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Abstract

Mobile robot platforms have a wide range of hardware configurations in order to ac‐
complish challenging tasks and require an efficient and accurate localization system
to navigate in the environment. The objective of this work is the evaluation of the de‐
veloped Dynamic Robot Localization (DRL) system in three computing platforms,
with CPUs ranging from low to high end (Intel Atom, Core i5, and i7), in order to ana‐
lyze the configurations that can be used to adjust the trade-offs between pose estima‐
tion accuracy and the associated computing resources required. The DRL is capable of
performing pose tracking and global pose estimation in both 3 and 6 Degrees of Free‐
dom (DoF) using point cloud data retrieved from LIDARs and RGB-D cameras and
achieved translation errors of less than 30 mm and rotation errors of less than 5° when
evaluated in three environments. The sensor data retrieved from three testing plat‐
forms was processed and the detailed profiling results were analyzed. Besides pose
estimation, the self-localization system is also able to perform mapping of the envi‐
ronment with probabilistic integration or removal of geometry and can use surface re‐
construction to minimize the impact of sensor noise. These abilities will allow the fast
deployment of mobile robots in dynamic environments.

Keywords: Self-localization, point cloud registration, pose tracking, point cloud li‐
brary, robot operating system

1. Introduction

Autonomous mobile robots capable of operating in dynamic environments have a multitude
of applications and can be used to improve the overall speed and efficiency of a wide range of
jobs. They can also cooperate with humans to accomplish complex tasks and are able to
perform structured and repetitive movements with high precision.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Navigation within a dynamic environment requires a robust and accurate self-localization
system in order to know where the robot is and which path it should follow to reach the location
where it is expected to perform its tasks. The estimation of this global pose can use a varied
number of techniques and technologies and may rely on proprioceptive knowledge that the
robot has about itself (such as odometry), may incorporate exteroceptive information [1]
retrieved from sensors (such as LIDARs, RGB-D cameras, sonars), or may even use infrastruc‐
tures that are external to the robot (such as GPS). Nevertheless, for fast deployment of
autonomous mobile robots on indoor environments, most localization systems rely on a
combination of both proprioceptive and exteroceptive information to estimate the robot pose,
given that external infrastructures are expensive for large operation areas and don’t have either
the coverage or the precision required for robot docking operations.

The most used self-localization systems can be categorized as probabilistic pose estimation
methods, point cloud registration methods, or feature registration methods. Kalman filters
such as the Extended Kalman Filter and the Unscented Kalman Filter [2] along with the particle
filters [3] are the most used probabilistic methods but they rely on sensor models, and as such,
it is hard to achieve very accurate pose estimations when the models are not well defined or
when they change over time depending on the environment on which the robot is moving
(which is the case of the odometry model). Point cloud registration methods that rely on the
Iterative Closest Point [4, 5] or Normal Distributions Transform [6] can achieve very accurate
pose estimations but require an initial alignment of the sensor data with the known map in
order to successfully converge. Feature registration algorithms such as the ones presented in
[7] and [8] don’t require an initial alignment, but need distinctive geometry in the environment
in order to successfully estimate the robot pose and are very computational intensive.

The DRL system combined feature registration methods with point cloud registration algo‐
rithms in order to provide high accuracy pose tracking along with global pose estimation when
the robot starts its operation or becomes lost in the environment. This approach allowed the
creation of a more efficient, accurate and robust localization system that uses the most
appropriate types of algorithms depending on the knowledge that it has about the robot
estimated pose in the environment. Each of these pose estimations have information about the
registration of the sensor measurements with the reference point cloud, which includes the
percentage of correctly registered sensor points along with their root mean square error and
spatial angular distribution. The distribution of the initial poses are also given (when the
localization system resets pose tracking, which occurs when the robot starts its operation
without knowing where it is in the environment or when it becomes lost) in order to allow a
navigation supervisor to detect if the estimated pose is ambiguous (when there are other
known areas of the environment with similar geometry) and plot a path to disambiguate the
estimated robot location. Besides pose estimation in 3 and 6 DoF, the DRL system can also
incrementally build the map of the environment using probabilistic integration or removal of
geometry along with surface reconstruction (to reduce the impact of sensor noise). This allows
the robot to update an accurate representation of the environment while it performs its tasks,
giving the possibility to explore unknown areas or plot paths through regions that where once
unavailable.
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The DRL system was evaluated using three testing platforms on three different environments
and the sensor data was recorded into rosbags in order to allow the tests to be executed and
profiled on three different CPUs (from low to high end). The test results showed that the DRL
system was able to perform pose tracking with 5–30 mm of mean translation error and 0.4–
5.0° of mean rotation error in both 3 and 6 DoF even when running on hardware with low
computing capabilities (such as the Intel Atom N2800).

The next section describes the main processing modules of the DRL system. Section 4 details
the testing platforms and configurations used, while section 5 provides an analysis of the test
results. Section 6 finishes with the conclusions.

2. Brief presentation of the DRL system

The DRL system [9, 10] was implemented as a Robot Operating System (ROS) [11] package1

and can perform 3 and 6 DoF pose estimations of mobile robot platforms. It was implemented
as a set of modular C++ templated shared libraries in order to be reusable for other applications
besides robot self-localization. It extensively uses the Point Cloud Library (PCL) [12] for point
cloud preprocessing and registration and the OctoMap framework [13] for dynamic map
update.

2.1. Processing pipeline configuration

Given the wide range of processing capabilities and sensor configurations that a mobile robot
platform can have and the challenging environments in which they might operate, the DRL
system can be fully configurable through yaml files in order to meet the specific needs of a
given robot application while using the least amount of computational resources. To achieve
these goals, it offers a flexible and dynamic pose estimation processing pipeline (brief overview
shown in Figure 1) with a range of preprocessing algorithms along with three levels of point
cloud registration. The first level is intended for the normal operation of the robot and can be
configured for maximum efficiency and precision. The second level can be used for pose
tracking recovery and can have algorithms and configurations able to recover from temporary
tracking problems, such as partial sensor occlusions or unreliable odometry information. The
third level of registration is able to estimate the initial pose of the robot when it starts operating
or when it becomes lost in the environment. Besides pose estimation, the system can also
incrementally build or update the environment map, allowing mobile robots to explore
unknown areas and also leading to better path planning because the navigation system will
have an updated view of its surroundings.

The DRL system was designed to operate with sensors capable of generating point clouds of
the environment, and as such, it can directly use RGB-D and ToF cameras. For LIDARs, it offers
a laser scan assembler that is able to merge measurements from several sensors using spherical
linear interpolation (to reduce point cloud deformation). It also allows the usage of a circular

1 https://github.com/carlosmccosta/dynamic_robot_localization
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buffer in order to register point clouds containing new measurements from the environment
along with points that were previously registered (useful when using several sources of sensor
data).

For fine tuning of the processing pipeline configuration, the self-localization system provides
a detailed analysis of the estimated poses along with the computation time of each of its main
processing stages. This allows to pinpoint the algorithms that require more processing
resources, which can be valuable information when the system is running on platforms with
very low processing capabilities. Moreover, these computation time logs also allow to identify
which processing stages would benefit from a more suitable parameterization or a different
algorithmic approach.

Figure 1. Localization system processing pipeline overview

2.2. Preprocessing

Preprocessing allows to adjust the level of detail of the reference or ambient point clouds and
is also very effective in minimizing the impact of sensor noise (by using voxel grids, random
sampling, outlier removal, surface reconstruction, sensor distance thresholds and color
segmentation). Moreover, it can add information to the sensor data, such as line and surface
normals and geometry descriptors, which are required to perform feature registration.

For fast deployment of mobile robots, the self-localization system supports two independent
preprocessing pipelines: one for the reference point cloud (map of the environment) and
another for the ambient and sensors point cloud. This allows the system to reuse maps from
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different sources and with different levels of detail while also giving some control over the
time that will be required to perform the pose estimations, given that the amount of time
required to register two point clouds decreases considerably when the number of points in
both the reference and ambient point clouds are reduced.

2.3. Initial pose estimation

When a mobile robot platform starts its operation without a known initial pose or when it
becomes lost in the environment, it requires registration methods capable of estimating the
global pose in the known map. One category of algorithms that achieves these goals is the
feature matching techniques. Algorithms in this category start with a keypoint detection phase
in order to find geometric significant points in the environment and then describe each
keypoint by analyzing its surrounding geometry, such as points and normals distribution.
These keypoint descriptors (usually histograms) are then matched using a kd-tree and the best
correspondences are found using a Random Sample Consensus (RANSAC) approach. With
these point correspondences, the correction matrix can be computed and used to estimate the
robot pose in the known map.

The keypoint selection phase is used mainly to reduce the computational resources required
to perform the initial pose estimation, given that computing descriptors for every point would
need a significant amount of processing time and wouldn’t improve the feature registration
significantly. However, for the geometric feature matching to be successful, the keypoint
detector must be able to find the same keypoints when similar geometry is given, even when
the sensor data is affected by noise and the point clouds have different level of detail.

The localization system currently supports the Scale Invariant Feature Transform (SIFT) [14]
and the 3D Intrinsic Shape Signatures (ISS3D) [15] keypoints detectors. For keypoint descrip‐
tion it can use the Point Feature Histogram (PFH) [16], the Fast Point Feature Histogram (FPFH)
[17], the Signature of Histograms of Orientations (SHOT) [18], the Shape Context 3D (SC3D)
[19], the Unique Shape Context (USC) [20] and the Ensemble of Shape Functions (ESF) [21].

2.4. Point cloud registration

Point cloud registration algorithms such as the Iterative Closest Point (ICP) [22] (with its
known variations such as ICP point-to-point, ICP point-to-point non-linear, ICP point-to-plane
and generalized ICP [23]) and also the Normal Distributions Transform (NDT) [6] can achieve
accurate registration of point clouds by iteratively minimizing the alignment error, but they
require the point clouds to be partially aligned in order to converge to a valid solution. As
such, by combining the initial pose estimation methods with the point cloud registration
algorithms, the DRL system can reliably and accurately estimate the robot pose.

2.5. Registration analysis and validation

Each pose estimation is followed by a post processing stage in which several registration
metrics are computed and analyzed in order to determine if the point cloud registration was
successful and the estimated pose is good enough to be considered valid. The first metrics
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computed are the inliers percentage and Root Mean Square Error (RMSE) (an inlier is a point
in the sensor point cloud that has a point in the reference point cloud within a given distance
radius). The second metric is the spatial angular distribution of both the inliers and outliers.
This metric gives a measurement of confidence in the estimated pose and is based on the fact
that when there are correctly registered points all around the robot, the confidence in the
estimated pose is higher than when there is only correctly registered points in a small angular
region of space. The last metrics are the translation and rotation corrections that were applied
to the ambient point cloud in order to minimize the alignment error with the reference point
cloud.

The configuration of these metrics thresholds allows to define what is considered a valid pose
and may vary depending on the specific robot sensor configurations, the environment in which
it will operate, the map resolution, and the required localization precision given the processing
and capabilities of the robot.

These registration metrics also control when the self-localization system switches between the
three point cloud registration modes. By default, the pose estimations are performed in the
normal tracking mode. If the registration fails, the pose tracking recovery methods are
activated. If the pose estimation continues to fail with new sensor data for a given period of
time and a minimum number of pose estimations has been rejected, then the initial pose
algorithms using feature registration are used to estimate the robot global pose and reset the
tracking state.

2.6. Incremental map update

After successfully registering the 2D or 3D sensor data with the reference point cloud, the self-
localization system can update the 2D or 3D map of the environment by integrating the fully
registered point cloud or only the inliers or outliers. This allows to perform full integration of
the sensor data when the environment is expected to change drastically or only inlier or outlier
integration when small sections of the map need to be updated. By integrating only the outliers,
the computation requirements are reduced considerably and also allow to avoid the degra‐
dation of the map by not integrating sensor data close to known areas (that could have been
generated from CAD models or other accurate mapping systems). For 3D maps, surface
reconstruction can be used to reduce the impact of sensor noise and to increase the quality and
accuracy of the environment representation.

The self-localization system can also be paired with the OctoMap library in order to perform
probabilistic integration of the sensor data and removal of missing ambient geometry.

3. Testing configurations

The DRL system was tested in three environments with three testing platforms in order to
assess its accuracy and robustness when both the environment and its sensor configurations
change.
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The next sections provide a brief overview of the testing platforms used and the environments
in which they were deployed.

3.1. Testing platforms

The self-localization system was tested with sensor data retrieved from two different mobile
robot platforms (3 DoF tests) and also from a standalone Kinect sensor (6 DoF tests).

In order to allow the repetition and comparison of the tests in different computing platforms,
the sensor data was recorded into rosbags and is available in the following repository2.

The next sections provide a brief description of each of the testing platforms while Table 1
gives an overview of the sensors specifications.

3.1.1. Jarvis robot

The Jarvis robot (shown in Figure 2) is one of our autonomous ground vehicles and was
equipped with a SICK NAV350 laser for self-localization (mounted about 2 m from the floor)
and a SICK S3000 laser for collision avoidance (mounted about 0.1 m from the floor). It uses a
tricycle locomotion system and had a ground truth provided by the SICK NAV350 system
(relied on 6 lasers reflectors with 0.09 m of diameter).

Figure 2. Jarvis testing platform

2 https://github.com/carlosmccosta/dynamic_robot_localization_tests
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3.1.2. Pioneer 3-DX robot

The Pioneer 3-DX robot (shown in Figure 3 and presented in [24]) is a small autonomous vehicle
equipped with a SICK LMS200 laser (mounted about 0.48 m from the floor) and a Kinect
(mounted about 0.78 m from the floor). It uses a differential locomotion system and the ground
truth was computed using 8 Raptor-E cameras.

Figure 3. Pioneer 3-DX testing platform [24]

3.1.3. Kinect

The Kinect sensor (shown in Figure 4) is a structured light sensor capable of generating 3D
colored point clouds of the environment at 30 Hz. It has a range of about 4 meters and has a
vertical field of view of 43° and a horizontal field of view of 57°. It was moved within the testing
area by a human operator and the ground truth was given by a Vicon motion tracking system.

Figure 4. Kinect sensor
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Sensor
Number of
measure-

ments

Range
(meters)

Field of view
(degrees)

Scanning
frequency (Hz)

Angular
resolution
(degrees)

Statistical error
(millimeters)

SICK NAV350 1440 [0.5..250] 360H 8 0.25 15

SICK S3000 760 [0.1..49] 190H 8 0.25 150

SICK LMS200 180 [0.1..80] 180H 10 1.00 35

Kinect 307200 [0.8..4.0] 57H | 43V 30 0.09 10

Table 1. Sensors hardware specifications

3.2. Computing platforms

The accuracy and computational requirements of self-localization systems can change
significantly depending on the environment, sensors used, and movement path of the robot.
As such, in order to have representative results, the DRL system was tested in three computing
platforms with very different processing capabilities and all running Ubuntu 12.04 along with
ROS Hydro and PCL 1.7.

The next sections present a brief overview of each of these computing platforms while Table
2 provides a detailed description of the CPUs used.

3.2.1. High-performance laptop

The Clevo P370EM laptop is a 2012 high-performance laptop equipped with a quad-core Intel
Core i7-3630QM CPU, 16 GB of DDR3 at 1600 MHz, and an NVidia GeForce GTX680M GPU.

3.2.2. Low-performance laptop

The Samsung 530U3C is a 2012 low-performance laptop equipped with a dual-core Intel Core
i5-3317U CPU, 6 GB of DDR3 at 16000 MHz, and an Intel HD Graphics 4000 GPU.

3.2.3. Low-performance embedded PC

The 2012 low-performance embedded PC was installed in a Robotnik Guardian mobile robot
platform and was equipped with a dual-core Intel Atom N2800 CPU, 2 GB of DDR3 at 1066
MHz, and an Intel Graphics Media Accelerator 3650 GPU.

3.2.4. Computing platforms comparison

When building mobile robots, autonomy can be a serious concern, and, as such, a CPU with
very low power consumption and a passive or fanless cooling system (such as the Intel Atom
N2800 with 6.5 W of Thermal Design Power (TDP)) might be enough to accomplish the desired
tasks. When higher workloads are expected, a low-power mobile CPU (such as the Intel Core
i5-3317U with a TDP of 17 W) might be a better choice. If power consumption (and cost) isn’t

3 DoF/6 DoF Localization System for Low Computing Power Mobile Robot Platforms
http://dx.doi.org/10.5772/61258

35



an issue, then a high-performance CPU will be more than enough to run the DRL system in
both 3 and 6 DoF along with the perception, planning, and decision modules.

Analyzing the benchmark results present in Table 23, it can be seen that the low-performance
embedded PC had a CPU (Intel Atom N2800) about 10 times less capable than the high-
performance laptop (Intel i7-3630QM), while the low-performance laptop (Intel i5-3317U) had
only 2.5 times less computing capabilities. It should also be noted that the Intel Atom N2800
didn’t have a level 3 cache, which could significantly improve the performance of the CPU
when using applications that make intensive use of memory, which is the case of the DRL
system. Moreover, the memory used in the embedded PC had about 50% less frequency (1066
MHz vs. 1600 MHz) and the Direct Memory Interface (DMI) had half the rate of the other two
CPUs (2.5 GT/s vs. 5.0 GT/s), which causes cache misses to have high impact on overall CPU
performance. Lastly, the Intel Atom had an operating frequency that was 1.29 times lower than
the Intel i7-3630QM (and didn’t have Intel Turbo Boost functionality).

Intel Atom
N2800

Intel i5 3317U
Intel

i7-3630QM
i7 / i5 i7 / Atom i5 / Atom

Number of cores 2 2 4 2.00 2.00 1.00

Minimum operating frequency (GHz) 1.867 1.7 2.4 1.41 1.29 0.91

Maximum operating frequency (GHz) 1.867 2.6 3.4 1.31 1.82 1.39

Direct Memory Interface (GT/s) 2.5 5.0 5.0 1.00 2.00 2.00

Level 1 instructions cache (KB) 2*32 2*32 4*32 2.00 2.00 1.00

Level 1 data cache (KB) 2*24 2*32 4*32 2.00 2.67 1.33

Level 2 cache (KB) 2*512 2*256 4*256 2.00 2.00 1.00

Level 3 cache (KB) 0 3072 6144 2.00 - -

Number of transistors (billions) 0.176 0.634 1.4 2.21 7.95 3.60

Hyper-Threading Yes Yes Yes - - -

Manufacturing process (nm) 32 22 22 1.00 0.69 0.69

Thermal Design Power (watt) 6.5 17 45 2.65 6.92 2.62

Launch date Q4-2011 Q2-2012 Q3-2012 - - -

Microarchitecture Saltwell Ivy Bridge Ivy Bridge - - -

Recommended Customer Price (dollars) 47 225 378 1.68 8.04 4.79

3D Mark 06 CPU score 965 2984 6392 2.14 6.62 3.09

Passmark score 636 3097 7766 2.51 12.21 4.87

GeekBench 32-bit score 1033 4039 10196 2.52 9.87 3.91

CINEbench 32-bit R10 Multi CPU score 1829 7337 18091 2.47 9.89 4.01

Table 2. Computing platforms CPU comparison

3 Retrieved from http://cpuboss.com/ and http://www.notebookcheck.net/
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3.3. Testing environments

The self-localization system was tested in three different environments using the Jarvis robot
in a RoboCup field, the Pioneer 3-DX robot in an industrial hall, and a Kinect sensor in a flying
arena.

The next sections describe each of these testing environments.

3.3.1. Jarvis robot in a RoboCup field

The RoboCup field (shown in Figures 5 and 6) is on the right side of a large room with 20.5 m
of length and 7.7 m of depth. It has two doors, several small windows, and three large glass
openings into the hallway.

Several tests were performed in this environment, with the robot moving with speeds ranging
from 0.05 m/s to 0.5 m/s. These tests were done with the robot following either a circular or a
complex path containing linear and rotational movements with different speeds.

Figure 5. Jarvis testing environment (east side)

3.3.2. Pioneer 3-DX robot in an industrial hall

The industrial hall (shown in Figures 7 and 8 and presented in [24]) is a large room with long
and high walls and several occluding objects in the middle.

The first test was done with the robot moving at 0.23 m/s, following a 360° path and without
objects in the middle of the environment. The remaining tests were performed with the robot
following different paths, with speeds ranging from 0.16 m/s to 0.26 m/s and with occluding
objects in the middle.
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Figure 7. Industrial hall overview [24]

Figure 6. Jarvis testing environment (west side)
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Figure 8. Industrial hall with objects in the middle [24]

3.3.3. Kinect sensor in a flying arena

The flying arena (shown in Figure 9 and presented in [25]) is a large room where several objects
with varying dimensions and shapes were added in order to test self-localization systems.

Three different tests were performed in this environment. In the first test, the Kinect was moved
in a free-fly motion while the remaining two tests had movements with mainly translations or
rotations.

4. Test results

This section presents the results achieved with the DRL system in each of the testing environ‐
ments (shown from Table 3 to Table 8). They were performed in three different computing
platforms with varying processing capabilities and with known initial poses. Each test has
information about the conditions in which it was performed (duration, mean velocity of the
robot and its path, and also the number of sensor measurements used), and the analysis of the
self-localization system error (translation or rotation mean and standard deviation error and
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also mean and standard deviation of the computation time used to perform the pose updates)
along with the profiling of the computational resources required by the DRL system (using
the collectl monitoring tool for the CPU and memory usage and the perf profiler for the
remaining metrics).

4.1. 3 DoF test results

The 3 DoF tests relied on LIDAR data and used the 2D ICP (point-to-point) algorithm for pose
tracking and 3D ICP (point-to-point) algorithm for tracking recovery (with a larger kd-tree
search radius for finding point correspondences, higher limit for the number of iterations
allowed in the point cloud registration and a higher convergence time limit).

The 3 DoF maps were generated with the self-localization system in SLAM mode (shown in
Figures 10 and 15) and were manually corrected in order to improve the map accuracy and to
keep only the most relevant geometry of the environment.

Figure 9. Kinect sensor flying arena [25]
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4.1.1. Jarvis robot test results

The 3 DoF tests performed with the Jarvis robot in the RoboCup field (presented in Tables 3
and 4 and from Figures 11 to 14) show that the DRL system was able to track the robot pose
(on a map with 10 mm cell resolution) with high accuracy (4 to 12 mm of translation error and
0.4° to 0.7° of rotation error) on the three computing platforms (when using 500 points from
sensor measurements). The localization system error (translation and rotation) was consistent
across all testing platforms (deviation in translation error bellow 1 mm and in rotation error
below 0.11° between tests, which shows the repeatability of the DRL system) and the mean
computation time required to update the pose with new sensor data increased on the CPUs
with lower processing capabilities. As expected, the computation time ratios between the
different CPUs were similar to the benchmark performance ratios presented in Table 2. In this
dataset, the Intel Atom had a mean computation time that was 7.69 times higher than the Intel
i7, and the Intel i5 required only 1.35 more processing time than the Intel i7. Moreover, the
standard deviation of the computation time also increased on the Intel Atom (6.43 times higher
than the Intel i7) and in the Intel i5 (1.31 higher than the Intel i7). The CPU usage (percentage
in tables are from 0–100% times the number of virtual cores, which in the case of a quad-core
with Hyper-Threading would yield a range of [0-800]) followed the same trend as the com‐
putation time, while the memory required by the self-localization system remained consistent
across all testing platforms (it is related to the map resolution and number of points in the
reference or sensor point clouds).

Analyzing the data collected with the perf profiler, it can be seen that the Intel i7 had a mean
operation frequency of 3.0 GHz, while the Intel i5 remained at 2.3 GHz (77% of the Intel i7
frequency) and the Intel Atom achieved only 1.82 GHz (62% of the Intel i7 frequency).
Moreover, due to the lack of level 3 cache and smaller level 1 cache, the Intel Atom had smaller
cache references rate (2.76 times less than the Intel i7) and significantly more cache misses (3.74
times more than the Core i7), which caused an increase of 37% in bus cycles in order to access
the main memory. Besides cache misses, the Intel Atom also had much more branch misses
(3.46 times more than the Intel i7), which led to less branch instructions per second (6.76 times
less than the Intel i7). These memory access bottlenecks and branch mispredictions caused the
mean number of instructions per cycle to drop to 0.32 (the Intel Atom has instruction pipelining
and Hyper-Threading, which in ideal conditions allows it to process two instructions per clock
cycle), which is an indicator that the CPU was spending a considerable amount of time waiting
for data from the main memory (which can be several orders of magnitude slower than cache
memory) or was wasting processing resources in branches that were not taken (resulting in
the execution of instructions that won’t be useful and can cause the flushing of the processing
pipeline, resulting in even more waste of CPUs resources).

Given that most mobile robot platforms can be used to perform complex tasks in the environ‐
ment besides localization and navigation, two more configurations were tried in each of the
four tests (done with the Intel Atom) in order to assess the trade-offs between localization
precision and computation time. This was achieved because the self-localization system can
be tuned to specific requirements of accuracy (given the available sensors and computational
resources). Looking at Tables 3 and 4, it can be seen that reducing the number of points used
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in the point cloud registration (retrieved from sensor data) to half (250) led to a reduction in
computation time of 37% at the cost of increasing the localization translation error by 48%.
Reducing the number of points to half again (125), resulted in a reduction of computation time
of 62% and a translation error increase of 217% (in relation to the original test with 500 points).
Despite the large increase in translation error when reducing the number of registration points,
some robots may prefer a localization system with low computational requirements and a
localization error close to a centimeter instead of having millimeter accuracy with moderate
CPU usage.

Analyzing the remaining test results, it can be seen that the Intel i5 didn’t suffer from the Intel
Atom memory bottlenecks and had much better branch prediction (Intel Atom has a different
micro-architecture than the Intel Core processors), having only a small increase in cache misses
(14%) and a decrease in branch misses (4%) in relation to the Intel i7. Moreover, the number
of instructions per cycle, along with bus cycles rate, was very similar to the Intel i7 (less than
2% difference), while the cache references rate and branch instructions rate decreased by 25%
in relation to the Intel i7 CPU.

Comparing the overall results, the Intel Atom was capable of tracking the robot pose with high
precision with moderate CPU usage. Nevertheless, for robots designed to perform complex
tasks besides navigation, the Intel i5 is probably a better choice, given that the localization
system was only using 10% of one of its CPU cores (instead of 50% of one of the Intel Atom
cores).

Path

Test

duration

(seconds)

Velocity

(meters /

second)

CPU
Number of

sensor points

Translation error

(millimeters)

Rotation error

(degrees)

Computation time

for pose update

(milliseconds) Test nº

Mean
Standard

deviation
Mean

Standard

deviation
Mean

Standard

deviation

Circular

290 0.05

Intel Atom

N2800

125 12.16 8.24 0.71 0.19 18.81 6.26 1.01

250 5.69 3.40 0.60 0.10 31.20 11.11 1.02

500 3.83 2.33 0.56 0.09 49.25 17.09 1.03

Intel

i5 3317U
500 4.15 2.38 0.56 0.09 9.05 3.24 1.04

Intel

i7-3630QM
500 3.97 2.38 0.56 0.09 6.57 2.41 1.05

25.5 0.5

Intel Atom

N2800

125 14.31 9.04 0.61 0.46 23.71 6.75 1.06

250 12.40 8.53 0.57 0.43 43.55 12.83 1.07

500 12.20 8.72 0.54 0.41 79.92 17.01 1.08

Intel

i5 3317U
500 11.89 8.66 0.54 0.41 14.80 4.61 1.09
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Path

Test

duration

(seconds)

Velocity

(meters /

second)

CPU
Number of

sensor points

Translation error

(millimeters)

Rotation error

(degrees)

Computation time

for pose update

(milliseconds) Test nº

Mean
Standard

deviation
Mean

Standard

deviation
Mean

Standard

deviation

Intel

i7-3630QM
500 12.06 8.53 0.55 0.41 10.95 3.51 1.10

Complex

498 0.05

Intel Atom

N2800

125 12.60 7.46 0.53 0.16 20.08 7.09 1.11

250 7.82 4.07 0.49 0.10 34.64 13.10 1.12

500 5.07 2.71 0.47 0.08 57.78 18.50 1.13

Intel

i5 3317U
500 5.13 2.75 0.45 0.08 9.60 3.39 1.14

Intel

i7-3630QM
500 4.86 2.67 0.46 0.07 7.20 2.66 1.15

392 0.5-0.3-0.5-0.1

Intel Atom

N2800

125 12.86 7.42 0.49 0.14 19.89 6.74 1.16

250 8.52 4.84 0.45 0.12 35.73 13.48 1.17

500 6.79 4.04 0.42 0.10 60.79 20.17 1.18

Intel

i5 3317U
500 6.74 3.92 0.42 0.10 10.35 3.88 1.19

Intel

i7-3630QM
500 6.74 3.92 0.42 0.10 7.66 2.95 1.20

Table 3. Self-localization test results performed with the Jarvis robot in the RoboCup field

Path

CPU usage

(% 0..100 * nº

cores)

Memory usage

(MB) CPU

cycles

(GHz)

Instruc-

tions

per

cycle

Cache

referen-

ces

(M/sec)

Cache

misses

(% of all

cache

references)

Branch

instruc-

tions

(M/sec)

Branch

misses

(% of

all

branches)

Bus

cycles

(M/sec)

Test nº

Mean
Standard

deviation
Mean

Standard

deviation

Circular

33.35 14.23 65.46 5.24 1.83 0.22 15.18 27.66 80.43 7.24 130.24 1.01

41.23 17.57 65.48 5.23 1.83 0.27 13.72 25.64 96.93 6.48 130.86 1.02

52.10 23.61 65.86 5.34 1.83 0.31 12.32 23.76 109.23 5.95 131.23 1.03

10.64 8.69 67.53 4.60 2.34 1.31 25.02 7.01 554.37 1.66 94.10 1.04

7.57 7.59 87.22 4.86 3.02 1.27 36.75 5.47 768.84 1.69 96.66 1.05

36.61 28.01 59.45 9.68 1.83 0.28 14.61 22.59 99.64 5.86 130.66 1.06
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Path

CPU usage

(% 0..100 * nº

cores)

Memory usage

(MB) CPU

cycles

(GHz)

Instruc-

tions

per

cycle

Cache

referen-

ces

(M/sec)

Cache

misses

(% of all

cache

references)

Branch

instruc-

tions

(M/sec)

Branch

misses

(% of

all

branches)

Bus

cycles

(M/sec)

Test nº

Mean
Standard

deviation
Mean

Standard

deviation

48.55 29.45 59.73 9.91 1.83 0.31 13.14 21.71 107.96 5.71 131.03 1.07

63.82 37.88 59.82 9.94 1.84 0.35 11.52 20.25 122.21 5.41 131.01 1.08

12.76 15.50 59.65 4.01 2.20 1.42 23.46 8.25 598.90 1.55 93.53 1.09

8.86 13.40 78.82 3.22 2.84 1.46 25.72 8.44 788.61 1.47 94.57 1.10

Complex

32.71 13.86 70.32 7.59 1.82 0.22 15.22 28.13 77.47 7.43 130.55 1.11

41.18 18.86 70.41 7.56 1.83 0.27 13.66 25.84 93.93 6.59 130.98 1.12

55.16 25.20 70.47 7.58 1.83 0.32 12.26 22.75 108.13 5.96 131.30 1.13

10.32 8.31 72.72 8.14 2.30 1.37 25.39 6.51 596.54 1.62 95.74 1.14

8.28 7.40 91.27 7.59 3.04 1.30 37.44 5.12 741.56 1.82 96.07 1.15

31.69 14.18 67.72 6.23 1.82 0.21 15.44 28.26 75.27 7.58 130.55 1.16

39.78 19.91 67.97 6.37 1.83 0.26 14.01 25.55 91.91 6.66 130.93 1.17

53.06 27.91 67.84 6.49 1.83 0.31 12.47 22.85 107.72 5.98 131.19 1.18

10.38 8.76 67.85 5.93 2.33 1.32 26.37 6.34 589.79 1.63 95.57 1.19

8.09 7.82 88.94 6.03 3.04 1.28 37.05 6.05 725.08 1.78 95.70 1.20

Table 4. Profiling of self-localization tests performed with the Jarvis robot in the RoboCup field

Figure 10. Map of the RoboCup testing environment using the DRL system in SLAM mode
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Figure 11. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 1.03

4.1.2. Pioneer 3-DX robot results

The 3 DoF tests performed with the Pioneer robot in the industrial hall aimed to assess the
robustness of the localization system on more challenging environments. In this dataset, the
LIDAR sensor (SICK LMS200) had half the field of view of the sensor used in the previous
dataset (SICK NAV350), and the angular resolution was 4 times lower, which resulted on 180
points for each laser scan (the previous dataset had 1,440 points per laser scan spread across
360°). Moreover, the resolution of the map (shown in Figure 15) was 2.5 times lower (25 mm
cell resolution) and the laser scan measurements were limited to 10 m on the tests that had no
objects in the middle of the environment (test 2.01, 2.02, and 2.03) and 6 m on the remaining
tests (from test 2.04 to 2.12 in which there were objects in the middle of the environment that
occluded the walls).

Analyzing Table 5 and 6 and Figures 16 to 19, it can be concluded that decreasing the field of
view and reducing the map resolution resulted in a 5-time increase of the translation error and
a 9-time increase in rotation error (it should be noted that the translation error remained below
the map resolution, which is compelling evidence that the algorithms used can perform point
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cloud registration with high accuracy). The computation time was reduced about 40% on the
Intel Core i7 and i5 (in relation to the previous dataset), and was mostly related to the fact that
the number of points in both the reference and sensor point clouds was reduced by 33%.
However, the computation time on the Intel Atom remained similar on both 3 DoF datasets
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Figure 12. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 1.08
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Figure 13. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 1.13
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because the percentage of branch misses increased and the mean number of instructions per
cycle was reduced (from 0.32 to 0.24).

Comparing the results across the three computational platforms, it can be seen that both
translation and rotation error distributions remained consistent across the three computing
platforms and had similar results (about 2% change). The Intel i5 had very similar profiling
results in relation to the Intel i7, while the Intel Atom required much more time to compute
the results (due to its higher percentage of cache and branch misses). As such, similar to the
previous dataset, the Intel i5 would be more suitable to run the DRL system since it doesn’t
suffer from the memory access bottlenecks and was able run the localization system with low
CPU usage while requiring much less power than the Intel i7 (17 W vs. 45 W TDP).

Path

Test

duration

(seconds)

Velocity

(meters /

second)

CPU

Number

of sensor

points

Translation error

(millimeters)

Rotation error

(degrees)

Computation time

for pose update

(milliseconds) Test nº

Mean
Standard

deviation
Mean

Standard

deviation
Mean

Standard

deviation

360 72 0.23

Intel Atom

N2800

180

20.32 11.09 5.71 0.66 59.23 22.76 2.01

Intel i5 3317U 19.86 10.20 5.71 0.66 6.67 2.31 2.02

Intel i7-3630QM 19.86 10.19 5.71 0.66 4.69 1.50 2.03

Slam 1 155 0.26

Intel Atom

N2800
22.49 12.46 5.44 0.68 51.98 25.26 2.04

Intel i5 3317U 22.34 12.19 5.43 0.68 5.74 2.53 2.05

Intel i7-3630QM 22.35 12.20 5.43 0.68 3.92 1.66 2.06

Slam 2 115 0.19

Intel Atom

N2800
19.67 13.09 5.52 0.82 54.36 24.60 2.07

Intel i5 3317U 19.50 12.94 5.53 0.82 6.08 2.55 2.08

Intel i7-3630QM 19.48 12.91 5.53 0.82 4.16 1.66 2.09

13 14 15 16 17 18 19 20
x position (meters)

4.5

5.0

5.5

6.0

6.5

y
 p

o
si

ti
o
n
 (

m
e
te

rs
)

Movement path (green -> ground truth, blue -> localization system)

Figure 14. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 1.18
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Path

Test

duration

(seconds)

Velocity

(meters /

second)

CPU

Number

of sensor

points

Translation error

(millimeters)

Rotation error

(degrees)

Computation time

for pose update

(milliseconds) Test nº

Mean
Standard

deviation
Mean

Standard

deviation
Mean

Standard

deviation

Slam 3 112 0.16

Intel Atom

N2800

112 0.16 Intel Atom

N2800
17.93 9.14 5.46 0.72 49.41 24.59 2.10

112 0.16 Intel Atom

N2800

17.93 9.14 5.46 0.72 49.41 24.59 2.10112 0.16 Intel Atom

N2800

17.93 9.14 5.46 0.72 49.41 24.59 2.10

Intel i5 3317U 17.68 8.93 5.45 0.73 5.54 2.48 2.11

Intel i7-3630QM 17.68 8.93 5.46 0.73 3.87 1.67 2.12

Table 5. Self-localization test results performed with the Pioneer robot in the industrial hall

Path

CPU usage

(% 0..100 * nº

cores)

Memory usage

(MB)
CPU

cycles

(GHz)

Instruc-

tions

per cycle

Cache

references

(M/sec)

Cache

misses

(% of all

cache

references)

Branch

instructions

(M/sec)

Branch

misses

(% of all

branches)

Bus

cycles

(M/sec)

Test

nº

Mean
Standard

deviation
Mean

Standard

deviation

360

62.55 28.56 61.94 4.07 1.82 0.24 16.12 19.90 86.44 7.54 130.48 2.01

14.06 10.99 64.08 4.12 2.24 1.03 33.19 5.96 464.40 1.82 95.02 2.02

11.79 10.37 85.02 4.08 2.93 0.96 51.91 1.83 586.10 2.03 94.95 2.03

Slam 1

61.84 23.87 67.99 6.85 1.82 0.23 16.19 21.24 82.17 7.77 130.48 2.04

13.98 9.82 71.11 7.68 2.25 0.93 38.20 4.75 416.97 2.02 94.66 2.05

11.00 8.69 94.15 7.68 2.99 0.95 59.02 1.71 567.99 2.10 95.57 2.06

Slam 2

61.35 25.76 65.02 5.53 1.83 0.23 16.31 20.40 84.66 7.62 130.23 2.07

14.13 10.18 67.86 5.98 2.28 0.64 35.70 4.73 437.17 1.89 94.28 2.08

11.36 9.62 89.02 6.13 3.00 0.92 57.14 1.72 567.34 2.00 94.03 2.09

Slam 3

60.24 25.44 65.16 5.32 1.82 0.23 16.28 21.17 83.64 7.65 130.58 2.10

13.20 10.53 67.81 5.96 2.14 0.96 35.90 5.50 433.83 1.92 95.01 2.11

11.00 10.35 88.74 5.84 2.94 0.94 57.45 1.94 579.68 2.04 94.27 2.12

Table 6. Profiling of self-localization tests performed with the Pioneer robot in the industrial hall

4.2. 6 DoF Kinect sensor results

The 6 DoF tests performed with a standalone Kinect sensor in the flying arena (shown in Tables
7 and 8 and from Figure 22 to Figure 27) were meant to evaluate the accuracy and robustness
of the self-localization system when moving the sensor in 6 DoF and following challenging
paths in cluttered environments.

The 3D map (shown in Figures 20 and 21) was built using only the sensor data from the free-
fly test (3.03) with the DRL system in SLAM mode and used surface reconstruction to auto‐
matically reduce the impact of sensor noise and improve its accuracy. Given the different paths
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that the Kinect had in each test, there were times in which the sensor field of view was outside
of the known map (mainly in the test with rotations). The map was not extended to contain all
the areas in the three tests in order to evaluate the robustness of the system against sensor
occlusion or malfunctions (which are problems similar to the sensor seeing unknown areas).
To allow real-time processing of the Kinect sensor data and keep the CPU usage under
acceptable thresholds, the map was downsampled with a voxel grid of 20-mm cell size in both
the Intel i7 and Intel i5 tests and a voxel grid of 50-mm cell size on the Intel Atom tests (to allow
higher pose update rate).

Unlike the previous 3 DoF tests, estimating a pose in 6 DoF requires a reference point cloud
with much more points (in order to represent the environment with the required level of detail),
which leads to slower neighbor point searches (because the kd-tree used to perform the
neighbor point searches will have more levels and it will take longer to retrieve the desired
points). Given that point cloud registration algorithms make heavy use of point searches, the
cumulative effect of increasing the search time led to the significant increase of the computation
time and CPU usage seen in Tables 7 and 8 (when compared with the 3 DoF tests). Moreover,
the more intensive use of memory caused the percentage of cache misses to increase signifi‐

Figure 15. Map of the industrial hall testing environment using the DRL system in SLAM mode
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Figure 16. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 2.01
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Figure 17. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 2.04
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Figure 18. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 2.07
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Figure 19. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 2.10
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cantly even on the Intel i5 and i7 (from 5–7% to 10–20%). This computational time increase was
clearly seen in the test with mainly rotations in which the pose recovery systems were being
activated when the sensor had its field of view outside the map. These recovery systems relied
on the ICP point-to-plane (with a larger point search radius and higher convergence time limit)
in order to be able to reset the tracking state (the normal tracking systems were using ICP point-
to-point algorithm). Moreover, the maximum number of points used in this test was increased
to make the pose recovery more robust, which also contributed to the increase in computation
time (when compared with the other two 6 DoF tests).

Path
Test

duration
(seconds)

Velocity
(meters /
second)

CPU
Number
of sensor

points

Translation error
(millimeters)

Rotation error
(degrees)

Computation time
for pose update
(milliseconds) Test nº

Mean
Standard
deviation

Mean
Standard
deviation

Mean
Standard
deviation

Free fly 16.9 0.30

Intel Atom
N2800

150 26.90 13.59 3.22 0.88 53.79 20.42 3.01

Intel i5
3317U

425 19.16 10.19 3.07 0.67 35.03 9.75 3.02

Intel
i7-3630QM

425 19.44 9.63 3.07 0.64 25.94 7.15 3.03

Transla-
tions

32.1 0.20

Intel Atom
N2800

150 24.09 12.93 2.73 0.71 48.77 16.39 3.04

Intel i5
3317U

425 16.89 9.83 2.75 0.57 33.58 9.30 3.05

Intel
i7-3630QM

425 16.18 7.84 2.76 0.57 24.83 6.61 3.06

Rotations 33.4 0.10

Intel Atom
N2800

150 31.11 17.46 2.96 1.11 58.35 14.49 3.07

Intel i5
3317U

425 18.67 12.61 2.53 0.96 62.85 25.40 3.08

Intel
i7-3630QM

750 18.82 12.30 2.55 0.92 41.51 17.39 3.09

Table 7. Self-localization test results performed with the Kinect sensor in the flying arena

Overall, the DRL system was able to track the Kinect pose with a mean translation error of 18
mm and a mean rotation error of 2.8° in the Intel i7 and i5 CPUs (it should be noted that the
map resolution was 20 mm). For the Intel Atom, the number of points used in the registration
(retrieved from the Kinect sensor) needed to be reduced by 60% in relation to the other CPUs,
because the excessive computation time was leading to very high CPU usage and causing the
localization system to ignore a significant amount of Kinect sensor scans. Adjusting the number
of points increased the pose estimation error but allowed the Intel Atom to estimate the Kinect
pose more often (even though it couldn´t update it at the same rate as the other CPUs, as can
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be seen from Figures 22 to 27). Nevertheless, the Intel Atom was able to track the Kinect pose
with 20–30 mm of mean translation error and 2–3° of mean rotation error with an acceptable
update rate (30–50% less update rate than the Intel i5 and i7).

Figure 20. Overview of the map of the flying arena environment using the DRL system in SLAM mode

Path

CPU usage

(% 0..100 * nº

cores)

Memory usage

(MB) CPU

cycles

(GHz)

Instruc-

tionsper

cycle

Cache

references

(M/sec)

Cache

misses

(% of all

cache

references)

Branch

instruc-

tions

(M/sec)

Branch

misses

(% of all

branches)

Bus

cycles

(M/sec)

Test nº

Mean
Standard

deviation
Mean

Standard

deviation

Free fly

81.60 53.07 99.11 11.08 1.84 0.35 11.00 18.51 126.21 5.35 131.62 3.01

54.42 50.29 107.18 5.28 2.39 1.61 11.33 18.75 734.72 1.96 95.89 3.02

48.60 41.72 125.92 4.03 3.14 1.65 14.51 11.35 965.25 1.98 97.50 3.03

Transla-

tions

84.91 52.01 100.22 8.45 1.84 0.34 10.88 18.12 122.53 5.34 131.73 3.04

74.40 43.35 108.12 4.85 2.40 1.61 11.73 17.19 720.56 1.97 96.77 3.05

57.82 36.14 126.76 3.78 3.15 1.61 15.74 11.99 953.30 1.99 98.34 3.06

Rotations

97.25 42.98 100.09 9.83 1.84 0.35 10.94 18.43 121.57 5.66 131.71 3.07

78.67 44.90 106.99 4.96 2.33 1.64 9.73 18.91 690.02 2.05 96.67 3.08

76.16 43.72 129.64 4.08 3.15 1.69 13.13 9.93 1000.23 1.98 98.35 3.09

Table 8. Profiling of self-localization tests performed with the Kinect sensor in the flying arena
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Figure 21. Map of the flying arena using the self-localization system in SLAM mode
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Figure 22. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 3.01
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5. Global analysis of test results

Analyzing the test results shown from Tables 3 to 8 and Figures 28 to 31 (with the testing
conditions presented in Table 9), it can be concluded that the DRL system can achieve very
accurate 3 DoF pose tracking (mean translation error below 1 cm and mean rotation error below
1°) when the sensor data provided has a wide field of view (360°), a high angular resolution
(0.25°), and a long range (250 m). These results (configurations j1 to j4) hold even when the
Jarvis testing platform was moving at varying speeds (from 0.05 to 0.5 m/s) and with dynamic
objects in the environment.

When the DRL system was tested under more challenging conditions (configurations p1 to p4
in the industrial hall), with the sensor data having a reduced field of view (180°), low angular
resolution (1°), and short range (6 m), the DRL system still managed to track the robot 3 DoF
pose with translation error below the map resolution (mean translation error below 2 cm and
mean rotation error below 6°).

The DRL system was also able to track the Kinect 6 DoF pose (configurations k1 to k3) with
less than 2 cm of mean translation error and less than 3° of mean rotation error, even when the
sensor was aimed at unknown areas, which shows the robustness of the DRL system against
temporary sensor problems, which happen more often on sensors with narrow field of view.
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Figure 23. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 3.02
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Figure 24. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 3.04
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Figure 25. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 3.05
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Overall, the DRL system was able to track the 3/6 DoF pose of the testing platforms (equipped
with significantly different sensors) with high accuracy and reliability and overcame tempo‐
rary sensor occlusions and dynamic objects in the environment.

Comparing the profiling results of all tests, it can be concluded that using more points in the
reference or sensor point clouds leads to higher computation times (for each pose update) and
higher CPU usage. This can be seen in the 6 DoF test results, which had a 5-time increase in
the mean computation time and CPU usage when compared to the 3 DoF tests. As such, the 6
DoF pose estimation capabilities of the DRL system should only be used when the mobile
platforms are not moving on planar environments.

The DRL system can perform 3/6 DoF pose estimation with CPUs with low power consumption
and cost, such as the Intel Atom N2800. However, the standard deviation of the pose estima‐
tion, along with the resources required, will grow when compared with better CPUs. More‐
over, these low-consumption CPUs may have memory access bottlenecks and given their
limited processing capabilities, they may require the tuning of the DRL configurations in order
to be able to perform pose estimations with acceptable update rate (which is why Figures 30
and 31 show a similar 3/6 DoF computation time and CPU usage on the tests performed with
the Intel Atom N2800). This reconfiguration allowed the DRL system to update the Kinect pose
more often at the cost of higher translation and rotation error. Nevertheless, this shows that
the DRL system can be used on a wide range of mobile robot platforms with varying compu‐
tational capabilities.
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Figure 26. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 3.07
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Testing

configurations

Sensor

platforms

Movement

path

Test

duration

(s)

Mean

velocity

(m/2)

Map

resolution

(mm)

Sensor

range

(m)

Filters

Voxel grid (m) Random Sample

j1

Jarvis

Circular
290 0.05

10 250 0.02 500

j2 25.5 0.5

j3

Complex

498 0.05

j4 392
0.5-0.3-0.5-

0.1

p1

Pioneer

360 72 0.23

25

10 - -

p2 Slam 1 155 0.26

6

- -

p3 Slam 2 115 0.19 - -

p4 Slam 3 112 0.16 - -

k1

Kinect

Free fly 16.9 0.3

20 3.5
Atom -> 0.05 |

i5/i7 -> 0.02

Atom -> 175 | i5/i7 -> 425

K2 Translations 32.1 0.2 Atom -> 175 | i5/i7 -> 425

K3 Rotations 33.4 0.1 Atom -> 175 | i5/i7 -> 750

Table 9. Testing configurations shown from Figure 28 to 31
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Figure 27. Poses estimated by the DRL (blue) and the ground truth (green) systems for test 3.08
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Figure 28. Translation error across all tests (testing configurations shown in Table 9)
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Figure 29. Rotation error across all tests (testing configurations shown in Table 9)
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Figure 30. Computation time across all tests (testing configurations shown in Table 9)
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Figure 31. CPU usage across all tests (testing configurations shown in Table 9)

6. Conclusions

Mobile robot platforms require efficient software systems in order to perform their desired
tasks without needing expensive and high power consumption hardware. Given the wide
range of hardware and sensor configurations and the set of tasks that a mobile robot can
perform, this article presented a detailed analysis of the DRL system performance in tests
running on three different computing platforms equipped with CPUs ranging from low to
high end processing capabilities.

The DRL system was tested in challenging environments and was able to perform high
accuracy pose estimation with mean translation error between 5 and 30 mm and mean rotation
error between 0.4° and 5° in both 3 and 6 DoF. The trade-offs between pose estimation accuracy
and computing resources required can be tuned to the specific needs of the tasks performed
by the robot, allowing efficient use of the localization system on low computing power mobile
robot platforms.

For the presented tests, and with some configuration fine tuning, the Atom N2800 CPU was
able to estimate the 6DoF pose with about 30 mm/3° in 60 ms at over 90% CPU load. The other
superior CPUs, Intel Core i5 and i7, were able to estimate 6 DoF poses with about 20 mm/3°
in 30 ms at 80% CPU load.

Moreover, several sensors can be used simultaneously in order to increase the field of view
seen by the localization system, allowing more accurate and stable estimation of the robot’s
pose. Besides pose tracking, the self-localization system can also perform initial pose estima‐
tion when the robot starts its operation or when it becomes lost in the environment. It can also
incrementally build a map of its surroundings with probabilistic integration and removal of
geometry and perform surface reconstruction to minimize the impact of sensor noise.
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The robust and high accuracy pose tracking capabilities of the DRL system in conjunction with
the global pose estimation and mapping modules allow the fast deployment of a wide range
of mobile robot platforms in cluttered and dynamic environments.
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