77). This field variable
is plotted in Fig. 6.4e and stems from a superposition of mechanical
(Fig. 6.4a) and entropic effects (Fig. 6.4c). We see that the mechanical
contribution dominates. For a change of Young’s modulus, we observe
that ω+/F increases from 20mV (for E = 100 MPa) and up to 45mV

(for E = 600 MPa) at the protrusion tip compared to the flatter region
with a constant value of roughly 7mV.

We now investigate mechanical influences on the open circuit potential
V eq
ω+

and exchange current density which enters the reaction kinetics.
Fig. 6.4b shows the normal stress at the interface for the three different
Young’s moduli. We observe a compression at the protrusion peak which
is more pronounced for higher stiffnesses, but also some tension at the
perimeter. The form is similar to the hydrostatic pressure in the solid
electrolyte (Fig. 6.4a), but the absolute values are a bit higher. The
open circuit potential V eq

ω+
scales linearly with the normal stress due to

Eq. (5.52), which yields the values of V eq
ω+

at the interface in Fig. 6.4d.
While the open circuit potential is close to zero at the undeformed regions,
we see values of V eq

ω+
from −7mV (for E = 100 MPa) up to −46mV (for

E = 600 MPa). Positive values of V eq
ω+

are present at the perimeter.
The overpotential η at the interface for different Young’s moduli as

seen in Fig. 6.4f is computed using Eq. (5.58) from the electrochemical
potential (Fig. 6.4d) and the open circuit potential (Fig. 6.4e). Recall
that the electric potential of the electrode is assumed to be constant
along the interface. The surface overpotential as shown in Fig. 6.4f is
strongly negative (anodic reaction) at the tip for E = 100 MPa and
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6.2 Effect of Deformation on Interface Current Density

positive (cathodic reaction) for E = 600 MPa. The intermediate modulus
E = 300 MPa shows some oscillation but is overall fairly uniform over
the protrusion surface.
The second variable that is necessary to compute the current density

and that is influenced by mechanics is the exchange current density, see
Eq. (5.69). The mechanical stresses at the tip of the protrusion cause an
increase in j0 as seen in Fig. 6.3b. The exchange current density at the tip
is a factor of 1.5 higher than that in the flatter region for E = 600 MPa.
In contrast to the overpotential, which the normal stress and electrolyte
bulk stress enter with opposite signs, the mechanical influences add up
together and therefore increase j0 as the Young’s modulus increases. Note
that there is a small dip for E = 600 MPa due to a strong depletion of
the salt concentration.

Ultimately, the distribution of the current density in Fig. 6.3a broadly
follows that of the overpotential η in Fig. 6.4f. The increase of the
exchange current density in Fig. 6.3b with the increase of stress is
especially pronounced for materials that are quite stiff. The current
density at the tip is at −1 mA

cm2 approximately twice as high in magnitude
as the applied current density for E = 100 MPa and much less for
E = 300 MPa. For E = 600 MPa, it even changes from deposition to
depletion due to high mechanical stresses. The exchange current density
has only a small impact on the overall current density in our example.
The current density for materials with higher Young’s modulus decreases
at the protrusion tip and thus aligns with experimental findings of Harry
et al. [31]. Another aspect observed by the experimental study is an
increase of current density on the perimeter of the protrusion. Our
simulations also show this effect for a high Young’s modulus material
(Fig. 6.3a).

To summarize the analysis, we see that a deformation of the solid
electrolyte triggers stabilizing and destabilizing effects for the growth of
a protrusion. Three contributions are competing. A positive hydrostatic
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6 Morphological Stability: A Quasi Static Analysis

pressure pM increases the electrochemical potential of the electrolyte,
thus promotes a faster deposition and is therefore destabilizing. The
effect of stress driven diffusion yields a depletion of salt concentration
which lowers the electrochemical potential of the electrolyte as well as the
exchange current density and thus decreases the current density at the
protrusion tip (stabilizing). The third effect is the open circuit potential,
which eventually lowers the current density at the peak of the protrusion
for higher normal stresses and is also stabilizing. Depending on the trans-
port parameter and mechanical properties, either the stabilizing or the
destabilizing effects dominate. Therefore, we will develop a morphological
stability map dependent on these factors in the next section.

6.3 Morphological Stability Map

The findings of the previous section, which showed a qualitative change of
current density along the deformed interface due to a variation of Young’s
modulus of the electrolyte, suggest a morphological stability criterion for
solid polymer electrolytes. The idea is that there is a critical Young’s
modulus, for which the current density at the peak of the protrusion
becomes smaller than that on the undeformed interface. Our aim is to
find this critical modulus as a function of material properties, geometry,
interface conductivity and applied current density.

6.3.1 Definition of Morphological Stability

To avoid influence of the small oscillation in results between the peak of
the protrusion (see e.g. Fig. 6.4a), we use a weighted average current
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6.3 Morphological Stability Map

Figure 6.5: The current density evaluated at the side, the tip and with the smoothing
scheme of Eq. (6.3) for (a) PEO and (b) PS-PEO. The crossing point between
evaluation at the side (dashed line) and smoothed evaluation scheme (straight line)
determines the critical Young’s modulus and is in the same region compared to the
tip evaluation (dotted line).

density over the protrusion instead of a single value and compare it to
the current density at the side of the computational domain. This yields∫W/2−W/2 j

BV (X)w
(
X/RP

)
dx∫W/2

−W/2 w (X/RP) dx

− [jBV|side]
 > 0 unstable

≤ 0 stable,

(6.3)

where the Wendland function w is defined by Eq. (4.4) as for the
protrusion itself. The contribution of the current density adjacent to the
peak of the protrusion is therefore smoothed out, and the current density
in the regions where it oscillates is given less weight.
Our intent is to find the smallest Young’s modulus where Eq. (6.3)

changes from a stable to an unstable interface. We denote this value as
the critical Young’s modulus Ecrit and we will see that this value strongly
depends on the properties of both the bulk material and the interface.
The concept of the stability criterion of Eq. (6.3) is thereby similar

to the one used by Monroe and Newman [72] who compare current
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6 Morphological Stability: A Quasi Static Analysis

density at the peak of the protrusion to the current density at the lowest
point in the valleys. Fig. 6.5 shows the difference of the two evaluation
schemes for PEO and PS-PEO for the setup herein. The current densities
are evaluated at the side jBV (0.5W ), at the tip jBV (0) and with the
smoothing scheme of Eq. (6.3) as a function of Young’s modulus. The
values from the side remain almost constant over the Young’s moduli
range and thus serve as a reference in the stability criterion (6.3). The
current density at the tip crosses the reference in a similar range of the
Young’s modulus compared to the values obtained by the smoothing
scheme. This is 14 MPa (smoothed) and 20 MPa (tip) for PEO and
230 MPa (smoothed) and 310 MPa (tip) for PS-PEO. Since protrusion
growth is usually not a local effect but a process along the perturbed
interface (see Fig. 1.3b) we find the smoothed scheme in stability criterion
(6.3) more appropriate than the tip evaluation. Nevertheless, we want to
emphasize that this is not conservative since the tip evaluation indicates
up to 40% higher requirements to the electrolyte stiffness.

6.3.2 Influence of the Protrusion Height

First, we investigate the influence of the amplitude of the protrusion on
the critical Young’s modulus. The stability-instability boundaries for
PEO and PS-PEO are shown in Fig. 6.6a as a function of the protrusion
amplitude AP. This boundary is the locus of points for which the term in
parenthesis in Eq. (6.3) is equal to zero. Above the lines, the interfaces
are predicted to be stable for the respective materials and below to be
unstable in the sense that the height of the protrusion will grow. We
varied the amplitude between 0.1 µm and 4 µm. The results in Fig. 6.6a
show that the critical Young’s moduli for stability are dependent on the
amplitude of the protrusion. However, the critical Young’s modulus does
not change much for both PEO, where it varies from 13 to 28 MPa, and
PS-PEO, where it ranges from 246 to 330 MPa. Although the results of
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6.3 Morphological Stability Map

Figure 6.6: (a) The critical Young’s modulus separating stability from instability de-
creases only slightly as the amplitude of the protrusion is increased. (b) Morphological
stability map for protrusion amplitude AP = 4 µm. The critical Young’s modulus
(blue line) is plotted as a function of a measure of how good the transport properties
of a material are. Above the blue line there is a stable electrolyte in the sense that
the protrusion is predicted not to grow. Below the blue line the electrolyte is unstable
and the protrusion will grow.

the critical Young’s modulus should be understood more qualitatively, the
order of magnitude corresponds quite well to experimental findings. The
polymer electrolyte PS-PEO with a Young’s modulus of approximately
150 MPa [48] showed stable behavior with lithium metal anodes. On the
other hand, the soft polymer electrolyte PEO that is usually operated
above the glass transition temperature has a high likelihood for protrusion
growth.

6.3.3 Variation between PEO and PS-PEO

We have already seen that the PEO material with relatively good trans-
port properties (see Fig. 4.2) requires a much lower stiffness to ensure
stability compared to the PS-PEO material, see Fig. 6.6a. To broaden
our insights and to more generally consider the trade-off between interface
stability, elastic modulus and lithium transport, we interpolate between

151
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the sets of transport properties for PEO and PS-PEO by use of the pa-
rameter ξ, that is equal to 0 for PS-PEO and 1 for PEO. This parameter
can be thought of as charactering a family of composites with different
amounts of PS present compared to PEO. With such a parameter we
interpolate between the electrochemical properties of PEO and PS-PEO
by use of

Υ = ξΥPEO + (1− ξ)ΥPS-PEO, ξ ∈ [0, 1] , (6.4)

where ξ is the interpolation parameter and Υ ∈ {κ,D, t+, ∂ ln f±(c)
∂ ln c , cref}

are the transport parameter. We carry out a series of stability simulations
using the values of transport parameters produced by various values of
ξ in Eq. (6.4). We assume ν = 0.4 for both materials throughout this
analysis.
The results are shown in Fig. 6.6b where the critical elastic modulus

is plotted against the interpolation parameter ξ. The blue line indicates
the boundary between stability and instability for the protrusion growth,
see Eq. (6.3). As shown in Fig. 6.6b, the stability regime is above the
blue line and the unstable regime is below it. We note that there is a
monotonic decay in the value of the critical Young’s modulus required
for stability of the protrusion as one ranges through composites from
PS-PEO to PEO.

6.3.4 Variation of Selected Parameter for PS-PEO

We now study the correlation of the critical Young’s modulus with respect
to selected parameters. We use PS-PEO as reference material system
and modify only one parameter per each analysis. Fig. 6.7a shows the
correlation of conductivity and critical Young’s modulus Ecrit. We see
that a higher conductivity is beneficial for stability. Especially a decrease
of the ionic conductivity has a strong impact, e.g. if it is two orders
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6.3 Morphological Stability Map

Figure 6.7: Parameter study of the critical Young’s moduli with PS-PEO as reference
material. The following parameters are varied separately while keeping all others
fixed: (a) ionic conductivity; (b) diffusivity; (c) transference number; (d) interface
conductivity; (e) separator thickness; (f) applied current.

of magnitude lower than PS-PEO then a Young’s modulus of up to
E = 1200 MPa is required. If the diffusivity is increased, the value of
Ecrit drops significantly, see Fig. 6.7b. A strong benefit with respect
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6 Morphological Stability: A Quasi Static Analysis

Figure 6.8: The graphs show the critical Young’s moduli for stability of the protrusion
as a function of ξ from Eq. (6.4), a measure of how good the transport properties
of a material are. (a) Results are shown for three charging rates indicating that
the protrusion is less stable at higher charging rate. (b) Results are shown for two
non-uniform and a uniform value of KBV. As can be seen, non-uniformity causes the
protrusion to be less stable because it enhances the interface conductivity at the peak.

to morphological stability is already obtained for the relatively small
increase of diffusivity by a factor of five. Smaller diffusivities lead to a
complete depletion of salt and thus a termination of the simulation. Fig.
6.7c shows the impact of the transference number. Note that we set the
transference number constant in this study. For tiso+ = 0 and tiso+ = 1

we obtain Ecrit = 400 MPa and 21 MPa, respectively. The intermediate
values scale almost linearly. Next, we study the impact of the interface
conductivity which enters the simulation model in Eq. (5.69). Fig. 6.7d
indicates that degrading the interface conductivity is harmful for stability
since a higher E is required. However, there is a saturation limit, which
is in the case of PS-PEO at about 240 MPa. The relation of Ecrit to the
thickness of the separator is presented in Fig. 6.7e. We see that a very
thin separator is beneficial for the morphological stability.1 Values higher
than Lely = 50 µm, however, are equally stable with Ecrit ∼ 300 MPa.

1 Note that we assume a stiff cathode. However, for very thin separators, a deformation
of the cathode is more likely and thus should resolve to increase accuracy.
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Next, we study the influence of current density. Experimental findings
and theoretical model formulations indicate that a higher charging rate
supports the growth of an intrusion [32]. The result of a corresponding
analysis is shown in Fig. 6.8a. Three sets of calculations, with 0.1 mA

cm2 ,
0.2 mA

cm2 and 0.5 mA
cm2 , are carried out for composites with a range of

transport parameters as characterized in Eq. (6.4). Fig. 6.8a indicates
that higher charging rates demand higher Young’s moduli. Furthermore,
we see in Fig. 6.7f a linear correlation between applied current and critical
Young’s modulus for PS-PEO. This outcome holds also for PEO and the
intermediate values, see Fig. 6.8a.

6.3.5 Heterogeneous Interface Conductivity

One explanation for the source of protrusions is a heterogeneous interface
conductivity, e.g. triggered by the presence of an inhomogeneous SEI
or defects in the metal electrode [50], see the discussion in Chapter 8.
These inhomogeneities are assumed to decrease activation energies and
therefore to increase the exchange current density locally. We model
this phenomenon by applying a factor to the standard exchange current
density and use the Gaussian like function w(r) defined in Eq. (4.4) as
the perturbation. The modified interface parametrization then reads

KBV|SEI =
(
1 + λw(X/RP)

)
KBV, (6.5)

where λ defines the amplitude of heterogeneity and X is the horizontal
coordinate of the interface. Therefore, e.g. for λ = 1, the region of
highest protrusion has an interface conductivity twice that prevailing in
the valleys on either side of the protrusion.
Simulations are carried out at an applied charging rate of 0.5 mA

cm2 for
λ = 0 (uniform), λ = 1 and λ = 2 and the results are shown in Fig. 6.8b.
The results are plotted versus ξ and show that the non-uniform interface
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conductivity causes the protrusion to be less stable and more likely to
grow. This occurs because the non-uniform interface conductivity has a
higher value at the peak of the protrusion and therefore more lithium
is deposited there than on the shoulders adjacent. PEO demands an
almost ten times higher stiffness for stability of the protrusion when
the non-uniformity in the interface conductivity is present, whereas the
necessary increase of Ecrit for PS-PEO is not as pronounced. For PS-PEO
the critical value of Young’s modulus that ensures protrusion stability
increases only by ∼ 20% to roughly 300 MPa for λ = 2. Fig. 6.8b shows
also, that the requirement on the stiffness is overall similar for λ = 1 and
λ = 2.

6.3.6 Discussion

The morphological stability analysis of the deformed solid electrolyte
with the fully coupled electro-chemo-mechanical model indicates a strong
correlation of the material stiffness and local deposition current density
while protrusion growth. Although we assume the worst case scenario,
an infinitely stiff metal electrode, a growth of the protrusion can be
suppressed if the electrode material has a certain mechanical stiffness.
This is contrary to analyses such as that of Monroe and Newman [72],
who find a relationship between material properties of the metal electrode
and solid electrolyte. It further contradicts the simple purely mechanical
consideration that the electrolyte has to provide a certain stiffness such
that the lithium protrusion is suppressed by "pushing it down".

By using a full continuum description of transport and interface, we are
able to show that the electrolyte transport properties correlate strongly
with the stability of the interface. The better the transport properties are,
the lower are the requirements on a "stable" separator’s Young’s modulus.
The stability map from Fig. 6.6b indicates that even a mechanically soft
material such as PEO has almost the capabilities to suppress protrusion
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growth. Material modifications like cross-linking [39, 40] or using a
gel electrolyte with a double polymer network (E = 44 MPa [42]) are
possible paths to successfully suppress protrusion growth. Of course, these
materials cannot be directly associated to a specific ξ in the interpolation
scheme of Eq. (6.4), but they are most certainly closer to PEO and thus
do not require as high stiffness as PS-PEO does. The critical Young’s
modulus for PS-PEO is in the same order of magnitude compared to its
measured mechanical properties and therefore aligns with experimental
findings of stable deposition. If the glass transition temperature of PS is
exceeded, then PS-PEO looses its stiffness and therefore its capabilities
to suppress the growth of protrusions [172] .
Furthermore, we varied several parameter of PS-PEO as shown in

Fig. 6.7. The outcome confirms the correlation of transport properties
and stability: If the transport parameters of PS-PEO are degenerated,
then the requirements on the separator are higher. We see an almost
linear correlation between the applied current density Japp and Ecrit.
Note that with the values of Japp in our simulations we are below the
limiting current density of approximately 2.7 mA

cm2 for PS-PEO as predicted
e.g. by [30, 32, 77] who correlate dendrite growth with a full depletion
of salt at the SEI. A pronounced likelihood of a complete depletion of
salt at the SEI is given by a lower ionic conductivity, diffusivity and
transference number. Fig. 6.7a-c agrees with this understanding as it
shows that a higher stiffness is required when the transport parameters
are degraded. A higher transference number showed to be beneficial for
stability as already suggested by Tikekar et al. [88, 89]. The interface
conductivity also has a strong influence on stability, especially for small
interface conductivities, which aligns with the observations of Liu et al.
[173]. A thinner separator is also beneficial for stability. The trend of
higher requirements on the separator stiffness for higher current densities,
lower transport properties and larger separator width align with the idea
of a depletion triggered dendrite growth [30, 32, 77].
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If we solely consider the analysis of an interface with homogeneous
transport properties, we can conclude that increasing the stiffness by
sacrificing good transport properties is not necessarily helpful for the
morphological stability. Obviously, this is good news in fulfilling the
demands of high charging rate performances for batteries since a material
design that optimizes transport properties can also be beneficial for
morphological stability.

Furthermore, it is worth to consider the inhomogeneities of the interface
with a local increase of interface conductivity. We then see that the
mechanically weak PEO is far away from the stable region. This is
different for PS-PEO where the impact of locally increased interface
conductivity is relatively small. The finding highlights the importance
of homogeneous interfaces, especially for mechanically weak separator
materials. We have further seen an almost linear correlation between
charging rate and critical Young’s modulus no matter which material.
This is a problematic feature of polymer electrolyte battery systems
especially for fast charging applications.

6.4 Summary

This chapter discussed a quasi-static analysis of morphological stability
of a metal electrode in contact to a binary solid polymer electrolyte
based on a rigorous electro-chemo-mechanical description of the bulk
and reaction kinetics. We utilized measured transport parameters of the
polymer electrolytes PEO and PS-PEO. Analysis of the current density
at a deformed interface showed that the normal stress dependency of the
equilibrium potential, the mechanical influence onto the electrochemical
potential in the electrolyte bulk as well as the value of the exchange
current density are equally relevant. The current density at the protrusion
tip showed a clear dependency on the Young’s modulus of the electrolyte.
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This effect is present even though the metal electrode is assumed infinitely
stiff - which is in agreement with the fact that the Young’s modulus
of a polymer electrolyte is at least one order of magnitude lower than
pure lithium. The simulation is able to quantitatively reproduce the
experimental findings of Harry et al. [31], i.e. the increase of current
density at the protrusion perimeter.

The analysis showed a correlation between required stiffness and trans-
port properties. PEO demands only a fraction of the critical Young’s
modulus compared to PS-PEO electrolyte, yielding in a plausible range al-
though some drastic model assumptions were made (i.e. elastic behavior).
The study suggests that it is important to find the right trade-off between
the electrochemical and mechanical properties of the solid electrolyte.
It is not necessarily better to increase the mechanical stiffness if this
increases is accompanied by a decrease of transport properties.
We further find that the charging rates and local modifications of in-

terface conductivities alter the morphological stability plot. The required
stiffness scales linearly with the charging rate and therefore suggests
upper bounds for the charging rate for a given Young’s modulus for
fast charging applications. Local defects experimentally showed a strong
impact on the likelihood of protrusion growth. Again, this could be ratio-
nalized by the presented calculations. Especially electrolytes with good
transport properties such as pure PEO require a much higher mechanical
stiffness if interface inhomogeneities are present.
The presented methodology is therefore an attractive tool to predict

the "sweet spot" of a solid polymer electrolyte which has sufficient
transport properties by obeying at the same time the mechanical stiffness
requirements for morphological stable lithium/polymer interfaces.
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7 The Metal Electrode

Metal electrodes, in particular lithium metal electrodes, and their usage
within batteries are an interesting modeling subject for several reasons.
The first and most obvious property of metal electrodes is their ability
to conduct electrons. Secondly and most importantly, the oxidation
and reduction process of cations (i.e. lithium) at the interface to the
electrolyte leads to a deposition and stripping of material. The mass and
therefore the stress free volume of the electrode thus changes due to an
applied current. The third modeling subject is the mechanical response
of lithium itself.

This chapter focuses on the kinematics of material deposition and strip-
ping. This includes the volume description, the interface compatibility
and the growth rate. We will also briefly discuss the material properties
of lithium metal such as elasticity and electric conductivity.

7.1 Kinematics of Material Deposition

The stress free growth of lithium during deposition (charge) and shrinkage
during stripping (discharge) is associated to the current density at the
metal electrode-solid electrolyte interface. Assuming no significant surface
migration of ions [174], one can deduce the boundary velocity

∥∥vdep∥∥ in
analogy to Ferrese and Newman [60] at a specific point by counting ions
passing the interface. We obtain

∥∥vdep∥∥ =
ΩLi

F
jdep, (7.1)

161



7 The Metal Electrode

X ∈ B̃etrt x ∈ ϕt(B̃etrt )Xg ∈ Betr0

ζetrt ϕetr
t

solid electrolyte

geometric frame material frame spatial frame

ϕely
t

metal electrode

I

StSetr0

Sely0
Bely0 ϕt(Bely0 )

Figure 7.1: Illustration of the two mappings necessary to describe deposition or
stripping and deformation: The geometry frame describes the metal electrode at initial
state. Deposition is modeled with the mapping ζetrt which yields the undeformed
material frame. With the mappings of the electrolyte ϕely

t and the electrode ϕetr
t , we

obtain the deformed state, where the interface shapes St of electrode and electrolyte
coincide.

where jdep is the current density at the interface i.e. obtained by the
Butler-Volmer equation (5.69), ΩLi is the molar volume of lithium atoms
in the lattice structure and F is the Faraday constant.
Eq. (7.1) is usually utilized in liquid electrolyte systems [58, 79],

where the liquid solvent can be easily displaced during inhomogeneous
deposition. In contact with a solid electrolyte, however, the newly de-
posited material on the metal electrode is able to generate mechanical
stresses in both electrode and electrolyte, which will lead to local defor-
mations. Therefore, we describe the dynamics of deposition and stripping
at the metal electrode together with the mechanical coupling to the solid
electrolyte, and we do so within the concept of finite strains.

7.1.1 Volume Description

In Chapter 2, we have introduced the idea of finite strain continuum me-
chanics that distinguishes between a material and a spatial configuration
due to deformation. Recall that the process of deformation underlies
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7.1 Kinematics of Material Deposition

the conservation of mass. Deposition and stripping, however, change the
mass of a given, undeformed (material) electrode domain B̃etrt and are
therefore dependent on time t ∈ T , see Fig. 7.1. To depict the temporal
dependency, we introduce a third configuration Betr0 independent of time
and which we refer to as geometry configuration. This domain might
be associated to the initial shape of the metal electrode. Each point
Xg ∈ Betr0 can be uniquely mapped to X ∈ B̃etrt by

ζetrt :=

 Betr0 × T → B̃etrt
(Xg, t) 7→X = ζetrt (Xg, t).

(7.2)

The geometry displacement field d = Xg −X describes the geometry
change in the metal electrode due to deposition or removal of mass. In
addition, we characterize the mechanical deformation by the deformation
map

ϕetr
t :=

 B̃etrt × T → ϕt(B̃etrt )

(X, t) 7→ x = ϕetr
t (X, t).

(7.3)

which is equivalent to Eq. (2.1). The displacement field u = X − x is
determined by the balance equations, the constitutive material model
and the boundary condition.

Here we have to turn to the numerical treatment to fully describe the
methodology used. Describing only a deformation process, the associated
discretization (grid points) in the interior of the domain is usually associ-
ated to the material body description and therefore are displaced in a
physically meaningful way by the deformation map ϕetr

t . This is different
for the deposition and stripping process ζetrt , where the material in the
interior and the associated discretization points are not physically altered.
The newly generated material is therefore not adequately resolved by the
discretization and, even worse, mesh entities can disappear if the removal
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7 The Metal Electrode

of material is greater than the mesh size. To avoid this problem, we
equally redistribute the mesh in the interior domain ϕetr

t with a Laplace
smoothing [132] in every time step

DivXg (GradXg (X)) = 0, (7.4)

where the operators DivXg (·) = ∂(·)i
∂(Xg)i

and GradXg (·) =
∂(·)j
∂(Xg)i

are
defined with respect to the geometric coordinates Xg. Note that the
choice of the Laplace operator is not physically motivated and therefore
not the only option. Since it showed reasonable results for our application
we will use Eq. (7.4) henceforth.1

Solving the Laplace smoothing of Eq. (7.4) requires appropriate bound-
ary conditions. The geometric boundary displacement d is zero for
surfaces which are not affected by material deposition and stripping. The
other boundaries are determined by the growth rate and will be discussed
in the upcoming section.

7.1.2 Interface Compatibility

It is obvious that electrochemical reactions require interfacial contact
between metal electrode and solid electrolyte. If an interface region
delaminates, the reduction and oxidation reactions (5.1) are most likely
blocked and no further deposition and stripping of material can take
place. It was shown that polymer electrolytes are able to maintain
adhesion to the lithium electrode [48]. This finding is supported by X-ray
microtomography images [50] which do not show delamination effects of
PS-PEO electrolyte and lithium metal at a protrusion while depositing.
The same holds for PEO [30]. What is not known from these image

1 Other smoothing methods provided by COMSOL Multiphysics® are computationally
more expensive and have not shown an improvement of the smoothing quality
Multiphysics [132].
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7.1 Kinematics of Material Deposition

techniques is whether a tangential slip along the interface occurs during
deposition and stripping or not. Measurements of friction coefficients
have not been conducted yet, and therefore, we will describe two extreme
situations, one where the interfaces are perfectly glued together and the
second where tangential slip is not constrained.
The kinematics of a perfectly aligned interface are as follows. We

denote the interface of the metal electrode and solid electrolyte as

St = ϕt(Bely0 ) ∩ϕt(B̃etrt ), (7.5)

given in the spatial configuration (Fig. 7.1 right). Recall Section 3.1 for
the kinematics of the electrolyte such as the deformation map ϕely

t . The
interface St is either computed from the electrode St = ϕetr

t (ζetrt (Setr0 ))

or from the electrolyte side St = ϕely
t

(
Sely0

)
. The shape of the interface

is therefore determined by three contributions: the deformation in the
electrolyte ϕely

t , the deformation in the electrode ϕetr
t as well as the

geometry change ζetrt .
Note that the interfaces of electrode and electrolyte do not align in the

material configuration (Fig. 7.1 center):

(ϕetr
t )−1(St) 6= (ϕely

t )−1(St). (7.6)

We therefore have to apply special treatment for the growth of material
since the material boundary conditions defined on the electrolyte (such as
the current density) have to be converted to obtain consistent boundary
conditions for the metal electrode.
To obtain the perfect contact given by Eq. (7.5), we have to couple

the mechanical response of the electrode-electrolyte interface. Let’s
assume that the interfaces align in the initial state, i.e. Setr0 = Sely0 . The
assumption of perfect compatibility is then fulfilled if and only if the
boundary displacement of each interface point of the electrolyte uely is
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7 The Metal Electrode

equal to the combined geometry change detr and the deformation of the
metal electrode uetr. To couple both, we demand pointwise

u|Sely0
= d|Setr0

+ u|Setr0
, (7.7)

which is also used by Tikekar et al. [89]. Note that the compatability
condition of Eq. (7.7) does not allow any tangential slip or in other words,
the boundaries are glued together.
Alternatively, one obtains a transition condition with perfect contact

together with tangential slip by imposing equal boundary velocities in
the spatial normal direction to the interface. The boundary condition
then reads for each point on the interface St

(v · n) |elySt = − (v · n) |etrSt (7.8)

with the electrolyte velocity v |elySt = d
dtϕ

ely
t (X), the electrode velocity

v |etrSt = d
dt (ϕetr

t (ζetrt (Xg))) and spatial normal vector n that points in
opposite direction for the electrode and electrolyte.

7.1.3 Growth Rate

We now derive the relation of current density and interface velocity taking
the geometric changes of the interface during deposition and stripping
into account and therefore generalize Eq. (7.1). The current density jBV

is computed with respect to the deformed geometry with area element da
and normal direction n whereas the deposition is defined on the material
configuration with area element dA and normal direction N .
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7.1 Kinematics of Material Deposition

We make use of the fundamental law of conservation of mass to resolve
the growth rate of the interface between electrolyte and electrode. It is
given by

d

dt
mLi +

∫
St
MLi

jdep

F
da = 0 (7.9)

and states that the rate of change of (lithium) metal electrode mass mLi

is equivalent to the material with molar mass MLi deposited or stripped
due to the current density jdep. Note that the current density is defined
on the deformed interface as it specifies the active area for electrochemical
reactions. The mass of the electrode mLi can be written in terms of the
density, yielding

d

dt
mLi =

d

dt

∫
ϕt(B̃etrt )

ρLidv (7.10)

with the mass density ρLi. In order to exchange the integral and the
temporal derivative, we switch from the spatial via the material to
the geometry configuration and thus use the time-independent integral
domain Betr0 . With the help of Reynold’s theorem (Eq. (2.14)), we take
the moving boundary due to deposition into account and obtain

d

dt
mLi =

d

dt

∫
B̃etrt

ρ�LidV =

∫
B̃etrt

d

dt
ρ�LidV︸ ︷︷ ︸

=0

+

∫
Setr0

ρ�Liv
dep ·NdA, (7.11)

where the first term on the right hand side drops out due the balance of
mass of an undeformed medium, see Eq. (3.6), and vdep = d

dtζ
etr
t (Xg)|Setr0

is the unknown interface velocity for deposition and stripping defined
in the material configuration. Note that this velocity is different to the
one in Eq. (7.8) because it takes only deposition but no deformation
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into account. Using Eq. (2.8) we obtain the spatial representation of the
boundary integral

d

dt
mLi =

∫
St
ρLiv

dep · F Tnda (7.12)

Inserting Eq. (7.12) into Eq. (7.9) and postulating that material deposi-
tion and stripping are local effects gives

MLij
dep

F
= −ρLivdep · F Tn. (7.13)

We are now interested in the normal velocity of the boundary in the
material configuration. We thus multiply Eq. (7.13) with the material
normal N and get with N · F Tn = F : (n⊗N) the normal velocity as

vdep ·N = −MLi

Fρ�Li
Jdep = −MLi

Fρ�Li

J
F : (n⊗N)

jdep, (7.14)

where the scaling factor between Jdep and jdep is taken from Eq. (2.10).
Note that all properties in Eq. (7.14) such as the deformation gradient
F are associated with the metal electrode.

7.2 Material Properties of Lithium Metal

In the past, mechanical response of pure lithium has received little
attention due to its very reactive nature and limited fields of application.
Studies on anti-proton sources [11, 12] provided first measurements on
mechanical stiffness with E = 1.9−4GPa [11, 12] and non-elastic behavior
such as the mechanical strength with about 1 MPa [12]. Due to the rise of
solid state batteries with lithium metal anodes, the material properties of
lithium got into the focus of research. Microindentation [15], compression
experiments [14] and nanoindentation [175–177] showed higher yield
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strength with up to 105 MPa, size effects and anisotropy due to the grain
structure of lithium metal. Due to its low melting point of 180.6 ◦C and
for an application at elevated temperatures (e.g. 80 ◦C) such as necessary
for polymer battery systems [50], there is also a high likelihood that the
material starts to creep. This might influence long term applications
in battery systems. Recently, Narayan and Anand [178] published an
elastic-viscoplastic material model which describes the complex response
of lithium.

In this work, however, we put our focus on the electrochemical response
with a simple mechanical description. Therefore, we apply the same level
of complexity as we have used for the solid electrolyte in Chapter 3 and
assume purely elastic behavior. We also note that by omitting non-elastic
effects, we model a material which is more prone against deformation.
This assumption is therefore conservative with respect to a morphological
interface stability analysis.

7.2.1 Material Model

Despite the knowledge of non-elastic effects of lithium as stated before,
we reduce complexity by the assumption that the full deformation as de-
scribed by the deformation gradient F is purely elastic. This assumption
is especially true for small strains. Similar to the solid electrolyte, we
assume an isotropic hyperelastic Neo-Hookean material model [111], but
without considering swelling effects (see Eq. (3.66)). The strain energy
is then given by

ψ̃etr
NH(F ) =

1

2
γNH (I1 − 3) +

1

2
λNH (log I3)

2 − γNH log I3, (7.15)

with the Lamé constants γNH, λNH and the invariants

I1 = tr
(
F TF

)
, I3 = J = detF . (7.16)
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7 The Metal Electrode

The elastic material model helps us to understand the basic electro-chemo-
mechanical response and is in analogy to the works of e.g. [15, 71, 86].
This approach of using solely an elastic model also circumvents questions
whether newly deposited material "inherits" some history of the pre-
existing material such as strain hardening, etc. Considering in-elasticity
also requires a mapping of history variables such as plastic strain or
hardening parameters to the geometric configuration and not to the
material configuration as it is usually done.

7.2.2 Ohm’s law

Electronic conduction in a metal electrode is governed by the balance of
charge where the current density is deduced by Ohm’s law. It states a
linear relationship between electric current density Jq and voltage drop.
Recall Eq. (3.15) for the differential form

div
(
jq
)

= 0 with jq = −κetrgrad (Φ) , (7.17)

where the conductivity of the metal electrode is κetr is equal to the
inverse of the resistivity. Lithium metal, for example, has a conductivity
of κetr = 10.6× 106 S

mI [179] which is almost ten orders of magnitude
higher compared to the one of a polymer electrolyte (see Section 4.2.1)
since the small electrons can more easily be transported compared to the
bulky ions of the salt. Hence, small gradients of the electric potential
already yield a very high electric current. Since the length of the electron
path between current collector and electrolyte is small, roughly ≈ 100 µm,
the drop in electric potential in the electrode is expected to be small.

For the consistent implementation of Ohm’s law on a deformed geome-
try, we again use the formulation of finite strains and solve the partial
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differential equation in the material configuration.2 The electric field in
the metal electrode then is computed by

Div (Jq) = 0 with Jq = −JF−1κetrF−TGrad (Φ) , (7.18)

where the electric conductivity is transformed in analogy to Eq. (3.84)
into the material configuration. Appropriate boundary conditions such
as Cauchy or Neumann condition, respectively, are

Φ|∂B̃etrt = Φ̃, −N · Jq |∂B̃etrt = −Jdep. (7.19)

The boundary conditions are defined in the undeformed geometry and
we apply Eq. (2.10) to convert the current density of deposition Jdep to
jdep to take the deformation of the interface length into account.

7.3 Summary

This chapter dealt with the description of the metal electrode in a solid
state battery. Two mechanisms lead to a change of geometry. One process
is related to deposition and stripping, which adds and removes material
from the electrode. Mechanical deformation of the electrode is the second
process that has to be modeled. We derived a consistent formulation
within the finite strain framework by utilizing in addition to the commonly
used displacement field (deformation) a geometric displacement field
(for deposition and stripping). We postulated interface compatibility
between electrode and electrolyte motivated by experimental findings.
Furthermore, we presented material properties of lithium metal concerning
elastic response and its capability to conduct electrons.

2 We use the capabilities of COMSOL Multiphysics® 5.3a which automatically maps
the material to geometric configurations correctly if no history variables are involved.
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8 Morphological Stability:
A Transient Analysis

This chapter deals with a second approach to describe the morphological
stability of a solid electrolyte - metal electrode interface. In addition
to the scope of the first study in Chapter 6, we now model the metal
electrode and the growth of material during charging explicitly.

The study utilizes the electro-chemo-mechanical model of ion transport
in a solid polymer electrolyte (Chapter 3), the extended Butler-Volmer
reaction kinetics by means of mechanics (Chapter 5) and describes explic-
itly the lithium electrode and its growth and shrinkage due to deposition
and stripping (Chapter 7).

One of the few explicit treatments of lithium metal growth in battery
applications on the continuum scale was presented by Ferrese et al.
[58] who describe the ion transport by using the classical concentrated
solution theory [53] but disregard any mechanical influences. The follow-
up works [59, 60] also treat mechanics, including non-elastic effects,
describing the redistribution of lithium within the metal foil due to
inhomogeneous deposition. However, the mechanisms of swelling and
stress driven diffusion and the effect of reduction of transport paths due
to deformation are not considered.

In our analysis, we first investigate trigger mechanisms in order to un-
derstand possible reasons for inhomogeneous material deposition leading
to damaging of the solid electrolyte. The calculations provide insight
into the mechanisms dominating interface evolution during deposition
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8 Morphological Stability: A Transient Analysis

and are capable of predicting protrusion branching. The idea of protru-
sion branching thereby stems from the current density distribution of
the analysis of Section 6, which suggest elevated current density at the
perimeter of a protrusion. We then put our focus on the morphological
interface stability for PEO and PS-PEO electrolytes and compare the
outcome with the results of Chapter 6. We will see that inhomogeneity
of interface conductivity is a likely reason to cause protrusion growth and
therefore we develop an analytical network model to depict a correlation
of interface and bulk properties on morphological stability. We conclude
this chapter with a recap of coupling mechanisms in protrusion growth.

8.1 The Boundary Value Problem

In this analysis, we model the negative metal electrode and the solid
electrolyte and substitute the cathode by a current density and mass
flux at the top side of the electrolyte, see Fig. 8.1. Again, we assume
an isothermal system at 80 ◦C in two dimensions at plane strain. The
electrode and the electrolyte are 20 µm and 30 µm thick, respectively.
The width of the computation domain is set to 100 µm.

A linear elastic material model is assumed for the lithium metal elec-
trode, see Eq. (7.15). At elevated temperature, lithium has a Young’s
modulus of approx 4 GPa [12] and the Poisson ratio ν = 0.34. Its elec-
tronic conductivity is κetr = 10.6 S

mI [179]. The coupled system of ion
transport and mechanics in the solid electrolyte is described by the
extended concentration solution theory of Eq. (3.116) considering mi-
gration, diffusion and stress-assisted diffusion of the ions. It takes also
hyperelasticity and swelling of the host material into account. We again
utilize the electrochemical parametrizations of PEO [56] and PS-PEO [57]
with LiTFSi salt introduced in Section 4.2.1 and the interface properties
discussed in Section 5.7 i.e. a symmetric reaction with the exchange
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8.1 The Boundary Value Problem

Figure 8.1: The boundary value problem of the second stability analysis deals with a
metal electrode at the bottom and the electrolyte on the top.

current density given by Eq. (5.68) with KBV = 0.589 A√
m mol

. The
Poisson ratio is assumed to be ν = 0.4 for both PEO and PS-PEO and
the Young’s modulus of PEO and PS-PEO will be varied to gain more
understanding of the system behavior.

The boundary and transition conditions of the metal electrode and solid
electrolyte are summarized in Fig. 8.1. Symmetry boundary conditions
are applied on the left and right side. Therefore we enforce continuity of
the electrochemical properties {ω+, c

�} and zero horizontal displacement
for {ϕely

t ,ϕetr
t , ζetrt }. It is assumed that the lithium metal is attached to

a highly conductive and stiff current collector at the bottom interface
and thus we have Φ = 0 (electrically grounded) and uetrBC = 0 (no
deformation). The lithium electrode is attached to the solid electrolyte.
Between the metal electrode and electrolyte, we assume compatibility in
normal direction and allow tangential slip according to Eq. (7.8). The
interface current density is computed by the Butler-Volmer equation
(5.69) as a function of {ω+, c+,Φ, σ

etr
n }, which determines the growth of

the lithium metal interface, see Eq. (7.14), the electrical current at the
electrode, and the current and mass flux of the electrolyte. The cathode
is not explicitly modeled and thus we relate the mass and current flux
to the applied current density Japp. We further mimic a second metal
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electrode at the top where lithium is homogeneously stripped with a
boundary displacement proportional to Japp.
We simulate one charging step and deposit 4 µm of lithium with

Japp = 0.5 mA
cm2 on the metal electrode. This leads to a charging time of

5936 s. Afterwards, we apply a relaxation phase of 3000 s where Japp is
zero.

Again, we use COMSOL Multiphysics® to solve the coupled system of
partial differential equations. We scale the field variables to improve con-
ditioning of the system matrix and therefore increase numerical accuracy.
The transition condition (7.14) and (7.8) are enforced with the concept
of Lagrange multipliers [132], where scaling is done automatically by
the simulation tool. We utilize a staggered solver and thus separate the
transport equations from the deposition process. The first step solves for
{ω+, c

�
+,ϕ

ely
t ,Φ} and the second for {ϕely

t , ζetrt } including the Lagrange
multiplier. The mechanics for the electrolyte is considered in both steps
because it influences the ion-transport as well as the purely mechanical
interaction with the electrode. If not otherwise stated, we use a struc-
tured grid with quadrilateral elements, where the nodes on the interface
between electrode and electrolyte align at time t = 0. Approximately one
hundred thousand degrees of freedom were solved with the direct solver
MUMPS in each time step. The backward differential method showed
best performance for the numerical integration with respect to time. The
integration order is automatically varied between one and five. The time
steps are freely chosen by the simulation tool, but are restricted to a
maximum time step ∆tmax. Numerical tests showed that ∆tmax = 10 s

provides a good accuracy in a reasonable computing time.
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Figure 8.2: Illustration of four hypothesis of trigger mechanism which might lead to
inhomogeneous deposition.

8.2 Analysis of Instability Triggers

With the comprehensive description of electrode and electrolyte at hand,
we now explore the growth of lithium metal during charging. Obviously,
a planar interface as depicted in Fig. 8.1 in combination with homoge-
neous transport properties yields homogeneous material deposition and
stripping. To break the homogeneity, a trigger needs to be introduced.
Fig. 8.2 illustrates four hypotheses to be investigated in this context.
Note that we will provide only a qualitative comparison based on edu-
cated guesses of the parameter variations. A one-to-one comparison as
done in non-dimensionalized settings, see e.g. [180], is not feasible in our
case because variation of geometry, bulk properties, interface properties
and boundary conditions are of different kind and cannot be easily related
by one non-dimensionalized parameter.

8.2.1 Four Hypothesis on Trigger Mechanisms

Hypothesis 1 postulates an initial protrusion, e.g. due to surface rough-
ness, as reason for a harmful protrusion growth into the separator. It
influences the transport paths: The shorter the path, the higher the
effective conductivity and the more likely an increased deposition pro-
cess. In analogy to Chapter 6 we consider a Gaussian like protrusion,
see Eq. (4.4), with an amplitude of AP = 4 µm. We chose a support of
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RP = 15 µm throughout this study. Other than in Chapter 6, we assumed
the electrolyte to be stress free in the initial state. To resolve the curved
shape, we utilize an unstructured grid with triangular mesh elements.
Hypothesis 2 assumes an inhomogeneous ion supply at the cathode.

Recall that the cathode is a porous composite with active storage particles.
For example, particles close to the solid electrolyte that have lost their
connection to the positive current collector are not functional, block
the ion transport and thus increase the current density in the adjacent
regions.1 The morphology of the positive electrode is then mirrored on
the negative electrode, due to local changes of current entering the solid
electrolyte. We model this effect by

(Japp)trigger = (1 + w(X/Rdeg )) Japp. (8.1)

and thus double the applied current density at the center of the compu-
tation domain. The support of the degraded zone is Rdeg = 15 µm.
Protrusion growth can also be triggered by inhomogeneities in trans-

port properties, either in the bulk (Hypothesis 3) or at the interface
(Hypothesis 4). Better transport properties in a region yield a higher
deposition rate compared to the neighboring region and thus lead to
instability. For Hypothesis 3, we increase the ionic conductivity and the
diffusivity of the bulk with

{κ,D}trigger =
(
1 + 9w(X/Rdeg)

)
{κ,D}. (8.2)

by one order of magnitude in the center of the computational domain.
Hypothesis 4 is similar to the adjustments of Eq. (6.5) and reads

(KBV)trigger =
(
1 + 2w(X/Rdeg)

)
KBV. (8.3)

1 Active particles usually have a diameter of several micrometers [167, 181] which is
the same order of magnitude as we use for the support in Eq. (8.1).
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8.2 Analysis of Instability Triggers

Figure 8.3: Four trigger mechanism for protrusion growth are investigated: (a) shows
the protrusion height over time for the four hypotheses of Fig. 8.2. (b) and (c) show
the contour plot of hydrostatic pressure for hypotheses 1 and 3. The red lines indicate
the initial interface shape.

The exchange current density or, in other words, the interface conductivity
is increased by a factor of three in the center of the interface and gradually
declining to reference sidewards.

8.2.2 Results and Discussion

For this study, we use the solid polymer electrolyte PEO with a Young’s
modulus of E = 10 MPa and transport properties as given in Section 4.2.1.
Recall that this material showed a high likelihood for morphological
instability in the previous study of Chapter 6.
Fig. 8.3a shows the growth of the protrusion height over time. We

subtract the displacement measured at the side of the computational
domain from total displacement of the electrolyte at the center in order
to remove the translation of the interface due to homogeneous material
deposition.
The initial protrusion (Hypothesis 1) yields only a very small growth

although the initial height of the protrusion is already significant. There-
fore, one can conclude that an initial protrusion is not the main cause
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8 Morphological Stability: A Transient Analysis

of morphological instability. Nevertheless, we use this setup to under-
stand material growth normal to the interface. The region close to the
protrusion tip is under tension, see Fig. 8.3b, and the shoulder is under
compression. This behavior is due to the broadening of the protrusion
in the in-plane direction and results in quite strong compressive normal
forces in the shoulder region and consequently pushes the separator up.
In order to preserve compatibility, the perimeter as well as the tip have
to pull on the electrolyte and are therefore under tension. The small pres-
sure jump between electrode and electrolyte is due to the compatibility
condition of Eq. (7.8) which requires only the normal traction force to
align but not the lateral traction forces. Although the stress state with
tension at the tip will always be present when a protrusion is growing, it
is of second order when a planar interface is used as initial condition.
Hypothesis 2 with an inhomogeneous current supply also shows only

small protrusion growth. Ion transport in the in-plane direction smooths
out the local current spike (Japp)trigger. We note that this might change
if either the separator thickness is reduced2 or the transport properties
of the polymer are degraded.
Fig. 8.3c illustrates the interface for Hypothesis 3. Locally enhanced

transport properties do not yield a pronounced protrusion growth. The
modification of the interface conductivity (Hypothesis 4) results, however,
in a significant increase of local deposition (Fig. 8.3a). With 4 µm the
tip grows almost twice as fast as the neighboring regions. The growth
speed even accelerates over time, meaning that the tip velocity increases
the higher the protrusion is. This can be explained by the shortening of
the transport paths. The effect of Hypothesis 1 and Hypothesis 4 then
superpose.

Fig. 8.3a shows another interesting effect. There is a reorganization of
lithium in the relaxation phase which yields to a decrease of the protrusion

2 Note that Rosso et al. [35] measured protrusion growth for much thicker electrolytes.
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height for Hypothesis 2-4 and a small increase for Hypothesis 1. Although
no external current is applied, there is a small stripping current density
at compression regions and a deposition current density at regions under
tension. As discussed later, ions at the metal electrode prefer to be on
a low pressure region. Since an ion as well as an electron conduction
path is provided, there is no hurdle for a reorganization of the ions.
The overpotential is, however, much smaller compared to doing charging
which yields only a small decrease of protrusion height over time.

The analysis of the trigger mechanisms suggests that Hypothesis 1-3
are very unlikely to cause harmful protrusion growth, although the
single influences were perturbed quite significantly. Hypothesis 4 with
a perturbation of the interface conductivity has proven to be a likely
candidate for instability. We do not claim that this is exclusive since
purely chemical reactions might also contribute but are not depicted in
our continuum description. Nevertheless, also experimental studies align
with our outcome that the cause has to be related to the electrode-polymer
interface. For example, Harry et al. [50] were able to correlate a protrusion
growth to an impurity at the lithium surface. The impurity might increase
the surface conductivity. Although this has not been experimentally
proven, we will continue with Hypothesis 4 for the upcoming second
stability analysis.

8.3 Stability Analysis

In the previous section, it was observed that an inhomogeneous interface
conductivity, see Eq. (8.3), is the most likely trigger for protrusion growth.
In the following study we stick to this trigger mechanism, vary the Young’s
modulus and investigate the response of the resulting interface amplitude.
We apply the analysis to both PEO and PS-PEO.
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8 Morphological Stability: A Transient Analysis

Figure 8.4: (a) The evolution of the protrusion height depending on the Young’s
modulus for a PEO polymer. The contour plots on the right show the hydrostatic
pressure in the electrode and electrolyte for (b) E = 10 MPa and (c) E = 300 MPa at
t = 5900 s. The red line indicates the initial surface at t = 0 s and the lines A and B
are cross sections used to evaluate Fig. 8.7. Note that B is evaluated at the side of
the computational domain.

8.3.1 Lithium Metal and PEO Electrolyte

We first analyze the PEO polymer electrolyte and vary the Young’s
modulus between E = 10 MPa and E = 300 MPa. Fig. 8.4a shows the
protrusion growth over time. Note that the results for E = 10 MPa

are equivalent to Hypothesis 4 in Fig. 8.3a and recall that the protru-
sion growth velocity increases with time due to the shortening of the
transport path. Fig. 8.4b shows the interface at t = 5900 s. The tip
experiences compression and the perimeter tension, similar to the study
of Section 4.5. The hydrostatic pressure goes up to 3 MPa and is thus
not very pronounced. If the Young’s modulus is increased, the effective
protrusion height decreases significantly as seen in Fig. 8.4a. The rate of
growth is identical in the beginning, but the more material is deposited,
the slower is the protrusion growth for a higher Young’s modulus. The
case of E = 300 MPa indicates an asymptotic behavior of the growth
with a maximum protrusion height and therefore morphological stability.
That means that even though the local interface conductivity is increased,
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8.3 Stability Analysis

Figure 8.5: The contour plots show the displacement of the electrode (bottom) and
solid electrolyte for (a) E =10 MPa, (b) E =100 MPa and (c) E =300 MPa. The red
lines indicate the initial states of the interface. Note that the displacement of the
electrolyte takes also translation due to deposition processes into account.

the local stress state compensate this modification and yield to a homo-
geneous deposition process. Again, we observe an amplitude decrease at
the relaxation phase which is more pronounced the stiffer the material is.

To understand the underlying effect of the decrease of protrusion height
for increasing Young’s moduli, we first consider the mechanical response.
Fig. 8.5 illustrates the displacement of the electrode and the electrolyte.
Note that the displacement of the solid electrolyte takes the translation
due to deposition into account which explains the displacement of 3.2 µm

for E = 10 MPa up to 3.6 µm for E = 300 MPa at the perimeter and
t = 5900 s. The difference between desired deposition (4 µm) and actual
translation is explained by the protrusion growth. It requires additional
material to create the protrusion which can not deposited onto the
adjacent area. The displacement of the electrode is almost negligible
for all three cases, especially if it is compared to the amplitudes of the
protrusions. A simple push-down effect of the electrode based on elastic
deformation to stabilize the interface can thus be excluded.
We can explain the different protrusion heights with a change of the

interface current densities. The current densities do not differ significantly
for the three considered Young’s moduli at time t = 200 s, see Fig. 8.6.
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8 Morphological Stability: A Transient Analysis

Figure 8.6: The current density at the electrode-electrolyte interface at the beginning, in
the middle and at the end of the charging process for (a) E =10 MPa, (b) E =100 MPa

and (c) E =300 MPa.

The Gaussian like shape of the current densities with a maximum of
0.85 mA

cm2 comes from the modified exchange current density. When time
passes and more material is deposited, we observe that for E = 10 MPa

the current density increases with time, most likely due to the decrease
of the related transport path. Contrary to that, the current density
decreases for E = 100 MPa and even more for E = 300 MPa as seen in
Fig. 8.6b and 8.6c. The smaller amplitudes of the current density explain
the smaller protrusion growth for a higher Young’s modulus.
Fig. 8.7a shows the electrochemical potential ω+ in the electrolyte

and the electric potential Φ in the electrode in the cross section along
the Y-axis at X = 0 (line A in Fig. 8.4c) and X = 0.5W (line B in
Fig. 8.4c). The potentials at the side basically coincide for the three
stiffnesses thus we plot only the value for E = 10 MPa. We observe
that ωtip+ is very similar for the three considered Young’s moduli but
differs strongly from ωside+ . The electric potential is almost constant in
the electrode. We note that the drop of electrochemical potential in the
electrolyte is in the same order of magnitude compared to the potential
jump along the interface with roughly η = 6 mV. The concentration
of the salt, again in the cross-section along the Y-axis at X = 0 (line
A in Fig. 8.4c) and X = 0.5W (line B in Fig. 8.4c) at t = 1000 s

for the three different moduli, is shown in Fig. 8.7b. We observe a
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Figure 8.7: The electro-chemo-mechanical response of PEO during charging at t =

1000 s for three Young’s moduli: (a) Electric and electrochemical potential. Note
that influence of E onto Φ and ωside+ is negligible and therefore not shown. (b)
Concentration profile along cross section A (tip) and B (side), see Fig. 8.4c. (c) Open
circuit potential along the interface, here also for t = 5900 s.

concentration polarization in the out-of-plane direction along the Y-axis.
At the perimeter, an increase of Young’s modulus leads to a decrease of
the concentration gradient. On the other hand, there is an increase of
the concentration gradient or depletion of salt at the tip for an increasing
Young’s modulus due to stress driven diffusion. For a further discussion
of these effects we refer to Section 4.5. The open circuit potential V eq

ω+
is

shown in Fig. 8.7c for the three different Young’s moduli at t = 1000 s

and t = 5900 s. The tip value of V eq
ω+

decreases with respect to time
and also with respect to the Young’s modulus. In this case, a negative
open circuit potential provokes a decrease of the interface current density.
This effect is especially significant for E = 300 MPa at t = 5900 s with
V eq
ω+

= −3 mV and explains the reduction of interface current in Fig. 8.6.
In the relaxation phase at t > 5900 s, we observe a decreasing protrusion

height, see Fig. 8.4a. This is most pronounced for the solid electrolyte
with E = 300 MPa. Fig. 8.8a reveals the current density during relaxation
at t = 6500 s, t = 7500 s and t = 8500 s. There is a stripping current at
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8 Morphological Stability: A Transient Analysis

Figure 8.8: The figures show the relaxation process for PEO with E = 300 MPa for
three different snapshots. (a): Interface current density, (b): open circuit potential
and (c): hydrostatic mechanical pressure pM.

the tip (jBV > 0) and a deposition current (jBV < 0) at the perimeter.
This is triggered by the open circuit potential V eq

ω+
, see Fig. 8.8b, which is

negative at the peak of the protrusion and positive at the side. Fig. 8.8c
shows the hydrostatic stress pM for the three Young’s moduli along the
electrode-electrolyte interface. There is compression at the tip yielding a
negative value of V eq

ω+
(and thus stripping) and mechanical tension away

from the protrusion (and thus deposition). The process is slow but will
eventually yield to a completely flat surface in case if non-elastic effects
are neglected.

8.3.2 Lithium Metal and PS-PEO Electrolyte

We redo the previous study, but now with the parametrization of a PS-
PEO electrolyte, see Section 4.2.1. All other parameters are kept the
same. In addition, we investigate a second system where we decrease
the interface conductivity or exchange current density, respectively, by
a factor of ten along the interface (KBV = 0.0589 A√

m mol
). As we have

discussed in Section 6, the PS-PEO electrolyte requires higher stiffnesses
for stability compared to PEO, therefore, we have chosen three Young’s
moduli between E = 100 MPa and E = 1000 MPa.
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Figure 8.9: The penetration depth over time for PS-PEO for three Young’s moduli
and two interface conductivities.

We observe a similar trend in the protrusion growth as observed for PEO
in Fig. 8.9. The higher the stiffness, the smaller the protrusion height.
However, the protrusion height for the reference interface conductivity
has values between 0.4 µm and 0.6 µm and is therefore very small for all
investigated Young’s moduli at the end of the charging process. Numerical
studies showed that moderate changes of charging rate Japp and the
amplitude of the interface conductivity disturbance in Eq. (8.3), did
not increase the instability significantly. By adjusting the prefactor of
the interface conductivity KBV, we again observe a strong impact of the
Young’s modulus on the protrusion height. Degrading the surface by
dividing KBV by a factor of ten and therefore increasing the interface
resistance by one order of magnitude yields a significant protrusion growth
with values between 2.3 µm and 3.2 µm, see Fig. 8.9. In both cases, the
influence of the mechanical stiffness is not as pronounced as for the PEO
electrolyte.
Fig. 8.10 reveals a detailed analysis of the electrochemical potential

for E = 100 MPa at t = 1000 s for the two prefactors of the interface
conductivity KBV and 0.1KBV. The graphs in Fig. 8.10c and 8.10d are

187
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Figure 8.10: The electrochemical potential for PS-PEO with E = 100 MPa at t = 1000 s

for two interface conductivities. (a) Contour plot of ω+ for referenceKBV. (b) Contour
plot of ω+ for 0.1KBV. The lines A-D indicate cross sections. Note that B is evaluated
at the side of the computational domain. (c) Cross section in the direction A and
B. (d) Cross section in the direction C and D. Note that the figures (a) and (b) are
truncated to highlight the region around the protrusion growth.

defined by the cross sections A, B, C and D, as depicted in Fig. 8.10a
and Fig. 8.10b. Recall that the gradient of the electrochemical potential
ω+ is a major driving force for ion flux and is therefore a good indicator
for the current in the electrolyte.
In Fig. 8.10, we see that the electrochemical potentials in the out-of-

plane direction are shifted by roughly 50 mV if the interface conductivity
is smaller but the slopes are similar. On the other hand, there are strong
differences in the variation of ω+ in the in-plane direction, see Fig. 8.10d.
For the standard interface conductivity, only a very small drop of ω+

is observed in the center region (cross section C). Further away from
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the electrode-electrolyte interface (cross section D) we observe an almost
constant ω+ in the in-plane direction. This is different for the second
case with 0.1KBV, where cross sections C and D show a notable drop of
ω+ in the region where the interface conductivity is increased.

8.3.3 Discussion

The results of protrusion growth at a metal electrode adjacent to a
PEO and a PS-PEO electrolyte, respectively, extend the first study of
Chapter 6 and give new insights into the morphological stability. Con-
trary to the first study with a given deformation, the protrusion growth
now has to be trigged with the help of an inhomogeneous interface con-
ductivity. The two approaches are therefore not directly comparable,
although the study of Section 6.3.5 with its modification of the interface
conductivity is based on similar assumptions.

We first point out that the shape and size of the protrusion chosen in
Section 6 align with the outcome of the dynamic protrusion growth from
this study. A bifurcation of the protrusion as indicated by the current
density distribution of Fig. 6.3a with the highest deposition rate at the
perimeter to each side of the protrusion is not observed. This confirms
the idea that the build-up of secondary tips is suppressed due to the
electro-chemo-mechanical coupling and aligns with experiments which
have shown no morphology change of the protrusion during charging
[50, 182].3

The PEO material obeys a strong dependency of the growth speed on
mechanical stiffness. This is in agreement with the results of Chapter 6
(Fig. 6.8b), where we have seen a characteristic change in stability
at approximately E = 100 MPa. If the Young’s modulus is smaller
than E = 100 MPa, then the growth accelerates, if it is larger, then an

3 Note that repeated stripping and deposition can yield a porous structure in polymer
electrolytes [50].
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asymptotic limit will be reached eventually. Both the modification of the
interface conductivity and the shortening of the transport path will then
be balanced by the mechanical stress at the protrusion peak.

The deposition current has a maximum at the peak of the protrusion
for all calculations and is hence different to the study of Chapter 6,
which has shown a strong drop of the current density, partially even a
stripping current, at the tip for high Young’s moduli (see Fig. 6.3). The
mechanical stresses in the soft electrolyte (E = 10 MPa) are small and not
able to lower the effective current density at the tip although the stress
increases with protrusion depth. In fact, when the protrusion grows, the
current densities increases at the peak of the protrusion, see Fig. 8.6a,
which eventually leads to an acceleration of growth as seen e.g. in Fig.
8.4a for PEO and Fig. 8.9 for PS-PEO. If a Young’s modulus above a
critical value is chosen, then the variation of current density decreases
while the protrusion is growing. This indicates a maximum height of the
protrusion. The deposition rate at the tip equals the deposition rate at
the flatter regions in this state. The protrusion growth is then stopped
and a morphological stability is reached.
PS-PEO has this pattern at around E = 500 MPa, which is slightly

higher than the outcome of Chapter 6. However, the overall growth is
small without a modification of KBV, even for small Young’s moduli,
and a failure of the battery is not likely. This behavior changes when the
electrochemical interface property such as KBV is degraded. PS-PEO
then shows a similar amplitude of the protrusion as the PEO electrolyte
without interface degradation. This indicates that a decrease of bulk
transport and an increase of interface properties decrease the likelihood of
protrusion growth. The correlation of bulk and interface properties with
respect to morphological stability will be analyzed in the next section.
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Figure 8.11: Problem description of the network model: (a) Axis symmetric section of
an undeformed electrolyte-electrode system. The red area denotes a degraded interface
between the electrode and electrolyte. (b) Sketch of the electrochemical potential
ω+ (isolines) and the current density in an electrolyte with degraded interfaces. (c)
Idealized setting of ion transport in an electrolyte within a network model. The ions
from the top are either transported directly through the bulk (vertical) or in-plane
(horizontal) to the electrode.

8.4 An Analytical Assessment of
Morphological Stability

We now want to rationalize the findings of the previous simulations such
as the correlation of bulk and interface properties with the help of an
analytical network model. We restrict the analysis to an undeformed
geometry as shown in Fig. 8.11, where the exchange current density is
degraded locally at the electrode-electrolyte interface (red area, see also
Hypothesis 4 in Section 8.2.1). The undeformed geometry corresponds
to the initial state of the deposition process in Section 8.3. In this state,
mechanical effects such as stress driven diffusion or change of length of
transport paths due to deformation are negligible and will not be taken
into account.
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Fig. 8.11b illustrates isolines of the electrochemical potential in the
solid electrolyte as observed previously in Fig. 8.10b. The mass flux
follows the gradient of ω+ and is therefore perpendicular to the isolines.
It is obvious that the in-plane contribution of the mass flux is directly
related to the protrusion growth. The higher the current density in the
in-plane direction, the more ions are transported into the degraded area
and are thus deposited. This leads to the inhomogeneous growth and
eventually to morphological instability. In the following, we approximate
the continuous model of ion transport by a network model, separate the
mass flux into a through-plane and an in-plane contribution in the region
of the degraded area, see Fig. 8.11c, and deduce an expression for the
harmful in-plane mass flux.

8.4.1 Network Model of Ion Transport

To derive an analytical expression for the in-plane contribution of the
ion flux, we consider an electrolyte with a locally degraded interface to
the metal electrode. The domain of the electrolyte above the degraded
zone is denoted as B0|deg and the surrounding domain as B0|ref, see
Fig. 8.11c. A constant current density japp is applied at the top (cathode
side) and the current densities at the interface are denoted as jBV|deg

and jBV|ref for the degraded and non-degraded areas, respectively. Due
to the degradation, we postulate a current density in in-plane direction
∆j which is defined to be positive in the direction from B0|ref to B0|deg.
Using the network model of Fig. 8.11c, we can now apply conservation
of mass in the nodes and get

jBV|degA|deg = jappA|deg + Â∆j

jBV|refA|ref = jappA|ref − Â∆j
(8.4)
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with the degraded interface area A|deg, the remaining interface area A|ref

and the area of the cylindrical surface of B0|deg as Â. Eliminating the
in-plane current Â∆j in Eq. (8.4) yields

jBV|deg + ajBV|ref = japp(1 + a) (8.5)

where a = A|ref
A|deg = A|tot

A|deg − 1. To obtain expressions for jBV|deg and
jBV|ref, we utilize a linearized version of the Butler-Volmer equation
such as Eq. (5.66). The degraded interface has an exchange current
density j0|deg. Otherwise, the exchange current density is j0|ref which
is proportional to KBV, see Eq. (5.68). The electric potential of the
electrode is given by Φ ≈ 0 (grounded). Furthermore, we consider a stress
free state and thus have V eq

ω+
= 0. Eq. (5.69) then yields η|deg = −ω+|deg

and η|ref = −ω+|ref and the two linearized Butler-Volmer equations are

jBV|deg = −bj0|degω+|deg,

jBV|ref = −bj0|refω+|ref,
(8.6)

with b = F
RΘ . They give a linear relationship between current densities

and electrochemical potentials ω+. Combining Eq. (8.5) and Eq. (8.6)
yields

j0|degω+|deg + aj0|refω+|ref = −japp 1 + a

b
. (8.7)

Subtraction of j0|degω+|ref on both sides then gives

j0|deg(ω+|deg − ω+|ref) = −japp 1 + a

b
−
(
j0|deg + aj0|ref

)
ω+|ref. (8.8)
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In the next step we combine Eq. (8.4), Eq. (8.8) and the linearized
Butler-Volmer equation (8.6) and obtain

ω+|deg − ω+|ref =
1

bj0|ref

(
χjapp − (1 + (1− χ) a)

Â

A|ref
∆j

)
(8.9)

with χ = 1 − j0|ref
j0|deg as a measure for the interface inhomogeneity. For

example, if the interface conductivity in the degraded zone is higher
compared to the side, then χ > 0. In the next step, we assume a
linear potential drop in the in-plane direction of the electrolyte bulk and
compute the in-plane current density as

∆j = −κeffω+|ref − ω+|deg

F∆L
(8.10)

where κeff is the bulk conductivity and ∆L is a characteristic length
between the B0|ref and B0|deg. Inserting Eq. (8.9) in Eq. (8.10) yields

∆j =
κeff

F∆Lbj0|ref

(
χjapp − (1 + (1− χ) a)

Â

A|ref
∆j

)
. (8.11)

Solving the implicit equation for ∆j then yields

∆j =
χ

F∆L
RΘ

j0|ref
κeff

+ Â
A|ref + Â(1−χ)

A|deg
japp (8.12)

and thus gives the in-plane current ∆j as a function of geometric proper-
ties, the interface conductivity j0|ref, the bulk conductivity κeff and the
ratio χ = 1− j0|ref

j0|deg . Assuming a circular degraded zone of radius Rdeg and
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a hight of the electrolyte of Lely one can deduce Â
A|deg = 2πRdegLely

π(Rdeg)2 = 2Lely

Rdeg

and together with ∆L = dRdeg with d > 1 we finally obtain

∆j =
χ

F
RΘR

degd j0|
ref

κeff
+ Â

A|ref + 2Lely(1−χ)
Rdeg

japp (8.13)

as a second approximation of the in-plane current density.

8.4.2 Discussion

Eq. (8.12) is a first order approximation of the in-plane current density
which describes the material transport into the degraded zone. In general,
morphological instability is found for χ > 0 which is equivalent to
j0|deg > j0|ref. If the exchange current density is homogeneous, then
a stable deposition is expected. If the degraded interface has a much
higher interface conductivity, i.e. χ→ 1, then protrusion grow is strongly
promoted. In general, the higher the difference between the exchange
current densities, the larger the protrusion growth. The applied current
density japp enters linearly and indicates higher morphological instability
issues for higher current densities. The linear correlation aligns with the
findings of the numerical study in Section 6.3.4.

Eq. (8.12) indicates a smaller in-plane flux for decreasing bulk conduc-
tivity κeff which is thus beneficial for morphological stability. Qualita-
tively speaking, a small bulk conductivity penalizes in-plane ion transport.
Note that this finding does not contradict the result of Section 6.3.3,
where an electrolyte with higher bulk conductivity showed lower require-
ments for mechanical stiffness (see e.g. Fig. 6.6). The study in Section
6.3.3 correlates bulk transport properties with mechanical properties on
a deformed geometry, whereas the analysis of Eq. (8.12) deals with the
initiation process. In other words, Eq. (8.12) determines the deposition
growth at time t = 0 (e.g. the initial slope in Fig. 8.4) and not the
growing pattern when a protrusion builds up (t > 0). However, both are
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not decoupled as discussed in Section 6.3.5 (Fig. 6.8b), where a change of
interface conductivity at the degraded interface also changes the require-
ments on mechanical stiffness. The analytical model and the simulations
agree that a degraded zone with j0|deg > j0|ref promote instability. Fur-
thermore, the network models aligns with the numerical studies with the
prediction that electrolytes with poorer electrochemical transport prop-
erties such as PS-PEO are more robust against inhomogeneous interface
conductivities.

Another way to stabilize the system is to increase the reference interface
conductivity j0|ref. In this case, the drop in electrochemical potential
along the interface is smaller and thus the driving force for the in-plane
current decreases. The ratio j0|ref

κeff
that is found in the denominator of

Eq. (8.12) aligns with the findings of Section 8.3.2. In this study, we have
observed almost the same protrusion growth for a system with PS-PEO
(and an exchange current density decreased by a factor of ten) and for a
system with PEO, which has roughly ten times better transport properties
(see. Fig. 4.2.1). The analytical expression (8.12) confirms therefore
that interface properties and bulk properties cannot be decoupled in a
morphological stability analysis.
We further note that Eq. (8.13) indicates a decrease of ∆j for thick

electrolytes. This effect, although not very pronounced, was observed in
the parameter study of Section 6.3.3 for h > 50 µm. For small thicknesses,
the mechanical effects dominate. We further note that the in-plane
current density vanishes for a small degraded area (Rdeg → 0) and a
large degraded area (Rdeg →∞).

8.5 Recap of the Coupling Mechanisms

The previous studies have shown several mechanisms which contribute
to protrusion growth of a metal electrode in a solid state battery. In
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what follows, the driving forces for protrusion growth are summarized
and discussed.

In Section 6.2, we have seen that the overpotential η at the SEI is a key
ingredient in understanding the difference in deposition rates along an
interface. Recall from Eq. (5.58) and Eq. (5.61) that the overpotential
consists of three components: the electrode potential Φ, the electrolyte
potential ω+ and the open circuit potential V eq

ω+
. The electrode potential,

however, can be assumed to be constant due to the high electronic
conductivity in the metal electrode. We assume that the electrode is
grounded and thus set to Φ = 0. The overpotential then reads

η = −(ωely+ + V eq
ω+

). (8.14)

Recall that a negative overpotential yields a deposition current. We
emphasize that both the exchange current density j0 and the overpotential
determine the current density. In the following, we neglect the effect of
the mechanical dependency of the exchange current density as we have
seen in Section 6.2 that the overpotential is the dominant mechanism for
inhomogeneous deposition. As shown in Fig. 8.7a and Fig. 8.10c, the
electrochemical potential is almost constant at the counter electrode (Y =

Lely) although a protrusion growth is triggered. Therefore, we assume
that the electrochemical potential at the separator-cathode interface
ω+|top remains equal during protrusion growth. This also implies a
constant current density japp|top.

Fig. 8.12 summarizes the effects which influence the overpotential and
shall be discussed in the following. We consider the electrochemical and
mechanical contributions on both ω+ and V eq

ω+
. Quantitative statements

with absolute values of the single effects would require knowledge of
the material system, mechanical state, charging rate, etc. Therefore,
this discussion shall serve as a qualitative study to gain an overview of
the different mechanism and of which kind (stabilizing, destabilizing)
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8 Morphological Stability: A Transient Analysis
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Figure 8.12: Processes that changes the electrochemical potential ω+ and open circuit
potential V eq

ω+
at the electrolyte-electrode interface clustered in three categories:

Standard response (no inhomogeneity) in form of bulk conductivity (S1), concentration
polarization in the bulk (S2) and at the interface (S3); Trigger mechanisms due to
locally increased interface properties at area Adeg (T1) and in-plane current flux (T2);
Protrusion growth yields pressure in the electrolyte (P1), stress driven diffusion (P2),
change of transport paths (P3) and normal stress at the interface (P4). The color
code of the arrows is as follows: Black (initial response when current is applied),
purple (changes due to concentration polarization), red (destabilizing process), green
(stabilizing process) and blue (overpotential of each condition).

they are. We cluster the effects in standard processes (S) specified by
homogeneous ion transport, intermediate effects due to a trigger (T) and
effects while protrusion growth (P).
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8.5 Recap of the Coupling Mechanisms

We start with the standard processes due to ion-transport in a homoge-
neous electrolyte:

• S1: At the initial state after applying a current, there is a drop
in electrochemical potential in the electrolyte due to Ohm’s law
inversely proportional to the ionic conductivity κ.

• S2: A concentration polarization occurs for a galvanostatic current
as discussed in Section 4.4. The ionic conductivity then decreases
(see discussion in Section 3.5.4), which increases the drop in elec-
trochemical potential in the bulk.

• S3: The change of concentration also has an impact on swelling
and osmotic pressure which eventually lead to mechanical stress.
The open circuit potential −V eq

ω+
|S is therefore not zero anymore.

Note that these steps occur regardless whether the interface is degraded or
not and are therefore not relevant to the considerations of morphological
stability. This state now defines the overpotential η|side at a flat, not
degraded interface.
As a trigger mechanism, we follow the previous findings and degrade

the interface Adeg with an increase of interface conductivity:

• T1: A lower electrochemical potential is necessary to transfer the
same amount of current (see discussion in Section 8.4).

• T2: The drop in ω+ leads to a change of the ion transport path, see
Fig. 8.10a. Following the highest decent, more ions will enter the
area of Adeg, which ultimately leads to an increase of the current
density in this region, see Eq. (8.12). The increase of current
density results, however, in an increase of the overpotential, see e.g.
Eq. (5.66). We denote this overpotential as η|degflat if the interface is
still flat.
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8 Morphological Stability: A Transient Analysis

The increased current density at the degraded zone compared to side
regions then leads to a protrusion growth, which affects the overpotential
as follows:

• P1: The protrusion growth yields mechanical stresses in the solid
electrolyte. The hydrostatic pressure pM increases ω+ due to Eq.
(3.77) and influences the overpotential such that more deposition
takes place at Adeg.

• P2: The hydrostatic pressure also has the effect that the ions are
depleted in the region around the protrusion tip (see Section 4.5),
which decreases ω+ and therefore stabilizes the interface current
density.

• P3: If the protrusion grows, the effective bulk conductivity increases
due to a shorter transport path, which then promotes instability
(see e.g. Fig. 8.8a).

• P4: Similar to the hydrostatic pressure of the electrolyte, we obtain
positive normal stresses at the metal electrode. This lowers the open
circuit potential V eq

ω+
, decreases the overpotential and is therefore a

stabilizing effect.

Ultimately, if the material properties of a solid electrolyte are chosen
such that η|degt at time t decreases with protrusion height, than the
deposition current will also decrease and morphological stability might
be reached. Ideally, only a small or even infinitesimal protrusion is
required to equilibrate stabilizing and non-stabilizing effects. That might
be the case for ceramic electrolytes, which are single-ion conductors.
They do not feature the effects P1 and P2 due to the missing swelling
mechanism. The stabilizing effect of P4 is then dominating even for small
deformations.4 We refer to McMeeking et al. [91] and Klinsmann et al.

4 Ceramic electrolytes struggle, however, with lithium growth in grain boundaries.
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8.6 Summary

[93] for a more detailed study of stability in ceramic electrolytes. The
coupling mechanism in polymer electrolytes is, however, more complicated
and showed to be very sensitive to small changes in mechanical stiffness
as discussed in Section 6. Deducing morphological stability maps for
these systems require therefore a comprehensive electro-chemo-mechanical
formulation as presented in this thesis.

8.6 Summary

With the help of the comprehensive model of coupled ion transport,
reaction kinetics, deposition and electrode response, we were able to
model the growth of a protrusion in a binary solid electrolyte. We
investigated within our continuum mechanical framework four different
trigger mechanism which can cause harmful protrusion growth. The
analysis indicates that a heterogeneous interface conductivity (modeled
by a local increase of the exchange current density) is most likely to
initiate a protrusion growth with a deposition rate big enough to penetrate
the solid electrolyte. We studied the impact of the Young’s modulus
on the protrusion growth for the two parameterizations of the polymer
electrolytes PEO and PS-PEO. Both showed a characteristic change
of protrusion growth at E = 100 MPa and E = 500 MPa, respectively,
and align quite well with the results of Section 6.3.5. Below this value,
we have seen an acceleration of growth whereas an asymptotic limit
is indicated for higher Young’s moduli. We have confirmed that the
suppression mechanisms do not stem from a deformation of lithium but
from a decrease of the interface current density for higher Young’s moduli.
Furthermore, the model indicates a self healing effect due to residual
stresses after penetration. The influence of the mechanical stress on the
open-circuit potential of the electrode-electrolyte interface leads to a
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8 Morphological Stability: A Transient Analysis

stripping current at the protrusion tip and deposition at the perimeter.
This effect is more pronounced the higher the Young’s modulus is.
The simulation offered insights into the correlation of bulk transport
properties and interface properties. With the reference interface conduc-
tivity used in this work, we observed only a small protrusion growth for
PS-PEO. With a decrease of the interface conductivity, we could trigger
a harmful protrusion growth again. This response could be confirmed by
an analytical network model, which describes a required in-plane current
density for protrusion growth as a function of inhomogeneity, geometry,
applied current, bulk conductivity and exchange current density. Accord-
ing to this model, a low applied current, a low bulk conductivity, a high
exchange current and a homogeneous exchange current density are all
stabilizing. This aligns with the findings of Section 6.3.5, which states
that PS-PEO is more robust against interface imperfections compared to
PEO and of Section 6.3.4 which indicates a linear correlation of applied
current and mechanical stiffness. Finally, we summarized the influence
of the different coupling mechanism in a binary solid electrolyte on the
morphological stability.
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9 Conclusion and Outlook

The scope of this work was the development of a model for a polymer
based solid state battery with a metal electrode in order to get insights
into the morphological interface stability that is a major concern in this
kind of next generation energy storage system. We presented therefore

• a transport theory tailored for binary solid electrolytes,
• a theory for reaction kinetics including mechanical effects,
• a description of deposition and stripping for metal electrodes.

The novel transport model combines the idea of finite strain continuum
mechanics and the widely utilized electrochemical description of batter-
ies, namely the concentrated solution theory. Herein, both anions and
cations are mobile and, during charge and discharge, form a concentra-
tion gradient along the electrolyte. Besides migration and diffusion, we
considered stress driven diffusion in the binary solid electrolyte, a direct
consequence of swelling of the host material. Using the electroneutral
limit we identified the required input parameter by those accessible by
experiments. The electro-chemo-mechanical coupling mechanism were
discussed using several exemplary simulations.

Another important aspect of this work is the assessment of the influence
of mechanics on the reaction kinetics between a solid electrolyte and a
metal electrode. Following the concept of transition state theory, we
elaborated the influence of mechanical stress on the electrochemical equi-
librium (Nernst equation) and non-equilibrium (Butler-Volmer equation).
The generic concept using energetic states of electrode, electrolyte and
energy barrier is able to describe a broad range of interface combinations
consistent with literature. We put a special focus on a metal electrode
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9 Conclusion and Outlook

where the normal stress, not the hydrostatic stress, was shown to be the
variable of interest for the thermodynamics of deposition and stripping.

The third aspect required to model a solid state battery is a consistent
description of the metal electrode. Cations are deposited on and stripped
from the metal electrode and therefore we introduced (in addition to the
deformation map) a second mapping describing the stress free change of
material shape. With the formulation of a compatible interface between
solid electrolyte and metal electrode, we have gathered all elements to
describe a solid state battery.

In this work, we have carefully analyzed the morphological stability of a
binary solid state battery to determine the impact of transport properties
and mechanical stiffness on the likelihood of undesired protrusion growth.
We were able to conclude that

• an electrolyte with higher mechanical stiffness is in general more
prone to morphological stability.

• at the same time, an electrolyte with better bulk transport proper-
ties has less requirement on the Young’s modulus.

• the influence of mechanical stress on electrochemistry causes stabil-
ity and not, as widely believed, a purely mechanical push down.

• instabilities are most likely caused by inhomogeneous interface
properties such as the interface conductivity.

• materials with better bulk transport properties are more sensitive
to inhomogeneous interface properties.

We executed two studies on morphological interface stability. The first
assessment assumed an infinitely stiff electrode penetrating the solid
electrolyte. Varying the Young’s modulus led to a characteristic change
of the current density along the deformed interface. Above a critical
Young’s modulus, the current density at the tip was below average which
we interpreted as stable. Several parameter studies showed that an
increase of transport parameters (by means of diffusivity, conductivity or
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9 Conclusion and Outlook

transference number) lowers the requirement on the mechanical stiffness.
The predictions of the required Young’s moduli for PEO and PS-PEO
electrolytes align with experimental findings.

With the second study on morphological interface stability, we explic-
itly modeled the material deposition during charging. We found that
protrusion growth is most likely caused by an inhomogeneous interface
conductivity. Again, we observed a lower deposition rate for stiffer elec-
trolytes. This is caused by a decrease of the interface current density
rather than a push down effect of the metal electrode. There is a tran-
sition of accelerated to decelerated growth at approximately the same
Young’s modulus as predicted by the first study. Furthermore, we ratio-
nalized findings of the numerical simulations with an analytical network
model namely that solid electrolytes with poor transport properties are
more robust against inhomogeneous interface conductivity.
In conclusion, we have seen that a polymer based electrolyte with a

certain balance of stiffness and electrochemical transport properties in
combination with a sufficiently homogeneous interface conductivity is a
promising concept to enable stable lithium metal electrodes.

The presented model of a solid state battery can be extended by various
aspects. One should overcome the assumption of pure elastic response
and use an elastic-visoplastic material model as recently parametrized for
lithium metal [178]. In the same course, an adequate material model for
the solid electrolyte going beyond an elastic stability analysis is needed.
Further, anisotropy of electrolytes such as PS-PEO with a laminar struc-
ture [45, 57] and the metal electrodes [14] should be examined. Depending
on the charge-discharge profiles, different protrusion morphologies were
observed by Harry et al. [50] and should be investigated further.
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A Nomenclature

Kinematics

[material frame; spatial frame; unit; first appearance; description]

t s Eq. (2.1) time

T s Eq. (2.1) time domain

ϕt m Eq. (2.1) mapping from material to spatial frame

V0
m
s

Eq. (2.2) host velocity

Vα
m
s

Eq. (2.14) velocity of species α

X x m Eq. (2.1) spatial coordinate

Grad (·) grad (·) 1
m

Eq. (2.3) gradient operator

Div (·) div (·) 1
m

Eq. (2.19) divergence operator

N n 1 Eq. (2.6) normal vector

T t 1 Eq. (2.6) tangent vector

dV dv m3 Eq. (2.4) volume element

dV0 dv0 m3 Eq. (3.54) volume element of the host

dA da m2 Eq. (2.7) area element

P0 Pt Eq. (2.7) control volume w.r.t. to the host

Pαt Eq. (2.12) control volume w.r.t. species α

∂P0 ∂Pt Eq. (2.7) surface of control volume P0

B0 Bt Eq. (2.1) body of the host material

u m Page 18 displacement vector

F 1 Eq. (2.3) deformation gradient

R,U 1 Eq. (2.5) rotation and right stretch tensor

J 1 Eq. (2.4) Jacobian of deformation gradient

F e,F s 1 Eq. (3.51) elastic and swelling part of F

Je, Js 1 Eq. (3.52) elastic and swelling part of J
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A Nomenclature

Kinematics

[material frame; spatial frame; unit; first appearance; description]

Y y Eq. (2.7) scalar or vector field

Ỹ ỹ Eq. (2.7) vector field defined on a surface

Ŷ ŷ Eq. (2.9) scalar quantity defined on a surface

I 1 identity matrix

w 1 Eq. (4.4) Wendland function

Kinematics of Deposition and Stripping

[symbol; unit; first appearance; description]

ζetrt m Eq. (7.2) mapping from geometry to material frame

Xg m Eq. (7.2) geometric coordinate

d m Page 163 geometry displacement field

B̃etrt Eq. (7.2) body describing geometry change but no deformation

St Eq. (7.5) deformed interface between electrode and electrolyte

Fields [Mechanics]

[material frame; spatial frame; unit; first appearance; description]

BM
α bMα

N

m3 Eq. (3.16) mechanical body forces

BE
α bEα

N

m3 Eq. (3.16) electrical body forces

BC
α bCα

N

m3 Eq. (3.16) chemical body forces

BVα
N

m3 Eq. (3.17) body force w/r to component inertia

B̃α
N

m3 Page 38 extended specific body force

TM tM N

m2 Eq. (3.16) mechanical traction force

TE tE N

m2 Eq. (3.16) electrical traction force

TC tC N

m2 Eq. (3.16) chemical traction force
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A Nomenclature

Fields [Mechanics]

[material frame; spatial frame; unit; first appearance; description]

P σ N

m2 Eq. (3.19) total Piola & Cauchy stress tensor

PM N

m2 Eq. (3.19) mechanical Piola stress tensor

PE N

m2 Eq. (3.70) Maxwell stress tensor

PC σC N

m2 Eq. (3.70) stress tensor due to chemical forces

σetrn
N

m2 Eq. (5.39) normal compressive Cauchy stress

σd N

m2 Eq. (5.54) deviatoric Cauchy stress tensor

p N

m2 Page 50 total hydrostatic pressure

pM N

m2 Eq. (3.77) pressure due to mechanical strain

pC N

m2 Eq. (3.119) osmotic pressure

L J

m2 Eq. (3.21) angular momentum

M N
m

Eq. (3.21) total torque

I1, I2, I3 1 Eq. (3.66) invariants of F

ξcα, ξ
p, ξJeα 1 Eq. (3.101) prefactors defined in Eq. (3.102)

λS 1 Eq. (3.62) parameter from swelling model

Θ K Eq. (3.40) absolute temperature

Fields [Electrochemistry]

[material frame; spatial frame; unit; first appearance; description]

Nα mol Eq. (2.13) amount of atoms of species α

N 1 Page 27 number of species

c�α cα
mol

m3 Eq. (2.13) concentration of species α

ρ�α ρα
kg

m3 Eq. (3.1) partial mass density

ρ�tot ρtot
kg

m3 Eq. (3.3) total mass density

ρ�qα ρqα
A s

m3 Eq. (3.4) partial charge density

ρ�q ρq
A s

m3 Eq. (3.5) total charge density

Jα jα
mol

m2 s
Eq. (2.15) total molar flux of species α
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A Nomenclature

Fields [Electrochemistry]

[material frame; spatial frame; unit; first appearance; description]

Jqα
A

m2 Eq. (3.10) charge flux of species α

JEα,J
C
α

mol

m2 s
Eq. (3.93) electric and chemical part of Jα

Jtot jtot
mol

m2 s
Eq. (3.9) total mass flux

Jq jq
A

m2 Eq. (3.95) total ionic current density

JEq ,J
C
q

A

m2 Eq. (3.96) electric and chemical part of Jq

(Jq )SS A

m2 Eq. (3.120) steady state current density

Rα rα
mol

m3 s
Eq. (3.7) concentration sink or source

Rqα rqα
A s

m3 s
Eq. (3.10) charge source

D d A s

m2 Eq. (3.11) electric displacement

E e V
m

Eq. (3.12) electric field

P p A s

m2 Eq. (3.13) electric polarization

ωSC A s

m2 Page 30 surface charge

RH rH J

m3 s
Eq. (3.33) heat source

JH jH J

m2 s
Eq. (3.33) heat flux

Eint, Ekin J Eq. (3.29) interal and kinetic energy

LM, LH, LE J
s

Eq. (3.29) power supply due to mechanics, heat
and electrostatic

eα
J
kg

Eq. (3.30) specific internal energy of species α

ψ̃ J

m3 Eq. (3.42) total Helmholtz energy

ψα
J
kg

Eq. (3.42) specific Helmholtz energy

ψ̃M, ψ̃E, ψ̃Cα
J

m3 Eq. (3.63) mech., elec. and chem. part of ψ̃

ηα
J K
kg

Eq. (3.40) specific entropy of species α

δV
J

m3 s
Eq. (3.40) dissipation density

µα
J

mol
Eq. (3.44) chemical potential of species α

µCα , µ
M
α

J
mol

Eq. (3.77) chemical and mechanical part of µα

Φ V Eq. (3.12) electric potential

ωα
J

mol
Eq. (3.50) electrochemical potential of species α
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A Nomenclature

Interface Kinetics

[symbol; unit; first appearance; description]

jBV A

m2 Eq. (5.2) current density by Butler-Volmer kinetics

ketr, kely A m
mol

Eq. (5.2) rate constant

j0
A

m2 Eq. (5.25) exchange current density

j00
A

m2 Eq. (5.24) prefactor in exchange current density

jref00
A

m2 Eq. (5.41) reference value of exchange current density
−→
j ,
←−
j A

m2 Eq. (5.20) anodic and cathodic current

V eq
Φ V Page 116 open circuit potential w.r.t. Φ

V eq
ω+

V Eq. (5.58) open circuit potential w.r.t. ω+

η V Eq. (5.29) overpotential

G J
mol

Eq. (5.2) molar Gibbs energy

G‡ J
mol

Eq. (5.13) energy barrier

β 1 Eq. (5.2) symmetry coefficient

δk 1 Eq. (5.13) prefactor to relate barrier and bulk energies

GΦ
J

mol
Eq. (5.14) molar Gibbs energy incl. electric potential

−→r ,←−r 1
s

Eq. (5.18) success frequency of forward/reverse reaction

cS mole/m2 Eq. (5.20) area density

Ψdp J
mol

Eq. (5.40) energy due to deposition and stripping

αM 1 Eq. (5.63) symmetry coefficient (mechanics)

RBV
Ω

m2 Eq. (5.67) interface resistance

KBV A√
m mol

Eq. (5.68) prefactor for metal electrodes
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A Nomenclature

Parameter

[material frame; spatial frame; unit; first appearance; description]

Mα
kg
mol

Eq. (3.1) molar mass of species α

Ωα
m3

mol
Eq. (3.54) molar volume of species α

Ω̂α
m3

mol
Eq. (3.54) molar volume of species α (de-

formed)

βs 1 Eq. (3.61) factor to account for non-
ideality in swelling

zα 1 Eq. (3.4) charge number

ε�r εr 1 Eq. (3.13) relative electric permittivity

crefα
mol

m3 Page 44 reference concentration

M�αβ Mαβ
mol2

m J s
Eq. (3.80) mobility matrix between

species α and β

M�+,M
�
− M+,M− mol2

m J s
Eq. (3.103) mobility of cation and anion

M�± M± mol2

m J s
Eq. (3.103) cross mobility

M�amb
mol2

m J s
Eq. (3.109) ambipolar mobility matrix

Kαβ , K̃αβ J m Eq. (3.88) drag coefficient

fα 1 Eq. (3.69) fugacity or activity coefficient

1 +
∂ ln f±
∂ ln c

1 Eq. (3.118) thermodynamic factor

κ� κ 1
Ω m

Eq. (3.96) ionic conductivity

(κ�)SS (κ)SS 1
Ω m

Eq. (3.120) steady state conductivity

κ�α
mol

V s m
Eq. (3.93) mass conductivity

t�α tα 1 Eq. (3.97) transference number

D� D m2

s
Eq. (3.116) diffusion coefficient

Ne 1 Eq. (3.125) Newman number

γNH, λNH
J

m3 Eq. (3.66) lamé constants

E,G MPa Eq. (3.68) Young’s and shear modulus

ν 1 Eq. (3.68) Poisson ratio

AP meter Page 94 amplitude of protrusion

RP meter Page 94 radius of protrusion

λ 1 Eq. (6.5) amplitude of heterogeneity
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A Nomenclature

Macroscopic Properties

[symbol; unit; first appearance; description]

F N Eq. (5.32) force

W1,W2 J Eq. (5.32) potential energy (total)

∆E J Eq. (5.35) electrochemical energy (total)

A m2 Eq. (5.35) electrode-electrolyte interface area

mLi kg Eq. (7.9) mass of the electrode

Network Model

[symbol; unit; first appearance; description]

∆j A

m2 Eq. (8.4) in-plane current density

A|deg m2 Eq. (8.4) cylindrical surface of degraded zone

a 1 Eq. (8.5) ratio of reference and degraded area

b 1
V

Eq. (8.6) prefactor

χ 1 Eq. (8.9) measure for interface resistance inhomogeneity

d 1 Eq. (8.13) prefactor

Constants

[symbol; value; unit; first appearance; description]

F 964885 A s
mol

Eq. (3.4) Faraday constant

ε0 8.854 · 10−12 F
m

Eq. (3.13) electric permittivity of vacuum

kB 1.38 · 10−23 J
K

Eq. (5.18) Boltzmann constant

h 6.626 · 10−34 J s Eq. (5.18) Planck constant

R 8.314 J
K mol

Eq. (3.69) universal gas constant

Indices

etr electrode . iso isotropic

ely electrolyte ref reference

M metal eff effective

+ Cation PEO poly(ethylene oxide)

- Anion PS-PEO block copolymer

BIC Binary conducting BV Butler-Volmer

ME Metal electrode app applied

AP Active particle dep deposition
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