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1. Introduction

The problem of object tracking has been a subject of numerous studies and has gained
considerable interest (Aghajan & Cavallaro (2009); Gandhi & Trivedi (2007)) in the light of
surveillance (Hu et al. (2004); Loza et al. (2009)), pedestrian protection systems (Forsyth et al.
(2006); Gerónimo et al. (2010); Smith & Singh (2006)), vehicular traffic management, human
vision systems (Chen & Yang (2007)) and others. The methods for object tracking can be
subdivided into two main groups: deterministic (Bradski (1998); Cheng (1995); Comaniciu &
Meer (2002); Comaniciu et al. (2000; 2003)) and probabilistic (e.g., Pérez et al. (2004)) within
which the Bayesian techniques are the most prominent.
Most video tracking techniques are region based which means that the object of interest is
contained within a region, often of a rectangular or circular shape. This region is then tracked
in a sequence of video frames based on certain features (or their histograms), such as colour,
texture, edges, shape, and their combinations (Brasnett et al. (2005; 2007); Pérez et al. (2004);
Triesch & von der Malsburg (2001)).
This book chapter addresses the problem of object tracking in video sequences by using
the recently proposed structural similarity-based image distance measure (Wang et al.,
2005a; Wang & Simoncelli, 2004). Advantages of the Structural SIMilarity (SSIM) measure
are its robustness to illumination changes and ability to extract the structural information
from images and video frames. Real world videos are often recorded in unfavourable
environments, for example with low or variable light exposure due to the weather conditions.
These factors often cause undesired luminance and contrast variations in videos produced by
optical cameras (e.g. the object entering dark or shadowy areas) and by Infrared (IR) sensors
(due to varying thermal conditions or insufficient exposure of the object). Moreover, due to
the presence of spurious objects or backgrounds in the environment, real-world video data
may lack sufficient colour information needed to discriminate the tracked object against its
background.
The commonly applied tracking techniques relying on colour and edge image features
represented by histograms are often prone to failure in such conditions. In contrast, the
SSIM reflects the distance between two video frames by jointly comparing their luminance,
contrast and spatial characteristics and is sensitive to relative rather than absolute changes in
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the video frame. It replaces histograms used for calculation of the measurement likelihood
function within a particle filter. We demonstrate that it is a good and efficient alternative to
histogram-based tracking. This work builds upon the results reported in Loza et al. (2006;
2009) with more detailed investigation including further extensions of the proposed method.
The remaining part of the book chapter is organised in the following way. Section 2 presents
an overview of the main (deterministic and probabilistic) tracking approaches and outlines the
Bayesian tracking framework. Section 3 presents the proposed approach, followed in Section
4 by the results obtained with real video data and Section 5 summarises the results and open
issues for future research.

2. Video tracking overview

2.1 Deterministic methods

In this chapter an overview of selected deterministic & probabilistic tracking techniques is
presented. Within the group of deterministic methods the mean shift (MS) algorithm (Cheng
(1995); Comaniciu & Meer (2002); Comaniciu et al. (2000; 2003)) is one of the most widely
used. The MS algorithm originally proposed by Fukunaga & Hostetler (1975) was further
extended to computer vision problems in (Comaniciu & Meer (2002); Comaniciu et al. (2000)).
It is a gradient based, iterative technique that uses smooth kernels, such as Gaussian or
Epanechnikov for representing a probability density function. The similarity between the
target region and the target candidates in the next video frame is evaluated using a metric
based on the Bhattacharyya coefficient (Aherne et al. (1990)). The MS tracking algorithm
from Comaniciu & Meer (2002) is a mode-finding technique that locates the local maxima
of the posterior density function. Based on the mean-shift vector, utilised as an estimate
of the gradient of the Bhattacharyya function, the new object state estimate is calculated.
The accuracy of the mean shift techniques depends on the kernel chosen and the number
of iterations in the gradient estimation process. One of the drawbacks of the MS technique is
that sometimes local extrema are found instead of the global one. Moreover, the MS algorithm
faces problems with multimodal probability density functions which can be overcome by
some of the Bayesian methods (sequential Monte Carlo methods).
The MS algorithm has been combined with particle filtering techniques and as a result kernel
particle filters (Chang & Ansari (2003; 2005)) and hybrid particle filters (Maggio & Cavallaro
(2005)) were proposed combining the advantages of both approaches. The MS is applied to the
particles in order to move them into more likely regions and hence the performance of these
hybrid particle filters is significantly improved. Interesting implementation of this scheme has
been proposed in (Cai et al., 2006) where the data association problem is formulated and the
MS algorithm is “embedded seamlessly” into the particle filter algorithm: the deterministic
MS - induced particle bias with a superimposed Gaussian distribution is considered as a new
proposal distribution. Other related hybrid particle filters combined with the MS have been
proposed in (Bai & Liu (2007); Cai et al. (2006); Han et al. (2004); Shan et al. (2007)).

2.2 Bayesian tracking framework

Bayesian inference methods (Doucet et al. (2001); Isard & Blake (1998); Koch (2010); Pérez
et al. (2004); Ristic et al. (2004)) have gained a strong reputation for tracking and data fusion
applications, because they avoid simplifying assumptions that may degrade performance
in complex situations and have the potential to provide an optimal or sub-optimal
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solution (Arulampalam et al. (2002); Khan et al. (2005)). In case of the sub-optimal solution,
the proximity to the theoretical optimum depends on the computational capability to execute
numeric approximations and the feasibility of probabilistic models for target appearance,
dynamics, and measurements likelihoods.
In the Bayesian tracking framework the best posterior estimate of the state vector xk ∈ R

nx

is inferred from the available measurements, z1:k = {z1, . . . ,zk}, based on derivation of the
posterior probability density function (pdf) of xk conditioned on the whole set of observations:
p(xk|z1:k). Assuming that the posterior pdf at time k − 1 (the initial pdf) is available, the prior
pdf of the state at time k is obtained via the Chapman-Kolmogorov equation:

p(xk|z1:k−1) =
∫

Rnx

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (1)

where p(xk|xk−1) is the state transition probability. Once the sequence z1:k of measurements
is available, the posterior pdf p(xk|z1:k) is recursively obtained according to the Bayes update
rule

p(xk|z1:k) =
p(z1:k|xk)p(xk|z1:k−1)

p(z1:k|z1:k−1)
(2)

where p(z1:k|z1:k−1) is a normalising constant and p(z1:k|xk) is the measurement likelihood.
Thus, the recursive update of p(xk|z1:k) is proportional to the measurement likelihood

p(xk|z1:k) ∝ p(z1:k|xk)p(xk|z1:k−1). (3)

Different strategies can be applied to estimate xk from this pdf. Commonly used estimators
of xk, include the maximum a posteriori (MAP) approach,

x̂k = arg max
xk

p(xk|z1:k), (4)

and the minimum mean squared error (MMSE) approach, giving an estimate which is
equivalent to the expected value of the state

x̂k =
∫

xk p(xk|z1:k)dxk. (5)

2.3 Particle filtering techniques for state vector estimation

Particle filtering (Arulampalam et al. (2002); Doucet et al. (2001); Isard & Blake (1996; 1998);
Pérez et al. (2004); Ristic et al. (2004)) is a method relying on sample-based reconstruction
of probability density functions. The aim of sequential particle filtering is to evaluate the
posterior pdf p(xk|z1:k) of the state vector xk, given a set z1:k of sensor measurements up to

time k. The quality (importance) of the ℓth particle (sample) of the state, x
(ℓ)
k , is measured by

the weight associated with it, W
(ℓ)
k . An estimate of the variable of interest can be obtained

by the weighted sum of particles (cf. (5) and (9)). The pseudo-code description of a generic
particle filter (PF) tracking algorithm is shown in Table 1.
Two major stages can be distinguished in the particle filtering method: prediction and update.
During prediction, each particle is modified according to the state model of the region of
interest in the video frame, including the perturbation of the particle’s state by means of
addition of white noise in order to simulate the effect of the random walk according to the
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Table 1. Pseudocode of the particle filter algorithm

Input: target state xk−1 (previous frame)
Output: target state xk (current frame)

Initialisation
k = 0, initialise x0.

Generate N samples (particles) {x
(ℓ)
0 }, ℓ = 1, 2, . . . , N, from the initial distribution p(x0).

Initialise weights W
(ℓ)
0 = 1/N.

• FOR k = 1 : Kframes

* FOR ℓ = 1, 2, . . . , N

Prediction

1. Sample the state from the object motion model

x
(ℓ)
k ∼ p(xk|x

(ℓ)
k−1). (6)

Update

2. Evaluate the importance weights based on the likelihood L(zk|x
(ℓ)
k ) of the cue from the

measurement zk

W
(ℓ)
k ∝ W

(ℓ)
k−1L(zk|x

(ℓ)
k ). (7)

* END FOR

Output

3. Normalise the weights of each particle

Ŵ
(ℓ)
k = W

(ℓ)
k /

N

∑
ℓ=1

W
(ℓ)
k . (8)

4. Compute the posterior mean state estimate of xk using the collection of samples

x̂k =
N

∑
ℓ=1

Ŵ
(ℓ)
k x̂

(ℓ)
k . (9)

Resampling

5. Estimate the effective number of particles Neff = 1/ ∑
N
ℓ=1

(
Ŵ

(ℓ)
k

)2
. If Neff ≤ Nthr (Nthr is

a given threshold) then perform resampling: multiply samples x
(ℓ)
k with high importance

weights Ŵ
(ℓ)
k and suppress samples with low importance weights, in order to introduce

variety and obtain N new random samples. Set W
(ℓ)
k = Ŵ

(ℓ)
k = 1/N.

• END FOR
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motion model p(xk|x
(ℓ)
k−1), (6). The prior pdf of the state at time k is obtained in prediction

stage via Chapman-Kolmogorov equation (1). Once a measurement zk is available, p(xk|z1:k)
is recursively obtained in the update step according to (3), or equivalently, (7). The likelihood

L(zk|x
(ℓ)
k ) is calculated for the respective image cue (e.g. colour). Consequently, the posterior

mean state is computed using the collection of particles (9).
An inherent problem with particle filters is degeneracy (the case when only one particle has
a significant weight). A resampling procedure helps to avoid this by eliminating particles
with small weights and replicating the particles with larger weights. Various approaches for
resampling have been proposed (see Doucet et al. (2001); Kitagawa (1996); Liu & Chen (1998);
Wan & van der Merwe (2001), for example). In this work, the systematic resampling method
(Kitagawa (1996)) was used with the estimate of the measure of degeneracy (Doucet et al.
(2001)) as given in (Liu & Chen (1998)) (see Table 1).

2.4 Importance sampling and proposal distributions

In the PF framework, the pdf of the object state, p(xk|z1:k), is represented by a set of samples

with associated weights {x
(ℓ)
k , W

(ℓ)
k }N

i=1 such that ∑
N
i=1 W

(ℓ)
k = 1. Then the posterior density

can be approximated as

p(xk|z1:k) ≈
N

∑
ℓ=1

W
(ℓ)
k δ(xk − x

(ℓ)
k ) (10)

based on the likelihood L(zk|x
(ℓ)
k ) (see the following paragraph for details of the likelihood)

of the measurement and particle weights. Here, δ(.) is the Dirac delta function. The particle
weights in (10) are updated based on the principle of importance sampling (Arulampalam
et al. (2002))

W
(ℓ)
k ∝ W

(ℓ)
k−1

p(zk|x
(ℓ)
k )p(x

(ℓ)
k |x

(ℓ)
k−1)

q(x
(ℓ)
k |x

(ℓ)
k−1,z1:k)

, (11)

where q(x
(ℓ)
k |x

(ℓ)
k−1,z1:k) is a proposal, called an importance density and p(zk|x

(ℓ)
k ) is the

measurement likelihood function. It has been assumed that q(.) is only dependent on x
(ℓ)
k−1

and zk. The most popular choice of the importance density is the prior, p(xk|xk−1). This
choice results in a simple implementation of the weight update stage (cf. (11))

W
(ℓ)
k ∝ W

(ℓ)
k−1 p(zk|x

(ℓ)
k ) . (12)

However, using the transition information alone may not be sufficient to capture the complex
dynamics of some targets. It has been shown that an optimal importance density is defined

as function of the state and a new measurement/additional information q(x
(ℓ)
k |x

(ℓ)
k−1,z1:k).

Therefore, in this work, the use of a mixture distribution containing additional information as
the importance density is proposed

q(x
(ℓ)
k |x

(ℓ)
k−1,z1:k) =

M

∑
m=1

αm fm(x
(ℓ)
1:k ,z1:k) (13)

where αm, ∑
M
m=1 αm = 1 are normalised weights of M components of the mixture. Among

possible candidates for fm are the prior, blob detection and data association distributions. For
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M = 1 and f1(x
(ℓ)
1:k ,z1:k) = p(x

(ℓ)
k |x

(ℓ)
k−1) the generic PF is obtained. Examples of such mixture

importance densities have been proposed in (Cai et al. (2006); Lu et al. (2009); Okuma et al.
(2004)), consisting in an inclusion of the Adaboost detection information and a modification
of the particle distribution with the use of a mode-seeking algorithm (M-S has been used). In
this case the ’proposal distribution’ has been defined as a mixture distribution between the
prior and detection distributions:

q(x
(ℓ)
k |x

(ℓ)
k−1,z1:k) = αpada(x

(ℓ)
k |zk) + (1 − α)p(x

(ℓ)
k |x

(ℓ)
k−1) (14)

In (Cai et al., 2006) the application of M-S optimisation to the particles is considered as a new
proposal distribution:

q̆(x̆
(ℓ)
k |x

(ℓ)
k−1,z1:k) = N (x̆

(ℓ)
k |x̃

(ℓ)
k , Σ) , (15)

where x̃
(ℓ)
k are M-S-modified samples of the original proposal distribution q and

N (x̆
(ℓ)
k |x̃

(ℓ)
k , Σ) is a Gaussian distribution, with mean x̃

(ℓ)
k fixed covariance Σ, superimposed

on the results of M-S. The particle weights are then updated accordingly, i.e.

W
(ℓ)
k ∝ W

(ℓ)
k−1

p(zk|x̆
(ℓ)
k )p(x̆

(ℓ)
k |x

(ℓ)
k−1)

q(x̆
(ℓ)
k |x

(ℓ)
k−1,z1:k)

. (16)

3. The structural information approach

The recently proposed approach combining the SSIM and particle filtering for video tracking
has been shown in (Loza et al., 2009) to outperform similar methods using the conventional
colour or edge histograms and Bhattacharyya distance. However, the structural similarity
combined with the particle filtering approach results in increased computational complexity
of the algorithm due to the necessity of extracting the structural information at each point
of the state space. In this book chapter, novel optimised approaches based on the SSIM are
proposed for video tracking. Firstly, a fast, deterministic version of the SSIM-based tracking
algorithm is developed. The deterministic tracking algorithm estimates the state of the
target (location and size) combining a gradient ascent procedure with the structural similarity
surface of the current video frame, thus avoiding computationally expensive sampling of
the state space. Next, an optimisation scheme is presented, based on a hybrid PF with a
deterministic mode search, applied to the particle distribution.

3.1 Structural similarity measure

The proposed method uses a similarity measure computed directly in the image spatial
domain. This approach differs significantly from other particle filtering algorithms, that
compare image distributions represented by their sample histograms (Nummiaro et al. (2003);
Pérez et al. (2004); Shen et al. (2003)).
Although many simple image similarity measures exist (for example, mean square error,
mean absolute error or peak signal-to-noise ratio), most of these have failed so far to capture
the perceptual similarity of images/video frames under the conditions of varied luminance,
contrast, compression or noise (Wang et al. (2004)). Recently, based on the premise that
the HVS is highly tuned to extracting structural information, a new image metric has been
developed, called the Structural SIMilarity (SSIM) index (Wang et al. (2004)). The SSIM index,
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between two images, I and J is defined as follows:

S(I, J) =

(
2µIµJ + C1

µ2
I + µ2

J + C1

)(
2σIσJ + C2

σ2
I + σ2

J + C2

)(
σI J + C3

σIσJ + C3

)
(17)

= l(I, J) c(I, J) s(I, J),

where C1,2,3 are small positive constants used for the numerical stability purposes, µ denotes
the sample mean

µI =
1

L

L

∑
j=1

Ij, (18)

σ denotes the sample standard deviation

σI =

√√√√ 1

L − 1

L

∑
j=1

(Ij − µI)2 (19)

and

σI J =
1

L − 1

L

∑
j=1

(Ij − µI)(Jj − µJ) (20)

corresponds to the sample covariance. The estimators are defined identically for images I and
J, each having L pixels. The image statistics are computed in the way proposed in (Wang et al.
(2004)), i.e. locally, within a 11 × 11 normalised circular-symmetric Gaussian window.
For C3 = C2/2, (17) can be simplified to obtain

S(I, J) =

(
2µIµJ + C1

µ2
I + µ2

J + C1

)(
2σI J + C2

σ2
I + σ2

J + C2

)
. (21)

3.2 Selected properties of the SSIM

The three components of (17), l, c and s, measure respectively the luminance, contrast and
structural similarity of the two images. Such a combination of image properties can be seen as
a fusion of three independent image cues. The relative independence assumption is based on
a claim that a moderate luminance and/or contrast variation does not affect structures of the
image objects (Wang et al. (2005a)).
In the context of the multimodal data used in our investigation, an important feature of the
SSIM index is (approximate) invariance to certain image distortions. It has been shown in
(Wang et al. (2005a; 2004)), that the normalised luminance measurement, l, is sensitive to the
relative rather than to absolute luminance change, thus following the masking feature of the
Hue, Saturation, Value (HVS).
Similarly, the contrast comparison function, c, is less sensitive to contrast changes occurring
in images with high base contrast. Finally, the structure comparison, s, is performed on
contrast-normalised signal with mean luminance extracted, making it immune to other
(non-structural) distortions.
These particular invariance properties of the SSIM index make it suitable for the use with
multimodal and surveillance video sequences. The similarity measure is less sensitive to
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the type of global luminance and contrast changes produced by infrared sensors (results of
varied thermal conditions or exposure of the object) and visible sensors (for example, the
object entering dark or shadowy areas or operating in variable lighting conditions). Moreover,
the structure comparison is expected to be more reliable in scenarios when spurious objects
appear in the scene or when there is not enough discriminative colour information available.
The latter may be the result of the tracked object being set against background of similar colour
or when background-like camouflage is deliberately being used.
It can easily be shown that the measure defined in (17) is symmetric, i.e.

S(I, J) = S(J, I) (22)

and has a unique upper bound

S(I, J) ≤ 1, S(I, J) = 1 iff I = J. (23)

One way of converting such a similarity S(I, J) into dissimilarity D(I, J) is to take (Loza et al.
(2009); Webb (2003))

D(I, J) =
1

|S(I, J)|
− 1. (24)

Here a more natural way Webb (2003),

D(I, J) = (1 − S(I, J))/2. (25)

is preferred, however, as it maps the dissimilarity into [0, 1] interval (0 when the images are
identical). The measure (25) satisfies non-negativity, reflexivity and symmetry conditions.
Although sufficient for our purposes, this dissimilarity measure is not a metric, as it does not
satisfy the triangle condition. In the following Section we present a method of evaluating the
likelihood function, based on the structural similarity between two greyscale images.

3.3 The structural information particle filter tracking algorithm

Below the main constituents of the structural similarity-based particle filter tracking algorithm
(SSIM-PF), such us motion, likelihood and target model, are described. A pseudocode of the
algorithm is shown in Table 2.

3.3.1 Motion model

The motion of the moving object can be modelled by the random walk model,

xk = Fxk−1 + vk−1, (26)

with a state vector xk = (xk, yk, sk)
T comprising the pixel coordinates (xk, yk) of the centre of

the region surrounding the object and the region scale sk; F is the transition matrix (F = I in
the random walk model) and vk is the process noise assumed to be white, Gaussian, with a
covariance matrix

Q = diag(σ2
x , σ2

y , σs
2). (27)

The estimation of the scale permits adjustment of the region size of the moving objects, e.g.,
when it goes away from the camera, when it gets closer to it, or when the camera zoom
varies. Depending on the type of the tracking object and the environment in which tracking is
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Table 2. Pseudocode of the SSIM-based particle filter algorithm

Input: target state xk−1 (previous frame)
Output: target state xk (current frame)

Initialisation
k = 0, initialise tracked region at x0.

Generate N samples (particles) {x
(ℓ)
0 }, ℓ = 1, 2, . . . , N, from the initial distribution p(x0).

Initialise weights W
(ℓ)
0 = 1/N.

• FOR k = 1 : Kframes

* FOR ℓ = 1, 2, . . . , N

Prediction

1. Sample the state from the object motion model x
(ℓ)
k ∼ p(xk|x

(ℓ)
k−1).

Update

3. Evaluate the importance weights according to 29:

W
(ℓ)
k ∝ W

(ℓ)
k−1L(zk|x

(ℓ)
k ). (28)

* END FOR

Output

4. Normalise the weights of each particle (8)

5. Compute the posterior mean state estimate of xk (9).

Resampling

6. Perform resampling as described in Table 1

• END FOR

performed, the state vector can be extended to include, for example, the acceleration variables,
and the fixed ratio condition can be relaxed allowing independent changes of the height
and the width of the object. However, increased dimensionality of the state vector requires
finer sampling of the state space, and thus undesirably high number of particles, which may
preclude real-time implementation of the tracking system.

3.3.2 Likelihood model

The distance between the reference (target) region tre f and the current region tk is calculated
by the similarity measure (25). The normalised distance between the two regions is then
substituted into the likelihood function, modelled as an exponential:

L(zk|x
(ℓ)
k ) ∝ exp

(
−D2(tref, tk)/D2

min

)
, (29)
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where Dmin = min
x

{D(tref, tk)}. Here z denotes the measurement vector, although with

the SSIM a measurement in explicit form is not available. This smooth likelihood function,
although chosen empirically by (Pérez et al. (2004)), has been in widespread use for a variety
of cues ever since. The similarity-based distance proposed in this work is an alternative to the
Bhattacharyya distance D, commonly used to calculate similarity between target and reference
objects, described by their histograms h:

D(tref, tk) =

(
1 −

B

∑
i=1

href,ihk,i

)0.5

. (30)

where the tracked image regions are described by their colour (Nummiaro et al. (2003)) or
texture histograms (Brasnett et al. (2007)). The likelihood function is then used to evaluate
the importance weights of the particle filter, to update the particles and to obtain the overall
estimate of the centre of the current region.

3.3.3 Target model

The tracked objects are defined as image regions within a rectangle or ellipsoid specified
by the state vector (i.e. spatial location and scale). In the particle filtering framework as
specified in Table 1, a region corresponding to each particle, centred at location (x, y) and
resized according to the scale parameter of the state, is computed. The extracted region is then
compared to the target region using the distance measure D (25). The structural properties of
the region extracted through SSIM (17) are related with the estimates of the centre of the region
of interest and are used directly to calculate the distance D in (29) between the reference and
current region as shown in (25).

3.4 Differential SSIM tracking algorithm

In the SSIM-PF tracking algorithm, described in Section 3.3, the SSIM is computed a large
number of times, i.e. for each particle. This makes the SSIM-PF method computational
expensive when a large number of particles is required. In this section, a low-complexity,
deterministic alternative to the SSIM-PF is proposed, namely Differential SSIM-based tracker
(DSSIM). The proposed algorithm tracks the object by analysing the gradient SSIM surface
computed between the current video frame and the object model. This deterministic iterative
gradient search procedure uses the structural information directly and does not rely on the
probabilistic framework introduced in Section 2.2.
In order to achieve a computationally efficient tracking performance, whilst retaining the
benefits of the original measure, a differential SSIM formula is proposed as follows. The object
is tracked in the spatial domain of the subsequent video frames by maximising the measure
(21) with respect to location x, based on its gradient. In order to simplify the subsequent
derivation, we choose to analyse the logarithm of (21) by defining a function ρ(x):

ρ(x) = s log(|S(x)|) (31)

= s log (2µIµJ + C1)− log (µ2
I + µ2

J + C1) + log (2|σI J |+ C2)−

log (σ2
I + σ2

J + C2). (32)

32 Object Tracking

www.intechopen.com



Table 3. Pseudocode of the proposed DSSIM tracking algorithm

Input: target state xk−1 (previous frame)
Output: target state xk (current frame)

Initialisation

k = 0, initialise tracked region at x0.
• FOR k = 1 : Kframes

0. Initialise x
(0)
k = x

(1)
k = xk−1

* WHILE S(x
(1)
k ) ≥ S(x

(0)
k )

1. Assign x
(0)
k = x

(1)
k

2. Calculate ∇ρ(x
(0)
k ) according to (39)

3. Assign x
(1)
k the location of a pixel in x

(0)
k 8-connected neighbourhood, along the

direction of ∇ρ(x
(0)
k )

* END WHILE

Output

4. Assign target location in the current frame xk = x
(0)
k

• END FOR

where S(x) denotes the similarity (21) between the object template J and a current frame
image region I centered around the pixel location x = (x, y) and s = sign (S(x)). After a
simple expansion of (31) we obtain the expression for the gradient of the function ρ(x)

∇ρ(x) = s
(

A1∇µI + A2∇σ2
I + A3∇σI J

)
, (33)

where

A1 =
2µJ

2µIµJ + C1
−

2µI

µ2
I + µ2

J + C1
, (34)

A2 = −
1

σ2
I + σ2

J + C2
, A3 =

1

2σI J + C2
. (35)

The gradients ∇µI and ∇σ2
I can be calculated as follows

∇µI =
1

L

L

∑
i=1

∇Ii , (36)

∇σ2
I =

2

L − 1

L

∑
i=1

(Ii − µI)∇Ii . (37)
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A simplified expression for the covariance gradient, ∇σI J , can be obtained, based on the

observation that ∑
L
i=1(Ji − µJ) = 0:

∇σI J =
1

L − 1

L

∑
i=1

(Ji − µJ)(∇Ii −∇µI)

=
1

L − 1

L

∑
i=1

(Ji − µJ)∇Ii

(38)

Finally, by defining the gradient of the pixel intensity as ∇Ii =
(

∂Ii
∂x , ∂Ii

∂y

)T
, the complete

formula for ∇ρ(x) is obtained

∇ρ(x) = s
L

∑
i=1

(
A1

L
+

2A2(Ii − µI) + A3(Ji − µJ)

L − 1

)
∇Ii . (39)

The proposed algorithm, employing the gradient DSSIM function (39) is summarised in

Table 3. In general terms, the estimated target location, x
(0)
k is moved along the direction of

the structural similarity gradient by one pixel in each iteration until no further improvement is
achieved. The number of SSIM and gradient evaluations depends on the number of iterations
needed to find the maximum of the measure S(x) and on average does not exceed 5 in our
experiments. This makes our approach significantly faster than the original SSIM-PF. It should
be noted that although the differential framework of the algorithm is based on a reformulation
of the scheme proposed in (Zhao et al. (2007)), it utilises a distinct similarity measure.

3.5 The hybrid SSIM-PF tracker algorithm

An extension to the SSIM-PF, by deterministically modifying each particle according to
the local structural similarity surface, referred to as hybrid SSIM-PF, is proposed in this
correspondence. In the DSSIM procedure described in Section 3.4, the estimated target

location, x
(0)
k is moved along the direction the structural similarity gradient by one pixel in

each iteration until no further improvement is achieved, or the limit of iterations is reached.
In the hybrid scheme proposed here this step is performed for each particle, following its
prediction (step 1. in Table 1). In accordance with the principle of importance sampling (see
Section 2.4), the prior distribution p resulting from the particle prediction and the proposal
distribution q centred on the optimised position of the particle in the state space, are used to
re-calculate the weight of a resulting particle x̃(ℓ):

W
(ℓ)
k ∝ W

(ℓ)
k−1

L(zk|x̃
(ℓ)
k )p(x̃

(ℓ)
k |x

(ℓ)
k−1)

q(x̃
(ℓ)
k |x

(ℓ)
k−1, zk)

. (40)

with the proposal distribution defined analogously to Lu et al. (2009)

q(x̃
(ℓ)
k |x̃

(ℓ)
k−1,zk) = αpDSSIM(x̃

(ℓ)
k |zk) + (1 − α)p(x̃

(ℓ)
k |x̃

(ℓ)
k−1) . (41)

In our implementation of this algorithm the mixing parameter is set to α = 0.5 resulting in
a uniform mixture distribution of two Gaussian distributions with identical covariances (27),
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Table 4. Pseudocode of the hybrid particle filter algorithm

Input: target state xk−1 (previous frame)
Output: target state xk (current frame)

Initialisation
k = 0, initialise tracked region at x0.

Generate N samples (particles) {x
(ℓ)
0 }, ℓ = 1, 2, . . . , N, from the initial distribution p(x0).

Initialise weights W
(ℓ)
0 = 1/N.

• FOR k = 1 : Kframes

* FOR ℓ = 1, 2, . . . , N

Prediction

1. Sample the state from the object motion model x
(ℓ)
k ∼ p(xk|x

(ℓ)
k−1).

Optimisation

2. Modify the particle associated with the state x
(ℓ)
k by performing steps 0.–4., Table 3.

Assign the modified state to x̃
(ℓ)
k .

Update

3. Evaluate the importance weights

W
(ℓ)
k ∝ W

(ℓ)
k−1

L(zk|x̃
(ℓ)
k )p(x̃

(ℓ)
k |x

(ℓ)
k−1)

q(x̃
(ℓ)
k |x

(ℓ)
k−1, zk)

. (42)

with proposal distribution q defined as in (41).

* END FOR

Output

4. Normalise the weights of each particle (8)

5. Compute the posterior mean state estimate of xk (9).

Resampling

6. Perform resampling as described in Table 1

• END FOR

centred on the motion model-predicted particle and its optimised version, respectively. The
proposed method is described in the form of a pseudocode in Table 4.
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 cross  man

 bushes_ir  bushes_vi  bushes_cwt

Fig. 1. Reference frames from the test videos

4. Tracking performance

4.1 Evaluation metrics

Tracking algorithms are usually evaluated based on whether they generate correct mobile
object trajectories. In addition to the commonly applied visual assessment of the tracking
performance, qualitative measures can be used to provide formal comparisons of the tested
algorithms. In our work, the Root Mean Square Error (RMSE)

RMSE(k) =

(
1

M

M

∑
m=1

(xk − x̂k,m)
2 + (yk − ŷk,m)

2

) 1
2

(43)

has been used as numerical measure of the performance of the developed techniques. In
(43) (x̂k,m, ŷk,m) stand for the upper-left corner coordinates of the tracking box determined
by both the object’s central position and the scale estimated by the tracking algorithm in the
frame k in m-th independent simulation (in our simulations M = 50 for probabilistic tracking
algorithms and M = 1 for DSSIM and MS). The corresponding ground truth positions of the
object, (xk, yk), have been generated by manually tracking the object.

4.2 Video sequences

The performance of our method is demonstrated over various multimodal video sequences,
in which we aim to track a pre-selected moving person. The sequence cross (5 sec duration),
taken from our multimodal database The Eden Project Multi-Sensor Data Set (2006), contains
three people walking rapidly in front of a stationary camera. The main difficulties posed
by this sequence are: the colour similarity between the tracked object and the background
or other passing people, and a temporal near-complete occlusion of the tracked person by a
passer-by.
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Seq. mean RMSE std RMSE
name colour edges col.&edges SSIM colour edges col.&edges SSIM

cross 150.5 77.4 39.6 8.3 98.4 70.1 58.2 5.1

man 71.5 27.7 48.4 8.0 46.1 23.7 34.3 6.5

bushes_ir 71.9 30.7 26.9 21.0 40.8 9.6 7.8 7.5

bushes_vi 98.4 36.0 36.4 19.1 13.1 15.7 16.7 7.1

bushes_cwt 92.6 45.4 32.0 20.7 54.6 21.0 12.1 7.5

Table 5. The performance evaluation measures of the tracking simulations

The sequence man (40 sec long), has been obtained from PerceptiVU, Inc. (n.d.). This is a video
showing a person walking along a car park. Apart from the object’s similarity to the nearby
cars and the shadowed areas, the video contains numerous instabilities. These result from
a shaking camera (changes in the camera pan and tilt), fast zoom-ins and zoom-outs, and a
altered view angle towards the end of the sequence.
The three multimodal sequences bushes (The Eden Project Multi-Sensor Data Set (2006)), contain
simultaneous registered infrared (ir), visual (vi) and complex wavelet transform fused (cwt,
see Lewis et al. (2007) for details) recordings of two camouflaged people walking in front of a
stationary camera (10 sec). The tracked individual looks very similar to the background. The
video contains changes in the illumination (the object entering shadowy areas) together with
nonstationary surroundings (bushes moved by strong wind). The reference frames used in
tracking are shown in Figure 1.

4.3 Comparison of tracking cues

In this section the commonly used tracking cues (colour, edge histograms and their
combination (Brasnett et al. (2007); Nummiaro et al. (2003)) ) are compared with the cue based
on the structural similarity information. In order to facilitate easy and fair comparison the cues
are evaluated in the same PF framework with identical initialisation and common parameters.
The reference targets shown in Figure 1 were tracked in 50 Monte Carlo simulations and then
the tracking output of each cue has been compared to the ground truth. The exemplary frames
showing the tracking output are given in Figures 2–4 and the mean of RMSE and its standard
deviation (std) were computed and are presented in Table 5.
From inspection of the video output in Figures 2–4 and the tracking error statistics in Table 5 it
can clearly be seen that the SSIM-based method outperforms the other methods in all instances
while never loosing the tracked object. The colour-based PF algorithm is the most prone to fail
or give imprecise estimates of the object’s state. Combining edge and colour cues is usually
beneficial, however in some cases (sequences man and bushes_vi) the errors of the colour-based
PF propagate through the performance of the algorithm, making it less precise than the PF
based on edges alone. Another observation is that the ‘structure’ tracking algorithm has
been least affected by the modality of bushes and the fusion process, which demonstrates the
robustness of the proposed method to luminance and contrast alterations.
A closer investigation of the selected output frames illustrates the specific performance of the
different methods. Figures 2–4 show the object tracking boxes constructed from the mean
locations and scales estimated during the tests. Additionally, the particles and object location
obtained from one of the Monte Carlo trials are shown. Since very similar performance has
been obtained for all three bushes videos, only the fused sequence, containing complementary
information from both input modalities, is shown. The visual difference between contents of
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Fig. 2. Example video frames with average output of the tracking algorithm (solid line
rectangle), a single trial output (dashed line rectangle and particles) superimposed, sequence
cross

the input bushes videos (colour information, a person hidden in shaded area) can be seen by
comparing the reference frames in Figure 1.
In the sequence cross, Figure 2, the ‘colour’ and ‘edges’ tracking algorithms are distracted by
the road sign, which eventually leads to the loss of the object. Then, the first non-occluding
passer-by causes the ‘colour&edges’ cue tracking algorithm to loose the object (frame 65). The
‘structure’ tracking technique is not distracted even by the temporary occlusion (frame 76).
The shaking camera in the sequence man (Figure 3, frame 162), has less effect on the ‘structure’
tracking technique than on the other compared algorithms, which appear to choose the wrong
scale of the tracking box. Moreover, the other considered tracking algorithms do not perform
well in case of similar dark objects appearing close-by (shadows, tyres, frame 478, where the
‘colour’ tracking algorithm permanently looses object) and rapid zoom-in (frame 711) and
zoom-out of the camera (frame 790). Our method, however, seems to cope well with both
situations. It should be noted, however, that ‘colour&edges’ (and ‘edges’) based algorithms
show a good ability of recovering from some of the failings.
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Fig. 3. Example video frames with average output of the tracking algorithm (solid line
rectangle), a single trial output (dashed line rectangle and particles) superimposed, sequence
man

Similarly, in the multimodal sequence bushes, Figure 4, the proposed ‘structure’ tracking
algorithm is the most precise and the ‘colour’ tracking algorithm the least precise. The use
of the fused video, although resulting in slightly deteriorated performance of the ‘edges’
based tracking algorithm, can still be motivated by the fact that it retains complementary
information useful both for the tracking algorithm and a human operator (Cvejic et al. (2007);
Mihaylova et al. (2006)): contextual information from the visible sequence and a hidden object
location from the infrared sequence.
A single-trial output shown in Figures 2–4 exemplifies the spread of the spatial distribution
of the particles. Typically, in the ‘structure’ tracking technique, particles are the most
concentrated. Similar features can be observed in the output of the ‘colour&edges’ tracking
algorithm. The particle distribution of the remaining PF tracking algorithms is much more
spread, often attracted by spurious objects (see Figures 2 and 3, in particular).
It should also be noted that, the tracking performance varies between realisations, often giving
different results compared with the output averaged over all Monte Carlo trials. Also in this
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Fig. 4. Example video frames with average output of the tracking algorithm (solid line
rectangle), a single trial output (dashed line rectangle and particles) superimposed, sequence
bushes_cwt

respect the proposed method has been observed to be the most consistent, i.e., its results had
the lowest variation, as illustrated by the low values of std RMSE in Table 5.

4.4 Comparison of SSIM-based probabilistic and deterministic techniques

In this section the probabilistic tracking SSIM-PF (Section 3.3) is compared with its
deterministic counterpart, DSSIM-PF (Section 3.4). Since the main motivation for
development of DSSIM technique was the reduction of the computational complexity, the
algorithms are also evaluated with respect to their execution speed and therefore the rate at
which the video frames are processed by the tracking algorithms, measured as frames per
second (FPS), has been included in the results shown in Table 6. The proposed algorithms
have been compared with another deterministic technique, the MS algorithm (Comaniciu &
Meer (2002)). Analogously to PF-based methods, the MS and DSSIM algorithms are made
scale-adaptive, by varying the object size by 5% and choosing the size giving the best match
in terms of the similarity measure used.
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Seq. Image size Speed (fps) Mean RMSE (pixels) std RMSE (pixels)
name (pixels) MS SSIM-PF DSSIM MS SSIM-PF DSSIM MS SSIM-PF DSSIM
cross 720 × 576 27 13 71 37.3 8.3 5.6 62.2 5.1 4.3
man 320 × 240 109 53 315 18.2 8.0 7.0 13.1 6.5 4.9

Table 6. The performance evaluation measures of the tracking simulations

Based on the performance measures in Table 5, it can be concluded that DSSIM outperforms
the MS and SSIM-PF, both in terms of the processing speed and the tracking accuracy. It also
appears to be more stable than the other two methods (lowest std). Although the example
frames in Figure 5 reveal that in a number of instances the methods perform comparably, it
can be seen that DSSIM method achieves the overall best performance in most of the frames.
Admittedly, the difference between the accuracy and the stability of SSIM-PF and DSSIM is
not large in most cases, however, in terms of the computational complexity, DSSIM method
compares much more favourably with the other two techniques. The average tracking speed
estimates were computed on PC in the following setup: CPU clock 2.66 GHZ, 1G RAM, MS
and DSSIM requiring on average 20 and 5 iterations, respectively, and PF using 100 particles.
In terms of the relative computational efficiency, the proposed method has been found to be
approximately four times faster than SSIM-PF and twice as fast as MS.
The exemplary frames in Figure 5, where the ’difficult’ frames have been selected, offer more
insight into the performance and robustness of the algorithms. In the cross sequence, neither
SSIM-PF nor DSSIM are distracted by the temporary occlusion of the tracked person by other
passer-by, whereas the MS algorithm locks onto a similar object moving in the opposite
direction. Likewise, although all the three algorithms manage to follow the target in man
sequences, the gradient structural similarity method identifies the scale and the position of
the object with the best accuracy.

4.4.1 Performance evaluation of the extension of the SSIM-based tracking algorithm

Below, we present a performance analysis of the hybrid structural similarity-based PF
algorithm. For the sake of completeness, six competing algorithms has been tested and
compared: colour-based PF algorithm COL-PF, SSIM-PF, their hybridised versions, hybrid
SSIM-PF-DSSIM (Section 3.5) and hybrid COL-PF-MS (based on procedure proposed in (Lu
et al. (2009))), and two deterministic procedures themselves (DSSIM and MS). A discussion of
the results based on the visual observation of tracking output in the cross sequence is provided
below and the specific features of the algorithms tested are pointed out. Figure 6 presents the
extracted frames of the output of the six tracking algorithms.
It should be noted that in order to illustrate the benefit of using the optimisation procedures,
a very low number of the particles for PF-based methods has been chosen (20 for SSIM-based
and 30 for colour-based PF). Consequently, it allowed us to observe whether the resulting
tracking instability and failures are partially mitigated by the use of the optimisation
procedures. Moreover, since the optimisation procedures are much faster than PFs, such a
combination does not increase the computational load considerably. On the contrary, the
appropriate combination of the two methods, results in a lower number of the particles
required and thus reducing the processing time. Conversely, it can be shown that, a
non-optimised tracking algorithms can achieve a similar performance to the optimised
tracking algorithm utilising a larger number of particles and thus being more computationally
demanding.
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Fig. 5. Example video frames with output of the tracking algorithm output superimposed:
DSSIM solid blue rectangle, SSIM-PF dashed green rectangle and MS solid magenta rectangle

Based on the observation of the estimated target regions in Figure 6, it can be concluded
that the gradient structural similarity procedure locates the object precisely in majority of
the frames. It fails, however, to recover from an occlusion towards the end of the sequence.
The performance of the SSIM-PF is very unstable, due to a very low number of particles
used and it looses the object half-way through the sequence. On the other hand, the
combined algorithm, SSIM-PF-DSSIM, tracks the object successfully throughout the sequence.
The MS algorithm has completely failed to track the object. Since the MS algorithm is a
memory-less colour-based tracking algorithm, its poor performance in these sequence is due
to the object’s fast motion and its similarity to the surrounding background. The colour-based
algorithm, COL-PF, performs similarly to SSIM-PF, however, it locates the object somewhat
more precisely. Finally, the combined COL-PF-MS algorithm, appears to be more stable
than its non-optimised version. Nevertheless, the objects is eventually lost as a result of the
occlusion.
Finally, to illustrate a potential of further extension of the SSIM-PF, a type of target distortion,
for which the state space can be easily extended, is considered: rotation of the target in the
plane approximately perpendicular to the camera’s line-of-sight. A simple solution to the
tracking of the rotating objects is to include an orientation of the target in the state space, by
taking x = (xk, yk, sk, αk)

T as the state variable in the algorithm described in Table 2, where αk

is the orientation angle. The complexity of the algorithm is increased slightly due to the need
to generate the rotated versions of the reference object (which can, possibly, be pre-computed).
For some video sequences it may also be necessary to increase the number of particles, in
order to sufficiently sample the state space. The results of tracking a rotating trolley in a
sequence from PETS 2006 Benchmark Data (Nin (2006)), with the use of 150 particles are
shown in Figure 7. The figure shows examples of frames from two best-performing tracking
techniques, ‘colour&edges’ and ‘structure’. Apart from the rotation scaling of the object,
additional difficulty in tracking arose because the object was partially transparent and thus
often took on the appearance of the non-stationary background. However, also in this case
‘structure’ tracking algorithm appears to follow the location, scale and rotation of the object
more closely than the other algorithms.
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Fig. 6. Pedestrian tracking test results
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Fig. 7. Example video frames with a tracking output (tracking rectangle and particles)
superimposed, sequence S1-T1-C containing a rotating object

5. Discussion and conclusions

The recently developed video tracking methods based on structural similarity and their new
extensions have been presented in this work. Novel deterministic and hybrid probabilistic
approaches to video target tracking have been investigated, and their advantages and mutual
complementarities have been identified. First, a fast deterministic procedure that uses the
gradient of the structural similarity surface to localise the target in a video frame has been
derived. Next, a hybrid PF-based scheme, where each particle is optimised with the use of the
aforementioned gradient procedure has been proposed.
The performance of the structural similarity-based methods has been contrasted with selected
tracking methods based on colour and edge cues. The structural similarly methods, while
being computationally less expensive, perform better, on average, than the colour, edge and
mean shift, as shown in the testing surveillance video sequences. Specifically, the results
obtained with the hybrid technique proposed indicate that a considerable improvement in
tracking is achieved by applying the optimisation scheme, while the price of a moderate
computational complexity increase of the algorithm is off-set by the low number of particles
required.
The particular issue addressed herein is concerned with tracking object in the presence of
spurious or similarly-coloured targets, which may interact or become temporarily occluded.
All structural similarity-based method have been shown to perform reliably under difficult
conditions (as often occurs in surveillance videos), when tested with real-world video
sequences. Robust performance has been demonstrated in both low and variable light
conditions, and in the presence of spurious or camouflaged objects. In addition, the algorithm
copes well with the artefacts that may be introduced by a human operator, such as rapid
changes in camera view angle and zoom. This is achieved with relatively low computational
complexity, which makes these algorithms potentially applicable to real-time surveillance
problems.
Among the research issues that will be the subject of further investigation is a further speed
and reliability improvement of the proposed optimised hybrid technique. It is envisaged
that this could be achieved by replacing the simple gradient search with a more efficient
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optimisation procedure and by more accurate modelling of the resulting proposal density.
The structural similarity measure-based tracker, although giving very precise performance,
may in some cases be sensitive to alteration of the tracked object, for example its significant
rotation or long occlusion. Thus, the recovery and/or template update techniques will also be
investigated in the future to improve reliability of the proposed tracker.
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