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Immune System and Environmental Xenobiotics 
- The Effect of Selected Mineral Fibers and 

Particles on the Immune Response 

Miroslava Kuricova et al.* 

Slovak Medical University, Bratislava 
Slovak Republic 

1. Introduction 

Mineral fibers and particles are finding growing applications in industry and thus entering 
into the human environment. The utility of using such products for various purposes is 
promising but detailed information related to immune safety is needed. Immunotoxic effects 
may be displayed as immunosuppression, immunostimulation, hypersensitivity and 
autoimmunity. Humans may be exposed to fibers and particles from a variety of sources, 
including occupational settings, ambient air, consumer products, drinking water and food. 
This chapter is dedicated to the effect of inhalation exposure to asbestos, rock wool, glass 
wool, ceramic fibers and nickel oxide particles on the immune system.  

Findings of in vitro studies, in vivo animal experiments and molecular epidemiological 
studies conducted during the period of several years are summarized. In vitro studies 
comprised studies on alveolar macrophages and alveolar epithelial type II cells. Refractory 
ceramic fibers, asbestos and stone wool fibers were tested in vitro. In vivo testing involved 
both inhalation and intratracheal instillation studies using amosite, wollastonite, rock wool 
and glass fibers. Moreover, three population based studies in workers occupationally 
exposed to asbestos, rock wool and glass fibers were performed.  

Finally, options and pitfalls to the use of immune assays as sensitive biomarkers of possible 
immunotoxic effects are discussed. Since, in human studies, specimens from living people 
used to examine the effects of particles and fibers on the immune response are typically 
limited to minimally invasive (whole blood, plasma or serum by venipuncture, sputum) or 
moderately invasive techniques (bronchoalveolar lavage or nasal lavage), human blood 
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leukocytes are the most appropriate specimens for in vitro cellular assays. Macrophages and 
lymphocytes are appropriate models for examining the effects of xenobiotics on cell 
functions. Serum cytokines, chemokines or soluble adhesion molecules have potential to 
contribute to the panel of biomarkers used to assess immunotoxicity.  

1.1 Immunotoxicology 

Immune dysregulation resulting from inhalation, skin exposure or ingestion of chemicals 
in the workplace and general environment is an important health problem in 
industrialized an industrializing societies (National Research Council, 1992). 
Immunotoxicity is an important aspect of the safety evaluation of drugs and chemicals 
(Descotes, 2005). It has been generally accepted that all new chemicals require safety 
evaluation before marketing and sale. This is a difficult task due to the large number of 
chemicals directly consumed by man, such as drugs and food additives, and those that are 
widely used such as pesticides, household chemicals, and industrial products (De Rosa et 
al., 2002; IPCS/WHO, 1999). 

Immunotoxicity refers to any adverse effect on the structure or function of innate and 
adaptive immunity. It can be divided into immunosuppression, immunostimulation, 
hypersensitivity and autoimmunity (Duramad & Holland, 2011; Descotes, 2005; Fig. 1). The 
outcome of immunotoxicity is influenced by the dose of the immunotoxicant as well as 
mechanism of action of exposure to other agents, such as bacteria, viruses, parasites, or 
chemicals normally harmless. Direct immunotoxic effects of xenobiotics including particles 
and fibers can lead to the suppression or stimulation of immune response. 
Immunosuppression can result in increased occurrence of infectious diseases or and 
neoplasias, in particular lymphomas, as shown in both transplant and cancer patients 
treated with potent immunosuppressive drugs (Descotes, 2000; Vial & Descotes, 1996). 
Immunosuppression caused by chemicals, may make the course of infections more severe, 
atypical and or likely to relapse. The target organ systems affected could be the respiratory, 
gastrointestinal tracts, CNS or the skin (Descotes, 2005). Flu-like reactions, autoimmune 
diseases and hypersensitivity reactions to unrelated allergens are among the adverse effects 
related to immunostimulation (Descotes, 2005). Hypersensitivity reactions are the most 
frequently detected immunotoxic effects of chemicals. They include immune-mediated 
('allergic') and non immune-mediated ('pseudoallergic') reactions. Particles and mineral 
fibers are recognized causes of hypersensitivy reactions provoked mostly within respiratory 
tract and skin (D'Amato et al., 2005; Di Giampaolo et al., 2011). A large number of drugs and 
an increasing number of environmental agents can result in the appearance of a number of 
autoantibodies or even autoimmune diseases. Systemic lupus erythematosus, scleroderma 
or dermal vasculitis have been associated with exposure to a variety of chemical agents 
(Hess, 2002; Van Loveren et al., 2001).  

1.2 Models and methods in immunotoxicology 

The immune system is a complex network comprised of several cell types (i.e., lymphocytes, 
macrophages, granulocytes, and natural killer cells) whose diversity of functions includes 
maintaining homeostasis and health (Luster et al., 1989). Scientists use immunocompetent 
cells as models for studying the toxic mechanisms of xenobiotics at the cellular and  
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Fig. 1. Strategy for immunotoxicity testing in particle and fiber toxicology. Options for in 
vitro, in vivo and population  studies. 
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molecular levels. In general, biological effects of xenobiotics (including particles and fibers) 
depend on several factors, e.g., chemical composition and physico-chemical properties such 
as solubility, chemical reactivity, size, length:width ratio, persistence in the organism, 
surface properties, dose, duration of exposure, the ability of a material to interact with body 
proteins etc. Host factors such as underlying health status, individual susceptibility to 
xenobiotics, metabolism, age, nutrition status, life style (smoking, etc.), presence of immune 
disease (asthma, allergic rhinitis, immunosuppression etc.) and other factors are also 
important determinants of immunotoxicity.  

Increasing evidence that the immune system is a frequent target of xenobiotics following 
chronic, subchronic, or acute exposure underlines the need for development of models and 
immune assays suitable for use in screening potential immunotoxic compounds. For hazard 
assessment of xenobiotics, in vitro studies, experimental studies in laboratory animals, as 
well as epidemiological studies may provide necessary information (Fig. 1). Recently, 
several review papers have been published on design and methods used in 
immunotoxicological studies (Dietert & Holsapple, 2007; Lankveld et al., 2010; Oostingh et 
al., 2011). Haley published best practice guidelines for routine pathology evaluation of the 
immune system (Haley et al., 2005). Study methods of immunotoxicology have been 
reviewed and guidance documents developed by United States and European regulatory 
agencies (Committee for Proprietary Medicinal Products, 2000; Food and Drug 
Administration, 2004; Gopinath, 1996; ICICIS 1998; Kuper et al., 2002; Schuurman et al., 
1994). In addition, harmonization of immunotoxicity guidelines in the ICH (International 
Conference on Harmonisation) process has been discussed by Ruehl-Fehlert (2005). One of 
the first steps in planning and conducting immunotoxicity studies is the identification and 
characterization of fibers/particles of interest. Secondly, attention must be paid to choosing 
proper in vitro immune cell models, sensitive animal models or occupationally or 
environmentally exposed human populations to assess the effect of xenobiotics on the 
immune system. Furthermore the selection of suitable immune assays as sensitive 
biomarkers of immunotoxic effect is also important.  

In vitro assessment of immunotoxicity 

In vitro testing has several advantages over in vivo animal testing. Among others, 3R 
requirements - reduction, refinement, and replacement of animal experiments are fulfilled, 
detailed mechanistic understanding of target immune cell/molecule is a clear benefit to 
consider and costs are lower. Most assays that are currently used to analyze immunotoxicity 
were originally designed for diagnostic purposes to examine hereditary or acquired immune 
disease in humans. Subsequently, these methods have been adapted for analysis of 
immunotoxicity of xenobiotics. In vitro assays may reflect specific functions of the immune 
system (cytokine production, cell proliferation, cytotoxic T-cell activity, natural killer cell 
activity, antibody production, and dendritic cell maturation). To avoid inter-species 
extrapolation, assays should preferably use human primary cells. They reproduce the 
response of normal cells of normal individuals. However, the use of primary cells is not 
always feasible (e.g., in the case of primary lung epithelial cells). As an alternative, the use of 
animal primary cells or human cell lines (transformed or tumor cells with unrestrained 
proliferative capacity) is applicable to first line screening of immunomodulatory effects. 
Furthermore, whole blood has the advantage of comprising multiple cell types in their 
natural proportion and environment (Lankveld et al., 2010). 

www.intechopen.com



Immune System and Environmental Xenobiotics  
- The Effect of Selected Mineral Fibers and Particles on the Immune Response 

 

339 

In vivo models in experimental animals 

In investigating potential effects of compounds on the immune system in experimental 
animals, a tiered approach is recommended. Studies aimed on the identification of histologic 
changes in the lymphoid organs and functional immune alterations in laboratory animals 
are useful for detecting probable immunotoxicants and may play an important role as a first 
indicator of direct immunotoxicity, i.e. immunosuppression (De Jong & Van Loveren, 2007). 
First tier, general toxicity studies may include parameters for detection of relatively gross 
toxic effects on the immune system. Hematology, tissue cellularity and the assessment of 
cellular subsets of T- and B-leukocytes by flow cytometry as non-functional assay are 
common initial tests. Some authors consider such bioeffects as insensitive indicators of 
immunotoxicity. 

Second tier consists of studies of immune function. Phagocytic activity and determination of 
Natural Killer (NK) cell activity may be used in evaluation of direct immunotoxicity. In 
animal models, there is no limitation to obtain cell suspensions from lung tissue or 
bronchoalveolar lavage to look at function of pulmonary cells affected by particles and 
fibers. Several other possibilities are presented by thymus, bone marrow or spleen tissues 
for in vitro stimulation of lymphocytes by potential mitogens. These methods may indicate 
effects of xenobiotics on the functionality of splenic cell populations. Concanavalin A (Con 
A) and phytohemagglutinin (PHA) activate T-cells, while lipopolysaccharide (LPS) activates 
primarily B-cell populations. In addition, serum can be obtained for determination of serum 
immunoglobulins or proinflamatory cytokines and chemokines. Comparison of treated and 
control groups may give a first indication of possible direct immunotoxic effects (De Jong & 
Van Loveren, 2007). 

Population-based studies 

Biological endpoints used in molecular epidemiology are called biomarkers. Several 
definitions of biomarkers as tools used in human or animal studies to assess exposure and 
disease risks have been published (Benford et al., 2000). Bottrill defined biomarkers as 
“parameters which can be evaluated quantitatively, semi-quantitatively or qualitatively 
and which provide information on exposure to a xenobiotic or on the actual or potential 
effects of that exposure in an individual or in a group” (Bottrill, 1998). There is a high 
degree of complexity of the immune system and an enormous variety of responses and 
mechanisms involved in immunotoxic injury. Therefore it is a challenge to identify a key 
parameter to develop as a biomarker. The inclusion of several immune endpoints 
applicable to man is thus essential. Specimens from living people to examine the effects of 
particles and fibers on the immune response are typically limited to minimally invasive 
(whole blood, plasma or serum by venipuncture, sputum) or moderately invasive 
techniques (bronchoalveolar or nasal lavage). In vitro cellular assays are typically based on 
human blood leukocytes. In particular, macrophages and lymphocytes are appropriate 
models for examining the effects of various agents on cell maturation and function. The 
expression of gene products can be used as markers of differentiation, the identification 
and availability of specific growth promoting factors (e.g., interleukins), and their 
potential to undergo terminal differentiation resulting in production of soluble mediators 
(e.g., monokines, lymphokines, or antibodies) or indicating effector function (e.g., tumor 
target cell killing) (Luster et al., 1989). 
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1.3 Immunotoxicity studies of mineral fibers 

The adverse effects that arise from exposure to asbestos have stimulated the development of 
substitute materials, man-made mineral fibers. However, little is known about the health 
effects of these fibers. The potentially harmful effects of all types of respirable fibers are at 
present one of the most important fields of interest in industrial toxicology. The production, 
sale and use of asbestos are no longer permitted in Europe. Some of the properties of 
asbestos (e.g. as an insulation material) can be substituted by alternative man-made fibers. 
In view of the importance of the possible biological effects of fibers we have conducted in 
vitro, animal and a molecular epidemiology studies to examine the relationship between 
relevant biomarkers and exposure to asbestos, mineral wool and glass fibers. We have 
measured a range of biomarkers of exposure, effects and individual susceptibility. In this 
chapter, biomarkers of immunotoxicity will be presented. 

1.3.1 Asbestos 

Asbestos has long been recognized as a cause of both benign and malignant lung disease 
(interstitial and pleural fibrosis, lung cancer and mesothelioma). Asbestos refers to a group 
of naturally occurring mineral fibers with a ≥ 3:1 length to diameter ratio. These fibers once 
inhaled and displaced by various means to lung tissues, can cause a spectrum of diseases 
including cancer and disorders related to inflammation and fibrosis (American Thoracic 
Society, 2004; Mossman et al., 1996). Mechanisms of asbestos-induced carcinogenesis are 
thought to be multiple, including generation of reactive oxygen (ROS) and nitrogen species 
(RNS), alteration of mitochondrial function, physical disturbance of cell cycle progression, 
and activation of several signal transduction pathways (Jaurand, 1997; Nymark et al., 2008). 
Asbestos fibers having iron (or even chrysotile) and producing ROS/RNS can cause DNA 
damage to nearby cells, and fibers are sometimes directly inserted into the cells and injure 
chromosomes, while retained fibers may adsorb other carcinogens on their surface (known 
asbestos bodies) (Toyokuni, 2009a, 2009b).  

The extrapulmonary consequences of asbestos exposure were discussed in Bunderson-
Schelvan et al., (2011). Authors used several hundred epidemiological, in vivo and in vitro 
studies and finally they supported a strong association between asbestos exposure and 
peritoneal neoplasm. On the other hand, the correlations between asbestos exposure and 
immune-related disease were less conclusive and effects of asbestos exposure to the GIT 
(gastrointestinal tract) appeared to be minimal. Immunomodulatory effects of asbestos have 
been well established in patients with asbestosis and mesothelioma (American Thoracic 
Society, 2004; Corsini et al., 1994; Mascagni et al., 2003; Rosenthal et al., 1999) however there 
is limited information on effects in individuals with minimal evidence for asbestos related 
lung disease or exposure only. Our study offered an opportunity to assess biomarkers which 
may represent individual susceptibility to and/or early evidence for asbestos related health 
effects. 

1.3.2 Man made fibers  

Rock wool, glass fibers and ceramic fibers 

The evidence for adverse health effects following exposure to asbestos has prompted a 
drastic reduction in the use of asbestos, resulting in the increased use of substitutes 
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composed of both naturally occurring and synthetic materials which are thought to have 
lower toxicity. Man-made mineral fibers include glass fibers (used in glass wool and 
continuous glass filament), rock (stone)/slag wool and refractory ceramic fibers. Rock 
(stone) wool, slag wool and glass wool are used extensively in thermal and acoustic 
insulation, typically in buildings, vehicles and appliances. Refractory ceramic fibers are 
designed for high-temperature applications, mainly in industrial settings. Continuous glass 
filament is used primarily in reinforced composite materials for the insulation, electronics 
and construction industries (IARC, 2002; National Toxicology Program, 2009). Man-made 
vitreous fibers have some physical similarities to asbestos, in particular, their fibrous 
character which gives them the same aerodynamic properties and leads to their deposition 
throughout the respiratory tract. Unlike amphibole asbestos, however, they are synthetic 
and amorphous, and generally have a lower biopersistence in lung tissues. Also, unlike 
serpentine asbestos, they tend to break transversely rather than cleaving along the fiber axis 
(IARC, 2002). 

Data on respiratory cancer of man-made mineral (MMMFs) and vitreous fibers (MMVFs) 
are not consistent. Statistically significant increases in respiratory cancer mortality were 
observed among glass wool-exposed workers in unadjusted analyses in the United States 
(Marsh et al., 2001), European (Boffetta et al., 1997), and Canadian cohorts (Shannon et al., 
2005). Excesses of lung cancer incidence were observed among the European workers 
(Boffetta et al., 1997) and Canadian workers (Shannon et al., 2005), but not among French 
workers (Moulin et al., 1986). Marsh et al., (2001) concluded that the US cohort study of 
man-made vitreous fiber workers has not provided consistent evidence of a relationship 
between man-made vitreous fiber exposure and mortality from malignant or non-malignant 
respiratory disease. Gillissen et al. (2006) stated that MMMFs or MMVFs including glass 
wool, rock wool, slag wool, glass filaments, microfibers, refractory ceramic fibers are 
bioactive under certain experimental conditions. Although it has been shown that MMMFs 
may cause malignancies when injected intraperitoneally in high quantities in rodents, 
inhalation trials and human studies have not shown such effects. The amorphous structure 
of synthetic vitreous fibers facilitates designing fibers with low biopersistence. In 2001, 
IARC reclassified these fibers from Category 2b to Category 3 (with RCF and special 
purpose fibers remaining in 2b) based on epidemiological data and the animal studies 
database indicating that there is little if any health risk associated with the use of SVFs of 
low biopersistence (Bernstein, 2007). 

Occupational or environmental exposures to many inhaled particles and fibers have been 
linked with immunotoxicity. First of all, silica and silicates have been associated with the 
development of lung inflammation, interstitial fibrosis, bronchitis, small airway disease, 
emphysema, and vascular diseases as well as immunologic reactions (Song & Tang, 2011). 
Recent studies showed that Th1 and Th2 cytokines may be involved in silicosis and 
regulatory T-cells (Treg cells) have crucial role in modulation of immune homeostasis by 
regulating Th1/Th2 polarization. Studies in animals provided knowledge that depletion of 
Tregs may attenuate the progress of silica-induced lung fibrosis and enhance Th1 response 
and decelerate Th1/Th2 balance toward a Th2 phenotype in silica-induced lung fibrosis (Liu 
et al., 2010). Exposure to diesel exhaust particles (Inoue & Takano, 2011), coal dust (Ates et 
al., 2011), soil dust (Schenker et al., 2009), beryllium (Martin et al., 2011; Mikulski et al., 2011; 
Sood, 2009), heavy metal fumes (Montero et al., 2010) can evoke new or facilitate existing 
immune-mediated pulmonary inflammation. 
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1.3.3 NiO nanoparticles  

Nickel and nickel compounds are widely used in industry. In occupational settings, 
exposure to nickel and nickel compounds occurs primarily during nickel refining, 
electroplating, and welding. In addition to nickel, workers in metal mining and processing 
are exposed to diesel emissions, oil mists, blasting agents and also to various other 
substances prevalent in the mine or industry (Lightfoot et al., 2010). Some of them, such as 
silica (Costantini et al., 2011; Huaux, 2007), radon (Chauhan et al., 2011) or arsenic (Burchiel 
at al. 2009) are known to be potent immunotoxic agents thus implicating possible synergistic 
effects on the immune response. The most common airborne exposures to nickel in the 
workplace are to insoluble nickel species, such as metallic nickel, nickel sulfide, and nickel 
oxides from dusts and fumes. The chemical and physical properties of nickel and nickel 
compounds strongly influence their bioavailability and toxicity. The lung and the skin are 
the principal routes of entry and target organs of occupational exposure. The most serious 
adverse health effects due to occupational exposure to nickel and its compounds are lung 
fibrosis and lung cancer, nickel is also hematotoxic, hepatotoxic and nephrotoxic. Allergic 
skin reactions are relatively common in individuals who are exposed to nickel (Brüske-
Hohlfeld, 2009; Das & Buchner, 2007; Panizza, 2011; Zhao, 2009).  

Recently, nickel nanoparticles are increasingly used in modern industries such as catalysts, 
sensors and electronic applications (Ahamed, 2011). Due to known toxic effects of “bulk” 
nickel products, caution in industrial applications of new nickel nanoproducts is important. 
Several in vivo studies in rats demonstrated that nickel oxide nanoparticles (NiO NP) have 
inflammatory effects in lungs by transient increase in cytokine expression (IL-1alpha, IL-
1beta in lung and monocyte chemotactic protein-1 in bronchoalveolar lavage fluid) and 
persistent increase in CC chemokine (macrophage inflammatory protein-1alpha in lung and 
bronchoalveolar lavage fluid - BALF) (Morimoto et al., 2010). Cytokine-induced neutrophil 
chemoattractant-1 (CINC-1), CINC-2 alpha, beta, and CINC-3 were involved in the 
persistent pulmonary inflammation by NiO NP (Nishi et al., 2009) but NiO NP did not 
induce the gene expression of MMP-2 and TIMP-2 mRNA in rat lungs (Morimoto et al., 
2011). In vitro assessment of the toxic effect of nickel nanoparticles in human lung epithelial 
A549 cells showed reduced mitochondrial function, induction of the leakage of lactate 
dehydrogenase (LDH) and induction of oxidative stress in dose and time-dependent 
manner (Ahamed, 2011). 

Other airborne and engineered nanoparticles in addition to nickel, such as carbon nanotubes 
(He et al., 2011), titanium dioxide (Morimoto et al., 2011), cobalt - Co3O4 (Cho et al., 2011a) or 
quantum dots (Jacobsen et al., 2009) has been reported to induce lung inflammation. Anoher 
example is ZnO nanoparticles (ZnO NP) discovered to induce eosinophilia, proliferation of 
airway epithelial cells, goblet cell hyperplasia, and pulmonary fibrosis. Fibrosis was associated 
with increased myofibroblast accumulation and transforming growth factor-beta positivity. 
Serum IgE levels were up-regulated by ZnO NP along with the eosinophilia whilst serum IgA 
levels were down-regulated by ZnO NP (Cho et al., 2011b). 

1.4 Hazard assessment of mineral fibers and particles 

Humans may be exposed to fibrous particles from a variety of sources, including 
occupational settings, ambient air, consumer products, drinking water and food (De Vuyst 
et al., 1995). Potential effects of airborne fibers in humans can only occur after a complex 
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process of inhalation, deposition, elimination, retention and translocation. The biological 
effects of inhaled fibers are highly dependent on dose (fiber exposure concentration - 
numbers of long fibers), fiber size (diameter/length), (Donaldson & Tran, 2004; Kohyama et 
al., 1997; Yamato et al., 1998), durability of material in the organism (biopersistence) 
(Mossman et al., (2011), duration of exposure, chemical composition and properties, 
solubility, chemical reactivity, surface properties of the material, ability of a material to 
interact with body proteins etc. Host factors such as efficiency of defense mechanisms of the 
respiratory tract between the initial deposition and the ultimate contact of the fibers with the 
target cell, individual susceptibility to xenobiotics, metabolism, age, nutrition status, life 
style (smoking), presence of immune disease (asthma, allergic rhinitis, immunosuppression 
etc.) and other factors influence the development of immunotoxicity.  

2. In vitro studies on lung cells 

The lung consists of more than 40 different cell types; each type has its special function, 
localization and morphology. From the toxicological point of view, the most important cell 
types being alveolar macrophages (AM - free living cells, whose function is to phagocyte the 
inhaled particles and maintain the alveoli clean and sterile) and alveolar epithelial type II 
cells (TII - localized on the inner surface of lung alveoli and which play an important role in 
tissue renewal). For this reason we focused on these cell types, isolated them from rats and 
maintained them in cell culture (Hoet et al., 1994; Richards et al., 1987). After 20 h cultivation 
the cells were exposed to different dose (1, 5, 10 μg.ml-1) of mineral fibers and the cultivation 
was prolonged for another 20 h period when the experiment was terminated and the 
analyses were done. 

2.1 Lectin histochemistry 

Bandeiraea simplicifolia agglutinin (BSA) and Maclura pomifera agglutinin (MPA) are able to 
bind to the terminal N-acetyl-Ǐ-galactosaminyl or Ǐ-D-galactose/galactosamine residues 
in the membranes of AM and TII cells which makes them suitable for detection of cell 
membrane injuries (Tatrai et al., 1994). Control cells showed regular, linear staining with 
BSA or MPA. Stone wool at the concentration 5 μg.ml-1 caused moderate injury to 
membranes of AM and incomplete phagocytosis in a small fraction of AM. Alveolar 
epithelial type II cells did not develop detectable membrane damage at any tested fiber 
dose. Refractory ceramic fibers (RCF) evoked changes in both cell types only at the 
highest dose: the membranes were not continuous and reduplicated. Wollastonite caused 
a decreased reaction in the membranes only at the highest dose. After exposure to the 
lowest dose of crocidolite the membranes of both cell types were fragmented irregularly 
and frustrated phagocytosis could be found in AM (Tátrai et al., 2004; 2006a; 2006b). 

2.2 Effect of mineral fibers on cells using TEM 

The control cells and those exposed to fibers at a dose of 1 μg.ml-1 were examined. TII cells 
did not show any alterations after RCF or stone wool exposure. AM cells phagocyted RCF 
fibers without injuries of cell organelles, intact organelles remained also after exposure to 
stone wool. In both cell types crocidolite evoked severe damage in the organelles and 
necrobiosis of whole cells (Tátrai et al., 2004; 2006a; 2006b). 
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2.3 Immunological studies 

Production of proinflammatory peptides MCP-1 and MIP-1Ǐ was assayed in growth media 
after termination of cell cultivation. Exposure to wollastonite did not change production of 
MCP-1 and MIP-1Ǐ in TII cells, but in AM the production was significantly enhanced: MCP-
1 at the concentration 10 μg.ml-1, MIP-1Ǐ at the concentration 5 μg.ml-1. The results after 
exposure to stone wool were different: in TII cells the production of MCP-1 was enhanced at 
all concentrations, MIP-1Ǐ at doses of 5 and 10 μg.ml-1; in AM the production of both 
cytokines was statistically significantly enhanced after doses of 5 and 10 μg.ml-1. Crocidolite 
evoked statistically significant dose dependent enhancement of the production of MCP-1 in 
AM, for MIP-1Ǐ and both cytokines in TII at doses of 5 and 10 μg.ml-1 in all cases (Tátrai et 
al., 2004; 2006a; 2006b). Comparing the results from different fibers on 2 various primary cell 
types the following differences are clearly seen: crocidolite (asbestos) evoked the greatest 
changes, both morphologically and functionally. Effects of wollastonite were seen more 
significant comparing to stone wool. AM cells are more sensitive to the fibers exposure than 
TII cells. 

3. Animal model 

3.1 Intratracheal instillation studies in rat model 

Four types of fibers: asbestos and three types of ASMF fibers (asbestos substitute mineral 
fibers): wollastonite, rock wool and glass fibers were intratracheally instilled at 2 doses (2 
mg or 8 mg of fibers) to Fisher 344 rats. Dose of 2 mg was suspended in 0.2 ml of saline 
solution per animal or control group with 0.2 ml saline only. A dose of 8 mg was divided 
and instilled 4 times (weekly 2 mg/0.2 ml saline solution). The assays were performed 4 or 
16 weeks after last instillation of the fibers. After sacrifice, markers of immune response and 
hematology were analyzed. Immunotoxic effects were examined using a panel of immune 
and hematological assays. Phenotypic analysis of leukocytes (T-lymphocytes, activated T-
cells, B-lymphocytes, NK-cells, T-helpers, T-cytotoxic cells) and expression of adhesion 
molecules (CD11b, CD54) were performed by flow cytometry. Immune functions were 
evaluated by proliferative activity of T and B-lymphocytes in vitro stimulated with mitogens 
and antigen and phagocytic activity of leukocytes.  

Our findings demonstrate the immunomodulatory effect of mineral fibers in the rat animal 
model 4 and 16 weeks after intratracheal exposure to amosite, wollastonite, rock wool and 
glass fibers. Significant changes were observed in total white blood cell count and 
percentages neutrophils in all fiber-treated, especially high-dosed, animals after 4 weeks of 
exposure. The percentage of lymphocytes was altered in rock wool fiber-treated especially 
in high-dosed animals after 4 weeks of exposure (Table 3.1-1).  

Analysis of lymphocyte subsets showed significantly increased percentage of T-
lymphocytes, mainly cytotoxic cells and decreased percentage of B-lymphocytes in 
peripheral blood of animals exposed to amosite. Rats exposed to wollastonite had increased 
percentage of T-helper cells. Exposure to mineral fibers decreased expression of adhesion 
molecule CD54 (ICAM-1) on granulocytes (amosite, glass fibers) and monocytes (rockwool). 
Suppressed expression of adhesion molecules CD11b was found on granulocytes 
(wollastonite, glass fibers) and monocytes (glass fibers) (data not shown). 
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  Amosite Wolastonite Rock wool Glass Fibers 

White blood cells (109/l) 

4 weeks, 2mg     

4 weeks, 8mg  *  *  ↑ * 

16 weeks, 2mg    *  

16 weeks, 8mg  *    

Neutrophils  
(%) 

4 weeks, 2mg     

4 weeks, 8mg ↑ * ↑ * ↑ * ↑ *  

16 weeks, 2mg  ↑ *   

16 weeks, 8mg     

Lymphocytes 
(%) 

4 weeks, 2mg     

4 weeks, 8mg    *  

16 weeks, 2mg     

16 weeks, 8mg     

* p<0.05; **p<0.01; ***p<0.001;  - decrease ↑ - increase in comparison with relevant control;  

Table 3.1-1. White blood cell (WBC) count and differential WBC in Fisher 344 rats 
administered with 2 mg or 8 mg of amosite, wollastonite, rock wool or glass fibers. 

Although amosite seems to be most potent suppressor of T- and B-lymphocyte proliferation, 
especially in high-dosed animals, wollastonite and rock wool also interfered with 
lymphocyte proliferation and suppressed the response of T-lymphocytes. The opposite 
stimulative effect on proliferative capacity of B-cells was found in animals exposed to glass 
fibers (Table 3.1-2). Phagocytic activity was dramatically affected by exposure to rock wool 
and glass fibers. A highly significant dose-dependent suppression was found in neutrophils 
and monocytes. Rats exposed to wollastonite fibers also had decreased phagocytic activity 
of peripheral blood phagocytes 4 weeks after instillation of either dose. Surprisingly, the 
phagocytic activity of animals exposed to amosite was affected only in high dosed rats 
(Table 3.1-2). 

In conclusion, animal exposure to mineral fibers leads to alterations in systemic immune 
response. Immune dysregulation consisted of changes of the main lymphocyte subsets. 
Moreover, the function of immunocompetent cells that are responsible for the specific 
immune response (T- and B-lymphocytes) and phagocytic cells was impaired. Our results 
correspond with the hypothesis of Hurbánková (1994), who observed that the phagocytic 
activity of granulocytes and monocytes is altered in asbestos-treated rats up to one year 
following treatment, displaying a two-phase progress: an initial increase (phase I) followed 
by a decrease below the average values of the control animals (phase II).  

3.2 Inhalation studies in rat model 

The effects of industrial fibrous dusts on the respiratory system represent a potential 
environmental and occupational health hazard for humans. Chronic asbestos exposure can 
cause pleural plaques, asbestosis and cancer diseases. These effects stimulated research 
activities aiming at the study of the health effects of fibrous substitutes as well as combined 
effects with other noxious materials respectively (Boor et al., 2009; Donald & Gardner, 2006; 
IARC, 2002; 2004). This study gives information about the dose-response relationships after  
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Function of lymphocytes  Amosite Wolastonite 
Rock 
wool 

Glass 
Fibers 

Proliferative activity of T-lymphocytes 

4 weeks, 2mg 
↑ Con A * 
 

  PHA 
** 

 

4 weeks, 8mg 
 Con A *** 
 PHA ** 

 Con A *** 
 PHA *** 

  

16 weeks, 2mg    CD3 * 
 

 

16 weeks, 8mg  Con A ** 
 

   

Proliferative activity of B-lymphocytes 

4 weeks, 2mg    
↑ PWM 
*** 
 

4 weeks, 8mg  PWM * 
 

  ↑ STM * 

16 weeks, 2mg     

16 weeks, 8mg 
 PWM *** 
 

   

Function of phagocytes      

Phagocytic activity of neutrophils 

4 weeks, 2mg   *  ***  *** 

4 weeks, 8mg  ***  **  **  *** 

16 weeks, 2mg    *  * 

16 weeks, 8mg    **  * 

Phagocytic activity of monocytes 

4 weeks, 2mg   *  ***  *** 

4 weeks, 8mg  ***  *  ***  *** 

16 weeks, 2mg    *  

16 weeks, 8mg    **  * 

* p<0.05; **p<0.01; ***p<0.001;  - decrease in comparison with relevant control; ↑ - increase in 
comparison with relevant control 

Table 3.1-2. Activity of immune cells measured via lymphocyte proliferation test and 
phagocytic test in Fisher 344 rats administered with 2 mg or 8 mg of amosite, wollastonite, 
rock wool or glass fibers. 

inhalation of two concentration levels of amosite asbestos and wollastonite alone or 
combined with daily exposure to cigarette smoke together with the basic lung inflammation 
and cytotoxic parameters. Male Fisher 344 rats were exposed for 6 months. Animals inhaled 
amosite asbestos or wollastonite fibers in a nose-only inhalation device (In-Tox, USA). 
Amphibole asbestos - amosite and wollastonite fibers belong to naturally occurring silicate 
inorganic fibers. Wollastonite is used as a substitute of asbestos. Dust aerosol was produced 
at two dosages: 30 mg/m3 air and 60 mg/m3 air for one hour per exposure. Exposure of 
animal groups to dusts proceeded every second day, 5 days per week. Six groups, each of 11 
animals were exposed to: 

 60 mg/m3 amosite fibers for one hour every two days; combined with exposure to 
mainstream smoke from three cigarettes daily; 
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 60 mg/m3 amosite fibers for one hour every two days; 
 30 mg/m3 amosite fibers for one hour every two days, combined with exposure to 

mainstream smoke from three cigarettes daily; 
 30 mg/m3 amosite fibers for one hour every two days;  
 exposure to mainstream smoke from three cigarettes daily plus immobilization stress as 

for animals exposed to dust; 
 immobilization stress as for animals exposed to dust. 

Cigarette smoke exposure: Standard research cigarettes of the 1R1 type (Tobacco and Health 
Research Institute - THRI, Lexington, KY, USA) were used in all experiments. A whole-body 
actively ventilated exposure chamber was used, with a cigarette smoke generator and 
pumps (THRI, Lexington, KY, USA) allowing all smoker animal groups to breathe at the 
same time diluted main-stream tobacco smoke at the target concentration 30 mg of total 
particulate matter (TPM)/m3 air for one hour daily (an exposure requiring to burn three 
cigarettes).  

Length 
[m] 

% Diameter 
[m] 

< 20 5  
20 – 30 75 0.71 
>30 20  

 
Diameter [m] % 
= 1 47 
<1 22 
<3 21 
=3 6 
>3 4 
Length [m] % 
1 – 10 48 
11 – 30 40 
>30 12 

Tables 3.2-1. and 3.2-2. Length, diameter and percentage of wollastonite fibers (top) and 
amosite fibers (bottom).  

The aim of our study was to find and compare the combined effect of amosite or wollastonite 
(asbestos substitute) with cigarette smoke on the selected immune, inflammatory and cytotoxic 
parameters. The rats inhaled two doses: 30 and 60 mg/m3 of amosite (asbestos) and 
wollastonite fibers (mineral asbestos substitute) for 1 hour every 2 days and cigarette smoke 
from 3 cigarettes/day. They were sacrificed after 6 months exposure.  

3.2.1 Combined effect of mineral fibers and tobacco smoke on respiratory tract  

Six months after the beginning of the inhalation exposures, the animals were anesthetized 
and BAL was performed.  

The following BAL parameters were examined:  
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Inflammatory response biomarkers 
 Total cell count/ml BAL (bronchoalveolar lavage) fluid 
 AM count/ml BAL fluid 
 Differential cell count (alveolar macrophages - AM, lymphocytes - Ly, granulocytes - Gr)  
Cytotoxic parameters 
 Phagocytic activity of AM  
 Viability of AM  
 Lactate dehydrogenase activity (in the cell - free lavage fluid) 
 Acid phosphatase activity (in the cell- free lavage fluid and in the BAL cell suspension) 
 The cathepsin D activity (in the cell - free lavage fluid and in the BAL suspension) 

Methods are described in papers of Hurbánková & Kaiglová (1999) and Černá et al. (2004). 
The results were statistically evaluated using Mann-Whitney test. 
 

 
Fibers alone Fibers/Tobacco smoke 

Control 
30 
mg/m3 

60 
mg/m3 

Tobacco 
smoke alone 

Tobacco smoke + 
fibers 30 mg/m3 

Tobacco smoke + 
fibers 60 mg/m3 

N 7 7 7 7 7 6 
Total cell count/ml 
BALF (103.ml-1) 

     
 
Am  ** 

AM count/ml BALF 
(103.ml-1) 

     Am  ** 

Ly %  Am  * Am **   Am  *** 
AM %  Am  * Am  * Am  * Am  ** Am  *** 
PMN %   Am  *  Am  * Am  ** 
Immature forms of 
AM (%) 

 
Am  * 
 

 
Am  ** 
 

Am  * 
 

Am  ** 
 

Multinucleated cells 
(%) 

  Am **    

Comparison of exposed group with the control group; *p<0.05, **p<0.01, ***p<0.001; ↑ - increase against 
compared group;  - decrease against compared group; abbreviations: Le - leukocytes; AM - alveolar 
macrophages; PMN – polymophonuclear leukocytes, BAL - bronchoalveolar lavage  

Table 3.2-3. Amosite – inhalation exposure - with/without tobacco smoke; inflammatory 
response parameters in BAL. 

Increased numbers of bronchoalveolar lavage fluid (BALF) cells after asbestos or other fiber-
exposure as a result of inflammatory response have been described by numerous authors 
(Hurbankova & Kaiglova, 1999; Greim et al., 2001; Morimoto & Tanaka, 2001; Osinubi et al., 
2000). In our study, a significantly increased number of BALF cells after exposure to amosite 
in comparison with the control group was observed in the smoker plus 60 mg/m3 fiber 
group (by 11.4 %) as well as in the corresponding-dose, non-smoker group (by about 16%). 
This increase could be ascribed to the increase of lymphocyte population proportions. These 
changes were accompanied by an inverse change in the AM count in BALF, which 
significantly decreased in the same group exposed to combined higher dust plus cigarette 
smoke. A very similar but shorter exposure only to cigarette smoke has been reported to 
lead to a higher (35%) difference of BALF cell counts in comparison with the control values 
(Hurbánková et al., 2010; Ishihara et al., 1997; Nelson & Kelsey, 2002). The higher  
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Fibers alone Fibers/tobacco smoke 

Control 
30 
mg/m3 

60 
mg/m3 

Tobacco 
smoke alone 

Tobacco smoke + 
fibers 30 mg/m3 

Tobacco smoke + 
fibers 60 mg/m3 

N 7 7 7 7 7 6 
Phagocytic activity 
of AM (%) 

   
Am ** 
Woll ** 

Am ** Am * 

Viability of living 
AM  
(%) 

  Am *   Am * 

LDH 
μkat.g prot.-1 

      

ACP 
nkat.g prot.-1 

    Woll *  

ACP 
nkat.10-6 cells 

      

Cathepsin D 
Utyr.mg prot.-1 

    
Am * 
Woll * 

Woll * 

Cathepsin D 
Utyr.10-6 cells 

 Woll * 
Am * 
Woll * 

Am  ** Am  ** Am  ** 

Comparison of exposed groups with the control group: *p<0.05, **p<0.01, ***p<0.001; ↑ - increase 
against compared group,  - decrease against compared group; (1) enzyme activity expressed as µmol 
of p-nitrophenol.hour-1 mg protein-1; abbreviations: LDH: lactate dehydrogenase; ACP: acid 
phosphatase; Utyr : µg of thyrosine released in an hour time  

Table 3.2-4. Amosite and wollastonite - inhalation exposure - with/without tobacco smoke; 
cytotoxic parameters in BAL. 

proportions of PMN and lymphocytes in the BALF than control values indicate the presence 
of inflammation in the lungs at sacrifice. The magnitude of the increase of these parameters 
was dose-dependent. AM are the predominant cells present in BALF and changes in their 
number or function are important factors determining the lung inflammatory response and 
characterizing the pathogenesis of such response. A decrease in macrophage number or 
phagocytic capacity may result in the reduction of the clearance of inhaled materials and 
thus can lead to an increase of the effective dose of the potentially injurious agent (Aoshiba 
et al., 2001; Dziedzic et al., 1993). A significant reduction in the number of AM after 
intratracheal instillation of amosite has been observed also in our previous experiments 
(Hurbankova & Kaiglova, 1999). Associated with inflammatory changes, a dose-dependent 
increase in multinuclear cells (MNC) proportions was found in the BALF as well as in the 
lung tissue suspensions. MNC were increased after exposure (separate or in combination) to 
tobacco smoke as well as both fiber concentrations but significantly only after higher dose 
without smoking. Similarly, immature forms of AM in all exposed groups were increased in 
comparison with control (Beňo et al., 2005). Strongly dose dependent decrease of AM 
viability (higher dose with and without smoking) as well as phagocytic activity of AM (all 
group with smoking) was found in this experiment. That is in accordance with previously 
described effect of asbestos (Hurbánková & Kaiglová, 1999). 

Increased LDH and ACP activity in extracellular fluids are generally accepted as good 
markers of cell or tissue injury and used for evaluation of the cytotoxic effect. We did not 
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find significant changes in activities of measured enzymes in our experiment. Cathepsin D 
activity was significantly changed after amosite inhalation. These results are in good 
accordance with study of Sjörstrand et al. (1989). Wollastonite inhalation confirmed the 
lower cytotoxicity in comparison with asbestos. Significant changes were found only by 
measurement of cathepsin D activity in BAL cells (increased levels), decreased percentage of 
phagocytic activity of AM in “tobacco smoke alone” group and increased levels of ACP in 
“tobacco smoke + wollastonite fibers 30mg/m3“group. 

Amosite 

 Inflammatory parameters were mostly changed after 60mg/m3 in combined group 
(amosite exposure and tobacco smoke). 

 Tobacco smoke alone induced changes in inflammatory parameters. It confirms that 
smoking alone might play an important role in inflammatory processes. 

 Smoking alone caused some changes of cytotoxic parameters and intensified the 
harmful effect of amosite exposure. 

 Mild dose dependence between 30mg/m3 and 60mg/m3 in groups without tobacco 
smoke was seen. 

Wollastonite 

 No dose dependence of inflammatory parameter changes in this study was recorded in 
groups without smoking and very weak in combined exposure groups. 

 Mild dose dependence of cytotoxic parameters changes in groups without or with 
tobacco smoke was observed. 

 Influence of tobacco smoke on cytotoxic parameters was not explicit. 

3.2.2 Combined effect of mineral fibers and tobacco smoke on immune parameters 

Cellular immunity was examined by phenotypic analysis of leukocytes (CD3+, MHC II, 
CD4+, CD8+, CD161+, B-lymphocytes) and by expression of adhesion molecules (CD11b, 
CD54) on leukocytes (Table 3.2-5). Inhalation of high dose of amosite fibrous dust resulted 
in a significantly increased percentage of B-lymphocytes and elevated expression of 
adhesion molecule CD11b on lymphocytes of peripheral blood in non-smoking rats. 
Similarly, inhalation of high dose of wollastonite increased the percentage of B-
lymphocytes, and this elevation was reinforced with combined exposure to lower dose of 
wollastonite and tobacco smoke. Moreover, the combined exposure to wollastonite and 
smoking caused a significant, dose-dependent increase of the percentage of cytotoxic cells 
and enhanced expression of adhesion molecule CD11b on granulocytes in peripheral blood. 
On the other hand, cigarette smoke and higher dose of wollastonite resulted in decrease of 
T-cells (CD3+). The stimulative effect of exclusive exposure to smoking on the immune 
system was shown as significantly elevated percentage of some lymphocyte subsets (T-
cytotoxic, T-helper lymphocytes, B-lymphocytes) and elevated expression of adhesion 
molecule CD11b in comparison with non-smoking animals. 

Immune function assays included proliferative response of T- and B-lymphocytes and 
phagocytic activity of blood leukocytes (Table 3.2-6). The proliferative activity of T-
lymphocytes stimulated with CD3 antigen and T-dependent B-cell response in rats exposed 
to amosite was significantly decreased. The immunosuppressive effect was more pronounced 
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Proportion of lymphocyte 
subsets in peripheral blood 

30 
mg/m3 

60 
mg/m3 

Tobacco 
smoke alone 

Tobacco smoke + 
fibers 30 mg/m3 

Tobacco smoke + 
fibers 60 mg/m3 

CD3+ –  
T-lymphocytes (%) 

    
Woll  a 

 
CD3+/MHC II – activated T-
lymphocytes (%) 

     

CD4+ –  
T-helper lymphocytes (%) 

   ↑ **   

CD8+ –  
T-cytotoxic lymphocytes (%) 

  
 ↑ * 
 

Woll ↑ * 
 

Woll ↑ * 
 

CD161+- 
Natural killer cells (%)  

     

B-Lymphocytes (%)  
Am ↑ * 
Woll ↑ * 

 ↑ * 
  

Woll ↑ * 
 

 

Adhesion molecules on 
leukocytes 

     

Expression of CD11b on 
lymphocytes (%) 

 
Am ↑ * 
Woll ↑ ** 

 ↑ *   

Expression of CD11b on 
monocytes (%) 

     

Expression of CD11b on 
granulocytes (%) 

 
 
Am ↑ * 

  
Woll ↑ * 
 

Expression of CD54 on 
lymphocytes (%) 

     

Expression of CD54 on 
monocytes (%) 

     

Expression of CD54 on 
granulocytes (%) 

     

Ly – lymphocytes; Mono – monocytes; Gr – granulocytes; */a p<0.05; **/aap<0.01; ***/aaap<0.001; *– 
significant level calculated in exposed rats in comparison with control rats without tobacco smoke 
exposure; a – significant level calculated in exposed rats in comparison with control rats with tobacco 
smoke exposure;  - decrease in comparison with relevant control; ↑ - increase in comparison with 
relevant control; Am – amosite; Woll – wollastonite  

Table 3.2-5. Cellular immunity of rats treated via inhalation exposure with two doses of 
amosite/wollastonite fibers and with/without tobacco smoke. 

in low-dosed rats. No effect of exposure to amosite fibers alone on proliferative activity of B-
cells stimulated with STM (lipopolysacharide from Salmonella typhimurium) was seen in non-
smoking rats, while a moderate enhancement was recorded in animals exposed to amosite 
and tobacco smoke. A marked suppressive effect of amosite on phagocytic activity of 
leukocytes was also found. Stimulation of the immune system was observed as increased 
phagocytic activity of leukocytes in animals exposed to cigarette smoke. Animals exposed to 
wollastonite or cigarette smoke alone caused enhancement of proliferative activity of T-
lymphocytes stimulated with concanavalin A. All animals exposed to wollastonite fibers 
had suppressed phagocytic activity of monocytes and granulocytes. Moreover, decrease of 
phagocytosis was recorded also in combined exposure to wollastonite and cigarette smoke. 
In conclusion, inhalation of amosite and wollastonite mineral fibers resulted in marked 
changes in specific and non-specific immunity. Moreover, findings indicate mutual 
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Function of lymphocytes 

30 
mg/m3 

60 
mg/m3 

Tobacco 
smoke alone 

Tobacco 
Smoke + fibers 
30 mg/m3 

Tobacco 
smoke + fibers 
60 mg/m3 

Proliferative activity of T-
lymphocytes stimulated with Con A 
(cpm) 

 
Woll ↑ * 
 

 ↑ * 
 

 
 
 

Proliferative activity of T-
lymphocytes stimulated with PHA 
(cpm) 

    
 
Am ↓ a 

Proliferative activity of T-dependent  
B-lymphocytes stimulated with 
PWM (cpm) 

 
Am ↓ * 

    

Proliferative activity of B-
lymphocytes stimulated with STM 
(cpm) 

    
 
Am ↑ * 

Proliferative activity of T-
lymphocytes stimulated with CD3 
(cpm) 

 
Am ↓ * 

 
Am ↓ * 

   

Function of phagocytes      

Phagocytic activity of neutrophils 
(%) 

Woll ↓ * 
 

Am ↓ ** 
Woll ↓ * 

 ↑ * Am ↓ a Am ↓ aaa 

Phagocytic activity of monocytes 
(%) 

Am ↓ ** 
Woll ↓ * 

Am ↓ *** 
Woll ↓ ** 

 
Am ↓ aaa 

Woll ↓ * 
Am ↓ aaa 
Woll ↓ * 

*/a p<0.05; **/aap<0.01; ***/aaap<0.001; *– significant level calculated in exposed rats in comparison with 
control rats without tobacco smoke exposure; a– significant level calculated in exposed rats in 
comparison with control rats with tobacco smoke exposure;  - decrease in comparison with relevant 
control; ↑ - increase in comparison with relevant control; Woll – wollastonite; Am – amosite; Con A-
concanavalin A; PHA-phytohemmagglutinin; PWM-pokeweed mitogen; STM-lipopolysaccharide from 
Salmonella typhimurium; CD3-alloantigen 

Table 3.2-6. Proliferative activity of lymphocytes and phagocytic activity in rats treated via 
inhalation exposure with two doses of amosite/wollastonite fibers and with/without 
tobacco smoke. 

interference of mineral fibers and smoking in the modulation of the systemic immune 
response during combined exposure.  

3.3 Assessment of Immunotoxicity of ceramic fibers and NiO nanoparticles  

The aim of the study was the assessment of immune effects of exposure to ceramic fibers 
and/or NiO nanoparticles in experimental animals – male Sprague-Dawley rats. Rats were 
treated by intratracheal instillation with 1 mg of refractory ceramic fibers and/or 1mg NiO 
nanoparticles. Controls were treated with 1 ml physiological saline (1ml per animal). One 
and six months after instillation, the animals were killed. The blood samples were taken and 
the spleen was aseptically removed and placed into RPMI medium. Panel of immune assays 
was performed. The phagocytic activity of blood monocytes and granulocytes was assessed 
by ability to ingest bacteria Staphylococcus aureus (Tulinska et. al., 2005). One month after 
exposure of animals to ceramic fibers and/or NiO nanoparticles no alterations in phagocytic 
activity and respiratory burst was shown. However 6 months after exposure, situation was 
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different. Exposure to NiO nanoparticles and combined exposure to ceramic fibers and NiO 
nanoparticles caused significantly increased phagocytic activity of granulocytes, as well as 
percentage of cells with respiratory burst (Table 3.3-1). NiO nanoparticles and combined 
exposure of ceramic fibers and NiO nanoparticles stimulated this important function of 
nonspecific immune response.  

 

Function of phagocytes 
Ceramic fibers 1 
month  

NiO 
nanoparticles 
1 month  

Ceramic fibers and NiO 
nanoparticles  
1 month  

Phagocytic activity of monocyes (%)    
Phagocytic activity of granulocytes (%)    
% of phagocytic cells with respiratory 
burst  

   

 
Ceramic fibers  
6 months  

NiO 
nanoparticles 
6 months  

Ceramic fibers and NiO 
nanoparticles  
6 months  

Phagocytic activity of monocyes (%)    
Phagocytic activity of granulocytes (%)  ↑ * ↑ *** 

% of phagocytic cells with respiratory 
burst  

 ↑ * ↑ ** 

* p<0.05, ***p<0.001; ↑ - increase in comparison with relevant control 

Table 3.3-1. Phagocytic activity and respiratory burst of peripheral blood cells in male 
Sprague-Dawley rats administered with 1 mg refractory ceramic fibers, NiO nanoparticles 
and combined exposure to both elements. 

Function of T- and B-lymphocytes was studied using lymphoproliferation assay in spleen 
cells derived from rats exposed to ceramic fibers and/or NiO nanoparticles. Cells were in 
vitro stimulated with mitogens - concanavalin A (Con A), phytohemagglutin (PHA) and 
pokeweed (PWM) mitogen. One month after exposure, significant decrease of proliferative 
activity of lymphocytes stimulated with all three mitogens was found in animals exposed to 
ceramic fibers. To the contrary, 6 months after exposure, significant increase of lymphocyte 
proliferation stimulated with phytohemagglutin and pokeweed mitogen was recorded. The 
effect of combined exposure to ceramic fibers and NiO nanoparticles on spleen cells was 
manifested as significant increase of proliferative activity of T-lymphocytes after stimulation 
with Con A. Moreover, significant increase of basal proliferative response of spleen cells 
derived from rats 1 month after exposure to NiO nanoparticles alone and combined 
exposure to fibers and nanoparticles was seen. (Table 3.3-2).  

Immunophenotypic analysis of leukocytes was examined using panel of surface markers: 
CD3, CD4, CD8, CD161 and MHC II. Six months after exposure, immunophenotypic 
analysis of leukocytes performed by flow cytometry revealed statistically significant 
decrease of expression of marker for T-lymphocyte subpopulations (CD4, CD8) in rats 
administered with ceramic fibers. On the other hand, increase of expression of CD4 marker 
after combined exposure was observed. 6 months after exposure to NiO nanoparticles, 
significant increase of expression of molecule MHC II on lymphocytes, monocytes and 
granulocytes was shown. Similar effect of combined exposure on expression MHC II on 
monocytes and granulocytes was found (Table 3.3-3).  
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Function of lymphocytes 

Ceramic fibers  
1 month  

NiO 
nanoparticles 
1 month  

Ceramic fibers and 
NiO nanoparticles  
1 month  

Proliferative activity of T-lymphocytes 
stimulated with Conncanavalin A – Con A (cpm)   *   ↑ * 

Proliferative activity of T- lymphocytes 
stimulated with Phytohemmagglutinin - PHA 
(cpm) 

  ***   

Proliferative activity of T-dependent B- 
lymphocytes stimulated with Pokeweed mitogen 
- PWM (cpm) 

  *   

Basal proliferative activity (cpm) 
   ↑ ***  ↑ *** 

 Ceramic fibers  
6 months  

NiO 
nanoparticles 
6 months  

Ceramic fibers and 
NiO nanoparticles  
6 months  

Proliferative activity of T- lymphocytes 
stimulated with Con A (cpm) 

   

Proliferative activity of T- lymphocytes 
stimulated with PHA (cpm)  ↑ *   

Proliferative activity of T- dependent B- 
lymphocytes stimulated with PWM (cpm)  ↑ *   

Basal proliferative activity of lymphocytes (cpm) 
    

* p<0.05, ***p<0.001; cpm-counts per minutes after 3H incorporation into lymphocytes,  - decrease in 
comparison with relevant control; ↑ - increase in comparison with relevant control 

Table 3.3-2. Proliferative response of lymphocytes in male Sprague-Dawley rats 
administered with 1 mg refractory ceramic fibers, NiO nanoparticles and combined 
exposure to both elements. 

 

 
Proportion of leukocyte subsets in 
peripheral blood 

Ceramic fibers 6 
months  

NiO 
nanoparticles 
6 months 

Ceramic fibers and NiO 
nanoparticles  
6 months 

CD3+ –  
T-lymphocytes (%)    

CD4+ –  
T-helper lymphocytes (%)   *   ↑ ** 

CD8+ –  
T-cytotoxic lymphocytes (%)   *   

CD4+/CD8+ lymphocytes (%)   *   
Expression of MHCII marker on 
lymphocytes (%)   ↑ *  

Expression of MHCII marker on 
monocytes (%)   ↑ **  ↑ * 

Expression of MHCII marker on 
granulocytes (%)   ↑ **  ↑ *** 

* p<0.05; **p<0.01; ***p<0.001;  - decrease in comparison with relevant control; ↑ - increase in 
comparison with relevant control 

Table 3.3-3. Proportion of leukocyte subsets in peripheral blood in male Sprague-Dawley 
rats administered with 1 mg refractory ceramic fibers, NiO nanoparticles and combined 
exposure to both elements. 
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Phagocytosis is a major host defense mechanism of the innate immune system. The specific 
molecular pathways that direct the process of ingestion depend on the size of the particle 
(Hazenbos & Brown, 2006). Several other mechanisms, such as release of inflammatory 
mediators, antigen presentation (Garcia-Garcia & Rosales, 2005; Rabinovitch, 1995) and 
expression of different membrane receptors (Garcia-Garcia, 2005; Johansson et. al., 1997) are 
also involved. It is known that different pulmonary macrophages (airway, alveolar, 
interstitial, pleural, intravascular) are an important part of the lung's defenses against 
particles deposited by inhalation (Oberdorster, 1994). After phagocytic stimulation, 
macrophages release various chemotactic factors for neutrophils and other inflammatory 
cells including TNF, neutrophil chemotactic factor and many proinflammatory mediators 
such as prostaglandins, leukotrienes, thromboxane. Apart from that, macrophages produce 
free radical oxygen and release lysosome enzymes which may cause lung tissue injury. 
Published literature, studying influence ceramic and metal nanoparticles in vitro, showed 
that ceramic nanoparticles had effect on production of cytokines in monocytes. This effect 
resulted to the shift of cytokine balance towards inflammation. Moreover, obtained results 
showed that nanoparticles have significant effects on the expression of some TLR molecules, 
suggesting that they could affect cell reactivity to infections by altering the expression of 
innate receptors. Particularly interesting is the finding that ceramic nanoparticles can 
enhance expression of TLR chains important for viral-dependent stimulation (Lucarelli et 
al., 2004). Another study (Yagil-Kelmer et al., 2004) compared influence of ceramic particles 
on monocytes of peripheral human blood and human monocytes cell line U937. They found 
out the higher variability of expression of cytokines of primary human blood monocytes 
from donors in compared with cell line. Importantly, studies consistently demonstrated that 
smaller, sub-micrometer ceramic particles provoke relative1y larger amounts of the 
cytokines IL-l alpha, IL-I beta, IL-8, TNF-alpha and IL-10 when compared to 1.5 um 
particles. The variation in the reactivity of different human individuals to particle 
stimulation may have highlighted another major contributory factor - genetic capacity of an 
individual to express related cytokines with their susceptibility to, and subsequently, the 
severity of, a particular disease (Matthews et al., 2000). Nkamgueu et al., (2000) recorded 
suppression of phagocytic activity and respiratory burst after in vitro exposure of cells to 
ceramic particles. The results of another study indicated that refractory ceramic fibers 6 
months after intratracheal instillation significantly changed the majority of examined BAL 
parameters. The presence of inflammatory and cytotoxic response in lung may signalize 
beginning or developing disease process (Hurbankova et al., 2005). 

Observations that nickel oxide-induced changes may contribute to significant 
immunodysfunction are known from immunotoxicity studies examining “bulk” nickel 
oxide aerosols. 65-day inhalation study in mice showed, that exposure to nickel oxide 
resulted in increased numbers of lung-associated lymph nodes (LALN), enhanced numbers 
of nucleated cells in lavage samples, increased antibody-forming cells (AFC) in LALN, but 
decreased AFC/106 spleen cells and suppressed alveolar macrophage phagocytic activity 
(Haley et al., 1990). Significant alterations of humoral immune system and alveolar 
macrophages were found also in rats after 4 weeks or 4 months of exposure to nickel oxide 
aerosols, respectively (Spiegelberg et al., 1984). Nanoform might have substantial impact on 
toxic effects including immunotoxicity. In vitro studies demonstrated that ultrafine NiO 
particles showed higher cytotoxicities toward human keratinocyte HaCaT cells and human 
lung carcinoma A549 cells in vitro than fine NiO particles (Horie et al., 2009). Transmission 
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electron microscope observations revealed uptake of both ultrafine and fine NiO particles 
into HaCaT cells. Cellular uptake of NiO nanoparticles (NiO NP) was found to be associated 
with the release of Ni2+ ions after 24-48 h (Pietruska et al., 2011). The intracellular Ni2+ 
release could be an important factor that determines the cytotoxicity of NiO. Pathological 
features of different sizes of nickel oxide following intratracheal instillation in rats were 
studied by Ogami et al. (2009). Submicrometer nano-nickel oxide was associated with 
greater toxicity, as for crystalline silica, than micrometer-sized nickel oxide. Biological 
effects of factors of particle size reduction, when dealing with finer particles such as 
nanoparticles, were reconfirmed to be important in the evaluation of respirable particle 
toxicity. 

In vivo studies in experimental animals showed persistent high level of inflammation in 
lungs even at low doses of NiO NP. Cho et al. (2010) described chronic 
neutrophilic/lymphocytic cytotoxic inflammation in rats 4 weeks after instillation NiO NP 
accompanied by increased MIP-2, IFN-Ǒ, and LDH in BALF. The alveolar lipoproteinosis 
evident in NiO NP-exposed lungs was reflected in very high protein and LDH levels in the 
BALF. Increased levels of neutrophils and macrophages have been observed from 3 days to 
3 months after instillation of agglomerated NiO NP suspended in distilled water in Wistar 
rats (Nishi et al., 2009; Ogami et al., 2009). Gene expression profiling of the rat lung after 
whole-body inhalation exposure to ultrafine NiO particles induced high expression of genes 
associated with chemokines, oxidative stress, and matrix metalloproteinase 12 (Mmp12), 
suggesting that Uf-NiO particles lead to acute inflammation (Fujita et al., 2009). In vitro 
studies conducted to test the possible toxic effects (Ada et al., 2010) bring evidence that one 
of the contributing underlying mechanisms is oxidative stress. The levels of intracellular 
reactive oxygen species and lipid peroxidation in A549 cells enhanced with increasing 
exposure to NiO nanoparticles and growth in gene expressions of HO-1 and SP-D were 
observed in A549 cells (Horie et al., 2011).  

Our data of suppressed proliferative activity of T-lymphocytes and decreased T-dependent 
B-cell response indicate fiber-induced changes in systemic immune response. The 
hypothesis that inhaled particles or fibers can exert adverse effects outside of the lung is 
supported by several studies. Although, most of findings refer to systemic effect of particles, 
similar influence of fibers can be assumed. For example, ultrafine particles were found to 
decrease the number of blood PMNs and increase the intracellular oxidation of a fluorescent 
dye (DCFD) in blood PMNs (Elder et al., 2004). Diesel exhaust particles and carbon black 
particles had significant adjuvant effect on the local immune-mediated inflammatory 
response in the draining popliteal lymph node and on the systemic specific IgE response to 
model allergen ovalbumin in BALB/c mice (Lovik et al., 2003). The data of van Eeden (van 
Eeden et al., 2002) showed the effects of particulate air pollution on bone-marrow 
stimulation in animals. Acute exposure to ambient particles accelerates the transit of 
polymorphonuclear leukocytes (PMN) through the marrow whereas chronic exposure 
expands the size of the bone marrow pool of PMN. A communication between the fiber-
induced processes in the pulmonary compartment and peripheral tissues can be mediated 
by: 1) leakage of reactive oxygen species and stress-induced cytokines directly into the 
peripheral blood, 2) (pre)activation of peripheral blood leukocytes that can result in aberrant 
homing and activation of inflammatory cells in distant tissues, and 3) the liberation of 
proinflammatory mediators by leukocytes and/or stromal cells present in the pulmonary 
tissues (Oudijk et al., 2003). 
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4. Molecular epidemiological studies in human population 

The possible immunomodulatory effects of mineral fibers, in workers occupationally 
exposed to asbestos, rock wool and glass fibers, were examined in the context of a large-
scale molecular epidemiology study (Ilavska et al., 2005; Tulinska et al., 2004). In addition to 
biomarkers of immunotoxicity, biomarkers of genotoxicity (Beňo et al., 2005; Dusinska et al., 
2004; Horská et al., 2006; Topinka et al., 2004; 2006), oxidative damage and antioxidant 
defense (Staruchova et al., 2008) were also examined in the same cohorts. The studies 
involved workers with at least 5 years’ exposure to asbestos, rock wool and glass fibers, 
respectively, at 3 industrial plants in Slovakia. A control group of clerical workers, matched 
for sex, age, smoking habits and alcohol use were also studied. All workers underwent 
clinical examination, including functional spirometry testing, and radiological examination.  

Exposure: Fiber samples were used for asbestos fiber and ASMF identification, fiber 
morphology and quantification, using a microscope with phase contrast (Nikon, Japan) 
according to the Reference Method for the Determination of Airborne Asbestos Fiber 
Concentration at Workplaces by Light Microscopy (Membrane Filter Method), AIA 1979, 
London, UK. Exposure assessment had been based on personal and environmental 
monitoring.  

Subjects and health status: In each plant, 61, 98 and 80 exposed workers and 21, 43 or 36 
control clerical subjects, respectively, were recruited. In the case of the asbestos-exposed 
subjects, an additional town-control group of 49 people was included. Evidence of 
pulmonary fibrosis was found in 42% of the asbestos-exposed workers, while evidence of 
pleural fibrosis was found in 24%. The asbestos-exposed cohort had significantly decreased 
forced vital capacity of lungs as well as forced expiratory volume per first second. 

Immune parameters: Markers of lymphocyte function were found to differ significantly 
between fiber-exposed cohorts and corresponding controls. Workers from the former 
asbestos cement plant had significantly decreased proliferative capacity of lymphocytes 
stimulated by T-cell mitogen PHA. In contrast, the proliferative activity of T-lymphocytes in 
subjects from the rock wool and glass fiber factories was stimulated (Table 4). A significant 
in vitro stimulatory effect was observed in cultured B-lymphocytes stimulated with PWM 
from peripheral blood obtained from the glass fiber workers, while no such effect was found 
in workers from the asbestos and rock wool plants in comparison with the corresponding 
controls (Table 4). Although no other published data on functional changes of lymphocytes 
has been published in rock wool and glass fiber workers, depression of cell mediated 
immune response with a clear relationship between defective T-cell function and pulmonary 
fibrosis was seen in asbestos-exposed individuals. In vitro studies have clarified that 
asbestos fibers inhibit proliferation at an early stage (G0 phase) of the cell cycle of PHA-
stimulated cells. Besides the evidence for an important role of specific immunity in 
chemically induced pulmonary disease, including asbestosis, and published results on the 
protective role of T-lymphocytes especially in asbestos-induced pulmonary inflammation, 
our data also suggest immunomodulatory effects for two man-made fibers. We propose that 
the different patterns of T-cell proliferative activity found in workers exposed to asbestos 
versus rock wool and glass fibers may be due to differences in the duration of exposure to 
the different fibers as well as differences in the underlying health status of the populations 
studied. In contrast to the relatively good clinical status, shorter duration and low level of 
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fiber exposure in rock wool and glass fiber workers, the former asbestos cement workers 
had historically high levels of exposure to fibrogenic dust and showed clinical evidence of 
asbestosis and a high prevalence of low forced vital capacity. It is notable that a biphasic 
immune response has been reported with silica exposure. In a rat model two distinct phases 
were noted in development of silicosis: in early stages, silica activates both humoral and 
cellular immunity; however, in late phases no activated adaptive immune system effects 
were observed.  

The phagocytic activity of polymorphonuclear leukocytes and monocytes as well as 
respiratory bursts of cells did not differ significantly between the exposed and control 
groups. Similarly, the results of the natural killer cell assays indicated no significant 
differences in cytotoxic activity of NK-cells between exposed and controls in the cohort 
exposed to asbestos and rock wool (cytotoxicity assays were not done in the glass fiber 
workers). Phenotypic analysis of peripheral blood leukocytes was performed to assess the 
proportions of the main lymphocyte subsets. Flow cytometry analysis revealed significantly 
decreased expression of markers CD16+56+ (natural killer cells) in exposed workers from the 
glass fiber plant in comparison with the corresponding controls (Table 4). No significant 
alterations between workers exposed to asbestos, rock wool and glass fibers exposed and 
controls have been found in proportion of CD3+, CD4+, CD8+, CD19+ cells in peripheral 
blood.  
 

Table 4 Parameters Asbestos 
Rock 
wool  

Glass 
Fibers  

Hematology 

White blood cell count (x109/l)    * 

Lymphocytes (%)    

Basophils and eosinophils (%)    

Neutrophils (%)    

Lymphocyte count (x109/l)    ↑ ** 

Basophil and eosinophil count (x109/l)    ↑ * 

Neutrophil count (x109/l)    

Erythrocyte count (x1012/l)    

Hemoglobin (g/l), hematocrit (%)    

Mean cell volume (fl)     * 

Platelets (x109/l)    

Function of lymphocytes 

Proliferative activity of T-lymphocytes 
stimulated with Concanavalin A – ConA (cpm) 

 ↑ * ↑ ** 

Index Con A  ↑ ** ↑ ** 

Proliferative activity of T-lymphocytes 
stimulated with Phytohemagglutinin - PHA 
(cpm) 

  ↑ * 

Index PHA  * ↑ ** ↑ ** 

Proliferative activity of T-dependent B-
lymphocytes stimulated with Pokewed mitogen 
- PWM (cpm) 

  ↑ * 

Index PWM    
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Table 4 Parameters Asbestos 
Rock 
wool  

Glass 
Fibers  

Proliferative activity of T-lymphocytes 
stimulated with CD3 antigen (cpm), Index CD3  

   

Proliferative activity of lymphocytes  
stimulated with Tetanus antigen - TET (cpm), 
Index TET 

   

Basal proliferative activity of lymphocytes 
(cpm) 

  ↑ ** 

Function of phagocytes 

Phagocytic activity of monocytes and 
granulocytes (%) 

   

Respiratory burst of granulocytes (%)    

Function of NK cells Natural killer cell activity (%)   
not 
done 

Proportion of lymphocyte 
subsets in peripheral 
blood 

CD3+ – T-lymphocytes (%) 
CD3+/HLA DR – activated T-cells (%) 

   

CD4+ - T-helper lymphocytes (%)    

CD8+ - T-cytotoxic lymphocytes (%)    

CD16+56+ - Natural killer cells (%)    * 

CD 19+ - B-lymphocytes (%)    

CD25, CD81 – activated T-lymphocytes (%)    

Adhesion molecules on 
leukocytes 

Expression of CD62L on lymphocytes (%) ↑ **   

Expression of CD62L on granulocytes (%) ↑ ***   

Expression of CD62L on monocytes (%) ↑ ***   

Expression of adhesion molecules CD11b, 
CD11c, CD18, CD49d and CD54 – ICAM on 
lymphocytes, granulocytes and monocytes (%) 

   

Activation markers on 
eosinophils 

Expression of CD66b on eosinophils (%) ↑ ***  ↑ * 

Expression of CD69 on eosinophils (%) ↑ ***   

Soluble adhesion 
molecules 

E-Selectin (ng/ml)   ↑ *** 

Intercellular Adhesion Molecule - ICAM 
(ng/ml) 

↑ * ↑ ***  

Immunoglobulins  

Immunoglobulin A – IgA (mg/dl) ↑ **   

Immunoglobulin E – IgE (U/ml) ↑ ** ↑ *  

Immunoglobulin G – IgG (mg/dl)    

Immunoglobulin M - IgM (mg/dl)   **  

Complement 
C3 and C4 Components of Complement 
(mg/dl) 

   

Proinflammatory 
cytokines 

Interleukin 1 beta – IL1ǐ (pg/ml)    

Interleukin 6 – IL6 (pg/ml) ↑ **   

Interleukin 8 - IL-8 (pg/ml) ↑ *** ↑ *** ↑ *** 

* p<0.05; **p<0.01; ***p<0.001;  - decrease ↑ - increase in comparison with relevant control;  

Table 4. Immune parameters measured in population study- humans occupationally 
exposed to asbestos and two man-made mineral fibers (rock wool and glass fibers). 

www.intechopen.com



 
Recent Advances in Immunology to Target Cancer, Inflammation and Infections 

 

360 

The expression of adhesion molecules on blood leukocytes was analyzed using flow 
cytometry. In workers from the former asbestos cement plant, expression of adhesion 
molecule CD62L (L-selectin) on monocytes and granulocytes was significantly increased 
(Table 4). Increased levels of soluble adhesion molecules ICAM-1 were found in sera from 
the cohorts who worked with asbestos and rock wool (Table 4). The chi square test 
confirmed a significantly increased proportion of people with high levels of soluble ICAM-1 
(>306 ng/ml) not only among the asbestos cohort but also in glass fiber workers (asbestos 
p<0.02, glass fibers p<0.03) compared with the controls. Exposure to glass fibers enhanced 
the level of soluble E-selectin in workers’ sera (Table 4). Pathologically relevant increases in 
the expression and function of adhesion molecules have been observed in humans with such 
pulmonary disease/conditions as bronchial hyperreactivity, allergic rhinitis, idiopathic 
pulmonary fibrosis or neoplasia.  

Analysis of serum levels of proinflammatory cytokines revealed increased serum 
concentrations of interleukin 6 (IL-6) in former asbestos workers. Significantly elevated 
serum concentrations of IL-8 were found in workers exposed to all three types of fibers, 
while no changes in IL-1ǐ were recorded in exposed populations. Inflammatory cytokines 
are rapidly induced and expressed early in a disease or injury process. They mediate and 
modulate the healing processes but, if overexpressed, may exacerbate the severity of 
a disease condition as well as give rise to oxidative stress. Up-regulation of IL-8 secretion 
has been found in patients with fibrosing lung disease and, because IL-8 is the main 
chemotactic and activation factor for neutrophils, secretion of IL-8 was associated with 
neutrophil accumulation in the lower respiratory tract. Since the presence of neutrophils in 
BAL fluid is frequently reported in humans with asbestosis changes in levels of 
inflammatory cytokines were examined in the context of the present study.  

Exposure to asbestos and rock wool was associated with significantly increased levels of 
immunoglobulin E. The results of the analysis of expression of markers CD66b and CD69 on 
eosinophils are summarized in Table 4, where it can be seen that workers from the former 
asbestos cement plant and glass fiber factory had significantly elevated expression of marker 
CD66b, while significantly increased expression of CD69 on eosinophils was found only in 
asbestos workers. Immunoglobulin E is well known as being involved in the mechanisms of 
development of allergic diseases. The observation of significantly increased levels of total 
immunoglobulin E in asbestos workers is in agreement with published results of Rosenthal 
et al., (1999) who concluded that asbestos appears to produce a hyperresponsive state, with 
chronically exposed individuals manifesting an elevation in circulating immunoglobulins 
(IgG, IgM, IgE). No data are available on populations occupationally exposed to rock wool 
for comparison.  

5. Biomarkers 

5.1 Proliferative activity of lymphocytes (lymphocyte transformation test) 

Lymphocytes are important cells of the adaptive immune response. T-cells are involved in 
cell-mediated immunity whereas B-cells are primarily responsible for humoral immunity 
(relating to antibodies). The function of T-cells and B-cells is to recognize specific “non-self” 
antigens, during a process known as antigen presentation. Our study revealed high 
sensitivity of T-lymphocyte response to exposure to mineral fibers. Meanwhile in workers 
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exposed to asbestos, significant suppression of proliferative response of T-cells in vitro 
stimulated with phytohemagglutinin was found, stimulative effect of rock wool and glass 
fibers on activity of T-lymphocytes in peripheral blood of exposed population were 
recorded. Our findings indicate that one of the immune targets of mineral fiber exposure 
seems to be specific cellular immunity. Proliferative activity of lymphocytes might be a 
sensitive indicator of immunomodulatory effects of mineral fibers; however the limitations 
of use it as a biomarker of individual susceptibility are interindividual differences.  

5.2 Phagocytic activity of leukocytes  

Pulmonary macrophages are crucial cells in contact with mineral fibers and nanoparticles 
representing the first line of defense in the lung alveoli. Expansion of macrophages in the 
lung is a typical characteristic of that type of exposure in both humans and experimental 
animals. Total macrophage numbers in the lung may increase by migration of blood 
monocytes, local proliferation of the alveolar macrophages or induced generation of 
chemotaxins (Rosenthal et al., 1998). Phagocytosis of asbestos fibers has been shown to be 
accompanied by the activation of macrophages, which results in the generation of ROS as 
well as a variety of chemical mediators and cytokines. These mediators amplify the local 
inflammatory reaction. Persistence of asbestos fibers in the lung interstitium or in the sub-
pleural connective tissue may lead to a sustained chronic inflammatory reaction 
accompanied by fibrosis and proliferation of epithelial and mesenchymal cells (Branche, 
2009). Surprisingly, in contrast to a marked suppressive effect of mineral fibers on the 
activity of phagocytes observed in our animal studies, no dramatic influence was found in 
worker populations. A statistically significant deterioration of phagocytic activity of 
monocytes was observed only among smoking workers exposed to asbestos, in comparison 
with exposed non-smokers (Tulinska et al., 2004).  

5.3 Percentage of CD16
+
56

+
 cells (natural killer cells – NK cells) and cytotoxic activity 

of NK cells 

Natural killer cells (NK cells) are crucial members of innate immunity responsible for killing 
of virus infected cells, overseeing of mutated or other way transformed cells and as a first 
defense line toward cancer cells. They kill cells by releasing small cytoplasmic granules of 
proteins called perforin and granzyme that cause the target cell to die by apoptosis 
(programmed cell death). Several authors have reported increased numbers of circulating 
NK cells and their reduced activity in asbestos exposed humans (Froom et al., 2000; 
Rosenthal et al., 1999). The results from our study do not confirm these findings. Neither 
asbestos cement nor rock wool workers were noted to have significant changes in NK-cell 
activity or the percentage of cells with NK phenotype. However, significantly decreased 
expression of marker CD16+56 was found in glass fiber-exposed workers in comparison 
with controls. Although the effect was not dramatic, this observation suggests that exposed 
workers need to be screened preventively for this marker. This finding is surprising because 
glass fiber exposure has not as yet been connected with malignant tumors as has asbestos. 
Synthetic vitreous fibers (that include insulation glass wool and continuous glass filament) 
were reclassified by International Agency for Research on Cancer (IARC) commission from 
category 2b (possibly carcinogenic to humans) to category 3 (not classifiable as to their 
carcinogenicity to humans) in 2001 (Bernstein, 2007; IARC, 2002). Regardless, that in our study 
population no significant differences in cytotoxic activity of natural killer cells were found 
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between workers exposed to asbestos and rock wool and corresponding controls (assay in 
glass fiber workers not done), the assay is considered an important member of a panel to 
assess antitumor immunity in workers exposed to probable, possible or susceptible 
carcinogens. We assume that both numbers and activity of NK cells are important in 
individual health surveys of workers exposed to mineral fibers.  

5.4 The phenotypical analysis of peripheral blood leukocytes  

T-lymphocytes, CD3, CD4, CD8, HLA DR markers 

Published data suggest that asbestos may affect immunocompetent cells such as CD4+ 
responder T-cells, CD4+ regulatory T-cells, Th17 T-cells, CD8+ cytotoxic T-cells (CTL) or 
dendritic cells (DC). Continuous exposure to chrysotile produces a stronger Treg function, 
at least with the capacity to produce soluble functional factors (i.e., IL-10 and TGF-ǐ) 
(Kumagai-Takei et al., 2011). Recent research indicates that asbestos is able to act as a 
superantigen (Otsuki et al., 2007). The increased expression of T-cell receptor Vǐ without a 
clonal expansion of T-lymphocytes has been demonstrated after asbestos exposure. This is in 
line with our results. We did not detect changes either in absolute or relative number of T-
lymphocytes and activated T-lymphocytes in the asbestos exposed workers in comparison 
to controls. Previous papers referred changes in Th/Ts ratio as well as decreased relative 
and absolute number of circulating T-lymphocytes (Kagan et al., 1977; Tsang et al., 1988). 
These parameters were without change also in case of rock wool or glass fiber exposure.  

Expression of CD81 and CD25 on activated T-lymphocytes  

In spite of inhibition of T-cell proliferation observed in the case of asbestos or stimulation in 
case of glass fibers and rock wool we did not find changes in expression of early activation 
markers CD81 and CD25 on CD4+ and CD8+ T-cells after PHA stimulation (data not 
published). Their spontaneous stimulation was not damaged either. Chronic exposure to all 
of three fibers had no effect on these tested parameters. Similar results were recorded by Wu 
et al. (2000). The marker CD81 was not expressed on peripheral T-lymphocytes after in vitro 
cultivation with chrysotile asbestos. Dysregulation and long-term T-cell activation can lead 
to survival of self-recognizing cells, and consecutively to initiation of autoimmune 
responses. We assume that synthetic mineral fibers do not impact the human organism in 
the same manner as in the case of asbestos. The expression of T-cells activation markers was 
not changed after glass fibers and rock wool exposure. 

B- lymphocytes, CD19 marker, and immunoglobulins IgG, IgA, IgM, IgE 

An increased number of B-cells have been reported in patients with asbestosis, fibrosis or 
malignant diseases after asbestos exposure (Gaumer et al., 1981; Ozesmi et al., 1988). We did 
not detect this change after asbestos, glass fiber or rock wool exposure. However, among 
those with asbestos exposure we confirmed a hyperresponsive B-lymphocytes as seen by 
Rosenthal et al., (1999) with increased levels of immunogloulins IgE and IgA. Exposure to 
rock wool was also associated with increased IgE levels and in contrast with decreased 
levels of IgM. Exposure to glass fibers did not affect these parameters. An elevation in serum 
immunoglobulins (IgA, IgG, IgM, IgE) and mucosal (salivary) IgA and the presence of 
autoantibodies, antinuclear antibody and rheumatoid factor is one of the most consistent 
findings in individuals chronically exposed to asbestos (Doll, 1983). IgE is well known for 
being a central regulator in the allergic reactions. The increased level of IgE and a higher 
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production of proinflammatory interleukins, IL-6 and IL-8, suggest inflammation with a 
shift from Th1 to Th2 immune response. Our findings correspond to other studies which 
confirm a shift towards a Th2 mediated immune response in BAL fluid after asbestos 
exposure (elevated levels of cytokines IL-1b, Il-4, Il-5, IL-6, Il-13) (Sabo-Attwood et al., 2005; 
Shukla et al., 2007). 

Activation markers on eosinophils 

Eosinophils are known for their participation on allergic reactions. Pulmonary diseases as 
asthma or allergic rhinitis are associated with elevated number of circulating eosinophils 
(Venarske & deShazo, 2003). The expression of activation markers on eosinophils can 
indicate a growing allergic status. Workers from the World Trade Center crash (with high 
exposure to asbestos and synthetic mineral fibers) had enormously increased numbers of 
eosinophils in BAL fluid but circulating eosinophils were not changed (Rom et al., 2002). 
Also in our study, we did not detect increased number of peripheral blood eosinophils after 
mineral fibers exposure, but we observed evidence of their activation. The expression of 
CD69 and CD66b markers was associated primarily with asbestos exposure, and glass fibers 
enhanced only CD66b. Rock wool did not have impact on these parameters. 

Expression of adhesion molecules CD11b, CD11c, CD18, CD54, CD62L, and CD49d on 
lymphocytes, monocytes and granulocytes 

Transendothelial migration of leukocytes into tissues is a multistep process. Leukocytes 
express adhesion molecules as mediators. We evaluated the expression of adhesion 
molecules CD11b, CD11c, CD18, CD54, CD62L and CD49d on leucocytes and detected the 
increased expression of L-selectin (CD62-L) on monocytes and granulocytes in workers 
exposed to asbestos. Selectins mediate the rolling of leukocytes on the stimulated 
endothelium. Increased numbers of alveolar macrophages in the lower human airways is a 
typical finding after asbestos exposure (Rosenthal et al., 1999). Circulating monocytes 
transmigrate to tissue in response to chemotactic factors and become tissue macrophages. 
The over-expression of CD62L as well as IL-8, a chemotactic factor for neutrophils, may be 
an important part of this process. 

5.5 The assessment of soluble markers 

Complement components C3 and C4  

Sabo-Attwood et al., (2005) showed changes in the gene expression of C1 complement 
component in a mouse model. The incubation of human plasma with asbestos fibers 
induced production of C5a fragment of C5 component of complement (Governa et al., 2000). 
We did not detect any changes of C3 and C4 complement components in human serum of 
workers exposed to mineral fibers (data not published). 

Interleukins IL-1β, IL-6, and IL-8 

Asbestosis is accompanied by persistent inflammation and by production of mediators of 
inflammation. Certain asbestos substitute fibers, e.g. wollastonite fibers are potential 
angiogenic agents that can induce regenerative cytokine (IL-6, IL-8) and angiogenic factor 
production (VEGF-A) resulting in the formation of new blood vessels (Carbonari et al., 
2011). Many in vitro studies showed that measurement of interleukin levels is equally 
sensitive for testing of cell activation after air-transmitted particles exposure in vitro 
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(Mitschik et al., 2008). In connection with asbestosis, there are cytokines, mainly IL-1ǐ, IL-
6, IL-8, which appear to have a role in pathology of this disease (Mossman & Churg, 1998; 
Tsuda et al., 1997). In spite of the fact that IL-1ǐ is a proinflammatory cytokine required 
for the synthesis of others cytokines (e.g. IL-8), we did not detect differences in exposed 
groups in comparison to controls. Our findings were in accordance to observations of 
Simeonova and Luster (Simeonova & Luster et al., 1996) who noted an enhancement of 
IL-8 without IL-1ǐ stimuli. IL-6 was previously known as a factor for B-cell 
differentiation and immunoglobulin production. The increased level of IL-6 may be 
associated with the increased IgE and IgA levels seen in asbestos exposed individuals. 
Monitoring of IL-8 in peripheral blood could serve as an early and sensitive marker of 
developing pulmonary inflammation in consequence of asbestos, glass fibers and rock 
wool exposure. Across all three exposed groups we observed an increase of cytokine IL-
8. Despite the highly significant (p<0.001) differences in IL-8 between exposed workers 
and human control subjects, these interleukin levels were still in normal reference 
range.  

Soluble adhesion molecules sICAM-1, sVCAM-1 and sE-selectin 

The soluble adhesion molecules are products of activated endothelial cells. They are 
known for their involvement in processes of inflammation. Ciebiada et al., (2011) declared 
that concentrations of sICAM-1 are significantly higher in patients with asthma, and are 
dependent on a seriousness of disease. Our observations of increased adhesion molecules 
are in agreement with findings of Kristovich who stated that in the context of the 
pulmonary microenvironment, TNF-Ǐ elaborated by particulate-laden alveolar monocytes 
could act upon proximal septal capillary endothelial cells, inducing their expression of 
endothelial leukocyte adhesion molecules ICAM-1, vascular cell adhesion molecule 
(VCAM -1 and E-selectin (Kristovich et al., 2004). Based on this fact we can speculate that 
levels of sICAM-1 corresponded with inflammation of the airways. Levels of sICAM-1 
were increased in the asbestos exposed group. This was not surprising because asbestos 
fibers are persistent and insoluble in the lungs and are known as causative factor of 
inflammation. Although in the case of rock wool was a rather disturbing finding for a 
reason of better elimination of these inhaled synthetic mineral fibers from organism. 
Usually they have a high solubility and short-term durability in the airways. Among 
others, there was a shorter duration and lower concentration of fiber in the case of rock 
wool than asbestos exposure. We noted a statistically significantly higher elevation of 
sICAM-1 levels in individuals exposed to rock wool compared to the group exposed to 
asbestos. Glass fibers were not associated with differences in sICAM-1 levels. Adhesion 
molecules seem to be a sensitive indicator of activation of the immune system and 
inflammatory response in humans exposed to mineral fibers. Oxidative stress and 
production of ROS is an important component of the multiple effects of asbestos on 
human airways (Manning et al., 2002; van Helden et al., 2009). ROS modulate receptor 
signals and immune responses under physiological conditions, but their overproduction 
mediates endothelial damage through growth and migration of inflammatory cells, over-
expression of inflammatory cytokines and adhesion molecules such as ICAM-1, VCAM-1, 
and E-selectin (Urso et al., 2011). The elevated production of IL-8, sICAM-1 (rock wool 
exposure) and sE-selectin (glass fibers exposure) signify immunotoxic effects of synthetic 
fibers from the airways and increased production of ROS. 

www.intechopen.com



Immune System and Environmental Xenobiotics  
- The Effect of Selected Mineral Fibers and Particles on the Immune Response 

 

365 

6. Summary 

This chapter addresses the effects of asbestos, man made mineral fibers (rock wool, glass 
wool, ceramic fibers) and nickel oxide nanoparticles on the immune system using in vitro 
model, animal model and molecular-epidemiological studies. Data from in vitro studies 
contained results of experiments on alveolar macrophages (AM) and alveolar epithelial type 
II cells (TII). Stone wool, refractory ceramic fibers (RCF), asbestos (crocidolite) and 
wollastonite have been tested by lectin histochemistry. Stone wool caused moderate 
membrane injury of AM and incomplete phagocytosis in a small fraction of AM. RCF 
caused gaps and reduplicated changes in membranes of both cell types (high dose). 
Wollastonite caused a decreased reaction in the membranes (high dose). After exposure to 
the lowest dose of asbestos (crocidolite), the membranes of both cell types were fragmented 
irregularly and frustrated phagocytosis could be found in AM. Analysis using transmission 
electron microscopy found severe damage in the organelles and cell death of both cell types 
exposed to crocidolite. No alterations were found after RCF or stone wool exposure. 
Analysis of proinflammatory peptides showed that exposure to wollastonite did not change 
production MCP-1 and MIP-1Ǐ in TII cells but in AM the production was significantly 
enhanced. Different doses of stone wool enhanced production of both peptides in TII cells 
and AM cells. Crocidolite evoked statistically significant dose dependent enhancement of 
the production of MCP-1 in AM, for MIP-1Ǐ; and both cytokines in TII cells. Comparing the 
results from different fibers on 2 various primary cell types the following differences are 
clearly seen: crocidolite (asbestos) evoked the greatest changes, both morphologically and 
functionally. Increased effects in wollastonite were seen when compared to stone wool. AM 
cells are more sensitive to the fiber exposure than TII cells. 

Intratracheal instillation studies in rat model 

Four types of mineral fibers were administered intratracheally to rats. Four (4w) and 16 
weeks (16w) later, immune parameters were examined. Amosite, wollastonite (4w) and 
rock wool (16w) significantly decreased number of white blood cells; while opposite effect 
of glass fibers was seen (4w). A consistent increase in percentage of neutrophils was 
found in animals exposed to all fibers (4w) while decreased percentage of lymphocytes 
was observed only in rock wool fiber-treated rats (4w). Analysis of lymphocyte subsets in 
amosite exposed rats showed significantly increased percentage of T-lymphocytes (4w, 
16w), mainly cytotoxic cells (4w) and decreased percentage of B-lymphocytes (4w). An 
increased percentage of T-helper cells was seen in wollastonite group (4w). Exposure to 
mineral fibers decreased expression of adhesion molecule CD54 (ICAM-1) on peripheral 
blood leukocytes (amosite, glass fibers and rockwool; all 4w) and CD11b (glass fibers, 
wollastonite; 4w). Although amosite (4w, 16w) seems to be most potent suppressor of T- 
and B-lymphocyte proliferation, especially in high-dosed animals, wollastonite (4w) and 
rock wool (4w, 16w) also interfered with lymphocyte proliferation and suppressed the 
response of T-lymphocytes. The opposite, stimulative, effect on proliferative capacity of B-
cells was found in animals exposed to glass fibers (4w). A highly significant dose-
dependent suppression of phagocytic activity of neutrophils and monocytes was found 
mainly in rock wool and glass fiber exposed animals (4w, 16w), but present also in 
wollastonite and amosite group (4w). 
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Inhalation studies in rat model - combined effect of mineral fibers and tobacco smoke on 
inflammatory response and cytotoxicity 

In rats administered with amosite, weak dose-dependence was seen in simple exposure to 
fibers without smoking but inflammatory parameters were mostly changed in animals with 
combined exposure to high dose of fibers and tobacco smoke. In case of wollastonite 
exposure, no clear dose-dependence in changes of inflammatory parameters was recorded 
in those administered with fibers alone and very weak in combined exposure groups (fibers 
and tobacco smoke). Additionally, mild dose dependence of cytotoxic parameters changes 
in groups without or with tobacco smoke was observed. Tobacco smoke alone induced 
changes predominantly in inflammatory parameters; alterations in cytotoxic parameters 
were not explicit. 

Combined effect of mineral fibers and tobacco smoke on immune parameters 

Inhalation of high dose of both fibers (amosite and wollastonite) resulted in a significantly 
increased percentage of B-lymphocytes in peripheral blood of exposed rats. Except the 
percentage the B-cells, the combined exposure to wollastonite and smoking caused a 
significant, dose-dependent increase of cytotoxic cells, but total T-lympocytes were 
decreased. Exposure to amosite and wollastonite increased expression of adhesion molecule 
CD11b on peripheral blood leukocytes. The proliferative activity of T-lymphocytes and T-
dependent B-cell response in animals exposed to amosite in simple or combined exposure 
with smoking was mostly suppressed. The only exception was combined exposure to 
amosite fibers and smoking resulting in significant increase of proliferative activity of B-
cells. Enhanced proliferative reponse of T-cells was found in animals given high dose of 
wollastonite. A marked suppressive effect of amosite and wollastonite on phagocytic 
activity of leukocytes was observed. Moreover, decrease of phagocytosis was recorded in 
combined exposure to wollastonite and cigarette smoke.  

Assessment of immunotoxicity of ceramic fibers and NiO nanoparticles  

Immunophenotypic analysis of leukocytes was examined only 6 months after exposure to 
fibers and nanoparticles. Analysis revealed statistically significant decreased expression of 
marker for T-lymphocyte subpopulations (CD4+, CD8+) in rats administered with ceramic 
fibers. On the other hand, increased expression of CD4+ marker after combined exposure 
was observed. Exposure to NiO nanoparticles significantly increased expression of MHC II 
on leukocytes. A similar effect was found on expression of MHC II with combined exposure. 
A significant decrease of proliferative activity of lymphocytes stimulated with all three 
mitogens was found in animals exposed to ceramic fibers one month after exposure. To the 
contrary, 6 months after exposure, opposite effect was seen. Moreover, significant increase 
of basal proliferative response of spleen cells derived from rats was seen 1 month after 
exposure to NiO nanoparticles alone and combined exposure to fibers and nanoparticles. 
Combined exposure to nickel oxide nanoparticles manifested a significant increase of 
proliferative activity of T-lymphocytes after stimulation with Con A. No alterations in 
phagocytic activity and respiratory burst were shown one month after exposure of animals 
to ceramic fibers and/or NiO nanoparticles. However 6 months after exposure, situation 
was different. Exposure to NiO nanoparticles and combined exposure to ceramic fibers and 
NiO nanoparticles caused significantly increased phagocytic activity of granulocytes, as well 
as percentage of cells with respiratory burst.  
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Molecular epidemiological studies in human population 

In the context of a large-scale molecular epidemiology study, the possible 
immunomodulatory effects of mineral fibers, in workers occupationally exposed to asbestos, 
rockwool and glass fibers, were examined. Results of hematological evaluation shown 
decreased white blood cell count and increased number of lymphocytes and (common) 
eosinophil and basophil count in glass fiber exposed population. Our findings indicate that 
exposure to all three types of fibers examined the modulation of immune response to a 
different degrees. Suppression of T-cell immunity was found in the workers from a former 
asbestos cement plant, while stimulation of T-cell response was observed in rockwool 
workers. In addition to an elevated T- lymphocyte response, stimulated T-dependent B-cell 
response and basal proliferative activity of lymphocytes was seen in workers from glass 
fiber factory. Changes in lymphocyte subpopulation of CD 16+56 (natural killer cells) in 
peripheral blood may indicate negative effects of glass fibers on natural cellular immunity. 
No significant alterations between workers exposed to asbestos, rock wool and glass fibers 
and controls were found in proportion of CD3+, CD4+, CD8+, CD19+ cells in peripheral 
blood. Significantly increased serum levels of immunoglobulins IgA (asbestos), IgE 
(asbestos, rockwool) and decreased levels of IgM (rockwool) were recorded in people 
exposed to fibers. Increased levels of proinflammatory cytokines (IL-6 asbestos; IL-8 all three 
fibers), expression of adhesion molecule L-selectin on granulocytes and monocytes 
(asbestos), levels of soluble adhesion molecules in sera (ICAM-1 asbestos, rockwool; E-
selectin glass fibers), increased levels of immunoglobulin E (asbestos and rockwool) and 
elevated expression of activation markers on eosinophils (CD66b asbestos, glass fibers; 
CD69 asbestos) may indicate hypersensitivity and an elevated inflammatory status in 
workers exposed to mineral fibers.  

7. Conclusions 

With the increasing commercial needs for substitutes of asbestos fibers, a number of man-
made and other naturally occurring mineral fibers will appear as a part of living and 
occupational environments. Fibers discussed in this chapter can enter the human body 
mainly via the lungs, significance of exposure through digestive tract is less clear. Asbestos 
has long been recognized as a cause of both benign and malignant lung disease. Man made 
mineral fibers, once inhaled and displaced to lung tissues, can cause respiratory diseases 
related to inflammation and fibrosis. Skin diseases have been also reported. In reference to 
nanoparticles besides the lung and digestive tract, penetration via the skin also occurs (Fig. 
1). Knowledge from air pollution showing increased risk of cardiopulmonary, respiratory, 
hypersensitivity disease and cancer requires specific assessments to be performed for newly 
produced nanoparticles. The assays currently used to test the safety of materials might be 
applicable to identify hazards of nanoparticles. Special attention is needed for nanoparticles 
designed for drug delivery or food components. 

To optimize risk assessment for immune system toxicity, it is still necessary to increase our 
understanding of the underlying immunomodulatory mechanisms which cause negative 
effects and the quantitative relationships between the immunological tests conducted in the 
laboratory and manifestation of disease in human populations. There is no universal 
"consequence of exposure", each type of immunotoxicant should be treated individually 
when health risks are expected. As mentioned throughout this chapter, the immune system 
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has been identified as a potential target organ for chemicals including particles and fibers. 
The immune system plays a critical role in host defense from disease as well as in normal 
homeostasis; thus identification of immunotoxic risk is important in the protection of 
human, animal and wildlife health. Clear understanding of normal development of cellular 
components of the immune system, the means by which they interact, and the known 
parameters by which their structure and function can be modified is necessary for designing 
investigations into how environmental agents may affect health through the immune 
system. 

A growth of knowledge in immunology and cell biology connected with an explosion in 
methodologic and technologic capabilities is very promising for the science of 
immunotoxicology. There are several challenges yet to be solved within the discipline of 
immunotoxicology: (1) to improve traditional tests and establish a new tests, which reflect the 
variety of potential impacts of immunotoxicity; (2) to identify valid, sensitive human 
biomarkers of immunotoxicity; (3) to interpret minor, moderate, or significant immunotoxic 
effects in animal models in relation to human risk assessment; (4) better integration of methods 
of exposure assessment and immunotoxicological risk assessment, especially for simultaneous 
exposure to multiple agents ; (5) to design better human studies to assess the impact on the 
immune system in the species of the greatest interest in the context of risk assessment and (6) 
the better understanding of the role of genetic predisposition and susceptibility in identifying 
sensitive subpopulations to immune-altering agents (Kaminiski et al., 2008). These challenges 
are not unique to immunotoxicology, but they are critical, and need to be addressed through 
intensive and systematic efforts to improve human immune testing strategies. 
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