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1. Introduction 

Several neurodegenerative diseases are associated with a build up of misfolded or abnormal 

proteins and the formation of distinct aggregates, resulting in a putative pathological 

protein load on the nervous system (Chiti & Dobson, 2006). This aberrant accumulation of 

amyloid or amyloid-like aggregates occurs in Parkinson’s (PD), Alzheimer’s (AD), and 

Huntington’s (HD) diseases, amyotrophic lateral sclerosis, and frontotemporal dementia, 

among others. A broad array of cellular defence mechanisms operate to counteract this 

effect, including antioxidant proteins, the stress-inducible response and, in particular, 

molecular chaperones (Morimoto, 2008; Voisine et al., 2010). Molecular chaperones are 

responsible for maintaining normal protein homeostasis within the cell by assisting protein 

folding, inhibiting protein aggregation, and modulating protein degradation pathways 

(Hartl & Hayer-Hartl, 2009). Currently, there is substantial evidence supporting the 

involvement of these protein aggregational processes and a role of molecular chaperones, 

and especially of Hsp70, in PD pathogenesis (Bandopadhyay & de Belleroche, 2010; 

Broadley & Hartl, 2009; Witt, 2009). Firstly, extensive colocalization of Hsp70 with α-

synuclein (αSyn), the major component of Lewy bodies (LBs) (Spillantini et al., 1998), within 

the intraneuronal inclusions in PD brains has been demonstrated (Auluck et al., 2002; 

McLean et al., 2002). Secondly, patients with PD show highly perturbed expression of 

different members of the Hsp70 family in the substantia nigra pars compacta (SN) of the brain, 

which is precisely the target of neurodegeneration (Grunblatt et al., 2001; Hauser et al., 

2005). Finally, there is a considerable amount of data derived from studies performed in 

vitro, in cell culture and with animal models of PD (Arawaka et al., 2010; Witt, 2009), that 

support the protective effects of Hsp70 against αSyn aggregation and toxicity, considered to 

be central in the aetiology of  the disease. 

The discovery within the last few years of three different missense mutations (A30P, E46K 

and A53T) in the αSyn gene as causative of early onset PD unambiguously linked this 
protein to disease onset and progression (Kruger et al., 1998; Polymeropoulos et al., 1997; 
Zarranz et al., 2004). Additionally, a locus triplication causing an increased dosage of the 

wild-type฀ (Wt)฀αSyn gene has been found to potentiate neurodegeneration (Singleton et al., 
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2003). Finally, as mentioned above, αSyn is the major component of intracellular protein-
rich aggregates found in the brain of post-mortem patients of PD, the LBs and Lewy neurites 

(LNs). The appealing hypothesis for LBs formation is that αSyn monomers combine to form 
oligomers (or protofibrils), which coalesce into fibrils and then co-aggregate with other 
proteins into (intracellular) inclusions (Conway et al., 1998; Wood et al., 1999). While the 

monomers and oligomers of αSyn are soluble, the fibrils and LBs are insoluble in the 
neuronal cytoplasm. Some controversy arises, however, from the roles of the various 

physical forms or species of αSyn in PD pathogenesis. LBs have been proposed to be both 
neurotoxic (El-Agnaf et al., 1998), and protective (Mouradian, 2002; Rochet et al., 2000). 

Other hypotheses state that the pre-fibrillar intermediates, composed of αSyn oligomers, are 
the main toxic species towards dopaminergic neurons (Conway et al., 2000; Volles & 

Lansbury, 2003). Lansbury and co-workers have shown that αSyn oligomers can form 
annular, elliptical, or circular amyloid pores in cell membranes (Lashuel et al., 2002a; Volles 

& Lansbury, 2003), and cell culture studies have demonstrated that αSyn oligomers reduce 
cell viability, disrupt lysosomes and induce Golgi fragmentation (Gosavi et al., 2002), as well 
as toxicity in animal models (Karpinar et al., 2009). In line with these findings, the more 

neurotoxic A30P and A53T mutants of αSyn share an increased tendency to form soluble 
oligomeric intermediates, whereas the E46K and A53T mutants fibrillate faster than the 
wild-type protein (Conway et al., 2000; Choi et al., 2004). 
The heat-shock-protein 70 (Hsp70) family of chaperones (Mayer & Bukau, 2005; Young, 

2010) is well conserved from bacteria to higher eukaryotes (where it is found within 

different organelles), having critical roles in a range of cellular processes such as promoting 

the folding of newly synthesized proteins and assisting the rescue of misfolded aggregated 

proteins. Hsp70 is highly relevant in the context of protein conformational diseases given 

that stress-induced cytosolic Hsp70 can prevent protein aggregation and enables the cell to 

avoid the accumulation of potentially toxic aggregates (Hartl, 1996).  

The structures of several Hsp70 homologues are similar and consist of an actin-like ATPase 

domain (nucleotide-binding domain, NBD) and a and a C-terminal substrate-binding domain 

(SBD), which are connected by a short linker region (Mayer & Bukau, 2005). The substrate 

binding pocket recognizes and binds to unstructured or partially folded stretches within 

polypeptides (Bukau & Horwich, 1998), with the current view that Hsp70s could prevent 

misfolding by binding to certain patterns in the polypeptide chain of the substrate that are 

highly enriched in hydrophobic residues (Maeda et al., 2007; Rudiger et al., 1997). Even though 

most of our current understanding of the Hsp70 molecular mechanism has largely derived 

from studies performed with the bacterial orthologue (DnaK), the outlines of the mechanism 

appear conserved (Hartl & Hayer-Hartl, 2002; Young, 2010). The ATPase cycle of Hsp70 

involves alternation between an ATP-bound state which has low affinity and fast exchange 

rates for peptide substrates (‘open’ state), and an ADP-bound state with high affinity and low 

exchange rates for substrates (‘closed’ state) (Mayer & Bukau, 2005). This alternation is 

achieved by a bidirectional structural communication between the NBD and the SBD domains, 

driven by a complex allosteric mechanism (Mayer & Bukau, 2005; Young, 2010). 

The ATPase cycle is typically modulated by several co-chaperones, most notably the ‘J-
domain’ protein Hsp40/DNAJB1 (or DnaJ, the bacterial orthologue), resulting in increase of 
the ATPase activity  (Bukau & Horwich, 1998; Mayer & Bukau, 2005; Minami et al., 1996), 
and the BAG family of proteins which function as nucleotide-exchange factors (NEFs) and 
promote the ADP release from the the Hsp70 NBD (Takayama et al., 1999; Young, 2010). In 
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addition to acting as enhancer of the basal ATPase rate of Hsp70, the Hsp40 family of co-
chaperones has a key role in the canonical model of the Hsp70 machinery mechanism, given 
the ability of some of them to also recognize and bind to unfolded client proteins and 
‘deliver’ them to Hsp70 (Kampinga & Craig, 2010). Other important co-chaperones are Hop, 
which binds to the C-termini of Hsp70 and Hsp90 and assists substrate transfer between the 
two chaperones (Scheufler et al., 2000), and Hip (ST13) which has been shown to specifically 
bind to and stabilize, the ADP-bound state of Hsp70 (Hohfeld et al., 1995; Prapapanich et al., 
1996), and has been suggested to increase the half-life of Hsp70-substrate complexes 
(Hohfeld et al., 1995). Finally, CHIP (Ballinger et al., 1999) acts as an E3-ubiquitin ligase that 
ubiquitinates HSPA8/Hsc70/Hsp73 (i.e. the constitutive cytosolic Hsp70) substrates, 
promoting their degradation by the proteasome (Hohfeld et al., 2001).  

2. Links between Hsp70 and the pathogenesis of PD 

PD is currently thought to involve different pathogenic mechanisms that eventually lead to 
neurodegeneration, as discussed elsewhere in this book series.. There is substantial evidence 

supporting a prominent role in PD-related cell death of αSyn toxic oligomers. One 

hypothesis postulates that certain αSyn species can affect the homeostasis of cell membranes 
(Gupta et al., 2008; Lashuel et al., 2002b; Volles & Lansbury, 2002), and produce ER and 
oxidative stress, UPS and mitochondrial dysfunction (Gupta et al., 2008; Jellinger, 2010), as 
well as neuroinflammation  (Jellinger, 2010; Roodveldt et al., 2008) processes, all of which 

have been linked, to a lower or larger extent, to the amyloid-like aggregation of αSyn. As 
will be described below, the Hsp70 system has been found to be a key player in 

counteracting most of these processes, not only by physically interacting with αSyn, but also 
by promoting aggregation clearance (Figure 1). 
 

 

Fig. 1. Links between Hsp70 and the multiple αSyn-mediated processes in PD pathogenesis. 
CMA: chaperone-mediated autophagy; UPS: ubiquitin-proteasome system; LB: Lewy 
bodies; LN: Lewy neurites. Discontinuous lines depict the possible ‘sequestration’ of certain 
chaperones by αSyn aggregating species. 
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2.1 Hsp70 in modulation of αSyn aggregation and cytotoxicity 
Heat-shock proteins (HSPs) prevent and reverse the misfolding and aggregation of proteins, 
and the Hsp70 family in particular is known to play important roles in protecting neurons 
from protein aggregation-derived stress (Lu et al., 2010). Therefore, it might not seem 
surprising that Hsp70 has been found to be linked to several neurodegenerative processes 
and ‘conformational’ disorders, including PD (Witt, 2009). Notably, Hsp70 has been shown 

to colocalize with aggregated฀αSyn within LBs in brains from PD patients (Auluck et al., 

2002), strongly suggesting a role for this chaperone in managing αSyn aggregates in the 
context of PD (Figure 1). It is then that a substantial portion of the research in the field has 

focused on the effects of this major cytosolic chaperone on αSyn aggregation and 
cytotoxicity. Following the discovery that Hsp70 can abrogate the neurotoxicity of abnormal 
polyglutamine proteins (Warrick et al., 1999), it was shown that Hsp70 can also prevent 

dopaminergic neuronal loss associated with αSyn in a Drosophila PD model (Auluck et al., 
2002). Numerous studies that followed have reported that over-expression of Hsp70 is able 

to reduce αSyn aggregation and/or toxicity in various cellular models (Danzer et al., 2011; 
Klucken et al., 2004b; McLean et al., 2004; Opazo et al., 2008; Outeiro et al., 2008; Zhou et al., 
2004). In particular, McLean and co-workers (Outeiro et al., 2008) have found that Hsp70 

rescues αSyn-linked toxicity by promoting the cellular clearance of αSyn oligomers, rather 

than monomers. Another study (Opazo et al., 2008) found that Hsp70 manages αSyn 
intracellular aggregation by increasing the clearing of aggregates primarily through the 
aggresome, and the subsequent removal of small aggregates and aggresomes from the 
cytosol. An interesting study by McLean and colleagues (Danzer et al., 2011) has recently 

shown that Hsp70 can also inhibit the formation of extracellular αSyn oligomers and rescue 
the cytotoxicity produced by such secreted oligomers, in a cellular model. Moreover, their 
data also indicates that Hsp70 is released to the extracellular medium together with secreted 

αSyn, adding to the accumulating evidence that Hsp70 can be released from cells by an 
active mechanism, with functionally relevant consequences. 

Intriguingly, while it was found that over-expression of Hsp70 can prevent αSyn 

aggregation in a Wt αSyn transgenic mouse model (Klucken et al., 2004b), a recent work 

based on A53T-αSyn transgenic mice has failed to observe this effect (Shimshek et al., 2010), 
seeding some controversy. Could these findings reflect a difference in the nature of the 

aggregates generated by Wt and mutant αSyn, and therefore a differential ability of Hsp70 
to cope with those aggregates? Even though there is compelling evidence demonstrating the 
important role of Hsp70 under physiological and pathological scenarios in modulating fibril 
formation based on in vivo and cellular models, the molecular mechanism underlying such 
anti-aggregation properties in the context of PD, is still not fully understood. 
Unlike the many research works performed with PD cellular and animal models that have 
contributed to our understanding on Hsp70 function under physiological or pathological 
conditions, only a handful of studies have focused on the molecular mechanism and 
interactions that underlie the modulation of ǂSyn aggregation exerted by Hsp70. An in-cell 
fluorescence resonance energy transfer (FRET) study indicated that Hsp70 alters the 

conformation of αSyn, inducing it to adopt a more ‘open’ conformation, without affecting 

the αSyn-αSyn intermolecular interactions (Klucken et al., 2006). Similarly to what had been 
found in vitro for Hsp70 and the HD-related huntingtin protein (Muchowski et al., 2000; 

Wacker et al., 2004), several studies with αSyn have shown that Hsp70 is able to suppress 

αSyn fibril assembly. In this case, a variety of in vitro studies have shown that this efficient 
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inhibition of amyloid assembly can occur in the absence of collaborating co-chaperones and 
in an ATP-independent manner (Ahmad, 2010; Dedmon et al., 2005; Huang et al., 2006; Luk 
et al., 2008; Roodveldt et al., 2009), while promoting formation of small oligomeric species of 
moderate toxicity (Roodveldt et al., 2009). However, our recent study demonstrates that, 

even though Hsp70 is indeed able to control αSyn fibrillation and its associated toxicity in 
an ATP-independent manner, it does so more efficiently in the presence of ATP (Roodveldt 
et al., 2009), consistent with the results obtained with a cellular model (Klucken et al., 2004a). 
Nevertheless, this ATP-dependent activity was found to require Hip co-chaperone activity, 
and not Hsp40 as observed in the case of mutant huntingtin protein (Lotz et al., 2010), 
suggesting that Hsp70 can function through different molecular mechanisms, depending on 
the nature of the aggregating client protein.  
Interestingly, our study also showed that Hsp70 in the presence of ATP is prone to co-

aggregate with aggregating αSyn, presumably caused by the formation of a highly insoluble 

(ADP)Hsp70/αSyn complex. Surprisingly, this co-aggregation can be prevented by the 
addition of the co-chaperone Hip (St13), which had been found to be under-expressed in 
serum of PD patients since the early stages of the disease (Scherzer et al., 2007). The 

relevance of Hip in assisting the suppression of αSyn aggregation in an Hsp70-dependent 
manner was further supported by a study we performed in a C. elegans model of PD 
(Roodveldt et al., 2009), in which knock-down of Hip produced a much stronger PD 

phenotype than knock-down of Hsp70, shown by higher levels of αSyn aggregation in the 
former condition. This finding indicates that Hip co-chaperone could be important not only 
in modulating the chaperone’s molecular mechanism, but also in guarding the functionality 
and availability of Hsp70 under certain conditions. 
One relevant question relates to the nature of the species along the aggregation pathway of 

αSyn that are specifically recognized and targeted by Hsp70. Initially, Hsp70 was reported 

to bind to αSyn filaments in vitro (Lindersson et al., 2004). However, it is currently 
understood that Hsp70 does not disaggregate or alter the structural properties of mature 

αSyn fibrils (Dedmon et al., 2005), but rather inhibits fibril formation via interactions with 

soluble pre-fibrillar forms of αSyn. A few studies performed with cell extracts (Zhou et al., 
2004) and with live cells (Klucken et al., 2006), in addition to experiments with purified 

proteins (Dedmon et al., 2005; Huang et al., 2006; Roodveldt et al., 2009), demonstrate the 

existence of molecular interactions between Hsp70 and αSyn oligomeric species. Even 

though previous attempts to isolate such complexes by co-immunoprecipitation or pull-
down experiments had failed (Luk et al., 2008),  we have been able to probe the formation of 

a complex between Hsp70 and αSyn oligomeric species by FRET (Roodveldt et al., 2009), 
suggesting that these interactions are transient (Luk et al., 2008; Roodveldt et al., 2009), 
besides being highly dynamic (Luk et al., 2008; Roodveldt et al., 2009). 

In addition, we have recently shown by FRET and nuclear magnetic resonance (NMR) 

analyses that, contrary to what was previously thought, Hsp70 can also interact with αSyn 
monomeric species (Roodveldt et al., 2009) with an affinity constant lying within the low 
micromolar range. Moreover, the fluorimetric study revealed the existence of diverse 

Hsp70/αSyn complexes that are formed depending on the nucleotide state of the chaperone, 
either nucleotide-free, or ATP- or ADP-bound, that are sampled along the ATPase cycle. 
Based on these structural studies, we have proposed that a particularly ‘compact’ 

Hsp70/αSyn complex in the ADP-state of Hsp70 that arises during the aggregation process 

of αSyn, leads to Hsp70 being entrapped or sequestered by the oligomers. However, we 
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propose that this compact complex can be stabilized by the Hip co-chaperone and therefore 

the co-aggregation of the chaperone, and ultimately the formation of αSyn fibrils, can be 
prevented (Roodveldt et al., 2009). In other words, our findings indicated that a decreased 
expression of Hip could facilitate depletion of Hsp70 by amyloidogenic polypeptides, 
impairing chaperone proteostasis. Interestingly, another case of chaperone-

inhibition/depletion by αSyn oligomers, but not by unstructured monomers, was recently 
reported for the Hsp70/Hsp40 system (Hinault et al., 2010). In this case, the authors found 
that the inhibition of the chaperone system was predominantly caused by the sequestration 

or incapacitation, by off-pathway αSyn oligomers, of the J-domain (Hsp40) co-chaperone 
(Hinault et al., 2010). 

What is the region on the αSyn molecule thought to be recognized and bound by Hsp70? 
One study mapped this region as the broad segment between residues 21 and 110 (Luk et 
al., 2008). Based on a predictive algorithm for Hsp70-binding regions (Rudiger et al., 1997) 
and FRET analyses to probe Hsp70-ǂSyn interactions (Roodveldt et al., 2009), our results 
indicate that Hsp70 can bind to the N-terminus and the central NAC region of the protein. 
The first binding region is involved in functional lipid interactions, while the second one 
comprises the stretch of hydrophobic residues that readily forms fibrils in vitro and is 
generally assumed to be involved in initiating the fibrillation process (Giasson et al., 2001). 
In addition, our results suggest that Hsp70 also interacts with the negatively charged C-

terminus of the αSyn molecule, especially in the nucleotide-free state. Taken together, the 

studies carried out thus far demonstrate that Hsp70 modulates αSyn aggregation by 
interacting with the protein at different stages of aggregation, by recognizing essentially two 

or three regions in the αSyn molecule, and forming different transient complexes with the 

substrate. The strong binding versatility displayed by Hsp70 with aggregating αSyn might 
be possible thanks to the large structural flexibility conferred by the lid subdomain within 
the SBD, that has been recently described by Mayer and colleagues (Schlecht et al., 2011). 

2.2 Cooperation of Hsp70 with the ubiquitin-proteasome system (UPS) 
2.2.1 Involvement of the ubiquitin-proteasome system in PD 
The ubiquitin-proteasome system (UPS) is responsible for the degradation of vital 

regulatory proteins that control almost every cellular function (Hershko & Ciechanover, 

1998). The UPS system is composed of three classes of ubiquitinating enzymes (E1, E2 and 

E3) that activate, transfer and attach the small protein ubiquitin to the Lys residues of 

proteins that are targeted for degradation. Conjugation of at least four ubiquitin moieties 

acts as the degradation signal in a process that is initiated by the recognition of the ubiquitin 

linkage by the proteasome, which first catalyzes the unfolding and then the proteolysis of 

the targeted protein (Hershko & Ciechanover, 1998). 

Impairment in the UPS has been linked to many neurodegenerative disorders and indeed to 

contribute to disease progression in PD (Ciechanover & Brundin, 2003; Cook & Petrucelli, 

2009; McNaught et al., 2001). The involvement of UPS in PD arouse major interest with the 

identification of mutations in the E3 ubiquitin ligase parkin protein as a cause of autosomal 

recessive PD (Kitada et al., 1998). Both the loss of E3 activity and the possibility of 

incomplete or aberrant ubiquitination are proposed as causes of parkin-related PD (Giasson 

& Lee, 2003). A second member of the UPS involved in PD is the ubiquitin carboxy-terminal 

hydrolase-L1 (UCH-L1), and mutations in the uchl-1 gene cause dysfunction of this enzyme 

and lead to accumulation of toxic products (Leroy et al., 1998). 
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Beyond the clear genetic association between the UPS and PD, several studies have 
demonstrated a reduced proteolytic activity in the SN of PD patients when compared with 
aged-matched controls (McNaught et al., 2003; McNaught & Jenner, 2001; McNaught & 
Olanow, 2006). In culture of rat primary neurons, treatment with proteasomal inhibitors has 

shown to lead to the formation of αSyn- and ubiquitin- positive proteinaceous inclusions, 
analogous to LBs found in PD patients (McNaught et al., 2002a; Rideout et al., 2005). 
Moreover, systemic administration of proteasomal inhibitors in rats produced a behavioural 
and pathological phenotype strongly reminiscent of PD (McNaught et al., 2004), although 
recently some controversy arose in this matter (Manning-Bog et al., 2006). Further support to 
the active role played by proteasomal impairment in PD progression originated from 
studies with pesticides, such as rotenone and paraquat (Cook & Petrucelli, 2009). Mice 
treated with such environmental toxins display a strong reduction in proteolytic activity 

that is dependent on the presence of αSyn (Fornai et al., 2005). All together, these data 

undoubtedly link αSyn aggregation with impairment of the UPS in PD progression. 
In relation to protein misfolding and aggregation, it has been proposed that failure of the 

UPS to adequately remove misfolded or abnormal proteins may underlie demise of nigral 

cells in sporadic PD (McNaught et al., 2001). Furthermore, deficits in the 26/20S proteasome 

pathways are accompanied by protein accumulation and aggregation, which may also cause 

neurodegeneration (Chung et al., 2001), in line with recent findings that general intracellular 

aggregation of proteins into aggresomes can can inhibit the UPS (Bence et al., 2001). 

Moreover, chaperones of the heat-shock families, including HSP27, 40, 70, 60, 90, and 110, as 

well as components of the UPS, such as ubiquitin, UCH-L1 and parkin, are found in LBs 

extracted from PD patients post mortem (Shults, 2006). These combined pieces of evidence 

have attracted much attention lately as they imply that LBs could originate from ubiquitin-

rich aggresomes that the proteasomal components may not be able to process (McNaught et 

al., 2002b). One plausible mechanism would involve αSyn adopting abnormal protein 

conformations and overwhelming the cellular protein degradation systems (Wong & 

Cuervo, 2010), whereas deficits in the UPS machinery would challenge the cell’s ability to 

detect and degrade misfolded proteins that can result in the formation of toxic early 

aggregates (McNaught et al., 2002b). The common outcome of this failure at different levels 

is thus expected to be a cellular build-up of unwanted toxic species that should have been 

cleared in otherwise healthy conditions. Minimal defects in the crucial protein turnover 

machinery may suffice to cause a slow demise of dopaminergic neurons, which may explain 

the relentless, progressive nature of the disease (Vila & Przedborski, 2003). 

Alpha-synuclein extracted from LBs in PD brains has been found to be mono- and di-

ubiquitinated (Hasegawa et al., 2002), while soluble αSyn is mono-ubiquitinated by SIAH-1 
and -2, but not by parkin (Liani et al., 2004; Rott et al., 2008). Instead, a modified, O-

glycosylated, version of αSyn is a substrate for parkin-induced ubiquitination (Shimura et 

al., 2001), and it was shown that  interaction of parkin with αSyn is mediated by synphilin-1 
(Chung et al., 2001)

 
as well as by the protein 14-3-3-η (Sato et al., 2006). Importantly, parkin 

has been shown to be able to rescue primary neurons from the toxic effects of αSyn 
(Petrucelli et al., 2002), suggesting that the two proteins share a common pathway that may 
determine the fate of dopaminergic neurons in PD. In addition, UCH-L1 may be involved in 

regulating the cytoplasmic abundance of αSyn, as it displays unexpected ubiquitin ligase 

activity that is also able to polyubiquitinate mono- and diubiquitinated αSyn (Liu et al., 
2002). Since attachment of at least four ubiquitin molecules is known to be required for 
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protein degradation via the UPS (Hershko & Ciechanover, 1998), it is likely that mono-, di-, 

and aberrant poly-ubiquitinated αSyn could have a pathogenic impact (Rott et al., 2008; Sun 
& Chen, 2004). 

2.2.2 Role of the C-terminus Hsp70-interacting protein (CHIP) in PD 
Hsp70 and Hsp90 family members as well as small HSPs all take part in the degradation of 

protein substrate and are able to cooperate with the UPS towards this goal (Patterson & 
Hohfeld, 2006). Notably, protein homeostasis thus appears to be tightly controlled by 

interplay between the protein folding and protein degradation systems. Hsp70 takes part in 
the degradation of immature and aberrant forms of certain proteins, particularly ER-bound 

membrane proteins (Taxis et al., 2003), but also some cytosolic and nuclear proteins 
(Bercovich et al., 1997). For example, Hsp70 assists in the folding of the aggregation prone 

cystic fibrosis transmembrane conductance regulator (CFTR); however, Hsp70 is also able to 

present CFTR to the UPS and thus to control precisely the abundance of this protein, which 
is known to accumulate in aggresome and to cause cystic fibrosis (Zhang et al., 2001). 

Indeed, Hsp70 is actively recruited to aggresome and it has been proposed that this 
chaperone can reduce aggresome formation by stimulating proteasomal degradation of 

misfolded proteins (Dul et al., 2001; Garcia-Mata et al., 1999). The proposed mechanism for 
chaperone-UPS cooperation is that both systems compete for the same misfolded and 

aggregation-prone substrate proteins, and that the efficiency of chaperones in maintaining 
these proteins in solution increments the probability of the UPS to degrade aberrant 

polypeptides. Conversely, failure of chaperones to keep misfolded proteins in a soluble state 
gives rise to aggregates that are not efficiently degraded by the UPS and, moreover, may 

inhibit UPS activity towards other protein targets, altering protein homeostasis (Figure 1). 
Insights into the mechanism that enables the cooperation of protein chaperones with the 

UPS have been obtained from the identification and functional characterization of the C-

terminal Hsp70 interacting protein (CHIP) co-chaperone (Ballinger et al., 1999; Hohfeld et 

al., 2001; McDonough & Patterson, 2003). CHIP contains three tetratricopeptide repeat (TPR) 

domains that recognize and bind to the EEVD motif in both Hsp70 and Hsp90 (Ballinger et 

al., 1999). CHIP-complexed Hsp70 displays reduced ATP hydrolysis in vitro, suggesting that 

the co-chaperone diminishes the on-rate of binding and release cycles in Hsp70 (Ballinger et 

al., 1999). In its C-terminus, CHIP possesses a ubiquitin ligase domain (U box) that is 

capable of targeting proteins to degradation, in a homologous manner to RING finger 

domains found in E3 ubiquitin ligase enzymes (Connell et al., 2001; Meacham et al., 2001). 

CHIP has been shown to efficiently act as E3 ligase for several Hsp70 and Hsp90 substrates, 

such as the glucocorticoid receptor and Erb2 (Dickey et al., 2007; McDonough & Patterson, 

2003; Murata et al., 2001). Proteins ubiquitinated by CHIP are efficiently targeted to the 

proteasome and subsequently degraded. Notably, the UbcH4/UbcH5 proteins are E2-

conjugating enzymes (Demand et al., 2001) that are stress-activated, suggesting that upon 

stress CHIP furnishes the cell with chaperone-dependent ubiquitin ligases capable of 

ubiquitinating misfolded and aggregation-prone substrates. 

The ubiquitinating activity of CHIP is regulated by two co-chaperones, BAG-1, which is an 
enhancer, and the Hsp70 binding protein 1 (HspBP1), which acts as a repressor. BAG-1 
associates with the ATPase domain of Hsp70 and, in addition, possesses a ubiquitin-like 
domain that is efficiently recognized and bound by the proteasome (Luders et al., 2000). 
Thus, BAG-1 provides the proteasome with the capability to recruit Hsp70 and consequently 
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degrade its cargo clients. A ternary complex involving BAG-1, Hsp70 and CHIP has been 
isolated, and BAG-1 is capable of stimulating CHIP mediated degradation of some proteins 
(Alberti et al., 2002). The co-chaperone HspBP1, in turn, competes with BAG-1 for binding to 
the ATPase domain of Hsp70 (Alberti et al., 2004). Notably, when in complex with HspBP1-
bound Hsp70, CHIP shows a much reduced ubiquitin ligase activity and chaperone 
substrates are not longer ubiquitinated and targeted to the UPS (Alberti et al., 2004). 
In the context of neurodegeneration, CHIP has been shown to intervene in the degradation 
of misfolded aggregation-prone proteins associated with AD, PD and HD, as well as with 
spinocerebellar ataxia and spinal bulbar muscle atrophy (Adachi et al., 2007; Al-Ramahi et 
al., 2006; Hatakeyama et al., 2004; Shin et al., 2005; Urushitani et al., 2004). Indeed, CHIP 

appears to play an active role in modulating αSyn aggregation and degradation (Kalia et al., 
2011; Shin et al., 2005; Tetzlaff et al., 2008). It was shown that CHIP interacts with both 

soluble and aggregated αSyn, and its over-expression reduces αSyn abundance and 

aggregation (Shin et al., 2005). Interestingly, CHIP induces αSyn clearance via two 
alternative pathways, one involving Hsp70 and proteasomal degradation, and another 

Hsp70-independent route that targets αSyn to lysosomes (Shin et al., 2005). A fluorescence-
complementation assay demonstrated that CHIP reduced significantly the abundance of 

αSyn toxic oligomers in cell culture, suggesting that this aberrant species is preferentially 
recognized by the co-chaperone (Tetzlaff et al., 2008). More recently, it was discovered that 

CHIP is an E3 ubiquitin ligase of αSyn since it efficiently conjugates ubiquitin moieties to 

this protein (Kalia et al., 2011). CHIP-catalyzed ubiquitinated forms of αSyn include mono- 
and poly-ubiquitinated species, and the activity of CHIP depends on the presence of Hsp70 
and the co-chaperone BAG5. Contrary to the enhancer activity reported for BAG1, BAG5 

reduces the ability of CHIP to ubiquitinate αSyn in and Hsp70-dependent manner (Kalia et 
al., 2011). 
Additional pathogenic mechanisms in PD that involve the activity of CHIP relate to the 

ubiquitin ligase activity of parkin and the kinase activity of the leucine-rich repeat kinase-2 

(LRRK2). It has been found that CHIP, Hsp70 and parkin form a ternary complex that 

promotes ubiquitination and degradation of the Pael receptor, a protein localized in the ER 

and whose accumulation has been linked to dopaminergic neuronal death (Imai et al., 2002), 

and CHIP has been proposed to enhance the activity of parkin, even in the absence of Hsp70 

(Imai et al., 2002). Concerning LRRK2, CHIP regulates the ubiquitination, degradation, and 

toxicity mediated by pathogenic mutations of this kinase (Ko et al., 2009). Moreover, it has 

been shown that CHIP binds to LRRK2 via its TPR motifs and formation of this complex is 

protective in cell culture models, while in the presence of mutant LRKK2, knock-down of 

CHIP leads to cell death (Ko et al., 2009). 

2.3 Hsp70 in chaperone-mediated autophagy (CMA) 
Macroautophay and chaperone-mediated autophagy (CMA) are the two main lysosomal 
proteolytic systems in mammalian cells for the degradation of intracellular proteins (Xilouri 
& Stefanis, 2011). CMA is the process of degradation of intracellular components by 
lysosomes which selectively degrades cytotolic proteins containing a KFERQ-like motif 
(Koga & Cuervo, 2010). This process is known to involve binding of a complex of 
constitutive cytosolic Hsp70 (Hsc70) and co-chaperones (including Hsp40, Hip, Hsp90 and 
BAG1) to substrate proteins, and their subsequent targeting to lysosomes via the lysosomal 
surface receptor LAMP-2A (Xilouri & Stefanis, 2011). The substrate protein is subsequently 
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degraded after unfolding and translocation into the lysosomal lumen, in a process involving 
lysosomal Hsc70 (Figure 1). It has been estimated that about 30% of cytosolic proteins could 
be subjected to degradation via CMA (Dice, 2007), and furthermore, this pathway  may be a 

major route by which αSyn is degraded in neurons (Witt, 2009). Even though it is currently 
accepted that dysregulation of autophagy plays a role in neurodegeneration 
(Bandyopadhyay & Cuervo, 2007; Nixon, 2006; Rubinsztein, 2006; Xilouri & Stefanis, 2011), 
including the PD neurodegenerative process (Martinez-Vicente et al., 2008; Yang et al., 
2009), the mechanism by which CMA modulates neuronal survival or death, is still unclear. 

Given that pathologic accumulation of αSyn is a hallmark of PD, several recent studies have 

addressed the possible link between αSyn degradation, CMA dysfunction and the 

neurodegenerative process. Indeed, αSyn, which contains a pentapeptide sequence 
(95VKKDQ99) consistent with Hsc70 binding (Dice, 1990), has been shown to be degraded via 
CMA using isolated lysosomal preparations (Cuervo et al., 2004) and neuronal cells 
(Alvarez-Erviti et al., 2010; Martinez-Vicente et al.; Vogiatzi et al., 2008). On the contrary, the 

A30P and A53T αSyn variants were observed to bind strongly to LAMP-2A receptors but 
were not internalized, thus inhibiting the CMA degradation of other substrates (Cuervo et 

al., 2004). This CMA dysfunction was later shown to mediate αSyn toxicity in cellular 

models (Xilouri et al., 2009). Moreover, a recent study using both αSyn transgenic- and 

paraquat- PD mouse models (Mak et al., 2010), showed that αSyn can be degraded in the 
lysosome through CMA, in vivo. The study also revealed an up-regulation of LAMP-2A and 

lysosomal Hsc70 and an increase in Hsc70-αSyn interactions in brain lysosomes, relative to 
controls. On the other hand, a recent work work revealed a significant reduction of both 
LAMP-2A and Hsc70 levels in the SN and amygdala of PD brains, relative to age-matched 
Alzheimer’s disease (AD) and healthy, brain controls (Alvarez-Erviti et al., 2010). Even 
though their results might initially appear contradictory, these findings support a key role 
for Hsc70 and the CMA system in maintaining intracellular general proteostasis, especially 

within the αSyn-overload scenario that is typically associated to PD and other α-
synucleinopathies. 

2.4 Emerging links between the Hsp70 system and neurodegeneration in PD 

2.4.1 The CSPα-Hsc70-SGT complex and neurodegeneration in PD 

Cysteine-string protein α (CSPα) is an abundant protein localized in synaptic vesicles that 
ameliorates neurodegeneration in cellular and animal models (Johnson et al., 2010). It 
contains a Dna-J domain and has been shown to interact with Hsc70 and to increase its 

ATPase activity (Braun et al., 1996). On the other hand, CSPα was shown to assemble into an 
enzymatically active ternary complex with Hsc70 and SGT (small glutamine-rich 
tetratricopeptide repeat domain protein) with a likely regulatory function in secretory 

vesicles (Tobaben et al., 2001). CSPα has also been reported to interact with other 
chaperones, including Hsp90 (Sakisaka et al., 2002), Hip, Hop (Rosales-Hernandez et al., 
2009), and Hsp40 (Gibbs et al., 2009). 

CSPα dysfunction has been implicated in various pathologies, including memory 
impairment, type-2 diabetes, cystic fibrosis, and HD (reviewed in (Johnson et al., 2010)). A 

few years ago, a link between CSPα and PD was also established (Chandra et al., 2005). The 

results of this study, performed using a transgenic mouse model, indicate that αSyn 

cooperates with CSPα in preventing neurodegeneration (Chandra et al., 2005). In a recent 

study (Sharma et al., 2011), the CSPα-Hsc70-SGT complex was found to bind to monomeric 
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SNAP-25, a pre-synaptic SNARE protein, and prevent its aggregation, thus promoting the 
formation of the SNARE complex involved in neuronal synapse. Interestingly, another 

recent study using a transgenic mouse model of αSyn aggregation with associated 
neurodegeneration, has shown that SNAP-25 is redistributed within synaptic terminals and 

the protein was found to colocalize with αSyn within intraneuronal aggregates (Garcia-

Reitbock et al., 2010).  These data raise the question whether aggregating αSyn might 

actually be sequestering CSPα involved in the CSPα-Hsc70-SGT complex, analogously to 
what was observed for aggregating huntingtin (Miller et al., 2003), and therefore enabling 
the aggregation of SNAP-25 in a PD scenario. 

2.4.2 The unfolded protein response (UPR) in PD 
The unfolded protein response (UPR) is a mechanism activated within the cell when the 

endoplasmic reticulum (ER) function is impaired and, as a result, unfolded proteins 

accumulate in the ER lumen (a process called ‘ER stress’). The ER-resident Hsp70 family 

member GRP78 (HSPA5/BiP) recognizes and binds to such unfolded proteins, which causes 

the release of UPR-activating factors (Rutkowski & Kaufman, 2004). To restore ER function, 

the UPR reduces protein translation and enhances the folding and processing capacities 

within ER. However, if the stress overwhelms the cell restoring capacity, the UPR induces 

apoptosis (Paschen & Mengesdorf, 2005). A few years ago, a mutation in the parkin gene 

was found to be related to familiar PD due to the impairment of its ubiquitin ligase function 

which results in protein accumulation within the ER lumen and leads to ER stress and 

apoptosis (Imai et al., 2001). More recently, a strong correlation between UPR activation and 

PD pathogenesis in PD patients was established (Hoozemans et al., 2007), suggesting a 

functional connection between αSyn and ER stress. In addition, it was found that 

overexpression of (Wt) ǂSyn triggers UPR in yeast (Cooper et al., 2006). A recent study has 

shown that αSyn is also found aggregated and accumulated within the ER lumen and 

induces UPR by binding to GRP78/BiP in cells, which could lead to apoptosis (Bellucci et 

al., 2011). Clearly, supplementary investigations are needed to determine the exact role of 

the UPR in the pathophysiology of PD. 

2.4.3 Mitochondrial dysfunction in PD 
In both familial and sporadic forms of PD, several mitochondrial alterations and increase of 

oxidative species are well recorded (Jellinger, 2010). The important role of mitochondrial 

pathology in PD is reflected by the specific and selective loss of mitochondrial complex I 

activity in the SN of PD patients (Valente et al., 2004). Results from a study with neuronal 

cell cultures indicate that this impairment is dependent on αSyn mitochondrial import and 

accumulation (Devi et al., 2008). Interestingly, a recent proteomic study revealed that 

expression of mortalin (HSPA9/mtHSP70/GRP75), a mitochondrial stress protein and 

member of the Hsp70 chaperone family which binds to DJ-1 and αSyn (Jin et al., 2007), is 

significantly decreased in PD brains (De Mena et al., 2009; Jin et al., 2006) as well as in a 

cellular model of PD (Jin et al., 2006). Moreover, specific coding mutational variants of the 

mortalin gene have been recently discovered in a few PD patients (Burbulla et al., 2010; De 

Mena et al., 2009). Finally, differential levels of mitochondrial mortalin were measured in Wt 

and A53T cellular models of PD (Pennington et al., 2010), suggesting a possible involvement 

of αSyn aggregation in PD-related mitochondrial dysfunction (Xie et al., 2010). 
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3. The Hsp70 machinery members as biomarkers of PD 

A biomarker is a naturally occurring molecule, gene, or characteristic by which a particular 

medical condition, disease, etc. can be identified. Despite the current relevance of 

identifying a biomarker for early diagnosis of PD and/or to follow up its progression, up to 

date there is no reliable biomarker available (Morgan et al., 2010; Nyhlen et al., 2010). 

Therefore, certain key proteins that are thought to be tightly linked to PD pathogenesis or 

progression, such as the members of the Hsp70 machinery discussed above, which could 

manifest changes in their expression levels in body fluids cells or alter their presence in 

body fluids in a PD scenario, could represent potential markers of disease development or 

predisposition. 

Currently, it is well established the most promising biomarkers for PD in cerebrospinal 

fluidic (CSF) are αSyn, DJ-1, amyloid ǃ, and the tau protein. These are the principal 

targets in the Parkinson’s Progression Markers Initiative, a public-private, large-scale 

study project that aims to identify biological markers of disease progression 

(www.PPMI-info.org). DJ-1, which is the only chaperone to be included in this study, is a 

mitochondrial chaperone which has been one of the most studied proteins for its 

potential use as a PD biomarker. However, results published thus far from 

measurements of DJ-1 in CSF (Hong et al., 2010) and serum from PD patients (Hong et 

al., 2010; Shi et al., 2010; Waragai et al., 2007) are somewhat controversial or inconsistent, 

which could probably be explained by the high DJ-1 protein level present in blood cells 

(Shi et al., 2010). 

Currently, it is well established that certain proteins, including members of the Hsp70 

family such as Hsp701A and 1B, display perturbed expression levels in the SN of PD 

brains (Hauser et al., 2005); however, changes in tissue expression levels are in principle 

not useful for an application as biomarkers. Recently, a significant decrease in whole 

blood mRNA levels of St13/Hip co-chaperone was reported for early PD patients, but not 

for AD patients or healthy controls (Scherzer et al., 2007). However, a second group 

reported no significant differences in the expression pattern of ST13 in early-stage PD 

patients, as compared to controls (Shadrina et al., 2010). This discrepancy could be 

attributed, at least in part, to heterogeneity in the criteria of diagnosing and classifying the 

individuals into groups and to the difficulty in establishing the actual onset of the disease. 

Yet another study found differences in HSPA8 (Hsc70) and HIP2 expression levels 

between PD patients and controls (Grunblatt et al., 2010). Other members of the Hsp70 

machinery are known to change their expression patterns in PD patients compared to 

healthy controls (Hauser et al., 2005). Unfortunately, these changes appear not specific or 

sufficient to differentiate between PD and other related neurodegenerative disorders 

(Hauser et al., 2005). This is probably due to the fact that the Hsp70 system plays a central 

role in maintaining cell proteostasis, which is perturbed in a variety of neurodegenerative 

diseases. 

Considering that PD is a complex pathology that involves several systems such as the stress 

response, the UPS, the immune system, etc., a unique biomarker might not be enough as a 

tool for diagnosis or follow-up of disease progression. Instead, there is general consensus 

that the use of a set of distinct parameters, such as protein expression profiles, age, 

symptoms and others, would probably be the best approach (Fasano et al., 2008; Grunblatt 

et al., 2010; Scherzer et al., 2007).  
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4. The Hsp70 system as a therapeutic tool for PD 

As described in this chapter, in the last few years it has become evident that HSPs play an 
important role in the initiation and progression of PD and other neurodegenerative diseases. 
This cumulative evidence has prompted the development of therapeutic tools based on the 
Hsp70 machinery. Different strategies have been tested to manipulate Hsp70 as a 
therapeutic approximation for PD and related neurodegenerative diseases (reviewed in 
Kalia 2010). Three general approaches have been explored, namely, to increase the 
intracellular activity of Hsp70, to overexpress Hsp70 and/or other co-chaperones, and to 
deliver chaperones or regulatory factors using cell-penetrating peptides (CPPs). 

4.1 Increasing the intracellular activity of Hsp70 
Theoretically, it should be feasible to control the activity of the cellular chaperone machinery 

by using different types of drugs. The mechanism of most of such chemical compounds is 

based on activating HSF-1, a key transcriptional regulator of the heat shock response (HSR) 

that activates the gene expression of inducible HSPs. One way of activating HSF-1 is by 

inhibiting Hsp90 activity; as a result, HSF-1 becomes active and increases the expression of 

inducible chaperones like HSPA1A/Hsp72 and others. Geldanamycin (GA) and its 

derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) are antibiotics with high 

affinity for the ATPase domain of Hsp90, which blocks its interaction with HSF-1 and 

subsequently allows its activation (Waza et al., 2006; Zou et al., 1998). GA prevents αSyn-

induced dopaminergic cell loss in cell culture (McLean et al., 2004) and in animal models of 

PD (Auluck et al., 2005; Shen et al., 2005), while the less toxic 17-AAG has also proven to be 

neuroprotective in PD cellular models (Danzer et al., 2011; Riedel et al., 2010) and in two 

animal models of PD-related neurodegenerative diseases (Fujikake et al., 2008; Waza et al., 

2005). Even though 17-AAG is currently under phase-II clinical trials as an anti-tumour drug 

(Pacey et al., 2010; Richardson et al., 2010; Solit et al., 2008), its use in patients with 

neurodegenerative diseases could be hampered by its toxicity and unavailability for oral 

administration (Pacey et al., 2010). Another family of inhibitors of Hsp90 activity, is SNX-

2112 and its analogues, which are orally available and present improved blood brain barrier 

(BBB) permeability. In particular, SNX-0723 was shown to prevent αSyn oligomer formation 

and αSyn-induced toxicity in cell culture (Putcha et al., 2010), and preclinical studies for 

cancer therapy are proving their safety (Zhai et al., 2011), although similar studies in 

neurodegenerative animal models are still needed. 

Other drugs are able to activate HSF-1 without inhibiting Hsp90 activity, which could 

represent a less toxic approximation for neurodegenerative pathologies. Arimoclomol, for 

example, has already been tested in phase I- and IIa-clinical trials for treating ALS, and 

shown to be safe and tolerable (Cudkowicz et al., 2008; Phukan, 2010). Another example is 

HSF-1A (Neef et al., 2010), shown to upregulate Hsp70 expression and to reduce poly-Q-

citotoxicity in cell and fly models of poly-Q neurodegenerative disorders (Neef et al., 

2010). Celastrol, yet a similar drug, and some structural relatives, appear as promising 

drugs due to their rapid kinetics and low EC50 (Westerheide et al., 2004), although further 

studies are needed. 

Besides these approaches, HSF-1 co-inducers could represent more tolerable drugs for therapy. 

These are molecules that partially activate HSF-1, reducing its activation threshold and often 

working in conjunction with secondary stress signals to fully induce HSR. Non steroidal anti-
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inflammatory drugs (NSAIDs) are well known co-inducers of HSR. For example, Sodium 

salicylate and Indomethacin induce HSF-1 DNA binding and reduce the temperature required 

for triggering the HSR (Jurivich et al., 1995; Lee et al., 1995). The association of NSAIDs use 

with a lower risk of common neurodegenerative diseases such as AD and PD has been 

analysed in several studies (Etminan et al., 2008; Gagne & Power, 2010). According to one 

hypothesis, this negative correlation could be due to continuous up-regulation of HSR and 

consequently continued cytoprotection against neurodegenereration (Westerheide et al., 2004). 

4.2 Overexpression of Hsp70 and/or related co-chaperones 
In principle, it should be possible to design a gene therapy approach for the treatment of PD 

and other conformational neurodegenerative diseases based on HSPs, considering the 

substantial number of reports having characterized the molecular pathways by which 

Hsp70 acts in the context of disease. Intriguingly, even though overexpression of Hsp70 has 

been shown to be protective in animal models of PD (Dong et al., 2005; Jung et al., 2008), a 

recent study in mouse indicates otherwise (Shimshek et al.). Up to date, one phase-I study in 

PD patients using recombinant Adeno-Associated Virus (AAV) to deliver aromatic 

aminoacid decarboxylase enzyme into the putamen, supports the proof-of-principle for the 

use of gene therapy in PD (Christine et al., 2009). With this precedent, gene therapy could 

potentially be employed to overexpress other chaperones and co-chaperones that may 

improve Hsp70 function and its neuroprotective properties. Indeed, recombinant AAV has 

been already used to transduce Hsp104 (Vashist et al., 2010), a non-mammalian chaperone, 

in a rat model of PD and proven to be neuroprotective by disaggregating protein inclusions 

and synergizing with endogenous Hsp70 (Lo Bianco et al., 2008). 

Given that co-chaperone BAG-5 is known as a negative regulator of Hsp70, downregulation 

of its expression has been tested in a mouse model of PD. In this study, direct expression in 

the SN by recombinant AAV delivery of BAG-5(DARA), a BAG-5 mutant which inhibits 

wild-type BAG-5 activity, resulted in increased dopaminergic neuron survival (Kalia et al., 

2004). Another possible approach to increase Hsp70 function by using gene therapy 

techniques could be gene silencing by RNA interference to knockdown Hsp70 

downregulators. Although these techniques have not been extensively tested for 

neurodegenerative therapy, they remain a potentially useful tool (Manfredsson et al., 2006). 

4.3 Chaperones or regulatory factors delivery using CPPs 
Cell penetrating peptides (CPPs) are the most recent approximation that shows promise 

towards increasing Hsp70 activity within cells. These are peptide motifs that allow cell 

transduction of macromolecules including functional full-length proteins. The basic domain 

of the trans-activator of transcription (TAT) from HIV-1 is the best known among CPPs and 

it has been shown that fusion with TAT allows proteins to penetrate cell membranes of 

several cell types and even to cross the BBB (Fawell et al., 1994; Schwarze et al., 1999). In the 

last few years, TAT-Hsp70 transduction has been reported to be neuroprotective against 

different kinds of stress in cell models (Lai et al., 2005; Nagel et al., 2008) as well as in a 

MPTP mouse model of PD (Nagel et al., 2008). In addition, transduction of TAT-Hsp40 has 

also been shown to be cytoprotective against oxidative stress in cells (Kim et al., 2008). 

Finally, transduction of HSF-1(+)-TAT, an HSF-1 mutant fused to TAT, capable of activating 

HSR by itself by itself, was demonstrated to induce to induce Hsp70 expression and to 
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protect cells against heat stress in vitro (Hou & Zou, 2009). Although further investigation is 

needed, CPPs tagging could prove a powerful tool in therapy against neurodegenerative 

diseases by allowing the efficient transduction of cytoprotective proteins and factors. 

5. Conclusions 

There is strong experimental support to propose the Hsp70 chaperone system as a key 

player in pathogenesis and progression of PD. This central role seems to be especially linked 

to αSyn, although alternative connections between the Hsp70 machinery and different 

pathogenic mechanisms underlying PD might exist. Up to this point, there is substantial 

evidence supporting an active role of Hsp70 in well established PD-related processes. First, 

in the inhibition or modulation of αSyn aggregation pathway that results in the formation of 

LBs and the suppression of αSyn-mediated toxicity to cells that leads to neurodegeneration. 

Second, a prominent role in the control of the activity of the UPS machinery, the general 

protein degradation and disposal system in the cell. And third, a central role in CMA, which 

handles the lysosomal degradation of selected cytosolic proteins, including αSyn. In 

addition, emerging mechanisms for Hsp70 in relation to PD include its participation in the 

CSPα-Hsc70-SGT complex in the neuron, and the increasing attention paid to the UPR and 

mitochondrial dysfunction processes in PD, both of which rely on Hsp70. 

The accumulated studies thus far suggest that Hsp70 chaperone is a highly versatile protein 

whose anti-aggregation activity seems to involve different interactions and the formation of 

transient and highly dynamic complexes with various αSyn species, presumably early 

oligomers and probably monomers, along the aggregation pathway. This activity can be 

certainly modulated by the presence of nucleotides and by certain co-chaperones, in 

particular, Hip. Clearly, further in vitro and in cell studies with Hsp70 and co-chaperones, to 

better understand the full molecular mechanism of mammalian Hsp70 in managing αSyn 

aggregation, are needed. 

As a biomarker of PD, Hsp70 seems not to represent a good candidate itself, probably due to 

its central role in maintaining cellular proteostasis which is perturbed in several 

amyloidoses and related diseases. However, the Hsp70 co-chaperone Hip might represent a 

potentially useful biomarker for early diagnosis of PD, although more studies are needed in 

this direction. Given that PD is a complex disease, a ‘complex biomarker’ (i.e. composed of 

various markers) appears to be the only reliable option. Finally, the Hsp70 machinery can be 

indirectly enhanced by HSF-1 pharmacological activation, which represents one of the most 

promising therapeutic approaches for treating this complex and highly debilitating disease. 
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