
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

130,000 155M

TOP 1%154

5,300

3

Numerical Inverse Laplace Transforms for
Electrical Engineering Simulation

Lubomír Brančík
Brno University of Technology

Czech Republic

1. Introduction

Numerical inverse Laplace transform (NILT) methods are widely used in various scientific
areas, especially for a solution of respective differential equations. In field of an electrical
engineering many various approaches have been considered so far, but mostly for a single
variable (1D NILT), see at least (Brančík, 1999, 2007b; Cohen, 2007; Valsa & Brančík, 1998;
Wu at al., 2001) from plenty of papers. Much less attention was paid to multidimensional
variable (nD NILT) methods, see e.g. (Hwang at al., 1983; Singhal at al., 1975), useful rather
for more complicated electromagnetic systems. The 2D NILT methods, see e.g. (Brančík,
2005, 2007a, 2007b; Hwang & Lu, 1999), can be applied for a transmission line analysis, or
nD NILT methods, n ≥ 2, for a nonlinear circuits analysis, if relevant Laplace transforms are
developed through a Volterra series expansion, see e.g. (Brančík, 2010a, 2010b, Karmakar,
1980; Schetzen, 2006), to highlight at least a few applications. This paper is focused on the
class of NILT methods based on complex Fourier series approximation, their error analysis,
their effective algorithms development in a Matlab language, and after all, on their selected
applications in field of electrical engineering to show practical usefulness of the algorithms.

2. Multidimensional numerical inverse Laplace transform

An n-dimensional Laplace transform of a real function f(t), with t = (t1,...,tn) as a row vector
of n real variables, is defined as (Hwang at al., 1983)

10 0

() = ()exp()
n

T
i

n- fold
i

F f dt
∞ ∞

=

− ∏ s t st , (1)

where s = (s1,...,sn) and T means a transposition. Under an assumption |f(t)| < Mexp(αtT),

with M real positive and α = (α1,...,αn) being a minimal abscissa of convergence, and the nD

Laplace transform F(s) defined on a region {s ∈ Cn: Re[s] > α}, with c = (c1,...,cn) as an
abscissa of convergence, and the inequality taken componentwise, the original function is
given by an n-fold Bromwich integral

1

1
1

1
() = ()exp()

(2)

c n
T

i
i

F dt
π

+ ∞+ ∞

=− ∞ − ∞

∏
n

n

c jj

n

c j c j

f
j

t s st . (2)

www.intechopen.com

MATLAB for Engineers – Applications in Control, Electrical Engineering, IT and Robotics

52

In the papers (Brančík, 2007a, 2007b, 2010b), it was shown for the 1D, 2D, and 3D cases, the
rectangular method of a numerical integration leads to an approximate formula whose a
relative error is adjustable, and corresponds to the complex Fourier series approximation of
a respective dimension. The method has been generalized for an arbitrary dimension n in
the recent work (Brančík, 2011).

2.1 Complex Fourier series approximation and limiting relative error
Substituting si = ci + jωi into (2), and using a rectangular rule of the integration, namely

ωi = miΩi, and Ωi = 2π/τi as generalized frequency steps, with τi forming a region of the

solution t ∈ [0,τ1) ×...× [0,τn), an approximate formula is

1

1

11

() = exp() ()exp
n

T
i i

m m

Fτ
∞ ∞

−

=−∞ =−∞=

Ω

 ∏

n n

i i

i=i

f j m tt ct s , (3)

with si = ci + jmiΩi, i∀ . As is shown in (Brančík, 2011), a limiting relative error δM of (3) can

be controlled by setting c = (c1,...,cn), defining paths of the integration in (2), namely

 1 1 1
= ln 1 ln

1
M

i i in
i iM

c
n

− − ≈ − +

δ
α α

τ τδ
, (4)

for i = 1,…,n, and while keeping the equalities τ1(c1 – α1) =...= τn(cn – αn). The simplification

in (4) is enabled due to small values δM considered in practice. The last equation is used for

setting up parameters of the nD NILT method relating them to a limiting relative error δM
required for practical computations.

2.2 Practical computational methods
It should be highlighted that the formula (4) is valid, and a relative error supposed is really

achievable by the nD NILT (3), if infinite numbers of terms are used in the series. In practice,

it cannot sure be fulfilled, but a suitable technique for accelerating a convergence of infinite

series is usable, as is e.g. a quotient-difference (q-d) algorithm (Rutishauser, 1957). Besides,

as has been already successfully used for cases of n ≤ 3, the formula (3) can be rearranged to

enable using FFT & IFFT algorithms for an effective computation.

2.2.1 Partial ILTs evaluation technique
The technique of practical evaluation of the n-fold infinite sum (3) follows the properties of
the n-fold Bromwich integral (2), namely we can rearrange it into the form

1 2

2 2 1 1

1 2

1 2 1 2 2 1

1 1 1

2 2 2
(, , ,) = (, , ,)

n

n n

n

c j c j c j
s t s t s t

n n n

c j c j c j

f t t t F s s s e ds e ds e ds
j j jπ π π

+ ∞ + ∞ + ∞

− ∞ − ∞ − ∞

 , (5)

or shortly

 []1 1 1

1 2 1 2 1 2
(, , ,) = (, , ,)n n nf t t t F s s s− − −

 . (6)

Although the order of the integration may be arbitrary on principle, here the above one will
be used for an explanation. Similarly, (3) can be rewritten as

www.intechopen.com

Numerical Inverse Laplace Transforms for Electrical Engineering Simulation

53

1 1 2 2

2 2 2 1 1 1

1 2

1 2 1 2
1 2

(, , ,) = (, , ,)
n n

n n n

n

c tc t c t
jm t jm t jm t

n n
nm m m

e e e
f t t t F s s s e e e

∞ ∞ ∞
Ω Ω Ω

=−∞ =−∞ =−∞

τ τ τ
, (7)

with si = ci + jmiΩi. If we define Fn ≡ F(s1,...,sn-1,sn) and F0 ≡ f(t1,...,tn-1,tn), then n consequential
partial inversions are performed as

{ }

{ }

{ }

1

1 1 1

1

1 1 2 1 1

1

1 1 1 1

= (, , ,) ,

= (, , ,) ,

= (, , ,) .

n n n n n

n n n n n

n n

F F s s t

F F s t t

F f t t t

−
− −

−
− − − −

−
−

 (8)

As is obvious we need to use a procedure able to make the inversion of Laplace transforms
dependent on another n-1 parameters, complex in general. Let us denote arguments in (8) by
pi = (p1,...,pn-1,pn). Then the ILT of the type

 { }1

1 1

1

2
() = () = ()

i

i i

i

c j
s t

i i i i i i i i

c j

F F F e ds
jπ

+ ∞
−

− −

− ∞
p p p (9)

can be used n times, i = n,n-1...,1, to evaluate (8), with pn = (s1,...,sn-1,sn), pn-1 = (s1,...,sn-1,tn),...,

p1 = (s1,...,tn-1,tn), and p0 = (t1,...,tn-1,tn), while pj = sj for j ≤ i, and pj = tj otherwise. A further

technique is based on demand to find the solution on a whole region of discrete points.

Then, taking into account tik = kTi in (9), with Ti as the sampling periods in the original

domain, we can write an approximate formula

 2

1 1
() = ()

i i

i i

c kT
j mkT

i i i i
i m

e
F F e π τ

τ

∞

− −
=−∞
 p p , (10)

i = n,n-1...,1, and with Ωi = 2π/τi substituted. As follows from the error analysis (Brančík,

2011) a relative error is predictable on the region Οerr = [0,τ1) ×...× [0,τn). For k = 0,1,...,Mi-1,

i = 1,...,n, a maximum reachable region is Οmax = [0,(M1-1)T1] ×...× [0,(Mn-1)Tn]. Thus, to meet

the necessary condition Οmax ⊂ Οerr, we can set up fittingly τi = MiTi, i = 1,...,n. In practice, a

region of the calculation is chosen to be Οcal = [0,t1cal] ×...× [0,tncal], with tical = (Mi/2–1)Ti,

i = 1,...,n, to provide certain margins.

2.2.2 FFT, IFFT, and quotient-difference algorithms utilization
 As is shown in (Brančík, 2007a, 2010c), the discretized formula (10) can be evaluated by the

FFT and IFFT algorithms, in conjunction with the quotient-difference (q-d) algorithm for

accelerating convergence of the residual infinite series, see following procedures.

To explain it in more detail, let us consider an r-th cycle in gaining the original function via

(9), i.e. { }1

1 1
() = ()r r r r rF F−

− −p p . For its discretized version (10) we have

 2

1 1 1

2
(, , , ,) = (, , , ,)

r r

r r

c kT
j mkT

r r n r r n
r rm

e
F s kT t F s c jm t e π τπ

τ τ

∞

−
=−∞

+ . (11)

The above stated formula can be decomposed and expressed also as

www.intechopen.com

MATLAB for Engineers – Applications in Control, Electrical Engineering, IT and Robotics

54

1 1

0

1 1

0 0 0 0

() () () () ()(, , , ,) =
r rr r M Mc kT

m m m mm m m m
r r n r k r k r k r k r

r m m m m

e
F s kT t F z G z F z G z F

τ

− −∞ ∞
− −

− − −
= = = =

+ + + −

 , (12)

where individual terms are defined as

 1

2

2

2

()

()()

= , integer ,

= (, , , ,) ,

= ,

= exp() ,

r

r

K
r r

m
r r r r n

M mm
r r

k r r

M K

F F s c jm t

G F

z j kT

π τ

π τ

±

± ±±

±

±

±

 (13)

when 2
1= = ,rM j k

kz e kπ±
± ∀ , has been considered, and τr = MrTr.

As is evident the first and the third finite sum of (12) can be evaluated via the FFT and IFFT
algorithms, respectively, while 2P+1 terms from the infinite sums are used as the input data
in the quotient-difference algorithm (Macdonald, 1964; McCabe, 1983; Rutishauser, 1957).
We can replace the above infinite power series by a continued fraction as

0 1 2

0

1 1
() (())m m
r k k P k

m

G z d d z d z
∞

±
± ± ±

=

≈ + + + , k∀ , (14)

which gives much more accurate result than the original sum truncated on 2P+1 terms only.
The q-d algorithm process can be explained based on a lozenge diagram shown in Fig. 1.

0

0

0

1

1 0

0 1

1 0

1 2

2 1 0

0 1 2

2 1

1 2

3 2

0 1

3

1

4

0

()

()

() ()

() ()

() () ()

() ()

() ()

()

()

e

q

e e

q q

e e e

q q

e e

q

e

Fig. 1. Quotient-difference algorithm lozenge diagram

The first two columns are formed as

0

1

1

0 0 2

0 2 1

()

() ()

= , = , , ,

= , = , , ,

i

ii i
r r

e i P

q G G i P
±± + −

 (15)

while the successive columns are given by the rules

1 1

1

1 1

1 1 1

0 2 2 1

0 2 2 1 2

() () () ()

() () () ()

= , = , , , for = , , ,

= , = , , , for = , , .

i i i i
j j j j

i i i i
j j j j

e q q e i P j j P

q q e e i P j j P

+ +
−

+ +
− − −

− + −

− −

 (16)

www.intechopen.com

Numerical Inverse Laplace Transforms for Electrical Engineering Simulation

55

Then, the coefficients dm, m = 0,...,2P, in (14) are given by

 0 00

0 2 1 2
1

() ()()= , = , = , = , ,r j jj jd G d q d e j P− − − . (17)

For practical computations, however, the recursive formulae stated below are more effective
to be used (DeHoog et al., 1982). They are of the forms

1 2 1 2

() = () () , () = () ()m k m k m k m k m k m k m k m kA z A z d z A z B z B z d z B z± − ± ± − ± ± − ± ± − ±+ + , (18)

for m = 1,...,2P, k∀ , with the initial values A-1 = 0, B-1 = 1, A0 = d0, and B0 = 1. Then, instead of

the continued fraction (14), we can write

2 2

0

() () () ,m m
r k P k P k

m

G z A z B z k
∞

±
± ± ±

=

≈ ∀ . (19)

The q-d algorithm is a very efficient tool just for a power series convergence acceleration,

here enabling (7) to achieve a relative error near its theoretical value defined by (4), see the

following examples.

2.3 Matlab listings and experimental errors evaluation
In this part experimental verifications of the nD NILT theory above will first be presented,

for one to three dimensional cases, i.e. n ≤ 3. For such dimensions the Matlab functions have

been developed and errors stated on a basis of some sample images with known originals.

The Matlab listings of basic versions of the NILT functions are provided, together with

examples of their right calling. Another Matlab listings will be discussed in more detail later,

in the chapter with practical applications.

2.3.1 One-dimensional NILT
In case of the 1D inverse LT, a well-known Bromwich integral results from (2), namely

1

() = ()
2

c
stf t F s e dt

+ ∞

− ∞
π

j

c j
j

, (20)

where indexes 1 were omitted. By using the theory above a path of the numerical

integration is stated according to (4), leading to

1 1 1 1 1

1 1
1

= ln = ln ln M
M M

c α α α δ
τ δ τ δ τ

− − + + ≈ −

+
. (21)

In contrast to most other approaches, the 1D NILT method described here enables to treat

complex images resulting in complex originals as no real or imaginary parts are extracted

during an evaluation process. It can be useful in some special applications, not only in the

electrical engineering. We can śhow it on a simple transform pair

 ()
2 2 2 2

1
= = () = = cos sinj ts

F s j f t e t j t
s j s s

ωω
ω ω

ω ω ω
+ +

− + +
 . (22)

www.intechopen.com

MATLAB for Engineers – Applications in Control, Electrical Engineering, IT and Robotics

56

Of course, when preprocessing the transform to arrange it to a Cartesian form, as is shown
on the right sides in (22), the result could by get by inverting the real and imaginary parts
separately, by using an arbitrary NILT method. Here, however, no symbolic manipulations
are needed in advance, and F(s) enters the NILT function in its basic form as a whole.
A Matlab language listing is shown in Tab. 1, where the relative error needed is marked by
Er and is subject to a change if necessary, similarly as the minimal abscissa of convergence

(exponential order) α , alfa, numbers of points for the resultant solution, M, and for the q-d
algorithm, P. If only real transforms F(s) are considered the bottom line in the listing can be
inactivated. The NILT function is called from a command line as follows: niltc('F',tm);
where F is a name of another function in which the F(s) is defined, and tm marks an upper

limit of the original variable t. In our case, and for ω = 2π, this function can have a form

function f=expc(s)

f=1./(s-2*pi*j);

Table 1. Matlab listing of 1D NILT method accepting complex arguments

As is obvious, the Laplace transform must be defined to enable Matlab array processing, i.e.
element-by-element array operators have to be used. Thus, the calling our function can look
like niltc('expc',4); if the function is saved under the same name, expc, or it is placed
inside the M-file with own NILT function (Tab. 1), following always its body. Alternatively,

the calling can look like [ft,t]=niltc('F',tm); if respective variables in the brackets
are to be saved in the memory after the function finishes.

% ------ 1D NILT for complex arguments – basic version -------

% ----------- based on FFT/IFFT/q-d, by L. Brančík -----------
function [ft,t]=niltc(F,tm);

alfa=0; M=256; P=3; Er=1e-10; % adjustable

N=2*M; qd=2*P+1;

t=linspace(0,tm,M); NT=2*tm*N/(N-2); omega=2*pi/NT;

c=alfa+log(1+1/Er)/NT; s=c-i*omega*(0:N+qd-1);

Fs(1,:)=feval(F,s); Fs(2,:)=feval(F,conj(s));

ft(1,:)=fft(Fs(1,1:N)); ft(2,:)=N*ifft(Fs(2,1:N));

ft=ft(:,1:M); D=zeros(2,qd); E=D;

Q=Fs(:,N+2:N+qd)./Fs(:,N+1:N+qd-1);

D(:,1)=Fs(:,N+1); D(:,2)=-Q(:,1);

for r=2:2:qd-1

 w=qd-r;

 E(:,1:w)=Q(:,2:w+1)-Q(:,1:w)+E(:,2:w+1); D(:,r+1)=-E(:,1);

 if r>2

 Q(:,1:w-1)=Q(:,2:w).*E(:,2:w)./E(:,1:w-1);

D(:,r)=-Q(:,1);

 end

end

A2=zeros(2,M); B2=ones(2,M); A1=repmat(D(:,1),[1,M]); B1=B2;

z1=exp(-i*omega*t); z=[z1;conj(z1)];

for n=2:qd

 Dn=repmat(D(:,n),[1,M]);

 A=A1+Dn.*z.*A2; B=B1+Dn.*z.*B2; A2=A1; B2=B1; A1=A; B1=B;

end

ft=ft+A./B; ft=sum(ft)-Fs(2,1); ft=exp(c*t)/NT.*ft;

ft(1)=2*ft(1);

figure; plot(t,real(ft));
figure; plot(t,imag(ft)); % optional

www.intechopen.com

Numerical Inverse Laplace Transforms for Electrical Engineering Simulation

57

Graphical results and corresponding errors are shown in Fig. 2. Because the originals are

bounded by values ±1, and α = 0, we can see the errors satisfy (21) very well (δM = 10-10 was
considered), excluding only beginning of the interval.

0 1 2 3 4
-1

-0.5

0

0.5

1

t

Real part of the original

R
e

[f
(t

)]

0 1 2 3 4
-1

-0.5

0

0.5

1

t

Im
[f
(t

)]

Imaginary part of the original

0 1 2 3 4
10

-15

10
-10

10
-5

10
0

t

E
rr

o
r

0 1 2 3 4
10

-15

10
-10

10
-5

10
0

t

E
rr

o
r

Fig. 2. Numerical inversion leading to complex original f(t) = exp(jωt)

Another test functions are considered in Tab. 2, with numerical results shown in Fig. 3. As is
again obvious from Fig. 3 the relative errors satisfy theoretical expectations, with an
exception of vicinities of discontinuities.

i 1 2 3 4 5 6

()iF s
1

1s +

2

1

1()s +

2 2

2

4s

π

π+

2

1

1s +

se

s

−

se

s

−

()if t te− tte− 2sin()tπ
0
()J t

1

2
erfc

t

11()t −

Table 2. Test Laplace transforms for errors evaluation

2.3.2 Two-dimensional NILT
In case of the 2D inverse LT, a two-fold Bromwich integral results from (2), namely

1 2

1 1 2 2

1 2

1 2 1 2 1 22

1

4
(,) = (,)

c j c j
s t s t

c j c j

f t t F s s e ds ds
π

+ ∞ + ∞
+

− ∞ − ∞

− , (23)

and by using the theory above the paths of numerical integrations are stated based on (4) as

1 1 1

1 1 2
21

= ln ln , = ,M
i i i

i iM

c i
δ

α α
τ τδ

− − ≈ − +

. (24)

www.intechopen.com

MATLAB for Engineers – Applications in Control, Electrical Engineering, IT and Robotics

58

0 1 2 3 4
0

0.5

1

f 1

 ORIGINALS

0 1 2 3 4

10
-10

10
0

 ERRORS

0 2 4 6 8
0

0.2

0.4

f 2

0 2 4 6 8

10
-10

10
0

0 1 2 3 4
-1

0

1

f 3

t
0 1 2 3 4

10
-10

10
0

t

0 10 20 30
-0.5

0

0.5

1

f 4

 ORIGINALS

0 10 20 30

10
-10

10
0

 ERRORS

0 5 10 15
-0.5

0

0.5

1

f 5

0 5 10 15

10
-10

10
0

0 1 2 3
-0.5

0

0.5

1

1.5

f 6

t
0 1 2 3

10
-10

10
0

t

Fig. 3. Computed originals and errors for test Laplace transforms in Tab. 2

A Matlab language listing is shown in Tab. 3, with all the parameters denoted by similar
way as in the previous case.
Nevertheless, the Laplace transform variables and the original variables have changed in
this listing as s1 → p, s2 → q, and t1 → x, t2 → y, respectively, which simplified a writing. The
parameters are then indexed in compliance with these new notations. Besides, numbers of

points used to plot three-dimensional graphical results are set by xpl and ypl.
For the same reasons as at the 1D NILT, the 2D NILT method discussed here enables to treat
complex images of two variables resulting in complex originals. We will śhow it on a simple
transform pair

 ()
()()

()1 1 2 2

1 2 1 2

1 1 2 2

1
, = (,) =

j t t
F s s f t t e

s j s j

ω ω

ω ω

+

− −
 . (25)

After rearranging the above equation, we can also write

()

()() ()()
() ()

1 2 1 2 2 1 1 2

1 2 2 2 2 2 2 2 2 2

1 1 2 2 1 1 2 2

1 2 1 1 2 2 1 1 2 2

, =

(,) = cos sin

s s s s
F s s j

s s s s

f t t t t j t t

ω ω ω ω

ω ω ω ω

ω ω ω ω

− +
+

+ + + +

+ + +

. (26)

The 2D NILT function is called from a command line as follows: nilt2c('F',xm,ym);
where F is a name of another function in which the F(p,q) is defined, and xm and ym mark

upper limits of the original variables x and y. In our case, and for ω1 = ω2 = 2π, this function
can have a form

function f=exp2c(p,q)

f=1./(p-2*pi*j)./(q-2*pi*j);

and its calling can look like nilt2c('exp2c',3,3); with graphical results in Fig. 4. As

the originals are bounded by values ±1, and α1 = α2 = 0, we can see the errors satisfy (21)

very well (δM = 10-8 was considered), excluding beginnings of the 2D region.

www.intechopen.com

Numerical Inverse Laplace Transforms for Electrical Engineering Simulation

59

Table 3. Matlab listing of 2D NILT based on partial inversions

Another simple example shows a shifted 2D unit step, with different shifts along the axis. A
corresponding transform pair is

 () 1 2

1 2 1 2 1 2

1 2

2exp()
, = (,) = 1(2, 1)

s s
F s s f t t t t

s s

− −
− − . (27)

In this case, a displaying imaginary part gives a zero plane, and the respective line in the 2D
NILT function can be inactivated. The graphical results are depicted in Fig. 5, including an
absolute error. The respective Matlab function can be of a form

% ----- 2D NILT based on partial inversions, by L. Brančík -----
function fxy=nilt2c(F,xm,ym);

alfax=0; alfay=0; Mx=256; My=256; P=3; Er=1e-8; % adjustable

xpl=64; ypl=64; % adjustable

Nx=2*Mx; Ny=2*My; qd=2*P+1; Ke=log(1-1/sqrt(1+Er));

nx=2*xm*Nx/(Nx-2); ny=2*ym*Ny/(Ny-2);

omegax=2*pi/nx; omegay=2*pi/ny; sigx=alfax-Ke/nx;

sigy=alfay-Ke/ny; qd1=qd-1; Nxw=Nx+qd1; Nyw=Ny+qd1;

Asigx=sigx-i*omegax*(0:Nxw); Asigy=sigy-i*omegay*(0:Nyw);

Asigx2=cat(2,Asigx,conj(Asigx));

rx=[1:Mx/xpl:Mx,Mx]; ry=[1:My/ypl:My,My];

x=linspace(0,xm,Mx); y=linspace(0,ym,My); x=x(rx); y=y(ry);

[q,p]=meshgrid(Asigy,Asigx2); Fpq(:,:,1)=feval(F,p,q);

[q,p]=meshgrid(conj(Asigy),Asigx2); Fpq(:,:,2)=feval(F,p,q);

Fpyp=Pnilt(Fpq,Ny,ry,qd,y,ny,omegay,sigy); % Pnilt to get F(p,y)

Fpy(:,:,1)=Fpyp(1:Nxw+1,:).';

Fpy(:,:,2)=Fpyp(Nxw+2:2*Nxw+2,:).';

fxy=Pnilt(Fpy,Nx,rx,qd,x,nx,omegax,sigx); % Pnilt to get f(x,y)

figure; mesh(x,y,real(fxy));

figure; mesh(x,y,imag(fxy)); % optional

% ------ PARTIAL NILT based on FFT/IFFT/Q-D, by L.Brančík ------
function fx=Pnilt(Fq,N,grid,qd,xy,nxy,omega,c);

fx(:,:,1)=fft(Fq(:,:,1),N,2); fx(:,:,2)=N*ifft(Fq(:,:,2),N,2);

fx=fx(:,grid,:); delv=size(Fq,1); delxy=length(xy);

d=zeros(delv,qd,2); e=d; q=Fq(:,N+2:N+qd,:)./Fq(:,N+1:N+qd-1,:);

d(:,1,:)=Fq(:,N+1,:); d(:,2,:)=-q(:,1,:);

for r=2:2:qd-1

 w=qd-r; e(:,1:w,:)=q(:,2:w+1,:)-q(:,1:w,:)+e(:,2:w+1,:);

 d(:,r+1,:)=-e(:,1,:);

 if r>2

 q(:,1:w-1,:)=q(:,2:w,:).*e(:,2:w,:)./e(:,1:w-1,:);

 d(:,r,:)=-q(:,1,:);

 end

end

A2=zeros(delv,delxy,2); B2=ones(delv,delxy,2);

A1=repmat(d(:,1,:),[1,delxy,1]); B1=B2;

z1(1,:,1)=exp(-i*omega*xy); z1(1,:,2)=conj(z1(1,:,1));

z=repmat(z1,[delv,1]);

for n=2:qd

 Dn=repmat(d(:,n,:),[1,delxy,1]);

 A=A1+Dn.*z.*A2; B=B1+Dn.*z.*B2; A2=A1; B2=B1; A1=A; B1=B;

end

fx=fx+A./B; fx=sum(fx,3)-repmat(Fq(:,1),[1,delxy]);

fx=repmat(exp(c*xy)/nxy,[delv,1]).*fx; fx(:,1)=2*fx(:,1);

www.intechopen.com

MATLAB for Engineers – Applications in Control, Electrical Engineering, IT and Robotics

60

function f=step2(p,q)

f=exp(-2*p-q)./p./q;

and called as nilt2c('step2',4,4);, with the results theoretically expected.

0
1

2
3

0

1

2

3

-1

-0.5

0

0.5

1

t
2

Real part of the original

t
1

R
e

[f
(t

1
,t

2
)]

0
1

2
3

0

1

2

3

-1

-0.5

0

0.5

1

t
2

Imaginary part of the original

t
1

Im
[f
(t

1
,t

2
)]

0
1

2
3

0

1

2

3

10
-15

10
-10

10
-5

10
0

t
2

Absolute error for the 2D cosine function

t
1

E
rr

o
r

0
1

2
3

0

1

2

3

10
-15

10
-10

10
-5

10
0

t
2

Absolute error for the 2D sine function

t
1

E
rr

o
r

Fig. 4. Numerical inversion leading to complex original f(t1,t2) = exp(jω(t1+t2))

0
1

2
3

4

0

2

4
-0.5

0

0.5

1

1.5

t
1

Shifted 2D unit step

t
2

f(
t 1

,t
2
)

0
1

2
3

4

0

2

4
10

-20

10
-10

10
0

t
1

Absolute error for the 2D unit step

t
2

E
rr

o
r

Fig. 5. Numerical inversion leading to shifted 2D unit step f(t1,t2) = 1(t1−2,t2−1)

2.3.3 Three-dimensional NILT
In case of the 3D inverse LT, a three-fold Bromwich integral results from (2), namely

1 2 3

1 1 2 2 3 3

1 2 3

1 2 3 1 2 3 1 2 33
8

(, ,) = (, ,)

c j c j c j
s t s t s t

c j c j c j

j
f t t t F s s s e ds ds ds

π

+ ∞ + ∞ + ∞
+ +

− ∞ − ∞ − ∞
 , (28)

and by using the theory above the paths of numerical integrations are stated based on (4) as

www.intechopen.com

Numerical Inverse Laplace Transforms for Electrical Engineering Simulation

61

3

1 1 1
1 1 2 3

31
= ln ln , , ,M

i i i
i iM

c i
δ

α α
τ τδ

− − ≈ − = +

. (29)

Here only experimental results will be shown to verify an accuracy of the method. A Matlab

language listing looks similarly like for the 2D NILT case, but the partial NILT subfunction

is called once more, and respective arrays dimensions are enlarged. Original functions

corresponding to 3D Laplace transforms cannot be displayed graphically as a whole, of

course. However, for one variable chosen as constant, it is posssible to display three

respective two-dimensional cuts. It will be demonstrated on the example of 3D shifted unit

step, with a Laplace transform pair

 1 2 3

1 2 2

1 2 3

2 3
1 1 2 3

exp()
(, ,)

s s s
t t t

s s s

− − −
− − − , (30)

with different values of shifts along respective coordinates so that correctness of results can

easily be identified, see Fig. 6. Errors again correspond to theoretically expected ones.

0

2

4

0

2

4
-0.5

0

0.5

1

1.5

t
2

Unit-step cut 1(t
1
,t

2
), t

3
 = const.

t
1

f(
t 1

,t
2
,4

)

0

2

4

0

2

4
-0.5

0

0.5

1

1.5

t
3

Unit-step cut 1(t
1
,t

3
), t

2
 = const.

t
1

f(
t 1

,4
,t

3
)

0

2

4

0

2

4
-0.5

0

0.5

1

1.5

t
3

Unit-step cut 1(t
2
,t

3
), t

1
 = const.

t
2

f(
4

,t
2
,t

3
)

0
2

4

0

2

4
10

-20

10
-10

10
0

t
2

Absolute error ε(t
1
,t

2
)

t
1

E
rr

o
r

0
2

4

0

2

4
10

-20

10
-10

10
0

t
3

Absolute error ε(t
1
,t

3
)

t
1

E
rr

o
r

0
2

4

0

2

4
10

-20

10
-10

10
0

t
3

Absolute error ε(t
2
,t

3
)

t
2

E
rr

o
r

Fig. 6. Numerical inversion leading to shifted 3D unit step f(t1,t2,t3) = 1(t1−1,t2−2,t3−3)

3. Application of NILT algorithms to electrical engineering simulation

In this chapter some examples of the application of the NILT algorithms developed relating

to problems of electrical engineering simulation are presented. First, the 1D NILT method is

applied for the solution of transient phenomena in linear electrical circuits with both

lumped and distributed parameters. This well-known approach is usable wherever linear

ordinary differential equations (ODE) are transformed into algebraic ones so that an inverse

Laplace transform can be considered. Then the 2D NILT method is utilized to solve transient

phenomena on transmission lines (TL) after relevant telegraphic equations (a type of partial

differential equations (PDE)) are transformed into algebraic ones by a 2D Laplace transform.

In this way voltage and/or current distributions along the TL wires can be determined in a

single calculation step. Finally, the utilization of the 1D to 3D NILTs to weakly nonlinear

www.intechopen.com

MATLAB for Engineers – Applications in Control, Electrical Engineering, IT and Robotics

62

electrical circuits solution is discussed. In this case the relevant nonlinear ODEs describing

the circuit are expanded into Volterra series which respective NILTs are applied on.

3.1 One-dimensional NILT algorithm application
3.1.1 Preliminary example based on lumped parameter circuit
A simple example demonstrating the application of the basic 1D NILT algorithm in Tab. 1 is
shown in Fig. 7. This really initiatory linear electrical circuit was chosen with an intention to
be also considered later, in chapter 3.3.1, as a nonlinear circuit, with G2 being a nonlinear
element. In this way one will be able to compare results and make some conclusions.

Fig. 7. Linear reactive electrical circuit of the 1st order

Denoting G = G1 + G2, the 1st-order linear ODE has a form

()

() = ()
dv t

C Gv t i t
dt

+ , (31)

with a Laplace-domain solution

0() ()

()
I s Cv

V s
G sC

+
=

+
, (32)

with an initial condition v(0). Even if the above circuit is very simple a finding time-domain
solution could be rather work-intensive if the circuit is excited from some non-trivial input
current waveform. A few basic examples are given in Tab. 4, specially the first one results in
a transient characteristic of the circuit.

k 1 2 3 4

()ki t
0
1()I t 5

0
1()tI e t− 0

2 1sin() ()I t tπ
0

2 1cos() ()I t tπ

()kI s 0
I

s
 0

5

I

s +
 0

2 2

2

4

I

s

π

π+
 0

2 2
4

sI

s π+

Table 4. Exciting current source waveforms and their Laplace transforms

For the above examples, of course, time-domain analytical solutions can be found e.g. based
on a Heaviside formula. The 1D NILT function graphical results, under a condition v(0) = 0,
and considering values C = 1mF, G1 = G2 = 10mS, and I0 = 1mA, are shown in Fig. 8.
The above waveforms can be got by either successive application of a basic version of the 1D
NILT method according to Tab. 1, or a generalized 1D NILT function, its vector version, can
be used to process all the computations in parallel. This function is shown in Tab. 5.

www.intechopen.com

Numerical Inverse Laplace Transforms for Electrical Engineering Simulation

63

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-3

t [s]

i
[A

]

Exciting current waveforms

1

2
3

4

0 0.2 0.4 0.6 0.8 1
-0.05

-0.025

0

0.025

0.05

t [s]
v
 [

V
]

Voltage responses for exciting currents

1

2

3

4

Fig. 8. Numerically computed exciting current and voltage responses waveforms

Table 5. Matlab listing of vector version of 1D NILT method

Here one more parameter depict is used to define a method of plotting individual items
from a set of originals. The 1D NILT function is called as niltcv('F',tm,'depict');
where 'depict' is a text string 'p1', 'p2', or 'p3', see Tab. 6 for more details.

% ------ 1D NILT for complex arguments – vector version ------- %

% ----------- based on FFT/IFFT/q-d, by L. Brančík ------------ %
function [ft,t]=niltcv(F,tm,depict);

alfa=0; M=256; P=3; Er=1e-10; % adjustable

N=2*M; qd=2*P+1; t=linspace(0,tm,M); NT=2*tm*N/(N-2);

omega=2*pi/NT;

c=alfa+log(1+1/Er)/NT; s=c-i*omega*(0:N+qd-1);

Fs(:,:,1)=feval(F,s); Fs(:,:,2)=feval(F,conj(s)); lv=size(Fs,1);

ft(:,:,1)=fft(Fs(:,:,1),N,2); ft(:,:,2)=N*ifft(Fs(:,:,2),N,2);

ft=ft(:,1:M,:);

D=zeros(lv,qd,2); E=D; Q=Fs(:,N+2:N+qd,:)./Fs(:,N+1:N+qd-1,:);

D(:,1,:)=Fs(:,N+1,:); D(:,2,:)=-Q(:,1,:);

for r=2:2:qd-1

 w=qd-r;

 E(:,1:w,:)=Q(:,2:w+1,:)-Q(:,1:w,:)+E(:,2:w+1,:);

 D(:,r+1,:)=-E(:,1,:);

 if r>2

 Q(:,1:w-1,:)=Q(:,2:w,:).*E(:,2:w,:)./E(:,1:w-1,:);

 D(:,r,:)=-Q(:,1,:);

 end

end

A2=zeros(lv,M,2); B2=ones(lv,M,2); A1=repmat(D(:,1,:),[1,M,1]);

B1=B2; z1=repmat(exp(-i*omega*t),[lv,1]); z=cat(3,z1,conj(z1));

for n=2:qd

 Dn=repmat(D(:,n,:),[1,M,1]);

 A=A1+Dn.*z.*A2; B=B1+Dn.*z.*B2; A2=A1; B2=B1; A1=A; B1=B;

end

ft=ft+A./B; ft=sum(ft,3)-repmat(Fs(:,1,2),[1,M,1]);

ft=repmat(exp(c*t)/NT,[lv,1]).*ft; ft(:,1)=2*ft(:,1);

switch depict

 case 'p1', plott1(t,ft); case 'p2', plott2(t,ft);

 case 'p3', plott3(t,ft); otherwise display('Invalid Plot');

end

www.intechopen.com

MATLAB for Engineers – Applications in Control, Electrical Engineering, IT and Robotics

64

Table 6. Matlab listing of plotting functions for vector version of 1D NILT method

To get e.g. the right part of Fig. 8, that is the voltage responses of the circuit in Fig. 7, the
calling the 1D NILT function looks like niltcv('V4',1,'p1'); where V4 denotes a
name of the function defining individual responses as follows:

function f=V4(s)

I0=1e-3; C=1e-3; G=2e-2;

f(1,:)=I0./s./(G+s*C);

f(2,:)=I0./(s+5)./(G+s*C);

f(3,:)=2*pi*I0./(s.^2+4*pi^2)./(G+s*C);

f(4,:)=s.*I0./(s.^2+4*pi^2)./(G+s*C);

In this case the lines causing the imaginary parts plotting can be inactivated. The remaining
plotting functions will be explained in the next chapter.

3.1.2 Application for transmission line simulation
Here, the 1D NILT algorithms will be used to simulate voltage and/or current distributions
along transmission lines (TL), as shown on a Laplace-domain TL model in Fig. 9. As is well
known, this model results from the application of a Laplace transform, with respect to time,
on a pair of partial differential equations (telegraphic) of the form

0 0 0 0

(,) (,) (,) (,)
= (,) , = (,)

v t x i t x i t x v t x
R i t x L G v t x C

x t x t

∂ ∂ ∂ ∂
− + − +

∂ ∂ ∂ ∂
 , (33)

with R0, L0, G0, and C0 as per-unit-length (p.-u.-l.) parameters, being constant for uniform
TLs, and with a length l.
When considering zero initial voltage and current distributions, v(0,x) = 0 and i(0,x) = 0, and
incorporating boundary conditions, we get the Laplace-domain solution in the forms

2

2

2

1 2
1

() ()[]

()

() ()
(,) = ()

() () () ()

s x s l x
c

i s l
i c

Z s e s e
V s x V s

Z s Z s s s e

γ γ

γ

ρ

ρ ρ

− − −

−

+
⋅

+ −
, (34)

2

2

2

1 2

1

1

() ()[]

()

()
(,) = ()

() () () ()

s x s l x

i s l
i c

e s e
I s x V s

Z s Z s s s e

γ γ

γ

ρ

ρ ρ

− − −

−

−
⋅

+ −
, (35)

% --- Plotting functions called by 1D NILT, vector version ----

%----------- Multiple plotting into single figure -------------

function plott1(t,ft)

figure; plot(t,real(ft)); grid on;

figure; plot(t,imag(ft)); grid on; % optional

% ------------- Plotting into separate figures ----------------

function plott2(t,ft)

for k=1:size(ft,1)

 figure; plot(t,real(ft(k,:))); grid on;

 figure; plot(t,imag(ft(k,:))); grid on; % optional

end

% ------------------ Plotting into 3D graphs ------------------

function plott3(t,ft)

global x; % x must be global in F

 m=length(t); tgr=[1:m/64:m,m]; % 65 time points chosen

 figure; mesh(t(tgr),x,real(ft(:,tgr)));
 figure; mesh(t(tgr),x,imag(ft(:,tgr))); % optional

www.intechopen.com

Numerical Inverse Laplace Transforms for Electrical Engineering Simulation

65

Fig. 9. Laplace-domain model of transmission line with linear terminations

where Zc(s) and γ(s) are a characteristic impedance and a propagation constant, respectively,

 0 0

0 0

() =c

R sL
Z s

G sC

+

+
 , ()()0 0 0 0

() =s R sL G sCγ + + , (36)

and ρ1(s) and ρ2(s) are reflection coefficients at the TL beginning and end, respectively,

1

() ()
() =

() ()
i c

i c

Z s Z s
s

Z s Z s
ρ

−

+
 , 2

2

2

() ()
() =

() ()
c

c

Z s Z s
s

Z s Z s
ρ

−

+
. (37)

In a general case of lossy TLs, the time-domain solutions cannot be found by an analytical
method, thus the only way is to use some numerical technique.
As an example, let us consider the TL of a length l = 1m, with p.-u.-l. parameters R0 = 1mΩ,
L0 = 600nH, G0 = 2mS, and C0 = 80pF, terminated by resistive elements Zi = 10Ω, Z2 = 1kΩ,
and excited by the voltage source waveform vi(t) = sin2(πt/2·10-9), 0 ≤ t ≤ 2·10-9, and vi(t) = 0,
otherwise, with the Laplace transform

2 9

9 2 2

2 1 2 10

2 10 4

exp()
() =

()
i

s
V s

s s

π

π

−

−

 − − ⋅
 ⋅ +

 . (38)

The Fig. 10 shows time dependences at the beginning, the centre, and the end of the TL,
while the 1D NILT is called as niltcv('Vs',4e-8,'p1'); where the function Vs is
defined as

function f=Vs(s)

l=1; x=[0,l/2,l];

Ro=1e-3; Lo=600e-9; Go=2e-3; Co=80e-12;

Zi=10; Z2=1e3;

Vi=2*pi^2*(1-exp(-2e-9*s))./s./((2e-9*s).^2+4*pi^2);

Z=Ro+s*Lo; Y=Go+s*Co; Zc=sqrt(Z./Y); gam=sqrt(Z.*Y);

ro1=(Zi-Zc)./(Zi+Zc); ro2=(Z2-Zc)./(Z2+Zc);

Ks=Vi./(Zi+Zc)./(1-ro1.*ro2.*exp(-2*gam*l));

for k=1:length(x)

 f(k,:)=Ks.*Zc.*(exp(-gam*x(k))+ro2.*exp(-gam*(2*l-x(k))));

end

Similarly, current waveforms can be computed by the above function slightly modified
according to (35). Both waveforms are depicted in Fig. 10.
Finally, it will be shown, how to obtain three-dimensional graphical results representing
voltage and current distributions along the TL. Besides a possibitity to use the for cycle, as

www.intechopen.com

MATLAB for Engineers – Applications in Control, Electrical Engineering, IT and Robotics

66

shown in the function Vs above, another method based on 3D arrays will be applied, see the
function Vsx below:

0 1 2 3 4

x 10
-8

-1

-0.5

0

0.5

1

1.5

t [s]

v
 [

V
]

Voltage waveforms on TL

x = 0

x = l/2

x = l

0 1 2 3 4

x 10
-8

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

t [s]

i
[A

]

Current waveforms on TL

x = 0

x = l/2

x = l

Fig. 10. Numerically computed TL voltage and current waveforms

function f=Vsx(s)

global x;

l=1;

Ro=1e-3; Lo=600e-9; Go=2e-3; Co=80e-12;

Zi=10; Z2=1e3;

x=linspace(0,l,65); % 65 points along TL chosen

[S,X]=meshgrid(s,x);

Vi=2*pi^2*(1-exp(-2e-9*S))./S./((2e-9*S).^2+4*pi^2);

Z=Ro+S*Lo; Y=Go+S*Co; Zc=sqrt(Z./Y); gam=sqrt(Z.*Y);

ro1=(Zi-Zc)./(Zi+Zc); ro2=(Z2-Zc)./(Z2+Zc);

Ks=Vi./(Zi+Zc)./(1-ro1.*ro2.*exp(-2*gam*l));

f=Ks.*Zc.*(exp(-gam.*X)+ro2.*exp(-gam.*(2*l-X)));

In this case, the 1D NILT algorithm in Tab. 5 is called as niltcv('Vsx',2e-8,'p3'); that
is the plott3 function is used for the plotting, see Tab. 6, and a time limit is half of that in Fig.
10 to get well-observable results. Again, the current distributions can be gained via the above
function slightly modified according to (35). Both 3D graphs are depicted in Fig. 11.

0
0.5

1
1.5

2

x 10
-8

0

0.5

1
-0.5

0

0.5

1

1.5

t [s]

Voltage distribution along the TL wire

x [m]

v
(t

,x
)

[V
]

0
0.5

1
1.5

2

x 10
-8

0

0.5

1
-0.015

0

0.015

t [s]

Current distribution along the TL wire

x [m]

i(
t,
x
)

[A
]

Fig. 11. Numerically computed TL voltage and current distributions

3.2 Two-dimensional NILT algorithm application
A two-dimensional Laplace transform can generally be used for the solution of linear partial
differencial equations with two variables. The advantage is that we get completely algebraic

www.intechopen.com

Numerical Inverse Laplace Transforms for Electrical Engineering Simulation

67

equations leading to much easier solution in the Laplace domain. A final step in the solution
is then the utilization of the 2D NILT algorithm to get results in the original domain. Such a
possibility will be shown on the example of telegraphic equations describing transmission
lines, and results will be compared with the 1D NILT approach.

3.2.1 Application for transmission line simulation
Herein, rather less conventional approach for the simulation of voltage and/or current

distributions along the TLs will be discussed. As is obvious from the telegraphic equations

(33) they can be transformed not only with respect to the time t, which was matter of the

previous paragraph, but also with respect to the geometrical coordinate x to get completely

algebraic equations. After performing such the Laplace transforms, incorporating boundary

conditions given by the terminating circuits, and considering again zero initial voltage and

current distributions, v(0,x) = 0 and i(0,x) = 0, we get (Valsa & Brančík, 1998b)

 1 1

2 2

() () () ()
(,) =

()
cqV s s Z s I s

V s q
q s

γ

γ

−

−
, (39)

1 1

2 2

()
() ()

()
(,)

()
c

s
qI s V s

Z s
I s q

q s

γ

γ

−

=
−

, (40)

where V1(s) = V(s,0) and I1(s) = I(s,0) are given by (34) and (35), respectively, see also Fig. 9.

Thus the 2D NILT function according to Tab. 3 can be called as nilt2c('Vsq',2e-8,1);
leading to the same graphical results as are shown in Fig. 11. The function Vsq can be of the
form as stated below. The current distribution is obtained via the same function slightly
modified according to (40).

function f=Vsq(s,q)

l=1; Zi=10; Z2=1e3;

Ro=1e-3; Lo=600e-9; Go=2e-3; Co=80e-12;

Vi=2*pi^2*(1-exp(-2e-9*s))./s./((2e-9*s).^2+4*pi^2);

Z=Ro+s*Lo; Y=Go+s*Co; Zc=sqrt(Z./Y); gam=sqrt(Z.*Y);

ro1=(Zi-Zc)./(Zi+Zc); ro2=(Z2-Zc)./(Z2+Zc);

Ks=Vi./(Zi+Zc)./(1-ro1.*ro2.*exp(-2*gam*l));

V1=Ks.*Zc.*(1+ro2.*exp(-2*gam*l));

I1=Ks.*(1-ro2.*exp(-2*gam*l));

f=(q.*V1-Zc.*gam.*I1)./(q.^2-gam.^2);

One can notice an interesting thing, namely getting both voltage and current graphs by a
single computation step. It is enabled by putting together the voltage and current transforms
forming respectively real and imaginary parts of an artificial complex transform, and letting
active the program command for the plotting the imaginary part of the original function, see
Tab. 3. In our example, if the bottom line in the Vsq function is changed to

f=((q.*V1-Zc.*gam.*I1)+j*(q.*I1-gam./Zc.*V1))./(q.^2-gam.^2);

then both graphs in Fig. 11 are obtained simultaneously. The same possibility exists for the
1D NILT functions discussed earlier. There is no obvious physical meaning of such articifial
complex transfoms, it is only a formal tool for inverting two transforms in parallel instead.

www.intechopen.com

MATLAB for Engineers – Applications in Control, Electrical Engineering, IT and Robotics

68

3.3 Multidimensional LT in nonlinear electrical circuits simulation
As is known some classes of nonlinear systems can be described through a Volterra series
expansion, accurately enough from the practical point of view, when a response v(t) to a
stimulus i(t) has a form (Schetzen, 2006)

1

() ()n
n

v t v t
∞

=

= , (41)

where the terms of the infinite sum are

1 2

1

() = (, , ,) ()
n

n n n k k
n fold

k

v t h i t dτ τ τ τ τ
∞ ∞

−
=−∞ −∞

−∏ , (42)

with hn(τ1,τ 2,…,τn) as an n-th order Volterra kernel, called as a nonlinear impulse response
as well. The Fig. 12 shows these equations in their graphical form.
By introducing new variables, t1 = t2 =…= tn = t, and by using the n-dimensional Laplace
transform (1), the n-fold convolution integral (42) leads to a Laplace domain response

1 2 1 2

1

(, , ,) = (, , ,) ()
n

n n n n k
k

V s s s H s s s I s
=

∏ , (43)

with Hn(s1,s2,…,sn) as a nonlinear transfer function.

Fig. 12. Nonlinear system response via Volterra series expansion

A few methods are at disposal to find the transfer function for a given nonlinear system, like
a harmonic input method, e.g. (Bussgang at al., 1974; Karmakar, 1980). Further procedure is
usually based on the association of variables, (J. Debnath & N.C. Debnath, 1991; Reddy &
Jagan, 1971), transforming Vn(s1,s2,…,sn) into the function of a single variable Vn(s), and
enabling to use a one-dimensional ILT to get the required terms vn(t) in (41). In contrast to
this procedure, it is also possible to determine the terms vn(t1,t2,…,tn) by the use of the n-
dimensional ILT, considering t1 = t2 = …= tn = t in the result as a final step. That is why the
above NILT procedures can be adapted in this respect being able to serve as a tool for the
nonlinear circuits transient simulation.

www.intechopen.com

Numerical Inverse Laplace Transforms for Electrical Engineering Simulation

69

3.3.1 Utilization of 1D to 3D NILTs for nearly nonlinear circuits
The utilization of the NILT methods developed, up to three-dimensional case, will be shown
on the solution of a nearly nonlinear circuit in Fig. 13. As can be observed this is just Fig. 7
modified to introduce a nonlinearity via G2 conductance.

Fig. 13. Electrical circuit with nonlinear resistive element G2

Assuming a square nonlinearity, a circuit equation is

 2

1 2

()
() () = ()

dv t
C G v t G v t i t

dt
+ + . (44)

By using the harmonic input method, and limiting the solution on the first three terms only,
we get the nonlinear transfer functions for (43) as

 () 1

1 1 1 1
() =H s s C G

−
+ , (45)

2 1 2 2 1 1 1 2 1 1 2
(,) = () () ()H s s G H s H s H s s− + , (46)

 []2

3 1 2 3 1 1 2 2 3 1 2 2 1 3 1 3 2 1 2 1 1 2 3
3

(, ,) = () (,) () (,) () (,) ()
G

H s s s H s H s s H s H s s H s H s s H s s s− + + + + . (47)

Let us use an exciting current and its Laplace transform as

 0

0
1() = () () =at I

i t I e t I s
s a

−

+
 , (48)

a ≥ 0. The substitution (45) – (48) into (43) gives us respective Laplace-domain responses
which will undergo the 1D, 2D and 3D NILT algorithms, respectively. We can write

[] [] []

1 1 2 1 2 3

1 1 2 1 2 3

1 2 3 1 1 2 1 2 3 1 2 3

1 1 1

1 1 1 2 2 1 2 3 3 1 2 3

() = () () () = () (,) (, ,) =

= () (,) (, ,)

t t t t t t t t t

t t t t t t t t t

v t v t v t v t v t v t t v t t t

V s V s s V s s s

= = = = = =

− − −

= = = = = =

+ + + +

+ +
, (49)

with []1 .k
− as a k-dimensional ILT. Thereby, a time-consuming association of variables can

be omitted, e.g. (Wambacq & Sansen, 2010). Individual terms vk(t) are depicted in Fig. 14, for
values agreeing with the linear circuit version in Fig. 7. The current i(t) is defined by a = 0 (a
unit step), and a = 5 (an exponential impuls), compare the first two columns in Tab. 4.
The resultant voltage responses computed according to (49) are shown in Fig. 15, including
relative errors, where also dependences on Volterra series orders are presented.
The relative errors above were computed via a Matlab ODE45 Runge-Kutta function applied
directly to the nonlinear ODE (44). As expected, more Volterra terms lead to more accurate
results, see also (Brančík, 2009) where up to 2nd-order terms were considered, and respective
Matlab listings are presented.

www.intechopen.com

MATLAB for Engineers – Applications in Control, Electrical Engineering, IT and Robotics

70

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

t [s]

v
1
 [
V

]

a = 0

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

t [s]

v
1
 [
V

]

a = 5

0 0.2 0.4 0.6 0.8 1
-10

-8

-6

-4

-2

0

2
x 10

-3

t [s]

v
2
 [

V
]

a = 0

0 0.2 0.4 0.6 0.8 1
-20

-15

-10

-5

0

5
x 10

-4

t [s]

v
2
 [

V
]

a = 5

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

8

10
x 10

-4

t [s]

v
3
 [
V

]

a = 0

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

8
x 10

-5

t [s]

v
3
 [

V
]

a = 5

Fig. 14. Numerical inversions leading to voltage response Volterra series terms

www.intechopen.com

Numerical Inverse Laplace Transforms for Electrical Engineering Simulation

71

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

t [s]

v
 =

 v
1
+
 v

2
+

 v
3
 [

V
]

Resultant voltage response

a = 0

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

t [s]
v
 =

 v
1
+

 v
2
+

 v
3
 [

V
]

Resultant voltage response

a = 5

0 0.2 0.4 0.6 0.8 1
10

-8

10
-6

10
-4

10
-2

10
0

t [s]

R
e
la

ti
v
e
 e

rr
o
r

[-
]

v
1

v
1
+ v

2

v
1
+ v

2
+ v

3
a = 0

0 0.2 0.4 0.6 0.8 1
10

-8

10
-6

10
-4

10
-2

10
0

t [s]

R
e
la

ti
v
e
 e

rr
o
r

[-
]

v
1

v
1
+ v

2

v
1
+ v

2
+ v

3
a = 5

Fig. 15. Resultant voltage responses and relative errors

4. Conclusion

The paper dealt with a specific class of techniques for the numerical inversion of Laplace
transforms, namely based on a complex Fourier series approximation, and connected with
a quotient-difference algorithm to accelerate the convergence of infinite series arising in
the approximate formulae. The 1D to 3D NILT techniques have been programmed in the
Matlab language (R2007b), and most important ones provided as the Matlab function
listings. To guide readers all the algorithms were explained on selected examples from
field of electrical engineering, including right callings of the functions. In contrast to most
others the NILT methods here developed are utilizable to numerically invert complex
Laplace transforms, leading to complex originals, which can be useful for some special
purposes. As has resulted from error analyses the accuracies range relative errors from
10-8 to 10-10 without difficulties which is acceptable for most of practical needs. Based on
Matlab functions presented, one could further generalize a vector version of the 1D NILT
function towards a matrix one, enabling e.g. to simulate multiconductor transmission line
systems, as is shown in (Brančík, 1999), where, however, an alternative technique, so-

called ε algorithm, has been applied to accelerate the convergence of infinite series.
According to the author’s knowledge, the paper presented ranks among few summary
works describing multidimensional NILT techniques, covering Matlab listings beyond,
based just on a complex Fourier series approximation, and in conjunction with the
quotient-difference algorithm, which seems to be more numerically stable compared to

the ε algorithm mentioned above.

www.intechopen.com

MATLAB for Engineers – Applications in Control, Electrical Engineering, IT and Robotics

72

5. Acknowledgment

Research described in this paper was supported by the Czech Ministry of Education under

the MSM 0021630503 research project MIKROSYN, the European Community's Seventh

Framework Programme under grant agreement no. 230126, and the project

CZ.1.07/2.3.00/20.0007 WICOMT of the operational program Education for

competitiveness.

6. References

Brančík, L. (1999). Programs for fast numerical inversion of Laplace transforms in Matlab

language environment. Proceedings of 7th Conference MATLAB’99, pp. 27-39, ISBN

80-7080-354-1, Prague, Czech Republic, November 3, 1999

Brančík, L. (2005). Elaboration of FFT-based 2D-NILT methods in terms of accuracy and

numerical stability. Przeglad Elektrotechniczny, Vol. 81, No. 2, (February 2005), pp.

84-89, ISSN 0033-2097

Brančík, L. (2007a). Numerical Inversion of two-dimensional Laplace transforms based on

partial inversions. Proceedings of 17th International Conference Radioelektronika 2007,

pp. 451-454, ISBN 1-4244-0821-0, Brno, Czech Republic, April 24-25, 2007

Brančík, L. (2007b). Modified technique of FFT-based numerical inversion of Laplace

transforms with applications. Przegląd Elektrotechniczny, Vol. 83, No. 11,

(November 2007), pp. 53-56, ISSN 0033-2097

Brančík, L. (2009). Numerical ILTs applied to weakly nonlinear systems described

by second-order Volterra series. ElectroScope, [online], Special Issue on

Conference EDS 2009, 4 pages, Available from http://electroscope.zcu.cz, ISSN

1802-4564

Brančík, L. (2010a). Utilization of NILTs in simulation of nonlinear systems described by

Volterra series. Przeglad Elektrotechniczny, Vol. 86, No. 1, (January 2010), pp. 68-70,

ISSN 0033-2097

Brančík, L. (2010b). Numerical inversion of 3D Laplace transforms for weakly

nonlinear systems solution. Proceedings of 20th International Conference

Radioelektronika 2010, pp. 221-224, ISBN 978-1-4244-6319-0, Brno, Czech Republic,

April 19-21, 2010

Brančík, L. (2010c). Technique of 3D NILT based on complex Fourier series and quotient-

difference algorithm. Proceedings of 2010 IEEE International Conference on

Electronics, Circuits, and Systems ICECS2010, pp. 207-210, ISBN 978-1-4244-8156-9,

Athens, Greece, December 12-15, 2010

Brančík, L. (2011). Error analysis at numerical inversion of multidimensional Laplace

transforms based on complex Fourier series approximation. IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, Vol. E94-A, No.

3, (March 2011), p. 999-1001, ISSN 0916- 8508

Bussgang, J.J.; Ehrman, L. & Graham, J.W. (1974). Analysis of nonlinear systems with

multiple inputs. Proceedings of the IEEE, Vol. 62, No. 8, (August 1974), pp. 1088-

1119, ISSN 0018-9219

www.intechopen.com

Numerical Inverse Laplace Transforms for Electrical Engineering Simulation

73

Cohen, A.M. (2007). Numerical methods for Laplace transform inversion. Springer Science,

ISBN 978-0-387-28261-9, New York, U.S.A

Debnath, J. & Debnath, N.C. (1991). Associated transforms for solution of nonlinear

equations. International Journal of Mathematics and Mathematical Sciences, Vol. 14,

No. 1, (January 1991), pp. 177-190, ISSN 0161-1712

DeHoog, F.R.; Knight, J.H. & Stokes, A.N. (1982). An improved method for numerical

inversion of Laplace transforms. SIAM Journal on Scientific and Statistical

Computing, Vol. 3, No. 3, (September 1982), pp. 357-366, ISSN 0196-5204

Hwang, C.; Guo, T.-Y. & Shih, Y.-P. (1983). Numerical inversion of multidimensional

Laplace transforms via block-pulse functions. IEE Proceedings D - Control

Theory & Applications, Vol. 130, No. 5, (September 1983), pp. 250-254, ISSN 0143-

7054

Hwang, C. & Lu, M.-J. (1999). Numerical inversion of 2-D Laplace transforms by fast

Hartley transform computations. Journal of the Franklin Institute, Vol. 336, No. 6,

(August 1999), pp. 955-972, ISSN 0016-0032

Karmakar, S.B. (1980). Laplace transform solution of nonlinear differential equations.

Indian Journal of Pure & Applied Mathematics, Vol. 11, No. 4, (April 1980), pp. 407-

412, ISSN 0019-5588

Macdonald, J.R. (1964). Accelerated convergence, divergence, iteration, extrapolation, and

curve fitting, Journal of Applied Physics, Vol. 35, No. 10, (February 1964), pp. 3034-

3041, ISSN 0021-8979

McCabe, J.H. (1983). The quotient-difference algorithm and the Padé table: An alternative

form and a general continued fraction. Mathematics of Computation, Vol. 41, No.

163, (July 1983), pp. 183-197, ISSN 0025-5718

Reddy, D.C. & Jagan, N.C. (1971). Multidimensional transforms: new technique for the

association of variebles. Electronics Letters, Vol. 7, No. 10, (May 1971), pp. 278 –

279, ISSN 0013-5194

Rutishauser, H. (1957). Der quotienten-differenzen-algorithmus. Birkhäuser Verlag, Basel,

Schweiz

Schetzen, M. (2006). The Volterra and Wiener theories of nonlinear systems. Krieger

Publishing, ISBN 978-1-575-24283-5, Melbourne, Florida, U.S.A

Singhal, K.; Vlach, J. & Vlach, M. (1975). Numerical inversion of multidimensional Laplace

transform. Proceedings of the IEEE, Vol. 63, No. 11, (November 1975), pp. 1627-

1628, ISSN 0018-9219

Valsa, J. & Brančík, L. (1998a). Approximate formulae for numerical inversion of

Laplace transforms. International Journal of Numerical Modelling: Electronic

Networks, Devices and Fields, Vol. 11, No. 3, (May-June 1998), pp. 153-166, ISSN

0894-3370

Valsa, J. & Brančík, L. (1998b). Time-domain simulation of lossy transmission lines with

arbitrary initial conditions. Proceedings of Advances in Systems, Signals, Control and

Computers, Vol. III, pp. 305-307, ISBN 0-620-23136-X, Durban, South Africa,

September 22-24, 1998

Wambacq, P. & Sansen, W.M.C. (2010). Distortion analysis of analog integrated circuits.

Kluwer Academic Publishers, ISBN 978-1-4419-5044-4, Boston, U.S.A

www.intechopen.com

MATLAB for Engineers – Applications in Control, Electrical Engineering, IT and Robotics

74

Wu, J.L.; Chen, C.H. & Chen, C.F. (2001). Numerical inversion of Laplace transform using

Haar wavelet operational matrices. IEEE Transactions on Circuits and Systems—I:

Fundamental Theory and Applications, Vol. 48, No. 1, (January 2001), pp. 120-122,

ISSN 1057-7122

www.intechopen.com

MATLAB for Engineers - Applications in Control, Electrical

Engineering, IT and Robotics

Edited by Dr. Karel Perutka

ISBN 978-953-307-914-1

Hard cover, 512 pages

Publisher InTech

Published online 13, October, 2011

Published in print edition October, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book presents several approaches in the key areas of practice for which the MATLAB software package

was used. Topics covered include applications for: -Motors -Power systems -Robots -Vehicles The rapid

development of technology impacts all areas. Authors of the book chapters, who are experts in their field,

present interesting solutions of their work. The book will familiarize the readers with the solutions and enable

the readers to enlarge them by their own research. It will be of great interest to control and electrical engineers

and students in the fields of research the book covers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Lubomír Branc ̌ík (2011). Numerical Inverse Laplace Transforms for Electrical Engineering Simulation, MATLAB

for Engineers - Applications in Control, Electrical Engineering, IT and Robotics, Dr. Karel Perutka (Ed.), ISBN:

978-953-307-914-1, InTech, Available from: http://www.intechopen.com/books/matlab-for-engineers-

applications-in-control-electrical-engineering-it-and-robotics/numerical-inverse-laplace-transforms-for-

electrical-engineering-simulation

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

