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Preface

These are the proceedings of the twentieth International Conference on Formal Methods in Computer-
Aided Design (FMCAD), which was held online during Sep 21 – Sep 24, 2020 (the Coronavirus year). It
was the 20th in a series of meetings on the theory and applications of rigorous formal techniques for the
automated design of systems. The FMCAD conference covers formal aspects of specification, verification,
synthesis, testing, and security, and is a leading forum for researchers and practitioners in academia and
industry alike.

The program of FMCAD 2020 is comprised of three tutorials, two invited talks, a student forum, the
Hardware Model Checking Competition 2020, and the main program consisting of presentations of 28
accepted papers.

The tutorial day featured three presentations
• “Anytime algorithms for Max-SAT and beyond” by Alex Nadel, Intel Haifa,
• “Formal Verification for Natural and Engineered Biological Systems” by Hillel Kugler, Bar-Ilan

University, and
• “Tutorial on World-Level Model Checking” by Armin Biere, from Johannes Kepler University , Linz,

Austria.
The invited talks were
• “How Testable is Business Software?” by Peter Schrammel, DiffBlue, and
• “From Correctness to High Quality” by Orna Kupferman, Hebrew University.
FMCAD’20 also hosted the eighth edition of the Student Forum, which has been held annually since

2013 and provides a platform for graduate students at any career stage to introduce their research to the
FMCAD community. The FMCAD Student Forum 2020 was organized by Peter Schrammel and featured
short presentations of 8 accepted contributions. A detailed description of the Student Forum, listing all
accepted contributions, is provided in the conference proceedings.

The Hardware Model Checking Competition 2020, affiliated with FMCAD 2020 and organized by
Armin Biere, Nils Froleyks and Mathias Preiner, is a competitive event for hardware model checking tools
from academia and industry.

FMCAD 2020 received 59 submissions out of which the committee decided to accept 28 for publication.
Each submission received at least four reviews. The topics of the accepted papers include hardware and
software verification, SAT, SMT, learning, synthesis, Neural-Network verification, and more. Out of the
accepted papers, 22 are classified as regular papers (20 long and 2 short) and 6 are classified as tool
papers (4 long and 2 short).

Organizing this event would not have been possible without the support of a large number of people and
our sponsors. The program committee members and additional reviewers, listed on the following pages,
did an excellent job providing detailed and insightful reviews, which helped the authors to improve their
submissions and guided the selection of the papers accepted for publication. We thank each and every
one of them for dedicating their time and providing their expertise.

We thank Ryan Berryhill (University of Toronto) for being the web master, and Peter Schrammel
for organizing this year’s FMCAD Student Forum. We thank Georg Weissenbacher (TU Wien) both for
his exceptional assistance in organizing the event, communicating to us the decisions of the steering
committee, as well as being the publication chair.

Holding a conference like FMCAD would not be feasible without the financial support of our spon-
sors. We would like to express our gratitude to our sponsors (in alphabetical order): Amazon, Centaur
Technology Inc., IBM, Novi, Synopsys, and the Technion, Israel institute of Technology.
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The conference proceedings are available as Open Access Proceedings published by TU Wien Academic
Press, and through the IEEE Xplore Digital Library. Last but not least, we thank all authors who submitted
their papers to FMCAD 2020 (accepted or not), and whose contributions and presentations form the core
of the conference. We are grateful to everyone who presented their paper, gave a keynote or gave a tutorial.
We thank all attendees of FMCAD for supporting the conference and making FMCAD a stimulating and
enjoyable event.

Ofer Strichman, Technion, Haifa
Alexander Ivrii, IBM, Haifa
September 2020
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Message from the Steering Committee Chairman

Hello FMCAD people!

Over the past two years, we have been transitioning the FMCAD organization from a USA-based com-
pany to an Austrian-based association. Unlike most conferences, the FMCAD Conference meetings have
been supported privately by the FMCAD Corporation. For 2020, the newly-formed FMCAD Association
will support the FMCAD Conference, and this Association is expected to support the FMCAD Conference
in the years to come.

After serving as FMCAD Steering Committee Chairman for more than 15 years now, I will step
down and Georg Weissenbacher will assume the leadership of the FMCAD Conference series along with
managing the FMCAD Association. Except when I was sick in 2017, I have attended every FMCAD
conference since its 1996 inception – and even during the 2017 conference, I was transacting business
needed to get FMCAD catered. I have enjoyed working on the FMCAD Conference, and I’m very proud
of the technical results presented at FMCAD. And, I’m humbled by the faith that our authors have placed
in FMCAD to make their results known.

FMCAD was an early adopter of what has become known as Open Access. After the first ten years of
FMCAD publications, we moved from a commercial publisher to self-publishing the FMCAD Conference
proceedings – since 2006, all of the FMCAD Conference proceedings are freely available. In addition,
through in-kind arrangements with the ACM and the IEEE, the FMCAD Proceedings are available through
the ACM and IEEE Digital libraries. In addition, the FMCAD Proceedings are available on the FMCAD
website.

I urge everyone to get involved; see http://www.fmcad.org. Talk with FMCAD attendees. Volunteer to
assist with a future conference. I have benefited enormously from my association with FMCAD. I have
met many people, and over the years, I have come to realize that the conversations and associations I
have had participating with FMCAD people are an important part of my life. On a personal note, I met
(for just the second time) my wife at FMCAD 1996; she is also my best friend and colleague, and a
co-owner co-owner of FMCAD, Inc. With the three or four weeks a year I have invested annually in the
FMCAD Conference, the FMCAD community has become an extended family for me. The friendships
and comradery from my participation have provided me with tremendous rewards, and continue to do so.

I want to thank everyone for making FMCAD such a pleasant conference to attend. The fellowship I
feel when attending FMCAD has kept me invested in preserving and enhancing the FMCAD experience.
I also want to thank all of the FMCAD Conference steering committee members, Conference co-chairs,
and program committee members for their outstanding work. I’m amazed at the results that have been
reported at FMCAD; your efforts have truly enhanced the course of engineering, science, technology, and
theory.

Cheers,

Warren A. Hunt, Jr.
Steering Committee Chair
President, FMCAD, Inc.
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Anytime Algorithms for MaxSAT and Beyond
Alexander Nadel

Intel Corporation, P.O. Box 1659, Haifa 31015 Israel
Email: alexander.nadel@intel.com

Abstract—Given a propositional formula F in Conjunctive
Normal Form (CNF), a SAT solver decides whether it is satisfiable
or not. It is often required to find a solution to a satisfiable CNF
formula F , which optimizes a given Pseudo-Boolean objective
function Ψ, that is, to extend SAT to optimization.

MaxSAT is a widely used extension of SAT to optimization.
A MaxSAT solver can be applied to optimize a Pseudo-Boolean
objective function Ψ, given a CNF formula F , whenever Ψ is a
linear function.

MaxSAT has a diverse plethora of applications, including
applications in computer-aided design, artificial intelligence,
planning, scheduling and bioinformatics. A variety of approaches
to MaxSAT have been developed over the last two decades. In
this tutorial, we focus on anytime MaxSAT algorithms, where an
anytime algorithm is expected to find better and better solutions,
the longer it keeps running. The anytime property is crucial
in industrial applications, since it allows the user to: 1) get
an approximate solution even for very difficult instances, and
2) trade quality for performance by regulating the timeout.

Anytime MaxSAT solvers have been evaluated at yearly
MaxSAT Evaluations since 2011 in the so-called incomplete
tracks. We trace the evolvement of anytime MaxSAT algorithms
over the last decade and lay out the algorithms, applied by the
winners of MaxSAT Evaluation 2020.

Furthermore, we touch upon anytime algorithms for optimiza-
tion problems beyond MaxSAT, such as bit-vector optimization
and the problem of optimizing an arbitrary not-necessarily-linear
function, given a CNF formula.

Finally, we discuss challenges and future work.
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Formal Verification for Natural and Engineered
Biological Systems

Hillel Kugler
Faculty of Engineering, Bar-Ilan University

Ramat Gan, Israel
hillelk@biu.ac.il

Abstract—Computational modeling is now used effectively to
complement experimental work in biology, allowing to identify
gaps in our understanding of the biological systems studied,
and to predict system behavior based on a mechanistic model.
We provide an overview of several areas in biology for which
formal verification has been successfully used. We highlight
examples from both natural and engineered biological systems.
In natural biological systems the main goal is to understand how
a system works and predict its behavior, whereas for engineered
biological systems the main goal is to engineer biological systems
for new purposes, e.g. for building biology-based computational
devices. We compare between the challenges in applying formal
verification in biology and the application to traditional domains.
Finally, we outline future research directions and opportunities
for formal verification experts to contribute to the field.

Index Terms—Formal Verification, Computational Systems
Biology, DNA Computing, Biological Systems Modeling

I. INTRODUCTION

We provide an overview of the use of formal verification
methods in biology and outline future research challenges
and opportunities. We broadly divide applications of formal
verification methods in biology to natural biological systems
and engineered biological systems.

II. NATURAL BIOLOGICAL SYSTEMS

Biologists employ a wide range of experimental and theo-
retical approaches to decipher the mechanisms underlying the
dynamic behavior of biological systems. Biological systems
are the ultimate reactive system [4] as they need to constantly
react to changes in their environment to maintain life. View-
ing biological systems as reactive systems leads naturally to
specifying their behavior using a subset of temporal logic
[1], [2] and applying formal verification to prove system
properties. An important class of computational models deals
with the genotype/phenotype question - how does the genetic
information in a cell or organism determine the dynamics
and observable behavior. In particular, Gene Regulatory Net-
works (GRNs) capture the interactions between the genetic
components of the system and define the system dynamics.
Simulating GRN models allows us to study the network
behavior under different experimental conditions including
genetic mutations. Formal verification becomes useful since

The research was supported by the Horizon 2020 research and innovation
programme for the Bio4Comp project under grant agreement number 732482
and by the ISRAEL SCIENCE FOUNDATION (grantNo. 190/19).

it is important to verify that known experimental results are
indeed satisfied by the GRN models, and to identify behavior
that may lead to new biological insights. In addition to using
formal verification, synthesis methods [3], [7] can automate
the process of deriving consistent models and offers a way to
synthesize all solutions of a certain class and thus avoid the
inherent bias in focusing on one model.

III. ENGINEERED BIOLOGICAL SYSTEMS

Engineering biological devices to perform specified compu-
tation is of major interest due to the potential of utilizing the
inherent parallelism in biological components to speed compu-
tation, construct low energy consuming devices and interface
with biological material. We focus on two main approaches of
engineering such systems: DNA Strand Displacement Systems
(DSD) [6] that utilize the complementarity of DNA sequences
to bind together and perform designed reactions, and Network-
Based Biocomputation (NBC) [5] that uses biological agents
that operate in parallel to explore manufactured planar devices.
We show computational design tools for these approaches and
the use of formal verification methods and tools to improve
the development process and ensure robust system design.
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Abstract—In SMT bit-vectors and thus word-level reasoning
is common and widely used in industry. However, it took until
2019 that the hardware model checking competition started to use
word-level benchmarks. Reasoning on the word-level opens up
many possibilities for simplification and more powerful reasoning.
In SMT we do see advantages due to operating on the word-
level, even though, ultimately, bit-blasting and thus transforming
the word-level problem into SAT is still the dominant and most
important technique. For word-level model checking the situation
is different. As the hardware model checking competition in 2019
has shown bit-level solvers are far superior (after bit-blasting the
model through an SMT solver though). On the other hand word-
level model checking shines for problems with memory modeled
with arrays. In this tutorial we revisit the problem of word
level model checking, also from a theoretical perspective, give an
overview on classical and more recent approaches for word-level
model checking and then discuss challenges and future work.
The tutorial covered material from the following papers.
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Abstract—Most businesses rely on a significant stack of
software to perform their daily operations. This software is
business-critical as defects in this software have major impacts
on revenue and customer satisfaction. The primary means for
verification of this software is testing. We conducted a large-scale
analysis of Java software packages to evaluate their testability.
The results show that code in software repositories is typically
split into portions of very trivial code, non-trivial code that is
unit-testable, and code that cannot be unit-tested easily. This
brings up interesting considerations regarding the use of test
coverage metrics and design for testability, which is crucial for
testing efficiency and effectiveness, but unfortunately too often an
afterthought. Lack of testability is an obstacle to applying tools
that perform automated verification and test generation. These
tools cannot make up for poor testability of the code and have a
hard time in succeeding or are not even applicable without first
improving the design of the software system.
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Abstract

In the synthesis problem, we are given a specification ψ over input and output signals, and we synthesize a system that realizes
ψ: with every sequence of input signals, the system associates a sequence of output signals so that the generated computation
satisfies ψ. The above classical formulation of the problem is Boolean. The talk surveys recent efforts to automatically synthesize
reactive systems that are not only correct, but also of high quality. Indeed, designers would be willing to give up manual design
only after being convinced that the automatic procedure that replaces it generates systems of comparable quality.

We distinguish between behavioral quality, which refers to the way the specification is satisfied, and costs, which refer to
resources that the system consumes. For the first, we focus on the temporal logics LTL[F ] and LTL[D], which extend LTL by
quality operators [1]. The satisfaction value of LTL[F ] and LTL[D] formulas is a real value in [0, 1], where the higher the value
is, the higher is the quality in which the computation satisfies the specification. Essentially, LTL[F ] contains propositional quality
operators, like weighted-average, and LTL[D] contains discounted eventuality operators. Using LTL[F ] and LTL[D], a designer
can prioritize different ways to satisfy the specification and formally weight parameters such as security, maintainability, runtime,
delays, and more.

For the second, we distinguish between four classes of costs, induced by the following two characteristics: (1) construction
vs. activaty costs, and (2) physical vs. monetary costs. For example, the sensing cost of a system is physical, and we distinguish
between the number of sensors in the system (construction cost) and the sensing required during its operation (activity cost) [2],
[3].

Index Terms

Synthesis, Temporal Logic, Sensing
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Abstract—The Student Forum at the International Conference
on Formal Methods in Computer-Aided Design (FMCAD) allows
undergraduate and graduate students to introduce their research
to the Formal Methods community and receive feedback. Origi-
nally planned to take place in Haifa, Israel, the event was actually
run online via video conferencing. Eight students were invited to
give a short talk and discuss their work with their peers and
FMCAD attendees. The presentations covered a broad range
of topics in the fields of verification and synthesis in various
application areas.

The Student Forum gives an opportunity to students at any
career stage to introduce their research to the audience of the
FMCAD conference. The first edition took place in Portland,
Oregon, USA in 2013 [6], with subsequent editions held in
Lausanne, Switzerland in 2014 [5], Austin, Texas, USA in
2015 [7] and 2018 [4], Mountain View, CA, USA in 2016
[3], Vienna, Austria in 2017 [2], and San Jose, CA, USA in
2019 [1].

As in 2019, the 2020 Student Forum was open to graduate
and undergraduate students.1 The students were invited to
submit 2-page reports describing their ongoing research in the
scope of the FMCAD conference. Members of the program
committee of FMCAD reviewed the reports and accepted eight
submissions. The reviews evaluated the novelty of the work,
its potential impact on the Formal Methods community, the
quality and the soundness of the presentation.

The contributions covered a wide range of topics, from
foundational aspects of automated reasoning to applications
of Formal Methods to cloud security, neural networks and
medicine. The following contributions have been accepted:

• Claudia Cauli: Formal Threat Modeling in the Cloud
• Yizhak Elboher, Guy Katz and Justin Gottschlich: An

Abstraction-Based Framework for Neural Network Ver-
ification

• Sibylle Möhle: (Dual) Projected Propositional Model
Counting and Enumeration without Repetition

• Thomas Pani, Georg Weissenbacher and Florian Zuleger:
Parameterized Program Safety and Liveness via Thread-
modular Counter Abstraction

• Sumanth Prabhu, Grigory Fedyukovich, Kumar Mad-
hukar and Deepak D’Souza: Specification Synthesis using
Constrained Horn Clauses

• Georg Schuppe: Compositional Adviser-Strategy Synthe-
sis for Multi-Agent Systems

• Aalok Thakkar, Kedar Namjoshi and Richard Trefler:
Modular Synthesis of Reactive Systems

1https://fmcad.forsyte.at/FMCAD20/student-forum/

• Daniella Vo and Debashis Sahoo: Boolean Analysis Re-
veals Microbes Significant to Inflammatory Bowel Dis-
ease

The Student Forum would not have been possible without the
excellent contributions of the student authors. We would also
like to express our gratitude to the reviewers of the FMCAD
Student Forum for their help.
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Abstract—The language xMAS has been designed by Intel with
the purpose of modelling and verification of hardware. Recently,
the language was extended with finite state machines to make it
more expressive [19]. Furthermore, it was shown how to prove
liveness of such extended xMAS networks [19]. Unfortunately,
we demonstrate that the proof technique is unsound. We provide
an alternative approach which we have carefully proven to be
correct. Moreover, we show that our approach scales very well,
which makes it possible to prove liveness properties at the system
level. In particular, we show that using our approach, it is possible
to verify a power control architecture composed of 1299 state
machines representing 50 power domains where each domain
contains 5 master and 5 slave devices. Proving liveness of this
system takes less than 10 minutes.

Index Terms—Formal verification, liveness, communication
networks, finite state machines

I. INTRODUCTION

Formal verification has been successfully introduced in
many design flows of hardware and software systems. More
and more often, the sign-off decision for hardware blocks is
taken solely on the results of formal proofs, the so-called
formal sign-off. However, scaling formal verification to the
system level remains a challenge.

Originally proposed by researchers at Intel, the xMAS
language [7] and associated techniques for invariant genera-
tion [6], property checking [6], and deadlock hunting [12, 16]1

have been developed to address this challenge. These tech-
niques are very efficient and were extended to performance
validation [15], asynchronous circuits [4], progress verifica-
tion [8], generalized to language families [17], and directly
related to the Register Transfer Level [11, 13, 14].

Regarding liveness analysis, the key contribution of Got-
manov et al. [12] is to encode the existence of a deadlock state
as a satisfiability problem. This technique is sound and can
prove the absence of deadlock states. It is incomplete because
a satisfiable solution does not necessarily represent a reachable
state of the xMAS network. Checking reachability of potential
xMAS deadlock states is efficient [20].

Verbeek et al. introduced state machines into xMAS to-
gether with extensions of liveness analysis techniques [19].

1Note that in the literature related to liveness verification of xMAS
networks, it is common to call states with non-live channels deadlock states.
We adhere to this terminology, although it is different from the conventional
notion of deadlock.

Their extension enables the modeling and analysis of complex
cooperating state machines under the constraints imposed
by micro-architectural choices. They demonstrated the veri-
fication of large systems consisting of nodes running cache
coherence protocols and communicating via a Network-on-
Chip. Inspired by Gotmanov et al., Verbeek et al. encode
liveness verification of xMAS extended with (finite) state
machines to satisfiability. As we will show in this paper, their
method is unsound.

We present a counter-example that is composed of a network
with a deadlock that is not found by the technique of Verbeek
et al. [19]. Subsequently, we propose an alternative encoding
of liveness into a satisfiability problem. We carefully prove that
if an xMAS network has a path to a state with a deadlock,
there exists a satisfying assignment to the satisfiability problem
we generate, i.e., our encoding is sound. Finally, we introduce
two sets of benchmarks including a simplified power control
architecture inspired by industrial case-studies.

The benchmarks and our implementation are publicly avail-
able [2]. A network with 1299 state machines can be proven
live in less than 10 minutes.

We introduce xMAS, liveness of channels and idle and block
equations in Section II. In Section III we introduce xMAS
finite state machines, and show why the approach from [19]
is unsound. Our approach using idle and block equations is
described in Section IV. Our implementation is evaluated in
Section V. We conclude in Section VI.

II. PRELIMINARIES

A. xMAS syntax

xMAS [7] is a graphical language aimed at modeling and
verifying communication fabrics. An xMAS network com-
prises a set of primitives connected by typed channels. The
progress of messages between primitives is controlled by a
simple handshake protocol. Each channel consists of three
signals, one for data and two boolean control signals, irdy
and trdy. Consider the transfer of data from primitive A
to primitive B via channel x. When primitive A is ready to
transfer datum d through channel x, it sets x.data to d, and
x.irdy to true, indicating the initiator is ready to transfer
data. Whenever B is ready to accept data, it sets x.trdy to
true, indicating the target is ready to receive. The data transfer
happens if and only if x.irdy ∧ x.trdy, i.e., the initiator is
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ready to send and the target is ready to receive. The core
xMAS primitives are shown in Figure 1.

Figure 1: Core xMAS primitives

We provide detailed descriptions of the source, sink and
queue primitives as they are used directly in this paper. For
details of the other primitives the reader is referred to [7].

A source non-deterministically injects data into the network
infinitely often. This is modelled using the unconstrained
primary input oracle. Once a source decides to transfer datum
d, it will keep trying until the transfer succeeds. This is
modelled using the standard synchronous operator pre that
returns the value of its argument in the previous clock cycle,
and false in the very first cycle. Formally, the source is
described as follows:

o.irdy := oracle ∨ pre(o.irdy ∧ ¬o.trdy)
o.data := d.

A sink consumes data from the network infinitely often:

i.trdy := oracle ∨ pre(i.trdy ∧ ¬i.irdy).

A queue is a FIFO buffer with k places. A queue is ready
to write data to the output when it is not empty. The data the
queue is ready to write is the head of the queue. A queue is
ready to accept data when it is not full. Formally,

o.irdy := ¬is empty, o.data := head,

i.trdy := ¬is full,

where i and o are the input and output channels of the queue
respectively.

Example 1. Consider the simple xMAS network depicted in
Figure 2. We use this network as a running example. The
network consists of a source, a queue, and a sink. The source
produces tokens t. The source controls the x.irdy and x.data
signals of its output channel x. The queue controls the x.trdy
signal of channel x, and y.irdy and y.data of its output

x

1
y

Figure 2: xMAS example

channel y. The sink controls the y.trdy signal of channel y.
The signals are defined as follows.

x.irdy := oraclesrc ∨ pre(x.irdy ∧ ¬x.trdy)
x.data := t

x.trdy := ¬is full

y.irdy := ¬is empty

y.data := head

y.trdy := oraclesnk ∨ pre(y.trdy ∧ ¬y.irdy).

The semantics of an xMAS network consists of a combi-
natorial and a sequential phase. In the first, all data, irdy
and trdy signals are updated. In the second all components
with state update their state. The global state of an xMAS
network is the product of the local states of all components.
We write ~s X−→ ~s′ for the transition between global states ~s
and ~s′, where X is a set of (channel,data) pairs representing
the simultaneous data transfers in the current clock cycle.

B. Liveness of channels

Liveness of channels is defined using linear temporal logic
(LTL). LTL and its semantics are considered standard, and we
refer to text books such as [3] for the details. To interpret LTL
on xMAS networks, we first define paths and maximal paths
in such networks. In the rest of this paper, we implicitly fix an
xMAS network N = (P,G), where P is the set of primitives,
and G is the set of channels. Given a channel x ∈ G, by C(x)
we denote the set of all possible values of x.data. By C we
denote the set of all data of N , that is C =

⋃
x∈G C(x).

Definition 1. A path is a possibly infinite sequence of global
states π = ~s0, ~s1, ~s2, . . . such that for all j > 0, ~sj−1

X−→ ~sj
for some X . The set of paths starting in a state ~s is denoted
using Paths(~s), and for xMAS network N we write Paths(N)
to denote Paths(~s0), where ~s0 is the initial state of the network
N . For finite paths π = ~s0, . . . , ~sn we define last(π) = ~sn. A
path π is called maximal if and only if it is infinite, or it is
finite and last(π) has no outgoing transitions.

A channel is live whenever, always when its initiator is
ready to transfer data, the transfer will eventually be success-
ful.

Definition 2 ([12]2). Channel x ∈ G is live for d ∈ C(x) iff

N |= G((x.irdy ∧ x.data = d)

=⇒ F(x.irdy ∧ x.trdy ∧ x.data = d)).

We henceforth make the (standard) assumption that channels
are (forward) persistent. This means that whenever the initiator
is ready to send d along x, it will remain ready to do so
until the transfer is successful. Formally, the network satisfies
G((x.irdy ∧ x.data = d ∧ ¬x.trdy) =⇒ X(x.irdy ∧
x.data = d)). Under this assumption, channel x is live if and
only if it is live for all d ∈ C(x).

2Gotmanov et al. [12] use property G(x.irdy =⇒ F x.trdy), which
does not guarantee that the transfer eventually succeeds if persistency is not
assumed.
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We recall the notions idle and block from [12]. A channel
is idle for d if eventually the initiator will never send message
d along that channel, and it is blocked if eventually the target
will never be able to receive a message along that channel.

Definition 3 ([12]). Let x ∈ G and d ∈ C(x). We define

idle(x(d)) := FG(¬x.irdy ∨ x.data 6= d)

block(x) := FG¬x.trdy

A local deadlock is defined as a dead channel, where a
channel is dead for value d if and only if it is not live for
d. This means there exists a path in the xMAS network to a
state that satisfies ¬idle(x(d)) ∧ block(x). In other words,
a channel is dead whenever its initiator is ready to transfer
datum d and its target will never be ready to accept the data.

Definition 4. Let N be an xMAS network, with x a forward
persistent channel in N , and d ∈ C(x). We define

live(x(d)) := idle(x(d)) ∨ ¬block(x)
dead(x(d)) := ¬live(x(d))

live(x) :=
∧

d∈C(x)

live(x(d))

dead(x) :=
∨

d∈C(x)

dead(x(d))

Persistency now allows us to simplify the definition of
liveness using the following theorem adapted from [12].

Theorem 1. For all channels x ∈ G and d ∈ C(x), let

live(x(d)) := idle(x(d)) ∨ ¬block(x)
dead(x(d)) := ¬live(x(d)).

Then, for all persistent channels x ∈ G and d ∈ C(x),
1) x is live for d iff N |= live(x(d)), and
2) x is dead for d iff ∃π ∈ Paths(N).π |= dead(x(d)).

Note that the formula for live channels is evaluated over
the network (i.e., over all paths), and the formula for dead
channels is evaluated over a path due to the LTL semantics.

In Definition 3, we only defined block(x). We can refine
this definition by introducing block(x(d)) as follows.

block(x(d)) := FG(¬x.trdy ∨ x.data 6= d)

It is easy to see that block(x) implies block(x(d)) for any
d ∈ C(x). The following then follows immediately.

Lemma 1. For all persistent channels x ∈ G, d ∈ C(x),
and all paths π ∈ Paths(N), π |= dead(x(d)) implies π |=∧
e∈C(x) block(x(e)).

C. Idle and block equations

The main contribution of Gotmanov et al. [12] is to express
deadlock conditions for each primitive using equations over
boolean variables. If these idle and block equations are sat-
isfiable, a (possible) deadlock has been detected; otherwise,
the network is guaranteed to be deadlock free. The method

is sound but incomplete: if the equations are satisfiable,
the assignment to the boolean variables may constitute an
unreachable deadlock state. This is alleviated to some extent
by using invariants to approximate the reachable states.

The boolean variables express the conditions under which a
primitive will eventually never try to output value d, denoted
using variable idledx, or eventually never try to read from
channel x, denoted using variable blockx. The encoding
essentially approximates the LTL specifications of idle and
block defined before. In particular, if there exists a path π in
the xMAS network such that π |= dead(x(d)), then there is
a satisfying assignment to the variables in the idle and block
equations in which idledx is false, and blockx is true.

Example 2. Recall the network from Example 1. Sources are
never idle, and sinks are never blocked. The input channel of
the queue, x, is blocked when the queue is full and its output
channel y is blocked. The output channel of the queue is idle
when the queue is empty and its incoming channel x is idle.
This results in the following equations.

idlex ≡ ⊥ blockx ≡ full ∧ blocky

idley ≡ empty ∧ idlex blocky ≡ ⊥
deadx ≡ ¬idlex ∨ blockx deady ≡ ¬idley ∨ blocky

We can conclude that neither x nor y is dead.

III. LIFE AND DEATH OF STATE MACHINES IN XMAS
A. xMAS finite state machines

Verbeek et al. describe an extension of xMAS with finite
state machines for the integrated verification of, for instance,
cache coherence protocols together with their underlying
communication fabric [18, 19]. The xMAS automata allow
for the symbolic description of the channels and data read
and written along transitions. However, every transition reads
and writes (at most) one channel. In this paper we require
explicit definition of every datum read/written on a transition
to simplify the presentation. The results could equally be
expressed using symbolic notation as in [18, 19]. However,
since the number of channels and the data transferred are
typically assumed to be finite, they can be expanded in the
FSM, and this change does not alter the expressive power.

Definition 5. A finite state machine (FSM) is a tuple
(S, s0, I, O, T ), where S is a finite set of states; s0 ∈ S is
an initial state; I is a finite set of input channels; O is a finite
set of output channels; and T ⊆ S × (I ×C)× (O×C)× S
is the total transition relation.

Since T is total, every state has at least one outgoing
transition. We use names s, s′, s1, . . . for states. We write
s

x(d)/y(e)−−−−−−→ s′ for (s, (x, d), (y, e), s′) ∈ T . We sometimes
write ?x(d) and !y(e) to stress d is read from channel x, and
e is written to y. For state s ∈ S, in(s) and out(s) denote the
sets of incoming and outgoing transitions of s, respectively.
Likewise, for channels x ∈ (I ∪ O), and data d ∈ C(x),
read(x, d) and write(x, d) represent the sets of transitions
reading d from x and writing d to x, respectively.
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Note that the requirement that every transition reads from
and writes to exactly one channel is not fundamental. Tran-
sitions t = s

!y(e)−−−→ s′ that do not read from an input
channel can be modeled by introducing a new channel xt
that is connected to a source and the FSM, and be replaced
by s

?xt/!y(e)−−−−−−→ s′. Transitions that do not write to an output
channel and transitions that do not read or write any channel
can be modeled in a similar way.

In an FSM, exactly one state is current at a time, this state
is denoted cur(s). A transition s

x(d)/y(e)−−−−−−→ s′ is enabled if
and only if s is the current state, the input channel x is ready
to send d, and the output channel y is ready to receive. Note
that whether the input and output channels are ready depends
on the environment of the FSM.

Definition 6. Given FSM (S, s0, I, O, T ), transition

s
x(d)/y(e)−−−−−−→s′ ∈ T is enabled, denoted enabled(s

x(d)/y(e)−−−−−−→ s′)
iff cur(s) ∧ x.irdy ∧ x.data = d ∧ y.trdy.

In any state, there can be multiple enabled transitions. To
resolve this non-determinism, a scheduler sel is introduced
that, at every clock cycle, selects an enabled transition. If
transition t is selected, this is denoted sel = t.

The FSM needs to indicate to its environment whether it is
ready to send along an outgoing channel, or to read along an
incoming channel. This is defined in terms of irdy, trdy and
data as follows.

Definition 7. Given FSM (S, s0, I, O, T ), for x ∈ I, y ∈ O:

x.trdy := ∃s x(d)/y(e)−−−−−−→s′ ∈ T.sel = s
x(d)/y(e)−−−−−−→s′

y.irdy := ∃s x(d)/y(e)−−−−−−→ s′ ∈ T.sel = s
x(d)/y(e)−−−−−−→ s′

y.data :=

{
e if ∃s x(d)/y(e)−−−−−−→ s′ ∈ T.sel = s

x(d)/y(e)−−−−−−→ s′

⊥ otherwise

Since the scheduler non-deterministically chooses between
enabled transitions, and irdy is only set for the output channel
of a selected transition, whenever irdy is set for an output
channel of an FSM, the target of that channel is ready to
receive, i.e., trdy is set. Non-determinism of the scheduler
could lead to an enabled transition being ignored for an infinite
amount of time. However, we assume scheduler sel to be fair,
i.e., if state s is visited infinitely often with s

x(d)/y(e)−−−−−−→ s′

enabled, then s
x(d)/y(e)−−−−−−→ s′ will be selected infinitely often.

We therefore only verify liveness of the xMAS network along
fair paths. Such paths are defined as follows.

Definition 8. Given a path π, we say that π is fair if and only
if for all FSM primitives M = (SM , sm0 , I

M , OM , TM ) and
local transitions t ∈ TM , we have π |= (GFenabled(t)) =⇒
(GFsel = t)

B. Idle and block equations by Verbeek et al.

Verbeek et al. define a SAT encoding using idle and
block equations for xMAS automata as follows. Given M =

(S, s0, I, O, T ), for s
x(d)/y(e)−−−−−−→ s′ ∈ T , x ∈ I , y ∈ O,

d ∈ C(x), e ∈ C(y), they define the following.

dead
s

x(d)/y(e)−−−−−−→s′
≡ idledx ∨ blocky

deads ≡ curs ∧
∧

t∈out(s)

deadt

deadM ≡
∨
s∈S

deads

blockdx ≡ deadM ∨ (read(x, d) = ∅)
idleey ≡ deadM ∨ (write(y, e) = ∅)

Here, curs are boolean variables, aimed at reflecting the
current state of the FSM.

Intuitively, Verbeek et al. propose to encode that input
(output) channels of an FSM are blocked (idle) as follows.
An input channel x is blocked for d if either the FSM has
no transition which reads d from x or the FSM is dead.
Likewise, an output channel y is idle for e if either the FSM
has no transition which writes e to y or the FSM is dead. With
the notion of dead FSM, Verbeek et al. intend to encode the
existence of a state (a dead state, using the terminology of the
authors), which can eventually be reached, and at the same
time cannot be left anymore, since all outgoing transitions are
dead. In such a situation, the FSM can neither read from its
inputs nor write to its outputs.

C. Life and death of state machines: a counter-example

Unfortunately, there are xMAS networks with FSMs that
are deadlock free according to these idle and block equations
that do contain a deadlock. This is illustrated by the following
example.

Example 3. Consider the state machine, depicted in Figure 3.
It has two input channels x and y, connected to sources, and
two output channels o and z, connected to sinks. All channels
only transfer datum d. Initially, in s0, the FSM can either read
d from channel x and produce d on channel o, and stay in s0,
or it can read d from y once and produce d on z, and go to
s1. In s1, the FSM never reads from y nor writes to o, and
only reads from x, writes to z, and stays in s1.

According to the definition by Verbeek et al., the FSM is
not dead: channels o and z are not blocked, and since channel
x is not idle, neither of the self-loops is dead. Consequently,
neither s0 nor s1 is dead, and the FSM is not dead. However,
once s1 is reached, messages waiting on channel y will never
be read, so y should be blocked.

y

x

z

o

s0 s1

?x/!o

?y/!z

?x/!z

Figure 3: Counterexample to method by Verbeek et al.
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The example shows that, although channel y is dead for d,
since blockdy is false, this is not detected using the idle and
block equations. The encoding from [19] is therefore unsound.

Generally, the issue lies in the definition of deadM . Even
when none of the input channels are idle, and no output
channel is blocked, a state machine can block an input channel.
This happens, e.g., when source states of transitions reading
from a particular channel are reached only finitely many times.
Output channels can become idle for similar reasons.

IV. IDLE AND BLOCK EQUATIONS FOR XMAS FSMS

We propose alternative idle and block equations for FSMs in
the spirit of [12]. An input channel x of an FSM is dead, when
eventually all transitions reading x become disabled. There
are two possible causes for this. First, the source state of the
transition can eventually never be reached anymore. Second,
whenever the source state of the transition is current, the
environment disables the transition since the output channel
is blocked. We capture this intuition by saying that states that
are eventually never reached again are idle, and transitions that
are eventually never enabled are dead.

Definition 9 (Idle states and dead transitions). Consider FSM
(S, s0, I, O, T ). For s ∈ S and t ∈ T we define the following.

idle(s) := FG¬cur(s)

dead(t) := FG¬enabled(t)

Formally, transitions eventually never become enabled along
a path if and only if either the source state or the input channel
of the transition is idle, or the output channel is blocked.

Lemma 2. Let M = (S, s0, I, O, T ) be an FSM in N . For

all t = s
x(d)/y(e)−−−−−−→ s′ ∈ T , global states ~s, and paths π ∈

Paths(~s),

π |= FG¬enabled(t) iff π |= idle(s)∨idle(x(d))∨block(y).

Proof sketch (for the full proof see [10]). Fix an arbitrary
transition t = s

x(d)/y(e)−−−−−−→ s′, global state ~s, and path
π ∈ Paths(~s). We prove both directions separately.
⇒ Assume that π |= FG¬enabled(t). Towards a contradic-

tion, suppose π 6|= idle(s) ∨ idle(x(d)) ∨ block(y(e)).
We know that ¬idle(s) ≡ GFcur(s), ¬idle(x(d)) ≡
GF(x.irdy ∧ x.data = d), ¬block(y) ≡ GFy.trdy.
From this, using the semantics of LTL formulas we derive
that π |= GFenabled(t), which is a contradiction.

⇐ Suppose π |= idle(s)∨ idle(x(d))∨block(y). We split
the three cases and use Definitions 3, 6, and 8 to show
that π |= FG¬enabled(t) in each of these cases.

Due to the way the semantics of FSMs resolve non-
determinism, output channels of an FSM are never dead.

Lemma 3. Given FSM (S, s0, I, O, T ) in N , for all global
states ~s and for channels y ∈ O and e ∈ C(y), we have for
all paths π ∈ Paths(~s), π 6|= dead(y(e)).

We now specify the idle and block equations for FSMs used
in a SAT encoding. The equations refer to variables idle of

incoming channels and block of outgoing channels that are
defined in other components.

Definition 10 (Idle and block equations for FSMs). Consider
an FSM M = (S, s0, I, O, T ). For s ∈ S, x ∈ I , y ∈ O,

d ∈ C(x), e ∈ C(y), and s
x(d)/y(e)−−−−−−→ s′ ∈ T we define the

following equations.

deads
x(d)/y(e)−−−−−−→s′ ≡ idles ∨ idledx ∨ blocky

idles ≡ ¬curs ∧
∧

t∈in(s)

deadt

blockdx ≡
∧

t∈read(x,d)

deadt

blockx ≡
∧

d∈C(x)

blockdx

idleey ≡
∧

t∈write(y,e)

deadt

idley ≡
∧

e∈C(y)

idleey

SAT(M) consists of the conjunction of all the idle and block
equations for all states, transitions and channels in FSM M .
Similarly we write SAT(N) for network N , which is the
conjunction of all formulas for all the primitives of N , where
for non-FSM components, the encoding from [12] is used.

We additionally use the invariants from [19] to reduce the
number of false deadlocks. For example,

∑
s∈S curs = 1

dictates that the FSM is always in exactly one state.
The intuition behind the encoding is as follows. If a state is

not current, and eventually none of its incoming transitions can
ever become enabled, the state is effectively unreachable, thus
the state is idle. In turn, a transition is dead if it ultimately
never becomes enabled. This is the case if either its source
state or its incoming channel is idle, or its outgoing channel
is blocked. An input channel is blocked for a given datum if
no transition will read that datum from the channel. Likewise
an output channel is idle for a datum if that datum is never
written to it. An output channel is idle if it is idle for all
values, meaning that no value will ever be written to it. An
input channel is blocked if it is blocked for all values. This
follows from Lemma 1: a dead channel is blocked for all data.

We say assignment σ is consistent with path π and a set
of components if for all input channels x, output channels y
and data e of these components, σ(blockx) = > iff π |=
block(x) and σ(idleey) = > iff π |= idle(y(e)).

We finally prove our idle and block equations are sound: if
there is a channel that is dead for a particular value, then there
is a satisfying assignment to the boolean equations showing
this. We only consider input channels of FSMs, since output
channels of FSMs cannot be dead as shown in Lemma 3.

Recall that a maximal path can either be finite or infinite,
and in an infinite path in an xMAS network, the FSM can
be stuck in a state locally. We construct assignments for each
of these cases, and prove that each of the assignments is a
satisfying assignment. We first construct assignment σs for
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the case where a (fair) maximal path in a network containing
the FSM is such that the FSM is stuck locally in state s.

Definition 11. Let M = (S, s0, I, O, T ) be an FSM that
appears in an xMAS network N , π ∈ Paths(M) and s ∈ S.
Assignment σs is defined as follows, where we write v := w
if σs assigns w to v. For states s′ ∈ S, transitions t ∈ T ,
channels x ∈ I , y ∈ O, and d ∈ C(x), e ∈ C(y), let:

curs′ := s = s′ idles′ := s 6= s′ deadt := >
blockdx := > blockx := > blocky := >
idledy := > idley := > idledx := ⊥

and σs is consistent with π for all components other than M .

Whenever the FSM is stuck locally, σs gives a satisfying
assignment for the encoding to SAT.

Lemma 4. Let M = (S, s0, I, O, T ) be an FSM that appears
in an xMAS network N and s ∈ S. If π ∈ Paths(N) is a fair
maximal path such that either
• π is finite and last(π) |= cur(s), or
• π |= FG

(
cur(s) ∧

∧
t∈out(s) ¬enabled(t)

)
then σs is a satisfying assignment for SAT(N).

The proof of this lemma and Lemma 5 are omitted due to
space restrictions. Details can be found in [10].

For a fair maximal path π on which the FSM is not stuck
locally, we construct a satisfying assignment σπ based on π.

Definition 12. Let M = (S, s0, I, O, T ) be an FSM that ap-
pears in an xMAS network N and π ∈ Paths(N). Assignment
σπ is defined as follows. For states s′ ∈ S, transitions t ∈ T ,
channels x ∈ I , y ∈ O, and d ∈ C(x), e ∈ C(y), let:

curs′ := s = s′

idles′ := ∀0 ≤ k ≤ n.π[i+ k] |= ¬cur(s′)

deadt := ∀0 ≤ k ≤ n.π[i+ k] |= ¬enabled(t)

blockdx := ∀t ∈ read(x, d).∀0 ≤ k ≤ n.
π[i+ k] |= ¬enabled(t)

blockx := ∀d ∈ C(x).∀t ∈ read(x, d).∀0 ≤ k ≤ n.
π[i+ k] |= ¬enabled(t)

idledy := ∀t ∈ write(y, e).∀0 ≤ k ≤ n.
π[i+ k] |= ¬enabled(t)

idley := ∀e ∈ C(y).∀t ∈ write(y, e).∀0 ≤ k ≤ n.
π[i+ k] |= ¬enabled(t)

and σπ is consistent with π for all components other than M .

Whenever the FSM is not stuck locally, σπ gives a satisfying
assignment for the encoding to SAT.

Lemma 5. Let M = (S, s0, I, O, T ) be an FSM that ap-
pears in an xMAS network N . If π ∈ Paths(N) is an
infinite fair maximal paths such that for all s ∈ S, π |=
GF
(

cur(s) =⇒
∨
t∈out(s) enabled(t)

)
, the assignment σπ

is a satisfying assignment for SAT(N).

We finally prove soundness of our encoding, assuming that
idle and block equations for non-FSM components are sound.

Theorem 2. Let M = (S, s0, I, O, T ) be an FSM in xMAS
network N . For all channels x ∈ I and data d ∈ C(x), if
there exists a fair maximal path π ∈ Paths(N) such that π |=
dead(x(d)), then SAT(N) ∧ ¬idledx ∧ blockx is satisfiable.

Proof. Fix arbitrary channel x ∈ I , and datum d ∈ C(x),
and let π ∈ Paths(N) be a fair maximal path such that π |=
dead(x(d)). We distinguish three cases:
• π is finite. Let last(π) |= cur(s) for some s ∈ S.

According to Lemma 4, σs is a satisfying assignment for
SAT(N). Note that blockx = > and since σs is consis-
tent with π for non-FSM components, idledx = ⊥. So σs
is a satisfying assignment for SAT(N)∧¬idledx∧blockx.

• π is infinite and π |= FG(cur(s)∧
∧
t∈out(s) ¬enabled(t))

for some s ∈ S. Let s be such. According to Lemma 4,
σs is consistent with SAT(N). Using similar reasoning
as in the previous case, we can conclude that σs is a
satisfying assignment for SAT(N) ∧ ¬idledx ∧ blockx.

• π is infinite and for all s ∈ S, we have π 6|= FG(cur(s)∧∧
t∈out(s) ¬enabled(t)), i.e., π |= GF(cur(s) =⇒∨
t∈out(s) enabled(t)).

According to Lemma 5, σπ is consistent with SAT(N).
Note that since π |= dead(x(d)), π |= block(x(e)) for
all e ∈ C(x), according to Lemma 1. Consider arbitrary
e ∈ C(x), we show that the assignment satisfies blockex.
From this and the definition it immediately follows that
it satisfies blockx.
Let i be the index that signals the start of the loop of the
lasso on π. Since π |= block(x(e)), π |= FG(¬x.trdy∨
x.data 6= e). By definition of enabled , this implies π |=
FG(¬enabled(t)) for all t ∈ read(x, e). Hence, for all
0 ≤ k ≤ n, π[i+k] |= ¬enabled(t) for all t ∈ read(x, e).
By definition of σπ , we then have blockex = >. Since
this holds for all e, by definition also blockx = >, and
σπ is a satisfying assignment for SAT(N) ∧ ¬idledx ∧
blockx.

We illustrate our approach using an example.

Example 4. Recall the FSM from Example 3. The environ-
ment guarantees idlex = idley = blocko = blockz = ⊥.
The idle and block equations are as follows.

idles0 ≡ ¬curs0 ∧ deads0
x/o−−→s1

idles1 ≡ ¬curs1 ∧ deads0
y/z−−→s1 ∧ deads1

x/z−−→s1

dead
s0

x/o−−→s1
≡ idles0 ∨ idlex ∨ blocko

dead
s0

y/z−−→s1
≡ idles0 ∨ idley ∨ blockz

dead
s1

x/z−−→s1
≡ idles1 ∨ idlex ∨ blockz

blockx ≡ deads0
x/o−−→s1 ∧ deads1

x/z−−→s1

blocky ≡ deads0
y/z−−→s1

idleo ≡ deads0
x/o−−→s1

idlez ≡ deads1
x/z−−→s1
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We correctly detect that y is dead. This is witnessed by the
following satisfying assignment for these equations, that also
satisfies blocky = >, and thus ¬idley ∧ blocky .

curs0 := ⊥ curs1 := >
idles0 := > idles1 := ⊥

deads0
x/o−−→s1 := > deads0

y/z−−→s1 := >
deads1

x/z−−→s1 := ⊥
blockx := ⊥ blocky := >
idleo := > idlez := ⊥

V. EXPERIMENTS

We have implemented the idle and block equations de-
scribed in Section IV. Given an xMAS model as input, our tool
automatically generates a SAT problem that incorporates the
idle and block equations [2]. The SAT problem is solved using
Z3 [9] to verify liveness. Our tool can also generate an SMV
model that encodes the xMAS network and its behaviour. This
model uses idle and block equations as invariants. Reachability
of a state in which a channel of the given xMAS model is
checked using the NUXMV model-checker [5].

A. Experimental setup

We evaluate our implementation using two sets of models:
one inspired by “go/no go” testing, the other inspired by power
domains architectures. All models also have a version in which
deadlocks have been introduced. A detailed description of the
models can be found in [1].

Go/no go models are balanced binary trees of go/no go
blocks. Each block has two binary inputs and one binary
output, and consists of a pair of interconnected FSMs. The
output of the block is ok if the data consumed from both
input channels are ok , and it is nok otherwise.

Models of n levels of go/no go blocks (each block consists
of two FSMs) are constructed by composing 2n − 1 go/no go
blocks as a balanced binary tree. The output channels of two
adjacent blocks on one level are used as input channels of a
block on the next level in the tree.

Go/no go models with deadlocks are obtained by modifying
one FSM in a go/no go block whose inputs are not connected
to another block as follows. We add a new state with a self-
loop reading ok from the first input channel i. We add a
transition that reads nok from i from the initial state of the
FSM to this new state. The new state is reachable, channel i
is blocked for nok , and all output channels are idle.

Power domains are used to improve power efficiency of
systems on chip. A power control architecture turns power
domains on and off depending on the needs of an application.
We model a dynamic power management policy that is an
abstraction of industrial practice.

Our models consist of a number of power domains, each
of which has a domain power controller. If the model has
multiple power domains it also has a top power controller.
Every power domain contains a number of device-controller
pairs. In Figure 4a, we depict a device controller, which turns

on its device (depicted in Figure 4b) if the device indicates
activity (generated by the FSM depicted in Figure 4c). If a
device shows no activity, its device controller requests to turn
off the device, and the device can non-deterministically accept
the request or decline it. A domain power controller powers
on the domain when one of the devices in the domain shows
activity. It powers off the domain when all device controllers
in the power domain indicate their devices are turned off. The
top power controller powers on if one of the domain power
controllers indicates it needs power. It powers off if all domain
power controllers indicate that all devices are turned off.

To obtain power domain models with a deadlock, one of the
device controller FSMs is changed such that in its off state it
expects to read act(0 ), and in its on state, it expects to read
act(1 ), which leads to synchronisation issues and deadlocks.

All experiments were executed on a MacBook Pro 2015,
2,7GHz Intel Core i5, 16Gb RAM, running MacOS Catalina
10.15.4. For SAT solving, we use the Z3 solver, version 4.8.0
64-bit [9]. For reachability checks, we use NUXMV, version
2.0.0 64-bit [5]. Instructions to reproduce the experiments and
the script used to obtain our results are available at [1].

B. Results

Model #FSMs Live SAT Reachability
Res. Time (s) Res. Time (s)

gonogo 1 2 3 3 0.1 3 0.2
gonogo 1 dl 2 7 7 0.1 7 0.3
gonogo 2 6 3 3 0.1 3 0.5
gonogo 2 dl 6 7 7 0.1 7 2.4
gonogo 3 14 3 3 0.3 3 1.5
gonogo 3 dl 14 7 7 0.3 7 5.9
gonogo 4 30 3 3 0.6 3 5.5
gonogo 4 dl 30 7 7 0.6 7 18.0
gonogo 5 62 3 3 2.0 3 21.2
gonogo 5 dl 62 7 7 1.9 7 54.9
gonogo 6 126 3 3 7.9 3 92.7
gonogo 6 dl 126 7 7 6.7 7 221.7
power1 5 25 3 3 0.4 3 1.6
power1 5 dl 25 7 7 0.2 7 2.1
power10 5 259 3 3 14.0 3 120.0
power10 5 dl 259 7 7 10.1 7 104.2
power20 5 519 3 3 57.5 3 564.8
power20 5 dl 519 7 7 50.3 7 451.1
power30 5 779 3 3 352.5 3 1597.4
power30 5 dl 779 7 7 262.9 7 1107.3
power40 5 1039 3 3 410.2 3 n/a
power40 5 dl 1039 7 7 245.6 7 n/a
power50 5 1299 3 3 542.2 3 n/a
power50 5 dl 1299 7 7 481.1 7 n/a

Table I: Experimental results

The times required for the experiments are reported in
Table I. The Model column indicates the model that is
evaluated. For go/no go models, the number in the name
signifies the number of blocks. For power domain models,
the first and second number in the name denote the number of
power domains and device-controller pairs in every domain,
respectively. #FSMs reports the number of FSMs in the model.
In the Live column, 3 indicates that the model is deadlock
free, 7 indicates it is not. For each instance, we list the result
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Figure 5: Number of FSMs vs time for all experiments.

reported by the tool (Res.), where 3 and 7 represent absence
and presence of deadlocks, respectively. Running time for each
instance is reported in seconds.

For both sets of models, SAT and reachability correctly
report absence and existence of deadlocks in all models. The
largest go/no go models contain 126 FSMs. Liveness of the
largest deadlock free go/no go model is proven using SAT in 7
seconds. Reachability analysis takes 1 minute 32 seconds for
the same go/no go model. For the largest go/no go model with
a deadlock, a deadlock is reported using SAT in 6 seconds.
Using reachability it can be proven that a deadlock state is
reachable in 3 minutes 41 seconds. As for the power domain
experimental set, the largest models (both with and without
deadlock) contain 1299 FSMs. For the largest model without
a deadlock, SAT proves liveness in 9 minutes and 2 seconds.
Analysis of the largest power domain model with a deadlock
takes 8 minutes and 1 second using SAT. Reachability analysis
for the power domain models with numbers of power domains

larger than 30 was not possible in our case. This was caused
by NUXMV exceeding the maximum allowed stack on MacOS.

C. Discussion
The results show that using our technique we can prove

liveness of large xMAS models with FSMs. We plot the
performance results on both sets of models in Figure 5. Note
that we use the log-scale for the y-axis. In addition, we use
deciseconds instead of seconds in order to avoid values less
than 1 for the y-axis. The results show that both methods scale
exponentially in the number of FSMs. However, using SAT
for liveness verification significantly outperforms reachability
for xMAS extended with FSMs. This is in line with our
expectations, and aligns with results for standard xMAS [12].

Although we do not encounter false deadlocks in our
experiments, the fact that our method is incomplete implies
that finding false deadlocks using SAT is possible. If SAT
reports a deadlock, it is not known if the deadlock is reachable
or not. In that case, reachability analysis is necessary.
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VI. CONCLUSIONS

We demonstrated that the approach to verify liveness of
xMAS networks with FSMs proposed by Verbeek et al. [19] is
unsound. We proposed new idle and block equations for xMAS
networks containing FSMs, and proved their soundness. Our
experimental evaluation shows that deadlock detection using
satisfiability outperforms reachability analysis using symbolic
model checking in NUXMV. In case deadlocks are found,
the latter can, however, verify their reachability reasonably
efficiently. Although our method is incomplete, this was not
observed during the experiments.

As future work, we plan to investigate ways to make the
method complete. In particular, an alternative encoding to SAT
based on bounded model checking, could make the method
complete provided an appropriate bound can be derived.
Additionally, the FSMs presented in this paper always read
from and write to exactly one channel. This restriction could
be relaxed to read and write multiple channels on a single
transition to enable more compact modeling of some FSMs.
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Abstract—Industrial hardware verification tasks often require
checking a large number of properties within a testbench.
Verification tools often utilize parallelism in their solving or-
chestration to improve scalability, either in portfolio mode where
different solver strategies run concurrently, or in partitioning
mode where disjoint property subsets are verified independently.
While most tools focus solely upon reducing end-to-end wall-
time, reducing overall CPU-time is a comparably-important
goal influencing power consumption, competition for available
machines, and IT costs. Portfolio approaches often degrade into
highly-redundant work across processes, where similar strategies
address properties in nearly-identical order. Partitioning should
take property affinity into account, atomically verifying high-
affinity properties to minimize redundant work of applying
identical strategies on individual properties with nearly-identical
logic cones. In this paper, we improve multi-property parallel
verification with respect to both wall- and CPU-time. We extend
affinity-based partitioning to guarantee complete utilization of
available processes, with provable partition quality. We propose
methods to minimize redundant computation, and dynamically
optimize work distribution. We deploy our techniques in a
sequential redundancy removal framework, using localization to
solve non-inductive properties. Our techniques offer a median
2.4× speedup yielding 18.1% more property solves, as demon-
strated by extensive experiments.

I. INTRODUCTION

Practical hardware and software verification often mandates
checking a large number of properties on a given design. For
example, functional verification involves checking a suite of
low-level assertions and higher-level encompassing properties.
Equivalence checking compares pairwise equality of each out-
put across two designs, yielding a distinct property per output.
Redundancy removal requires proving many gate-equalities
throughout a design, each comprising a distinct property.
Redundancy removal is the core procedure of equivalence
checking, and is widely-used to boost verification scalability.

Each property has a distinct minimal cone of influence
(COI), or fan-in logic of the signals referenced in the prop-
erty. Verification of a group of properties requires resources
proportional to the collective COI size, which is often ex-
ponential (after lighter logic reductions). Each property adds
distinct logic to the group’s collective COI; affinity refers
to the degree of common vs. distinct logic in the COI.
Atomic verification1 of a group of low-affinity properties is

1Atomic verification refers to running a set of single-process verification
engines (called a strategy) on a group of properties. Serial verification refers
to beginning one atomic task after another finishes, using a single process.
Concurrent or parallel verification refers to dispatching multiple atomic tasks
on concurrently-running parallel processes.

Fig. 1. Parallel verification: property partitioning vs. strategy exploration.

thus often significantly slower than solving them one-at-a-
time. Conversely, atomic verification of a high-affinity group
saves considerable verification resource, as the effort expended
for one property can benefit the others without significantly
slowing them down [1, 2]. Parallel verification resource can be
optimized to leverage these facts using affinity-based property
partitioning [3], where each parallel process, or worker, runs
the same strategy on a different property group.

An alternate way to accelerate verification is by using
a parallel portfolio (strategy exploration), where the same
property group is concurrently verified using a different
strategy per worker, as depicted in Fig. 1. However, port-
folio approaches often degrade into highly-redundant work
across processes, where similar algorithms address properties
in nearly-identical order. Existing tools often independently
use these modes in different contexts, particularly strategy
exploration first running qualitatively-different strategies in
available workers (e.g., BMC, IC3, interpolation) then padding
differently-configured identical strategies in the remaining
processes (e.g., IC3 with different heuristics). The latter yields
increasingly-redundant CPU-time for diminishing gains in
wall-time. These modes need not be mutually-exclusive: a
strategy could partition within a worker, and partitioning could
use different strategies for different groups. We explore the
mutual optimization between property partitioning and strategy
exploration, addressing the following challenges:
Property partitioning →
P1 Some workers are not utilized if the number of high-
affinity groups is less than available workers.
P2 Some workers finish their tasks and idle (no more parti-
tions to dispatch) while others degrade wall-time solving large
or difficult groups, or run on slower machines.
Strategy exploration →
P3 Nearly-identical strategies verify the same properties con-
currently yielding redundant computation; two or more work-
ers would solve the same property at nearly the same time.
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P4 A worker gets stuck on the first difficult property inhibiting
progress; easy properties go unexplored.
P5 When using a round-robin resource-constrained approach
to avoid P4, a worker fails to solve a difficult property in the
allocated time even after several repetitions.

Contributions: We optimize parallel verification using com-
plementary property partitioning and strategy exploration, in
terms of both wall- and CPU-time. (1) We present a scalable
property partitioning algorithm (Sect. III-A), extending [3]
to guarantee complete utilization of available processes with
provable partition quality. (2) We propose parallel schedul-
ing improvements (Sect. III-B), such as resource-constrained
irredundant group iteration, incremental repetition, and group
decomposition to dynamically cope with more-difficult groups
or slower workers. (3) We address irredundant strategy explo-
ration of a localization portfolio in a sequential redundancy
removal framework (Sect. IV), which we have found to be the
most-scalable strategy to prove non-inductive redundancies.
(4) We additionally propose improvements to semantic group
partitioning within localization (Sect. IV-C). To our knowl-
edge, this is the first published approach to mutually-optimize
property partitioning and strategy exploration within a multi-
property localization portfolio.

A. Related Work

Despite the prevalence of parallel verification tools and
multi-property testbenches, little research has addressed mu-
tual optimization of parallel partitioning and strategy explo-
ration. Furthermore, most approaches optimize wall-time alone
without considering CPU-time, treating additional CPUs as
free horsepower to fill with slightly-modified strategies without
attempting to minimize redundant computation.

Methods to group properties based on COI similarity are
either computationally-prohibitive [1, 2, 4], or do not optimally
utilize available parallel processes [3]. They may generate
fewer groups than processes, or lose affinity guarantees when
requiring number of groups as an algorithmic parameter.

Much prior work addresses ways to parallelize specific
algorithms in a single-property context [5]–[7]. Other work
incrementally reuses information between properties to accel-
erate specific algorithms [8]–[11]. These are complementary
to our work, and can be used as strategies therein.

Much complementary research has addressed sequential
redundancy removal, using scalability-boosting strategies in-
cluding induction [12]–[14], simulation [15, 16], and syn-
ergistic transformation and verification algorithms [16, 17].
The benefit of parallelizing inductively-provable redundancies
has been noted in [18, 19], though little work addresses
parallelizing non-inductive redundancies. Localization is a
powerful scalability boost to redundancy removal [14, 16, 20]
and property checking [21]–[24]. Prior work is focused mostly
upon single-property single-process contexts [21]–[24], or
solely upon parallel property partitioning [3]. This work is
complementary to ours: we extend state-of-the-art solutions
for both, to mutually-optimized parallel verification.

II. PRELIMINARIES

The design under verification is represented as a netlist
N , which is a tuple hhV,Ei, F i where hV,Ei is a di-
rected graph with vertices V representing gates, and edges
E � V � V representing interconnections between gates.
Function F : V ! types assigns vertices to gate types: con-
stants, primary inputs, combinational logic such as AND gates,
and sequential logic such as registers. A state is a valuation
to the registers. Certain gates are labeled as properties. The
fan-in (fan-out) of gate u is the set of gates which may be
reached by traversing edges backward (forward) from u. The
fan-in of property p is called the cone of influence (COI) of p.
Registers and inputs in the COI are called support variables.
The number of support variables in the COI is its size. A
strongly connected component (SCC) is a set of interconnected
gates such that there is a non-empty directed path between
every pair of gates in the same SCC. A merge of gate u onto
gate v consists of moving the output edges of u onto v, then
eliminating u from the netlist by treating u as a rename for v.

A. Affinity Analysis

Property grouping algorithms represent support variable
information as a Boolean bitvector per property [25]. Every
support variable in the netlist is indexed to a unique position
in the bitvector, set to “1” if and only if the support variable
is in the COI of the property. The length of such a bitvector
is equal to the total number of support variables in the netlist,
and all bitvectors have the same length. The COI size of the
property is the number of bits set to “1”. These bitvectors may
be compared to determine relative property affinity. Properties
p1, p2 with bitvectors bv1, bv2 respectively have

0 � affinity(p1, p2) = 1� hamming(bv1, bv2)
length(bv1)

� 1.0

where hamming(bv1, bv2) is the Hamming distance between
bv1 and bv2, and length(bv1) is the number of support variables
in the netlist [3]. The distance between p1, p2 equals the
Hamming distance between their bitvectors, i.e., dist(p1, p2) =
hamming(bv1, bv2). A group g is a set of properties, with a
single property g∗ therein representing its center. The quality
Q(g) of a group is the minimum affinity between any property
in g vs. its center g∗:

Q(g) = min(faffinity(p, g∗) j 8p 2 gg)
It is desirable that property partitioning algorithms guarantee
group quality to be greater than a specifiable threshold.

B. High-Affinity Property Grouping

Three-leveled grouping [3] (Fig. 2) utilizes support bitvec-
tors of properties to generate high-affinity groups. The algo-
rithm takes the desired grouping level (l) and affinity threshold
(t). It groups properties based upon: a) Level-1: identical
bitvectors (identical support variables); b) Level-2: common
large SCCs (containing t% netlist support variables) in the
COI; and c) Level-3: small Hamming distance between support
bitvectors, scalably identified by equivalence-classing mapped
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structural grouping (Properties P , Netlist N , Level l, Affinity t)
1: Groups G = P # each property in singleton group
2: if l � 1 : grouping level 1 (G, N ) # identical COI

3: if l � 2 : grouping level 2 (G, N , t) # large SCCs in COI

4: if l � 3 : grouping level 3 (G, N , t) # Hamming distance

5: return G # return high-affinity groups

Fig. 2. Algorithm to group properties based on structural affinity [3].

bitvectors using threshold-aware mapping functions. Higher
levels yield progressively fewer but larger groups.

Straightforward grouping approaches such as pairwise com-
parison are computationally prohibitive [25], requiring at
least quadratic resource with respect to number of proper-
ties. Despite being conceptually a quadratic-resource algo-
rithm, bitvector equivalence-classing [3] consumes near-linear
runtime and memory in practice, enabling scalable online
partitioning with provable quality bounds [3]. Bitvectors are
computed during a linear sweep of the netlist, and have size
proportional to the number of SCCs plus non-SCC support
variables. SCC computation has linear runtime [26]. With
efficient implementation, this entire process consumes a few
seconds on netlists with millions of support variables and
properties: e.g. computing bitvectors in topological netlist
order, and garbage-collecting bitvectors as soon as all fanout
references have been processed [25].

A priori knowledge of solvers may dictate the ideal grouping
level. For example, BDD-based reachability is highly sensitive
to COI size, and thus may prefer level=1. BMC may prefer
level=3 with lower affinity. Localization may prefer level=1,
=2, or =3 depending on subsequent solvers. In many contexts,
the caller can set level=3 and allow Fig. 2 to determine
group count and size, especially when using the techniques
of Sect. III-B and Sect. IV-C to decompose difficult groups.

Theorem 1 ([3]). Level-1 grouping generates property groups
G such that 8g 2 G : Q(g) = 1.0.

Theorem 2 ([3]). Given affinity t, level-2 grouping generates
property groups G such that 8g 2 G : Q(g) � t.

Theorem 3 ([3]). Given affinity t, level-3 grouping generates
property groups G such that 8g 2 G : Q(g) � 3 � t� 2.

Note that desired number of property groups is not an al-
gorithmic parameter; affinity analysis determines the optimal
number of groups respecting configurable quality bounds. For
more details on leveled grouping, we refer the reader to [3].

III. GROUPING FOR PARALLEL VERIFICATION

Many organizations have large clusters of computers for
load-balancing of tasks such as verification. The maximum
number of available workers for a given task (n) is often
known, e.g. the maximum number of organizational job sub-
missions allowed per user, minus how many that user wishes
to reserve for other tasks. Existing scalable grouping algo-
rithms [3] may generate fewer high-affinity groups than n (P1).
While partitioning a high-affinity group may yield redundant

structural grouping parallel (Properties P , Netlist N , Level l,
Affinity t, Workers n)

1: Level lc = 0 # current grouping level
2: Groups G = singletons(P ) # initialize to singleton groups
3: if jGj � n : return G # fewer properties than workers

4: if l � 1 : grouping level 1 (G, N ), lc = 1 # identical COI

5: if l � 2 and jGj � n : # else fewer groups than workers
6: grouping level 2 (G, N , t), lc = 2 # large SCCs in COI

7: if l � 3 and jGj � n : # else fewer groups than workers
8: grouping level 3 (G, N , t), lc = 3 # Hamming distance

9: if jGj < n : # fewer groups than available workers
10: rebalance (G, N , lc, t, n) # distribute groups, see Fig. 4

11: assert ( jGj � n) # guaranteed to hold
12: return G # return high-affinity groups

Fig. 3. Property grouping guaranteed to generate at least min(n, jP j) high-
affinity groups for n parallel workers.

rebalance (Groups G, Netlist N , Level lc, Affinity t, Workers n)
1: if lc == 1 : # divide large level-1 groups in half
2: halve groups (G, n) # see Fig. 5
3: else # rollback minimal-quality level-2 & level-3 groups
4: rollback groups (G, N , lc, t, n) # see Fig. 6

Fig. 4. Algorithm to subdivide high-affinity groups for n workers.

CPU-time (similar effort expended on nearly-identical COIs),
it may benefit wall-time due to disparate difficulty of properties
therein: e.g. one may be inductive, and another require deep
sequential analysis. Traditional clustering algorithms can be
configured to produce � n groups, though are computationally
prohibitive for online use and may not yield affinity guarantees
if n does not align with the given netlist.

A. Property Grouping Algorithm

Fig. 3 shows our extension to leveled grouping [3] (Fig. 2),
guaranteeing generation of at least min(n, jP j) provable-
affinity groups. Each property is returned as a singleton if there
are fewer than n properties. Otherwise, grouping is performed
in three levels that iteratively generate fewer, larger groups.
Later levels are skipped if the number of generated groups
becomes less than n at any level. The algorithm then rebal-
ances as needed by fine-grained affinity analysis: subdividing
large or lower-affinity groups to generate at least min(n, jP j)
property groups. As discussed in Sect. III-B, this procedure is
beneficial even after initial partitioning to subdivide a difficult
group into provably high-affinity subgroups.

The rebalancing algorithm is shown in Fig. 4. It subdivides
groups based on the grouping level lc that generated fewer
groups than n. For level-1, quality is already 100% so division
is based on number of properties in the group (Fig. 5). Groups
with the most properties are halved until at least min(n, jP j)
groups are generated. Finer-grained analysis may be integrated
if desired, e.g. considering affinity of combinational gates in
the combinational fan-in of these properties. Group rollback
for higher levels is more intricate (Fig. 6), with the goal of
improving group quality. A group with minimal quality is
conservatively subdivided until at least min(n, jP j) groups are
generated. A minimal-quality group is split to yield smaller,
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halve groups (Groups G, Workers n)
1: while jGj < n :
2: Group g = pick largest non-singleton group from G
3: G = (G n g) [ halve group (g) # see below

halve group (Group g)
1: return ffirst half of g, second half of gg # split in half

Fig. 5. Algorithm for subdividing large level-1 groups in half.

rollback groups (Groups G, Netlist N , Level lc, Affinity t, Workers n)
1: while jGj < n :
2: Group g = pick minimal-quality non-singleton group from G
3: G = (G n g) [ rollback group (g, N , lc, t) # see below

rollback group(Group g, Netlist N , Level lc, Affinity t)
1: Groups G = singletons(g) # split g to singletons
2: grouping level 1 (G, N ) # level-1
3: if jGj == 1 : G = halve group (g 2 G) return G # jGj== 2
4: else if jGj == 2 : return G # g had two 100% quality subgroups

5: rollback group level (G, N , t, 2) # level-2
6: if jGj == 2 : return G
7: if lc == 3 : rollback group level (G, N , t, 3) # level-3

8: return G # jGj== 2

rollback group level (Groups G, Netlist N , Affinity t, Level l)
1: Groups Gc = G # local copy of G
2: Group g0, g1 = ; # temporary groups, initially empty
3: if l == 2 : grouping level 2 (Gc, N , t) # level-2
4: else : grouping level 3 (Gc, N , t) # level-3

5: if jGcj == 1 : # Gc is one group containing all properties in G
6: g0 = g 2 G containing center property g∗c
7: # extract most-distant property into distinct subgroup
8: g1 = g 2 G s.t. dist(g∗0 , g∗) == max(fdist(g∗0 , g∗i ) j 8gi 2 Gg)
9: for each group g 2 G : # merge groups to minimize distance

10: if dist(g∗0 , g∗) � dist(g∗1 , g∗) : add properties in g to g0
11: else : add properties in g to g1

12: G = fg0, g1g # note Q(g0), Q(g1) � Q(gc), see Thm. 4
13: else : G = Gc # jGj � 2

Fig. 6. Algorithm for subdividing minimal-quality groups.

higher-quality subgroups. This process has negligible runtime,
reuses precomputed support bitvectors and requires only a few
milliseconds on the largest netlists.

The rebalancing procedure generates groups with quality
bounds per Theorems 1, 2 and 3. Note that arbitrarily subdi-
viding level-2,-3 groups without careful affinity consideration
might violate affinity thresholds, because the quality of group
g is measured with respect to its center property g∗. Assume
that we generate subgroups g0 and g1 from g. If g∗ is in g0, we
trivially have Q(g∗0) � Q(g∗) for any properties subgrouped
with g∗. However, no such claim can be made about g1; its
properties might have been nearer to g∗ than to each other.
It is thus desirable to subdivide the most-distant property g∗1
from g∗ to improve vs. risk degrading the resulting quality
of both subgroups. Moreover, simply rolling back a higher
level group to lower-level subgroups risks generating more
groups than necessary, e.g., one level-2 group rolled back
to ten level-1 groups. The algorithm in Fig. 3 generates a
minimal number jGj of high-affinity groups with provable
affinity bounds, where jGj � min(n, jP j).
Theorem 4. Given a group g, the rollback group procedure

subdivides g into two disjoint subgroups g0 and g1 such that
Q(g0) � Q(g) and Q(g1) � Q(g).

Proof. (Sketch) The algorithm returns two 100% affinity
groups when properties in g generate at most two level-1
subgroups. Otherwise, the greatest-Hamming-distance prop-
erty g∗1 2 g from g’s center property g∗ is identified. Subgroup
g0 inherits g∗ as its center, and g1 inherits g∗1 as its center.
Remaining properties in g are added to g0 vs. g1 to minimize
distance from g∗0 vs. g∗1 , ensuring provable quality bounds.

Corollary 4.1. Given affinity t and level l, grouping for
parallelism (Fig. 3) generates groups G such that 8g 2 G:
a) Q(g) = 1.0 if l = 1, b) Q(g) � t if l = 2, and
c) Q(g) � 3 � t� 2 if l = 3.

Proof. The proof follows per Theorems 1, 2 and 3 when no
rebalancing occurs. Otherwise, rebalancing divides group g in
to smaller groups based on: (i) l = 1, level-1 subgroups are
generated and Q(g) = 1.0 per Theorem 1; (ii) l = 2, levels-1
or 2 subgroups are generated and Q(g) � t per Theorems 2
and 4; and (iii) l = 3, levels-1, 2 or 3 subgroups are generated
and Q(g) � 3 � t� 2 per Theorems 3 and 4.

Theorem 5. Given groups G over a set of properties P , and
workers n with jGj < n and jP j � n, rebalancing generates
property groups G′ such that

∣∣G′∣∣ = n.

Proof. Both halve group and rollback group subdivide a non-
singleton group g into exactly two subgroups, and iterate until∣∣G′∣∣ � n. Therefore, the number of groups increases by exactly
one in every iteration, unless all groups become singleton
which cannot happen until

∣∣G′∣∣ = jP j � n.

Corollary 5.1. Given a set of properties P and n workers,
grouping for parallelism (Fig. 3) generates groups G from P
such that jGj � min(n, jP j).
Proof. The proof trivially holds when �n groups or jP j � n
singletons are generated without rebalancing. Otherwise, the
proof holds per Theorem 5 when rebalancing occurs.

B. Group Distribution Heuristics

We propose three heuristics to optimally utilize parallel
workers, used on-the-fly by a manager that dispatches property
groups and dynamically adjusts based upon worker feedback.
When partitioning is supported by an engine within a strategy
(e.g. a localization engine [3]), there might be multiple man-
agers partitioning an identical or overlapping set of properties.
It is sometimes beneficial to use a hierarchy of managers:
the root might use lower-affinity partitioning onto parallel
strategies, with higher-affinity partitioning within a strategy.

Iteration order (I): Fig. 3 orders groups deterministically,
and thus distributed managers within a strategy will likely
verify common properties in the same order. This results
in redundant CPU-time, where two or more strategies may
solve the same property at nearly the same time (P3). The
root manager could instead dispatch disjoint properties to
different workers, though there are motivations for building
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get next group (Groups G, Netlist N , Level lc, Affinity t)
1: Group g = pick unsolved or inactive group from G
2: if g == null : return null # all group are solved or active

3: if unsolved(g) and inactive(g) : return g # dispatch group

4: if unsolved(g) : # decompose (new groups are unsolved and inactive)
5: if lc == 1 : G = (G \g)∪halve group(g) # see Fig. 5
6: else G = (G \g)∪ rollback group(g, N, lc , t) # see Fig. 6

7: else remove g from G # group is already solved

8: goto 1 # pick next group to dispatch

Fig. 7. Manager routine to dispatch unsolved groups using decomposition.

intelligence into distributed managers working on the entire
property set, such as enabling incrementality and data sharing
across properties [8]–[11]. To minimize redundant work, the
manager may be augmented with options to iterate common
groups in different orders: 1) smallest to largest COI (forward);
2) largest to smallest COI (backward); and 3) random to
heuristically minimize concurrent solving of the same group
while more groups than workers remain unsolved. If all
properties are of comparable difficulty, running two identical
strategies with opposite group ordering effectively halves wall-
time with almost no redundant CPU-time. This approach can
yield superlinear irredundant speedup when different strategies
are tailored for easier vs more-difficult properties: a lighter
strategy can iterate forward heuristically addressing easier
properties first (the heavier strategy would be slower for these),
while the heavier strategy can iterate backward addressing
more-difficult properties first (the lighter strategy might be
unable to solve these).

Controlled repetition (R): Each worker solves groups one-at-
a-time. Encountering a difficult group inhibits overall progress
(P4). Easier groups might follow, which when solved might
speed-up incremental verification of the previous difficult
group. Furthermore, solving easy properties sooner benefits
other workers, allowing them to focus on fewer difficult
groups. It is thus beneficial to impose time-limits per group
within certain fast strategies. The manager must be capable of
pruning already-solved properties (possibly solved by different
workers), and repeating groups up to a configurable maximum
allowed repetitions (to reduce redundant CPU-time). It may
be beneficial to increase resource limits between repetitions,
possibly after n repetitions with no progress. Engine incre-
mentality is fairly important when imposing time-limits and
repetition, to minimize redundant CPU-time.

Decomposition (D): Some groups are more difficult than
others, either because they are large (e.g., many properties), or
because individual properties therein are more difficult (e.g.,
having a very-deep counterexample). Some workers might be
slower than others, possibly due to varying machine load. A
common wall-time degradation occurs when fewer difficult
groups than workers remain, and previously-active workers
become idle (P2). This heuristic decomposes unsolved groups
and dispatches them to idle workers, to accelerate conver-
gence despite imposing some redundant CPU-time. Rather
than redundantly dispatching an entire unsolved group, this

Fig. 8. Sequential equivalence checking uses redundancy removal to eliminate
gate-equivalences between two logic designs. Each speculated gate-equality
requires verifying a property called a miter (depicted as green box =?).

heuristic utilizes the algorithms of Fig. 5 and Fig. 6 to sub-
divide unsolved groups to smaller and higher-affinity groups,
eventually becoming singletons. Smaller groups are easier for
idle workers to redundantly solve (P5), benefiting but not
preempting active workers (which might be on the verge
of solves). The corresponding manager with decomposition
is shown in Fig. 7. A group is inactive when no worker
is currently verifying it. Solved properties and groups are
discarded; groups with unsolved properties are subdivided and
redundantly dispatched. Singleton groups are not redundantly
dispatched, being inactive after the first dispatch.

IV. LOCALIZATION FOR REDUNDANCY REMOVAL

Industrial hardware designs are often rife with redundancy,
e.g. to boost the performance of semiconductor devices,
and to implement features such as error resilience, security,
initialization logic and post-silicon observability. Verification
testbenches yield additional netlist redundancies, due to input
constraints restricting the set of stimulus applied to the design,
and due to redundancies arising between the design and
synthesized properties. Equivalence checking can be viewed
as verifying a composite netlist comprising two designs as per
Fig. 8. Sequential redundancy removal [12]–[14, 16]–[18, 27]
(Fig. 9) is the process of proving that equivalence-classes of
gates evaluate to equal or opposite values in all reachable
states; each speculated redundancy entails solving a property
called a miter. When a miter is proven, the corresponding
redundant gates can be merged. This COI reduction is highly
beneficial to verification scalability, and is the core procedure
of sequential equivalence checking (SEC).

Various heuristics control the scope of equivalence-class
candidates affecting runtime vs. reduction (Fig. 9 Step 1): e.g.
whether to consider only registers vs. all gate types; whether to
prune classes to reflect corresponded signal names or require
per-class candidates spanning both designs in an equivalence-
checking context (Fig. 8) [14, 20]. A speculatively-reduced
netlist (Steps 2-3) accelerates verification of the miters. Tech-
niques such as BMC and guided simulation are typically used
to falsify miters; then induction proves the easier miters; and
finally multi-engine strategies prove the difficult miters or find
difficult counterexamples (Steps 4,5). Failed proofs (falsified
miters or inconclusive results) cause a refinement of the equiv-
alence classes to separate unproven miters’ gates, then another
expensive proof iteration is performed. Our goal is to minimize
inconclusive proofs to achieve maximum netlist reduction with
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redundancy removal (Netlist N )
1: Guess the redundancy candidates - sets of equivalence classes of gates

in N , where gate u in class Q(u) is suspected equivalent to every other
gate v in the same equivalence class.

2: Select a representative gate R(Q(u)) from each class Q(u).
3: Construct the speculatively-reduced netlist by replacing source gate u

of every edge (u, v) 2 E by R(Q(u)). Additionally, for each gate v,
add a miter property asserted when v 6� R(q(v)).

4: Attempt to prove that each miter is unassertable.
5: If a miter cannot be proven unassertable, refine the equivalence classes

to separate the corresponding gates, and goto Step 2.
6: For all unassertable miters, merge the corresponding gates onto the

representative to eliminate redundancy.

Fig. 9. Generic sequential redundancy removal framework [16].

minimal wall- and CPU-time, using a parallel localization
portfolio. Note that even if a testbench has only a single prop-
erty, redundancy removal will often create thousands of miters.
The large number of miters often tremendously benefit from
parallel processing, as noted for combinational redundancy
removal [19] and induction [18]. These miters are distributed
throughout the netlist, making affinity partitioning particularly
beneficial. Since practical netlists comprise a diversity of logic,
different miters benefit from different strategies.

The proof or counterexample of a property often only de-
pends on a small subset of logic in its COI. Localization [21]–
[24] is a powerful abstraction method to reduce COI size
by replacing irrelevant gates by cutpoints or unconstrained
primary inputs. Since cutpoints can simulate the behavior
of the original gates and more, the abstracted netlist over-
approximates the behavior of the original netlist: abstract
proofs imply original proofs, but abstract counterexamples
might be spurious. Abstraction refinement eliminates cut-
points deemed responsible for spurious counterexamples, re-
introducing previously-eliminated logic. It is desirable that
the abstract netlist be as small as possible to enable scalable
verification, while being immune to spurious counterexamples.

Localization is often essential to solve non-inductive miters,
leveraging speculative reduction to abstract nearly all logic
except for differently-implemented yet functionally-equivalent
logic between speculated equivalences [14, 16]. Without lo-
calization, the COI of a miter may be very large despite spec-
ulative reduction. This large COI size may choke even fairly-
scalable provers such as IC3. While the benefits of localization
for sequential redundancy removal are well-known [17], prior
work considered only single-process miter verification, aside
from use of a standard parallel model-checking portfolio to
solve miters [20]. Ours is the first to optimize a parallel
localization portfolio in this (or any multi-property) context,
using property partitioning and irredundant scheduling proce-
dures (Figs. 3 and 7), along with the following complementary
strategies tailored for easier vs. difficult properties. Note that
substrategies in either may be employed by the other.

A. Fast-and-Lossy Localization

Fast-and-Lossy localization (Fig. 10) attempts to quickly
discharge easier property groups, using timeouts to skip diffi-

fast lossy localization (Group g, unsigned n, Timeout T )
1: Netlist L = load incremental abstraction(g) # initially empty
2: unsigned k = load incremental bmc depth(g) # initially 0
3: while elapsed time() � T and unsolved(g) :
4: localize bmc (g, L, k, unchanged) # see below

# check if netlist unchanged for last n bmc steps
5: if unchanged < n : k = k + 1, goto 4 # increment depth

6: run proof strategy(L, g, T - elapsed time())
7: save incremental data (G, k, L) # timeout: save incremental data

localize bmc (Group g, Netlist L, unsigned k, unsigned unchanged)
1: bool stop = 0 # some properties fail at depth k
2: while not stop : # loop until all properties pass at depth k
3: Gates c = fg, stop = 1 # cutpoints to refine, initially empty
4: for each Property p 2 g :
5: Result r = run bmc(L, p, k) # run bmc with depth k
6: if r == unsat : continue # property passes

7: if cex not spurious : report solved(p, cex), continue
8: stop = 0 # property fails
9: Gates d = cutpoints to refine(), c = c [ d

10: if not stop : refine abstraction(L, c), unchanged = 0
11: else unchanged + = 1 # no change in abstraction

Fig. 10. Fast-and-Lossy localization with incremental repetition of high-
affinity property groups.

cult groups. If the group is not solved within the allotted time,
verification data (e.g., the current abstract netlist and achieved
BMC depth) is saved for incremental reuse to accelerate later
repetition. Skipped groups can be repeated as-is, or rebalanced
(Fig. 7) after several repetitions of no progress. Note that
repeating a group as-is may likely proceed further upon repe-
tition, by incrementally skipping earlier processing and since
a different worker might have solved some properties therein.
Fast-and-Lossy localization uses counterexample-based refine-
ment sometimes with quick proof-based abstraction (PBA),
possibly yielding larger abstract netlists that are more-difficult
to prove but with less time expended in BMC itself [23] for
faster performance on easier groups. When ready to prove (i.e.,
no refinements occur for n consecutive BMC steps), abstracted
groups are passed to a sequence of lighter reduction engines
then IC3 [5, 28]) under a modest time-limit (e.g. � 300s)
which can be increased across repetitions (R).

B. Aggressive Localization

Aggressive localization (Fig. 11) is aimed at solving difficult
properties, where Fast-and-Lossy may fail due to larger-than-
necessary abstractions, insufficient reductions prior to IC3, or
small group time-limits. Aggressive never repeats groups, so
either imposes no time limit whatsoever, or a large time-limit
as shown applied to semantically-partitioned (Sec. IV-C) sub-
groups but iterated and increased until the group is solved.
Aggressive typically uses a hybrid of counterexample-based
refinement and PBA run after every unsatisfiable BMC result,
to yield smaller abstractions than the former alone to accelerate
subsequent proofs at the expense of more runtime spent in
BMC itself [23]. When ready to prove (i.e., no refinements
occur for n consecutive BMC steps), abstracted groups are
passed to a sequence of heavy reduction engines (including
nested induction-only sequential redundancy removal across
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,
aggressive localization (Group g, unsigned n, bool pba, bool semantic,

Affinity t, Timeout T , Multiplier m)
1: Netlist L = initial abstraction(g) # initially empty
2: unsigned k = 0 # bmc depth
3: localize bmc (g, L, k, unchanged) # see Fig. 10
4: if semantic : collect support info (...) # see Sect. IV-C

5: if pba : minimize L using proof-based abstraction
# check if netlist unchanged for last n bmc steps

6: if unchanged < n : k = k + 1, goto 3 # increment depth

7: Groups �G = semantic ? structural grouping (g, L, 3, t) : G
# Sort via (I) mode (Sect. III-B): forward, backward, or random

8: Sort �G by abstract COI size
9: for each unsolved group �g ∈ �G :

10: while elapsed time() ≤T and unsolved( �g) :
11: run proof strategy(L, �g, T - elapsed time())
12: if unsolved groups remain : T = T × m, goto 9

Fig. 11. Aggressive localization with semantic partitioning, counterexample-
and proof-based abstraction.

all gates, which might be too expensive to converge on large
netlists before localization) followed by IC3 [5, 28]).

C. Semantic Partitioning

Semantic partitioning [3] refers to re-partitioning a group
whose unabstracted COI was high-affinity, yielding sub-
groups of high affinity with respect to abstract COI as
correlates to subsequent verification complexity. Abstract COI
information is mined onto support bitvectors on a per-property
basis as cutpoints are refined (Fig. 11 Step 4), considering
minimized counterexamples for individual properties despite
incrementally using the same BMC instance for the entire
group. The group is partitioned into smaller, high-localized-
affinity subgroups (Step 7) before attempting to prove.

Improvements to semantic partitioning vs. [3]: Per-property
abstract-COI bloat may arise during counterexample analy-
sis, because the group must be mutually refined to be free
of spurious counterexamples. Eager partitioning (as soon as
any diverged abstract COI occurs) could circumvent this
ambiguous bloat, though often severely hurts performance
since intermediate abstract-COI differences often reconverge.
In practice, lazy partitioning deferred until modest BMC time
limits are exceeded is far superior (particularly since BMC
often benefits from level=3 lower affinity), retaining high-
affinity atomic verification benefits. Abstract-COI ambiguities
can be largely corrected during proof analysis, by analyzing a
distinct proof per property. Incremental data should be saved
when semantically re-partitioning, to minimize restart penalty.

Difficult sub-groups are susceptible to delaying easier later
sub-groups. Subgroups should be ordered as per (I) mode
(Sect. III-B): forward, backward, and random, configured
differently in parallel strategies for better portfolio perfor-
mance with less redundant CPU-time. Subgroups are verified
in the chosen order using controlled repetition (R) and large
Aggressive time-limits (Steps 9–11). We recommend T ≥ 1h
multiplying 2× at each iteration (Step 12) and overriding to
unlimited when a single sub-group remains.
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Fig. 12. Number of properties per benchmark set.

V. EXPERIMENTAL RESULTS

We evaluate our techniques within the post-induction
proof strategy of a sequential redundancy removal framework
(Fig. 9). To eliminate noise such as different counterexamples
yielding different equivalence-classes (Step 5), we snapshot
the speculatively-reduced netlist after ten minutes of induction,
before the final iteration of a six-hour eight-process semi-
formal bug-hunting [29] and localization portfolio to elim-
inate most incorrect and easier [27] miters. The following
experiments2 are run on these snapshotted netlists (pruning
those with fewer miters than processes), yielding three bench-
mark sets. Set B1 (Fig. 12a) are the most-difficult 291 of
1822 proprietary SEC benchmarks, where initial equivalence
classes comprise original properties and name corresponded
register pairs. Set B2 (Fig. 12b) has 269 netlists derived from
the former, including a large equivalence class for registers
without name correlation. Set B3 has 72 netlists from the
SINGLE property HWMCC 2017 benchmarks, comprising a
large initial equivalence class of all registers. Our techniques
are implemented within RuleBase: Sixthsense Edition [30].

A. Localization Portfolio

We select our localization portfolio (Table I) from extensive
evaluation of 36 single-process localization configurations and
30 subsequent proof strategies, exploring options such as
enabling vs. disabling PBA [23]; different levels of prop-
erty grouping vs. no grouping [3]; enabling vs. disabling
semantic partitioning (Sect. IV-C); and different policies for
group iteration (I), repetition (R), and decomposition (D)
(Sect. III-B). The best-performing collection is chosen, maxi-
mizing complementary unique solves. Aggressive localization
(Sect. IV-B) primarily uses both counterexample- and proof-
based abstraction, yielding smallest abstract netlists solved
with a single-process heavy strategy of combinational rewrit-
ing; input elimination [31]–[33] which is especially pow-
erful after localization due to inserted cutpoints; min-area
retiming [34]; a nested induction-only gate-based sequential
redundancy removal; then IC3. Fast-and-Lossy localization
(Sect. IV-A) uses counterexample-based refinement mainly
with no or lighter PBA for faster BMC, yielding larger
abstract netlists solved using light combinational rewriting,
input elimination, then IC3. The former is fastest for difficult
properties; the latter for easier properties.

We compare four 6-process localization portfolios derived
from Table I. The localization configuration and subsequent
solving strategy of each process is identical across portfolios,

2Detailed results available at http://temporallogic.org/research/FMCAD20
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TABLE I
SIX-PROCESS COMPLEMENTARY LOCALIZATION PORTFOLIO.

# Localization
Strategy

Grouping
Level Semantic Iteration

(I)
Repetition

(R)
Decomposition

(D)
S1 Fast-and-Lossy Level-1 � Forward � �
S2 Fast-and-Lossy Level-1 � Reverse � �
S3 Fast-and-Lossy Level-3 � Forward � �
S4 Aggressive Level-1 � Forward � -
S5 Aggressive Level-1 � Reverse � -
S6 Aggressive Level-3 � Forward � -

except for adherence to the illustrated scheduling differences
as discussed below. For greater portfolio value, each pro-
cess includes localization configuration differences beyond
the illustrated scheduling distinction in Table I. S1 only
performs counterexample-based refinement; S2 and S3 also
perform PBA. S2 vs. S3 perform hybrid counterexample-
based refinement with light PBA (modest time limit) after
every unsatisfiable BMC step vs. only before the subsequent
solving strategy, respectively. Abstract-netlist gates remaining
after PBA are considered committed and cannot be eliminated
in later PBA steps [21] in S2, but not S3. S3 utilizes a
minimal unsatisfiable core to further reduce the abstract netlist.
S4-S6 are identical to S1-S3, respectively, without imposed
time-limits and modulo the above-mentioned post-localization
solving strategy differences. To highlight our individual con-
tributions, we compare four variants of this portfolio:
1) base: No property grouping or incremental repetition of
properties; all processes iterate properties in forward order.
This represents a standard state-of-the-art localization portfolio
approach without property grouping, e.g., before [3].
2) base+g extends base with affinity property grouping,
including semantic partitioning in one Fast-and-Lossy and one
Aggressive strategy. This represents a state-of-the-art localiza-
tion portfolio with property grouping, e.g., as per [3] though
with our semantic refinement improvements of Sect. IV-C.
3) best-d extends base+g with incremental repetition (R)
and irredundant iteration order (I), to reduce CPU-time.
4) best extends best-d with decomposition (D).

Processes S1-S6 are generic online localization strategies.
Multi-property localization without affinity-partitioning gener-
ally yields poor/noncompetitive performance [3], eroding most
of its scalability benefit, especially for difficult miters. (Recall
that these benchmarks pre-filter easier miters, using induction
and semi-formal bug-hunting.) Therefore, base and base+g
are highly-competitive 6-process localization portfolios, for
online “first-run-of-a-testbench.” Industrial verification tools
may use more processes for large testbenches, and may post-
process data from prior/ongoing runs to accelerate future
results. This level of sophisticated benchmark-specific orches-
tration is valuable, though does not readily benefit “first-run-
of-a-testbench” and introduces noise in experiments hence are
not used herein. We optimize runtime of a generic 6-process
localization portfolio without per-benchmark customization.

B. Experiment Setup

Our experiments run on a computing grid with identical x86
Linux nodes. Each benchmark run uses a 6-process portfolio
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(Table I); each process S1-S6 runs on a single identical CPU
core on the same host-machine. Each process eagerly cancels
solved properties across all processes in that portfolio, to
reduce redundant computation.

While most prior research and competitions focus solely
upon optimizing wall-time, our techniques additionally benefit
CPU-time. Traditionally, Fast-and-Lossy (unlike Aggressive)
processes terminate early, leaving unsolved difficult properties.
In these experiments, base and base+g augment Fast-and-
Lossy processes to naively repeat identically-configured S1-S3
with identical resource limits per group (whereas best-d and
best add incremental-repetition (R) with resource-doubling
across repetitions), until all properties are solved or global
timeout. This naive repetition is wasteful in practice, yielding
highly-redundant CPU-time for marginal benefit. However,
disabling naive repetition in these experiments yielded 3.2%
fewer solves in base and base+g vs. best-d and best,
which arguably unfairly penalized them as state-of-the-art
solutions before our contributions. Therefore, S1-S6 in each
portfolio continue working until all processes terminate, hence
CPU-time is approximately 6× wall-time in these experiments.

C. Proprietary Benchmarks

Fig. 13 shows the number of properties solved vs. wall-
time for B1 and B2. best is the clear winner, solving 18.1%
(15.3%) more properties in 17.2% (22.9%) less time for
B1 (B2, respectively) compared to base. Affinity-grouping
significantly improves performance of base+g over base.
Level-3 grouping with our semantic partitioning improvements
(Sect. IV-C) benefits Aggressive, atomically solving proper-
ties in fewer, larger high-abstract-affinity groups compared
to level-1,-2. Incremental repetition and irredundant iteration
allows best-d to solve 8.1% more properties than base+g,
less-severely hindered by difficult groups. best yields addi-
tional solves through decomposition of difficult groups after
five incremental repetitions of no progress, solving all prop-
erties in 4 vs. 6 benchmarks in B1 vs. B2 that time out with

23



S1 S2 S3 S4 S5 S6
Processes

0

20

40
#

Pr
op

er
tie

s
(×

10
3 )

best
base
base+g

Fig. 15. #Properties solved on B2 per process of Table I.

TABLE II
UTILITY OF AGGRESSIVE STRATEGY PROCESSES IN A PORTFOLIO.

Portfolio Set B1 Set B2
#Solved Time (h) #Solved Time (h)

3× Fast-and-Lossy, 3× Aggressive 46,844 236 93,806 165
6× Fast-and-Lossy (modified best) 41,702 275 91,639 184
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Fig. 16. #Properties solved vs. wall-time for big: (a) by all portfolios; (b)
per process of Table I within best and best-d.

other portfolios. Fig. 14 details per-B1-benchmark runtimes of
best, yielding a median speedup of 2.4× , 2.0× and 1.5× vs.
base, base+g, and best-d, respectively.

Fig. 15 shows the distribution of properties solved per
process (Table I) within these portfolios. The percentage
solved by each Fast-and-Lossy (and Aggressive) process is
nearly uniform in best, showing near-optimal irredundant
work distribution. In contrast, without (I) and (R), base
and base+g have highly-uneven distributions due largely to
parallel processes addressing the same groups concurrently.
While the number of solved (easier) miters is considerably
larger with Fast-and-Lossy, we emphasize how critical the
Aggressive solution of difficult miters is to the overall re-
dundancy removal process. If any are left unsolved, Fig. 9
Step 5 will forgo attempting to merge the corresponding gates,
thereby weakening netlist reductions, risking unsolved SEC,
and hurting runtime by requiring yet another expensive proof
iteration with refined equivalence classes [14] – where fan-
out miters often become more-difficult than those unsolved
in prior iterations. Table II shows the number of properties
solved by best, and a modified best portfolio with all Fast-
and-Lossy strategy processes where S4-S6 are identical to S1-
S3 respectively, but without imposed time-limits and iterating
groups in opposite order. Without Aggressive processes in
the portfolio, modified best solves 10.9% (2.31%) fewer
properties in 16.5% (11.51%) more time for B1 (B2).

To further highlight the value of decomposition (D),
Fig. 16b illustrates an additional big benchmark containing
77728 properties partitioned into 9958 level-1 and level-2,
and 2991 level-3 high-affinity groups. Fig. 16a shows the

number of properties solved by each portfolio vs. time. best
is 3.0× faster than base. Fig. 16b shows the number of
properties solved by two Fast-and-Lossy processes of best
and best-d; decomposition enables S2 and S3 in best to
collectively solve 25.2% more properties than best-d.

D. HWMCC Benchmarks
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Fig. 17. #Solved vs. wall-time for B3.

Fig. 17 shows the number
of properties solved by each
portfolio for set B3. best
is again the winner, solving
3054 more properties in less
time than base. Incremen-
tal repetition and irredun-
dant iteration is particularly
beneficial in this set: several benchmarks have counterexam-
ples that are discovered in earlier group repetitions, enabling
Aggressive and later Fast-and-Lossy repetitions to direct re-
source upon more-difficult provable miters.

VI. CONCLUSIONS AND FUTURE WORK

We focus upon boosting the scalability of multi-property
parallel verification, with application to sequential redun-
dancy removal using a localization portfolio. Our contribu-
tions optimize both wall-time and CPU-time, orchestrating via
complementary strategy exploration and property partitioning.
(1) We extend scalable affinity-based property partitioning
to guarantee complete utilization of available processes with
provable partition affinities. (2) We propose improvements
to the scheduling of parallel processes, such as resource-
constrained irredundant iteration, incremental repetition, and
decomposition of difficult groups. (3) We deliver a carefully-
optimized localization portfolio, self-tailoring to irredundantly
address a range of property difficulties through a synergistic
balance of Fast-and-Lossy vs. Aggressive configurations. (4)
We propose improvements to semantic group partitioning
within localization, boosting scalability by enabling the BMC
within localization to benefit from larger and slightly-lower
affinity groups, then optimally sub-dividing those groups be-
fore solving the localized properties. To our knowledge, this
is the first published approach to optimize both property
partitioning and strategy exploration within a multi-property
localization portfolio. Experiments confirm that this solution
works well across large suites of benchmarks.

Note that our mutually-optimized partitioning vs. strategy-
exploration orchestration offers broad insights early in an
ongoing verification-tool run, whereas traditional orchestration
typically explores only easier (smaller-COI) properties or only
a subset of strategies early in the run. Exploring how this
insight may enable dynamic benchmark-specific customized
orchestration during an ongoing run is a promising future
direction, e.g. dynamically adjusting which strategy is used
per process and partition. Exploring these techniques across a
broader set of engines, and exploring incrementality of strate-
gies across localization and equivalence-class refinements, are
additional promising research directions.
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Abstract—Symbolic quick error detection (SQED) is a formal
pre-silicon verification technique targeted at processor designs.
It leverages bounded model checking (BMC) to check a de-
sign for counterexamples to a self-consistency property: given
the instruction set architecture (ISA) of the design, executing
an instruction sequence twice on the same inputs must al-
ways produce the same outputs. Self-consistency is a universal,
implementation-independent property. Consequently, in contrast
to traditional verification approaches that use implementation-
specific assertions (often generated manually), SQED does not
require a full formal design specification or manually-written
properties. Case studies have shown that SQED is effective
for commercial designs and that SQED substantially improves
design productivity. However, until now there has been no formal
characterization of its bug-finding capabilities. We aim to close
this gap by laying a formal foundation for SQED. We use a
transition-system processor model and define the notion of a bug
using an abstract specification relation. We prove the soundness
of SQED, i.e., that any bug reported by SQED is in fact a real bug
in the processor. Importantly, this result holds regardless of what
the actual specification relation is. We next describe conditions
under which SQED is complete, that is, what kinds of bugs it is
guaranteed to find. We show that for a large class of bugs, SQED
can always find a trace exhibiting the bug. Ultimately, we prove
full completeness of a variant of SQED that uses specialized state
reset instructions. Our results enable a rigorous understanding
of SQED and its bug-finding capabilities and give insights on
how to optimize implementations of SQED in practice.

I. INTRODUCTION

Pre-silicon verification of HW designs given as models in a
HW description language (e.g., Verilog) is a critical step in HW
design. Due to the steadily increasing complexity of designs, it
is crucial to detect logic design bugs before fabrication to avoid
more difficult and costly debugging in post-silicon validation.

Formal techniques such as bounded model checking
(BMC) [1] have an advantage over traditional pre-silicon
verification techniques such as simulation in that they are
exhaustive up to the BMC bound. Hence, formal techniques
provide valuable guarantees about the correctness of a design
under verification (DUV) with respect to the checked properties.
However, in traditional assertion-based formal verification tech-
niques, these properties are implementation-specific and must
be written manually based on expert knowledge about the DUV.
Moreover, it is a well-known, long-standing challenge that sets
of manually-written, implementation-specific properties might
be insufficient to detect all bugs present in a DUV [2]–[6].

This work was supported by the Defense Advanced Research Projects
Agency, grant FA8650-18-2-7854.

Symbolic quick error detection (SQED) [7]–[10] is a formal
pre-silicon verification technique targeted at processor designs.
In sharp contrast to traditional formal approaches, SQED does
not require manually-written properties or a formal specification
of the DUV. Instead, it checks whether a self-consistency [11]
property holds in the DUV. The self-consistency property em-
ployed by SQED is universal and implementation-independent.
Each instruction in the instruction set architecture (ISA) of the
DUV is interpreted as a function in a mathematical sense. The
self-consistency check then amounts to checking whether the
outputs produced by executing a particular instruction sequence
match if the sequence is executed twice, assuming the inputs
to the two sequences also match.

SQED leverages BMC to exhaustively explore all possible
instruction sequences up to a certain length starting from a
set of initial states. Several case studies have demonstrated
that SQED is highly effective at producing short bug traces
by finding counterexamples to self-consistency in a variety of
processor designs, including industrial designs [9]. Moreover,
SQED substantially increases verification productivity.

However, until now there has been no rigorous theoretical un-
derstanding of (A) whether counterexamples to self-consistency
found by SQED always correspond to actual bugs in the DUV—
the soundness of SQED—and (B) whether for each bug in the
DUV there exists a counterexample to self-consistency that
SQED can find—the completeness of SQED. This paper makes
significant progress towards closing this gap.

We model a processor as a transition system. This model
abstracts away implementation-level details, yet is sufficiently
precise to formalize the workings of SQED. To prove soundness
and (conditional) completeness of SQED, we need to establish
a correspondence between counterexamples to self-consistency
and bugs in a DUV. In our formal model we achieve this
correspondence by first defining the correctness of instruction
executions by means of a general, abstract specification. A
bug is then a violation of this specification. The abstract
specification expresses the following general and natural
property we expect to hold for actual DUVs: an instruction
writes a correct output value into a destination location and
does not modify any other locations.

As our main results, we prove soundness and conditional
completeness of SQED. For soundness, we prove that if SQED
reports a counterexample to the universal self-consistency prop-
erty, then the processor has a bug. This result shows that SQED
does not produce spurious counterexamples. Importantly, this
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result holds regardless of the actual specification, confirming
that SQED does not depend on such implementation-specific
details. For completeness, we prove that if the processor has a
bug then, under modest assumptions, there exists a counterex-
ample to self-consistency that can be found by SQED. We also
show that SQED can be made fully (unconditionally) complete
with additional HW support in the form of specialized state
reset instructions. Our results enable a rigorous understanding
of SQED and its bug-finding capabilities in actual DUVs and
provide insight on how to optimize implementations of SQED.

In the following, we first present an overview of SQED
from a theoretical perspective (Section II). Then we define
our transition system model of processors (Section III) and
formalize the correctness of instruction executions in terms of
an abstract specification relation (Section IV). After establishing
a correspondence between the abstract specification and the
self-consistency property employed by SQED (Section V),
we prove soundness and (conditional) completeness of SQED
(Section VI). We conclude with a discussion of related work
and future research directions (Sections VII and VIII).

II. OVERVIEW OF SQED

We first informally introduce the basic concepts and termi-
nology related to SQED. Fig. 1a shows an overview of the
high-level workflow. Given a processor design P , i.e., the DUV,
SQED is based on symbolic execution of instruction sequences
using BMC. We assume that an instruction i = (op, l, (l0, l00))
consists of an opcode op, an output location l, and a pair
(l0, l00) of input locations.1 Locations are an abstraction used
to represent registers and memory locations.

The self-consistency check is based on executing two in-
structions that should always produce the same result. The two
instructions are called an original and a duplicate instruction,
respectively. The duplicate instruction has the same opcode as
the original one, i.e., it implements the same functionality, but it
operates on different input and output locations. The locations
on which the duplicate instruction operates are determined
by an arbitrary but fixed bijective function LD : LO ! LD

between two subsets LO, the original locations, and LD, the
duplicate locations, that form a partition of the set L of all
locations in P . An original instruction can only use locations
in LO. An instruction duplication function Dup then maps
any original instruction iO to its duplicate iD by copying the
opcode and then applying LD to its locations.

Example 1. Let L = f0, . . . , 31g be the identifiers of 32
registers of a processor P , and consider the partition
LO = f0, 1, . . . , 15g and LD = f16, 17, . . . , 31g. Let iO =
(ADD, l12, (l4, l8)) be an original register-type ADD instruction
operating on registers 4, 8, and 12. Using LD(k) = k + 16,
we obtain Dup(iO) = iD = (ADD, l28, (l20, l24)).

Consider a different partition L0O = f0, 2, 4, . . . , 30g and
L0D = f1, 3, 5, . . . , 31g and function L0D(k) = k + 1. For this
function, Dup(iO) = (ADD, l13, (l5, l9)).

1This model is used for simplicity, but it could easily be extended to allow
instructions with additional inputs or outputs.

Self-consistency checking is implemented using QED tests.
A QED test is an instruction sequence i = iO :: iD consisting
of a sequence iO of n original instructions followed by a corre-
sponding sequence iD = Dup(iO) of n duplicate instructions
(where operator “::” denotes concatenation). A QED test i is
symbolically executed from a QED-consistent state, that is, a
state where the value stored in each original location l is the
same as the value stored in its corresponding duplicate location
LD(l). The resulting final state after executing i should then
also be QED-consistent. Fig. 1a illustrates the workflow. A
QED test i succeeds if the final state that results from executing
i is QED-consistent; otherwise it fails. Starting the execution
in a QED-consistent state guarantees that original and duplicate
instructions receive the same input values. Thus, if the final
state is not QED-consistent, then this indicates that some pair
of original and duplicate instructions behaved differently.

Example 2. Consider Fig. 1b and the QED test i = iO :: iD
consisting of one original instruction iO and its duplicate
Dup(iO) = iD for some function LD . Suppose that i is exe-
cuted in a QED-consistent state s0 (denoted by QEDcons(s0)
and s0(LO) = s0(LD)) and both iO and iD execute correctly.
Instruction iO produces state s1, where the values at duplicate
locations remain unchanged, i.e., s0(LD) = s1(LD), because
iO operates on original locations only. When instruction iD is
executed in state s1, it modifies only duplicate locations. The
final state s2 is QED-consistent (denoted by QEDcons(s2)
and s2(LO) = s2(LD)), and thus QED test i succeeds.

Example 3 (Bug Detection). Consider processor P and LO

and LD from Example 1. Let iO,1 = (ADD, l12, (l4, l15))
and iO,2 = (MUL, l15, (l12, l12)) be original register-type
addition and multiplication instructions. Using LD(k) = k+16,
we obtain Dup(iO,1) = iD,1 = (ADD, l28, (l20, l31)) and
Dup(iO,2) = iD,2 = (MUL, l31, (l28, l28)). Assume that P
has a bug that is triggered when two MUL instructions are
executed in subsequent clock cycles, resulting in the corruption
of the output location of the second MUL instruction.2 Note
that executing the QED test i = iO,1, iO,2 :: iD,1, iD,2 in
a QED-consistent initial state produces a QED-consistent
final state: the bug is not triggered by i because iD,1

is executed between iO,2 and iD,2. A slightly longer test
i = iO,2, iO,1, iO,2 :: iD,2, iD,1, iD,2 does trigger the bug,
however, because the subsequence iO,2, iD,2 of two back-to-
back MULs causes the first duplicate instruction iD,2 in i to
produce an incorrect result at l31. This incorrect result then
propagates through the next two instructions, resulting in a
QED-inconsistent final state since the values at l15 and l31,
i.e., the output locations of iO,2 and iD,2, differ.

QED-consistency is the universal, implementation-indepen-
dent property that is checked in SQED. In practice, the property
must refer to some basic information about the design such
as, e.g., symbolic register names, but this can be generated
automatically from a high-level ISA description [10]. BMC

2This scenario corresponds to a real bug in an out-of-order RISC-V design
detected by SQED: https://github.com/ridecore/ridecore/issues/4.
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(a) (b)

Fig. 1. SQED workflow from a theoretical perspective (a) and illustration of executing the QED test i = iO :: iD in Example 2 (b).

is used to symbolically and exhaustively generate all possible
QED tests up to a certain length 2n (the BMC bound). BMC
ensures that SQED will find the shortest possible failing QED
test first. The high-level workflow shown in Fig. 1a allows
for flexibility in choosing the partition and mapping between
original and duplicate locations. We rely on this flexibility for
the results in this paper (Theorems 1 and 2). Current SQED
implementations use a predefined partition and mapping, based
on which BMC enumerates all possible QED tests. Extending
implementations to have the BMC tool also choose a partition
and mapping could be explored in future work.

We refer to related work [7], [9], [12] for case studies
that demonstrate the effectiveness of BMC-based SQED on
a variety of processor designs. The scalability of SQED in
practice is determined by the scalability of the BMC tool being
used. Thus, approaches for improving scalability of BMC can
also be applied to SQED, e.g. abstraction, decomposition, and
partial instantiation techniques [7].

III. INSTRUCTION AND PROCESSOR MODEL

We model a processor as a transition system containing an
abstract set of locations. The set of locations includes registers
and memory locations. A state of a processor consists of an
architectural and a non-architectural part. In a state transition
that results from executing an instruction, the architectural part
of a state is modified explicitly by updating the value at the
output location of the executed instruction. The architectural
part of a state is also called the software-visible state of the
processor. It comprises those parts of the state that can be
updated by executing instructions of the user-level ISA of
the processor, such as memory locations and general-purpose
registers. The non-architectural part of a state comprises the
remaining parts that are updated only implicitly by executing
an instruction, such as pipeline or status registers.

Instructions are functions that take inputs from locations and
write an output to a location. We assume that every instruction
produces its result in one transition. In our model, we abstract
away implementation details of complex processor designs

(e.g., pipelined, out-of-order, multi-processor systems). This is
for ease of presentation and reasoning. However, many of these
complexities can be viewed as refinements of our abstraction,
meaning that our formal results still hold on complex models
(i.e., our results can be lowered to more detailed models such
as those described in [7], [8]). Working out the details of such
refinements is one important avenue for future work.

Definition 1 (Transition System). A processor is a transition
system [13], [14] P = (V , L, Sa , sa , I , Op , I , T ), where
• V is a set of abstract data values,
• L is a set of memory locations (from which we define the

set Sa of architectural states as the set of total functions
from locations to values, i.e. Sa = { sa | sa : L → V} ),

• Sa is a set of non-architectural states (from which we
further define the set of all states as S = Sa × Sa ),

• sa , I ∈Sa is a unique initial non-architectural state (from
which we define the set of initial states as SI = Sa ×
{ sa , I } ,

• Op is a set of operation codes (opcodes),
• I = Op × L × L2 is the set of instructions, and
• T : S × I → S is the transition function, which is total.

A state s ∈S with s = (sa , sa) consists of an architectural
part sa ∈ Sa and a non-architectural part sa ∈ Sa . In the
architectural part sa : L → V , L represents all possible
registers and memory locations, i.e., in practical terms, L
is the address space of P . An initial state sI ∈ SI with
sI = (sa , sa , I) is defined by a unique non-architectural part
sa , I ∈ Sa and an arbitrary architectural part sa ∈ Sa . We
assume that sa , I ∈Sa is unique to make the exposition simpler.
Our model could easily be extended to a set of initial non-
architectural states. The number | L| of memory locations is
arbitrary but fixed. We write v = s(l) to denote the value
v = sa(l) at location l ∈ L in state s = (sa , sa). We also
write (v, v′) = s(l, l′) as shorthand for v = s(l) and v′= s(l′).

To formally define instruction duplication, we need to reason
about original and duplicate memory locations. To this end,
we partition the set L of memory locations into two sets
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of equal size, the original and duplicate locations LO and
LD, respectively, i.e., LO \ LD = ;, LO [ LD = L, and
jLOj = jLDj. Given LO and LD, we define an arbitrary but
fixed bijective function LD : LO ! LD that maps an original
location lO 2 LO to its corresponding duplicate location lD =
LD(lO). The inverse of LD is denoted by LD

�1 and is uniquely
defined. We write (lD, l0D) = LD(lO, l

0
O) as shorthand for

lD = LD(lO) and l0D = LD(l0O). Function LD implements a
correspondence between original and duplicate locations, which
we need to define QED-consistency (Definition 11 below).

An instruction i 2 I with i = (op, l, (l0, l00)) is defined by
an opcode op 2 Op, an output location l 2 L, and a pair of
input locations (l0, l00) 2 L2. Function op : I ! Op maps an
instruction to its opcode op(i). Functions Lout : I ! L and
Lin : I ! L2 map an instruction i to its output and input
locations Lout(i) = l and Lin(i) = (l0, l00), respectively. Given
a state s = (sa , sa), instruction i reads values in s from its
input locations Lin(i) and writes a value to its output location
Lout(i), resulting in a transition to a new state s0 = (s0a , s

0
a),

written as s0 = T (s, i). The transition function T is total, i.e.,
for every instruction i and state s, there exists a successor state
s0 = T (s, i). As mentioned above, we have kept the model
simple in order to make the presentation more accessible, but
our results can be lifted to many extensions, including, e.g.,
more complicated kinds of instructions or instructions with
enabledness conditions cf. [15].

We write i 2 In and s 2 Sn to denote sequences i =
hi1, . . . , ini and s = hs1, . . . , sni of n instructions and n
states, respectively. We will use :: for sequence concatenation
and extend the transition function T to sequences as follows.

Definition 2 (Path). Given sequences i = hi1, . . . , ini and
s = hs1, . . . , sni of n instructions and states, s is a path from
state s0 2 S to sn via i, written s = T (s0, i), iff

∧n�1
k=0 sk+1 =

T (sk, ik+1).

If s = T (s0, i), then for convenience we also write sn =
T (s0, i) to denote the final state sn.

Definition 3 (Reachable State). A state s is reachable, written
reach(s), iff s = T (s0, i) for some s0 2 SI and instruction
sequence i.

The set I of instructions contains as proper subsets the sets
of original and duplicate instructions, IO and ID, respectively.
Original (duplicate) instructions operate only on original (dupli-
cate) locations, i.e., 8iO 2 IO. Lin(iO) 2 L2

O^Lout(iO) 2 LO

and 8iD 2 ID. Lin(iD) 2 L2
D ^ Lout(iD) 2 LD. Given these

definitions, we formalize instruction duplication as follows.

Definition 4 (Instruction Duplication). Let Dup : IO ! ID
be an instruction duplication function that maps an original
instruction iO = (op, lO, (l

0
O, l
00
O)) to a duplicate instruction

iD = Dup(iO) = (op,LD(lO),LD(l0O, l
00
O)) with respect to

the bijective function LD .

An original instruction and its duplicate have the same opcode.
We write iO 2 InO and iD 2 InD to denote sequences iO =
hiO,1, . . . , iO,ni and iD = hiD,1, . . . , iD,ni of n original and

duplicate instructions, respectively. We lift Dup in the natural
way also to sequences of instructions as follows.

Definition 5 (Instruction Sequence Duplication). Let iO =
hiO,1, . . . , iO,ni be a sequence of original instructions. Then
Dup(iO) = hDup(iO,1), . . . ,Dup(iO,n)i.

IV. FORMALIZING CORRECTNESS

We formalize the correctness of instruction executions in a
processor P using an abstract specification relation. We then
link this abstract specification to QED-consistency, the self-
consistency property employed by SQED (Section V below).

For our formalization, we assume that every opcode op 2 Op
has a specification function Specop : V2 ! V that specifies
how the opcode computes an output value from input values.
Using this family of functions, we define an overall abstract
specification relation Spec � S�I�S, which expresses when
an instruction i 2 I can transition to a state s0 2 S from a
state s 2 S while respecting the opcode specification.

Definition 6 (Abstract Specification). 8 s, s0 2 S, i 2 I.

Spec(s, i, s0)$ 8l 2 L.
(l 6= Lout(i)! s(l) = s0(l)) ^ (1)
(l = Lout(i)! s0(l) = Specop(i)(s(Lin(i))))

Equation (1) states general and natural properties that we
expect to hold for a processor P . If an instruction i executes
according to its specification, then the values at locations that
are not output locations of i are unchanged. Additionally, the
value produced at the output location of the instruction must
agree with the value specified by function Specop(i). Note
that the specification relation Spec specifies only how the
architectural part of a state is updated by a transition (not the
non-architectural part). Consequently, there might exist multiple
states whose non-architectural parts satisfy the right-hand side
of (1). This is why Spec is a relation rather than a function.
As special cases of (1), original and duplicate instructions have
the following properties:

8s, s0 2 S, iO 2 IO, lO 2 LO, iD 2 ID, lD 2 LD.

(Spec(s, iO, s
0)! s(lD) = s0(lD)) ^ (2)

(Spec(s, iD, s0)! s(lO) = s0(lO)) (3)

Equations (2) and (3) express that the execution of an original
(duplicate) instruction does not change the values at duplicate
(original) locations if the instruction executes according to its
specification. The following functional congruence property of
instructions also follows from (1):

8 s0, s1, s0, s00 2 S, i, i0 2 I.[
op(i) = op(i0) ^ Spec(s0, i, s

0) ^ Spec(s1, i
0, s00) ^ (4)

s0(Lin(i)) = s1(Lin(i
0))
]
! s0(Lout(i)) = s00(Lout(i

0))

By functional congruence, if two instructions with the same
opcode are executed on inputs with the same values, then the
output values are the same. We next define the correctness of
a processor P based on the abstract specification Spec.
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Definition 7 (Correctness). A processor P is correct with
respect to specification Spec iff 8 i 2 I, s 2 S. reach(s) !
Spec(s, i, T (s, i)).

Correctness requires every instruction to execute according to
the abstract specification Spec in every reachable state of P .

A bug in P is a counterexample to correctness, i.e., an
instruction that fails in at least one (not necessarily initial)
reachable state and may or may not fail in other states.

Definition 8 (Bug). A bug with respect to specification Spec
in a processor P is defined by a pair B = hib, Sbi consisting
of an instruction ib 2 I and a non-empty set Sb � S of states
such that Sb = fs 2 S j reach(s) ^ :Spec(s, ib, T (s, ib))g.

The above definitions rely on the notion of an abstract
specification relation. Having some abstract specification is a
theoretical construct that is necessary to formally characterize
instruction failure and establish formal proofs about SQED.
However, it is important to note that to apply SQED in practice,
we do not need to know what the abstract specification relation
is.

A bug hib, Sbi is precisely characterized by the set Sb of all
reachable states in which ib fails. The following proposition
follows from Definitions 7 and 8.

Proposition 1. A processor P has a bug with respect to
specification Spec iff it is not correct with respect to Spec.

As special cases of processor correctness and bugs, re-
spectively, we define correctness and bugs with respect to
instructions that are executed in an initial state only.

Definition 9 (Single-Instruction Correctness). Processor P is
single-instruction correct iff:

8 i 2 I, s0 2 SI . Spec(s0, i, T (s0, i)).

Single-instruction correctness implies that all instructions, i.e.,
all opcodes and all combinations of input and output locations,
execute correctly in all initial states. A single-instruction bug
is a counterexample to single-instruction correctness.

Definition 10 (Single-Instruction Bug). Processor P has a
single-instruction bug with respect to specification Spec iff
9 i 2 I, s0 2 SI . :Spec(s0, i, T (s0, i)).

Several approaches exist for single-instruction checking of a
processor, which is complementary to SQED (cf. Section VII).

V. SELF-CONSISTENCY AS QED-CONSISTENCY

We now define QED-consistency (cf. Section II) as a property
of states of a processor P based on function LD . Then we
formally define the notion of QED test and show that for
correct processors, QED tests preserve QED-consistency. This
result is key to the proof of the soundness in Section VI below.

Definition 11 (QED-Consistency). A state s is QED-consistent,
written QEDcons(s), iff 8lO 2 LO. s(lO) = s(LD(lO)).

QED-consistency is based on checking the architectural part
of a state. An equivalent condition can be formulated in terms
of duplicate locations: 8lD 2 LD. s(lD) = s(LD

�1(lD)).

Definition 12 (QED test). An instruction sequence i is a QED
test if i = iO :: Dup(iO) for some sequence iO of original
instructions.

We link the abstract specification Spec to the semantics
of original and duplicate instructions. This way, we obtain
a notion of functional congruence that readily follows as a
special case from (4).

Corollary 1 (Functional Congruence: Duplicate Instructions).
Given iO 2 IO and iD 2 ID with iD = Dup(iO), the following
holds for all states s0, s1, s0, and s00:[

Spec(s0, iO, s
0) ^ Spec(s1, iD, s00) ^

s0(Lin(iO)) = s1(LD(Lin(iO)))
]
!

s0(Lout(iO)) = s00(LD(Lout(iO)))

Corollary 1 states that an original instruction iO produces the
same value at its output location as its duplicate instruction
iD = Dup(iO), provided that these instructions execute in
states where the values at the respective input locations match.

We generalize Corollary 1 to show that after executing
a pair of original and duplicate instructions, the values at
all original locations match the values at the corresponding
duplicate locations, assuming those values also matched before
executing the instructions.

Lemma 1 (cf. Corollary 1). Given iO 2 IO and iD 2 ID with
iD = Dup(iO), the following holds for all states s0, s1, s0,
and s00:[
Spec(s0, iO, s

0) ^ Spec(s1,iD, s00) ^
8lO 2 LO. s0(lO) = s1(LD(lO))

]
!

8lO 2 LO. s
0(lO) = s00(LD(lO))

Proof. See online appendix [16].

Lemma 1 leads to an important result that we need to prove
soundness of SQED (Lemma 3 below): executing a QED test i
starting in a QED-consistent state results in a QED-consistent
final state if all instructions in i execute according to the
abstract specification Spec (cf. Fig. 1b).

Lemma 2 (QED-Consistency and QED tests). Let i =
hi1, . . . , i2ni be a QED test, let hs0, . . . , s2ni be a sequence
of 2n+ 1 states, and let Spec be some abstract specification
relation. Then,

QEDcons(s0) ^
( 2n�1∧

j:=0

Spec(sj , ij+1, sj+1)
)
!

QEDcons(s2n)

Proof. Assuming the antecedent, let lO 2 LO be arbitrary but
fixed with lD = LD(lO). By repeated application of (2), we
derive s0(lD) = s1(lD) = . . . = sn(lD), and hence:

s0(lD) = sn(lD) (5)

by transitivity. By repeated application of (3), we derive:

sn(lO) = s2n(lO) (6)
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Now, QEDcons(s0) implies s0(lO) = s0(LD(lO)), from
which it follows by (5) that s0(lO) = sn(LD(lO)). By
repeated application of Lemma 1, we can next derive
sj(lO) = sn+j(LD(lO)) for 1 � j � n, and in particular,
sn(lO) = s2n(LD(lO)). Finally, by applying (6), we get
s2n(lO) = s2n(LD(lO)). Since lO was chosen arbitrarily,
QEDcons(s2n) holds.

VI. SOUNDNESS AND CONDITIONAL COMPLETENESS

SQED checks a processor P for self-consistency by execut-
ing QED tests and checking QED-consistency (cf. Fig 1a). We
now define the correctness of P in terms of QED tests that,
when executed, always result in QED-consistent states. This
way, we establish a correspondence between counterexamples
to QED-consistency and bugs in P . We then prove our main
results (Theorem 1) related to the bug-finding capabilities of
SQED, i.e., soundness and conditional completeness.

Definition 13 (Failing and Succeeding QED Tests). Let i be
a QED test, s0 2 SI an initial state such that QEDcons(s0)
holds, and let s = T (s0, i). We say that:
� QED test i fails if :QEDcons(s).
� QED test i succeeds if QEDcons(s).

Definition 14 (Processor QED-Consistency). A processor P
is QED-consistent if all possible QED tests succeed.

Definition 15 (Processor QED-Inconsistency). A processor P
is QED-inconsistent if some QED test fails.

Lemma 3. Let P be a processor. If P is QED-inconsistent,
then P is not correct with respect to any abstract specification
relation.

Proof. Let i be a failing QED test for P and assume that proces-
sor P is correct with respect to some abstract specification rela-
tion Spec. By Lemma 2, we conclude QEDcons(s2n), which
contradicts the assumption that i is a failing QED test.

Importantly, Lemma 3 holds regardless of what the actual
specification relation Spec is, i.e., it is independent of Spec
and the opcode specification function Specop (Definition 6).

Lemma 3 shows that SQED is a sound technique: any error
reported by a failing QED test is in fact a real bug in the system.
It is more challenging to determine the degree to which SQED
is complete, that is, for which bugs do there exist failing QED
tests? We address this question next.

Suppose that B = hib, Sbi is a bug with respect to a specifica-
tion Spec in a processor P , where ib = (opb, l

b
out, (l

b
in1, l

b
in2)).

A bug-specific QED test for B is a QED test that sets up
the conditions for and includes the activation of the bug. By
Definition 8, if ib is executed in P starting from any state
in Sb, the specification is violated. That is, for each sb 2 Sb,
:Spec(sb, ib, T (sb, ib)). Let s = T (sb, ib). According to (1),
there are two ways the specification can be violated. Either:
(A) the value in the output location of ib is different from that
required by Spec, i.e.: s(lbout) 6= Specopb

(sb(l
b
in1), sb(l

b
in2)),

which we call a type-A bug; or (B) the value in some other, non-
output location lbad is not preserved, i.e.: s(lbad) 6= sb(lbad)

for some lbad 6= lbout, which we call a type-B bug. We now
define a bug-specific QED test formally.

Definition 16 (Bug-Specific QED Test). Let B =
hib, Sbi be a bug in P with respect to Spec, where
ib = (opb, l

b
out, (l

b
in1, l

b
in2)). The instruction sequence i =

hi1, . . . , in, in+1, . . . , i2ni is a bug-specific QED test for B if
the following conditions hold:

1) in+1 = ib.
2) i is a QED test for some LD , i.e. for 1 � k � n, in+k =

Dup(ik). In particular, i1 = (opb, lout, (lin1, lin2)), with
(lin1, lin2, lout) = L�1D ((lbin1, l

b
in2, l

b
out)).

3) There exists a path s 2 S2n from s0 2 SI

with QEDcons(s0), such that s = T (s0, i) =
hs1, . . . , sn, sn+1, . . . , s2ni, where sn 2 Sb.

4) Spec(s0, i1, s1).
5) Additionally, we need three more conditions that depend

on the bug types:
Case A: If ib is a type-A bug with respect to sn, i.e.

sn+1(l
b
out) 6= Specopb

(sn(l
b
in1), sn(l

b
in2)), then let

lorig = lout and ldup = lbout.
� We then require:

– sn+1(ldup) = s2n(ldup),
– s1(lorig) = s2n(lorig),
– s0(Lin(ib)) = sn(Lin(ib)).

Case B: If ib is a type-B bug with respect to sn, i.e.
sn(lbad) 6= sn+1(lbad) for some lbad 6= lbout, then let
lorig = L�1D (lbad) with lorig 6= lout and ldup = lbad .

� We then require:
– sn+1(ldup) = s2n(ldup),
– s1(lorig) = s2n(lorig).
– s1(ldup) = sn(ldup),

Clearly, it is always possible to satisfy the first two conditions
by declaring the buggy instruction ib to be the duplicate of i1
with respect to some function LD . Moreover, if we restrict our
attention to single-instruction correct processors, then the fourth
condition always holds as well. This fits in well with the stated
intended role of SQED which is to find sequence-dependent
bugs, rather than single-instruction bugs.

Understanding when the remaining conditions 3 and 5 hold
is more complicated. We must find some instruction sequence
i� = hi2 . . . ini that can transition P from the state s1 following
the execution of i1 to one of the bug-triggering states in Sb,
i.e., sn. Often it is reasonable to assume that P is strongly
connected, i.e., that there always exists an instruction sequence
that can transition from one reachable state to another. This is
almost enough to ensure the existence of i�. However, there
are a few other restrictions on i� to satisfy Definition 16.

First, i� must consist of only original instructions to satisfy
the definition of a QED test. We are free to choose LD to be
anything that works, so the main restriction is that i� cannot
use any instructions referencing locations that are used by ib,
i.e., lbin1, lbin2, or lbout. Note that we defined in+1 = ib to be
the first duplicate instruction. This ends up being the most
severe restriction on i� because it means that instructions in i�
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cannot write to the locations used as inputs by ib. We discuss
some mitigations to this restriction in Section VI-A.

Somewhat surprisingly, the three requirements in condition 5
are not very severe, as we now explain. For both type-A and
type-B bugs, locations lorig and ldup are an original location
and its duplicate, respectively, that will hold inconsistent values
when the QED test i fails. For type-A bugs, lorig holds the
correct output value of i1 and ldup holds the incorrect output
value of ib. For type-B bugs, ldup holds the value of location
lbad that is incorrectly modified when ib is executed in state sn,
and lorig is the original location that corresponds to ldup = lbad .

The first requirement sn+1(ldup) = s2n(ldup) means that
the duplicate sequence Dup(i�) of i� in the QED test has to
preserve the value of ldup in sn+1 also in the final state s2n.
Further, since lorig = L�1D (ldup), this also imposes restrictions
on the modifications that i� can make to lorig . However, as this
is just one original location, it is unlikely that every possible i�

would need to modify it to get to some bug-triggering state sn.
The second requirement is s1(lorig) = s2n(lorig). For similar

reasons, it is unlikely that i� would need to modify lorig , and
the duplicate sequence Dup(i�) of i� should not modify it
either, since it is an original location and original locations
should be left alone by duplicate instructions. Although the
buggy instruction ib might modify lorig if it has more than
one bug effect, we may be able to choose the locations of i1
and LD differently to avoid this.

Finally, the last requirement of condition 5 depends on the
two cases A and B. In both cases, we require that i� does not
modify certain duplicate locations: the input locations Lin(ib)
of ib (A) and location ldup that is incorrectly modified by ib
(B). Sequence i� should not modify any duplicate locations as
it is composed of original instructions. Note that we do not
have to make the strong assumption that i� executes according
to its specification, only that it avoids corrupting a few key
locations. Given that we have a lot of freedom in choosing LD

and hence the locations of i1, these requirements are likely to
be satisfiable if there are some degrees of freedom in choosing
a path to one of the bug-triggering states.

We now prove our conditional completeness property, namely
that if a bug-specific QED test i exists, then i fails.

Lemma 4. Let P be a processor with a bug B = hib, Sbi
with respect to specification Spec, for which there exists a
bug-specific QED test i. Then i fails.

Proof. Let B = hib, Sbi be a bug and i be a bug-
specific QED test for B. By Definition 16 we have
i = hi1, . . . , in, in+1, . . . , i2ni and s = T (s0, i) =
hs0, s1, . . . , sn, sn+1, . . . , s2ni, where sn 2 Sb and ib = in+1,
and QEDcons(s0) holds. We show that :QEDcons(s2n)
holds by showing that s2n(lorig) 6= s2n(ldup). We distinguish
the two cases A and B in Definition 16.
Case A. Since QEDcons(s0) and Dup(i1) = ib, we have

s0(Lin(i1)) = s0(Lin(ib)) (7)

From the third requirement of Case A in Definition 16, we
have s0(Lin(ib)) = sn(Lin(ib)), so it follows that,

s0(Lin(i1)) = sn(Lin(ib)) (8)

By (8) and since op(i1) = op(ib), also

Specop(i1)(s0(Lin(i1))) = Specop(ib)(sn(Lin(ib))) (9)

Since Spec(s0, i1, s1) by Definition 16, we have

s1(Lout(i1)) = Specop(i1)(s0(Lin(i1))) (10)

Since we are in Case A, we have from Definition 16 that
lorig = Lout(i1), and from the second requirement of Case A,
we have s1(lorig) = s2n(lorig), so it follows that,

s2n(lorig) = Specop(i1)(s0(Lin(i1))) (11)

Since ib fails in state sn, we have that,

sn+1(Lout(ib)) 6= Specop(ib)(sn(Lin(ib))) (12)

Again, from Case A in Definition 16, we have ldup =
Lout(ib), and from the first requirement of Case A, we have
sn+1(ldup) = s2n(ldup), so it follows that,

s2n(ldup) 6= Specop(ib)(sn(Lin(ib))) (13)

Finally, (9) and (11) give us,

s2n(lorig) = Specop(ib)(sn(Lin(ib))) (14)

But then (13) and (14) imply s2n(lorig) 6= s2n(ldup), and
hence :QEDcons(s2n).
Case B. See online appendix [16].

Theorem 1.
� SQED is sound (Lemma 3).
� SQED is complete for bugs for which a bug-specific QED

test exists (Lemma 4).

Theorem 1 is relevant for practical applications of SQED.
Referring to the high-level workflow shown in Fig. 1a, BMC
symbolically explores all possible QED tests up to bound n
for a particular fixed mapping LD . If a failing QED test i is
found, then by the soundness of SQED, i corresponds to a
bug in the processor. By completeness, if there exists a bug for
which a bug-specific QED test i exists, then with a sufficiently
large bound n, BMC will find a sequence i that will fail.

A. Extensions

We now consider variants of QED tests that cover a larger
class of bugs (i.e. bugs that cannot be detected by a bug-specific
QED test). Ultimately, with hardware support we obtain a
family of QED tests which, together with single-instruction
correctness, results in a complete variant of SQED (Theorem 2).

The main limitation of bug-specific QED tests arises from the
fact that QED tests consist of a sequence of original instructions
followed by duplicate ones. This makes it impossible to set up
a bug-specific QED test for an important class of forwarding-
logic bugs (a simple refinement of our model can be used for the
important case of pipelined systems). To see why, consider that
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a bug-triggering state sn 2 Sb must be reached by executing a
sequence of original instructions. The buggy instruction, which
is a duplicate, is executed in state sn and would have to read
a value from some original location written previously.

To resolve this limitation, first note that there is another
way that SQED can find bugs, namely by finding QED tests
for which the bug occurs during the original sequence, but
not during the duplicate one. This kind of QED test is much
more effective with a simple extension to allow no-operation
instructions (a trick also employed in [11]). To formalize this,
we first define a set N of no-operation instructions (NOPs).

Definition 17. Let N be the set of instructions such that, for
every state (sa , sa), if inop 2 N , then T ((sa , sa), inop) =
(sa , s

0
a) for some s0a 2 Sa .

An instruction in N may change the non-architectural part of
a state, but not the architectural part.

Definition 18. An extended QED test is any sequence of
instructions obtained from a standard QED test by inserting
zero or more instructions from N anywhere in the sequence.

Extended QED tests enjoy the same properties as standard
QED tests. In particular, an appropriately lifted version of
Lemma 2 holds and the notions of failing and succeeding QED
tests can be lifted to extended QED tests in the obvious way.

Definition 19 (Bug-Hunting Extended QED Test). Let P be
a single-instruction correct processor with at least one bug.
The instruction sequence i is a bug-hunting extended QED
test with a bug-prefix of size k and initial state s0 for P if
the following conditions hold:

1) There is some bug B = hib, Sbi in P such that
T (s0, hi1, . . . , ik�1i) 2 Sb and ik = ib

2) i is an extended QED test
3) ik is an original instruction, and ik+1 = Dup(i1)

Unlike a bug-specific QED test, a bug-hunting extended QED
test is not guaranteed to fail. It starts with a bug-triggering
sequence of length k, and then finishes with a modified
duplicate sequence which may add (or subtract) NOPs from
N . The NOPs can be used to change the timing between
any interdependent instructions, making it more likely that the
duplicate sequence will produce a correct result, especially if
the bug depends on forwarding-logic. One can show (omitted
for lack of space) that for a general class of forwarding-logic
bugs, there does always exist an extended QED test that fails.

Another QED test extension is to allow original and duplicate
instructions to be interleaved [10], rather than requiring that
all original instructions precede all duplicate instructions [8].3

Again, it is straightforward to show that this extension preserves
Lemma 2. Clearly, the set of bugs that can be found by adding

3 The bug in Example 3 can be detected by executing the QED test i =
iO,1, iD,1 :: iO,2, iD,2, which interleaves original and duplicate instructions.
The subsequence iO,2, iD,2 of two back-to-back MULs causes iD,2 to produce
an incorrect result at its output location l31. The final state is QED-inconsistent
since the output location l15 of iO,2 holds the correct value, while l31 holds
an incorrect one.

interleaving are a strict superset of those that can be found
without. In practice, implementations of SQED search for all
possible extended QED tests with interleaving. Empirically,
case studies have not turned up any (non-single-instruction)
bugs that cannot be found with this combination. However,
one can construct pathological systems with bugs that cannot
be found by such QED tests. We address these cases next.

B. Hardware Extensions

With hardware support, stronger guarantees can be achieved
that lead to our final completeness result (Theorem 2). We
first introduce a soft-reset instruction, which transitions the
non-architectural part of a state to the initial non-architectural
state sa,I without changing the architectural part. Then we
define a variant of bug-hunting extended QED tests where
we insert soft-reset instructions in the sequence of duplicate
instructions. This way, all duplicate instructions execute in an
initial state and hence execute according to the specification for
single-instruction correct processors. The resulting QED test
always fails, in contrast to a bug-hunting extended QED test.

Definition 20. ir is a soft-reset instruction for P if for every
state (sa , sa), T ((sa , sa), ir) = (sa , sa,I).

It is easy to see that ir 2 N .

Definition 21 (Bug-Specific Soft-Reset QED Test). Let P be
single-instruction correct with at least one bug B = hib, Sbi.
The instruction sequence i = hi1, . . . ini is a bug-specific
soft-reset QED test for P if the following conditions hold:

1) i is a bug-hunting extended QED test for P with a
minimal bug-prefix of size k � 2 and initial state s0

2) Let s = T (s0, i). Then, 8 l 2 LD. sk�1(l) = sk(l), i.e.,
ib = ik does not corrupt any duplicate location

3) n = 3k
4) For each 1 � j � k, ik+2j�1 = ir

Lemma 5. If P is single-instruction correct and has a bug-
specific soft-reset QED test i, then i fails.

Proof. See online appendix [16].

There are still a few (pathological) ways in which a bug may
be missed by searching for all possible soft-reset QED tests.
First, there may be no triggering sequence starting from any
QED-consistent state. Second, it could be that the triggering
sequence for a bug requires using more than half of all the
locations, making it impossible to divide the locations among
original and duplicate instructions. Finally, it could be that
the bug always corrupts duplicate locations for every possible
candidate sequence. These can all be remedied by adding hard
reset instructions, which reset P to a specific initial state.

Definition 22. The set fiR,sI jsI 2 SIg is a family of hard
reset instructions for P if for every state s, T (s, iR,sI ) = sI .

Definition 23. Let P be a processor. Then i = hi1 . . . i2k+2i
is a bug-specific hard-reset QED test with bug-prefix size k
and initial state sI for P if the following conditions hold:

1) k � 2
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2) hi1 . . . iki reach and trigger a bug B = hib, Sbi in P
starting from sI , where ik = ib

3) ik+1 = iR,sI

4) hik+2 . . . i2ki = hi1 . . . ik�1i
5) i2k+1 = ir
6) i2k+2 = ik

Notice that there is no notion of duplication for a hard-reset
QED test. Instead, the exact same sequence is executed twice
except that there is a hard reset in between and a soft reset
right before the last instruction. Hard-reset QED tests also use
a slightly different notion of success and failure.

Definition 24. Let i be a bug-specific hard-reset QED test
with bug-prefix size k and initial state sI , and let s = T (sI , i).
� i succeeds if sk(l) = s2k+2(l) for every location l 2 L.
� i fails if sk(l) 6= s2k+2(l) for some location l 2 L.

The combination of single-instruction correctness checking and
exhaustive search for hard-reset QED tests is complete.

Theorem 2. If P is single-instruction correct and has no
failing bug-specific hard-reset QED tests, then it is correct.

Proof. See online appendix [16].

VII. RELATED WORK

Assertion-based formal verification techniques using theorem
proving or (bounded) model checking, e.g., [1], [17]–[19],
require implementation-specific, manually-written properties.
In contrast to that, symbolic quick error detection (SQED) [7]–
[10] is based on a universal self-consistency property.

In an early application of self-consistency checking for pro-
cessor verification without a specification [11], given instruction
sequences are transformed by, e.g., inserting NOPs. The original
and the modified instruction sequence are expected to produce
the same result. As a formal foundation, this approach relies on
formulating and explicitly computing an equivalence relation
over states, which is not needed with SQED.

SQED originates from quick error detection (QED), a post-
silicon validation technique [20]–[22]. QED is highly effective
in reducing the length of existing bug traces (i.e., instruction
sequences) in post-silicon debugging of processor cores. To
this end, existing bug traces are systematically transformed into
QED tests by techniques that (among others) include instruction
duplication [23]. SQED exhaustively searches for minimal-
length QED tests using BMC for pre-silicon verification. It is
also applicable to post-silicon validation. SQED was extended
to operate with symbolic initial states [12], [24] to overcome
the potential limitations of BMC when unrolling the transition
relation of a design starting in a concrete initial state.

SQED employs the principle of self-consistency based on a
mathematical interpretation of instructions as functions. That
principle is also applied by accelerator quick error detection (A-
QED) [25], a formal pre-silicon verification technique for HW
accelerator designs. A-QED checks the functions implemented
by an accelerator for functional consistency and, like SQED,
does not require a formal specification.

Unique program execution checking [26] relies on a particular
variant of self-consistency to check security vulnerabilities of
processor designs for covert channel attacks. In the context
of security, self-consistency is also applied to verify secure
information flow by self-composition of programs [27]–[30].

Several approaches, including both formal and simulation-
based approaches, exist for checking single-instruction (SI)
correctness cf. [9], [24], [31]. Checking SI correctness is
complementary to checking self-consistency using SQED and
is also much more tractable. In a formal approach, a property
corresponding to Specop (based on the ISA) is written for each
opcode op 2 Op, and the model checker is used to ensure that
the property holds when starting from any initial state. Because
the approach is restricted to initial states and only a single
instruction execution, it is much simpler to specify and check
than would be a property specifying the full correctness of P .
Efficient specialized approaches exist for checking multiplier
units [32]–[35], which is computationally hard.

VIII. CONCLUSION AND FUTURE WORK

We laid a formal foundation for symbolic quick error
detection (SQED) and presented a theoretical framework to
reason about its bug-finding capabilities. In our framework,
we proved soundness as well as (conditional) completeness,
thereby closing a gap in the theoretical understanding of SQED.
Soundness implies that SQED does not produce spurious
counterexamples, i.e., any counterexample to QED-consistency
reported by SQED corresponds to an actual bug in the design.
For completeness, we characterized a large class of bugs that
can be detected by failing QED tests under modest assumptions
about these bugs. We also identified several QED test extensions
based on executing no-operation and reset instructions. For
these extensions, we proved even stronger completeness guar-
antees, ultimately leading to a variant of SQED that, together
with single-instruction correctness, is complete.

As future work, it would be valuable to extend our framework
to consider variants of SQED that operate with more fully
symbolic initial states [12], [24]. The challenge will be to
identify how this can be done while guaranteeing no spurious
counterexamples. For practical applications, our theoretical
results provide valuable insights. For example, in present
implementations of SQED [9], [10], the flexibility to partition
register/memory locations into sets of original and duplicate
locations and to select the bijective mapping between these
two sets has not yet been explored. Similarly, it is promising
to combine standard QED tests and the specialized extensions
we presented in a uniform practical tool framework. Features
like soft/hard reset instructions could either be implemented
in HW in a design-for-verification approach or in software
inside a model checker. In another research direction, we plan
to extend our framework to model the detection of deadlocks
using SQED, cf. [7], and prove related theoretical guarantees.

Acknowledgments. We thank Karthik Ganesan and John
Tigar Humphries for helpful initial discussions and the anony-
mous reviewers for their feedback.

34



REFERENCES

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” in Proc. TACAS, ser. LNCS, vol. 1579.
Springer, 1999, pp. 193–207.

[2] S. Katz, O. Grumberg, and D. Geist, “"Have I written enough Properties?"
- A Method of Comparison between Specification and Implementation,”
in Proc. CHARME, ser. LNCS, vol. 1703. Springer, 1999, pp. 280–297.

[3] H. Chockler, O. Kupferman, and M. Y. Vardi, “Coverage Metrics for
Temporal Logic Model Checking,” in Proc. TACAS, ser. LNCS, vol. 2031.
Springer, 2001, pp. 528–542.

[4] K. Claessen, “A Coverage Analysis for Safety Property Lists,” in
Proc. FMCAD. IEEE, 2007, pp. 139–145.

[5] D. Große, U. Kühne, and R. Drechsler, “Estimating functional coverage
in bounded model checking,” in Proc. DATE. EDA Consortium, San
Jose, CA, USA, 2007, pp. 1176–1181.

[6] H. Chockler, D. Kroening, and M. Purandare, “Coverage in interpolation-
based model checking,” in Proc. DAC. ACM, 2010, pp. 182–187.

[7] D. Lin, E. Singh, C. Barrett, and S. Mitra, “A structured approach to
post-silicon validation and debug using symbolic quick error detection,”
in Proc. ITC. IEEE, 2015, pp. 1–10.

[8] E. Singh, D. Lin, C. Barrett, and S. Mitra, “Logic bug detection and
localization using symbolic quick error detection,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1,
2018.

[9] E. Singh, K. Devarajegowda, S. Simon, R. Schnieder, K. Ganesan, M. R.
Fadiheh, D. Stoffel, W. Kunz, C. W. Barrett, W. Ecker, and S. Mitra,
“Symbolic QED Pre-Silicon Verification for Automotive Microcontroller
Cores: Industrial Case Study,” in Proc. DATE. IEEE, 2019, pp. 1000–
1005.

[10] F. Lonsing, K. Ganesan, M. Mann, S. S. Nuthakki, E. Singh, M. Srouji,
Y. Yang, S. Mitra, and C. W. Barrett, “Unlocking the Power of Formal
Hardware Verification with CoSA and Symbolic QED: Invited Paper,”
in Proc ICCAD. ACM, 2019, pp. 1–8.

[11] R. B. Jones, C. H. Seger, and D. L. Dill, “Self-Consistency Checking,”
in Proc. FMCAD, ser. LNCS, vol. 1166. Springer, 1996, pp. 159–171.

[12] M. R. Fadiheh, J. Urdahl, S. S. Nuthakki, S. Mitra, C. Barrett, D. Stoffel,
and W. Kunz, “Symbolic quick error detection using symbolic initial state
for pre-silicon verification,” in Proc. DATE. IEEE, 2018, pp. 55–60.

[13] R. M. Keller, “A Fundamental Theorem of Asynchronous Parallel Com-
putation,” in Parallel Processing, Proc. Sagamore Computer Conference,
ser. LNCS, vol. 24. Springer, 1974, pp. 102–112.

[14] R. M. Keller, “Formal Verification of Parallel Programs,” Commun. ACM,
vol. 19, no. 7, pp. 371–384, 1976.

[15] B. Huang, H. Zhang, P. Subramanyan, Y. Vizel, A. Gupta, and S. Malik,
“Instruction-Level Abstraction (ILA): A Uniform Specification for System-
on-Chip (SoC) Verification,” ACM Trans. Design Autom. Electr. Syst.,
vol. 24, no. 1, pp. 10:1–10:24, 2019.

[16] F. Lonsing, S. Mitra, and C. W. Barrett, “A Theoretical Framework for
Symbolic Quick Error Detection,” CoRR, vol. abs/2006.05449, 2020,
FMCAD 2020 proceedings version with appendix. [Online]. Available:
https://arxiv.org/abs/2006.05449

[17] W. A. Hunt Jr., “Microprocessor design verification,” J. Autom. Reasoning,
vol. 5, no. 4, pp. 429–460, 1989.

[18] J. R. Burch and D. L. Dill, “Automatic Verification of Pipelined
Microprocessor Control,” in Proc. CAV, ser. LNCS, vol. 818. Springer,
1994, pp. 68–80.

[19] A. Biere, E. M. Clarke, R. Raimi, and Y. Zhu, “Verifiying Safety
Properties of a Power PC Microprocessor Using Symbolic Model
Checking without BDDs,” in Proc. CAV, ser. LNCS, vol. 1633. Springer,
1999, pp. 60–71.

[20] T. Hong, Y. Li, S. Park, D. Mui, D. Lin, Z. A. Kaleq, N. Hakim,
H. Naeimi, D. S. Gardner, and S. Mitra, “QED: Quick Error Detection
tests for effective post-silicon validation,” in Proc. ITC. IEEE, 2010,
pp. 154–163.

[21] D. Lin, T. Hong, Y. Li, F. Fallah, D. S. Gardner, N. Hakim, and
S. Mitra, “Overcoming post-silicon validation challenges through quick
error detection (QED),” in Proc. DATE. EDA Consortium San Jose,
CA, USA / ACM DL, 2013, pp. 320–325.

[22] D. Lin, T. Hong, Y. Li, E. S, S. Kumar, F. Fallah, N. Hakim, D. S.
Gardner, and S. Mitra, “Effective Post-Silicon Validation of System-on-
Chips Using Quick Error Detection,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 33, no. 10, pp. 1573–1590, 2014.

[23] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection by duplicated
instructions in super-scalar processors,” IEEE Trans. Reliability, vol. 51,
no. 1, pp. 63–75, 2002.

[24] K. Devarajegowda, M. R. Fadiheh, E. Singh, C. Barrett, S. Mitra,
W. Ecker, D. Stoffel, and W. Kunz, “Gap-free Processor Verification by
S2QED and Property Generation,” in Proc. DATE. IEEE, 2020.

[25] E. Singh, F. Lonsing, S. Chattopadhyay, M. Strange, P. Wei, X. Zhang,
Y. Zhou, D. Chen, J. Cong, P. Raina, Z. Zhang, C. Barrett, and S. Mitra,
“A-QED Verification of Hardware Accelerators,” in Proc. DAC, to appear.
ACM, 2020.

[26] M. R. Fadiheh, D. Stoffel, C. W. Barrett, S. Mitra, and W. Kunz,
“Processor Hardware Security Vulnerabilities and their Detection by
Unique Program Execution Checking,” in Proc. DATE. IEEE, 2019,
pp. 994–999.

[27] G. Barthe, P. R. D'Argenio, and T. Rezk, “Secure Information Flow by
Self-Composition,” in Proc. CSFW-17. IEEE, 2004, pp. 100–114.

[28] G. Barthe, J. M. Crespo, and C. Kunz, “Relational Verification Using
Product Programs,” in Proc. FM, ser. LNCS, vol. 6664. Springer, 2011,
pp. 200–214.

[29] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying Constant-Time Implementations,” in Proc. USENIX. USENIX
Association, 2016, pp. 53–70.

[30] W. Yang, Y. Vizel, P. Subramanyan, A. Gupta, and S. Malik, “Lazy
Self-composition for Security Verification,” in Proc. CAV, ser. LNCS,
vol. 10982. Springer, 2018, pp. 136–156.

[31] A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen,
A. Pathirane, O. Shepherd, P. Vrabel, and A. Zaidi, “End-to-End
Verification of Processors with ISA-Formal,” in Proc. CAV, ser. LNCS,
vol. 9780. Springer, 2016, pp. 42–58.

[32] U. Krautz, M. Wedler, W. Kunz, K. Weber, C. Jacobi, and M. Pflanz,
“Verifying full-custom multipliers by Boolean equivalence checking and
an arithmetic bit level proof,” in ASP-DAC. IEEE, 2008, pp. 398–403.

[33] A. A. R. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drech-
sler, “Formal verification of integer multipliers by combining Gröbner
basis with logic reduction,” in Proc. DATE, 2016, pp. 1048–1053.

[34] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of
multipliers using computer algebra,” in Proc. FMCAD, 2017, pp. 23–30.

[35] D. Kaufmann, A. Biere, and M. Kauers, “Verifying Large Multipliers
by Combining SAT and Computer Algebra,” in Proc. FMCAD. IEEE,
2019, pp. 28–36.

35

https://arxiv.org/abs/2006.05449


Formal Methods in Computer-Aided Design 2020

Runtime Verification on FPGAs with LTLf
Specifications

Tommy Tracy II

University of Virginia
Charlottesville, Virginia 22904

Email: tjt7a@virginia.edu

Lucas M. Tabajara

Rice University
Houston, Texas 77005

Email: lucasmt@rice.edu

Moshe Vardi

Rice University
Houston, Texas 77005
Email: vardi@rice.edu

Kevin Skadron

University of Virginia
Charlottesville, Virginia 22904
Email: skadron@virginia.edu

Abstract—Runtime verification is a technique that evaluates a
system’s execution trace at runtime against a formal specifica-
tion. This approach is particularly useful for safety-critical and
autonomous systems to verify system functionality and allow for
graceful recovery or intervention in the case of system faults.
Specifications are often provided in a high-level form using some
type of temporal logic, which can then be compiled into an
automaton to be used as a monitor for the system. Existing
work has mainly focused on implementing such monitors in
software. In recent years there has been extensive research,
however, in hardware acceleration of automata applications,
which can potentially be extended to runtime monitoring. In this
paper, we introduce an open-source framework for translating
formulas in Linear Temporal Logic over finite traces (LTLf )
into automata implementations on FPGAs for high-efficiency
and high-performance runtime monitoring. By using the spatial
dimension of FPGAs, we run many of these automata in parallel,
significantly reducing the latency between violation and monitor
report and achieving significant throughput. We compare the
performance of four different architectures corresponding to the
combinations of deterministic or nondeterministic automata with
an explicit or symbolic representation, and determine the design
parameters that result in efficient hardware utilization and higher
clock frequencies. We found that explicit automata tend to use
more hardware resources, in particular Lookup Tables (LUTs),
than symbolic automata. An exception to this is in the case of
Flip-Flop (FF) usage, where symbolic DFAs tend to use more
FF resources than explicit NFAs for smaller designs. We also
found that explicit NFAs can run at higher clock frequencies,
except for very large automata with high edge densities. Symbolic
NFAs use fewer Look-Up Table resources and run at higher
clock frequencies than symbolic DFAs, whereas symbolic DFAs
required fewer Flip-Flop resources, except in the case of very
simple small automata with lower edge densities. Finally, we
found that explicit automata hardware utilization significantly
increases with input signal widths, motivating the use of symbolic
automata for wide input signals.

I. INTRODUCTION

While other types of formal verification seek to verify a sys-
tem before it is deployed, the goal of runtime verification is to
monitor the execution of a system in real time in order to detect
behavior that violates the system’s formal specification [1], [2],
[3]. This gives the system a chance to mitigate, recover from,
or document the error. Runtime verification is particularly
valuable for safety-critical and autonomous systems [4], where
errors that are not immediately dealt with can have catastrophic
consequences. Such systems also often operate in physical

environments, which are hard to model accurately and often
behave in unexpected and unpredictable ways. Therefore, even
if the system has been formally verified beforehand, it is
possible that it might still display errors during runtime due
to assumption violations.

Most existing work on runtime verification has focused
on monitors implemented in software [1], [2]. Motivated by
the slowing down of Moore’s Law and the end of Dennard
Scaling [5], there has been a recent trend to use specialized
hardware [6]. Specialized hardware that is designed to perform
a particular task can be optimized for that task much more
than it would be possible for general-purpose hardware. Fur-
thermore, the application can benefit directly from the natural
parallelism that hardware provides. For runtime verification, an
on-board hardware implementation translates to more efficient
real-time monitoring with lower latency.

Monitors used for runtime verification usually take the form
of (deterministic or nondeterministic) finite-state automata.
Automata applications have already been a target of hardware
acceleration, as exemplified by Micron’s Automata Proces-
sor [7], [8] and subsequent work targeting FPGAs [9], [10].
Specialized architectures for simulating automata have been
employed for a number of data- and string-processing appli-
cations, including bioinformatics [11], [12], machine learn-
ing [13], [14], and natural language processing (NLP) [15].
As an application that also runs automata over streaming data
- in this case traces of the system’s execution - the extension
to runtime verification is a natural one.

Unlike data- and string-processing applications, automata
used for formal verification, including runtime verification, are
often generated from formal specifications given as formulas
in a temporal logic [16], [17], rather than directly as finite
automata. A major difference between automata constructed
from temporal-logic formulas and those obtained for other
applications is the alphabet construction. Data- and string-
processing application usually assume a static and relatively
small symbol alphabet. For example, an NLP automaton would
likely use ASCII as the symbol alphabet, and bioinformatics
applications may only need four symbols corresponding to the
four nucleotide bases A, T, C and G.

In the case of automata used for formal verification, the
symbol alphabet consists of propositional interpretations of the
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atomic propositions in the formula. The number of possible
such interpretations, and therefore the size of the symbol
alphabet, is exponential in the number of propositions, leading
to potentially much larger alphabets. The problem of the
exponential alphabet is usually solved in formal-methods ap-
plications by not explicitly representing the transitions on each
symbol, but instead labeling transitions by Boolean expres-
sions, with the understanding that a transition is activated by
an interpretation if that interpretation satisfies the expression.

Tools that construct automata from temporal formulas [18],
[19] often represent transitions in this way. While being
very natural when the automaton is generated from a logic
formula, this symbolic representation of the transition relation
is not supported by Micron’s Automata Processor, for example,
which uses eight bits per symbol in the alphabet and a memory
column of 256 bits per state to recognize the unique symbols
in the alphabet. Sadredini et al. [20], with their Flexamata
compiler and subsequent Grapefruit [10] FPGA implementa-
tion, which integrates Flexamata into a full-stack automata
processing framework, addressed this concern by converting
among automata of differing symbol alphabet sizes. They do
this by trading off symbol alphabet size with automata size and
throughput. Unfortunately, this requires temporal multiplexing,
where the system signals would need to be buffered and
serialized at the reduced width. This approach could work for
lower sampling rates of the system signals, but could also
bottleneck the system for some applications.

Our main contribution in this work is an investigation
among four possible architectures for implementing automata-
based monitors for temporal-logic properties on a field-
programmable gate array (FPGA). These four architectures
are defined by two axes: deterministic vs. nondeterministic
and explicit vs. symbolic. The first axis specifies whether the
temporal logic specification is converted into a deterministic
finite automaton (DFA) or a nondeterministic finite automaton
(NFA). It is difficult to predict a priori which of these
representations is more efficient in terms of the number of
states. Although NFAs have an exponentially smaller worst-
case size, DFAs have an exact minimization algorithm that
runs in polynomial time, while for NFA minimization, which
is PSPACE-complete [21], we are forced to rely on heuristics.
The second axis determines whether the state space of the
automaton should be represented explicitly or symbolically.
In an explicit representation, each state has its own hardware
component, called a State Transition Element (STE), that is
activated when the automaton moves into that state. Each STE
has its own state memory and logic to match the input to
the matching symbol set of that state. In this architecture,
hardware parallelism allows nondeterminism to be simulated
at no additional cost, as multiple STE can be active at the same
time. In a symbolic representation, the current state (or set of
states, in the case of an NFA) is represented by a bitvector,
which is given along with the current input to a logic circuit
that computes the bitvector representing the next state. An
advantage of DFAs in the symbolic representation is that the
current state can be represented in a logarithmic number of

bits, while NFAs require a bit per state. On the other hand, the
logarithmic encoding in the DFA might lead to more complex
(deeper) combinational logic.

We evaluate each of these four options on a set of randomly-
generated formulas in Linear Temporal Logic over Finite
Traces (LTLf ) [22], formed by taking random conjunctions of
common temporal patterns [23]. LTLf was chosen because it
is a convenient way of specifying events that happen in a finite
time, such as the ones that runtime verification seeks to detect,
and a lot of machinery exists for translating such formulas
into finite automata [24], [25]. The formula set is converted
into separate automata, which are then implemented on one
FPGA. Each automaton monitors a different property, but the
set shares input signals corresponding to shared propositions
between the formulas. We scale our benchmarks by varying
the number of formulas, the number of different variables
across all formulas (number of unique system signals), and
the number of conjuncts per formula (formula complexity).

The results of our evaluation provide insight on the different
tradeoffs that emerge when considering solutions implemented
directly in hardware as opposed to software. We found that
symbolic automata tend to use less hardware than explicit
automata and that explicit NFAs tend to run at higher clock
frequencies, except in the case of very small formulas or very
complex formulas. Overall, we find that symbolic NFAs tend
to perform best of all of our evaluated architectures across
most experiments with the lowest hardware utilization.

Finally, we found that explicit automata hardware utilization
significantly increases with the size of the symbol alphabet,
motivating the use of symbolic automata for wide input
signals, which happens when the formula has a high number of
propositions. Our investigation allows us to better understand
the considerations that must be taken into account when im-
plementing runtime monitors in hardware, and concludes that,
while no particular approach dominates, each one has its own
pros and cons that should be considered when deciding how
to accelerate runtime verification for a specific application.

II. BACKGROUND

A. Linear Temporal Logic

Linear Temporal Logic over Finite traces (LTLf ) is a
variant of Linear Temporal Logic that is interpreted over finite
rather than infinite traces. Its syntax is identical to LTL
over infinite traces, and is defined as follows for a set of
propositions P:

' ::= > j p 2 P j (:') j ('1 _ '2) j (X') j ('1U'2)

Lichtenstein, Pnueli, and Zuck showed in [26] that every LTL
formula is equivalent to a formula of the form

∧n
i (GFρi _

FG i), where ρi and  i contain only past operators. In
other words, ρi and  i are finite-trace formulas. Thus, finite-
trace monitors are the foundation on which one can build
a monitoring framework for LTL [27], which motivates our
focus on LTLf .
X and U are the temporal connectives “next” and “un-

til”. We can define other temporal connectives such as F
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(“eventually”), G (“always”) and W (“weak until”) in terms
of those. A propositional interpretation τ ∈ 2P is a set
of propositions representing the propositions that are true at
a given time. A trace is a finite sequence ρ ∈ (2P)∗ of
propositional interpretations ρ0, ρ1, ..., ρn, where ρi is the set
of propositions that are true at time i. We denote that an LTLf

formula ϕ is satisfied by a trace ρ at time i by ρ, i |= ϕ , and
shorten ρ, 0 |= ϕ to ρ |= ϕ . Refer to [22] for the semantics
of LTLf formulas. The language of an LTLf formula ϕ ,
denoted by L(ϕ), is the set of finite traces that satisfy ϕ .
The reverse of a trace ρ= ρ0, ..., ρn, denoted by ρR, is the
trace ρn, ..., ρ0. The reverse of the language of a formula ϕ ,
denoted by LR(ϕ), is the set of traces ρR for ρ∈L(ϕ).

B. Finite State Automata

A Finite State Automaton (FSA) is a mathematical model
of the form A = (S,Σ, I,∆, F ), where: S is a finite set of
states, Σ is a finite set of symbols called the input alphabet,
I ⊆ S is a set of initial states, ∆⊆ S × Σ × S is a transition
relation indicating the successor states of a given state when
the automaton reads an input symbol in Σ, and F ⊆ S is a
set of accepting states. FSA are often represented by a graph
of nodes connected by edges. Figure 1.A shows an example
FSA, where the left-most state is an initial state, and the right-
most is an accepting state. Edges represent transitions, and are
labeled by the corresponding transition symbols from the input
alphabet. FSAs process input signals by transitioning between
states. The computation begins at the initial state and proceeds
at every time interval, evaluating an input symbol. If that input
symbol matches a transition symbol, a transition is made to
the next state, and so forth. If an accepting state is reached,
then the automaton has accepted the input; if not, the input is
not accepted. The set of finite traces accepted by an FSA A
is the language of the FSA, and denoted by L(A).

FSAs can be deterministic or nondeterministic. Determin-
istic Finite Automata (DFAs) have at most one initial state,
and at most one transition from each given state on a given
input symbol. Nondeterministic Finite Automata (NFAs), on
the other hand, are more general and can have multiple
transitions from each state on the same input symbol. As
a consequence, when running an NFA over a sequence of
inputs, multiple transitions can be taken at once, and multiple
states can be active at the same time. Every NFA can be
determinized into a DFA that recognizes the same language,
but in the worst case the smallest DFA for a given language
may be exponentially larger than the smallest NFA. Because of
this, DFAs potentially yield a significant increase in memory
utilization, while NFAs are memory-bandwidth bounded by
potentially many parallel transitions. However, DFAs have an
efficient and exact minimization algorithm, while NFAs can
practically only be minimized heuristically [28].

Previous work has demonstrated how finite state automata
can be used to accelerate a variety of applications that go
beyond the usual string matching applications, including bioin-
formatics [11], [12], machine learning [13], [14], and natural
language processing [15]. These works represent FSAs in

Fig. 1. Non-homogeneous (A) vs. Homogeneous automaton (B).

a homogeneous representation, where matching computations
are done on the states, rather than the edges. More specifically,
a homogeneous automaton is one where all transitions into a
state have the same symbol set [29], [30]. We depict such
automata by placing the symbol sets on the states rather than
on the edges. Figure 1 depicts a non-homogeneous automaton
and its equivalent homogeneous automaton. Homogeneity is
used in hardware implementations to simplify the mapping of
automata to hardware for parallel transition computation on the
nodes, as demonstrated in Micron’s Automata Processor [7].
This transformation also comes at a significant increase in the
number of states in the automata, scaling with the edge density
of the non-homogeneous representation.

Every LTLf formula ϕ over a set of propositions P can
be converted into a (deterministic or nondeterministic) FSA
Aϕ with alphabet 2P , such that L(Aϕ ) = L(ϕ). In the worst
case, the smallest NFA for an LTLf formula may be at most
exponential in the size of the formula, while the smallest DFA
may be doubly-exponential. The tool MONA [18] implements
an algorithm for constructing a minimal DFA from a formula
in Monadic Second-Order Logic (MSO). Since every LTLf

formula can be converted into MSO [22], MONA can be used
to generate minimal DFAs for LTLf formulas. As part of
our framework, we present a solution to using MONA for
generating NFAs as well.

C. Automata Acceleration with FPGAs

Field Programmable Gate Arrays (FPGAs) are used in
computing systems to implement reconfigurable hardware. Ex-
isting automata engines including REAPR [9], REAPRpp [31],
and Grapefruit [10] accelerate a variety of applications with
explicit automata on FPGAs. Figure 2 illustrates how ex-
plicit automata are represented in hardware by these explicit
engines, with constituent states of the automata instantiated
with separate memory and logic resources. This requires
that the spatial resources used by the design grow in the
size of the automata, but also allows all automata states to
make transitions in parallel, making this approach particularly
efficient for processing NFAs, where the number of active
states can be variable and for evaluating multiple automata
in parallel.

REAPR works by generating Verilog from ANML [7]
automata description files, an XML-like homogeneous FSA
representation, and generates an architecture that is very
similar to Micron’s Automata Processor (AP) [7], using the
homogeneous automata representation. One limitation REAPR
inherited from the AP is the static 8-bit symbol width. AP-like
automata processing assumes an input symbol of 8 bits and a
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Fig. 2. Architecture of explicit automata.

corresponding 256-bit matching column for representing the
full 8-bit symbol alphabet. Although useful when considering
pattern matching on ASCII or byte-level data, when imple-
menting runtime verification, this limits the number of system
signals that our formulas could process in one cycle to 8.

Rahimi et al. [10] implement the Flexamata [20] compiler
in their Grapefruit full-stack automata engine. They overcome
the symbol-width limitation by extending ANML and allowing
for arbitrary bitwidths by trading off symbol alphabet size with
automata size and throughput. In addition to this, Grapefruit
also includes heuristic-based NFA minimization, which allows
the tool to reduce the size of explicit finite state automata in
hardware. We utilize Grapefruit and extend its functionality to
also include symbolic automata (see Section III-B.

D. Runtime Monitors

Although there are many types of runtime monitors with
different semantics, in this work we define a monitor for an
LTLf formula ϕ as an FSA (NFA or DFA) that accepts a
finite trace iff this trace satisfies ϕ . As the monitor reads the
trace produced by the system, it continuously reports whether
the finite trace observed from the beginning of the execution
until the current time step satisfies the formula.

Previous work on runtime monitors has focused on automat-
ically generating runtime system monitors on CPUs as well as
on FPGAs. Drusinsky [32] introduces a verification tool that
generates code from LTL and MTL assertions written into
C, C++, Java, Verilog and VHDL code to evaluate runtime
systems against the formulas at runtime.

Tabakov et al. [2] introduce a technique for automatically
generating SystemC runtime monitors from LTL formulas.
They identify four important components that they optimize
to minimize runtime overhead: state minimization, alphabet
representation, alphabet minimization, and monitor encoding.
They then identify the configurations that offer the best moni-
tor performance in terms of runtime overhead. Pike et al. [33]
introduce Copilot, a domain-specific language built on top of
Haskell for programming runtime monitors for distributed real-
time systems. Boule and Zilic [34] use a recursive technique
that breaks properties into syntax trees. Each node in the tree
is used to create a sub-property automaton which are concate-
nated with the rest in an automata generation algorithm.

Geist et al. [35] implement runtime observers in their system
on processors implemented on their FPGA. Meredith et al. [36]
with MOP and Pellizzoni et al. [37] with BusMOP use the
Monitoring Oriented Programming (MOP) framework to syn-

thesize hardware monitors for runtime verification. BusMOP
generates monitor blocks from temporal logic specifications.
These monitor blocks use symbolic DFAs to verify system
properties at runtime.

Jaksic et al. [38] translate Signal Temporal Logic (STL)
assertions into hardware runtime monitors on FPGAs. They
synthesize temporal testers, or transducers, that output a signal
if a specification has been satisfied. Selyunin et al. [39]
translate Signal Temporal Logic (STL) and Timed Regular
Expressions (TRE) into hardware monitors on FPGAs. They
demonstrate a High-Level Synthesis (HLS) and automata-
based approach for temporal tester transducers.

Selyunin et al. [40] apply runtime monitoring for au-
tomata systems and use HLS to synthesize monitors for
FPGAs. Baumeister et al. [41] compile RTLola, a stream-
based specification language used for real-time properties, into
VHDL for FPGA deployment. Convent et al. [42] introduce
the Temporal Stream-based Specification Language (TeSSLa)
used to specify constraints on railway cyber-physical systems.
Their approach differs considerably from previous approaches,
because they allow for runtime reconfigurability. They do
this by creating a set of event processing units that can be
combined at runtime to monitor for complex properties.

Schumann et al. [4] introduce R2U2, a monitoring and
diagnosis framework for unmanned aerial systems. R2U2 is
implemented on an FPGA and monitors streams of data from
the GPS and ground control station, flight software status,
sensor readings, and actuator outputs. They implement their
runtime monitors in logic as presented by Reinbacher et al. [3].

While previous work has implemented runtime monitors on
FPGAs, our work differentiates itself in a few ways. First, we
take advantage of recent progress made in hardware accelera-
tion of automata by using state-of-the-art approaches from that
field. We also focus on LTLf as a specification language for
runtime properties, allowing us to also use recently-developed
techniques for converting LTLf formulas into automata. Fi-
nally, as far as we are aware we are the first to perform
an experimental comparison between deterministic and non-
deterministic as well as symbolic and explicit automata, in
order to determine the advantages and disadvantages of each
representation in an FPGA implementation.

III. IMPLEMENTING LTLf MONITORS IN HARDWARE

We present an open-source software pipeline[43] for con-
verting LTLf formulas into automata-based runtime monitors
implemented on a cloud-deployed FPGA. We explore four
possible automata representations placed along two axes:
deterministic/non-deterministic and explicit/symbolic. Each
representation is described later in this section.

For generating the automata from the temporal formulas,
we employ an approach centered on the tool MONA [18],
which can construct finite automata from formulas in Monadic
Second-order Logic (MSO), a logic strictly more expressive
than LTLf . We chose this tool based on its performance
and versatility. Other possible options for converting LTLf to
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automata would be the tools SPOT [19] and LISA [44]. Pre-
vious comparisons, however, have shown MONA to perform
better than SPOT [24], while LISA only has support for DFAs.
Because MONA is based on MSO, we can use a technique
based on reversing the formula to construct NFAs as well, as
described in Section III-A.

Although there are several existing tools for deploying
automata on FPGAs, most focus on memory-based DFA
solutions. We found the FPGA automata processing framework
Grapefruit [10] to be the best solution that provides both
DFA and NFA functionality as well as a full end-to-end
solution. Grapefruit also demonstrated higher performance
over previous work such as REAPR. Grapefruit generates
an explicit Hardware Description Language (HDL) module
from a description of a homogeneous automaton. We extend
Grapefruit to also generate HDL modules that represent logic
transitions for symbolic non-homogeneous DFAs and NFAs.

A. Generating Finite Automata from LTLf Formulas

The first half of our pipeline takes in an LTLf formula
' and constructs an abstract non-homogeneous representation
of a finite automaton that recognizes the language of '. As
previously mentioned, we explore two different constructions,
one which produces a deterministic and another which pro-
duces a non-deterministic automaton. We start by describing
the deterministic construction:

1) Translate the LTLf formula ' into a formula fol(')
in First-Order Logic (FOL) over finite traces. This is
possible since FOL has the same expressive power as
LTLf . A translation algorithm can be found in [22].

2) Use the tool MONA to convert fol(') into a DFA
A' that recognizes the same language. This is possible
because MONA accepts inputs in MSO, which is a
superset of FOL.

It is important to point out that the DFA constructed by
MONA is minimal, meaning that it is the smallest DFA that
recognizes the language.

Because the construction algorithm implemented in MONA
heavily relies on the fact that DFAs can be efficiently min-
imized, the automaton output by the tool is always deter-
ministic. Yet, it is known that there are languages for which
the smallest DFA is exponentially larger than the smallest
NFA [45]. Therefore, if our construction algorithm can exploit
non-determinism, we may obtain an exponentially smaller
automaton. Furthermore, recall that non-determinism allows
us to take advantage of the natural parallelism among multiple
active states in each automaton, as well as parallelism across
multiple automata, and leverages the high degree of parallelism
afforded by FPGAs. In order to use MONA to generate an NFA
instead, we make use of a technique introduced in [46]:

1) Convert the LTLf formula ' into a PastLTL formula
'R such that L('R) = LR('), i.e., 'R is satisfied by
exactly those traces that are the reverse of a trace that
satisfies '. To do this, it is enough to replace all future
temporal operators in ' with past temporal operators.
See [25] for details.

2) Translate 'R into a FOL formula fol('R) describing
the same language. See [25] for a translation algorithm.

3) Use MONA to construct a DFA AR
' for fol('R). Note

that this DFA accepts the reverse language of '.
4) Reverse AR

' by turning initial states into accepting states
and vice versa, and swapping the source and destination
states of each transition. The result is an NFA A' that
accepts the reverse language of AR

' , and therefore the
same language of ' [46].

The minimal DFA for the reverse language of an LTLf

formula is guaranteed to be at most exponential in the size
of the formula (see [22] on converting an LTLf formula to
a linear-sized alternating automaton, and [47] on obtaining
an exponential-sized DFA for the reverse language of an
alternating automaton). In contrast, the DFA for the formula
itself can be doubly-exponential. Therefore, the NFA generated
by this approach has the potential to be exponentially smaller
than the DFA that would be constructed by simply using
MONA directly.

B. Implementing Monitors in FPGA

Having obtained an automaton from the LTLf formula, we
explore two ways to implement them on an FPGA: explicitly
or symbolically. In either case, each input signal of the circuit
corresponds to a proposition in the formula, and multiple
LTLf formulas can be processed in parallel, up to the capacity
of the FPGA.

The explicit implementation follows a similar architecture
to REAPR and Grapefruit as presented in Section II-C. In
this architecture, each state of the automaton is represented
by a separate hardware module called a State Transition
Element (STE). The STE consists of an activation bit and
logic corresponding to the transition condition of this state (the
explicit implementation is based on homogeneous automata,
so the transition condition is associated with the state, not
the edge). The activation bit for a state is set to 1 if any
of its predecessors were active in the previous step and the
current input satisfies the state’s transition condition. Note that
if the automaton is an NFA, multiple STEs can be active at
the same time. The STE for an accepting state also generates
a report bit. Given an automaton (DFA or NFA) A' generated
by MONA, we perform the following operations to implement
A' explicitly:

1) Convert A' from a non-homogeneous representation
given in the output format of MONA into a homogeneous
automaton in the ANML format.

2) Use Grapefruit to heuristically minimize the automaton
(and remove unreachable states) and generate HDL.

3) Synthesize and target FPGA.
It is important to note that the conversion algorithm to

homogeneous automaton may turn a non-homogeneous DFA
into a homogeneous NFA, and may come at an increase
in automata size. Therefore, when we refer to an ”explicit
DFA” implementation, we only mean that the automaton
was initially constructed and minimized as a DFA, but the
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Fig. 3. Architecture of symbolic automata.

homogeneous automaton implemented in the FPGA may be
non-deterministic. As a result, the main difference between the
explicit DFA and explicit NFA approaches is that they produce
automata with a different number of states and transition logic.

The symbolic implementation instead encodes the current
state by a bitvector stored in an internal memory, and uses a
single logic circuit to compute the next state as a function of
the current state and inputs. For NFAs, the bitvector includes
one bit for each automaton state, representing whether that
state is active or not. For DFAs, since only one state is
active at a given time, this representation would be inefficient.
Instead, each state is given a binary encoding in a logarithmic
number of bits. Since symbolic automata do not require
separate components for each state, their hardware utilization
is expected to be less than explicit automata. In order to
capture transitions into accepting (or reporting) states, we use
a separate piece of combinational logic to determine if the next
state is accepting and generate a report signal that is set to 1
if the state is accepting and 0 otherwise. Figure 3 shows how
we represent symbolic automata. The steps for implementing
symbolic automata in an FPGA are the following:

1) Remove unreachable states if they exist (since MONA
generates minimal DFAs, this may only happen in NFA
construction),

2) Convert automaton representation given by MONA into
truth tables, one for each state bit and one for the
reporting bit. Each table maps the value of the current
state and the current input to the new value of the state
or reporting bit.

3) Use modified Grapefruit to convert truth tables into
synthesizable HDL.

4) Synthesize and target FPGA.
We extend Grapefruit to generate symbolic DFAs and NFAs.

We do this in two steps. In the first step, we generate an
intermediate Truth Table representation (IR) from the MONA
output. We generate a separate truth table for each of the
state bits. Recall that the number of state bits for NFAs is
linear, while for DFAs it is logarithmic. We found that when
comparing DFAs to NFAs, the DFAs have fewer truth tables,
but these truth tables required deeper logic circuits. Finally,
we generate a separate truth table for the bits reporting the
accepting states. This shallow truth table checks the state bits
of the DFAs and NFAs and generates an output report signal
if any of the accepting states are active.

We then generate Verilog lookup table modules from these
IRs, to be synthesized into logical circuits in the FPGA. For
state transitions, we use sequential logic with case statements.
Each bit in the automaton state maps to its own module with
a case statement mapping inputs and current state bits to next
state bits. For the report truth tables, we use combinational
case statements to map current state bits to a report signal.
We use Grapefruit’s hardware generator to connect all of the
truth table modules to the shared input signals including a
system clock, reset, and input symbol, as well as a unique
output report signal for each accept state in the automata.

IV. EXPERIMENTAL SETUP

A. Generating LTLf Formulas
In order to evaluate the effectiveness of our pipeline and

different approaches for implementing runtime monitors in
hardware, we generate a diverse set of LTLf formulas of
differing complexities. The FPGA synthesis and optimiza-
tion tools optimize circuitry, including removing redundant
hardware, and therefore it is not sufficient to duplicate the
same formulas to evaluate scalability. To that end, we generate
multiple different formulas by taking random combinations of
the 18 LTLf patterns from [23]. Each pattern is a simple
formula with one or two variables. We take conjunctions of
multiple small patterns, merging like variables among them,
in order to generate more complex formulas. This process is
repeated several times to create multiple formulas, which all
draw randomly from a pool of common variables. That way,
different formulas may have shared variables. All formulas
are then converted to automata and implemented on the same
FPGA. The four possible combinations described in the previ-
ous section (deterministic/explicit, non-deterministic/explicit,
deterministic/symbolic, non-deterministic/symbolic) give us
four quadrants for our experimental evaluation. We evaluate
the performance of the formulas we generate for each of these
four quadrants and compare among them.

In more detail, the LTLf formulas used in our evaluation
are generated in the following way:

1) Draw n random formulas from the pool of patterns.
2) For each variable of each pattern, draw an associated

pattern variable from a pool of k shared input variables.
Different variables in the same pattern are mapped
to different shared input variables from the pool, but
variables from different patterns can be mapped to the
same input variable.

3) Take the conjunction of all n formulas, forming a more
complex LTLf formula.

4) Repeat this process m times with the same pool of
shared input variables, producing m complex formulas
with shared variables between them.

Each complex formula is then separately converted to an
automaton and implemented on the FPGA, according to each
of the four quadrants described previously. To evaluate how
the architecture defined by each of the quadrants scales as the
number and complexity of each rule increases, we vary the
three parameters n, k and m above:
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� Number of formulas (n): Number of separate LTLf

formulas implemented on the FPGA. We vary this pa-
rameter from 10-10,000.

� Number of variables (k): Size of the total pool of
variables to be drawn from by the LTLf formulas. We
select 10 and 100.

� Formula size (m): Number of conjuncts per formula. We
select 1, 3, and 5.

We experimentally determine the range of values for each of
the three parameters. In the case of the number of formulas,
we used AutomataZoo [48] as a reference with number of
states up to approximately one million. We also determined
that explicit automata hardware utilization scales rapidly with
the number of variables, which maps to the number of input
signals; for this reason we ran experiments for 10 and 100
variables. Finally, we tried to keep automata to a few thousand
states, and therefore set a formula size cap to 5. We repeat each
of these experiments three times, each time generating a new
set of formulas, and we report the average of the three runs.

B. Hardware Setup

We target Amazon’s cloud-deployed FPGAs to standardize
on a publicly-available platform. Amazon provides Xilinx
Ultrascale+ FPGAs in their F1 EC2 instances. In order to
synthesize and place-and-route our HDL into a bitstream to
configure the FPGA, we used Amazon’s FPGA developer
Amazon Machine Image (AMI), which provides us the FPGA
software tools. For our experiments, we used Amazon FPGA
Developer AMI version 1.6.0, which includes Vivado 2018.3.
We deployed this AMI on Amazon EC2 c4.8xlarge instances.

V. EXPERIMENTAL RESULTS

A. Comparisons Among Automata Implementations

We report the average results of the three runs in Figures 4, 5
and 6. Although transition density has low variance across
these three runs, the variance in automaton sizes increases with
the size of the formula. We leave a more detailed analysis of
the distribution of automaton sizes to future work and focus
here on a general analysis based on the average results.

Figures 4 and 5 show the number of Flip-Flops (FFs)
and Look-Up Tables (LUTs) utilized by the FPGA for our
randomly-generated formulas, composed of the conjunction of
multiple patterns over random variables drawn from 10 binary
system signals. FFs are used in the explicit implementations
to store the bits indicating whether a state is active, and in
the symbolic implementations to store the bitvector encoding
the current state. LUTs correspond to logic gates and are used
to implement transition and reporting logic. The Xilinx Virtex
UltraScale+ VU9P has a total 1,181,768 LUTs and 2,363,536
Flip-Flops. Our results show that explicit automata, both DFAs
and NFAs, tend to use more LUT hardware resources than
symbolic automata. Our explicit NFAs tend to use fewer Flip-
Flop and LUT resources than their DFA counterparts.

We determined that transforming the MONA-generated au-
tomata to homogeneous automata came at a significant cost
in terms of number of states. For our 10-variable, explicit

automata, we saw an increase in number of states from 2x in
the case of 1-pattern automata to 10x for 5-pattern automata.
This increase in states is due to the increase in edge density as
automata become more complex. We found the homogeneous
state increase to be be a flat multiplier as we scaled our number
of formulas. When comparing to the majority of AutomataZoo
benchmarks, which have edge/node densities below 2, our
conjunctive LTL formula automata had average edge/node
densities of 1.36 edges/node for 1 pattern, 4.53 edges/node
for 3 patterns, and 8.89 edges/node for 5 patterns, with
explicit DFAs and NFAs having approximately the same edge
densities. We repeated this analysis with formulas composed
of disjunctions instead of conjunctions and found edge/node
densities of 1.36 edges/node for 1 pattern, 5.45 edges/node for
3 patterns, and 12.67 edges/node for 5 patterns.

In the case of symbolic automata, we found that symbolic
NFAs tend to use more Flip-Flop resources but fewer LUT
resources than deterministic implementations. This is due to
symbolic NFAs being represented with a lookup-table module
per bit in a linear bit-vector (O(n)) representation of the
automata, while the DFA implementation represented each bit
in a logarithmic bit-vector (O(log n)) representation. While
the implementation does parallelize the bit logic, the DFA
logic depth tended to be deeper than NFA logic, resulting in
higher clock frequency support for symbolic NFAs. Finally,
Vivado was unable to place-and-route 10,000 automata of
formula size 5 for any automata type. Each of these automata
of formula size five were composed of 100s of states, and we
ran out of resources for many of them.

Figure 6 shows the maximum clock frequencies at which
the generated hardware monitors can process input signals.
We implement our automata in out-of-context mode, which
means that our solutions do not include input or output (I/O)
circuitry. We removed I/O complications from our analysis
as those decisions are application dependent, and can vary
significantly in complexity as shown by I/O work by Bo et
al [49] and in Grapefruit [10]. These results show that for
a larger number of automata (100-10000), the explicit au-
tomata maintain a higher clock frequency than their symbolic
counterparts. In the case of very small formulas or for very
complex formulas, the explicit automata get larger faster and
the symbolic implementations can be run at higher frequencies.

Our results are summarized in Figure 7. We find that if
hardware utilization is a primary concern, symbolic automata
tend to use less hardware than explicit automata. If minimizing
Flip-Flip usage, symbolic DFAs are the best option, except in
the case of smaller formulas. We see this behavior, because
our NFA implementation uses a logic circuit per state in the
automaton, while our DFA representation only needs a number
of circuits that is the log of the number of states. This larger
number of state bits results in a higher FF usage. If minimizing
LUT usage, symbolic NFAs are the best option. Symbolic
NFAs have more logic circuits, but each of these logic circuits
are shallower than the DFA circuits, resulting in a reduced
LUT usage. For our experiments, we found that the difference
between architectures can result in up to a 5x increase in
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Fig. 4. Flip-Flop usage for for each automata type.

Fig. 5. LUT usage for for each automata type.

Fig. 6. Maximum clock frequency for each automata type.

Fig. 7. Comparing explicit vs. symbolic and deterministic vs. non-
determinstic automata implemented in hardware.

LUT and FF usage. If max clock frequency (throughput) is
the primary concern, explicit NFAs maintain higher clock
frequencies than symbolic automata for a larger number of
automata. In the case of very small formulas or very complex
formulas, symbolic implementations tend to run at higher

frequencies likely due to the clock delay imposed by edges
between explicit nodes. Across all of our experiments, we find
that symbolic NFAs tend to perform best of all of our evaluated
options, and that the difference between architectures can
result in up to a 63% reduction in throughput. Similar results
were obtained when we repeated the experiments replacing the
conjunctions with disjunctions, and the same general conclu-
sions apply. The most significant difference was that, likely
due to the steeper scaling of edge/node density, disjunctions
failed for 10,000 automata even with only 10 shared variables
(k) and a formula size (m) of 3.

B. The Importance of NFA Minimization

Grapefruit includes a series of heuristic minimization tech-
niques that allow us to significantly decrease the number
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of states in our explicit NFAs. FPGA optimization tools
are also applied by Vivado during the synthesis and place-
and-route phases. We wanted to determine the effect of
higher-level automata optimization on hardware utilization
and performance, and synthesized and place-and-routed 3-
pattern automata with and without Grapefruit optimizations.
We observed that our generated explicit DFAs have fewer
states than our generated explicit NFAs across most of our
formulas, even post-minimization. We find that during the
Cross Boundary and Area Optimization steps of synthesis
that the NFA states were merged much more than the DFAs,
resulting in a net result of less hardware utilization than DFAs.
Although we did use Grapefruit’s minimization functionality,
the resulting automata are not necessarily minimal. We found
that Grapefruit heuristics reduced our state count by between
4.5% and 11.0%, with LUT reductions from 4.3% to 8.2% as
we scaled the number of automata from 10 to 10,000.

C. Wide Input Signals

One limitation of our explicit automata implementations is
the required distribution of input signals to all of the states that
make up the automata. FPGA optimization tools only route
signals required by the transition logic for each state, but as
formula complexity increases, more signals need to be routed
to each state, resulting in significant hardware utilization.

We repeated our experiment with 100 input signals and
found that even with simple single-pattern formulas, we were
able to synthesize 10,000 symbolic automata formula, but
only 1000 explicit automata. When moving complexity up
to 3 patterns, we could still support over 10,000 symbolic
automata, but fewer than 100 explicit automata. With 5 pattern
complexity, we could only support 1000 symbolic automata,
and could not synthesize even 10 explicit automata.

Wide input signals require serialization on the input, and
handling report identification requires serialization on the
output. Our analysis does not investigate I/O because it is
implementation dependent. When monitors are monitoring an
implementation on the FPGA, there may not be a need to
transfer signals off the chip. Also, in the case of output signals,
there are many approaches to handling monitoring solutions.
If the application and monitoring resolution implementation is
on chip, there may not be a need to remove report information
off the chip. If this information does need to leave the chip, it
might be sufficient to send off a single bit of information, as
opposed to the entire report bit vector, as demonstrated with
other FPGA-based automata implementations.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we introduce a framework for generating
FPGA-deployed runtime monitors based on LTLf formulas
with four different architectures: explicit DFA, explicit NFA,
symbolic DFA, symbolic NFA. We use our framework to
determine performance tradeoffs among these. Our results
show that there is no single best hardware representation
for automata-based runtime verification, and that there are
trade-offs between hardware utilization and the maximum

clock frequency for automata transitions. Across all of our
experiments, we find that symbolic automata tend to use less
hardware (FFs and LUTs) than explicit automata, that explicit
automata tend to run at higher frequencies (except in the case
of very small or very complex formulas), and that symbolic
NFAs tend to perform best of all of our evaluated architectures
across the widest range of scenarios. Our experiments also
showed us that differences between architectures can result in
up to a 5x increase in LUT and FF usage, as well as result in
up to a 63% reduction in runtime verification throughput.

We extended Grapefruit to also generate symbolic hardware
automata. Although Grapefruit includes many other features
including targeting Block RAM, full-stack support with I/O,
and support for variable symbol width and striding, we did
not use these functions in our experiments. Application-side
research could further investigate concerns related to I/O
and moving signal data to the automata as well as handling
reporting data communication.

We targeted Amazon’s F1, cloud-deployed FPGAs to stan-
dardize on one FPGA platform. Application-side research
could utilize our work for integrating runtime monitors into
high performance cloud-deployed applications, including ma-
chine learning and bioinformatics workloads. Our framework
generates HDL that can target smaller and lower power
FPGAs for other applications, including embedded systems.
Because our explicit automata use the standard ANML format,
automata engines built for other architectures can also be used.

We chose to keep the width of input signals constant across
our experiments to determine the performance of our solution
when all input signals are processed simultaneously. With
flexibility in timing, or with slower sampling, future work
could utilize Grapefruit’s variable symbol-width functionality
to handle many more input signals, albeit at a slower rate,
thus making it possible to handle formulas with a much
larger number of propositional variables. This would also
significantly reduce hardware utilization.

In the future, it would also be interesting to compare with
existing frameworks for implementing monitors in FPGA, such
as [34], [39]. Since these works use different specification
languages (e.g. PSL for [34] and STL and TRE for [39]), this
would require establishing a unified set of benchmarks for
these different formalisms and separating in the experimental
evaluation the impact of the differences between specification
languages from the performance of the FPGA framework.

During our analysis, we found that the average automata
edges/node density scaled differently for conjunctions vs.
disjunctions of patterns. We found that edge density for
disjunctions tended to scale with a steeper slope than con-
junctions. Future work could explore this relationship between
compositions of LTL formulas and automata parameters.
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Abstract—Program verification is a resource-hungry task. This
paper looks at the problem of parallelizing SMT-based automated
program verification, specifically bounded model-checking, so
that it can be distributed and executed on a cluster of machines.
We present an algorithm that dynamically unfolds the call graph
of the program and frequently splits it to create sub-tasks that can
be solved in parallel. The algorithm is adaptive, controlling the
splitting rate according to available resources, and also leverages
information from the SMT solver to split where most complexity
lies in the search. We implemented our algorithm by modifying
CORRAL, the verifier used by Microsoft’s Static Driver Verifier
(SDV), and evaluate it on a series of hard SDV benchmarks.

I. INTRODUCTION

Program verification has a long history of over five decades
and it has been consistently challenged over this entire du-
ration by the continued increase in the size and complexity
of software. As the efficiency of techniques and solvers has
increased, so has the amount of software that is written. For
this reason, scalability remains central to the applicability of
program verification in practice.

This paper studies the problem of automated program veri-
fication. In particular, we consider Bounded Model Checking
(BMC) [1]: the problem of reasoning over the entire space
of program inputs but only over a subset of program paths,
typically up to a bound on the number of loop iterations
and recursive calls. BMC side-steps the need for (expensive
and undecidable) inductive invariant generation and instead
directly harnesses the power of SAT/SMT solvers in a de-
cidable fragment of logic. BMC techniques are popular; they
are implemented in most program verification tools today [2,
Table 5].

Our goal is to scale BMC by parallelizing the verification
task and distributing it across multiple machines to make use
of larger compute and memory resources. The presence of
several public cloud providers has made it easy to set up and
manage a cluster of machines. While this distributed platform
is available to us, there is a shortage of verification tools that
can exploit it.
Parallelizing BMC. BMC works by generating logical encod-
ings, often called verification conditions or VCs, for a subset
of program paths that are then fed to an SMT solver to look
for potential assertion violations in the program. We aim to
retain the same architecture, where we continue to use the
SMT solver as a black-box, but generate multiple different
VCs in parallel to search over disjoint sets of program paths.
This allows us to directly consume future improvements in
SMT solvers, retaining one of the key advantages of BMC.

Our technique works by splitting the set of program paths
into disjoint subsets that are then searched independently in
parallel. The splitting is done by simply picking a control
node and considering (a) the set of paths that go through the
node, and (b) the set of paths that do not. Splitting can happen
multiple times. The decisions of what node to split and when
to split are both taken dynamically by our technique. We refer
to the BMC problem restricted to a set of splitting decisions
(i.e., nodes that must be taken, and nodes that must be avoided)
as a verification partition.

Verification starts by creating multiple processes, each of
which have access to the input program and are connected
over the network. One process is designated as the server
while the rest are called clients. The search starts sequentially
on one of the clients that applies standard BMC on the input
program. At some point in time, which is controlled by the
splitting rate, the client chooses a splitting node, thus creating
two partitions. The client continues verification on one of the
partitions, and sends the other partition to the server. The
server is only responsible for coordination; it does not do
verification itself. It accumulates the partitions (represented
as a set of splitting decisions) coming in from the clients
and farms them off to idle clients for verification. Clients can
split multiple times. This continues until a client reports a
counterexample (in which case, it must be a counterexample
in the original program) or the server runs out of partitions
and all clients become idle (in which case, the BMC problem
is concluded as safe).

The splitting rate is adjusted according to the current
number of idle client: it is reduced when all clients are busy,
and then increased as more clients becomes available.

Splitting has some challenges that we illustrate using the
following snippet of code.
procedure main ( ) {

var x := 0 ;
i f ( . . . ) { call foo ( ) ; x := 1 ; }
i f ( . . . ) { call b a r ( ) ; }
i f ( . . . ) { call baz ( ) ; }
assert ( x == 1 | | exp r ) ;

}

Suppose that the assertion at the end of main is the one that
we wish to verify (or find a counterexample) and all uses
of variable x are shown in the snippet. The main procedure
calls multiple other procedures, each of which can manipulate
global variables of the program (not shown). In this case, if we
split on the call to foo, then one partition (the one that must
take foo) becomes trivial: it is easy to see that the assertion
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holds in that partition, irrespective of what happens in the
rest of the program. We refer to this as a trivial split. Each
split incurs an overhead when a partition is shipped to another
client where the verification context for that partition must
be set up from scratch. Trivial splits are troublesome because
they accumulate this overhead without any real benefits in
trimming down the search. Unfortunately, it is hard to avoid
trivial splits altogether because it can involve custom (solver
specific) reasoning (e.g., the fact that variable x is not modified
outside of main). Our technique instead aims to reduce the
overhead with splitting when possible. The server prioritizes
sending a partition back to the client that generated it. Each
client uses the incremental solving APIs of SMT solvers to
remember backtracking points of previous splits that it had
produced. This allows a client to get setup for one of its
previous partitions much faster, thus reducing overhead.

Next, consider splitting on the call to bar. In this case, both
of the generated partitions must still reason about baz because
taking or avoiding bar has no implications on the call to baz.
If bar turns out to be simple, while most of the complexity
lies inside baz, then both partitions will end up doing the
same work and diminish the benefits of parallelization. In this
case, we rely on extracting information from the solver (via
an unsat core) to make informed splitting choices and avoid
duplicating work across partitions.
Implementation. We have implemented our technique in a
tool called HYDRA1. The sequential BMC technique used
by HYDRA is stratified inlining (SI) [3]. SI incrementally
builds the VC of a program by lazily inlining procedure calls.
HYDRA keeps track of the expanding VC, and frequently splits
it by picking a splitting node that has already been inlined in
the VC.

We evaluated HYDRA on Windows Device Driver bench-
marks obtained using the Static Driver Verifier [4], [5]. These
benchmarks extensively exercise the various features of C
such as heaps, pointers, arrays, bit-vector operations, etc. [6]
and collective require more than 11 CPU days to verify in a
sequential setting.

The contributions of this paper are as follows:
• We propose a distributed design to enable solving large

verification problems on a cluster of machines (Sec-
tion IV-A and Section IV-B);

• We design a proof-guided splitting strategy that enables
a lazy, semantic division of the verification task (Sec-
tion III-B and Section IV-C);

• We implemented our design in a tool called HYDRA
that achieves a 20× speedup on 32 clients, solving 30%
additional benchmarks on which the sequential version
timed out (Section V).

The rest of the paper is organized as follows. Section II
covers background on VC generation and the stratified inlining
algorithm. Section III discusses on how the search is decom-
posed for parallel exploration while Section IV presents the

1HYDRA is available in the hydra branch of https://github.com/boogie-org/
corral.git.

procedure main ( ) {
int x , y , z ; bool c ;
L0 : goto L1 , L2 ;
L1 : assume c ;

call foo ( x , z ) ;
goto L3 ;

L2 : assume ! c ;
call b a r ( x , z ) ;
goto L3 ;

L3 : call baz ( y ) ;
goto L4 ;

L4 : assume z != 0
return ;

}
procedure baz ( int y ) {

L10 : assume y == 3 ;
return ;

}

procedure foo ( int x , int z ) {
bool d ;
L5 : goto L6 , L7 ;
L6 : assume d ;

assume z == x + 1 ;
goto L8 ;

L7 : assume ! d ;
assume z == x − 1 ;
goto L8 ;

L8 : return ;
}

procedure b a r ( int x , int z ) {
L9 : assume z == x + 5 ;

return ;
}

Fig. 1: An Example of a Passified Program

design of HYDRA. Section V presents an evaluation of HYDRA
and Section VI discusses related work.

II. BACKGROUND

We describe our techniques on a class of passified impera-
tive programs. Such a program can have multiple procedures.
Each procedure has a set of labelled basic blocks, where each
block contains a list of statements followed by a goto or a
return. A statement can only be an assume or a procedure
call. A procedure can have any number of formal input
arguments and local variables. Local variables are assumed
to be non-deterministically initialized, i.e., their initial value
is unconstrained. An assume statement takes an arbitrary
expression over the variables in scope. An example program
is shown in Figure 1. A goto statement takes multiple block
labels and non-deterministically jumps to one of them.

Passified programs do not have global variables, return
parameters of procedures, or assignments. These restrictions
are without loss of generality because programs with these
features can be easily converted to a passified program [7];
such conversion is readily available in tools like BOOGIE [8].
We also leave the expression syntax unspecified: we only
require that expressions can be directly encoded in SMT.
Our implementation uses linear arithmetic, fixed-size bit-
vectors, uninterpreted functions, and extensional arrays. This
combination is sufficient to support C programs [6], [9].

We aim to solve the following safety verification problem:
given a passified program P , is the end of main reachable,
i.e., is there an execution of main that reaches its return
statement? This question is answered YES (or UNSAFE) by
producing such an execution and the answer is NO (or SAFE)
if there is no such execution. Furthermore, we only consider
a bounded version of problem where P cannot have loops
or recursion. (In other words, loops and recursive calls must
be unrolled up to a fixed depth.) This problem is decidable
with NEXPTIME complexity [7]. We next outline VC gener-
ation for single-procedure (Section II-A) and multi-procedure
(Section II-B) programs.
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A. VC generation for a single procedure

Let p(~x) be a procedure that takes a sequence of arguments
~x. Further, assume that p does not include procedure calls. In
that case, we construct a formula V C(p)(~x) such that p has
a terminating execution starting from arguments ~c if and only
if V C(p)(~c) is satisfiable.

The VC is constructed as follows. For each block labelled
l, let bl be a fresh Boolean variable and il be a unique
integer constant. Let succ(l) be the set of successor blocks of l
(mentioned in the goto statement at the end of block l, if any).
Further, let el be a conjunction of all assumed expressions in
the block. Let ϕl be (bl ⇒ el) if the block l ends in a return
statement, otherwise let it be:

bl ⇒ (el ∧
∨

s∈succ(l)

(bs ∧ (is == f(il)))) (1)

where f is an uninterpreted function Z→ Z called the control-
flow function.

The variables bl are collectively referred to as control
variables. Intuitively, bl is true when control reaches the
beginning of block l during the procedure’s execution. The
constraint ϕl means that if the control reaches block l, then
it must satisfy the assumed constraints on the block (el) and
pick at least one successor block to jump to. The function f
records the chosen successor for each block.

Let lp be the label of the first block of p (where procedure
execution begins). Let blocks(p) be the set of block labels
in p. Then, V C(p) is blp ∧

∧
l∈blocks(p) ϕl. If the VC is

satisfiable, then one can read-off the counterexample trace
from a satisfying assignment by looking at the model for f .
As an example, the VC of procedure foo of Figure 1 is given
in Figure 2.

The arguments of a procedure are its interface variables
and we make these explicit in the VC. For instance, we will
write V C(foo)(x, z) to make it explicit that x and z are the
interface variables (free variables) and the rest of the variables
are implicitly existentially quantified.

B. Stratified Inlining

Inlining all procedure calls can result in an exponential
blowup in program size. For that reason, the stratified inlining
(SI) algorithm [3] constructs the VC of a program in a lazy
fashion. For ease in description, assume that each block can
have at most one procedure call. For a procedure p, let pVC(p),
called the partial VC, be the VC of the procedure constructed
as described in the previous section where each procedure call
is replaced with an “assume true” statement.

Given that programs can only have assume statements, the
partial VC of a procedure represents an over-approximation of
the procedure’s behaviors, one where it optimistically assumes
that each callee simply returns. Similarly, for a procedure p,
if we replace each call with an “assume false” statement,
then we get an under-approximation of p. The VC of this
under-approximation can be obtained by setting the control
variables bl to false for each block l with an “assume false”
statement. For instance, pVC(main) is an over-approximation

V C(foo) : bL5

∧ bL5 =⇒ (bL6 ∧ f(5) == 6) ∨ (bL7 ∧ f(5) == 7)

∧ bL6 =⇒ d ∧ z == x + 1 ∧ bL8 ∧ f(6) == 8

∧ bL7 =⇒ ¬d ∧ z == x− 1 ∧ bL8 ∧ f(7) == 8

∧ bL8 =⇒ true

pVC(main) : bL0

∧ bL0 =⇒ (bL1 ∧ f(0) == 1) ∨ (bL2 ∧ f(0) == 2)

∧ bL1 =⇒ c ∧ bL3 ∧ f(1) == 3

∧ bL2 =⇒ ¬c ∧ bL3 ∧ f(2) == 3

∧ bL3 =⇒ bL4 ∧ f(3) == 4

∧ bL4 =⇒ z 6= 0

Fig. 2: VCs of procedures foo and main from Figure 1

of main (shown in Figure 2), whereas the following is an
under-approximation: pV C(main) ∧ ¬bL1 ∧ ¬bL2 ∧ ¬bL3.

A static callsite is defined as the pair (l, p) that represents
the (unique) call of procedure p in block l. For instance,
main of Figure 1 has three callsites: (L1,foo), (L2,bar),
(L3,baz). A dynamic callsite is a stack of static callsites that
represents the runtime stack during a program’s execution. We
assume that main is always present at the bottom of the stack
for any dynamic callsite. For instance, [main, (L1,foo)]
represents the call stack where main executed to reach L1
and then called foo.

For a procedure p, let callsites(p) be the set of static callsites
in p. Given a static callsite s, and dynamic callsite c, let s :: c
be the dynamic callsite where s is pushed on the top of the
stack c. SI can require to inline the same procedure multiple
times. Suppose that a procedure p calls p′ twice, once in
block l1 and once in block l2. Dynamic callsites will help
distinguish between the two instances of p′: the first will have
(l1, p

′) on top of the stack and the latter will have (l2, p
′) on

top of the stack.
We must take care to avoid variable name clashes between

different VCs as we inline procedures. For a dynamic callsite
c and procedure p that is at the top of c, let pVC(p, c) be
the partial VC of p (as described earlier in the section),
however for the construction of the partial VC, we use globally
fresh control variables (variables bl of Equation 1), globally
fresh block identifiers (constants il of Equation 1) as well as
globally fresh instances for the local variables. In pVC(p, c),
the argument c is only used for bookkeeping purposes: let
control-variable(l, c) refer to the control variable used for
block l when constructing pVC(p, c). If c is (l, p) :: c′,
then let control-variable(c) be control-variable(l′, c′). Simi-
larly, if p′ is called from procedure p in block l′, then let
interface-variables((l′, p′) :: c) be the set of interface variables
(actuals) for the call to procedure p′ in block l′ in pVC(p, c).

The SI algorithm is shown in Algorithm 1. The algorithm
requires an SMT solver with the usual interface. We use
the Push API to set a backtracking point and a Pop API
that backtracks by removing all asserted constraints until a
matching Push call. Further, we assume that a counterexample
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Algorithm 1: The Stratified Inlining algorithm.
Input: A Program P with starting procedure main
Input: An SMT solver S
Output: SAFE, or UNSAFE(τ )

1 C ← {[main, s] | s ∈ callsites(main)}
2 S.Assert(pVC(main, [main]))
3 while true do
4 outcome← SISTEP(P,C,S)
5 if outcome == SAFE ∨ outcome == UNSAFE(τ ) then
6 return outcome

7 else
8 let NODECISION( , , C′) = outcome
9 C ← C′

Algorithm 2: SISTEP(P , C, S)
Input: A Program P , a set of callsites C
Input: An SMT solver S
Output: SAFE, UNSAFE(τ ), NODECISION(uc, I, C)

1 // Under-approximate check
2 S.Push()
3 forall c ∈ C do
4 S.Assert(¬control-variable(c))

5 if S.Check() == SAT then
6 return UNSAFE(S.Model())
7 else
8 uc← S.UnsatCore()

9 S.Pop()
10 // Over-approximate check
11 if S.Check() == UNSAT then
12 return SAFE

13 else
14 τ ← S.Model()
15 I ← C ∩ callsites(τ)
16 C′ ← ∅
17 forall c ∈ I do
18 C′ ← INLINE(c)

19 C ← (C − I) ∪ C′

20 return NODECISION(uc, I , C)

trace can be extracted from a model returned by the solver.
The algorithm works by iteratively refining over-

approximations of the program (in hope of getting an
early SAFE verdict) and under-approximations of the program
(in hope of getting an early UNSAFE verdict). Both these
approximations are refined by inlining procedures.

Line 1 initializes a set C of open dynamic callsites. This
set represents procedure calls that have not been inlined yet.
The partial VC of main is asserted on the solver in Line 2.

SI, then, iteratively calls the SISTEP routine (Algorithm 2)
that returns one of three possible answers: conclusive verdicts
SAFE or UNSAFE, or an inconclusive verdict NODECISION.

The SISTEP routine is shown in Algorithm 2. It does an
under-approximate check (Line 5) by assuming that calls at
each of the open callsites cannot return (Line 4). If it finds
a counterexample trace, SI returns UNSAFE, along with the
model that can be used to construct the trace. This trace is
guaranteed to only go through inlined procedure calls because

Algorithm 3: INLINE(c, S)
Input: A dynamic callsite c, An SMT solver S
Output: A set of open callsites C′

1 let (l, p) :: c′ = c
2 S.Assert(control-variable(c) =⇒

pVC(p, c)(interface-variables(c)))
3 C′ ← C′ ∪ {s :: c | s ∈ callsites(p)}
4 return C′

SISTEP Action Open Callsites Inlined Callsites
Step-0 Assert pVC(main) [main, (L1,foo)], [main]

[main, (L2,bar)],
[main, (L3,baz)]

Step-1 Underapprox check: UNSAT
Overapprox check: SAT
Assert pVC(foo) [main, (L2,bar)] [main, (L1,foo)]
Assert pVC(baz) [main, (L3,baz)]

Step-3 Underapprox check: SAT [main, (L2,bar)]
Return UNSAFE

TABLE I: Execution of SI on the program of Fig. 1

all the open ones were blocked. Ignore the call to gather the
unsat core shown on Line 8 for now; we use this information
in the next section.

Next, SISTEP does an over-approximate check (Line 11).
If this is UNSAT, then SI returns SAFE. If the check was
satisfiable, then we construct the counterexample trace from
the model provided by the solver (Line 14). This trace is
guaranteed to go through at least one open call site (because
the under-approximate check was UNSAT). The SI algorithm
proceeds to inline the procedures called at each of the open
callsites that the trace goes through. Such callsites are recorded
in variable I (Line 15); these get returned for bookkeep-
ing purposes (used in the next section). Callsites in I are
inlined by asserting the partial VC of the callee, as shown
in Line 2 in Algorithm 3. Read the asserted constraint as
follows: if the control variable of the calling block is set
to true then the VC of the procedure must be satisfied. The
use of interface-variables ensures that formals are substituted
with actuals for the procedure call. New callsites that are
created as a result of the inlining are recorded in C ′ and then
eventually added back to C (Line 19). Finally, SISTEP returns
NODECISION back to SI with the set of callsites that it inlined,
and the process repeats. An example illustrating the execution
of SI is shown in Table I.

Define a call tree to be a (prefix-closed) set of dynamic
callsites that represents all dynamic callsites that have been
inlined by the SI algorithm at any point in time. We call this
set as a tree because it can be represented as an unfolding of
the program’s call graph.

III. SPLITTING THE SEARCH

HYDRA employs a decomposition-based strategy to achieve
parallelism. During the course of execution of the SI algo-
rithm, HYDRA splits the current verification task by picking
a dynamic callsite c that has already been inlined by SI. This
generates two partitions: one that requires executions to pass
through c (referred to as the must-reach partition), and the
other that requires executions to avoid c (referred to as the
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must-avoid partition). This strategy provides for an exhaustive
and path-disjoint partitioning of the search space.

Formally, a partition is a pair (T,D) where T is a call tree
(i.e., set of inlined callsites) and D is a set of decisions (either
must-avoid(c) or must-reach(c) for c ∈ T ). As a notation
shorthand, for a partition ρ = (T,D) and callsite c, let ρ+ c
be the partition (T ∪ {c}, D). Similarly, for a decision d, let
ρ+d be the partition (T,D∪{d}). Further, let calltree(ρ) = T
and decisions(ρ) = D. One can also see the above strategy
as dividing the proof obligation (correctness theorem) on the
complete program into a set of lemmas corresponding to each
of the partitions.

This section addresses two primary concerns: (a) how to
enforce splitting decisions during search? (Section III-A), and
(b) how to choose a callsite for splitting? (Section III-B).

A. Encoding splitting decisions in SI as constraints

The constraint for must-avoid(c) is relatively straightfor-
ward. It is simply ¬control-variable(c). Asserting this con-
straint any time after SI has inlined c will ensure that control
cannot go through c, thus SI will avoid c altogether.

We next describe the encoding of the must-reach constraint
by first looking at the single-procedure case. For a procedure
p, we introduce must-reach control variables rl, one for each
basic block l of p. Intuitively, setting rl to true should mean
that control must go through block l. Recall from Section II
that the VC of a procedure uses il as a unique integer constant
for block l and f as the control-flow function. We define
must-reach(p) as the following constraint:∧

l∈blocks(p)

(rl ⇒
∨

n∈pred(l)

(rn ∧ f(il) == in)) (2)

This constraint enforces that if a block l must be reached,
then one of its predecessors must be reached. The use of the
control-flow function ties this constraint with the procedure’s
VC. For any block l, asserting rl ∧must-reach(p), in addition
to the VC of p will enforce the constraint that control must
pass through block l. The proof is straightforward and we omit
it from this paper.

For multi-procedure programs, we construct the must-reach
constraint inductively. Let must-reach(p, c) be the constraint
must-reach(p), but where the block identifiers {il} are
the same as the ones used in pVC(p, c). We construct
must-reach(c) inductively over the length of c. If c = [main],
then must-reach(c) is true. Otherwise, if c = (l, p) :: c′, then
must-reach(c) is rl ∧ must-reach(p, c′) ∧ must-reach(c′).

B. Choosing a splitting candidate

Given an unsatisfiable formula Φ, expressed as a conjunc-
tion set of clauses {φi}, a minimal unsatisfiable core (min-
unsatcore) is a subset of clauses Ψ ⊆ Φ whose conjunction is
still unsatisfiable and every proper subset of Ψ is satisfiable.

Consider the under-approximate check made by SI (Line 5
of Algorithm 2) where it blocks open-callsites and attempts to
find a counterexample in the currently inlined portion of the
program. This check is a conjunction of constraints, passed

main

foo baz bar

baz1foo1 foo2 bar1 bar2 bar3

qux

qux1

Fig. 3: Proof-guided splitting

via S.Assert, of two forms. First is the (partial) VCs of
inlined callsites (Line 2 of Algorithm 3) and second is the
blocked open callsites (Line 4 of Algorithm 2). If the check is
unsatisfiable, then we extract its min-unsatcore and represent
it as a set of callsites uc (that may be inlined or may be
open). The set uc represents the current proof of safety of the
program. Inlined callsites that are not part of uc are deemed
search-irrelevant because whether they were inlined or not is
immaterial to conclude safety of the program (at this point
in the search). Formally, those callsites could have been left
open (i.e., over-approximated) and the check would still be
unsatisfiable. Therefore, the solver is likely to spend its energy
searching and expanding the uc portion of the calltree as the
search proceeds further. Consequently, we restrict splitting to
a callsite chosen from uc so that we split where the search
complexity lies.

Consider the inlining tree shown in Figure 3, where the
open callsites appear as dotted circles and the inlined ones
are shown as solid circles; the shaded nodes are the callsites
that appear on the min-unsatcore (uc). In this case, both baz
and baz1 are ruled out for falling outside uc. If we pick
some other callsite to split, say qux, then the must-reach(qux)
partition of that split is likely to search in the subtree rooted
at qux, whereas the must-avoid(qux) partition will search
the uc portion excluding the subtree rooted at qux. We use
a simple heuristic that roughly balances these partitions. Let
the current inlined calltree be T and let subtree(T, c) be
the subtree rooted at c. We choose the splitting callsite as
the one that has maximum number of relevant callsites in its
subtree (excluding main because that would be a trivial split).
Formally, the splitting callsite is:

argmax
c∈uc

{|subtree(T, c) ∩ uc|}

In our example, we will pick bar for splitting.

We note that this choice of balancing the partitions is just
a heuristic. In general, there may be dependencies between
callsites. For instance, blocking one callsite can block others
or make others be must-reach because of control-flow depen-
dencies in the program. Our heuristic does not capture these
dependencies. Furthermore, in our implementation, we do not
insist on obtaining a minimal unsat core in order to reduce the
time spent in computing it. Solvers generally provide a best-
effort unsat core minimization (e.g., the core.minimize
option in Z3).
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Algorithm 4: Client-side verification algorithm
Input: A Program P
Input: An SMT solver S

1 while true do
2 ρ← SendSync(GET_PARTITION)
3 outcome ← VERIFY(P , ρ, S)
4 SendAsync(OUTCOME, outcome)

IV. HYDRA DESIGN AND IMPLEMENTATION

HYDRA employs a client-server distributed architecture with
a single server and multiple clients. The server (Section IV-B)
is responsible for coordination while verification happens on
the clients (Section IV-A). A client can decide to split its
current search, at which point it sends one partition to the
server while it continues on the other partition. If a client
finishes its current search with a SAFE verdict, it contacts the
server to borrow a new partition and starts solving it.

A. Client Design

All clients implement Algorithm 4. We use SendSync as a
message-response interaction with the server. SendAsync is
the asynchronous version where a message is sent to the server
but a response is not expected. A client repeatedly requests the
server for a partition (Line 2), solves it (Line 3) and sends the
result back to the server on completion. Each client uses its
own dedicated SMT solver (S) for verification.

VERIFY (Algorithm 5) maintains a stack of decisions
dstack and a set of open callsites C. It starts off by preparing
the input partition (Lines 3 to 7): it inlines the calltree of ρ
and asserts all its splitting decisions. The client then enters a
verification loop (Line 8) that repeatedly uses SISTEP (Line 9)
to expand its search. If a counterexample is found (Line 10),
the client returns an UNSAFE verdict back to the server.
If SISTEP returns NODECISION, it implies that some more
procedures were inlined but the search remained inconclusive;
in this case, we perform the necessary bookkeeping on the set
of currently open callsites (C ′), new procedures inlined (I),
and the minunsatcore from the unsat query (uc′).

If SISTEP returned SAFE, then the search on the current
partition has finished and the client must pick another partition
to solve. This is done by returning the SAFE verdict (Line 22).
The check on Line 15 is an optimization that we describe later
in this section.

After checking the outcome of SISTEP, the client decides
if it is time to split its search. This is referred to abstractly as
“TimeToSplit” on Line 23: the exact time is communicated by
the server to client (see Section IV-C). For splitting, the client
picks a callsite c in accordance with our proof-guided splitting
heuristic (from Section III-B) using the stored unsatcore uc.
We note that the correctness of our technique does not rely
on when a split happens or what splitting callsite is chosen.
Therefore, these decisions can be guided by heuristics and
tuned to optimized performance.

After splitting, the client continues along the partition with
the MUSTAVOID(c) decision (let’s call this partition ρ1). The

Algorithm 5: VERIFY(P , ρ, S)
Input: A Program P , A partition ρ of P , A solver S
Output: SAFE, or UNSAFE(τ )

1 S.reset(), dstack ← [ ], C ← ∅ uc← ∅
2 // Setup input partition
3 forall c ∈ calltree(ρ) do
4 C′ ← INLINE(c), C ← (C − {c}) ∪ C′

5 forall d ∈ decisions(ρ) do
6 if d == MUSTAVOID(c) then S.Assert(must-avoid(c))
7 if d == MUSTREACH(c) then S.Assert(must-reach(c))

8 while true do
9 outcome ← SISTEP(P , C, S)

10 if outcome == UNSAFE(τ ) then
11 return outcome

12 else if outcome == NODECISION(uc′, I, C′) then
13 uc← uc′, C ← C′, ρ← ρ+ I

14 else
15 if SendSync(POP)==YES then
16 repeat
17 let d(c) :: ds = dstack
18 S.Pop(), dstack ← ds, ρ← ρ− d(c)
19 until d == MUSTAVOID
20 S.Push(), S.Assert(must-reach(c)),

dstack ← MUSTREACH(c) :: dstack,
ρ← ρ+ MUSTREACH(c)

21 else
22 return outcome

23 if TimeToSplit then
24 c← choose(calltree(ρ), uc)
25 S.Push()
26 S.Assert(must-avoid(c))
27 SendAsync(SEND_PARTITION,

ρ+ MUSTREACH(c))
28 dstack ← MUSTAVOID(c) :: dstack,

ρ← ρ+ MUSTAVOID(c)

other partition (ρ2) is sent to the server (Line 27). Note further
that on Line 25, the client creates a backtracking point that
is just before the decision on c is asserted. This backtracking
point is exploited in Lines 15 to 20. When the client finishes
search on ρ1, it pings the server to know if ρ2 has already
been solved by a different client or not. If not, it simply
backtracks the solver state and asserts the flipped decision
MUSTREACH(c) to immediately get set up for search on ρ2.
This way, the client avoids the expensive setup of initializing
a new partition. Because splitting can happen multiple times,
the loop on Line 19 is necessary to follow along the recorded
stack of decisions.

B. Server Design

We assume that each client has an associated unique iden-
tifier. Each message coming from a client is automatically
tagged with the client’s identifier. The server maintains two
data structures. The first is an array Q of double-ended queues.
The queue Q[id] stores all partitions produced by client id.
The second is a queue wt of clients that are currently idle.

The server processes incoming messages as follows. On re-
ceiving the message 〈SEND_PARTITION, ρ〉 from client id, it
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On <SEND_PARTITION> 

On <POP>

Do PushLeft

Do PopLeft

On <GET_PARTITION> 

Do PopRight From Largest

Fig. 4: Maintaining the double-ended queues

does a push-left to insert ρ into Q[id]. (The manipulation
of Q is depicted in Figure 4.) This ensures that later partitions
(which have a larger number of decisions and a larger call
tree) from a particular client id appear on the left of Q[id].

On receiving message 〈GET_PARTITION〉 from client id,
the server needs to reply with a partition because id has just
become idle. If all queues Q[i] are empty, then id is inserted
into wt and the client is kept waiting for a reply. Otherwise,
the server picks the longest queue Q[i], does a pop-right
and replies to the client. This strategy attempts to avoid skew
in queue sizes. Further, the rightmost partition is the smallest
in that queue, which minimizes the setup time for that partition
for the client that will get it. As more partitions are reported
to the server (via a SEND_PARTITION), the server loops
through wt, replying to as many idle clients as possible with
partitions popped-right from the currently longest queue.

The message 〈POP〉 from client id implies that the client
wishes to backtrack to its previously reported partition. Be-
cause reported partitions are pushed-left, and other clients
(on GET_PARTITION) steal from the right, the previously
reported partition from client id is exactly the leftmost one in
Q[id], if any. Thus, the server replies YES back to the client
if Q[id] is non-empty, followed by a pop-left. Otherwise,
the server replies NO.

The server additionally listens to OUTCOME messages. If
any client reports UNSAFE, all clients are terminated and the
UnSafe verdict is returned to the user. The server returns
SAFE verdict to the user when all queues in Q are empty and
all clients are idle (i.e., wt consists of all clients).

Our design of the work-queue Q, as an array of sorted
(by size) work-queues, is in contrast with using a centralized
queue that is standard in classical work-stealing algorithms.
It is useful for avoiding skew in queue sizes, distributing
smaller partitions first, and enabling the client-backtracking
optimization.

C. Adaptive rate of splitting
While a low splitting rate inhibits parallelism, a high rate

increases the partition-initialization overhead on the clients.
HYDRA uses a dynamic split-rate determined by the number of
idle clients and the number of partitions available at the server.
Each client maintains a split time interval δ (in seconds) and
splits the search (“TimeToSplit” of Algorithm 5), if δ seconds
have elapsed since the last split. The value of δ starts as a
constant δc and is updated by the server as follows:

δi =

{
Q[i].count
wt.count × δc if wt.count 6= 0

K × δc, otherwise.
(3)

In the first case, a client’s splitting is slowed down in
proportion to its queue size (divided by the number of idle

clients). The second case applies when there are no idle clients.
Increasing δ by a factor of K reduces the rate of splitting
drastically. We use δc = 0.5s and K = 20 in our experiments.

V. EXPERIMENTAL RESULTS

We evaluated HYDRA on SDV benchmarks [10]. SDV is
used by Windows driver developers to statically check various
rules on correct usage of kernel APIs in a driver. SDV comes
packaged with a set of rules2 that typically establish that kernel
APIs are called in the correct temporal sequence; for instance,
that a lock must be released before it can be acquired again.

The SDV benchmarks are obtained from a run of SDV on
set of real-world device drivers that exercise all features of
the C language: loops and recursion (up to a bounded depth),
pointers, arrays, heap, bit-vector operations, etc. Each instance
in the benchmark suite is a device driver paired with one of
the SDV rules, i.e., it checks for the correct usage of the
rule in the driver. SDV compiles the drivers, instruments the
property and produces a program in Boogie [8]. The process of
compilation to Boogie has been described in detail in previous
work [6]. Each Boogie program has a well-defined entry point
that is annotated with the tag {:entrypoint} and multiple
assertions. The verification objective is to find an execution
that starts at the entry procedure and ends with an assertion
failure. Note that although these benchmarks are all compiled
from C, HYDRA itself is source-language agnostic and can
accept Boogie programs obtained from any source language.

We compared the performance of HYDRA against
CORRAL [3] that implements the sequential Stratified Inlining
algorithm. CORRAL forms a good baseline because it has been
optimized heavily for SDV over the years [6].

We only selected hard benchmarks (where CORRAL took
at least 200 seconds to solve or timed out). We ran HYDRA
with 32 clients. Timeout was set to 1 hour. We conducted
our experiments with the server running on one machine (16
core, 64 GB RAM) and the 32 clients running on another
machine (72-core with Intel Xeon Platinum 8168 CPU and 144
GB RAM), communicating via HTTP calls. As clients never
communicate amongst themselves, this setup is equivalent to
running clients on different machines.

Both CORRAL and HYDRA use Z3 [11] as the underlying
SMT solver. While we used the default setting of a fixed
random seed for Z3, we verified that the results reported here
do not depend on the random seed. In fact, the behavior of
the SI algorithm, which underlies both CORRAL and HYDRA,
is not impacted by the choice of the random seed in any
statistically significant way.

A. HYDRA versus CORRAL

Instances Solved. There were a total of 333 programs. HYDRA
solved 99 instances (30%) on which CORRAL timed out
(34 of these were SAFE and the rest 65 were UNSAFE).
Conversely, CORRAL solved 12 (4%) instances on which
HYDRA timed out. We did not investigate these cases in detail;

2https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/
static-driver-verifier
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(a) Scatter plot of running times (b) Histogram of speedup of HYDRA over
CORRAL

(c) Cactus plot of instances solved

Fig. 5: Comparison of HYDRA against CORRAL on SDV benchmarks

in a practical scenario one can simply dedicate a single client
to run CORRAL and get the best of both tools. Overall, HYDRA
solved 183 (55%) instances while CORRAL solved only 96
(29%) instances. Interestingly, there were 138 instances (41%)
that were unsolved by both HYDRA and CORRAL indicating
the need for further improvements.
Verification Time. In terms of running time, HYDRA was
significantly faster than CORRAL in most (84%) cases: Fig-
ure 5a shows the scatter plot of running times. Figure 5b is
a histogram of the speedup of HYDRA over CORRAL. For
example, there were 8 instances where HYDRA was more than
50× faster than CORRAL. A small fraction of instances had
slowdowns as well, but the worst among these was 0.2×, i.e.,
CORRAL was 5× faster than HYDRA. Over all instances, the
mean speedup is 20.4× and median speedup is 9.7×. Speedup
excludes cases in which one of the tools timed out.
Scalability. Figure 5c is a cactus plot illustrating the scalability
of HYDRA with the number of clients. CORRAL is able to
solve only 58 instances within 1000 seconds. Running HYDRA
with only a single client results in worse performance than
CORRAL (solves only 46 instances within 1000 seconds).
However, the performance improves significantly with the
number of clients (solves 166 instances with 32 clients within
1000 seconds).

B. Effectiveness of proof-guided splitting

Empirical Analysis. We define dissimilarity η(i, j) of a client
i with respect to client j as 1− |Li∩Lj |

|Li| , where Li, Lj denote
the set of callsites that i and j have inlined, respectively, when
HYDRA finishes. A high value of η(i, j) implies that the clients
did a different search. Note, however, that η(i, j) will never
be 1 because certain callsites (like main) will always need to
be inlined by each client.

Across all benchmarks and all client pairs, the average dis-
similarity value was 0.55. This indicates sufficient difference
among the inlined calltrees across clients.
Statistical Analysis. We implemented a randomized splitting
algorithm that (1) decides to split/not-to-split at each inlining
step uniformly at random, (2) if it has decided to split, it selects
the splitting call-site uniformly at random.

We ran this randomized splitting algorithm 5 times for
each program and compared the minimum verification time
of these 5 runs for each instance against that of HYDRA.
Using the Wilcoxon Sign Rank test, we found that HYDRA
is statistically better than the randomized splitting algorithm
with a p-value of 0.0012, indicating that the performance of
the splitting heuristic is not accidental.

C. Server optimizations

We measured the performance impact of the server-side
queue implementation on HYDRA. We compared our double-
ended queues Q from Section IV-B against a classical work-
stealing queue implementation. Our implementation allowed
HYDRA to complete on 40% more cases where using the
classical version made HYDRA time out. Further, HYDRA’s
performance was 8.5 times faster when both implementations
terminated with a verdict.

In terms of controlling the splitting rate, both the perfor-
mance (p-value of 5.27× 10−5) and the number of splits (p-
value of 5.43 × 10−33) were found to be statistically better
with split-rate feedback.

VI. RELATED WORK

Parallelizing SAT/SMT solvers. In contrast to parallelizing
verification tasks, parallelizing SAT/SMT solvers has attracted
wider attention. There have been two popular, incompara-
ble [12], approaches to parallelizing satisfiability problems:
portfolio-based techniques [13], [14], [15] and divide and con-
quer techniques (decomposition [16], [17] or partitioning [18],
[19], [20], [21]). Portfolio-based strategies either run multiple
different algorithms or multiple instances of a randomized
algorithm. They tend to work well in the presence of heavy-
tailed distribution of problem hardness.

Divide and conquer strategies are most similar to our work.
They either use static partitioning, based on the structure of
the problem [22], or dynamic partitioning [19] based on run-
time heuristics. However, unlike partitioning on individual
variables at the logical-level, we split at the program-level
based on its call graph. In our setting, the VC of a program
can be exponential in the size of the program. This makes it
hard to directly use parallelized solvers; we must split even
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before the entire VC is generated. Furthermore, parallelized
solvers are still not as mainstream as sequential solvers. Using
solvers as a black-box allows us to directly leverage continued
improvements in solver technology
Parallelizing program verification. Saturn [23] is one of the
earlier attempts at parallelizing program verification. Saturn
performs a bottom-up analysis on the call graph, generat-
ing summaries of procedures in parallel. While the intra-
procedural analysis of Saturn is precise, it only retains ab-
stractions of function summaries, thus cannot produce precise
refutations of assertions like BMC.

There have been attempts at parallelizing a top-down
abstraction-based verifier [24] as well as the property-directed
reachability (PDR) algorithm [25], [26], [22], [13] and k-
induction [27], [28]. These all rely on the discovery of induc-
tive invariants for proof generation, a fundamentally different
problem than BMC. It would be interesting future work to
study the relative speedups obtained for parallelization in these
respective domains.

Closer to BMC, parallelization has been proposed by a
partitioning of the control-flow graph [29]. This approach
does static partitioning (based on program slicing) and does
not consider procedures at all (hence, must rely on inlining
all procedures). Further, it has only been evaluated on a
single benchmark program. Our technique, on the other hand,
performs dynamic partitioning, supports procedures and has
been much more extensively evaluated.

In a recent work, Inverso et al. [30] propose a parallelization
technique for the verification of concurrent programs by parti-
tioning the verification task such that each partition considers
a subset of the interleavings of the input program. Next, it
uses sequentialization to generate a sequential program for
each partition and then verifies the sequential program. The
partitioning is static and done up-front. This work is comple-
mentary to HYDRA: it addresses the complexity arising from
many interleavings, whereas HYDRA addresses complexity
arising from many (sequential) procedures calling each other.
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Abstract—Whether representing strings, heap objects, or nu-
merical vectors, arrays are pervasive in software. Unfortunately,
while several software model checkers support arrays, they tend
to struggle with many array-manipulating programs due to work
expended generating theory lemmas that are ultimately irrelevant
or redundant. By judicious abstraction of array operations to the
logic of equality with uninterpreted functions (EUF), we show
that we can directly reason about array reads and adaptively learn
lemmas about array writes leading to significant performance
improvements over existing approaches. We find that our model
checker solves more than 100 more SV-COMP benchmarks than
SPACER, a leading model checker.

I. INTRODUCTION

Arrays and array-like structures are pervasive in the software
world. From C/C++ arrays and vectors to Python lists, it
is difficult to find software that doesn’t use and manipulate
arrays. Despite this, research of software model checkers has
largely focused on finding numerical invariants and proving
numerical properties of programs. As results of the software
verification competition (SV-COMP) show, even when model
checkers support arrays, there are a significant number of
programs that cannot be automatically verified—some for a
lack of expressivity and some for a lack of performance. Our
focus is on the latter.

The key challenge that we face is adequately controlling
theory reasoning in the SMT solver underlying the model
checker. While SMT solvers typically have an array theory
and can therefore directly solve array problems, the interface
that SMT solvers provide does not provide for adequate
incrementality and hinting to enable maximal performance.
For instance, we find that, in SV-COMP benchmarks, as many
as 90% of the array lemmas that the SMT solver is learning are
either redundant or ultimately irrelevant. Most lemmas either
do not advance the cause of the model checker or were thrown
away by the SMT solver due to imperfect caching. Thus time
spent learning those lemmas was wasted effort.

To eliminate this waste, we do incremental inductive model
checking on top of an equality with uninterpreted functions
(EUF) theory [1]. This removes the need for SMT array
theories in the core incremental model checking process,
relegating the array theory solely to abstraction refinement
operations, and yielding a thousand-fold reduction in the
number of operations that do redundant or irrelevant work.
Additionally this means that array lemmas are only learned
where they are pertinent to proving or disproving the property.

Moreover our strategy addresses a fundamental tension. On
the one hand, incremental model checkers [2], which construct
a safety proof bit by bit, are particularly scalable because their
many individual queries are simple to solve and generalize. On
the other hand, these queries lack error path information that
could simplify overall checking.

For example, consider model checking the following pro-
gram, assuming that a, b, and f are distinct constant values:

int[] A; int i, a, b, f;
`1: A[3] = f;
`2: A[1] = a;

A[2] = b;
assume(1 <= i <= 3);
if (A[i] == f);

`3: error();
else

`4: exit();

The model checker is trying to find if any values of i lead to
the error at location `3. Of course it can reach `3 if i = 3,
which the checker takes two SMT queries to discover. The
first query corresponds to reaching `3, where A[i] = f, from
`2. The solver deduces i 6∈ {1, 2}, meaning the property may
yet be violated, so the checker moves on to the next query,
which corresponds to reaching the failure from `1. The first
query involves two array stores and one read; the SMT array
theory will generate theory lemmas to deduce that A[i] is
not set to f by any assignment from `2. Several of these
lemmas ultimately do not matter, however, since the property
is discovered to be violated by the antecedent assignment at
`1.

We study arrays and array abstraction in the context of EUF
model checking and make the following contributions:

1) We develop an algorithm for integrating array abstrac-
tion into EUFORIA, an EUF-based, incremental, induc-
tive, model checker (Section III).

2) We introduce a refinement procedure for learning rele-
vant array lemmas (Section IV).

3) We evaluate the integration of array abstraction with
EUF-based model checking using a variety of device
driver benchmarks from SV-COMP (Section V). We find
that EUFORIA performs well compared to SPACER and
ICIA.
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II. BACKGROUND

a) Equality with Uninterpreted Functions (EUF): We
consider a first-order language with equality with signature
S and two common sorts, BOOLs and INTs. Our setting
is standard quantifier-free, first-order logic (FOL) with the
standard notions of theory, satisfiability, validity, entailment,
and models. Much of this background is adapted from previous
work [1].

The EUF logic grammar is presented here:
type production explanation
term (t) ::= x | y | z | · · · 0-arity term

| F(t1, t2, . . . , tn) uninterp. function (UF)
| ite(f, t1, t2) if-then-else

atom (a) ::= t1 = t2 equality atom
| x | y | z | · · · Boolean atom
| P(t1, t2, . . . , tn) uninterp. predicate (UP)

formula (f) ::= a
| ¬a negation
| f1 ∧ f2 conjunction
| f1 ∨ f2 disjunction

Atomic formulas (atoms) are made up of Boolean identifiers,
uninterpreted predicates (UPs), and equalities between terms.
Formulas are made up of terms combined with arbitrary
Boolean structure. For simplicity, but without loss of gener-
ality, we only consider formulas in negation normal form. A
literal is a (possibly-negated) atom containing no occurrences
of ITE. A clause is a disjunction of literals. A cube is a
conjunction of literals. When convenient, a formula F may be
treated as a set of its top-level conjuncts, e.g., x = 1 ∈ F if
F = (x > 17∧x = 1). a |= b means that a entails b. We write
uninterpreted objects—terms x, functions F, and predicates
P—in sans serif face. The semantics of these formulas is
standard.

b) Arrays: We consider a theory of arrays with exten-
sionality and constant-initialized arrays. This theory has the
particular function symbols select, store, and const-array.
The theory is defined by McCarthy’s axioms [3], extended
with axioms for extensionality and constant initialization:

∀aije. i = j =⇒ select(store(a, i, e), j) = e (1)
∀aije. i 6= j =⇒ select(store(a, i, e), j) = select(a, j) (2)
∀ab. (∀i. select(a, i) = select(b, i)) =⇒ a = b (3)
∀ik. select(const-array(k), i) = k (4)

The first two axioms specify array accesses. The third axiom
specifies that equal arrays have identical elements at identical
indices. The fourth axiom specifies that every index of a
constant-initialized array has the initializer value.

We consider this array theory—specifically including equal-
ity and constant initialization—because of its utility for soft-
ware verification. Programs commonly bulk-initialize arrays
and array equality allows encodings to be easily composed.

c) Transition Systems for Programs: A transition sys-
tem [4], [5] is a tuple T = (X,Y, I, T ) consisting of a (non-
empty) set of state variables X = {x1, . . . , xn}, a (possibly
empty) set of input variables Y = {y1, . . . , ym}, and two
formulas: I , the initial states, and T , the transition relation.
Formulas over state variables, or state formulas, are identified

with the sets of states they denote; for example, the formula
(x1 = x2) denotes all states where x1 and x2 are equal,
and other variables may have any value. The state space
of T is the set of all valuations to variables in X . The
set of next-state variables is X ′ = {x′1, x′2, . . . , x′n}. For a
formula σ, Vars(σ) denotes the set of state variables free in σ
(respectively, Vars′(σ) denotes the set of next-state variables
in σ). We may write σ as σ(X) when we wish to emphasize
that the free variables in σ are drawn solely from the set X ,
i.e., Vars(σ(X)) ⊆ X; similarly for σ(X ′) (also written σ′).
The system’s transition relation T (X,Y,X ′) is a formula over
the current-state, next-state, and input variables.

A (possibly-infinite) sequence of states σ0(X), σ1(X), . . .
is an execution of a transition system if σ0(X) |= I(X) and
for every pair (σi(X), σi+1(X)), σi(X) ∧ T |= σ′i+1(X).

A safety property is specified by a formula, P (X). The
model checking problem is to determine whether any state
satisfying ¬P (X) is reachable through an execution of T .
A counterexample to a safety property P (X) is a k-step
execution such that σk(X) |= ¬P (X).

A concrete transition system (CTS) is defined over bit vector
and array state variables and operations in the quantifier-free
logic of bit vectors and arrays (QF_ABV from SMT-LIB [6]).

III. MODEL CHECKING WITH EUF AND ARRAYS

To better understand how arrays are handled within EUF-
ORIA, we first review EUFORIA’s data abstraction approach. It
is the inspiration and basis for our array abstraction.

EUFORIA homomorphically maps bit vector operations into
uninterpreted functions in order to avoid potentially expensive
reasoning (e.g., nonlinear computations). EUF operation ab-
straction was introduced by Burch and Dill [7] for checking
the equivalence between pipelined computer architectures and
their single-step specifications. EUFORIA adopts and extends
this abstraction to check for general safety properties. For
purposes of this paper, we assume there is an abstraction
function J.K that homomorphically maps a given concrete
transition relation to an EUF transition relation. For instance,
Jx′ = x + 1K = (x̂′ = ADD(x̂, 1̂)). State variables, inputs,
and constants are mapped to uninterpreted 0-arity terms with
hats (e.g., x 7→ x̂, and 1 7→ 1̂). Operations are mapped to
appropriately-named UFs. The crucial property guaranteed by
this abstraction is that executions of the EUF transition system
over-approximate the executions of the concrete transition
system. The details of EUFORIA’s translation are available in
previous work [1].

EUFORIA performs an incremental induction reachability
search based on IC [2], a model checking algorithm for finite,
Boolean transition systems. EUFORIA uses a counterexample-
guided abstraction refinement (CEGAR) [8] approach that
extends IC to apply to EUF transition systems while retaining
termination.

EUFORIA takes a model checking problem as input,
(X,Y, I, T, P ). It maps the CTS and property to produce
a corresponding EUF abstract transition system (ATS) and
property, (X̂, Ŷ , Î, T̂ , P̂ ). EUFORIA then alternates between
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two phases: EUF reachability and abstraction refinement. EUF
reachability searches for a counterexample in the ATS. If no
counterexample is found, soundness of the ATS proves that the
property holds in the CTS. Otherwise, abstraction refinement
analyzes the counterexample to determine if it is feasible in
the CTS and, if not, modifies the EUF abstraction to increase
its fidelity to the CTS. We first give a brief review of EUF
reachability [1] before focusing on refinement.

As in IC, EUF reachability operates on an iteratively
deepened sequence of reachable sets of formulas, Ri, each
denoting an over-approximation of the set of states reachable
in i transitions (0 ≤ i ≤ N). The algorithm maintains the
following invariants:

R0 = Î(X̂) (5)
Ri |= Ri+1 (6)

Ri |= P̂ (X̂) (i < N) (7)
Ri+1 over-approximates the image of Ri (8)

EUF reachability computes an inductive invariant for P̂ or a
counterexample to the safety property. An inductive invariant
Ŝ for P̂ has the following properties:

Î |= Ŝ, Ŝ ∧ T̂ |= Ŝ′, and Ŝ |= P̂ .

This paper brings arrays into the mix. In order to avoid
the overhead of instantiating array axioms, array operations
and terms may be abstracted. The operations select, store,
and const-array are mapped into corresponding uninterpreted
functions, select, store, and const-array by extending the
EUF abstraction mapping J·K to array terms and operations as
follows:

Ja : ArrayK = â (9)
Jselect(a, i)K = select(JaK, JiK) (10)

Jstore(a, i, x)K = store(JaK, JiK, JxK) (11)
Jconst-array(k)K = const-array(JkK) (12)

The array abstraction fits neatly into EUFORIA’s data ab-
straction approach. In fact, this abstraction approach keeps
EUFORIA reasoning at the pure (quantifier-free) uninterpreted
function level, for which there are efficient decision proce-
dures.

IV. ABSTRACTION REFINEMENT FOR ARRAYS

EUF reachability may find an abstract counterexample
(ACX). Due to EUF abstraction, the concretized abstract coun-
terexample (CACX) may not be a counterexample in the CTS.
For example, consider the transition system E = (X,Y, I, T )
defined as

({A, i}, ∅, [select(A, i) = 3], [A′ = store(A, i, 3)])

with the property, P = [select(A, i) = 3], which is its
own safety invariant. Nevertheless, JP K does not hold in
Ê , since EUF abstraction does not preserve the relationship
between store and select, and yields the two-step CACX
(I, select(A, i) 6= 3) which is infeasible in the QF_ABV

theory. EUFORIA uses this contradictory CACX to refine,
or increase the fidelity of, the abstraction. Refinement is
accomplished by conjoining formulas, called lemmas, to the
abstract transition relation.

In this example, EUFORIA learns an instance of McCarthy’s
axiom (1), to eliminate the spurious behavior caused by the
abstraction:

Â′ = store(Â, î, 3̂)⇒ select(Â′, î) = 3̂

This lemma constrains the abstract state space of Ê and is
therefore appropriately called a constraint lemma. Constraint
lemmas restrict the behavior of uninterpreted functions to
make them conform more closely to the behavior of their
concrete counterparts. A second type of refinement involves
learning expansion lemmas, which introduce new terms from
CACXs. We will discuss these after we present our implemen-
tation of abstraction refinement.

A. Implementation of Abstraction Refinement

Our implementation first attempts to derive constraint lem-
mas by examining individual states and transitions of the
abstract counterexample. If none are found, it performs a
bounded model check (BMC) of the entire counterexample.
If that check is inconsistent, then EUFORIA calculates inter-
polants from which it derives expansion lemmas. We use a
Horn clause solver (SPACER) for convenience to calculate the
interpolants; but the interpolants could be obtained using any
interpolating theorem prover for QF_ABV. We will discuss
each part of refinement in turn.

An n-step abstract counterexample is an execution
Â0, Â1, . . . , Ân in T̂ where each Âi (0 ≤ i ≤ n) is a state
formula. An abstract formula σ̂ is feasible if its concretization
σ is satisfiable over QF_ABV; therefore, an abstract counterex-
ample is feasible if its concretization is a counterexample in
the CTS.

EUFORIA’s refinement procedure, BUILDCX, is given in
Figure 1a; it has three stages. The first stage (lines 1–3) checks
whether each Âi is feasible (0 ≤ i ≤ n). The second stage
(lines 4–6) checks whether each Âi−1 ∧ T̂ ∧ Â′i is feasible
(0 < i ≤ n). If an infeasible state or transition is found during
the first two stages, we compute an UNSAT core, negate it,
and abstract it to form a constraint lemma (in LEARNLEMMA).
States and transitions are prioritized over the third stage, BMC,
because it is advantageous to learn constraint lemmas, since
they make the abstract state space smaller.

Nevertheless, EUFORIA must learn across multiple coun-
terexample steps in general. Therefore, the third stage, BUILD-
BMCCX, performs a BMC query to learn across multiple steps
of the counterexample; this is shown in Figure 1b. This stage
of refinement has two phases.

a) BUILDBMCCX phase one, BMC solving: In phase
one (lines 1–2), BMCFORMULA constructs the instance as
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BUILDCX():
Returns true if counterexample is true, false if abstraction is
refined
input: counterexample (Â0, Â1, . . . , Ân) in T̂

1: if ∃i ∈ {0, . . . , n}. ¬SAT[Ai] then
2: LEARNLEMMA(UNSATCORE())
3: return false
4: if ∃i ∈ {1, . . . , n}. ¬SAT[Ai−1 ∧ T ∧A′i] then
5: LEARNLEMMA(UNSATCORE())
6: return false
7: return BUILDBMCCX()

(a) The first two stages of refinement: examining concretized states
and transitions.

BUILDBMCCX():

1: B ← BMCFORMULA()
2: if ¬SAT[B] then
3: REFINEWITHINTERPOLANTS(UNSATCORE())
4: return false
5: return true . feasible counterexample

(b) The third stage of refinement, bounded model checking and
interpolant calculation.

Fig. 1: EUFORIA’s refinement procedure, BUILDBMCCX.

1: procedure MBPOUTER(M , f )
2: S ← ∅; r ← MBP(f); return S ∪ {Lit(r)}
3: procedure MBP(f )
4: switch f do
5: case x . x a 0-arity term
6: return x
7: case F(t1, t2, . . . , tn)
8: return F(MBP(t1),MBP(t2), . . . ,MBP(tn))

9: case ite(c, t1, t2) . traverse satisfied branch
10: S ← S ∪ {Lit(MBP(c))}
11: if M |= c then return MBP(t1)
12: else return MBP(t2)

13: case b . b a Boolean variable or its negation
14: return Lit(b)

15: case t1 = t2
16: return Lit(MBP(t1) = MBP(t2))

17: case P(t1, t2, . . . , tn)
18: return Lit(P(MBP(t1),MBP(t2), . . . ,MBP(tn)))

19: case f1 ∧ f2
20: if M |= f then return MBP(f1) ∧MBP(f2)
21: else if M |= ¬f1 then return MBP(f1)
22: else return MBP(f2) . M |= ¬f2
23: case f1 ∨ f2
24: if M |= f1 then return MBP(f1)
25: else if M |= f2 then return MBP(f2)
26: else return MBP(f1) ∧MBP(f2) . M |= ¬f

Fig. 2: Model-based projection of a formula f with model M
where M |= f . MBPOUTER(M,f) = SMBP computes a set
SMBP of constraints for a formula f such that M |= SMBP

and SMBP |= f . Essentially, it justifies the model of f . In the
figure, Lit(b) = b if M |= b and Lit(b) = ¬b if M |= ¬b.

below by explicitly renaming variables and using multiple
copies of T :

B = A(X0) ∧ I(X0) ∧ T (X0, Y1, X1) ∧
A(X1) ∧ T (X1, Y2, X2) ∧ . . . ∧
A(Xn−1) ∧ T (Xn−1, Yn, Xn) ∧A(Xn)

B is then checked for feasibility. Solving BMC queries is
challenging for several reasons. First, there are multiple copies
of T . Second, T is monolithic because it encodes the entire
program, even though only part of the program is relevant for
a given counterexample step. Third, even if we could reduce
T at each step by removing irrelevant parts, using a large-step
encoding [9] for T means that the reduced T would likely still
contain a whole pile of nested Boolean logic, not all of which
is necessarily relevant.

At a high level, we address these difficulties by conjoining
extra constraints onto B that significantly prune its search
space. These constraints are derived from abstract models
gathered during EUFORIA’s EUF reachability (see Section III).
We use our model-based projection procedure, MBPOuter,
given in Figure 2, to derive these extra constraints from the
abstract transition relation. We now detail how we solve B.

Let M̂ i+1
i denote the abstract model for the transition

(Âi, Âi+1) in the abstract counterexample (0 ≤ i < n).
We augment the query B so that each T (Xi, Yi+1, Xi+1)
is conjoined with the concretization of the constraints in
MBPOuter(M̂ i+1

i , T̂ (X̂i, Ŷi+1, X̂i+1)). The effect of this is
that nested logic in T̂ is projected away by justifying the
model M̂ i+1

i of the transition. Next, we pre-process B by an
equation solving pass that performs Gaussian elimination and
variable elimination.1 Variables assigned to constants at the
top-level will be removed, possibly opening up other elimi-
nation opportunities. Linear constraints are solved, leading to
further variable elimination. Combining equation-solving with
extra constraints addresses difficulties two (T is monolithic)
and three (T contains much nested logic). In practice, their
combination achieves efficiency far beyond what either does
in isolation. Finally, if B is feasible (BUILDBMCCX line 5),
it is a counterexample to the property. If B is infeasible,
BUILDBMCCX enters phase two.

b) BUILDBMCCX phase two, interpolants: Phase two
is implemented in REFINEWITHINTERPOLANTS, given in
Figure 3. BUILDHORN uses B’s UNSAT core to create a
(reduced) inductive interpolant sequence problem BHC [10]
using only the constraints from B that occur in the core. BHC

is a set of recursion-free Horn clauses in which uninterpreted

1The solve-eqs tactic in Z.
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REFINEWITHINTERPOLANTS(core):
1: BHC ← BUILDHORN(core)
2: M← HORNSOLVE(BHC)
3: for i ∈ {1, . . . , n} do
4: pi ← GETINTERPOLANT(M, i)
5: pi+1 ← GETINTERPOLANT(M, i+ 1)
6: l← pi−1(X) ∧ bodyi(X,Y,X ′) ∧ ¬pi(X ′)
7: LEARNLEMMA(l)

Fig. 3: Constructs lemmas from an inductive interpolant se-
quence derived from a solution to (satisfiable) Horn clauses.
GETINTERPOLANT(M, i) returns a formula, the ith inter-
polant in the interpolant sequence, given a model for BHC .

predicates pi stand for step-wise interpolants:

p0(X0)⇐ true

p1(X1)⇐ p0(X0) ∧A∗(X0) ∧ I(X0) ∧ T ∗(X0, Y1, X1)

p2(X2)⇐ p1(X1) ∧A∗(X1) ∧ T ∗(X1, Y2, X2)

...
pn(Xn)⇐ pn−1(Xn−1) ∧A∗(Xn−1) ∧ T ∗(Xn−1, Yn, Xn)

false⇐ pn(Xn)

where F ∗ =
∧
{f ∈ F | f ∈ UnsatCore(B)} for F ∈

{A, T}.2 These Horn clauses are satisfiable by construction
since B is infeasible.

For each nontrivial solution to the Horn clauses, we extract
a lemma from the corresponding Horn clause as follows:

¬[pi−1(X)∧bodyi(X,Y,X ′)∧¬pi(X ′)] 0 < i ≤ n (13)

where bodyi stands for the interpreted body predicates from
the rule whose head is pi.

We now return to the topic of expansion lemmas. Consider
a program x = 3;x = x + 3; assert(x < 7). Consider an
(infeasible) 2-step counterexample (x = 3, x ≥ 7) and its
corresponding set of Horn clauses:

p0(3) (14)
p1(x

′)⇐ p0(x) ∧ x′ = x+ 3 (15)
false⇐ p1(x) ∧ x ≥ 7 (16)

A solution is p0(x) = (x = 3) and p1(x) = (x = 6) which
results in the following lemmas (see (13)):

¬[x = 3 ∧ y = x+ 3 ∧ y 6= 6] (17)
¬[x = 6 ∧ x ≥ 7] (18)

The key take-away here is that these lemmas introduce the new
term 6 into the abstraction, which previously only contained
terms from the program text, namely 3, i, 7, and the addition
and less-than. These lemmas increase the granularity of the

2BHC could be computed without B’s UNSAT core, but using it promotes
learning concise lemmas, because it substantially reduces the complexity of
the Horn clause bodies. See equation (13).

LEARNLEMMA(f ):
Precondition: f is unsatisfiable in QF_ABV

1: f̂ ← ABSTRACTANDNORMALIZE(f) . abstract and
eliminate input variables

2: if f contains no inputs then
3: if VARS(f) ⊆ X then . only present-state vars
4: Simplify and add lemma ¬f̂(X̂ ′)
5: if VARS(f) ⊆ X ′ then . only next-state vars
6: Simplify and add lemma ¬f̂(X̂)

7: Simplify and add lemma ¬f̂

Fig. 4: Learns a lemma by abstracting and conjoining ¬f̂ to
T̂

abstraction. This kind of learning is similar to learning new
predicates in a predicate abstraction (e.g., [11]).

Lemmas are expansion lemmas only when the interpolants
contain new terms. Using our method implies that the in-
terpolation system itself decides whether a particular lemma
is expansive or not; EUFORIA does not make this decision
explicitly. EUFORIA’s back-end uses SPACER to solve BHC .

Refinement is not guaranteed to succeed. We require
quantifier-free interpolants but interpolants for arrays in gen-
eral are not quantifier-free [12]. Moreover, the interpolant
back-end may give up.

To sum up, constraint lemmas specialize UFs to particular
concrete behaviors. Expansion lemmas increase the granularity
of the EUF abstraction. EUFORIA learns array lemmas only if
they crop up in a CACX’s contradiction, ensuring that the
lemmas are directly relevant to the property that is being
checked. Empirically speaking, contradictions usually feature
a small handful of UFs which are ultimately relevant to the
property, resulting in targeted lemmas. Our process avoids
most of the expense of array lemma generation, as we will
see in the evaluation.

B. Exceptionally Lazy Learning of Array Lemmas

Fundamentally, the procedure LEARNLEMMA (Figure 4)
learns its lemmas by negating formulas found to be un-
satisfiable in QF_ABV and conjoining them to T̂ . It also
simplifies the formulas in order to generalize the lemmas as
much as possible, specifically by eliminating input variables
(line 1). We eliminate input variables from formulas by (1)
collecting top-level equalities and computing their equality
closure, resulting in equivalence classes of terms; and (2)
substituting every input with a member of its equivalence class
that doesn’t contain inputs (if possible). Next, if the lemma
formula is a state formula, then two versions are learned: one
on current-state variables and one on next-state variables (lines
2–6).

Consequently, EUFORIA generates property-directed instan-
tiations of array theory axioms. For instance, here is a lemma
learned in one of our benchmarks:

A 6= const-array(0) ∨ 0 6= select(A, i) (19)
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This lemma is an instance of axiom (4). We also find instances
of McCarthy’s axiom (1):

select(A′, i) = 0 ∨ i′ 6= i ∨A′ 6= store(A, i′, 0) (20)

Array lemmas may also include bit-vector function symbols
to learn targeted lemmas about composite behavior:

B 6= store(A, i, 0) ∨ extract(7, 0, select(B, i)) 6= 0 (21)

Finally, some lemmas combine multiple array axioms:

store(B, i, 0) 6= A ∨ store(A, i, 0) = A (22)

This lemma relates stores and array extensionality. It is not a
direct instance of any axiom (1)–(4), but rather a consequence
of several instantiations.

We note that LEARNLEMMA is not specialized to produce
array lemmas. Rather, it generalizes formulas from unsatisfi-
able refinement queries that themselves pinpoint which array
lemma instantiations to learn. This design allows LEARN-
LEMMA to produce lemmas that are property-directed com-
binations of array theory axiom instantiations.

V. EVALUATION

To evaluate EUFORIA, we rely on benchmarks from SV-
COMP’17 [13], as they are widely used and relatively well
understood. We evaluate on C programs from the Sys-
tems DeviceDriversLinux64 ReachSafety benchmark set,
hereafter abbreviated DeviceDrivers. This set contains 64-bit
C programs and contains “problems that require the analysis of
pointer aliases and function pointers.” EUFORIA was originally
designed for control properties, so our benchmark set includes
benchmarks with control properties and arrays.

We consider two other model checkers, SPACER and ICIA.
SPACER [14], [15], [16] is an over- and under-approximation
driven incremental model checker that is tightly integrated
with Z. It computes procedure summaries to support checking
programs with recursive functions. It is capable of inferring
quantified array invariants and uses model-based projection
array procedures to lazily instantiate property-directed array
axioms, making the checker particularly efficient. ICIA [11] is
an IC-style CEGAR model checker that implements implicit
predicate abstraction. ICIA’s architecture is quite similar
EUFORIA’s, more similar than SPACER’s. As discussed in
Cimatti [11], ICIA is superior to state-of-the-art bit-level
IC implementations and can support hundreds of predicates,
around an order of magnitude more than what explicit pred-
icate abstraction tools practically support. We also evaluated
ELDARICA [17], a predicate-abstraction based CEGAR model
checker that supports integers, algebraic data types, arrays, and
bit vectors. Unfortunately, ELDARICA either threw errors, ran
out of time, or ran out of memory on all of our benchmarks,
so we do not consider it further.

We use SeaHorn as a front-end to encode programs into
Horn clauses. SeaHorn [18] is a verification condition (VC)
generator for C and C++ programs that uses LLVM in order
to optimize and generate large-step, Horn clause benchmarks
in SMT-LIB declare-rel format [19]. Note that we use the

term benchmark to refer both to the C programs and their
encoded counterparts. Since SeaHorn is not able to produce
bit-vector encoded benchmarks, we modified it to produce bit-
vector VCs.3 Moreover, since EUFORIA does not yet support
procedure calls, we instruct SeaHorn to inline all procedures,
resulting in linear Horn clauses. We ran SeaHorn on each
benchmark, limiting it to one hour of runtime and 8GB of
memory. SeaHorn can fail to produce a usable benchmark
due to lack of resources or because the input is trivially
solved during optimization. All told, SeaHorn produced 948
DeviceDrivers Horn clause benchmarks out of 2703 original
C programs. 687 are safe and 261 are unsafe.

SPACER natively supports Horn clauses, but EUFORIA and
ICIA take VMT files as input. The VMT format [20] is a
syntax-compatible extension of the SMT-LIB format that spec-
ifies a syntax for labeling formulas denoting initial state, the
transition relation, and property. In order to create comparable
benchmarks for EUFORIA and ICIA, we translate the Horn
clause benchmarks into VMT using Horn2VMT [21], resulting
in 948 VMT files that correspond to the 948 Horn benchmarks.
The benchmarks range in size from 29 to more than 223, with
a median size of 219; this size is the number of distinct SMT-
LIB expressions used to define (I, T, P ). When compressed
with gzip, their sizes range from 2K to 153 MB.

All checkers run on 2.6 GHz Intel Sandy Bridge (Xeon
E5-2670) machines with 2 sockets, 8 cores with 64GB RAM,
running RedHat Enterprise Linux 7. Each checker run was
assigned to one socket during execution and was given a 30
minute timeout. For every benchmark solved by any checker,
we verified that its result was consistent with other checkers.

A. EUFORIA compared with SPACER

Figure 5 shows a scatter plot of runtime for EUFORIA
and SPACER on DeviceDrivers benchmarks. Overall, EUFORIA
solves 491 benchmarks and SPACER solves 386. EUFORIA
times out on 33 benchmarks that SPACER solves. SPACER times
out on 138 benchmarks that EUFORIA solves.

a) When SPACER solves EUFORIA’s timeouts: In the
33 cases where spacer was able to solve a benchmark that
EUFORIA could not, we identified several causes:

1) SPACER’s preprocessor is able to solve 19 benchmarks
without even invoking search. By comparison, EUF-
ORIA’s front-end takes excessive time to parse and
normalize the benchmarks. EUFORIA parses VMT files
using MathSAT5, since it the simplest API to do so. In
addition to parsing, MathSAT normalizes and simplifies
the resulting formula.

2) Another 12 benchmarks are quite large, and the overhead
of a monolithic transition relation dominates EUFORIA’s
abstract reachability. To explain: SeaHorn produces an
explicitly sliced transition relation which SPACER ex-
ploits by making sliced incremental queries. EUFORIA
consumes and queries a monolithic transition relation as
produced by Horn2VMT.

3We worked from SeaHorn commit id
8e51ef84360a602804fce58cc5b7019f1f17d2dc.
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Fig. 5: Benchmarks solved by either solver (or both). Note
the points on the right hand side of this plot. Each point
is a benchmark that EUFORIA solved within 30 minutes that
SPACER did not solve during that time.

3) In one benchmark EUFORIA gets stuck in a single
interpolation query. We suspect this is because some
interpolation queries generated by EUFORIA are unex-
pectedly difficult for SPACER.

In the last un-accounted for benchmark, there was no ob-
vious cause. We believe that front-end improvements would
address the issues identified in item 2. For instance, SPACER’s
preprocessor could be made independent of Z so that it
could be applied before Horn2VMT.4 Alternatively, EUFORIA
could be integrated into Z so that it could exploit the same
preprocessing as SPACER, but exploring this remains future
work.

b) When EUFORIA solves SPACER’s timeouts: In the 138
cases where EUFORIA was able to solve a benchmark that
SPACER did not, we examined causes. In over half of the cases,
SPACER gets stuck solving concrete incremental queries. In the
other 52 cases, SPACER gives up before the timeout (it returns
unknown). In other words, in every case individual queries
were unable to be tackled given the resources constraints.
Therefore we emphasize that, in contrast, EUFORIA has the
strong benefit of making individual queries predictably fast.

We wondered: is EUFORIA only winning because it hardly
needs to do refinement? The answer is no. Figure 6 shows the
same scatter plot as Figure 5 but restricted to EUFORIA-solved
benchmarks that required at least one abstraction refinement.
It shows that EUFORIA requires refinement for many of the
benchmarks for which SPACER times out.

4We tried dumping the benchmark after SPACER’s preprocessing step, but
the benchmark was no longer guaranteed to be Horn, so it was not a valid
input for encoding to VMT with Horn2VMT.
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Fig. 6: EUFORIA vs SPACER restricted to those benchmarks
that require at least one abstraction refinement.
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Fig. 7: EUFORIA vs ICIA

B. EUFORIA compared with ICIA

Figure 7 shows a scatter plot of our results compared with
ICIA. ICIA solves 128 benchmarks total. Excepting three of
these, EUFORIA solves all the benchmarks that ICIA solves,
usually in orders of magnitude less time. Our results are
significant because ICIA and EUFORIA are quite similar: both
implement a PDR-style [22] algorithm, both operate on exactly
the same VMT instance encoding, and both are written it C++.
They differ in two respects: (1) ICIA uses (implicit) predicate
abstraction and EUFORIA uses EUF abstraction; (2) ICIA’s
SMT solver backend is MathSAT5 and EUFORIA’s is Z.

On the benchmarks where EUFORIA times out, two bench-
marks get stuck after several seconds in an interpolant query;
the other learns a pile of lemmas but doesn’t converge in time.

63



0

500

1000

1500

0 500 1000 1500
 euforia−NAA, 227 solved

 e
uf

or
ia

, 4
91

 s
ol

ve
d

expected status
safe

unsafe

runtime plot, timeout 1800, 494 points

Fig. 8: EUFORIANAA (no array abstraction) (x axis) compared
with EUFORIA (y axis).

C. EUFORIA and array abstraction

For solvers that use lazy theory lemma learning or a trigger-
based saturation method [23], array lemmas will be learned in
response to property-directed queries. Does EUFORIA’s array
abstraction really provide a benefit over such an approach?

To address this question, we modified EUFORIA to compute
a hybrid abstraction using the theory of EUF and arrays.
It abstracts bit-vector operations into UFs (as before), but
uses array theory operations for arrays. Call this configuration
EUFORIANAA, for No Array Abstraction.

As demonstrated in Figure 8, EUFORIANAA is significantly
slower almost everywhere and strictly slower in all cases
but four. One important difference between EUFORIA and
EUFORIANAA is an enormous disparity in array theory lemmas
learned by the underlying SMT solver. Between configura-
tions, the difference of the number of array theory lemma
instantiations is almost two orders of magnitude (1.9), on
95% of the benchmarks; almost four orders of magnitude
(3.8), on 50% of the benchmarks; and more than seven
orders of magnitude (7.2), on 5%. To calculate this result,
we measure the number of array theory axiom instantiations
in the underlying SMT solver (Z). Then, for each benchmark,
we took the difference of the logs (base 10) between the two
configurations; this quantity is proportional to the order of
magnitude difference between the numbers.

We conclude that EUFORIANAA spends a lot of time rea-
soning about arrays despite the fact that EUFORIA required
relatively little array reasoning to solve the same benchmarks.
Moreover, compared to SPACER’s 386 solves, EUFORIANAA
solves only 227 instances, which (1) shows that array abstrac-
tion is critical to performance and (2) gives some additional
evidence that SPACER’s array projection helps its runtime.
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Fig. 9: Breakdown of lemmas as array-related and non array-
related on the subset of benchmarks (91) for which any lemma
learning was required (y axis is log scale).

D. EUFORIA in itself—the role of lemmas

This section discusses EUFORIA’s learned lemmas as de-
tailed in Section IV. Lemmas in general play a relatively
minor role; they’re only required in 19% of benchmarks
that EUFORIA solved (91). Moreover, only 22 benchmarks
required interpolants. Figure 9 shows the count of total lemmas
learned, broken down by whether EUFORIA learned array
lemmas or non-array lemmas. First, we can see that there
is a trend that EUFORIA learns fewer array lemmas than
data lemmas. Second, all but two benchmarks required fewer
than 100 lemmas. These results suggest our benchmarks only
depend sparingly on the behavior of memory manipulations,
and confirm the suitability of EUFORIA’s abstraction. SPACER
solves 34 of these benchmarks; out of 34, 14 benchmarks
require array lemmas and 20 do not.

VI. RELATED WORK

The relationship between EUF and the theory of arrays has
been long recognized [24], [12] and analyzed [25] and ex-
ploited in decision procedures [26] and in the implementation
of several SMT solvers, including Yices [27] and Z [28].
Array terms are compiled into EUF or a ground theory to
instantiate the needed array axioms. Our approach lifts EUF
outside the SMT solver, to the model checking level, and
refines it on demand.

Komuravelli et al. introduce a model-based projection for
pre-images in order to rewrite array operators into terms
in a scalar theory [16]; this algorithm is implemented in
SPACER [15] used in our evaluation. Predicate abstraction ap-

64



plies to programs with arrays directly [11], with the limitation
that quantifier-free interpolants do not exist in general for the
theory of arrays [12]. We inherit that limitation, but contribute
a different, inexpensive way to place array constraints in pre-
images and refine them lazily.

Broadly, SMT solvers solve constraints over arrays in three
ways (sometimes combined): (1) by rewriting selects and
stores into a finite number of terms and axiom instantiations
in a ground theory, possibly combined with EUF [29], [30],
[24], [31], [25], [32], [33], [23], [26]; (2) by abstraction-
refinement procedures over the array constraints [34], [35];
(3) by rewriting into (non-abstract) representations which are
solved with specialized algorithms [36], [37], [38]. The issue
addressed by our paper is applicable to each of these: we
use an abstraction that inexpensively supports (limited) array
reasoning and we only invoke an SMT array solver at the last
possible moment.

VII. CONCLUSION AND FUTURE WORK

This paper introduces an approach for model checking soft-
ware with arrays that avoids substantial computational effort
spent in reasoning about arrays by using EUF abstraction. We
integrated our approach inside a incremental model checker
that natively supports EUF abstraction. Our approach bests
stiff competition on control-oriented benchmarks, solving over
100 more benchmarks.

We demonstrated that our approach reduces the amount
of redundant or irrelevant array reasoning by several orders
of magnitude in most cases. We are eager to investigate the
possibilities of expanding our universe of target programs. As
software size grows, its sheer size begins to overwhelm the
checker, even if the property to prove is relatively simple (for a
machine). Inlining all functions only exacerbates the problem.
In future work we plan to explore compositional reasoning, in
particular analyzing programs with procedures by integrating
it efficiently with our EUF abstraction.

We find that for some benchmarks, stronger lemmas are
required to speed up convergence. We would like to address
this by inferring quantified lemmas during search. One issue
is how to generalize counterexamples to quantified lemmas.
A second issue is how to keep the abstraction tractable in
the presence of quantified lemmas. Both of these issues form
important future work.
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Abstract—Automated safety proofs of parameterized software
are hard: State-of-the-art methods rely on intricate abstractions
and complicated proof techniques that often impede automation.
We replace this heavy machinery with a clean abstraction
framework built from a novel combination of counter abstraction,
thread-modular reasoning, and predicate abstraction. Our fully
automated method proves parameterized safety for a wide range
of classically challenging examples in a straight-forward manner.
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straction

I. INTRODUCTION

In this paper, we present a novel method for automatically
proving safety of programs that are executed by an unbounded
number of concurrent threads.

Running example. Consider the program template T [N ] over
global variables s and t and parameter N shown in Fig. 1a1.
Assume that T is executed by an arbitrary number of n threads,
where each thread runs the program P = T [N/n] obtained by
replacing N by n in T (Fig. 1b). We write P (n) = P1 ‖
· · · ‖ Pn for this parameterized program. In this paper, we
show how to automatically prove that the error location `err
is unreachable from an initial state of s = t = 0 for all n > 0.

Despite the seemingly simple structure of the program,
automatically constructing such a safety proof is hard: Note
that the value of global variable t equals the number of threads
at either control location `1, `2, or `err . Similarly, the value
of s equals the number of threads at control location `2. In
addition, the assertion not only refers to variables, but also to
the parameter n. Thus, a safety proof for this program needs
to relate the unboundedly many local states of all threads, the
arbitrary number of threads n, and the global variables s and
t in a meaningful way.

A. Tackling dimensions of infinity

A parameterized program – like the one above – induces an
infinite family of concurrent programs, one for each instanti-
ation of the parameter n. Together, this family of concurrent
programs exhibits the following dimensions of infinity that any
automated procedure has to deal with:

1This slightly abstracted version of a ticket lock is adapted from the
introductory example in [1]. We extend their version with an upper bounds
check s− t ≤ N . This allows us to bound s− t by the number of threads n.

(I) Unbounded replication of local state. The program tem-
plate’s control structure and local variables are replicated
for each of the unboundedly many threads.

(II) Infinite data domain. As for sequential software, the
program variables range over an infinite data domain.

State-of-the-art methods rely on heavy proof machinery
to tackle these dimensions (cf. Section III). In contrast, our
method is a novel combination of well-known techniques.
Significantly improving the start of the art, we build a powerful
and cleanly structured two-step abstraction framework. Our
method is fully automated and treats the infinity dimensions
in dedicated abstraction layers:

The first step of our method, thread-modular counter ab-
straction (TMCA), deals with dimension (I) and is inspired by
the well-known techniques counter abstraction [2] and thread-
modular reasoning [3], [4]. TMCA uses symmetry reduction
to track the number of threads in a specific local state, encodes
this information in the (already infinite) data domain, and
abstracts the unbounded local state into a stateless thread-
modular summary. TMCA models are sequential programs that
can be checked using off-the-shelf software verifiers. However,
our experiments show that state-of-the-art techniques diverge
on them. We thus tackle infinity dimension (II) by presenting
a novel predicate refinement heuristic for predicate abstrac-
tion [5], [6].

II. MOTIVATING EXAMPLE

Fig. 2 gives an overview of our approach. We briefly discuss
its structure and demonstrate it on our introductory example.

A. Counter instrumentation

Our method keeps one thread concrete and computes an
abstraction of the n − 1 other threads. We call these n − 1
threads the environment. Our method starts by instrumenting
the program P = T [N/n] from Fig. 1b to track the local state
of the n− 1 environment threads in additional global counter
variables. This introduction of auxiliary state serves to retain
some information about the local state of all threads in the
subsequent abstraction step.
Running example. In our motivating example (Fig. 1b), each
thread’s local state is given entirely by the valuation of its
program counter, which ranges over the finite domain of
program locations {`0, `1, `2}. Our method introduces fresh
global variables {c0, c1, c2} and instruments the program such
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`0

`1

`2

`err

{s = t = 0}

t++

s++

[¬(0 < t− s ≤ N)]

(a) Program template T [N ].

`0

`1

`2

`err

{s = t = 0}

t++

s++

[¬(0 < t− s ≤ n)]

(b) Program P = T [N/n].

`0

`1

`2

`err

{s = t = 0 ∧ c0 = n− 1 ∧
c1 = c2 = 0 ∧ n− 1 ≥ 0}

[c0 > 0]; t++; c0--; c1++;

[c1 > 0]; s++; c1--; c2++;

[¬(0 < t− s ≤ n)]

(c) Counter-instrumented program CCA(P, n− 1).

`

{s = t = 0 ∧ c0 = n− 1 ∧
c1 = c2 = 0 ∧ n− 1 ≥ 0}

IncS:
[c1 > 0]; s++;
c1--; c2++;

IncT:
[c0 > 0]; t++;
c0--; c1++;

(d) Thread-modular summary P̂ = TMS(CCA(P, n− 1)).

`0

`1

`2

`err

{s = t = 0 ∧ c0 = n− 1 ∧
c1 = c2 = 0 ∧ n− 1 ≥ 0}

t++;

s++;

[¬(0 < t− s ≤ n)]

IncT

IncS

IncT

IncS

IncT

IncS

(e) Abstracted program TMCA(T, n, 1) = P1 ‖ TMS(CCA(P, n− 1)).

Fig. 1: Running example illustrating the thread-modular abstraction TMCA. Adapted from the introductory example in [1] by
extending the assertion with an upper bounds check s− t ≤ N on the parameter.

error states Errm

program
template T [N ]

program P = T [N/n]

thread-modular counter
abstraction (§VI)

control counter
abstraction (§VI-A)

instrumented program
CCA(P, n−m)

thread-modular summary
generation (§VI-B)

thread-modular summary
TMS(CCA(P, n−m))

TMCA(P, n,m) =
P1 ‖ · · · ‖ Pm ‖ TMS(CCA(P, n−m))

predicate abstraction + CEGAR (§VII)

predicate
abstraction

finite state
model P̄ model checker SAFE

UNSAFE +
counter-example

cex spurious?

UNSAFE or
no thread-modular

safety proof

control-flow
refinement via
predicate abstr.

(§IX)

refined prog.
template P ′

predicate
discovery (§VII-B)

no

yes

Fig. 2: Overall structure of our method. Dashed parts are beyond the scope of this work and sketched in Section IX.
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that variable ci tracks the number of threads at location `i.
The resulting instrumented program CCA(P, n− 1) is shown
in Fig. 1c.

B. Thread-modular summary generation

In this step, our method uses thread-modular reasoning to
project away the unboundedly many local variables of the n−1
environment threads. Our method generates a thread-modular
summary P̂ of the instrumented program CCA(P, n−1), such
that P̂ over-approximates the reachable global state space of
the environment threads for all n > 0.
Running example. In our example, the only local variable
of CCA(P, n − 1) (Fig. 1c) is the program counter. By
projecting it away, we obtain P̂ = TMS(CCA(P, n−1)) as the
thread-modular summary in Fig. 1d: Abstract transition IncT
corresponds to transition `0 → `1, while IncS corresponds to
transition `1 → `2. It is easy to see that from its initial state

{s = t = 0 ∧ c0 = n− 1 ∧ c1 = c2 = 0 ∧ n− 1 ≥ 0},

P̂ over-approximates the globally visible behavior of n − 1
environment threads for all n > 0. Thus, instead of analyzing
the parameterized program P (n), we instead consider its over-
approximation TMCA(T, n, 1) = P1 ‖ P̂ (shown in Fig. 1e),
where P̂ over-approximates the behavior of P2 ‖ · · · ‖ Pn.

C. Invariant generation (predicate abstraction + CEGAR)

The abstracted program TMCA(T, n, 1) from above is just
a sequential program that could be checked by off-the-shelf
software verifiers, e.g., based on predicate abstraction. Our
experiments (Section VIII) show that our abstraction already
allows state-of-the-art methods to prove safety for some exam-
ples. However, due to the uncommon structure of our abstract
models, standard predicate discovery heuristics often diverge.
Again improving the state of the art, we thus introduce a novel
predicate selection heuristic in Section VII.
Running example. For our abstracted example TMCA(T, n, 1)
in Fig. 1e, this predicate selection procedure finds the follow-
ing invariant at control location `1:

c1 < t− s ∧ t− s ≤ n− c0 ∧
c0 ≥ 0 ∧ c1 ≥ 0 ∧ c2 ≥ 0 ∧ n > 0 ∧ s ≥ 0 ∧ t > 0

Obviously, this implies that 0 < t− s ≤ n and thus proves
the error location `err unreachable.

III. RELATED WORK

There exists extensive research on the automated verification
of parameterized systems, i.e., the unbounded replication of
finite-state components. The survey in [7] gives an overview.
In contrast, we are interested in the safety verification of
parameterized programs, where already the individual compo-
nents are infinite-state. Several works discuss their verification,
among them approaches orthogonal to ours such as cutoff
detection [8], [9], semi-automatic deductive techniques [10],
or those based on small model properties [11], [12]. In the
following, we discuss the works most closely related to ours.

Ganjei et al. [13], [14] prove parameterized program safety
by combining two nested CEGAR loops: Their method ap-
plies symmetric predicate abstraction [15], a specialization
of predicate abstraction for symmetric concurrent programs,
to obtain a program template’s finite-state abstraction as a
boolean program. The method then uses counter abstraction
to encode the parallel composition of n copies of the boolean
program into a monotonic counter machine (essentially a vec-
tor addition system, i.e., more threads lead to more behavior).
Since some wide-spread synchronization constructs have non-
monotonic behavior, these tests are lost in the monotonic
abstraction2. The authors strengthen their abstraction using
a thread-modular analysis and check the resulting, now non-
monotonic counter machine with the inner CEGAR loop run-
ning constrained monotonic abstraction [16], again abstracting
the non-monotonic system into a monotonic one for which
state reachability is decidable.

Kaiser et al. [17] present another combination of monotonic
abstraction nested inside a specialized predicate abstraction.
They introduce a symbolic representation for tracking inter-
thread predicates, extending those of [15]. The resulting sys-
tem is again non-monotonic and the authors force monotonic-
ity as above. It is however unclear how to construct these inter-
thread predicates or how to refine the monotonic abstraction.

Following a different approach, Farzan et al. [1] introduce
control flow nets, a hybrid of Petri nets and control flow
graphs, as their program model. The proof procedure alternates
between synthesizing a candidate counting automaton (a kind
of restricted counter machine) and checking language inclu-
sion with the underlying control flow net. While the method is
explained in theory, no implementation is given. In addition,
the Petri net program model has several shortcomings. First, it
is unclear how to encode a given parameterized program: even
the authors present a program where “it does not seem possible
to encode the verification problem for mutual exclusion by a
control flow net” [1]. Second, it is unclear how to express
the additional upper-bounds check on N added to our running
example (Fig. 1b) given that the parameter is not symbolically
represented in the control flow net.

In summary, state-of-the-art methods rely on tightly cou-
pled, specialized abstractions and heavy, non-standard proof
machinery. Many times, implementation questions are unclear
and the possibility of automation is questionable. However,
our experiments show that many practical examples can be
proven in a more straight-forward way: We replace the heavy
machinery of previous work with a clean, two-step abstraction
framework built from a novel combination of well-known
techniques, thus significantly improving the state of the art.

In particular, we start from a standard program model by
encoding our program templates as transition systems. To
these, our method first applies a novel thread-modular counter
abstraction adapted to infinite-state systems that tracks and

2Synchronization mechanisms such as the dynamic barriers considered by
Ganjei et al. [13], [14] test the number of threads in a specific state. In essence,
their counter abstraction would then have to encode a counter machine with
zero tests, making state reachability checking undecidable.
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projects away the unboundedly replicated local state. In the
subsequent step, we apply standard predicate abstraction to
deal with the infinite data domain. The discovery of counting
arguments is left entirely to the predicate refinement phase.
We show in Section VIII that this straight-forward method
is powerful enough for many examples from the literature.
In addition, our two-step abstraction follows a clean design
by applying the separation of concerns design principle: each
dimension of infinity is dealt with in a dedicated component.
While our upfront thread-modular abstraction may be too
coarse in some cases, it could be strengthened by an outer
refinement loop, again running predicate abstraction. This
additional refinement step is beyond the scope of this work;
we sketch it in Section IX and leave its detailed investigation
for future work.

IV. CONTRIBUTIONS

We introduce a novel framework for parameterized software
verification. Its advantages over state-of-the-art methods lie in
its clean design and simplicity, while being powerful enough
to tackle a superset of benchmarks compared to previous work.
In particular, we make the following contributions:

1) Our framework is presented as a novel layered proof sys-
tem of well-understood and pluggable components. The
power of our method stems from adapting, combining,
and extending established methods without introducing
complicated new proof machinery or non-standard con-
cepts (Sections VI and VII). To our knowledge, we are
the first to suggest this combination of techniques for
safety proofs of parameterized programs. In particular,
we contribute the following technical advancements:

a) We adapt counter abstraction to infinite-state systems
by introducing auxiliary state to track the number of
threads in a specific local state (Section VI). To our
knowledge we are the first to propose such a counter
abstraction and to apply it to parameterized programs.

b) Predicate abstraction with standard predicate selec-
tion heuristics diverges on our abstract models (Sec-
tion VIII). We present novel predicate selection heuris-
tics to guide a CEGAR loop in the presence of these
counter-abstracted summaries (Section VII).

2) We implement our method based on constrained Horn
clauses (CHCs) and demonstrate its efficacy on a com-
bined benchmark set from various sources (Section VIII).

3) The individual components of our framework lend them-
selves to tweaking and adaptation, both on the theoretical
side (e.g., by providing new heuristics or refinement
methods) and on the practical side (e.g., through new and
improved backend solvers) (Section IX).

V. PROGRAM MODEL AND PROBLEM STATEMENT

In this section, we start to formally develop the technique
illustrated above by formalizing our program model and prob-
lem statement.

Definition 1 (Program model). Let g = (g1, . . . , gk) and
l = (l1, . . . , lj) be disjoint tuples of global and local pro-
gram variables. Let N be a symbolic parameter. A guarded
command gc ∈ GC over l, g, N has the form

gc : [cond ] | v := e | gc1; gc2

where [cond ] is an assume statement over l, g, N , and v := e
is an assignment of expression e over l, g, N to a local or
global variable v. We write ν(g, l) for the valuation of global
and local variables and omit its arguments wherever clear from
the context. We denote by JgcK(ν) = ν′ the effect of a guarded
command gc and write ϕ(g,g′, l, l′) for its standard encoding
as a formula over primed and unprimed variables.

A program template T [N ] over global and local variables g
and l and a parameter N is a directed labeled graph T [N ] =
(Loc, δ, `0, Init) where Loc is a finite set of control locations,
`0 ∈ Loc is the initial location, δ ⊆ Loc × GC × Loc is a
finite set of transitions, and Init is a predicate over g, l, N
describing the initial valuations of variables. From template
T [N ], we obtain program P = T [N/n] = (Loc, δ′, `0, Init

′)
by replacing each occurrence of N in T (i.e., in δ and Init)
with the expression n. We call a pair (`, ν) of a control location
` ∈ Loc and a valuation ν(g, l) a program state. We represent
runs of P as interleaved sequences of states and transitions
and write (`0, ν0)

gc0−−→ (`1, ν1)
gc1−−→ . . . such that ν0 satisfies

Init ′, and for all i ≥ 0 we have that (`i, gci, `i+1) ∈ δ′ and
νi+1 = JgciK(νi).

We define the interleaving of two programs P1 =
(Loc1, δ1, `1,0, Init1) and P2 = (Loc2, δ2, `2,0, Init2) over
joint global variables g and disjoint local variables l1 and l2 as
the program P1 ‖ P2 = (Loc1 × Loc2, ρ, (`1,0, `2,0), Init1 ∧
Init2) over global and local variables g and l1 ∪ l2 where
((`1, `2), gc, (`′1, `

′
2)) ∈ ρ iff either (`1, gc, `

′
1) ∈ δ1 and `′2 =

`2, or (`2, gc, `
′
2) ∈ δ2 and `′1 = `1. Let P = (Loc, δ, `0, Init)

be a program. For thread identifiers i = 1, . . . , k we obtain
the instantiation Pi of P by replacing each local variable lj
with its i-th copy lj,i. We define the k-times interleaving of
P as P k = P1 ‖ · · · ‖ Pk. Finally, a program template T [N ]
induces a parameterized program P (n) = (T [N/n])n.

Following [18], [19], we define safety of a parameterized
program in the style of coverability:

Definition 2 (Safety). Let T [N ] be program template, and let
P (n) be its induced parameterized program over vectors of
global and local variables (g, l1, . . . , ln). Recall that a state of
P (n) has the form ((`1, . . . , `n), ν). We define safety relative
to a generator set of error states Errm of (T [N/n])m for a
fixed m > 0. P (n) is safe iff for all n > 0, no run of P (n)
reaches an error state from the system error states Err, where

Err
def
= {((`1, . . . , `n), ν) | ((`i1 , . . . , `im), ν′) ∈ Errm s.t.
ν′(g) = ν(g), ν′(lj) = ν(lij ) for 1 ≤ j ≤ m

and some i1, . . . , im s.t. 1 ≤ i1 < · · · < im ≤ n}. (1)

Intuitively, P (n) is unsafe if it contains m pairwise distinct
threads that reach an error state from Errm while the remaining
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n−m symmetric threads may take arbitrary control locations
and local states. Note that for a concrete parameterized ver-
ification problem, m is a scalar value but n is universally
quantified: Given a program template T [N ] and a generator set
Errm, our goal is to prove safety of the induced parameterized
program P (n), i.e., to show that reaching an error state from
Err is infeasible for all parameter instantiations n > 0. Our
method follows a two-step process that we explain in the next
two sections.

VI. TACKLING INFINITY DIMENSION I:
THREAD-MODULAR COUNTER ABSTRACTION (TMCA)
As outlined in Section I, there are two main challenges in

proving safety of a parameterized program P (n): its unbound-
edly replicated local state, and the infinite data domain. The
first step of our method, thread-modular counter abstraction
(TMCA), tackles the first aspect. We deal with the second
dimension, infinite data, in Section VII.

TMCA is inspired both by the work on counter abstrac-
tion [2] and thread-modular reasoning [3], [4]. Starting from
a program template T [N ], its induced parameterized program
P (n) = T [N/n]1 ‖ · · · ‖ T [N/n]n, and a generator set of
error states Errm, our goal is to construct an abstraction P̂ such
that TMCA(T, n,m) = T [N/n]1 ‖ · · · ‖ T [N/n]m ‖ P̂ over-
approximates the reachable state space of P (n), but has only
finitely many control locations and variables. In the following,
we explain both aspects of TMCA in further detail.

A. Control counter abstraction (CCA)

Counter abstraction [2] was introduced to abstract the paral-
lel execution of an unbounded number of finite-state processes:
For each state, a counter is introduced to track how many
processes reside in their respective copy of the state. Counter
values are then projected onto a finite domain to obtain a
finite-state system that is model-checked. This idea has been
adapted to parameterized software [13], [17] by first predicate-
abstracting the program template into a boolean program, and
then counting the number of threads residing in one of the
finitely many abstract states.

In contrast, our method instruments counters as auxiliary
variables [20], [21] into an infinite-state system: It is well-
known that thread-modular reasoning is incomplete [22], but
can be made more expressive by adding auxiliary state [10],
[20]. Thus, in contrast to earlier work on counter abstraction,
our goal is not to finitize the entire parameterized system, but
to express the unboundedly replicated local state of a param-
eterized program P (n) in the already infinite data domain. To
this end, we first instrument the corresponding program P with
fresh counter variables, one for each program location, that
count the number of threads in (their copy of) the respective
control state. We formalize this idea:

Definition 3 (Auxiliary variable instrumentation). Let P =
(Loc, δ, `0, Init) be a program over global and local variables
g and l. We extend the set of global variables with a set
of fresh auxiliary variables, one for each program location:
for global variables g = (g1, . . . , gi) and control locations

Loc = {`0, `1, . . . , `j}, let g′ = (g1, . . . , gi, c0, c1, . . . , cj).
The instrumented program CCA(P, k) = (Loc, δ′, `0, Init

′)
is defined over the extended global variables g′ and local
variables l where the instrumented transition relation δ′ is

`src
gc′

−−→ `tgt ∈ δ′ iff `src
gc−→ `tgt ∈ δ where

gc′
def
= [csrc > 0]; gc; csrc := csrc − 1; ctgt := ctgt + 1;

and Init ′
def
= Init ∧ c0 = k ∧ c1 = · · · = cj = 0 ∧ k ≥ 0.

Proposition 1. Let P be a program and let P k be its k-
times interleaving. Up to the instrumented counter variables,
CCA(P, k)k has the same reachable states as P k for all k > 0.

Note that CCA’s second argument k can be symbolic. We
use this below to obtain a summary for an arbitrary number
of threads.

B. Thread-modular summary generation (TMS)

The parameterized program instrumented as outlined above
still contains unboundedly many local variables. To tackle
this second aspect of unboundedly replicated local state,
our method computes a thread-modular summary. Originally
conceived as an extension of Hoare logic to concurrency,
thread-modular reasoning [3], [4] picks one reference thread
and models the interleaved steps of all other threads (the
environment) in an environment assumption. This environment
assumption is a binary relation over global program states and
over-approximates the environment’s transition relation.

We compute thread-modular summaries by projecting away
all local state (i.e., the control locations and valuations of local
variables) from the program’s transition relation3:

Definition 4 (Thread-modular summary). Let P =
(Loc, δ, `0, Init) be a program over global and local variables
g and l. We define the thread-modular summary TMS(P ) =
({`}, δ′, `, Init ′) for a fresh program location ` /∈ Loc where
Init ′

def
= ∃l. Init and δ′ is defined as

`
∃l,l′.ϕ(g,g′,l,l′)−−−−−−−−−−→ ` ∈ δ′ iff `src

ϕ(g,g′,l,l′)−−−−−−−→ `tgt ∈ δ.

Proposition 2. Let P be a program. TMS(P ) over-
approximates the reachable global states of P ’s k-times in-
terleaving P k for all k > 0.

C. Putting it together: Thread-modular counter abstr. (TMCA)

The combination of control counter abstraction (Sec-
tion VI-A) and thread-modular reasoning (Section VI-B)
yields a control- and local-stateless thread-modular summary
that over-approximates the reachable states of the original
program. In addition, it retains the number of threads in a
specific control location in the instrumented counter variables.

3We choose this definition because it is sufficiently fine-grained for our
benchmarks. In general, stronger notions of a thread-modular summary (e.g.,
restricting the transition relation to reachable states) can be adopted [23].
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As we motivated in Section I, this is essential for construct-
ing counting proofs. Observe the following property of the
combination of CCA and TMS:

Proposition 3. Let P be a program. Up to instrumentation
variables, TMS(CCA(P, k)) over-approximates the reachable
global states of P k for all k > 0.

Recall from Definition 2 that safety of a parameterized
program P (n) is defined with respect to a generator set of
error states Errm. For deciding if a program state belongs to
Errm, the control locations and valuations of local variables
of the n−m other symmetric threads are irrelevant. We thus
use the following generalization of thread-modular reasoning:
We pick a finite set of m reference threads (recall that
the parallel composition of finitely many threads is again
a sequential program) and apply a combination of control
counter abstraction and thread-modular summary generation
to abstract all n−m other threads.

Definition 5 (Thread-modular counter abstraction). Let T [N ]
be a program template and let P (n) be the induced parameter-
ized program. Let Errm be a generator set of error states. We
define the thread-modular control abstraction TMCA(T, n,m)
as the program

TMCA(T [N ], n,m)
def
= let P = T [N/n] in

P1 ‖ · · · ‖ Pm ‖ TMS(CCA(P, n−m)). (2)

Proposition 4. Let T [N ] be a program template, let P (n)
be its induced parameterized program, and let Errm be a
generator set of error states. We define R to be the set of
reachable states of P (n) projected to its first m components,
i.e., let

R = {((`1, . . . , `m), ν(g, l1, . . . , lm)) | s.t.

((`1, . . . , `n), ν(g, l1, . . . , ln)) is reachable in P (n)}. (3)

Then, the states reachable by TMCA(T, n,m) are a superset
of R.

Note that by symmetry of Err, R contains an error state if
and only if an error state is reachable by P (n).

Theorem 1. Let T [N ] be a program template, let P (n) be its
induced parameterized program, and let Errm be a generator
set of error states. If TMCA(T, n,m) is safe with respect to
Errm, then so is P (n) for all n > 0.

VII. TACKLING INFINITY DIMENSION II:
PREDICATE ABSTRACTION (PA)

The parameterized program P (n) induced by a program
template T [N ] refers to an infinite family of programs.
In contrast, consider its thread-modular counter abstraction
TMCA(T, n,m): if its parameter n remains symbolic, we ob-
tain an abstraction of the parameterized program in the form of
a sequential program with finitely many control locations and
local variables, while over-approximating the infinite family
of programs induced by P (n). Standard software verification

methods could be applied to prove safety, thus tackling infinity
dimension (II) from Section I: the infinite data domain.

However, our experiments show that standard methods often
fail on our models: We encode the TMCA abstraction of our
benchmarks as a set of constrained Horn clauses (CHCs) [24].
Both state-of-the-art solvers ELDARICA [25] and Z3 [26]
diverge on many of our examples (Table I, columns 1c and 1d;
cf. Section VIII for details). We speculate that this is due to
the uncommon structure of our TMCA models. In this section,
we discuss how to guide a predicate abstraction-based solver
to converge on TMCA models.

A. Predicate selection for TMCA models

A standard method for building predicate abstractions is to
iteratively use an interpolating theorem prover to find new
predicates that rule out spurious counter-examples [27]: We
encode the error path in a logical formula in the usual way
and split it into partitions A∧B. If the formula is unsatisfiable,
the solver returns an interpolant I over the common symbols
of A and B such that A → I and I → ¬B. Intuitively, the
interpolant I gives a reason why the path A∧B is infeasible,
and can thus be used as a predicate to refine the abstraction.

The key to converging predicate abstraction CEGAR loops
is to chose the “right” interpolants. Conventional wisdom
holds that referring to loop counters, which frequently appear
on infeasible error paths, is best avoided in abstract models:
tracking their values leads to loop unrolling and divergence
of the CEGAR loop [28], [29]. This poses a challenge for
thread-modular summaries:

Running example. Recall the TMCA abstraction of our exam-
ple in Fig. 1e: Due to product construction with the thread-
modular summary TMS(CCA(P, n − 1)), all variables are
loop counters: the self-loops IncS and IncT at each program
location increment or decrement c0, c1, c2, s, and t. Tracking
the value of either one leads to useless loop unrollings.

Even more elaborate predicates, e.g., tracking the difference
expression in the assertion do not lead to convergence: Assume
that we already applied predicate abstraction and the model
checker returned the following spurious counter-example4

(starting in an initial state where s = t = 0):

t++; IncT; IncS; [0 >= t-s];

The formula representing this error path is shown in Fig. 3a.
If we partition the formula between IncT and IncS, an inter-
polating theorem prover is likely to find the new predicate
2 ≤ t− s. This rules out the spurious counter-example above,
but leads to another, longer one:

t++; IncT; IncT; IncS; IncS; [0 >= t-s];

This again can be ruled out by the additional predicate 3 ≤
t−s but only leads to further unrollings of IncS and IncT and
to further invariants of this shape; the CEGAR loop diverges.

4One can reproduce the behavior of this running example in the model
checker ELDARICA (v2.0.2) [25] and the interpolating theorem prover
PRINCESS (v2020-03-12) [30].
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s = 0 ∧ t = 0 ∧ c0 = n− 1 ∧ c1 = 0 ∧ c2 = 0 ∧ n > 0 ∧ (initial state)
s′ = s ∧ t′ = t+ 1 ∧ c′0 = c0 ∧ c′1 = c1 ∧ c′2 = c2 ∧ (`0 → `1: t++)

c′0 > 0 ∧ s′′ = s′ ∧ t′′ = t′ + 1 ∧ c′′0 = c′0 − 1 ∧ c′′1 = c′1 + 1 ∧ c′′2 = c′2 ∧ (`1 → `1: IncT)
c′′1 > 0 ∧ s′′′ = s′′ + 1 ∧ t′′′ = t′′ ∧ c′′′0 = c′′0 ∧ c′′′1 = c′′1 − 1 ∧ c′′′2 = c′′2 + 1 ∧ (`1 → `1: IncS)

0 < t′′′ − s′′′ (assertion)

(a) Concrete interpolation query.
s = 0 ∧ t = 0 ∧ c0 = n− 1 ∧ c1 = 0 ∧ c2 = 0 ∧ n > 0 (initial state)
s′ = s ∧ t′ = t+ 1 ∧ c′0 = c0 ∧ c′1 = c1 ∧ c′2 = c2 ∧ (`0 → `1: t++)

c′0 > 0 ∧ sA = s′ ∧ tA = t′ + 1 ∧ cA0 = c′0 − 1 ∧ cA1 = c′1 + 1 ∧ cA2 = c′2 ∧ (sA = ṡ ∧ tA − cA1 = ṫ− ċ1) ∧ (`1 → `1: IncT)

cB1 > 0 ∧ s′′′ = sB + 1 ∧ t′′′ = tB ∧ c′′′0 = cB0 ∧ c′′′1 = cB1 − 1 ∧ c′′′2 = cB2 + 1 ∧ (sB = ṡ ∧ tB − cB1 = ṫ− ċ1) ∧ (`1 → `1: IncS)

0 < t′′′ − s′′′ (assertion)

(b) Abstract interpolation query.

Fig. 3: Interpolation queries for our running example.

Instead, we want to find an invariant that relates the location
counters c0, c1, c2 to the values of the global variables s and
t. The next section explains how to achieve this.

B. An interpolation abstraction heuristic for TMCA models

As we argued above, interpolating predicate abstraction is
always driven by heuristics to prevent divergence. We now
present a heuristic that we find useful for the considered
problem domain and later show that it outperforms several
existing ones. Interpolation abstraction [31] is a state-of-
the-art method to implement predicate selection. Indeed, EL-
DARICA with its default interpolation abstraction heuristic
(Table I, column 1b) fares better than without (column 1c) but
still diverges on some benchmarks. We introduce a dedicated
heuristic for TMCA models to remedy this shortcoming.

Interpolation abstraction uses a set of template terms to
abstract the interpolation query and thus guide the theorem
prover in its search for an interpolant. We briefly introduce
the method on our running example and refer the interested
reader to the canonical description [31] for further reading.
Running example. As explained in Section I, the valuations of
s and t correspond to the number of threads in specific control
locations, and thus to sums over the instrumented location
counters. In particular, at `1 we have that

t = c1 + c2 + 1 and s = c2 and thus (6)
t− s = (c1 + c2 + 1)− (c2) = c1 + 1 (7)

Assume that we choose template terms {t − c1, s}. The
abstracted query is shown in Fig. 3b: Common symbols
have been renamed and limited knowledge about them is
reintroduced via equalities over the template terms in the
shaded subformulae: in particular, the concrete values of t′′

and c′′1 are lost, and only relational knowledge about their
difference is reintroduced. Thus, 2 ≤ ṫ − ṡ is no longer an
interpolant. Instead, our interpolation procedure finds the new
predicate c1 < t − s, which is inductive at `1 and rules
out further unrollings of the thread-modular summary. Note
that this predicate c1 < t − s is implied by the invariant in

Equation (7) and, together with 0 ≤ c1, implies the assertion
0 < t− s.

It remains to define how our method computes the set of
template terms for interpolation abstraction.

Definition 6 (Interpolation abstraction template terms). Let
T [N ] be a program template over global and local variables g
and l, let P = T [N/n] be the program obtained by replacing
N with n in T , and let P (n) be the induced parameterized
program. We start by computing a set of template terms for the
thread-modular abstraction TMS(CCA(P, n − m)). For each
variable x, we compute a stride set

S(x) = {α | x is incremented by α on some transition
of TMS(CCA(P, n−m))}.

We then define difference terms

TTMS = {αx− βc | x is a global program variable,
c is a location counter introduced by CCA,

α ∈ S(c) and β ∈ S(x)}

We define the set of interpolation abstraction template terms
Templ as the union of the following:

1) all global variables g,
2) the parameter n,
3) the set of difference terms TTMS.

We replace the template term heuristics of [31] with our
set Templ but still use their search algorithm: It explores the
powerset lattice 〈P(Templ),⊆〉 to find the largest subsets of
Templ for which the abstracted interpolation query is still
unsat. Of these, it picks the smallest ones and computes
interpolants to refine the predicate abstraction.

Intuitively, this search behavior explores relational abstrac-
tions, such as t− c1, early while still allowing us to track the
value of global variables and to introduce the parameter n if
necessary. In cases where there is no relationship between the
global variables and location counters as captured by TTMS,
our templates may still be useful by ruling out interpolants
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that track concrete variable values and would lead to loop un-
winding. Finally, it is worth pointing out that even though our
template terms are linear relations, interpolation abstraction is
semantic in nature and does not restrict the prover to only find
such interpolants [31].

VIII. EXPERIMENTS

We implement our TMCA abstraction and predicate dis-
covery engine [32] inside the ELDARICA Horn solver [25],
[31]. It takes as input a program template T [N ] and the error
states Errm in a C-like language and outputs the abstracted
program TMCA(T, n,m) as a set of constrained Horn clauses
(CHCs) [24] in the standard SMT-LIB format.

Our benchmarks and results are shown in Table I. The
first group of benchmarks consists of program templates that
sequentially increment and decrement a global variable. At
each program location we assert the tightest possible lower
and upper bounds; given that the number of increments and
decrements depends on the number of concurrent threads n,
these assertions are parameterized by the number of concurrent
threads. The second group of benchmarks is a set of programs
using unbounded thread creation taken from the software
verification competition SV-COMP [33]. In its latest three
editions (2018–2020), no sound verification tool proved these
benchmarks safe. In addition, fkp2014 and the bluetooth
driver qw2004 are the introductory and running example
of [1]. The third group of benchmarks from [14] includes non-
monotonic synchronization barriers (cf. Section III).

The columns of Table I compare the two main contributions
of this work:

1) TMCA (Section VI), compared in sub-columns (1a)–(1d)
to other approaches in columns (2) and (3), and

2) our predicate selection heuristic (Section VII) applied to
TMCA models, compared in sub-column (1a) to other
predicate selection heuristics in sub-columns (1b)–(1d).

In particular, we first compare TMCA abstraction with
different backend solvers (column 1) to PACMAN [14] (col. 2)
and ELDARICA’s unbounded thread encoding5 [18] (col. 3).
The last two benchmarks, parent-child and as-many,
use dynamic thread creation which is currently not supported
by ELDARICA. ELDARICA times out on the remaining ones.
Unfortunately, we were unable to compile PACMAN (even with
the authors’ help), due to outdated and commercial software
dependencies. We are thus limited to citing previous results
from [14] (recall from Section III that our main objective is to
replace their dedicated abstraction techniques with a cleaner
framework of well-established ones).

Second, we compare different backend solvers on our
TMCA-abstracted models in column (1): our predicate se-
lection heuristic from Section VII (1a), ELDARICA’s default
heuristic [31] (1b), ELDARICA without interpolation abstrac-
tion (1c) and the CHC solver in Z3 [26] (1d). Of the

5This encoding is usually unaware of the parameter n. We therefore slightly
modify our benchmarks such that the encoding’s implicitly introduced local
thread id variable is bounded by n.

benchmarks, only maximum does not have a thread-modular
proof and thus cannot be proved safe by our method. On
the remaining benchmarks, our predicate selection heuristic
is the only one to solve all tasks and does so well below
the timeout limit of 15 minutes. Meanwhile, ELDARICA with
default heuristics encounters 5 timeouts, ELDARICA without
interpolation abstraction 10, and Z3 even 11. This shows how
important an appropriate predicate discovery algorithm is for
our thread-modular abstractions.

In summary, a combination of both contributions (TMCA
abstraction and our predicate selection heuristic) is necessary
to tackle all benchmarks.

IX. FUTURE WORK

Our framework for parameterized program safety is de-
signed to be modular and pluggable. As such, there are many
directions for future work. We discuss several promising ones
in this section and invite further ideas and suggestions from
the community.

a) Thread-modular reasoning: [19] investigates k-thread
modular proofs, a method orthogonal to auxiliary state intro-
duction, to make thread-modular proofs more expressive. An-
other new approach to thread-modular verification is presented
in [34], where a reflective abstraction is computed iteratively
in a fixed point process. Integrating these approaches with our
method makes an interesting area for future work.

In addition, we sketch how to further refine our thread-
modular abstraction by closing the outer CEGAR loop. This
corresponds to the dashed parts of Fig. 2. If the model checker
reports a genuine counter-example, this may mean that the
parameterized program is in fact unsafe, or that our upfront
thread-modular abstraction was too coarse. If simulation on the
original program finds the counter-example to be spurious, one
can use predicate abstraction to refine the program’s original
control structure. This results in additional counters in our
thread-modular abstraction. These counters are then not only
capable of tracking control state, but also arbitrary predicates.

b) Predicate selection: The interpolation abstraction ap-
proach to predicate selection is highly semantic, in that the
interpolant search is left to the underlying theorem prover.
While this provides a lot of freedom, it would be interesting
to see how a more syntactic approach – e.g., based on syntax-
guided synthesis [35] – performs.

c) Solving: While currently limited to CHC solvers, we
plan to evaluate our abstraction with further sound software
verification tools as backend solvers.

X. CONCLUSION

In this work, we present a method for proving parame-
terized safety of infinite-state programs. Our method cleanly
separates different abstraction concerns and, in contrast to
related work, is built from well-established methods. Finally,
we demonstrated its efficacy on a number of benchmarks from
the literature.
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TABLE I: Benchmark results: Time to solve the respective encoding. �w10 indicates a timeout after 15 minutes, the fastest tool
for our TMCA encoding is highlighted in bold.

(1) TMCA abstraction (Section VI)
(a) our heuristic (b) ELDARICA (c) ELDARICA (d) Z3 (2) PACMAN (3) ELDARICA

Benchmark (Section VII) -abstract:relIneqs -abstract:off [26] [14] [18]
pp 1.5s 1.5s 1.4s 0.1s �w10

mm 1.5s 1.7s 1.4s 0.1s �w10

ppmm 2.5s 2.3s �w10 �w10 �w10

mmpp 2.6s 2.3s �w10 �w10 �w10

ppmmpp 95.5s 179.1s �w10 �w10 �w10

fkp2014 [1] 2.0s �w10 �w10 �w10 �w10

fkp2014 extd. (Fig. 1b) 2.0s �w10 �w10 �w10 �w10

qw2004 [1] 2.7s 5.5s �w10 �w10 �w10

locals [14] 124.6s �w10 �w10 �w10 16s �w10

shareds [14] 23.8s 10.9s �w10 �w10 160s �w10

readflag [14] 25.5s �w10 �w10 �w10 34s �w10

semaphore [14] 36.4s �w10 �w10 �w10 68s �w10

cyclic [14] 7.3s 4.5s 4.9s �w10 30s �w10

maximum [14] no thread-modular proof 489s �w10

parent-child [14] dynamic thread creation 76s dyn.thr.c.
as-many [14] dynamic thread creation 68s dyn.thr.c.
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[18] H. Hojjat, P. Rümmer, P. Subotic, and W. Yi, “Horn clauses for
communicating timed systems,” in HCVS, ser. EPTCS, vol. 169, 2014,
pp. 39–52.

[19] J. Hoenicke, R. Majumdar, and A. Podelski, “Thread modularity at many
levels: a pearl in compositional verification,” in POPL. ACM, 2017,
pp. 473–485.

[20] S. S. Owicki, “Axiomatic proof techniques for parallel programs,” Ph.D.
dissertation, Cornell University, 1975.

[21] S. S. Owicki and D. Gries, “An axiomatic proof technique for parallel
programs I,” Acta Inf., vol. 6, pp. 319–340, 1976.

[22] K. R. Apt, F. S. de Boer, and E. Olderog, Verification of Sequential and
Concurrent Programs, ser. Texts in Computer Science. Springer, 2009.

[23] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer, “Thread-
modular abstraction refinement,” in CAV, ser. Lecture Notes in Computer
Science, vol. 2725. Springer, 2003, pp. 262–274.

[24] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko,
“Synthesizing software verifiers from proof rules,” in PLDI. ACM,
2012, pp. 405–416.
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[29] D. Beyer, S. Löwe, and P. Wendler, “Refinement selection,” in SPIN,
ser. Lecture Notes in Computer Science, vol. 9232. Springer, 2015, pp.
20–38.
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Abstract—We present UPPROVER, a bounded model checker
designed to incrementally verify software while it is being
gradually developed, refactored, or optimized. In contrast to its
predecessor, a SAT-based tool EVOLCHECK, our tool exploits
�rst-order theories available in SMT solvers, offering two more
levels of encoding precision: linear arithmetic and uninter-
preted functions, thus allowing a trade-off between precision
and performance. Algorithmically UPPROVER is based on the
reuse and repair of interpolation-based function summaries from
one software version to another. UPPROVER leverages tree-
interpolation systems in SMT to localize and speed up the checks
of new versions. UPPROVER demonstrates an order of magnitude
speedup on large-scale programs in comparison to EVOLCHECK
and HIFROG, a non-incremental bounded model checker.

I. INTRODUCTION

Software is always in a state of constant change. While ver-
ifying a large amount of closely related programs, a significant
portion of efforts is repeated. One approach to overcome this
issue is to operate incrementally by attempting to maximally
reuse the results of previous computations. Furthermore, the
performance and scalability of verification depends on the
way software is encoded. To avoid the expensive bit-blasting
during SAT-based verification, a variety of encodings offered
by Satisfiability Modulo Theories (SMT) are successfully
used in state-of-the-art tools. For instance, checking arithmetic
properties about software might often be performed by a solver
for Linear Real Arithmetic. While automatically identifying a
proper level of encoding is difficult (and not a subject of this
paper), tools at least should offer various encoding options to
the user.

This paper presents a new tool allowing for the trade-off
between efficiency and precision for the incremental analysis
of pairs of software versions. Over-approximating function
summaries are useful to enable such an analysis [1]. Sum-
maries compactly represent all safe function behaviors, can
be computed by Craig interpolation [2] from safety proofs
of one software version, then validated on another version,
and repaired if needed. An existing implementation of this
idea, EVOLCHECK [3], uses a SAT solver and scales poorly
on benchmarks that can be modeled using first-order theories.
Our new Bounded Model Checking (BMC) [4] tool, called
UPPROVER, supports several state-of-the-art SMT algorithms

This work was supported by Swiss National Science Foundation grant
200021 185031 and by Czech Science Foundation grant 20-07487S.

for interpolation [5] and allows the user to choose more
efficient algorithms. In addition to the purely propositional
encoding UPPROVER generates models with fragments of
quantifier-free first-order logic, in particular in Linear Real
Arithmetic (LRA) and Equality with Uninterpreted Functions
(EUF). Overall, UPPROVER distinguishes itself by:
• Reusing the efforts invested in the verification runs of

previous program versions in verification of new versions;
• Providing an ability to maintain and to repair previously

computed summaries on-the-fly and to use them in the
subsequent verification runs;

• Allowing for a more succinct summary representation in
first-order logic as opposed to purely propositional logic;

• Leveraging the power of SMT solvers by symbolic encod-
ings of program versions and function summaries using
first-order theories (the encoding is flexible and provides
an ability to adjust precision and efficiency with different
levels of encoding); and

• Demonstrating a competitive performance experimentally
compared to both EVOLCHECK and a non-incremental
BMC engine while verifying gradual changes in large-
scale programs.

II. ALGORITHMIC BACKGROUND

UPPROVER is an incremental model checker which operates
on loop-free programs that are seen as a set of functions F ,
each f 2 F expressed in their Static Single Assignment form.
The behavior of a program is captured by the conjunction
of the SMT encodings enc(f) of each f 2 F . The program
respects a safety property Q if and only if the safety query∧

f∈F enc(f) ^ :enc(Q) is unsatisfiable.
We use Craig interpolation from the proof of unsatisfiability

of the safety query to construct function summaries, that is,
relations over the input and output variables of a function that
over-approximate the precise function behavior [6], [5], [7].

In UPPROVER, the problem of determining whether a
changed program still meets the safety property, w.r.t. which
the summaries were created, is reduced to the problem of vali-
dating these summaries on the changed program. To guarantee
algorithmic correctness, the process requires a specialization
of Craig interpolants called tree interpolants (see [8], [1]). The
tree structure of the interpolation problem corresponds to the
call tree of the program. We use approaches that guarantee the
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Algorithm 1: Summary validation in UPPROVER

Input: function summaries of the old version,
tree= call-tree of the new version, ∆ = set
of changed functions in the new version;

Result: new version is Safe or Unsafe;
1 while all ∆ are not processed do
2 choose the first f in the reverse postorder of tree

such that f ∈ ∆;
3 if f has a summary then
4 if the summary is invalid then
5 Remove the summary;
6 if f has a parent (f is not root) then
7 Add the parent to ∆ to be processed;
8 else
9 return Unsafe, error trace;

10 else
11 Repair summaries from subtree of f by

interpolation;
12 return Safe , set of valid and repaired summaries;

tree-interpolation property by construction [9], as opposed to,
for instance, checking it on-the-fly.

Summary validation and repair, shown in Alg. 1, consists of
a series of local validation checks for all changed function calls
and their possibly affected callers, beginning at the deepest
node. If a local validation succeeded, but for some function
call in the subtree, a summary was invalidated, UPPROVER
repairs the summary (line 11) using interpolation. Note that
this local validation continues until there are no more functions
to be processed, and if it succeeds, the new version is reported
as Safe , potentially along with a set of repaired summaries that
are made available for checking the next version.

It is worth noting that when the validation check propagates
to the call tree root, i.e., main function, it corresponds to the
pure BMC check where all functions are inlined. Thus in the
worst case, since the programs that we check are bounded (a
decidable problem), the algorithm fall backs to pure BMC.

III. OVERVIEW OF UPPROVER

The overview of UPPROVER’s architecture is shown in
Fig. 1. UPPROVER implements Alg. 1 by maintaining three
levels of precision—linear real arithmetic (LRA), uninter-
preted functions with equality (EUF), and purely propositional
logic (PROP)—to check the validity of summaries of program
P1 against the encodings of the function bodies of program
P2. Repaired function summaries are produced by the range
of interpolation algorithms available in the underlying SMT
solver. Next we describe UPPROVER’s key features.

a) Efficiency / precision trade-off: A key enabler of
UPPROVER’s ability to adjust to user’s needs in precision and
efficiency is the safe over-approximation of programs with
different SMT encodings. The high-level approach is to use
linear or uninterpreted versions of the bit-precise program
instructions whenever possible. The user selects the precision
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Figure 1: Overview of the UPPROVER architecture.

of the overall encoding (i.e., LRA, EUF, and PROP) which
uniquely determines the precision of summaries that are avail-
able after the preceding verification of P1.

If the user is interested in checking program properties that
are likely sensitive to some bit operators in software, he/she
might prefer PROP encoding. The tool then bit-blasts the
program together with summaries and uses its most expensive
theory (essentially, a SAT solver). However, to accelerate the
process, the user might choose instead a light-weight theory,
forcing the tool to pick summaries appropriately. The program
statements outside of the chosen theory will be modeled
nondeterministically in this case. Thus, if a bug is detected, it
might be due to the theory usage, and the user is encouraged
to repeat the analysis with a more precise theory (and thus,
more precise summaries). Note that there is no way in general
to predict the best level of encoding for each program: even if
a program has seemingly bit-sensitive statements, they might
be sliced out or treated nondeterministically, allowing for a
successful use of a light-weight theory.

b) Summary repair: Summaries of P1 (of the selected
level of precision) are taken as input and used in the incre-
mental analysis on demand. The tool iteratively checks if the
summaries are valid for P2 and repairs them if needed. In
the best-case scenario, all summaries of P1 are validated for
P2, copied to the persistent storage, and become available for
the future analysis of P2. When some of the summaries need
repair, the tool generates new interpolants from the successful
validity checks of the parent functions and stores them as the
corresponding summaries. No summaries are produced when
the tool returns Unsafe.

c) Difference annotations / validation scope: UPPROVER
does not take P1 as input, but relies on annotating the lines
of code changed between P1 and P2. The user may choose
an inexpensive syntax-level difference, or a more expensive
and precise semantic-level difference that compares programs
after some normalization and translation to an intermediate
representation [3]. The functions that have been identified as
changed are stored in ∆ in Alg. 1. Note that if a function
f is introduced in P2, the caller of f is marked as changed
by our difference-checker. When no summary exists for f , the
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algorithm continues to check the caller. A successful validation
with inlined f generates a summary for f .

d) SMT solving and interpolation engine: For answering
BMC queries and the subsequent Craig interpolation, UP-
PROVER uses the SMT solver OPENSMT [10]. The solver
generates a quantifier-free first-order interpolant as a combi-
nation of interpolants from resolution refutations [11], proofs
obtained from a run of a congruence closure algorithm [12],
and Farkas coefficients obtained from the Simplex algorithm
in linear real arithmetic [13].

e) Implementation: UPPROVER is available as an open-
source software. Each component, from difference checker
to modeling to solving procedures, has been significantly
optimized compared to its earlier version EVOLCHECK. As
a front-end of UPPROVER, we use the infrastructure from
CPROVER v5.10 to transform C program to obtain a basic
unrolled BMC representation that we use as a basis for
producing the final logical formula.

f) Compatibility: The summaries computed by UP-
PROVER are compatible with the input to HIFROG [5], another
tool for incremental verification of different assertions in a
single program. Note the difference in the use of summaries
in HIFROG and UPPROVER: the former does not validate the
summaries, but takes them as granted (even from the user,
thus not guaranteeing the tree-interpolation property), and uses
them to accelerate the verification of several new assertions.

IV. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation
of UPPROVER. We demonstrate two key features of our
tool: (i) the usefulness of summary reuse in verifying pro-
gram revisions, and (ii) the usefulness of different levels
of modeling precision, i.e., LRA, EUF, and PROP. To
this end, we compare UPPROVER against our current im-
plementation of its predecessor EVOLCHECK and a bounded
model checker HIFROG.1 Then, we compare UPPROVER with
CPACHECKER [14] a tool that uses intermediate results called
abstraction precision for caching and reusing.

Our benchmarks, containing one or more assertions, orig-
inate from different revisions of Linux kernel device drivers
from [14].2 After excluding cases where CPROVER had fron-
tend issues, we shortlisted 1679 revision pairs (LOC on aver-
age 16K). We also included 92 pairs hand-crafted benchmarks
that stress-test our implementation. All experiments were run
with a 30 GB memory limit and a 600 s time limit. The
complete experimental results, benchmarks, and the source
code are available at http://verify.inf.usi.ch/upprover.

A. Demonstrating the effect of summary reuse in UPPROVER

In the first set of experiments, we compare UPPROVER
(incremental verification) against HIFROG (non-incremental
verification). The results of the experiment within the same
theory encodings by LRA and EUF are displayed in Fig. 2.

1The tools share the same front-end for parsing C programs, thus the
comparison is not affected by unrelated implementation differences.

2https://www.sosy-lab.org/research/RegressionVerification/.

A large amount of points (that represent pairs of runs) on the
upper triangle reveals that UPPROVER is an order of magni-
tude faster than the non-incremental verification in HIFROG.

Table I gives further details on 11 randomly selected pairs
of benchmarks comparing the non-incremental HIFROG and
incremental UPPROVER, both using the EUF encoding. Our
results in LRA are very similar and therefore omitted. Each
row in Table I refers to a pair (P1, P2) of programs. We use
acronyms jF j for number of functions in P1, j�j for number
of changed functions in P2, diff for the time to construct � be-
tween P1 and P2, itp for the time for generating all summaries
after successful bootstrapping of P1, and result for reporting
whether the second version was safe or unsafe. The columns
total in HIFROG and UPPROVER show the total verification
time for non-incremental and incremental verification of P2

respectively. Even though UPPROVER’s total time includes
overhead such as summary repair for the subsequent runs
and the difference check, in many benchmarks UPPROVER
convincingly outperforms non-incremental HIFROG.

The speedup column demonstrates the relative speedup of
UPPROVER over non-incremental verification in HIFROG. In
the majority of cases, UPPROVER gains a significant speedup
when reusing EUF summaries (typeset in bold). This occurs
especially when the two versions have the same intermedi-
ate representation (e.g., pair 3) and the validation check is
omitted. Slowdowns typically happen when both the number
of changed functions and the iterative validation checks are
big (e.g., pair 9), or when the verification task is relatively
trivial in non-incremental verification (e.g., pairs 2 and 5).
Slowdowns are demonstrated on average of 0.6x for 30% of
our benchmarks in UPPROVER. On the other hand, the positive
effect of summary reuse in UPPROVER was very evident, with
notable speedup of 10.7x on 70% of benchmarks in LRA and
EUF on average, and with an impressive max value of 109x
in EUF and 104x in LRA summary reuse.

B. Demonstrating the effect of theory encoding in UPPROVER

Figure 3 illustrates the trade-off between the precision
and run time of incremental verification by comparing
the LRA/EUF-based encodings in UPPROVER against the
PROP-based encoding in EVOLCHECK. Each point corre-
sponds to an incremental verification run on P2. Almost
universally, whenever run time exceeds one second, it is an
order of magnitude faster to verify with LRA and EUF than

Table I: UPPROVER using EUF summary vs. non-incremental HIFROG.

boot HIFROG UpProver
pair jF j itp(s) total(s) diff (s) j�j #valid total(s) speedup result

1 2124 0.5 36.6 0.2 80 92 8.9 4.1 Safe
2 25 0.1 0.8 0.1 1 2 1.8 0.4 Unsafe
3 2291 1.3 41.8 0.2 0 0 0.5 92.9 Safe
4 2148 0.6 41.4 0.2 4 4 0.8 55.2 Safe
5 544 0.1 2.4 0.1 95 105 4.7 0.5 Unsafe
6 4350 0.7 32.1 0.5 415 552 58.1 0.6 Safe
7 665 0.1 2.5 0.1 1 1 0.2 10.8 Safe
8 357 0.1 3.8 0.1 10 13 0.4 9.9 Safe
9 5417 0.6 43.2 0.5 750 1201 101.1 0.4 Safe
10 2121 0.5 37.6 0.2 4 4 0.8 49.5 Safe
11 31246 3.2 83.2 12.1 30 41 78.2 1.1 Safe
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Figure 2: Demonstrating the impact of summary reuse by comparing verification time of UPPROVER versus HIFROG on LRA (left) and EUF (right).
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Figure 3: Demonstrating the impact of theory encoding by comparing timings of LRA/EUF encodings in UPPROVER vs. PROP encoding in EVOLCHECK.

Table II: A comparison of different encodings in UPPROVER on device
drivers (light gray) and crafted benchmarks (dark gray).

PROP LRA EUF Regret
PROP

Regret
LRA

Regret
EUF

results P1 P2 P1 P2 P1 P2 P1+P2 P1+P2 P1+P2

Safe 353 353 1591 1589 1591 1590 0+0 0+0 0+0
Unsafe 0 0 78∗ 1∗ 85∗ 1∗ n/a n/a n/a
TO 1326 2 10 1 3 0 n/a n/a n/a
Total 1679

Safe 57 38 73 57 35 28 2+2 16+17 4+6
Unsafe 6 12 16∗ 12∗ 53∗ 6∗ n/a n/a n/a
TO 27 3 3 0 4 0 n/a n/a n/a
MO 2 0 0 0 0 0 n/a n/a n/a
Total 92

with PROP. In addition, a large number of benchmarks on
the top horizontal lines suggests that it is possible to solve
many more instances with LRA/EUF-based encoding than
with PROP-based encoding. However, the loss of precision is
seen on the benchmarks on the vertical line labeled Unknown,
indicating if the incremental result using LRA/EUF is unsafe,
the result might be spurious because of abstraction.

More statistics are shown in Table II. For each encoding
within the time and memory limits, the benchmarks are
reported as Safe or Unsafe . The unsafe results might be
spurious on theory encodings (indicated by an asterisk). We

use acronyms TO for time out, MO for memory out, and
P1, P2 for two versions of a program. We notice that PROP
times out in 76% of the benchmarks, while LRA and EUF
time out for less than 1%. The last three columns (the first
number refers to P1 and the second to P2) indicate how many
benchmarks can be solved exclusively in a single encoding.
This can be interpreted as the regret of not including a solver
in an imaginary portfolio.

The results for crafted benchmarks show that the theories
are complementary, with LRA having the biggest regret. This
can be contrasted to the plot in Fig. 4 showing that LRA
encoding has a constant 30% time overhead compared to EUF
due to the more expensive decision procedure.

Our extensive experimentation reveals that LRA and EUF
encodings are crucial for scalability. At the same time, there
is a small number of benchmarks that require PROP. While
it is unsurprising that bit-blasted models are more expensive
to check than the EUF and LRA models, we find it surprising
that the light-weight encodings work so often. In effect, the
encodings complement each other, and the results suggest an
approach where the user gradually tries different precisions
until one is found that suits the benchmarks at hand.
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C. Comparison of UPPROVER and CPACHECKER

Finally, we compare UPPROVER with a widely-used tool
CPACHECKER that is able to perform incremental verification
by reusing abstraction precisions. It is an orthogonal technique
to ours, i.e., it is an unbounded verifier and aims at finding
loop invariants. Thus, comparing running times does not make
sense since running times in UPPROVER crucially depend on
the chosen bound.3 Instead, we concentrate on comparing the
speedups obtained with the two methods since the change of
a bound affects a speedup less.

Here we report the results only on device driver in-
stances which both tools could handle. Among the 250 de-
vice drivers categories reported in https://www.sosy-lab.org/
research/cpa-reuse/predicate.html, we matched 34 categories
which are suitable for UPPROVER.4 These categories contain
in total 903 verification tasks.

Fig. 5 depicts the comparison of speedup in UPPROVER and
CPACHECKER. A large amount of points on the lower triangle

3For instance, the average running times in CPACHECKER is 285.3 seconds
and in UPPROVER with LRA is 13.4 seconds for chosen bound 5. For other
bounds UPPROVER would have different average running times.

4The reported version of UPPROVER is constrained by its dependency on
the CPROVER framework which impedes its frontend from processing some
benchmarks.

lets us conclude that summary reuse in UPPROVER achieves
superior speedup than the precision reuse in CPACHECKER.
The average speedup in UPPROVER was 7.3 with standard-
deviation of 6 and in CPACHECKER the average speedup was
2.9 with standard-deviation of 1.7. There were 4 slowdowns
in UPPROVER whereas CPACHECKER did not report any
slowdowns on these 34 categories. The detailed results are
available at http://verify.inf.usi.ch/upprover/experimentation.

V. RELATED WORK

The trend towards constructing efficient tools for incremen-
tal formal verification exists since last two decades [15]. We
identify here two main approaches to incremental verification
of different revisions of a program:

a) Differential program reasoning: Reasoning over mul-
tiple programs (to, e.g., prove program equivalence) is usually
performed by creating a so-called product program [16], [17],
[18], [19], [20], [21] and analyzing this product program
using the general-purpose tools. These approaches, however,
do not usually consider properties about isolated programs. A
modular approach that works by simultaneously traversing the
call trees of both programs is proposed in [16], but it does not
use function summaries. A probabilistic framework has been
recently proposed in [22], but it is applicable to differential
bug finding, rather than to proving the absence of bugs.

b) Incremental Verification: A number of approaches
accelerate verification by reusing previous efforts. Program
changes are extensively used in incremental modal µ-
calculus [23], solving of Constrained Horn Clauses [24],
[25], predicate abstraction [14], [26], automata-based ap-
proaches [27], reusing the results from constraint solving [28],
and state-space graph for checking temporal safety proper-
ties [29]. However these groups of techniques are orthogonal
to our approach as we store and reuse the interpolation-
based function summaries in the context of BMC for verifying
revisions of programs. In addition, our tool outputs a certificate
of correctness in the form of a function summary that can be
used as a function specification.

VI. CONCLUSION AND FUTURE WORK

We presented UPPROVER, an SMT-based incremental BMC
tool for different revisions of a program. Its key innovation is
in several SMT-level encodings and the corresponding SMT-
level summarization algorithms that allow the user to adjust
the precision or efficiency of verification. UPPROVER enables
LRA and EUF theories (and in the future, more) thus allowing
a trade-off between precision and performance. Furthermore,
our approach not only extracts function summaries but pro-
vides a capability of repairing them on-the-fly and reusing
them in the subsequent verification runs. Our experimentation
reveals that UPPROVER is more efficient than its predecessor
and the two orthogonal approaches: non-incremental bounded
model checker [5] and precision reuse [14].

In future we extend the tool to handle summaries from
different theories simultaneously in the style of [7] and [30],
possibly by allowing checks for the tree-interpolation property
on-the-fly.
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Abstract—Reactive synthesis is a key technique for the design
of correct-by-construction systems and has been thoroughly
investigated in the last decades. It consists in the synthesis
of a controller that reacts to environment’s inputs satisfying
a given temporal logic specification. Common approaches are
based on the explicit construction of automata and on their
determinization, which limit their scalability.

In this paper, we introduce a new fragment of Linear Tem-
poral Logic, called Extended Bounded Response LTL (LTLEBR),
that allows one to combine bounded and universal unbounded
temporal operators (thus covering a large set of practical cases),
and we show that reactive synthesis from LTLEBR specifications
can be reduced to solving a safety game over a deterministic sym-
bolic automaton built directly from the specification. We prove
the correctness of the proposed approach and we successfully
evaluate it on various benchmarks.

I. INTRODUCTION

Since the dawn of computer science, synthesizing correct-
by-construction systems starting from a specification is an
important and difficult task. A practical algorithm to solve
this task would be a big improvement in declarative program-
ming, since it would allow the programmer to write only
the specification of the program, freeing her from possible
design or implementation errors, that, in many cases, are
due to an imperative style of programming. In the context of
formal verification and model-based design, the possibility of
synthesizing a controller able to comply with the specification
for all possible behaviors of the environment would be of great
importance as well: all the effort would be directed to improve
the quality of the specification for the controller.

Reactive synthesis was first proposed by Church [7] and
solved by Büchi and Landweber [5] for S1S specifications
with an algorithm of non-elementary complexity. For Linear
Temporal Logic (LTL) specifications, the problem has been
shown to be 2EXPTIME-complete [21], [22]. In the attempt
of making reactive synthesis a practical task, in spite of its
very high complexity, research mainly focused on two lines:
(i) finding good algorithms for the average case; (ii) restricting
the expressiveness of the specification language. Important
examples of the first line of research are the contribution
by Kupferman and Vardi [15], where the authors devise a
procedure to avoid Safra’s determinization of Büchi automata
(a known bottleneck in all the problems requiring a determiniz-
ation of a Büchi automaton), and the work by Finkbeiner and

Schewe [11], where the problem is reduced to a sequence of
smaller problems on safety automata, obtained by bounding the
number of visits to a rejecting state of a co-Büchi automaton. A
meaningful example of restrictions to the specification language
is the definition of the Generalized Reactivity(1) logic [20],
whose synthesis problem can be solved in O(N3) symbolic
steps, where N is the size of the arena. Finally, in [25] Zhu et
al. consider reactive synthesis from Safety LTL specifications.
Although the complexity remains doubly exponential, the
proposed restriction allows one to reason on finite words and
thus to exploit efficient tools for finite-state automata, like, for
instance, MONA [12].

In this paper, we propose a new fragment of LTL, called
Extended Bounded Response LTL (LTLEBR for short), which
supports bounded operators [18], such as G[a,b] and F[a,b], along
with universal unbounded temporal operators like G and R. We
show that formulas of LTLEBR can be turned into deterministic
symbolic automata over infinite words, with a translation carried
out in a completely symbolic way. Such a result is achieved
in two steps: (i) a pasti�cation of the subformulas containing
only bounded operators by making use of techniques similar to
those exploited for MTL [17], [18], and (ii) the construction of
deterministic monitors for the unbounded temporal operators.
These two steps allow the entire procedure to be carried out
without ever producing any explicit automaton. Then, we use
existing algorithms for safety synthesis to solve the game on
the deterministic symbolic automaton. We implemented the
proposed solution in a tool, called ebr-ltl-synth, and compared
its performance against state-of-the-art synthesizers for full
LTL over a set of LTLEBR formulas. The outcomes of the
experimental evaluation are encouraging. For lack of space,
some of the proofs are reported in [8].

II. PRELIMINARIES

Linear Temporal Logic with Past (LTL+P) is a modal logic
interpreted over infinite state sequences. Let Σ be a set of pro-
positions. LTL+P formulas are inductively defined as follows:

� := p | ¬� | �1 ∨ �2 | X� | �1 U �2 | Y� | �1 S �2

where p ∈ Σ. Temporal operators can be subdivided into the
future operators, next (X) and until (U), and past operators,
yesterday (Y) and since (S). We define the following common
abbreviations (where > stands for true): (i) Xi� is X(Xi−1�)
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if i > 0 and X0� is �; (ii) release: �1R �2 ≡ ¬(¬�1 U ¬�2);
(iii) eventually: F�1 ≡ > U �1; (iv) globally: G�1 ≡ ¬F¬�1;
(v) trigger: �1T �2 ≡ ¬(¬�1S¬�2); (vi) once: O�1 ≡ >S�1;
(vii) historically: H�1 ≡ ¬O¬�1.

LTL is obtained from LTL+P by allowing only the next and
the until operators. Conversely, Full Past LTL (LTLFP) is the
fragment of LTL+P that only admits past operators.

LTL can also be enriched with bounded temporal operators,
such as the bounded until (�1U [a,b]�2) and bounded eventually
(F[a,b]�1 ≡ > U [a,b] �1). Full Bounded LTL (LTLFB) is the
fragment of LTL that includes only the next, bounded until,
and bounded eventually operators.

Let us now give the semantics of the above logics. A state
sequence is an infinite sequence � = 〈�0; �1; : : :〉 ∈ (2Σ)ω of
sets of propositions �i ∈ 2Σ, called states. Given a sequence
�, a position i ≥ 0, and a formula �, the satisfaction of � by
� at i, written �; i |= �, is inductively defined as follows:
�; i |= p iff p ∈ �i
�; i |= ¬� iff �; i 6|= �
�; i |= �1 ∨ �2 iff either �; i |= �1 or �; i |= �2

�; i |= �1 ∧ �2 iff �; i |= �1 and �; i |= �2

�; i |= X� iff �; i+ 1 |= �
�; i |= Y� iff i > 0 and �; i− 1 |= �
�; i |= �1 U �2 iff there exists j ≥ i such that

�; j |= �2 and �; k |= �1 for all
i ≤ k < j

�; i |= �1 S �2 iff there exists j ≤ i such that
�; j |= �2 and �; k |= �1 for all
j < k ≤ i

�; i |= �1 U [a,b] �2 iff there exists j ∈ [i+ a; i+ b]
such that �; j |= �2 and
�; k |= �1 for all i ≤ k < j

We say that � satisfies �, written � |= �, if and only if
�; 0 |= �. We define the language L(�) of a temporal formula
� as L(�) = {� ∈ (2Σ)ω | � |= �}.

Symbolic safety automata and safety games

To begin with, we formally define the problems of realizab-
ility and reactive synthesis for temporal formulas.

As for realizability, it is convenient to view it as a two-
player game between Controller, whose aim is to satisfy the
specification, and Environment, who tries to violate it.

De�nition 1 (Strategy): Let Σ = C ∪ U be an alphabet
partitioned into the set of controllable variables C and the set
of uncontrollable ones U , such that C ∩ U = ∅. A strategy
for Controller is a function g : (2U )+ → 2C that, given the
sequence U = 〈U0; : : : ;Un〉 of choices made by Environment
so far, determines the current choices Cn = g(U) of Controller.

Given a strategy g : (2U )+ → 2C and an infinite sequence of
uncontrollable choices U = 〈U0;U1; : : :〉 ∈ (2U )ω, with some
abuse of notation, we denote as g(U) = 〈U0 ∪ g(〈U0〉);U1 ∪
g(〈U0;U1〉); : : :〉 the state sequence resulting from reacting to
U according to g.

De�nition 2 (Realizability and Synthesis): Let � be a
temporal formula over the alphabet Σ = C∪U . We say that � is
realizable if and only if there exists a strategy g : (2U )+ → 2C

such that, for any infinite sequence U = 〈U0;U1; : : :〉 ∈ (2U )ω ,
it holds that g(U) |= �. If � is realizable, the synthesis problem
is the problem of computing such a strategy g.

Temporal logic has an intimate relationship with automata
on infinite words [24], where different acceptance conditions
give rise to different classes of automata. For instance, the
acceptance condition of (non-deterministic) Büchi automata
allows them to recognize the class of !-regular languages [4],
including all languages definable by LTL+P formulas.

Here, we focus on a restricted type of acceptance condition,
called safety condition, and we represent automata in a symbolic
way, as opposed to their common explicit representation.

De�nition 3 (Symbolic Safety Automata): A symbolic
safety automaton (SSA) is a tuple A = (V; I; T; S), such
that (i) V = X ∪ Σ, where X is a set of state variables and
Σ is a set of input variables, and (ii) I(X), T (X;Σ; X ′), and
S(X), with X ′ = {x′ | x ∈ X}, are Boolean formulae which
define the set of initial states, the transition relation, and the
set of safe states, respectively.

In symbolic automata, states are identified by the values of
state variables, and both initial/final states and the transition
relation are represented as Boolean formulas. This allows
them to be, in many cases, exponentially more succinct than
equivalent explicitly represented automata. In particular, the
transition relation T (X;Σ; X ′) is built over state variables,
input variables, and a primed version of state variables that
represent the values of state variables at the next state. As
an example, if a variable x has to �ip at every transition, the
transition relation would contain a clause of the form x⇔ ¬x′.

De�nition 4 (Acceptance of SSA): Let A be an SSA. A
trace is a sequence � = 〈�0; �1; : : :〉 ∈ (2V )ω of subsets �i
of V that satisfies the transition relation of A, that is, such
that for all i ≥ 0, T (X;Σ; X ′) is satisfied when �i is used to
interpret variables from X and Σ, and �i+1 is used to interpret
variables from X ′. We say that a trace � is induced by a word
� = 〈�0; �1; : : :〉 ∈ (2Σ)ω iff �i = �i∩Σ for all i ≥ 0. A trace
� is accepting (or safe) iff �i satisfies S(X) for all i ≥ 0. The
language of A, denoted as L(A), is the set of all � ∈ (2Σ)ω

such that there exists an accepting trace induced by � in A.
For reactive synthesis, a crucial property of an automaton A

is determinism, since in order to check if � ∈ L(A) it suffices
to check if the trace induced by � in A is accepting.

De�nition 5 (Deterministic SSA): An SSA A = (V; I; T; S)
is deterministic if:

1) the formula I has exactly one satisfying assignment;
2) the transition relation is of the form:

T (X;Σ; X ′) :=
∧
x∈X

(x′ ⇔ �x(X ∪ Σ))

where each �x(X ∪ Σ) is a Boolean formula over X and Σ.
Note that Def. 5 implies that for each � ∈ (2Σ)ω , there exists

exactly one trace induced by � for any given deterministic SSA.
The realizability and the synthesis problems can be defined
over a deterministic automaton as well; this gives rise to a
safety game, which is defined as follows.
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De�nition 6 (Safety Game): Let A be a deterministic
SSA over the alphabet Σ = C ∪ U . A safety game is a tuple
G = 〈A; C;U〉, where C and U are the sets of controllable and
uncontrollable variables, respectively. We say that Controller
wins the game if and only if there is a strategy g : (2U )+ → 2C

such that for all sequences U = 〈U0;U1; : : :〉 ∈ (2U)ω , the trace
� induced by g(U) in A is accepting.

III. EXTENDED BOUNDED RESPONSE LTL

In this section, we define Extended Bounded Response
LTL, abbreviated LTLEBR. LTLEBR extends LTLFB (which only
features bounded operators) by admitting Boolean combinations
of the universal unbounded temporal operators release (R) and
globally (G).

De�nition 7 (The logic LTLEBR): Let a; b ∈ N. An LTLEBR
formula α is inductively defined as follows:

 := p | ¬ |  1 ∨  2 | X |  1 U [a,b]  2 Full Bounded Layer

� :=  | �1 ∧ �2 | X� | G� |  R � Future Layer

α := � | α1 ∨ α2 | α1 ∧ α2 Boolean Layer

We refer to Sec. II for the semantics of LTLEBR operators. In
the next sections, we will show how to build, given an LTLEBR
formula �, a deterministic symbolic safety automaton A(�)
such that L(A(�)) = L(�).

A. Examples

We now give some simple examples of requirements that
can be expressed in the LTLEBR logic.

The first one is a typical bounded response requirement:
Controller has to answer a grant g at most k time units after
the request r of Environment is issued. It can be expressed by
the following LTLEBR formula:

G(r → F[0,k]g)

Another quite common requirement is mutual exclusion. As
an example, the case of an arbiter that has to grant a resource
to at most one client at once can be captured as follows (for
each i, gi means that the resource has been granted to client i):

G(
∧

1≤i<j≤n

¬(gi ∧ gj))

When a set of clients with different priorities has to be
managed, it is possible to introduce a requirement stating that,
whenever two or more clients simultaneously send a request,
clients with a higher priority must be granted before those with
a lower one (i < j means that the priority of client i is higher
than that of client j):∧

1≤i<j≤n

G((ri ∧ rj)→ (¬gj) U [0,k] gi)

Finally, in many situations it is important to include require-
ments about the con�guration of a system model. Consider the
case of a thermostat. One may ask that if the prog modality
is off, then the controller has to communicate the signal on
to the boiler for an indefinitely long amount of time, while,
in case the prog modality is on, it has to do that only for

a specific interval of time, say [h1; h2], after which it has to
stop the communication with the boiler. This can be expressed
in LTLEBR by the following formula:

(¬prog ∧ G(on)) ∨ (prog ∧ G[h1,h2](on) ∧ Xh2G(off))

B. Comparison with other temporal logics

Zhu et al. [25] studied the synthesis problem for Safety
LTL, which can be viewed as the until-free fragment of LTL
in negated normal form (NNF). Every formula � of LTLEBR
can be turned into a Safety LTL one by (i) transforming �
in NNF and (ii) expanding each bounded operator in terms
of conjunctions or disjunctions. As an example, the LTLEBR
formula � := G(p→ F[0,5]q) is equivalent to the Safety LTL
formula �′ := G(p →

∨5
i=0 X

iq). However, since constants
in LTLEBR are represented by using a logarithmic encoding,
LTLEBR formulas can be exponentially more succinct than
Safety LTL ones. Whether the converse holds as well, i.e.,
whether any formula of Safety LTL can be translated into
an equivalent LTLEBR one, is still an open question. As an
example, G(p∨Gq) is a Safety LTL formula but, syntactically,
is not an LTLEBR one.

Maler et al. [18] introduced Metric Temporal Logic with a
Bounded-Horizon (MTL−B for short) as the metric temporal
logic with only bounded operators interpreted over dense time.
They addressed the problem of reactive synthesis from MTL−B
specifications by showing that each MTL−B formula can be
transformed into a deterministic timed automaton. With respect
to this fragment, and ignoring the differences in the underlying
temporal structures (in our setting, time is discrete), LTLEBR
extends MTL−B with Boolean combinations of unbounded
universal temporal operators.

IV. FROM LTLEBR TO
DETERMINISTIC SYMBOLIC SAFETY AUTOMATA

This section focuses on the procedure to turn every LTLEBR
formula into a deterministic symbolic safety automaton on
infinite words (see Def. 5) that recognizes the same language.

In doing that, we apply a few transformation steps on the
formula, summarized in Fig. 1, to simplify its syntactic structure
and turn it into a form amenable to direct transformation into
a deterministic SSA. We define two syntactic restrictions of
LTLEBR that are the targets of the transformation steps.

De�nition 8 (PastLTLEBR): An PastLTLEBR formula α is
inductively defined as follows:

 := p | ¬ |  1 ∨  2 | Y |  1 S  2

� :=  | �1 ∧ �2 | X� | G� | (Xi )R �

α := � | α1 ∨ α2 | α1 ∧ α2

De�nition 9 (Canonical PastLTLEBR): The canonical form
of PastLTLEBR formulas is inductively defined as follows:

 := p | ¬ |  1 ∨  2 | Y |  1 S  2

� :=  | G |  1 R  2

� := � | X�
α := � | α1 ∨ α2 | α1 ∧ α2

85



LTLEBR φ

PastLTLEBR φ

· toPastLtlEbr

Canonical PastLTLEBR φ

· canonize

SSA A(φ)
· ltl2smv

AIGER

· fsmv2aig

result (real./unreal.)

· call to a safety synthesizer

Figure 1. The overall procedure.

Canonical PastLTLEBR formulas do not contain nested
occurrences of unbounded temporal operators, whose operands
can be only full-past formulas, and each of these is prefixed
by an arbitrary number of next operators.

The transformation of LTLEBR formulas into deterministic
SSAs consists of three steps: (i) a translation from LTLEBR
to PastLTLEBR; (ii) a translation from PastLTLEBR to its
canonical form; (iii) a transformation of canonical PastLTLEBR
formulas into deterministic SSAs. Once a deterministic SSA
A(�) for the original LTLEBR formula � over C ∪ U has been
obtained, to solve the safety game 〈A(�); C;U〉, i.e., to decide
the existence of a strategy for Controller in the automaton, we
apply an existing safety synthesis algorithm (see Def. 6).

A. From LTLEBR to PastLTLEBR

Let � be an LTLEBR formula. The first step consists in
translating each LTLFB subformula of � into an equivalent one,
which is of the form Xd , with  ∈ LTLFP and d ∈ N. We
refer to this process as pasti�cation [17], [18]. As we will see,
since “the past has already happened”, full-past formulas can
be represented by deterministic monitors.

In order to pastify each LTLFB subformula of �, we adapt to
LTLEBR a technique developed by Maler et al. for MTL−B [17],
[18]. Intuitively, for each model of a full-bounded formula �,
there exists a furthermost time point d (the temporal depth of
�) such that the subsequent states cannot be constrained by �
in any way. The pasti�cation of � is a formula that uses only
past operators and that is equivalent to � when interpreted at
time point d instead of at the origin.

De�nition 10 (Temporal Depth [18]): Let � be an LTLFB
formula. The temporal depth of �, denoted as D(�), is
inductively defined as follows:
• D(p) = 0, for all p ∈ Σ
• D(¬�1) = D(�1)
• D(�1 ∧ �2) = max{D(�1); D(�2)}
• D(X�1) = 1 +D(�1)
• D(�1 U [a,b] �2) = b+ max{D(�1); D(�2)}

Let Mφ (only M if unambiguous) be the greatest constant in
�, with Mφ = 0 if � has no constants. It can be observed that
D(�) ≤M · n, where n = |�|.

De�nition 11 (Pasti�cation [18]): Let � be an LTLFB
formula and d ≥ D(�). The pastification of � is the formula
Π(�; d) inductively defined as follows:

• Π(p; d) = Ydp

• Π(¬�; d) = ¬Π(�; d)

• Π(�1 ∧ �2; d) = Π(�1; d) ∧Π(�2; d)

• Π(X�; d) = Π(�; d− 1)

• Π(�1 U [a,b] �2; d) =∨b−a
t=0 (Yt(Π(�2; d− b) ∧ Hb−t−1YΠ(�1; d− b)))

Note that from Def. 11 we can derive that Π(F[a,b]�; d) ≡
Π(> U [a,b] �; d) ≡

∨b−a
t=0 YtΠ(�; d − b), which can be suc-

cinctly written using the once operator, hence we can define
Π(F[a,b]�; d) = O[0,b−a]Π(�; d− b).

Proposition 1 (Soundness of pasti�cation): Let ' be a
LTLFB formula. For all state sequences � ∈ (2Σ)ω, all i ∈ N,
and all d ≥ D(�), it holds that:

�; i |= ' ⇔ �; i |= XdΠ('; d)

From now on, let pastify(�) be the formula
XD(φ)Π(�;D(�)). As an example, if � := F[0,k1](q∧F[0,k2]p),
then pastify(�) := Xk1+k2O[0,k1](Yk2q ∧ O[0,k2]p). We state
the following complexity result about pastification.

Proposition 2: Let � be a LTLFB formula. Then, pastify(�)
is a formula of size O(n2 ·M log2 n+1), where n = |�| and M
is the greatest constant in �.

Note that if � has no constants, that is, M = 1, the size of
pastify(�) is O(n2) . Given an LTLEBR formula �, we pastify
each of its LTLFB subformulas with the pastify operator: we
call this step toPastLtlEbr. Once it has been completed, the
resulting formula belongs to PastLTLEBR.

The toPastLtlEbr algorithm can be improved by observing that
there are LTLFB formulas that already belong to PastLTLEBR.
One example is the formula p∧XXXq. Obviously, for this kind
of formulas there is no need for the algorithm to pastify them.
Consider the previous example. Without the proposed trick, the
algorithm would have produced the formula XXX(YYYp ∧ q),
while, by simply noticing that the formula already belongs to
PastLTLEBR, it does not need to pastify anything, returning
p ∧ XXXq.

Proposition 3: For each LTLEBR formula �, there is an
equivalent PastLTLEBR formula �′ of size O(n3 ·M log2 n+1),
where n = |�| and M is the greatest constant in �.

Proof: Let � be an LTLEBR formula and let �′ :=
toPastLtlEbr(�). By Prop. 1, the toPastLtlEbr algorithm replaces
the LTLFB subformulas of � with an equivalent formula, hence
� ≡ �′. Since in � there are at most n = |�| subformulas,
then, by Prop. 2, |�′| = n · O(n2 · M log2 n+1), that is,
|�′| = O(n3 ·M log2 n).
Note that if there are no constants in �, that is, M = 1, then,
by Prop. 2, |toPastLtlEbr(�)| = O(n3).
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B. From PastLTLEBR to Canonical PastLTLEBR
The second step is the canonization of the PastLTLEBR

formula obtained from the previous step, in order to produce
an equivalent formula in canonical form (Def. 9). Canonical
PastLTLEBR formulas are Boolean combinations of formulas of
the form Xi 1, XiG 1, and Xi( 1R 2), where  1 and  2 are
full past formulas. Compared to general PastLTLEBR formulas,
those in canonical form do not admit neither nested unbounded
operators nor next operators in front of the left-hand argument
of a release. The canonization of a PastLTLEBR formula is
obtained by applying a set of rewriting rules.

De�nition 12 (Canonization): Given a PastLTLEBR formula
�, canonize(�) is the formula obtained by recursively applying
the R1-R7 rules to the subformulas of � in a bottom-up fashion
followed by the application of the Rflat rule:

R1 : X( 1 ∧  2) X 1 ∧ X 2

R2 :  R ( 1 ∧  2)  R  1 ∧  R  2

R3 : (Xi 1)R (Xj 2) {
Xi( 1 R (Yi−j 2)) if i > j

Xj((Yj−i 1)R  2) otherwise

R4 : (Xi 1)R (Xj( 2 R  3)) {
Xi( 1 R ((Yi−j 2)R (Yi−j 3))) if i > j

Xj((Yj−i 1)R ( 2 R  3)) otherwise

R5 : GXiG  XiG 

R6 : GXi( 1 R  2) XiG 2

R7 : (Xi 1)R (XjG 2) {
XiGYi−j 2 if i > j

XjG 2 otherwise

Rflat : Xi( 1 R ( 2 R (: : : ( n−1 R  n) : : : ))) 

Xi(( n−1 ∧ O( n−2 ∧ : : :O( 1 ∧ Yi>) : : : ))R  n)

for any n ≥ 3

where  ,  1,  2, and  3 are full-past formulae.
It is worth noticing that, so far, we do not have rules

(preserving equivalence) to deal with the following cases:
(i) (�1 ∧ �2)R (�), (ii) (G�1)R (�) or (iii) (�1R �2)R (�).
This is why, in Def. 7, we restricted the left-hand argument of
each release operator to be a full-bounded formula.

Lemma 1 (Soundness of canonize(·)): For any PastLTLEBR
formula �, it holds that � and canonize(�) are equivalent and
canonize(�) is a Canonical PastLTLEBR formula.

Proposition 4 (Complexity of canonize(·)): For any
PastLTLEBR formula �, canonize(�) can be built in O(n) time,
and the size of canonize(�) is O(n), where n = |�|.

C. From Canonical PastLTLEBR to deterministic SSA

The particular shape of canonical PastLTLEBR formulas
makes it possible to encode the specification into deterministic
SSAs. The key observation is that LTLFP formulas can be
encoded into deterministic automata: since these formulas talk
exclusively about the past, their truth can be evaluated at any

single step depending only on previous steps, without making
any guess about the future (“the past already happened”).
But LTLFP formulae are not the only ones that can be
encoded deterministically. Consider, for instance, the formula
� ≡ Xp ∨ Xq. At a first glance, it may seem that � needs a
non-deterministic automaton to be encoded, which at the first
state makes a choice about whether p or q will hold in the
next state. Nevertheless, this formula is equivalent to X(p∨ q)
and it corresponds to the deterministic automaton that, once
arrived in its second state by reading any proposition symbol,
proceeds to an accepting state by reading either p or q, or goes
to a sink (error) state otherwise.
PastLTLEBR in its canonical form combines full past formu-

las into a broader language that can still be turned into symbolic
deterministic automata, extending the above intuition and
exploiting the monitorability of universal temporal operators.

Monitoring is a technique coming from runtime veri�ca-
tion [16]. Consider the formula G�. By observing a state
sequence, at each step we can decide if a violation has occurred;
indeed, if � is false at the current step, then the value of G� is
certainly false for each of the previous steps. More generally,
universal temporal formulas, such as G� and �1 R �2, are
monitorable, meaning that a violation of them can be decided
on the basis of the observation of a �nite number of steps.
In particular, reporting an error in the next state can be done
by considering only the current values. This means that any
universal temporal operator can be monitored by adding a
Boolean error variable with a deterministic transition relation.

Therefore, despite not being able to evaluate the truth of
a formula such as G�, as it can be done in the case of past
operators, we can nevertheless state in the accepting condition
that an error state can never be reached. In this way, if the
trace is accepting, that is, an error state can never be reached,
then we know that there are no violations, e.g., for G�, we
have forced � to be true in every state. Otherwise, if the trace
is not accepting, that is, an error state is reachable, we know
that there is a (finite) violation and that the temporal formula
was falsified at some step. We therefore introduce an error
bit for each Xi 1, XiG 1, and Xi( 1 R  2) of a canonical
PastLTLEBR formula.

Let � be a canonical PastLTLEBR formula over the alphabet
Σ = C ∪ U . We define the deterministic SSA A(�) =
(V; I; T; S) as follows:
• Variables. The set of state variables of the automaton is

defined as X = XP ∪XF ∪XC , where:

XP = {vα | � is an LTLFP subformula of �}

XF =

{
errorϕ

∣∣∣∣∣' is subformula of � of the form

Xi , XiG , or Xi( 1 R  2)

}

XC =

{
counteri

∣∣∣∣∣ i ∈ {0; : : : ; log2 d}
d max. among all Xd in �.

}
Intuitively, variables in XP track the truth value of all
the full-past subformulas, variables in XF implement the
above-described monitoring mechanism, and variables in
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XC are used to encode a binary counter used to monitor
nested tomorrow operators. In particular, for n nested
tomorrow operators, a counter with log2(n) bits is needed.

• Initial state. All the state variables, including the counter
bits, are initially false, that is, I(X) =

∧
x∈X ¬x.

• Transition relation. T (X;Σ; X ′) is the conjunction of the
transition functions of the binary counter and the monitors
of each subformula of �, as will be defined later. Notice
that each conjunct is of the form x′ ⇔ �(X ∪ Σ), and
thus it is a deterministic transition relation.

• Safety condition. S(X) is a Boolean formula obtained
from � by replacing each formula ' ∈ XF by ¬errorϕ,
i.e., S(X) = �['=¬errorϕ].

We now define the monitors for the binary counter, used to
handle nested tomorrow operators, any formula  ∈ LTLFP, and
any canonical PastLTLEBR formula of one of the forms Xi 1,
XiG 1, and Xi( 1R 2). We give the definition of the monitors
using the SMV language [6], as it provides useful shorthands
(like the switch-case primitive). Each of the following SMV
statement corresponds to the Boolean formula that defines
transition functions of our monitors.

The monitor for the counter is defined as follows:
n e x t ( c o u n t e r 0 ) := ¬ c o u n t e r 0
n e x t ( c o u n t e r i ) := ( c o u n t e r i−1 ∨ c o u n t e r i ) ∧ ¬ c o u n t e r i

If  := � S � or Y�, its monitor is defined as follows:
n e x t (vYα ) := vα ∧ c o u n t e r> 0
DEFINE
vαSβ := vβ ∨ (vα ∧ vY(α))

If  is a propositional atom, a negation, or a disjunction of
full-past formulas, we define its monitor as follows:
DEFINE
vp := p
v¬α := ¬vα
vα∨β := vα ∨ vβ

For each formula � of type Xi , where  is a full-past
formula, we introduce a new error bit errorφ. Its monitor is
defined as follows:
n e x t (errorXiψ ) := c a s e

errorXiψ : TRUE;
counter = i ∧ ¬vψ : TRUE;
TRUE : FALSE ;

e s a c

If � := XiG , where  is a full-past formula, we introduce
a new error bit errorφ, and we define its monitor as follows:
n e x t (errorXiGψ ) := c a s e

counter < i : FALSE ;
¬errorXiGψ ∧ vψ : FALSE ;
TRUE : TRUE;

e s a c

The same for � := Xi( 1 R  2):
n e x t (errorXi(ψ1Rψ2) ) := c a s e

counter < i : FALSE ;
¬errorXi(ψ1Rψ2) ∧ v

i
ψ
p
1

: FALSE ;

¬errorXi(ψ1Rψ2) ∧ vψ1
∧ vψ2

: FALSE ;
¬errorXi(ψ1Rψ2) ∧ vψ2

: FALSE ;
TRUE : TRUE;

e s a c

n e x t (vi
ψ
p
1

) := c a s e

counter < i : FALSE ;
vψp1

: TRUE;

vi
ψ
p
1

: TRUE;

TRUE : FALSE ;
e s a c

In Fig. 2, we describe the execution of all the steps described
so far on a simple formula.

G(u1 → XXc1) ∧ G(u2 → Xc2)

GXX(YYu1 → c1) ∧ GX(Yu2 → c2)

XXG(YYu1 → c1) ∧ XG(Yu2 → c2)

ASSIGN
init(error1) := ⊥
next(error1) := : : :

ASSIGN
init(error2) := ⊥
next(error2) := : : :

INVARSPEC
¬error1 ∧ ¬error2

pastify

canonize

to SSA

Figure 2. The execution of the sequence of steps: a simple example.

Proposition 5: Let � be a canonical PastLTLEBR formula,
with |�| = n. Then, there exists a deterministic SSA of size
O(n) that accepts the same language.

Theorem 1: Let � be an LTLEBR formula, with |�| = n,
and let M be the greatest constant in �. Then, there exists a
deterministic SSA of size O(n3 ·M log2 n+1) that accepts the
same language.

Corollary 1: Let � be an LTLEBR formula with no constants,
with |�| = n. Then, there exists a deterministic SSA of size
O(n3) that accepts the same language.

V. SOLVING THE GAME ON THE
SYMBOLIC DETERMINISTIC AUTOMATON

Once we have obtained the deterministic SSA A(�) for an
LTLEBR formula � with the steps described in the previous
sections, we can use A(�) as the arena of a two-player game
between Controller and Environment in order to solve the
realizability (and synthesis) problem for �.

Let us focus on the safety game G = 〈A(�); C;U〉 (recall
Def. 6). Safety games have been extensively studied, as
their reachability objective makes the problem simpler than
considering !-regular objectives, such as, for instance, Büchi
and Rabin conditions.

The aim of Controller is to choose an infinite sequence of
controllable variables in such a way that, no matter what values
for the uncontrollable variables are chosen by Environment, the
trace induced by the play in A(�) is safe, that is, it visits only
states s such that s |= S(X) (see Def. 6). Since in our case
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A(�) recognizes exactly the language of �, the play satisfies
�, and thus Controller has a winning strategy for �.

Since the organization of the SYNTCOMP [14], many
optimized tools have been proposed in the literature to solve
safety games. For this reason, we chose to use a safety
synthesizer as a black box. The majority of these tools accept
as input a symbolic arena described in terms of and-inverter
graphs (or AIGER format [1]), so we provide a simple utility to
obtain the AIGER representation of functional SMV modules,
that is, SMV modules with the transition relation expressed
only in terms of ASSIGN statements, such as the ones resulting
from our encoding. The AIGER model is then given as input to
the chosen safety synthesizer, completing the process outlined
in Fig. 1.

The next theorem states the complexity of the procedure.
Theorem 2: The realizability problem for LTLEBR belongs

to 2EXPTIME. If no constant is admitted, it belongs to
EXPTIME.

Proof: We first show that the proposed algorithm, as
described in Fig. 1, belongs to 2EXPTIME for generic LTLEBR
formulas. It is easy to see that the time complexity of all the
steps matches their space complexity. Therefore, we have an
algorithm to turn an LTLEBR formula � into an equivalent
deterministic SSA A(�) whose time complexity is O(n3 ·
M log2 n+1), where n = |�| and M is the greatest constant in
�. Since A(�) is symbolically represented, it can be turned
into an explicit automaton A′(�) of size at most exponential in
the size of A(�), that is, | A′(�)| ∈ O(2n

3·M log2 n+1

). Finally,
the time complexity of reachability games is linear in the size
of the arena [9], and thus the overall time complexity of the
realizability problem for LTLEBR is 2EXPTIME. If no constant
is admitted, then, by Corollary 1, | A′(�)| ∈ O(2n

3

), and the
complexity becomes EXPTIME.

Comparison with Safety LTL

It is interesting to brie�y compare the proposed procedure
for realizability to the one used by the Ssyft tool for Safety
LTL specifications [25]. In that tool, the negation of the initial
formula is first translated into first-order logic over finite words
and then transformed into deterministic automata using the
tool MONA [12], which uses the classical subset construction
to determinize automata over finite words. Finally, Ssyft uses
the classical backward fixpoint iteration to compute the set
of winning states over the DFA. It is worth to notice that
the way MONA represents automata is not fully symbolic: the
set of states is explicitly represented, while it uses a BDD
for each pair of states in order to represent symbolically the
transitions between the two corresponding states. In contrast of
subset construction, our solution performs the pastification of
full-bounded formulas. Most importantly, our construction of
deterministic monitors is carried out in a fully symbolic way.

VI. EXPERIMENTAL EVALUATION

We implemented the proposed procedure (see Fig. 1) in a
tool called ebr-ltl-synth.1 The transformation from LTLEBR to

1http://users.dimi.uniud.it/∼luca.geatti/tools/ebrltlsynth.html

deterministic SSA together with the translation to AIGER has
been implemented inside the nuXmv model checker [6]. As
the backend for solving the safety game, we have chosen the
SAT-based tool demiurge [2].

We tested our tool on a set of scalable benchmarks divided
in four categories (the propositional atoms starting with the
letter c are controllable, while those starting with the letter u
are uncontrollable):

1) the first category is generated by the realizable formula:

G(c0 ∧ XG(c1 ∧ · · · ∧ XnG(cn ∨ u) : : : ))

2) the second category is generated by the realizable formula:

G((c0 ∨ u0) ∧ XG((c1 ∨ u1) ∧ · · · ∧ XnG((cn ∨ un)) : : : ))

3) the third category is generated by the unrealizable formula:

G(c) ∧
n∨
i=1

G(
i∧

j=0

ui)

4) the fourth category is generated by the unrealizable
formula:

c ∧
n∧
i=1

Xi(ui ∨ ui+1)

Each category contains the respective scalable formula for
n ∈ [1; 200], for a total of 800 benchmarks, half of which is
realizable and the other half is unrealizable. We set a timeout
of 180 seconds for each benchmark. We compared ebr-ltl-synth
with ltlsynt [13], Strix [19] and Ssyft [25]. The first two tools
solve the realizability and synthesis problems for full LTL and
are based on a translation to parity games. ltlsynt uses SPOT
[10] for efficient translation and manipulation of automata. Strix
implements several optimizations like specification splitting,
that enables to split the initial formula in safety, co-safety,
Büchi, and co-Büchi subformulas and speeds up the process
of solving of the game. On the contrary, Ssyft solves the
realizability problem for specifications written in Safety LTL
(see Sec. V for a brief description of the Ssyft tool).

For realizability, we tested all the tools in their sequential
configurations. ltlsynt has two sequential configurations, which
differ on whether the split of actions into Controller’s and
Environment’s ones is performed before or after the determ-
inization. Strix has two sequential modes as well, depending
on the kind of search on the arena (depth-first for the first
configuration and with a priority queue for the second). Ssyft
and ebr-ltl-synth have only one configuration.

Fig. 3 shows the outcomes of the comparison between ebr-
ltl-synth and the best configuration of ltlsynt: it can be clearly
seen that, for both realizable and unrealizable formulas, ltlsynt
presents an exponential blow-up in the solving time that is
avoided by ebr-ltl-synth. Fig. 4 compares ebr-ltl-synth with the
best configuration of Strix: while for realizable formulas there
is an exponential blow up of Strix avoided by ebr-ltl-synth, it
is interesting to note that for the unrealizable benchmarks the
difference between the solving time of the two tools is linear,
mostly showing a 10x improvement in favor of ebr-ltl-synth.
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Figure 3. ebr-ltl-synth vs ltlsynt (first conf.) on all scalable benchmarks.

Figure 4. ebr-ltl-synth vs Strix on all scalable benchmarks.

The survival plots for the set of realizable and unrealizable
scalable benchmarks are shown in Figs. 5 and 6, respectively.

The outcomes of the comparison between ebr-ltl-synth
and Ssyft are shown in Fig. 7. The three lines near the
sides of the figure correspond to timeouts (the solid black
line), memouts for unrealizable benchmarks and memouts for
realizable benchmarks (the dotted lines). It can be noticed that
Ssyft reaches a memory out for the vast majority of benchmarks.
For instance, on both the realizable categories, Ssyft reaches the
first memout with n = 7. As for the unrealizable benchmarks,
on the third category, Ssyft reaches the first memout with
n = 36, while for the fourth category with n = 59. This is due
to MONA, which is not able to build the (explicit) DFA for the

Figure 5. Survival plot for realizable scalable benchmarks.

Figure 6. Survival plot for unrealizable scalable benchmarks.

(negation of the) initial specification2. This is an important hint
about the use of fully symbolic techniques for the representation
of automata, like the one of ebr-ltl-synth, as in many cases they
can avoid an exponential blowup of the automata’ state space.
The survival plot between ebr-ltl-synth and Ssyft is shown
in Fig. 83. The rest of the plots for realizability of scalable
benchmarks can be found in [8].

In addition to these scalable formulas, from the benchmarks
of SYNTCOMP [14], we filtered the formulas that belong to
LTLEBR: this resulted into a set of 29 formulas. The survival
plot showing the comparison with ltlsynt and Strix is shown in
Fig. 9, while the comparison with Ssyft is shown in Fig. 10. It
is interesting to see that, on the SYNTCOMP benchmarks, the
results of ebr-ltl-synth and Ssyft are comparable.

As for the synthesis problem, once a specification is found to
be realizable, all the tools except for Ssyft produce a strategy as
a witness: this strategy is in the form of an and-inverter graph
whose input bits are only the starting uncontrollable variables.
Often, such a strategy can be minimized by using logic

2We point out that in some cases, like in the fourth category for n ≥ 60,
MONA’s memouts are due to its parser.

3The reason why we do not have a single survival plot comparing all the
four tools is that Ssyft could not have been compiled for the same platform as
the others, due to issues with its source code.
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Figure 7. ebr-ltl-synth vs Ssyft on scalable benchmarks.

Figure 8. Survival plot for ebr-ltl-synth and Ssyft on scalable benchmarks.

synthesis tools (like ABC [3]) as black-box. In the particular
case of ebr-ltl-synth, ltlsynt and Strix, they all use a separate
logic synthesizer as black box, with different configurations
to minimize the strategy. Therefore, we do not compare the
size of the resulting strategies, since such a comparison would
add nothing about the methods implemented by the tools but
would rather compare their backends.

VII. CONCLUSIONS

In this paper, we introduce the logic LTLEBR, a fragment
of LTL that combines formulas with only bounded operators
and a particular combination of universal unbounded tem-
poral operators. We focus on the realizability and reactive
synthesis problems for this logic. The main contribution is
a fully symbolic translation from any LTLEBR formula to a
deterministic symbolic safety automaton on infinite words. The
process applies a pastification step and a set of rules to reach a
canonical form for LTLEBR formulas. The realizability is then
decided by solving a safety game on the arena represented by
the automaton. We first showed that realizability for LTLEBR

Figure 9. Survival plot for SYNTCOMP benchmarks.

Figure 10. Survival plot for ebr-ltl-synth and Ssyft on SYNTCOMP benchmarks.

belongs to 2EXPTIME, but drops to EXPTIME if no constants
are used. Then, we implemented the proposed procedure in
a tool, whose experimental evaluation revealed very good
performance against tools for realizability and synthesis of
full LTL and Safety LTL specifications.

As a future development of this line of work, we believe
that the translation from LTLEBR to deterministic SSA may
provide many benefits in the context of symbolic model
checking as well, since the search of the state space could
benefit from a deterministic representation of the automaton
for the formula [23]. On the automata construction side, an
interesting development would be to keep the symbolic bounds
during pastification and monitor construction, without, for
instance, expanding Xiα into i nested next operators. On
the expressiveness side, we want to study in which ways
assumptions can be integrated into LTLEBR. Last but not least,
we aim at checking whether the synthesis problem for more
expressive logics, like, for instance, LTL, can be reduced to the
synthesis problem for LTLEBR, for example checking whether
it is possible to use LTLEBR for solving the safety problems
originated from bounded synthesis techniques.

Acknowledgments: The authors want to thank all the
anonymous reviewers of FMCAD 2020 for the insightful
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Abstract—We present an ef�cient approach to learn past-time
linear temporal logic formulas (PLTL) from a set of propositional
variables and a sample of �nite traces over those variables. The
ef�ciency of our approach can be attributed to a careful encoding
of the PLTL formula learning problem as a bit-vector function
synthesis problem, and the use of an enhanced Syntax-Guided
Synthesis (SyGuS) engine to solve the latter. We implemented our
approach in a tool called SYSLITE and empirically evaluated its
ef�cacy with two case studies. In these case studies, we observe
that SYSLITE on average enjoys a speedup of 44x over current
learning approaches for temporal formulas while learning the
expected formulas in the vast majority of cases.

I. INTRODUCTION

We are interested in the problem of synthesizing past-time,
propositional linear temporal logic (PLTL) formulas when
given an alphabet (i.e.,, a set of propositional variables) and a
sample of finite traces as inputs. The input sample consists of a
set of positive traces and a disjoint set of negative traces. The
synthesized PLTL formulas — containing the usual logical
connectives, past-time temporal operators, and propositional
variables from the input alphabet — are required to be satisfied
by each of the positive traces and falsified by each of the
negative traces. In machine learning terms, our goal is to
learn classifiers for the input traces. However, in contrast to
statistical learning approaches, our setting requires an exact
classi�er for the sample traces, that is, one that rejects no
positive traces and accepts no negative ones [1], [2].

The synthesis of PLTL formulas from finite samples has a
variety of applications, including security policy mining from
logs [3], [4], debugging or understanding the behavior of a
system [5], and identifying the root cause of a protocol’s mis-
behavior [6], [7]. The PLTL fragment we consider represents
safety properties amenable to efficient runtime verification [8]–
[12]. This fragment or its variants have been used to represent
security, privacy, and safety properties of systems which can
be efficiently enforced through runtime monitoring [11]–[15].

We use PLTL formula synthesis to learn attack signatures
for cellular networks such as 3G, 4G LTE, and 5G from a set
of benign (i.e., positive) and attack (i.e., negative) traces. The
cellular network attacks we consider are possible due to the
protocol state machine’s inability to handle particular out-of-
order packets injected over-the-air by an adversary [6], [16]–
[20]. Such attack signatures can be characterized by PLTL
formulas when considering the relative ordering of packets
and their payloads received/sent by the cellular device. One
can envision a protocol monitor installed on a mobile device
that captures messages from the cellular modem with the

goal of detecting particular attack signatures, and notifies the
user when such attacks are detected. To our knowledge, there
exist no attack notification mechanisms of this kind currently.
Efficiently solving the PLTL formula synthesis problem is the
first technical step towards building such mechanisms.

Prior work. The prior work most relevant to ours is the one
by Neider and Gavran [5]. They present two methods for
synthesizing propositional, future-only linear temporal logic
(LTL) formulas given an alphabet and a sample of (finitely
representable) infinite traces. The first method formulates the
LTL formula synthesis problem as a Boolean satisfiability
problem and then uses an off-the-shelf SAT solver to solve
that problem. Because such SAT-based approach does not scale
well, the authors then develop a second method based on
decision tree learning where the SAT-based method is used
as an oracle to generate predicates for the decision tree. More
recently, Riener [21] improves on Neider and Gavran’s SAT-
based method by precomputing models for shape constraints
required by the original method. The approaches followed in
these works are not directly applicable to attack signature
generation due to one or more of the following reasons:
(1) they consider samples with infinite traces only; (2) they
synthesize LTL formulas containing only future temporal
operators, which are not necessarily monitorable at runtime;
(3) they impose certain shape restrictions on the synthesized
formula which lead to lengthy formulas.

Exploring possible approaches. Since the prior methods
above [5], [21] are not directly applicable to our problem
domain, we started by first adapting them to the synthesis
of PLTL formulas from �nite traces. In our evaluation, we
observed that they either do not scale or do not yield succinct
formulas. We then tried to reduce the synthesis problem to a
Satisfiability Modulo Theory (SMT) problem where the PLTL
syntax is encoded as an algebraic data-type (ADT) and the
formula to synthesize is represented by a free variable f
with that type. We encoded the requirements of acceptance
of the positive traces and rejection of the negative traces
as constraints on f and used an SMT solver with finite
model finding capabilities [22], [23] to obtain models of the
ADT problem. Such models assign to f a datatype value
representing a candidate solution to the synthesis problem.
Unfortunately, this SMT-based approach is not scalable either,
which prompted us to consider an encoding of our synthesis
problem as a Syntax-Guided Synthesis (SyGuS) problem [24]
over ADTs. Similarly to previous approach, however, the
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SyGuS approach proved to be not scalable. The main reason in
both cases seems to be that ADTs are user-defined and hence
do not benefit from the sort of specialized optimizations that
SMT solvers employ for other builtin theories.
Our approach. This brings us to our final approach in which
we encode the problem as a SyGuS problem with fixed-size
bit-vectors and use a specific SyGuS engine [25] to solve it.
In our encoding, we view the projection of a trace of length
n over a propositional variable as a bit-vector of size n and
then lift the semantics of logical and past temporal connectives
to operate over bit-vectors. Such an encoding has the follow-
ing advantages: (1) since fixed-size bit-vectors are natively
supported by the SyGuS solver, we benefit from the solver’s
various optimization techniques (e.g., rewrite rules) for them;
(2) restrictions on the shape of the formula to be learned can be
readily added as syntactic constraints on the SyGuS problem;
(3) semantics constraints capturing the formula’s consistency
with sample traces can be efficiently evaluated through direct
bit-vector operations on whole traces, unlike prior approaches
which operate on each individual state in a trace; (4) with
an appropriate term enumeration strategy within the SyGuS
solver, it is possible to obtain candidate formulas of minimal
size together with other candidates; (5) thanks to the SyGuS
solver’s symmetry breaking criteria (i.e.,, agreement over the
sample traces), our approach can enumerate different shapes
of formulas while maintaining scalability.
Implementation and evaluation. We have implemented our
approach in a novel tool called SYSLITE1 which uses the
CVC4SY SyGuS engine [25]. We also adapted to our setting
and implemented the prior methods [5], [21] mentioned earlier
and considered them as baselines in our experiments. We
evaluated the various approaches based on their scalability and
ability to synthesize succinct PLTL formulas.

To verify the generality of our SyGuS approach, in a first
case study, we collected a number of PLTL formulas from the
literature and considered the behavior they represent as our
learning target. For each target formula, we generated random
traces and classified them as positive or negative based on
whether they satisfied or falsified the formula. We then fed
a subset of these classified random traces to both SYSLITE
and our implementation of the baseline approaches, and com-
pared the synthesized formulas with the corresponding target
formulas. We observed that SYSLITE exhibits an average
60x speedup over the baseline while synthesizing a formula
logically equivalent to the target formula in most cases.

In a second case study, we used real-world cellular network
traces for 11 known attacks [6], [16]–[20]. We observed that
SYSLITE can learn the attack signatures 28x times faster on
average than the baseline while still being able to generate
succinct attack signatures.
Contributions. To summarize, this paper makes the following
technical contributions:

1) We explored a number of possible approaches for PLTL
formula learning from samples, including extensions of

1SYSLITE is available at https://github.com/CLC-UIowa/SySLite.

prior SAT-based approaches originally applied to learning
LTL formulas with future operators only. Our empirical
evaluation show that none of these approaches scale to
realistic trace lengths and numbers of input traces.

2) We propose a new, more scalable learning approach
which formulates the learning problem as a SyGuS prob-
lem and relies on a high-performance SyGuS engine to
generate candidate solutions. Our encoding uses the the-
ory of fixed-size bit-vectors which is natively supported
by the underlying SyGuS solver, enabling us to benefit
from several specific optimizations.

3) Our PLTL formula learning approach is implemented in
a new tool, SYSLITE, which uses the CVC4SY SyGuS
engine as a backend. We have empirically evaluated its
efficacy on two case studies while considering previous
state-of-the-art methods as baselines. The case studies
show that SYSLITE on-average enjoys a 44x speed-up
over the baselines while, at the same time, being able to
learn the expected behavior in almost all cases.

II. TECHNICAL PRELIMINARIES

Many-Sorted First-Order Logic. We rely on the usual no-
tions and terminology of many-sorted first-order logic with
equality ('). We assume the usual definitions of signature,
well-sorted terms, literals, and formulas [26]. A theory is a
pair T = (Σ, I) where Σ is a signature and I is a non-empty
class of Σ-interpretations, the models of T , that is closed under
variable reassignment and isomorphism. A Σ-formula ϕ is T -
satis�able (respectively, T -unsatis�able) if it is satisfied by
some (resp., no) interpretation in I . A satisfying interpretation
for ϕ, models ϕ. A formula ϕ is valid in T (or, T -valid),
written |=T ϕ, if every model of T is a model of ϕ.

Theory of Fixed-size bit-vectors. The theory TBV =
(ΣBV, IBV) of fixed-size bit-vectors as defined in the SMT-
LIB 2 standard [27] consists of the class of interpretations
IBV and signature ΣBV, which includes a unique sort for
each positive integer n, representing the bit-vector width. We
assume that ΣBV includes all bit-vector constants for each n,
represented here as bit-strings or, to simplify the notation, by
the corresponding natural number in {0, . . . , 2n−1}. We write
a ΣBV-term (or, bit-vector term) t of width n as t[n] when
we want to specify its bit-width explicitly. We refer to the
i-th bit of t[n] as t[i] with 0 ≤ i < n. We consider t[0] as
the least significant bit, and t[n − 1] as the most significant
bit of t, and denote the subvector of t from index j down to
i as t[j : i]. We will use the following arithmetic bit-vector
operators: addition (+), arithmetic negation (−), and unsigned
shift to the left (<<), as well as the following bitwise operators:
logical negation (∼), conjunction (&), and disjunction (|).
SyGuS Problem. A SyGuS problem for a function f in a
theory T consists of (1) semantic restrictions, or a specifica-
tion, given by a (second-order) T -formula of the form ∃f. ϕ,
and (2) syntactic restrictions on the definitions for f , given
by a context-free grammar R. A solution for f is a lambda
term λx. e of the same type as f , such that (i) the formula
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ϕ{f 7→ λx. e} is T -valid (modulo beta-reductions) and (ii)
the term e is in the language generated by R.

Past-Time Propositional Linear Temporal Logic (PLTL).
The formulas we learn are of the form �f Φ where Φ is a
PLTL formula and �f is a future temporal operator over finite
traces (discussed below).

De�nition 1 (Syntax). The set of well-formed PLTL formulas,
denoted as Φ and Ψ, is generated by the following grammar:

Φ,Ψ ::= > | ⊥ | p | ◦1 Φ | Φ ◦2 Ψ

where p belongs to a non-empty set, or alphabet, A of proposi-
tional variables, ◦1 ∈ {¬,,�,�}, and ◦2 ∈ {∧,∨, S }. A
core formula is a formula that does not contain the operators
∨, �, and �. The size of a formula Φ, denoted with |Φ|, is
the number of its proper subformulas.

Informally, > and ⊥ are the universally true and the
universally false formulas, respectively, and ∧,∨, and ¬ are
the usual Booleans operators. On the other hand, ,�,�,
and S are past temporal operators, respectively read as “yes-
terday”, “once”, “historically”, and “since. Unary operators
have a higher precedence than binary operators, and temporal
operators have a higher precedence than logical operators.

We �x an alphabet A for the PLTL formulas in the rest of
the paper. The standard PLTL semantics is defined over infinite
traces in a Kripke structure [28]. For our purposes, however,
it is more useful to define a semantics of PLTL over �nite
traces. A �nite trace σ (of length n ∈ N over A) is a sequence
(σ0, . . . , σn−1) of states where a state is a total mapping from
A to the set {t, f} of Boolean values. Let σ = (σ0, . . . , σn−1)
be a trace of length n. For a propositional variable p ∈ A and
we denote by σ(p) the projection of σ over p, that is, the
sequence of Boolean values (σ0(p), . . . , σn−1(p)).

De�nition 2 (Semantics). The semantics of PLTL is provided
by a ternary satis�ability relation |= de�ned inductively over
core PLTL formulas as follows for all �nite traces σ =
(σ0, . . . , σn−1) and positions i ∈ [0, n− 1].
• σ, i |= >
• σ, i |= p if σi(p) = t
• σ, i |= ¬Φ if (σ, i) 6|= Φ
• σ, i |= Φ ∧Ψ if (σ, i) |= Φ and (σ, i) |= Ψ
• σ, i |= Φ if i > 0 and (σ, i− 1) |= Φ
• σ, i |= ΦS Ψ if there is an j ∈ [0, i] such that (σ, j) |= Ψ

and (σ, k) |= Φ for all k ∈ [j + 1, i].

This semantics is extended to the full language of PLTL by
treating the additional operators as syntactic sugar according
to the following equivalences: ⊥ ≡ ¬>; Φ∨Ψ ≡ ¬(¬Φ∧¬Ψ);
�Φ ≡ >S Φ; �Φ ≡ ¬�¬Φ. We write σ |= Φ as a short-
hand for σ, 0 |= Φ. Finally, we write σ |= �fΦ to indicate
that σ, i |= Φ for all i ∈ [0, n−1] where n is the length of σ.

III. PROBLEM DEFINITION AND POSSIBLE APPROACHES

In this section, we formalize the problem of PLTL formula
synthesis from finite samples and discuss potential but inef-

ficient approaches for solving it. We start by introducing the
auxiliary notion of consistency used in our problem definition.

De�nition 3 (Consistency). A PLTL formula Φ is consistent
with a �nite sample D = (P,N ) of positive �nite traces P
and negative �nite traces N with P ∩ N = ∅ if and only if
the following two conditions hold.

1) σ+ |= �fΦ for all traces σ+ ∈ P .
2) σ− 6|= �fΦ for all traces σ− ∈ N .

A formula Φ consistent with D is minimal if no PLTL
formula Ψ with |Ψ| < |Φ| is consistent with D.

Problem De�nition 1 (PLTL Formula Synthesis from Finite
Samples). The PLTL formula synthesis problem for a given
sample D = (P,N ) is the problem of �nding one or more
PLTL formulas Φ that are consistent with D.

A. Possible Approaches

We considered several natural approaches to the PLTL
synthesis problem. Unfortunately, our experimental evaluation
revealed that they do not scale well. It is, however, valuable to
discuss them here because their weaknesses point to potential
performance bottlenecks which any synthesis algorithm must
overcome to be effective in practice. We describe a better
approach in Section IV.

SAT-based Approaches. We adapted to our context prior SAT-
based approaches for learning LTL formulas from samples
containing only infinite traces [5], [21]. These approaches
look for formulas of increasing size, measured as the depth
of the formula’s abstract syntax tree (AST) which, in essence,
guarantees the identification of minimal formulas consistent
with a given sample D. As in the approach by Neider and
Gavran [5], for a given depth d, the PLTL formula synthesis
problem can be posed as the problem of checking the satisfi-
ability of a formula γd of propositional logic. The reduction
is meant to be such that, γd is satisfiable exactly when the
original synthesis problem is solvable. Moreover, it is possible
to construct a PLTL solution to the synthesis problem from
any propositional model of γd. The formula γd has the form
γdsyn∧γdsem where γdsyn tries to captures syntactic restrictions on
the expected solution (a well-formed PLTL formula with depth
d) whereas γdsem captures the semantic restriction that the
extracted solution is consistent with the sample.2 In turn, γdsyn
has the form γdshape∧γdlabel where models of γdshape determine
possible AST shapes of depth d (including some infeasible
ones) and models of γdlabel assign labels (i.e.,, propositions,
logical or temporal operators) to the AST nodes. To identify
different feasible formulas, this SAT-based approach can be
executed in enumerative mode by blocking a returned model
of γd and reissuing a call to the SAT solver with γd as well
as the blocking formula. Similarly to the original work, this
approach does not scale to realistically sized traces or large
numbers of them, as we discuss in our evaluation section.

2In practice, models of γdsyn can lead to an overabundance of PLTL
solutions since the syntactic restrictions are not strong enough to rule out
certain redundancies. Thus, some a posteriori filtering is required.
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Riener [21] improved on Neider and Gavran’s work by
precomputing the models of the formula γdshape for a given
depth d and supplying them with the rest of the formulas in
γd, in effect trading off input size for execution time. The
improved method essentially breaks a number of symmetries,
greatly reducing the number of solutions that differ in an
insignificant way from each other. It can generate stronger
syntactic restrictions by relying on an underlying representa-
tion based on chains instead of directed acyclic graphs as in
Neider and Gavran. We adapted the method to our context but
observed that scalability issues persist, especially, when the
alphabet size is larger than 3.

Finally, we also considered a second approach by Neider
and Gavran [5] which combines a classical decision tree
learning algorithm with their SAT-based approach. In a first
phase, the SAT-based algorithm is executed over k positive and
k negative traces to obtain a candidate formula. The approach
keeps choosing randomly from 2k traces until all the example
traces can be separated or a timeout is reached. At that point, it
invokes the decision tree learning algorithm which essentially
uses the candidate formulas generated in the first phase as
possible predicates for the decision tree. Because the decision
tree learning algorithm combines these predicates into if-then-
else clauses, it only applies to logical languages that are closed
under negation. Unfortunately, the presence of the outermost
�f operator in our PLTL fragment of interest, makes this
fragment not closed under negation and hence this second
approach is not applicable to our case.

SMT-based Approach. One of the scalability challenges
of SAT-based algorithms can be attributed to the inefficient
enumeration of the well-formed PLTL formulas. This is par-
ticularly apparent in the approach of Riener [21] who attempts
to address this challenge through precomputation. A natural
potential solution is to move to an SMT-based approach where
the formula to be synthesized is a value of an algebraic data
type (ADT) ∆ that captures the abstract syntax of well-formed
PLTL formulas directly. Each PLTL propositional constant and
(logical and temporal) operator is modeled by a corresponding
constructor of ∆ with the same arity. Traces can be encoded as
(partially defined) Boolean maps from propositional constants
and trace positions. The PLTL semantics is captured by an
evaluation function, a recursively defined total function that
takes a trace t and a data type d as input and returns true
if and only if t satisfies the formula represented by d. The
synthesis problem is then encoded by a set of constraints on
a fresh constant ϕ of type ∆, standing for the formula to be
synthesized, stating that the evaluation of ϕ is true for all the
positive traces and false for all the negative ones. Synthesizing
the PLTL formula thus reduces to asking the SMT solver
to find a model of the ADT problem. If it succeeds, the
ADT value assigned to ϕ describes a possible solution. In our
evaluation, we observed that such an approach is unfortunately
also not scalable, possibly due to the inherent complexity of
solving SMT problems over ADTs.

SyGuS-based Approach. We explored next a SyGuS-based

approach where the PLTL syntax is encoded as a context-
free grammar whereas the consistency with the sample set is
given as the specification. Although more scalable than the
SMT-based one, this approach is still not sufficiently scalable
for our case studies. An analysis of our SyGuS encoding
revealed the following two weaknesses whose mitigation led
us to our final approach, discussed in the next section. First,
since algebraic data types are user-defined, reasoning about
them does not benefit from the specialized optimizations (e.g.,,
rewrite rules, symmetry breaking) available to SMT solvers
for other builtin theories such as bit-vectors or linear integer
arithmetic. Second, both this and the SMT-based approach
require evaluating a candidate solution at each position of
each trace in order to guarantee consistency with the sample.
Expressing such a constraint requires the use of quantified
formulas (with quantification over traces and positions) and
recursive function definitions (for the evaluation function) both
of which are expensive to reason about.

B. Lessons learned

After analyzing the different approaches above to the PLTL
synthesis problem, we identified the following performance
bottlenecks, which we tried to address in our final approach.
First, the SAT-based approaches produce constraints with a
lot of symmetries and hence many redundant solutions, a
substantial bottleneck. Except for the SyGus-based approach,
none of these approches apply symmetry breaking optimiza-
tions to rule out or reduce the generation of formulas similar
to previously generated ones, substantially hampering the
generation of truly diverse PLTL formulas consistent with the
input sample. Finally, all the approaches attempt to achieve
sample-consistency through (quantified or explicit) constraints
on individual trace positions, thus missing out on full-trace-
level optimizations, which are crucial to scalability.

Examples of our SMT-based and SyGuS-based encodings
can be found in the longer version of this paper [29].

IV. PLTL SYNTHESIS WITH SYGUS

In this section, we present an efficient approach for synthe-
sizing a PLTL formula consistent with a finite sample D using
a SyGuS solver over the theory of fixed-sized bit-vectors. It
relies on the observation that a PLTL formula over finite traces
of length at most n can be encoded as a function over bit-
vectors of size n. Thus, the problem of synthesizing a PLTL
formula is reduced to the synthesis of a bit-vector function.

Similarly to a bit-vector encoding presented by Baresi et
al. [30], we use bit-vectors of size n > 0 to represent the
truth values of PLTL formulae at positions [0, n−1] of a given
trace of length n. More precisely, for each atomic proposition
p ∈ A, we use a bit-vector variable ←−p [n] such that ←−p [n][i]
captures the value of proposition p at all instants i from 0 to
n−1. The bit-vector representation of ⊥ for length n, denoted
with

←−
⊥ [n], is the bit-vector constant 0 of size n, while the bit-

vector representation of >, denoted with
←−
> [n], is the value

of ∼
←−
⊥ [n]. For any other PLTL formula Φ, we describe the

value of Φ at positions 0 through n − 1 in a trace by the
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bit-vector obtained by recursively performing operations on
the bit-vectors corresponding to the sub-formulas of Φ. The
operations performed depend on the structure of Φ and follow
the transformations shown in Table I.

TABLE I. Translation of a PLTL formulas to bit-vector
terms.

Φ
 �
Φ unfolded bit-vector encoding

:Ψ �
 �
Ψ �

 �
Ψ

Ψ1 ^Ψ2
 �
Ψ1 &

 �
Ψ2

 �
Ψ1 &

 �
Ψ2

Ψ1 _Ψ2
 �
Ψ1 j

 �
Ψ2

 �
Ψ1 j

 �
Ψ2

Ψ �
 �
Ψ <<

 �
Ψ

�Ψ $
 �
Ψ �

 �
Ψ j
 �
Ψ

�Ψ #
 �
Ψ �(1 +

 �
Ψ) &

 �
Ψ

Ψ1 S Ψ2
 �
Ψ1
 �
S
 �
Ψ2

 �
Ψ2 j (�((

 �
Ψ1 j

 �
Ψ2) +

 �
Ψ2) &

 �
Ψ1)

Table I also introduces new bit-vector operators, �,$,#,
and
←−
S denoting, respectively, the bit-vector encodings for

the temporal operators ,�,�, and S . To establish the
correctness of the connection between the bit-vector encoding
and the semantics of PLTL (see Theorem 1) and to explain
the example we use the following notation: for a propositional
variable p ∈ A and a trace σ of length n,

←−−
σ(p) denotes the

bit-vector representation of σ(p), that is, for all i ∈ [0, n− 1],←−−
σ(p)[i] = 1 if σi(p) = t, and

←−−
σ(p)[i] = 0 if σi(p) = f .

To see more concretely how the translation works we
explain, for instance, the correspondence between the unary
PLTL operator � (read: true at least once in the present or
past) and its bit-vector counterpart $ with an example.

Example 1. Let σ be a trace of length 6 where propositional
variable p is true only at positions 3 and 4. The projection
σ(p) is represented by the bit vector 011000 with the most
significant (i.e.,, leftmost) bit corresponding to σ5(p), the next
most significant bit corresponding to σ4(p), and so on. So←−−
σ(p) = 011000. Intuitively, the valuation of�p over σ should
then be represented by the bit-vector 111000. To verify that let
←−p [6] be the bit-vector variable corresponding to p. According
to our translation,

←−
�p = $(←−p ) = −←−p | ←−p = −←−p [6] | ←−p [6]

where | is bitwise disjunction and − is arithmetic negation
(two’s complement). If we evaluate the resulting bit-vector
term with the valuation α = {←−p [6] 7→ 011000} we get

α(−←−p [6] | ←−p [6]) = −011000 | 011000
= 101000 | 011000 = 111000

as expected.

Theorem 1. Let Φ be a PLTL formula over the alphabet A =
{p1, . . . , pm} and let σ be a trace of length n over A. Then,

σ |= �fΦ iff |=TBV

←−
Φ {p̄ 7→ σ̄} '

←−
> [n]

where p̄ = (←−p1[n], . . . ,←−pm[n]) and σ̄ = (
←−−−
σ(p1), . . . ,

←−−−
σ(pm)).

Proof. By induction on the structure of Φ. See Arif et al. [29]
for a full proof.

We now describe how we use the bit-vector encoding
above to reduce the problem of synthesizing a PLTL formula
consistent with a sample into a SyGuS problem over bit-
vectors. More precisely, given propositional variables pi ∈ A,
with 1 ≤ i ≤ m, and a sample D = (P,N ) whose longest
trace has length n, we seek to synthesize a bit-vector function
f(←−p1[n], . . . ,←−pm[n]) such that if λ←−p1[n], . . . , λ←−pm[n]. e is a
solution for the SyGuS problem, then there exists a PLTL
formula Φ consistent with D whose bit-vector encoding is e
(that is,

←−
Φ = e).

To meet the requirements on f , we start by imposing the
syntactic restrictions expressed by this context-free grammar:

Ψ ::=
←−
> [n] |

←−
⊥ [n] | ←−p [n] | ◦1 Ψ | Ψ ◦2 Ψ

where ←−p is ←−pj [n] for some j ∈ [0,m], ◦1 ∈ {∼,�,$,#}
are the unary operators, and ◦2 ∈ {&, |,

←−
S } are the binary

operators. Notice that, although �,$,#, and
←−
S do not

belong to the theory of bit-vectors, they can be defined using
a bit-vector function in the SyGuS problem (see Table I).

In addition, the function f is subject to the following
semantic restrictions where |σ| denotes the length of trace σ:

1)
∧
σ∈P

f(
←−−−
σ(p1), . . . ,

←−−−
σ(pm))[|σ| − 1 : 0] '

←−
> [n][|σ| − 1 : 0]

2)
∧
σ∈N

f(
←−−−
σ(p1), . . . ,

←−−−
σ(pm))[|σ| − 1 : 0] 6'

←−
> [n][|σ| − 1 : 0]

The two constraints enforce the consistency of the solution
respectively with the positive traces and the negative traces.
Notice that, since an input may include traces of different
length, we compare only the relevant positions for each trace.

V. IMPLEMENTATION AND EVALUATION OF SYSLITE

In this section, we discuss the implementation of SYSLITE
and our empirical evaluation of it based on two case studies.

A. SYSLITE Implementation

SYSLITE is a wrapper around the syntax-guided synthesis
solver CVC4SY which is part of the SMT solver CVC4 [31] and
now incorporates additional optimizations for PLTL synthesis.
CVC4SY supports various theories, including that of fixed-
size bit-vectors, used in our encoding, and implements several
specialized synthesis algorithms for various types of synthesis
conjectures [32]. We rely on its support for enumerative
counterexample-guided inductive synthesis (CEGIS) which
was recently improved with several novel strategies [33].

In enumerative CEGIS [34], candidate solutions are gener-
ated based on some ordering, typically on term size. In our
setting, a candidate solution is a function whose definition
involves the bit-vector symbols from Section IV. CVC4SY
uses advanced techniques to aggressively reduce the number
of candidate solutions it generates. In particular, it uses fast
incomplete techniques based on term rewriting to avoid gen-
erating candidate solutions s′ that are logically equivalent to
some previous candidate s. This form of symmetry breaking,
is critical for the scalability of enumerative approaches [32].
Our encoding of PLTL formulas as bit-vector constraints
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was motivated by the intention to capitalize on CVC4SY’s
infrastructure for establishing the equivalence of bit-vector
terms developed to accelerate SyGuS enumeration [35].

For synthesis conjectures (i.e.,, semantic restrictions) ∃f. ϕ
where all applications of f in ϕ have concrete values as
arguments, CVC4SY can apply a stronger version of symmetry
breaking that considers equivalence under examples. Suppose
the concrete inputs for f in ϕ are c1, . . . , cn. Using this
technique, while constructing a new candidate solution for f ,
the solver disregards any term t′ that over the inputs c1, . . . , cn
evaluates exactly as some previously disregarded term t. For
example, the terms x & y and x take the same value over
the inputs (0001, 0001), (0000, 0001), (1010, 1110) for (x, y).
Hence, one of them (x &y, due to its larger size) will be
excluded from consideration in candidate solutions since it
is equivalent to x for all relevant inputs as specified in the
conjecture. In practice, this heuristic is traditionally applied
when the synthesis conjecture specifies a set of input/output
pairs for the function f to synthesize (with constraints of the
form f(ci) = oi). We have generalized symmetry breaking
in CVC4SY to apply the heuristics to any conjecture ∃f. ϕ
where f is applied to concrete inputs, even when ϕ is not
just a conjunction of input/output constraints. In our specific
context, this enables symmetry breaking constraints for the
negative traces, and also allows us to have traces of different
length in the same problem.

Since the evaluation of terms on concrete examples is a
major bottleneck in syntax-guided synthesis solvers, we have
additionally implemented in CVC4SY several low-level opti-
mizations for quickly computing the result of PLTL terms on
concrete inputs. Thanks to our encoding of PLTL formulas as
bit-vector constraints, we can capitalize on the data structures
in the core of CVC4 for representing and efficiently evaluating
bit-vectors terms. Our experiments confirm that this is critical
to achieving scalability for the synthesis tasks in question.

The enumeration strategy itself (by formula size) remains
a major bottleneck in our approach when behavior consistent
with the training set cannot be captured by a small formula.
In contrast, capturing behavior that spans distant states on a
trace is not, per se, problematic because evaluation times for
a given candidate solution grow linearly with trace length.

B. Empirical Analysis Criteria and Con�guration

Research questions. In our evaluation of SYSLITE, we aimed
to answer two research questions. Compared to a baseline:
RQ1. How effective is SYSLITE in synthesizing succinct,

diverse, and accurate PLTL formulas?
RQ2. How scalable is SYSLITE?
Case studies. We address the above questions in the context
of the two case studies presented in Sections V-C and V-D,
respectively. The first focuses on RQ1 whereas the second
focuses on RQ2 based on SYSLITE’s ability to synthesize
attack signatures from real cellular network traces.

Baseline. We compare SYSLITE against a baseline represented
by our own implementation of the (first) SAT-based method

by Neider and Gavran [5]. We use our own implementation
and not theirs because the latter applies to traditional LTL, as
opposed to PLTL. We do not discuss here the other approaches
we tried, that is, Reiner’s SAT-based approach [21], our
encodings to algebraic data types, as well as DFA learning
approaches, specifically, RPNI [36], since they proved either
not scalable or ineffective. We point out that, in the second
case study (V-D), the passive DFA learning approach does
scale significantly better than SYSLITE with trace length and
number of traces. However, the produced signatures are of
significantly worse quality in all considered benchmarks (e.g.,
have F1 score as low as 0.35 for RLF report attack). Moreover,
the quality of the DFA signatures does not necessarily improve
with a larger set of traces or longer traces over the signa-
tures produced by SYSLITE. In other words, SYSLITE can
learn better quality signatures with fewer and shorter traces.
Furthermore, recall that in this case study the objective is to
generate attack monitors that execute on a mobile phone. A
PLTL formula of size n can be monitored with just 2n bits
of memory [8]. In contrast, the learned DFA equivalent to a
PLTL formula can have O(2n) states [37]–[39]. The memory
footprint of such a high number of states per signature makes
DFA-based monitors infeasible in practice, especially, when
many attacks are being monitored at the same time.

Sample sizes. For both of our case studies, we considered
sample sizes 50, 100, 250, 500, and 1250. For Case Study I,
traces were generated randomly and have length 10 whereas
for Case Study II the traces were collected from a cellular
network and have length 100. We chose on purpose data sets
with an equal number of positive and negative traces. An
imbalanced dataset, due for example to an uneven distribution
of positive and negative traces for the target behavior (which
we did observe in some of the benchmarks), can negatively
impact the quality of the synthesized formula by not restricting
the search space enough to learn the desired behavior early
in the search. Oversampling, on the other hand, does not
impact the quality of the synthesized formula, although it can
obviously impact training time.

Training and testing con�guration. We used the standard
Pareto-principle of classifier evaluation which suggests an
(80%, 20%) partition of the provided sample set into training
and testing datasets, respectively. By considering a synthesized
PLTL formula Φ as a classifier for the traces in the testing
set, its quality can be measured in terms of precision (the
percentage of correctly classified traces among all traces
classified as positive by Φ), recall (the ratio of correctly
classified positive traces over the total number of positive
traces) and their harmonic mean (F1 score). Moreover, the
evaluation method also performs cross-validation. It considers
the first five solutions generated by SYSLITE and by the
baseline, selecting the formula (or formulas, in case of ties)
with the highest F1 score.

In Case Study I, one could imagine directly comparing the
closeness of a synthesized formula to the target formula, for
instance by considering the Jaccard distance of the sets of
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satisfying traces, up to some fixed length n, for each formula.
We did not do it since it is prohibitively expensive for requiring
the enumeration of all such traces. A better approach might be
to estimate closeness by adapting model counting techniques
to this setting, something we leave to future work.

Evaluation infrastructure. We performed all our evaluations
on a 3.40GHz Intel(R) Xeon(R) E3-1240 CPU running Cen-
tOS (Linux Kernel 3.10.0-1062.9.1) on 16GB RAM. We set a
3600 second timeout for each learning task.

C. Case Study I: PLTL Formulae from Literature

The purpose of this case study was to measure SYSLITE’s
effectiveness in synthesizing succinct and accurate formulas
from a sample set of traces. For this, we first collected a
few representative PLTL formulas from the literature (see
Table II). For each of them, we collected a sample consisting
of randomly generated traces and then checked if SYSLITE
and the baseline were able to learn the original formula or
a logically equivalent one. We had both synthesis approaches
generate up to 5 candidate formulas before a given timeout.

TABLE II. target formulas from the literature.
Literature Formula PLTL Formula

Chinese Wall Policy [11] �f ((access org1 records) :�(access org2 records)) ^
(access org2 records) :�(access org1 records)))

Bank Transaction Policy [11] �f (Transaction over threshold performed)
�(Transaction over threshold approved))

Secure File [11] �f ((secure �le open) ((�(:(secure �le open))) _
(:secure �le openS secure �le closed))))

Financial Institute Policy [11] �f (grant) (:grantS request))

GLBA-6802 [12], [15] �f (institution discloses to a�liate customers npi)
(:customer opt outS notice of disclosure))

HIPPA-164508A2 [12], [15]
�f (covered entity discloses patient psych notes)

(:authorization psych notes revoked)S
receive patient authorization psych notes)

HIPPA-164508A3 [12], [15] �f (covered entity discloses patient info for marketing)
�(receive patient authorization marketing))

Dynamic Separ. of Duty [11]
�f (member activates role1)

((�(:member activates role2)) _
(:member activates role2Smember deactivates role2)))

Trace generation: Given a target formula ϕ from Table II,
a desired trace length `, and a desired sample size 2n,
our trace generation process uses a cryptographically-secure
pseudorandom number generator to produce a sample set P
of n positive traces and a sample set N of n negative traces,
all of length `. It generates a trace σ of length ` by randomly
assigning truth values to ϕ’s propositional variables for each of
the ` states of σ. The trace goes in the set P or N depending
on whether it satisfies ϕ or not, as long as the set in question
contains less than n traces; otherwise, it is discarded. Note
that, depending on the target formula ϕ, we may have to
oversample for positive or negative traces.

Measuring quality of synthesized formulas. To evaluate the
quality of the synthesized formulas, in addition to relying on
the usual statistical measures (i.e., precision, recall, and F1
score) on the test dataset, we considered logical equivalence
with the target formula (i.e., being satisfied by exactly the same
set of possible traces) as another metric of effectiveness. We
used the GOAL tool [40] to check for equivalence in PLTL.

Quality of synthesized formulas. Our results on the synthe-
sized formulas’ quality (i.e., equivalence to target formula) and
count are summarized in Table III. For each run of SYSLITE

TABLE III. Case Study I: Quality of Synthesis Methods.
SYSLITE SAT

target Formula Count Quality Count Quality
Chinese Wall Policy [11] 5/5 1/5 4/5 0/5
Bank Transaction Policy [11] 5/5 5/5 4/5 4/5
Secure File [11] 5/5 5/5 0/5 0/5
Financial Institute [11] 5/5 5/5 2/5 1/5
GLBA-6802 [12], [15] 5/5 5/5 1/5 2/5
HIPPA-164508A2 [12], [15] 5/5 5/5 1/5 0/5
HIPPA-164508A3 [12], [15] 5/5 5/5 4/5 4/5
Dynamic Separation of Duty [11] 2/5 0/5 2/5 0/5

Total: 37/40 (92%) 31/40 (76%) 18/40 (45%) 11/40 (27%)

and the baseline for a particular dataset and a target formula,
we select the highest-ranked formula after cross validation3

among those synthesized in the allotted time, if any. For each
original (target) formula, column Count reports the total of
number selected formulas across the 5 training sets of different
size. For instance, a value of 2/5 indicates that the algorithm
was able to synthesize formulas for 2 of the 5 training sets.
Column Quality reports how many of the selected formulas
are logically equivalent to the target formula.

Our evaluation confirms that SYSLITE can learn the target
formula or an equivalent one for each of the five random
sample sets in almost all cases. The only exceptions are the
Dynamic Separation of Duty formula, for which SYSLITE
generates two formulas neither of which is equivalent to the
target formula, and the Chinese Wall Policy formula, for which
it generates one formula and only for the sample set of size
1250. To put things in perspective, however, note that since
the Chinese Wall Policy formula has two variables and traces
have length 10, a set of 1250 traces covers just 0.1% of the
set of all possible 410 traces. Remarkably, SYSLITE is able to
learn the right formula with much smaller sample sets in all
the other cases, with perfect precision, recall, and F1 scores.

Looking at the baseline approach, it performs gracefully
with a few simple target formulas such as Bank Transaction
Policy and HIPAA-164508A3. However, it cannot synthesize
any candidates for the Secure File target formula. Moreover,
its synthesized formulas for HIPPA-164508A2, Dynamic Sep-
aration of Duty, and Chinese Wall Policy are not equivalent
to the target. See Arif et al. [29] for detailed results.

Scalability. The training results for case study I are shown
in Figure 1. The X-axis of the graph represents the different
training set sizes: 80% of 50, 100, 250, 500, and 1250,
while the Y-axis (in log-scale) represents the training time in
seconds. Cross validation times are not shown because they are
uniform and negligible. The horizontal red line on the top of
the graph represents the timeout (3600 seconds). In the graph,
we only show results for the 3 target formulas for which the
SAT-method performs best. See [29] for complete results.

In our evaluation, SYSLITE was able to generate results
for almost all combinations of target formula and training
set size while exhibiting an average 60x speedup over the
baseline. The exception, already mentioned, is the Dynamic
Separation of Duty formula where it timed-out on the training
sets with more than 100 traces. This is likely due to the
large size of the formulas to be synthesized which requires

3In this case study, we did not observe any ties after cross-validation.
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Fig. 1. Training Results of Case Study I.

SYSLITE to enumerate internally a very large number of terms.
The baseline method was unable to generate any formula and
timed-out, even for the smallest sample (of 50 traces) for the
Secure File formula. For a few of the other target formulas, it
failed to synthesize a candidate even for the small sample sets
(of size 50 and 100). For example, in HIPPA-164508A2 policy
it failed to synthesize any formula for sample size larger than
50 traces; for the Dynamic Separation of Duty and Financial
Institute it was unable to deal with sample sets with more than
100 traces. These scalability problems are the main cause of
its low formula-quality scores (shown in Table III) and low
statistical measures scores (not shown).

D. Case Study II: 4G LTE Attack Signature Generation

Our second case study focused on synthesizing attack
signatures, represented as PLTL formulas, for cellular net-
works from a set of benign (i.e., positive) and attack (i.e.,
negative) traces. Once again, we considered the scalability and
effectiveness of SYSLITE versus the SAT-based baseline. The
choice of this application domain was motivated by the vital
role cellular networks play in a modern nation’s infrastructure,
which makes them a frequent target for malicious attacks [6],
[16]–[18], [41], [42].

As with any protocol, the cellular network protocol allows
only specific orderings of messages (packets) sent or received
by a cellular device, and predicates over their payload (e.g., the
sequence number is in a range). For a given type of attack,
the synthesized attack signature is expected to be satisfied,
ideally, by all and only the benign protocol executions, those
not containing an attack. This way, one can deploy a runtime
monitor [43] for each attack type that checks whether the
current execution violates (i.e., falsifies) the attack signature
and issues an alert as soon as it detects a violation. Cur-
rently, there are no mechanisms that can achieve this goal

TABLE IV. Table summarizing the attacks used for
evaluation of 4G LTE Attack Signature Generation.

(� = NAS Protocol Layer, � = RRC Protocol Layer)

Name of Attack SYSLITE-synthesized Attack Signature PL

Numb Attack [6]  f (authentication reject ⇒
 (authentication response))

�

Authentication Failure [6]  f (¬ (authentication failure)) �
IMSI Cracking Attack
Against 4G [16]  f (¬ (paging IMSI and TMSI)) �

IMSI Catching [16]  f (¬ (identity request IMSI)) �

Measurement Report [17]
 f (measurementReport ⇒

(¬ (rrcConnectionSetup)S
securityModeComplete))

�

RLF Report [17]
 f (ueInformationResponse ⇒

(¬ (rrcConnectionRequest)S
securityModeCommand))

�

AKA Bypass Attack [18]
 f (rrcConnectionReconfiguration ⇒

(¬ (rrcConnectionSetupComplete)S
securityModeCommand))

�

Malformed Identity
Request [19]  f (¬ (identity request malformed)) �

Null Encryption
Chosen by MME  f (¬ (MME null encryption chosen)) �

EMM Information
Spoofing [20]  f (¬ (emm information insecure)) �

Paging with IMSI [16]  f (¬ (paging IMSI∨
paging IMSI and TMSI))

�

efficiently. Being able to automatically synthesize effective
attack signatures is the natural first step towards that. In light
of this, our case study focused on 11 known, representative
attacks that are detectable from the vantage point of a cellular
device (see Table IV). These attacks target weaknesses of the
cellular network protocol in the Non-Access Stratum (NAS)
layer, responsible for communication between a cellular device
and the core network, and the Radio Resource Control (RRC)
layer, responsible for the communication between a device and
the base station [6], [16]–[20]. While other attacks exist [7],
[16]–[18], [44]–[51], they are not detectable from a device’s
point of view and thus are not relevant to our case study.
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Fig. 2. Training Results of Case Study II.

Trace gathering. We now discuss how we gathered benign

100



traces and generated attack traces through testbed experiments.
Benign Traces: We collected benign traces by random

sampling traces from a crowd-sourced platform to which users
world-wide submit their cellular network traces through an
Android app called MobileInsight [52]. Our collected traces
include 1892 NAS layer traces containing about 52K messages
and 2045 RRC layer traces containing about 1.5M messages.
We cleaned up the traces so that each contained 100 states as
this is sufficient for the attacks we considered.

Malicious Traces: To collect malicious traces, we first
implemented each attack and its variants using srsLTE [53]
and software-defined radios in a testbed. srsLTE is an open-
source cellular network stack which permits the modification
of different components of the network. We then extracted the
attack traces with SCAT [54], a desktop application capable of
extracting 4G LTE modem traffic exposed by certain devices
through a USB interface. Finally, we inserted one or more
copies of the attack traces at arbitrary positions of some
arbitrarily chosen benign traces to obtain our set of malicious
traces. The latter is meant to mimic real-world scenarios in
which attacks span a few sessions of the protocol.

Quality of the synthesized attack signatures. In this case
study, our quality criteria were signature succinctness and
correctness in capturing the attack. We consider an attack
signature to be succinct if it can concisely capture the at-
tack’s root cause without including super�uous events (e.g.,
messages received/sent) or conditions (e.g., predicates over
message payload). Visual inspection of the signatures returned
by SYSLITE and the baseline shows that those generated by
SYSLITE, shown in Table IV, are more succinct.

Looking at correctness, all the attack signatures synthesized
by either the SAT-based baseline or SYSLITE for the NAS
layer have a perfect (100%) precision, recall and F1 on the
testing set. However, the baseline is able to synthesize signa-
ture only with samples of small size. For all the RRC layer
attacks, SYSLITE is able to score perfectly on the test dataset
based on the statistical measures. The baseline, however, does
not achieve a 100% precision, recall, and F1 score as it cannot
synthesize any signature for the Measurement Report attack.
We have manually vetted the synthesized attack signatures
by both SYSLITE and the baseline based on our expertise
in cellular security and observed that the generated signatures
correctly identified (i.e., rejected) traces containing attacks.

Scalability. The scalability results for Case Study II are shown
in Figure 2. The graph’s X-axis shows the sizes of the different
training sets we used whereas the Y-axis (in log-scale) reports
the corresponding training time in seconds. The timeout value
is shown as a red horizontal line. For ease of exposition, we
show only the training results for 3 NAS and 2 RRC layers
attacks. For the rest of attacks, the results follow a similar
trend. See Arif et al. [29] for complete results.

We conjecture that the performance of the baseline is com-
parable with that of SYSLITE when learning attack signatures
on the NAS protocol layer because it induces attacks spanning
only a single protocol session. Thus, the patterns are relatively

easier to learn. On the other hand, for the RRC layer attacks,
the sequences of attack steps can be complex and spread
over multiple sessions, thus making it challenging to learn
(see [29]). Indeed, the baseline timed out more frequently
while synthesizing multi-session attacks from RRC traffic. In
case of the Measurement Report attack, the baseline timed out
for all sample sizes and did not yield any signature. In contrast,
and as illustrated in Figure 2, we observed that the SYSLITE
is scalable and efficient in synthesizing multi-session attacks
signatures, exhibiting on average a 28x speedup over the
baseline. We stress that scalability is essential in this context
to promptly generate attack signatures for newly discovered
attacks before attackers can cause substantial damage.

VI. RELATED WORK

The problem of Learning LTL formulas consistent with a
given set of traces is an instance of the so called language
learning from the informant problem [1], [5], [21]. Unlike
prior approaches for Signal Temporal Logic (STL) formula
learning [55]–[58] and LTL specification mining [59], [60],
these exact learning methods do not require any user-provided
templates. Alternatively, for attack monitor synthesis, one
can envision using active/passive learning to learn a regular
language representation (e.g., DFA [61]–[64], NFA [65], alter-
nating automaton [66]) of attack signatures. Monitoring such
regular language representations with language recognizers
(e.g., DFA) may require exponentially more states than PLTL.

Also, these regular language learning methods are not scal-
able as an automaton requires an explicit state representation
of the behavior to-be-learned. LTL formulas, in contrast, are an
efficient alternative for capturing behavior as it offers a more
succinct and interpretable representation. Efforts on synthesis
of reactive synthesis design [67] and counterexample-guided
inductive synthesis [68] are complementary to the approaches
we discuss here.

VII. CONCLUSION

We have presented an efficient approach for synthesizing
PLTL formulas from a set of finite traces. The approach
reduces the problem to a bit-vector function synthesis problem
and then uses an enhanced version of the CVC4SY SyGuS
solver to solve the latter. The reduction to bit-vector function
synthesis proves critical for performance not only because
CVC4SY implements specific optimization for bit-vectors but
also because it allows us to efficiently express the requirements
capturing the consistency of the solution with the samples. The
conventional wisdom that SyGuS solvers are more efficient
for problems over natively supported theories compared to
reductions to other SMT theories (such as algebraic datatypes)
or to SAT is corroborated by our experimental evaluation.

Possible directions for future work include understanding
the impact of grammar representation (i.e., which temporal
operators to be included in the syntactic specification of the
SyGuS problem) in the efficiency of PLTL formula synthesis
as well as extending the current approach to synthesizing past,
propositional metric temporal logic.
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Abstract—Inferring correct and meaningful specifications of
complex (black-box) systems is an important problem in practice,
which arises naturally in debugging, reverse engineering, formal
verification, and explainable AI, to name just a few examples.
Usually, one here assumes that both positive and negative
examples of system traces are given—an assumption that is often
unrealistic in practice because negative examples (i.e., examples
that the system cannot exhibit) are typically hard to obtain.

To overcome this serious practical limitation, we develop a
novel technique that is able to infer specifications in the form
of universal very-weak automata from positive examples only.
This type of automata captures exactly the class of properties
in the intersection of Linear Temporal Logic (LTL) and the
universal fragment of Computation Tree Logic (ACTL), and
features an easy-to-interpret graphical representation. Our pro-
posed algorithm reduces the problem of learning a universal
very-weak automaton to the enumeration of elements in the
Pareto front of a specifically-designed monotonous function
and uses classical automaton minimization to obtain a concise,
finite-state representation of the learned property. In a case
study with specifications from the Advanced Microcontroller
Bus Architecture, we demonstrate that our approach is able
to infer meaningful, concise, and easy-to-interpret specifications
from positive examples only.

I. INTRODUCTION

The engineering process of reactive systems requires a
good understanding of the specification that the system should
fulfill. For instance, while model checking can prove a system
design to be correct with respect to a specification, the result-
ing proof is only meaningful if the specification captures the
requirements of the application. Similarly, while the process of
synthesizing reactive systems from their specifications is well-
researched, both the system specification and the specification
of the environment in which the system needs to operate must
be correct in order for synthesis to be useful.

Writing correct and complete specifications is hard. Crucial
properties of an application are easy to miss, and formalizing
the specification as automata or in a logic such as linear tem-
poral logic (LTL) is difficult. The problem can be addressed
in multiple ways. Easier to use specification formalisms can
support the writing process of specifications. Alternatively,
approaches for inferring specifications from existing system
implementations or examples can avoid the burden of man-
ually writing the specifications. Such specification learning
techniques are especially useful when a design is already
available, so that its implicit specification can be documented

by examining the set of its traces. Furthermore, a set of human-
given examples may be available from which the wanted
requirements should be distilled. Classical specification mining
requires both examples that violate the (implicit) specification
and examples that satisfy it, as with only one of these classes,
either false or true can be valid specifications, making the
problem ill-defined.

Unfortunately, both negative and positive examples are not
always available. For instance, when inferring the specification
of a system that is too big to be fully analyzed, but whose
implementation is given, we can extract input/output traces
that represent possible executions of the system. Proving that
a certain input/output trace is not a possible execution of
the system is however a model checking problem, which
can be infeasible to solve for complex designs. Similarly, we
may want to deduce an environment specification to be used
in synthesis from observing the environment. For a black-
box environment, we can never know that some behavior
observation sequence cannot occur. These observations give
rise to the question if there is some way to learn from positive
(or negative) example traces only.

To make this problem well-posed, we need to introduce
some kind of measure of how tight the specification should be
that we want to obtain. For the case of positive examples, there
is a spectrum of possible specification solutions ranging from
true all the way to the specification that only allows exactly
the set of traces in the example set. Both extremes make little
sense, and a learning procedure to solve the problem should
be parameterized by a tightness value n. At the same time,
the intuitive idea of tightness with respect to some parameter
n must be concretized in a way such that an efficient learning
procedure to learn n-tight specifications can be given and we
can observe that in practice, the learned specifications capture
some relevant specification parts of systems while being easy
enough to understand by an engineer.

In this paper, we give such a learning procedure for speci-
fications from positive examples only. We identified universal
very-weak word automata (UVWs) over infinite words as a
specification representation that has a natural definition of
tightness, lends itself to an efficient learning procedure, and
leads to easily readable learned specifications. This automaton
class has been identified as characterizing the class of proper-
ties representable both in linear temporal logic (LTL) and in
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the universal fragment of computation tree logic (ACTL) [1].
While this implies that there are some ω-regular properties
that cannot be learned by our framework, the intersection
of LTL and ACTL includes the vast majority of specifica-
tions found in case studies on specification shapes [2]. By
trading away the full ω-regular expressivity, we get multiple
advantages that make learning from only positive examples
feasible: UVWs can be decomposed into simple chains [3]
that each represent a scenario and how the system satisfying
the specification is required to react. Thus, they are easy to
examine by a specification engineer. We will demonstrate that
the maximum length of such a chain is also a natural notion
of the complexity of a specification part, making it a good
candidate for the concretization of the concept of tightness of
a learned specification. Most importantly, simple chains have
a natural approximation of language inclusion that enables us
to efficiently learn a specification by enumerating all strictest
chains that are not in contradiction to any example trace.

The algorithm for learning tight UVWs in this paper starts
from a representation of the set of positive traces as ultimately
periodic words, i.e., words of the form uvω for some finite
words u and v. It is well-known that ω-regular specifications
(or automata) are precisely characterized by the set of ulti-
mately periodic words that satisfy the specification (or are
included in the language of the automaton). Since ultimately
periodic words can be encoded in a finite format, they are a
natural choice of representation for the positive examples that
are input to our algorithm.

We evaluate our approach on benchmarks from a case study
on the AMBA AHB protocol [4]. Starting from LTL formulas
describing the allowed behavior of the AMBA bus clients,
we randomly generate sets of positive examples. We run our
algorithm on the generated sets of different sizes and note how
big the learned UVW is and how long it takes to compute it
with our prototype implementation. Our experiments show that
if the set of positive examples to learn from is big enough, the
algorithm computes a UVW representation of the right LTL
formula. The experiments also show that if too few positive
examples are available, the UVWs grow quite large to capture
the automaton language with the desired tightness value n.

Related Work

The problem of automata learning from data traditionally
comes in two different settings: active [5]–[7] and passive [8]–
[10]. In an active setting, the learning algorithm interacts
with a teacher. The teacher answers two kinds of queries:
membership queries (whether a proposed word is in the
language of the automaton) and equivalence queries (whether
a proposed automaton is the correct one). Learning stops once
the teacher answers an equivalence query positively. Having a
teacher that is able to answer equivalence queries is a strong
assumption. Our work focuses on the passive setting, where the
learning algorithm only has access to data, a set of classified
examples.

The standard problem formulation of passive learning is
that a sample consisting of positive and negative examples

is given. For such a setup, several methods have been pro-
posed for learning not only automata [9], [10], but also LTL
formulas [11]–[13], or STL formulas [14], [15]. None of these
methods provides good results when they are presented with
only one class of examples—they return a trivial solution, one
that accepts (or rejects) all possible examples.

Our problem—learning a specification from system traces—
fits into the process mining framework (see Aalst et al. [16]
for an overview): given an event log from a process, find a
process model that satisfies certain properties. The properties
are fitness (the model should be consistent with the examples
from the log), precision (the model should not be overly
general, e.g., modeling arbitrary examples), generalization (the
model should not be overly tight, e.g., consistent only with
the examples from the log), and simplicity (the model should
be simple). Different operationalizations of the four properties
give rise to different problem formulations and solutions. By
choosing UVWs as our model, we get (structural) simplicity
and connect it to the generalization property by the tightness
value n, for which we require the tightest possible UVW
consistent with the data.

Closely related to our approach is an algorithm by Avel-
laneda and Petrenko [17] for inferring deterministic automata
over finite words (DFAs) from positive finite-word examples
alone. Their algorithm searches for an automaton A with a
given number of states n that is consistent with the given
positive examples and for which no n-state DFA A′ exists
such that the language of A′ is a strict subset of the language
of A. Both their approach and ours identify the language to be
learned in the limit and use a single additional parameter for
choosing the complexity of the language to be learned. Unlike
in our approach, the resulting language in their algorithm is
not unique for a given value of n. Furthermore, while our
approach is relatively simple to adapt to the finite-word setting,
their approach is difficult to adapt to the infinite-word setting,
which we support in our work. This observation is rooted in
the fact that their approach employs a SAT solver to search for
candidate solutions, where clauses for the positive examples
not found in previous solutions are added step-by-step. For the
case of automata over infinite words, this requires the encoding
of product runs between the deterministic automaton and the
words to be accepted in SAT clauses (as described in [18],
[19]). Every positive example requires additional clauses and
variables, and for large numbers of positive examples, this
easily leads to prohibitive sizes of the SAT instances.

Another direction of previous work is the identification of
Live Sequence Charts (LSCs) [20], [21] from system runs.
Live Sequence Charts [22] are a specification formalism that
is popular for its compliance to the UML standard and the
corresponding tools (e.g., IBM RSA). The set of properties
representable as Live Sequence Charts, when not using free
variables, was shown to be contained in the intersection of
LTL and ACTL [23], which is characterized by UVWs (the
version with free variables is characterized as a subset of first-
order CTL* [24]). The existing work on mining LSCs [20],
[21] borrows the concepts of support and consistency from
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data mining [25]. With user-defined thresholds for support
and consistency, charts are enumerated until one exceeding
that threshold is found. Rather than giving more credibility to
patterns occurring most often in the example traces (as it is
the case when using the notion of support), our method prefers
semantically stronger UVWs, controlled by their size. This lets
our approach converge to the same property regardless of the
distribution of the traces, as long as all traces (in the form
of ultimately periodic words) have a non-zero probability of
occurring.

A problem related to ours by the fact that the learning
happens over (positive) demonstrations only, is inverse re-
inforcement learning [26]. There, however, it is the reward
function that is being learned. Obtaining only the reward
function does not provide a human-understandable task speci-
fication. Inspired by inverse reinforcement learning, Vazquez-
Chanlatte et al. [27] learn LTL-like temporal specifications
from demonstrations. In order to do so, they have to pre-
compute the implication lattice between the possible specifi-
cations, which limits the applicability of their approach. This
is not necessary in our work, as we take advantage of the
syntactic approximation of language inclusion between simple
chains of UVWs. On the other hand, they successfully handle
noise in the sample.

II. PRELIMINARIES

a) Basics: Given an alphabet Σ, the expression Σ∗

represents the set of finite words with characters in Σ, and
Σω represents the set of words of infinite length in which
each element is in Σ.

Let B = {1, 0} denote the set of Boolean values, with
1 representing true and 0 representing false. Moreover,
let S1, . . . , Sm be sets and vi for i ∈ {1, . . . ,m} be
a partial order over the set Si. Then, we call a function
f : S1 × · · · × Sm → B monotone if si vi s′i for each
i ∈ {1, . . . ,m} implies f(s1, . . . , sm) ≤ f(s′1, . . . , s

′
m).

Adopting terminology from multicriterial optimization, we say
that some tuple (s1, . . . , sm) is a Pareto optimum for f if
f(s1, . . . , sm) = 1 and for no (s′1, . . . , s

′
m) 6= (s1, . . . , sm)

with componentwise inequality (s′1, . . . , s
′
m) ≤ (s1, . . . , sm),

we have f(s′1, . . . , s
′
m) = 1. The set of Pareto optima is called

the Pareto front. Likewise, we say that some tuple (s1, . . . , sm)
is an element of the co-Pareto front if f(s1, . . . , sm) = 0
and for all (s′1, . . . , s

′
m) 6= (s1, . . . , sm) with (s′1, . . . , s

′
m) ≥

(s1, . . . , sm), we have f(s′1, . . . , s
′
m) = 1.

b) Automata over infinite words: Given an alphabet Σ, an
automaton over infinite words is a tuple A = (Q,Σ, δ, QI , F ),
where Q is a finite set of states, δ ⊆ Q×Σ×Q is a transition
relation, QI ⊆ Q is a set of initial states, and F is a set of
final states.

Given an infinite word w = a0a1 . . . ∈ Σω , we say that A
induces a run π = π0π1 . . . ∈ Qω if π0 ∈ QI and for every
i ∈ N, we have that (πi, ai, πi+1) ∈ δ. An automaton defines a
language L(A), i.e., a subset of Σω that it accepts. Universal
co-Büchi automata accept all words w for which all (infinite)
runs π = π0π1 . . . induced by the word w visit states from

F only finitely often, i.e., there exists an i ∈ N such that for
every j ∈ N with i ≤ j we have πj /∈ F . The final states are
also called rejecting states in this case.

Another type of automaton over infinite words are non-
deterministic Büchi automata, which accept all words that
have runs that visit F infinitely often. Such an automaton is
furthermore called deterministic if for each (q, a) ∈ Q × Σ,
we have at most one q′ ∈ Q with (q, a, q′) ∈ δ.

We say that a automaton is one-weak or very weak if there
exists a ranking function r : Q → N such that for every
(q, a, q′) ∈ δ, we have that either r(q′) < r(q) or q and q′

are identical. More intuitively, this means that all loops in A
are self-loops.

c) Linear Temporal Logic: The logic LTL (Linear Tem-
poral Logic) [28] extends propositional Boolean logic with
temporal modalities, which allow reasoning about sequences
of events. Formulas of LTL are inductively defined as follows:
• each atomic proposition is an LTL formula;
• if ψ and ϕ are LTL formulas, so are ¬ψ, ψ ∨ ϕ, Xψ

(“next”), and ψUϕ (“until”).
As syntactic sugar we add to the set of formulas true, false ,
ψ∧ϕ and ψ → ϕ, which are defined as usual for propositional
logic. Moreover, we add the derived temporal operators F ψ :=
true U ψ (“finally”) and G ψ := ¬F¬ψ (“globally”).

The semantics of propositional operators is defined as usual
and here we describe the semantics of temporal modalities.

An LTL formula over some set of atomic propositions AP
is evaluated on a word w = a0a1 . . . ∈ (2AP)ω and a time
point i ∈ N of the sequence.
• w, i |= p for p ∈ AP if p ∈ ai
• w, i |= Xϕ if w, i+ 1 |= ϕ
• w, i |= ϕUψ if ∃j ≥ i. w, j |= ψ and ∀k.i ≤ k < j ⇒
w, k |= ϕ

d) Universal very weak automata: Universal very-weak
automata (UVW) are universal co-Büchi automata that are
also very-weak. While universal co-Büchi automata are as
expressive as Linear Temporal Logic (LTL) [29], universal
very-weak automata are less expressive and only capture the
properties whose satisfaction by a reactive system can be
expressed both in computational tree logic with only universal
path quantifiers (ACTL) and linear temporal logic [1], [30].

The language represented by a finite ω-automaton (such as a
UVW) is uniquely determined by the set of ultimately periodic
words uvω with u, v ∈ Σ∗ in the language of the automaton.

A universal very-weak automaton can be decomposed into
simple chains [3], i.e., such that no state is directly reachable
from more than one other state (apart from possibly itself).
More formally, a simple chain is a sequence of different states
q1, . . . , qn such that for all i ∈ {1, . . . , n − 1}, there exists
some a ∈ Σ with (qi, a, qi+1) ∈ δ.

A simple chain is called longest (or maximal) in an au-
tomaton if it cannot be extended by an additional state at
the beginning or the end of the sequence without losing the
property that it is contained in the automaton. We say that
a UVW is in decomposed form if there are no transitions
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between the maximal simple chains of the UVW and for
every such simple chain q1, . . . , qn, there are no “jumping
transitions”, i.e., for no i, j ∈ N and a ∈ Σ, we have
(qi, a, qj) ∈ δ with j > i + 1. Without loss of generality,
we can assume that in a decomposed UVW, every chain has
an initial state and the last state is rejecting, as otherwise the
whole chain or the last state, respectively, can be removed.

III. LEARNING UNIVERSAL VERY-WEAK AUTOMATA

In this section, we describe our approach to learn universal
very weak automata (UVW) from positive examples alone. We
first define the notion of n-tightness of a UVW, which specifies
what languages we want to learn from positive examples alone.
We prove that the languages of n-tight automata are unique,
which ensures that the learning problem is well-posed.

We then establish in Section III-B how the simple chains of
n-tight automata can be learned. As per the acceptance defi-
nition of UVW, the chains describe the words to be rejected.
Hence, learning n-tight automata amounts to enumerating all
simple chains of length up to n that do not reject any of the
positive examples. We show that enumerating them all can
be posed as the problem of enumerating the co-Pareto front
elements of a monotone function.

In Section III-C, we then show how this insight leads to
an efficient learning process: we show that the monotone
function can be evaluated by solving a relatively simple model
checking problem, and for enumerating all chains, we can use
a Pareto optima enumeration algorithm from existing work,
which outputs the co-Pareto front as a byproduct. To obtain
reasonably-sized UVW, the last step is then to run the usual
simulation-based automaton minimization steps.

A. Defining tight universal very-weak automata

Given a set of positive examples P ⊂ Σω , we want to
compute (learn) an automaton A such that P ⊆ L(A), where
we assume that for each p ∈ P , we have that p = up(vp)ω

for some finite words up, vp ∈ Σ∗ with |vp| ≥ 1.
Since there are infinitely many automata A satisfying this

condition, we need an optimization criterion for finding the
automaton A. Minimizing the number of states of the solution
is not a meaningful optimization criterion in this context, as
the smallest automaton is always the one with 0 states – such
an automaton does not visit final states, and by the acceptance
definition of UVW, this means that all words are accepted.

To permit learning from positive examples only, we hence
define an alternative learning criterion: we learn the strictest
automaton (i.e., with the smallest language) that satisfies some
syntactic cut-off criterion. For UVWs, there is a natural such
criterion: the size of the co-domain of the ranking function,
or equivalently, the length of the longest chain in a UVW.

Definition 1: Let P ⊂ Σω be a set of positive examples and
A be a UVW with L(A) ⊇ P . We say that A is n-tight for
some n ∈ N if the following conditions hold:

1) There does not exist a simple chain of states longer than
n in A (or equivalently, there exists a ranking function
proving the very-weakness with co-domain {1, . . . , n}),

2) For no other UVW A′ with P ⊆ L(A′) ⊂ L(A), we
have that all simple chains of states in A′ are of length
at most n.

Lemma 1: Given a set of positive examples P and some
value n ∈ N, there exists an n-tight UVW A with P ⊆ L(A).
All other n-tight UVWs have the same language.

Proof: We construct a universal very weak automaton in
its decomposed form, i.e., where the UVW consists of a finite
set of simple chains without transitions between them. Let C
be a set of all possible simple chains of length up to n. We
ignore the state identities/names, so that a chain of length n
is characterized completely by transitions between the states,
of which there are fewer than 2|Σ|·(2n−1) many different ones
(as there can be at most 2|Σ| different self-loops on n states
and fewer than 2|Σ|·(n−1) many transitions between different
states). This makes the set C finite. We choose an automaton
A to consist of the set of all chains c ∈ C such that P ⊆ L(c).
We claim that this is an n-tight UVW accepting all words from
P and that its language is the language of all n-tight automata.

Indeed, for a tighter UVW A′ (i.e., such that P ⊆ L(A′) ⊂
L(A)) with maximal chain length n, there must exist α ∈ Σω

such that α ∈ L(A) \ L(A′). The fact that α 6∈ L(A′) means
that a run of A′ on α will end up in one of its final (rejecting)
states going through a chain of up to n states. But by P ⊆
L(A′) and by our definition of A, this chain should be a part
of A. Therefore, α /∈ L(A), which yields a contradiction.

Let now A and A′ be two n-tight automata. If they are not
equivalent, then there exists a word α ∈ Σω \ P accepted by
one of them but not by the other. Wthout loss of generality, let
a /∈ L(A). Since all chains in A and A′ are of length at most
n, this means that the word is rejected by one of such chains in
A. As the chain can be added to A′ without making it reject
a word in P , this proves that A′ is not n-tight, yielding a
contradiction. Hence, the assumption that the two automata A
and A′ are not equivalent but both n-tight cannot be fulfilled.

The lemma shows that for a given set of positive examples
P , n-tight automata have a unique language. It also shows
how such an automaton can be computed: we first enumerate
all simple chains of length n that a decomposed automaton
accepting all elements from P could have. Taking these chains
together, we obtain an n-tight UVW.

B. Enumerating All Simple Chains of a UVW to be Learned

The n-tightness definition of the previous subsection states
what language the automaton that we want to learn from a
set of positive examples should have. However, enumerating
all simple chains that are consistent with the given positive
examples is computationally inefficient as their number grows
exponentially with n and the size of the alphabet. We show
in this subsection how this problem can be mitigated.

To do so, we represent simple chains syntactically by so-
called chain strings. Then, we define a partial order over
these strings that is consistent with language inclusion between
automata consisting only of the represented chains. In order
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q0 q1 q2

a,b b,c c

b b,c

q′0 q′1 q′2

a,b,c b,c c

a,b a,b,c

Fig. 1. Two example simple chains, where the lower one is syntactically
stronger than the first one.

to obtain n-tight UVWs, we then only need to enumerate all
chain strings that are strongest according to this partial order.

We visualize this idea in Figure 1 for the case of n = 3
and Σ = {a, b, c}. The simple chains given there are rep-
resented by the chain strings ({a, b}, {b}, {b, c}, {b, c}, {c})
and ({a, b, c}, {a, b}, {b, c}, {a, b, c}, {c}), which denote the
edge labels along the chain, alternating between self-loops
and edges between states. Assuming that both chains are com-
patible with some set of positive examples over the alphabet
Σ = {a, b, c}, the lower one is stronger than the upper one in
the sense that it rejects strictly more words.

This can be seen from the fact that both chains have the
same length, and at each self-loop and each edge between
the states, the labels for the lower chain are supersets of
the respective labels for the upper automaton. On the chain
string level, we can easily see that by looking at every pair of
elements in the string and comparing the respective sets for
set inclusion. Hence, every rejecting run for the upper chain is
a rejecting run for the lower one as well. Chain strings induce
a natural order by element-wise inclusion, and as already
mentioned, the main idea of our approach is to enumerate
only the largest chain strings with respect to the partial order
that are consistent with the set of positive examples, which
decreases the number of chains to be enumerated.

To simplify the presentation henceforth, the formal chain
string definition also permits interrupted chains of states,
which are not simple chains according to their definition in
Section II. Furthermore, we only care about chains in which
exactly the first state is initial and exactly the last state is
rejecting. The generality is, however, not lost: if a simple
chain does not have this form (so it has additional initial or
rejecting states), then it contains another shorter simple chain
of this form. This shorter simple chain can be extended to a
chain of length n by duplicating the last (rejecting) state and
rerouting the outgoing transitions of the previously last state
to the new last state. This yields another chain of length n
that is not missed when enumerating all maximal (w.r.t. their
partial order) chain strings of length n that are compatible
with P according to the definitions to follow. Figure 2 depicts
this observation. The leftmost chain is split into a chain for
the rejecting state q2 and a chain for the rejecting state q3.
The now shorter chain is post-processed to a longer chain by

duplicating the last state.
Definition 2: Let Σ and n be given. A chain string for Σ

and n is of the form s = (l1,m1, l2,m2, . . . , ln) ∈ (2Σ ×
2Σ)n−1 × 2Σ. Such a string s induces a chain-like automaton
A = (Q,Σ, δ, QI , F ) with

• Q = {q1, . . . , qn};
• QI = {q1};
• δ = {(qi, x, qi) | x ∈ li, i ∈ {1, . . . , n}} ∪ {(qi, x, qi+1) |
x ∈ mi, i ∈ {1, . . . , n− 1}}; and

• F = {qn}.
Note that the induced automaton A consists of at most one
single simple chain that is reachable from an initial state.

The main idea of the following enumeration procedure is
to cast the problem of finding all strongest simple chains as
a problem of finding the co-Pareto front of a monotonous
function fn over chain strings. This enables the use of a Pareto
front enumeration algorithm [31] for monotone functions to
enumerate all simple chains that are consistent with the given
positive examples.

The said algorithm however finds the Pareto front elements
of a rectangular finite subset of Nu for some u ∈ N. To
make it compatible with the problem of finding simple chains,
we have to encode chain strings into Nu. The fact that all
chain string elements are powersets enables a relatively simple
encoding. We set u = |Σ| · (2n − 1) and for every chain
string s = (l1,m1, l2,m2, . . . , ln) ∈ (2Σ × 2Σ)n−1 × 2Σ,
the corresponding encoded string in Nu is of the form
s′ = (l11, . . . , l

|Σ|
1 ,m1

1, . . . ,m
|Σ|
1 , l12, . . . , l

|Σ|
2 , . . . , l1n, . . . , l

|Σ|
n ),

where every every element lij and mi
j is either 0 or 1,

depending on whether the ith element of Σ is part of the
encoded lj . The order of the elements of Σ used in this
encoding is arbitrary but fixed.

A Pareto-front enumeration algorithm necessarily also enu-
merates the co-Pareto front to be sure it found all Pareto front
points [31], which we exploit to find all strongest chain strings,
as these form the co-Pareto front. The monotone function itself
implements a model checking step of all elements in P against
the chain, which due to the lasso-like structure of the examples
is relatively easy to solve.

Lemma 2: Let P be a set of positive examples over the
alphabet Σ, n ∈ N, and fn : (2Σ × 2Σ)n−1 × 2Σ → B be a
function that maps a chain string over Σ and n to 1 if and only
if the automaton induced by the string rejects some element
in P . Then, the function fn is monotone.

Proof: Let s = (l1,m1, l2, . . . ,mn−1, ln) and s′ =
(l′1,m

′
1, l
′
2, . . . ,m

′
n−1, l

′
n) be two chain strings with li ⊆ l′i for

each i ∈ {1, . . . , n} and mi ⊆ m′i for each i ∈ {1, . . . , n−1}.
Furthermore, let As = (Qs,Σ, δs, QI,s, Fs) and As′ =
(Qs′ ,Σ, δs′ , QI,s′ , Fs′) be the corresponding UVWs as in
Definition 2 with Qs = Q′s = {q1, . . . , qn}.

As li ⊆ l′i for each i ∈ {1, . . . , n} and mi ⊆ m′i for each i ∈
{1, . . . , n− 1}, by the fact that by Definition 2, the transition
relation of As is monotone in l1 . . . ln and m1 . . .mn, we
have that δs ⊆ δs′ . Hence, every run π of As for some word
w ∈ Σω is also a run of As′ for the same word.
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q0 q1 q2 q3

a,b b,c c b

b b,c a,b

q′0 q′1 q′2

a,b b,c c

b b,c
q′0 q′1 q′2 q′3

a,b b,c c

b b,c c

q′′0 q′′1 q′′2 q′′3

a,b b,c c b

b b,c a,b

Fig. 2. Splitting a chain with multiple rejecting states

As universal automata accept all words that do not induce
any rejecting run, this means that all words rejected by As will
also be rejected by As′ , and hence, we have L(As′) ⊆ L(As).

To show that fn is monotone, recall that the function fn
maps a chain string t to whether the UVW At rejects a word
in P . Towards a contradiction, assume that fn(As) = 1 but
fn(As′) = 0. This means that there exists a word w ∈ P
such that w /∈ L(As) and w ∈ L(As′). Thus, w witnesses
L(As′) 6⊆ L(As), which is a contradiction to the previous part
of the proof. In conclusion, we obtain that fn is monotone.

We obtain the following corollary:
Corollary 1: Let P be a set of positive examples over the

alphabet Σ, n ∈ N, and A be the set of automata induced by
the co-Pareto front elements of the function fn. The automaton
for the language

⋂
A∈A L(A) is n-tight for P and Σ.

The automaton from this corollary can be built easily,
as universal very-weak automata are closed under language
intersection by just merging the state sets, transition relations,
and initial states [3]. This enables us to simply merge all chains
found together into a single UVW.

C. Engineering Considerations of the Learning Algorithm

After the co-Pareto front of strongest chains has been
enumerated, the last step in the construction of the UVWs
is merging them to a single UVW. We add the chains one-
by-one to a solution UVW. After every such step, we use
the automaton minimization techniques described in [2] to
reduce the size of the automaton. If the process is stopped
prematurely, the result is still useful—a UVW that accepts a
subset of the language that the final automaton (given sufficient
computation resources) would accept. This property makes it
possible to use the algorithm in the anytime fashion, stopping
it when a given resource budget is exceeded.

It remains to be described how fn can be computed ef-
ficiently. We implemented this process as follows: let P =
{(u1, v1), . . . , (um, vm)} and A = (Q,Σ, δ, QI , F ) with Q =
{q1, . . . , qn} be an automaton induced by a chain string to be
checked. For every j ∈ {1, . . . ,m}, we translate (uj , vj) to a
deterministic Büchi automaton A′ accepting exactly uj(vj)ω .
Such an automaton has |uj |+ |vj |+ 1 states. We then check
if A′ admits a word rejected by A, i.e., if L(A′)∩L(A) 6= ∅.
Since the complement of a universal co-Büchi word automaton
can be obtained in the form of a non-deterministic Büchi
automaton by just interpreting A as such, the standard product

construction from linear-time model checking can be applied
to test if L(A′)∩L(A) 6= ∅. The function fn can then simply
iterate over all examples j ∈ {1, . . . ,m} and test if this is the
case for any of them. Whenever it finds that L(A′)∩L(A) 6= ∅
for some automaton A′ built from a positive example, the
function fn returns 1. Otherwise, it returns 0 after iterating
through all values for j ∈ {1, . . . ,m}.

Note that in an actual implementation of fn, there is no
need to explicitly build A′ or construct the product Büchi
automaton. Rather, the implementation can make use of the
fact that only the last state of the simple chain is rejecting.
So it can compute the states of the product that are reachable
and then check if state qn in the A component of the product
is reachable while at the same time, all characters in vj are
contained in the self-loop label of state qn. If and only if that
is the case, positive example number j is rejected by A.

IV. EMPIRICAL EVALUATION

We implemented the approach from this paper in a prototype
toolchain [32], which is available on Github. The enumeration
of the simple chains is performed by a tool written in C++,
while the subsequent minimization of the resulting UVWs is
implemented in Python 3.

In order to assess the performance of our approach on
practically relevant properties, we considered the specification
of the industrial on-chip bus arbiter of the AMBA AHB
bus [33]. Specifically, we considered ten assumptions made
for the master of the AHB bus, as described in [4]. For
simplicity we abstracted from the concrete variable names
and rewrote predicates over categorial values into individual
propositions. For instance, the original property A8 from [4]
referring to a burst sequence of unspecified length (denoted
by the value INCR) is G[HLOCK ∧ (HBURST = INCR) →
XF(¬REQ VLD)]. It is rewritten into G[(a ∧ b)→ XF(¬c)].
All the resulting formulas are shown on the left-hand-side of
Table I.

Except for Property 3, all properties can be represented in
UVW form by a single simple chain with two states each. For
Property 3, we need two chains of length 3. The properties em-
ploying two to four atomic propositions have been learned over
words with characters that encode this number of propositions.
Propery 6 has been learned over positive examples in which
each character has three proposition values, while for Property
9, we used two propositions. This deviation was necessary to
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TABLE I
MEAN COMPUTATION TIMES FOR UVW LEARNING FOR THE TEN LTL

PROPERTIES CONSIDERED IN SECTION IV

Time in s

Property chain len. 2 chain len. 3

1) G[a→ (b ∨ c ∨ d)] 0.763 timeout
2) G[a→ (b ∨ c)] 0.517 1.029
3) G[X¬a→ (¬b↔ X(¬b))] 0.493 1.184
4) G[a→ ¬b] 0.408 0.713
5) G[a→ (¬b ∧ ¬c)] 0.533 1.059
6) G a 0.526 1.057
7) G[a→ F b] 0.442 0.870
8) G[(a ∧ b)→ XF(¬c)] 0.634 119.123
9) GF a 0.423 0.685

10) GF(¬a ∧ ¬b) 0.428 0.702

ensure that there are enough distinct positive examples for
these properties.

For each property, we computed 50,000 different ultimately
periodic words uvω that satisfy the property, where |u| is of
length 0, 1, 2, 3, or 4, while |v| is of length 1, 2, 3, or 4.
The characters of the words are the subsets of propositions
holding, and all word part lengths are equally likely to be
chosen. We also use a uniform probability distribution over the
characters when computing the positive examples. Whenever
a non-positive example for the property is found during the
positive example computation, it is discarded and another
example word is computed instead. We ran every experiment
on 10 different example sets generated in this way and report
the mean values obtained in the following.

The experiments were conducted on a computer with four
AMD EPYC 7251 processors running at 2,1 GHz and an x64
version of Linux. The available main memory per run of the
learner was restricted to 3 GB. We used a computation time
limit of 600 s per learning problem.

Table I contains the mean computation times for all proper-
ties when using all 50,000 positive examples as input in each
case. It can be seen that for most combinations, our approach
computes a UVW rather quickly. Only for one property with
a higher number of atomic propositions and an unnecessarily
long chosen chain length, the toolchain times out.

Figure 3 shows for nine of the ten properties how big the
computed UVW are, where sizes for both chain lengths of 2
and 3 are reported. Here, we varied the number of positive
examples provided to the learner along the X axis (minimum:
100, in steps of 100). For very low number of examples, our
toolchain often times out. This is rooted in the fact that the
tightest UVW is often very large when not enough positive
examples are available. It can also be observed that for a lower
chain length, the computed UVW converges to a small one
much earlier.

Figure 4 depicts the relationship between computation time
and the sizes of the computed UVWs in more detail, using
Property 3, the one that was left out of Figure 3. It can be
observed that computation times are very short when enough
positive examples are available, and they grow only very

mildly with additional positive examples. When, however,
not enough examples are available, the approach computes
a much larger number of simple chains, which also increases
the workload of the UVW minimization heuristic.

Finally, Figure 5 depicts the UVWs learned for Property
3. The property can only be learned correctly with a chain
length of 3, and the two paths through the UVW on the right-
hand side show the two conjunctive requirements that the LTL
property G[X¬a → (¬b ↔ X(¬b))] imposes, namely that
(1) after a character with b = true is seen, b needs to retain a
value of true until a gets a false value afterwards and (2) after
a character with b = false is seen, b needs to retain a value of
false until a gets a false value afterwards. The automaton has a
simple structure and is quite easy to read. The computed UVW
for a chain length of 2 is, as expected, an overapproximation of
the language to be learned. Interestingly, the encoded language
is a liveness language, even though the approximated LTL
property is not.

For all ten LTL properties considered in our experiments,
the learned UVWs for the correct chain lengths represent
the correct languages and have a minimal number of states.
Moreover, the resulting UVWs are fairly easy to understand
(we refer the reader to the extended version of the experiments,
available in the code repository [32] for their depiction),
which underpins the use of UVWs as an easy-to-understand
specification formalism.

V. DISCUSSION OF THE PROPOSED APPROACH

In this section, we discuss potential challenges for the
application of our approach as well as strategies to mitigate
them.

First, our learning algorithm depends on a well-chosen
tightness value n: if the value is too small, then the resulting
UVW is too permissive and imprecise; if the value is chosen
too large, on the other hand, the computational effort for
learning an UVW can become prohibitive. Determining an
appropriate value for n remains an open question. A potential
strategy to find such a value in practice—apart from relying on
domain knowledge—could be to perform a search that starts
with a reasonably small tightness value and then increments
the value until the resulting UVW does no longer change. As
Table I suggest, our learning algorithm is fast enough (less than
1 s given sufficiently many examples) so that such a search is a
viable approach. On a more general note, however, we would
like to reiterate that without such a parameter, the problem of
learning from only positive examples is ill-defined.

Second, as our experimental evaluation has shown, our
learning algorithm requires a fair amount of positive examples
(several thousands) to perform well. However, compared to
most other learning algorithms, which require negative exam-
ples, we believe that this is not a major restriction in practice
because (a) positive examples are usually much easier to obtain
than negative examples and (b) positive examples are often
readily available (e.g., from log files) or can be generated
automatically (e.g., by means of simulations).

110



1

5
10
20
50

100

1

5
10
20
50

100

1

5
10
20
50

100

0k 10k 20k 30k 40k 50k 0k 10k 20k 30k 40k 50k 0k 10k 20k 30k 40k 50k

1) G[a→ (b ∨ c ∨ d)]1) G[a→ (b ∨ c ∨ d)] 2) G[a→ (b ∨ c)]2) G[a→ (b ∨ c)]

4) G[a→ ¬b]4) G[a→ ¬b]

5) G[a→ (¬b ∧ ¬c)]5) G[a→ (¬b ∧ ¬c)] 6) G a6) G a 7) G[a→ F b]7) G[a→ F b]

8) G[(a ∧ b)→ XF(¬c)]8) G[(a ∧ b)→ XF(¬c)] 9) GF a9) GF a 10) GF(¬a ∧ ¬b)10) GF(¬a ∧ ¬b)

U
V

W
#

St
at

es

Number of positive examples considered

Fig. 3. UVW sizes for nine of the ten examples. The dotted lines are for a UVW chain length of 3, while the solid lines are for a UVW chain length of 2.
The number of positive examples given to the learner ranges between 100 and 50,000 and is displayed on the x axis of each chart. Parts in the charts with
absent lines represent timeouts, which were common for low numbers of positive examples.

10−1

100

101

102

1
10
20

50

0k 10k 20k 30k 40k 50k

C
om

pu
ta

tio
n

tim
e

(s
)

U
V

W
#

St
at

es

Number of positive examples considered

Fig. 4. Joint plot for the computation time and UVW sizes for Property 3).

Finally, our learning algorithm is designed to learn prop-
erties of infinite words and, hence, requires infinite words
(in the form of ultimately periodic words uvω) as input. In
practice however, one will only be able to observe or simulate
finite executions. To mitigate this challenge, we propose two
strategies. If the examples are obtained from simulations, it
is fairly easy to detect repetitions of system states that can
be used to partition the execution into an initial fragment u
and a repeating part v. On the other hand, if the examples are

q0

q1 q2

true

¬a ∧ ¬b ¬a ∧ b

b ¬b

q0

q1 q2

q3

true

¬a ∨ b ¬a ∨ ¬b

true

b ¬b

¬a ∧ ¬b ¬a ∧ b

Fig. 5. Learned UVW (for chain lengths of 2 on the left and 3 on the right)
from the positive examples for the LTL property G[X¬a→ (¬b↔ X(¬b))].

obtained from observing an existing system without access to
its internal state, one can use acceleration-like techniques [34]
to detect cycles based on repeating patterns in the observations.

VI. CONCLUSION AND DIRECTION FOR FUTURE WORK

We have developed an effective method for learning formal
specifications in the form of universal very-weak automata
from positive examples only. Our learning algorithm reduces
the problem of learning such an automaton to the enumeration
of elements in a Pareto front and uses an effective minimiza-
tion technique to obtain a unique finite-state representation
of the learned property. Experiments with properties from
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the Advanced Microcontroller Bus Architecture (AMBA) have
demonstrated that our approach is able to infer concise and
easy-to-interpret specifications from positive examples.

For future work, we plan to adapt our learning algorithm
to be able to learn from finite rather than infinite words.
A relatively straightforward way to do this would be to
restrict the chain enumeration to only consider chains that
have true as final state. The class of languages learnable
by this approach would then exactly be the set of languages
that can be accepted by so-called universal very-weak finite
automata, studied, for instance, by Bojańczyk [30].

Finally, we are interested in determining an appropriate
tightness value automatically from the sample, which seems
to be a non-trivial problem.
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Abstract—Modern verifiers for cryptographic protocols can
analyze sophisticated designs automatically, but require the entire
code of the protocol to operate. Compositional techniques, by
contrast, allow us to verify each system component separately,
against its own guarantees and assumptions about other com-
ponents and the environment. Compositionality helps protocol
design because it explains how the design can evolve and when it
can run safely along other protocols and programs. For example,
it might say that it is safe to add some functionality to a
server without having to patch the client. Unfortunately, while
compositional frameworks for protocol verification do exist, they
require non-trivial human effort to identify specifications for the
components of the system, thus hindering their adoption.

To address these shortcomings, we investigate techniques for
automated, compositional analysis of authentication protocols,
using automata-learning techniques to synthesize assumptions
for protocol components. We report preliminary results on
the Needham-Schroeder-Lowe protocol, where our synthesized
assumption was capable of lowering verification time while also
allowing us to verify protocol variants compositionally.

I. INTRODUCTION

Cryptographic protocols are notoriously difficult to design,
yet their correctness is crucial to ensure the security of
software systems. Formal methods are thus valuable, as they
can reveal critical bugs before these systems are deployed.
Automated tools (ProVerif [1], CryptoVerif [2], Tamarin [3],
Maude-NPA [4], etc.) are particularly interesting, as they allow
us to focus on modeling the protocol rather than proving its
correctness. Although these tools have been applied to ambi-
tious case studies [5], [6], [7], [8], [9], they suffer from one
important drawback: they offer little support for compositional
reasoning. To verify a property, we must supply the entire
protocol model at once, rather than verifying each component
of the protocol against self-contained partial specifications.
This is unsatisfactory, since a non-compositional analysis
works under a closed-world assumption that provides few
guarantees for when the protocol is itself a component of
a larger system—for example, using a private key to sign
and encrypt data simultaneously can expose vulnerabilities
that are absent if only one of the functionalities is used.
Furthermore, decomposition can help speed up verification
and guide protocol design when components are modified, or
even perhaps removed, in case we want to de-bloat an existing
protocol without breaking its security.

We envision a future where we can combine the power of
compositional reasoning with the convenience of automation.
As a first step in this direction, we consider how protocol

analysis can benefit from off-the-shelf, automated composi-
tional verification tools. To illustrate, suppose that we have
a complex system M1 jjM2, obtained by composing simpler
pieces M1 and M2. We would like to show that M1 jj M2

satisfies a specification P : M1 jjM2 j= P . Rather than proving
P directly, we can resort to the following assume-guarantee
rule:

hQiM1hP i htrueiM2hQi
M1 jjM2 j= P

(R1)

This rule says that we can prove P by finding an assumption
Q such that (1) P holds on M1, assuming that Q holds on the
rest of the system; and (2) the component M2 guarantees that
Q holds. Though it can be challenging to craft a suitable Q by
hand, prior work [10], [11] shows that it can be inferred with
L� [12], an automaton learning algorithm, even for systems
with multiple components.

We report preliminary results on the analysis of the
Needham-Schroeder protocol [13] and its subsequent correc-
tion by Lowe [14] (dubbed NS and NSL, for short). We
developed models of the protocols for a version of the LTSA
model checker [15] extended with automaton learning [10],
and used this infrastructure to synthesize assumptions to verify
the protocol. Our focus is on agreement properties, also known
as correspondence properties [16], [17], which say that when
authentication is complete the participants are indeed talking
to whom they think they are talking to.

One obstacle for the formal analysis of security protocols
is dealing with rich attacker behavior. A popular threat model
is the symbolic (or Dolev-Yao [18]) paradigm, which says that
the attacker has complete control over the network, but is
constrained by standard cryptographic assumptions. Thus, the
attacker might be able to shuffle, drop or replay messages, but
cannot decrypt a message without the corresponding key. To
ease the modeling of such threats, we developed Taglierino, a
domain-specific language for describing protocols and attacker
behavior as LTSA automata.

Taglierino requires users to bound the possible attacker
behaviors to ensure that its output is finite and it can be
analyzed by LTSA. (Any attack can in principle be found with
Taglierino if we make this bound large enough.) Though finite,
we observed that Dolev-Yao attackers produced in this way
require a large number of states (>700k) to cover interesting
behaviors. Synthesizing component assumptions directly using
such attackers leads to bloated assumptions that are expensive
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to check and hard to interpret. To facilitate a compositional
analysis of NSL, we perform a first decomposition step where
we generate assumptions about the behavior of the attacker
using alphabet re�nement [10]. This decomposition shows
that we can replace the attacker by a much simpler one
(3 rather than 700k states). We use this refined attacker to
generate assumptions for the initiator of the protocol. The
assumptions are small (10–20 states), so they can be examined
by decomposition and used for checking replaced components.

The rest of this paper proceeds as follows. After a quick
overview of the NS protocol and how it is modeled in
Taglierino (Section II), we present our analysis of the protocol
in Section III, explaining how we generated assumptions for
the protocol initiator and used them to verify protocol variants
and detect bugs. We discuss related work in Section IV and
conclude in Section V.

II. AN OVERVIEW OF NS
The Needham-Schroder public key protocol [13] is intended

to provide mutual authentication of two agents, Alice (A) and
Bob (B). The protocol can be summarized as follows:

(1) A �! S : A;B

(2) S �! A : fB; pkBgskS
(3) A �! B : fnA; AgpkB
(4) B �! S : B;A

(5) S �! B : fA; pkAgskS
(6*) B �! A : fnA; nBgpkA

(7) A �! B : fnBgpkB
Alice starts by contacting the key server S asking for Bob’s
public key pkB . The server returns this information to Alice
signed with its own secret key skS , to prove that pkB is
authentic. Then, Alice encrypts a fresh cryptographic nonce
nA and sends it to Bob, along her own identity. Bob asks
the key server for Alice’s public key pkA, and then sends
nA back to Alice along another fresh nonce nB , all of this
encrypted with Alice’s key. Finally, Alice acknowledges the
end of the handshake to Bob by sending him nB back. (The
protocol turns out to contain a vulnerability in message (6�);
we’ll come back to this shortly.)

The intended specification for the protocol can be informally
stated as follows:
� When Alice receives Message 6, she knows that Bob

accepted her connection.
� When Bob receives Message 7, he knows that Alice has

tried to contact him.
To formalize this property, we model the behavior of the

system as a series of finite automata running in parallel. Each
automaton defines a language of traces over the following
alphabet:
� send i(m): The agent i has sent the message m over the

network.
� recv i(m): The agent i has received the message m from

the network.

agent "Alice" $ do
hostX <- receive
begin "authAB" hostX
send [alice, hostX]
sig <- receive
[pkX, host] <- checkSign spkS sig
when (host == hostX) $ do
send $ aenc pkX [na, alice]
m <- receive
[nx, ny] <- adec skA m
if (nx == na) then

send $ aenc pkX ny
else fail "nonce mismatch"

Fig. 1: Implementation of Alice in NS.

� begini(e;m): The agent i claims that the event e has
begun, using the data item m as an identifier.

� end i(e;m): The agent i claims that the event e has ended,
using the data item m as an identifier.

Messages and data items are drawn from a set Term that
contains an infinite supply of nonces, cryptographic keys,
encrypted messages, etc. To keep the models finite, we restrict
this set to a finite subset A � Term of allowed terms. Our
goal is to prove agreement [16], [17]: if an event of the form
end i(e;m) occurs in an execution trace, then the trace has
an earlier occurrence of the event beginj(e;m). For instance,
Alice might emit beginA(authAB ; B) at the beginning of
the protocol to signal that she wishes to communicate with
Bob, and Bob would emit endB(authAB ; B) after receiving
fnBgpkB to indicate that the connection was successful.

Each protocol participant corresponds to a finite automaton.
These automata are specified in Taglierino using a domain-
specific language similar to process calculi used in pro-
tocol verification [1], [19]. Figure 1 shows the model of
Alice in Taglierino. A preamble, not shown in the figure,
declares constants such as the nonce na, Alice’s identity
alice, Alice’s private key skA, and Server’s public signa-
ture key spkS. Alice communicates with the network using
send and receive. The first received message (hostX <-
receive) means that Alice is willing to run the protocol
with any other agent chosen by the network. Upon sending
or receiving from the network, Alice can manipulate mes-
sages using cryptographic primitives; for example, aenc and
adec stand for asymmetric encryption and decryption and
checkSign is for checking the signature.

The protocol implementation in Taglierino is compiled
down to models for the LTSA model checker [15]. In ad-
dition to the honest agents, our compiler generates another
automaton that describes how messages are transmitted in
the network. This transmission follows the symbolic model
of cryptography [18]: an agent i can receive a message m if
and only if the predicate knows(M;m) holds, where M is the
set of messages that have been sent to the network up to that
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point. Intuitively, this amounts to assuming that an attacker can
intercept all messages sent in the network and gets to decide
what is delivered in the end, potentially tampering with the
result. The definition of knows is standard; for instance it
includes the following clauses

m ∈M
knows(M,m)

knows(M, sk(k)) knows(M, { m} pk(k))

knows(M,m)
,

which say that the attacker can always reproduce messages
it has previous seen, and also decrypt a message m if it
can extract the corresponding decryption key sk(k) from its
knowledge. The network automaton does not have begin or
end events in its alphabet, since those are controlled by the
honest agents of the system.

III. ANALYZING THE PROTOCOL

When Bob receives { nB } pkB , he thinks that Alice has
decided to contact him because there is no other way he
could have received this message: the nonce nB was freshly
generated, and only Alice has the power to decrypt the en-
crypted message { nA, nB } pkB . Unfortunately, this reasoning
is flawed: an attack found by Lowe [14] shows that Alice could
have really meant to contact a malicious third party Mallory
(M ), who uses Alice’s messages to trick Bob into believing
he is communicating with Alice directly. If Bob implements
a banking service, for example, this might allow Mallory to
gain access to Alice’s account without her permission. The
fix found by Lowe is to include Bob’s identity in one of the
messages:

(6) B −→ A : { nA, nB , B } pkA

Lowe’s analysis shows that the original sixth message does
not have enough information for Alice to know who she is
really talking to. This corrected message allows her to stop
sending message (7) when she realizes who her contact is.

In this section, we show how we can decompose the
resulting NSL protocol in a way that allows us to detect
the original flaw and also check the correctness of variants
of the protocol, at least in a bounded sense. More precisely,
we start by generating an assumption A for Alice in NSL;
as a byproduct of this process, we establish the correctness
of NSL through the application of (R1). Then, we use A
to analyze two variants of the protocol where Alice behaves
slightly differently. Since Alice is the only component that
changes, we can verify that the variants are correct simply by
checking that Alice satisfies the assumption A.

We compare the effort to verify the protocols composition-
ally and monolithically. Our results (Section III-E) show that
compositional verification considerably outperformed mono-
lithic verification when it can reuse the assumption A; if A
needs to be regenerated, compositional verification is more

Let M1 and M2 be two component in the system and
P be the property we want to check. We use αM to
denote the alphabet of an component M and ΣI to
denote the interface alphabet, that is, ΣI = αM1 ∩
αM2.
Let σ be an arbitrary trace where σn denotes the nth
action on trace σ and Σ be a arbitrary set of alphabet,
we define

find(Σ, σ) =

{
σi, if σi ⊆ ΣI ∧σi �⊆Σ
∅, otherwise

where i is the first index scanning from the end of
trace σ to the beginning such that the conditions hold.

1) Obtain trace σ from checking 〈true〉M1〈P〉.
2) Initialize Σ = find(∅, σ).
3) Use the classic learning framework for Σ. If the

framework returns true with assumption Q, we
report the Q and STOP. When the framework
returns false with counterexample trace σ′. This,
however, does not necessarily means that M1 | |
M2 violates P . Real violations are discovered
by the learning framework only if the alphabet
is ΣI and thus we go to the next step.

4) If find(Σ, σ′) returns ∅, we report false and
STOP. If find(Σ, σ′) returns an action a, we
update Σ = Σ∪a and go to step 3.

Fig. 2: Alphabet refinement process.

Component #States #Trans. Assumption
#States #Trans.

Attacker 775030 4343487 3 178
Alice 14 163 6 69

Fig. 3: Comparison of the original component with its gener-
ated assumption, in terms of states and transitions.

expensive. All experiments were performed with a 1.6 GHz
Intel Core i5 CPU and 8.0 GB RAM, running 64-bit Ubuntu
18.04 LTS.

A. Generating Assumptions with NSL

Our model of NSL allows all the original messages of the
protocol to be exchanged in the network, but includes other
terms that enable Lowe’s attack in the original NS: { nB } pkM ,
{ pkM ,M } skS , etc. We manually chose these terms by heuris-
tic (i.e.,we took the legitimate messages exchanged by Alice
and Bob and scrambled some of the parameters). In total, our
model allows 31 messages to be exchanged in the network.
When setting up the model, we make skM , Mallory’s secret
key, available to the attacker, while keeping all other private
keys secret. We also bounded the attacker to learn at most 4
messages in addition to its initial knowledge.
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Attacker Alice
send i(fnA; nB ;MgpkA) sendA(fnA; nB ;MgpkA)
send i(fnA; nB ; BgpkM ) sendA(fnA; nB ; BgpkM )
send i(fnA; nB ;MgpkM ) sendA(fnA; nB ;MgpkM )
send i(fnB ; nB ; BgpkM ) sendA(fnB ; nB ; BgpkM )
send i(fnB ; nB ;MgpkM ) sendA(fnB ; nB ;MgpkM )
send i(fnM ; nB ; BgpkM ) sendA(fnM ; nB ; BgpkM )
send i(fnM ; nB ;MgpkM ) sendA(fnM ; nB ;MgpkM )

send i(fnBgpkB) sendA(fnBgpkB)
send i(fnBgpkM ) sendA(fnBgpkM )

send i(fB; pkBgskS) sendA(fB; pkBgskS)

recv i(fnA; nB ;MgpkA) recvA(fnA; nB ;MgpkA)
recv i(fnA; nB ; BgpkM ) recvA(fnA; nB ; BgpkM )
recv i(fnA; nB ;MgpkM ) recvA(fnA; nB ;MgpkM )
recv i(fnB ; nB ; BgpkM ) recvA(fnB ; nB ; BgpkM )
recv i(fnB ; nB ;MgpkM ) recvA(fnB ; nB ;MgpkM )
recv i(fnM ; nB ; BgpkM ) recvA(fnM ; nB ; BgpkM )
recv i(fnM ; nB ;MgpkM ) recvA(fnM ; nB ;MgpkM )

recv i(fnBgpkB) recvA(fnBgpkB)
recv i(fnBgpkM ) recvA(fnBgpkM )

recv i(fB; pkBgskS) recvA(fB; pkBgskS)

beginA(authAB ; B)
beginA(authAB ;M)

Fig. 4: Alphabets of generated assumptions. The identifier i
ranges over A and B.

When compiled, our model had a large attacker of more than
700k states. To obtain a more tractable model, we decomposed
the system to generate an assumption for the attacker (i.e. let-
ting M1 = Alice jjBob jjServer and M2 = Attacker in rule
(R1)). To facilitate learning, we used alphabet re�nement [10],
a technique that generates more compact assumptions by lim-
iting the possible interactions between components. Roughly
speaking, alphabet refinement consists in gradually adding
actions to the interface of M1 and M2 until we successfully
generate a sound assumption for the attacker or manage to
prove that the property did not hold. (Figure 2 describes this
process in more detail.)

After refinement, we further decomposed the system using
the assumption on the attacker to generate an assumption for
Alice. Figure 3 shows the size of the original components with
their generated assumption; Figure 4 shows the alphabets. The
fact that we were able to generate an assumption for Alice
means that the NSL protocol satisfies agreement. We will now
see how this generated assumption facilitates the analysis of
protocol variants.

B. Finding Lowe's Flaw in NS

We modified Alice in NSL such that the agent identity in
message (6) is not checked. The behavior of the modified pro-
tocol is equivalent to the original NS and allows Alice, while

thinking she is contacting Mallory, to accept the message:

(6) B �! A : fnA; nB ; BgpkA

and continue with:

(7) A �!M : fnBgpkM

This behavior enables Lowe’s attack on NS, which we redis-
covered by checking the modified Alice against the assumption
generated in the previous section.

In principle, it is possible this method yields a spurious
counterexample. The automaton learning technique generates
the weakest assumption for Alice to validate agreement, but
the assumption was computed using an abstraction that has
more behaviors than the original attacker, and thus imposes
more restrictions on Alice than would be necessary. To rule out
the possibility that our counterexample is spurious, we double-
check that it can be produced by this variant of NSL. Even
when combined with the time to recheck the counterexample,
the time spent to find this bug compositionally was much
smaller than the time spent on monolithic bug finding, thus
strengthening the case for compositional verification.

C. Serverless NSL

A common simplification of NSL is to assume that Alice
knows the keys of the agents she wants to contact from the
start. This amounts to removing the communication between
Alice and Server (messages (1) and (2)). We were capable of
verifying this version of Alice against our previously generated
assumption, thus confirming that this serverless variant of NSL
is correct.

D. Interpreting the Assumptions

Figure 3 shows that assumption learning with alphabet re-
finement was capable of significantly abstracting the behavior
of the attacker and of Alice, yielding automata that are much
smaller in terms of the number of states and the number of
transitions. The alphabets of the assumptions (Figure 4) list
the actions that must be controlled for the property to hold;
removing them from the alphabet has the effect of allowing the
attacker to freely perform those actions, regardless of whether
a send action was triggered by an honest agent or of whether
the attacker had enough knowledge to deliver a message.

The only difference between the alphabet for Alice and for
the Attacker is that the Attacker alphabet includes actions for
Bob, whereas Alice’s includes her begin events. Most of the
controlled actions are variants of (6) encrypted with pkM . If
the attacker is free to forge such messages indiscriminately,
he is capable of learning the nonce nB even before Bob is
contacted by Alice or Mallory. When this is true, the attacker
has all the information needed to impersonate Alice and break
agreement. (Note that we didn’t include nB in the allowed set
of messages, so it is not possible for the attacker to learn
this value directly.) Interestingly, the expected message (6)
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Protocol Attack Compile time(ms) #States Attacker Monolithic verification Compositional verification
#States #Transitions Time(ms) #States #Transitions Time(ms)

NSL public key [14] No 2851 775030 388 2738 8 18 163 1 *
NS public key [13] Yes [14] 2674 775030 10880 102449 97 19 (3104) 164 (22979) 1 (22) **

NSL public key (variant) No 2182 775030 9792 86094 115 13 99 1

Fig. 5: Experimental results (cf. Section III-E)

in a normal run of the protocol, fnA; nB ; BgpkA, is not in
the alphabet. Intuitively, since the attacker does not control
pkA, the only thing he can do with this message is relaying
it to Alice. If Alice meant to talk to Bob anyway, she will
eventually trigger begin and send her response (7) to Bob,
which does not pose any harm for agreement. Otherwise, if she
meant to talk to Mallory, receiving this message will trigger a
mismatch between Bob’s identity and Mallory’s; thus, she’ll
stop running and never send (7) to Bob.

E. Results

Figure 5 summarizes the results of verifying the three
variants of NSL above. Each row describes:
� whether the variant is vulnerable to an attack;
� how long it took to compile the various automata pro-

duced by Taglierino;
� the number of states in the attacker component;
� results for monolithic verification: the number of states

and transitions of the compiled automata, as well as the
time spent to verify them;

� results for compositional verification: the number of
states and transitions of the compiled automata used to
check that Alice satisfies the generated assumption, as
well as the time to perform this check.

Note that the results of compositional verification for the
first row (*) are somewhat redundant, since the system is
automatically verified as a byproduct of generating the as-
sumptions. We included those numbers for completeness. In
each column under the results of compositional verification
for the second row (**), the first number refers to the pro-
cess of generating the counterexample, whereas the second
number refers to the process of rechecking it, as explained
in Section III-B. In all cases, we observe that compositional
verification requires substantially fewer resources than mono-
lithic verification. However, these numbers do not include the
time spent to generate Alice’s assumption, which amounts
to approximately 5 minutes, implying that the benefits of
compositional verification mostly apply when we expect to
reuse the generated assumptions for several protocol variants.

IV. RELATED WORK

Compositional verification and assume-guarantee reason-
ing [20], [21], [22], [23], [24] have been studied extensively,
as a way to address the state-space explosion problem in
model checking [25]. Progress has been made in automat-
ing compositional reasoning using learning and abstraction-
refinement techniques for iterative building of the necessary
assumptions [11], [10], [26]. Other learning-based approaches

for automating assumption generation have been proposed as
well, e.g. [27], [28], [29], [30], with many other research works
to follow.

All this work was done in the context of applying automated
compositional verification to general-purpose software. While
there have been many model checkers that target security
protocols, for example [31] surveys a number of them and
[32], [33] have been applied to Needham-Schroeder protocol,
they all verify the entire protocol at once. In fact, there is
relatively little research on compositional analysis of security
protocols, which pose special challenges due to the com-
plexity introduced by the attacker model. Among the most
prominent works in this direction is Protocol Compositional
Logic (PCL) [34], a logic and system for proving security
properties of network protocols. PCL supports compositional
reasoning about complex security protocols and has been
applied to a number of industry standards including SSL/TLS,
IEEE 802.11 i and Kerberos V5. Despite its success, PCL
is limited by the large amount of manual effort that is
involved in performing the proofs. Other tools can use the
help of humans to guide the proving effort with intermediate
lemmas; examples include the Tamarin [3] and the CryptoVerif
provers [2]; however, this functionality still requires the entire
protocol code. It would be interesting to investigate how to
integrate the properties discovered by our framework in such
tools. Tamarin is a natural first candidate for experiments in
this area, since it works under the symbolic model, just like
Taglierion. CryptoVerif, by contrast, is used for proofs in the
computational model of cryptography, which would represent
a significant departure from our setting.

V. CONCLUSION AND FUTURE WORK

We have carried out a first experiment towards automating
the compositional verification of protocols, using the NS
and NSL protocols as a case study. Our results show that
synthesized assumptions can be used to verify variants of
the original protocol and yield faster checks. We see several
promising directions for future work. Besides trying out more
case studies, we would like to improve the performance of our
assumption generation, which right now takes a few minutes
to complete (� 5). It would also be interesting to use the
generated assumptions to guide the design and simplification
of other protocols, or to incorporate those in manual proofs of
correctness.
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Abstract—Combining machine learning with constraint solving
and formal methods is an interesting new direction in research
with a wide range of safety critical applications. Our focus
in this work is on analyzing Neural Networks with Rectified
Linear Activation Function (NN-ReLU). The existing, very recent
research works in this direction describe multiple approaches to
satisfiability checking for constraints on NN-ReLU output. Here
we extend this line of work in two orthogonal directions: We
propose an algorithm for finding configurations of NN-ReLU
that are (1) safe and (2) stable. We assume that the inputs
of the NN-ReLU are divided into existentially and universally
quantified variables, where the former represent the parameters
for configuring the NN-ReLU and the latter represent (possibly
constrained) free inputs. We are looking for (1) values of the
configuration parameters for which the NN-ReLU output satisfies
a given constraint for any legal values of the input variables
(the safety requirement); and (2) such that the entire family
of configurations with configuration variable values close to a
safe configuration is also safe (the stability requirement). To
our knowledge this is the first work that proposes SMT-based
algorithms for searching safe and stable configuration parameters
for systems modelled using neural networks. We experimentally
evaluate our algorithm on NN-ReLUs trained on a set of real-life
datasets originating from an industrial CAD application at Intel.

I. INTRODUCTION

Neural Networks (NN) are widely used in modeling real life
systems and processes, including safety critical ones. Formal
analysis of NN models is therefore becoming increasingly im-
portant for exploration, validation and optimisation of complex
systems, and for a much wider range of applications. Multiple
recent research works have partly addressed this emerging
need: they propose satisfiability checking algorithms for the
constraints defined by an NN-ReLU and by inequality con-
straints on its inputs and outputs by encoding this problem into
Satisfiability Modulo Theories (SMT) [3] or Mixed-Integer
Linear Programming (MILP) [28], [4], [16], [6], [9], [17]. In
this work, by a constraint we will mean a Boolean combination
of inequality constraints on the inputs of a NN-ReLU or its
outputs. Given an NN-ReLU and constraints on inputs most
of these algorithms can verify whether output constraints are
satisfied and provide a tight over-approximation (guarantee) on
the outputs’ range if required; the former capability is called

robustness to adversarial examples in [4] for classification
models, and the latter is called range estimation in [9] for
regression models; and both are studied for extensions of
NN-ReLU called Piecewise Linear NN [25] in [6] and [9],
respectively.

In this paper we are looking into a related but quite different
problem. In many applications we have analog systems which
do not have explicit representations and are modelled using
NNs based on some experimental test data. An important part
of such systems are parameters that are usually configured
manually to obtain a desired system behaviour. In this paper
we propose several algorithms for finding safe, stable and
close to optimal parameters for such systems. An atomic
building block in our algorithm is the capability of an SMT
solver to check that the output satisfies safety constraints
for inputs restricted by input constraints. The problem of
finding parameter configurations is more general than the
safety problem and requires solving problems with quantifier
alternations which are notoriously difficult for SMT solvers.

In a nutshell, we assume that the inputs of an NN-ReLU
are divided into two groups: the configuration parameters that
are used to configure the system, and the regular inputs to the
system for interacting with the environment. Values of the con-
figuration parameters should be fixed before the system starts
operating to perform the task it is designed and configured for,
in a safe and close to optimal fashion. A configuration is then
an assignment of values to the configuration parameters. We
assume that the NN-ReLU output o is a numeric variable that
ranges between 0 and 1, and we are looking for assignments
to the configuration parameters such that for all legal values of
inputs the output satisfies one or more range constraints like
o ≥ 0.9. Such an assignment is then a safe assignment and so
is the corresponding configuration. In addition, assuming that,
say, the high values of the NN-ReLU output are considered as
a better performance, then optimisation in the context of this
work would mean finding safe configuration of the NN-ReLU
for a constraint o ≥ th with a threshold value th > 0.9,
e.g., constraint o ≥ 0.95. Since we do not aim to always find
a maximal possible threshold for which a safe configuration
exists, “close to optimal” is used in this work informally.
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To avoid any confusion, we remark straightaway that by
configuring a NN-ReLU we do not mean configuring the
NN-ReLU training parameters themselves to aid a faster con-
vergence of the training or to improve the modeling accuracy.
Configuring parameters that control the training procedure
of NNs is an important problem that in principle can be
approached heuristically with the procedure proposed in this
work to search for close to optimal configurations but this
application is outside of the scope of this paper. In this paper
we consider configuration parameters which are a part of the
analog system which is modelled by a NN-ReLU.

We propose to formalise the problem of configuration selec-
tion for NN-ReLU modelled in first-order logic or quantified
SMT, where the configuration parameters correspond to the
existentially quantified variables and the inputs correspond to
universally quantified variables. The configuration selection
problem somewhat corresponds to the Effectively Proposi-
tional (EPR) fragment, also called the Bernays-Schönfinkel-
Ramsey fragment, which consists of first-order formulas with
no occurrences of function symbols other than constants, and
which when written in prenex normal form have the quantifier
prefix ∃∗∀∗. EPR is a decidable fragment of pure first-
order logic and very efficient solvers exist [20], and therefore
multiple formal verification problems have been encoded into
the EPR fragment [27], [18], [14], [15], [19].

In our encoding of the configuration selection problem for
NNs we require support for reasoning with linear and non-
linear functions: the theory we deal with is quantified linear
real arithmetic with ReLU constraints; in addition, for the
industrial application that we are dealing with, it is critical
for our algorithm to support ordered categorical variables (say
integers) and unordered categorical variables. One of the main
contributions in this paper is a δ-decision procedure for the
relevant fragment of ∃∗∀∗ formulas over these domains, we
call normed GEAR fragment.

In many real-life applications, for example the ones dealing
with analog systems, the value applied to an analog pin, which
we usually model as a numeric feature in machine learning
and as a real number in the constraint solving world, is not
the same as the value sampled by the system. There is always
an error, maybe very small, in the value that is applied and
in the value that is sampled, and these two errors do not need
to add up to 0. Thus when configuring or verifying such a
system, it is required to take this error into account. We think
that this aspect has been largely neglected in the context of
formal methods for quantified formulas, and we will address
this problem in this work by considering stable solutions for
the configuration problem, elaborated upon below.

Neural Networks and the ML models in general do not
model the systems with a hundred percent accuracy. In fact,
when training a model, it is a bad idea to build a model that
exactly matches the output values in the training dataset; this
is known in ML literature as overfitting, and is considered bad
practice because such a model is unlikely to be accurate on the
unseen samples (on which the model was not trained). In fact,
the data might actually be contradictory in that two completely

identical samples might have different labels, because of an
error in data collection or because of insufficient precision in
the representation of the feature values, thus a function that
fully matches the training data might not exist at all. Thus,
again, when exploring ML models – configuring them for a
safe and close to optimal performance of the systems that they
model – one needs to take into account that safely configuring
the model does not mean at all that the modelled system itself
is safe.

One way of mitigating this safety gap is to look for safe
configurations of the NN-ReLU models that are stable. A safe
configuration is stable if all configurations sufficiently close to
it are also safe for all legal inputs. In other words, a stable sat-
isfying assignment to configuration parameters is a Cartesian
product of open or close intervals of configuration parameters
within their respective legal ranges such that each assignment
within the product is a satisfying assignment. In the industrial
application where our research results have been applied, for
most configuration parameters the radius is actually as large
as 10% of the value of the variable in the configuration.
This is because the sampling error from analog equipment
can be dependent on the intended value itself. For some
other configuration parameters, say representing clock ticks,
the radius is defined through an absolute value, independently
from the value of that variable in the configuration.

It has been shown recently that NNs and several other clas-
sification models are vulnerable to adversarial examples [30].
That is, these ML models misclassify examples that are only
slightly different from correctly classified examples drawn
from the data distribution. This is another reason why building
stable safe configurations is important: we want the configu-
ration to remain safe if the values of configuration parameters
are perturbed, this being caused by a malicious adversary or
the errors in sampling or sensing data from the equipment
or environment. The roundoff errors in the software packages
used in training NNs and other ML models are yet another
source for the discrepancy between the intended models and
the ones that we analyze formally. This list can be continued
further.

Work [4] defines a robustness measure of an NN at an
input vector as the maximal Chebyshev distance L∞ to the
nearest adversarial input vector and proposes an algorithm
for estimating it. Work [16] defines a NN-ReLU as δ-locally-
robust at an input vector if there is no adversarial data point
within L∞-distance smaller than δ, and reports that their
Reluplex algorithm can verify whether a NN-ReLU is δ-
locally-robust at a given input vector or is globally robust.
Work [12] proposes an efficient way to generate adversarial
data samples for the purpose of improving the accuracy of
classification. For NN-ReLUs with a numeric output, a safety
constraint applied to the output straightforwardly converts the
model into a classifier of two classes SAT and UNSAT. We
note that unlike the robustness, our notion of stability is
defined with respect to the configuration parameters rather than
the free inputs.

To reiterate, our aim in this work is to safely configure
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real, complex systems, not NNs; the NNs are used to ap-
proximate the original systems. In this context, we would like
to emphasize the following: real systems in many cases have
multiple functionalities and depend on many variables but not
all variables are equally important for all the properties of
the outputs. Specifically in the CAD domain, often accurate
models can be built using few variables only. See [24] for
an example where only 10 and 30 features out of 10 000
available features were enough to build high quality models for
a classification and a regression task, respectively, in the Signal
Integrity domain where the results of this research have been
applied. Our algorithms determine safe and stable regions for
the NN approximations which are checked against the original
system to see whether these safe regions are safe in the original
system. We demonstrate that one can use SMT solvers to
guide the NN model refinement not only based on spurious
counter examples to the safety constraint on the output but
also based on safe regions for a current NN approximation;
the latter is a new paradigm in model refinement. Related
abstraction refinement techniques such as usage of genetic
algorithms, Bayesian optimization, or reinforcement learning
are only heuristic methods, without any safety guarantees, and
are not guided by a constraint solver.

Main contributions:

• The notion of Safe and Stable Configurations for systems
represented by NNs and the corresponding SSC problem.

• The reflexively guarded ∃∗∀∗ fragment (GEAR) and its
connection to the SSC problem.

• A general satisfiability algorithm for GEAR, called
GEARSAT and its variant GEARSATδ for the SSC prob-
lem.

• Proof that GEARSATδ is a δ-decision procedure for the
SSC problem.

• Demonstration of the applicability of GEARSATδ to in-
dustrial configuration problems modelled using NNs in
the CAD domain.

The rest of the paper is organized as follows. We start
with preliminaries in Section II. In Section III we define
the problem of configuration selection formally and define
stable satisfying assignments for configuration parameters. In
Section IV we introduce the GEAR fragment of ∃∗∀∗ formulas
capturing this problem in a general context and present a sound
satisfiability algorithm GEARSAT. In Section V we introduce
GEARSATδ , an adaptation of this algorithm to normed do-
mains as required in our application and prove that GEARSATδ
is a δ-decision procedure for the SSC problem. Experimental
results on industrial problems are reported in Section VI. The
conclusions appear in Section VII.

II. PRELIMINARIES

We consider systems which have continuous and discrete
inputs and outputs. An input domain D is a Cartesian product
of reals R, integers Z and finite, non-empty sets with elements
from Z. Throughout this paper ‖·‖ denotes a fixed but arbitrary
norm on D.

A real-valued system defined on D can be represented as
a function f : D → R. A configurable real-valued system
is a system which also has configuration parameters f :
Dpar ×Din → R where Dpar is the domain for configuration
parameters and Din is the domain for inputs. We assume
D := Dpar × Din is not empty and ‖ · ‖ is a norm on D.

We assume that a system is given as a black-box function
which can be evaluated on a collection of inputs and config-
uration parameters but its explicit representation is generally
unknown. Given a finite collection D of data points from D
we can build approximations of f using neural networks by
training them on D.

A (feed-forward) neural network N consists of layers with
inputs and outputs [29]. The input to the first layer is the input
to N and the output of the last layer is the output of N . The
input of an intermediate layer is the output of the previous
layer. Each layer is a composition of an affine transformation
of its inputs with a non-linear activation function. One of
the most commonly used activation functions is the rectified
linear unit (ReLU), which is defined to be identity for all
positive inputs and 0 for non-positive inputs. Even with such
simple activation function neural networks can approximate
all continuous functions [22].

One of the advantages of neural networks with the ReLU
activation functions (NN-ReLU) is that they can be represented
in a language amenable to SMT solvers. In particular, one can
represent NN-ReLU either in the theory of linear arithmetic
with conditionals or directly as a specialised decision proce-
dure [16].

In this paper we are not concerned with particulars of
representations of NN-ReLUs. We will consider a theory T‖·‖
(in the SMT-LIB sense [3]) that can be used to specify NNs,
and include:
• sorts for reals, integers, finite non-empty domains inter-

preted as subsets of integers, together with
• operations for linear arithmetic with real coefficients and

variables of mixed real and integer sorts,
• usual arithmetic comparison operators {≥, >,=},
• the norm ‖ · ‖,
• Boolean operators and
• a collection of activation functions AF .

We will assume that there is a decision procedure for the
quantifier-free fragment of T‖·‖.

In our experiments (Section VI) we use only ReLU and
linear activation functions (i.e., AF = {ReLU,Lin}) but
our approach is applicable to arbitrary activation functions
as long as there is a decision procedure for them. We also
used Chebyshev norm ‖ · ‖∞ as this can be expressed using
linear constraints. In these cases activation functions and the
norm can be covered by standard SMT theories and we can
use SMT solvers or mixed integer programming to solve the
quantifier-free fragment of T‖·‖. While our focus in this work
is on NN models, we remark that the algorithms and decision
procedures proposed in this work are also applicable to other
ML models, including tree-based models such as random
forest and polynomial models.
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We will use p, q, x, y possibly with indices to denote vari-
ables and boldface p, q,x will denote vectors of variables.
When it is not essential we do not specify sorts of the
variables. Given an assignment α, we use J·Kα to denote the
interpretation of variables according to α, which is extended
to interpretation of terms and formulas in the standard way.

We assume that NNs are expressible in T‖·‖. In particular,
with each neural network N : Dpar × Din → R we associate
a quantifier-free formula ϕN (p,x, y) in T‖·‖ such that for
every assignment α of variables, N (JpKα, JxKα) = JyKα if
and only if JϕN (p,x, y)Kα is true. Note that the special case
of classification problems when N : Dpar×Din → {0, . . . , n}
is covered by our framework as well.

III. SAFE AND STABLE CONFIGURATIONS

Consider a configurable system f : Dpar × Din → R. We
distinguish between parameters and inputs in order to be clear
about their quantification, which is existential and universal,
respectively. Let f be modelled by a neural network N . Let
ϕN (p,x, y) be a formula in T‖·‖ defining N as described
in Section II. A specification for the system is a formula
ϕspec(p,x, y) which includes constraints on paramenters, in-
puts and output. If the set of parameters is empty then a system
is safe if the following formula holds:

∀xy(ϕN (x, y)→ ϕspec(x, y)).

This notion is similar to the verification problem in [16], [28].
The main problem we consider in this paper is a different one:
finding configuration parameters for the system that are safe
and stable for all inputs, as defined below.

A safe solution to the parameter configuration problem (or
just a solution for short) is an assignment α of parameters p
such that the following formula holds:

∀xy(ϕN (JpKα,x, y)→ ϕspec(JpKα,x, y)).

Finding solutions to parametrised systems corresponds to
checking satisfiability of ∃∗∀∗ formulas:

∃p∀xy(ϕN (p,x, y)→ ϕspec(p,x, y)).

This is in contrast to safety properties where the problem can
be formulated using just one type of quantifiers ∀∗.

Let r ≥ 0 be a rational constant. A solution α is called
r-stable if all parameter configurations which are r close to α
are also solutions to the specification:

∀q(‖JpKα − q‖ ≤ r → ∀xy(ϕN (q,x, y)→ ϕspec(q,x, y))).

Similarly to above, finding r-stable solutions corresponds to
checking satisfiability of ∃∗∀∗ formulas.

∃p∀q(‖p− q‖ ≤ r →
∀xy(ϕN (q,x, y)→ ϕspec(q,x, y))).

(1)

We call this the Safe and Stable Configuration problem (SSC).
Let us note that the stability condition connects existentially

quantified parameters p with introduced universally quantified
variables q. In this case even when there are no inputs and only

parameters the formula involves ∃∗∀∗quantifier alternation
(see also Remark 1).

In order to solve the SSC problem we first introduce a gen-
eral GEAR fragment and a satisfiability algorithm for GEAR
called GEARSAT. GEARSAT does not rely on properties of
T‖·‖ and is applicable to any theory without uninterpreted
symbols and decidable quantifier-free fragment. Then we show
that SSC can be expressed in a special fragment of GEAR
called normed GEAR, for which we modify GEARSAT into a
δ-complete decision procedure GEARSATδ .

IV. THE REFLEXIVELY GUARDED ∃∗∀∗ FRAGMENT AND
GEARSAT

Algorithm 1 (EA-SAT-Basic) Solve ∃p∀xϕ(p,x) using a
solver for the existential fragment.

procedure EA-SAT-BASIC(ϕ)
loop

if ϕ(p,x) is unsat then
return unsat

end if
α← assignment of p,x satisfying ϕ
if ¬ϕ(JpKα,x) is unsat then

return α restricted to p
end if
ϕ(p′,x)← ϕ(p′,x) ∧ (p′ 6= JpKα) . learn lemma

end loop
end procedure

We start with a general Algorithm 1 for solving ∃∗∀∗ formu-
las which is inspired by model-based quantifier instantiation
procedures [11] and only requires a solver for the existential
fragment.

Theorem 1. Algorithm 1 is sound.

The theorem follows from the observation that Algorithm 1
only generates lemmas which are implied by its input formula
ϕ, making it a sound procedure.

The downside of Algorithm 1 is that it generates very
weak lemmas excluding point-wise counter-examples. In par-
ticular, for infinite domains, Algorithm 1 does not terminate
in general. To mitigate this, we propose a novel procedure
(Algorithm 2) which generates more general lemmas which
exclude large regions from the search space and facilitate
termination. This procedure assumes that the quantifiers in
∃∗∀∗ formulas are guarded as defined below.

Definition 1. A closed first-order ∃∗∀∗ formula ξ of the form

ξ ≡ ∃p[η(p) ∧ ∀q(θ(p, q)→ ∀x(ψ(q,x)))] (2)

is in the reflexively guarded ∃∗∀∗ fragment, GEAR for short,
iff η, θ and ψ are quantifier-free formulas and θ defines a
reflexive relation. We say that p is guarded by η(p) and q is
guarded by θ(p, q).
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Algorithm 2 (GEARSAT) Solve reflexively guarded ∃∗∀∗
formulas based on a solver for the existential fragment.

procedure GEARSAT(η, θ, ψ)
E(p)← η(p)
loop

if ψ(p,x) ∧ E(p) is unsat then
return unsat

end if
α← assignment of p,x satisfying ψ(p,x) ∧ E(p)
ϕ(q,x)← (θ(JpKα, q)→ ψ(q,x))
if ¬ϕ(x, q) is unsat then

return α restricted to p
end if
β ← assignment of q,x satisfying ¬ϕ(q,x)
E(p)← E(p) ∧ ¬θ(p, JqKβ) . learn guard lemma

end loop
end procedure

In order to prove soundness of Algorithm 2, we require the
guard θ to define a reflexive relation, i.e., ∀q(θ(q, q)) holds
true. This can be motivated by the observation that θ connects
the existentially and (a subset of the) universally quantified
variables. In our application θ usually takes the form ‖p−q‖ ≤
r, which is trivially reflexive, however, no properties besides
reflexivity are required for soundness. We do not impose any
restrictions on the guard η, it can be used to constrain the
range of configuration parameters.

Theorem 2. The Algorithm GEARSAT is sound for the GEAR
fragment.

Proof: Let ξ be a formula in the GEAR fragment of
the form (2). Assume GEARSAT(η, θ, ψ) performs N ≥ 0
iterations and terminates in iteration N + 1 with result κ.
By the construction in Algorithm 2, for each n = 1, . . . , N
there are assignments αn and βn satisfying An := η(p) ∧∧n−1
i=1 ¬θ(p, JqKβi) ∧ ψ(p,x) and Bn := θ(JpKαn , q) ∧
¬ψ(q,x), respectively. We show the cases for κ separately.

Consider κ = unsat. If N = 0, then by construction
A1 ≡ η(p) ∧ ∀x(ψ(p,x)) is unsat. η(p) is implied by ξ
as is ∀q(θ(p, q)→ ∀x(ψ(q,x))). Since θ defines a reflexive
relation, ξ also implies ∀x(ψ(p,x)). Therefore ξ is unsat.
Otherwise N > 0, then AN+1 := AN∧¬θ(p, JqKβN ) is unsat.
In order to derive a contradiction, assume there is p∗ such that
η(p∗) ∧ ∀q(θ(p∗, q) → ∀x(ψ(q,x))) holds. By property of
θ, so does θ(p∗,p∗), therefore, ∀x(ψ(p∗,x)) is true. Since
AN+1 is unsat and both η(p∗) and ∀x(ψ(p∗,x)) are true,
there is n ≤ N such that ¬θ(p∗, JqKβn) is false. Consequently,
by assumption, ∀x(ψ(JqKβn ,x)) holds. However, βn satisfies
Bn and therefore also ¬ψ(q,x). A contradiction.

Consider κ 6= unsat. Then the assignment α is com-
puted which satisfies AN+1 and, in particular, η(p). Thus, if
θ(JpKα, q)∧¬ψ(q,x) is unsat, η(JpKα)∧∀qx(θ(JpKα, q)→
ψ(q,x)) and therefore also ξ(JpKα) hold.

Let us note that we can apply GEARSAT to general ∃∗∀∗
formulas ∃p[∀x(ψ(p,x))] which are not explicitly guarded by

first transforming them into a guarded form (2) where θ defines
the identity relation and η ≡ true. In this case GEARSAT
performs the same steps as Algorithm 1.

In contrast to Algorithm 1, however, GEARSAT takes ad-
vantage of guards when they define large regions in parameter
space. In this case, generated lemmas are negations of partial
guard instantiations that exclude large regions from the search
space around found counter-examples.

Let us note that GEARSAT terminates whenever the process
of generating lemmas En(p) = η(p) ∧

∧n
i=1 ¬θ(p, JqKβi) is

guaranteed to result in an unsatisfiable lemma after a finite
number of steps. Note, that during the run of GEARSAT we
generate strictly stronger lemmas, in particular ∃p(Ei(p) ∧
¬Ej(p)) holds for all i < j. From this it follows that
GEARSAT is a decision procedure for finite domains and more
generally for fragments where there are only finitely many
non-equivalent lemmas of the form above.

In many applications including ours, solutions to the SSC
problem are required to be stable on their (topological) neigh-
bourhood. In this case the reflexive guard also enables deciding
satisfiability even when the bounded domain itself is infinite.
This statement is made precise in Theorem 4 for normed
domains such as Dpar .

V. A δ-DECISION PROCEDURE FOR THE SAFE AND STABLE
CONFIGURATION PROBLEM

The GEARSAT algorithm can be employed to find safe and
r-stable solutions to the configuration problem as follows.
As described in Section III the SSC problem can be rep-
resented using formulas of the form (1). Such formulas are
a special case of the GEAR formulas (2) where the guard
is θr ≡ ‖p − q‖ ≤ r, which we call stability guard, and
ψ(q,x, y) ≡ ϕN (q,x, y) → ϕspec(q,x, y). Then, safe and
r-stable regions can be searched using Algorithm 2 applied
to:

ϕr = ∃p[η(p) ∧ ∀q(θr(p, q)→ ∀xy(ψ(q,x, y)))] (3)

We will call T‖·‖ formulas of the form (3) normed GEAR
formulas. They form a special case of reflexively guarded ∃∗∀∗
formulas, since ‖p− p‖ = 0.

In many applications, including ours, we can tolerate to re-
ject solutions if counter-examples are located within some tol-
erance of the safe region. To this end we introduce the notion
of unsatisfiability under δ-perturbation, or δ-unsatisfiability.

Let θr be a stability guard as given above and δ > 0, then
the δ-perturbation of θr is θr+δ = ‖p−q‖ ≤ r+ δ. Similarly,
δ-perturbation ϕr+δ of ϕr, is obtained by replacing θr with
θr+δ in ϕr.

We say that ϕr is δ-unsatisfiable if δ-perturbation of ϕr
is unsatisfiable. The δ-decision problem for normed GEAR
formulas ϕr is defined as the problem of showing that either
ϕr is satisfiable or showing that ϕr is δ-unsatisfiable. This can
be seen as an adaptation of the notion of δ-decision from [10]
to our setting.

We slightly modify the algorithm GEARSAT to
GEARSATδ(η, r, ψ) to solve the δ-unsatisfiability problem for
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normed GEAR formulas as follows. First, we strengthen the
lemmas by δ to:

E(p)← E(p) ∧ ‖p− JqKβ‖ > r + δ

Second, “return unsat” is modified to “return δ-unsat”.
It is straightforward to generalise Theorem (2) to

GEARSATδ . Next we show that GEARSATδ terminates when
we consider bounded domains.

Theorem 3. Let δ > 0 and r ≥ 0 be rational numbers.
Consider a normed GEAR formula of the form (3) where
η defines a bounded subset of D. Then GEARSATδ(η, r, ψ)
terminates.

Proof: Towards a contradiction, assume GEARSATδ in-
voked on (η, r, ψ) does not terminate. Then there is no
bound on the number of iterations since the individual
steps are computable. Using the notations An := η(p) ∧∧n−1
i=1 ¬θr+δ(p, JqKβi) ∧ ψ(p,x) and Bn := θr(JpKαn , q) ∧
¬ψ(q,x) similar to those in the proof of Theorem 2, let (αn)n
and (βn)n be the sequences of assignments satisfying An and
Bn, respectively, computed by GEARSATδ(η, r, ψ) in iteration
n ∈ N. Let pn := JpKαn , qn := JqKβn be elements of Dpar

for each n ∈ N. We first show a lower bound on the distance
between candidates pn. Let k, n ∈ N with k < n. The triangle
inequality for ‖ · ‖ implies

‖pn − pk‖ ≥ ‖pn − qk‖ − ‖pk − qk‖. (∗)

Each assignment βk satisfies Bk, in particular, θr(pk, q), i.e.,
‖pk − qk‖ ≤ r holds. Additionally, αn satisfies An, in
particular ¬θr+δ(p, qk) from which we obtain ‖pn − qk‖ >
r + δ. These two facts together with (∗) imply ‖pn − pk‖ >
(r + δ)− r = δ.

Thus, the pairwise distances between candidates pn is at
least δ > 0. Since η defines a bounded set and is satisfied
by αn for each n ∈ N, the number of candidates pn with
pairwise distance of at least δ to each other is also bounded
by some N ∈ N. Thus, the set defined by η(p) is covered
by {z : θδ(z,pn)} ⊆ {z : θr+δ(z, qn)} for n = 1, . . . , N
making AN+1 unsatisfiable and therefore GEARSATδ returns
δ-unsat. A contradiction.

Theorem (2) and Theorem (3) imply the following.

Theorem 4. The algorithm GEARSATδ is a δ-decision proce-
dure for normed GEAR formulas.

A. Multiple solutions

We can use GEARSATδ to enumerate stable solutions in
the following way. Maintain a conjunction η of quantifier-free
formulas over free variables p, initially true. Then, in a loop,
first compute κ = GEARSATδ(η, θ, ψ) and record the formula
E(p) which it constructs internally. Second, replace η(p) by
E(p)∧(p 6= JpKκ) and repeat until κ = unsat. By Theorem 2,
every κ 6= unsat computed by this loop corresponds to a box
around JpKκ of radius r with the property that N is safe for all
parameters p from that box and for all unconstrained inputs
x. All κ are different, which is ensured by (p 6= JpKκ).

If, for instance, disjoint safe and r-stable regions are sought,
this predicate can be adjusted to maintain a concrete distance
between solutions which guarantees disjointness, i.e., ‖p −
JpKκ‖ > 2r. Instead of η being empty initially, it can also be
used to define a subset of the domain to be searched. This is
presented in Algorithm 3. Let us note that in Algorithm 3 the
lemmas are shared during the search for different solutions.

Algorithm 3 Enumerates r-stable pairwise disjoint solutions
function GEARREGIONSδ(η, r, ψ)

R← ∅
η1(p)← η(p)
for i = 1, 2, . . . do

κ← GEARSATδ(ηi, r, ψ)
if κ = δ-unsat then

break
end if
R← R ∪ {JpKκ}
E ← GEARSATδ .E . lemmas from GEARSATδ
ηi+1(p)← E(p) ∧ ‖p− JpKκ‖ > 2r

end for
return R

end function

B. Optimisation

In our application we want to find safe and stable con-
figurations such that for all inputs the output of the neural
network is greater than a specified threshold th . In this case
the specification is of the form N (q,x) ≥ th and ψ will be

ψ(q,x, y) ≡ (ϕN (q,x, y)→ y ≥ th).

Moreover we want to find configurations with high or close
to optimal values of th .

For this we use GEARSATδ to find close to optimal solutions
by incrementally increasing threshold th or by performing a
binary search for close to optimal th . Similarly, for enumer-
ation of solutions we can reuse lemmas generated by those
calls to GEARSATδ that return satisfying assignments.

Remark 1. It is possible in GEAR formulas (2) (and (3) as
a special case) to encode all universally quantified variables
in ∀x(ψ(q,x)) (which include all inputs and outputs) as
parameters under stability conditions resulting in the following
normalised form:

∃p[η(p) ∧ ∀q(θ(p, q)→ ψ(q))]

where p and q are of same shape, as follows. Let ξ, η, θ, ψ
be as in Definition 1. For every variable xi in x introduce an
existentially quantified variable yi and a universally quantified
variable zi. Next, define η′(p,y) ≡ η(p) and θ′(p,y, q, z) ≡
θ(p, q). Then the formula

∃py[η′(p,y) ∧ ∀qz(θ′(p,y, q, z)→ ψ(q, z))

has the same solutions as ξ and is in the above normalised
form.
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This transformation has the effect of eliminating the (uni-
versally quantified) input/output variables and replacing them
with existentially quantified parameters under stability con-
ditions which require the solution to hold over entire in-
put/output domains. In this way we can uniformly treat inputs
as parameters under stability conditions. We adopted this
approach in our experiments.

VI. EXPERIMENTAL EVALUATION

We evaluated our configuration selection algorithm on 10
training datasets collected in an Electrical Validation Lab at
Intel. The output is an analog signal measuring the quality of
a transmitter or a receiver of a channel to a peripheral device.
Each channel is divided into eight bytes, and we treat each
channel as an unordered categorical variable with eight levels.
The integer variable in the data models clock ticks.

The datasets are freely available at http://www.cs.man.ac.
uk/∼korovink/fmcad2020: 5 transmitter (TX) datasets s2 tx,
m2 tx, h1 tx, h1 iter tx, mu tx and 5 receiver (RX) coun-
terparts s2 rx, m2 rx, h1 rx, h1 iter rx, mu rx. To avoid
IP disclosure, the numeric features including the output are
normalized to [0, 1]; the integer features are kept intact. We
refer to [23], [24] for details on the design of closely related
applications dealing with TX/RX/IO systems.

Our aim is to find safe and stable regions where the output o,
normalized to [0, 1], satisfies the constraint o ≥ th with as high
th ≤ 1 as possible in the grid ranging from 0.7 to 0.95 with an
increment of 0.05. In addition, we aim at finding stable safe
regions that are reusable across multiple bytes, with as high th
as possible. We built NN-ReLUs using the tensorflow [1]
and Keras [8] software packages. The different versions
of RX and TX datasets have five to eight input features
(not including the channel and bytes parameters). We use
NN-ReLUs with two internal layers, 14 nodes in the first
layer and 7 nodes in the second layer, which is in line with
rule-of-thumb guidelines for selecting the number of internal
nodes for a given number of inputs. As stability criterion for
solutions we employed a radius of 10% of the value around a
safe solution for the numerical variables and ±5 clock ticks for
the integer feature. These radii are measured in the Chebyshev-
norm ‖ · ‖∞.

We implemented our GEARSAT algorithms using Z3 [26]
as a backend for solving the quantifier-free fragment of T‖·‖,
which can be encoded in QF_LIRA in the SMT-Lib format [3].

Let us first remark that although it is possible to directly
encode the SSC problem as a quantified SMT formula without
our algorithms, e.g., Z3-v4.8.8 fails to solve a single problem
despite many state-of-the-art quantifier elimination procedures
are integrated in Z3; the same holds also for CVC4-v1.7 [2]
which is another top SMT solver. We included examples of
quantified SMT encoding on the website with datasets. In
our approach we only resort to quantifier free SMT calls to
solve quantified normed GEAR formulas. We believe the main
reason our algorithms perform well on these problems is due
to strong lemmas that take advantage of the guarded form to
exclude large regions from the search space.

RX
C:B th safe lb-ce lb-time ub-ce ub-time
0:0 0.9 100 54 319.05 – –
0:1 0.85 100 69 700.42 0 54.25
0:2 0.9 29 2867 3034.49 – –
0:3 0.85 100 251 512.31 0 111.00
0:4 0.9 100 128 830.72 – –
0:5 0.85 100 82 627.68 0 254.81
0:6 0.85 100 121 680.75 0 123.89
0:7 0.85 41 2620 3409.79 0 102.07
1:0 0.8 100 762 606.90 134 290.40
1:1 0.8 1 188 264.75 0 61.46
1:2 0.9 100 369 700.23 – –
1:3 0.8 100 3449 1328.61 2056 958.96
1:4 0.85 100 16 381.11 0 73.08
1:5 0.85 35 287 769.73 0 53.59
1:6 0.8 100 1088 980.34 0 68.65
1:7 0.9 100 84 405.49 – –

TX
C:B th safe lb-ce lb-time ub-ce ub-time
0:0 0.9 100 156 131.59 – –
0:1 0.9 51 1006 372.19 – –
0:2 0.9 100 69 114.17 – –
0:3 0.9 100 120 78.29 – –
0:4 0.9 100 315 211.75 – –
0:5 0.9 100 221 135.44 – –
0:6 0.9 20 110 41.84 – –
0:7 0.9 100 176 129.64 – –
1:0 0.9 100 84 89.81 – –
1:1 0.85 100 467 226.88 0 11.42
1:2 0.9 100 360 128.06 – –
1:3 0.9 100 169 82.60 – –
1:4 0.9 100 304 79.81 – –
1:5 0.85 100 357 205.29 0 20.24
1:6 0.9 100 259 68.61 – –
1:7 0.9 100 60 60.01 – –

TABLE I
BENCHMARKS OF FINDING UP TO 100 SAFE AND STABLE REGIONS FOR

DATA SET s2.

The results of computing stable safe regions along with
their optimal thresholds in the grid of thresholds described
above, for the receiver and transmitter datasets s2 rx, s2 tx
and h1 rx, h1 tx, respectively, are shown in Tables I and III.
The results are representative for all the datasets used in
our experiments. For each combination of channel and byte
values, a maximum number of regions was computed – up
to a threshold of 100 regions. During the run, the algorithm
generates candidate configuration parameters and checks for
counter-examples. The system can be used for both finding
safe and stable regions, and for checking that such regions
do not exist for a given th . For the cases when there are no
safe regions, the algorithm relaxes the safety constraint on the
output by lowering the threshold value th .

For each combination of channel-byte pair (C:B), the tables
give the best threshold (th), the number of safe regions found
by the algorithm (safe), and the number of counter-examples
(lb-ce) to the safety which are eliminated during the search,
along with the computation time for the lower and upper bound
of the threshold, respectively; these bounds are defined in the
next paragraph. The stable safe regions in the tables have not
only been constructed by Algorithm 2, but also by checking
each region against samples from the training dataset: the
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C 0 0 1 2 3 4 5 6 7
0 – 77 28 16 70 67 22 38
1 20 – 7 10 14 58 32 12
2 0 0 – 0 3 0 2 0
3 0 3 0 – 0 13 0 1
4 6 5 6 0 – 0 0 11
5 0 7 0 7 0 – 5 16
6 0 12 25 9 15 87 – 37
7 0 1 0 0 7 0 0 –

C 1 0 1 2 3 4 5 6 7
0 – 0 0 15 0 34 35 0
1 0 – 0 0 0 0 0 0
2 8 0 – 0 0 2 1 23
3 0 0 0 – 0 2 5 0
4 7 1 0 39 – 60 86 3
5 0 0 0 1 0 – 1 0
6 5 0 0 13 16 4 – 0
7 39 0 1 17 0 54 5 –

TABLE II
SHARED SAFE AND STABLE REGIONS ACROSS MULTIPLE BYTES PER

CHANNEL IN DATA SET s2 rx : NUMBER OF REGIONS IN BYTE column IS
SAFE WITH RESPECT TO BYTE row.

RX
C:B th safe lb-ce lb-time ub-ce ub-time
0:0 0.9 100 1584 26376.50 – –
0:1 0.9 100 230 4780.70 – –
0:2 0.9 100 723 9084.00 – –
0:3 0.9 100 933 9596.69 – –
0:4 0.9 100 195 4924.51 – –
0:5 0.9 100 206 3511.69 – –
0:6 0.85 100 525 5213.19 636 6213.53
0:7 0.8 100 44 2854.15 0 434.43
1:0 0.9 100 51 2887.82 – –
1:1 0.85 100 81 1665.96 3 622.37
1:2 0.85 100 81 2758.16 33 651.10
1:3 0.85 100 149 3228.21 0 741.07
1:4 0.9 100 640 5713.27 – –
1:5 0.85 100 274 3532.65 0 398.29
1:6 0.9 100 90 2691.84 – –
1:7 0.9 100 336 4378.93 – –

TX
C:B th safe lb-ce lb-time ub-ce ub-time
0:0 0.9 100 215 1597.45 – –
0:1 0.9 100 341 1839.79 – –
0:2 0.9 100 523 3045.20 – –
0:3 0.9 100 186 1639.23 – –
0:4 0.9 100 100 635.99 – –
0:5 0.9 100 206 1544.68 – –
0:6 0.9 100 157 873.79 – –
0:7 0.9 76 186 694.96 – –
1:0 0.9 100 80 607.82 – –
1:1 0.9 10 269 843.37 – –
1:2 0.9 100 245 1809.32 – –
1:3 0.9 77 552 3206.61 – –
1:4 0.9 100 151 657.32 – –
1:5 0.85 100 152 681.89 0 42.05
1:6 0.9 100 42 376.40 – –
1:7 0.9 100 726 5759.01 – –

TABLE III
BENCHMARKS OF FINDING UP TO 100 SAFE AND STABLE REGIONS FOR

DATA SET h1. TIMES ARE IN SECONDS, ‘CE’ IS THE NUMBER OF
COUNTER-EXAMPLES, ‘LB’ AND ‘UB’ REFER TO THE PROOF OF LOWER

AND UPPER BOUND ON THE THRESHOLD, RESPECTIVELY.

regions violated by the samples in the data were not considered
safe even if the model output was safe on these samples.
The algorithm has been run on the normalized form of the
respective formulas as described in Remark 1.

If th < 0.9, then at least 2 searches for safe stable regions
were performed, one with threshold th , which succeeded in
finding some stable safe regions, and another with threshold
th+0.05, which did not find any and, in fact, did prove there
are none above th + 2 · 0.05. The factor 2 here comes from
the heuristic used by the solver that the center of a candidate
region should evaluate to th + 0.05. So we enumerated only
regions with center ≥ th + 0.05. If there are none, it proves
the upper bound th+0.05 on the safety threshold. If th = 0.9,
no upper bound check with threshold 0.95 has been performed,
since it could only prove the bound 1, which is clear by
construction. Tables I and III also provide the number of
counter-examples found during the proof and the computation
time.

As can be seen from Algorithms 2 and 3, for a region proven
safe two SMT calls were made and for each counter-example
(lb-ce and ub-ce) up to two SMT calls were performed. In
order to verify that the threshold th is minimal, one additional
call per C:B combination was required. As can be seen from
the tables, the total of these numbers in order to produce the
results for each C:B range between 233 and 11 211 Z3 calls.

In addition, Table II shows the count of stable safe regions
shared across multiple bytes of the same channel – from the
safe regions reported in Table I. Note that this table is not
symmetric because training samples falling in a shared stable
safe region can violate the output constraint for some of the
bytes (but not all the bytes) for which this region is safe.

As mentioned in the introduction, proving a safety constraint
on an NN output does not mean the modelled system itself is
safe. One reason for that is that it is very difficult to generate
high-quality training samples to build accurate models when
little is known about the behavior of the modelled system.
It therefore takes a number of iterations to improve the
training data and thereby improve the model. One can use the
stable safe regions to generate new training samples within
the safe regions in order to refine the current model. We
have performed such proof-based abstraction refinement of the
NN models on h1 rx and h1 tx datasets. We generated 100
random samples in each stable safe region and asked the Lab to
measure the output. Interestingly, 790 out of 1600 stable safe
regions for h1 rx remained safe in the sense that the system
output still satisfies the output constraint; and 1106 out of the
1463 safe regions of h1 tx remained safe. This matched the
user input that the RX model was much harder to analyze and
configure safely.

VII. CONCLUSIONS AND FUTURE WORK

We have defined the problem of configuration selection for
NN models in its general form and demonstrated the feasibility
of our proposed algorithms on a real-life industrial application.
Our work leverages the recent research on verifying inequality
constraints on NN-ReLU output when the inputs are also
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constrained with inequalities, which can be seen as an atomic
black-box operation in our algorithms. In the current imple-
mentation we use the Z3 solver for performing this operation
in order to support real, integer and categorical variables. As
immediate future work, we intend to integrate and evaluate
other solvers that might be significantly faster for NN-ReLU
with only real-valued inputs (LP) or real and integer valued
inputs (MILP). In order to support NNs with transcendental
activation functions (such as Sigmoid or Softmax), as well
as transcendental constraints on safe and stable solutions, we
are extending the implementation to work with solvers such
as ksmt [5], dReal [10] and others. We will also integrate
other machine learning models such as random forest and
polynomial models which can be covered by our framework.

It is important to note that for many CAD applications, in
NN models used to model complex systems, there rarely is a
need for more than 5 to 20 input features; this is confirmed by
our experience of using NN and other models for a wide range
of CAD applications at Intel. Indeed, the state of the art is to
apply advanced feature selection [13] techniques to the input
features in the labeled dataset measured on the system, and to
select a subset consisting of highly relevant and highly inde-
pendent features that provide a high coverage of the variation
that exists in the data. Thus computational complexity of the
problem that we are dealing with is not preventing usage in
real-life CAD applications. For applications in computer vision
and related areas where very large NN models are required and
the inputs are real variables, we believe that integration of fast
decision procedures such as LP will help our algorithms to
scale, especially when the number of configuration parameters
is a relatively small fraction of the system’s interface.

Besides selection of safe and stable regions, our algorithms
addresses also the problem of selecting such regions where
the performance of the output is close to optimal. As a
future work, it would be interesting to adapt our algorithms
to multi-objective optimisation problems where the validity
of output constraints cannot be compromised for the benefit
of optimisation and at the same time Pareto-optimal regions
can be selected; besides the application domain discussed in
this work, relevant examples include joint optimisation of
power, performance and area, as well joint optimisation of
voltage, frequency and temperature, without compromising
safe operation. Currently multi-objective optimisation tasks are
handled in our framework via reduction to single-objective
optimisation using a weighted average over the optimisation
objectives.
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Abstract—Inspired by recent successes of parallel techniques
for solving Boolean satisfiability, we investigate a set of strategies
and heuristics to leverage parallelism and improve the scalability
of neural network verification. We present a general description
of the Split-and-Conquer partitioning algorithm, implemented
within the Marabou framework, and discuss its parameters and
heuristic choices. In particular, we explore two novel partitioning
strategies, that partition the input space or the phases of
the neuron activations, respectively. We introduce a branching
heuristic and a direction heuristic that are based on the notion of
polarity. We also introduce a highly parallelizable pre-processing
algorithm for simplifying neural network verification problems.
An extensive experimental evaluation shows the benefit of these
techniques on both existing and new benchmarks. A preliminary
experiment ultra-scaling our algorithm using a large distributed
cloud-based platform also shows promising results.

I. INTRODUCTION

Recent breakthroughs in machine learning, specifically the
rise of deep neural networks (DNNs) [1], have expanded the
horizon of real-world problems that can be tackled effectively.
Increasingly, complex systems are created using machine
learning models [2] instead of using conventional engineering
approaches. Machine learning models are trained on a set of
(labeled) examples, using algorithms that allow the model
to capture their properties and generalize them to unseen
inputs. In practice, DNNs can significantly outperform hand-
crafted systems, especially in fields where precise problem
formulation is challenging, such as image classification [3],
speech recognition [4] and game playing [5].

Despite their overall success, the black-box nature of DNNs
calls into question their trustworthiness and hinders their
application in safety-critical domains. These limitations are
exacerbated by the fact that DNNs are known to be vulnerable
to adversarial perturbations, small modifications to the inputs
that lead to wrong responses from the network [6], and real-
world attacks have already been carried out against safety-
critical deployments of DNNs [7, 8]. One promising approach
for addressing these concerns is the use of formal methods to
certify and/or obtain rigorous guarantees about DNN behavior.

Early work in DNN formal verification [9, 10] focused on
translating DNNs and their properties into formats supported
by existing verification tools like general-purpose Satisfiability
Modulo Theories (SMT) solvers (e.g., Z3 [11], CVC4 [12]).
However, this approach was limited to small toy networks
(roughly tens of nodes).

More recently, a number of DNN-specific approaches and
solvers, including Reluplex [13], ReluVal [14], Neurify [15],
Planet [16], and Marabou [17], have been proposed and devel-
oped. These techniques scale to hundreds or a few thousand
nodes. While a significant improvement, this is still several
orders of magnitude fewer than the number of nodes present
in many real-world applications. Scalability thus continues to
be a challenge and the subject of active research.

Inspired by recent successes with parallelizing SAT
solvers [18, 19], we propose a set of strategies and heuristics
for leveraging parallelism to improve the scalability of neural
network verification. The paper makes the following contri-
butions: 1) We present a divide-and-conquer algorithm, called
Split-and-Conquer (S&C), for neural network verification that
is parameterized by different partition strategies and constraint
solvers (Sec. III). 2) We describe two partitioning strategies
for this algorithm (Sec. III-B): one that works by partitioning
the input domain and a second one that performs case splitting
based on the activation functions in the neural network. The
first strategy was briefly mentioned in the Marabou tool
paper [17]; we describe it in detail here. The second strategy
is new. 3) We introduce the notion of polarity and use it to
refine the partitioning (Sec. III-C); 4) We introduce a highly
parallelizable pre-processing algorithm that significantly sim-
plifies verification problems (Sec. III-D); 5) We show how
polarity can additionally be used to speed up satisfiable queries
(Sec. III-E); and 6) We implement the techniques in the
Marabou framework and evaluate on existing and new neural
network verification benchmarks from the aviation domain.
We also perform an ultra-scalability experiment using cloud
computing (Sec. IV). Our experiments show that the new and
improved Marabou can outperform the previous version of
Marabou as well as other state-of-the-art verification tools such
as Neurify, especially on perception networks with a large
number of inputs. We begin with preliminaries, review related
work in Sec. V, and conclude in Sec. VI.

II. PRELIMINARIES

In this section, we briefly review neural networks and
their formalization, as well as the Reluplex algorithm for
verification of neural networks.
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Fig. 1: A small feed-forward DNN N .

A. Formalizing Neural Networks

Deep Neural Networks. A feed-forward Deep Neural Net-
work (DNN) consists of a sequence of layers, including
an input layer, an output layer, and one or more hidden
layers in between. Each non-input layer comprises multiple
neurons, whose values can be computed from the outputs
of the preceding layer. Given an assignment of values to
inputs, the output of the DNN can be computed by iteratively
computing the values of neurons in each layer. Typically, a
neuron’s value is determined by computing an affine function
of the outputs of the neurons in the previous layer and
then applying a non-linear function, known as an activation
function. A popular activation function is the Rectified Linear
Unit (ReLU), defined as ReLU(x) = max(0↪ x) (see [3, 20,
21]). In this paper, we focus on DNNs with ReLU activation
functions; thus the output of each neuron is computed as
ReLU(w1 ≤ v1+▷▷▷wn ≤ vn+b), where v1 ▷▷▷vn are the values
of the previous layer’s neurons, w1 ▷▷▷wn are the weight
parameters, and b is a bias parameter associated with the
neuron. A neuron is active or in the active phase, if its output
is positive; otherwise, it is inactive or in the inactive phase.

Verification of Neural Networks. A neural network verifica-
tion problem has two components: a neural network N , and a
property P . P is often of the form Pin ≻ Pout, where Pin is
a formula over the inputs of N and Pout is a formula over the
outputs of N . Typically, Pin defines an input region I , and
P states that for each point in I , Pout holds for the output
layer. Given a query like this, a verification tool tries to find a
counter-example: an input point i in I , such that when applied
to N , Pout is false over the resulting outputs. P holds only if
such a counter-example does not exist.

The property to be verified may arise from the specific
domain where the network is deployed. For instance, for
networks that are used as controllers in an unmanned aircraft
collision avoidance system (e.g., the ACAS Xu networks [13]),
we would expect them to produce sensible advisories accord-
ing to the location and the speed of the intruder planes in
the vicinity. On the other hand, there are also properties that
are generally desirable for a neural network. One such prop-
erty is local adversarial robustness [22], which states that a
small norm-bounded input perturbation should not cause major
spikes in the network’s output. More generally, a property may
be an arbitrary formula over input values, output values, and
values of hidden layers—such problems arise for example in
the investigation of the neural networks’ explainability [23],
where one wants to check whether the activation of a certain

ReLU r implies a certain output behavior (e.g., the neural
network always predicts a certain class). The verification of
neural networks with ReLU functions is decidable and NP-
Complete [13]. As with many other verification problems,
scalability is a key challenge.
VNN Formulas. We introduce the notion of VNN (Verifica-
tion of Neural Network) formulas to formalize Neural Network
verification queries. Let X be a set of variables. A linear
constraint is of the form

\
xi≻X aixi χϕ b↪ where ai↪ b are

rational constants, and χϕ ≺ ¶ ≫↪≪↪=♢ . A ReLU constraint is
of the form ReLU(xi) = xj ↪ where xi↪ xj ≺X .

Definition 1. A VNN formula υ is a conjunction of linear
constraints and ReLU constraints.

A feed-forward neural network can be encoded as a VNN
formula as follows. Each ReLU r is represented by introducing
a pair of input/output variables rb↪ rf and then adding a ReLU
constraint ReLU(rb) = rf . We refer to rb as the backward-
facing variable, and it is used to connect r to the preceding
layer. rf is called the forward-facing variable and is used to
connect r to the next layer. The weighted sums are encoded
as linear constraints.

In general, a property could be any formula P over the
variables used to represent N . To check whether P holds
on N , we simply conjoin the representation of N with
the negation of P and use a constraint solver to check for
satisfiability. P holds iff the constraint is unsatisfiable.

Note that a solver for VNN formulas can solve a property P
only if the negation of P is also a VNN formula. We assume
this is the case in this paper, but more general properties can
be handled by decomposing ¬ P into a disjunction of VNN
formulas and checking each separately (or, equivalently, using
a DPLL(T ) approach [24]). This works as long as the atomic
constraints are linear. Non-linear constraints (other than ReLU)
are beyond the scope of this paper.

B. The Reluplex Procedure

The Reluplex procedure [13] is a sound, complete and
terminating algorithm that decides the satisfiability of a VNN
formula. The procedure extends the Simplex algorithm—a
standard efficient decision procedure for conjunctions of linear
constraints—to handle ReLU constraints. At a high level, the
algorithm iteratively searches for an assignment that satisfies
all the linear constraints, but treats the ReLU constraints lazily
in the hope that many of them will be irrelevant for proving the
property. Once a satisfying assignment for linear constraints
is found, the ReLU constraints are evaluated. If all the ReLU
constraints are satisfied, a model is found and the procedure
concludes that the VNN formula is satisfiable. However, some
ReLU constraints may be violated and need to be fixed. There
are two ways to fix a violated ReLU constraint r: 1) repair the
assignment by updating the assignment of forward-facing rf
or backward-facing variable rb to satisfy r, or 2) case split
by considering separate cases for each phase of r (adding
the appropriate constraints in each case). In both cases, the
search continues using the Simplex algorithm, in the first with
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Fig. 2: An execution of the S&C algorithm.

a soft correction via assignment update and in the second by
adding hard constraints to the linear problem. Lazy handling of
ReLUs is achieved by the threshold parameter t — the number
of times a ReLU is repaired before the algorithm performs
a case split. In [13], this parameter was set to 20, but even
more eager splitting is beneficial in some cases. The Reluplex
algorithm also uses bound propagation to fix ReLUs to one
phase whenever possible.

In this paper, we explore heuristic choices behind the two
options to handle violated ReLU constraints. In the case of
assignment repair, the question is which variable assignment,
rf or rb, to modify (often both are possible). We refer to the
strategy used to make this decision as the direction heuristic,
and we discuss direction heuristics, especially in the context of
parallel solving in Sec. III-E. For case splitting, the question is
which ReLU constraint to choose. We refer to the strategy used
for making this decision as the branching heuristic. We explore
branching heuristics and their application to parallelizing the
algorithm in Sec. III-B and Sec. III-C.

III. S&C: PARALLELIZING THE RELUPLEX PROCEDURE

In this section, we present a parallel algorithm called Split-
and-Conquer (or simply S&C) for solving VNN formulas, us-
ing the Reluplex procedure and an iterative-deepening strategy.
We discuss two partitioning strategies: input interval splitting
and ReLU case splitting.

Remark. A divide-and-conquer approach with an input-
splitting strategy was described in the Marabou tool paper [17],
albeit briefly and informally. We provide here a more general
framework, which includes new techniques and heuristics,
described in detail below.

A. The S&C algorithm

The S&C algorithm partitions an input problem into several
sub-problems (that are ideally easier to solve) and tries to
solve each sub-problem within a given time budget. If solving
a problem exceeds the time budget, that problem is further
partitioned and the resulting sub-problems are allocated an
increased time budget. Fig. 2 shows solving of problem υ
as a tree, where the root of the tree denotes the original
problem. Sub-problems that exceed their allotted time budget

Algorithm 1 Split-and-Conquer
Input: query χ, initial partition size N0, initial timeout T0,
partition size N , timeout factor F
Output: SAT/UNSAT
for ϕ ≻partition(χ↪N0) do

Q▷enqueue(≺ϕ↪ T0≫)
while Q▷notEmpty() do

≺χ≻ ↪ t≫≪ Q▷dequeue()
result ≪ solve(χ≻ ↪ t)
if result = SAT then

return SAT
else if result = TIMEOUT then

for ϕ ≻partition(χ≻ ↪ N) do
Q▷enqueue(≺ϕ↪ t ≤ F≫)

return UNSAT

are partitioned, becoming inner nodes, and leaves are sub-
problems solved within their time budget. A formula υ is
satisfiable if some leaf is satisfiable. If the partitioning is
exhaustive, that is: υ :=

/
χi≻partition(χ↪n) υi↪ for any n > 1,

then υ is unsatisfiable iff all the leaves are unsatisfiable.
The pseudo-code of the S&C algorithm is shown in Algo-

rithm 1, which can be seen as a framework parameterized by
the partitioning heuristic and the underlying solver. Details of
these parameters are abstracted away within the partition
and solve functions respectively and will be discussed in
subsequent sections. The S&C algorithm takes as input the
VNN formula υ and the following parameters: initial number
of partitions N0, initial timeout T0, number of partitions N ,
and the timeout factor F . During solving, S&C maintains a
queue Q of ⊃query, timeout⊂pairs, which is initialized with
the partition N0 := ⊃υ↪ T0⊂. While the queue is not empty,
the next pair ⊃υ≺↪ t⊂ is retrieved from it, and the query υ≺

is solved with time budget t. If υ≺ is satisfiable, then the
original query υ is satisfiable, and SAT is returned. If υ≺times
out, partition(υ≺↪ N) creates N sub-problems of υ≺, each of
which is enqueued with an increased time budget t ≤ F . If the
sub-problem υ≺is unsatisfiable, no special action needs to be
taken. If Q becomes empty, the original query is unsatisfiable
and the algorithm returns UNSAT. Note that the main loop of
the algorithm naturally lends itself to parallelization, since the
solve calls are mutually independent and query-timeout pairs
can be asynchronously enqueued and dequeued.

We state without proof the following result, which is a well-
known property of such algorithms.

Theorem 1. The Split-and-Conquer(υ↪N0↪ T0↪ N↪ F ) algo-
rithm is sound and complete if the following holds: 1) the
solve function is sound and complete; and 2) the partition
function is exhaustive.

In addition, with modest assumptions on solve and
partition, and with F > 1, the algorithm can be shown to be
terminating. In particular, it is terminating for the instantiations
we consider below. The S&C algorithm can be tailored to the
available computing resources (e.g., number of processors) by
specifying the number of initial splits N0. The other three
search parameters of S&C specify the dynamic behavior of
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the algorithm, e.g. if T0 and F are small, or if N is large,
then new sub-queries are created frequently, which entails a
more aggressive S&C strategy (and vice versa). Notice that we
can completely discard the dynamic aspect of S&C by setting
the initial timeout to be ∞.

A potential downside of the algorithm is that each call to
solve that times out is essentially wasted time, overhead above
and beyond the useful work needed to solve the problem.
Fortunately, as the following theorem shows, the number of
wasted calls is bounded.

Theorem 2. When Algorithm 1 runs on an unsatisfiable
formula with N ≤ N0, the fraction of calls to solve that
time out is less than 1

N .

Proof. Consider first the case when N = N0. We can view
S&C’s UNSAT proof as constructing an N -ary tree, as shown
in Fig. 2. The ℓ leaf nodes are calls to solve that do not time
out. The t non-leaves are calls to solve that do time out. Since
this is a tree, the total number of nodes n is one more than
the number of edges. Since each query that times out has an
edge to each of its N sub-queries, the number of edges is
Nt. Thus we have n = Nt + 1 which can be rearranged to
show the fraction of queries that time out: t

n = 1−1/n
N < 1

N .
If N < N0, then let k = N0 − N . The number of nodes is
then n = Nt+ k + 1, and the result follows as before.

B. Partitioning Strategies

A partitioning strategy specifies how to decompose a VNN
formula to produce (hopefully easier) sub-problems.

A ReLU is fixed when the bounds on the backward-facing
or forward-facing variable either imply that the ReLU is active
or imply that the ReLU is inactive. Fixing as many ReLUs as
possible reduces the complexity of the resulting problem.

With these concepts in mind, we present two strategies:
1) input-based partitioning creates case splits over the ranges
of input variables, relying on bound propagation to fix ReLUs,
whereas 2) ReLU-based partitioning creates case splits that fix
the phase of ReLUs directly. Both strategies are exhaustive,
ensuring soundness and completeness of the S&C algorithm
(by Theorem 1). The branching heuristic which determines the
choice of input variable, respectively ReLU, on which to split,
can have a significant impact on performance. The branching
heuristic should keep the total runtime of the sub-problems low
as well as achieve a good balance between them. To illustrate,
suppose the sub-problems created by splitting ReLU1 take 10
and 300 seconds to solve, whereas those created by splitting
ReLU2 take 150 and 160 seconds to solve. Though the total
solving time is the same, the more balanced split, on ReLU2,
results in shorter wall-clock time (given two parallel workers).

If most splits led to easier and balanced sub-formulas, then
S&C would perform well, even without a carefully-designed
branching heuristic. However, we have observed that this is
not the case for many possible splits: the time taken to solve
one (or both!) of the sub-problems generated by such splits is
comparable to that required by the original formula (or even

worse). Therefore, an effective branching heuristic is crucial.
We describe two such heuristics below.
Input-based Partitioning. This simple partitioning strategy
performs case splits over the range of an input variable. As
an example, consider a VNN formula ϕ := ϕ′ ∧ (−2 ≤ x1 ≤
1) ∧ (−2 ≤ x2 ≤ 2), where x1 and x2 are the two input
variables of a neural network encoded by ϕ′. Suppose we call
partition(ϕ, 2) using the input-splitting strategy. The choice
is between splitting on the range of x1 or the range of x2.
If we choose x1, the result is two sub-formulas, ϕ1 and ϕ2,
where: ϕ1 := ϕ′ ∧ (−2 ≤ x1 < −0.5) ∧ (−2 ≤ x2 ≤ 2)
and ϕ2 := ϕ′ ∧ (−0.5 ≤ x1 ≤ 1) ∧ (−2 ≤ x2 ≤ 2). An
obvious heuristic is to choose the input with largest range.
A more complex heuristic was introduced in [17]. It samples
the network repeatedly, which yields considerable overhead.
In fact, both of these heuristics perform reasonably well on
benchmarks with only a few inputs (the ACAS Xu bench-
marks, for example). Unfortunately, regardless of the heuristic
used, this strategy suffers from the “curse of dimensionality”
— with a large number of inputs it becomes increasingly
difficult to fix ReLUs by splitting the range of only one input
variable. Thus, the input-partitioning strategy does not scale
well on such networks (e.g., perception networks), which often
have hundreds or thousands of inputs.
ReLU-based Partitioning. A complementary strategy is
to partition the search space by fixing ReLUs directly. Con-
sider a VNN formula ϕ := ϕ′ ∧ (ReLU(x) = y). A call to
partition(ϕ, 2) using the ReLU-based strategy results in two
sub-formulas ϕ1 and ϕ2, where ϕ1 := ϕ′ ∧ (x ≤ 0)∧ (y = 0)
and ϕ2 := ϕ′ ∧ (x > 0) ∧ (x = y). Note that here, ϕ1 is
capturing the inactive and ϕ2 the active phase of the ReLU.
Next, we consider a heuristic for choosing a ReLU to split on.

C. Polarity-based Branching Heuristics
We want to estimate the difficulty of sub-problems created

by a partitioning strategy. One key related metric is the number
of bounds that can be tightened as the result of a ReLU-split.
As a light-weight proxy for this metric, we propose a metric
called polarity.

Definition 2. Given the ReLU constraint ReLU(x) = y, and
the bounds a ≤ x ≤ b, where a < 0, and b > 0, the polarity
of the ReLU is defined as: p = a+b

b−a .

Polarity ranges from -1 to 1 and measures the symmetry of a
ReLU’s bounds with respect to zero. For example, if we split
on a ReLU constraint with polarity close to 1, the bound on
the forward-facing variable in the active case, [0, b], will be
much wider than in the inactive case, [a, 0]. Intuitively, forward
bound tightening would therefore result in tighter bounds in
the inactive case. This means the inactive case will probably be
much easier than the active case, so the partition is unbalanced
and therefore undesirable. On the other hand, a ReLU with
a polarity close to 0 is more likely to have balanced sub-
problems. We also observe that ReLUs in early hidden layers
are more likely to produce bound tightening by forward bound
propagation (as there are more ReLUs that depend on them).
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Algorithm 2 Iterative Propagation
Input: VNN query ϕ, timeout t
Output: preprocessed query ϕ′.
progress ← ⊤; ϕ′ ← ϕ
while progress = ⊤ do

progress ← ⊥
for r in getUnfixedReLUs(ϕ′) do

ψ ← choosePhase(r)
result = solve(ϕ′ ∧ ψ, t)
if result = UNSAT then
ψ′ ← flipPhase(ψ)
ϕ′ ← ϕ′ ∧ ψ′

progress ← ⊤
return ϕ′

We thus propose a heuristic that picks the ReLU whose
polarity is closest to 0 among the first k% unfixed ReLUs,
where k is a configurable parameter. Note that, in order to
compute polarities, we need all input variables to be bounded,
which is a reasonable assumption.

D. Fixing ReLU Constraints with Iterative Propagation

As discussed earlier, the performance of S&C depends
heavily on ReLU splits that result in balanced sub-formulas.
However, sometimes a considerable portion of ReLUs in a
given neural network cannot be split in this way. To eliminate
such ReLUs we propose a preprocessing technique called
iterative propagation, which aims to discover and fix ReLUs
with unbalanced partitions.

Concretely, for each ReLU in the VNN formula, we tem-
porarily fix the ReLU to one of its phases and then attempt
to solve the problem with a short timeout. The goal is to
detect unbalanced and (hopefully) easy unsatisfiable cases.
Pseudocode is presented in Algorithm 2. The algorithm takes
as input the formula ϕ and the timeout t, and, if successful,
returns an equivalent formula ϕ′ which has fewer unfixed
ReLUs than ϕ. The outer loop computes the fixed point, while
the inner loop iterates through the as-of-yet unfixed ReLUs.
For each unfixed ReLU, the choosePhase function yields
constraints of the easier (i.e. smaller) phase. If the solver
returns UNSAT, then we can safely fix the ReLU to its other
phase using the flipPhase function. We ignore the case where
the solver returns SAT, since in practice this only occurs for
formulas that are very easy in the first place.

Iterative propagation complements S&C, because the like-
lihood of finding balanced partitions is increased by fixing
ReLUs that lead to unbalanced partitions. Moreover, iterative
propagation is highly parallelizable, as each ReLU-fixing
attempt can be solved independently. In Section IV, we report
results using iterative propagation as a preprocessing step,
though it is possible to integrate the two processes more
closely, e.g., by performing iterative propagation after every
partition call.

E. Speeding Up Satisfiable Checks with Polarity-Based Direc-
tion Heuristics

In this section, we discuss how the polarity metric intro-
duced in Sec. III-C can be used to solve satisfiable instances
quickly. When splitting on a ReLU, the Reluplex algorithm
faces the same choice as the S&C algorithm. For unsatisfiable
cases, the order in which ReLU case splits are done make
little difference on average, but for satisfiable instances, it can
be very beneficial if the algorithm is able to hone in on a
satisfiable sub-problem. We refer to the strategy for picking
which ReLU phase to split on first as the direction heuristic.

We propose using the polarity metric to guide the direction
heuristic for S&C. If the polarity of a branching ReLU is
positive, then we process the active phase first; if the polarity
is negative, we do the reverse. Intuitively, formulas with wider
bounds are more likely to be satisfiable, and the polarity
direction heuristic prefers the phase corresponding to wider
bounds for the ReLU’s backward-facing variable.

Repairing an assignment when a ReLU is violated can also
be guided by polarity (recall the description of the Reluplex
procedure from Sec. II), as choosing between forward- or
backward-facing variables amounts to choosing which ReLU
phase to explore first. Therefore, we use this same direction
heuristic to guide the choice of forward- or backward-facing
variables when repairing the assignment. For example, suppose
constraint ReLU(xb) = xf is part of a VNN formula ϕ. Sup-
pose the range of xb is [−2, 1], A(xb) = −1 and A(xf ) = 1,
where A is the current variable assignment computed by the
Simplex algorithm. To repair this violated ReLU constraint,
we can either assign 0 to xf or assign 1 to xb. In this case,
the ReLU has negative polarity, meaning the negative phase is
associated with wider input bounds, so our heuristic chooses
to set A(xf ) = 0.

We will see in our experimental results (Sec. IV) that
these direction heuristics improve performance on satisfiable
instances. Interestingly, they also enhance performance on
unsatisfiable instances.

IV. EXPERIMENTAL EVALUATION

In this section, we discuss our implementation of the
proposed techniques and evaluate its performance on a diverse
set of real-world benchmarks – safety properties of control
systems and robustness properties of perception models.

A. Implementation

We implemented the techniques discussed above in
Marabou [17], which is an open-source neural network ver-
ification tool implementing the Reluplex algorithm. Marabou
is available at https://github.com/NeuralNetworkVerification/
Marabou/1. The tool also integrates the symbolic bound tight-
ening techniques introduced in [14]. We refer to Marabou run-
ning the S&C algorithm as S&C-Marabou. Two partitioning
strategies are supported: the original input-based partitioning

1The version of the tool used in the experiments is available at https://
github.com/NeuralNetworkVerification/Marabou/releases/tag/FMCAD20.
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strategy and our new ReLU-splitting strategy. All S&C config-
urations use the following parameters: the initial partition size
N0 is the number of available processors; the initial timeout
T0 is 10% of the network size in seconds; the number of
online partitions N is 4; and the timeout factor F is 1.5.
The k parameter for the branching heuristic (see Sec. III-C) is
set to 5. The per-ReLU timeout for iterative propagation is 2
seconds. When the input dimension is low (≤ 10), symbolic
bound tightening is turned on, and the threshold parameter t
(see Sec. II) is reduced from 20 to 1. The parameters were
chosen using a grid search on a small subset of benchmarks.

B. Benchmarks

The benchmark set consists of network-property pairs, with
networks from three different application domains: aircraft
collision avoidance (ACAS Xu), aircraft localization (Tiny-
TaxiNet), and digit recognition (MNIST). Properties include
robustness and domain-specific safety properties.
ACAS Xu. The ACAS Xu family of VNN benchmarks
was introduced in [13] and uses prototype neural networks
trained to represent an early version of the ACAS Xu decision
logic [2]. The ACAS Xu benchmarks are composed of 45
fully-connected feed-forward neural networks, each with 6
hidden layers and 50 ReLU nodes per layer. The networks
issue turning advisories to the controller of an unmanned
aircraft to avoid near midair collisions. The network has 5
inputs (encoding the relation of the ownship to an intruder) and
5 outputs (denoting advisories: e.g., weak left, strong right).
Proving that the network does not produce erroneous advi-
sories is paramount for ensuring safe aviation operation. We
consider four realistic properties expected of the 45 networks.
These properties, numbered 1–4, are described in [13].
TinyTaxiNet. The TinyTaxiNet family contains perception
networks used in vision-based autonomous taxiing: the task
of predicting the position and orientation of an aircraft on the
taxiway, so that a controller can accurately adjust the position
of the aircraft [25]. The input to the network is a downsampled
grey-scale image of the taxiway captured from a camera on the
aircraft. The network produces two outputs: the lateral distance
to the runway centerline, and the heading angle error with
respect to the centerline. Proving that the networks accurately
predict the location of the aircraft even when the camera image
suffers from small noise is safety-critical. This property can
be captured as local adversarial robustness. If the kth output
of the network is expected to be bk for inputs near a, we can
check the unsatisfiability of the following VNN formula:

(yk ≥ bk + ϵ) ∧
N⋀
i=1

(ai − δ ≤ xi ≤ ai + δ),

where x denotes the actual network input, N the number of
network inputs, and yk the actual kth output. The network
is (δ, ϵ)-locally robust on a, only if the formula is unsat-
isfiable. The training images are compressed to either 2048
or 128 pixels, with value range [0,1]. We evaluate the local
adversarial robustness of two networks. TaxiNet1 has 2048

inputs, 1 convolutional layer, 2 feedforward layers, and 128
ReLUs. TaxiNet2 has 128 inputs, 5 convolutional layers, and
a total of 176 ReLUs. For each network, we generate 100
local adversarial robustness queries concerning the first output
(distance to the centerline). For each model, we sample 100
uniformly random images from the training data, and sample
(δ, ϵ) pairs uniformly from the set {⟨0.004, 3⟩, ⟨0.004, 9⟩,
⟨0.008, 3⟩, ⟨0.008, 9⟩, ⟨0.016, 9⟩}. Setting δ = 0.004 allows a
1 pixel-value perturbation in pixel brightness along each input
dimension, and the units of ϵ are meters. We chose the values
of the perturbation bounds such that the resulting set contains a
mixture of SAT and UNSAT instances with more emphasis on
the latter – UNSAT problems are considered more interesting
in the verification domain.
MNIST. In addition to the two neural network families
with safety-critical real-world applications, we evaluate our
techniques on three fully-connected feed-forward neural net-
works (MNIST1, MNIST2, MNIST3) trained on the MNIST
dataset [26] to classify hand-written digits. Each network has
784 inputs (representing a grey-scale image) with value range
[0,1], and 10 outputs (each representing a digit). MNIST1
has 10 hidden layers and 10 neurons per layer; MNIST2 has
10 hidden layers and 20 neurons per layer; MNIST3 has 20
hidden layers and 20 neurons per layer. While shallower and
smaller networks may be sufficient for identifying digits and
are also easier to verify, we evaluate on deeper and larger
architectures because we want to 1) stress-test our techniques,
and 2) evaluate the effect of moving towards larger perception
network sizes like those used in more challenging applications.
We consider targeted robustness queries, which asks whether,
for an input x and an incorrect output y′, there exists a point in
the ℓ∞ δ-ball around x that is classified as y′. We sample 100
such queries for each network, by choosing random training
images and random incorrect labels. We choose δ values
evenly from {0.004, 0.008, 0.0016, 0.0032}.

C. Experimental Evaluation

We present the results of the following experiments: 1)
Evaluation of each technique’s effect on run-time performance
of Marabou on the three benchmark sets. We also compare
against Neurify, a state-of-the-art solver on the same bench-
marks. 2) An analysis of trade-offs when running iterative
propagation pre-processing. 3) Exploration of S&C scalability
at a large scale, using cloud computing.

1) Evaluation of the techniques on ACAS Xu, TinyTaxiNet,
MNIST : We denote the ReLU-based partitioning strategy as
R, polarity-based direction heuristics as D, and iterative propa-
gation as P. We denote as S a hybrid strategy that uses input-
based partitioning on ACAS Xu networks, and ReLU-based
partitioning on perception networks. We run four combinations
of our techniques: 1) R; 2) S+D; 3) S+P; 4) S+D+P, and com-
pare them with two baseline configurations: 1) the sequential
mode of Marabou (denoted as M); 2) S&C-Marabou with its
default input-based partitioning strategy (denoted as I).

We compare with Neurify [15], a state-of-the-art solver, on
the same benchmarks. Neurify derives over-approximations of
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TABLE I: Evaluation of the Techniques on ACAS Xu, TinyTaxiNet, MNIST

Bench. M I R S S+D S+P S+D+P Neurify
[# inst.] #S Time #S Time #S Time #S Time #S Time #S Time #S Time #S Time
ACAS 40 17224 45 4884 45 5009 45 4884 45 5480 45 8419 45 7244 39 4167
[180] 101 57398 130 48954 125 45036 130 48954 131 51413 130 50828 131 53717 133 1438
TinyTaxi. 34 4591 34 1815 34 433 34 433 34 419 34 533 35 1172 35 88
[200] 141 33909 110 24088 147 23079 147 23079 147 22345 149 20583 149 21949 146 7158
MNIST 11 2349 19 13032 22 9680 22 9680 26 11727 20 9956 29 19351 27 151
[300] 140 64418 78 27134 181 52776 181 52776 183 59195 184 67625 185 68307 153 10640
All 85 24164 98 19731 101 15122 101 14997 105 17626 99 18908 109 27767 101 4406
[680] 382 155725 318 100176 453 120891 458 124809 461 132953 463 139036 465 143973 432 19236

Number of solved instances (#S) and run-time in seconds of different configurations. For each benchmark set, top and bottom rows show data for
satisfiable (SAT) and unsatisfiable (UNSAT) instances respectively. The results for configuration S are computed virtually from R and I.

the output bounds using techniques such as symbolic interval
analysis and linear relaxation. On ACAS Xu benchmarks, it
operates by iteratively partitioning the input region to reduce
error in the over-approximated bounds (to prove UNSAT)
and by randomly sampling points in the input region (to
prove SAT). On other networks, Neurify uses off-the-shelf
solvers to handle ReLU-nodes whose bounds are potentially
overestimated. Neurify also leverages parallelism, as different
input regions or linear programs can be checked in parallel.

We run all Marabou configurations and Neurify on a cluster
equipped with Intel Xeon E5-2699 v4 CPUs running CentOS
7.7. 8 cores and 64GB RAM are allocated for each job, except
for the M configuration, which uses 1 processor and 8GB
RAM per job. Each job is given a 1-hour wall-clock timeout.

Results. Table I shows a breakdown of the number of solved
instances and the run-time for all Marabou configurations
and for Neurify. We group the results by SAT and UNSAT
instances. For each row, we highlight the entries corresponding
to the configuration that solves the most instances (ties broken
by run-time). Here are some key observations:

– On ACAS Xu benchmarks, both input-based partitioning
(I) and ReLU-based partitioning (R) yield performance gain
compared with the sequential solver (M), with I being more
effective. On perception networks, I solves significantly fewer
instances than M while R continues to be effective.
– Comparing the performance of S, S+D, and S+P sug-
gests that the polarity-based direction heuristics and iterative
propagation each improve the overall performance of S&C-
Marabou. Interestingly, the polarity-based heuristic improves
the performance on not only SAT but also UNSAT instances,
suggesting that by affecting how ReLU constraints are re-
paired, direction heuristics also favorably impact the order of
ReLU-splitting. On the other hand, iterative propagation alone
only improves performance on UNSAT instances. S+D+P
solves the most instances among all the Marabou configu-
rations, indicating that the direction heuristics and iterative
propagation are complementary to each other.
– S+D+P solves significantly more instances than Neurify
overall. While Neurify’s strategy on Acas Xu benchmarks
allows it to dedicate more time on proving UNSAT by rapidly
partitioning the input region (thus yielding much shorter run-
times than S+D+P on that benchmark set), its performance

on SAT instances is subject to (un)lucky guesses. When it
comes to perception neural networks that are deeper and
have higher input dimensions, symbolic bound propagation,
on which Neurify heavily relies, becomes more expensive and
less effective. In contrast, Marabou does not rely solely on
symbolic interval analysis, but in addition uses interval bound-
tightening techniques (see [17] for details).
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Fig. 4 The effect of varying per-ReLU timeout in preprocessing.

Fig. 3 shows a cactus plot of the 6 Marabou configurations
and Neurify on all benchmarks. In this plot, we also include
two virtual portfolio configurations: Virt.-Marabou takes the
best run-time among all Marabou configurations for each
benchmark, and Virt.-All includes Neurify in the portfolio.
Interestingly, S+D+P is outperformed by S+D in the beginning
but surpasses S+D after 500 seconds. This suggests that
iterative propagation creates overhead for easy instances, but
benefits the search in the long run. We also observe that
Neurify can solve a subset of the benchmarks very rapidly,
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but solves very few benchmarks after 1500 seconds. One
possible explanation is that Neurify splits the input region and
makes solver calls eagerly. While this allows it to resolve some
queries quickly, it also results in rapid (exponential) growth
of the number of sub-regions and solver calls. By contrast,
Marabou splits lazily. While it creates overhead sometimes, it
results in more solved instances overall. The Virt.-All configu-
ration solves significantly more instances than Virt.-Marabou,
suggesting that the two procedures are complementary to each
other. We note that the bound tightening techniques presented
in Neurify can be potentially integrated into Marabou, and the
polarity-based heuristics and iterative propagation could also
be used to improve Neurify and other VNN tools.

2) Costs of Iterative Propagation: As mentioned in Sec. 2,
intuitively, the longer the time budget during iterative prop-
agation, the more ReLUs should get fixed. To investigate
this trade-off between the number of fixed ReLUs and the
overhead, we choose a smaller set of benchmarks (40 ACAS
Xu benchmarks, 40 TinyTaxiNet benchmarks, and 40 MNIST
benchmarks), and vary the timeout parameter t of iterative
propagation. Each job is run with 32 cores, and a wall-clock
timeout of 1 hour, on the same cluster as in Experiment IV-C1.
Results. Fig. 4 shows the preprocessing time + solving time
of different configurations on commonly solved instances. The
percentage next to each bar represents the average percentage
of ReLUs fixed by iterative propagation. Though the run-time
and unfixed ReLUs continue to decrease as we invest more
in iterative propagation, performing iterative propagation no
longer provides performance gain when the per-ReLU-timeout
exceeds 8 seconds.

3) Ultra-Scalability of S&C: S&C-Marabou runs on a
single machine, which intrinsically limits its scalability to the
number of hardware threads. To investigate how the S&C
algorithm scales with much higher degrees of parallelism, we
implemented it on top of the gg platform [27].

The gg platform facilitates expressing parallelizable com-
putations and executing them. To use it, the programmer
expresses their computation as a dependency graph of tasks,
where each task is an executable program that reads and writes
files. The output files can encode the result of the task, or an
extension to the task graph that must be executed in order
to produce that result. The gg platform includes tools for
executing tasks in parallel. Tasks can be executed locally,
using different processes, or remotely, using cloud services
such as AWS Lambda [28]. Since these cloud services offer a
high degree of concurrency with little setup or administration,
gg is a convenient tool for executing massively parallel
computations [27].

In our implementation of the S&C algorithm on top of gg,
each task runs the base solver with a timeout. If the solver
completes, the task returns the result; otherwise it returns a
task graph extension encoding the division of the problem
into sub-queries. We call this implementation of the S&C
algorithm, gg-Marabou.

We measure the performance of S&C and gg-Marabou at
varying levels of parallelism to establish that they perform
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similarly and to evaluate the scalability of the S&C algorithm.
Our experiments use three underlying infrastructures: S&C-
Marabou (denoted thread), gg-Marabou executed locally
(gg-local), and gg-Marabou executed remotely on AWS
Lambda [28] (gg-lambda). We vary the parallelism level,
p, from 4 to 16 for the local infrastructures and from 4 to
1000 for gg-lambda. For gg-lambda, we run 3 tests per
benchmark, taking the median time to mitigate variation from
the network. From the UNSAT ACAS Xu benchmarks which
S&C-Marabou can solve in under two hours using 4 cores, we
chose 5 of the hardest instances. We set T0 = 5 s, F = 1.5,
N = 2⌊(5+log2 p)/3⌋ and use the input-based partitioning
strategy.

Results. Fig. 5 shows how mean runtime (across benchmarks)
varies with parallelism level and infrastructure. Our first con-
clusion from Fig. 5 is that gg does not introduce signifi-
cant overhead; at equal parallelism levels, all infrastructures
perform similarly. Our second conclusion is that gg-Marabou
scales well up to over a hundred workers. This is shown by
the constant slope of the runtime/parallelism level line up to
over a hundred workers. We note that the slope only flattens
when total runtime is small: a few minutes.

V. RELATED WORK

Over the past few years, a number of tools for verify-
ing neural network have emerged and broadly fall into two
categories — precise and abstraction-based methods. Precise
approaches are complete and usually encode the problem as an
SAT/SMT/MILP constraint [13, 16, 17, 29, 30]. Abstraction-
based methods are not necessarily complete and abstract the
search space using intervals [14, 15] or more complex abstract
domains [31]–[33]. However, most of these approaches are
sequential, and for details, we refer the reader to the survey
by Liu et al. [34]. To the best of our knowledge, only
Marabou [17] and Neurify [15] (and its predecessor Relu-
Val [14]) leverage parallel computing to speed up verification.

As mentioned in Sec. IV, Neurify combines symbolic
interval analysis with linear relaxation to compute tighter
output bounds and uses off-the-shelf solvers to derive more
precise bounds for ReLUs. These interval analysis techniques
lend themselves well to parallelization, as independent linear
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programs can be created and checked in parallel. By contrast,
S&C-Marabou creates partitions of the original query and
solves them in parallel. Neurify supports a selection of hard-
coded benchmarks and properties and often requires modi-
fications to support new properties, while Marabou provides
verification support for a wide range of properties.

Split-and-Conquer is inspired by the Cube-and-Conquer
algorithm [18], which targets very hard SAT problems. Cube-
and-Conquer is a divide-and-conquer technique that partitions
a Boolean satisfiability problem into sub-problems by conjoin-
ing cubes —a cube is a conjunction of propositional literals—
to the original problem and then employing a conflict-driven
SAT solver [35] to solve each sub-problem in parallel. The
propositional literals used in cubes are chosen using look-
ahead [36] techniques. Divide-and-conquer techniques have
also been used to parallelize SMT solving [37, 38]. Our
approach uses similar ideas to those in previous work, but
is optimized for the VNN domain.

Iterative propagation is, in part, inspired by the look-ahead
techniques. While the latter is used to partition the search
space, the former is used to reduce the overall complexity
of the problem.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a set of techniques that leverage
parallel computing to improve the scalability of neural network
verification. We described an algorithm based on partitioning
the verification problem in an iterative manner and explored
two strategies that work by partitioning the input space or by
splitting on ReLUs, respectively. We introduced a branching
heuristic and a direction heuristic, both based on the notion
of polarity. We also introduced a highly parallelizable pre-
processing algorithm for simplifying neural network verifica-
tion problems. Our experimental evaluation shows the benefit
of these techniques on existing and new benchmarks. A pre-
liminary experiment with ultra-scaling using the gg platform
on Amazon Lambda also shows promising results.

Future work includes: i) Investigating more dynamic strate-
gies for choosing hyper-parameters of the S&C framework.
ii) Investigating different ways to interleave iterative propaga-
tion with S&C. iii) Investigating the scalability of ReLU-based
partitioning to high levels of parallelism. iv) Improving the
performance of the underlying solver, Marabou, by integrating
conflict analysis (as in CDCL SAT solvers and SMT solvers)
and more advanced bound propagation techniques such as
those used by Neurify. v) Extending the techniques to handle
other piecewise-linear activation functions such as hard tanh
and leaky ReLU, to which the notion of polarity applies.
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Abstract—Machine learning and formal methods have com-
plimentary benefits and drawbacks. In this work, we address
the controller-design problem with a combination of techniques
from both fields. The use of black-box neural networks in deep
reinforcement learning (deep RL) poses a challenge for such a
combination. Instead of reasoning formally about the output
of deep RL, which we call the wizard, we extract from it a
decision-tree based model, which we refer to as the magic book.
Using the extracted model as an intermediary, we are able
to handle problems that are infeasible for either deep RL or
formal methods by themselves. First, we suggest, for the first
time, a synthesis procedure that is based on a magic book. We
synthesize a stand-alone correct-by-design controller that enjoys
the favorable performance of RL. Second, we incorporate a magic
book in a bounded model checking (BMC) procedure. BMC
allows us to find numerous traces of the plant under the control of
the wizard, which a user can use to increase the trustworthiness
of the wizard and direct further training.

I. INTRODUCTION

Machine-learning techniques and, in particular, the use of
neural networks (NNs), are exploding in popularity and be-
coming a vital part of the development of many technologies.
There is a challenge, however, in deploying systems that use
trained components, which are inherently black-box. For a
system to be used by a human, it must be trustworthy: provably
correct, or predictable, at the least. Current trained systems
lack either of these properties.

In this work, we focus on the controller-design problem.
Abstractly speaking, a controller is a device that interacts with
a plant. At each time step, the plant outputs its state and the
controller feeds back an action. Combining techniques from
both formal methods and machine learning is especially ap-
pealing in the controller-design problem since both correctness
and performance are critical.

Reinforcement learning (RL) is the main machine-learning
tool for designing controllers. The RL approach is based on
“trial and error”: the agent randomly explores its environment,
receives rewards and learns from experience how to maximize
them. RL has made a quantum leap in terms of scalability
since the recent introduction of NNs into the approach, termed
deep RL [1]. We call the output of deep RL the wizard: it
optimizes plant performance but, since it is a NN, it does not
reveal its decision procedure. More importantly, there are no
guarantees on the wizard and it can behave unexpectedly and
even incorrectly.

Reasoning about systems that use NNs poses a challenge
for formal methods. First, in terms of scalability (NNs tend
to be large), and second, the operations that NNs depend on
are challenging for formal methods tools, namely NNs use

numerical rather than Boolean operations and ReLu neurons
use the max operator, which SMT tools struggle with.
We propose a novel approach based on extracting a decision-

tree-based model from the wizard, which approximates its
operation and is intended to reveal its decision-making process.
Hence, we refer to it as the magic book. Our requirements for
the magic book are that it is (1) simple enough for formal
methods to use, and (2) a good approximation of the NN.
Extracting decision-tree-based models that approximate a

complicated function is an established practice [2]. The as-
sumption that allows this extraction to work is that a NN
contains substantial redundancy. During training, the NN
“learns” heuristics that it uses to optimize plant performance.
The heuristics can be compactly captured in a small model,
e.g., in a decision-tree. This assumption has led, for example,
to attempts of distilling knowledge from a trained NN to a
second NN during its training [3], [4], and of minimizing
NNs (e.g., [5]). The extraction of a simple model is especially
common in explainable AI (XAI) [6], where the goal is to
explain the operation of a learned system to a human user.
We use the tree-based magic book to solve problems that

are infeasible both for deep RL and for formal methods alone.
Specifically, we illustrate the magic book’s benefit in two
approaches for designing controllers as we elaborate below.
Reactive synthesis [7] is a formal approach to design con-

trollers. The input is a qualitative specification and the output
is a correct-by-design controller. The fact that the controller is
provably correct, is the strength of synthesis. A first weakness
of traditional synthesis is that it is purely qualitative and spec-
ifications cannot naturally express quantitative performance.
There is a recent surge of quantitative approaches to synthesis
(e.g., [8], [9], [10]). However, these approaches suffer from
other weaknesses of synthesis: deep RL vastly outperforms
synthesis in terms of scalability. Also, in the average-case, RL-
based controllers beat synthesized controllers since the goal in
synthesis is to maximize worst-case performance.
Synthesis is often reduced to solving a two-player graph

game; Player 1 represents the controller and Player 2 represents
the plant. In each step, Player 2 reveals the current state s̄ of
the plant and Player 1 responds by choosing an action. In our
construction, when Player 2 chooses s̄, we extract from the
magic book the action a that is taken at s̄. Player 1’s action
then depends on a as we elaborate below. The construction of
the game arena thus depends on the magic book, and using
the wizard instead is infeasible.
We present a novel approach for introducing performance
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considerations into reactive synthesis. We synthesize a con-
troller that satisfies a given qualitative specification while
following the magic book as closely as possible. We formalize
the later as a quantitative objective: whenever Player 1 agrees
with the choice of action suggested by Player 2, he receives a
reward, and the goal is to maximize rewards. Since the magic
book is a proxy for the RL-generated wizard, we obtain the
best of both worlds: a provably correct controller that enjoys
the high average-case performance of RL. In our experiments,
we synthesize a controller for a taxi that travels on a grid
for the specification “visit a gas station every t steps” while
following advice from a wizard that is trained to collect as
many passengers as possible in a given time frame.

In a second application, we use a magic book to relax
the adversarial assumption on the environment in a multi-
agent setting. We are thus able to synthesize controllers for
specifications that are otherwise unrealizable, i.e., for which
traditional synthesis does not return any controller. Our goal
is to synthesize a controller for an agent that interacts with an
environment that consists of other agents. Instead of modeling
the other agents as adversarial, we assume that they operate
according to a magic book. This restricts their possible actions
and regains realizability. For example, suppose a taxi that is
out of our control, shares a network of roads with a bus,
under our control. Our goal is to synthesize a controller that
guarantees that the bus travels between two stations without
crashing into a taxi. While an adversarial taxi can block the
bus, by assuming that the taxi operates according to a magic
book, we limit Player 2’s action in the game and find a winning
Player 1 strategy that corresponds to a correct controller.

Bounded model checking [11] (BMC) is an established
technique to find bounded traces of a system that satisfy a
given specification. In a second approach to the controller-
design problem, we use BMC as an XAI tool to increase
the trustworthiness of a wizard before outputting it as the
controller of the plant. We rely on BMC to find (many) traces
of the plant under the control of the wizard that are tedious
to find manually.

We solve BMC by constructing an SMT program that
intuitively simulates the operation of the plant under the
control of the magic book rather than under the control of
the wizard. The traces we find witness the magic book. A
disadvantage of the approach is that it is not sound (see
Remark 3). The advantage is that the reduction from BMC
to SMT is simple and leads to a significant performance
gain: in our experiments, we use the standard SMT solver
Z3 [12] to extract thousands of witnesses within minutes,
whereas Z3 is incapable of solving extremely modest wizard-
based BMC instances. Before outputting a trace, we perform
a secondary test to check that it witnesses the wizard as
well. In our experiments, we find that many traces are indeed
shared between the two. Thus, our procedure efficiently finds
numerous traces of the plant under the control of the wizard.

A first application of BMC is in verification; namely, we
find counterexamples for a given specification. For example,

when controlling a taxi, a violation of a liveness property is
an infinite loop in which no passenger is collected. We find
it more appealing to use BMC as an XAI tool. For example,
BMC allows us to find “suspicious” traces that are not nec-
essarily incorrect; e.g., when controlling a taxi, a passenger
that is not closest is collected first. Individual traces can serve
as explanations. Alternatively, we use BMC’s ability to find
many traces and gather a large dataset. We extract a small
human-interpretable model from the dataset that attempts to
explain the wizard’s decision-making procedure. For example,
the model serves as an answer to the question: when does the
wizard prefer collecting a passenger that is not closest?

A. Related work
We compare our synthesis approach to shielding [13], [14],

which adds guarantees to a learned controller at runtime
by monitoring the wizard and correcting its actions. Unlike
shielding, the magic book allows us to open up the black-box
wizard, which, for example, enables our controller to cross
an obstacle that was not present in training, a task that is
inherently impossible for a shield-based controller. A second
key difference is that we produce stand-alone controllers
whereas a shield-based approach needs to execute the NN
wizard in each step. Our method is thus preferable in settings
where running a NN is costly, e.g., embedded systems or real
time systems.
To the best of our knowledge, synthesis in combination with

a magic book was never studied. Previously, finding counterex-
amples for tree-based controllers that are extracted from NN
controllers was studied in [15] and [16]. The ultimate goal in
those works is to output a correct tree-based controller. A first
weakness of this approach is that, since both wizard and magic
book are trained, they exhibit many correctness violations. We
believe that repairing them manually while maintaining high
performance is a challenging task. Our synthesis procedure
assists in automating this procedure. Second, in some cases,
a designer would prefer to use a NN controller rather than a
tree-based one since NNs tend to generalize better than tree-
based models. Hence, we promote the use of BMC for XAI
to increase the trustworthiness of the wizard. Finally, the case
studies the authors demonstrate are different from ours, thus
they strengthen the claim that a tree-based classifier extraction
is not specific to our domain rather it is a general concept.
A specialized wizard-based BMC tool was recently shown

in [17], thus unlike our approach, there is no need to check
that the output trace is also a witness for the wizard. More
importantly, their method is “sound”: if their method termi-
nates without finding a counterexample for bound l ∈ IN,
then there is indeed no violation of length l. Beyond the
disadvantages listed above, the main disadvantage of their
approach is scalability, which is not clear in the paper. As
we describe in the experiments section, our experience is that
a wizard-based BMC implemented in Z3 does not scale.
Our BMC procedure finds traces that witness a temporal

behavior of the plant. This is very different from finding
adversarial examples, which are inputs slightly perturbed so
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that to lead to a different output. Finding adversarial examples
and verifying robustness have attracted considerable attention
in NNs (for example, [18], [19], [20]) as well as in random-
forest classifiers (e.g., [21], [22]).

Somewhat similar in spirit to our approach is applying
program synthesis to extract a program from a NN [23], [24],
[25], which, similar to the role of the magic book, is an
alternative small model for application of formal methods.
The main goal in these papers is to extract a magic book
(“program”, in their terminology) from a wizard, verify its
correctness and use it as the controller for the plant. A key
difference from our synthesis approach is that their wizard
is trained to satisfy the specification and the challenge is
to devise a good approximation for the wizard. Our wizard,
however, is trained without consideration for the specification;
e.g., neither the gas station nor the obstacles mentioned above
are present in training. The challenge is to incorporate the
wizard in synthesis to gain both performance and correctness.

Decision trees were previously used to represent, in a
succinct, verifiable and explainable manner, a strategy for a
controller (e.g., [26], [27]). The challenge here is to construct
a concise controller from a given policy, similar to the works
above. A second difference is that the policy is given explicitly
and is obtained from an explicit solution to the MDP or game,
hence scalability is an inherent limitation of this approach.

Finally, examples of other combinations of RL with syn-
thesis include works that run an online version of RL (see
[28] and references therein), an execution of RL restricted to
correct traces [29], and RL with safety specifications [30].

II. PRELIMINARIES

a) Plant and controller: We formalize the interaction
between a controller and a plant. The plant is modelled
as a Markov decision process (MDP) which is  =
(

S, s̄0, A,R, p
)

, where S is a finite set of states, s̄0 ∈ S is
an initial configuration of the state, A is a finite collection of
actions, R ∶ S → IR is a reward provided in each state, and
p ∶ S ×A→ [0, 1]S is a probabilistic transition function that,
given a state and an action, produces a probability distribution
over states.

Example 1. Our running example throughout the paper is
a taxi that travels on an n × n grid and collects passengers.
Whenever a passenger is collected, it re-appears in a random
location. A state of the plant contains the locations of the taxi
and the passengers, thus it is a tuple s̄ =

(

p0, p1,… , pk
)

,
where for 0 ≤ i ≤ k, the pair pi =

(

xi, yi
)

is a position on the
grid, p0 is the position of the taxi, and pi is the position of Pas-
senger i. The set of actions is A = {up,right,down,left}.
The transitions of are largely deterministic: given an action
a ∈ A, we obtain the updated state s̄′ by updating the
position of the taxi deterministically, and if the taxi collects
a passenger, i.e., p′0 = pi, for some 1 ≤ i ≤ k, then the new
position of Passenger i is chosen uniformly at random.

The controller is a policy, which prescribes which action to
take given the history of visited states, thus it is a function � ∶

S∗ → A. A policy is positional if the action that it prescribes
depends only on the current position, thus it is a function
� ∶ S → A. We are interested in finding an optimal and
correct policy as we define below.

b) Qualitative correctness: We consider a strong notion
of qualitative correctness that disregards probabilistic events,
often called surely correctness. A specification is Ω ⊆ S!.
We define the support of p at s̄ given a ∈ A as supp(s̄, a) =
{s̄′ ∶ p

(

s̄′ |
|

s̄, a
)

> 0} and, for a policy �, we define the
support of � to be supp�(s̄) = supp(s̄, �(s̄)). We define the
surely language of  w.r.t. �, denoted L�(). A run � =
�1, �2,… ∈ S! is in L�() iff we have �1 = s̄0 and for every
i ≥ 1, we have �i+1 ∈ supp�(�i), where ai = �(�1,… , �i). We
say that � is surely-correct for plant  w.r.t. a specification
Ω ⊆ S! iff it allows only correct runs of, thus L�() ⊆ Ω.

c) Quantitative performance and deep reinforcement
learning: The goal of reinforcement learning (RL) is to find
a policy in an MDP that maximizes the expected reward [31].
In a finite MDP , the state at a time step t ∈ IN is a random
variable, denoted st. Each time step entails a reward, which
is also a random variable, denoted rt. The probability that st
and rt get particular values depends solely on the previous
state and action. Formally, for an initial state s̄0 ∈ S, we
define Pr[s0 = s̄0] = 1, and for s̄′, s̄ ∈  and a ∈ A, we
have Pr

[

st = s̄′, rt = R(s) || st−1 = s̄, at−1 = a
]

= p
(

s̄′ |
|

s̄, a
)

.
We consider discounted rewards. Let  ∈ (0, 1) be a discount
factor. The expected reward that a policy � ensures starting at
state s̄ ∈ S is Rew�(s̄) =

∑∞
t=0 

trt, where rt is defined w.r.t.
s̄ as in the above. The goal is to find the optimal policy �∗
that attains sup� Rew�(s̄0).
We consider the Q-learning algorithm for solving MDPs,

which relies on a function Q ∶ S × A → IR such that Q(s̄, a)
represents the expected value under the assumption that the
initial state is s̄ and the first action to be taken is a, thus
Q(s̄, a) = R(s̄)+  ⋅

∑

s̄′ p
(

s̄′ |
|

s̄, a
)

⋅Rew�∗ (s̄′). Clearly, given
the function Q, one can obtain an optimal positional policy �∗,
by defining �∗(s̄) = argmaxaQ(s̄, a), for every state s̄ ∈ S. In
Q-learning, the Q function is estimated and iteratively refined
using the Bellman equation.

Traditional implementations of Q-learning assume that the
MDP is represented explicitly. Deep RL [1] implements the
Q-learning algorithm using a symbolic representation of the
MDP as a NN. The NN takes as input a state s̄ and outputs for
each a ∈ A, an estimate of Q(s̄, a). The technical challenge in
deep RL is that it combines training of the NN with estimating
the Q function. We call the NN that deep RL outputs the
wizard. Even though deep RL does not provide any guarantees
on the wizard, in practice it has shown remarkable success.

d) Magic books from decision-tree-based classifiers:
Recall that the output of deep RL is a positional function that
is represented by a NN WIZ ∶ S → A. We are interested
in extracting a small function MB of the same type that
approximates WIZ well. We use decision-tree based classifiers
as our model of choice for MB. Each internal node v of a
decision tree is labeled with a predicate '(v) over S and each
leaf is labeled with an action in A. A plant state s̄ gives rise
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to a unique path in a decision tree  , denoted path( , s̄), in
the expected manner. The first node is the root. Upon visiting
an internal node v, the next node in path( , s̄) depends on
the satisfaction value of '(v)(s̄). Suppose '1,… , 'n is the
sequence of predicates traversed by a path � = path( , s̄), we
use pred(�) to denote '1 ∧…∧'n. Thus, for every s̄′ ∈ S we
have � = path( , s̄′) iff s̄′ satisfies pred(�). When path( , s̄)
ends in a leaf labeled a ∈ A, we say that the tree votes for a.
A forest contains several trees. On input s̄ ∈ S, each tree votes
for an action and the action receiving most votes is output.

To obtain MB from WIZ, we first execute WIZ with the
plant on a considerable number T of steps, to collect pairs
of the form

(

s̄t,WIZ(s̄t)
)

, for t∈{0,… , T }, where s̄t is the
system state at time t and T is chosen to maximize model’s
F1 score. We then employ standard techniques on this dataset
to construct either a decision tree, or a forest of decision
trees using the state-of-the-art random forest [32] or extreme
gradient boosting [33] techniques.

Remark 1. One might wonder whether it is possible to obtain
a decision tree (magic book) directly from RL, thus making the
wizard obsolete. While there were attempts at using decision
trees as the underlying reward approximation in RL (e.g.,
[34]), the approach has inherent limitations (see details in
https://bit.ly/30WBA1i). Moreover, decision trees are popular
data structures that are often preferred to NNs since they are
simpler, easier to interpret, and have less parameters to tune.
Still, the literature on deepRL overshadows the literature on
RL with decision trees. Also, the choice to extract a decision
tree from a NN rather than training a decision tree directly was
also made in [15], [16], and their case studies differ from ours,
strengthening the claim that this approach is general. Finally,
we note that even if the magic book is obtained directly from
RL, it does not solve the challenges we address in our synthesis
and BMC procedures.

III. SYNTHESIS WITH A TOUCH OF MAGIC

Our primary goal in this section is to automatically con-
struct a correct controller and performance is a secondary
consideration. We incorporate a magic book into synthesis
and illustrate two applications of the constructions that are
infeasible without a magic book.

A. Constructing a game
Synthesis is often reduced to a two-player graph game (see

[35]). In this section, we describe a construction of a game
arena that is based on a magic book and in the next sections we
complete the construction by describing the players’ objectives
and illustrate applications. In the traditional game, Player 2
represents the environment and in each turn, he reveals the
current location of the plant. Player 1, who represents the
controller, answers with an action. A strategy for Player 1
corresponds to a policy (controller) since, given the history
of observed plant states, it prescribes which action to feed
in to the plant next. The traditional goal is to find a Player 1
strategy that guarantees that a given specification Ω is satisfied
no matter how Player 2 plays. Traditional synthesis is purely

qualitative; namely, it returns some correct policy with no
consideration to its performance. When no correct controller
exists, we say that Ω is un-realizable.
Formally, a graph game is played on an arena

(

V ,Ξ1,Ξ2, �
)

,
where V is a set of vertices, for i ∈ {1, 2}, Player i’s possible
actions are Ξi, and � ∶ V × Ξ1 × Ξ2 → V is a deterministic
transition function. The game proceeds by placing a token on
a vertex in V . When the token is placed on v ∈ V , Player 2
moves first and chooses �2 ∈ Ξ2. Then, Player 1 chooses �1 ∈
Ξ1 and the token proceeds to �(v, �1, �2). In games, rather
than using the term “policy”, we use the term strategy. Two
strategies f and g for the two players and an initial vertex
induce a unique infinite play, which we denote by play(f, g),
where for ease of notation we omit the initial vertex.

We describe our construction in which the roles of the
players is slightly altered. Consider a plant  with state space
S and actions A. The arena of our synthesis game is based
on two abstractions Γ1 and Γ2 of S. While we assume Γ1 is
provided by a user, the partition Γ2 is extracted from the magic
book. The arena is  =

(

Γ1, A,Γ2, �
)

, where � is defined
below. Suppose that the token is placed on 1 ∈ Γ1 (see Fig. 1).
Intuitively, the actual location of the plant is a state s̄ ∈ S
with s̄ ∈ 1. Player 2 moves first and chooses a set 2 ∈ Γ2
such that 1 ∩ 2 ≠ ∅. Intuitively, a Player 2 action reveals
that the actual state of the plant is in 1 ∩ 2. Player 1 reacts
by choosing an action a ∈ A. We denote by supp(1 ∩ 2, a)
the set of possible next locations the plant can be in, thus
supp(1 ∩ 2, a) = {s̄′ ∶ ∃s̄ ∈ 1 ∩ 2 with s̄′ ∈ supp(s̄, a)}.
Then, the next state in the game according to � is the minimal-
sized set  ′1 ∈ Γ1 such that supp(1 ∩ 2, a) ⊆  ′1.

γ1 γ1 ∩ γ2 supp(γ1 ∩ γ2, a)a γ′�1

Fig. 1: A transition between two abstract states 1,  ′1 ∈ Γ1; black
dots represent states in S. For every s̄ ∈ 1∩2, we have MB(s̄) = a.

Suppose for ease of presentation that the magic book is
a decision tree  , and the construction easily generalizes
to forests. Recall that a state s̄ ∈ S produces a unique
path � = path( , s̄), which corresponds to sequence of
predicates '1,… , 'n, and pred(�) =

⋀

1≤i≤n 'i. We define
Γ2 = {pred(�) ∶ � is a path in  }. Let � be a path in  and
2 ∈ Γ2 the corresponding predicates. For ease of notation,
we abuse notation and refer to 2 as the set of states in S who
produce the path � in  . An immediate consequence of the
construction is the following.

Lemma 1. For every 2 ∈ Γ2 there is a ∈ A such that
MB(s̄) = a, for all s̄ ∈ 2.

In the following lemma we formalize the intuition that
Player 2 over-approximates the plant. It is not hard, given a
Player 1 strategy f , to obtain a policy �(f ) that follows it.
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For s̄ ∈ S, we use 1(s̄) ∈ Γ1 and 2(s̄) ∈ Γ2 to denote the
unique abstract set that s̄ belongs to.

Lemma 2. Let f be a Player 1 strategy. Consider a trace
� = �1, �2,… ∈ L�(f )(). Then, there is a Player 2 strategy
g such that play(f, g) = 1(�1), 1(�2),….

Proof. We define g inductively so that for every n ≥ 1,
the n-th vertex of play(f, g) is 1(�n). Suppose the invari-
ant holds for �n. Player 2 chooses 2(�n). The definition
of � implies that the invariant is maintained, thus �n+1 ∈
�
(

1(�n), f (1(�n), 2(�n))
)

.

We note that the converse of Lemma 2 is not necessarily
correct, thus Player 2 strictly over-approximates the plant.
Indeed, suppose that the token is placed on 1, Player 2
chooses 2, Player 1 chooses a ∈ A, and the token proceeds
to  ′1. Intuitively, the plant state was in 1∩2 and thus should
now be in supp(1 ∩ 2, a). In the subsequent move, however,
Player 2 is allowed to choose any  ′2 with  ′1 ∩ 

′
2 ≠ ∅, even

one that does not intersect supp(1 ∩ 2, a).

B. Following expert advice
In this section, we abstain from solving the problem of

finding a correct and optimal controller; a problem that is
computationally hard for explicit systems, not to mention
symbolically-represented systems like the ones we consider.
Instead, in order to add performance consideration to syn-
thesis, we think of the wizard as an authority in terms of
performance and solve the (hopefully simpler) problem of
constructing a correct controller that follows the wizard’s
actions as closely as possible. We use the magic book as a
proxy for the wizard and assume that following its actions
most of the time results in favorable performance.

The game arena is constructed as in the previous section.
Player 1’s goal is to ensure that a given specification Ω is
satisfied while optimizing a quantitative objective that we use
to formalize the notion of “following the magic book”. For
simplicity, we consider finite paths, thus Ω ⊆ Γ∗1, and the
definitions can be generalized to infinite plays. By Lem. 1,
every Player 2 action 2 ∈ Γ2 corresponds to a unique action
in A, which we denote by a(2) ∈ A. We think of Player 2
as “suggesting” the action a(2) since for every s̄ ∈ 2, we
have MB(s̄) = a(2). To motivate Player 1 to use a(2), when
he “accepts” the suggestion and chooses the same action, he
obtains a reward of 1 and otherwise he obtains no reward.
Then, Player 1’s goal in the game is to maximize the sum of
rewards that he obtains.

We formalize the guarantees of the controller �(f ) that we
synthesize w.r.t. an optimal strategy f for Player 1. Intuitively,
the payoff that f guarantees in the game is a lower on the
number of times �(f ) agrees with the magic book in any trace
of the plant. Let f and g be two strategies for the two players.
We use Score(f, g) to denote the payoff of Player 1 in the
game. When play(f, g) ∉ Ω, we set Score(f, g) = ∞, thus
Player 1 first tries to ensure that Ω holds. If play(f, g) ∈ Ω,
the score is the sum of rewards in play(f, g). We assign a

score to �(f ) in a path-based manner. Let � = �1,… , �n ∈
L�(f )(). For every 1 ≤ i ≤ n, we issue a reward of 1 if
�(f )(�i) = MB(�i), and we denote by Agree(�(f ), �), the
sum of rewards, which represents the sum of states in which
�(f ) agrees with MB throughout �. The following theorem
follows from Lem. 2.

Theorem 1. Let f ∗ be a strategy that achieves x∗ =
maxf ming Score(f, g). If x∗ < ∞, then �(f ) is correct
w.r.t. Ω. Moreover, for every � ∈ L�(f∗)() we have
Agree(�(f ∗), �) ≥ x∗.

C. Multi-agent synthesis
In this section, we design a controller in a multi-agent

setting, where traditional synthesis is unrealizable and thus
does not return any controller.
For ease of presentation, we focus on two agents, and

the construction can be generalized to more agents in a
straightforward manner. We assume that the set of actions A
is partitioned between the two agents, thus A = A1 × A2. In
each step, the players simultaneously select actions, where for
i ∈ {1, 2}, Player i selects an action in ai ∈ Ai. As before,
the joint action determines a probability distribution on the
next state according to �. Our goal is to find a controller for
Agent 1 that satisfies a given specification Ω no matter how
Player 2 plays.

Example 2. Suppose that the grid has two means of trans-
portation: a bus (Agent 1) and a taxi (Agent 2). We are
interested in synthesizing a bus controller for the specification
“travel between two stations while not hitting the taxi”. If one
models the taxi as an adversary, the specification is clearly
not realizable: the taxi parks in one of the targets so that the
bus cannot visit it without crashing into the taxi.

We assume that Agent 2 is operating according to a magic
book. As in the previous section, we require an abstraction Γ1
such that Ω ⊆ Γ!1 and the abstraction Γ2 is obtained from the
magic book. We construct a game arena as in Section III-A
and Player 1 wins an infinite play iff it satisfies Ω.
The way the magic book is employed here is that it restricts

the possible actions that Player 2 can take. Going back to the
taxi and bus example, at a state s̄ ∈ S, Player 2 essentially
chooses how to move the taxi. Suppose the token is placed
on 1 ∈ Γ1. Player 2 cannot choose to move the taxi in any
direction; indeed, he can choose a2 ∈ A2 only when there is
a state s̄ ∈ 1 such that MB(s̄) = a2. The following theorem
is an immediate consequence of Lem. 2.

Theorem 2. Let f be a winning strategy: for every g,
play(f, g) satisfies Ω. Then, L�(f )() ⊆ Ω.

In Remark 3 we discuss the guarantees on the magic book
that are needed to assume that Agent 2 operates according to
a wizard rather than a magic book.

IV. BMC BASED ON MAGIC BOOKS

In this section, we describe a bounded-model-checking
(BMC) [11] procedure that is based on a tree-based magic
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Step 50

Fig. 2: Snapshot of step 50 of the simulation. A bus controlled by a
synthesized controller (depicted in red dashed arrows and travelling
between two square stations) shares the grid with a taxi that is
controlled by a magic-book (depicted with black arrows).

book. We use our procedure in verification and as an explain-
ability tool to increase the trustworthiness of the wizard before
outputting it as the controller for the plant.

Definition 1 (Bounded model checking). Given a plant 
with state space S, a specification Ω, a bound l ∈ IN, and a
policy �, output a run of length l in L�()∩Ω if one exists.

BMC reduces to the satisfiability problem for satisfiability
modulo theories (SMT), where the goal is, given a set of
constraints over a set of variables X, either find a satisfying
assignment to X or return that none exists. We are interested in
solving BMC for wizards, i.e., finding a path in LWIZ()∩Ω.
However, as can be seen in the proof of Thm. 3 below, the
SMT program needs to simulate the execution of the wizard,
thus it becomes both large and challenging (due to the max
operator) for standard SMT solvers. Instead, we solve BMC for
magic books to find a path � ∈ LMB() ∩ Ω. Since MB is a
good approximation for WIZ, we often have � ∈ LWIZ()∩Ω.

Theorem 3. BMC reduces to SMT. Specifically, given a plant
 with states S, a specification Ω ⊆ S∗, a policy � given
as a tree-based magic book, and a bound l, there is an SMT
formula whose satisfying assignments correspond to paths of
length l in L�() ∩ Ω.

Proof. The first steps of the reduction are standard. Consider
a policy � and a bound l ∈ IN. The variables consist of
state variables X0,… , Xl and action variables Y0,… , Yl−1.
We add constraints so that, for a satisfying assignment �, for
0 ≤ i ≤ l, each �(Xi) corresponds to a state in S, and for 0 ≤
i ≤ l−1, each �(Yi) corresponds to an action in A. Moreover,
for 0 ≤ i ≤ l − 1, the constraints ensure that �(Xi+1) ∈
supp(�(Xi), �(Yi)), thus we obtain a path in L�().
We consider a specification Ω that can be represented as an

SMT constraint over X0,… , Xl and add constraints so that
the path we find is in L�() ∩ Ω.

The missing component from this construction ensures that
the action �(Y i) is indeed the action that � selects at state
�(Xi). For that, we need to simulate the operation of � using
constraints. Suppose first that � is represented using a decision

tree  . For a path � in  , recall that pred(�) is the predicate
'1 ∧ … ∧ 'n that is satisfied by every state s̄ ∈ S such that
path( , s̄) = �. Moreover, recall that each 'j is a predicate
over S. For 0 ≤ i < l, we create a copy of pred(�) using the
variables Xi so that it is satisfied iff �(Xi) satisfies pred(�).
For a ∈ A, let paths( , a) denote the set of paths in  that
end in the action a. We add a constraint that states that if
⋁

�∈paths( ,a) pred(�) is true at time i, then �(Yi) = a. Finally,
when MB is a forest, we need to count the number of trees
that vote for each action and set �(Yi) to equal the action with
the highest count.

Remark 2. (The size of the SMT program). In the construc-
tion in Theorem 3, as is standard in BMC, we use roughly l
copies of , where the size of each copy depends on the
representation size of . In addition, we need a constraint
that represents Ω, which in our examples, is of size O(l). The
main bottleneck are the constraints that represent �. Each path
appears exactly once in a constraint, and we use l+1 copies
of �, thus the total size of these constraints is O(l⋅|�|), where
|�| is the number of paths in the trees in the forest.

Example 3. Recall the description of the plant in Example 1
in which a taxi travels in a grid. We illustrate how to simulate
the plant using an SMT program. A state at time i is a 2⋅(k+1)
tuple of variables

(

xi0, y
i
0,… , xik, y

i
k
)

that take integer values
in {0,… , n}. The position of the taxi at time i is (xi0, y

i
0) and

the position of Passenger j is (xij , y
i
j). The transition function

is represented using constraints. For example, the constraint
(

Yi = up
)

→
(

(xi+10 = xi0) ∧ (y
i+1
0 = yi0 + 1)

)

means that
when the action up is taken, the taxi moves one step up. The
constraint ¬

(

(xi+10 = xij) ∧ (y
i+1
0 = yij)

)

→
(

(xi+1j = xij) ∧
(yi+1j = yij)

)

means that if Passenger j is not collected by the
taxi at time i + 1, its location should not change. A key point
is that when Passenger j is collected, we do not constrain
his new location, thus we replace the randomness in  with
nondeterminism.

a) Verification: In verification, our goal is to find viola-
tions of the wizard for a given specification.

Example 4. We show how to express the specification “the
taxi never enters a loop in which no passenger is collected”
as an SMT constraint based on the construction in Example 3.
We simplify slightly and use the constraint

(

xl0 = x
0
0∧y

l
0 = y

0
0
)

that means that the taxi returns to its initial position to close
a cycle at the end of the trace. We add a second constraint
⋀

1≤j≤k
⋀

1≤i≤l
(

x0j = xij ∧ y
0
j = yij

)

that means that all
passengers stay in their original position throughout the trace.
In Fig. 3 (right), we depict a lasso-shaped trace that witnesses
a violation of this property.

Remark 3 (Soundness). The benefit of using magic books
is scalability, and the draw-back is soundness. For example,
when the SMT formula is unsatisfiable for a bound l ∈ IN,
this only means that there are no violations of the magic
book of length l, and there can still be a violation of the
wizard. To regain soundness we would need guarantees on the
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Step 9 Step 30

Fig. 3: Examples found using BMC. Left: a snapshot of step 9 of the
simulation showing the closest passenger was not collected first. The
passenger collected first is shown as a hollow circle. The passengers
not yet collected are shown as filled black circles. Right: a snapshot
of step 30 of the simulation of a “lasso”-shaped trace of the taxi that
entered a loop without collecting any passengers.

relation between the magic book and the wizard. An example
of a guarantee is that the two functions coincide, thus for
every state s̄ ∈ S, we have WIZ(s̄) = MB(s̄). However, if at
all possible, we expect such a strong guarantee to come at
the expense of a huge magic book, thus bringing us back to
square one. We are more optimistic that one can find small
magic books with approximation guarantees. For example, one
can define a magic book as a function MB ∶ S → 2A that
“suggests” a set of actions rather than only one, and require
that for every state s̄ ∈ S, we have WIZ(s̄) ∈ MB(s̄). Such
guarantees suffice to regain soundness both in BMC and for
the synthesis application in Section III-C. We leave for future
work obtaining such magic books.

b) Explainability: We illustrate how BMC can be used
as an XAI tool. BMC allows us to find corner-case traces that
are hard to find in a manual simulation and the individual
traces can serve as explanations. For example, in Fig. 3 (left),
we depict a trace that is obtained using BMC for the property
“the first passenger to be collected is not the closest”.

A second application of BMC is based on gathering a large
number of traces. We construct a small human-readable model
that explains the decision procedure of the wizard. We note
that while the magic book is already a small model that
approximates the wizard, its size is way too large for a human
to reason about. For us, a small model is one decision tree
of depth at most 4. Moreover, the magic book is a “local”
function, its type is from states to actions, whereas a human
is typically interested in “global” behavior, e.g., which action
to take next as opposed to which passenger is collected next,
respectively.

We rely on the user to supply specifications Ω1,… ,Ωm.
We gather a dataset that consists of pairs of the form (s̄, i),
for each 1 ≤ i ≤ m, where s̄ is such that when the plant starts
at configuration s̄ under the control of the wizard, then Ωi is
satisfied. To find many traces that satisfy Ωi, we iteratively
call an SMT solver. Suppose it finds a trace � ∈ Ωi. Then,
before the next call, we add the constraint ¬� to the SMT
program so that � is not found again. In practice, the amortized
running time of this simple algorithm is low. One reason is
that generating the SMT program takes considerable time,
even when comparing to the time it takes to solve it. This
running time is essentially amortized over all executions since
the running time of adding a single constraint is negligible.

In addition, the SMT solver learns the structure of the SMT
program and uses it to speed up subsequent executions.

Example 5. Suppose we are interested in understanding if and
how the wizard prioritizes collecting passengers. We consider
the specifications “Passenger j is collected first”, for 1 ≤ j ≤
k. It can be formalized using the following constraints. The
constraint

⋀

1≤i≤l(x
i
j = x

0
j ∧ y

i
j = y

0
j ) means that Passenger j

is not collected since it stays in place throughout the whole
trace, and we add such a constraint for all but one passenger.
The constraint ¬(xlj = x

0
j ∧ y

l
j = y

0
j ) means that Passenger j

must have been collected at least once since its final position
differs from his initial position. In Fig. 4 we depict a tree that
we extract using these specifications.

V. EXPERIMENTS

a) Setup: We illustrate our approach using an implemen-
tation of the case study that is our running example: a taxi
traveling on a grid and collecting passengers. We set the size
of the grid to be n = 10 and the number of passengers to
m = 3, thus the state space is almost 108. All simulations
were programmed in Python and run on a personal computer
with an Intel Core i3-4130 3.40GHz CPU, 7.7 GiB memory
runnning Ubuntu.

b) Training a wizard using deep RL: The plant state in
our training is a 6-tuple that, for each passenger, contains the
distances to the taxi on both axes. When the taxi collects a
passenger, the agent receives a reward of 100. Multi-objective
RL is notoriously difficult because the agent gets confused by
the various targets. We thus found it useful to add a “hint”
when the taxi does not collect a passenger: at time t > 1,
if a passenger is not collected, the agent receives a reward
of maxi=1,2,3

(

1∕dt+1,i − 1∕dt,i
)

, where dj,i, for j ≥ 1 and
i ∈ {1, 2, 3}, is the manhattan distance between the taxi and
passenger i at time j. We use the Python library Keras [36]
and the “Adam” optimizer [37] to minimize mean squared
error loss. We train a NN with two hidden layers that use
a ReLU activation function and with 200 and 100 neurons,
respectively, and a linear output layer. Each episode consists
of 1000 steps and we train for 2000 episodes.

c) Extracting the magic book: We extract configuration-
action pairs from 1000 episodes of the trained agent. We use
Python’s scikit-learn library [38] to fit one of the tree-based
classification model to the obtained dataset. Table I depicts
a comparison between the models and the wizard on 200
episodes. Performance refers to the total number of passengers
collected in a simulation. It is encouraging that small forests
with shallow trees (of depth not more than 10) approximate
the wizard well.

d) Synthesis: Following expert advice: The specification
we consider is “reach a gas station every t time steps”, for
some t ∈ IN. Our controllers exhibit performance that is not
too far from the wizard: see Table I for the performance with
t = 30 and synthesis based on different tree models (take
into account that the wizard does not visit the gas station).
We view this experiment as a success: we achieve our goal
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Num. of collected passengers DT(10) RF(5,6) xGB(100,10) Wizard
Avg. performance 147 154 158 159
Max. performance 194 194 190 200
Synthesis avg. performance 122 96 – –

TABLE I: Performances of the wizard compared to three classifiers:
decision tree DT(depth), random forest RF(trees, depth), and extreme
gradient boosting xGB(trees, depth). Each simulation was ran 10
times for an arbitrary s̄0 and time bound T = 1000.

Bound Passenger 1 Passenger 2 Passenger 3
runtime succ. ratio runtime succ. ratio runtime succ. ratio

6 0.26 s 82.8 % 0.25 s 85 % 0.25 s 81.2 %
7 0.30 s 76.9 % 0.30 s 87.2 % 0.30 s 84.2 %
8 0.37 s 85.2 % 0.36 s 89.9 % 0.37 s 88.7 %
9 0.44 s 85.1 % 0.47 s 82.2 % 0.49 s 79.7 %

TABLE II: Results for BMC with bounds 6 − 9 using a forest with
5 trees of depth 10 as a magic book. The amortized running times
for obtaining a trace, over 250 traces, and the ratio of traces that are
witnesses for the wizard.

of synthesizing a correct controller that achieves favorable
performance. We point out that since traditional synthesis does
not address performance, a controller that it produces visits the
gas station every t steps but does not collect any passenger.

e) Comparing with a shield-based approach: A shield-
based controller [13], [14] consists of a shield that uses a
wizard as a black box: given a plant state s̄, the wizard is run
to obtain a = WIZ(s̄), then a is fed to the shield to obtain
a′ ∈ A, which is issued to the plant. We demonstrate how our
synthesis procedure manages to open up the black-box wizard.
In Fig. 5, we depict the result of an experiment in which we
add a wall to the grid that was not present in training. Crossing
a wall is inherently impossible for the shield-based controller
since when the wizard suggests an action that is not allowed,
the best the shield can do is choose an arbitrary substitute.
Our controller, on the other hand, intuitively directs the taxi
to areas in the grid where the magic book is “certain” of its
actions (a notion which is convenient to define when the magic
book is a forest). Since these positions are often located near
passengers, the taxi manages to cross the wall.

f) BMC: Scalability and success rate: We use the stan-
dard state-of-the-art SMT solver Z3 [12] to solve BMC. In
Table II, we consider the following specifications for XAI:
“Passenger i is collected first and at time l, even though
it is not closest”, where l is the bound for BMC and for
i ∈ {1, 2, 3}. We perform the following experiment 10 times
and average the results. We run BMC to collect 250 traces.
We depict the amortized running time of finding a trace, i.e.,
the total running time divided by 250. Recall that the traces
witness the magic book. We count the number of traces out of
the 250 that also witness the wizard, and depict their ratio. We
find both results encouraging: finding a dataset of non-trivial
witness traces of the wizard is feasible.

g) Wizard-based BMC: We implemented a BMC pro-
cedure that simulates the wizard instead of the magic book
and ran it using Z3. We observe extremely poor scalability:
an extremely modest SMT query to find a path of length 2
timed-out at 20min, and even when the initial state is set, the
running time is 4.51min!

Fig. 4: A decision tree extracted from a 1200-sample dataset, obtained
using BMC, of the form (s̄, i) ∈ S × {1, 2, 3}, where passenger i is
collected first from the initial state s̄.

Step 16 Step 30

Fig. 5: Snapshots of simulations showing that a controller, synthe-
sized using a magic-book, crosses a wall (left) whereas a shield-based
controller is stuck (right).

h) BMC: Verification and Explainability: For verifica-
tion, we consider the specifications “the taxi never hits the
wall” and “the taxi never enters a loop in which no passenger is
collected”. Even though violations of these specifications were
not observed in numerous simulations, we find counterexam-
ples for both (see a depiction for the second property in Fig. 3
on the right). We illustrate explainability with the property
“the closest passenger is not collected first” by depicting an
example trace for it in Fig. 3 on the left. In Fig. 4, we depict
a decision tree, obtained from a dataset consisting of 1200
examples, as an attempt to explain when the wizard chooses
to collect passenger i first, for i ∈ {1, 2, 3}.

VI. DISCUSSION

In this work, we address the controller-design problem using
a combination of techniques from formal methods and machine
learning. The challenge in this combination is that formal
methods struggle with the use of neural networks (NNs). We
bypass this difficulty using a novel procedure that, instead of
reasoning on the NN that deep RL trains (the wizard), extracts
from the wizard a small model that approximates its operation
(the magic book). We illustrate the advantage of using the
magic book by tackling problems that are currently out of
reach for either formal methods or machine learning separately.
Specifically, to the best of our knowledge, we are the first to
incorporate a magic book in a reactive synthesis procedure
thereby synthesizing a stand-alone controller with performance
considerations. Second, we use a magic-book based BMC
procedure as an XAI tool to increase the trustworthiness of
the wizard.
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We list several directions for future work. We find it an
interesting and important problem to extract magic books with
provable guarantees (see Remark 3). Another line of future
work is finding other domains in which magic books can
be extracted and other applications for magic books. One
concrete domain is in speeding up solvers (e.g., SAT, SMT,
QBF, etc). Recently, there are attempts at replacing traditional
engineered heuristics with learned heuristics (e.g, [39], [40]).
This approach was shown to be fruitful in [41], where an RL-
based SAT solver performed less operations than a standard
SAT solver. However, at runtime, the SAT solver has the upper
hand since the bottleneck becomes the calls to the NN. We
find it interesting to use a magic book instead of a NN in this
domain so that a solver would benefit from using a learned
heuristic without paying the cost of a high runtime.

Our synthesis procedure is based on an abstraction of the
plant. In the future, we plan to investigate an iterative refine-
ment scheme for the abstraction. Refinement in our setting is
not standard since it includes a quantitative game (e.g., [42]),
and more interesting, there is inaccuracy introduced by the
magic book and wizard. Refinement can be applied both to the
process of extracting the decision tree from the NN as well as
improving the performance of the wizard using training.
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Abstract—Artificial Neural Networks (ANNs) have demon-
strated remarkable utility in various challenging machine learn-
ing applications. While formally verified properties of their
behaviors are highly desired, they have proven notoriously
difficult to derive and enforce. Existing approaches typically
formulate this problem as a post facto analysis process. In this
paper, we present a novel learning framework that ensures such
formal guarantees are enforced by construction. Our technique
enables training provably correct networks with respect to a
broad class of safety properties, a capability that goes well-beyond
existing approaches, without compromising much accuracy. Our
key insight is that we can integrate an optimization-based
abstraction refinement loop into the learning process and operate
over dynamically constructed partitions of the input space that
considers accuracy and safety objectives synergistically. The
refinement procedure iteratively splits the input space from which
training data is drawn, guided by the efficacy with which such
partitions enable safety verification. We have implemented our
approach in a tool (ART) and applied it to enforce general safety
properties on unmanned aviator collision avoidance system ACAS
Xu dataset and the Collision Detection dataset. Importantly, we
empirically demonstrate that realizing safety does not come at
the price of much accuracy. Our methodology demonstrates that
an abstraction refinement methodology provides a meaningful
pathway for building both accurate and correct machine learning
networks.

I. INTRODUCTION

Artificial neural networks (ANNs) have emerged in recent
years as the primary computational structure for implementing
many challenging machine learning applications. Their success
has been due in large measure to their sophisticated architec-
ture, typically comprised of multiple layers of connected neu-
rons (or activation functions), in which each neuron represents
a possibly non-linear function over the inputs generated in a
previous layer. In a supervised setting, the goal of learning is to
identify the proper coefficients (i.e., weights) of these functions
that minimize differences between the outputs generated by the
network and ground truth, established via training samples.
The ability of ANNs to identify fine-grained distinctions
among their inputs through the execution of this process makes
them particularly useful in a variety of diverse domains such as
classification, image recognition, natural language translation,
or autonomous driving.

However, the most accurate ANNs may still be incorrect.
Consider, for instance, the ACAS Xu (Airborne Collision
Avoidance System) application that targets avoidance of midair
collisions between commercial aircraft [1], whose system
is controlled by a series of ANNs to produce horizontal

maneuver advisories. One example safety property states that
if a potential intruder is far away and is significantly slower
than one’s own vehicle, then regardless of the intruder’s and
subject’s direction, the ANN controller should output a Clear-
of-Con�ict advisory (as it is unlikely that the intruder can
collide with the subject). Unfortunately, even a sophisticated
ANN handler used in the ACAS Xu system, although well-
trained, has been shown to violate this property [2]. Thus,
ensuring the reliability of ANNs, especially those adopted
in safety-critical applications, is increasingly viewed as a
necessity.

The programming languages and formal methods commu-
nity has responded to this familiar, albeit challenging, problem
with increasingly sophisticated and scalable veri�cation ap-
proaches [2]–[5] — given a trained ANN and a property, these
approaches either certify that the ANN satisfies the property
or identify a potential violation of the property. Unfortunately,
when verification fails, these approaches provide no insight
on how to effectively leverage verification counterexamples to
repair complex, uninterpretable networks and ensure safety.
Further, many verification approaches focus on a popular, but
ultimately, narrow class of properties — local robustness —
expressed over some, but not all of a network’s input space.

In this paper, we address the limitations of existing veri-
fication approaches by proposing a novel training approach
for generation of ANNs that are correct-by-construction with
respect to a broad class of correctness properties expressed
over the network's inputs. Our training approach integrates
correctness properties into the training objective through a
correctness loss function that quantifies the violation of the
correctness properties. Further, to enable certification of cor-
rectness of a possibly infinite set of network behaviors, our
training approach employs abstract interpretation methods [4],
[6] to generate sound abstractions of both the input space and
the network itself. Finally, to ensure the trained network is both
correct and accurate with respect to training data, our approach
iteratively refines the precision of the input abstraction, guided
by the value of the correctness loss function. Our approach is
sound — if the correctness loss reduces to 0, the generated
ANN is guaranteed to satisfy the associated correctness prop-
erties.

The work�ow of this overall approach — Abstraction
Refinement-guided Training (ART) — is shown in Fig. 1.
ART takes as input a correctness property (�in;�out) that pre-
scribes desired network output behavior using logic constraints
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Fig. 1: The ART framework.

Φout when the inputs to the network are within a domain
described by Φin. ART is parameterized by an abstract domain
D that yields an abstraction over inputs in Φin. Additionally,
ART takes a set of labeled training data. The correctness loss
function quantifies the distance of the abstract network output
from the correctness constraint Φout. In each training iteration,
ART both updates the network weights and refines the input
abstraction. The network weights are updated using classical
gradient descent optimization to mitigate the correctness loss
(upper loop of Fig. 1) and the standard accuracy loss (lower
loop of Fig. 1). The abstraction refinement utilizes information
provided by the correctness loss to improve the precision of
the abstract network output (the top arrow of Fig. 1). As we
show in Section V, the key novelty of our approach - exploiting
the synergy between refinement and approximation - (a) often
leads to, at worst, mild impact on accuracy compared to a safe
oracle baseline; and (b) provides significantly higher assurance
on network correctness than existing verification or training [7]
methods which do not exploit abstraction refinement.

This paper makes the following contributions. (1) We
present an abstract interpretation-guided training strategy for
building correct-by-construction neural networks, defined with
respect to a rich class of safety properties, including functional
correctness properties that relate input and output structure.
(2) We define an input space abstraction refinement loop that
reduces training on input data to training on input space
partitions, where the precision of the abstraction is, in turn,
guided by a notion of correctness loss as determined by the
correctness property. (3) We formalize soundness claims that
capture correctness guarantees provided by our methodology;
these results characterize the ability of our approach to ensure
correctness with respect to domain-specific correctness prop-
erties. (4) We have implemented our ideas in a tool (ART) and
applied it to challenging benchmarks including the ACAS Xu
collision avoidance dataset [1], [2] and the Collision Detection
dataset [8]. We provide a detailed evaluation study quantifying
the effectiveness of our approach and assess its utility to
ensure correctness guarantees without compromising accuracy.
We additionally provide a comparison of our approach with
post facto counterexample-guided verification strategies to
demonstrate the benefits of ART’s methodology compared to
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Fig. 2: A monitoring system using 2-layer ReLU network.

such techniques.
The remainder of the paper is organized as follows. In

the next section, we provide a detailed motivating example
that illustrates our approach. Section III provides background
and Section IV formalizes our approach. Details about ART’s
implementation and evaluation are provided in Section V.
Related work and conclusions are presented in Section VI
and VII, resp.

II. ILLUSTRATIVE EXAMPLE

We illustrate and motivate the key components of our
approach by starting with a realistic, albeit simple, end-to-end
example. We consider the construction of a learning-enabled
system for autonomous driving. The learning objective is to
identify potentially dangerous objects within a prescribed
range of the vehicle’s current position.

Problem Setup. For the purpose of this example, we simplify
our scenario by assuming that we track only a single object and
that the information given by the vehicle’s radar is a feature
vector of size two, containing (a) the object’s normalized
relative speed v ∈ [−5, 5] where the positive values mean
that the objects are getting closer; and (b) the object’s relative
angular position θ ∈ [−π, π] in a polar coordinate system
with our vehicle located in the center. Either action Report or
action Ignore is advised by the system for this object given
the information.

Consider an implementation of an ANN for this problem
that uses a 2-layer ReLU neural network F with initialized
weights as depicted in Fig. 2. The network takes an input
vector x = (v, θ) and outputs a prediction score vector
y = (y1, y2) for actions Report and Ignore, respectively. The
action with higher prediction score is picked by the advisory
system. For simplicity, both layers in F are linear layers with
2 neurons and without bias terms. An element-wise ReLU
activation function relu(x) = max(x, 0) is applied after the
first layer.

Correctness Property. To serve as a useful advisory system,
we can ascribe some correctness properties that we would like
the network to always satisfy. While our approach generalizes
to an arbitrary number of the correctness properties that one
may wish to enforce, we focus on one such correctness
property Φ in this example: Objects in front of the vehicle
that are stationary or moving closer should not be ignored.
The meaning of “stationary or moving closer” and “in front
of ” can be interpreted in terms of predicates Φin and Φout over
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feature vector components such as v � 0 and � 2 [0:5; 2:5]1,
respectively. Using such representations and recalling that
v 2 [�5; 5], � = (�in;�out) can be precisely formulated
as:

8v; �: v 2 [0; 5] ^ � 2 [0:5; 2:5]︸ ︷︷ ︸
Φin

^ y = F (v; �)) y1 > y2︸ ︷︷ ︸
Φout

:

Observe that this property is violated with the network and
the example input shown in Fig. 2.

Concrete Correctness Loss Function. To quantify how correct
F is on inputs satisfying predicate �in, we define a correctness
loss function, denoted distg , over the output y of the neural
network and the output predicate �out:

distg(y;�out) = min
q|=Φout

g(y; q);

parameterized on a distance function g over the input
space such as the Manhattan distance (L1-norm), Euclidean
distance (Euclid-norm), etc. The correctness distance function
is intentionally defined to be semantically meaningful—when
distg(y;�out) = 0, it follows that y satisfies the output
predicate �out. This function can then be used as a loss
function, among other training objectives to train the
neural network towards satisfying (�in;�out). For this
example, we can compute the correctness distance of the
network output y = (y1; y2) from �out = y1 > y2 to be
distEuclid(y;�out) = max

(
(y2 � y1)=

p
2; 0
)

which is
calculated based on the Euclidean distance between point
(y1; y2) and line y2 � y1 = 0.

Abstract Domain. A general correctness property like � is
often defined over an infinite set of data points; however,
since training necessarily is performed using only a finite set
of samples, we cannot generalize observations made on just
these samples to assert the validity of � on the trained network.
Our approach, therefore, leverages abstract interpretation tech-
niques to generate sound abstractions of both the network input
space and the network itself. By training on these abstractions,
our method obtains a finite approximation of the infinite set of
possible network behaviors, enabling correct-by-construction
training.

We parameterize our approach on any abstract domain that
serves as a sound over-approximation of a neural network’s
behavior, i.e., abstractions in which an abstract output is
guaranteed to subsume all possible outputs for the set of
abstract inputs. In the example, we consider the interval
abstract domain I that is simple enough to motivate the core
ideas of our approach. We note that ART is not bound to
specific abstract domains, the interval domain is used only for
illustrative purposes here, our experiments in Section V are
conducted using more precise abstractions.

An interval abstraction of our 2-layer ReLU network,
denoted FI , is shown in Fig. 3. The concrete neural network

1We pick [0.5, 2.5] because it is slightly wider than the front view angle
of [π

4
, 3π

4
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Fig. 3: The 2-layer ReLU network over interval domain.

computation F is abstracted by maintaining the lower and
upper bounds [u; u] of each neuron u. For neuron p2 in this
example, following interval arithmetic [9], the lower bound
of neuron is computed by p2 = 1 � v + (�1) � � = �2:5 and
the upper bound p2 = 1 � v + (�1) � � = 4:5. For ReLU
activation function, FI resets negative lower bounds to 0 and
preserves everything else. Consider neurons p2 ! q2, lower
bound q2 is reset to 0 while its upper bound q2 remains
unchanged. In this way, FI soundly over-approximates all
possible outputs generated by the network given any inputs
satisfying �in. Applying FI , the neural network’s abstract
output is y1 2 [�4:25; 6:25] and y2 2 [0:125; 7:625], which
fails to show that y1 > y2 always holds. As a counterexample
depicted in Fig. 2, the input v = 4^ � = 1 leads to violation.

Abstract Correctness Loss Function. Given �in, to quantify
how correct F is based on the abstract output y#, we can also
define an abstract correctness loss function, denoted Lg , over
y# and the output predicate �out:

Lg(y
#;�out) = max

y∈γ(y#)
distg(y;�out);

where (y#) maps y# to the set of values it represents in
the concrete domain and g is a distance function over the
input space as before. In our example, LEuclid(y#;�out) =

max
(

(y2 � y1)=
p

2; 0
)

= 11:875=
p

2.
Measuring the worst-case distance of possible outputs

to �out, Lg is also semantically meaningful — when
Lg(y

#;�out) = 0, it follows that all possible values rep-
resented by y# satisfy the output predicate �out. In other
words, the trained neural network F is certified safe w.r.t.
the correctness property �.
Lg can be leveraged as the objective function during

optimization. The min and max units in Lg can be
implemented using MaxPooling and MinPooling units,
and hence is differentiable. Then we can use off-the-shelf
automatic differentiation libraries [10] in the usual fashion
to derive and backpropagate the gradients and readjust F ’s
weights towards minimizing Lg .

Input Space Abstraction Re�nement. The abstract correctness
loss function Lg provides a direction for neural network
weight optimization. However, Lg could be overly imprecise
since the amount of spurious cases introduced by the neural
network abstraction is correlated with the size of the abstract
input region. This kind of imprecision leads to sub-optimal
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optimization, ultimately hurting the feasibility of correct-by-
construction as well as the model accuracy.

Such imprecision arises easily when using less precise
abstract domains like the interval domain. For our running
example, by bisecting the input space along each dimen-
sion, the resulting abstract correctness loss values of each
region range from 3:125=

p
2 to 9:125=

p
2. If the original

abstract correctness loss 11:875=
p

2 pertains to a real input,
it should be re�ected in some sub-region as well. Now that
9:125=

p
2 < 11:875=

p
2, the original abstract correctness loss

must be spurious and thus suboptimal for optimization.
To use more accurate gradients for network weight

optimization, our approach leverages the above observation
to also iteratively partition the input region �in during
training. In other words, we seek for an input space
abstraction refinement mechanism that reduces imprecise
abstract correctness loss introduced by abstract interpretation.
Notably, incorporating input space abstraction refinement
with the gradient descent optimizer does not compromise the
soundness of our approach. As long as all sub-regions of �in

are provably correct, the network’s correctness with respect
to �in trivially holds.

Iterative Training. Our training algorithm interweaves input
space abstraction refinement and gradient descent training on
a network abstraction in each training iteration by leveraging
the correctness loss function produced by the network abstract
interpreter (as depicted in Fig. 1), until a provably correct
ANN is trained. The refined input abstractions computed in
an iteration are used for training over the abstract domain in
the next iteration.

For our illustrative example, we set the learning rate of
the optimizer to be 0:01. In our experiment, the maximum
correctness loss among all refined input space abstractions
drops to 0 after 11 iterations. Convergence was achieved by
heuristically partitioning the input space �in into 76 regions.
The trained ANN is guaranteed to satisfy the correctness
property (�in;�out).

III. BACKGROUND

Definition III.1 (Neural network). Neural networks are func-
tions F : Rd ! Re composed of Q layers and Q�1 activation
functions. Each layer is a function fk(�) 2 Rmk−1 ! Rmk

for k = 1; : : : ; Q where m0 = d and mQ = e. Each
activation function is of the form �k(�) 2 Rmk ! Rmk for
k = 1; : : : ; Q�1. Then, F = fQ ��Q−1 �fQ−1 � : : :��1 �f1.

Definition III.2 (Abstraction). An abstraction D is defined as
a tuple: hDc;Da; �; ; T i where
• Dc : fx j x 2 Rdg and where d 2 Z+ is the concrete

domain;
• Da is the abstract domain of interest;
• �(�) is an abstraction function that maps a set of concrete

elements to an abstract element;
• (�) is a concretization function that maps an abstract

element to a set of concrete elements;

• T =
{

(Tc; Ta) j Tc(�) : Dc ! Dc; Ta(�) : Da ! Da
}

is
a set of transformer pairs over Dc and Da.

An abstraction is sound if for all S � Dc, S � (�(S)) holds
and given (Tc; Ta) 2 T ,

8c 2 Dc; a 2 Da; c 2 (a) =) Tc(c) 2 (Ta(a)):

Definition III.3 (D-compatible). Given a sound abstraction
D = hDc;Da; �; ; T i, a neural network F is D-compatible
iff for every layer or activation function �(�) in F , there exists
an abstract transformer Ta such that

(
�(�); Ta

)
2 T , and Ta is

differentiable at least almost everywhere.
For a D-compatible neural network F , we denote by FD :
Da ! Da the over-approximation of F where every layer
fk(�) and activation function �k(�) in F are replaced in FD
by their corresponding abstract transformers in D.

Although our approach is parametric over abstract domains,
we do require every abstract transformer Ta associated with
these domains to be differentiable, so as to enable training
using the worst cases over-approximated over D via gradient-
descent style optimization algorithms.

To reason about a neural network over an abstraction D, we
need to first characterize what it means for an ANN to operate
over D.

Definition III.4 (Evaluation over Abstract Domain). Given
a D-compatible neural network F , the evaluation of F over
D and a range of inputs X 2 Da is FD(X) where FD(X)
over-approximates all possible outputs in the concrete domain
corresponding to any input covered by X .

Theorem III.1 (Over-approximation Soundness). For sound
abstraction D, given a D-compatible neural network F , a
range of inputs X 2 Da,

8x: x 2 (X) ) F (x) 2 
(
FD (X)

)
:

Proofs of all theorems are provided in the supplemental
material [11].

IV. CORRECT-BY-CONSTRUCTION TRAINING

Our approach aims to train an ANN F with respect to a
correctness property �, which is formally defined in Sec-
tion IV-A. The abstraction of F w.r.t. � based on abstract
domain D essentially can be seen as a function parameterized
over the weights of F , which can nonetheless be trained to
fit � using standard optimization algorithms. Section IV-B
formally defines the abstract correctness loss function LD to
guide the optimization of F ’s weights over D. Such an abstrac-
tion inevitably introduces spurious data samples into training
due to over-approximation. Section IV-C introduces the idea
of input space abstraction and re�nement as a mechanism
that can reduce such spuriousness during optimization over
D. The detailed pseudocode of ART algorithm, including the
refinement procedure, is presented in Section IV-D.
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A. Correctness Property

The correctness properties we consider are expressed as
logical propositions over the network’s inputs and outputs. We
assume that an ANN correctness property expresses constraints
on the outputs, given assumptions on the inputs.

Definition IV.1 (Correctness Property). Given a neural net-
work F : Rd ! Re, a correctness property � = (�in;�out)
is a tuple in which �in defines a bounded input domain over
Rd in the form of an interval [x; x] where x; x 2 Rd, are
lower, upper bounds, resp., on the network input; and �out

is a quantifier-free Boolean combination of linear inequalities
over the network output vector y 2 Re:

h�outi ::= hPi j :hPi j hPi ^ hPi j hPi _ hPi;

hPi ::= A � y � b where A 2 Re; b 2 R;

An input vector x 2 Rd is said to satisfy �in = [x; x],
denoted x j= �in, iff x � x � x. An output vector y 2 Re

satisfies �out, denoted y j= �out, iff �out(y) is true. A neural
network F : Rd ! Re satisfies �, denoted F j= �, iff 8x: x j=
�in ) F (x) j= �out.

Definition IV.2 (Concrete Correctness Loss Function). For
an atomic output predicate P , the concrete correctness loss
function, distg(y; P ), quantifies the distance from an output
vector y 2 Re to P :

distg(y; P ) = min
q|=P

g(y; q)

where g : Rd�Rd 7! Z≥0 is a differentiable distance function
over the inputs. Similarly, distg(y;�out), the “distance” from
an output vector y 2 Re to general output predicate �out, can
be computed efficiently by induction as long as g(�; �) can be
computed efficiently:
• distg(y; P ) and distg(y;:P ) can be computed using

basic arithmetic;
• distg(y; P1 ^ P2) = max(distg(y; P1); distg(y; P2));
• distg(y; P1 _ P2) = min(distg(y; P1); distg(y; P2)).

Note that distg(y;�out) may not represent the minimum
distance for arbitrary �out, but it is efficient to compute while
still retaining the following soundness theorem.

Theorem IV.1 (Zero Concrete Correctness Loss Soundness).
Given output predicate �out over Re and output vector y 2 Re,

distg(y;�out) = 0 =) y j= �out:

B. Over-approximation

To reason about correctness properties defined over an
infinite set of data points, our approach generates sound
abstractions of both the network input space and the network
itself, obtaining a finite approximation of the infinite set
of possible network behaviors. We start by quantifying the
abstract correctness loss of over-approximated outputs.

Definition IV.3 (Abstract Correctness Loss Function). Given
a sound abstraction D = hDc;Da; �; ; T i, a D-compatible

neural network F , and a correctness property � = (�in;�out),
the abstract correctness loss function is defined as:

LD,g(F;�) = max
p∈γ(YD)

distg(p;�out)

where YD = FD(�(�in)):

Here g : Rd � Rd 7! Z≥0 is a differentiable distance function
over concrete inputs as before.

The abstract correctness loss function measures the worst-
case distance to �out of any neural network outputs subsumed
by the abstract network output. It is designed to extend the
notion of concrete correctness loss to the abstract domain with
a similar soundness guarantee, as formulated in the following
theorem.

Theorem IV.2 (Zero Abstract Correctness Loss Soundness).
Given a sound abstraction D, a D-compatible neural network
F , and a correctness property �,

LD,g(F;�) = 0 =) F j= �:

In what follows, we fix the distance function g over concrete
inputs and denote the abstract correctness loss function simply
as LD.

C. Abstraction Re�nement

Recall that in Section II we illustrated how imprecision in
the correctness loss for a coarse abstraction can be mitigated
using an input space abstraction refinement mechanism. Our
notion of refinement is formally defined below.

Definition IV.4 (Input Space Abstraction). An input space
abstraction S refines a correctness property � = (�in;�out)

into a set of correctness properties S =
{(

�iin;�out

)}
such

that �in =
⋃
i �iin. Given a neural network F and an input

space abstraction S, F j= S ()
∧

Φ∈S F j= �.

Definition IV.5 (Input Space Abstraction Refinement). A well-
founded abstraction refinement v is a binary relation over a
set of input abstractions S = fS1; S2; : : :g such that:
• (re�exivity): 8Si 2 S, Si v Si;
• (refinement): 8Si 2 S and correctness property

(	in;	out),	in =
⋃

(Φj
in, )∈Si

�jin

 ^
 ∧

( ,Φj
out)∈Si

�jout , 	out


=) Si v f(	in;	out)g;

• (transitivity): 8S1; S2; S3 2 S , S1 v S2 ^ S2 v S3 =)
S1 v S3;

• (composition): 8S1; S2; S3; S4 2 S; S1 v S3 ^ S2 v
S4 =) S1 [ S2 v S3 [ S4.

The re�exivity, transitivity, and compositional requirements
for a well-founded refinement are natural. The re�nement
rule states that an input space abstraction S refines some
correctness property (	in;	out) if the union of all input
domains in S is equivalent to 	in and all output predicates in
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S are logically equivalent to 	out. This rule enables 	in to
be safely decomposed into a set of sub-domains. As a result,
the problem of enforcing coarse-grained correctness properties
on neural networks can be converted into one that enforces
multiple fine-grained properties, an easier problem to tackle
because much of the imprecision introduced by the coarse-
grained abstraction can now be eliminated.

Theorem IV.3 (Sufficient Condition via Refinement).

8F; S1; S2; S1 v S2 ^ F j= S1 =) F j= S2:

To do this, we naturally extend the notion of abstract correct-
ness loss over one property to an input space abstraction.

Definition IV.6 (Abstract Correctness Loss Function for In-
put Space Abstraction). Given a sound abstraction D, D-
compatible neural network F , and input space abstraction S,
the abstract correctness loss of F with respect to S is denoted
by2

LD(F; S) =
∑
Φ∈S

LD(F;�):

Theorem IV.4 (Zero Abstract Correctness Loss for Input
Space Abstraction). Given a sound abstraction D, a D-
compatible neural network F , and an input space abstraction
S,

LD(F; S) = 0 =) F j= S:

D. The ART Algorithm

The goal of our ANN training algorithm, given in Fig. 4, is
to optimize the network to have LD(F; S) reduce to 0, thereby
ensuring a correct-by-construction network. The algorithm
takes as input both an initial input space abstraction S and a
set of labeled training data

{
(xtrain; ylabel)

}
in order to achieve

correctness while maintaining high accuracy on the trained
model. The abstract correctness loss, denoted `D, is computed
at Line 4 according to Def. IV.3 and checked correctness by
comparing against 0. If `D = 0, as long as the accuracy loss,
denoted `A, is also satisfactory, ART returns a correct and
accurate network following Thm. IV.4.

The joint loss of `D and `A is used to guide the optimization
of neural network parameters using standard gradient-descent
algorithms. The requirement of abstract transformers being
differentiable at least almost anywhere in Def. III.3 enables
computation of gradients `D using off-the-shelf automatic
differentiation libraries [10].

Starting from Line 10, abstractions in S that have the largest
`D values represent the potentially most imprecise cases and
thus are chosen for refinement. During refinement, ART first
picks a dimension to refine using heuristic scores similar to [3].
The heuristic coarsely approximates the cumulative gradient
over one dimension, with a larger score suggesting greater
potential of decreasing correctness loss. The input abstraction
is then bisected along the picked dimension as refinement.

2We can refine the definition to have positive weighted importance of each
correctness property in S; ascribing different weights to different correctness
properties does not affect soundness.

Fig. 4: ART correct-by-construction training algorithm.

Require: Abstract domain D, D-compatible neural network
F , input space abstraction S, learning rate � 2 R+,
training data set f(xtrain; ylabel)g, accuracy loss function
LA, accuracy loss bound �A 2 R+, hyper-parameter k.

Ensure: Return the optimized F whose correctness properties
are enforced and accuracy loss bounded by �A.

1: procedure ART
2: ~W  all weights in F to optimize
3: while true do
4: `D; `A  LD(F; S); LA(F; f(xtrain; ylabel)g)
5: if `D = 0 ^ `A � �A then
6: return F
7: end if

. optimization
8: rF  ∂(`D+`A)

∂ ~W

9: ~W  ~W � � � rF
. refinement

10: T  Subset of S with k largest `D values
11: S′  S n T
12: for all (�iin;�

i
out) 2 T do

13: for all 	j
in 2 REFINE(�iin, `D) do

14: S′  S′ [ f(	j
in;�

i
out)g

15: end for
16: end for
17: S  S′

18: end while
19: end procedure

20: procedure REFINE(	in, `D)
21: for all dimension i of 	in do
22: scorei = ∂`D

∂{Ψin}i � jf	ingij
23: end for
24: dim arg max scorei . pick dimension
25: 	1

in;	
2
in  	in bisected along dimension dim

26: return
{

	1
in;	

2
in

}
27: end procedure

Corollary 1 (ART Soundness). Given a sound abstraction D,
a D-compatible neural network F , and an initial input space
abstraction S of correctness properties, if the ART algorithm
in Fig. 4 generates a neural network F ′, LD(F ′; S) = 0 and
F ′ j= S.

V. EVALUATION

We have performed an evaluation of our approach to vali-
date the feasibility of building neural networks that are correct-
by-construction over a range of correctness properties.3 All
experiments reported in this section were performed on a
Ubuntu 16.04 system with 3.2GHz CPU and NVidia GTX
1080 Ti GPU with 11GB memory. All experiments uses the

3The code is available at https://github.com/XuankangLin/ART.
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DeepPoly abstract domain [12] implemented on Python 3.7
and PyTorch 1.4 [10].

A. ACAS Xu Dataset

Our first evaluation study centers around the network archi-
tecture and correctness properties described in the Airborne
Collision Avoidance System for Unmanned Aircraft (ACAS
Xu) dataset [1], [2]. A family of 45 neural networks are used
in the avoidance system; each of these networks consists of
6 hidden layers with 50 neurons in each hidden layer. ReLU
activation functions are applied to all hidden layer neurons.
All 45 networks take a feature vector of size 5 as input
that encodes various aspects of an airborne environment. The
outputs of the networks are prediction scores over 5 advisory
actions to select the advisory action.

In the evaluation, we reason about sophisticated correctness
conditions of the ACAS Xu system in terms of its aggregated
ability to preserve up to 10 correctness properties [2] among
all 45 networks. Each network is supposed to satisfy some
subset of these 10 properties. All correctness properties �
can be formulated in terms of input (�in) and output (�out)
predicates as in Section IV-A.

Setup. Among the 45 provided networks, 36 are reported with
safety property violations and 9 are reported safe [2]. We
evaluate ART on those 36 unsafe networks to demonstrate the
effectiveness of generating correct-by-construction networks.
The test sets from unsafe networks may contain unsafe points
and are thus unauthentic, so we apply ART on those 9 already
safe networks to demonstrate the accuracy overhead when
enforcing the safety properties. Unfortunately, the training
and test sets to build these ACAS Xu networks are not
publicly available online. In spite of that, the ACAS Xu
dataset provides the state space of input states that is used for
training and over which the correctness properties are defined.
We, therefore, uniformly sample a total of 10k training set
and 5k test set data points from the state space. The labels are
collected by evaluating each of the provided 45 networks on
these sampled inputs, with those ACAS Xu networks serving
as oracles. Each network is then trained by ART using its
safety specification and the prepared training set, starting
with the provided weights when available or otherwise
randomly initialized weights. We record whether the trained
network is correct-by-construction, as well as their accuracy
evaluated on the prepared test set and the overall training time.

Applying ART. During each training epoch (i.e., each iteration
of the outermost while loop in Fig. 4), our implementation
refines up to k = 200 abstractions at a time that expose
the largest correctness losses. Larger k leads to finer-grained
abstractions but incurs more training cost. The Adam optimizer
[13] is used in both training tasks and runs up to 100 epochs
with learning rate 0:001 and a learning rate decay policy if
the loss has been stable for some time. Cross entropy loss is
used as the loss function for accuracy . For all experiments
with refinement enabled, refinement operations are applied to

TABLE I: Applying ART to ACAS Xu Dataset.

Refinement Safe% Min Accu. Mean Accu. Max Accu.

36 unsafe nets Yes
No

100%
94.44%

90.38%
87.88%

96.10%
94.45%

98.70%
98.22%

9 safe nets Yes
No

100%
88.89%

93.82%
86.32%

96.25%
94.29%

99.92%
99.92%
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Fig. 5: Correctness rate and accuracy change of post facto
training using sampled points or counterexamples. Results are
normalized based on the baseline networks.

derive up to 5k refined input space abstractions before weight
update starts. The detailed results are shown in Table I.

To demonstrate the importance of abstraction refinement
mechanism, we also compare between the results with
and without refinement (as done in existing work [6]).
For completeness, we record the correct-by-construction
enforced rate (Safe%) and the evaluated accuracy statistics
for both tasks among multiple runs. Observe that ART
successfully generates correct-by-construction networks for
all scenarios with only minimal loss in accuracy. On the
other hand, if refinement is disabled, it fails to generate
correct-by-construction networks for all cases, and displays
lower accuracy than the refinement-enabled instantiations.
The average training time for each network is 69.39s if with
refinement and 57.85s if without.

Comparison with post facto training loop. We also consider
a comparison of our abstraction refinement-guided training for
correct-by-construction networks against a post facto training
loop that feed concrete correctness related data points to
training loops. Such concrete points may be sampled from the
provided specification or the collected counterexamples from
an external solver. We show the results on 8 representative
networks comparing to the same baseline in Figure 5. These 8
networks belong to a representative set of networks that cover
all 10 provided safety properties.

For the experiment using sampled data points, 5k points
sampled from correctness properties are used during training.
For the experiment using counterexamples, all counterexam-
ples from correctness queries to external verifier ReluVal [3]
are collected and used during training. In both experiments, the
points from original training set are used for jointly training
to preserve accuracy and the correctness distance functions
following that in Section IV-B are used as loss functions.
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TABLE II: Applying ART to Collision Detection Dataset.

Refinement Enforced Accuracy Time

Original [8] N/A 328/500 99.87% N/A

ART
Yes
No

481/500
420/500

96.83%
86.3%

583s
419s

We concluded the experiments using counterexamples after
20 epochs since no improvement was seen after this point.
Both experiments fail to enforce correctness properties in most
cases and they may impose great impact to model accuracy
compared to the baseline network. We believe this result
demonstrates the difficulty of applying a counterexample-
guided training loop strategy for generating safe networks
compared an abstraction-guided methodology.

B. Collision Detection Dataset

Our second evaluation task focuses on the Collision Detec-
tion Dataset [8] where a neural network controller is used to
predict whether two vehicles running curve paths at different
speeds would collide. The network takes as input a feature
vector of size 6, containing the information of distances,
speeds, and directions of the two vehicle. The network output
prediction score are used to classify the scenario as a colliding
or non-colliding case.

A total of 500 correctness properties are proposed in the
Collision Detection dataset that identify the safety margins
around particular data points. The network presented in the
dataset respects 328 such properties. In our evaluation, we
use a 3-layer fully-connected neural network controller with
50, 128, 50 neurons in different hidden layers. Using the same
training configurations as in Section V-A and evaluating on the
same training and test sets provided in the dataset, the results
are shown in Table II. After 100 epochs, ART converged to
a local minimum and managed to certify 481 out of all 500
safety properties. Although it did not achieve zero correctness
loss, ART can produce a solution that satisfies significantly
more correctness properties than the oracle neural network, at
the cost of only a small accuracy drop.

VI. RELATED WORK

Neural Network Veri�cation. Inspired by the success of
applying program analysis to large software code bases, ab-
stract interpretation-based techniques have been adapted to
reason about ANNs by developing efficient abstract trans-
formers that relax nonlinearity of activation functions into
linear inequality constraints [4], [6]–[8], [12], [14], [15].
Similar approaches [16]–[19] encode nonlinearity via linear
outer bounds of activation functions and may delegate the
verification problem to SMT solvers [2], [20] or Mixed Integer
Programming solvers [21]–[23]. Most of those verifiers focus
on robustness properties only and do not support verifiable
training of network-wide correctness properties. For example,
[12] encodes concrete ANN operations into ELINA [24], a
numeric abstract transformer, and therefore disables opportu-
nities for training or optimization thereafter.

Correctness properties may also be retrofitted onto a
trained neural network for safety concerns [25]–[28]. These
approaches usually synthesize a reactive system that monitors
the potentially controller network and corrects any potentially
unsafe actions. Comparing to correct-by-construction methods,
runtime overheads are inevitable for such post facto shielding
techniques.

Correctness Properties in Neural Networks. There have been
a large number of recent efforts that have explored verifying
the robustness of networks against adversarial attacks [29]–
[31]. Recent work has shown how symbolic reasoning
approaches [3], [4] can be used to help validate network
robustness; other efforts combine optimization techniques
with symbolic reasoning to guide symbolic analysis [5]. Our
approach looks at the problem of verification and certification
from the perspective of general safety specifications that are
typically richer than notions of robustness governing these
other techniques and provide the correct-by-construction
guarantee upon training termination. Encoding logical
constraints other than robustness properties into loss functions
has been explored in [32]–[35]. However, they operate
only on concrete sample instances and do not provide any
correct-by-construction guarantees.

Training over Abstract Domains. The closest approach to our
setting is the work in [6], [36]. They introduced geometric
abstractions that bound activations as they propagate through
the network via abstract interpretation. Importantly, since
these convex abstractions are differentiable, neural networks
can optimize towards much tighter bounds to improve the
verified accuracy. A simple bounding technique based on
interval bound propagation was also exploited in [7] (similar
to the interval domain from [6]) to train verifiably robust
neural networks that even beat the state-of-the-art networks
in image classification tasks, demonstrating that a correct-
by-construction approach can indeed save the need of more
expensive verification procedures in challenging domains.
They did not, however, consider verification in the context
of global safety properties as discussed here, in which the
over-approximation error becomes non-negligible; nor did they
formulate their approach to be parametric in the specific form
of the abstractions chosen. Similar ideas have been exploited
in provable defenses works [36]–[39], however, they apply
best-effort adversarial defenses only and provide no guarantee
upon training termination.

VII. CONCLUSIONS

This paper presents a correct-by-construction toolchain that
can train neural networks with provable guarantees. The key
idea is to optimize a neural network over the abstraction of
both the input space and the network itself using abstraction
refinement mechanisms. Experimental results show that our
technique realizes trustworthy neural network systems for a
variety of properties and benchmarks with only mild impact
on model accuracy.
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Abstract—Verifying secure information flow by reducing it
to safety verification is a popular approach, based on con-
structing product programs or self-compositions of given pro-
grams. However, most such existing efforts are non-modular,
i.e., they do not infer relational specifications for procedures
in interprocedural programs. Such relational specifications can
help to verify security properties in a modular fashion, e.g.,
for verifying clients of library APIs. They also provide security
contracts at procedure boundaries to aid code understanding
and maintenance. There has been recent interest in constructing
modular product programs, but where users are required to
provide procedure summaries and related annotations. In this
work, we propose to automatically infer relational specifications
for procedures in modular product programs. Our approach uses
syntax-guided synthesis techniques and grammar templates that
target verification of secure information flow properties. This
enables automation of modular verification for such properties,
thereby reducing the annotation burden. We have implemented
our techniques on top of a solver for constrained Horn clauses
(CHC). Our evaluation demonstrates that our tool is capable
of inferring adequate relational specifications for procedures
without requiring annotations. Furthermore, it outperforms an
existing state-of-the-art hyperproperty verifier and a modular
CHC-based verifier on benchmarks with loops or recursion.

Index Terms—Formal verification, information security, model
checking

I. INTRODUCTION

The problem of verifying secure information flow is to
check that a program does not leak private inputs to pub-
lic outputs. To solve this problem, one can verify non-
interference [1]: for any two runs of a program with the same
public inputs but possibly different private inputs, the public
outputs of the program are equal. This property is an instance
of a hyperproperty, i.e., a relational property involving more
than one execution of the same program. In practice, non-
interference is often too strong a property to enforce. For
example, a password recognizer would have its public output
be influenced by whether or not the user-provided private input
is the correct password. A common approach is to allow values
that need to be leaked to be declassified [2].

Barthe et al. proposed verifying secure information flow by
reducing it to safety verification on a product or self-composed

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship Program under Grant No. DGE-
1656466. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. This work was supported in
part by the National Science Foundation award FMitF 1837030.

program [3]. Despite advancements in automated program
verifiers, the ability to perform successful safety verification in
practice can depend critically on how the product program is
constructed. Construction of product programs has thus been a
focus in subsequent efforts [4]–[14]. These efforts encompass
various syntactic and semantic transformations, heuristics, and
use of reinforcement learning for constructing suitable product
programs. Some relational property verifiers avoid explicitly
constructing product programs altogether [15]–[19].

A. Motivation

In this paper, we address a related but distinct limitation
of existing efforts based on reduction to safety. Most such
techniques are non-modular, i.e., they neither leverage nor
infer relational specifications for procedures in interprocedural
programs. In general, modular verification offers significant
benefits over non-modular techniques – it is inherently more
scalable, can provide procedure interface contracts (not only
verification results), and can improve code understanding
and maintenance. For example, relational specifications of
procedures can provide security contracts for library APIs,
such as in the S2N implementation of the TLS protocol [20].

A few existing approaches do leverage relational specifica-
tions of procedures, but they either restrict both copies of the
program to always follow the same control flow [6] or are not
automated [8], [21]. In particular, the work by Eilers et al. [21]
proposes a modular product program (MPP) construction,
which is suitable for performing modular relational program
verification. Intutively, this enables reduction to safety on a
per-procedure basis without constructing a monolithic product
program. In their implementation, VIPER back-end verifiers
checked secure-information-flow properties on benchmarks,
but each procedure required user-provided relational invariants
and related annotations rather than relying on tools to derive
them automatically. Placing this annotation burden on users
becomes a barrier to automated verification.

In general, deriving sufficient relational invariants for pro-
cedures is a challenging problem, and existing off-the-shelf
safety verifiers [22]–[28] may not be able to infer them. As
we will show, for verifying secure information flow, such
invariants often have a special form that is unlikely to be
produced by standard interpolation and existing heuristics in
these verifiers. For example, our experimental results (§VII)
show that SPACER often fails to infer invariants needed to
verify information flow in programs with recursion.
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B. Overview of Proposed Approach

In this work, we propose to use Syntax-Guided Synthesis
(SyGuS) [29] to automatically infer useful relational specifi-
cations about information flow in procedures. The structure
in information-flow specifications makes them suitable targets
for grammar-based enumerative search and synthesis. We have
chosen to work with MPPs because they enable modular
relational verification and they allow leveraging existing tech-
niques for construction of suitable product programs within
each procedure. We represent an MPP as a set of constrained
Horn clauses (CHCs), and our approach automatically infers
relational specifications that are sufficient for verifying the
program with respect to given security properties. If there
are no given security properties, our approach can still infer
relational specifications for procedures that are useful for code
understanding or subsequent verification.

Our SyGuS-based approach is based on an enumera-
tive search using grammars extracted from program syn-
tax. Enumerate-and-check approaches have been shown to
be effective for synthesis of quantifier-free invariants [27],
[30]–[32] and more recently quantified invariants for CHCs
handling arrays [33]. We show that such an approach is also
effective for information-flow properties.

We propose three templates to generate grammars for invari-
ant synthesis: one that expresses quantifier-free information-
flow properties, and two that express quantified properties,
which are often difficult to handle by existing automated
verifiers. Of the latter two, one infers quantified information-
flow properties over arrays, and the other infers specifications
involving the context in which a procedure is called, making
this template well-suited for inferring properties where de-
classification has occurred prior to the procedure being called,
since the declassified values will be low-security in the callee.

We have implemented our approach in a tool called
FLOWER. An evaluation on available benchmark exam-
ples demonstrates that it is effective in inferring useful
relational specifications of procedures, without requiring
any user-provided annotations. We also compared FLOWER
with other state-of-the-art tools: a hyperproperty verifier
(DESCARTES [15]) and a modular CHC-based verifier
(SPACER [25]). Our experiments demonstrate that our tool
generally outperforms them, especially on benchmark exam-
ples that contain loops or recursion.

In summary, this paper makes the following contributions:

• We propose a SyGuS-based approach for inference of
quantifier-free relational specifications for procedures for
verifying secure information flow (§IV, §V).

• We propose grammar templates for inferring such spec-
ifications with quantifiers, which are challenging for
existing verifiers (§VI).

• We have implemented our approach in a prototype tool
FLOWER and present an evaluation that shows its effec-
tiveness on several benchmarks1 (§VII).

1Our tool and translated benchmarks will be made publicly available.

main (int[] a, int n) {
a := init(a, 0);
outputter(a, 0);
return n;

}

init(a, i) {
if (i ≥ 64) return a;
declassify(a[i] = 0);
return init(a, i + 1);

}

outputter(a, i) {
if (i ≥ 64) return;
if (a[i] = 0) {
assert(low(a[i]));
print(a[i]);

}
outputter(a, i + 1);

}

main (b1, b2, a1, a2, n1, n2) {
a1, a2 := init(b1, b2, a1,

a2, 0, 0);
assert(outputter(b1, b2, a1,

a2, 0, 0));
return n1, n2;

}

init(b1, b2, a1, a2, i1, i2) {
if (¬(b1 ∧ i1 < 64 ∨

b2 ∧ i2 < 64))
return a1, a2;

l1 := b1 ∧ i1 < 64
l2 := b2 ∧ i2 < 64
assume (l1 ∧ l2 ⇒
(a1[i1] = 0) = (a2[i2] = 0));

return
init(l1, l2, a1,

a2, i1 + 1, i2 + 1);
}

outputter(b1, b2, a1, a2, i1, i2) {
if (¬(b1 ∧ i1 < 64 ∨

b2 ∧ i2 < 64))
return true;

l1 := b1 ∧ i1 < 64;
l2 := b2 ∧ i2 < 64;
t1 := l1 ∧ a1[i1] = 0;
t2 := l2 ∧ a2[i2] = 0;
print(t1, t2, a1[i1], a2[i2]);
ok := t1 ∧ t2 ⇒ a1[i1] = a2[i2];
ok := ok ∧

outputter(b1, b2, a1, a2,
i1 + 1, i2 + 1);

return ok;
}

Fig. 1: Example (left: original (P), right: modular product program (MP)).

To the best of our knowledge, among methods based on
product program construction, our work is the first to automate
modular relational verification for secure information flow.

II. MOTIVATING EXAMPLE

We demonstrate our approach on an example program P
shown in Fig. 1, inspired by a related work [34]. In main, a
call to init makes initial assumptions about the array a: for
each of the first 64 values in the array, the information about
whether or not the value is 0 is declassified recursively. Then,
these 64 entries are printed out by the recursive procedure
outputter, which contains an assertion that checks that
each of the values printed out is public (i.e., low-security)
output. Finally, main returns its second argument.

The security primitives used in this example are low,
which is a predicate that holds iff its argument is a low-
security variable, and declassify, which has the effect
of making the value of its argument low-security after the
point where declassify is invoked. Without assumptions
stating otherwise (i.e., either assume statements that indicate
that a value is low-security by using the low primitive or
declassify statements), we assume that all inputs are high-
security. In the example, after init is called and it declassifies
each a[i] = 0 value for i < 64, then the information
about whether or not any of the first 64 entries in a is
0 is considered to be public information. The outputter
procedure prints out the value of values of a[i] for i < 64
only under the condition that a[i] = 0. This behavior leaks
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exactly only the declassified information, so the assertion is
expected to hold for each call to outputter.

The modular product program MP for this example is shown
in Fig. 1 (right). Note that for each variable in P (even if
irrelevant to verification), MP has two copies reflecting the two
executions of the program, e.g., n is translated to n1 and n2.
For each procedure in P, two Boolean activation variables b1
and b2 are added as inputs to the corresponding procedure
in MP, where they respectively indicate whether the control
flow in the corresponding copy of the program has reached
the callsite. The idea is that relational specifications for
procedures hold when both copies of the program have reached
the same callsite, i.e., when both activation variables of the
callee are true. As a result, all the relational specifications that
we infer are implications in which the antecedent contains at
least b1 and b2 as conjuncts.

The translation to MP also shows how the information-flow
operation declassify is encoded as an assumption, and
how the information-flow specification low(a[i]) is trans-
lated into a relational property t1 ∧ t2⇒ a1[i1] = a2[i2] in
MP, where t1 and t2 were the activation variables under which
the specification low(a[i]) occurred. Finally, note that the
assertion in outputter has been hoisted to main in MP,
with the return value of outputter being true if and only
if no assertion failed.

We infer quantifier-free information-flow properties2 for
each procedure. For example, we can infer that for main of
MP, the property b1 ∧ b2 ∧ n1 = n2 ⇒ res1 = res2 holds,
where res1 and res2 represent the return values of main.
This property says that the output of main depends only on its
second argument, and it does not rely on any information about
whether the second argument or output of main is public or
private, nor does it express any such information.

We also infer quantified invariants, e.g., φ(i1):

∀j1, j2.i1 ≤ j1 ≤ 64∧j1 = j2 ⇒ (a1[j1] = 0) = (a2[j2] = 0)

We can then instantiate this property for the call to init
in main to determine that φ(0) is true when the call to
outputter is made. However, we cannot yet verify the
program because at this point we have not inferred sufficient
properties for outputter.

Finally, we use the context in which outputter is called
to influence the guesses that we make for the antecedent
in its relational specification. Then we infer the following
property for outputter, where res is the return value of
outputter: b1∧b2∧φ(0)∧i1 = i2∧0 ≤ i1⇒ res . Note
that this property contains quantifiers because φ(0) does. This
property enables us to verify that the assertion for the program
holds, leading to a successful conclusion.

III. BACKGROUND AND NOTATION

Here we describe the background on modular product
programs and their modeling as CHCs, secure information
flow, and relational invariants.

2We use properties interchangeably with procedure specifications.

proc(cond, x) {
if (cond)

x = x + 1;
else
x = 0;

return x;
}

proc(b1, b2, cond1, cond2, x1, x2) {
t1 = b1 ∧ cond1; f1 = b1 ∧ ¬ cond1;
t2 = b2 ∧ cond2; f1 = b2 ∧ ¬ cond2;
if (t1) x1 = x1 + 1; if (f1) x1 = 0;
if (t2) x2 = x2 + 1; if (f2) x2 = 0;
return x1, x2;

}

Fig. 2: Original (left) and modular product (right) programs.

A. Modular Product Programs

A k-hyperproperty expresses a property over k runs of the
same program. Product programs convert k-hyperproperties
into safety properties by creating k renamed versions of all the
original variables. In contrast to ordinary product programs,
modular product programs (MPP) avoid duplicating control
structures such as procedure calls by introducing Boolean ac-
tivation variables that indicate whether each program copy has
reached a certain execution point [21]. The current activation
variable for copy i is true if and only if copy i is currently at
that location. While the principles of construction of a modular
product program are defined in [21], we illustrate it with the
following example.

Example 1. Consider the procedure in Fig. 2, for which the
activation variables are initially b1 and b2. The activation
variables inside the then-branch (resp., else-branch) are t1
and t2 (resp., f1 and f2). Each update to variable x1 (resp.,
x2) is guarded by a condition so that the update is made only
when the corresponding current activation variable for the first
(resp., second) copy of the program is true. Note that any call
to proc will also be guarded by a condition that at least one of
b1 or b2 is true . If this doesn’t hold, then neither procedure
copy has reached the program point at which the procedure is
called, so the call should not be made.

For a modular product program with k copies, we define
partial functions idx and getIdx for conveniently handling
expressions with renamed copies of variables. For any expres-
sion e, getIdx (e) = i iff e represents an expression only over
variables from the ith copy; and for any expression e such
that getIdx (e) is defined: getIdx (idx (e, i)) = i. For example,
idx (b1 ∧ i1 < 64, 2) = b2 ∧ i2 < 64. We also use idx to
denote the lifting of idx to sets of expressions.

B. Secure Information Flow

We use a standard reduction [3] of a (termination-
insensitive) secure-information-flow property to a 2-
hyperproperty called non-interference [1], which ensures that
private inputs do not impact public outputs. For a procedure
f, this is formalized as follows:

∀l̄i , l̄o, h̄i , h̄o, ¯li ′, ¯lo′, h̄i ′, h̄o′ .

l̄o, h̄o = f(l̄i , h̄i) ∧ ¯lo′, h̄o′ = f( ¯li ′, h̄i
′
) ∧ l̄i = ¯li ′ ⇒ l̄o = ¯lo′

Variables l̄i and ¯li ′ represent public inputs to f and l̄o and ¯lo′

represent public outputs. Variables h̄i and h̄i ′ represent private
input variables to f and h̄o and h̄o′ represent private outputs.
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Non-interference states that for any two runs of f, one with
inputs l̄i , h̄i and one with inputs ¯li ′, h̄i ′, if their public inputs
are equal (i.e., l̄i = l̄i

′), then their public outputs should be
equal (i.e., l̄o = l̄o

′) regardless of the private inputs’ values.
In a modular product program, relational properties become

properties over a single run and take the form of an implication
whose antecedent implies the truth of all activation variables,
e.g., non-interference takes the following shape:

∀b1, b2, l̄i , l̄o, h̄i , h̄o, ¯li ′, ¯lo′, h̄i ′, h̄o′ .

b1 ∧ b2∧
l̄o, h̄o, ¯lo′, h̄o′ = f(b1, b2, l̄i ,

¯li ′, h̄i , h̄i ′) ∧ l̄i = ¯li ′ ⇒ l̄o = ¯lo′

Requiring non-interference can be restrictive since programs
may need some amount of leakage to exhibit the desired
behavior. Declassification can allow secure-information-flow
properties to be checked even for programs that leak some
information about high-security variables. Declassification is
encoded in modular product programs as an assumption that if
both programs reach the same declassify statement (i.e.,
if both activation variables are true), then the value being
declassified is equal across both copies of the program. Thus
declassify(e) is encoded as assume b1 ∧ b2 ⇒ e1 = e2.

C. Constrained Horn Clauses for Modular Verification

The problem of modular program verification can be ex-
pressed as a system of CHCs [35].

Definition 1. A CHC is an implicitly universally-quantified
implication, which is of the form body ⇒ head . LetR be a set
of uninterpreted predicates. The formula head may take either
the form R(ȳ) for R ∈ R or else ⊥. Implications in which
head =⊥ are called queries. The formula body may take the
form φ(x̄) or φ(x̄) ∧ R1(x̄1) ∧ . . . ∧ Rn(x̄n), where each Ri

is an uninterpreted predicate, and φ(x̄) is a fully interpreted
formula over x̄, which may contain all variables in each x̄i
and (if the head is of the form R(ȳ)) all variables in ȳ.

A system of CHCs for a particular program can be generated
by introducing an uninterpreted predicate per procedure (or a
loop head) and encoding the semantics of each procedure (or
a loop body) using these predicates. Fig. 3 gives an example
encoding of program MP in Fig. 1 (right). Note that print is
encoded as a nondeterministic procedure with no output.

Definition 2. A solution for a system of CHCs is a set
of interpretations for predicates in R that makes all CHC
implications valid.

Each interpretation can be viewed as a procedure summary
and expresses an invariant for the procedure. In the case of the
example program, the following interpretations are sufficient:

main 7→ λx̄.> print 7→ λȳ.>
init 7→ λb1, b2, a1, a2, i1, i2.φ(b1, b2, a1, a2, i1, i2)

outputter 7→ λb1, b2, a1, a2, i1, i2, res. 0 ≤ i1 ⇒ res ∧
i1 = i2 ∧ b1 ∧ b2 ∧ φ(b1, b2, a1, a2, i1, i2)

where φ(b1, b2, a1, a2, i1, i2) = ∀j1, j2.i1 ≤ j1 < 64 ∧ i1 =
i2 ∧ j1 = j2 ⇒ (a1[j1] = 0) = (a2[j2] = 0) and x̄ and ȳ are
vectors of variables of lengths 6 and 4, respectively.

Definition 3. For a mapping M of uninterpreted predicates
to interpretations, we say that the interpretations of M are
inductive iff they satisfy all non-query CHCs.

In particular, an M that maps each n-ary predicate R to
λx1, . . . , xn.> is inductive. For a formula F containing unin-
terpreted predicates, we let M(F ) be the result of replacing
each predicate with its interpretation in M . For an inductive
M , for each predicate R that represents a program procedure
r, M(R) is an overapproximation of the behavior of procedure
r. For a given CHC C in the system of CHCs, where C
is of the form R1(x̄1) ∧ . . . ∧ Rn(x̄n) ∧ φ(x̄) ⇒ head ,
an uninterpreted predicate Ri in its body can be unfolded
in the CHC by replacing the occurrence of Ri(x̄i) with
fresh(body i[ȳi 7→ x̄i], x̄i, x̄), where body i ⇒ Ri(ȳi) is
another CHC in the system of CHCs, body i[ȳi 7→ x̄i] is the
simultaneous substitution of variables in ȳi with variables in
x̄i in body i, and fresh(e, x̄i, x̄) is the result of replacing each
variable in e that does not occur in x̄i with a variable not in
x̄. We call the result of unfolding a predicate in a CHC C
(possibly many times) an unfolding of C.

Example 2. An unfolding of init in the CHC for main in
Fig. 3 is as follows: ¬(b1 ∧ k1 < 64 ∨ b2 ∧ k2 < 64) ∧ i1 =
i2 = k1 = k2 = 0∧ok ∧outputter(b1, b2, a1, a2, i1, i2, ok)⇒
main(b1, b2, a1, a2, n1, n2).

For a CHC C of the form R1(x̄1)∧ . . .∧Rn(x̄n)∧φ(x̄)⇒
head , we say that the following formula is the context (denoted
ctx (Ri, C)) for the uninterpreted predicate application Ri(x̄i):
j 6=i∧

1≤j≤n
M(Rj)(x̄j) ∧ φ(x̄). We naturally extend the mappings

M from uninterpreted predicates to contexts. That is, for the

formula above: M(ctx (Ri, C)) =
j 6=i∧

1≤j≤n
M(Rj)(x̄j) ∧ φ(x̄).

IV. SYGUS-BASED SUMMARY INFERENCE

This section describes our SyGuS-based algorithm for in-
ferring procedure summaries of modular product programs. It
takes CHCs as input and maintains a mapping M from unin-
terpreted predicates in the CHCs to inductive interpretations.
The algorithm updates M as it runs and maintains the invariant
that M ’s interpretations are inductive.

Our top-level procedure (Fig. 4) begins with an initial
mapping M from each n-ary predicate R ∈ R to the
coarsest interpretation possible. In pseudocode, we write
CHECKGUESSES(G,M,R) to refer to an iterative procedure
over all CHCs, where each application R(x̄) of symbol R is
replaced by formula λx̄.M(R)(x̄)∧makeGuess(G)(x̄), where
G is a set of guessed interpretations for R based on our gram-
mar templates and makeGuess(G) = λx̄.

∧
{g(x) | g ∈ G}.

The CHCs after the replacement are checked for validity
using an SMT solver: if for some CHC C, the corresponding
implication does not hold, then the current interpretation for R
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init(b1, b2, a1, a2, k1, k2) ∧ k1 = 0 ∧ k2 = 0∧
outputter(b1, b2, a1, a2, i1, i2, ok) ∧ i1 = 0 ∧ i2 = 0 ∧ ok ⇒ main(b1, b2, a1, a2, n1, n2)

¬(b1 ∧ i1 < 64 ∨ b2 ∧ i2 < 64) ⇒ init(b1, b2, a1, a2, i1, i2)

(b1 ∧ i1 < 64 ∨ b2 ∧ i2 < 64) ∧ l1 = b1 ∧ i1 < 64 ∧ l2 = b2 ∧ i2 < 64∧
(l1 ∧ l2 ⇒ (a1[i1] = 0) = (a2[i2] = 0)) ∧ init(l1, l2, a1, a2, i1 + 1, i2 + 1) ⇒ init(b1, b2, a1, a2, i1, i2)

¬(b1 ∧ i1 < 64 ∨ b2 ∧ i2 < 64) ⇒ outputter(b1, b2, a1, a2, i1, i2,>)

(b1 ∧ i1 < 64 ∨ b2 ∧ i2 < 64) ∧ l1 = b1 ∧ i1 < 64 ∧ l2 = b2 ∧ i2 < 64∧
t1 = b1 ∧ a1[i1] = 0 ∧ t2 = b2 ∧ a2[i2] = 0 ∧ print(t1, t2, a1[i1], a2[i2])∧
ok = t1 ∧ t2 ⇒ a1[i1] = a2[i2] ∧ outputter(l1, l2, a1, a2, i1, i2, res) ⇒ outputter(b1, b2, a1, a2, i1, i2, ok ∧ res)

> ⇒ print(l1, l2, i1, i2)

init(b1, b2, a1, a2, k1, k2) ∧ k1 = 0 ∧ k2 = 0∧
outputter(b1, b2, a1, a2, i1, i2, ok) ∧ i1 = 0 ∧ i2 = 0 ∧ ¬ok ⇒⊥

Fig. 3: CHC encoding of program M from Fig. 1 (right).

1: procedure INFERSUM(CHCs C)
2: for R ∈ R do M(R)← λx1, . . . , xn.>
3: for C ∈ C where C = body ⇒ R(x̄) do
4: G← GETQFGUESSES(C) ∪ GETQUANTIFIEDGUESSES(C)
5: M ← CHECKGUESSES(G, M , R)
6: while M is not a solution for C do
7: Q← GETUNSATISIFIEDQUERY(C)
8: M ← SOLVE(Q, C, M )
9: return M

Fig. 4: Top-level summary inference procedure.

1: procedure SOLVE(Q, C, M )
2: unfoldings ← ∅
3: if M(bodyQ) is unsatisfiable, then return M
4: for R in Q’s body do
5: for body ⇒ R(x̄) ∈ C do
6: G← GETPDGUESS(Q, body ⇒ R(x̄),M )
7: M ′ ← CHECKGUESSES(G, M , R)
8: if M ′ 6= M then return M ′

9: unfoldings ← unfoldings ∪unfold(R,Q)

10: for U ∈ unfoldings do
11: M ′ ← SOLVE(U , C, M )
12: if M ′ 6= M then return SOLVE(Q, C, M ′)

Fig. 5: Inference procedure for property-directed guesses.

(which must appear in C) is weakened (using, e.g., the HOU-
DINI algorithm [22]), and the internal loop in CHECKGUESSES
is repeated. Note that a new inductive mapping M ′ is returned
as the result of CHECKGUESSES. Note also that M is already
inductive whenever CHECKGUESSES is called, so it would be
sufficient to weaken M(R)(x̄)∧makeGuess(G)(x̄) based on
G, and CHECKGUESSES would return M in the worst case.

a) General quantifier-free and quantified guesses: For
each CHC C, the algorithm generates initial guesses for an
uninterpreted predicate in the head of C based on the templates
specified later in Sec. V and VI-A.

After M has been updated based on these guesses, M ’s
interpretations will have captured information-flow summaries
for each procedure. If M is a solution for the system of
CHCs, then these summaries may be sufficient for proving
that the assertions of the program hold. Otherwise, the current
procedure summaries are not strong enough for proving that

the assertions hold, and the algorithm aims to learn additional
property-directed summaries.

b) Property-directed guesses: Additional summaries are
generated by our third template, which is described later in
Sec. VI-B. Given a query CHC Q that contains an application
of some R ∈ R to variables ȳ in its body, a CHC of the form
body ⇒ R(x̄), and an inductive mapping M , each property-
directed guess in G = GETPDGUESS(Q, body ⇒ R(x̄),M)
is such that if it is used as an interpretation for R in the query
CHC with all the other predicates using their interpretations
in M , then the query CHC will be satisfied (i.e., the body of
Q will be unsatisfiable).

For such a G, makeGuess(G)(ȳ) can be viewed as an
interpolant separating body [x̄ 7→ ȳ] and M(ctx (Ri, Q)); to
populate G, GETPDGUESS generates guesses that obey the
syntactic requirements for such an interpolant and adds them
to G only after checking that they maintain the invariant that
makeGuess(G)(ȳ) is an interpolant. The query CHC should
be the result of unfolding a currently-unsatisfied query from
the original system of CHCs zero or more times. The way in
which the algorithm explores unfoldings is shown in Fig. 5.
Our algorithm starts with an unsatisfied query Q and tries
to infer property-directed summaries for each predicate in Q’s
body. If no summary can be inferred, it unfolds each predicate
in Q and repeats the process on each of these unfoldings,
reconsidering Q with each resulting updated interpretation M ′.

Let a query U be an unfolding of the query Q. After each
update in an interpretation M ′(R) of each R ∈ R in U , the
query Q is reconsidered with M ′.

Lemma 1. If a query U that leads to an interpretation
update was obtained by unfolding R(ȳ) in Q using CHC
body ⇒ R(x̄), then there exists an interpolant I separating
M ′(body [x̄ 7→ ȳ]) and M ′(ctx ).

Reconsidering Q with the mapping M ′ allows us to try to
guess this interpolant. This finding of interpolants is similar
to prior uses of interpolants [36], [37], but in our case, rather
than using an interpolating solver, we rely on SyGuS to
obtain quantified interpolants that cannot be generated by usual
methods used in interpolating solvers.
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Example 3. Consider a modification of the system
of CHCs for our motivating example in Fig. 3 such
that the CHC for main and the query Q are as
follows: outputter(b1, b2, a1, a2, i1, i2, ok) ∧ i1 =
0 ∧ i2 = 0 ⇒ main(b1, b2, a1, a2, n1, n2, ok),
main(b1, b2, a1, a2, n1, n2, ok) ∧ ¬ok ⇒⊥.
Let U be the unfolding of main in Q, and let
M contain the following interpretations: main 7→
λx̄.>, outputter 7→ λz̄.>, print 7→ λȳ.>, init 7→
λb1, b2, a1, a2, i1, i2.φ(b1, b2, a1, a2, i1, i2).
The result of unfolding of outputter in U allows us to update
the summary (using the successfully checked guesses) of
outputter to the following:

λb1, b2, a1, a2, i1, i2, res.

b1 ∧ b2 ∧ φ(b1, b2, a1, a2, i1, i2) ∧ i1 = i2 ∧ 0 ≤ i1 ⇒ res

Note that the mapping M ′ containing this updated interpreta-
tion for outputter is such that the following implication holds:

M ′(outputter(b1, b2, a1, a2, i1, i2, ok)∧i1 = 0∧i2 = 0)⇒ ok

The antecedent of this implication is the interpretation of the
body of the CHC for main , and the consequent is the negation
of main’s context in Q. We can thus look for an interpolant
that separates the body of main and its context in Q.

Different orders in exploring unfoldings may result in
learning different summaries. However, regardless of the order
of unfoldings, the summaries discovered constitute a solution
for the system of CHCs.

Note that if our templates cannot guess the required invari-
ants, our top-level algorithm may not terminate, either because
the second top-level loop may never terminate or because the
recursive calls in the algorithm in Fig. 5 may never return.
Our algorithm can be terminated early by the user and still
return the properties discovered so far, which may be useful
for code understanding and can provide hints to the user about
manual annotations that may be required. In our experiments
(Sect. VII), we did not need any manual annotations in the
benchmark examples.

The following theorem implies that if INFERSUM returns a
solution for a system of CHCs, the assertions in the original
program that are captured by the query CHCs hold.

Theorem 1. INFERSUM always returns an inductive map M .

Proof. INFERSUM begins with M being the inductive map
that maps each n-ary predicate R to λx1, . . . , xn.>. M can
be updated only by assigning it to the result of calls to
CHECKGUESS, which always returns an inductive map. It
follows that M is inductive when returned by INFERSUM.

Finally, we note that our proposed SyGuS approach is not
inherently limited to verifying secure information flow or to
two copies of a program (k = 2). It can be adapted to
verify k-hyperproperties for k > 2 by extending the basic
grammar (shown later in Fig. 6) to cover target properties.
Furthermore, our ideas on property-directed guesses are not
specific to information flow and can apply to other properties.

guess ::= λx̄.lhs ⇒ rhs

lhs ::= b1 ∧ b2 | inEq ∧ lhs | inIneq ∧ lhs

rhs ::= outEq | ok | declassify
inEq ::= Eq(inArg) | EqArr(inArrArg, ctr)

outEq ::= Eq(outArg) | EqArr(outArrArg, ctr)

inIneq ::= c < inIntArg | c ≤ inIntArg | c > inIntArg | c ≥ inIntArg

Fig. 6: Grammar for generating quantifier-free guesses for information flow.

V. GRAMMAR TEMPLATES WITHOUT QUANTIFIERS

Fig. 6 lists the grammar used in the INFERSUM algorithm
(Fig. 4) to generate quantifier-free guesses that represent
information-flow properties. Each guess has the form of an
implication and corresponds to a relational property because
the activation variables b1 and b2 always occur positively
in the antecedent. The antecedent (lhs) allows additional con-
juncts expressing equalities (inEq) and inequalities (inIneq)
over input arguments of procedures (inArg), including arrays
(inArrArg) indexed by expressions (ctr ). The consequent
(rhs) allows conjuncts expressing equalities (outEq) over out-
put arguments of procedures (outArg , outArrArg), the results
of assertions (ok ), or declassify expressions (declassify). In
the equalities, the expression Eq(e) represents the equality
e = idx (e, 2), and EqArr(e, i) represents the equality e[i] =
idx (e[i], 2). The inequalities allow comparison of input integer
arguments (inIntArgs) against constants (c).

The terminals in our grammar are populated from a combi-
nation of variable types and a syntactic analysis of the CHC
encoding of the body of the target procedure. The candidate
variables include input/output parameters of procedure and
outputs that store the result of assertions. We extract various
expressions, e.g., representing indices in array accesses, or
consequents in declassify assertions. The complete set of
terminals is listed in Appendix A. Other than activation
variables and the results of assertions, all terminals e in our
grammar are such that getIdx (e) = 1 to reduce redundancy
among guesses due to symmetry resulting from indices, e.g.,
in equality expressions.

VI. GRAMMAR TEMPLATES WITH QUANTIFIERS

In this section, we present two templates for generating
guesses with quantifiers – one for arrays and the other for
property-directed invariants.

A. Quantified Templates for Arrays

We generate guesses for quantified invariants for a given
procedure by adapting a technique from prior work [33] to
target relational properties. We consider here the task of
generating a quantified invariant for a CHC body(x̄)⇒ R(x̄).
We construct guess for a quantified invariant from four parts:
• a set of quantified variables qVars not in x̄,
• a range formula over the variables in inIntArgs ∪qVars ,
• a set of equalities over variables in qVars ∪ inIntArgs ∪

idx (inIntArgs, 2),
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• a cell property formula over the variables in x̄ ∪ qVars .
All these components except equalities come directly from
prior work [33], which combined them to form a candidate
invariant: ∀qVars.range ⇒ cell property . We take a similar
approach but use equalities to guess invariants over both pro-
gram copies. We also use activation variables in the antecedent
of the implication so that the candidate invariant only applies
when both program copies are aligned. Here we only generate
range formulas over variables for the first program copy and
use the equalities to ensure that the corresponding variables in
the second copy are equal to those in the first.

Quantified variables and range variables are determined
similarly to previous work [33]. For each variable i in
inIntArgs ∩ ctrs used to access an array index, two fresh
quantified variables q1 and q2 are added to qVars , where
idx (q1, 2) = q2. We let quant(i) = q1. For each such
variable, we also generate a range formula that is an inductive
invariant for R of the form:

range ::= i ≤ q1 < boundGt | boundLt < q1 ≤ i

Here, boundGt is the set of expressions e over variables
x̄ for which i < e or e > i occurs as a subexpression of
body , the body of a procedure. Similarly, boundLt is the set
of expressions e over variables x̄ for which e < i or i > e
occurs as a subexpression of body . Let the set ranges denote
the set of such range expressions that are inductive for R
(which we first check for each such candidate).

For each variable i in inIntArgs ∩ ctrs , we generate the
equality quant(i) = idx (quant(i), 2) and the equality i =
idx (i, 2) and add them to the set equalities .

Finally, to generate cell properties, we consider the subset
of expressions generated by the grammar in Fig. 6 that contain
accesses to array cells (also known as select-terms and denoted
[·]) with indices Idx such that for each i ∈ Idx , ranges
contains an expression containing idx (i, 1). We take each such
expression e and substitute each occurrence of any variable
i ∈ inIntArg ∩ ctr with quant(i) and then add the resulting
expression to the set cellProps .

For each cellProp ∈ cellProps , we generate the following
candidate invariant:

λx̄.∀qVars.
∧

ranges ∧
∧

equalities ∧ b1 ∧ b2 ⇒ cellProp

B. Property-Directed Templates
The final template allows us to generate property-directed

guesses for a particular procedure r given a mapping M to
inductive interpretations. This template consists of two parts:
a context guess and a quantifier-free guess. As mentioned
previously, we aim to find interpolants using SyGuS rather
than an interpolating solver. The context guess is used to
incorporate relevant properties from the context into the guess,
and the quantifier-free guess is used to strengthen it.

We first describe how to generate the context guess given
a CHC C that is an unfolding of a query Q, a predicate
application R(ȳ) for procedure r that occurs in the body of the
unfolding, and a CHC body ⇒ R(x̄). Let ctx be the context
for R(ȳ) in the unfolding of Q.

1: procedure FILTER(Ands , R(ȳ), C, M )
2: M ′ ←M [R 7→ λȳ.

∧
Ands]

3: for body ⇒ R(x̄) ∈ C do
4: for application R(x̄′) in body , context ctx do
5: query ←M ′(R)(x̄) ∧M ′(ctx) ∧ ¬M ′(R)(x̄′)
6: if query satisfiable then
7: m ←GETMODEL(query)
8: FC ←FALSECONJS(m , M ′(R)(x̄′), Ands)
9: return FILTER(Ands \ FC , R, C, M )

10: return Ands

Fig. 7: Procedure to find largest useful element in P(Ands).

Let Ands be the set of conjuncts in M(ctx ). Each element
of the powerset P(Ands) can become a context guess. We are
interested only in elements p in P(Ands) that represent prop-
erties that, while initially not guaranteed to be true whenever r
is called, are guaranteed to hold for any subsequent recursive
calls to r provided that they held at the initial invocation of
r. We discover the largest set conseqAnds ⊆ P(Ands) that
represents such properties through a procedure based on the
Houdini algorithm [22] (as shown in the algorithm in Fig. 7).

The procedure in Fig. 7 examines each CHC in C with
an application of R to variables x̄ in its head. The mapping
M ′ maps R to the interpretation λȳ.

∧
Ands but is otherwise

the same as the current mapping M . For each such CHC, it
checks if M(R) is inductive (line 5) and uses a model (called
a counterexample-to-induction) to weaken Ands . We can now
use P(conseqAnds) as the set of context guesses.

We generate quantifier-free guesses QFGuesses for body ⇒
R(x̄) as shown in Sec. V, except now the set c of integer
constants also includes all integer constants in ctx .

The algorithm in Fig. 8 describes how the context and
quantifier-free guesses are combined to make a guess for R
with context ctx and the current set of interpretations M . For
each λx̄.lhs ⇒ rhs ∈ QFGuess and p ∈ P(conseqAnds),
we consider the mapping M ′ = M [R 7→ λx̄.M(R)(x̄)∧ rhs],
which is the same as the mapping M except the interpretation
for R is updated to λx̄.M(R)(x̄)∧rhs . If M ′(ctx ) is unsatisfi-
able and lhs∧p is satisfiable (line 5), we generate the following
guess: λx̄.lhs ∧ p⇒ rhs. We only consider guesses such that
M ′(ctx ) is unsatisfiable because these guesses are such that
if they are treated as an interpretation for R in C, they make
M ′(C) satisfiable. This requirement ensures that the guesses
considered help make progress toward proving the assertion in
the original program corresponding to query Q. The checks on
line 5 guarantee that each element added to Guesses , when
applied to ȳ, is an interpolant separating body [x̄ 7→ ȳ ] and
M ′(ctx ). If all guesses in Guesses are interpolants separating
these formulas, then it follows that makeGuess(Guesses)(ȳ)
is also such an interpolant. Note that these guesses may contain
quantifiers if the interpretations in M contain quantifiers.

VII. IMPLEMENTATION AND EVALUATION

We have implemented our technique in a prototype tool
called FLOWER, developed on top of the CHC solver FREQ-
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1: procedure COMBINEGUESS(QFGuess , conseqAnds , M , R, ctx )
2: for λx̄.lhs ⇒ rhs ∈ QFGuess do
3: for p ∈ P(conseqAnds) do
4: M ′ ←M [R 7→ λx̄.M(R)(x̄) ∧ rhs]
5: if M ′(ctx) unsat, lhs ∧ p sat then
6: Guesses ← Guesses ∪ {λx̄.lhs ∧ p⇒ rhs}

Fig. 8: Inference procedure for property-directed guesses.

HORN [27], [38]. We evaluated it on a suite of benchmarks3

from the literature and real-world examples.
In our implementation, all candidate guesses allowed by

our grammars are enumerated and checked, i.e., there is no
further heuristic selection (currently) in our tool. Although this
can be problematic if there are too many guesses, we did not
encounter this issue in practice. For property-directed guesses,
the unfoldings are explored in a breadth-first like manner.

a) Benchmarks: Of our 29 benchmarks, 15 are based
on a subset4 of the evaluation set for MPPs [4], [6], [19],
[21], [34], [39]–[42]. While small in size, with the original
programs ranging from 24-70 lines of VIPER [43] code,
these programs include non-trivial features such as arrays and
declassification that are challenging for automated verifiers.
We added two benchmarks based on code from Amazon Web
Service’s S2N [20], about 160 lines of SMT-LIB2 code that
involve reading/writing from buffers. We also translated six
benchmarks based on BLAZER’s “Literature” and “STAC”
benchmarks [19], which ranged from 41-208 lines of Java.

The VIPER benchmarks contained many manual annotations
of information-flow specifications for both procedures and
loops. We treated the specification for the apparent top-
level procedure as an assertion, and eliminated the remaining
annotations. Loops were encoded as recursion, as is typical
in CHC encodings. Memory locations and memory-related
annotations in the benchmarks were not encoded in CHCs;
structures were either flattened or encoded as arrays.

The BLAZER benchmarks considered were written in Java
and originally checked for timing side channels. This can
be reduced to checking for noninterference with appropriate
instrumentation [44]. We manually instrumented and encoded
these benchmarks into CHCs.

b) Evaluation: We also compared our tool against a
state-of-the-art relational verifier DESCARTES [15] and a mod-
ular CHC-based verifier SPACER5 [25]. For DESCARTES, we
translated CHC benchmarks to intraprocedural Java programs.

Results from experiments on our suite of 29 benchmarks
with a timeout of 10 minutes are shown in Table I. BLAZER
benchmarks are prefixed with “B” and S2N benchmarks are
prefixed with “s2n.” A timeout is indicated with TO and an
unknown result with U. N/A indicates that DESCARTES was
unable to handle the benchmark because of the presence of
arrays or declassification. Benchmarks were run on a MacBook
Pro, with a 2.7GHz Intel Core i5 processor and 8GB RAM.

3Available at https://github.com/lmpick/flower-benchmarks
4We left out termination-related properties; automation would require

synthesis of ranking functions, which we do not currently support.
5SPACER outperformed all tools in CHC-Comp’19 in all LIA cate-

gories [45].

TABLE I: Results for 29 benchmarks. Times shown in seconds.

Example Recursive Flower Spacer Descartes
Time Time Time

Banerjee 8.00 0.04 N/A
B GPT14 X 73.91 TO U
B K96 X 12.60 TO U
B Login X 18.20 TO N/A
B ModPow1 X 60.86 TO U
B ModPow2 X 104.59 TO U
B PWCheck X 18.04 TO N/A
Costanzo (2) X 3.94 0.65 N/A
Costanzo (4) X 3.85 7.10 N/A
Costanzo (8) X 3.85 62.50 N/A
Costanzo (16) X 4.08 TO N/A
Costanzo (32) X 3.88 TO N/A
Costanzo (64) X 3.93 TO N/A
Costanzo (unbounded) X 8.17 TO N/A
Darvas 2.04 0.03 N/A
Declassification X 4.91 0.03 N/A
Joana Fig. 1 top left 0.96 0.03 N/A
Joana Fig. 2 bottom left 0.90 0.02 0.06
Joana Fig. 2 top 0.58 0.02 0.08
Joana Fig. 13 left 0.25 0.03 0.07
Kusters 8.07 0.03 0.09
Main Example X 135.90 U N/A
Main Example (det.) X 13.98 TO N/A
s2n Ex. 1 X 352.70 0.06 N/A
s2n Ex. 2 X 30.95 TO N/A
Smith X 23.26 TO N/A
Terauchi Fig. 1 0.40 0.03 0.08
Terauchi Fig. 2 0.84 0.03 N/A
Terauchi Fig. 3 X 3.55 TO U

Our tool FLOWER is able to solve all 29 benchmarks,
including all 15 benchmarks originally used to assess the
usefulness of MPPs. Note that our tool successfully solved
all these examples without the annotations required by VIPER
[43]. This demonstrates the effectiveness of our approach in
reducing the annotation burden for verifying secure informa-
tion flow.

SPACER is able to solve 14 of the 29 benchmarks, timing out
for 14, and reporting U for one. DESCARTES cannot handle the
majority of the benchmarks; of the 10 benchmarks it can take
as input, DESCARTES solves 5. Out of the 20 examples with
recursion (marked in Column 2), SPACER can only solve 5,
whereas our tool can handle all 20. SPACER finds invariants via
interpolation, which is unlikely to directly capture relational
properties, so it is unable to find suitable invariants for these
recursive procedures. For recursion-free examples, relational
invariants are less crucial; invariants capturing precise behav-
iors are easier to find and are often sufficient for verification.

DESCARTES is similarly unable to find appropriate invari-
ants. For each of the 5 recursive benchmarks that it can take as
input, it is unable to find the required loop invariant to verify
the program. Although DESCARTES also uses a template-based
approach for generating candidate invariants, the templates are
insufficient for these benchmarks.

To evaluate scalability, we considered versions of the
Costanzo benchmark with different array bounds (shown in
parentheses in Table I). Fig. 9 shows the performance compar-
ison against SPACER as the array bound increases. SPACER’s
behavior indicates its inability to find relational properties; it
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Fig. 9: Timing results for Costanzo benchmark with different array bounds.

learns properties for each array index individually, rendering
it unable to solve the Costanzo benchmark within 10 minutes
after the array bound reaches 16 (note that the original
Costanzo benchmark has bound 64). Although it was run in
a mode that allows it to learn quantified properties, SPACER
is unable to find the desired relational property. In contrast,
our approach solves all the bounded Costanzo benchmarks
in about the same time because the quantified guesses are
the same except for the constant bound. Our approach is also
able to solve the Costanzo benchmark in which the array is
unbounded, which SPACER is unable to do.

VIII. RELATED WORK

There are many related efforts in relational program verifica-
tion, information-flow checkers, and syntax-guided synthesis.

a) Relational Program Verification: While this work
focuses on modular product programs [21], many other ap-
proaches also reduce relational program verification to safety
verification [3]–[9], including those that employ a reduction to
systems of CHCs [10], [46]. However, most do not perform
modular reasoning over procedures but inline them, and do not
generate relational specifications for procedures. One modular
approach restricts both copies of the program to always follow
the same control flow [6]. Another uses mutual summaries
but does not provide an automatic procedure for inferring
summaries as we do [8].

Other relational verifiers avoid explicitly constructing a
product program. Some use program logics to work with Hoare
triples [15]–[17], construct product programs implicitly [18],
use decomposition instead of composition [19], or employ
reinforcement learning [12]. These approaches also do not
modularly reason about nor infer relational specifications for
procedures, though they may modularly handle loops [15].

b) Information-Flow Checkers: Most automatic hyper-
property verifiers can handle information-flow properties by
constructing product programs either implicitly [15], [18], or
by lazily performing self-composition [13], [14] or synchro-
nization [10], [46]. However, most of these techniques do
not perform modular reasoning over the product programs
or results of self-composition. One synchronization approach
uses property-directed reachability and use modular reasoning
for inference of relational procedure summaries [25], [46],
[47], but our experiments show that the property-directed
reachability tool SPACER upon which this tool was built often
fails to infer the needed invariants in programs with recursion.

Other efforts focus on verifying resource leakage, such as
the presence of timing side channels [11], [19], [44]. With

appropriate instrumentation for resource leakage [11], [44],
checking for timing leakage can be reduced to hyperproperty
verification. As seen in our evaluation, our tool can be used
to check the absence of timing side channels after appropriate
resource usage instrumentation.

Approaches based on types and abstract interpretation can
modularly infer information-flow properties of procedures.
There are many type-inference-based approaches for checking
secure information flow [48]–[51]. Such approaches employ
a security type system such that terms only type check if
they do not have any illegal information flows (e.g., from low-
security to high-security variables). There are also approaches
based on dynamic taint analysis [52]–[57], which involves
instrumenting code with taint variables and code to track taint.
However, type-inference-based and taint analysis approaches
suffer from imprecision (e.g., due to path-insensitivity or an
inability to infer invariants over arrays) that may lead to failure
in type inference even for leakage-free programs. In contrast,
our approach is path-sensitive and requires only the annota-
tions that specify the property to be verified. One abstract-
interpretation-based approach can infer possible information-
flow dependencies, indicating which variables’ values may
depend on others’ [58]. This approach, like ours, does not
require annotations indicating which inputs and outputs are
public or private. However, unlike our approach, it does not
handle programs with procedures, arrays, or declassification.

c) Syntax-Guided Synthesis: Our approach is also related
to a wide range of guess-and-check SyGuS techniques [27],
[29]–[33], [38]. Especially relevant are enumerate-and-check
approaches to solve CHCs [27], [33], [38]. Our template for
guessing quantified invariants for arrays adapts a previous
technique [33] to the setting of reasoning about secure infor-
mation flow. As far as we know, such techniques have not been
applied to inferring or verifying information-flow properties.
The structure of information-flow properties makes them ideal
targets for grammar-based enumerative search and synthesis.

IX. CONCLUSIONS

We have introduced a SyGuS-based technique for automatic
inference of modular relational specifications that are use-
ful for verifying secure information flow in interprocedural
programs. Our technique relies on three grammar templates
to infer procedure summaries in modular product programs,
where these procedure summaries are of a particular form.
The first template guesses quantifier-free summaries for infor-
mation flow, the second guesses quantified summaries for ex-
pressing properties over arrays, and the third template guesses
summaries that depend on the calling context of a procedure.
An implementation of our techniques on top of a CHC solver
and an experimental evaluation on benchmarks demonstrates
that our approach finds useful procedure summaries to ver-
ify secure information flow, thereby reducing the annotation
burden in prior work. Our tool outperforms a state-of-the-art
hyperproperty verifier and a modular CHC-based verifier on
several benchmark examples.
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[16] G. Barthe, B. Köpf, F. Olmedo, and S. Z. Béguelin, “Probabilistic
relational reasoning for differential privacy,” in POPL. ACM, 2012,
pp. 97–110.

[17] N. Benton, “Simple relational correctness proofs for static analyses and
program transformations,” in POPL. ACM, 2004, pp. 14–25.

[18] A. Farzan and A. Vandikas, “Automated hypersafety verification,” in
CAV (1), ser. Lecture Notes in Computer Science, vol. 11561. Springer,
2019, pp. 200–218.

[19] T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and
S. Wei, “Decomposition instead of self-composition for proving the
absence of timing channels,” in PLDI. ACM, 2017, pp. 362–375.

[20] Amazon Web Services, “https://github.com/awslabs/s2n,” 2019.
[21] M. Eilers, P. Müller, and S. Hitz, “Modular product programs,” in ESOP,

ser. Lecture Notes in Computer Science, vol. 10801. Springer, 2018,
pp. 502–529.

[22] C. Flanagan, R. Joshi, and K. R. M. Leino, “Annotation inference for
modular checkers,” Inf. Process. Lett., vol. 77, no. 2-4, pp. 97–108, 2001.

[23] A. Albarghouthi, A. Gurfinkel, and M. Chechik, “From under-
approximations to over-approximations and back,” in TACAS, ser. LNCS,
vol. 7214. Springer, 2012, pp. 157–172.
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APPENDIX

A. Terminals in SyGuS Grammar for Secure Information Flow

The terminals in our grammar to generate quantifier-free
guesses (Fig. 6) are populated by a combination of tagging
types of variables and a syntactic analysis of the CHC encod-
ing of the body of the target procedure under consideration.

a) Tagging the types: For a CHC with head R(x̄) that
encode a modular product procedure r, each x ∈ x̄ is tagged
as follows:
• in: if x corresponds to a non-activation input argument
x in r with getIdx (x) = 1;

• out: if x corresponds to an output ret in r with
getIdx (ret) = 1;

• arr: if x is an array;
• int: if x is an integer;
• ok: if x is an output value storing the result of assertions.
The following metavariables specify what the terminals

based on tags range over:
• inArg : the set inArgs of variables tagged in;
• inArrArg : the set inArrArgs of variables tagged both
in and arr;

• outArg : the set of variables outArgs tagged out;
• outArrArg : the set of variables outArrArgs of variables

tagged both out and arr;
• inIntArg : the set of variables inIntArg tagged in and
int;

• ok : the set of variables tagged ok.
The activation variables in x̄ are denoted b1 and b2.

b) Syntactic Analysis: The terminal ctr is based on a
syntactic analysis of the body of the CHC. It ranges over a
set ctrs comprising the following:
• all expressions e with getIdx (e) = 1 that occur in the

procedure body within subexpressions of the form a[e]
for some a;

• terminals that c ranges over, consisting of all integer
constants that occur as the right- or left-hand side of
equalities or inequalities in the body of the procedure;

• terminals that declassify ranges over, which consists of
the consequents e1 = e2 of any implications of the form
b1∧b2 ⇒ e1 = e2, where b1 and b2 are Boolean variables,
getIdx (e1) = 1, and getIdx (e2) = 2.
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Abstract—Microsoft’s Static Driver Verifier (SDV) pioneered
the use of software model checking for ensuring that device
drivers correctly use operating system (OS) APIs. However, the
verification methodology has been difficult to extend in order to
support either (a) new classes of drivers for which SDV does
not already have a harness and stubs, or (b) memory-corruption
properties. Any attempt to apply SDV out-of-the-box results in
either false alarms due to the lack of environment modeling, or
scalability issues when finding deeply nested bugs in the presence
of a very large number of memory accesses.

In this paper, we describe our experience designing and
shipping a new class of checks known as angelic checks through
SDV with the aid of angelic verification (AV) [1] technology,
over a period of 4 years. AV pairs a precise inter-procedural
assertion checker with automatic inference of likely specifications
for the environment. AV helps compensate for the lack of
environment modeling and regains scalability by making it
possible to find deeply nested bugs, even for complex memory-
corruption properties. These new rules have together found
over a hundred confirmed defects during internal deployment
at Microsoft, including several previously unknown high-impact
potential security vulnerabilities. AV considerably increases the
reach of SDV, both in terms of drivers as well as rules that it
can support effectively.

I. INTRODUCTION

Microsoft’s Static Driver Verifier (SDV) [2], [3] is a formal
software verification tool that checks Windows device drivers
against a set of rules on the correct usage of operating system
(OS) APIs. These Windows OS APIs, which are published
on MSDN, and exported for writing Windows drivers are
commonly referred to as the Driver Development Interface
(DDI) [4]. SDV is shipped to driver developers in the Windows
ecosystem through the Windows Driver Development Kit
(WDK). Running SDV is a mandated check for a driver to
obtain certification for Windows Server OS [5].

Examples of SDV rules range from checking that a driver
calls a DDI function at a particular Interrupt Request Level
(IRQL), to ensuring that locks are acquired and released
in correct sequence. Given: (a) a rule, written in SDV’s
specification language SLIC [6], (b) a harness for the driver
class (e.g. storage or networking) that determines how the
driver can be invoked by the OS, and (c) stubs for OS DDI
functions that can be invoked by the driver, SDV uses a
software verification tool to look for driver executions that
violate the rule. SDV also has a detailed defect viewer to aid

in debugging. The viewer allows stepping through (interproce-
dural) counterexample traces reported by the verifier. The trace
contains not just control-flow information but also values of
various variables along the trace. The verification “engine”
powering the analysis has transformed from SLAM [7] to
SLAM-2 [8] to YOGI [9] and then finally to Corral [10], [11],
each time improving performance, accuracy and scalability.
SDV establishes a high bar for precision of each of its
supported rules; typically false-positives rate is below 5% [8].

However, despite a decade of investment in the technology
and advances in the underlying verification engines [10], [12],
it has been difficult to adapt the tool to new verification chal-
lenges, even within the world of device drivers. Specifically,

� Memory safety: Checking for memory corruption bugs
within the driver code.

� Unsupported drivers: Performing verification of DDI
compliance rules for unsupported driver classes whose
frameworks are not modeled accurately by harnesses and
stubs.

Memory safety violation is broadly interpreted as an
unchecked invalid access to a piece of memory during a
program’s execution. These issues are prevalent in low-level
languages such as C and C++ that trade off performance for
automatic memory management overheads. Memory safety
violations can be either (i) temporal, which pertains to a
type-state on a memory address such as being allocated,
freed, or null, or (ii) spatial, which pertains to checking
bounds of an allocated buffer. Such violations can have serious
implications on both the reliability and, more importantly, on
the security of the entire system. Recent studies attribute as
much as 70% of all security bugs in Microsoft products can
be attributed to memory safety issues [13]. Static analysis
tools such as SDV are particularly attractive for the domain of
kernel-mode drivers due to the poor coverage of dynamic tools
in this space (because of System issues in setting up dynamic
tools for kernel-mode components, as well as the large input
space).

On the other hand, SDV currently supports environments
for certain general purpose drivers (WDM, WDF) as well
as two driver classes (storage, networking). However, there
are several important driver classes that SDV doesn’t support,
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including file system filters, audio drivers, kernel streaming (in
particular, camera) drivers. For such drivers, SDV environment
is insufficient, which results in partial coverage at best (lack
of a harness that calls the entry points) and false alarms (as
DDIs implemented by a driver class library are not modeled
by stubs).

In other words, SDV enjoys a very high precision on the
rules and driver classes it supports, but has a relatively poor
recall (or coverage) on the set of all possible bugs discovered
in Windows drivers, particularly those that affect memory
safety. In this paper, we therefore focus on the following
problem in the context of SDV:

Can we improve the coverage (or recall) of reliabil-
ity and security bugs in Windows drivers using SDV
without sacrificing the high precision bar?

Note that retaining the high precision bar is necessary for
SDV; customers will push back if SDV slowed down the devel-
opment process due to the need to deal with spurious alarms.
We are careful to pose the problem as that of “improving the
coverage” rather than “full coverage” (or ensuring the absence
of) of newer class of defects not detected by SDV. At the
same time, it is desirable that the approach is able to leverage
additional modeling (if present) to achieve higher coverage1.

We studied the main technical difficulties to adapt SDV
to new verification challenges, and narrowed it down to a
combination of two reasons:

1) Precision due to un(der)-constrained environment
models: Creating models for a new class of drivers re-
quires upfront investment that ranges from several weeks
to months of effort and close interaction with domain
experts. Furthermore, even the existing models for DDIs
may leave most behaviors unspecified, focussing on just
the ones that matter for the current set of rules. This is
especially troublesome for memory-safety rules because
existing models leave out pointer-related behaviors. For
example, it was very common for existing stubs to non-
deterministically return a null pointer as output; this
was fine for existing SDV rules, until we started checking
for null-safety and got numerous false alarms.

2) Scalability: Software verifiers face a path-explosion
problem when large parts of a program cannot be
abstracted with summaries. Although there has been
progress in performing modular software verification for
simple properties, performing summarization for memory
safety with SMT solvers is still an open research problem.
This is primarily due to the need to summarize the state
of the heap including state in linked data structures.
Secondly, the path explosion problem worsens with the
depth of nesting of procedure calls. Even when a bug
is localized to a procedure, e.g., the procedure sets a
pointer to null and then dereferences it, the verifier
could still fail (timeout) in trying to enumerate feasible
paths from a driver entrypoint to the procedure. This
search is unnecessary because a user can immediately

1One can view this as the principle of pay-as-you-go verification.

Rule Bugs
NULLCHECK 68

USEAFTERFREE 7
DOUBLEFETCH 11

IRQLCHECK 26
Total 112

Fig. 1. A count of true bugs found by SDV using angelic checks.

identify the bug without looking at the rest of the code.
This indicates a shortcoming of the SDV approach.

This paper describes how we significantly extended the
reach of SDV through a set of angelic checks. We distinguish
these checks from the currently supported (demonic) checks,
where the expectation was that SDV does due diligence to
provide accurate harnesses and stubs with full path coverage
for loop-free programs. We observed that we can address
both the issues of (a) spurious alarms from under-constrained
environment, and (b) scalability to find defects in deeply-
nested methods, by using angelic verification technology [14],
[1].

Angelic verification equips a precise interprocedural verifier
(such as Corral) with automatic inference of likely specifica-
tions for the unknowns that correspond to values controlled
by the environment. AV suppresses alarms from the verifier
if it can infer a reasonable environment specification to rule
out the alarm. Furthermore, because AV can also tolerate an
unconstrained initial state, AV can start exploration from any
driver procedure, not just the harness. This is beneficial for
catching deeply-nested bugs.

Since the AV technology works on programs written in
Boogie [15], we also developed an instrumentation framework
called AVP for Boogie programs that we used to instrument
the new class of memory safety properties. We have used the
new framework to successfully add several angelic checks to
SDV with the goal of realizing the above vision. These include
the following:

1) NULLCHECK: checks that a null-valued pointer is not
dereferenced,

2) USEAFTERFREE: checks that a freed pointer is not used
(or freed again),

3) DOUBLEFETCH: checks that a userland pointer is not
dereferenced twice in any execution within the ker-
nel [16],

4) IRQLCHECK: checks that DDI calls are made only at an
acceptable IRQL state.

The first three rules above pertain to memory safety (or
memory corruption) rules. Moreover, a violation of USE-
AFTERFREE and DOUBLEFETCH rules can expose a serious
security vulnerability.

We report our experience developing these checks and
specifically comment on the trade-offs between increasing
recall at the cost of sacrificing precision. These rules have
been evaluated on close to a thousand drivers within Microsoft,
including drivers outside SDV’s supported list. These new
rules have together found over a hundred confirmed defects
during an internal deployment at Microsoft, including several
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Fig. 2. AV tool flow

previously unknown high-impact potential security vulnerabil-
ities. The exact counts are summarized in Figure 1. All bugs,
except one for DOUBLEFETCH, were previously unknown. AV
was able to suppress tens of thousands of spurious traces in
total over all these examples, indicating that these bugs could
not have been discovered without the angelic checks.

At the time of writing this paper, all the rules except
DOUBLEFETCH are available with Windows 10 WDK. The
DOUBLEFETCH rule is currently a part of preview versions of
the WDK for co-engineering partners. Furthermore, we note
that the AV tool is available open-source2. We hope that the
experience captured in this paper, in conjunction with open-
source AV, allows the development of similar tools in domains
other than device drivers.

The rest of the paper is organized as follows. Section II
presents background on the AV technology. Section III de-
scribes the angelic checks for memory safety, which incudes
NULLCHECK, USEAFTERFREE as well as DOUBLEFETCH.
Section IV covers the role of IRQL in device drivers and the
corresponding angelic check for it (IRQLCHECK). Section V
describes related work and Section VI concludes.

II. ANGELIC CHECKS

In this section, we describe background on angelic verifi-
cation (Section II-A) and some details of the AVP property
instrumentation language (Section II-B).

A. Angelic Verification

Angelic verification [1] (AV) is a technique for leveraging
automatic static assertion checkers for finding high-confidence
defects in open programs. The technique pairs a precise
assertion checker (AC) (that can find interprocedural traces
for assertion violations in closed programs) with the inference
of angelic specifications on the environment. The latter is used
to push back on the AC verifier from reporting “dumb” false
alarms in open programs.

2https://github.com/boogie-org/corral/tree/master/AddOns/
AngelicVerifierNull

i n t Foo ( i n t ∗x , i n t ∗y ,
boo l f )

{
∗x = 1 ;
Bar ( x , y ) ;
i f ( f ) { f r e e ( x ) ; }
. . .

}
vo id Bar ( i n t ∗x , i n t ∗y )
{

f r e e ( x ) ;
∗y = 2 ;

}
vo id f r e e ( i n t ∗x ) ;

procedure Foo(x: int, y: int,
f: bool)

{
assert (!Freed[x]);

Mem[x] := 1;
call Bar(x, y);
i f (f) { call free(x); }
...

}
procedure Bar(x: int, y: int)
{

call free(x);
assert (!Freed[y]);

Mem[y] := 2;
}
procedure free(x: int)
{

assert (!Freed[x]);

Freed[x] := true;

}

Fig. 3. A program in C and its encoding in Boogie.

Figure 2 describes the high-level flow of the algorithm.
Given an open program with a set of assertions in Boogie [15],
we first close the program with an angelic harness. The angelic
harness helps to create a unified representation of unknown
values resulting from both the input state (value of parameters
and the heap state when program execution begins) as well
as the output state of an external call (return value as well as
side-effects). We refer the readers to earlier work for further
details [1]. The harness non-deterministically calls into all
procedures of the input program. (For the purpose of this
section, we make the simplifying assumption that the program
contains no external methods.) AV invokes a whole-program
verifier (CORRAL) in a loop to enumerate traces that violate
an assertion in the input program. For each such failure trace
τ starting at a procedure p with unconstrained inputs over X
that violates an assertion, AV infers a precondition φ over X
that ensures φ ⇒ wp(true, τ), where wp stands for the weakest
liberal precondition [17]. AV then checks if the precondition is
consistent with the previously inferred specifications (starting
with true). If so, it suppresses the trace τ, else it marks τ as
an angelic trace to be displayed to the user.

AV provides several knobs to the rule developer in order
to control the expressiveness of the inferred specifications φ,
which in turn helps determine the scalability and the precision
of AV on that rule. Among other things, an angelic check is
parameterized by a vocabulary V of predicates that constitutes
the atoms in the preconditions (the pool of candidate predicates
are automatically mined from the trace). For example, we can
require the vocabulary to only consist of non-aliasing predi-
cates, connected with arbitrary Boolean connectives. Further,
AV allows the analysis to only suppress the data flow (i.e.
consider wp while treating all conditionals in a path as non-
deterministic) or consider the control flow of the defect as
well [14], [1]. For the checks presented in this paper, AV only
considered blocking the data flow.

Figure 3 shows AV’s working on a simplified version of
the USEAFTERFREE rule. The figure shows the program
in C, as well as its encoding in Boogie, where the heap
is modeled using an array Mem that maps a pointer to its
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contents. (A more detailed explanation on the encoding of C
semantics in Boogie can be found in previous work [18], [11].)
The underlined statements in the Boogie encoding denote
the instrumentation performed for checking USEAFTERFREE
on the code. This instrumentation happens via the AVP tool
described in Section II-B. We introduce a map Freed to track
the allocated-ness of a pointer, and add assertions before the
use of a pointer (either a dereference or a free of the pointer).

AV requires two verification queries for this program, one
that starts program execution at Foo and other that starts
at Bar. The analysis of Bar produces two error traces
due to unconstrained inputs, which can be blocked using
preconditions !Freed[x] and !Freed[y] && x != y
respectively. Note the role of the vocabulary V here; if we
disallow equality predicates in our vocabulary, then there
are no permissive specifications to block the second trace.
However, the only specification for Foo to block the trace that
frees x twice by descending into Bar is !f, which creates
dead code and is not permissive. For the angelic checks in
SDV, we decided to not block the trace based on control
flow as described earlier. Thus, in this case, AV will report
one angelic trace for Foo that will be displayed to the user.
Next we briefly describe the property instrumentation tool for
creating the input to AV.

B. AVP Instrumentation Language

Since AV operates on Boogie programs, we designed a
custom domain-specific language (DSL) called AVP3 that
describes a source-to-source instrumentation of Boogie pro-
grams. The language is a collection of LHS-to-RHS rules. A
rule can pattern-match on Boogie AST nodes like expressions,
statements or procedures and present a rewriting of the match.

Each angelic check is described as an AVP file whose
purpose is to add ghost state (such as Freed in Figure 3)
and instrument the necessary assertions and updates to ghost
variables into the program. The NULLCHECK rule, for in-
stance, matches on the base pointer p of a dereference (such
as *(p+4)) and adds the following assertion right before the
dereference:

assert (!aliases(p, NULL) || p != NULL)

The aliases function triggers AV’s alias analysis as a
pre-pass. If the analysis finds that an expression e1 cannot
alias e2, then it replaces the occurrence aliases(e1, e2)
syntactically with false; otherwise, it is replaced with true.
The ability to refer to alias analysis allows us to express not
just syntactic, but a more semantic program instrumentation
to add a property. We leverage this feature for all the memory
safety properties. But it is important to note that we use
alias analysis only as an optimization to prune the space of
assertions. It does not affect precision given an interprocedural
checker that reasons precisely about aliasing within the module
and the specification inference takes care of possible spurious
aliasing due to the environment.

3https://github.com/boogie-org/corral/wiki/AV-Property-(AVP)-Language

III. ANGELIC MEMORY SAFETY CHECKS

In this section, we describe the different angelic checks re-
lated to memory safety. Recall that such issues arise primarily
in low-level languages such as C and C++ that rely on the
programmer to ensure that a program does not access invalid
memory. Examples of invalid accesses include: accessing a
null pointer, accessing a pointer after it has been freed, or ac-
cessing a pointer outside the bounds of an allocated object. In
recent years, many of these invalid memory accesses have lead
to security exploits, where an attacker can trick a system to
perform information leak or remote code execution [19], [13].
Some of the classical memory safety issues can be mitigated
by programming in managed languages such as Rust, where
accesses to invalid addresses lead to runtime exceptions with
clear semantics (unlike the undefined behaviors for programs
written in unmanaged languages). However, other security
relevant memory safety issues (e.g. DOUBLEFETCH) that
result from the kernel-user boundary [16], [20], [21], [22] may
be applicable even when the drivers are authored in memory
safe languages such as Rust.

In this section, we describe the different rules and our expe-
rience with deploying them. These properties were developed
and tested over various points over the course of four years, so
we report our evaluation of the rules as they were developed
and tested before being rolled out to customers. Note that we
did not change the internals of AV tool for supporting these
multiple properties. Each property is completely contained in
its own AVP file.

A. Nullcheck
In our earlier work [1], we presented an evaluation of the

angelic NULLCHECK rule on 10 modules in Windows, totaling
over 300K lines of code, and compared it with a mature
tool PREfix. We briefly summarize our findings. PREfix is
an industrial strength tool being used at Microsoft for over
a decade, and has custom algorithms for null-checking as
well as accurate models for many OS components. Over a
set of 68 defects that PREfix reported in these 10 modules,
we managed to confirm over 80% of the defects, found several
false alarms in the PREfix defects due to imprecise modeling
of C semantics, and also discovered new true alarms not
reported by PREfix. AV also reported less than 10% of false
positives on this set (leaving aside frontend translation issues
that have subsequently been addressed).

These results were seen as encouraging by the SDV product
team and lead to the integration of NULLCHECK as the first
angelic check in SDV. The rule now appears documented on
MSDN4 since its release in 2018. This section outlines the
further insights that were needed to take NULLCHECK from
a research prototype to a push-button check available to the
entire Windows driver ecosystem.

First, we performed several improvements on the precision
and usability of the check when evaluating on Windows
drivers. The chief among them are the following.

4https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/
nullcheckw?redirectedfrom=MSDN
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1) Improved alias analysis: We designed an alias analysis
that works on a Boogie program and use it to prune
away null checks on pointers that cannot alias null.
The analysis implements the usual Andersen’s may-alias
analysis [23], however it is optimized to track the flow
of null-value very precisely [24]. The analysis is able
to prune away almost 98% of all null-checks.

2) Changes to existing SDV models: We needed to modify
SDV’s harness and stubs even for supported driver frame-
works. These modifications consisted of the following
major changes. (a) First, we found that several existing
OS models mistakenly left an output pointer unallocated
even when the return NT_STATUS error code denoted
successful allocation. This leads to a false alarm because
AV will discover a null-dereference in the caller; the
alarm cannot be suppressed without creating dead code.
(b) Second, we did not use SDV’s harness even when
present. Recall that a harness calls the driver APIs in
a sequence in order to mimic how an actual OS would
invoke the driver. Using the harness would cause the
analysis to time out even when driver had simple bugs but
were embedded deep inside the driver. Instead of using
the harness, we run AV on all methods of the driver in
parallel. This allows SDV to get much better coverage on
the driver. However, dropping the harness does cause us
to miss bugs that can only be triggered by calling several
driver APIs in sequence.

3) Side-effects of external methods: Finally, we realized
that AV suppresses spurious alarms arising from external
methods only when it can estimate the side-effects of
the external method. We currently use the signature of
an external method to automatically determine the side
effects in addition to the return value. For example, if
an external method takes an argument e of static type
int **, then we assume that the values of �e and
� � e may be modified. This in turn allows AV to infer
angelic specifications on these unknown modified values.
However, this heuristic does not work when the external
method (a) modifies some global variable, or (b) exits
under some condition. Of these, the former happens
frequently when the external method sets up a global
function pointer that is invoked later in the driver. We,
therefore, manually added models for such DDI functions
driven by the false alarms we saw during our evaluation.

We evaluated the NULLCHECK rule on a set of 192 real-
world drivers that constitute the Integration Test Pass (ITP),
the regression test suite for the SDV product. These constitute
drivers from Storport, KMDF, WDM and NDIS classes of
drivers. Of these, we found 61 defects over 27 drivers and
3 drivers timed out after 3000 seconds. Several of the authors
spent a few months (of 2016) to inspect these traces, and
consulted with driver experts to determine the ground truth on
their validity. We finally determined that 58 out of the 61 de-
fects were true defects (95% precision). Several of these bugs
(after removing duplicates that require the same underlying

fix) were filed and fixed. The bugs that were confirmed but not
fixed mainly came from two categories: (a) the driver was no
longer being maintained or shipped externally, or (b) there was
a runtime assertion NT_ASSERT(FALSE) in debug mode
that would cause the driver to crash if the pointer was null,
eliminating any security implications (12 such cases). These
runtime assertions indicate that the driver developers suspected
these pointers could be null at runtime although there is
no proof of their absence. The 3 false alarms came from the
absence of two models of external functions and 1 modeling
issue for C arrays in the front end; the latter has since been
fixed. The two OS models required modeling of linked lists
ExInterlockedRemoveHeadList and additional ghost
state in IoAttachDeviceToDeviceStack, neither of
which were deemed cost effective to add.

In addition to the 58 bugs in ITP, at least 10 more true bugs
have been found and confirmed by SDV team during internal
deployment. The rule has found a couple of potential security
bugs in Windows drivers, of which at least one was classified
by a security review as critical, (hence) immediately fixed and
the fix was taken to an OS security update (in 2016).

B. Use After Free

Figure 3 showed an example of the USEAFTERFREE an-
gelic check. The ability to use a pointer after it has been freed
has serious implications ranging from corruption of valid data
to remote code execution vulnerabilities [25]. In this section,
we describe the rule in more detail and present our experience
with deploying it internally in Microsoft.

The rule ensures that a non-null pointer that has been freed
by calling a DDI function (either free or variants such as
IoFreeMdl, etc.), is not used5. A pointer is used if it is
an argument to a routine that frees the pointer (special case
signifying double-free), or is dereferenced. To specify the rule,
we leverage our alias analysis to guard the check to only those
pointers that can potentially be aliased with a freed-pointer
within the module. This is achieved by tracking a global
variable freedp that can be non-deterministically assigned
one of the pointers that is freed, and weakening the assertion
to only consider pointers that could be aliased with freedp.
We refined the rule to allow freeing of null, which is a valid
behavior. In fact, it is a common practice to set a freed pointer
to null, and not check for a pointer to be non-null before
freeing it.

We performed an extensive evaluation on 65 drivers that
contain at least one call to a method named “free”. Our initial
rule was more aggressive than the final rule described above
in two aspects to not miss defects during evaluation:

1) We considered any external method with a substring free
as a method that could potentially free a pointer, and

2) We considered a pointer argument to any external proce-
dure as a use; our intuition was that it is a bad practice
to pass a freed pointer externally.

5The property file is located here: https://github.com/boogie-org/
corral/blob/master/AddOns/PropInst/PropInst/ExampleProperties/
useafterfree-razzle.avp
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void Foo(x) {
Increment(&x->RefCnt);
Bar(x); // may free x
x->f = 1; // use

}

void Bar() {
Decrement(x->RefCnt);
if(x->RefCnt == 0) {

free(x);
}

}

Fig. 4. False alarm for USEAFTERFREE.

We obtained a total of 69 traces in 22 drivers that we carefully
inspected after removing duplicates. We filed 7 new bugs with
developers and most of them were either fixed or confirmed
but not fixed due to the lack of support for the driver. Many
of these bugs were due to cleanups along exception paths,
making them difficult to reach during regular testing.

A majority of the spurious alarms resulted from the
two decisions above. For example, routines such as
RtlFreeUnicodeString take a pointer to a structure as
an argument, but only free the Buffer field of that structure.
Similarly, we found several low-level print functions such as
TracePrint that never dereference the pointer and therefore
safe. In addition to these, there was one class of false alarms
in 3 traces that demonstrates a fundamental limitation of the
angelic choice that we adopted. We discuss this in more detail.

Consider a simplified program in Figure 4. AV performs
two checks, starting at each of the two procedures. When
analyzing Foo, there is a path where x is freed and later
dereferenced. This is a false alarm as callers of Foo ensure that
x->RefCount is always greater than 1 on entry. However,
the default configuration of AV does not infer a specification
on RefCount values because we treat path conditions as non-
deterministic. In other words, we only treat the data-flow in
an angelic manner, not the control flow. We are working on
improving AV to push the traces all the way to module entry
points in such cases to remove this class of false alarms.

C. Double Fetch

Consider the method Foo below that marks an entry point
into the kernel and consider a pointer parameter x that can be
controlled by the user from a user-mode application or driver
(referred to as userland pointers). Consider an execution when
the pointer is “fetched” twice, in lines 2 and 5.

1 NT_STATUS Foo(A *x, ..) {
2 int len = x->Length;
3 if (len > 0) {
4 char *y = malloc(len);
5 RtlCopyMemory(y, x->Length, x->Buffer);
6 }
7 }

A malicious user may alter the value of x->Length
between the two lines, resulting in a buffer overflow of
the kernel memory, which can be exploited for information
disclosure or remote code execution. These bugs have lead
to several security vulnerabilities in both Linux and Windows
kernels and therefore of great concern to kernel-mode driver
developers.

The double-fetch property is encoded as an angelic
check6. Similar to USEAFTERFREE, we maintain a map
hasBeenRead that maps each address to the number of
times it has been read, and ensure that a userland pointer
is never read twice. However, userland pointers cannot be
distinguished from kernel-allocated pointers without precisely
marking the kernel entry points. Instead, we approximate
it by assuming that that driver developer at least probes
userland pointers before accessing them in the kernel. We
use a similar trick as USEAFTERFREE where we consider a
pointer as userland if it aliases with the argument of either
ProbeForRead or ProbeForWrite.

We have currently evaluated this rule on one driver where
a violation was detected by security pen-testers manually over
a year ago. The bug was present in a C++ module, and
spanned several method calls between the site of probe and
the two fetches. Further, one of the fetches was directly inside
a condition statement. To recover the bug, we had to fix some
issues in the SDV front end for C++ as well as set a high
timeout of 9000 seconds for the angelic check. Not only did
we recover the precise bug, but we also discovered 10 more
variants of the bug (all confirmed by the pen-testers) on other
pointers and procedures on the same version of the driver
(the driver was already rewritten substantially after previous
bugs). There has not been any false alarms from this rule to
date on either this or other drivers that we have tested so
far, although further evaluation starting with the ITP suite is
still pending. The DOUBLEFETCH rule is currently a part of
preview versions of the WDK for co-engineering partners, and
will be made available to broader ecosystem in the near future.

IV. ANGELIC IRQL CHECKS

This section starts by describing the concept of IRQLs
in Windows device drivers, followed by the design of the
IRQLCHECK angelic rule and our experience with it on
internal drivers.

A. IRQL

IRQL (Interrupt Request Level) is a number, ranging from
0 to 31 on x86, which is used to assign priorities to interrupts.
An IRQL value is associated with each CPU processor of a
system as well as incoming interrupt requests. If a processor
is currently at an IRQL value v1 and an interrupt arrives at
level v2, then the interrupt waits if v2 � v1. Otherwise, the
processor’s current task is interrupted, its IRQL is raised to v2
and it starts processing the interrupt.

Some of the important IRQL levels are PASSIVE_LEVEL
(0), APC_LEVEL (1) and DISPATCH_LEVEL (2). User-
level threads and most kernel-mode operations execute at
PASSIVE_LEVEL. Since this is the lowest level, all inter-
rupts are accepted at this level. Asynchronous procedure calls
(APCs) and the page fault handler execute at APC_LEVEL.
The Windows thread scheduler and deferred procedure calls
(DPCs) execute at DISPATCH_LEVEL. When executing at

6https://github.com/boogie-org/corral/blob/master/AddOns/PropInst/
PropInst/ExampleProperties/doubleFetch.avp
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this level, a thread cannot be pre-empted by other threads
because an interrupt request from the thread scheduler gets
masked (but higher-level interrupts can still be scheduled as
they arrive).

Windows provides kernel routines to manipulate the IRQL
value of a processor. Driver developers use these routines
to control which interrupts should be masked during the
execution of the driver. However, the developer must use these
routines carefully. For instance, code running at APC_LEVEL
should not access pageable memory due to the possibility
of a page fault, which cannot be served at APC_LEVEL.
Running at DISPATCH_LEVEL further rules out context-
switching to other threads. Thus, a thread must not wait
on any synchronization objects at this level. Furthermore,
the amount of time spent at DISPATCH_LEVEL should be
limited to a minimum to keep the system responsive. In
order to guard against these errors, Windows restricts invoking
certain kernel routine at an unacceptable IRQL value. Doing
so can cause a kernel panic at runtime. The IRQL require-
ments of each kernel routine are very clearly specified in
the MSDN documentation. For instance, expensive safe-string
routines like RtlEqualString7 should only be invoked at
PASSIVE_LEVEL, etc. It is important to weed out incorrect
IRQL violations statically.

B. AV rules

Development of the AV property specification for checking
correct IRQL usage required modest effort; a majority of it was
completed in one person month. The IRQL requirements of
each kernel routine was already well documented. Often, the
effort was simply to codify the documentation. For instance,
the KeAcquireSpinLock8 routine requires that current
IRQL be less than DISPATCH_LEVEL. It then raises the
IRQL to DISPATCH_LEVEL and stashes the old IRQL value
in the pointer argument supplied to it. Calls to this routine are
instrumented as shown below.
procedure KeAcquireSpinLock(x0: int, x1: int);
{

assert irql <= 2;
Mem[x1] := irql;
irql := 2;

}

This uses a single global variable irql that records the
current IRQL value of the processor. Note that SDV performs
sequential verification only; correspondingly, we only need to
track the IRQL of a single processor.

Any behavior that was unrelated to IRQLs, e.g., actually
acquiring a lock, was left unspecified, limiting the amount of
work that was required to design the AV property file. The
entire property specification consists of 476 such rules. Out
of these, only 65 routines actually change the IRQL value,
whereas the rest simply assert a precondition. Each rule was
at most 4 lines of instrumentation.

7https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/
nf-ntddk-rtlequalstring

8https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/
nf-wdm-keacquirespinlock

i n t D r i v e r R o u t i n e ( . . . )
f

i f ( . . . ) / / b r an ch B
f

/ / R e q u i r e s i r q l <= 1 , s e t s i r q l t o 1
ExAcqui reFas tMutex ( . . . ) ;
/ / R e q u i r e s i r q l == 0
R t l E q u a l S t r i n g ( . . . ) ;

g
e l s e
f

/ / R e q u i r e s i r q l == 2
KeTryToAcquireSpinLockAtDpcLevel ( . . . )

g
. . .

g

Fig. 5. Program snippet illustrating AV for checking correct IRQL usage.

The AV vocabulary is set to arbitrary arithmetic constraints
(equality, disequality and comparisons) over the variable irql
and any constant. This vocabulary is different from the vo-
cabulary used for memory safety rules, where we do not
permit equality predicates over the pointers. For instance, for
NULLCHECK, the vocabulary only allows disequality con-
straints to model non-aliasing and non-nullness. This illustrates
the flexibility of the AV framework to adapt to new classes of
rules with relative easy.

We illustrate the behavior of AV for checking correct IRQL
usage using the example shown in Figure 5. This program
shows a simple driver routine that calls three different kernel
routines. The requirements of each of the kernel routines are
shown in comments, along with any side-effects they have on
changing the IRQL value. This information is instrumented
into the program by property instrumentation tool.

We describe a sample run of AV on DriverRoutine.
AV will start analysis on this routine with an unconstrained
initial value for irql, because of which it will detect a
possible failure of the assertion irql � 1 at the call
to ExAcquireFastMutex. AV will suppress this failure
by installing an angelic precondition on DriverRoutine,
namely that irql � 1. Next, AV restarts the analysis with
this new pre-condition. In this case, it will report another
possible failure: the assert irql == 0 fails on the call
to RtlEqualString. This failure has no dependence on
the initial value of irql (because ExAcquireFastMutex
always sets irql to 1); thus, it cannot be suppressed by AV
and it will correspondingly show the violation to the user as a
single trace of execution of DriverRoutine. This kind of
analysis also has a pleasant side-effect: the user can inspect
this trace in isolation from the callers of DriverRoutine
because the initial value of irql is immaterial.

C. Inconsistency Violations

There is a second class of violations that AV can report that
we call inconsistency violations. Such a violation consists of
multiple (2 or more) traces. Consider the assertion at the call to
KeTryToAcquireSpinLockAtDpcLevel. AV will try to
suppress this violation as well by installing the precondition
irql == 2 to DriverRoutine. However, this precon-
dition conflicts with the previous precondition irql � 1,
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i.e., their conjunction is unsatisfiable (and therefore rejected
by the permissiveness check in Figure 2). AV detects this
conflict and shows a violation to the user consisting of
two traces: the first trace is the one that ends in a call
to ExAcquireFastMutex and the second one ends in a
call to KeTryToAcquireSpinLockAtDpcLevel. This
violation tells the user that at least one of the calls (maybe,
both) is potentially buggy.

Note that it is possible for AV to report false inconsistency
violations. For instance, if the branch B in the code had a con-
dition dependent on some flags passed to DriverRoutine
that were set by its callers to indicate different IRQL levels,
then it is possible for DriverRoutine to be correct. AV
only includes inferring preconditions on the irql variable,
so it does not pick up the branch condition B. This allows
AV to scale at the cost of some precision. In our experiments,
however, AV did not report any false positives because of this
reason.

D. Evaluation

During the development of the IRQLCHECK rule, we con-
ducted an initial set of experiments on internal driver code.
We picked 797 driver modules that each had some usage of
IRQL levels, i.e., ones that called at least one kernel routine
that manipulated the IRQL value. The average running time of
AV on these modules was 180 seconds. A distribution of the
AV running times, shown in Figure 6, indicates that a majority
of modules take little time, however there are a few that take
much longer.

AV reported a total of 29 violations in these modules.
Manual inspection revealed that 26 of these were true vio-
lations; of these 18 were single-trace defects and the rest 8
were inconsistency violations consisting of two traces each.
There were 3 false positives. In two of these, AV reported
a violation assuming an initial IRQL value of −1. This is
not possible. We fixed it by constraining the irql variable
to always be between 0 and 31 and the corresponding false
positives went away. One false positive was due to imprecision
in aliasing where the value stored under a global variable was
overwritten by a write through an unconstrained pointer. The
code did not contain any evidence that the pointer could alias
the global. This is currently a limitation of AV but happens
very rarely; usually the pointer analysis is good at ruling out
such possibilities.

V. RELATED WORK

Memory safety of C/C++ applications has naturally received
a lot of attention, both in academia and industry, because of
their security implications. Microsoft has invested in tools such
as Esp [26], Espx [27] and Prefix [28] that have all targeted the
Windows Operating System. As opposed to SDV, these tools
are not shipped externally. They are used in-house and for that
reason they have been heavily tuned for internal Windows code
through the use of custom analyses (often a form of pointer
analysis), annotations (SAL [29]) or extensive models. Such
investment makes the tools expensive to maintain (dependence

Fig. 6. Histogram of AV running times on multiple Windows modules.

on annotations/models also implies a constant maintenance
struggle) or extend to new properties (which requires a new
custom analysis).

Facebook supports the open-source tool Infer [30]. Infer per-
forms a bottom-up pointer-based analysis of C/C++ programs
(even Java) looking for null-safety, use-after-free violations,
etc. Infer is designed to be incredibly fast so that developers
get immediate feedback as they make code changes. SDV
is much more heavy-weight with the use of its SMT-based
engine so it cannot provide immediate feedback. Instead, SDV
finds its place in a certification process for drivers where it
has more time to perform the analysis. On the other hand,
Infer is not as readily extensible as SDV for new checks as it
requires the creation of a new abstract domain for summarizing
behaviors relevant to the property of interest. Besides, the
presence of overapproximate summaries can lead to false
alarms even for closed programs, especially when summaries
need to capture complex arithmetic conditions. Unfortunately,
we cannot perform a direct comparison with Infer on the
common rules, as Infer cannot be integrated into the build
environment for these Windows drivers that use the Microsoft
C/C++ compiler toolchain.

The angelic checks in SDV has two key contributions over
the tools mentioned above. First, the use of a precise SMT-
based backend allows AV-SDV to be easily tuned to support
multiple different rules, simply as a new AVP instrumentation
file. For instance, IRQLCHECK is not a pointer-based rule;
instead it requires arithmetic reasoning of the IRQL value.
Yet, AV-SDV supports it without any changes to the tool flow.
Second, AV can tolerate imprecise models, thus considerably
reducing the maintenance effort.

The core idea of angelic verification is related to research
on abduction [31] and maximal specification inference [32].
These techniques use novel yet expensive quantifier elimina-
tion algorithms to find permissive specifications on the envi-
ronment. Further these techniques can be used to infer loop
invariants for unbounded executions. The main differences lie
in the use of AV in SDV to detect high quality bugs instead of
finding the maximally permissive or inductive specifications.
Although this may result in AV failing to infer a permissive
specification even when it exists, AV’s lightweight predicate
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abstraction allows us to scale to modules with hundreds of
thousands of lines of code in the presence of a heap. Finally,
the idea of starting exploration from functions other than
entrypoints is also explored in recent scalable pointer analysis
approaches [33], [34].

VI. CONCLUSION

In this paper, we described our experience integrating an-
gelic checking with the Static Driver Verifier tool, over a
period of several years. We described the limitations of SDV
for checking unsupported drivers as well as memory safety
properties before this work, and provide evidence that the an-
gelic checks provide a cost-effective solution to finding high-
quality defects in drivers with very low upfront investment.
For future work, we are currently working on: (a) making
AV more scalable by pruning state space already explored
from transitive callees, and (b) providing support for writing
other security critical angelic checks that require taint tracking
through values in the heap.
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Abstract—Software-defined networking (SDN) enables ad-
vanced operation and management of network deployments
through (virtually) centralised, programmable controllers, which
deploy network functionality by installing rules in the flow
tables of network switches. Although this is a powerful ab-
straction, buggy controller functionality could lead to severe
service disruption and security loopholes, motivating the need
for (semi-)automated tools to find, or even verify absence of,
bugs. Model checking SDNs has been proposed in the literature,
but none of the existing approaches can support dynamic
network deployments, where flow entries expire due to timeouts.
This is necessary for automatically refreshing (and eliminating
stale) state in the network (termed as soft-state in the network
protocol design nomenclature), which is important for scaling up
applications or recovering from failures. In this paper, we extend
our model (MoCS) to deal with timeouts of flow table entries, thus
supporting soft state in the network. Optimisations are proposed
that are tailored to this extension. We evaluate the performance
of the proposed model in UPPAAL using a load balancer and
firewall in network topologies of varying size.

I. INTRODUCTION

Software-defined networking (SDN) [1] revolutionised net-
work operation and management along with future protocol
design; a virtually centralised and programmable controller
‘programs’ network switches through interactions (standard-
ised in OpenFlow [2]) that alter switches’ flow tables. In turn,
switches push packets to the controller when they do not store
state relevant to forwarding these packets. Such a paradigm
departure from traditional networks enables the rapid develop-
ment of advanced and diverse network functionality; e.g., in
designing next-generation inter-data centre traffic engineering
[3], load balancing [4], firewalls [5] and Internet exchange
points (IXPs) [6]. Although this is a powerful abstraction,
buggy controller functionality could lead to severe service
disruption and security loopholes. This has led to a significant
amount of research on SDN verification and/or bug finding,
including static network analysis [7], [8], [9], dynamic real-
time bug finding [10], [11], [12], [13], and formal verifi-
cation approaches, including symbolic execution [14], [15],
[16] and model checking [17], [10], [16], [18] methods. A
comprehensive review of existing approaches along with their
shortcomings can be found in [19].

Model checking is a renowned automated technique for
hardware and software verification and existing model check-
ing approaches for SDNs have shown promising results with
respect to scalability and model expressivity, in terms of
supporting realistic network deployments and the OpenFlow

standard. However, a key limitation of all existing approaches
is that they cannot model forwarding state (added in network
switches’ flow tables by the controller) that expires and
gets deleted. Without this, one cannot model nor verify the
correctness of SDNs with soft-state which is prominent in the
design of protocols and systems that are resilient to failures
and scalable; e.g., as in [20], where flow scheduling is on
a per-flow basis, and numerous network protocols where in-
network state is not explicitly removed but expires, so that
overhead is minimised [21].

In this paper, we extend our model (MoCS) [17] to support
soft-state, complying with the OpenFlow specification, by
allowing flow entries to time out and be deleted. We propose
relevant optimisations (as in [17]) in order to improve verifica-
tion performance and scalability. We evaluate the performance
of the proposed model extensions in UPPAAL using a load
balancer and firewall in network topologies of varying size.

II. MOCS SDN MODEL

The MoCS model [17] is formally defined by means of
an action-deterministic transition system. We parameterise
the model by the underlying network topology, λ, and the
controller program, CP, in use. The model is a 6-tuple
Mpλ,CPq “ pS, s0, A, ãÑ,AP , Lq, where S is the set of all
states the SDN may enter, s0 the initial state, A the set of
actions which encode the events the network may engage in,
ãÑĎ S ˆ Aˆ S the transition relation describing which exe-
cution steps the system undergoes as it perform actions, AP a
set of atomic propositions describing relevant state properties,
and L : S Ñ 2AP is a labelling function, which relates to any
state s P S a set Lpsq P 2AP of those atomic propositions that
are true for s. Such an SDN model is composed of several
smaller systems, which model network components (hosts1,
switches and the controller) that communicate via queues
and, combined, give rise to the definition of ãÑ. A detailed
description of MoCS’ components and transitions can be found
in [17]. Due to lack of space, in this paper, we only discuss
aspects of the model that are required to understand and verify
the soundness of the proposed model extensions, and examples
used in the evaluation section. Figure 1 illustrates a high-level
view of OpenFlow interactions, modelled actions and queues,
including the proposed extensions discussed in Section III.

1A host can act as a client and/or server.
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Fig. 1: A high-level view of OpenFlow interactions (left half)
and modelled actions (right half). A red solid-line arrow
depicts an action which, when fired, (1) dequeues an item
from the queue the arrow begins at, and (2) (possibly) adds an
item in the queue the arrowhead points to (or multiple items if
the arrow is double-headed). Deleting an item from the target
queue is denoted by a reverse arrowhead; modifying in, by
a hammerhead. A forked arrow denotes (possibly) multiple
targeted queues.

States and queues: A state is a triple pπ, δ, γq, where π is a
family of hosts, each consisting of a receive queue (rcvq); δ is
a family of switches, consisting of a switch packet queue (pq),
switch forward queue (fq), switch control queue (cq), switch
flow table (ft); γ consists of the local controller program state
cs P CS , and a family of controller queues: request queue (rq),
barrier-reply queue (brq) and flow-removed queue (frq). So π
and δ describe the data-plane, and γ the control plane. The
network components communicate via the shared queues. Each
transition models a certain network event that will involve
some of the queues, and maybe some other network state.
Concurrency is modelled through interleavings of those events.
Transitions: Each transition is labelled with an action α P A
that indicates the nature of the network event. We write
s

α
ãÝÑ s1 and ps, α, s1q PãÑ interchangeably to denote that the

network moved from state s to s1 by executing transition α.
The parts of the network involved in each individual α, i.e.
packets, rules, barriers, switches, hosts, ports and controller
states, are included in the transition label as parameters; e.g.,
matchpsw, pkt, rq P A denotes the action that switch sw
matches packet pkt by rule r and, as a result, forwards it
accordingly, leading to a new state after transition.
Atomic propositions: The propositions in AP are statements
on (1) controller program states, denoted by Qpqq which
expresses that the controller program is in state q P CS ,
allowing one to reason about the controller’s internal data
structures, and (2) packet header fields – those packets may
be in any switch buffer pq or host buffer rcvq (but no other
buffers). For instance, DpktPsw .pq . P ppktq is a legitimate
atomic proposition that states that there is a packet in sw ’s
packet queue that satisfies packet pkt property P .
Topology: λ describes the network topology as a bijective map

which associates one network interface (a pair of networking
device and physical port) to another.
Specification Logic: The properties of the SDNs to be
checked in this paper are safety properties, expressed in linear-
time temporal logic without ‘next-step’ operator, LTLzt©u. We
have enriched the logic by modal operators of dynamic logic
[22], allowing formula construct of the form rαp~xqsP stating
that whenever an event αp~xq happened, P must hold. Note that
P may contain variables from x. This extension is syntax sugar
in the sense that the formulae may be expressed by additional
state; e.g.,

“

matchpsw , pkt , rq
‰

pr.fwdPort “ dropq states
that if match happened, it was via a rule that dropped the
packet. This permits specification formulae to be interpreted
not only over states, but also over actions that have happened.
The model checking problem then, for an SDN model Mpλ,CPq

with a given topology λ, a control program CP and a formula
ϕ of the specification logic as described above, boils down
to checking whether all runs of Mpλ,CPq satisfy ϕ, short
Mpλ,CPq |ù 2ϕ.
SDN Operation: End-hosts send and receive packets (send
and recv actions in Figure 1) and switches process incoming
packets by matching them (or failing to) with a flow table
entry (rule). In the former case (match action), the packet
is forwarded as prescribed by the rule. In the opposite case
(nomatch action), the packet is sent to the controller (Pack-
etIn message on the left side of Figure 1). The controller’s
packet handler is executed in response to incoming PacketIn
messages; as a result of its execution, its local state may
change, a number of packets (PacketOut message) and rule
updates (FlowMod message), interleaved with barriers (Bar-
rierReq message), may be sent to network switches. Network
switches react to incoming controller messages; they forward
packets sent by the controller as specified in the respective
PacketOut message (fwd action), update their own forwarding
tables (add/del actions), respecting set barriers and notifying
the controller (BarrierRes message) when said barriers are
executed (brepl action). Finally, upon receiving a BarrierRes
message, the controller executes the respective handler (bsync
action), which can result in the same effects as the PacketIn
message handler.
Abstractions: To obtain finitely representable states, all
queues in the model must be finitely representable. For packet
queues we use multisets, subject to p0,8q abstraction [23];
a packet either does not appear in the queue or appears an
unbounded number of times. The other queues are simply
modelled as finite sets. Modelling queues as sets means that
entries are not processed in the order of arrival. This is
intentional for packet queues but for controller queues this
may limit behaviour unless the controller program is order-
insensitive. We focus on those controller programs in this
paper.

III. MODELLING FLOW ENTRY TIMEOUTS

In order to model soft-state in the network, we enrich our
model with two new actions that model flow entry timeouts
and subsequent handling of these timeouts by the controller

180



program. Note that in our model, timeouts are not triggered
by any kind of clock; instead, they are modelled through the
interleaving of actions in the underlying transition system that
ensure that flow removal (and subsequent handling by the
controller program) will appear as it would for any possible
value of a timeout in a real system.

The new actions are defined as follows: frmvdpsw , rq mod-
els the timeout event, as an action in the transition system that
removes the flow entry (rule) r from switch sw and notifies
the controller by placing a FlowRemoved message (see Figure
1) in the respective queue (frq). The fsyncpsw , r , csq action
models the call to the FlowRemoved message handler. As a
result of the handler execution, the controller’s local state (cs)
may change, a number of packets (PacketOut messages) and
rule updates (FlowMod messages), interleaved with barriers
(BarrierReq message), may be sent to network switches. In
order to model timeouts, rules are augmented with a timeout
bit which, when true, signals that the installed rule can be
removed at any time, i.e., the frmvd-action can be interleaved,
in any order, with any other action that is enabled at any state
later than the installation of this rule.

To support our examples, we add to the set of FlowMod
messages a modify flow entry instruction. In [17] we only
used addpsw , rq and delpsw , rq messages, for installing and
deleting rule r at switch sw , respectively. We now add
modpsw , f , aq to these messages. This instructs switch sw that
if a rule is found in sw .ft that matches field f, its forwarding
actions are modified by a. If no such rule exists, modp¨q does
not do anything.
Optimisation: To tackle the state-space explosion, we exploit
the fact that some traces are observationally (w.r.t. the property
to be proved) equivalent, so that only one of those needs to be
checked. This technique, referred to as partial-order reduction
(POR) [24], reduces the number of interleavings (traces) one
has to check. To prove equivalence of traces, one needs actions
to be permutable and invisible to the property at hand. This is
the motivation for the following definition:

Definition 1 (SAFE ACTIONS) Given a context CTX “

pCP, λ, ϕq, and SDN model Mpλ,CPq “ pS,A, ãÑ, s0,AP , Lq,
an action αp¨q P Apsq is called safe if it is (1) independent
of any other action β in A, i.e. executing α after β leads to
the same state as running β after α, and (2) unobservable for
ϕ (also called ϕ-invariant), i.e., s |ù ϕ iff αpsq |ù ϕ for all
s P S with α P Apsq.

The following property of controller programs is needed to
show safety:

Definition 2 (ORDER-SENSITIVE CONTROLLER PROGRAM)
A controller program CP is order-sensitive if there exists a state
s P S and two actions α, β in tctrlp¨q, bsyncp¨q, fsyncp¨qu such
that α, β P Apsq and s

α
ãÝÑ s1

β
ãÝÑ s2 and s

β
ãÝÑ s3

α
ãÝÑ s4 with

s2 ‰ s4.

In [17] we already showed that certain actions are safe and
can be used for PORs. We now show that the new fsyncp¨q
action is safe on certain conditions.

Lemma 1 (SAFENESS PREDICATES FOR fsync) For transition
system Mpλ,CPq “ pS,A, ãÑ, s0,AP , Lq and a formula ϕ P
LTLzt©u, α “ fsyncpsw , r , csq is safe iff the following two
conditions are satisfied:

Independence CP is not order-sensitive
Invisibility if Qpqq in AP occurs in ϕ, then

α is ϕ-invariant

Proof. See [25] Appendix A.

Given a context CTX “ pCP, λ, ϕq and an SDN network
model Mpλ,CPq “ pS,A, ãÑ, s0,AP , Lq, for each state s P S
define amplepsq as follows: if tα P Apsq | α safe u ‰ H,
then amplepsq “ tα P Apsq | α safe u; otherwise amplepsq “
Apsq. Next, we define Mfr

pλ,CPq
“ pSfr , A, ãÑfr , s0,AP , L

fr q,
where Sfr Ď S the set of states reachable from the initial
state s0 under ãÑfr , Lfr psq “ Lpsq for all s P Sfr and ãÑfr

Ď Sfr ˆAˆ Sfr is defined inductively by the rule:

s
α

ãÝÑ s1

s
α

ãÝÑfr s1
if α P amplepsq

Now we can proceed to extend the POR Theorem of [17]:
Theorem 1 (FLOW-REMOVED EQUIVALENCE) Given a prop-
erty ϕ P LTLzt©u, it holds that Mfr

pλ,CPq
satisfies ϕ iff Mpλ,CPq

satisfies ϕ.
The proof is a consequence of Lemma 1 applied to the proof

of Theorem 2 in [17]. See [25] Appendix A for a detailed
proof.

IV. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate the proposed
extensions in terms of verification performance and scalability.
We use a realistic controller program that enables a network
switch to act both as a load balancer and stateful firewall (see
§V-CP1). The load balancer keeps track of the active sessions
between clients and servers in the cluster (see Figure 2), while,
at the same time, only allowing specific clients to access
the cluster. Soft state is employed here so that flow entries
for completed sessions (that were previously admitted by the
firewall) time out and are deleted by the switch without having
to explicitly monitor the sessions and introduce unnecessary
signalling (and overhead). In the underlying SDN model, the
frmvd action is fired, which, in turn, deletes the flow entry
from the switch’s table and notifies the controller of that. This
enables the fsync action that calls the flow removal handler.
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Fig. 2: Four clients and two servers connecting to an OF-
switch.
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is not white-listed.

A session is initiated by a client which sends a packet
(pkt in §V-CP1) to a known cluster address; servers are
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not directly visible to the client. Sessions are bi-directional
therefore the controller must install respective rules to the
switch to allow traffic to and from the cluster. The property
that is checked here is that (1) the traffic (i.e. number of
sessions, assuming they all produce similar traffic patterns),
and resulting load, is uniformly distributed to all available
servers, and (2) that traffic from non-whitelisted clients is
blocked. More concretely, “a packet from a ‘dodgy’ address
should never reach the servers, and the difference between the
number of assigned sessions at each server should never be
greater than 1”, formally,

2
`

@si, sj P Servers @pkt P si .rcvq .

 pkt .src “ dodgy ^
∣∣sLoadrsis ´ sLoadrsjs

∣∣ ă 2
˘ (ϕ)

where sLoad stores the active session count for each server.
In the first (buggy) version of the controller’s packet handler

(shaded grey in §V-CP1) and flow removal handler §V-CP2,
the controller program assigns new sessions to servers in a
round-robin fashion and keeps track of the active sessions
(array deplSessions in the provided pseudocode). When a
session expires, the respective flow table entry is expected
to expire and be deleted by the switch without any signalling
between the controller, clients or servers2. As stated above,
this controller program does not satisfy safety property ϕ
because the controller does nothing to rebalance the load when
a session expires. Our model implementation3 discovered the
bug in the topology shown in Figure 2 with 3 sessions in 11ms
exploring 202 states.

In the second (still buggy) version of the controller, session
scheduling is more sophisticated (shaded blue in §V-CP1); a
session is assigned to the server with the least number of active
sessions. Although the updated load balancing algorithm does
keep track of the active sessions per server, this controller is
still buggy because no rebalancing takes place when sessions
expire. In a topology of 4 clients and 2 servers, we were able
to discover the bug in 52ms after exploring 714 states.

We fix the bug by allowing the controller program to
rebalance the active sessions, when (1) a session expires and
(2) the load is about to get out of balance, by moving one
session from the most-loaded to the least-loaded server (§V-
CP3). In the same topology as above, we verified the property
in 625ms after exploring 15068 states.4

Next, we evaluate the performance of the proposed model
and extensions for verifying the correctness of the property
in a given SDN. We do that by verifying ϕ with the correct
controller program, discussed above, and scaling up the topol-
ogy in terms of clients, servers and active sessions. Results are
listed in Table I and state exploration is illustrated in Figure 4.

Table I lists performance of the model checker for verifying
the correct controller program with PORs disabled on the

2It is worth stressing that modelling such functionality is not supported by
existing model checking approaches, such as [17] and [18], where flow table
entries can only be explicitly deleted by the controller.

3UPPAAL [26] is the back-end verification engine for MoCS and all
experiments were run on an 18-Core iMac pro, 2.3GHz Intel Xeon W with
128GB DDR4 memory.

4Note that the fsync-optimisation was not enabled in the examples above.

left and with PORs enabled on the right, respectively. For
each chosen topology we list the number of states explored,
CPU time used, and memory used. The topology is shaped
as in Figure 2, and parametrised by the number of clients
(ranging from 3 to 5) and servers (ranging from 2 to 5),
as indicated in Table I. The number of required packets and
rules, respectively, is shown in grey. These numbers are always
uniquely determined by the choice of topology. Where there
are no entries in the table (indicated by a dash) the verification
did not terminate within 24 hours.

The results clearly show that the verification scales well
with the number of servers but not with the number of clients.
The reason for the latter is that for each additional client an
additional packet is sent, which, according to programs §V-
CP1 and CP3, leads to 7 additional actions without timeouts
and to 12 with timeouts. The causal ordering of these actions is
shown in Fig. 3. The sub-branch in red shows the actions that
appear due to a timeout of the added rule. Thus, the number of
states is exponential in the number of clients: every new action
in Fig. 3 leads to a new change of state, thus doubling the
possible number of states. This exponential blow-up happens
whether we have timeouts or not. With timeouts, however,
we have worse exponential complexity as there are more new
states generated.

sendppktq

nomatchppktq

ctrlppktq

addpruleq

matchppkt , ruleq

addprulesq

frmvdprulesq

fsyncprulesq

modprq modprsq

fwdppktq

recvppktq

Fig. 3: The causal enabling relation between actions for an
additional packet pkt; only the relevant arguments are shown
using the same nomenclature as in the pseudocode.

The results also demonstrate that, for network setups with
three clients, the POR optimisation reduces the state space –
and thus the verification time – by about half. For more clients
the reduction is far more significant, given that the verification
of the unoptimised model did not terminate within 24 hours.
This is not surprising as the number of possible interleavings is
massively increased by the non-deterministic timeout events.

V. CONTROLLER PROGRAMS

CP1 implements the PacketIn message handler that pro-
cesses packets sent by switches when the nomatch action is
fired. The two different versions of functionality discussed
in the paper are defined by the leastConnectionsScheduling
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Fig. 4: Explored States (logarithmic scale). Wide bars repre-
sent the optimised model and narrow ones (inside) the unop-
timised model. Uncoloured bars represent non-termination.

TABLE I: Performance by number of clients and servers

States CPU 
user 
time 

Resident 
memory 
[KiB]

States CPU 
user 
time

Resident 
memory 
[KiB]

3 2 3 13 15,068 553ms 9,516 8,264 317ms 9,016
3 3 3 19 15,068 700ms 10,688 8,264 322ms 8,792
3 4 3 25 15,068 841ms 11,936 8,264 483ms 10,488
3 5 3 31 15,068 987ms 15,280 8,264 563ms 12,844
4 2 4 17 — — — 13,244,474 13.2m 2,508,528
4 3 4 25 — — — 24,623,435 30.77m 5,432,004
4 4 4 33 — — — 24,623,435 37.23m 13,129,916
4 5 4 41 — — — 24,623,435 42.64m 15,443,136
5 2 5 21 — — — — — —
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constant. When leastConnectionsScheduling is false, server
selection is done in a round-robin fashion, whereas, in the
opposite case, the controller assigns the new session to the
server with the least number of active sessions.

CP2 implements the naive (and buggy) FlowRemoved mes-
sage handler. When soft state expires in the network, the
handler merely updates its local state to reflect the update in
the load.

CP3 implements a more sophisticated (and correct) FlowRe-
moved message handler. When soft state expires in the net-
work, the handler updates its local state to reflect the update
in the load and re-assigns active sessions from the most to the
least loaded server, by updating the flow table of the switch
accordingly.

VI. CONCLUSION AND FUTURE WORK

We have proposed model checking of SDN networks with
flow entries (rules) that time out. Timeouts pose problems due
to the great number of resulting interleavings to be explored.
Our approach is the first one to deal with timeouts, exploiting
partial-order reductions, and performing reasonably well for
small networks. We demonstrated that bug finding works well
for SDN networks in the presence of flow entry timeouts.
Future work includes exploring flow removals with timeouts
that are constrained by integer to enforce certain orderings of
timeout messages as well as improvements in performance,
for instance, by using bounded model checking tools for
concurrent programs.

Controller Program CP 1: PacketIn Message Handler
1: handler pktIn(pkt , sw )
2: if pkt .srcIP ‰ dodgy client then
3: if  deplSessionsrpkt .srcIPs then
4: if  leastConnectionsScheduling then

{{ Round-Robin rotation
5: server Ð server mod 2` 1
6: else

{{ Least-Connections scheduling
7: server Ð min

`

sLoadrs
˘

8: end if
{{ Initialisation of flow to server

9: rule.srcIP Ð pkt .srcIP
10: rule.in port Ð pkt .in port
11: rule.fwdPort Ð server

{{ Initialisation of symmetric rules
12: rules .srcIP Ð server
13: rules .destIP Ð pkt .srcIP
14: rules .fwdPort Ð pkt .in port
15: rules .timeout Ð true

{{ Initialisation of drop rule ruled
16: ruled .srcIP Ð dodgy client
17: ruled .fwdPort Ð drop

{{ Deployment of rules
18: send message

`

FlowMod
`

addpruleq
˘

, sw
˘

19: send message
`

FlowMod
`

addprulesq
˘

, sw
˘

20: send message
`

FlowMod
`

addpruledq
˘

, sw
˘

{{ Update firewall state table
21: sLoadrserver s++
22: deplSessionsrpkt .srcIPs Ð true
23: end if

{{ PacketOut: sending pkt out through sw
24: send messagetPacketOutppkt , serverq, sw

˘

25: end if
26: end handler

Controller Program CP 2: Naive FlowRemoved message
handler

1: handler flowRmvd (rules , sw )
2: sLoadrrules .srcIPs--
3: deplSessionsrrules .destIPs Ð false
4: end handler

Controller Program CP 3: Correct FlowRemoved message
handler

1: handler flowRmvd (rules , sw )
2: sLoadrrules .srcIPs--
3: deplSessionsrrules .destIPs Ð false
4: if max

`

sLoadrs
˘

´min
`

sLoadrs
˘

ą 1 then
5: r Ð the rule in sw .ft with fwdPort “ max psLoadrsq
6: rs Ð symmetric rule of r
7: cm Ð mod

`

r , fwdPort Ð minpsLoadrsq
˘

8: cms Ð mod
`

rs , srcIP Ð minpsLoadrsq
˘

9: send message
`

FlowModpcm, swq
˘

10: send message
`

FlowModpcms , swq
˘

11: sLoad
“

max
`

sLoadrs
˘‰

--

12: sLoad
“

min
`

sLoadrs
˘‰

++
13: end if
14: end handler
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Using model checking tools to triage the severity of
security bugs in the Xen hypervisor
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Abstract—In practice, few security bugs found in source code
are urgent, but quickly identifying which ones are is hard.
We describe the application of bounded model checking to
triaging reported issues quickly at the cloud service provider
Amazon Web Services (AWS). We focus on the job of reactive
security experts who need to determine the severity of bugs
found in the Xen hypervisor. We show that, using our publicly
available extensions to the model checker CBMC, a security
expert can obtain traces to construct security tests and estimate
the severity of the reported finding within 15 minutes. We believe
that the changes made to the model checker, as well as the
methodology for using tools in this scenario, will generalise to
other organisations and environments.

I. INTRODUCTION

Some bugs have serious security implications. For well-
engineered systems most bugs do not. The reason is that these
systems are built with defense in depth [1], meaning that the
average bug found usually just temporarily reduces the depth
of the defense provided until the bug is fixed, but does not
present an immediate security concern that nullifies assumed
defenses.

At Amazon Web Services (AWS), a key challenge we
face is quickly categorising each bug report, which requires
answering the question whether the bug is reachable through all
security layers. Determining vulnerability severity is performed
under intense time-pressure, as Amazon's first priority is the
continuous security of its customers. The key to success in
these situations is access to quick and accurate answers to
questions about state-space reachability. Our case study focuses
on determining the severity of bugs in Xen [2], an open-source
hypervisor used throughout the industry. AWS uses a customised
Xen version on some of its Elastic Compute Cloud (EC2) servers.
While this case study focuses on Xen, we believe the results
generalise to other large-scale systems: based on our experience
with Xen and other systems, after an initial effort to ensure
successful builds of the code base, the system-specific effort to
apply the approach reported on in this case study is low.

For each security finding, the Xen Project publishes a Xen
Security Advisory (XSA) [3]. A typical XSA comes with a
description of the problem and a source-code patch to mitigate
the issue. Before full publication, the XSA is shared with
the members of Xen's pre-disclosure list, as is common in
responsible disclosure processes. At AWS, members of 24/7
security operations triage potential security bugs as they are

discovered or reported. They may find themselves in the
following quandary: should they wake the engineering team
from their beds to investigate? Or do the existing layers of
defense mitigate against the consequences of the bug? Often
the same code is used in multiple products, where the defenses
will differ from service to service.

In order to assess the severity of a given XSA, the security
expert will manually determine whether the vulnerability is
reachable in the AWS-customised version of Xen. Engineers
construct security tests to reproduce the vulnerability, thereby
answering the reachability question. This reachability question
fundamentally is a global question about the interaction amongst
details across the entire EC2 system. It includes complex custom
hardware, software, protocols, and networks that implement the
layers of security defense, as well as enabling high compute
utilization and scalability needed for one of the world's largest
cloud providers.

In this case study we describe our use of bounded model
checking to help our security experts make faster and more
accurate assessments of severity. The complexity of the overall
environment is well beyond the capacity of today's formal
methods tools. We automate the part of the process that was
previously most time-consuming for security experts using an
extended version of CBMC [4]. For a given XSA, we use the
source-code patch provided with the XSA to write an assertion,
which we insert into the patched source-code area. Reachability
and violation of this assertion indicates a possible exploitation
of the vulnerability. We analyse the Xen source code in the
context of a potential security bug and generate traces that are
helpful for test construction.

These tests will be executed in the overall EC2 environment,
and help the security experts among us understand which
defenses remain intact, or else help find a complete proof-of-
concept test, which will be used to confirm any mitigation. In
our experience, we can perform work in minutes that would
previously have taken weeks or months. Because weeks is
unacceptably long, before the use of our methodology, additional
developers were enlisted as needed in order to reach a more
timely analysis conclusion. Now, we are able to more rapidly
make high-confidence calls using the high-fidelity answers
produced by our methodology. The result is that the rare critical
security bugs get fixed even faster than before, with fewer
human resources.
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Related work: We integrate our extensions into CBMC [5],
[6], a bit-precise bounded model checking tool for C programs.
Model checking is frequently applied to security problems:
Gallagher et al. [7] use security patches to generate verification
assertions, and use CBMC and Frama-C to verify these.
UQBTng [8] automatically finds integer over�ows in Win32
binaries using CBMC. Vasudevan et al. [9] use CBMC in
the verification of a small hypervisor framework. Automated
verification techniques have been applied to the address
translation subsystem [10] of the Xen hypervisor, using a
parametric verification technique to reduce the model size.
A small custom hypervisor is analysed by Alkassar [11]
and [12]. Dahlin et al. [13] develop a simple but fully verified
hypervisor. None of these approaches scales to the size of Xen
(cf. Section III).

Frama-C has been applied to verify a subset of the Xen
hypervisor code [14], using modelling of assembly code, harness
functions and manually picking hypercalls. The considered
properties are shallower than required for analysing security
issues. In contrast, we aim to automatically select hypercalls, and
focus on the interaction between the guest and the hypervisor.
KLEE [15] cannot be applied, as Xen does not compile to
LLVM [16]. This rules out tools built on top of KLEE, such
as the automatic exploit generation tool of [17], and also the
concolic execution approach that Chen et al. presented for
Linux kernel modules [18].

II. CBMC AND BOUNDED MODEL CHECKING

CBMC [6] is a bounded model checker [19] which can check
for the violations of assertions in C programs, or prove absence
of violations given a specific bound. The default behaviour of
CBMC is that it unwinds any loops or recursion in the program
to a given unwinding limit but unrolls the rest of the program
fully. CBMC performs a bit-precise translation of the source
program into a Boolean formula, which is then passed to a SAT
solver. If the formula is satisfiable, then a counterexample trace
that leads to a violated assertion exists, and CBMC translates
the model returned from the SAT solver back into assignments
to program state variables for each state in this trace.

CBMC's code base also provides for a number of text-book
data-�ow analyses. These include precise slicers as discussed
in Section III-B. In Section IV we explain as to why we had
to add approximate slicing to complement the precise ones.

III. THE XEN HYPERVISOR

In cloud computing, one physical host machine is partitioned
into several parts, called virtual machines. Virtual machines
behave like complete computers with their own operating system,
and each virtual machine serves a single guest (serving as a
host in nested virtualisation [20]). The software that provides
this illusion is called a hypervisor [21], [22]. Xen [2] is a
bare-metal hypervisor, as it runs directly on the hardware of the
host and manages all the host's resources. A similar hypervisor
is KVM [23], for which this work would apply as well.

1) Virtual machines: Every guest virtual machine in Xen
has its own guest kernel and operating system. A system call
from a program of a guest, e.g., a request for access to I/O
devices, reaches the guest kernel. In most configurations of Xen,
the guest kernel does not have direct control of the physical
machine. Hence, the guest kernel issues a hypercall or accesses
a predefined memory range to request the service from the
hypervisor. Xen is event-driven: after booting and once a guest
runs, Xen waits for guest code to execute and takes actions on
hypercalls, or host interrupts. The hypervisor handles hardware
exceptions and interrupts, which may be raised by the CPU
when guests issue privileged instructions.

2) Memory: Xen uses virtual memory for isolation and to
give guests the impression they are working with contiguous
sections of memory, when the physical memory could be spread
across different locations. Virtual memory is split into fixed-
length contiguous blocks called pages and each virtual address,
describing a location in a page, is mapped to a physical address
in a page frame. This mapping is stored in a page table. There
are several ways Xen can virtualise memory; most commonly
Xen uses hardware support in the form of nested paging and
extended page tables.

A. Example Vulnerability and Security Test

In the presence of an adversarial guest, security issues can
result in information leaks, guest denial of service (DoS),
privilege escalation to or DoS of the host machine. We discuss
XSA 227 [24] as an example of a potential vulnerability.

1) Security vulnerablity XSA 227: A guest can share memory
with, e.g., other guests, or devices. When setting up a new
shared memory area, the guest passes the memory location
to be shared to the hypervisor, by giving the guest-physical
address of an entry in one of its page tables. To share the
page, the hypervisor modifies this page table entry. Before the
modification, Xen checks several properties. XSA 227 reported
that Xen did not check whether the entry address starts at the
beginning of a page table entry, i.e., whether the address is
aligned. Since Xen writes exactly one page table entry, the
hypervisor can write beyond an unaligned page table entry,
allowing the guest to partially overwrite the next page table
entry. Writing to the page table in this unprotected way is
sufficient to allow a guest to grant itself additional permissions
and gain full system access.

2) Security test for XSA 227: To establish the severity of
an XSA for AWS, an engineer develops tests to trigger the
vulnerability in the EC2 environment. For XSA 227, the test
performs a hypercall from a guest that shares memory at a
non-aligned address. If the hypercall returns with success, the
vulnerability is reachable. Else, if the hypercall returns an error
code—and if no other mistakes have been made when invoking
the hypercall—the vulnerability is unreachable.

3) Equivalent reachability problem: For XSA 227, part of
the XSA patch provided is the following macro that checks
whether the page-table entry of a page is aligned:

#define IS_ALIGNED(val , align) \
(((val) & ((align) - 1)) == 0)
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We use this macro to add an assertion that, if violated, indicates
the vulnerability is exploitable. For XSA 227, we insert the
following assert statement over local variables pte_addr and
nl1e into the source-code area patched in the XSA:

assert(IS_ALIGNED(pte_addr , sizeof(nl1e )));

We can thus use software model checking to verify whether
the above assertion can be violated, starting from the hypercall
entry point. Such a counterexample can be used to construct
the above mentioned test.

B. Challenges in Applying Automated Program Analyses

Existing program analysis techniques, however, cannot be
applied out-of-the-box to the Xen code base: (1) Xen uses C
code with systems extensions and assembly code throughout the
codebase, for example interfacing with hardware. In Xen 4.8,
there remain more than 700 lines of assembly in the code base.
To the best of our knowledge, there is no symbolic verification
tool that can handle this combination of C and assembly code
on such a large code base. (2) Modelling behaviour of an
adversarial guest precisely would require modelling the exact
start state of the machine, which is determined in boot code, the
exact interaction history with other guests, and maintaining a full
model of the memory layout and system registers. We cannot
do this, due to both the proliferation of low-level assembly
code in the boot code and the scalability demands of a full
memory model. (3) Xen is configurable, due to its requirement
to have full control of a machine regardless of architecture.
Thus, Xen contains code that emulates CPU instructions for
multiple different architecture �avours. During boot time, the
architecture �avour is determined and function pointers are set
to point to the correct implementations. (4) The size of the
code base exceeds the scalability limits of existing software
model checkers: Xen 4.8 is comprised of ∼300,000 lines of
code. Benchmarks in the TACAS Competition on Software
Verification [25] are smaller. The largest tasks feature ∼100,000
lines of code. However, in 2019, large solved benchmarks in
this competition typically had either short counterexample
traces or simple proofs of safety. For Xen, we expect long
counterexample traces of instructions to refute safety, due to the
steps involved in the interaction with hypervisors. For all XSAs
we have investigated, unpatched CBMC failed to complete
analysis within an 8 hour time window, even after using all
available program slicers. Program slicing [26] uses dependence
analysis to remove instructions that cannot affect a property of
interest. CBMC includes a reachability slicer, which removes
instructions that cannot affect any assertion, and a slicer to
remove code that initialises unused global variables. These
slicers are fast but do not remove enough code for the analysis
of Xen to become feasible. CBMC also contains a full-program
slicer, which computes the cone-of-in�uence [27]. Full slicing
is precise but, owing to the cost of points-to analyses, not
scalable and does not complete on the Xen codebase within
8 hours.

void do_hypercall ()
{

int nondet;
switch(nondet)
{
case 1:

XEN_GUEST_HANDLE (const_trap_info_t) traps1;
do_set_trap_table(traps1 );
break;

case 2:
XEN_GUEST_HANDLE (mmu_update_t) ureqs2;
unsigned int count2;
XEN_GUEST_HANDLE (uint) pdone2;
unsigned int foreigndom2;
do_mmu_update(ureqs2 , count2 , pdone2 , foreigndom2 );
break;

case 3:
XEN_GUEST_HANDLE (ulong) frame_list3;
unsigned int entries3;
do_set_gdt(frame_list3 , entries3 );

...

Figure 1. Model of the hypercall table. This is modelled as a non-deterministic
switch over all possible hypercalls, called with non-deterministic arguments.

IV. EXTENDING CBMC TO HANDLE XEN

We address these four challenges using automated approxim-
ations with hooks for expert-provided refinement, implemented
in an extended version of CBMC [4].

A. Assembly Code

When the lack of interpretation of assembly code adversely
affects precision, we model it in C, most importantly the
hypercall table of Xen, which contains the hypercalls a guest
may use. We model this as a non-deterministic choice over
hypercalls, entered with non-deterministic arguments, to allow
all possible guest behaviour. Figure 1 shows a snippet from this
model. While this model is currently constructed manually, it
is reused across XSAs. Future work on CBMC includes adding
native support for assembly code, which will avoid the need
for expert-provided input for this stage.

B. Environment Modelling

We start our analysis either at a start point known to be
relevant to the XSA or at the hypercall entry-point. To over-
approximate the state of the machine at the point the guest
makes a hypercall, we automatically generate an environment
that assumes non-deterministic values for all input parameters
to the start function, and constrains all pointers to refer to
valid areas of memory. To enforce the latter, we add harness
functions into the code at analysis time, as shown in Figure 3.
These functions initialise the pointers to point to valid but
non-deterministic objects. By starting from this set of states,
we over-approximate the potential behaviour of the adversary
between boot and the first hypercall we model.

C. Function Pointer Removal

By default, CBMC expands function pointers to a case
statement over a set of functions determined using an over-
approximating signature-based analysis. For the configurable
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#define ARGS(x, n) \
[__HYPERVISOR_ ## x ]={n, n}

#define COMP(x, n, c) \
[__HYPERVISOR_ ## x ]={n, c}

const hypercall_args_t
hypercall_args_table[NR_hypercalls] =

{
ARGS(set_trap_table , 1),
ARGS(mmu_update , 4),
ARGS(set_gdt , 2),

...

#define HYPERCALL(x) \
[ __HYPERVISOR_ ## x ] = \

{ (hypercall_fn_t *) do_ ## x, \
(hypercall_fn_t *) do_ ## x }

#define COMPAT_CALL(x) \
[ __HYPERVISOR_ ## x ] = \

{( hypercall_fn_t *) do_ ## x, \
(hypercall_fn_t *) compat_ ## x }

...

static const hypercall_table_t
pv_hypercall_table [] = {
COMPAT_CALL(set_trap_table),
HYPERCALL(mmu_update),
COMPAT_CALL(set_gdt),

...

Figure 2. Fragments of the original code that builds the hypercall table

code base of Xen, the signature-based analysis yields up to 300
functions for a single function pointer. CBMC determines the
precise set of function calls, i.e., the subset of feasible cases,
during symbolic execution. As our analysis running on Xen
uses non-deterministic initial states, symbolic execution would
typically deem all cases feasible, even though most of them
are spurious. To reduce the candidate set per pointer, we now
use CBMC's existing �ow-insensitive points-to analysis [28]
in place of the signature-based analysis. This �ow-insensitive
analysis is field-sensitive, therefore the analysis distinguishes
the fields of every object, while merging the values of them
for different program locations. If the �ow-insensitive points-
to analysis yields an empty set as, e.g., caused by pointers
depending on boot code, we fall back to the original behaviour.
With this change, we introduce 20k fewer function calls, about
114k instead of 134k, and hence reduce the likelihood of
spurious counterexamples.

Con�gurable harnesses: Xen code supports several architec-
tures. For our analysis we pick a single set of architectures, i.e.,
Intel 64bit CPUs. This allows us to restrict the set of functions
considered for handling architecture specifics, while still using a
non-deterministic machine state. We thus support adding expert-
provided code into the harnesses described in Section IV-B to
restrict the candidates of these function pointers to a specific
function or a non-deterministic choice over a constrained set
of functions, e.g., excluding all AMD-specific functions.

The example given in Figure 3, x86_emulate contains several
function pointers and an expert engineer specifies two possible
function pointers for the read function.

int main()
{

struct x86_emulate_ctxt harness_ctxt;
struct x86_emulate_ops harness_ops;
int nondet;
// instantiate read function pointer
switch(nondet)
{
case 1:

harness_ops.read = EXAMPLE;
break;

case 2:
harness_ops.read = EXAMPLE2;
break;

}
// expert restricts possible vendor values
__CPROVER_assume(harness_ctxt.vendor < 3);

x86_emulate (& harness_ctxt , &harness_ops );
}

Figure 3. Harness for x86_emulate. An expert can provide restrictions over
the input space, such as the restriction on the values of vendor variable shown
in the assumption here. Uninitialised variables such as nondet are considered
free variables to be assigned any non-deterministic value by the underlying
SAT solver.

D. Approximating Program Slicer

In order to focus analysis on the relevant part of the
hypervisor, we introduce a more aggressive slicing approach
following the algorithm of Figure 4: we first compute an
approximation of the call graph using the function-pointer
removal as described above. Using this call graph, the slicer
computes the set of paths from the entry point to the target
property. From this set, we select direct paths, which we define
as the paths without cycles on the call graph. We then take
these direct paths and remove all function calls that return
back to the calling function and replace these function calls
with an approximation of their behaviour by havocking the
function body, as explained in Section IV-D1. This produces
an approximation of the cone of in�uence, which may be
sufficiently small to analyse with CBMC.

If the resulting program slice is still too large to analyse, the
approximating slicer can be configured to keep only functions on
the shortest direct path. To increase precision, we can preserve
all functions within a given distance of function calls from the
direct paths, illustrated in Figure 5. To obtain scalability and
precision, we run multiple analyses with varying degrees of
precision in parallel to find the configuration that completes
within the timeout with maximum precision.

1) Approximating behaviour of missing code: If a function is
removed, we must approximate the behaviour of that function in
order to avoid missing counterexamples. A coarse approximation
is to havoc the function, i.e., assume the function may return
a non-deterministic value and may assign a non-deterministic
value to any arguments passed by pointer. This approximation
is not strictly an over-approximation, because it may under-
approximate behaviour as described below. We chose this
simplification, because computing and refining a sound over-
approximation is computationally intensive, and missing some
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Approximating Slice (CFG g, node entry, node target, bool direct, int distance)

S1 FP := remove function pointers(g)
S2 CG := compute call graph(FP )
S3 DP := get direct paths(CG, entry, target)
S4 DP := shortest path(DP ) if ¬ direct else DP
S5 mark for havoc = ∅
S6 for node n in FP :
S7 if distance(FP , DP , n) > distance:
S8 mark for havoc := mark for havoc ∪{n}
S9 for node n in mark for havoc:
S10 havoc object(n)

Figure 4. Approximating slicing is applied to input program represented by its control-�ow graph g, and configurable in the entry- and target nodes, whether or
not to consider all direct paths, and the maximum distance.

counterexamples due to under-approximation is acceptable for
our use case as we strive to support the security expert in
constructing tests.

2) Potential under-approximation: The first source of under-
approximation are global variables written to by a function
that we removed. We partly mitigate the absence of modelling
this behaviour by starting our analysis in a non-deterministic
initial state, including non-deterministic global variables. It is,
however, possible that a trace requires a global variable to take
different values during the trace; such counterexamples would
thus be missed.

The second source of under-approximation is not havocking
pointers to pointers. When a function receives a pointer A as
argument that points to pointer B, we do not havoc pointer B.
When a function receives a pointer A that points to a struct B

that contains a pointer C, we do not havoc pointer C. We choose
not to havoc these pointers, as this can change any memory to
any value, and introduces spurious counterexamples. There are
84 functions in Xen that accept pointers to pointers, and experts

harness

do hvm op

hvmop unmap io
range from ioreq server

do iretdo mmu update do sysctl

assert

do altp2m

put page

cpy to usr

xsm hvm ct

xsm hvm ioreq serve

rcu lock remote
domain by id

get cpu info

copy from user hvm

hypercall table

Direct Path One function call away

Two function calls away Three function calls away

Figure 5. Xen's call graph from the harness function to an assertion representing
XSA 238. The thick framed nodes show the direct path; these functions are
always preserved by the approximating slicer. The thin, solid framed nodes
show functions which will be approximated, as described in Section IV-D1,
by default. If we preserve functions up to one function call away from the
direct paths, the light grey nodes will be preserved, and the unlabelled nodes
represent functions which will be approximated.

did not find any to be relevant to the XSAs we analysed.

V. DETERMINING SEVERITY OF VULNERABILITIES

Our aim is to assist experts in determining the severity of
a security vulnerability, within a specific version of Xen. To
illustrate this use case, we selected a few XSAs with different
properties: 200, 212, 213, 227, and 238 [3]. We build our
modifications on top of CBMC version 5.10, which uses Mini-
Sat 2.2.1 [29]. We disable MiniSAT's pre-processor, as it usually
consumes more run time than the actual verification task for the
given problems. We pick Xen release 4.8 [30], as none of the
selected XSAs have been mitigated in this version, and fixed
handling comments in assembly to allow us to compile the
code with CBMC. Next, we added the assertions and harness
functions for each XSA. This is a required setup step the
complexity of which varies between adding a single assertion,
and adding a full harness for the hypercall table (about 300
instructions), depending on the XSA. When starting from our
provided package, these harnesses are already present, and
hence, future harnesses require less effort. To speed-up overall
time, and precision, we run multiple configurations of the slicer
and analysis options in parallel via AWS Batch [31], to obtain
first results quickly. Our Xen and CBMC packages including
all scripting are available for download1 and the aggressive
slicer is available in the main CBMC branch2.

The counterexample trace contains all function entries and
exits, arguments and relevant variable assignments. We add an
option to CBMC to print the trace in HTML with options to
expand function calls.

A. Results

The experiments were run on AWS Batch using the EC2 r5
instance family, with a memory limit of 110 GiB and an overall
timeout of 8 hours per job. The original Xen binary contains
103,662 effective program locations, i.e., code statements that
affect the state of the program. We ran CBMC out-the-box on
each of the XSAs with all combinations of the CBMC program
slicers, with a loop unwinding limit of 0, i.e., executing the

1https://github.com/nmanthey/xen/tree/FMCAD2020
2https://github.com/diffblue/cbmc
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Figure 6. Run time of the overall approach for selected configurations that finish within 8 hours. We fixed the parameters to distance=2, and advanced function
pointer removal as well as run full slicing after approximating slicing. Keeping all direct paths (DP1), as well as unwinding loops (UW) during search are altered.

loop body just once. The reachability slicer and global slicer
reduce the instruction count by up to 20%. CBMC cannot
produce a results for any of the combinations, and the full
slicer does not finish within the 8 h timeout.

We vary the input parameters to approximating slicing
(cf. Figure 4) to preserve all direct paths, or shortest paths only,
or preserve functions with a distance of up to 2 calls. We limit
loop unwinding to 0, 1 or 2 iterations, and use both function
pointer removal approaches. These limits were chosen since
they were large enough to produce precise enough results to
create tests from the traces. It is possible to increase these
limits and still obtain traces, but substantially large values may
result in a binary too large to analyse in reasonable time (for
instance, increasing the depth to 10 or greater).

Slicing is crucial, as it reduces the size of the input program
to less than 5% of its original size in under 10 minutes. Overall
run times of the more precise configurations (distance=2) are
presented in Figure 6. For smaller distances, the run times are
typically smaller. The figure shows that run times depend on
the XSA, as well as on the unwinding parameter – for more
unwinding the run time for XSAs 213, 212 and 238 increases.
For XSA 200, no direct-path based traces can be produced
within 8 hours in case all direct paths are kept, because XSA
200 is located in instruction emulation code, which introduces
many direct paths.

For all five selected XSAs, an initial result for at least
one configuration is returned within 10 minutes. This time
allows engineers to refine the harness to improve the result
for test generation quickly. Within the first hour, more than 30
configurations produce traces.

B. Turning a Trace To a Test

To make the results of this work consumable for future
XSAs, we also discuss how to turn a counterexample trace
from CBMC into a security test that could be executed inside
the guest. The required information is

1) the configuration of Xen
2) the type of the guest that can hit the security issue

3) the interaction the guest has to perform to trigger the
security issue

A typical XSA description provides data for item 1 and 2,
because it scopes the security issue. In case CBMC produces
a valid trace for an assertion, this trace provides information
about item 3, namely the relevant data that comes from the
guest. This data is forwarded to Xen via a few interfaces:

1) hypercalls, namely the call to perform, as well as the
arguments for the hypercall

2) copy from guest, a function which copies data from
the guest into the hypervisor

3) hardware interaction, e.g., content of packages that are
generated by interaction with the (emulated) hardware

In the XSAs we analysed, we only see interaction via hypercalls
and the function copy from guest. No devices are involved
in these XSAs.

Finally, to turn the relevant parts of the trace into an actual
security test, we need the basic building blocks to interact with
the hypervisor, for example being able to compile a kernel
module or the required C header files to use the definitions of
structures that are passed as arguments to the hypercall. We
use the Xen Testing Framework [32], which provides these
building blocks, supports many hypercalls and allows the user
to create a security test easily. XTF also already has tests
for past XSAs. For the XSAs we use, actual tests can be
found via the following URL: https://xenbits.xen.org/gitweb/
?p=xtf.git;a=blob plain;f=tests/xsa-200/main.c.3

1) Extract Guest Interaction From Traces: To extract the
guest interaction, we have to follow the variables that are
used as parameters for hypercalls and the copy from guest
function.4 Given our abstraction, CBMC is allowed to
choose arbitrary values for the parameters and returns from
copy from guest, which matches that adversarial model: an
adversarial guest can write arbitrary data to those.

We now use an example trace that has been generated for XSA
227, with the relevant parts shown in Figure 7, to turn it into

3Replace the 200 with the any of the XSA numbers 200, 212, 213 or 227.
4In Xen 4.8, copy from guest is a macro, which is expanded to

copy from user hvm.
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the basic building blocks for a security test. Note, CBMC traces
first list the function call, and then show how the parameters
are evaluated.5

We implemented a harness that calls the hypercall
do grant table op (line 4), and which allows CBMC
to choose arguments for this hypercall. CBMC picks
cmd=0 (step 3), which is equivalent of the operation
GNTTABOP map grant ref.

CBMC also generates a pointer value for the variable uop
(step 3), which is likely to be wrong. A wrong value is chosen,
because the trace starts in the middle of a running Xen, and
the initialization of the data structures for the guest in the
hypervisor has not been done yet. To make the security test
complete, a grant table map would have to be created first,
and then the correct value would have been known. This work
does not take the preparation of the environment into account
yet, as that step requires further expert knowledge. In the same
spurious way, the value for variable count is set to 258, but
the trace actually consumes only a single element. Therefore,
this value should be set to 1 in the actual code.

Next, in step 6 we call the function
gnttab map grant ref, following the value of the
parameter cmd. This function then issues the call to
copy from guest (step 7), and looks for data of the type
“struct gnttab map grant ref”. The result of this operation
should contain the value 4089, or 0xFF9, for the member
host addr. The rest of the trace then shows how this value is
used and propagated forward until the assertion is violated
in step 13. The assertion basically checks whether the lower
bits of the address are set to 0, which fails, because the least
significant bit is set in the representation of 0xFF9.

Now that the relevant information is extracted from the trace,
the corresponding block in a security test for the fix of XSA
238 should contain the following lines:
struct gnttab_map_grant_ref map = {

.host_addr = 0xFF9 ,

.flags = 21,

.ref = 0,

.dom = 0,
};
hypercall_grant_table_op(

GNTTABOP_map_grant_ref , &map , 1);

Again, due to the abstraction, there are values from the trace
that might be invalid, because the aggressive slicing drops
calls to functions that might have checked these properties.
Furthermore, values to be used might depend on the system
setup, so that the values CBMC reports might only be used as a
guideline. Still, the trace highlights that it is possible to trigger
the security issue from the guest, and furthermore provides
candidate data that can be used to generate a security test for
the issue.

C. Practical Relevance

EC2 launched in 2006. The Xen project reported its first
XSA in March 2011, and has since announced more than 300

5This section is based on the trace file xsa227.22701.trace; irrelevant lines
are omitted.

XSAs—about three per month. AWS' Xen security team has
provided feedback to the Xen security team on several occasions
and reported four follow-up XSAs. Using this experience, we
analyzed the five XSAs above as examples. The generated traces
for four out of those proved to be good enough as building
blocks for tests: the relevant hypercall, as well as relevant
input values for the hypercall are present in the trace. When
there are multiple traces, we use the trace with most precision,
i.e. highest unwinding, distance, and direct paths included.
Ultimately this runnable test is used to avoid future security
regressions. Only the trace for XSA 213 requires further work,
as CBMC only reports the second half of the trace, and skips
setting the hypervisor into a specific mode first, because we
start the analysis from a non-deterministic machine state.

Compared to the manual assessments that we performed,
the automated approach is often faster. If we take setting
up Xen for the analysis into account, i.e. adapting available
harnesses and packaging for AWS Batch, we are usually in
the same ball-park. While AWS security experts can often
quickly assess reachability of a location in the code base, for a
specific configuration and version of the hypervisor, finding
input values to bypass checks and doing this analysis for all
different production configurations is more challenging. For
these cases, the presented approach is a win, as the amount of
engineering time spent can be reduced from engineering days
to hours.

We note that failing to find a trace is not sufficient to allow
the security team to ignore an issue, and the security team makes
risk-based assessments based on their experience and judgment.
In some cases in this scenario it is necessary to fall back to
the traditional techniques to establish high confidence that a
potential issue does not require a fix. In these scenarios, our
tool can, nevertheless, still be a useful datapoint that, combined
with other information, can give the security team confidence
that additional investigation is not urgent.

The recent XSA 296 reported the vulnerability for PV and
HVM guests. After about a day of manual work, AWS experts
could rule out HVM guests. The new approach would have
been helpful, as all reported traces would have relied on PV
guest features, helping to rule out HVM faster.

For similarly complex software projects, the presented
technique will provide valuable insight into reachability and
produce sample input values to trigger a software bug. Less
experienced teams might benefit from the automated approach
to speed up response time for security incidents.

1) Limitations and open challenges: Our approach has
a number of limitations which reduce the precision of our
results. We may miss traces for several reasons: CBMC has an
incomplete understanding of assembly code; we do not consider
whether functions we remove modify globals; we unwind loops
to a finite bound; and CBMC does not maintain a full model of
memory. We may produce spurious traces because we start from
a mid-point in the code using a non-deterministic start state.
Addressing these limitations and running bit-precise analysis
on large code bases remains an open challenge. We feel that
the natural next step towards this would be refinement of our
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----------------------------------------------------------------------
Function call: my_granttable_init (depth 1)
----------------------------------------------------------------------
Function call: textbf{do_grant_table_op} (depth 2)
----------------------------------------------------------------------
State 943: textbf{cmd=0u} (0x0)
State 944: uop={ .p=INVALID -65535 } ({ 0xFFFF8200 80000002 })
State 945: count =258u (0x102)
----------------------------------------------------------------------
Function call: gnttab_map_grant_ref (depth 3)
----------------------------------------------------------------------
State 999: copy_from_user_hvm(_d, (_s + i),
(sizeof(textbf{struct gnttab_map_grant_ref }) * 1));
op={ textbf {. host_addr =4089ul}, .flags =21u, .ref=0u, .dom=0,

.status=0, .handle =0u, .dev_bus_addr =0ul }
({ 0xFF9 , 0x15 , 0x0, 0x0, 0x0, 0x0, 0x0 })

----------------------------------------------------------------------
Function call: __gnttab_map_grant_ref (depth 4)
Function call: create_grant_host_mapping (depth 5)
----------------------------------------------------------------------
State 1144: {addr =4089ul} (0xFF9)
----------------------------------------------------------------------
Function call: create_grant_pte_mapping (depth 6)
----------------------------------------------------------------------
State 1194: {pte_addr =4089ul} (0xFF9)
----------------------------------------------------------------------
Violated property: assert (( pte_addr & sizeof(l1_pgentry_t ) -1)==0)
----------------------------------------------------------------------

Figure 7. The relevant parts of the CBMC trace for XSA 227 that guides test generation.

approximations.
There are cases where security issues can only be triggered

if there are two guest CPUs available. Analysis would have to
scale for parallel interaction, including parallel hypercalls, and
modification of guest data.

Finally, automation would benefit from an incremental
approach of the technique. The investigating engineer might
receive the initial results, and then modify the harness to
restrict the search space. Today, the complete process has to be
triggered again, and the whole search has to be repeated. We
expect starting analysis from a state similar to a given trace
to significantly reduce the run time of subsequent iterations,
similarly to incremental SAT solving [33].

VI. CONCLUSION

We have described the application of bounded model checking
and slicing to the Xen hypervisor used in triaging reported
security concerns. By introducing improved handling of function
pointers and approximating program slicing in combination
with havocking functions we are able to use bounded model
checking to construct counterexample traces that reproduce
security issues and ultimately, determine their severity. Despite
the open challenges listed in the previous section, we have
shown that we can use automation to help generate security
tests from patches today, which supports more rapid security
analysis and also leads to a more secure cloud environment
for customers. This tooling assists experts in determining the
severity of security vulnerabilities, constructing security tests
for these scenarios, and helping on-call security experts quickly
decide whether they should wake up developers or allow them
to enjoy their well-deserved sleep.
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Abstract—Systems mixing Boolean logic and arithmetic have
been a long-standing challenge for verification tools such as SAT-
based bit-vector solvers. Though SAT solvers can be highly effi-
cient for Boolean reasoning, they scale poorly once multiplication
is involved. Algebraic methods using Gröbner basis reduction
have recently been used to efficiently verify multiplier circuits in
isolation, but generally do not perform well on problems involving
bit-level reasoning.

We propose that pseudo-Boolean solvers equipped with cutting
planes reasoning have the potential to combine the complemen-
tary strengths of the existing SAT and algebraic approaches while
avoiding their weaknesses.

Theoretically, we show that there are optimal-length cutting
planes proofs for a large class of bit-level properties of some well
known multiplier circuits. This scaling is significantly better than
the smallest proofs known for SAT and, in some instances, for
algebraic methods. We also show that cutting planes reasoning
can extract bit-level consequences of word-level equations in
exponentially fewer steps than methods based on Gröbner bases.

Experimentally, we demonstrate that pseudo-Boolean solvers
can verify the word-level equivalence of adder-based multiplier
architectures, as well as commutativity of bit-vector multipli-
cation, in times comparable to the best algebraic methods. We
then go further than previous approaches and also verify these
properties at the bit-level. Finally, we find examples of simple
nonlinear bit-vector inequalities that are intractable for current
bit-vector and SAT solvers but easy for pseudo-Boolean solvers.

Index Terms—Multiplier circuits, bit-vector arithmetic, ver-
ification, pseudo-Boolean solving, cutting planes, SAT solving,
Gröbner bases

I. INTRODUCTION

While there has been great progress in verification tools
since the 1980s, current methods still cannot efficiently deal
with problems that combine multiplication and Boolean op-
erations. These problems are encapsulated in the theory of
bit-vector arithmetic, which supports both common bit-level
operations like shifting and word-level arithmetic operations
like addition and multiplication of bit-vectors. Thus, bit-vector

formulas can express the behavior of a program or arithmetic
circuit in a natural, yet bit-precise, manner.

Though deciding bit-vector formulas is NEXPTIME-
complete in general [31], current bit-vector solvers are fairly
efficient on many problems arising in practice ([12], [18], [22],
[27], [38], [41], [47]). However, for instances that involve
multiplication these solvers must often rely on the bit-blasting
approach [32], which determines the satisfiability of a bit-
vector formula by converting it into an equisatisfiable CNF
formula to be fed into a conflict-driven clause learning (CDCL)
SAT solver ([4], [39], [42]).

While CDCL SAT solvers effectively handle bit-level op-
erations, they tend to perform poorly when multiplication is
involved, with running times scaling exponentially in the bit-
width on such problems ([8], [14], [30]). CDCL solvers are
based on resolution ([11], [46]), in the sense that a resolution
proof can be extracted from the execution trace for an unsat-
isfiable formula [5]. Thus, weaknesses of this proof system
impose hard limits on solver performance. Resolution is very
poor at tasks like counting [24] and mod-2 reasoning [52], and
though degree-2 multiplier identities were recently shown to
have polynomial-size proofs [7], these proofs are quite large.
To unlock the ability to solve even more complicated formulas
that mix bit-level reasoning with multiplication, we need to
fundamentally improve the back-end reasoning.

Two natural approaches for strengthening resolution-based
reasoning are embodied by the proof systems polynomial
calculus [16], which reasons with polynomials instead of
clauses, and cutting planes [17], which operates on 0-1 lin-
ear inequalities. Both of these proof systems can efficiently
simulate resolution, and can be exponentially stronger.

Computer algebra has recently emerged as a powerful tool
for verifying isolated gate-level multiplier circuits ([10], [15],
[36], [37], [44], [45], [50], [51], [54]). A major advantage of
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Gröbner basis methods, which perform algebraic reasoning
that is captured by the polynomial calculus proof system,
is that they operate with polynomials instead of disjunctive
clauses. This makes it possible to encode the correctness
of a multiplier with input bit-vectors x,y and output bit-
vector (xy) through the word-level specification equation:(∑n−1

i=0 2ixi

)(∑n−1
i=0 2iyi

)
−
(∑2n−1

i=0 2i(xy)i

)
= 0.

Unfortunately, for the non-algebraic parts of circuits, Gröbner
basis methods are typically orders of magnitude slower than
SAT solvers and scale poorly on general reasoning. We provide
an explanation for this by showing, drawing on [25], that
Gröbner basis methods require an exponential number of
steps to derive bit-level consequences of word-level properties.
Hence, these methods are unlikely to supplant the role of SAT
solvers for bit-vector arithmetic.

We propose instead that conflict-driven pseudo-Boolean
solvers [13] that take advantage of the cutting planes method
for 0-1 linear inequalities [17] have the potential to achieve
the “best of both worlds”, combining the strengths of Gröbner
basis methods for polynomials with the efficiency of CDCL
SAT solvers for Boolean reasoning. Cutting planes reasoning
can easily express word-level properties and does not suffer
the same obstacles as polynomial calculus, since only a linear
number of steps are needed to derive all of the individual bit-
equalities from a word-level equality.

An essential aspect of this approach in improving on SAT-
based methods is that one can express the correctness of 1-bit
adders, basic building blocks of arithmetic circuits, directly via
pairs of inequalities, instead of using sets of clauses, and one
can similarly directly express word-level properties of circuit
outputs. Together, these yield a higher-level fully precise form
of ”bit-blasting”.

The main theoretical contribution of this paper is the con-
struction of optimal, O(n2)-length cutting planes proofs for
a large class of n-bit ring identities, including commutativity
and distributivity. We emphasize that these identities can be
proven not only at the word level, but also for individual bits.

While O
(
n2
)
-length polynomial calculus proofs are known

for some of these properties at the word level [29], this
algebraic method cannot efficiently extract the bit-equalities.
As a consequence, for example, the best known polynomial
calculus proof for the bit-level property “the middle bit of xy
equals the middle bit of yx” is still the O

(
n5 log n

)
-length

resolution proof given by [7], which is much larger than our
O
(
n2
)
-length cutting planes proof.

These ring identities appeared previously as testbed in-
stances representing the gap between word-level and bit-
level methods of reasoning. For example, it was observed in
2016 that proving the commutativity of a multiplier circuit
is already intractable for SAT solving at 16 bits [9]. While
bit-vector solvers try to overcome this shortcoming of SAT
by implementing word-level preprocessing and inprocessing,
the verification of larger systems containing multiplication and
bit-logic (that appear for instance, in cryptography) remains a

key weakness. The ability to verify these ring identities at the
bit level, rather than through preprocessing, is a good test for
the potential of any method for verifying these more complex
systems.

Experimentally, we are able to use pseudo-Boolean solvers
to verify the word-level equivalence of several different mul-
tiplier circuits of up to 256 bits in similar times to those of
the best algebraic methods. We find that these solvers can be
particularly efficient at extracting all of the bit-level equalities
from a word-level equality, which neither CDCL solvers nor
Gröbner basis reduction can do efficiently.

We also show that pseudo-Boolean solvers can be used to
efficiently verify a number of bit-vector inequalities combin-
ing multiplication with bit-wise operations. In contrast, these
inequalities are much harder or intractable for the top bit-
vector solvers Boolector ([12], [43]), Z3 [18], Yices2 [19] and
CVC4 [2]. Our examples demonstrate some of the potential
of pseudo-Boolean solvers for reasoning with nonlinear, bit-
precise systems that are out of reach of current methods.
These bit-vector inequalities are inspired by the combinations
of arithmetic and bit-wise operations that naturally arise in
embedded systems or high-performance computation, where
“bit hacks” can be used to implement methods such as absolute
value or “reverse the bits in a byte” (see [1] and [26]) and more
complicated mixtures of arithmetic and bit-wise operations are
used in cryptographic and hashing computations.

II. NOTATION AND PRELIMINARIES

We write the i-th entry of a bit-vector x as a Boolean
variable xi. We typically refer to circuits by the output bit-
vectors that they produce — for example we use C to refer
to both a circuit and its output bit-vector, depending on the
context. Often we write this output bit-vector in terms of
the inputs, so that a multiplier circuit denoted by xy is
understood to take input bit-vectors x,y and output a bit-
vector labeled xy. We label the internal variables of a circuit C
using the superscript C, for example: tCi,j .

Definition Given a set of polynomials Φ over a set of vari-
ables {x1, x2, . . . , xn} and a field K, a polynomial calculus
refutation of Φ is a sequence of polynomials ending with the
polynomial 1 such that each line is either in Φ or is derived
from the previous lines using the inference rules of linear
combination and multiplication by a monomial m:

p q

αp+ βq
(α, β ∈ K),

p
m · p .

The polynomials x2 − x are also included as axioms for
each variable x so that it only takes Boolean values. The
polynomial p is interpreted to mean the equation p = 0.

Definition Given a set of 0-1 linear inequalities Φ over a set of
variables {x1, x2, . . . , xn}, a cutting planes refutation of Φ is
a sequence of 0-1 linear inequalities ending with the inequality
0 ≥ 1 such that each line is either in Φ or is derived from
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the previous lines using the inference rules of positive linear
combination ∑

i aixi ≥ b
∑
i a
′
ixi ≥ b′∑

i(αai + βbi)xi ≥ αb+ βb′

where α, β ≥ 0, and the division rule∑
i(c · ai)xi ≥ b∑
i aixi ≥

⌈
b
c

⌉ .

The literal axioms −x ≥ −1 and x ≥ 0 are also included for
each variable x. Throughout this paper we will use “=” as
shorthand for the two equivalent “≤,≥” inequalities.

A. A polynomial calculus lower bound for bit-extraction

The bit-extraction lower bound discussed in the introduction
follows directly from the following polynomial calculus lower
bound for subset-sum equations due to Impagliazzo, Pudlak
and Sgall.

Theorem II.1 ([25]). Let c1, . . . , cn be nonzero real numbers
such that no subset sums to the real number m. Then the
equation m −

∑n
i=1 cixi = 0 has no polynomial calculus

refutation of degree dn/2e in the field of real numbers.

Theorem II.2 ([25]). Suppose that Φ is a set of polynomials of
degree at most

√
n, where n is the number of variables appear-

ing in Φ. Let d denote the minimum refutation degree of Φ, and
M denote the minimum number of monomials in a refutation
of Φ, and assume that M ≥ 3. Then M ≥ exp

(
(d− 1)2/4n

)
We combine Theorems II.1 and II.2 to demonstrate the weak-
ness of polynomial calculus in extracting bit-level properties
from word-level ones.

Corollary II.3. For a fixed integer k, any polynomial calculus
refutation of the system of two polynomials:

f :=

n−1∑
i=0

2i(si − s′i)

g := sk − s′k − 1

contains at least en/4−1 ≈ 20.36n monomials.

Proof. Define the polynomial f ′ :=
∑
i6=k 2i(si − s′i) + 2k.

Observe that Theorem II.1 gives us a degree lower bound of
n − 1 on refutations of the polynomial {f ′}. Theorem II.2
translates this into a monomial size lower bound of en/4−1.
The reduction below lifts this lower bound on {f ′} to the
polynomials {f, g}.

We show that a length l polynomial calculus refutation
of the polynomials {f, g} may be converted into a length
l refutation of the polynomial {f ′} without increasing the
number of monomials in each line as follows: First notice that
the polynomials f, f ′ are equivalent modulo the polynomial
g = sk − s′k − 1. Given a PC refutation of {f, g}, we reduce
each line by g (which effectively sets sk = 1 and s′k = 0), only
reducing the number of monomials, to produce a refutation of
{f ′}.

As a consequence of this corollary, polynomial calculus cannot
derive sk = s′k from the first equation using fewer than
en/4−1 monomials. In comparison, cutting planes has small
derivations that produce all of the bit-equalities.

Proposition II.4. There is an O(n)-length cutting planes
derivation of all n bit-equalities si = s′i from the equation∑n−1
i=0 2isi −

∑n−1
i=0 2is′i = 0.

Proof. We extract the individual bit-equalities in the low-to-
high sequence s0 = s′0, s1 = s′1, . . . sn−1 = s′n−1. Recall
that in cutting planes, the equation

∑n−1
i=0 2isi−

∑n−1
i=0 2is′i =

0 is represented by two inequalities. Take the inequality∑n−1
i=0 2isi −

∑n−1
i=0 2is′i ≥ 0, and use the literal axioms on

s0, s
′
0 to get

∑n−1
i=1 2isi −

∑n−1
i=1 2is′i ≥ −1. Divide this by 2

to get
∑n−1
i=1 2i−1si −

∑n−1
i=1 2i−1s′i ≥ 0. Finally, use linear

combination to multiply this by 2 and add it to the equation∑n−1
i=0 2is′i −

∑n−1
i=0 2isi ≥ 0 to obtain the result s′i − si ≥ 0.

A symmetric derivation gives si − s′i ≥ 0.

B. Adder and multiplier circuit constructions

Definition A ring identity L = R denotes a pair of ring
expressions L,R that can be transformed into each other using
commutativity, distributivity and associativity.

To prove that a given ring identity L = R holds for
some choice of circuit implementations for + and ×, we use
these implementations to build a circuit L representing the
expression L and another circuit R for the expression R. The
goal of our cutting planes proofs is to show that the resulting
output bit-vectors L,R are equal bit-by-bit, i.e., that Li = Ri
holds for every i.

Circuits for addition and multiplication

The circuits that we will consider are built using adders that
output, in binary, the sum of three input bits. A (1-bit) adder
is encoded as follows:

Definition For an adder A with inputs a0, a1, a2, the outputs
c, d are determined by the equation a0 +a1 +a2−2c−d = 0.
We call c the carry-bit and d the sum-bit.

In our circuits, each variable belongs to a column, i. The
variables in column i have a weight of 2i. Each adder is also
assigned to a column. An adder A belonging to the i-th column
takes three input bits from column i and outputs a sum-bit
into column i and a carry-bit into column i+ 1. The equation
associated with A ensures that the weight of its outputs is
equal to the weight of its inputs.

a) Ripple-Carry Adder: Figure 1 shows the design of a
ripple-carry adder x + y, which takes in two bitvectors x,y
and outputs their sum in binary.

b) Multiplier circuits: Figure 2 shows the design of
an array multiplier and our labeling of the internal circuit
variables. The first phase of an array multiplier is a common
part of many multiplier designs: the circuit computes a tableau
of partial products ti,j = xi ∧ yj for each pair of input bits xi
and yj . In the second phase, n ripple-carry adders are arranged
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Fig. 1. A 4-bit ripple-carry adder adding x,y. Each box represents a full
adder with incoming arrows and the labels in the boxes representing inputs
and outgoing arrows representing outputs.

Fig. 2. 3-bit array multiplier.

in a grid-like fashion in order to sum the n rows of the tableau.
A closely related variant of the array multiplier is the diagonal
multiplier, shown in Figure 3, which routes its carry bits to
the next row instead of the same row.

Wallace-tree multipliers sum the tableau by arranging a
network of adders in a tree-like structure. This log-depth
structure reduces the number of rows in the tableau to 2, then
uses an adder circuit to compute the final sum. In hardware
implementations, this final stage adder is typically a carry-
lookahead adder, so that the full multiplier has logarithmic
depth. However, carry-lookahead adders use non full-adder
components, which will lie outside the scope of this paper.
The Wallace-tree multipliers in this paper will use ripple-carry
adders for this final stage, so that the multiplier contains only
full adder components.

III. ARRAY MULTIPLIER COMMUTATIVITY IN O(n2) STEPS

In this section, we give O(n2)-length derivations for the
word-level equivalence of the output bit-vectors xy and yx for
both polynomial calculus and cutting planes. For polynomial
calculus, this proof was, in essence, previously written down
in [44].

Swapping the order of inputs x,y to a multiplier has the
effect of reversing the order of tableau values in each column.
In particular we have the equalities txyi,j = tyxj,i between tableau
variables. The next lemma shows that from these bit-level
equalities we can derive the word-level equality of the output
bit-vectors xy and yx using only O(n2) linear combination
steps. As both polynomial calculus and cutting planes can
carry out such steps (recall that cutting planes represents “=”
using two inequalities), they can both perform this proof.

Lemma III.1. Suppose that we have two n-bit array multipli-
ers xy and yx implementing the two sides of the commutativ-
ity relation xy = yx. Further, suppose that we are given the

Fig. 3. 3-bit diagonal multiplier.

n2 equalities between the tableau variables txyi,j = tyxj,i . Then
there is a derivation in degree 1 and length 3n2 + 1 of the
equation

∑n−1
i=0 2i(xy)i −

∑n−1
i=0 2i(yx)i = 0 that only uses

linear combinations.

Proof. We first derive two “conservation of weight” equations
for the circuits xy and yx that state that the total weight of
a multiplier’s output bits is the same as the total weight of
its tableau bits. We obtain these by adding up the adder con-
straints, weighting them so that the internal circuit variables
cancel. For an adder in column i corresponding to a constraint
a0 + a1 + a2 − 2c − d = 0, this weighting simply scales the
constraint up by a factor of 2i. Once all the n2 adder equations
for an array multiplier xy have been summed together, we will
arrive at an equation stating that the weight of tableau variables
txyi,j is the same as the weight of the output variables xy. After
repeating the same steps for the multiplier yx, we arrive at
the two equations( n−1∑

i,j=0

2i+jtxyi,j

)
−
( 2n−1∑

i=0

2i(xy)i

)
= 0

( n−1∑
i,j=0

2i+jtyxj,i

)
−
( 2n−1∑

i=0

2i(yx)i

)
= 0

having used 2n2 linear combination steps. We then use a total
of n2 further derivation steps to replace tyxj,i by txyi,j for each
pair i, j ∈ [0, n−1] in the latter equation. Finally, we subtract
the two equations to finish the derivation.

Theorem III.2. There is a polynomial calculus derivation in
length 4n2 + 1, and also a cutting planes derivation in length
14n2 + 2, of the equation

∑n−1
j=0 2i(xy)i−

∑n−1
j=0 2i(yx)i = 0

from the array multiplier circuits xy and yx.

Proof. Given the previous lemma, to complete our derivation
we need to obtain the tableau equalities txyi,j = tyxj,i . In
polynomial calculus, we get each equality with one subtraction
step with the equations txyi,j = xiyj and tyxj,i = yjxi. So
deriving these equalities takes an additional n2 polynomial
calculus steps.

In cutting planes, it takes 3 linear inequalities (clauses) to
represent a constraint txyi,j = xiyj . From these, we can derive
that txyi,j = tyxj,i in eight steps. Hence, deriving the tableau
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equalities takes 8n2 cutting planes steps. Afterwards, it takes
two cutting planes steps to carry out each of the 3n2+1 linear
combination steps of Lemma III.1.

In cutting planes we can use proposition II.4 to
prove bit-level equality from the equation

∑n−1
i=0 2i(xy)i −∑n−1

i=0 2i(yx)i = 0, which gives the following corollary.

Corollary III.3. There is a length-O(n2) cutting planes
derivation yielding all of the 2n equalities (xy)i = (yx)i from
the array multiplier circuits xy and yx.

For other ring identities such as distributivity, we no longer
have straightforward equalities between the tableau variables
on either side of the identity. For distributivity, the natural
generalization of these tableau variable equalities contains
nonlinear terms. Before we give our cutting planes proofs, we
introduce the (k, d)-cutting planes proof system in the next
section as a convenient way to work with nonlinear terms
within cutting planes.

IV. (k, d)-CUTTING PLANES PROOFS

Our cutting planes multiplier proofs will be written in a
more convenient format that allows for a limited number of
nonlinear terms in each inequality. Although cutting planes
proofs only allow the use of linear inequalities, we will also be
able to efficiently represent a large class of nonlinear Boolean
inequalities using sets of linear inequalities.

Definition We say that a polynomial inequality φ on the
Boolean variables X is (k, d)-nonlinear if is written in the
form

`(X) +
k∑
i=1

`imi ≥ b

where `(X) is an integer linear form (i.e., `(X) =
∑
i cixi),

each ` ∈ {`1, . . . , `k} is a non-negative integer linear form
(i.e., ` =

∑
i cixi and each ci ≥ 0), each mi is a degree at

most d − 1 monomial with coefficient +1 or −1, containing
only variables disjoint from `i, and lastly, b is an integer.

We emphasize that this proof system distinguishes between
inequalities φ and φ′ that are semantically equivalent, but
are syntactically different due to different factorizations. For
example, the inequality (x1+x2)y1 ≥ b is not considered to be
the same as the inequality x1y1+x2y1 ≥ b. The first inequality
is (1, 2)-nonlinear while the second is (2, 2)-nonlinear. In sim-
ulating (k, d)-nonlinear inequalities by ordinary linear ones,
these two inequalities will be represented by two different
(though semantically equivalent) sets of linear inequalities.

Definition Let CP+(k,d) denote the (k, d)-cutting planes
proof system. Each line is a (k, d)-nonlinear inequality on a
set of Boolean variables {xi}. Its rules are as follows. The
literal axioms are the same as in CP: for each variable xi
we have xi ≥ 0 and −xi ≥ −1. The division rule and linear
combination rule from CP generalize as one would expect.
Writing `(X) =

∑
i(c · ai)xi:

∑
i(c · ai)xi +

∑
i(c · `i)mi ≥ b∑

i aixi +
∑
i `imi ≥ d bce

And for any α, β ∈ N, as long as the result is (k, d)-
nonlinear:∑

i `imi + `(X) ≥ b,
∑
j `
′
jm
′
j + `′(X) ≥ b′∑

i α`imi + α`(X) +
∑
j β`

′
jm
′
j + β`′(X) ≥ αb+ βb′

The factoring rule is that if the (k, d)-nonlinear inequality
φ contains two terms `m, `′m with the same monomial m,
then we can factor these into term (`+ `′)m. Syntactically:

`(X) +
∑
i `imi + `m+ `′m ≥ b

`(X) +
∑
i `imi + (`+ `′)m ≥ b

.

The distributing rule is the reverse of the factoring rule,
except we can only distribute “one at a time”. For example,
rewriting (10y1 + 8y2)x1x2x3 → 10y1x1x2x3 + 8y2x1x2x3
would require 8 applications of the distributing rule below. For
a non-negative linear form ` =

∑
i cixi, where each ci ≥ 0,

define max(`) =
∑
i ci. Because of a technical detail related

to the simulation size, we require that the two inequalities
max(`) ≥ ` ≥ 0 have been derived from the literal axioms
before making this inference:

`(X) +
∑
i `imi + (`+ yr)mp ≥ b max(`) ≥ ` ≥ 0

`(X) +
∑
i `imi + `mp + yrmp ≥ b

.

The multiplication rule permits the multiplication of an in-
equality φ by a variable z, provided that the resulting inequal-
ity φz is (k, d)-nonlinear. Decomposing `(X) = `(X)+ −
`(X)− into a sum of positive terms `(X)+ and negative terms
`(X)−:

`(X)+ − `(X)− +
∑
i `imi ≥ b

`(X)+ z − `(X)− z +
∑
i `imiz − bz ≥ 0

.

Theorem IV.1. Fix a pair of positive integers k ≥ 1 and
d ≥ 2. The cutting planes proof system CP p-simulates the
CP+(k,d) proof system. In particular, a CP+(k,d) proof of s
lines can be simulated by a cutting planes proof of at most
(k + 4)dks lines.

The idea of the proof of Theorem IV.1 is to find a tight set of
at most d linear upper bounds for each degree d nonlinear term.
To simulate an inequality with k nonlinear terms of degree at
most d, we use the set of at most dk linear inequalities obtained
by plugging in every combination of upper bounds for each
nonlinear term. The full details of this simulation can be found
in [34].

V. OPTIMAL CUTTING PLANES MULTIPLIER PROOFS

In the previous proof of commutativity, we were able to
give cutting planes proofs without including nonlinear terms.
However, when giving proofs for distributivity and other
larger identities, nonlinear terms are difficult to avoid. This
is where the (k, d)-cutting planes format is convenient for
expressing O(n2) length cutting planes proofs of distributivity.
We generalize these proofs for distributivity to obtain O(n2)
length proofs for a large class of degree two ring identities.
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In the first half of these proofs, we sum up the adder-
constraints in each ripple-carry adder circuit x + y to derive
the “conservation of weight” equation

∑
i 2i(xi + yi) =∑

i 2i(x + y)i, and also in each multiplication circuit xy to
derive the “conservation of weight” equation

∑
i,j 2i+jtxyi,j =∑

i 2i(xy)i.
This section focuses on the second half of the proof, where

the goal is to show that both sides hold equal weight in
their multiplier tableau variables. The idea is to derive an
equation ρ(i, j) relating the (i, j)-th tableau entry of each
multiplier. Fixing j and summing these equations along i gives
an equation ρ(j) relating the j-th rows of each multiplier.
Finally, adding together the equations ρ(j) yields the desired
equation for the full multiplier tableaus.

A. Distributivity

Theorem V.1. There is a length O(n2) CP proof that the
circuits (x+y)z and xz+yz for length n bit-vectors x,y, z
have equal outputs.

Proof. We will give a length O(n2) proof in CP+(5,2). By
Theorem IV.1, this implies that there is an equivalent cutting
planes proof that is only a constant factor larger. We begin
with the following lemma, which gives a small derivation that
the weight of the j-th row of the multiplier (x + y)z is the
same as the combined weight of the j-th rows of multipliers
xz and yz.

Lemma V.2. For each j ∈ [0, n − 1] there is a length
O(n) derivation in CP+(5,2) of the equality ρ(j), defined as:∑n
i=0 2i+j ·t(x+y)zi,j =

∑n−1
i=0 2i+j ·(txzi,j+t

yz
i,j). from the circuits

(x + y)z and xz + yz.

Proof. Fix j ∈ [0, n−1]. We give a constant length derivation
for each cell-wise constraint ρ(i, j), defined for i ∈ [1, n− 1]
as

t
(x+y)z
i,j = txzi,j + tyzi,j + cx+yi−1 zj − 2cx+yi zj

and defined for i = 0 and i = n the same way, absent the
non-existing variables cx+y−1 , cx+yn , txzn,j and tyzn,j . Adding up
the constraints ρ(i, j) will yield ρ(j).

Start with the equation xi+yi+ cx+yi−1 −2cx+yi − (x+y)i =
0, given by the i-th adder in the ripple-carry adder (x + y).
Multiplying this equation by zj , we obtain the (5, 2)-nonlinear
equation xizj + yizj + cx+yi−1 zj − 2cx+yi zj − (x + y)izj = 0.

Substituting in the tableau variables t(x+y)zi,j , txzi,j , t
yz
i,j gives us

ρ(i, j).
To derive ρ(j) we add together the constraints ρ(i, j) so that

the carry terms telescope: We start with ρ(n, j). Use linear
combination to derive the equation 2ρ(n, j) + ρ(n− 1, j):

2t
(x+y)z
n,j + t

(x+y)z
n−1,j = txzn−1,j + tyzn−1,j + cx+yn−1zj .

Repeating this step for ρ(n−2, j), . . . , ρ(0, j) gives ρ(j).

The rest of the proof combines equations ρ(j) given by
Lemma V.2 with the conservation of weight equations. We first

observe that combining the conservation of weight equations
gives us, in a constant number of steps, the two equations

2n∑
i=0

2i · (xz + yz)i =
n−1∑
j=0

n−1∑
i=0

2i+j · (txzi,j + tyzi,j) (1)

2n∑
i=0

2i · ((x+ y)z)i =
n−1∑
j=0

n∑
i=0

2i+j · t(x+y)zi,j . (2)

Sum all of the equalities ρ(j) to derive the equation ρ, stating
that both sides have equal weight in their tableau variables:∑
i,j 2i+j ·(txzi,j+t

yz
i,j) =

∑
i,j 2i+j ·t(x+y)zi,j . Combine this with

equations 1 and 2 to obtain the final result:
∑
i 2i ·(xz+yz)i =∑

i 2i · ((x+ y)z)i.

Notice that we only used the structure of the multipliers
(x + y)z, xz and yz to derive the conservation of weight
equations relating the sum of tableau variables to the output
of the multiplier. The above proof is thereby compatible with
any integer multiplier for which we can efficiently derive these
conservation of weight equations. For example, we obtain
O(n2) length proofs for Wallace tree multipliers using a final
stage ripple-carry adder. In comparison, the best prior proof
known for, say, checking that the middle pair of bits of an array
multiplier and a Wallace tree multiplier are equal, was the
quasi-polynomial size nO(logn) resolution proof given in [6].

Reversing the order of multiplier inputs only has the effect
of permuting the order of tableau variables, so the above proof
also immediately generalizes to identities like z(x + y) =
zx+ xz that mix distributivity and commutativity.

B. 2-Colorable identities

In this section we state some theorems that we can obtain
by generalizing the ideas behind the proofs for the identity
(x + y)z = xz + yz to provide O(n2) length cutting planes
proofs for larger instances of distributivity. The proofs of these
theorems may be found in [34].

Theorem V.3. Let x1,x2, . . . ,xs and y1,y2, . . . ,ys′

be length n bit-vectors. Define the circuit L as
(x1 + x2 + . . .+ xs)(y1 + y2 + . . .+ ys′). Also define
the circuit R as

(∑
α,β xαyβ

)
, representing the fully

expanded version of L. There is a length O(n2) cutting
planes proof that circuits L and R have equal outputs.

Theorem V.3 gives us O(n2) cutting planes proofs for fixed
ring identities that can be written as sum of independent bit-
vector distributing or factoring steps. However, there exist
identities such as x(y + z) + wz = xy + (x + w)z which
cannot be decomposed into a sum of independent distributing
and factoring components. Nevertheless, we can still give an
O(n2) length proof of this identity. We define the notion of
a 2-colorable degree two identity to identify the general class
of ring identities for which our technique can derive O(n2)
length proofs.

Definition Let L = R be a degree two ring identity. A 2-
coloring for L = R is an assignment of either the color red or
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blue to each bit-vector, with multiplicity (so a bit-vector may
appear twice with different colors), such that: (1) each bit-
vector in a sub-expression (x1 +x2 + . . .+xr) has the same
color as the bit-vector representing the sub-expression, (2)
two sub-expressions that are multiplied together have opposite
colors, and (3) the colored version of L = R, where a blue
input bit-vector colored blue xi is distinguished from its red
counterpart xi, is still a valid ring identity.

For example, (x + y)z = xz + zy has the 2-coloring
(x + y)z = xz+ zy. The more general form of distributivity
in Theorem V.3 clearly always has an 2-coloring. Lastly,
the identity x(y + z) + wz = xy + z(x + w) has the 2-
coloring x(y + z) + wz = xy + z(x + w). An example of
an identity without a 2-coloring is x(y + z) + w(x + y) =
y(x + w) + x(z + w).

Theorem V.4. Let L = R be a 2-colorable degree two ring
identity on length n bit-vectors x1, . . . ,xs. There is a length
O(n2) cutting planes proof that the circuits L and R have
equivalent outputs.

VI. EXPERIMENTS

The goal of our experiments was to evaluate the potential
of using cutting planes solvers to reason with mixtures of
multiplication and bit-level logic. Such problems are a key
weakness of using a SAT-based approach to “bit-blasting”.
We found several types of problems where pseudo-Boolean
solvers performed well out-of-the-box. These include checking
the word-level equivalence, commutativity, or correctness of
different multipliers, extracting bit-equalities from word-level
equalities, and verifying nonlinear bit-vector inequalities.

In our experiments, we used an Intel Core i7-6700K CPU at
4.00GHz with a memory limit of 8GB. The wall-clock time
limit was set to 1200 seconds. We list experiment times in
seconds (wall-clock time) and write TO if the time limit of
1200 seconds was exceeded. Our benchmarks are available
at [35].

We used two pseudo-Boolean solvers, each equipped with
a different form of cutting planes reasoning. The first, Sat4j-
CP [33], employs saturation in its conflict analysis. The
second solver, RoundingSat [21], [48], instead uses division;
we used the new multi-precision version of the solver for
which we could also log and separately verify the derivations
it used.

Our experiments focused on integer multipliers with n-bit
inputs and 2n bits of output. We report results on three
different circuits to represent multiplication: array, diagonal,
and Wallace-tree multipliers with final stage ripple-carry adder.
As noted in the introduction, we directly represent the adder
constraints as two inequalities instead of as a set of clauses
and define a “spec-equation multiplier” without a circuit by
simply using the specification equation

n−1∑
i,j=0

2i+jtxyi,j −
2n−1∑
i=0

2i(xy)i = 0

TABLE I
Time to prove equivalences between multipliers using Sat4j and

RoundingSat. We give the time to prove equivalence the word-level, the time
to extract the individual bits of the word-level equivalence, and the sum of

these gives the total time to prove bit-level equivalence. We compare
performance to the algebraic approach of [28]

. Sat4j-CP RoundingSat
Instance n Word-level Extract Bit-level

32 6 1 7
array 64 8 6 14

x · y = y · x 128 25 41 66
256 171 158 329

32 7 1 8
diagonal 64 7 6 13

x · y = y · x 128 25 41 66
256 172 158 330

32 6 1 7
array 64 18 6 24

spec-eqn 128 135 41 176
256 TO N/A TO
32 4 1 5

diagonal 64 18 6 24
spec-eqn 128 129 41 170

256 TO N/A TO
32 2 1 3

diagonal 64 5 6 11
≡ array 128 16 41 57

256 102 158 260
Gröbner [28]

Instance n Word-level Extract Bit-level
32 1 N/A N/A

gate-array 64 3 N/A N/A
x · y = y · x 128 27 N/A N/A

256 273 N/A N/A
32 1 N/A N/A

gate-array 64 2 N/A N/A
spec-eqn 128 14 N/A N/A

256 136 N/A N/A

Pseudo-Boolean benchmarks with array, diagonal, or spec-eqn used our
generator. Gate-level array multipliers were generated by Boolector [43].

TABLE II
Time to prove equivalences with Wallace tree multipliers using Sat4j and

RoundingSat.

. Sat4j-CP RoundingSat
Instance n Word-level Extract Bit-level

16 1 1 2
Wallace 32 5 1 6

x · y = y · x 48 TO N/A TO
64 TO N/A TO
16 1 N/A N/A

Wallace 32 5 N/A N/A
≥ spec-eqn 48 65 N/A N/A

64 360 N/A N/A
16 1 1 2

array 32 2 1 3
≡ Wallace 48 45 3 48

64 41 6 47

along with the partial product constraints txyi,j = xiyj . In
these two ways, the pseudo-Boolean format allows us to “bit-
blast” multiplication, along with other word-level functions,
to a higher-level description than CNF while maintaining full
bit-precision.

Our first set of experiments, presented in Table I, uses
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the pseudo-Boolean solvers Sat4j-CP and RoundingSat to
verify the word-level and bit-level equivalence of different
multiplier circuits. More precisely, we use Sat4j-CP to prove
an equation of the form

∑
i 2i(si − s′i) = 0 stating that

the total weight of the outputs s, s′ is the same for the
two multipliers. Then we have RoundingSat deduce, from
this equation, each equality si = s′i individually in order
to prove equivalence at the bit-level. Performance on bit-
extraction scaled particularly well with the right choice of
pseudo-Boolean solver, as shown in Table III, which also
includes a comparison with the theoretical lower bound we
showed for algebraic methods. Using these two steps, we
can efficiently check the commutativity of array, diagonal,
and Wallace-tree multipliers, as well as several equivalences
between array, diagonal, and spec-equation multipliers. We can
also check some of these properties of Wallace-tree multipliers
for up to 32 or 64 bits.

An important step for showing word-level equivalence was
to do some basic pre-processing to find equivalent partial
products (txyi,j variables). Adding these equivalences was key
to obtaining efficient solve times in Sat4j-CP. In contrast,
we found that adding these equivalences did not help SAT-
based solvers. We note that most bit-vector solvers, and many
SAT solvers, already perform similar pre-processing to find
equivalent variables; current pseudo-Boolean solvers based on
cutting planes do not yet have such pre-processing.

To provide some context for these results, we compared the
performance of our pseudo-Boolean approach to the algebraic
approach of [28], which is currently the fastest method for
verifying these properties. We replicated their verification of
the commutativity and correctness of a simple gate-level array
multiplier “btor”, generated by Boolector, by using their tool,
AMulet, in our environment to obtain the solve times at the
bottom of Table I. We note that AMulet, is also capable
of similarly fast solve times for more complicated gate-level
multipliers such as Booth-encoded Wallace-tree multipliers.
We direct interested readers to [28] for further experiments
using the algebraic approach to verify commutativity, cor-
rectness, and equivalence of these other gate-level multiplier
architectures.

Current pseudo-Boolean solvers have limited reasoning ca-
pabilities for these lower level multipliers. In particular, these
solvers degenerate to SAT-based reasoning when given a CNF
input. Our focus is not so much on verifying a large spectrum
of multiplier circuits as on bit-vector solving, where we are
free to choose the most efficient way to represent bit-vector
multiplication.

We see that for simple array and diagonal multipliers,
our approach (on adder-level multipliers) achieves comparable
times to the algebraic approach (on gate-level multipliers) for
proving commutativity and word-level equivalence. Further-
more, we are able to efficiently extract each of the individual
bit-level equalities that a word-level equality implies.

For Wallace-tree multipliers with a final stage ripple-carry
adder (wt-rca), we could check its equivalence with an array
for 64 bits within 1 minute. We could also check commutativ-

TABLE III
Time in seconds to prove the equality s0 = s′0 from the equation∑n−1

i=0 2i(si − s′i) = 0 for the cutting planes solvers RoundingSat (RS) and
Sat4j-CP, compared to the SAT-based solvers Sat4j-Res and NaPS [49]. We

also compare with the polynomial calculus lower bound given by
Corollary II.3.

n RS Sat4j-CP Sat4j-Res NaPS #monomials
12 .001 7 .4 .1 7
16 .001 TO 3 2 20
20 .001 81 39 54
24 .001 TO 208 148
28 .002 Error 403
32 .002 1096
64 .009 3× 106

128 .04 2× 1013

256 .2 2× 1027

512 .4 1× 1055

ity for 32 bits in 5 seconds. However, we hit time-out on larger
instances of 48 or 64 bits. We were also unable to completely
verify the equivalence of a wt-rca and spec equation multiplier
for 32-bit instances, though we could show that the the output
of the wt-rca is at least as large as the output of the spec
equation in 5 seconds. We see that Sat4j-CP has a harder time
with these more complicated multiplier architectures.

Our other experiments, presented in Table IV, use the solver
RoundingSat to verify some nonlinear bit-vector inequalities
involving untruncated multiplication and the operations “|” for
bit-wise OR, “&” for bit-wise AND. We use these bit-wise
operations to apply the bit masks “| k” and “&k”, where k is
set to the constant alternating bit-string (10)(n/2). (This value
was an arbitrary choice that contains a mix of 1s and 0s;
we observed similar performance across all solvers with other
values of k.) The inequalities listed follow from thinking of
“|” and “&” as, respectively, computing the bit-wise maximum
and minimum of their inputs.

We compare RoundingSat’s performance on these inequal-
ities against the bit-vector solvers Boolector, Yices2, Z3 and
CVC4. Our inputs to these bit-vector solvers used the word-
level format SMT-LIB2 [3] to allow for full use of word-
level reasoning and other non-SAT capabilities. We found
that these bit-vector solvers (with the exception of Boolector)
generally exceeded the time limit at 20 bits. On the other hand,
when we “bit-blasted” multiplication using the spec-equation,
RoundingSat outperformed all of the bit-vector solvers, with
the exception of last inequality (x | k)(y+1) ≥ ky+x, where
Boolector won out by a few bits.

VII. CONCLUSIONS & DIRECTIONS

In this paper, we have described a new approach to deciding
nonlinear bit-vector formulas: include 1-bit adders among the
set of essential building blocks along with the usual Boolean
operations and express properties using pseudo-Boolean for-
mulas rather than CNF formulas during “bit-blasting”. We
have shown, both experimentally and in principle, how pseudo-
Boolean solvers based on cutting planes reasoning, when
given these new bit-blasted formulas, can achieve levels of
performance comparable to, or better than, the best alterna-
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TABLE IV
Time to prove bit-vector inequalities containing both multiplication and

bit-level operations. We compare RoundingSat (RS), Boolector 3.2.0 (Btor),
Z3 4.8.7, Yices 2.6.2 and CVC4.

Inequality n RS Btor Z3 Yices2 CVC4
16 17 14 21 31 44
20 11 136 TO TO TO

(x | k)z ≥ kz 24 16 TO
28 501
32 TO
16 .06 10 15 172 31
20 .5 117 1154 TO TO

kz ≥ (x&k)z 24 .7 TO TO
28 .6
32 .6
16 .2 14 22 31 44
20 7 TO TO TO TO

(x | k)z ≥ (x&k)z 24 2
28 629
32 TO
16 .008 19 43 114 50
20 .05 351 TO TO TO

(x | z)(z | k) ≥ kx 24 .1 TO
28 .2
32 .2
16 .04 10 32 100 48
20 .07 243 TO TO TO

kx ≥ (x&z)(z&k) 24 .1 TO
28 23
32 7

(x | k)(y + 1) 16 .4 25 29 38 118
≥ ky + x 20 TO 342 TO TO TO

24 TO

Bit-vector k is the value (10)(n/2). & is bit-wise AND, | is bit-wise OR.

tive methods on a number of natural multiplier verification
examples.

In particular, we have given O
(
n2
)
-length cutting planes

proofs for a broad class of properties of multipliers, matching
the optimal efficiency of the best Gröbner basis algorithms
for these properties at the word level, while also being
able to extract bit-level properties. Importantly, Gröbner basis
algorithms are not known to be able to extract such bit-
level properties efficiently: We have shown that such methods
require exponential time to extract bit-level consequences from
word-level properties.

An interesting open question is whether polynomial size
cutting planes proofs can be found for degree three identities
such as associativity. Although word-level associativity has an
O(n2) length proof in polynomial calculus, this cannot be used
to show the individual bit-level equalities.

We also have shown experimentally that for several of
these properties on inputs of up to 256 bits — namely, com-
mutativity, correctness, and equivalence — pseudo-Boolean
solvers can achieve performance comparable to that of the
best algebraic solvers at the word-level, and, in contrast to
algebraic methods, also solve these problems at the bit-level.

Finally, we have experimentally verified a number of crafted
bit-vector inequalities, each involving a mixture of multi-
plication and bit-wise operations and have shown that our
pseudo-Boolean approach can achieve much better verification
performance than several of the best current bit-vector solvers.

The idea of using pseudo-Boolean solving for verifying
nonlinear bit-vector formulas appears not to have been ex-
plored previously. One possible explanation for this is that
when pseudo-Boolean solvers are run purely on CNF inputs,
their reasoning collapses to that of CDCL SAT solvers, only
much less efficient ones because of the more involved data
structures and algorithms required in the pseudo-Boolean case.
Our use of 1-bit adders as fundamental structures is critical to
achieving the performance that we obtain.

Conflict-driven pseudo-Boolean solvers are still at a rela-
tively early stage of development, especially compared to the
25+ years of concerted effort directed at optimizing Gröbner
basis algorithms and CDCL solvers. In particular, there is
quite some variation in the different forms of conflict analysis
methods used, and some of these methods have been shown
to be quite weak. In fact, many solvers, such as NaPS [49]
and Open-WBO [40], do not use any cutting planes reasoning
and instead reduce the problem to SAT. Other shortcomings
in the cutting planes reasoning used in current solvers are
discussed in ([20], [23], [53]). In our experiments, different
conflict analysis methods worked best on different problems.
For example, we found that the saturation-based solver Sat4j-
CP worked much better than RoundingSat for checking word-
level equalities. On the other hand, the division-based solver
RoundingSat significantly outperformed Sat4j-CP when tasked
with extracting bit-equalities, and also for checking bit-vector
inequalities. This is in contrast with CDCL solvers where the
best ideas for conflict analysis have largely converged on a
single method that is used by all of the currently best solvers.

We view this work as providing a “call to arms” for pseudo-
Boolean solver development, focusing especially on features
that will be useful in verification of these kinds of bit-vector
problems. In particular, though our experiments validate the
pseudo-Boolean approach in principle, none of the solvers we
used allowed us to verify the properties for which we provided
more complex cutting planes proofs in Section V. Thus, there
is substantial scope for developing new methods and heuristics
for pseudo-Boolean solving that can carry out much more of
this cutting planes reasoning in practice.
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Abstract—The goal of this study is to improve the scalability
of today’s SAT-based solutions for optimization problems and
to pave the way towards extending the range of optimization
problems solvable with SAT in practice. Let OptSAT be the
problem of optimizing a generic Pseudo-Boolean function, given a
satisfiable propositional formula F . We introduce an incremental
and anytime incomplete algorithm for solving OptSAT, called
Polosat. We show that integrating Polosat into a state-of-the-
art open-source anytime MaxSAT solver significantly improves
the solver’s performance. Furthermore, we demonstrate that
Polosat substantially improves the solution quality of an
industrial placement tool, where placement is a sub-stage of the
physical design stage of chip design.

I. INTRODUCTION

Given a propositional formula F (V ) in Conjunctive Normal
Form (CNF), a Boolean satisfiability (SAT) solver either
returns a model to F (V ) or proves that none exists. Modern
SAT solvers are useful for a diverse range of purposes [8].
We are interested in solving optimization problems with SAT,
which requires extending the basic SAT formulation.

MaxSAT is the most widely used extension of SAT to opti-
mization. Given a set of hard propositional clauses H(V ) and a
target bit-vector (target) T = {tn, tn−1, . . . , t1}, where each
target bit ti is a Boolean variable associated with a strictly
positive integer weight wi, MaxSAT finds a model to H(V )
that minimizes the following objective function:

∑n
i=1 ti×wi.

The objective function to minimize is Linear Pseudo-Boolean,
that is, a linear combination of Boolean variables which, in
our case, represents the overall weight of the satisfied target
bits. MaxSAT has a diverse plethora of applications in various
domains, including computer-aided design [41], [43], [27],
[22], [16], [30], artificial intelligence [34], [7], planning and
scheduling [10] and bioinformatics [17]. However, MaxSAT
is restricted to linear optimization. How can one extend SAT
to optimize a generic Pseudo-Boolean function?

In the broadest sense, a Pseudo-Boolean (PB) function is a
function that maps every full assignment to a real number (see,
e.g., [37]). Hence, the following formulation of a problem,
we call OptSAT, is a natural extension of SAT to generic
optimization. Given a satisfiable formula F (V ) in CNF and an
objective PB function Ψ, OptSAT returns a model µ to F , such
that for every model µ′ to F , it holds that Ψ(µ) ≤ Ψ(µ′). Our
definition is suitable for any objective function. In particular,
the objective function can be black-box, where a black-box
PB function is not required to have an algebraic represen-
tation [25]. Consider the API of an OptSAT solver. How can
one supply a black-box function to the solver? One can simply
provide it as a callback function parameter. The solver can then

query the callback function at any time. Such an API makes
the solver independent of the representation of the objective
function, which is a desired property, even if an algebraic
representation of the function is available to the user.

In this paper, we introduce a new SAT-based OptSAT algo-
rithm, called Polosat (Polarity-Fixing-based Optimization
in SAT). Polosat is an anytime algorithm, that is, it gen-
erates a series of models improving w.r.t the objective func-
tion. Polosat can be used incrementally under assumptions,
similarly to modern SAT solvers [15], [32]. Our algorithm is
incomplete; it works until a fixed-point, but does not guarantee
that the eventual solution is optimal. Internally, Polosat is
based on the ability of modern SAT solvers to look for a
solution near a given full assignment µ by fixing the polarities
of the variables to µ [2], [29], [1]. Furthermore, we present a
version of Polosat adjusted for strictly monotone objective
functions. We demonstrate the efficiency of Polosat in the
context of the following two applications.

First, we integrated Polosat into our open-source anytime
MaxSAT solver TT-Open-WBO-Inc [31], which won both
of the weighted, incomplete tracks of MaxSAT Evaluation
2019 (MSE19) [5]. The integration was carried out by re-
placing incremental SAT invocations by Polosat invoca-
tions in TT-Open-WBO-Inc’s SAT-based flow. Polosat
makes TT-Open-WBO-Inc significantly more efficient on
the MSE19 instances. This result is evidence that Polosat
is empirically useful, even when integrated into an already
elaborated algorithm for the well-studied problem of linear
PB optimization in SAT (that is, MaxSAT).

Second, we integrated Polosat into our proprietary indus-
trial SAT-based placement tool, where placement is an essen-
tial sub-stage of the physical design stage of chip design [40].
We show that Polosat helps the tool to generate placements
of a consistently and significantly better quality, thus providing
evidence that Polosat can improve the scalability of SAT
for a critical industrial optimization problem.

While unconstrained PB optimization of black-box func-
tions has been studied [25], we are not aware of any previous
work on optimizing a black-box PB function, given a CNF
formula or other constraints. If the objective function Ψ is
provided algebraically, the following flow can be applied to
solve OptSAT: 1) linearize Ψ, if not already linear (see [37]
for further information about linearization), and 2) invoke a
MaxSAT solver. However, it is unclear whether such a flow can
be implemented efficiently enough so as to help solving real-
world problems. Furthermore, apparently, a MaxSAT-based
flow cannot be used to speed up MaxSAT itself, whereas
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Polosat improves the state-of-the-art in MaxSAT solving.
Hence, Polosat has a clear empirical added value.

The rest of this paper is organized as follows. Sect. II
describes the background. Sect. III is about OptSAT and
Polosat. Sect. IV discusses our applications. Sect. V pro-
vides experimental results. Sect. VI concludes our work.

II. PRELIMINARIES

A literal l is a Boolean variable v or its negation ¬v. Given
a variable vi and a Boolean value bi ∈ {0, 1}, vbii stands for
either the literal vi if bi = 1 or the literal ¬vi if bi = 0. We
assume that the sets V and L contain all the Boolean variables
and literals, respectively. A clause is a disjunction of literals.
A formula F is in Conjunctive Normal Form (CNF) if it is a
conjunction (set) of clauses.

A SAT solver [8] receives a CNF formula F and returns a
satisfying assignment (aka, model or solution), if one exists.
In incremental SAT solving under assumptions [15], [32], the
user may invoke the SAT solver multiple times, each time
with a different set of assumption literals (called, simply, the
assumptions) and, possibly, additional clauses. The solver then
checks the satisfiability of all the clauses provided so far, while
enforcing the values of the current assumptions.

A bit-vector variable (bit-vector) of width n = |B|,
B = {vn, vn−1, . . . , v1}, is a sequence of n variables, called
bits. Bit v1 is the Least Significant Bit (LSB) and vn is the
Most Significant Bit (MSB). A bit-vector constant is a bit-
vector (BV) each one of whose bits is substituted by 0 or 1.
A BV solver decides the satisfiability of BV formulas, that
is, formulas built on top of BV variables and BV constants.
The only assumption this paper makes about BV formulas
is that any BV formula can be translated (aka, synthesized
or bit-blasted) to CNF and solved with a SAT solver. This
assumption holds for the BV language as defined in the SMT-
LIB standard [6].

A MaxSAT instance comprises a set of hard satisfi-
able clauses H and a target bit-vector (target) T =
{tn, tn−1, . . . , t1}, where each target bit ti is a Boolean
variable associated with a strictly positive integer weight
wi. The weight of a variable assignment µ is O(T, µ) =∑n

i=1 µ(ti)×wi, that is, the overall weight of T ’s bits, satisfied
by µ. Given a MaxSAT instance, a MaxSAT solver is expected
to return a model having the minimum possible weight.

In the standard MaxSAT definition, the target T contains
clauses, called the soft clauses, where the MaxSAT solver is
required to maximize the overall weight of the satisfied soft
clauses. The standard definition is reducible to ours (which
we use for convenience) as follows: every soft clause C is
transformed into a target bit v′, where v′ is a fresh variable,
by adding the clause v′ ∨ C to H .

In the rest of this paper, assignment stands for a full
variable assignment. We assume that an assignment θ ={
θ(v|V |) = b|V |, θ(v|V−1|) = b|V−1|, . . . , θ(v1) = b1

}
, where

bi ∈ {0, 1} for every bi, is represented as the bit-vector
constant

{
b|V |, . . . , b1

}
∈ {0, 1}|V |. Sometimes, it is more

convenient to think of an assignment as of a set of literals

{
v
b|V |
|V | , . . . , v

b1
1

}
. Given an assignment θ and a literal l, we

denote by θ¬l the assignment created by flipping the value of
l’s variable in θ. Given a target T , an assignment µ is ideal
if µ(ti) = 0 for every target bit ti ∈ T .

A. Polarity-Fixing in SAT and Anytime MaxSAT

Fixing the polarity of a variable v to a Boolean value σ
during SAT solver’s invocation means assigning v the value
σ, whenever v is chosen by the solver’s decision heuristic
(whereas the variable selection heuristic is not changed).

Given a CNF formula F (V ), let θ be a (not-necessarily-
satisfying) assignment to V . Consider the problem of finding a
model µ near θ, that is, a model that minimizes the number of
1s in µ⊕θ (where ⊕ stands for bit-vector xor). The following
approximate polarity-fixing-based algorithm has emerged as
a surprisingly efficient solution to this problem in several
contexts. The algorithm fixes the polarity of all the variables to
their values in θ and runs a SAT solver. This approach carries
out a local search near θ (as observed in [11] in the context
of Constraint Programming), hence any encountered model is
likely to be highly similar to θ.

To the best of our knowledge, polarity-fixing for finding a
nearby model was first used in the context of diverse solution
generation [2], [29]. A variation was suggested independently
in [1] for generating a new model close to a given model.

Anytime MaxSAT algorithms are expected to find an improv-
ing set of models {µ1, µ2, . . . , µn} over time, that is, for every
j > i, it must hold that O(T, µj) < O(T, µi). Polarity-fixing
has been found extremely efficient in the context of anytime
MaxSAT. Specifically, the following three approaches to fixing
the polarities when trying to improve the best model so far
have been successfully applied within different SAT-based
anytime MaxSAT algorithms (see [30] for further details):

1) The conservative approach [36], [3], [12] fixes the po-
larities of all the variables to their values in the latest
best model µi. It causes the SAT solver to look for a
solution near µi, which normally results in finding the
next solution quicker.

2) The optimistic approach [13] fixes the polarity of the
target bits to 0, so as to bias the search towards an ideal
assignment.

3) The combined Target-Optimum-Rest-Conservative

(TORC) polarity selection heuristic [30] combines the
conservative and the optimistic approaches, so as to find
the next model quicker, yet increasing the likelihood of
the model being closer to an ideal assignment. Before the
initial SAT invocation, TORC fixes the polarity of all the
target bits to 0. Then, after each new improving model
µi is encountered, the polarity of all the variables other
that the target bits is fixed to their values in µi. TORC
was shown to outperform the other polarity selection
heuristics [30]. TT-Open-WBO-Inc uses TORC [31].

III. GENERIC OPTIMIZATION IN SAT

Recall our definition of the OptSAT problem. Given a
propositional satisfiable formula F (V ) in CNF and a PB
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function Ψ: {0, 1}|V | → R, OptSAT returns a model µ to F ,
such that for every model µ′ to F , it holds that Ψ(µ) ≤ Ψ(µ′).

Our OptSAT algorithm Polosat is shown in Alg. 1. Sim-
ilarly to modern SAT solvers, Polosat is incremental under
assumptions. It receives three parameters: 1) A satisfiable CNF
formula F (if the invocation is incremental, assume that F
contains all the clauses, provided by the user so far); 2) A
(possibly empty) set of assumptions Asmp. The assumptions
are guaranteed to hold for one particular invocation of the
algorithm; 3) The objective PB function Ψ: [0, 1]

|V | → R.
The algorithm maintains an instance of an incremental SAT

solver throughout its execution and the best model so far µ.
Polosat starts with initializing µ with a model by invoking
the SAT solver (line 2). Then, it operates in iterations, where
each iteration is called an epoch (lines 4 to 14). Each epoch
tries to improve µ. An epoch is good if it manages to improve
µ, otherwise it is bad. Our incomplete algorithm finishes
whenever a bad epoch is completed.

Each epoch tries to improve the best model so far µ in a
loop (lines 7 to 14) by looking for a better solution near µ
when, for each loop iteration, one of the variables is forced to
flip its value. Specifically, the loop goes over a set of literals
B, initialized by all the literals assigned to 1 by µ (line 5; note
that one literal is selected for every variable). For each literal l,
Polosat tries to find a model near µ with l’s variable flipped.
This is carried out by fixing the polarities of all the variables
to their values in µ (line 9), followed by a SAT invocation with
¬l as a hard assumption (line 10). If the problem is satisfiable
and a model σ better than µ is found, then: 1) µ is updated to
σ, 2) the epoch is marked as good, and 3) any literal l : l /∈ µ
is removed from B to ensure that one of the literals in B is
always flipped w.r.t µ in the subsequent SAT invocations.
Polosat may resemble local search algorithms [21], such

as GSAT [38] for SAT or SatLike [24] for anytime MaxSAT.
Local search algorithms maintain an assignment and modify
it iteratively. In the context of anytime MaxSAT, they start
with a full assignment, choose a variable and flip it in each
subsequent step, targeting to find an assignment which satisfies
the formula and improves the best model so far. The key
algorithmic difference between local search and Polosat is
that Polosat is fully based on incremental SAT solving.
Specifically, Polosat takes advantage of polarity-fixing to
look for a solution near a given assignment with a single
quick SAT invocation. Hence, Polosat never has to handle
unsatisfying assignments. Our approach can be thought of as
a purely SAT-based version of local search. It is surprisingly
efficient, yet simple to implement. Furthermore, the fact that
Polosat is SAT-based, makes its integration into any existing
SAT-based optimization flow seamless. It is an open question
whether traditional local search can solve OptSAT efficiently.

A. Optimizing a Strictly Monotone Function

Often, the objective function in optimization problems only
depends on a subset of the variables, which we call the
observable variables (observables). Moreover, the function
decreases whenever one of the observables decreases (that is,

Algorithm 1 Polosat

1: function SOLVE(CNF F ; Literals Asmp; Ψ: [0, 1]
|V | → R)

Require: F is satisfiable
2: µ := SAT(Asmp) ▷ µ: the best model so far
3: is good epoch := 1
4: while is good epoch do ▷ One loop is an epoch
5: B := {l : l ∈ L, µ(l) = 1}
6: is good epoch := 0
7: while B is not empty do
8: l := B.front();B.dequeue()
9: Fix the polarities of all the variables to µ

10: σ := SAT(Asmp ∪ {¬l})
11: if SAT and Ψ(σ) < Ψ(µ) then
12: µ := σ ▷ Update the best model so far
13: is good epoch := 1 ▷ Good epoch!
14: B := {l : l ∈ B, µ(l) = 1}

flipped from 1 to 0). We formalize the property of strict mono-
tonicity for a PB function, to capture the above-mentioned
properties, as follows. Let Obs ⊆ V be a set of observables
and Ψ: [0, 1]

|V | → R be a PB function. Then:
1) Ψ is restrictable to Obs, iff for every two assignments θ

and λ, such that θ(v) = λ(v) for every v ∈ Obs, it holds
that Ψ(θ) = Ψ(λ).

2) Ψ is strictly monotone in observables Obs, iff: a) Ψ is
restrictable to Obs, and b) For every assignment θ and
every variable v ∈ Obs, such that θ(v) = 1, it holds that
Ψ(θ¬v) < Ψ(θ).

For example, consider the MaxSAT problem. The objective
function O(T, µ) depends only on the target bits. When one of
the target bits decreases, O(T, µ) decreases too, hence O(T, µ)
is strictly monotone in the target T .

Below, we refine Polosat to functions that are strictly
monotone in a subset of variables, targeting empirical effi-
ciency. Alg. 2 is a version of Alg. 1, applicable when the
objective function is strictly monotone in Obs. In fact, Alg. 2
is identical to Alg. 1, but for the following two adjustments:

1) The polarity of the observables is always fixed to 0
(lines 2 and 10 in Alg. 2). The intuition behind this
adjustment is similar to the intuition behind the TORC
polarity selection strategy for anytime MaxSAT. We
would like to encourage any encountered model to be
close to both: a) the best model so far µ (to generate the
solutions rapidly), and b) an ideal assignment, that is, an
assignment in which all the observables are assigned 0
(to bias the algorithm towards the ideal).

2) During every epoch, Polosat restricts the set B of the
literals it considers for flipping to observable variables,
which: a) are assigned 1 in the best model so far (line 6
in Alg. 2), and b) have not been assigned 0 in any
new model, since the beginning of the current epoch
(lines 12 to 16 in Alg. 2). Our intuition is as follows.
For strictly monotone functions, the only way to improve
the objective function is by flipping observables from 1 to
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0. Hence, flipping only such observables that have never
been assigned 0 in the span of one epoch, is expected to
result in improving the best model so far more frequently
and in reducing the number of fruitless SAT invocations.

Algorithm 2 Strictly-Monotone Polosat
1: function SOLVE(CNF F ; Literals Asmp; Variables Obs;

Ψ: [0, 1]
|V | → R)

Require: F is satisfiable and Ψ is strictly monotone in Obs
2: Fix the polarities of the observables Obs to 0
3: µ := SAT(Asmp) ▷ µ: the best model so far
4: is good epoch := 1
5: while is good epoch do ▷ One loop is an epoch
6: B := {v : v ∈ Obs, µ(v) = 1}
7: is good epoch := 0
8: while B is not empty do
9: v := B.front();B.dequeue()

10: Fix the polarities of the observables Obs to 0
and all the other variables (that is, V \ Obs) to µ

11: σ := SAT(Asmp ∪ {¬v})
12: if SAT then ▷ Satisfiable
13: if Ψ(σ) < Ψ(µ) then
14: µ := σ ▷ Update the best model so far
15: is good epoch := 1 ▷ Good epoch!
16: B := {v : v ∈ B, σ(v) = 1}

B. Polosat Enhancements

We apply two enhancements to Polosat (applicable also
to the strictly-monotone Polosat). As we shall see, they
yield a moderate improvement to Polosat’s performance.

1) Conflict Threshold for SAT Invocations: It makes sense
to cut off difficult SAT invocations in the context of our
incomplete algorithm. Hence, we stop all the SAT invocations,
except for the initial one (line 2 in Alg. 1 and line 3 in Alg. 2),
after 1000 conflicts.

2) Mutation Combination: This enhancement is based on
the following empirical observation from [14], made in the
context of the QuickSampler algorithm for random sam-
pling in SAT.

Let µ0 be a model to a given formula F (V ). Let µi be a
model to F near µ0, except for one variable vi, which must be
flipped (few other variables might be flipped as well). In other
words, the so-called mutation δi = µ0 ⊕ µi, representing the
difference between µ0 and µi, is expected to be close to the
constant 0 with the exception of vi. (In [14], such a model is
found by reduction to MaxSAT.) Let µj:j ̸=i be another model
to F near µ0, except for one flipped variable vj . Then, the
observation is that the assignment θ = µ0⊕(δi∨δj), generated
by flipping in µ0 only the variables in which µ0 differs from
either µi or µj (or both), is empirically likely to be a model.
We call θ the result of applying the mutation combination of
µi and µj to µ0. QuickSampler quickly finds new models
by applying mutation combinations to existing models.

In Polosat, we apply mutation combination to generate
more models at the end of each epoch. Let µ0 be the best

model at the beginning of a certain epoch. Let R be the set of
all the models which improve µ0 during that epoch (if any).
Then, for every two models µi, µj ∈ R, we try to find a model
near θ = µ0⊕ (δi∨ δj), but only if θ is better than the current
best model µ (that is, if Ψ(θ) < Ψ(µ)). Specifically, we apply
the following algorithm at the end of each epoch:

1: for (µi ∈ R, µj ∈ R), where µi ̸= µj do
2: δi := µ0 ⊕ µi ▷ δi(l) = 1 iff µ0(l) ̸= µi(l)
3: δj := µ0 ⊕ µj ▷ δj(l) = 1 iff µ0(l) ̸= µj(l)
4: θ := µ0 ⊕ (δi ∨ δj)
5: if Ψ(θ) < Ψ(µ) then
6: Fix the polarities of all the variables to θ
7: σ := SAT(Asmp)
8: if SAT and Ψ(θ) < Ψ(µ) then
9: µ := σ ▷ Update the best model so far

IV. APPLYING Polosat

We deliberately designed Polosat to be incremental in
the same sense SAT solvers are. Hence, Polosat can be
integrated into any existing incremental SAT-based optimiza-
tion flow by replacing every SAT invocation by a Polosat
invocation over the same CNF formula and the same assump-
tions. The two other parameters to Polosat are the objective
function and the set of observables Obs (for functions which
are strictly monotone in Obs).

As we have mentioned, the objective function can be
provided as a callback parameter; it can also be implemented
ad-hoc in any specific SAT-based optimization flow.

The set of observables is induced by the optimization
problem. However, the order of the observables might matter.
This is because the strictly-monotone Polosat goes over the
observables in the user-given order. Hence, it makes sense to
order the observables according to their projected impact on
the value of the objective function, if only because a time-out
might stop Polosat’s execution. For example, for MaxSAT
it makes sense to sort the observables according to their weight
(that is, the weight wi for every ti ∈ T ) in decreasing order.

Sect. IV-A below is about integrating Polosat into
our anytime MaxSAT solver TT-Open-WBO-Inc [31].
Sect. IV-B is dedicated to our industrial placement flow.

A. Polosat for Anytime MaxSAT

We have integrated Polosat into the Bounded Multi-
level Optimization (BMO) [4]-based anytime MaxSAT al-
gorithm [19], which we call BMO-based Clustering (BC),
implemented in our open-source anytime MaxSAT solver
TT-Open-WBO-Inc [31]. TT-Open-WBO-Inc won both
of the weighted, incomplete tracks of MaxSAT Evaluation
2019. It is a spin-off of Open-WBO-Inc [20].

1) Integrating Polosat into BC: BC [19] clusters all the
target bits to disjoint classes based on their weight. That is,
all the targets of the same weight w belong to the same
class. Then, the algorithm sorts the classes according to their
weight and goes over them one-by-one starting with the class
associated with the highest weight. BC tries to falsify as many
target bits in each class as possible with incremental SAT
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invocations. After BC completes processing one class, it fixes
the overall number of falsified target bits in that class.

Our implementation simply replaces every SAT invocation
with a strictly-monotone Polosat invocation in BC with
the target T as the observables and O(T, µ) as the objective
function. However, there are several subtleties: a) We exclude
from the set of observables the bits which belong to the
fixed classes; b) As we have already mentioned, we sort
the observables by their weight in decreasing order; c) We
randomly shuffle the observables within each class before
every Polosat invocation to diversify Polosat’s execution.

2) Adaptive Strategy for Polosat: Our initial empirical
results showed that TT-Open-WBO-Inc with Polosat
outperforms the baseline solver on a significant majority of
the benchmarks, however it yields a severe performance degra-
dation on some of them. Further study of this phenomenon
showed that Polosat tends to be empirically efficient when-
ever it manages to generate a high number of models per
second. This empirical observation lead us to introducing the
following adaptive strategy.

We modified Polosat to keep track of the number of
Models Per Second (MPS) throughout its execution starting
immediately after the initial SAT invocation. MPS is updated
and tested after each SAT invocation. If MPS is lower than
1, the current invocation of Polosat is terminated, and the
high-level BC algorithm falls backs to invoking a plain SAT
solver instead of Polosat for the rest of its execution. Falling
back to SAT makes sense, since SAT/Polosat queries tend
to become more difficult as the algorithm advances towards
the ideal, hence MPS is unlikely to increase.

B. Polosat for Placement in Physical Design

1) The Placement Problem: During the placement sub-
stage of the physical design stage of chip design [40], the
standard cells (that is, atomic units of the design) are placed
in a bigger design block under various hard constraints and
optimization requirements.

More specifically, placement is about placing without
overlap a set of rectangles with fixed orientations R =
{R1, R2, . . . , Rm} on a fixed-sized 2n × 2n grid under the
following optimization requirement. The user provides a pre-
defined set of nets N =

{
N1, N2, . . . , Nk

}
, where each net

N j =
{
Rj1 , Rj2 , . . . , Rj|Nj |

}
is a set of rectangles. The

intersection between the nets is not expected to be disjoint.
Let P j be the perimeter of the rectangle, enclosing all the
rectangles of net N j . P j is called the perimeter of the net. The
objective function in placement is minimizing the overall sum
of the perimeters of all the nets P =

∑k
j=1 P

j , called, simply,
the perimeter of the placement solution. An example is shown
in Fig. 1. The problem is non-trivial as even the decision
version of the placement problem is NP-complete [23].

Routing is a sub-stage of physical design, which follows the
placement stage, in which each net is inter-connected by wires
without intersection between the nets. Empirically, generating
placements that minimize the perimeter significantly increases
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Fig. 1: Placement example. A solution is shown to the problem of
placing without overlap five rectangles R1, R2, R3, R4 and R5 of the
sizes 4×1, 4×3, 2×2, 2×4 and 1×5, respectively, on a 23×23 grid,
given the following three nets: N1 = {R1, R3, R5}, N2 = {R2, R3}
and N3 = {R2, R4}. The lengths of the perimeters of the nets are
20, 18 and 20, for the nets N1, N2 and N3, respectively. The overall
perimeter’s length is 20 + 18 + 20 = 58. The solution is an optimal
one, that is, no solution with a smaller perimeter exists.

the likelihood that the generated placement is routable and the
subsequent routing solution has a short wire-length.

Furthermore, any placement solution must meet additional
requirements, essential for manufacturing, such as aligning
some of the input rectangles, enforcing parity constraints
(i.e., the user might require the y coordinates of some of
the rectangles to be either even or odd) [33], ensuring a
minimal distance between some of the rectangles, keeping
some rectangles out of certain regions and others. In practice,
all the requirements can be expressed as a bit-vector formula.
We omit further details, since they are outside of the scope of
this paper and are currently restricted due to IP considerations.

Various algorithms to solve the placement problem, such
as, simulated annealing and numerical optimization, have been
tried [39], but industrial placement tools are typically heuris-
tical [42]. However, while such tools scale to big designs,
they often generate placements that are far from the optimal
solution, hence are not routing-friendly. In addition, they might
violate some of the manufacturing-driven requirements. Fur-
thermore, conforming to any new requirements might require
non-trivial changes to the tool. A scalable SAT-based placer
would help to alleviate the above-mentioned issues.

2) Reducing Placement to OBV: Recall the formulation of
the problem of Bit-Vector Optimization (OBV) [33]. In OBV,
also known as Optimization Modulo Bit-Vectors (OMT(BV)),
given a bit-vector (or a propositional) formula F and the target
bit-vector T , the algorithm has to minimize the value of T ,
where T is interpreted as an unsigned integer. Placement is
directly reducible to OBV as follows.

We associate each rectangle Ri with two bit-vector variables
Rx

i and Ry
i of bit-width n, where (Rx

i , R
y
i ) represents the

location of Ri’s bottom-left corner. Let sxi and syi be the user-
given fixed length and width, respectively, of the rectangle
Ri, for each i. Then, constructing and asserting the follow-
ing formula R, along with the additional requirements we
have mentioned, is sufficient to encode placement’s decision
problem: R =

⋀
1≤i<j≤m((Rx

i + sxi ≤ Rx
j ) ∨ (Rx

j + sxj ≤
Rx

i )∨ (Ry
i + syi ≤ Ry

j )∨ (Ry
j + syj ≤ Ry

i )). (Here and below,
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some extra constraints, omitted for simplicity, must be added
to prevent overflow.)

It is left to construct the target for completing an OBV for-
mulation for the placement problem. We maintain a BV vari-
able P j of bit-width n representing the perimeter per every net
N j , where P j = 2× ((max(Rx

j1
+ sxj1 , . . . , R

x
j|Nj |

+ sxj|Nj |
)−

min(Rx
j1
, . . . , Rx

j|Nj |
)) + (max(Ry

j1
+ syj1 , . . . , R

y
j|Nj |

+

syj|Nj |
) −min(Ry

j1
, . . . , Ry

j|Nj |
))). The overall perimeter T =∑k

j=1 P
j serves as the OBV target in our formulation.

OBV can be reduced to MaxSAT with the same target T ,
where each bit ti associated with the weight wi = 2i−1 [9].
Moreover, in [33], we introduced two dedicated SAT-based
OBV algorithms. Our anytime algorithm OBV-BS, based on
binary search with SAT, turned out to be a robust and scalable
solution to the problem of fixing an existing placement, if last-
minute design changes are introduced; OBV-BS performed
substantially better than the reduction to MaxSAT [33]. Un-
fortunately, in our experience, OBV-BS does not scale when
it comes to generating a routable placement from scratch.
Typically, a SAT solver can quickly find a valid placement,
but it fails to solve the optimization problem. Why is there
such a difference in performance between fixing an existing
placement and generating a placement from scratch? This
is because, in fixing, the target comprises lexicographically
ordered bits, where each bit is a result of a separate calculation,
while, in placement, the target is the result of bit-vector
addition operations, thus all the target bits are interconnected.

3) Applying Polosat for Placement: PLC is our propri-
etary industrial placement tool, intended to solve the placement
problem by reduction to BV and then bit-blasting to SAT.
PLC uses the following simple linear search algorithm as its
baseline, since it outperforms the OBV algorithms we have
mentioned. PLC starts with invoking the SAT solver to find a
solution µ to the placement problem. The solution represents a
valid placement. Then, it asserts that the perimeter P is smaller
than its value in µ and runs the incremental SAT solver once
again to find a new µ. If no time-out occurs, the process is
repeated until it finishes when the formula is unsatisfiable, in
which case the latest solution is an optimal one.

We have integrated Polosat into PLC by replacing
all the SAT invocations with Polosat, where the ob-
jective function returns the current value of the perime-
ter: Ψ(µ) =

∑k
j=1 µ(P

j). Note that Ψ is not lin-
ear PB, since P j’s are bit-vectors. Ψ is strictly mono-
tone in the bits of the net perimeters. Hence, we use
the strictly-monotone Polosat with the following ob-
servables: Obs={P 1

n,P
2
n,...,P

k
n ,P 1

n−1,P
2
n−1,...,P

k
n−1,...,P

1
1 ,P

2
1 ,...,P

k
1 }

(where, for every j, the bits
{
P j
n, . . . , P

j
2 , P

j
1

}
are P j’s bits).

Note that we ordered Obs to give preference to the more
significant bits: P q

k comes before Pw
k−1 for any q, w and k.

We found no need to apply the adaptive strategy in PLC.

V. EXPERIMENTAL RESULTS

In this section, we study the performance of Polosat
within both our MaxSAT solver TT-Open-WBO-Inc and our

industrial placement tool PLC. We used machines with 32Gb
of memory running Intel® Xeon® processors with 3Ghz CPU
frequency for all the experiments.

A. Polosat in TT-Open-WBO-Inc on MSE19 Instances

This section studies the performance of the following any-
time MaxSAT solvers and solver configurations on the bench-
marks used in both the 60-second and 300-second weighted,
incomplete categories of MaxSAT Evaluation 2019:

1) loandra [12]: the runner-up in both of the weighted,
incomplete categories at MSE19.

2) TT-Open-WBO-Inc [31]: the winner in both of the
weighted, incomplete categories at MSE19 and the base-
line solver for our Polosat implementation.

3) Polosat: TT-Open-WBO-Inc with the strictly-
monotone Polosat integrated as presented in
Sect. IV-A.

4) NoAdapt: Polosat without the adaptive strategy
(Sect. IV-A2).

5) NoCC: Polosat without the conflict threshold for SAT
invocations (Sect. III-B1).

6) NoComb: Polosat without the mutation combination
algorithm (Sect. III-B2).

The criterion for comparing anytime MaxSAT solvers at
MaxSAT Evaluation 2019 was their score, defined as follows
for a particular solver S and i instances:

∑
i(1 + the minimal

weight of the unsatisfied target bits found by any participating
solver) / (1 + the weight of the unsatisfied target bits found
by S). This criterion depends on the participating solvers.
Following [30], we decided to calculate an absolute score
against the best result, achieved by the top two anytime solvers
in MaxSAT Evaluation 2019, that is, TT-Open-WBO-Inc
and loandra, as well as the two best-performing complete
solvers rc2b [26], [28], [18] and UWrMaxSAT [35], in 24
hours. Hence, we define the score as follows:

∑
i(1 + the best

result of the four solvers in 24 hours) / (1 + the weight of the
unsatisfied target bits found by S).

We ran the solvers for 30 minutes and measured the average
score at the following intervals: 60, 180, 300, 600, 900, 1200,
1500 and 1800 seconds. This approach allowed us to study
the performance of the solvers over time. We updated both
TT-Open-WBO-Inc and loandra to print out the time of
discovery of each new model.

The code of the solvers we used as well as instructions on
how to reproduce our experiments are publicly available at
http://tiny.cc/9fk4rz.

The results are presented in Fig. 2, Table I, Table II and
Table III. Some observations are in place.

First, Fig. 2 and Table I show that Polosat sig-
nificantly improves the average score of its baseline
TT-Open-WBO-Inc solver for every considered timeout.
Furthermore, Table III demonstrates that, for the timeout of
300 sec., Polosat improves the quality on 127 instances and
deteorates it only on 42 instances. Moreover, Table II provides
evidence that Polosat exhibits a better performance on the
majority of the families. In particular, for the timeout of 300
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Time Polo NoAdapt NoCC NoComb TT loandra
1800 0.8501 0.8174 0.8464 0.8501 0.8308 0.8097
1500 0.8494 0.8158 0.846 0.8494 0.8302 0.8084
1200 0.849 0.814 0.8441 0.848 0.8292 0.8028
900 0.8486 0.8093 0.8436 0.8467 0.8269 0.8011
600 0.8393 0.7981 0.8333 0.8355 0.8169 0.7975
300 0.8312 0.7829 0.8236 0.8295 0.8089 0.7828
180 0.8231 0.7731 0.8147 0.8213 0.8028 0.7738
60 0.7756 0.7443 0.7656 0.7734 0.7567 0.7352

TABLE I: Comparing the average score (rounded to 4 digits) over
time (in seconds). The best result per timeout is highlighted. TT
stands for TT-Open-WBO-Inc; Polo stands for Polosat.

Family #Inst 60 sec. 300 sec. 1800 sec.
TT Polo TT Polo TT Polo

abstr-ref 10 0.900 0.899 0.984 0.992 0.986 0.992
af-synthesis 16 0.994 0.996 1.000 1.000 1.000 1.000
BTBNSL 14 0.982 0.987 0.988 0.991 0.988 0.991
causal-disc 16 0.710 0.904 0.847 0.917 0.879 0.947
corr-clust 23 0.858 0.894 0.887 0.958 0.891 0.960
drmx-crypt 1 0.871 0.876 0.884 0.902 0.915 0.914
hs-timetab 10 0.490 0.533 0.503 0.553 0.514 0.562
lisbon-wed 14 0.714 0.714 0.714 0.714 0.714 0.714
max-real 13 0.904 1.013 0.904 1.013 0.911 1.013
metro 2 1.000 1.000 1.000 1.000 1.000 1.000
MinWDST 7 0.504 0.504 0.932 0.932 0.933 0.933
min-width 17 0.848 0.848 0.848 0.848 0.848 0.848
mpe 15 0.611 0.620 0.611 0.620 0.611 0.620
railway-tr 4 0.902 0.805 0.913 0.919 0.983 0.983
ramsey 12 0.867 0.934 0.894 0.953 0.933 0.953
rel-inf 2 0.015 0.015 0.114 0.111 0.165 0.150
shiftdesign 11 0.805 0.664 1.000 1.000 1.000 1.000
staff-sched 11 0.856 0.775 0.926 0.938 0.971 0.987
tcp 13 1.000 1.000 1.000 1.000 1.000 1.000
timetabling 16 0.303 0.279 0.536 0.507 0.640 0.610
ParRBACM 15 0.000 0.000 0.000 0.000 0.000 0.000
MaxSQIC 15 0.831 0.922 0.905 0.954 0.940 0.974
maxcut 16 0.926 0.949 0.926 0.949 0.926 0.949
pseudoB 7 0.651 0.687 0.660 0.687 0.952 0.980
set-covering 12 0.967 0.968 0.974 0.970 0.978 0.977
spot5 5 0.956 0.957 0.958 0.964 0.964 0.967

Overall 297 0.757 0.776 0.809 0.831 0.831 0.850

TABLE II: TT-Open-WBO-Inc (abrr. TT) vs. Polosat (abrr.
Polo): average score per family (names abbreviated) for 3 timeouts.

sec., Polosat improves the average score on 15 out of 26
families and deteriorates the average score on 3 families only.

Second, consider the impact of the adaptive strategy. Ta-
ble III shows that NoAdapt outscores TT-Open-WBO-Inc
on 117 instances, while TT-Open-WBO-Inc outscores
NoAdapt on 69 instances only, yet Fig. 2 and Table I
are evidence that, on average, NoAdapt is inferior to
TT-Open-WBO-Inc for every timeout. The reason is that,
as Table III shows, there are 19 instances on which the score
of NoAdapt is inferior to that of TT-Open-WBO-Inc by
at least 2 times (in fact, 18 out of these 19 instances belong
to only 3 families: shiftdesign, timetabling an hs-timetabling).
Fortunately, the adaptive strategy takes care of these bench-
marks as Polosat is inferior to TT-Open-WBO-Inc by at
least 2 times on only one benchmark.

Third, Fig. 2 and Table I show that applying the conflict
threshold for SAT invocations makes Polosat moderately,
but consistently more efficient for every timeout. Mutation
combination has a positive, yet minor effect, canceled for
the two longest timeouts of 1500 and 1800 sec. The reason
might be that, with the time, it becomes difficult for mutation
combination to improve the best model (while, in its original
usage in QuickSampler, it is sufficient to find any model).

S1 S2 #Inst S1 outperformed S2 {by at least 2 times}
Polosat TT 127 {1}
TT Polosat 42 {1}
NoAdapt TT 117 {4}
TT NoAdapt 69 {19}

TABLE III: A pairwise solver comparison on the 297 MSE19
instances for the timeout of 300 seconds. Every row shows the
number of instances on which the solver S1 achieves a better quality
than the solver S2, followed, in braces, by the number of instances
on which the score of S1 is at least 2 times better than that of S2.
TT stands for TT-Open-WBO-Inc.

Metric Minimum Maximum Average Std. Dev.
Variables in CNF 5,580 1,144,731 212,416 217,472
Clauses in CNF 22,155 4,309,253 865,231 912,927

TABLE IV: Placement Problems Statistics

B. Polosat in PLC

We compared the baseline PLC placement tool vs. PLC
enhanced by Polosat, on 156 proprietary industrial designs
of various sizes and different complexity. Some statistics
about the resulting CNF formulas are shown in Table IV.
Unfortunately, further details about the input problems are IP-
restricted.

Similarly to the MSE19 experiments, we ran the solvers for
30 minutes and measured the average score at the following
intervals: 60, 180, 300, 600, 900, 1200, 1500 and 1800
seconds, where the absolute score is the score achieved by
the default PLC in 24 hours.

Fig. 3 and Fig. 4 show the results. Polosat improves the
average score for every considered timeout. In fact, for the
timeout of 1800 seconds, Polosat improves the score for
77.5% of the instances and deteriorates the score only for
15.3% of the instances. In addition, Fig. 4 demonstrates that
Polosat’s score is higher than 1 for a significant portion of
the instances (38.5%), which means that, on these instances,
Polosat obtains a better placement in 30 minutes than the
default PLC in 24 hours.

All in all, Polosat is an enabler for successfully produc-
tizing PLC.

VI. CONCLUSION

We formulated the problem of generic optimization in
SAT (OptSAT) and proposed an efficient anytime and incre-
mental incomplete OptSAT algorithm, Polosat. We inte-
grated Polosat into the state-of-the-art open-source any-
time MaxSAT solver TT-Open-WBO-Inc, which won both
of the weighted, incomplete tracks of MaxSAT Evaluation
2019, and demonstrated that Polosat significantly im-
proves TT-Open-WBO-Inc’s performance. Furthermore, we
showed that integrating Polosat into our industrial place-
ment tool is highly advantageous.

Our encouraging empirical results lead us to believe that
integrating Polosat into other optimization flows as well
as further studying both the theoretical and the empirical
aspects of OptSAT is a promising long-term research direction,
expected to extend the range of optimization problems that can
be efficiently solved with SAT.
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Fig. 2: MSE19 Benchmarks: Comparing Solvers Over Time

Fig. 3: Industrial Placement Benchmarks: Polosat Impact over Time

Fig. 4: Industrial Placement Benchmarks: Polosat vs. Default for 1800 Sec. Timeout
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Abstract—Current state of the art for reasoning about
quantifier-free bit-vector constraints in Satisfiability Modulo
Theories (SMT) is a technique called bit-blasting, an eager
translation into propositional logic (SAT). While efficient in
practice, it may not scale for large bit-widths when the input
size cannot be sufficiently reduced with preprocessing techniques.
A recent propagation-based local search procedure was shown
to be effective on hard satisfiable instances, in particular in
combination with bit-blasting in a sequential portfolio setting.
However, a major weakness of this approach is its obliviousness
to bits that can be simplified to constant values. In this paper,
we generalize propagation-based local search with respect to
such constant bits to ternary values. We further extend the
procedure to handle more bit-vector operators, and introduce
heuristics for more precise inverse value computation via bound
tightening for inequality constraints. We provide an extensive
experimental evaluation and show that the presented techniques
yield a considerable improvement in performance.

I. INTRODUCTION

Satisfiability Modulo Theories (SMT) solvers for the theory
of fixed-width bit-vectors provide bit-precise reasoning for
many applications in hardware and software verification. In
particular the quantifier-free fragment of this theory has re-
ceived a lot of interest in recent years, as witnessed by the high
and increasing number of participants in the corresponding
divisions of the annual SMT competition [35]. Current state of
the art for solving quantifier-free bit-vector formulas in SMT
is a technique called bit-blasting, where the input formula is
first simplified and then eagerly translated into propositional
logic (SAT). While efficient in practice, it does not necessarily
scale for large bit-widths, in particular if the size of the input
cannot be sufficiently reduced during preprocessing.

In [24], we attacked the problem from a different an-
gle and proposed a complete propagation-based local search
procedure for quantifier-free bit-vector formulas. It is based
on propagating target values from the outputs to the inputs,
does not require bit-blasting, brute-force randomization or
restarts, and lifts the concept of backtracing of Automatic
Test Pattern Generation (ATPG) [19] to the word-level. Even
though it only allows to determine satisfiability (as expected
for local search), it is particularly effective in a sequential
portfolio [36] combination with bit-blasting. One of its main
weaknesses, however, is its obliviousness to bits that can
be simplified to constant values [22]. For example, consider

This work was supported in part by DARPA (award no. FA8650-18-2-7861)
and ONR (award no. N68335-17-C-0558).

a formula (1110 & x) 6≈ 0000, where the left operand
of the bitwise and (&) operation forces its least significant
bit (LSB) to constant 0. The procedure in [24] is oblivious
to this information and may select invalid target values for
(1110 & x) where the LSB is set to 1. Propagating such
values that are invalid due to constant bits and can therefore
never be assumed may introduce significant overhead.

In this paper, we generalize the propagation-based local
search approach presented in [24] with respect to constant bits
to ternary values. We extract constant bit information from the
bit-level circuit representation of the input formula, use ternary
bit-vectors to represent this information and propagate target
values with respect to these constant bits. This allows us to
propagate more precise target values since we can guarantee
that we only propagate target values that can actually be
assumed. We show in our experiments that this considerably
reduces redundant work and improves performance.

Down-propagating values as in [24] utilizes inverse value
(and its less restrictive variant, consistent value) computation.
Computing inverse values is, however, not always possible.
For example, finding an inverse value for x in multiplication
x · s such that it produces value t given value s, i.e., x · s ≈ t,
is only possible if the value of t has at least as many right-
most zeroes in its binary representation as the value of s,
i.e., if the invertibility condition (s | −s) & t ≈ t is true.
A consistent value for x, on the other hand, is any value that
produces t disregarding value s, i.e., there exists a value v such
that x · v ≈ t. Finding consistent values for x is in general
always possible. When considering constant bits in x, however,
inverse and consistent value computation is further restricted,
and the latter becomes conditional. In [24] we defined in-
vertibility conditions without considering constant bits in x
in pseudocode, which we then formalized and verified in [26].
In this paper, we provide and verify invertibility conditions
and consistency conditions with respect to constant bits in the
operand to solve for. We further extend the set of natively
supported bit-vector operators, and introduce heuristics for
more precise inverse value computation via bound tightening
for inequality constraints. To summarize, this paper makes the
following contributions.
• We introduce the notion of consistency condition. We

further derive and present invertibility conditions and
consistency conditions with respect to constant bits for
a representative set of bit-vector operators that allows us
to model all bit-vector operators defined in SMT-LIB [4].
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• We verify the correctness of all presented conditions up
to a certain bit-width.

• We present a (probabilistically approximately) com-
plete [17] generalization of the propagation-based local
search procedure in [24] with respect to constant bits.

• We extend the set of bit-vector operators from [24] with
bit-wise xor, signed less than, sign extension and arith-
metic right shift, and provide invertibility and consistency
conditions modulo constant bits for all of them.

• We introduce two heuristics for inequality predicates
that allow us to infer more precise inverse values based
on tightening bounds with respect to its operands and
satisfied top-level inequalities.

Related Work. In previous years, a new generation of SAT
solvers implementing Stochastic Local Search (SLS) achieved
remarkable results in SAT competitions [2, 3, 6]. Hybrid
combinations of SLS and CDCL [30] SAT procedures aim
to get more than the best out of both worlds by tightly
integrating SLS strategies into the CDCL approach, with
promising results in last year’s SAT race [8, 31, 33]. Attempts
to utilize SLS techniques in SMT by integrating an SLS
SAT solver into the DPLL(T)-framework of the SMT solver
MathSAT [12], on the other hand, were not able to compete
with bit-blasting [16]. In [15], Fröhlich et al. lifted stochas-
tic local search (SLS) from the bit-level to the word-level
without bit-blasting, with promising results. Their approach,
however, does not fully exploit the word-level structure but
rather simulates bit-level local search by focusing on single
bit flips. In [25], we proposed a propagation-based extension
of [15], which introduced an additional strategy to propagate
assignments from the outputs to the inputs. Our propagation-
based local search approach in [24] expands on this idea and
does not employ any SLS strategies. Invertibility conditions
have been formalized, verified and utilized for quantified bit-
vector formulas to generate symbolic instantiations in [26].
Recently, in [10] the concept of invertibility conditions has
been lifted to the theory of floating-points by means of Syntax-
Guided Synthesis (SyGuS) [1].

II. PRELIMINARIES

We assume the usual notions and terminology of many-
sorted first-order logic with equality (denoted by ≈) (see, e.g.,
[14, 20]). We will focus on the quantifier-free fragment of
the theory of fixed-size bit-vectors TBV = (ΣBV , IBV ) as
defined by the SMT-LIB 2 standard [4]. The signature ΣBV
includes a unique sort σ[w] for each bit-width w, function
symbols overloaded for every σ[w], all bit-vector constants
of sort σ[w] for each w, and a sort Bool and the Boolean
constants > (true) and ⊥ (false). We further assume that ΣBV
includes the Boolean operators ¬ (not) and ∧ (and). Without
loss of generality, we will interpret Boolean expressions as
bit-vector expressions of size one. The non-empty class of
ΣBV -interpretations IBV (the models of TBV ) interpret sort
and functions symbols as specified in SMT-LIB 2.
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Fig. 1: Basic idea of propagation-based local search.

We denote a ΣBV -term (or bit-vector term) a of width w
as a[w] when we want to specify its bit-width explicitly. The
width of a bit-vector sort or term is given by the function κ,
e.g., κ(σ[w]) = w and κ(t[w]) = w. We will omit the bit-width
from the notation when it is clear from the context.

We represent a bit-vector constant c[w] as a bit-string of 0s
and 1s, with the most significant bit (MSB) as the left-most
bit c[msb] at index msb = w − 1, and the least significant
bit (LSB) as the right-most bit c[lsb] at index lsb = 0. We
use smax[w] or smin[w] for the maximum or minimum signed
value of width w, e.g., smax[4] = 0111 and smin[4] = 1000,
and ones[w] for the maximum unsigned value, e.g., ones[4]
= 1111. We refer to the bit at index i of a bit-vector t as
t[i] and use ctz (t) to denote the count of trailing zeros of a
bit-vector t. Similarly, clz (t) and clo(t) denote the count of
leading zeros and leading ones in t. When interpreting t as
signed value, we use cnt(t) to denote clo(t) when t[msb] ≈ 1,
and clz (t) when t[msb] ≈ 0. We further use function min to
determine the unsigned minimum value of two bit-vectors, and
functions addo and mulo, which return true if the addition and
multiplication of two bit-vectors overflows, respectively.

Without loss of generality, for a given input formula we
consider a restricted set of bit-vector function symbols (or bit-
vector operators) as listed in Table I. The selection in this set
is arbitrary but complete in the sense that it suffices to express
all bit-vector operators defined in SMT-LIB 2. This means that
our approach is not restricted to this particular set of operators
and can be lifted to any other set of bit-vector operators.

Note that we extend the set of operators considered in [24]
with <s, ⊕, >>a and sign extension. Further, we sometimes
use the logical connectives ∨ (or), ⇒ (implication) and ⇔
(if and only if), and the bit-vector operators 6≈ (disequality),
| (bit-wise or) and (un)signed inequalities ≤u, ≥u, ≤s and ≥s
as shorthand when convenient.

III. PROPAGATION-BASED LOCAL SEARCH

The basic idea of the propagation-based local search pro-
cedure for quantifier-free bit-vector constraints as presented
in [24] is illustrated in Figure 1 and lifts the concept of
backtracing from ATPG [19] from the bit-level to the word-
level. The procedure iteratively moves from a non-satisfying
to a satisfying assignment by propagating target values from
the outputs towards the inputs as follows.

Given a quantifier-free bit-vector formula as a directed
acyclic graph (DAG) with a single root node r. We start
from a random initial assignment to the inputs that does
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not satisfy r, i.e., root r evaluates to 0, and assume that its
target value is 1 (this desired transition from actual to target
value is indicated in Figure 1 by 0  1). Starting from the
root, this target value is then propagated along a single path
towards an input, and this process is repeated until the root is
satisfied, i.e., a solution is found. Down-propagation of target
values is performed as a down-traversal where each traversal
step represents a propagation step. In each propagation step,
we first select the propagation path, i.e., the operand of the
current node (representing a bit-vector operation) for which
we want to compute the next target value. After selecting the
propagation path, we then select the propagation value (the
new target value) for the selected operand.

Propagation path and value selection are the two main
sources of non-determinism of this procedure. Paths are non-
deterministically selected with a preference to essential inputs.
The concept of essential inputs was introduced in [24] to
lift the notion of controlling inputs from the bit-level to the
word-level, e.g., for 00 · 01 ≈ t with target value t = 10,
the left operand of the multiplication is essential since t can
not be assumed without changing its value. Target values are
determined via inverse and (its less strict variant) consistent
value computation, and non-deterministically chosen if multi-
ple possible values exist. An inverse value for an operand x
allows to immediately produce a given target value assuming
that the current value of the other operand (if any) does not
change, e.g., for x · 10 ≈ t with target value t = 10, both 01
and 11 are inverse values for x. A consistent value for x, on
the other hand, allows to produce a given target value after
changing the value of the other operand (if necessary), e.g.,
for x · 00 ≈ t with target value t = 10, any value greater
than zero is a consistent value for x. Notice that for every bit-
vector literal x � s ≈ t (with � a bit-vector operator as listed
in Table I), any inverse value is also a consistent value for x.

When down-propagating values, inverse value computation
can only be applied if such an inverse value exists. Computing
a consistent value, on the other hand, is always possible (if
constant bits are not considered, as in [24]). Inverse value
computation is usually preferred over consistent value com-
putation if possible. If no inverse value exists, the procedure
falls back to consistent value computation. However, even if
an inverse value exists, it is necessary to non-deterministically
select between inverse and consistent value computation in
order to guarantee completeness, as shown in [24].

Propagation-based local search as in [24] is not able to
determine unsatisfiability, as expected for local search. How-
ever, when determining satisfiability it is probabilistically
approximately complete (PAC) [17], i.e., it is guaranteed to
(eventually) find a solution if there exists one.

IV. PROPAGATING CONSTANT BITS

In this section, we generalize the propagation-based local
search procedure as presented in [24] with respect to constant
bits to ternary values. Figure 2 describes the generalized algo-
rithm in pseudocode, with all parts of the original algorithm (as
given in [24]) that are affected by the generalization indicated

Symbol SMT-LIB Syntax Sort

≈, <u, <s =, bvult, bvslt σ[w] × σ[w] → Bool

∼ bvnot σ[w] → σ[w]

&, ⊕ bvand, bvxor σ[w] × σ[w] → σ[w]

<<, >>, >>a bvshl, bvlshr, bvashr σ[w] × σ[w] → σ[w]

+, · bvadd, bvmul σ[w] × σ[w] → σ[w]

mod, ÷ bvurem, bvudiv σ[w] × σ[w] → σ[w]

◦ concat σ[w] × σ[m] → σ[w+m]

〈m〉 sign extend σ[w] → σ[m+w]

[u : l] extract ( l ≤ u < w) σ[w] → σ[u−l+1]

TABLE I: Set of considered bit-vector operators.

function sat(r,At,Ab):
1 while Ab(r) 6≈ 1:
2 n = r, t = 1
3 while ¬isLeaf (n):
4 nx = select(n, t,Ab)
5 if ¬isConsistent(n, nx, t,At):
6 break // conflict
7 v = value(n, nx, t,At,Ab)
8 t = v, n = nx

9 if ¬const(n):
10 Ab = Ab{n 7→ t}
11 return true

Fig. 2: The propagation-based local search algorithm gener-
alized with respect to constant bits to ternary values. Parts
affected and lifted are indicated in blue.

in blue (with boxed line numbers). In the following, we first
introduce notation, and then describe how to lift all relevant
parts of the procedure to ternary values.

Without loss of generality and as in [24], we assume that a
quantifier-free bit-vector formula φ is represented as a single-
rooted DAG with root r of bit-width one. Its set of nodes N
includes r and is partitioned into a set of bit-vector operations
and a set of leaf nodes, the latter consisting of bit-vector
constants and bit-vector variables (the primary inputs).

In the following, given a bit-vector literal �x ≈ t or x�s ≈ t
(with � a bit-vector operator as listed in Table I), we will use t
for the target value of the bit-vector operation, x to identify
the operand we compute a value for, and s for the value of
the other operand (if any).

We define a binary bit-vector as introduced above, and a
ternary bit-vector x as a vector of three-valued bits where
each bit can assume the values true (1), false (0) and unde-
termined (•). We either use a string representation or a range-
based representation for x, where the latter is a pair of binary
bit-vectors 〈xlo, xhi〉 that determine the lower and upper bound
of x, respectively. If x[i] = •, then xlo[i] = 0 and xhi[i] = 1,
and x[i] otherwise. For example, a ternary bit-vector of size 4
with a true MSB and all other bits undetermined is represented
as 1••• when represented as a string, and as the pair of two
binary bit-vectors 〈1000, 1111〉 when represented as a bit-
vector range. In the following, we only consider valid range
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representations for ternary bit-vectors, i.e., pairs 〈xlo, xhi〉 for
which the validity check (∼xlo | xhi ≈ ones) from [21] evalu-
ates to true. For example, a range 〈1100, 1000〉 is invalid since
xlo[2] >u x

hi[2], and thus ∼1100 | 1000 ≈ 1011 6≈ 1111. We
use function valid(xlo, xhi) to check if x is valid.

In the following, we will use x for ternary bit-vectors, and
s, t and v for binary bit-vectors. Further, to simplify notation,
we will frequently use bit-vector literal patterns �x ≈ t and
x�s ≈ t (s�x ≈ t) for unary and binary literals, where we mix
ternary and binary bit-vectors. We use x in these patterns as
a placeholder, which represents constant bits in the operand
we want to compute a binary bit-vector value for. Further,
we sometimes give definitions only for one binary case (e.g.,
x � s ≈ t) when the other case is treated symmetrically.

We define assignment Ab : N 7→ {0, 1}+ of formula φ as a
complete function that maps nodes n ∈ N to binary bit-vector
values. We use Ab{n 7→ t} to update node n to map to the new
binary bit-vector value t, and assume that such an update prop-
agates with respect to the semantics of the operators listed in
Table I, e.g., Ab(nx+ns) = Ab(nx)+Ab(ns) for nx, ns ∈ N .
We further define assignment At : N 7→ {0, 1, •}+ as a com-
plete function that represents constant bits and maps nodes
n ∈ N to ternary bit-vectors. Assignment At is precomputed
as described in Section IV-B.

Definition 1 (Matching Constant Bits). Given a ternary bit-
vector x represented as a pair of binary bit-vectors 〈xlo, xhi〉.
A binary bit-vector v matches the constant bits in x if and
only if (xhi & v ≈ v) ∧ (xlo | v ≈ v).

We use function mcb to check for matching constant
bits, i.e., mcb(x, v) (alternatively, mcb(xlo, xhi, v)) is true if v
matches the constant bits in x.

Given a bit-vector operation �nx or nx � ns (ns � nx) with
operand ns ∈ N , operand nx ∈ N the operand to solve for,
and � an operator as defined in Table I. As a first step, we lift
the notion of random, inverse and consistent values from [24]
to consider constant bits in nx as follows.

Definition 2 (Random Value). A binary bit-vector v is a
random value for a ternary bit-vector x = At(nx) if κ(v) ≈
κ(x) ∧mcb(x, v).

Definition 3 (Consistent Value). Given a bit-vector literal
�x ≈ t or x � s ≈ t, with x = At(nx) a ternary bit-vector
representing constant bits in nx, and s = Ab(ns) and t binary
bit-vectors. Given a target value t, a random value v is a
consistent value for x if (there exists a binary bit-vector value
s′ such that) �v ≈ t or v � s′ ≈ t evaluates to >.

Definition 4 (Inverse Value). Given a bit-vector literal and x,
s and t as above. Given a target value t (and a value s), a
consistent value v is called an inverse value for x if �v ≈ t
or v � s ≈ t evaluates to >.

As an example, consider a ternary bit-vector x[2] = 1• with
xlo = 10 and xhi = 11. For x · 11 ≈ 01, v = 11 is an inverse
value for x. For x · 00 ≈ 01, there exists no inverse value,
but v = 11 is a consistent value for x since 11 · s′ ≈ 01 with

s′ = 11. A random value for x that is neither an inverse value
nor a consistent value for both examples is v = 10.

Given a binary bit-vector operation n = nx�ns with n ∈ N
and � an operator as defined in Table I. We lift the notion of
essential input of n from [24] to consider constant bits in its
operands nx, ns ∈ N as follows.

Definition 5 (Essential Input). Let nx be an operand of a
node n ∈ N with n = nx �ns and Ab(n) = Ab(nx)�Ab(ns).
Further, let t be the target value of n. We say that nx is an
essential input with respect to t if there exists no value v for ns
with respect to constant bits in ns such that Ab(nx) � v ≈ t.

For example, consider inequality nx <u ns with target value
t = 1, Ab(nx) = 1011, Ab(ns) = 1000 and At(ns) = 100•.
When only considering the current assignment of nx and ns in
Ab, neither of the operands is essential—operand nx would be
if Ab(nx) = ones[4], and ns if Ab(ns) = 0[4]. However, con-
sidering constant bits in ns, operand nx is essential since ns
can not assume a value greater than Ab(nx). More generally,
for any nx <u ns with At(nx) = 〈xlo, xhi〉 and At(ns) =
〈slo, shi〉, nx is essential if Ab(nx) ≈ ones∨Ab(nx) ≥u shi,
and ns is essential if Ab(ns) ≈ 0 ∨ xlo ≥u Ab(ns).

As an interesting general observation, an operand nx is es-
sential if there exists no inverse value for the other operand ns
given Ab(nx), At(ns) and target value t. Operands to unary
bit-vector operations are always essential.

Algorithm Overview. Function sat in Figure 2 determines
the satisfiability of a given input formula, and takes as input
root r, an initial assignment Ab, and a precomputed fixed
assignment At. Assignment Ab is updated in each iteration
of the outer loop (lines 1–8), whereas At is determined
before function sat is called. Each iteration of the outer loop
represents a move, i.e., the down propagation of target value
t = 1 for root r along a single path until a primary input
is reached, which then triggers an update of assignment Ab
(lines 9–10) where input n is mapped to the new value t. Each
iteration of the inner loop (lines 3–8) represents a single down
propagation (a propagation step), which mainly consists of two
phases: path selection (line 4) and value selection (line 7).

Path Selection. In each propagation step, on line 4, we first
select the next leg of the propagation path as follows. For a
bit-vector operation n, function select first determines which
of its operands are essential with respect to target value t and
constant bits in the other operand (if any). If all or none of the
operands are essential, we non-deterministically select one of
them. Else, the essential operand is selected.

To determine if an operand nx is essential, we check if it
is possible to find an inverse value for the other operand ns
given t, Ab(nx) and At(ns), i.e., we check if the corre-
sponding invertibility condition when solved for ns is false.
For example, for nx + ns with t = 11, Ab(nx) = 10 and
At(ns) = •0, nx is essential since mcb(•0, 11− 10) is false.

Value Selection. After selecting the path, we then propagate t
as target value for n to its selected operand nx by computing
an inverse or consistent value for nx. An inverse value,
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however, does not always exist, even when constant bits in
the selected operand are not considered. And while it is
always possible to find a consistent value when constant bits
are not considered, this is not the case when they are. We
therefore generalize the notion of invertibility conditions [24,
26] and introduce the new notion of consistency conditions to
determine if there exists a value for nx with respect to At(nx)
such that target value t can be assumed. These conditions are
utilized when selecting the propagation value as follows.

In each propagation step in Figure 2, before selecting a value
with respect to constant bits for operand nx (line 7), function
isConsistent tests the corresponding consistency condition for
bit-vector operation n and its operand nx with respect to target
value t and x = At(nx) (line 5). If this determines that no
consistent value exists, the current target value for n can never
be assumed (notice that every inverse value is also consistent)
and we stop the current down propagation by breaking out of
the inner loop to restart from the root (line 6). Note that this
is in contrast to the original procedure, where it was always
possible to find a consistent value for nx.

If the consistency condition is true, in function value on
line 5, we select a consistent value if no inverse value exists,
i.e., if the invertibility condition for n with respect to nx, t,
s = Ab(ns) (if any other operand ns) and x = At(nx) is
false. Else, we non-deterministically choose between inverse
and consistent values (with a preference for inverse values).
As shown in [24], the latter non-deterministic choice between
inverse and consistent values (as opposed to always choosing
inverse values if possible) is necessary for the sake of com-
pleteness. Note that if multiple possible inverse or consistent
values exist, we non-deterministically select one of them.

Invertibility Conditions. Given target value t for bit-vector
operation n and the current assignment s = Ab(ns) of its
operand other than nx (if any), computing an inverse value
is in general not always possible, even when not considering
constant bits in nx. As in [26], we refer to the exact condition
under which an inverse value can be computed for x given s
and t as invertibility condition (IC ), e.g., for bit-vector literal
x � s ≈ t we have that ∀s, t. (IC (s, t) ⇔ ∃y. (y � s ≈ t)).
We lift this to consider constant bits in nx by interpreting x
as a ternary bit-vector x = At(nx), and yield generalized
invertibility conditions for all operators in Table I as given in
Tables II–III. Thus, for literal x � s ≈ t we now have that

∀x, s, t. (IC (x, s, t)⇔ ∃y. (y � s ≈ t ∧mcb(x, y))). (1)

The unary case is defined analogously. Note that invertibility
conditions without considering constant bits in nx were first
given in pseudocode in [24], and formalized and verified for
up to 65 bits in [26]. In Tables II and III, we indicate the
part of an invertibility condition that is the condition without
considering constant bits in nx in blue. For cases that do not
include such a condition, this condition is >. For example, for
x·s ≈ t, the blue part of the invertibility condition ensures that
ctz (s) ≤u ctz (t), and the remainder determines if possible
solutions match constant bits in x.

Consistency Conditions. Computing a consistent value when
not considering constant bits is always possible, and thus in
the procedure in [24], it was never possible to encounter a case
where no inverse and no consistent value exists. In contrast,
when considering constant bits in nx, it is not always possible
to determine a consistent value for nx, e.g., for •0·s ≈ 01 there
is no value that x can assume such that t can be produced for
some s. We therefore introduce the new notion of consistency
condition when considering constant bits in nx as follows.

Definition 6. (Consistency Condition) Given a bit-vector
literal �x ≈ t or x � s ≈ t, we refer to the exact condition
under which a consistent value can be computed for x given t
as consistency condition (CC ).

For unary operations, any invertibility condition is also a
consistency condition. For x � s ≈ t, we have that

∀x, t. (CC (x, t)⇔ ∃y, s. (y � s ≈ t ∧mcb(x, y))) (2)

and the other binary case is defined analogously. The consis-
tency conditions with respect to constant bits in x for bit-vector
operators in Table I are given in Tables IV and V.

Synthesizing Conditions. Previous work utilized SyGuS tech-
niques to synthesize invertibility conditions for bit-vector [26]
and floating-point [10] literals. For this work, we adopted the
SyGuS approach from [26] to find invertibility and consistency
conditions with respect to constant bits. We encoded Equa-
tions 1 and 2 as SyGuS problems to synthesize functions IC
and CC and defined a general grammar that includes all bit-
vector operators from Table I (excl. concatenation and sign
extension), common logical connectives and the additional
operators mcb, clz , ctz , and clo. For the invertibility condition
problems, we further added the corresponding condition that
must hold without considering constant bits (indicated in blue
in Tables II–III) as pre-condition. In total, we generated 30
(15 invertibility, 15 consistency) SyGuS problems and used the
SyGuS solver in CVC4 [29] with a time limit of 7200 seconds
and 8GB memory limit. Overall, CVC4 was able to synthesize
10 conditions (3 invertibility and 7 consistency conditions).
Unfortunately, all three invertibility conditions were trivial
and we were not successful in synthesizing any complex
invertibility conditions. Of the seven consistency conditions,
on the other hand, three were significantly simpler than the
manually crafted ones (marked with F in Table V).

Completeness (PAC). As in [24], the two main sources
of non-determinism of our procedure are path and value
selection when down-propagating target values. However, we
now aim to only propagate target values that can actually
be assumed, i.e., mcb(At(nx),Ab(nx)) = >. Path selection
still implements the same strategy as in [24], i.e., essential
inputs are selected over non-essential inputs. The notion of
essential input has been lifted to constant bits, however, this
only excludes values that can never be assumed. Generalizing
value selection to ternary values, as intended, significantly
changes the behavior of the algorithm compared to [24]. Since
we compute consistent and inverse values with respect to
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(x ≈ s) ≈ t (t ⇒ mcb(x, s)) ∧ (∼t ⇒ (xhi 6≈ xlo ∨ xhi 6≈ s))

(x <u s) ≈ t (t ⇒ s 6≈ 0 ∧ xlo <u s) ∧ (∼t ⇒ (s ≥u x) ≈ t)
(s <u x) ≈ t (t ⇒ s 6≈ ones ∧ xhi >u s) ∧ (∼t ⇒ xlo ≤u s)

(x <s s) ≈ t (t ⇒ (s 6≈ smin ∧ ((x[msb] ≈ 0 ∧ xlo <s s) ∨
(x[msb] ∈ {1, •} ∧ (smin | xlo) <s s)))) ∧

(∼t ⇒ (((x[msb] ≈ 1 ∧ xhi ≥s s) ∨
(x[msb] ∈ {0, •} ∧ (smax & xhi) ≥s s))))

(s <s x) ≈ t (t ⇒ (s 6≈ smax ∧ ((x[msb] ≈ 1 ∧ s <s xhi) ∨
(x[msb] ∈ {0, •} ∧ s <s (smax & xhi))))) ∧

(∼t ⇒ (((x[msb] ≈ 0 ∧ s ≥s xlo) ∨
(x[msb] ∈ {1, •} ∧ s ≥s (smin | xlo)))))

TABLE II: Invertibility conditions for bit-vector predicates
modulo constant bits in x.

constant bits and break on conflict when no consistent value
exists, it is guaranteed that every target value that is propagated
down all the way to the primary inputs can be assumed with
respect to constant bits in the inputs. As a consequence, we
only exclude target values that can never be part of a satisfying
assignment of the input formula. Our procedure is thus still
probabilistically approximately complete (PAC), following the
same line of argument as in [24].

A. Verifying Invertibility and Consistency Conditions

The invertibility and consistency conditions in Tables II–V
are utilized in our procedure to determine whether a given
target value can be down-propagated. Incorrect conditions
will not result in unsoundness of the procedure, but may
affect completeness (PAC). To verify the correctness of these
conditions we check for each literal and bit-width up to 65
if the negation of the corresponding quantified formula as
defined above is unsatisfiable. For unary literals, consistency
conditions are also invertibility conditions and we only have
to check the unsatisfiability of

∃xlo, xhi, t. valid(xlo, xhi) ∧
¬(IC (x, t)⇔ ∃y. (�y ≈ t ∧mcb(xlo, xhi, y))).

Note that we do not test the conditions for extracts since they
can essentially be reduced to the checks for equality, which
makes tests for all combinations of upper and lower indices
redundant. Further, in order to keep the number of queries
manageable, we only check for signed extensions of up to 4
bits. For binary literals, we check each of the formulas

∃xlo, xhi, s, t. valid(xlo, xhi) ∧
¬(IC (x, s, t)⇔ ∃y. (y � s ≈ t ∧mcb(xlo, xhi, y)))

∃xlo, xhi, t. valid(xlo, xhi) ∧
¬(CC (x, t)⇔ ∃y, s. (y � s ≈ t ∧mcb(xlo, xhi, y)))

The other binary case is defined analogously. Note that for
the sake of simplicity, we only use operands of the same bit-
width (from 1 to 65) for concatenation. Concatenation can
again be seen as a special case of equality, i.e., x ◦ s ≈ t can
be interpreted as x◦ s ≈ tx ◦ ts, and the check can be reduced
to checking the condition IC ((x ≈ tx) ≈ 1) ∧ s ≈ ts. Hence,

x+ s ≈ t mcb(x, t− s)

x · s ≈ t (−s | s) & t ≈ t ∧
(s ≈ 0 ∨ ((odd(s) ⇒ mcb(x, t · s−1)) ∧
(¬odd(s) ⇒ mcb(x<<c, y <<c))))

with c = ctz (s) and y = (t>> c) · (s>>c)−1

x mod s ≈ t ∼(−s) ≥u t ∧
((s ≈ 0 ∨ t ≈ ones) ⇒ mcb(x, t)) ∧
((s 6≈ 0 ∧ t 6≈ ones) ⇒ ∃y. (mcb(x, s · y + t) ∧
¬mulo(s, y) ∧ ¬addo(s · y, t)))

s mod x ≈ t (t+ t− s) & s ≥u t ∧
(s ≈ t ⇒ (xlo ≈ 0 ∨ xhi >u t)) ∧
(s 6≈ t ⇒ ∃y. (mcb(x, y) ∧ y >u t ∧

(s− t) mod y ≈ 0))

x÷ s ≈ t (s · t)÷ s ≈ t ∧ (t ≈ 0 ⇒ xlo <u s) ∧
((t 6≈ 0 ∧ s 6≈ 0) ⇒ ∃y. (mcb(x, y) ∧

(¬c ⇒ y <u s · t+ 1) ∧ (c ⇒ y ≤u ones)))
with c = mulo(s, t+ 1) ∨ addo(t, 1)

s÷ x ≈ t s÷ (s÷ t) ≈ t ∧ (t 6≈ ones ⇒ xhi >u 0) ∧
((s 6≈ 0 ∨ t 6≈ 0) ⇒ (s÷ xhi ≤u t) ∧
∃y. (mcb(x, y) ∧ (t ≈ ones ⇒ y ≥u 0 ∧ y ≤u s÷ t)∧

(t 6≈ ones ⇒ y >u t+ 1 ∧ y ≤u s÷ t))))

x & s ≈ t t & s ≈ t ∧ ((s & xhi) & c) ≈ (t & c)

with c = ∼(xlo ⊕ xhi)

x⊕ s ≈ t mcb(x, s⊕ t)

x<<s ≈ t (t>>s)<<s ≈ t ∧mcb(x<<s, t)

s<<x ≈ t ctz (s) ≤u ctz (t) ∧ (t 6≈ 0 ⇒ s<<c ≈ t) ∧
(t ≈ 0 ⇒ (xhi ≥u c ∨ s ≈ 0)) ∧ (t 6≈ 0 ⇒ mcb(x, c))

with c = ctz (t)− ctz (s)

x>>s ≈ t (t<<s)>>s ≈ t ∧mcb(x>>s, t)

s>>x ≈ t clz (s) ≤u clz (t) ∧ (t 6≈ 0 ⇒ s>>c ≈ t) ∧
(t ≈ 0 ⇒ (xhi ≥u c ∨ s ≈ 0)) ∧ (t 6≈ 0 ⇒ mcb(x, c))

with c = clz (t)− clz (s)

x>>a s ≈ t (s <u κ(s) ⇒ ((t<<s)>>a s ≈ t)) ∧
(s ≥u κ(s) ⇒ (t ≈ ones ∨ t ≈ 0)) ∧mcb(x>>a s, t)

s>>a x ≈ t s[msb] ≈ 0 ⇒ IC (s>>x = t) ∧
s[msb] ≈ 1 ⇒ IC (∼s>>x = ∼t)

x ◦ s ≈ t s ≈ ts ∧mcb(x, tx)

with tx = t[msb : κ(s)] and ts = t[κ(s)− 1 : lsb]

s ◦ x ≈ t s ≈ ts ∧mcb(x, tx)

with ts = t[msb : κ(s)] and tx = t[κ(s)− 1 : lsb]

x〈n〉 ≈ t (tn ≈ 0 ∨ tn ≈ ones) ∧mcb(x, tx)

with tn = t[msb : κ(x)− 1] and tx = t[κ(x)− 1 : lsb]

x[u : l] ≈ t mcb(x[u : l], t)

TABLE III: Invertibility conditions for non-predicate bit-
vector operators modulo constant bits in x.

(x ≈ s) ≈ t >

(x <u s) ≈ t ∼t ∨ xlo 6≈ ones

(s <u x) ≈ t ∼t ∨ xhi 6≈ 0

(x <s s) ≈ t ∼t ∨ (xlo ≈ xhi ⇒ xlo 6≈ smax)

(s <s x) ≈ t ∼t ∨ (xlo ≈ xhi ⇒ xlo 6≈ smin)

TABLE IV: Consistency conditions for bit-vector predicates
modulo constant bits in x.
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x+ s ≈ t >

x · s ≈ t (t 6≈ 0 ⇒ xhi 6≈ 0) ∧ (odd(t) ⇒ xhi[lsb] 6≈ 0) ∧
(¬odd(t) ⇒ ∃y. (mcb(x, y) ∧ ctz (t) ≥u ctz (y)))

x mod s ≈ t (t ≈ ones ⇒ mcb(x, ones)) ∧
(t 6≈ ones ⇒ (t >u (ones− t) ⇒ mcb(x, t)) ∧
(t ≤u (ones− t) ⇒ (mcb(x, t) ∨
∃y. (mcb(x, y) ∧ y >u 2 · t))))

F s mod x ≈ t (xlo>>(t÷ xhi)) ≈ xlo

x÷ s ≈ t (t 6≈ ones ⇒ xhi ≥u t) ∧ (t ≈ 0 ⇒ xlo 6≈ ones) ∧
((t 6≈ 0 ∧ t 6≈ ones ∧ t 6≈ 1 ∧ ¬mcb(x, t)) ⇒
(¬mulo(2, t) ∧ ∃y, o. (mcb(x, y · t+ o) ∧ y ≥u 1 ∧

o ≤u c ∧ ¬mulo(y, t) ∧ ¬addo(y · t, o))))
with c = min(y − 1, xhi − y · t)

s÷ x ≈ t (t ≈ ones ⇒ (mcb(x, 0) ∨mcb(x, 1))) ∧
(t 6≈ ones ⇒ (¬mulo(xlo, t) ∧
∃y. (y >u 0 ∧mcb(x, y) ∧ ¬mulo(y, t))))

x & s ≈ t t & xhi ≈ t

x⊕ s ≈ t >

x<<s ≈ t ∃y. (y ≤u ctz (t) ∧mcb(x<<y, t))

F s<<x ≈ t ((ones<<xlo) & t) ≈ t

x>>s ≈ t ∃y. (y ≤u clz (t) ∧mcb(x>>y, t))

F s>>x ≈ t ((ones>>xlo) & t) ≈ t

x>>a s ≈ t (t ≈ 0 ∨ t ≈ ones) ⇒
∃y. (y[msb] ≈ t[msb] ∧mcb(x, y)) ∧

(t 6≈ 0 ∧ t 6≈ ones) ⇒
(∃y. (c ⇒ y ≤u clo(t) ∧ ∼c ⇒ y ≤u clz (t) ∧

mcb(x>>a y, t)))

with c = (t<<y)[msb] ≈ 1

s>>a x ≈ t t ≈ 0 ∨ t ≈ ones ∨ ∃y. (c ⇒ y <u clo(t) ∧
∼c ⇒ y <u clz (t)) ∧mcb(x, y)

with c = t[msb] ≈ 1

x ◦ s ≈ t mcb(x, t[msb : κ(s)])

s ◦ x ≈ t mcb(x, t[msb − κ(s) : lsb])

x〈n〉 ≈ t IC (x〈n〉 = t)

x[u : l] ≈ t IC (x[u : l] = t)

TABLE V: Consistency conditions for non-predicate bit-
vector operators modulo constant bits in x. Conditions marked
with F are conditions synthesized with SyGuS.

it is not necessary to check the condition for concatenation for
all possible combinations of bit-widths of the operands.

We split the conditions for the predicates by the value of t
and generated in total 3575 quantified bit-vector verification
problems for 55 conditions (30 invertibility and 25 consistency
conditions). To verify these problems, we used our SMT solver
Bitwuzla [23] and the solvers CVC4 [5] and Z3 [13]. Note that
we had to exclude Q3B [18] due to disagreements with all
three other solvers on 2/3 of the commonly solved instances.
We used a time limit of 3600 seconds and a memory limit of
8GB and ran this verification task on a cluster with Intel Xeon
CPU E5-2620 CPUs with 2.1GHz and 128GB memory.

We consider a condition to be verified for a certain bit-
width, if all solvers that don’t run into the time limit agree on
its status, and the status is unsat. Overall we were able to verify
2867 out of 3575 instances (80.2%). For operators {≈, <u,
&,⊕, <<,>>,>>a,+, ◦, 〈〉, [:]} we were able to verify all
invertibility conditions, and for operators {≈, <u,&,+, ·, ◦}

we were able to verify all consistency conditions for all bit-
widths up to 65. For x <s s, no solver was able to verify the
invertibility condition for bit-width 36, and for x⊕s no solver
was able to verify the consistency condition for bit-widths 32,
49, 52 and 58. The remaining conditions were verified at least
for bit-widths up to (and including) 7.

Verifying the correctness of the presented invertibility and
consistency conditions up to some bit-width establishes a
certain level of trust but does not prove that they are correct
for all possible bit-widths. Proving the correctness for all bit-
widths is more involved since it requires bit-width independent
proofs [27] and is left to future work.

B. Computing Assignment At
Assignment At : N 7→ {0, 1, •}+ maps each node n ∈ N

to a ternary bit-vector, which represents constant bits in n.
We determine these constant bits upfront by utilizing the
And-Inverter Graph (AIG) circuit representation of the input
formula. Rewriting on the AIG layer during the translation [11]
allows to simplify gates to constants, which are then mapped
back to the word-level and represented as the constant bits of
the corresponding ternary bit-vectors in At.

Bit-blasting the input formula to AIGs introduces additional
overhead, both in terms of time and memory, in particular
for large bit-widths. In [21], the authors proposed word-level
propagators based on ternary bit-vectors for a limited set of
bit-vector operators, which was later extended in [34]. These
propagators might allow to determine constant bits without the
additional overhead of bit-blasting to AIGs. We leave utilizing
these propagators to compute At to future work.

V. EXTENSIONS

Tables III and V include invertibility conditions and consis-
tency conditions for the bit-vector operators ⊕, >>a, <s and
sign extension, which are not considered in [24]. Instead, they
are rewritten in terms of a smaller set of base operators. For
example, signed bit-vector operators are encoded by means of
unsigned operations only, and bit-wise operations are mostly
expressed in terms of & and ∼ . As a consequence, the overall
size of the formula (in terms of number of nodes) increases.
This can have a negative impact on our local search procedure,
since the number of paths that need to be considered when
propagating target values potentially increases. Further, elimi-
nating bit-vector operators can introduce multiple occurrences
of their operands, which can make it harder to find a value
that is part of a satisfying assignment. For example, the bit-
vector exclusive or operation t1 = x ⊕ s can be represented
as t2 = ((x | s) & ∼(x & s)). Selecting an inverse value for x
in t1 only requires one propagation step, whereas for x in t2
we have to find a value that is also consistent with x | s and
∼(x & s), which may take multiple propagation steps.

We extended the set of operators in [24] to natively support
bit-vector operators ⊕, >>a, <s, and sign extension since they
are widely used in SMT-LIB benchmarks. Other operators
such as signed division and remainder operators do not occur
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as frequently and we leave the native support for these
operators to future work.

A. Tightening Bounds for Inequalities

Given a bit-vector inequality literal x � s ≈ t (s � x ≈ t)
with � ∈ {<u, <s}, an inverse value for x is a random
value within a certain range. The lower (upper) bound is
determined by s, whereas the other bound is at least the
(un)signed minimum (at most the (un)signed maximum) value,
depending on constant bits in x. For example, for x <u s
with target value t = 1, the range of possible inverse values v
for x is xlo ≤u v <u s. When such a range is large and
only few values within this range are part of a satisfying
assignment, randomly picking the right value can have a very
low probability. For example, for x0 <u s with target value
t = 1 and x0 = x1〈w〉, we first compute an inverse value v0
for x0 within range xlo ≤u v0 <u s, and then propagate v0 to
x1〈w〉. The sign extension of x1 requires that the w + 1 left-
most bits of v0 are either 0[w+1] or ones[w+1], i.e., the value of
bit v0[κ(x1)−1] determines the w left-most bits. However, this
information is not known when computing an inverse value
for x0 since we do not consider its kind. As a consequence,
we may select inverse values where the w+1 left-most bits are
neither ones[w+1] or 0[w+1], which will immediately produce
a conflict in the next propagation step.

In the following, we discuss heuristics that address this
weakness and further tighten the bounds based on the currently
satisfied top-level inequality constraints.

Inequalities with Sign Extension. Consider an unsigned
inequality over sign extension x〈w〉 <u s with target value
t = 1. We can define the following two ranges when comput-
ing an inverse value v for x〈w〉.

ones[w+1] ◦ 0[κ(x)−1] ≤u v <u s (3)
0 ≤u v <u min(s, 0[w] ◦ smin[κ(x)]) (4)

Each of these ranges can only be considered if it is valid,
i.e., if the lower bound is strictly less than the upper bound.
Further, range (3) is only applicable if x[msb] ∈ {1, •}, and
range (4) if x[msb] ∈ {0, •}. Picking an inverse value v with
mcb(x, v) from any of these two ranges guarantees that the
w + 1 left-most bits are either 0[w+1] or ones[w+1]. Similar
ranges can be derived for t = 0 and <s.

Satisfied Inequality Constraints. An additional, more general
way to tighten the bounds of inverse value computation for an
inequality literal with operand nx is to determine these bounds
with respect to other inequality constraints on nx that are
currently satisfied in Ab. We consider all satisfied inequalities
on nx that are conjuncts reachable from the root. If this results
in an invalid range, i.e., the lower bound is greater than the
upper bound, we fall back to computing a consistent value
without this bound tightening strategy.

We only consider this heuristic for inverse values and
not for consistent values in order to maintain completeness.
For example, consider formula nx <u 100 ∧ na <u nx with
Ab(nx) = 110 and Ab(na) = 101. Assignment Ab satisfies

inequality na <u nx, but falsifies nx <u 100. We select node
nx <u 100, assume x <u 100 ≈ 1 with x = At(nx), and
determine 100 as upper and Ab(nx) as lower bound of the
inverse value for x. Since this range is invalid, we fall back to
computing a consistent value. If we compute a consistent value
with the bound tightening strategy above, we would ignore the
upper bound and use Ab(nx) as lower bound. However, this
would result in getting stuck in computing consistent values
greater than Ab(nx), which will never satisfy nx <u 100 and
would therefore be incomplete.

Note that in our implementation, we currently only consider
inequality constraints that have the same signedness as the
inequality we currently compute an inverse for. Further, this
heuristic can be generalized to apply to inverse value computa-
tion in general (not only for inequality literals), which requires
to incorporate ranges into all inverse value computations. We
leave these extensions to future work.

VI. EVALUATION

We implemented our techniques in our SMT solver Bitwu-
zla [23], which is the successor of our SMT solver Boolec-
tor [28]. It supports the theories of arrays, bit-vectors, floating-
points and uninterpreted functions and their combinations.
We first evaluate our generalized procedure and the proposed
extensions in comparison to the base procedure presented
in [24]. We then show the performance of a sequential
portfolio combination of our procedure with state-of-the-art
bit-blasting as implemented in Bitwuzla. We performed all
experiments on a cluster with Intel Xeon CPU E5-2620 CPUs
with 2.1GHz and 128GB memory. We use an 8GB memory
limit for each solver/benchmark pair and count memory out
as time out. We consider the following configurations:

1) base The propagation-based local search procedure pre-
sented in [24], which serves as a baseline for our
propagation-based local search configurations.

2) prop-c Our ternary propagation-based local search pro-
cedure (Section IV).

3) prop-c+ Configuration prop-c with additional propaga-
tors for ⊕, >>a, and sign extension enabled.

4) prop-cb+ Configuration prop-c+ with all bound tighten-
ing heuristics from Section V and <s propagator enabled.

5) bb The bit-blasting engine of Bitwuzla with CaDi-
CaL [8] version 1.2.1, CryptoMiniSat [32] version 5.7.0,
Kissat [9] version sc2020 (winner of SAT competition
2020), and Lingeling [7] version bcj as SAT back ends.

6) bb-prop-cb+ Sequential portfolio of bb and prop-cb+,
where prop-cb+ is run prior to invoking bb with a limit
of 10k propagation steps and 2M steps for updating Ab.

We evaluated configurations base, prop-c, prop-c+, and
prop-cb+ on all 14,382 QF BV benchmarks from SMT-
LIB with status “sat”. We ran each configuration with 20
different seeds for the random number generator and a time
limit of 60 seconds. Figure 3 shows the number of solved
instances of base, prop-c, prop-c+, and prop-cb+ over all
20 runs with different seeds as box-and-whiskers plots. The
box of a plot shows the interquartile range (IQR), and the
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Fig. 3: Number of solved instances over 20 runs (with different
seeds) of configurations base, prop-c, prop-c+, and prop-cb+.

orange line indicates the median value over all runs of a
configuration. The ends of the whiskers indicate minimum
and maximum values excluding outliers, which are shown as
circles. IQR measures the distance between the lower and
upper quartile. Additionally, we also determine the median
absolute deviation (MAD), which is a measure for how much
one run deviates from the median. Configuration prop-c (IQR:
26.5, MAD: 13.4) clearly outperforms base (IQR: 10.3, MAD:
9.0) with +120 (median) solved instances. Enabling additional
propagators for ⊕, >>a, and sign extension in prop-c+ (IQR:
23.0, MAD: 14.5) increases the number of solved instances
by +3 (median) in comparison to prop-c. Enabling the bound
tightening heuristics achieves the best results, with over 400
additional solved instances (median) compared to prop-c+
(IQR: 31.3, MAD: 18.9).

Value computation in prop-c is expected to propagate more
precise values than base, i.e., we expect the number of moves
required to solve a problem to decrease. In an additional
experiment, we compare the runs of base and prop-c that
are closest to their median on commonly solved instances. As
expected, configuration prop-c requires 70% less moves, 63%
less propagations and 44% less updates of Ab than base while
being 9% faster in terms of solving time.

By enabling the additional operators ⊕, >>a, and sign ex-
tension (as discussed in Section V), we observed that the me-
dian of configuration prop-c+ increased by 3 solved instances.
Further, enabling <s for configuration prop-c+ resulted in a
considerable loss of 262 median solved instances. This is due
to the uclid benchmark family, which contains many signed
inequalities that effectively define (small) ranges over posi-
tive/unsigned values only. For these instances, rewriting <s in
terms of <u thus significantly reduces the number of possible
values for its operands1. However, natively handling <s in
combination with our bound tightening heuristics in configu-
ration prop-cb+ solves all 262 uclid benchmarks. Generally,
natively handling different sets of operators yields (sometimes
significantly) different results. Identifying a minimal set that

1Bitwuzla rewrites a <s b to (a[msb] > b[msb]) ∨ (a[msb] ≈ b[msb] ∧
a[msb− 1 : 0] <u b[msb− 1 : 0]).
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Fig. 4: bb versus bb-prop-cb+ with Lingeling (4a), Crypto-
MiniSat (4b), Kissat (4c), and CaDiCaL (4d) with a time limit
of 1200 seconds.

allows for best performance may simplify the implementation
and is an interesting direction for future work.

Figure 4 shows the performance of the sequential portfolio
combination bb-prop-cb+ in comparison to configuration bb
with a time limit of 1200 seconds on all QF BV benchmarks
(41,713 total). We compare bb-prop-cb+ against bit-blasting
with CaDiCaL, CryptoMiniSat, Kissat, and Lingeling as SAT
back ends. Our sequential portfolio combination clearly com-
pensates weaknesses of CryptoMiniSat, Kissat, and Lingeling
on satisfiable instances. The bit-blasting engine with CaDiCaL
as a back end significantly improves over the other configura-
tions, but bb-prop-cb+ still improves over the configuration
with CaDiCaL in terms of runtime. Overall, the overhead
introduced on unsatisfiable instances is negligible.

All experimental data is available at https://bitwuzla.github.
io/papers/fmcad2020.

VII. CONCLUSION

We have presented a generalization of propagation-based
local search for quantifier-free bit-vector formulas with respect
to constant bits to ternary values. We have derived and verified
invertibility and consistency conditions modulo constant bits
for a majority of the bit-vector operators defined in SMT-
LIB 2. We have shown that our approach yields more precise
value propagation and considerably improves the performance.

Our sequential portfolio utilizes propagation-based local
search and improves over pure bit-blasting. When falling back
to the bit-blasting engine, however, it does not share any
information, which is an interesting direction for future work.
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[15] A. Fröhlich, A. Biere, C. M. Wintersteiger, and Y. Hamadi. Stochastic
local search for satisfiability modulo theories. In B. Bonet and S. Koenig,
editors, Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 1136–
1143. AAAI Press, 2015.

[16] A. Griggio, Q. Phan, R. Sebastiani, and S. Tomasi. Stochastic local
search for SMT: combining theory solvers with walksat. In C. Tinelli
and V. Sofronie-Stokkermans, editors, Frontiers of Combining Systems,

8th International Symposium, FroCoS 2011, Saarbrücken, Germany,
October 5-7, 2011. Proceedings, volume 6989 of Lecture Notes in
Computer Science, pages 163–178. Springer, 2011.

[17] H. H. Hoos. On the run-time behaviour of stochastic local search
algorithms for SAT. In AAAI/IAAI, pages 661–666. AAAI Press / The
MIT Press, 1999.

[18] M. Jonás and J. Strejcek. Q3B: an efficient bdd-based SMT solver
for quantified bit-vectors. In I. Dillig and S. Tasiran, editors, Computer
Aided Verification - 31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part II, volume 11562
of Lecture Notes in Computer Science, pages 64–73. Springer, 2019.

[19] W. Kunz and D. Stoffel. Reasoning in Boolean Networks: Logic
Synthesis and Verification Using Testing Techniques. Kluwer Academic
Publishers, Norwell, MA, USA, 1997.

[20] M. Manzano. Introduction to many-sorted logic. In Many-sorted logic
and its applications, pages 3–86. John Wiley & Sons, Inc., New York,
NY, USA, 1993.

[21] L. D. Michel and P. V. Hentenryck. Constraint satisfaction over bit-
vectors. In M. Milano, editor, Principles and Practice of Constraint
Programming - 18th International Conference, CP 2012, Québec City,
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Abstract—The theory of strings supported by solvers in formal
methods contains a large number of operators. Instead of
implementing a semi-decision procedure that reasons about all
the operators directly, string solvers often reduce operators
to a core fragment and implement a semi-decision procedure
over that fragment. These reductions considerably increase the
number of constraints and thus have to be done carefully to
achieve good performance. We propose novel reductions from
regular expressions to string constraints and a framework for
minimizing the introduction of new variables in current reduc-
tions of string constraints. The reductions of regular expression
constraints enable string solvers to handle a significant fragment
of such constraints without using dedicated reasoning over
regular expressions. Minimizing the number of variables in the
reduced constraints makes those constraints significantly cheaper
to solve by the core solver. An experimental evaluation of our
implementation of both techniques in CVC4, a state-of-the-art
SMT solver with extensive support for the theory of strings, shows
that they significantly improve the solver’s performance.

I. INTRODUCTION

Most software processes strings in some fashion, and as a
result, modern programming languages include functionality
to manipulate strings in various ways. The semantics of
these string manipulations are often complex, which makes
automated reasoning about programs that use them challenging.
In recent years, researchers have proposed various approaches
to tackle this challenge with dedicated solvers for string
constraints [18], [20], [5], [11], [4], [3]. Dedicated solvers
have been successfully used in a wide range of applications
such as finding or proving the absence of SQL injections
and XSS vulnerabilities in web applications [25], [23], [30],
reasoning about access policies in cloud infrastructure [7],
[6], and generating database tables from SQL queries for unit
testing [28].

Modern string solvers natively support an extensive set of
high-level string operations commonly found in programming
languages, such as regular language membership, string re-
placement, and computing the index of one string in another.
Reasoning about string constraints can be roughly divided
into three areas: piq reasoning about basic word equations
with length constraints, piiq reasoning about extended string
constraints, and piiiq reasoning about regular membership
constraints. One common approach to handling extended string
constraints is to reduce the high-level operators to a set of
basic operators and implement a semi-decision procedure for
the latter. In such a design, the overall performance of a
string solver depends on the efficiency of those reductions.

In particular, these reductions tend to introduce fresh string
variables, which affect the difficulty of the problem for the
solver for basic constraints.

The expressive power of the signature for string constraints
often enables the user to write the same constraints in multiple
equivalent ways. As a simple example, consider the following
three formulas, each stating in effect that string y is the result
of removing the first character from another string x:

Dz. x « z ¨ y ^ |z| « 1 (1)
substrpx, 1, |x| ´ 1q « y (2)
x P rconpΣ, to repyqq (3)

Equation (1) states that there exists some string z of length
one such that x is the result of concatenating that string and
y. Equation (2) uses the extended string function substr to
state that y is the substring of x starting at position one and
having length |x| ´ 1. Equation (3) states that x is in the
regular language consisting of the set of strings obtained by
concatenating (rcon) the regular language of single character
strings (Σ) with the (singleton) regular language containing
just y. In this work, we observe that many string constraints
like those above share common properties and can be handled
based on reductions that lead to a more effective collaboration
between the various subsolvers in current string solvers.

The contributions of this paper are as follows:
‚ We introduce witness sharing, a novel technique that can sig-

nificantly reduce the number of variables introduced by string
solvers that reason about combinations of word equations,
extended string constraints, and regular expressions.

‚ We verify the correctness of our technique by generating
verification conditions that encode some of its soundness
properties and solve them using multiple string solvers.

‚ We describe new techniques for encoding regular expressions
using extended functions whose reductions take advantage
of witness sharing.

‚ We implement these techniques in the state-of-the-art string
subsolver of the SMT solver CVC4 [9], showing that they
lead to significant performance improvements.

In the remainder of this section, we discuss related work. We
discuss preliminaries in Section II, introduce the concept of
witness sharing in Section III, and discuss the reduction of
regular expression constraints to extended string functions in
Section IV. Finally, we evaluate our approach in Section V.
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n : Int for all n P N l : Str for all l P A˚
` : Intˆ Int Ñ Int ´ : Int Ñ Int ě : Intˆ Int Ñ Bool
¨ . . . ¨ : Str ˆ ¨ ¨ ¨ ˆ Str Ñ Str | | : Str Ñ Int

substr : Str ˆ Intˆ Int Ñ Str ctn : Str ˆ Str Ñ Bool
indexof : Str ˆ Str ˆ Int Ñ Int replace : Str ˆ Str ˆ Str Ñ Str

P : Str ˆ Lan Ñ Bool Σ : Lan
rcon : Lanˆ ¨ ¨ ¨ ˆ Lan Ñ Lan to re : Str Ñ Lan
inter : Lanˆ ¨ ¨ ¨ ˆ Lan Ñ Lan star : Lan Ñ Lan
union : Lanˆ ¨ ¨ ¨ ˆ Lan Ñ Lan rangec1,c2 : Lan

Fig. 1. Functions in the signature of the theory of strings TS.

Related Work String solvers typically reduce the input con-
straints to a basic representation. Common basic representations
include finite automata [24], [16], [17], [27], [14]; a variation of
word equations and length constraints [22], [12], [31], [25]; bit-
vectors [18]; and arrays [19]. The reductions to word equations
and length constraints are similar to those studied in this work,
and our techniques would apply there in a similar manner.

To the best of our knowledge, improving the efficiency of
reductions themselves was not a major factor in previous work,
although there is work on avoiding unnecessary reductions.
Reynolds et al. [21] propose the use of aggressive rewriting
to eliminate or simplify extended string constraints before
performing reductions. In earlier work, Reynolds et al. [22]
describe an approach to perform reductions lazily after sim-
plifying extended functions based on other constraints in the
current solving context. The general approach proposed here
tackles the cost of reductions from a different angle and can
be combined with these approaches.

Backes et al. [7] reduce a fragment of regular expression
constraints to extended string constraints. In contrast to our
approach, their technique is not integrated within a solver and
is restricted to a smaller fragment.

II. PRELIMINARIES

We work in the context of many-sorted first-order logic with
equality and assume the reader is familiar with the notions
signature, term, literal, (quantified) formula, and free variable.
We consider many-sorted signatures Σ that contain an (infix)
logical symbol « for equality—which has type σ ˆ σ for all
sorts σ in Σ and is always interpreted as the identity relation.
A theory is a pair T “ pΣ, Iq, where Σ is a signature and I is
a class of Σ-interpretations, the models of T . A Σ-formula ϕ
is satisfiable (resp., unsatisfiable) in T if it is satisfied by some
(resp., no) interpretation in I. We write |ùT ϕ to denote that
the Σ-formula ϕ is T -valid, i.e., is satisfied in every model of
T . By convention and unless otherwise stated, we use letters
x, y, z to denote variables and s, t to denote terms.

We consider an (extended) theory TS of strings whose
signature ΣS is given in Figure 1. We fix a totally ordered
finite alphabet A of characters. The signature includes the
sorts Str, Lan, and Int denoting A˚, regular languages over
A, and integers, respectively. The core signature is given on
the first three lines in the figure. It includes the usual symbols

of linear integer arithmetic, interpreted as expected. We will
write t1 ’ t2, with ’ P tą,ă,ďu, as syntactic sugar for the
equivalent inequality between t1 and t2 expressed using only
ě. The core string symbols are given on the first and third line.
They consist of a constant symbol, or string constant, for each
word of A˚ (including ε for the empty word), interpreted as that
word; a variadic function symbol ¨. . .¨ : Strˆ. . .ˆStr Ñ Str,
interpreted as word concatenation; and a function symbol
| | : Str Ñ Int, interpreted as the word length function.

The four function symbols in the next two lines of Figure 1
encode operations on strings that often occur in applications.
We refer to these function symbols as extended functions.
Informally, their semantics are as follows. A position in a
string x is a non-negative integer smaller than the length of
x that identifies a character in x—with 0 identifying the first
character, 1 the second, and so on. For all x, y, z, n,m, the
term substrpx, n,mq is interpreted as the maximal substring
of x starting at position n with length at most m, or the empty
string if n is an invalid position or m is negative; the predicate
ctnpx, yq is interpreted as true if and only if x contains y,
i.e., if y is a substring of x (every string contains the empty
string); indexofpx, y, nq is interpreted as the position of the
first occurrence of y in x starting at position n, or ´1 if y is
empty, n is an invalid position, or if no such occurrence exists;
replacepx, y, zq is interpreted as the result of replacing the first
occurrence in x of y by z, or just x if x does not contain y.
We write substrpx, nq as a shorthand for substrpx, n, |x| ´ nq.

The signature includes an infix binary predicate symbol
P : Str ˆ Lan Ñ Bool, which denotes word membership

in the given regular language. The remaining symbols are
used to construct regular expressions. In particular, Σ denotes
(the language of) all strings of length one; to repsq denotes
the singleton language containing just the word denoted by s;
rconpR1, . . . , Rnq denotes all strings that are a concatenation of
the strings in the languages denoted by R1, . . . , Rn; the Kleene
star operator starpRq denotes all strings that are obtained as
the concatenation of zero or more repetitions of the strings de-
noted by R; interpR1, . . . , Rnq and unionpR1, . . . , Rnq denote
respectively the intersection and the union of the languages
denoted by their arguments; Finally, we include the class of
indexed regular expression symbols of the form rangec1,c2
where c1 and c2 are strings of length one. We call this a
regular expression range, which is interpreted as the language
containing all strings of length one that are between c1 and
c2 (inclusive) in the ordering associated with A. We refer to
atomic or negated atomic formulas over the signature above
as string constraints.

III. WITNESS SHARING FOR STRING SOLVING

In this section, we introduce a technique we call witness
sharing, which can be used to improve the performance of string
solvers that reason in logics that combine: piq word equations
with length constraints; piiq extended string constraints (with
operators like ctn, replace, and so on); and piiiq regular
membership constraints. The goal of this technique is to reduce
the number of variables introduced internally by SMT solvers
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when solving various kinds of string constraints. Our key
observation is that these variables have common properties,
and consequently they can often be shared across multiple
inferences, according to a policy that preserves the soundness
of the solver. Before describing the technique, it is helpful to
review how CDCLpT q-based string solvers operate.
CDCLpT q A CDCLpT q-based solver [10] with support for
string constraints works via a cooperation between a proposi-
tional SAT solver and a theory solver. A theory solver checks
the satisfiability of constraints in a background theory T such as
arithmetic or strings (the theory solver may consist of multiple
cooperating solvers when T is a combination of theories).
For a given input formula F , the SAT solver is responsible
for determining whether F is propositionally unsatisfiable,
that is, unsatisfiable when treating its atomic subformulas as
propositional variables. In that case, F is also T -unsatisfiable.
Otherwise, the SAT solver generates a propositionally satisfying
assignment for the atoms of F in the form of a set of theory
literals M . The theory solver then tries to determine if M is
consistent with the theory T . If so, F is T -satisfiable; otherwise,
the theory solver adds a new (T -valid) formula ϕ to F , and
the above loop repeats.

The formula ϕ, usually called a theory lemma, may cor-
respond to a conflict clause, that is, a clause of the form
`1 _ . . . _ `n, where each literal `i is forced to be false by
M . The addition of a conflict clause causes the SAT solver to
choose a new satisfying assignment. Note that not all theory
lemmas are conflict clauses. Some are simply T -valid formulas
added to F to help the SAT solver refocus its search to
assignments that satisfy those lemmas too. The theory solvers
for strings we describe next produce this sort of lemmas.
Theory Solvers for String Constraints In this section, we
focus on the behavior of the theory solver for strings in a
CDCLpT q loop. Such solvers are often designed with sub-
solvers that handle word equations, extended string constraints,
and regular expressions over the signature for TS provided in
Figure 1, or some variant of it. Their design and implementation
have been thoroughly described in previous work [20], [5],
[26]. For the purposes of this paper, it suffices to view a theory
solver for strings as a method that takes as input a set MS of
string constraints, which we also refer to as the context, and
either paq returns (a set of) theory lemmas ϕ to be added to
the set of constraints F maintained by the SAT solver, or pbq
returns sat, indicating that MS is TS-satisfiable.

We can view a string solver abstractly as a set S of inference
schemas. An inference schema is a mapping from TS-literals `
(called its premise) to a list of the form pC1 ñ ϕ1q, . . . , pCn ñ

ϕnq where C1, . . . , Cn and ϕ1, . . . , ϕn are formulas. We
assume without loss of generality that all models of TS satisfy
exactly one of C1, . . . , Cn. Intuitively, an inference schema
specifies that a list of conclusions ϕ1, . . . , ϕn are implied
by literal ` under the conditions C1, . . . , Cn respectively. An
abstract procedure for a theory solver for strings can be
summarized by the following definition.

Definition 1 (Theory Solver for Strings). A theory solver

for TS based on an inference schema set S takes as input
a set of TS-literals MS and adds formulas to an initially
empty set F as follows. For each inference schema of the form
` ÞÑ pC1 ñ ϕ1, . . . , Cn ñ ϕnq and literal `σ PMS, where σ
is a substitution mapping the variables of ` to ground terms:

1) if MS |ù Ciσ for some i, then add pp`^ Ciq ñ ϕiqσ to
F unless this lemma is already in F ;

2) otherwise, add pC1 _ . . ._ Cnqσ to F .
If no formulas were added to F , return sat.

In other words, for each inference schema for which there
exists a ground TS-literal `σ contained in (or, more generally,
entailed by) the current context MS that matches the premise
`, if any condition Ci is implied by the current assertions, we
add a theory lemma stating that the conclusion ϕi must hold
when the premise and its condition hold (under substitution σ).
The theory lemma is added to the set of formulas F known
by the SAT solver if it does not already occur in F . If none
of the conditions C1, . . . , Cn are implied, the solver adds the
splitting lemma pC1 _ . . ._ Cnqσ, which will force the SAT
solver to pick a condition to satisfy, which in turn will force the
theory solver to derive one of the conclusions ϕ1σ, . . . , ϕnσ.
A theory solver for strings is refutation-sound if it adds only
TS-valid formulas to F . It is model-sound if it returns sat only
when MS is TS-satisfiable. We do not provide the details on
the strategies used by a theory solver for strings in this paper
and instead refer the reader to previous work [20], [5], [26].

It is important to note that, in contrast to traditional theory
solvers, many state-of-the-art theory solvers for strings generate
lemmas that do not necessarily correspond to conflict clauses.
In fact, the generated lemmas may contain new literals or even
literals with new (string) variables. A common example is the
lemma for handling equality between two string concatenations.

Example 1. Consider the TS-literal ` of the form x ¨x1 « y ¨y1,
where x, y, x1, y1 are variables. A possible inference schema
maps ` to:

pp|x| « |y| ñ x « yq, p|x| ą |y| ñ Dk1. x « y ¨ k1q,

p|x| ă |y| ñ Dk2. x ¨ k2 « yqq

When x ¨ x1 « y ¨ y1 holds, if x and y have the same length
then they must be equal. If x is longer than y then y is a prefix
of x, a fact expressed by the formula Dk1. x « y ¨ k1, stating
that x is the concatenation of y with some other string k1. The
case for when y is longer than x is analogous.

Notice that conclusions in the inference schema described above
contain existentially quantified variables. In practice, existential
quantifiers are eliminated eagerly by Skolemization, i.e., by
instantiating them by fresh variables before the theory lemma is
added to the set F . Thus, in the above example, a theory solver
for strings may return px ¨x1 « y ¨ y1^ |x| ą |y|q ñ x « y ¨ v1
where v1 is a fresh variable. Later in this section, we argue
that variables introduced in lemmas such as this one can be
shared amongst multiple theory lemmas based on a careful
analysis of the inference schemas.
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Premise Conclusion Condition Witness Terms

(V-Split) x ¨ x1 « y ¨ y1

#

x « y ^ x1 « y1 |x| « |y|
Dk1.x « y ¨ k1 ^ k1 ¨ x

1 « y1 |x| ą |y| k1 ÞÑ sufpx, |y|q
Dk2.y « x ¨ k2 ^ x

1 « k2 ¨ y
1 |x| ă |y| k2 ÞÑ sufpy, |x|q

(C-Split) x ¨ x1 « c ¨ y1

#

x « c^ x1 « y1 |x| « 1
Dk1.x « c ¨ k1 ^ k1 ¨ x

1 « y1 |x| ą 1 k1 ÞÑ sufpx, 1q
x1 « c ¨ y1 |x| « 0

(Deq-V-Split) x ¨ x1 ff y ¨ y1

$

’

’

’

&

’

’

’

%

x ff y _ x1 ff y1 |x| « |y|
Dk1k2. x « k1 ¨ k2 ^ |k1| « |y| |x| ą |y| k1 ÞÑ prepx, |y|q

k2 ÞÑ sufpx, |y|q
Dk3k4. y « k3 ¨ k4 ^ |k3| « |x| |x| ă |y| k3 ÞÑ prepy, |x|q

k4 ÞÑ sufpy, |x|q

(Deq-C-Split) x ¨ x1 ff c ¨ y1

#

x ff c_ x1 ff y1 |x| « 1
Dk1k2. x « k1 ¨ k2 ^ |k1| « 1 |x| ą 1 k1 ÞÑ prepx, 1q
x1 ff c ¨ y1 |x| « 0 k2 ÞÑ sufpx, 1q

Fig. 2. Inference schemas that introduce existential variables in string solvers for word equations.

Inference Schemas for String Solvers To give further context
for how theory solvers for strings operate, we describe a
representative list of inference schemas that introduce new
variables in theory lemmas in a typical state-of-the-art string
solver. Figures 2 to 4 list commonly applied inferences in the
core equation solver (Figure 2), the solver for extended string
functions (Figure 3), and the solver for regular expression
memberships (Figure 4). In these figures, the first column
gives the premise of the inference, and the second column
gives (possibly multiple) conclusions that can be derived from
that premise, given the conditions in the third column. We will
address the fourth column in later parts of this section.

In Figure 2, the first inference schema V-Split is used when
we have inferred an equality between two string terms of the
form x¨x1 and y ¨y1. Given this constraint, the string solver may
be also able to infer whether x is equal to y, y is a prefix of x
or vice versa, as discussed in Example 1. Based on these three
cases, a (set of) equalities can be inferred possibly involving a
new existentially quantified variable k1 or k2. The inference
schema C-Split is similar to V-Split and handles the case where
one side of an equality begins with a character constant c.
There are two analogous schemas for string disequalities. The
schema Deq-V-Split handles disequalities where both sides of
the disequality begin with a variable (x and y). As in the
equality case, the conditions split on the subcases where the
length of x is equal, greater, or less than that of y. If they
have equal length, the disequality is satisfied if and only if x
and y differ or their remainders differ. If x is longer than y,
then x can be decomposed into two parts k1 and k2 where k1
has the same length as y. The case when y is longer than x is
analogous. Schema Deq-C-Split is similar and handles the case
where one side of the disequality begins with a constant. These
four schemas do case-splitting based on the first argument of
concatenation terms; although not shown here, four analogous
inference schemas are used for splitting based on the last

argument of concatenation terms. In practice, when splitting
a string in the schemas for disequalities, there is no need to
include the literal ` in the lemma since it is valid without `.

The inference schemas in Figure 3 cover the support for
reducing the extended string functions ctn, substr, replace, and
indexof respectively. To simplify the exposition, we assume
with no loss of generality that for every extended string term
t in the input set MS of constraints, MS contains an equality
of the form t « x for some variable x, which we call the
purification variable for term t. The schema R-Ctn states that
if x contains y then it must be equal to the concatenation term
k1 ¨ y ¨ k2 for some (possibly empty) k1 and k2. The schema
R-Substr relates the purification variable y for a substring term
substrpx, n,mq with its arguments. Namely, the first conclusion
holds when n is a valid position and m is positive, as expressed
by its condition. It states that x must be of the form k1 ¨ y ¨ k2,
where k1 must have length n (to ensure y is a substring of x
starting at position n). The remainder of the conclusion ensures
that the length of y matches the semantics of substr. The length
of the remainder string k2 must equal either the length of the
remaining portion of x after position n`m, or 0 (in the case
that n`m ě |x|). Moreover, unless y equals the empty string,
it must have length at most m.1 The schema R-Replace applies
to premise replacepx, y, zq « w and introduces a conclusion
with existential variables when x contains a non-empty string
y. In that case, the first occurrence of y in x is immediately
preceded by some prefix k1 of x. This is expressed by the
constraint x « k1 ¨ y ¨ k2 ^ ctnpk1 ¨ prepy, |y| ´ 1q, yq, where
prepy, |y| ´ 1q is shorthand for substrpy, 0, |y| ´ 1q, which
denotes the result of removing the last character from y. If
y is empty, the result of replace is to prepend z to x. If x
does not contain y at all, the result of replace is the original
string x. The schema R-Indexof introduces one conclusion with

1Note that the form of the conclusion here is slightly different from that
found in analagous rules provided in previous work [22].
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Premise Conclusion Condition Witness Terms

(R-Ctn) ctnpx, yq Dk1k2. x « k1 ¨ y ¨ k2 J
k1 ÞÑ preCpx, yq
k2 ÞÑ sufCpx, yq

(R-Substr) substrpx, n,mq « y

#

Dk1k2.x « k1 ¨ y ¨ k2 ^ |k1| « n^ |y| ď m 0 ď n ă |x| k1 ÞÑ prepx, nq
^ p|k2| « |x| ´ pn`mq _ |k2| « 0q ^m ą 0 k2 ÞÑ sufpx, n`mq

y « ε otherwise

(R-Replace) replacepx, y, zq « w

$

’

&

’

%

Dk1k2. w « k1 ¨ z ¨ k2 ^ x « k1 ¨ y ¨ k2^ ctnpx, yq^ k1 ÞÑ preCpx, yq
 ctnpk1 ¨ prepy, |y| ´ 1q, yq y ff ε k2 ÞÑ sufCpx, yq
w « z ¨ x y « ε
w « x  ctnpx, yq

(R-Indexof) indexofpx, y, nq « m

$

’

&

’

%

Dk1k2. ctnpk1 ¨ prepy, |y| ´ 1q, yq 0 ď n ď |x| ^ y ff ε k1 ÞÑ
^m « n` |k1| ^ sufpx, nq « k1 ¨ y ¨ k2 ^ ctnpsufpx, nq, yq preCpsufpx, nq, yq

m « n 0 ď n ď |x| ^ y « ε k2 ÞÑ
m « ´1 otherwise sufCpsufpx, nq, yq

Fig. 3. Inference schemas that introduce existential extended functions.

existential variables for premise indexofpx, y, nq « m when n
is a valid position in x and the substring of x after position n
(written sufpx, nq) contains a non-empty string y. In this case,
the variable k1 is introduced as the prefix of sufpx, nq before
the first occurrence of y in sufpx, nq. If y is empty and n is a
valid position in x, the result is n. If n is an invalid position,
the result is ´1.

The inference schemas in Figure 4 introduce existential
variables when reasoning about regular expressions. U-RCon is
applied to reduce (positively asserted) membership constraints
in a language expressed as the concatenation of two regular
expressions R1 and R2. In this case, x must consist of two
strings k1 and k2 that occur in R1 and R2, respectively. Finally,
the rule for Kleene star U-RStar is similar to the rule U-RCon:
if x occurs in R or is empty, then x P R˚ holds trivially (so
the conclusion is just J). Otherwise x must be decomposable
into three pieces k1, k2 and k3, where k1 and k3 occur in R,
and k2 occurs in R˚.

Example 2. Using double quotes to denote string constants,
let MS be tx « “a” ¨ y, x P rconpΣ, Rq, y R R, |x| ą 1u. We
may apply U-RCon to literal x P rconpΣ, Rq, which matches
the premise of that schema, to obtain its conclusion:

Dk1k2. px « k1 ¨ k2 ^ k1 P Σ^ k2 P Rq (4)

Similarly we may C-Split 2 for literal x « “a” ¨ y to obtain:

Dk3. x « “a” ¨ k3 ^ k3 « y (5)

After passing theory lemmas with these conclusions to the SAT
solver, where existential variables k1, k2, k3 are Skolemized
respectively with fresh variables v1, v2, v3, the string solver
will be invoked again with a context extended with the set
tx « v1 ¨ v2, v1 P Σ, v2 P R, x « “a” ¨ v3, v3 « yu.

2We assume matching is modulo empty strings in concatenation terms, so
that string t matches x ¨ x1 under the substitution tx ÞÑ t, x1 ÞÑ εu.

In the above example, observe that both v2 and v3 represent
the result of removing the first character from x. Thus, it is
sound to use the same Skolem variable to witness both k2
and k3. This can easily be inferred based on a policy that we
describe in the following, which will make it easier for the
string solver to conclude that sets of assertions like the one
above are unsatisfiable.

A. Witness Sharing by Smart Quantifier Elimination

In total, there are 22 places where the string solver in CVC4
introduces existentially quantified variables in its inference
schemas (9 for word equations, 8 for extended string functions,
5 for regular expressions). A naive approach for Skolemizing
those variables would replace each of them by a fresh Skolem
variable for each derived conclusion. However, in the following,
we argue that the witnesses for existential quantified formulas in
these rules can be shared across multiple formulas. A majority
of the 22 kinds of variables fall into one of four categories: (i)
the prefix of a string s up to some fixed position n; (ii) the
suffix of a string s after some fixed position n; (iii) the prefix
of a string s up to the position of a substring t; and (iv) the
suffix of a string s after the position of a substring t.

One way to view it is that the quantified formulas introduced
by the various inference schemas admit quantifier elimination
in the extended string signature. For example, in the second
conclusion of schema V-Split, the formula

Dk1.x « y ¨ k1 ^ k1 ¨ x
1 « y1

is equivalent to

x « y ¨ substrpx, |y|q ^ substrpx, |y|q ¨ x1 « y1 ,

when the premise and corresponding condition for that schema
hold. In principle, we could eliminate those quantifiers instead
of Skolemizing them. This would not be efficient, however,
because of the cost of processing terms with extended functions
such as substrpx, |y|q. Instead, we observe that each existential
variable in a inference schema conclusion has a witness term,
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Premise Conclusion Condition Witness Terms

(U-RCon) x P rconpR1, R2q Dk1k2. x « k1 ¨ k2 ^ k1 P R1 ^ k2 P R2 J
k1 ÞÑ prepx, ‖R1‖q
k2 ÞÑ sufpx, ‖R1‖q

(U-RStar) x P R˚
#

Dk1k2k3. x « k1 ¨ k2 ¨ k3 x ff ε^ x R R k1 ÞÑ prepx, ‖R‖q
^ k1 P R^ k2 P R

˚ ^ k3 P R k2 ÞÑ substrpx, ‖R‖, |x| ´ 2 ˚ ‖R‖q
J otherwise k3 ÞÑ sufpx, |x| ´ ‖R‖q

Fig. 4. Inference schemas that introduce existential variables in string solvers for regular expressions.

i.e., can be equivalently replaced by a term over the extended
string signature, as is the case for k1 above.

Based on this observation, instead of eliminating existential
variables by instantiating them with their witness term t, we
instantiate them with a witness variable, a Skolem variable that
is associated with t. We do that by constructing and maintaining
a mapping from witness terms to Skolem variables with the
goal of mapping pairs of witness terms to the same Skolem
variable whenever we recognize (inexpensively, as described in
Section III-B) that the two witness terms are equivalent. This
way, we can recycle Skolem variables introduced earlier, and
keep their number low, without loss of generality.

Witness Terms For variables that represent the prefix (resp.,
suffix) of string x before (resp., after) a given position n, the cor-
responding witness term can be expressed using the substring
operator, namely with terms of the form substrps, 0, nq and
substrps, nq. For convenience, we write preps, nq and sufps, nq
as shorthand for these terms. Furthermore, we write preCps, tq
to abbreviate preps, indexofps, t, 0qq which denotes the term
equivalent to the prefix of s before the first occurrence of t in
s when one exists. We additionally write sufCps, tq to denote
the suffix of s after the first occurrence of t in s if one exists,
which abbreviates sufps, |preCps, tq| ` |t|q.

The last column in Figures 2 to 4 lists the witness terms
for each inference schema. The justifications for most witness
terms are straightforward. R-Ctn, R-Replace, and R-Indexof
use preC and sufC because they involve reasoning about the
occurrence of one string in another. Witness terms for the
regular expression schema U-RCon can be constructed for
regular expressions R for which there exists a term of integer
type, which we denote by ‖R‖ here, such that all strings that
belong to R have length ‖R‖. For example, ‖to repxq‖ “ |x|.
We call ‖R‖ the regular expression length of R. We use a
simple (incomplete) recursive method, summarized in Figure 5,
to infer ‖R‖ for a regular expression R when possible. For U-
RCon, which applies to the premise x P rconpR1, R2q, multiple
choices for witness terms may exist. If a regular expression
length can be computed for R1, then we know that k1 and
k2 can be given witness terms prepx, ‖R1‖q and sufpx, ‖R1‖q
respectively. Although not shown in the figure, witness terms
prepx, |x| ´ ‖R2‖q and sufpx, |x| ´ ‖R2‖q can be given when
‖R2‖ can be inferred. For U-RStar, we assume witness terms
are used only when ‖R‖ can be inferred. For this rule, k1 is the
prefix of x whose length is ‖R‖, k3 is the suffix of x whose
length is ‖R‖, and k2 is remaining string after removing these

‖Σ‖ “ 1
‖rangepc1, c2q‖ “ 1

‖to repsq‖ “ |s|
‖unionpR1, ¨ ¨ ¨ , Rkq‖ “ u, if @i. ‖Ri‖ “ u
‖interpR1, ¨ ¨ ¨ , Rkq‖ “ u, if Di. ‖Ri‖ “ u
‖rconpR1, ¨ ¨ ¨ , Rkq‖ “ ‖R1‖` ¨ ¨ ¨ ` ‖Rk‖

Fig. 5. Definition of ‖R‖ for cases in which a regular expression R only
accepts strings of a fixed length.

two substrings.

Example 3. We revisit the inference schemas applied for Exam-
ple 2. In that example, we applied U-RCon to x P rconpΣ, Rq to
obtain the conclusion given by (4) over existentially quantified
variables k1 and k2. According to Figure 4, since ‖Σ‖ “ 1,
the witness terms for k1 and k2 are prepx, 1q and sufpx, 1q
respectively. Similarly, we applied C-Split to the equality
x « “a” ¨ y to obtain the conclusion given by (5) over the
existentially quantified variable k3. According to Figure 2,
the witness term for k3 is sufpx, 1q. Since k2 and k3 have
the same witness term, they can be witnessed by the same
variable vsufpx,1q. Using this (shared) variable results in a
context where the string solver is given as input the set of
assertions tvsufpx,1q P R, vsufpx,1q « y, y R Ru, which can be
easily shown to be unsatisfiable: the first two constraints imply
that y P R which contradicts the third constraint.

In the above example, the string solver was able to derive
a contradiction in the state resulting from the application of
two inference schemas. This was made possible by witnessing
existential variables for two inference schemas with the same
variable vsufpx,1q. A solver without witness sharing requires
further case splitting before finding a similar contradiction.
In practice, the use of witness sharing to minimize the
number of witness variables leads to significant performance
improvements, as we show in Section V.

B. Implementation Details

We list some of the important optimizations and implemen-
tation details for witness sharing in the following.
Witness Sharing based on Term Rewriting Two existential
variables can be witnessed by the same variable when their
witness terms s and t are equivalent. String solvers implement
aggressive rewriting techniques on string terms (see, e.g., [21]),
which we can leverage to perform fast but incomplete checks
of the validity of the constraint s « t. We write sÓ to denote
the rewritten form of term s, which in practice is computed
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by a component of the SMT solver we call the rewriter. A
rewriter is designed to be sound, that is, sÓ “ tÓ implies s « t.
It is, however, typically incomplete for performance reasons,
which means that two equivalent terms may have different
rewritten forms. We apply the rewriter to witness terms before
mapping them to witness variables to obtain improved sharing
of witness variables.

Relaxing the Witness for the First Occurrence It is
important to note that the witness variable vt corresponding
to witness term m is not necessarily constrained to be equal
to t in the solver, which allows models where they indeed
differ. This is not a problem because the value of a witness
variable in any model is guaranteed to be a witness for the
corresponding existentially quantified variable. We can use
this fact to avoid introducing additional constraints on witness
variables. Recall that term preCpx, yq is the prefix of x before
the first occurrence of y in x if there is one. Constraints for
witness variables are derived from the conclusions of rules.
Indeed, R-Replace from Figure 3 introduces the constraint
 ctnpvpreCpx,yq ¨substrpy, 0, |y|´1q, yq to insist that vpreCpx,yq
be the prefix of x before the first occurrence. It is, however, not
necessary to add the same constraint in the conclusion of R-Ctn.
Instead, it is sufficient to insist that vpreCpx,yq be the prefix of
x before any such occurrence. Applying the latter schema in
isolation may permit models where vpreCpx,yq corresponds to
a prefix of x prior to an occurrence of y in x other than the
first one. Nevertheless, the inference schema R-Ctn may use
preCpx, yq as a witness term because vpreCpx,yq can be assumed
(when necessary, and without loss of generality) to be the prefix
before the first occurrence. Avoiding additional constraints is
important in practice because negative containment constraints
like the one above are notoriously expensive to reason about.
This can be seen as constraining the witness variables lazily.

Equivalence of Witness Variables and Substring Terms If
we have a constraint of the form y « t in the context where
y is a variable and t is a witness term t, we can use y as the
witness variable for t instead of introducing a fresh variable vt.
This insight is particularly useful for applications of substring.
Recall that we assume that we purify extended string terms,
so applications of substring only appear in assertions of the
form substrpx, n,mq « y where y is the purification variable.
As a result, we can use y as the witness variable if we have
a witness term of the form substrpx, n,mq. This means that
witness variables are entailed to be equal to existing substring
terms that occur in MS whenever applicable.

Propagation Based on Adjacent Literals While not shown
in Figure 2, a solver for word equations can be optimized by
inferring when a string must contain a constant prefix. This
can be inferred for equalities where one side has the form
x ¨ l1 ¨ x

1, and the other side begins with a constant that cannot
overlap with l1. We demonstrate this in the following example.

Example 4. Let ` be the literal x ¨ “b” ¨ x1 « “aaaa” ¨ y1.
Since x is followed by “b” on the left-hand side of `, it must
be the case that x begins with “aaaa” or otherwise “b” would

overlap with “aaaa” and the two strings would be disequal.
Thus, the conclusion Dk1. x « “aaaa” ¨ k1 is implied by `.

CVC4 implements an inference schema where Dk1. x « l1 ¨ k1
is derived as a conclusion from the premise x ¨ l2 ¨x1 « l1 ¨ l3 ¨y

1

under the condition that no non-empty prefix of l2 is a suffix
of l1, nor is l2 contained in l1. While the justification of this
conclusion is complex, witness sharing can be applied in a
straightforward way. Namely, k1 in the above conclusion can
be mapped to the witness term sufpx, |l1|q and shared with
variables from other inference schemas as explained earlier.

C. Checking Soundness for Witness Terms

As we have seen, witness sharing derives (implicit) equiv-
alences between witnesses for existential variables. It is
critical that the implementation of witness sharing preserve
the soundness of the solver. To verify that this is indeed the
case, we have constructed a set of 8 benchmarks expressing the
correctness of inference schemas that leverage witness sharing.
In particular, for each inference schema from Figures 2 and 3
with premise ` and conclusion Dk1, . . . , kn. ϕ under condition
Ci, we have generated a formula that expresses the entailment:

`^ Ci |ùTS
ϕtk1 ÞÑ t1, . . . , kn ÞÑ tnu,

where t1, . . . , tn are the witness terms for k1, . . . , kn. If this
entailment does not hold, then there is a case where adding the
conclusion with the witness terms to a set of assertions makes
them unsatisfiable despite the original set of assertions being
satisfiable, that is, the schema makes the solver refutation-
unsound. On the other hand, if this entailment holds, then the
soundness of the inference schema (using witness sharing) is
confirmed. To see why this is the case, notice the entailment
check with witness terms is strictly stronger than the same
check with witness variables. This is because every model for
the variant with witness terms ϕtk1 ÞÑ t1, . . . , kn ÞÑ tnu can
be extended to a model for the variant with witness variables
ϕtk1 ÞÑ vt1 . . . , kn ÞÑ vtnu by interpreting witness variables
vt1 , . . . , vtn the same way as the corresponding witness terms.
This is always possible because the variables themselves are
unconstrained. In other words, ϕtk1 ÞÑ t1, . . . , kn ÞÑ tnu
entails ϕtk1 ÞÑ vt1 , . . . , kn ÞÑ vtnu.

We generated one benchmark for each of the inference
schemas in Figures 2 and 3. We generated only one benchmark
for schemas that have multiple (symmetric) conclusions. We
did not consider the verification of the regular expression rules,
since neither of the solvers we used for the analysis, CVC4 and
Z3 [15], currently support reasoning over regular expression
variables. Overall, CVC4 (with witness sharing disabled) and Z3
are capable of showing that the entailment expressed by each
of the 8 benchmarks holds, thus corroborating the correctness
of our approach.

IV. REGULAR EXPRESSION ELIMINATION

In this section, we discuss an alternate approach to solving
regular membership constraints by reducing them to extended
string operators. The key insight is that instead of using the
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x P rconpR1, R2q Ñ prepx, ‖R1‖q P R1 ^

sufpx, ‖R1‖q P R2

x P rconpR1, R2q Ñ prepx, |x| ´ ‖R2‖q P R1 ^

sufpx, |x| ´ ‖R2‖q P R2

x P rconpΣ˚, to repyq,Σ˚, Rq Ñ indexofpx, y, 0q ff ´1^
sufCpx, yq P rconpΣ˚, Rq

x P rconpR1, to repyq, R2q Ñ

Di. 0 ď i ă |x| ´ |y| ^
prepx, iq P R1^

substrpx, i, |y|q « y ^ sufpx, i` |y|q P R2

x P R˚ Ñ @k. 0 ď k ă divp|x|, ‖R‖q ùñ
substrpx, k ˚ ‖R‖, ‖R‖q P R

Fig. 6. Rules for regular expression elimination

inference schemas from the previous section to generate theory
lemmas while solving, we can specialize them and apply
them eagerly to eliminate certain types of regular membership
constraints. The advantage of this eager elimination is that
we do not need to rely on cooperation between the regular
membership subsolver and the other subsolvers. The techniques
from the previous section can then be applied more readily.
The following example demonstrates this point.

Example 5. Consider the constraint:

x P rconpΣ,Σ˚, to rep“abc”q,Σ˚q

If we applied the rule U-RCon, we would introduce variables
that are matched by the Σ˚ components. If we look at
this constraint through the lens of extended string opera-
tors, it is straightforward to show that it is equivalent to
ctnpsubstrpx, 1q,“abc”q. Our techniques for regular expres-
sion elimination may eagerly replace the membership constraint
above with this extended string constraint, which can be
subsequently processed while leveraging our strategy for
witness terms described in the previous section.

To start, all membership constraints with a regular expres-
sion whose top symbol is not concatenation or Kleene
star can be eliminated eagerly by rewriting. For example,
x P interpΣ, unionpR, to rep“abc”qqq is equivalent to |x| «
1 ^ px P R _ x « “abc”q. We have extended CVC4 with a
set of rules for reducing the other kinds of regular expression
memberships (for rcon and Kleene star) to constraints involving
extended functions. The most prominent of these rules are given
in Figure 6. We give these rules in a form x P RÑ ϕ where
ϕ is a constraint involving extended string constraints that is
equivalent to x P R and does not contain the top symbol of R.

The first two rules can be applied to constraints of the form
x P rconpR1, R2q when all strings belonging to R1 or R2 are
of a fixed length. These rules parallel the use of witness terms
for U-RCon when ‖R1‖ or ‖R2‖ is defined. The next rule
applies to the case where the regular expression requires a
string y followed by arbitrary characters in some prefix of x.
Its conclusion assumes the suffix x after the first occurrence
of y in x occurs in R. This is with no loss of generality since
the regular expression allows us to match an arbitrary number

of characters after the position y occurs in x. The final rule
for rcon is applicable to a larger set of regular expressions,
where it cannot be assumed that the occurrence of to repyq
matches the position where it occurs in x. It says that if the
membership constraint requires some string y to appear in x,
we can split x in three parts: the prefix before the match on
y (which occurs at some position i between 0 and |x| ´ |y|),
the match itself, and the suffix after the match. In practice,
the rules for regular expression concatenation are ordered with
decreasing order of precedence: to reduce a constraint, we
apply the first rule among those listed that matches a given
membership constraint. For x P R˚, if ‖R‖ is defined, we can
turn such constraints into a (bounded) quantifier that ensures
that each substring of x at positions that are multiples of ‖R‖
and have length ‖R‖ are in R.

We observe in our evaluation in Section V that regular ex-
pression elimination leads to further performance improvements
when combined with witness sharing. We attribute this to the
fact that replacing regular expression membership constraints
with extended string constraints may lead to a reduction in
the number of unique constraints that must be processed by
the SMT solver for inputs that combine regular expressions
and extended functions. In other words, eliminating regular
expressions may in some cases enable the solver to detect
conflicts at the propositional level or by using high-level
theory reasoning even before shared witness variables are
introduced, in particular for input constraints that combine
regular expression memberships and extended string functions.

V. EVALUATION

In this section, we evaluate the impact of witness sharing
and regular expression elimination. To this end, we have
implemented our approach in CVC4, a state-of-the-art SMT
solver with extensive support for the theory of strings.

We evaluate our implementation on three benchmark sets:
PYEX, a benchmark set originating from the symbolic exe-
cution of Python code [22]; FSTRINT, a benchmark set [1]
originating from the concolic execution of Python code with
Py-Conbyte [29]; and TRANSF, which consists of industrial
benchmarks that were transformed using StringFuzz [13]. From
TRANSF, we omit 438 benchmarks that use regular expression
ranges with non-constant bounds and benchmarks that define
functions over regular expression arguments. Both of those
features are not supported by CVC4.

We compare four configurations of CVC4: cvc4+wr uses both
regular expression elimination and witness sharing; cvc4+r
uses just regular expression elimination; cvc4+w uses witness
sharing only; and cvc4 does not use the new techniques. As a
point of reference, we compare our approach against Z3 4.8.8,
another state-of-the-art string solver. We omit a comparison
with Z3STR3 4.8.8 and Z3-TRAU 1.1 [2] (the new version of
TRAU) because our experiments have shown that these versions
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Set cvc4+wr cvc4+r cvc4+w cvc4 Z3 R%

PYEX
sat 21256 20117 21254 20116 20214

10%unsat 3866 3847 3866 3847 3691
ˆ 299 1457 301 1458 1516

FSTRINT
sat 4403 4410 4404 4412 4323

8%unsat 17095 17085 17095 17089 16834
ˆ 75 78 74 72 416

TRANSF
sat 3690 3688 3670 3663 3771

7%unsat 4796 4780 4769 4771 4780
ˆ 259 277 306 311 194

Total
sat 29349 28215 29328 28191 28308
unsat 25757 25712 25730 25707 25305
ˆ 633 1812 681 1841 2126

TABLE I
NUMBER OF SOLVED PROBLEMS PER BENCHMARK SET. BEST RESULTS ARE

IN BOLD. ALL BENCHMARKS RAN WITH A TIMEOUT OF 300 SECONDS.
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Fig. 7. Scatter plots of runtimes showing the impact of disabling witness
sharing and regular expression elimination. All benchmarks ran with a timeout
of 300 seconds.

are unsound.3

We ran our experiments on a cluster with Intel Xeon CPU E5-
2620 v4 CPUs running Ubuntu 16.04 and allocated a physical
CPU core, 8 GB of RAM, and 300 seconds for each job.

Table I summarizes our results. It lists the number of
satisfiable and unsatisfiable answers as well as timeouts (ˆ)
for each configuration and benchmark set. For solved problems,
we report the cumulative decrease in fresh variables introduced
in the column “R%.” To measure this, we instrument the code
of cvc4+wr to record how many fresh variables were created
by the inference schemas discussed in Section III using witness
sharing, and compare it to the number of variables that would
have been created with witness sharing disabled. Note that
this measurement does not take into account compounding
effects: Generating fewer variables at an earlier stage may
prevent the introduction of fresh variables later in the solving
process. Figure 7 shows the impact of disabling witness sharing
and regular expression elimination by providing scatter plots
that compare the performance of cvc4+wr with cvc4+r and
cvc4+w. It differentiates between satisfiable and unsatisfiable
instances. Overall, cvc4 performs better than Z3 and the other
configurations only improve on that, which shows that our

3Overall, CVC4 and Z3STR3 disagreed on 440 FSTRINT and 22 TRANSF
benchmarks whereas CVC4 and Z3-TRAU disagreed on 416 TRANSF bench-
marks. Out of those cases, Z3STR3 accepted all 325 models produced by
CVC4 and rejected all 137 of its own models while Z3-TRAU accepted all
343 models produced by CVC4 and rejected all 73 of its own models.

approach has the potential of improving a solver that is already
competitive with the state-of-the-art.

Witness sharing has a major impact on performance, espe-
cially for satisfiable instances as the scatter plot in Figure 7
visualizes. Without witness sharing, cvc4+r solves significantly
fewer satisfiable problems from PYEX and increases the number
of timeouts by over four times. The impact is less pronounced
on the other benchmark sets, although it makes a noticeable
impact on unsatisfiable benchmarks from the TRANSF set. As
expected, the performance impact depends on the structure of
the problem. The benchmarks in TRANSF primarily consist of
regular expression membership constraints, so there are fewer
opportunities for witness sharing. On the FSTRINT benchmarks,
cvc4+wr does not improve performance over cvc4+r despite
eliminating a similar amount of variables. Nevertheless, witness
sharing cumulatively over these three sets decreases the number
of timeouts of CVC4 from 1812 to 633. We believe this indicates
the importance of the use of witness sharing for advancing the
state of the art in current string solvers.

Although less impactful, comparing cvc4+wr and cvc4+w
indicates that our techniques for regular expression elimination
lead to gains in both the overall number of satisfiable and
unsatisfiable benchmarks. Regular expression elimination has
no impact on the PYEX benchmarks because they lack regular
expression membership constraints. Regular expression elimina-
tion has the biggest positive impact on the TRANSF benchmarks,
where it decreases the number of unsolved instances from
306 to 259. Notice those benchmarks are generated with a
fuzzing tool. Thus, they include regular expressions such as
rconprto rep“Q”qs˚, to rep“q”qq˚ that are less amendable to
regular expression elimination than real-world benchmarks.
Overall, we believe these results demonstrate the value of
exploring alternate encodings of regular expressions in combi-
nation with extended string function constraints.

VI. CONCLUSION

We have presented an approach for CDCLpT q theory solvers
for strings that leverages the observation that many variables
introduced by these solvers can be shared. Our implementation
in the SMT solver CVC4 of witness sharing for these variables,
as well as related techniques for recasting regular expressions
as extended string constraints, leads to significant performance
gains with respect to the state of the art, both in terms of
number of benchmarks solved and run times.

As ongoing work, we are further investigating optimizations
to the reductions used in this paper. We believe that the principle
of witness sharing can be applied even more aggressively to
infer when (pairs of) input variables are constrained to be
equivalent to witness terms and hence can be equated as a
preprocessing step. More generally, it can be used as a way of
optimizing other CDCLpT q theory solvers that introduce fresh
variables within theory lemmas they generate. For example,
some procedures for reasoning about finite sets [8] use fresh
variables to witness when two sets are disequal. We conjecture
that witness sharing can be applied fruitfully there as well.
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Abstract—Witnessing subsystems for probabilistic reach-
ability thresholds in discrete Markovian models are an
important concept both as diagnostic information on why
a property holds, and as input to refinement algorithms.
We present SWITSS, a tool for the computation of Small
WITnessing SubSystems. SWITSS implements exact and
heuristic approaches based on reducing the problem to
(mixed integer) linear programming. Returned subsystems
can automatically be rendered graphically and are accompa-
nied with a certificate which proves that the subsystem is
indeed a witness.

I. INTRODUCTION

A standard notion of a witness for a property in proba-
bilistic systems is that of a subsystem [1, 6, 15, 17, 26, 27].
This is a part of the system that by itself already reaches
a given probability threshold and thus serves as an
explanation of why or where the property holds. Subsys-
tems can also be used as input to automated refinement
and synthesis algorithms. In [14] a counterexample guided
abstraction refinement (CEGAR) method for probabilistic
models is presented that iteratively refines a predicate
abstraction by analyzing counterexamples (which are
witnessing subsystems to the negated property). An
application of small witnessing subsystems to synthesis
is described in [8], where they are used to infer properties
of a family of Markov chains from (a subsystem of) one
of its members.

The aforementioned applications heavily benefit from
witnessing subsystems that are small in terms of their
state space. This paper presents SWITSS, a novel tool
for the computation of small witnessing subsystems for
reachability properties in Markovian models. Following
[11], SWITSS proceeds by reduction to finding points of
a polyhedron containing a large number of zero entries.
These points also serve as certificates [22] for the fact that
the computed subsystem indeed constitutes a witness.

We tackle the above problem from discrete geometry
heuristically with an iterative linear programming (LP)
approach. By adding binary variables to the LP, thus
resulting in a mixed integer linear program (MILP),

This work was funded by DFG grant 389792660 as part of TRR 248,
the Cluster of Excellence EXC 2050/1 (CeTI, project ID 390696704, as
part of Germany’s Excellence Strategy), DFG-projects BA-1679/11-1 and
BA-1679/12-1, and the Research Training Group QuantLA (GRK 1763).

SWITSS can also compute minimal witnessing subsystems.
In many applications, however, minimizing merely the
state space of witnessing subsystems is insufficient in that
it ignores the underlying structure of the model. For this
reason, SWITSS supports label-based minimization, where
syntactic units of the system can be subsumed under
common labels.

Transparency and reliability are important factors for
the evaluation of modern model checking software.
SWITSS comes with a toolkit for the automated visu-
alization of Markovian models and subsystems therein.
For the convenience of (third-party) users, the framework
includes a separate module for the independent verifica-
tion of the associated certificates. In this way, results can
be checked both visually and mathematically.

The translation to discrete geometry paired with the
high level of encapsulation in our implementation makes
SWITSS easily extendable. New heuristic approaches for
finding vertices with many zeros (like vertex enumeration
techniques) as well as different LP and MILP solvers used
as backend engines can be integrated flexibly into SWITSS.

Comparison with related tools.

There are, to the best of our knowledge, three existing
tools for the computation of witnessing subsystems:
DIPRO [3], COMICS [16], and ltlsubsys [27]. We now
compare each of these to SWITSS. A foreword that
applies to all of them is that for Markov decision process
(MDP), they only compute witnessing subsystems for
lower bounds on maximal reachability probabilities. We
emphasize that lower bounds on minimal reachability
probabilities cannot be reduced to this case, but only to
upper bounds on maximal reachability probabilities.

DIPRO implements several heuristics for the computa-
tion of probabilistic counterexamples, only one of which
directly operates on subsystems. This heuristic called
XBF is available only for discrete-time Markov chains
(DTMC), however. The other heuristics gather individual
paths satisfying criteria like high probability mass or
short length until the threshold is met. The subsystem
resulting from these paths is not optimized along our
state-minimality criterion (rather, the number of paths is
minimized), so a comparison is problematic.
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TABLE I: Overview of Farkas certificates for reachability
properties in MDPs, where / ∈ {≤,<} and . ∈ {≥,>}.

Property Source Condition

Prmin
s0

(♦goal) . λ z ∈ RS Az ≤ b ∧ z(s0) . λ

Prmax
s0

(♦goal) . λ y ∈ RM≥0 yA ≤ δs0 ∧ yb . λ

Prmin
s0

(♦goal) / λ y ∈ RM≥0 yA ≥ δs0 ∧ yb / λ

Prmax
s0

(♦goal) / λ z ∈ RS Az ≥ b ∧ z(s0) / λ

COMICS implements heuristics for computing small
subsystems in DTMCs, which are significantly different
from the ones implemented in SWITSS. They rely on
iteratively adding “probable” paths to the subsystem
until the threshold is met. To compute the next such
path, COMICS uses graph algorithms. As each iteration
requires computing the probability that has already been
gathered, this approach often suffers from a substantial
increase in time and memory consumption for growing
thresholds, in contrast to our approach. With a prototypi-
cal implementation of what has now become SWITSS, we
found that either our minimal or maximal reachability
formulation (both of which are available for DTMCs)
usually outperforms both COMICS modes [11].
ltlsubsys [27] is the only tool for the computation

of minimal witnesses in MDPs (it is, however, not publicly
available). This tool also reduces the task of computing
witnessing subsystems for maximal probabilities to a
MILP which is related to our MILP formulations (cf.
[11, Remark 6.2]). Its results in terms of upper and
lower bounds on the number of states in a minimal
witness found when hitting the timeout (which usually
happens for bigger models) are comparable to ours [11].
As mentioned above, ltlsubsys cannot handle minimal
reachability probabilities.

Summarizing the functionality, SWITSS is the first tool
that implements (1) both exact and heuristic algorithms,
with support for (2) both DTMCs and, more generally,
MDPs, for (3) thresholds on both minimal and maximal
reachability probabilities.

II. THEORETICAL BACKGROUND

A Markov decision process (MDP) is a tuple M =
(Sall, Act, P, s0), where Sall is a finite set of states, Act
is a finite set of actions, P : Sall × Act×Sall → [0, 1]
is the transition probability function where we require
∑s′∈Sall

P(s, α, s′) ∈ {0, 1} for all (s, α) ∈ Sall × Act,
and s0 is the initial state of M. We assume that there
are two distinguished absorbing states fail, goal ∈ Sall,
representing desirable and undesirable outcomes of the
system. We will henceforth use the notation S = Sall \
{fail, goal}. We let Act(s) be the set of actions satisfying
∑s′∈Sall

P(s, α, s′) = 1. We require Act(s) 6= ∅ for all s ∈ S
and sometimes write M = {(s, α) | s ∈ S, α ∈ Act(s)}.

The system begins in s0 and evolves as follows: in state
s, an action α ∈ Act(s) is chosen non-deterministically
and the next state is picked according to the distribution
P(s, α, ·). A scheduler S is some resolution of the non-
determinism and induces a probability PrSM,s0

(♦goal)
to eventually reach goal (see [5, Section 10.6]). We
are interested in the minimal and maximal reachability
probabilities attained among all schedulers, denoted by
Prmin
M,s0

(♦goal) and Prmax
M,s0

(♦goal). They represent worst-
and best-case scenarios for the behavior of the system.

A subsystem of M is an MDP obtained from M by
deleting states from S and redirecting transitions to fail. If
M satisfies Pr∗M,s0

(♦goal) ≥ λ for ∗ ∈ {min, max}, one
way of analyzing which parts of the system are sufficient
for this inequality is to find a subsystemM′ ofM already
satisfying the lower bound, i.e., Pr∗M′ ,s0

(♦goal) ≥ λ. We
call these witnessing subsystems. We aim at finding small
(or minimal) witnessing subsystems in terms of how many
states they include.

In [11] we proposed a translation between witnessing
subsystems and Farkas certificates (which are vectors
satisfying the conditions in Table I) for lower-bounded
reachability thresholds. Here, A ∈ RM×S and b ∈ RS

are defined as follows: A((s, α), t) = 1− P(s, α, s) if s = t
and −P(s, α, t) otherwise, and b(s, α) = P(s, α, goal).

In this paper, we are mainly interested in the first two
rows of Table I with . =≥, and denote the correspond-
ing sets of Farkas certificates by Pmin

M (λ) ⊆ RS
≥0 and

Pmax
M (λ) ⊆ RM≥0. The passage from a Farkas certificate

z ∈ Pmin
M (λ) (resp. y ∈ Pmax

M (λ)) to a subsystem
of M works by including all states with z(s) > 0
(resp. y(s, α) > 0 for some α), and all edges between
such states. All other edges are redirected to fail. Thus,
computing minimal (small) witnessing subsystems for
Pr∗M,s0

(♦goal) ≥ λ can be reduced to finding points in
P∗M(λ) with a maximal (large) number of zeros.

As in [11] we have to assume that the only maximal end
components of M are {goal} and {fail}. This means that
almost all paths reach either of these two states under
every scheduler. This can be ensured by a preprocessing
step whose time-complexity is at most quadratic in the
underlying graph, see [2, 9].

III. IMPLEMENTATION AND FEATURES

SWITSS1 is a complete re-implementation and sub-
stantial extension of the prototype implementation that
was used to run the experiments presented in [11]. An
overview of the structure of SWITSS is given in Figure 1.
Apart from increased usability and an extensive docu-
mentation and testing suite, the main extensions are the
following:
• Functions to generate and verify certificates for all

senses (≤,<,≥,>) and modes (min/max).
• Visualization of MDP subsystems.

1https://github.com/simonjantsch/switss
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Fig. 1: SWITSS contains modules for modeling DTMCs and MDPs (switss.model), different approaches to
finding small (or minimal) subsystems (switss.problem) and interfaces to MILP and LP solvers, built on
top of the PuLP library (switss.solver). The model.ReachabilityForm class is a wrapper for DTMCs/MDPs
which fulfill the requirements as given in Section II (having a single target and fail state, etc.). Finding small
subsystems is done through implementations of problem.ProblemFormulation, e.g. by using the quotient sum
heuristics (problem.QSHeur) or the MILP formulation (problem.MILPExact). Additionally included are modules
for benchmarking (switss.benchmarks), generating and verifying Farkas certificates (switss.certfication) and
interaction with PRISM and PRISM file formats (switss.prism).

• A generalized notion of minimality that allows to
minimize “active labels” [25] in the subsystem (both
exactly and heuristically).

• New heuristics for the computation of witnessing
subsystems with few states.

• Support for various LP/MILP solvers.
SWITSS is implemented in python and can be included

as a library, or used as a stand-alone tool. MDPs and
DTMCs can be loaded either from the explicit transition
matrix format (.tra), or from a model specified in the
PRISM [19] guarded command language. In the latter case,
SWITSS uses PRISM to derive an explicit transition matrix
representation. The library PuLP2 is used as modeling
language for linear programs, and as an interface to
various LP/MILP solvers, where we currently support:
GUROBI [12], CPLEX3, CBC4 and GLPK5. While the
first two are proprietary software (both offer academic
licenses), the latter two are open source.

A. Computing and verifying Farkas certificates
Generating Farkas certificates (for a specified threshold,

sense and mode) amounts to finding a vector satisfy-
ing the corresponding linear inequalities as presented
in Table I. For the non-strict inequalities, this can be
done directly by solving an LP, where the objective
function can be arbitrary. Handling strict inequalities can
be done by replacing the strict inequality by its non-strict
counterpart, and then optimizing in the direction where

2https://coin-or.github.io/pulp/
3https://www.ibm.com/analytics/cplex-optimizer
4https://github.com/coin-or/Cbc
5https://www.gnu.org/software/glpk/

strict inequality is required. A Farkas certificate exists if
and only if the solution satisfies the strict inequality (and
the solution is then a certificate).

To verify that a given vector v is a Farkas certificate,
it is enough to check that it satisfies the inequalities.
Due to the varying precision of solvers and the python
numerical libraries, it can happen that exact satisfaction
of the certificate condition is not given. Hence we allow
a tolerance t to be passed as an option to the certificate
verifier, which will then check, for example, that:

Av− t ≤ b ∧ v(s0) + t ≥ λ

where t is the vector of appropriate dimension containing
t in every entry. In the future, we plan to explore how
robust certificates (which can be verified with t = 0)
can be generated efficiently and consistently (e.g. by
searching for vectors that do not lie on the boundary
of the polytope).

B. New heuristics

To find points in P∗M(λ) with many zeros, the quotient-
sum (QS) heuristic [11] iteratively solves LPs over the
polytope P∗M(λ). The objective function is updated in
every step in a way that aims at pushing as many entries
of the solutions vectors to zero as possible. The LP that
is solved for Pmin

M (λ) is:

min ∑
s∈S

oi(s)z(s) s.t. z ∈ Pmin
M (λ) (III.1)

We put o0 = (1, . . . , 1) ∈ RS and compute oj+1 from
a solution zj of the j-th iteration by the quotient rule:
oj+1(s) = 1/zj(s) if zj(s) > 0, and else oj+1(s) = C for
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some big C. Hence, a dimension close to zero will have
a high “cost” in the next iteration.

While the heuristics generally yield small subsystems
fast (especially when compared with the time it takes to
exactly minimize the number of states with a MILP),
sometimes “spikes” were observed: the heuristics re-
turned a worse result when decreasing λ. As a witnessing
subsystem for λ is also witnessing for all λ′ ≤ λ, this is
undesirable.

In SWITSS both the initial objective o0 and the update
can be customized. As shown by our experiments (Sec-
tion V), the choice of o0 may have a substantial effect on
the performance of the heuristics (first experiments on
changing the update did not lead to better performance).
We propose the following candidate values for o0. For the
heuristic related to Prmax, we take o0 to be the inverse
of a solution to the following LP (where the inverse is
the result of pointwise 1/·, if the corresponding entry is
greater 0, and a big constant otherwise):

max yb s.t. y ∈ Pmax
M (0) (III.2)

For Prmin we let o0 be the inverse of a solution to:

max ∑
s∈S

z(s) s.t. z ∈ Pmin
M (0) (III.3)

Putting λ = 0 discards the constraint z(s0) ≥ λ for
∗ = min and yb ≥ λ for ∗ = max (compare Table I). If
M is a DTMC, then a solution vector of Equation (III.2)
contains the expected number of visits to a state and a
solution of Equation (III.3) contains the probability to
reach goal from every state. Intuitively, states with a low
entry in these vectors contribute less to the probability of
reaching goal from the initial state, and hence should get
a higher value in o0. Similar importance measures where
considered in the context of counterexample generation
in [7].

C. Label-based minimization

The idea of minimizing not the number of states, but
the number of labels present in a subsystem was first
considered in [25]. There it was used to minimize the
number of “active” commands for MDPs given in PRISM
language. We have extended the approach of [11] to
allow label-based minimization in a similar way as was
done in [25]. This allows applying the QS-heuristic to the
computation of subsystems with few active labels. Further
interesting use cases could be minimizing participating
components (for compositional systems) in a witnessing
subsystem, or the number of controllable states.

Our extension works as follows. Take an MDP M
with states S ∪ {goal, fail} a finite set of labels L and
Λ : S → 2L. Now let σ be a vector with |L| variables
with domain [0, 1] and consider the following LPs, which

generalize the LPs of [11, Section 6]:

min ∑
l∈L

σ(l) s.t.
z ∈ Pmin

M (λ)

z(s) ≤ σ(l) f.a. s∈S
l∈Λ(s)

(III.4)

min ∑
l∈L

σ(l) s.t.
y ∈ Pmax

M (λ)

y(s, α) ≤ K · σ(l) f.a.
(s,α)∈M
l∈Λ(s)

(III.5)

The factor K in Equation (III.5) is an upper bound on any
entry of any vector y ∈ Pmax

M (λ) (here we use that P∗M(λ)
is bounded, cf. [11, Lemma 5.1]). It can be computed by
first maximizing the sum of all entries over all vectors
in Pmax

M (λ) using an LP, and taking the objective value
of the solution to be K. The first LP does not need this
step, as 1 is an upper bound on all entries in any vector
z ∈ Pmin

M (λ).
A solution (z, σ) of Equation (III.4) with N non-zero

entries in σ can be translated into a witnessing subsystem
for Prmin

M (♦goal) ≥ λ with N labels. Conversely, a
witnessing subsystem with N active labels induces a
solution (z, σ) such that σ has N non-zero entries. The
same holds for Equation (III.5).

The QS-heuristic can be adapted to label-based mini-
mization by trying to push only the entries of σ to zero.
This algorithm is implemented in SWITSS. Restricting
the domain of σ-variables in Equations (III.4) and (III.5)
to {0, 1} yields a MILP, whose solutions correspond to
witnessing subsystems with a minimal amount of present
labels.

IV. A TOUR OF SWITSS

The following tour can be reproduced using the
supplementary material [18]. We first load an MDP:
In: mc = MDP.from_file(

"ex_mdp.lab", "ex_mdp.tra")

The following command renders the MDP (we have
rebuilt the MDP in tikz for a better presentation and
refer to Figure 2 for an example output of SWITSS):
In: mc.digraph()

Out:

init fail

goal

α

β

0.6

0.2

0.2

0.3

0.7

0.5

0.5

We first transform the MDP into so-called reachability form
(RF), which can be thought of as a standardized format
for reachability analysis. It can be constructed from a
DTMC or MDP, an initial state (which should be unique),
and a set of target states. The method reduce performs
forward (from the intial state) and backward (from the
target states) reachability queries and removes all states
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Fig. 2: Visualization of a subsystem (which excludes the
gray states) by SWITSS . The other colors indicate a user
defined labeling. If the subsystem is induced by a Farkas
certificate (e.g. as returned by the QS-heuristic) SWITSS
prints the corresponding values in each state (or action,
for “max”-queries).

that are either unreachable, or do not reach goal. A new
distinguished target state is added, which receives an
incoming edge from each original target state.
In: rf,_,_ = ReachabilityForm.reduce(

mc, "init", "goal")
rf.system.digraph()

Out:

init fail

goal
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β
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0.3

0.7

0.5

0.5

rf target

A. Certification
Next we demonstrate how Farkas certificates can be

generated (by generate_farkas_certificate) and ver-
ified (by check_farkas_certificate). These methods
take an RF and a specification of the threshold property
to be certified. We first generate a certificate using CBC
and verify its validity.
In: cert = generate_farkas_certificate(

rf, "max", ">=", 0.55, solver="cbc")

In: check_farkas_certificate(
rf, "max", ">=", 0.55, cert)

Out: True

If the threshold property is not satisfied by the model,
no Farkas certificate can be produced.
In: fark_cert = generate_farkas_certificate(

rf, "min", ">=", 0.55, solver="cbc")

Out: Property is not satisfied!

B. Witnessing subsystems

We illustrate the computation of witnessing subsystems,
beginning with the methods for exactly minimizing the
number of states. In contrast to the certification module,
we only consider lower-bounded thresholds here, as
reachability probabilities cannot increase in subsystems.

1) Minimal witnessing subsystems: The class MILPExact

(an instance of ProblemFormulation) is used to specify
queries for exact minimization of an RF for a given
threshold property. It is initialized by specifying mode
(min or max) and solver:
In: milp_exact_max = MILPExact(

"max", solver="cbc")

The solve method now takes an RF and a threshold,
constructs the MILP and solves it by calling the specified
solver.
In: res = milp_exact_max.solve(rf, 0.1)

If successful, the result contains a subsystem that can
also be rendered graphically, where pale states do not
belong to the subsystem:
In: res.subsystem.digraph()

Out:
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goal
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If the threshold is increased to 0.3, the minimal wit-
nessing subsystem uses the upper branch:
In: res = milp_exact_max.solve(rf, 0.3)

In: res.subsystem.digraph()

Out:

init fail

goal
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β
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0.2
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0.7

0.5

0.5

rf target

We now consider witnesses for minimal reachability.
Such a witness needs to ensure that the threshold is met
by all possible schedulers. For 0.1, it is enough to include
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the upper branch and the first state in the lower branch,
but for 0.3 already all states have to be included.
In: milp_exact_min = MILPExact(

"min", solver="cbc")

In: res = milp_exact_min.solve(rf, 0.1)
res.subsystem.digraph()

Out:

init fail

goal
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β
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0.5

0.5

rf target

2) The QS-heuristic: The counterpart of MILPExact

for the heuristic computations of small (rather than
minimal) witnessing subsystems is QSHeur. As it is an
iterative heuristic, we can use the method solveiter to
return an iterator over the results. In our example, all
three iterations return the same subsystem, which is not
optimal, however (compare with the results of the exact
query for maximum probability and threshold 0.1).
In: qs_max_heur = QSHeur(

"max", solver="cbc", iterations=3)
results = list(

qs_max_heur.solveiter(rf, 0.1))
print_results(results)

Out: -- results --
subsys states:5, value: 5
subsys states:5, value: 5
subsys states:5, value: 5

In: results[2].subsystem.digraph()

Out:
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0.5

rf target

The corresponding computation for minimum proba-
bilities improves after the first iteration and returns the
optimal witness (the default number of iterations of the
heuristics is three).
In: qs_min_heur = QSHeur(

"min", solver="cbc")
results = list(

qs_min_heur.solveiter(rf, 0.1))
print_results(results)

Out: -- results --
subsys states:7, value: 7
subsys states:5, value: 5
subsys states:5, value: 5

In: results[2].subsystem.digraph()

Out:
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0.5
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C. Label-based minimization

Now suppose that we do not want to minimize the
amount of states present in the subsystem, but the amount
of colors that it includes. The colors stand for some
labeling that may interest the user. That is, the lower
branch counts as one, as it only includes one color, while
the upper branch counts two although it has a state
less. We specify this optimization objective by using the
labels parameter of the solve method.
In: milp_exact_labels = MILPExact(

"max", solver="cbc")
result_labels = milp_exact_labels.solve(

rf, 0.3,labels=["blue","green","brown"])
print_result(result_labels)

Out: subsys states: 5, value: 1.0

In contrast to minimizing the number of states, now
taking the entire lower branch is optimal for maximal
reachability probabilities and threshold 0.3. The objective
value of this subsystem is 1, as it only includes one of
the labels.
In: result_labels.subsystem.digraph()

Out:

init fail

goal
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β
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0.5

0.5
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V. EXPERIMENTS

We have run experiments on a number of models
available in the benchmark suite6 of PRISM. The results
and all scripts used to produce them are included in
the supplementary material [18]. We used a computer
with two Intel Xeon L5630 CPUs at 2.13GHz with four
cores each and 189GB of RAM. Each computation was
assigned four cores, a memory limit of 10GB and each
call to an LP/MILP solver (we use Gurobi, version 9.0.1)
was limited to 20 minutes.

6https://github.com/prismmodelchecker/prism-benchmarks/
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Fig. 3: Comparison of subsystem sizes achieved by the heuristics of SWITSS for benchmark DTMCs.

We consider the following models, where the first two
are DTMCs and the last two are MDPs: the bounded re-
transmission protocol [10, 13] (brp-N-K), the crowds pro-
tocol [23, 24] (crowds-N-K), the randomized consensus
protocol [4, 20] (consensus-N-K) and the csma-N-K
protocol for data channels [21]. In all cases increasing
N and K, (which, for example, stand for the number of
participating members, or a bound on possible random
walks) leads to larger models. For each model we fixed a
reachability objective, inspired by properties considered
in the benchmark suite.

We contrast the results of the QS-heuristic with initial
objective (1, . . . , 1) (called AO for “all-ones”), and the
initial objectives InvF and InvP , which are inverses of
solutions of Equations (III.2) and (III.3), respectively. As
InvF is derived from the Pmax

M (λ) polytope, we apply
it to the max-queries, and conversely for InvP . We let
the QS-heuristic compute five iterations. The subscripts
i in AOi, InvF i and InvP i refer to the result at iteration
i. As the last iterations do not yield much improvement
we only consider the first three iterations in Figure 3
and Figure 4. If no improvement was made after the i-th
iteration, we do not show the following ones.

We examine for each model the time needed to com-
pute the reachability form (from an explicit transition

matrix) and the maximal time (over min/max-forms,
all considered thresholds and initial values) needed to
compute five iterations of the QS-heuristic, given the RF.
This latter value is called max-time.

We first consider the DTMCs: crowds-5-8 (27,849
states, 11.3 s to construct RF, max-time: 191.6 s) and
brp-1024-2 (31,749 states, 9.4 s to construct RF,
max-time: 366.1 s). As Prmax

M (♦goal) = Prmin
M (♦goal) if

M is a DTMC, witnesses for max- and min-probabilities
coincide. Still, the QS-heuristic applied to the polytopes
Pmax
M (λ), and Pmin

M (λ) yields different results. This was
already observed in [11], where it was also noted that
one of the two usually performs well with the initial
objective AO (the only one considered in [11]). The
new experiments show that InvF and InvP are better
initial vectors for the considered instances (see the
difference between AO3 and InvF1 in crowds-5-8 max
and, respectively, InvP2 in brp-1024-2 min of Figure 3).
The new heuristics also tend to stabilise after fewer
iterations.

The MDPs that we consider are: consensus-2-6
(786 states, 1170 state-action pairs, 0.3 s to construct RF,
max-time: 3.5 s) and CSMA-2-6 (66,720 states, 66,790
state-action pairs, 18.5 s to construct RF, max-time:
512.7 s). The new heuristics have a mixed effect
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Fig. 4: Comparison of subsystem sizes achieved by the heuristics of SWITSS for benchmark MDPs.

here: in the max-case, CSMA-2-6 profits while for
consensus-2-6 the AO-initialization yields better re-
sults. For min, AO and InvP perform equally well. It
should be noted that in CSMA-2-6 the number of actions
per state is very close to one, and hence it is “close” to
being a DTMC. For consensus-2-6 it is noteworthy
that relatively small subsystems are possible for maximal
reachability throughout all considered thresholds.

The experiments show that the QS-heuristic is able to
compute small witnessing subsystems in a reasonable
time for models with over 60,000 states, and that the
new heuristics perform well. As the exact computations
via MILP run into the timeout for all of the models
in Figure 3 and Figure 4, we cannot say how far the
computed subsystems are from the optimal ones in
terms of their size. However, generalizing from smaller
instances (see Figure 5) indicates that the performance
of the heuristic is good.

VI. CONCLUSION

We have presented SWITSS, a tool for computing small
witnessing subsystems in discrete Markovian models.
Contrary to other tools in the field, SWITSS takes a unified
approach for all scenarios that have been considered
in the literature (minimal and maximal probabilities,
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Fig. 5: The QS-heuristic vs. exact minimization.

exact and heuristic computation). New initial objective
functions in the QS-heuristic have been shown to improve
previous results for DTMCs. Our tool also comes with
the complete functionality of a certificate generator and
verifier for reachability problems in MDPs.

In future work we will investigate which properties
of a DTMC benefit either the minimal or the maximal
probability formulation, and add an automated detection
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scheme to SWITSS in order to avoid redundant compu-
tations. We also intend to incorporate a new class of
heuristics based on vertex enumeration algorithms.
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Abstract—Proof assistants offer tactics to facilitate inductive
proofs; however, deciding what arguments to pass to these tactics
still requires human ingenuity. To automate this process, we
present smart_induct for Isabelle/HOL. Given an inductive
problem in any problem domain, smart_induct lists promising
arguments for the induct tactic without relying on a search. Our
in-depth evaluation demonstrate that smart_induct produces
valuable recommendations across problem domains. Currently,
smart_induct is an interactive tool; however, we expect that
smart_induct can be used to narrow the search space of
automatic inductive provers.

I. INTRODUCTION

Proof by induction lies at the heart of verification of
computer programs that involve recursive data-structures, re-
cursion, or iteration [1]. To facilitate proofs by induction, inter-
active theorem provers, such as Isabelle/HOL [2], Coq [3], and
HOL[4], offers tactics. Yet, it requires prover specific expertise
to be familiar with such tactics, and human developers have
to manually investigate each inductive problem to decide how
to apply such tactics.

Unfortunately, the automation of proof by induction is
considered as a long standing challenge in computer science,
for which Gramlich [1] presented the following conjecture in
2005:

in the near future, inductive theorem proving will
only be successful for very specialised domains for
very restricted classes of conjectures. Inductive the-
orem proving will continue to be a very challenging
engineering process [1].

We challenge his conjecture with smart_induct, a rec-
ommendation tool for proof by induction in Isabelle/HOL.
Given an inductive problem in any domain, smart_induct
suggests how one should apply the induct tactic to attack
that problem.

II. PROOF BY INDUCTION IN ISABELLE/HOL

Given the following two simple reverse functions defined in
Isabelle/HOL [2], how do you prove their equivalence [5]?

primrec rev::"α list => α list" where
"rev [] = []"

| "rev (x # xs) = rev xs @ [x]"

fun itrev::"α list => α list => α list"
where
"itrev [] ys = ys"

| "itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys = rev xs @ ys"

where # is the list constructor, and @ appends two lists.
Using the induct tactic of Isabelle/HOL, we can prove this
inductive problem in multiple ways:

lemma prf1: "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: ys) by auto

lemma prf2: "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:itrev.induct)
by auto

prf1 applies structural induction on xs while generalising ys
before applying induction by passing ys to the arbitrary
field. It is worth noting that the induct tactic determines the
default induction principle in prf1 from the induction term,
xs. On the other hand, prf2 applies functional induction
(also known as computation induction) on itrev by the
induction principle, itrev.induct, to the rule field.

There are other lesser-known techniques to handle difficult
inductive problems using the induct tactic, and sometimes
users have to develop useful auxiliary lemmas manually;
however, for most cases the problem of how to apply induction
boils down to the the following three questions:

• On which terms to apply induction?
• Which variables to generalise using the arbitrary

field?
• Which rule to use for functional induction or rule inver-

sion (as known as rule induction) in the rule field?
To answer these questions automatically, we previously de-

veloped a proof strategy language, PSL [6]. Given an inductive
problem, PSL produces various combinations of induction
arguments for the induct tactic and conducts an extensive
proof search based on a given strategy. If PSL completes
a proof search, it identifies the appropriate combination of
arguments for the problem and presents the combination to
the user; however, when the search space becomes enormous,
PSL cannot find a proof within a realistic timeout and fails to
provide any recommendation, even if PSL produces the right
combination of induction arguments. For further automation of
proof by induction, we need a tool that satisfies the following
two criteria:

• The tool suggests right induction arguments without
completing a proof search.

• The tool suggests right induction arguments for any
inductive problems.
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Fig. 1: The workflow of smart_induct.

In this paper we present smart_induct, a recommen-
dation tool that addresses these criteria. smart_induct is
available at GitHub [7] together with our running example and
the evaluation files discussed in Section IV.

The implementation of smart_induct is specific to
Isabelle/HOL; however, the underlying concept is transferable
to other tactic-based proof assistants including HOL4 [4],
Coq [3], and Lean [8]. We developed smart_induct as an
interactive tool, but one can take its approach to narrow the
search space for automatic inductive provers, such as ACL2
[9] and Imandra [10].

To the best of our knowledge smart_induct is the
first recommendation tool that uses a logic to analyze the
syntactic structures of proof goals and advises how to apply the
induct tactic across problem domains without completing to
a proof search.

III. GENERATING AND FILTERING TACTICS

Fig. 1 illustrates the internal workflow of smart_induct:
when invoked by a user, the first step produces many variants
of the induct tactic with different combinations of argu-
ments. Secondly, the multi-stage screening step filters out less
promising combinations of induction arguments. Thirdly, the
scoring step evaluates each combination to a natural number
using logical feature extractors implemented in LiFtEr [11]
and reorder the combinations based on their scores. Lastly, the
short-listing step takes the best 10 candidates and prints them
in the Output panel of Isabelle/jEdit as shown in Fig. 2. In
this section, we explore details of Step 1 to Step 3.

A. Step 1: Creation of Many Induction Tactics.

smart_induct inspects the given proof goal and pro-
duces a number of combinations of arguments for the induct
tactic taking the following procedure: smart_induct col-
lects variables and constants appearing in the goal. If a con-
stant has an associated induction rule in the underlying proof
context, smart_induct also collects that rule. From these
variables and induction rules, smart_induct produces the
power set of combinations of arguments for the induct tac-
tic. Then, for each member of the power set smart_induct
computes the permutation of the induction variables since

Fig. 2: The user-interface of smart_induct.

the induct tactic behaves differently for different orders
of induction variables. Finally, smart_induct produces a
tactic for each well-typed permutation of induction variables
for each member of the power set.

In our example, smart_induct picks up xs and ys as
variables and itrev and rev as constants, from which it
finds itrev.induct as an induction rule, which Isabelle
derived automatically when defining itrev. From these vari-
ables and rule, smart_induct produces 40 combinations of
induction arguments.

If the size of this set is enormous, we cannot store all
the produced induction tactics in our machines. Therefore,
smart_induct produces this set as a lazy sequence and
takes only the first 10,000 combinations for further processing.

B. Step 2: Multi-Stage Screening.

10,000 is still a large number, and feature extractors used in
Step 3 often involve nested traversals of nodes in the syntax
tree representing a proof goal, leading to high computational
costs. Fortunately, the application of the induct tactic itself
is not computationally expensive in most cases: we can apply
the induct tactic to a proof goal and have intermediate sub-
goals at a low cost. Therefore, in Step 2, smart_induct
applies the induct tactic to the given proof goal using the
various combinations of arguments from Step 1 and filter out
some of them through the following two stages.

Stage 1 focuses on the induct tactics that return
some results: in the first stage, smart_induct filters out
those combinations of induction arguments, with which Is-
abelle/HOL does not produce an intermediate goal. Since we
have no known theoretical upper bound for the computational
cost for the induct tactic, we also filter out those combina-
tions of arguments, with which the induct tactic does not
return a result within a pre-defined timeout. In our running
example, this stage filters out 8 combinations out of 40.

Stage 2 discards the induct tactic tactics that return
unpromising results: taking the results from the previous
stage, Stage 2 scans both the original goal and the newly
introduced intermediate sub-goals at the same time to further
filter out less promising combinations. More concretely, this
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stage filters out all combinations of arguments if they satisfy
any of the following conditions.

• Some of newly introduced sub-goals are identical to each
other.

• A newly introduced sub-goal contains a schematic vari-
able even though the original first sub-goal did not
contain a schematic variable.

In our example, Stage 2 does not filter out any combination.
Note that these tests on the original goal and resulting sub-
goals do not involve nested traversals of nodes in the syntax
tree representing goals. For this reason, the computational cost
of this stage is often lower than that of Step 3.

C. Step 3: Scoring Induction Arguments using LiFtEr.

Step 3 carefully investigates the remaining candidates us-
ing heuristics implemented in LiFtEr [11]. LiFtEr is a
domain-specific language to encode induction heuristics in a
style independent of problem domains. Given a proof goal and
combination of induction arguments, the LiFtEr interpreter
mechanically checks if the combination is appropriate for
the goal in terms of a heuristic written in LiFtEr. The
interpreter returns True if the combination is compatible with
the heuristic and False if not. We illustrated the details of
LiFtEr in our previous work [11] with many examples. In
this paper, we focus on the essence of LiFtEr and show one
example heuristic used in smart_induct.
LiFtEr supports four types of variables: natural numbers,

induction rules, terms, and term occurrences. An induction
rule is an auxiliary lemma passed to the rule field of the
induct tactic. The domain of terms is the set of all sub-terms
appearing in a given goal. The logical connectives (∨, ∧, →,
and ¬) correspond to the connectives in the classical logic.
LiFtEr offers atomic assertions, such as is_rule_of, to
examine the property of each atomic term. Quantifiers bring
the power of abstraction to LiFtEr, which allows LiFtEr
users to encode induction heuristics that can transcend problem
domains. Quantification over term can be restricted to the
induction terms used in the induct tactic.

We encoded 19 heuristics in LiFtEr for smart_induct
and assign weights to these heuristics. Some of them examine
a combination of induction arguments in terms of functional
induction or rule inversion, whereas others check the combina-
tion for structural induction. Program 1, for example, encodes
a heuristic for functional induction. In English this heuristic
reads as follows:

if there exists a rule, r1, in the rule field of the
induct tactic, then there exists a term t1 with an
occurrence to1, such that r1 is derived by Isabelle
when defining t1, and for all induction terms t2,
there exists an occurrence to2 of t2 such that, there
exists a number n, such that to2 is the nth argument
of to1 and that t2 is the nth induction terms passed
to the induct tactic.

If we apply this heuristic to our running example, prf2,
the LiFtEr interpreter returns True: there is an argument,

Program 1 A LiFtEr heuristic used in smart_induct.
∃ r1 : rule. True

→
∃ r1 : rule.
∃ t1 : term.
∃ to1 : term_occurrence ∈ t1 : term.
r1 is_rule_of to1

∧
∀ t2 : term ∈ induction_term.
∃ to2 : term_occurrence ∈ t2 : term.
∃ n : number.
is_nth_argument_of (to2, n, to1)

∧
t2 is_nth_induction_term n

itrev.induct, in the rule field, and the occurrence of its
related term, itrev, in the proof goal takes all the induction
terms, xs and ys, as its arguments in the same order.

Attentive readers may have noticed that Program 1 is
independent of any types or constants specific to prf2.
Instead of handling specific constructs explicitly, Program
1 analyzes the structure of the goal with respect to the
arguments passed to the induct tactic in an abstract way
using quantified variables and logical connectives. This power
of abstraction let smart_induct evaluate whether a given
combination of arguments to the induct tactic is appropri-
ate for a user-defined proof goal consisting of user-defined
types and constants, even though such constructs are not
available to the smart_induct developers. In fact, none
of the LiFtEr heuristics used in smart_induct relies
on constructs specific to any problem domain except for one
heuristic, which involves a heuristic about Set.member. We
developed this particular heuristic for conjectures involving
Set.member since Set.member appears in the standard
library of Isabelle/HOL and is used by many Isabelle users.

In Step 3, smart_induct applies these heuristics to the
results from Step 2. For each heuristic, smart_induct gives
certain predefined points to each combination of induct
arguments if the LiFtEr interpreter returns True for that
combination. Then, smart_induct reorders these combi-
nations based on their scores and presents the most promising
combinations to the user in Step 4.

D. User-Interface

Fig. 2 shows a screenshot of Isabelle/jEdit interface with
smart_induct. The seamless integration into Isabelle's
ecosystem makes smart_induct easy to install and easy
to use: smart_induct is free from any dependency to
external tools except for Isabelle/HOL itself, and we have in-
corporated smart_induct into Isabelle/Isar [12], Isabelle's
proof language, and Isabelle/jEdit, its standard editor. This
allows Isabelle users to invoke smart_induct by typing
smart_induct within their proof document and to copy a
recommended use of the induct tactic to the right location
in the document with one click.
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Fig. 3: Breakdown of the evaluation dataset.
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Fig. 4: Use of rule and arbitrary fields.

Since smart_induct is a meta-tool to use Isabelle's de-
fault induction tactic, once smart_induct has been called
and the tactic inserted, one can remove the smart_induct
call.

IV. EVALUATION

We evaluated smart_induct by measuring its perfor-
mance. We conducted all evaluations using a MacBook Pro
(15-inch, 2019) with 2.6 GHz Intel Core i7 6-core memory
32 GB 2400 MHz DDR4.

A. Database for evaluation.

As our evaluation target, we chose five Isabelle theory
files with many inductive problems developed by various
researchers from the Archive of Formal Proofs [13]. In the
following, we use the following short names to denote these
files:

1) Challenge stands for Challenge1A.thy, which is a
part of the solution for VerifyThis2019, a program ver-
ification competition associated with ETAPS2019 [14],

2) DFS stands for DFS.thy, which is a formalisation of
depth-first search [15],

3) Goodstein is for Goodstein_Lambda.thy, which is
an implementation of the Goodstein function in lambda-
calculus [16],

4) NN stands for Nearest_Neighbors.thy, which
is from the formalisation of multi-dimensional binary
search trees [17], and

TABLE I: Scope of smart_induct.

- w/ handwritten rule w/o handwritten rule

w/ compound term 1 (0.9%) 1 (0.9%)
w/o compound term 5 (4.6%) 102 (93.6%)

5) PST stands for PST_RBT.thy, which is from the
formalisation of priority search tree [18].

As a whole these files contain 109 calls of the induct
tactic. Fig. 3 shows the demographics of our dataset. For exam-
ple, NN(11) 10.1% mean that Nearest_Neighbor.thy
contains 11 invocations of the induct tactic, which accounts
for 10.1% of all invocations of the induct tactic in our
dataset.

Fig. 4, on the other hand, shows how often proof authors
used the rule and arbitrary fields. In the labels of Fig. 4,
“w” and “wo” stand for “with” and “without”, respectively;
whereas “R” and “A” stand for “Rule” and “Arbitrary”. For
example, “wR-woA(55) 50.5%” represents that among the
109 applications of the induct tactic 55 of them have an
argument in the rule field but have no argument in the
arbitrary field, and this amounts to 50.5%. We greyed the
area corresponding to the applications of the induct tactic
with an argument in the rule field.

This figure illustrates that in our dataset
• more than half of applications come with a rule, and
• applications of the induct tactic with a rule are less

likely to involve generalisation.
Table I shows how many proofs by induction in the eval-

uation dataset reside within the scope of smart_induct.
For example, 102(93.6%) for “w/o compound term” and “w/o
handwritten rule” means the following: for 102 proofs by
induction out of 109, developers of this dataset used the
induct tactic without applying induction on a compound
term nor using an induction rule in the rule field that was
conjectured and proved manually by a human developer.

These 102 proofs by induction are the only ones that
reside within the scope of smart_induct because Step
1 of smart_induct does not create the induct tactics
on compound terms or the induct tactics with induction
principles that were not derived by Isabelle automatically when
defining a constant appearing in the proof goal at hand.

Conversely, the remaining three entries in Table I corre-
spond to the invocations of the induct tactic that lie outside
the scope of smart_induct. And such invocations amount
to 7 (6.4%) out of 109.

B. Coincidence Rate.

The most important aspect of this tool would be the accu-
racy of its recommendation. Unfortunately, it is in general not
possible to measure if a combination of induction arguments
is correct for a goal because many proofs by induction can be
valid for one inductive problem. For our running example,
we have two proofs, prf1 and prf2, and both of them
are equally good. In this particular case, we can confirm
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Fig. 6: Inductions with a rule or generalization.

the correctness of these combinations of induction arguments
by completing the corresponding proof attempts; however,
the necessary proof scripts that follow the induct tactic,
in general, can be arbitrarily long, and for this reason it is
not possible to mechanically check whether a combination of
induction arguments is correct or not.

Since we cannot directly measure the true success rate
of smart_induct, we evaluated the trustworthiness of
smart_induct's recommendations using coincidence rates:
we counted how often its recommendation coincides with
the choices of Isabelle experts. Since we often have multi-
ple equally valid combinations of induction arguments for a
given proof goal, we should regard a coincidence rate as a
conservative estimate of true success rate.

On the other hand, we can safely consider our coincidence
rates as the lower bound for the true success rates since we
collected our evaluation targets from the Archive of Formal
Proofs [13], which accepts Isabelle proof documents only after
the peer-reviewing process by Isabelle experts.

Fig. 5 shows coincidence rates for each theory file and
the entire dataset separately. The four bars for each theory
file represent the corresponding success rates among top n

recommendations, where n is 1, 3, 5, and 10 from left to
right. For example, top 3 for Goodstein is 51.9%. This means
the following: when smart_induct recommends three most
promising combinations induction arguments to 52 inductive
problems in Goodstein_Lambda.thy, for 51.9% out of
52 problems in this file one of the three combinations of induc-
tion arguments recommended by smart_induct coincides
with the choice of human proof author.

As mentioned earlier, we should regard a coincidence rate
as a conservative estimate of true success rate. Therefore,
51.9% mentioned above should be interpreted as following:
smart_induct's recommendation coincides with the choice
of experienced Isabelle user for 51.9% of times when it is
allowed to recommend three combinations of arguments, but
the real success rate of smart_induct's recommendation
can be higher than 51.9%.

Notably the rightmost group of bars in Fig. 5 shows
that smart_induct can recommend the choice of human
engineer as the most promising application of the induct
tactic for at least roughly half of the cases (49.5%).

A quick glance over Fig. 5 would give the impression that
smart_induct's performance depends heavily on problem
domains: smart_induct demonstrated the perfect result for
PST, whereas the coincidence rate for NN remains at 18.2%
for top 5.

However, a closer investigation of the results reveals that
the different coincidence rates come from the style of induc-
tion rather than domain specific items such as the types or
constructs appearing in goals.

To corroborate this claim, we illustrate how each proof
author used the induct tactic to develop each theory file
in Fig. 6. In this figure each pair of bars presents how often
the induct tactic comes with an argument in the rule field
and arbitrary field, respectively. For example, the left bar
for Goodstein is 40.4% whereas its right bar is 25.0%. This
means that the induct tactic is applied with an argument
in the rule field for 40.4% of times in Goodstein, and the
induct tactic generalises a variable using the arbitrary
field for 25.0% of times in the same file.

Together with Fig. 5, Fig. 6 shows that smart_induct
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tends to show a higher coincidence rate for theory files with
a high proportion of the induct tactics with an argument
in the rule field and a lower proportion of the tactics with
generalisation using the arbitrary field. NN and PST
are two extreme examples: In NN, 81.8% of applications
of the induct tactic involve generalisation while no appli-
cation of the tactic has an argument in the rule field in
Fig. 6, and smart_induct's coincidence rates are lowest
for NN. On the contrary, PST has no application involving
generalisation while all applications use the rule field, and
smart_induct's showed the perfect result for PST.

To further investigate how the style of induction affects the
coincidence rate of smart_induct, we measured coinci-
dence rates based on the use of the rule and arbitrary
fields in Fig. 7 where “w” and “wo” stand for “with” and
“without”, respectively. For example, the leftmost group la-
belled with “w-rule-w-arb” represents the coincidence rates
among the applications of the induct tactic that have argu-
ments in both the rule and arbitrary fields.

The two right most groups of bars represent the coincidence
rates based on the use of rule field regardless of the
use of the arbitrary field. These two groups show that
smart_induct tends to perform better in predicting how
human engineers use the induct tactic when the induct
tactic has an argument in the rule field, which correspond
to functional induction and rule inversion.

Interestingly, the two groups in the middle of Fig. 7 show
that if we focus on the cases without generalisation we can
see that the trend among the gaps between the coincidence
rates for rule-based inductions (function induction and rule
inversion) and the corresponding rates for structural inductions
is less clear: we have a wider gap for “top 1”, but narrower
gaps for “top 3” and “top 5”. And for “top 10” we even have
a lower coincidence rate for rule-based inductions. Moreover,
if we focus on the induct tactics involving generalisation,
smart_induct shows even lower coincidence rates for rule-
based inductions as shown by the two leftmost groups in Fig.
7; even though smart_induct overall tends to show higher
coincidence rates for rule-based inductions.

This seemingly paradoxical phenomenon is best explained
by Fig. 4, which shows that rule-based inductions less of-
ten involve generalisation (14.0%) than structural induction
(31.1%) in the dataset: it is still difficult for smart_induct
to predict which variable to generalise, especially for rule-
based inductions, but rule-based inductions tend not to involve
variable generalisation to begin with.

To investigate how far generalisation of variables leads to
poor coincidence rates, we computed the coincidence rates
for NN again based on a different criterion: this time we
ignored the arbitrary fields and took only induction terms
and arguments in the rule into consideration to measure
coincidence rates presented in Fig. 8. In Fig. 8, the coincidence
rate among top 1 is still as low as 9.1% since smart_induct
often chooses a rule-based induction for the most promising
candidate, but the overall trend is much better and similar to
the rates for w-rule-wo-arb in Fig 7. The large discrepancies

between the numbers for NN in Fig. 5 and those in Fig. 8
show that even for the most problematic theory file, NN, which
contains many structural inductions smart_induct is often
able to predict on which variables experts apply induction, but
it fails to predict which variables to generalise.

The limited performance in predicting experts' use of the
arbitrary field stems from LiFtEr's limited capability
to examine semantic information of proof goals. Even though
LiFtEr offers quantifiers, logical connectives, and atomic
assertions to analyze the syntactic structure of a goal in an
abstract way, LiFtEr does not offer enough supports to
analyze the semantics of the goal. For more accurate prediction
of variable generalisation, smart_induct needs a language
to analyze not only the structure of a goal itself but also the
structure of the definitions of types and constants appearing
in the goal abstractly.

C. Pruning.

Section III showed how smart_induct produces many
candidates of the induct tactic and prunes less promising
ones step by step. We measured how each of these steps
contributes to the production of recommendations by counting
how many candidates are produced and pruned at each step.

Fig. 9 illustrates how many candidates smart_induct
produced at each step for each proof by induction. The vertical
axis denotes the number of candidates after each step for the
corresponding proof by induction. White circles and “+”es
represent the number of remaining candidates for invocations
of smart_induct when the choice of induction arguments
by human authors coincides with one of the 10 most promising
combinations recommended by smart_induct. For such
successful cases, we also used a white diamond to depict
the corresponding “rank” given by smart_induct. For
example, if smart_induct gives a rank of 3, this means
smart_induct recommended the choice of human engineer
as the third most promising combination of arguments to the
induct tactic.

Along the horizontal axis in Fig. 9, we sorted proofs by
induction based on the number of candidates after Step 1. For
example, at the right-end of the horizontal axis, we have a
circle, a plus, and a diamond. This means for the proof by
induction represented by these three points Step 1 produced
10,000 candidates, and Step 2 pruned them down to 128
candidates, and Step 3 ranked the choice of human engineer
as the most promising candidate.

On the other hand, black circles and “x”es represent the
number of candidates for failed cases where the choice of
induction arguments by human authors did not appear among
the top 10 recommendations by smart_induct.

One can see that black circles are broadly distributed
along the horizontal axis, indicating that the number of initial
candidates after Step 1 does not have a strong influence on
the accuracy of smart_induct.

The use of the logarithmic scale for the vertical axis makes it
clear that the number of candidates after Step 1 differs wildly.
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On the other hand, the number of candidates after Step 2 are
mostly contained under 200 with a single exception of 592.

Fig. 9 also shows that we had 6 cases where Step 1
reached its upper limit, 10,000. Interestingly, all these cases
are successful and 5 of them have the rank of 1. From this,
we can judge that the pre-defined upper limit of 10,000 is a
descent compromise, which excludes some possible combina-
tions of induction arguments without seriously damaging the
coincidence rates of smart_induct.

Finally the wide gaps between each “+” and its corre-
sponding diamond in Fig. 9 indicate that smart_induct's
heuristics written in LiFtEr effectively nailed down the
combination of induction arguments used by human engineers
out of many plausible options.

D. Execution Time.

For smart_induct to be useful, it has to be able to
provide valuable recommendations within a realistic time out.

Fig. 10 illustrates the distribution of smart_induct's
execution time necessary to produce recommendations. The
vertical axis represents the execution times in second for each
data point, which are sorted along the horizontal axis. As is
the case in Section IV-C, we filled circles for unsuccessful
cases with black.

Similarly to Fig. 9, Fig. 10 also shows that the unsuccessful
cases are spread along the horizontal axis, meaning there is
no clear correlation between execution time and the accuracy
of recommendation.

We again used the logarithmic scale for the vertical axis.
This means that execution times vary largely for different
proofs by induction, even though the numbers of candidates
after Step 2 are mostly kept below 200, as we saw in Section
IV-C, This is because the computational cost for each LiFtEr
heuristic in Step 3 depends on the syntactic structure of each
inductive problem, smart_induct's execution time varies
for different problems.

The overall median value is 25.5 seconds, which means
smart_induct can produce a recommendation within 25.5
seconds for half of the problems. In the future we plan to
identify and discard less valuable heuristics in Step 3 to speed
up smart_induct.

V. CONCLUSION

We presented smart_induct, a recommendation tool for
proof by induction in Isabelle/HOL. Our evaluation showed
smart_induct's excellent performance in recommending
how to apply functional induction and rule inversion and good
performance at identifying induction variables for structural
induction for various inductive problems across problem do-
mains. This partially refutes Gramlich's bleak conjecture from
2005. However, recommendation of variable generalisation
remains as a challenging task.

It remains as an open question how far we can improve
the accuracy and speed of smart_induct by combining it
with search based systems [6], [19] and approaches based on
evolutionary computation [20] or statistical machine learning
[21].

Related Work: The most well-known approach for in-
ductive problems is called the Boyer-Moore waterfall model
[22]. This approach was invented for a first-order logic on
Common Lisp. ACL2 [23] is a commonly used waterfall
model based prover. When deciding how to apply induction,
ACL2 computes a score, called hitting ratio, to estimate how
good each induction scheme is for the term which it accounts
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for and proceeds with the induction scheme with the highest
hitting ratio [9], [24].

Instead of computing the hitting ratios, smart_induct
analyzes the structures of proof goals directly using LiFtEr.
While ACL2 produces many induction schemes and computes
their hitting ratios, smart_induct does not directly produce
induction schemes but analyzes the given proof goal, the
arguments passed to the induct tactic, and the emerging
sub-goals.

Jiang et al. ran multiple waterfalls [25] in HOL Light
[26]. However, when deciding induction variables, they naively
picked the first free variable with a recursive type and left the
selection of appropriate induction variables as future work.

Machine learning applications to tactic-based provers [27],
[28], [29], [30], [31], [32] focus on selections of tactics, and
the selections of tactic arguments are restricted to premise
selections for general-purpose tactics; even though one often
has to choose terms for induction arguments to use the
induct tactic effectively.

Sometimes it is not enough to apply the induct tactic to
discharge an inductive problem in Isabelle/HOL but we have
to conjecture useful auxiliary lemmas, which we can use to

prove the original problem effectively. There are two schools to
automate such conjecturing step: bottom-up approach known
as theory exploration [33], [34] and top-down approach known
as goal-oriented conjecturing [19]. For both cases, conjectured
lemmas themselves are often inductive problems, which one
has to prove by applying proof by induction. For this reason,
we plan to achieve complementary strengths by incorporating
smart_induct into a conjecturing tool.

There was a series of attempts to automate proof by
induction in Isabelle/HOL in the style of rippling [35], [36].
Compared to their approach, we built smart_induct on top
of the default induct tactic, which allowed us to exploit the
widely used existing framework for proof by induction in Is-
abelle/HOL and made the resulting proof scripts maintainable
without smart_induct.

Reger et al. incorporated lightweight automated induction
into Vampire [37] for saturation-based automated first-order
theorem proving [38], while we built smart_induct for
Isabelle/HOL, a tactic-based interactive theorem prover for
higher-order logic.
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Abstract—We propose trace logic, an instance of many-sorted
first-order logic, to automate the partial correctness verification
of programs containing loops. Trace logic generalizes semantics
of program locations and captures loop semantics by encoding
properties at arbitrary timepoints and loop iterations. We guide
and automate inductive loop reasoning in trace logic by using
generic trace lemmas capturing inductive loop invariants. Our
work is implemented in the RAPID framework, by extending
and integrating superposition-based first-order reasoning within
RAPID. We successfully used RAPID to prove correctness of many
programs whose functional behavior are best summarized in
the first-order theories of linear integer arithmetic, arrays and
inductive data types.

I. INTRODUCTION

One of the main challenges in automating software verification
comes with handling inductive reasoning over programs con-
taining loops. Until recently, automated reasoning in formal
verification was the primary domain of satisfiability modulo
theory (SMT) solvers [1], [2], yielding powerful advancements
for inferring and proving loop properties with linear arithmetic
and limited use of quantifiers, see e.g. [3], [4], [5]. Formal
verification however also requires reasoning about unbounded
data types, such as arrays, and inductively defined data types.
Specifying, for example as shown in Figure 1, that every
element in the array b is initialized by a non-negative array
element of a requires reasoning with quantifiers and can
be best expressed in many-sorted extensions of first-order
logic. Yet, the recent progress in automation for quantified
reasoning in first-order theorem proving has not yet been fully
integrated in formal verification. In this paper we address
such a use of first-order reasoning and propose trace logic L,
an instance of many-sorted first-order logic, to automate the
partial correctness verification of program loops, by expressing
program semantics in L, and use L in combination with
superposition-based first-order theorem proving.
Contributions: In our previous work [6], an initial version of
trace logic L was introduced to formalize and prove relational
properties. In this paper, we go beyond [6] and turn trace logic
L into an efficient approach to loop (safety) verification. We
propose trace logic L as a unifying framework to reason about
both relational and safety properties expressed in full first-
order logic with theories. We bring the following contributions.
(i) We generalize the semantics of program locations by
treating them as functions of execution timepoints. In essence,
unlike other works [7], [8], [9], [10], we formalize program
properties at arbitrary timepoints of locations.
(ii) Thanks to this generalization, we provide a non-recursive
axiomatization of program semantics in trace logic L and
prove completeness of our axiomatization with respect to

1 func main() {
2 const Int[] a;
3
4 Int[] b;
5 Int i = 0;
6 Int j = 0;
7 while (i < a.length) {
8 if (a[i] ≥ 0) {
9 b[j] = a[i];

10 j = j + 1:
11 }
12 i = i + 1;
13 }
14 }
15 assert (∀kI.∃lI.((0 ≤ k <j ∧ a.length ≥ 0)

→ b(k) = a(l)))
16

Fig. 1. Program copying positive elements from array a to b.

Hoare logic. Our semantics in trace logic L supports arbitrary
quantification over loop iterations (Section V).
(iii) We guide and automate inductive loop reasoning in trace
logic L, by using generic trace lemmas capturing inductive
loop invariants (Section VI). We prove soundness of each trace
lemma we introduce.
(iv) We bring first-order theorem proving into the land-
scape of formal verification, by extending recent results in
superposition-based reasoning [11], [12], [13] with support for
trace logic properties, complementing SMT-based verification
methods in the area (Section VI). As logical consequences
of our trace lemmas are also loop invariants, superposition-
based reasoning in trace logic L enables to automatically find
loop invariants that are needed for proving safety assertions
of program loops.
(v) We implemented our approach in the RAPID framework
and combined RAPID with new extensions of the first-order
theorem prover VAMPIRE. We successfully evaluated our
work on more than 100 benchmarks taken from the SV-
Comp repository [14], mainly consisting of safety verification
challenges over programs containing arrays of arbitrary length
and integers (Section VII). Our experiments show that RAPID
automatically proves safety of many examples that, to the best
of our knowledge, cannot be handled by other methods.

II. RUNNING EXAMPLE

We illustrate and motivate our work with Figure 1. This
program iterates over a constant integer array a of arbitrary
length and copies positive values into a new array b. We are
interested in proving the safety assertion given at line 15: given
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that the length a.length of a is not negative, every element
in b is an element from a. Expressing such a property requires
alternations of quantifiers in the first-order theories of linear
integer arithmetic and arrays, as formalized in line 15. We
write kI and lI to specify that k, l are of sort integer I.
While the safety assertion of line 15 holds, proving correctness
of Figure 1 is challenging for most state-of-the-art approaches,
such as e.g. [15], [3], [4], [5]. The reason is that proving safety
of Figure 1 needs inductive invariants with existential/alter-
nating quantification and involves inductive reasoning over
arbitrarily bounded loop iterations/timepoints. In this paper we
address these challenges as follows.
(i) We extend the semantics of program locations to des-
cribe locations parameterized by timepoints, allowing us to
express values of program variables at arbitrary program
locations within arbitrary loop iterations. We write for example
i(l12(it))) to denote the value of program variable i at
location l12 in a loop iteration it, where the location l12
corresponds to the program line 12. We reserve the constant
end for specifying the last program location l15, that is line 15,
corresponding to a terminating program execution of Figure 1.
We then write b(end, k) to capture the value of array b at
timepoint end and position k. For simplicity, as a is a constant
array, we simply write a(k) instead a(end, k).
(ii) Exploiting the semantics of program locations, we formal-
ize the safety assertion of line 15 in trace logic L as follows:

∀kI.∃lI.
(
(0 ≤ k < j(end) ∧ a.length ≥ 0)
→ b(end, k)' a(l)

) (1)

(iii) We express the semantics of Figure 1 as a set S of first-
order formulas in trace logic L, encoding values and depen-
dencies among program variables at arbitrary loop iterations.
To this end, we extend S with so-called trace lemmas, to
automate inductive reasoning in trace logic L. One such trace
lemma exploits the semantics of updates to j, allowing us to
infer that every value of j between 0 to j(end), and thus each
position at which the array b has been updated, is given by
some loop iteration. Moreover, updates to j happen at different
loop iterations and thus a position j at which b is updated is
visited uniquely throughout Figure 1.
(iv) We finally establish validity of (1), by deriving (1) to be
a logical consequence of S.

III. PRELIMINARIES

We assume familiarity with standard first-order logic with
equality and sorts. We write ' for equality and xS to denote
that a logical variable x has sort S. We denote by I the set of
integer numbers and by B the boolean sort. The term algebra
of natural numbers is denoted by N, with constructors 0 and
successor suc. We also consider the symbols pred and ≤
as part of the signature of N, interpreted respectively as the
predecessor function and less-than-equal relation.
Let P be a first-order formula with one free variable x of sort
N. We recall the standard (step-wise) induction schema for
natural numbers as being(

P (0) ∧ ∀x′N.
(
P (x′)→ P (suc(x′))

))
→ ∀xN.P (x) (2)

program := function
function := func main(){ context }

subprogram := statement | context
statement := atomicStatement

| if( condition ){ context } else { context }
| while( condition ){ context }

context := statement; ... ; statement

Fig. 2. Grammar of W .

In our work, we use a variation of the induction schema (2)
to reason about intervals of loop iterations. Namely, we use
the following schema of bounded induction(
P (bl) ∧ (base case)

∀x′N.
((

bl ≤ x′ < br ∧ P (x′)
)
→ P (suc(x′))

))
(inductive case)

→ ∀xN.
(
bl ≤ x ≤ br → P (x)

)
,

where bl, br ∈ N are term algebra expressions of N, called
respectively as left and right bounds of bounded induction.

IV. PROGRAMMING MODELW
We consider programs written in an imperative while-like
programming language W . This section recalls terminology
from [6], however adapted to our setting of safety verification.
Unlike [6], we do not consider multiple program traces in W .
In Section V, we then introduce a generalized program seman-
tics in trace logic L, extended with reachability predicates.
Figure 2 shows the (partial) grammar of our programming
model W , emphasizing the use of contexts to capture lists
of statements. An input program in W has a single main-
function, with arbitrary nestings of if-then-else conditionals
and while-statements. We consider mutable and constant vari-
ables, where variables are either integer-valued numeric vari-
ables or arrays of such numeric variables. We include standard
side-effect free expressions over booleans and integers.

A. Locations and Timepoints

A program in W is considered as sets of locations, with
each location corresponding to positions/lines of program
statements in the program. Given a program statement s, we
denote by ls its (program) location. We reserve the location
lend to denote the end of a program. For programs with
loops, some program locations might be revisited multiple
times. We therefore model locations ls corresponding to a
statement s as functions of iterations when the respective
location is visited. For simplicity, we write ls also for the
functional representation of the location ls of s. We thus
consider locations as timepoints of a program and treat them
ls as being functions ls over iterations. The target sort of
locations ls is L. For each enclosing loop of a statement s, the
function symbol ls takes arguments of sort N, corresponding
to loop iterations. Further, when s is a loop itself, we also
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introduce a function symbol ns with argument and target sort
N; intuitively, ns corresponds to the last loop iteration of s.
We denote the set of all function symbols ls as STp, whereas
the set of all function symbols ns is written as Sn.

Example 1: We refer to program statements s by their (first)
line number in Figure 1. Thus, l5 encodes the timepoint
corresponding to the first assignment of i in the program
(line 5). We write l7(0) and l7(n7) to denote the timepoints
of the first and last loop iteration, respectively. The timepoints
l8(suc(0)) and l8(it) correspond to the beginning of the loop
body in the second and the it-th loop iterations, respectively.

�

B. Expressions over Timepoints

We next introduce commonly used expressions over time-
points. For each while-statement w of W , we introduce a
function itw that returns a unique variable of sort N for w,
denoting loop iterations of w. Let w1, . . . , wk be the enclosing
loops for statement s and consider an arbitrary term it of sort
N. We define tps to be the expressions denoting the timepoints
of statements s as

tps := ls(it
w1 , . . . , itwk) if s is non-while statement

tps(it) := ls(it
w1 , . . . , itwk , it) if s is while-statement

lastIts := ns(it
w1 , . . . , itwk) if s is while-statement

If s is a while-statement, we also introduce lastIts to de-
note the last iteration of s. Further, consider an arbitrary
subprogram p, that is, p is either a statement or a context.
The timepoint startp (parameterized by an iteration of each
enclosing loop) denotes the timepoint when the execution of
p has started and is defined as

startp :=


tpp(0) if p is while-statement
tpp if p is non-while statement
starts1

if p is context s1;. . . ;sk
We also introduce the timepoint endp to denote the timepoint
upon which a subprogram p has been completely evaluated
and define it as

endp :=



starts if s occurs after p in a context
endc if p is last statement in context c
ends if p is context of if-branch or

else-branch of s
tps(suc(its)) if p is context of body of s
lend if p is top-level context

Finally, if s is the topmost statement of the top-level context
in main(), we define

start := starts.

C. Program Variables

We express values of program variables v at various timepoints
of the program execution. To this end, we model (numeric)
variables v as functions v : L 7→ I, where v(tp) gives the
value of v at timepoint tp. For array variables v, we add an

additional argument of sort I, corresponding to the position
where the array is accessed; that is, v : L× I 7→ I. The set of
such function symbols corresponding to program variables is
denoted by SV .
Our framework for constant, non-mutable variables can be
simplified by omitting the timepoint argument in the functional
representation of such program variables, as illustrated below.
Example 2: For Figure 1, we denote by i(l5) the value of
program variable i before being assigned in line 5. As the
array variable a is non-mutable (specified by const in the
program), we write a(i(l8(it))) for the value of array a at the
position corresponding to the current value of i at timepoint
l8(it). For the mutable array b, we consider timepoints where
b has been updated and write b(l9(it), j(l9(it))) for the array
b at position j at the timepoint l9(it) during the loop. �

We emphasize that we consider (numeric) program variables
v to be of sort I, whereas loop iterations it are of sort N.

D. Program Expressions

Arithmetic constants and program expressions are modeled
using integer functions and predicates. Let e be an arbitrary
program expression and write JeK(tp) to denote the value
of the evaluation of e at timepoint tp. Let v ∈ SV , that
is a function v denoting a program variable v. Consider
e,e1,e2 to be program expressions and let tp1, tp2 denote
two timepoints. We define

Eq(v, tp1, tp2) :={
∀pos I. v(tp1, pos)' v(tp2, pos),, if v is an array
v(tp1)' v(tp2), otherwise

to denote that the program variable v has the same values at
tp1 and tp2. We further introduce

EqAll(tp1, tp2) :=
∧

v∈SV

Eq(v, tp1, tp2)

to define that all program variables have the same values at
timepoints tp1 and tp2. We also define

Update(v, e, tp1, tp2) :=
v(tp2)' JeK(tp1) ∧

∧
v′∈SV \{v}Eq(v′, tp1, tp2),

asserting that the numeric program variable v has been updated
while all other program variables v’ remain unchanged. This
definition is further extended to array updates as

UpdateArr(v, e1, e2, tp1, tp2) :=
∀pos I. (pos 6' Je1K(tp1)→ v(tp2, pos)' v(tp1, pos))
∧ v(tp2, Je1K(tp1))' Je2K(tp1)∧

v′∈SV \{v}Eq(v′, tp1, tp2).

Example 3: In Figure 1, we refer to the value of i+1 at
timepoint l12(it) as i(l12(it))+1. Let S1

V be the set of function
symbols representing the program variables of Figure 1. For
an update of j in line 10 at some iteration it, we derive

Update(j,j+1, l9(it), l10(it)) := j(l10(it))' (j(l9(it)) + 1)

∧
∧

v′∈S1
V \{j}

Eq(v′, l9(it), l10(it)).
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V. AXIOMATIC SEMANTICS IN TRACE LOGIC L
Trace logic L has been introduced in [6], yet for the set-
ting of relational verification. In this paper we generalize
the formalization of [6] in three ways. First, (i) we define
program semantics in a non-recursive manner using the Reach
predicate to characterize the set of reachable locations within
a given program context (Section V-B). Second, and most
importantly, (ii) we prove completeness of trace logic L with
respect to Hoare Logic (Theorem 2), which could have not
been achieved in the setting of [6]. Finally, (iii) we introduce
the use of logic L for safety verification (Section VI).

A. Trace Logic L
Trace logic L is an instance of many-sorted first-order logic
with equality. We define the signature Σ(L) of trace logic as

Σ(L) := SN ∪ SI ∪ STp ∪ SV ∪ Sn,

containing the signatures of the theory of natural numbers
(term algebra) N and integers I, as well the respective sets
of timepoints, program variables and last iteration symbols as
defined in section IV.
We next define the semantics of W in trace logic L.

B. Reachability and its Axiomatization

We introduce a predicate Reach : L 7→ B to capture the
set of timepoints reachable in an execution and use Reach
to define the axiomatic semantics of W in trace logic L. We
define reachability Reach as a predicate over timepoints, in
contrast to defining reachability as a predicate over program
configurations such as in [16], [7], [5], [10].
We axiomatize Reach using trace logic formulas as follows.
Definition 1 (Reach-predicate): For any context c, any state-
ment s, let Conds be the expression denoting a potential
branching condition in s. We define

Reach(startc) :=



true,

if c is top-level context
Reach(starts) ∧ Conds(starts),

if c is context of if-branch of s
Reach(starts) ∧ ¬Conds(starts),

if c is context of else-branch of s
Reach(starts) ∧ its < lastIts,

if c is context of body of s.

For any non-while statement s′ occurring in context c, let

Reach(starts′) := Reach(startc),

and for any while-statement s′ occurring in context c, let

Reach(tps′(it
s′)) := Reach(startc) ∧ its

′
≤ lastIts′ .

Finally let Reach(end) := true. �
Note that our reachability predicate Reach allows specifying
properties about intermediate timepoints (since those proper-
ties can only hold if the referred timepoints are reached) and
supports reasoning about which locations are reached.

C. Axiomatic Semantics of W

We axiomatize the semantics of each program statement inW ,
and define the semantics of a program inW as the conjunction
of all these axioms.

a) Main-function: Let p0 be an arbitrary, but fixed program in
W; we give our definitions relative to p0. The semantics of p0,
denoted by Jp0K, consists of a conjunction of one implication
per statement, where each implication has the reachability
of the start-timepoint of the statement as premise and the
semantics of the statement as conclusion:

Jp0K :=
∧

s statement of p0

∀enclIts.
(
Reach(starts)→ JsK

)
where enclIts is the set of iterations {itw1 , . . . , itwn} of all
enclosing loops w1, . . . , wn of some statement s in p0, and the
semantics JsK of program statements s is defined as follows.

b) Skip: Let s be a statement skip. Then

JsK := EqAll(ends, starts) (3)

c) Integer assignments: Let s be an assignment v = e, where
v is an integer-valued program variable and e is an expression.
The evaluation of s is performed in one step such that, after
the evaluation, the variable v has the same value as e before
the evaluation. All other variables remain unchanged and thus

JsK := Update(v, e, ends, starts) (4)

d) Array assignments: Consider s of the form a[e1] = e2,
with a being an array variable and e1,e2 being expressions.
The assignment is evaluated in one step. After the evaluation of
s, the array a contains the value of e2 before the evaluation
at position pos corresponding to the value of e1 before the
evaluation. The values at all other positions of a and all other
program variables remain unchanged and hence

JsK := UpdateArr(v, e1, e2, ends, starts) (5)

e) Conditional if-then-else Statements: Let s be if(Cond){
c1} else {c2}. The semantics of s states that entering the
if-branch and/or entering the else-branch does not change the
values of the variables and we have

JsK := JCondK(starts)→ EqAll(startc1 , starts) (6a)
∧ ¬JCondK(starts)→ EqAll(startc2 , starts) (6b)

where the semantics JCondK of the expression Cond is
according to Section IV-D.

f) While-Statements: Let s be the while-statement while(
Cond){c}. We refer to Cond as the loop condition. The
semantics of s is captured by conjunction of the following
three properties: (7a) the iteration lastIts is the first iteration
where Cond does not hold, (7b) entering the loop body does
not change the values of the variables, (7c) the values of the
variables at the end of evaluating s are the same as the variable
values at the loop condition location in iteration lastIts. As
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such, we have

JsK := ∀itsN. (its < lastIts → JCondK(tps(its)))

∧ ¬JCondK(tp(lastIts)) (7a)
∧ ∀itsN. (its < lastIts → EqAll(startc, tps(its))

(7b)
∧ EqAll(ends, tps(lastIts)) (7c)

D. Soundness and Completeness.

The axiomatic semantics ofW in trace logic is sound. That is,
given a program p inW and a trace logic property F ∈ L, we
have that any interpretation in L is a model of F according to
the small-step operational semantics of W . We conclude the
next theorem - and refer to [17] for details.
Theorem 1 (W-Soundness): Let p be a program. Then the
axiomatic semantics JpK is sound with respect to standard
small-step operational semantics. �

Next, we show that the axiomatic semantics ofW in trace logic
L is complete with respect to Hoare logic [18], as follows.
Intuitively, a Hoare Triple {F1}p{F2} corresponds to the trace
logic formula

∀enclIts.
(
Reach(startp)→ ([F1](startp)→ [F2](endp))

)
(8)

where the expressions [F1](startp) and [F2](endp) denote
the result of adding to each program variable in F1 and F2

the timepoints startp respectively endp as first arguments.
We therefore define that the axiomatic semantics of W is
complete with respect to Hoare logic, if for any Hoare triple
{F1}p{F2} valid relative to the background theory T , the
corresponding trace logic formula (8) is derivable from the
axiomatic semantics of W in the background theory T . With
this definition at hand, we get the following result, proved
formally in [17].
Theorem 2 (W-Completeness with respect to Hoare logic):
The axiomatic semantics of W in trace logic is complete with
respect to Hoare logic. �

VI. TRACE LOGIC FOR SAFETY VERIFICATION

We now introduce the use of trace logic L for verifying safety
properties of W programs. We consider safety properties F
expressed in first-order logic with theories, as illustrated in
line 15 of Figure 1. Thanks to soundness and completeness
of the axiomatic semantics of W , a partially correct program
p with regard to F can be proved to be correct using the
axiomatic semantics of W in trace logic L. That is, we
assume termination and establish partial program correctness.
Assuming the existence of an iteration violating the loop
condition can be help backward reasoning and, in particular,
automatic splitting of loop iteration intervals.
However, proving correctness of a program p annotated with
a safety property F faces the reasoning challenges of the
underlying logic, in our case of trace logic. Due to the presence
of loops in W , a challenging aspect in using trace logic
for safety verification is to handle inductive reasoning as
induction cannot be generally expressed in first-order logic. To
circumvent the challenge of inductive reasoning and automate

verification using trace logic, we introduce a set of first-order
lemmas, called trace lemmas, and extend the semantics of W
programs in trace logic with these trace lemmas. Trace lemmas
describe generic inductive properties over arbitrary loop iter-
ations and any logical consequence of trace lemmas yields a
valid program loop property as well. We next summarize our
approach to program verification using trace logic and then
address the challenge of inductive reasoning in trace logic L.

A. Safety Verification in Trace Logic

Given a program p in W and a safety property F ,
(i) we express program semantics JpK in trace logic L, as

given in Section V;
(ii) we formalize the safety property in trace logic L, that is

we express F by using program variables as functions
of locations and timepoints (similarly as in (1)). For
simplicity, let us denote the trace logic formalization of
F also by F ;

(iii) we introduce instances T p
L of a set TL of trace lemmas,

by instantiating trace lemmas with program variables,
locations and timepoints of p;

(iv) to verify F , we then show that F is a logical consequence
of JpK ∧ T p

L ;
(v) however to conclude that p is partially correct with regard

to F , two more challenges need to be addressed. First, in
addition to Theorem 1, soundness of our trace lemmas TL
needs to be established, implying that our trace lemma
instances T p

L are also sound. Soundness of T p
L implies

then validity of F , whenever F is proven to be a logical
consequence of sound formulas JpK ∧ T p

L . However, to
ensure that F is provable in trace logic, as a second
challenge we need to ensure that our trace lemmas TL,
and thus their instances T p

L , are strong enough to prove
JpK ∧ T p

L =⇒ F . That is, proving that F is a safety
assertion of p in our setting requires finding a suitable
set TL of trace lemmas.

In the remaining of this section, we address (v) and show
that our trace lemmas TL are sound consequences of bounded
induction (Section VI-B). Practical evidence for using our
trace lemmas are further given in Section VII-B.

B. Trace Lemmas TL for Verification

Trace logic properties support arbitrary quantification over
timepoints and describe values of program variables at arbi-
trary loop iterations and timepoints. We therefore can relate
timepoints with values of program variables in trace logic
L, allowing us to describe the value distributions of program
variables as functions of timepoints throughout program exe-
cutions. As such, trace logic L supports
(1) reasoning about the existence of a specific loop iteration,

allowing us to split the range of loop iterations at a
particular timepoint, based on the safety property we want
to prove. For example, we can express and derive loop
iterations corresponding to timepoints where one program
variable takes a specific value for the first time during
loop execution;
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(2) universal quantification over the array content and range
of loop iterations bounded by two arbitrary left and right
bounds, allowing us to apply instances of the induction
scheme (3) within a range of loop iterations bounded, for
example, by it and lastIts for some while-statement s.

Addressing these benefits of trace logic, we express generic
patterns of inductive program properties as trace lemmas.
Identifying a suitable set TL of trace lemmas to automate
inductive reasoning in trace logic L is however challenging
and domain-specific. We propose three trace lemmas for
inductive reasoning over arrays and integers, by considering
(A1) one trace lemma describing how values of program

variables change during an interval of loop iterations;
(B1-B2) two trace lemmas to describe the behavior of loop

counters.
We prove soundness of our trace lemmas - below we include
only one proof and refer to [17] for further details.
(A1) Value Evolution Trace Lemma: Let w be a while-
statement, let v be a mutable program variable and let ◦ be a
reflexive and transitive relation - that is ' or ≤ in the setting
of trace logic. The value evolution trace lemma of w, v, and
◦ is defined as
∀blN, brN.(
∀itN.

(
(bl ≤ it < br ∧ v(tpw(bl)) ◦ v(tpw(it)))

→ v(tpw(bl)) ◦ v(tpw(suc(it)))
)

→
(
bl ≤ br → v(tpw(br)) ◦ v(tpw(br))

))
(A1)

In our work, the value evolution trace lemma is mainly
instantiated with the equality predicate ' to conclude that
the value of a variable does not change during a range of loop
iterations, provided that the variable value does not change at
any of the considered loop iterations.
Example 4: For Figure 1, the value evaluation trace lemma
(A1) yields the property

∀jI. ∀blN. ∀brN.(
∀itN.

(
(bl ≤ it < br ∧ b(l8(bl), j) = b(l8(it), j))

→ b(l8(bl), j) = b(l8(s(it)), j)
)

→
(
bl ≤ br → b(l8(bl), j) = b(l8(br), j)

))
,

which allows to prove that the value of b at some position
j remains the same from the timepoint it the value was first
set until the end of program execution. That is, we derive
b(l9(end), j(l9(it))) = a(i(l8(it))). �
We next prove soundness of our trace lemma (A1).
Proof (Soundness Proof of Value Evolution Trace
Lemma (A1)) Let bl and br be arbitrary but fixed and
assume that the premise of the outermost implication of (A1)
holds. That is,

∀itN.
(
(bl ≤ it < br ∧ v(tpw(bl)) ◦ v(tpw(it)))
→ v(tpw(bl)) ◦ v(tpw(suc(it)))

) (9)

We use the induction axiom scheme (3) and consider its

instance with P (it) := v(tpw(bl)) ◦ v(tpw(it)), yielding the
following instance of (3):(
v(tpw(bl)) ◦ v(tpw(it)) ∧ (10a)

∀itN.
(
(bl ≤ it < br ∧ v(tpw(bl)) ◦ v(tpw(it))) (10b)

→ v(tpw(bl)) ◦ v(tpw(suc(it)))
))

→ ∀itN.
(
bl ≤ it ≤ br → v(tpw(bl)) ◦ v(tpw(it))

)
(10c)

Note that the base case property (10a) holds since ◦ is
reflexive. Further, the inductive case (10b) holds also since
it is implied by (9). We thus derive property (10c), and in
particular bl ≤ br ≤ br → v(tpw(bl)) ◦ v(tpw(br)). Since ≤
is reflexive, we conclude bl ≤ br → v(tpw(bl)) ◦ v(tpw(br)),
proving thus our trace lemma (A1). �

(B1) Intermediate Value Trace Lemma: Let w be a while-
statement and let v be a mutable program variable. We call v
to be dense if the following holds:

Densew,v := ∀itN.
(
it < lastItw →(

v(tpw(suc(it))) = v(tpw(it)) ∨

v(tpw(suc(it))) = v(tpw(it)) + 1
))

The intermediate value trace lemma of w and v is defined as

∀xI.
((

Densew,v ∧ v(tpw(0)) ≤ x < v(tpw(lastItw))
)
→

∃itN.
(
it < lastItw ∧ v(tpw(it))'x ∧
v(tpw(suc(it)))' v(tpw(it)) + 1

)) (B1)

The intermediate value trace lemma (B1) allows us conclude
that if the variable v is dense, and if the value x is between
the value of v at the beginning of the loop and the value of
v at the end of the loop, then there is an iteration in the loop,
where v has exactly the value x and is incremented. This trace
lemma is mostly used to find specific iterations corresponding
to positions x in an array.
Example 5: In Figure 1, using trace lemma (B1) we synthesize
the iteration it such that b(l9(it), j(l9(it))) = a(i(l8(it))). �

(B2) Iteration Injectivity Trace Lemma: Let w be a while-
statement and let v be a mutable program variable. The
iteration injectivity trace lemma of w and v is

∀it1N, it2N.
((

Densew,v ∧ v(tpw(suc(it1))) = v(tpw(it1)) + 1

∧ it1 < it2 ≤ lastItw
)

(B2)

→ v(tpw(it1)) 6' v(tpw(it2))
)

The trace lemma (B2) states that a strongly-dense variable
visits each array-position at most once. As a consequence, if
each array position is visited only once in a loop, we know that
its value has not changed after the first visit, and in particular
the value at the end of the loop is the value after the first visit.
Example 6: Trace lemma (B2) is necessary in Figure 1 to
apply the value evolution trace lemma (A1) for b, as we need
to make sure we will never reach the same position of j twice.

�
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Based on the soundness of our trace lemmas, we conclude the
next result.
Theorem 3 (Trace Lemmas and Induction): Let p be a
program. Let L be a trace lemma for some while-statement
w of p and some variable v of p. Then L is a consequence
of the bounded induction scheme (3) and of the axiomatic
semantics of JpK in trace logic L. �

VII. IMPLEMENTATION AND EXPERIMENTS

A. Implementation

We implemented our approach in the RAPID tool, written in
C++ and available at https://github.com/gleiss/rapid. RAPID
takes as input a program in the while-language W together
with a property expressed in trace logic L using the SMT-LIB
syntax [19]. RAPID outputs (i) the program semantics as in
Section V, (ii) instantiations of trace lemmas for each mutable
variable and for each loop of the program, as discussed in
Section VI-B, and (iii) the safety property, expressed in trace
logic L and encoded in the SMT-LIB syntax.
For establishing safety, we pass the generated reasoning task
to the first-order theorem prover VAMPIRE [20] to prove the
safety property from the program semantics and the instanti-
ated trace lemmas1, as discussed in Section VI-A. VAMPIRE
searches for a proof by refuting the negation of the property
based on saturation of a set of clauses with respect to a set of
inference rules such as resolution and superposition.
In our experiments, we use a custom version2 of VAMPIRE
with a timeout of 60 seconds, in two different configura-
tions. On the one hand, we use a configuration RAPID−,
where we tune VAMPIRE to the trace logic domain using
(i) existing options and (ii) domain-specific implementation
to guide the high-level proof search. On the other hand, we
use a configuration RAPID∗, which extends RAPID− with
recent techniques from [11], [12] improving theory reasoning
in equational theories. As such, RAPID∗ represents the result of
a fundamental effort to improve VAMPIRE’s reasoning for soft-
ware verification. In particular, theory split queues [12] present
a partial solution to the prevalent challenge of combining
quantification and light-weight theory reasoning, drastically
improving first-order reasoning in applications of software
verification, as shown next.

B. Experimental Results

We considered challenging Java- and C-like verification bench-
marks from the SV-Comp repository [14], containing the com-
bination of loops and arrays. We omitted those examples for
which the task is to find bugs in form of counterexample traces,
as well as those examples that cannot be expressed in our pro-
gramming model W , such as examples with explicit memory
management. In order to improve the set of benchmarks, we
also included additional challenging programs and functional
properties. As a result, we obtained benchmarks ranging over

1We also established the soundness of each trace lemma instance separately
by running additional validity queries with VAMPIRE.

2https://github.com/vprover/vampire/tree/gleiss-rapid

45 unique programs with a total of 103 tested properties. Our
benchmarks are available in the RAPID repository3.
We manually transformed those benchmarks into our input
format. SV-Comp benchmarks encode properties featuring uni-
versal quantification by extending the corresponding program
with an additional loop containing a standard C-like assertion.
For instance, the property

∀iI. 0 ≤ i < a.length→ P (a(i, end))

would be encoded by extending the program with a loop

for(int i = 0; i < a.length; i++)

assert(P(a[i]))

While this encoding loses explicit structure and results in
a harder reasoning task, it is necessary as other tools do
not support explicit universal quantification in their input
language. In contrast, our approach can handle arbitrarily
quantified properties over unbounded data structures. We, thus,
directly formulate universally quantified properties, without
using any program transformations.
The results of our experiments are presented in Table 1. We
divided the results in four segments in the following order:
the first eleven problems are quantifier-free, the largest part of
62 problems are universally quantified, seven problems are
existentially quantified, while the last 23 problems contain
quantifier alternations. First, we are interested in the overall
number of problems we are able to prove correct. In the
configuration RAPID∗, which represents our main configura-
tion, VAMPIRE is able to prove 78 out of 103 encodings. In
particular, we verify Figure 1, corresponding to benchmark
copy_positive_1, as well as other challenging properties
that involve quantifier alternations, such as partition_5.
Second, we are interested in comparing the results for config-
urations RAPID− and RAPID∗, in order to understand the im-
portance of recently developed techniques from [11] and [12]
for reasoning in the trace logic domain. While RAPID− is only
able to prove 15 out of 103 properties, RAPID∗ is able to prove
78 properties, that is, RAPID∗ improves over RAPID− by 63
examples. Moreover, only RAPID∗ is able to prove advanced
properties involving quantifier alternations. We therefore see
that RAPID∗ drastically outperforms RAPID−, suggesting that
the recently developed techniques are essential for efficient
reasoning in trace logic.
Third, we are interested in what kinds of properties RAPID
can prove. It comes with no surprise that all quantifier-free
instances could be proved. Out of 62 universally quantified
properties, RAPID could establish correctness of 53 such
properties. More interestingly, RAPID proves 14 out of 30
benchmarks containing either existentially quantified proper-
ties or such with quantifier alternations. The benchmarks that
could not be solved by RAPID are primarily universally and
alternatingly quantified properties that need additional trace
lemmas relating values of multiple program variables.

3https://github.com/gleiss/rapid/tree/master/examples/arrays
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TABLE I
EXPERIMENTAL RESULTS

Benchmark RAPID− RAPID∗

atleast_one_iteration_0 X X
atleast_one_iteration_1 X X
find_sentinel X X
find1_0 - X
find1_1 - X
find2_0 - X
find2_1 X X
indexn_is_arraylength_0 X X
indexn_is_arraylength_1 - X
set_to_one X X
str_cpy_3 X X
both_or_none - X
check_equal_set_flag_1 - X
collect_indices_eq_val_0 - X
collect_indices_eq_val_1 - X
copy - X
copy_absolute_0 - X
copy_absolute_1 - X
copy_nonzero_0 - X
copy_partial - X
copy_positive_0 - X
copy_two_indices - X
find_max_0 - X
find_max_2 - X
find_max_from_second_0 - -
find_max_local_2 - -
find_max_up_to_0 - -
find_max_up_to_2 - -
find_min_0 - X
find_min_2 - X
find_min_local_2 - -
find_min_up_to_0 - -
find_min_up_to_2 - -
find1_4 - X
find2_4 X X

Benchmark RAPID− RAPID∗

in_place_max - X
inc_by_one_0 - X
inc_by_one_1 - X
inc_by_one_harder_0 - X
inc_by_one_harder_1 - X
init - X
init_conditionally_0 - X
init_conditionally_1 - X
init_non_constant_0 - X
init_non_constant_1 - X
init_non_constant_2 - X
init_non_constant_3 - X
init_non_constant_easy_0 - X
init_non_constant_easy_1 - X
init_non_constant_easy_2 - X
init_non_constant_easy_3 - X
init_partial - X
init_prev_plus_one_0 - X
init_prev_plus_one_1 - X
init_prev_plus_one_alt_0 - X
init_prev_plus_one_alt_1 - X
max_prop_0 - X
max_prop_1 - X
merge_interleave_0 - -
merge_interleave_1 - -
min_prop_0 - X
min_prop_1 - X
partition_0 - X
partition_1 - X
push_back - X
reverse - X
str_cpy_0 - X
str_cpy_1 - X
str_cpy_2 X X
swap_0 - X

Benchmark RAPID− RAPID∗

swap_1 - X
vector_addition - X
vector_subtraction - X
check_equal_set_flag_0 X X
find_max_1 - -
find_max_from_second_1 - -
find1_2 X X
find1_3 X X
find2_2 X X
find2_3 X X
collect_indices_eq_val_2 - X
collect_indices_eq_val_3 - -
copy_nonzero_1 - X
copy_positive_1 - X
find_max_local_0 - -
find_max_local_1 - -
find_max_up_to_1 - -
find_min_1 - -
find_min_local_0 - -
find_min_local_1 - -
find_min_up_to_1 - -
merge_interleave_2 - -
partition_2 - X
partition_3 - X
partition_4 - -
partition_5 - X
partition_6 - -
partition-harder_0 - X
partition-harder_1 - X
partition-harder_2 - -
partition-harder_3 - -
partition-harder_4 - -
str_len X X

Total solved 15 78

Comparing with other tools. We compare our work against
other approaches in VIII. Here, we omit a direct comparison
of RAPID with other tools for the following reasons:
(1) Our benchmark suite includes 62 universally quantified
and 11 non-quantified properties that could technically be
supported by state-of-the-art tools such as SPACER/SEAHORN
and FREQHORN. Our benchmarks, however, also include
30 benchmarks with existential (7 examples) and alternating
quantification (23 examples) that these tools cannot handle.
As these examples depend on invariants that are alternatingly
or at least existentially quantified, we believe these other tools
cannot solve these benchmarks, while RAPID∗ could solve 14
examples in this domain.
(2) In our preliminary work [6], we already compared our
reasoning within RAPID against Z3 and CVC4. These ex-
periments showed that due to the fundamental difference in
handling variables as functions over timepoints in our seman-
tics, RAPID outperformed SMT-based reasoning approaches.
(3) Our program semantics is different than the one used in
Horn clause verification techniques.

Concerning previous approaches with first-order reasoners,
the benchmarks of [21] represent a subset of 55 examples
from our current benchmark suite: only 21 examples from our
benchmark suite could be proved by [21]. For instance, our

example in Figure 1 could not be proven in [21]. We believe
that our work can be combined with approaches from [22],
[21] to non-trivial invariants and loop bounds from saturation-
based proof search. Our work can, thus, complement existing
tools in proving complex quantified properties.

VIII. RELATED WORK

Our work is closely related to recent efforts in using first-
order theorem provers for proving software properties [22],
[21]. While [21] captures programs semantics in the first-order
language of extended expressions over loop iterations, in our
work we further generalize the semantics of program locations
and consider program expressions over loop iterations and
arbitrary timepoints. Further, we introduce and prove trace
lemmas to automate inductive reasoning based on bounded
induction over loop iterations. Our generalizations in trace
logic proved to be necessary to automate the verification of
properties with arbitrary quantification, which could not be
effectively achieved in [21]. Our work is not restricted to
reasoning about single loops as in [21].
Compared to [6], we provide a non-recursive generalization
of the axiomatic semantics of programs in trace logic, prove
completeness of our axiomatization in trace logic, ensure
soundness of our trace lemmas and use trace logic for safety
verification.
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In comparison to verification approaches based on pro-
gram transformations [8], [9], [23], we do not require user-
provided functions to transform program states to smaller-
sized states [10], nor are we restricted to universal properties
generated by symbolic executions [9]. Rather, we use only
three trace lemmas that we prove sound and automate the
verification of first-order properties, possibly with alternations
of quantifiers.
The works [24], [25] consider expressive abstract domains and
limit the generation of universal invariants to these domains,
while supporting potentially more generic program grammars
than our W language. Our work however can verify universal
and/or existential first-order properties with theories, which
is not the case in [8], [9], [24], [25]. Verifying universal
loop properties with arrays by implicitly finding invariants
is addressed in [4], [5], [26], [27], [28], [29], and by using
constraint horn clause reasoning within property-driven reach-
ability analysis in [16], [30].
Another line of research proposes abstraction and lazy interpo-
lation [31], [32], as well as recurrence solving with SMT-based
reasoning [33]. Synthesis-based approaches, such as [5], are
shown to be successful when it comes to inferring universally
quantified invariants and proving program correctness from
these invariants. Synthesis-based term enumeration is used also
in [23] in combination with user-provided invariant templates.
Compared to these works, we do not consider programs only
as a sequence of states, but model program values as functions
of loop iterations and timepoints. We synthesize bounds on
loop iterations and infer first-order loop invariants as logical
consequences of our trace lemmas and program semantics in
trace logic.

IX. CONCLUSION

We introduced trace logic to reason about safety loop prop-
erties over arrays. Trace logic supports explicit timepoint
reasoning to allow arbitrary quantification over loop iterations.
We use trace lemmas as consequences of bounded induction
to automated inductive loop reasoning in trace logic. We
formalize the axiomatic semantics of programs in trace logic
and prove it to be both sound and complete. We report
on our implementation in the RAPID framework, allowing
us to use superposition-based reasoning in trace logic for
verifying challenging verification examples. Generalizing our
work to termination analysis and extending our programming
language, and its semantics in trace logic, with more complex
constructs are interesting tasks for future work.
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Abstract—Generating and checking proof certificates is impor-
tant to increase the trust in automated reasoning tools. In recent
years formal verification using computer algebra became more
important and is heavily used in automated circuit verification.
An existing proof format which covers algebraic reasoning and al-
lows efficient proof checking is the practical algebraic calculus. In
this paper we present two independent proof checkers PACHECK
and PASTÈQUE. The checker PACHECK checks algebraic proofs
more efficiently than PASTÈQUE, but the latter is formally
verified using the proof assistant Isabelle/HOL. Furthermore,
we introduce extension rules to simulate essential rewriting
techniques required in practice. For efficiency we also make use
of indices for existing polynomials and include deletion rules too.

I. INTRODUCTION

Formal verification aims to guarantee the correctness of a
given system with respect to a certain specification. However,
the verification process might contain errors. In order to
increase the trust in verification results, it is common to
generate proof certificates, which can be checked by a stand-
alone proof checker. For example, in the SAT competition
certificates of unsatisfiability are required since 2013 and
different resolution and clausal proof formats [1], such as
DRUP [2], [3], DRAT [4], and LRAT [5] are available.

Automated reasoning based on computer algebra has a long
history [6]–[8] with renewed recent interest; e.g., it provides
the state of the art in verifying gate-level multipliers [9]–
[12]. Furthermore, algebraic reasoning in combination with
satisfiability checking (SAT) is succesfully used to solve
complex combinatorial problems [13]–[16] with possible future
applications in cryptanalysis [17]–[19].

The practical algebraic calculus (PAC) [20] is a proof format
to represent certificates for validating results of such algebraic
techniques. It is based on the polynomial calculus (PC) [21]
and allows to dynamically capture that a polynomial can
be derived from a given set of polynomials using algebraic
ideal theory. In contrast to PC, PAC proofs can be checked
efficiently, for example using our tool PACTRIM [20].

In this paper we add an indexing scheme to PAC and also
propose deletion and extension rules. Our paper contains no
new theory, except for the more technical formalization of
extensions. This allows us to merge and check proofs obtained
from SAT and computer algebra [22], the current state-of-the-
art, in a uniform (and now precise) manner. The purpose
of this system description is to define the new version of
PAC and present our new checkers PACHECK and PASTÈQUE.
Furthermore, PASTÈQUE in contrast to PACHECK is verified

in Isabelle/HOL, but PACHECK is faster and more memory
efficient (also compared to PACTRIM). A preliminary version
of this paper is included in the first author’s PhD thesis [23].

II. PRACTICAL ALGEBRAIC CALCULUS

In this section we briefly introduce the algebraic notion
following [24]. Let X be the set of variables {x1, . . . , xn}
and further let G ⊆ Z[X] and f ∈ Z[X].

Algebraic proof systems reason about polynomial equations.
The aim is to show that the equation f = 0 is implied by the
equations g = 0 for every g ∈ G; i.e., every common root of
the polynomials g ∈ G is also a root of f . In algebraic terms,
this question means to derive whether f belongs to the ideal
generated by G. A nonempty subset I ⊆ Z[X] is called an
ideal if ∀u, v ∈ I : u+v ∈ I and ∀w ∈ Z[X],∀u ∈ I : wu ∈ I .
If G = {g1, . . . , gm} ⊆ Z[X], then the ideal generated by G is
defined as 〈G〉 = {q1g1 + · · ·+ qmgm | q1, . . . , qm ∈ Z[X]}.

For a given set of polynomials G ⊆ Z[X], a model is a point
u = (u1, . . . , un) ∈ Zn such that ∀g ∈ G : g(u1, . . . , un) = 0.
Here, by g(u1, . . . , un) we mean the element of Z obtained
by evaluating the polynomial g for x1 = u1, . . . , xn = un.

PAC proofs [20] are sequences of proof rules. We introduce
the semantics of PAC as a transition system. Let P denote a
sequence of polynomials, which can be accessed via indices.
We write P (i) = ⊥ to denote that the sequence P at index i
does not contain a polynomial, and P (i 7→ p) to determine
that P at index i is set to p.

The initial state is (X = Var (G ∪ {f}), P ) where P maps
indices to polynomials of G. For bit-level verification [20]
only models of the Boolean domain {0, 1}n are of interest. In
previous work, we added the set of Boolean-value constraints
B(X) = {x2 − x | x ∈ X} to G and had to include steps in
the proofs that operate on these Boolean-value constraints. In-
stead, we now handle operations on Boolean-value constraints
implicitly to reduce the number of proof steps. That is, when
checking the correctness, we immediately reduce exponents
greater than one in the polynomials. The following two rules
model the properties of ideals as introduced above.

[ADD (i, j, k, p)] (X,P ) =⇒ (X,P (i 7→ p))

provided that P (j) 6= ⊥, P (k) 6= ⊥, P (i) = ⊥,
p ∈ Z[X]/〈B(X)〉, and p = P (j)+P (k) mod 〈B(X)〉.

[MULT (i, j, q, p)] (X,P ) =⇒ (X,P (i 7→ p))

provided P (j) 6= ⊥, P (i) = ⊥, p, q ∈ Z[X]/〈B(X)〉,
and p = q · P (j) mod 〈B(X)〉.
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letter ::= ‘a ’ | ‘b ’ | . . . | ‘z ’ | ‘A ’ | ‘B ’ | . . . | ‘Z ’
number ::= ‘0 ’ | ‘1 ’ | . . . | ‘9 ’

constant ::= (number)+

variable ::= letter (letter | number)∗

term ::= variable (‘* ’ variable)∗

monomial ::= constant | [ constant ‘* ’ ] term
polynomial ::= [ ‘- ’ ] monomial (‘+ ’ | ‘- ’ monomial)∗

index ::= constant
input ::= (index polynomial ‘; ’)∗

add rule ::= index ‘+ ’ index ‘, ’ index ‘, ’ polynomial ‘; ’
mul rule ::= index ‘* ’ index ‘, ’ polynomial ‘, ’ polynomial ‘; ’
del rule ::= index ‘d ’ ‘; ’
ext rule ::= index ‘= ’ variable ‘, ’ polynomial ‘; ’

proof ::= (add rule | mul rule | del rule | ext rule)∗

target ::= polynomial ‘; ’

Figure 1. Syntax of input polynomials, target, and proofs in PAC-format

If in either one of the above rules p is also the target
polynomial f , it holds that f ∈ 〈G〉. In the original PAC format
introduced in [20], it was necessary to explicitly provide the
antecedents P (i) and P (j). In our new format, we use indices
i and j to access polynomials, similar to LRAT [5]. The new
syntax is given in Fig. 1 and an example is provided with
our tools [25]. Naming polynomials by indices reduces the
proof size and makes parsing more efficient, because only the
conclusion polynomials of each rule and the initial polynomials
of G are stated explicitly. However, introducing indices for
polynomials has the effect that the semantics of P changes from
sets to multisets, as in DRAT [3], and it is possible to introduce
the same polynomial under different names. Checking the
result of each rule allows pinpointing the first error, instead
of claiming that the proof is wrong somewhere in one of the
(usually millions) of steps.

We extend our original proof rules [20] by adding a deletion
and an extension rule. In the deletion rule we remove poly-
nomials from P which are not needed anymore in subsequent
steps to reduce the memory usage of our tools.

[DELETE(i)] (X,P ) =⇒ (X,P (i 7→ ⊥))

A. Extension

In our previous work [22], we converted DRUP proofs to
the PAC format and encountered the need to extend the initial
set of polynomials G to reduce the size of the polynomials in
the PAC proof. We included polynomials of the form −fx +
1− x, similar to the negation rule in the polynomial calculus
with resolution [26], which introduced the variable fx as the
negation of the Boolean variable x.

However, at that point we did not use proper extension rules,
but simply added these extension polynomials to the initial
polynomials G. This may affect the models of the constraint
set, because any arbitrary polynomial can be added as initial
constraints. For example, we could simply add the constant
polynomial 1 to G, which makes any PAC proof obsolete. To
prevent this issue we add an extension rule to PAC, which
allows to add further polynomials to the knowledge base with
new variables while preserving the original models on the
original variable set of variables X .

[EXT (i, v, p)] (X,P ) =⇒ (X ∪ {v}, P (i 7→ −v + p))

provided that P (i) = ⊥ and v /∈ X and p ∈
Z[X]/〈B(X)〉, and p2 − p ≡ 0 mod 〈B(X)〉.

With this extension rule, variables v can act as placeholders for
polynomials p, i.e., −v + p = 0, which enables more concise
proofs. The variables v are not allowed to occur earlier in the
proof. Furthermore, to preserve Boolean models, we require
p2 − p ≡ 0 mod 〈B(X)〉. Without this condition v might
take non-Boolean solutions and thus force us to calculate in
the ring Z[X, v]/〈B(X)〉 instead of Z[X, v]/〈B(X, v)〉.

Consider for example P = {−y+x−1}. The only Boolean
model is (x, y) = (1, 0). If we extend P by −v + x + 1 we
derive v = 2, because x = 1 for all models of P . Thus
v2 − v = 0 does not hold.

Proposition 1. EXT preserves the original models on X .

Proof. We show that adding pv := −v + p does not affect the
models of P ⊆ Z[X]/〈B(X)〉. Let “<” be a lexicographic
ordering, H a Gröbner basis [27] of 〈P 〉 w.r.t. “<”, and “<v”
be an extension of “<” with v as largest element. Thm. 3
of [28] shows that H ∪ {pv} is a Gröbner basis w.r.t. “<v”
for 〈Pv〉 := 〈P (i 7→ pv)〉 ⊆ Z[X ∪ {v}]/〈B(X ∪ {v})〉, the
extended ideal, and 〈Pv〉 ∩ Z[X]/〈B(X)〉 = 〈H ∪ {pv}〉 ∩
Z[X]/〈B(X)〉 = 〈H〉 = 〈P 〉 follows.

III. PACHECK

We implemented PACHECK as an extension of our pre-
vious checker PACTRIM [20]. It consists of approximately
1 700 lines of C code and is published [25] under MIT license.
The default mode of PACHECK supports the extended version
of PAC, as presented in this paper, for the new syntax using
indices. PACHECK is backwards compatible to our original
format of PAC [20] and all features including reasoning with
exponents are supported. However, extension rules are only
supported for Boolean models.

PACHECK reads three input files <input>, <proof>,
and <target> and then verifies that the polynomial in
<target> is contained in the ideal generated by the poly-
nomials in <input> using the rules provided in <proof>.
The polynomial arithmetic needed for checking the proof rules
is implemented from scratch. In PACHECK polynomials are
stored as ordered linked lists of monomials, where a monomial
consists of a coefficient and a term. The coefficients are
represented using the GMP library [29]. Terms are ordered
linked list of variables that are identified as strings.

In the default mode of PACHECK we order variables in terms
lexicographically using strcmp. All internally allocated terms
in linked lists are shared using a hash table. It turns out that the
order of variables has an enormous effect on memory usage,
since different variable orderings induce different terms. For
example, given the monomials xyz and x′yz, sharing of yz
is possible for the order x′ > x > y > z, whereas no sharing
occurs for y > x > z > x′. For one example with more than
7 million proof steps, using -1*strcmp as sorting function
leads to an increase of 50% in memory usage. A further option
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for sorting the variables is to use the same variable ordering
as in the given proof files. That is, we assign increasing
level values to new variables and sort according to this
value. However, the best ordering that maximizes internal
sharing cannot be determined in advance from the original
constraint set, as it highly depends on the applied operations
in the proof rules. PACHECK supports the orderings strcmp,
-1*strcmp, level, and -1*level. Terms in polynomials
are sorted using the same order as for the variables.

In the initial phase of PACHECK each polynomial from
<input> is sorted and stored as an inference. Inferences
consist of a given index and a polynomial and are stored in
a hash table. In the default mode, the index acts as the hash
value. Thus it is possible to add the same polynomial twice. If
the original format of PAC is used, a hash value is computed
based on the input polynomial. Proof checking is applied on-
the-fly. We parse each rule of <proof> and immediately
apply the necessary checks discussed in Sect. II. If the rule
is either ADD or MULT, we have to compute whether the
conclusion polynomial of the rule is equal to the arithmetic
operation performed on the antecedent polynomials.

We modified the algorithm of polynomial addition in
PACTRIM and now assume the monomials of polynomials to be
sorted. Addition of polynomials is performed by merging their
monomials in an interleaved way. In PACTRIM we pushed the
monomials of both polynomials on a stack and then sorted
and merged them. Normalization of the exponents is not
necessary in the ADD rule, but we still use this technique
for multiplication of polynomials, where we multiply each
monomial of the first polynomial with each monomial of the
second monomial. In the MULT rule we normalize exponents
larger than one, before testing equality. Furthermore, we check
whether the conclusion polynomial of the rules ADD or MULT
matches the polynomial in <target> in order to identify
whether the target polynomial was derived.

The original version of PACTRIM [20] did not allow to
delete inferences. As a consequence the set of polynomials
increased with each proof rule, leading to memory exhaustion
for very large proofs. In PACHECK we now support deletion
of inferences. A partial solution for deletion was used in [9]
to reduce memory usage. However, in contrast to our new
version, individual inferences could not be deleted (only both
antecedents of a proof step could be). Extension variables were
not supported in PACTRIM [20] either.

IV. PASTÈQUE

To further increase trust in the verification, we implemented
a verified checker called PASTÈQUE in the proof assistant
Isabelle/HOL [30]. It follows a “refinement” approach, starting
with an abstract specification of ideals, which we then refine
with the Isabelle Refinement Framework [31] to the transition
system from Sect. II, and further down to executable code
using Isabelle’s code generator [32]. The Isabelle files have
been made available [33]. The generated code consists of
2 800 lines Standard ML (2 400 generated by Isabelle, 400 for
the parser) and is also available [25] under MIT license.

On the most abstract level, we start from Isabelle’s definition
of ideals. The specification states that if “success” is returned,
the target is in the ideal. Then we formalize PAC and prove that
the generated ideal is not changed by the rules. Proving that
PAC respects the specification on ideals was not obvious due
to limited automation and development of the Isabelle library
of polynomials (e.g., neither “Var (1) = ∅” nor “p 6= 0 =⇒
X ∈ Var (X × p)” are present). However, Sledgehammer [34]
automatically proved many of these simple lemmas.

While the input format identifies variables as strings, Isabelle
only supports natural numbers as variables. Therefore, we
use an injective function to convert between the abstract
specification of polynomials (with natural numbers as variables)
and the concrete manipulations (with strings as variables). The
code does not depend on this function, only the correctness
theorem does. Injectivity is only required to check that
extension variables did not occur before.

In the third refinement stage, SEPREF [35] changes data
structures automatically, such as replacing the set of variables
X by a hash-set. Finally, we use the code generator to produce
code. This code is combined with a trusted parser and can be
compiled using the Standard ML compiler MLTON [36].

The implementation is not backwards compatible and less
sophisticated than PACHECK’s. In particular, even if terms
are sorted, sharing is not considered (neither of variables or
of monomials) as it can be executed partially by the compiler,
although not guaranteed by Standard ML semantics. Some
sharing could be performed by the garbage collector. We tried
to enforce sharing by using MLTON’s shareAll function
and by using a hash map during parsing, i.e., using a hash
map that assigns a variable to “itself” (the same string, but
potentially at a different memory location) and normalize every
occurrence. However, performance became worse.

PASTÈQUE is four times slower than PACHECK. First, this
is due to Standard ML. While Isabelle’s code generator to
LLVM [37] produces much faster code, we need integers of
arbitrary large size, which is currently not supported. Also
achieving sharing is entirely manual, which is challenging
due to the use of separation logic SEPREF. Second, there
is no axiomatization of file reading and hence parsing must
be applied entirely before calling the checker in order for the
correctness theorem to apply. This is more memory intensive
and less efficient than interleaving parsing and checking.
PASTÈQUE can be configured via the uloop option to either
use the main loop generated by Isabelle (parsing before calling
the generated checker) or instead use a hand-written copy of
the main loop, the unsafe loop, where parsing and checking is
interleaved. The performance gain is large (on sp-ar-cl-64
with 32 GB RAM, the garbage collection time went from 700 s
down to 25 s), but only the checking functions are verified, not
the main loop.

V. TOOL DEMONSTRATION

In this section we show an example of a PAC proof and the
output of our new checkers, which demonstrates the usage of
our tools PACHECK and PASTÈQUE.

266



Example 1. Let x̄ ∨ ȳ and y ∨ z be two clauses. From these
clauses we are able to derive the clause x̄∨z using resolution.
We show how this derivation can be covered in PAC.

The clauses are translated into polynomial equations using
De Morgan’s laws and using the fact that a logical AND can
be represented by multiplication. For example, from x̄ ∨ ȳ =
> ⇔ x ∧ y = ⊥ we derive the polynomial equation xy = 0.

We translate the given clauses, which builds our input
<res.input> and the target <res.target>. For the PAC
proof in <res.proof> we introduce an extension variable fz ,
which models the negation of z, i.e. −fz + 1− z = 0. We use
this extension to reduce the size of the conclusion polynomials.
The PAC proof shows only some possible deletion rules, adding
more deletion rules is possible. The files of this example are
available [25].

<res.input> <res.proof>
1 x*y; 3 = fz, -z+1;
2 y*z-y-z+1; 4 * 3, y-1, -fz*y+fz-y*z+y+z-1;

5 + 2, 4, -fz*y+fz;
2 d;
4 d;

<res.target> 6 * 1, fz, fz*x*y;
-x*z+x; 1 d;

7 * 5, x, -fz*x*y+fz*x;
8 + 6, 7, fz*x;
9 * 3, x, -fz*x-x*z+x;

10 + 8, 9, -x*z+x;

We give these files to PACHECK and PASTÈQUE and the
results are provided in the Figs 2 and 3.

$ pacheck res.input res.proof res.target
[pacheck] Pacheck Version 001
[pacheck] Practical Algebraic Calculus Proof Checker
[pacheck] Copyright (C) 2020, Daniela Kaufmann, JKU
[pacheck] compressed mode with indices assumed
[pacheck] checking target enabled
[pacheck] reading target polynomial from 'res.target'
[pacheck] read 8 bytes from 'res.target'
[pacheck] reading original polynomials from 'res.input'
[pacheck] found 2 original polynomials in 'res.input'
[pacheck] read 20 bytes from 'res.input'
[pacheck] reading polynomial algebraic calculus proof from

'res.proof'↪→
[pacheck] found and checked 8 inferences in 'res.proof'
[pacheck] read 219 bytes from 'res.proof'
[pacheck] found 1 target polynomial inference
[pacheck] proof length 10 (number of polynomials)
[pacheck] proof size 25 (on average 2.5 terms per

polynomial)↪→
[pacheck] proof degree 3 (internal maximum degree 3)
[pacheck] searched 32 inferences 0.1 average collisions
[pacheck] 10 inferences, 3.2 average searches
[pacheck] original inferences 2 (20% of total rules)
[pacheck] inference rules 8 (80% of total rules)
[pacheck] addition inference rules 3 (38% of inference

rules)↪→
[pacheck] multiplication inference rules 4 (50% of inference

rules)↪→
[pacheck] extension rules 1 (12% of inference rules)
[pacheck] deletion inference rules 3 (30% of total rules)
[pacheck] maximum 9 of total 10 terms (90%)
[pacheck] searched 52 terms 81% hits 0.3 average collisions
[pacheck] maximum 2229 bytes allocated (0.0 MB)
[pacheck] maximum resident set size 4481024 bytes (4.3 MB)
[pacheck] process time 0.000 seconds
[pacheck] TARGET CHECKED

Figure 2. Output of PACHECK on the example from Ex. 1.

$ pasteque res.input res.proof res.target
c polys parsed
c ******************
c pac parsed
c spec parsed
c Now checking
s SUCCESSFULL
c
c ***** stats *****
c parsing polys file init (nonGC): 0.000 s = 0.000 s (usr)

0.000 s (sys)↪→
c parsing pac file init (nonGC): 0.000 s = 0.000 s (usr)

0.000 s (sys)↪→
c full init (nonGC): 0.000 s = 0.000 s (usr) 0.000 s (sys)
c time solving (nonGC): 0.000 s = 0.000 s (usr) 0.000 s

(sys)↪→
c time GC: 0.000 s = 0.000 s (usr) 0.000 s (sys)
c time solving(full): 0.000 s
c Overall (nonGC): 0.001 s = 0.001 s (usr) 0.000 s (sys)
c overall GC: 0.000 s = 0.000 s (usr) 0.000 s (sys)
c Overall(full): 0.001 s

Figure 3. Output of PASTÈQUE on the example from Ex. 1.

VI. EVALUATION

In our experiments we used an Intel Xeon E5-2620 v4
CPU at 2.10 GHz (with turbo-mode disabled) with a memory
limit of 128 GB. The time is listed in rounded seconds (wall-
clock time). We measure the wall-clock time from starting
the tools until they are finished. In our experiments we aim
to highlight the benefits of the new proof format and provide
a comprehensive comparison between our two tools. Source
code, benchmarks and experimental data are available [25].

For the experiments of Table I we generated PAC proofs as in
previous work [9], [22] to validate the correctness of multipliers
with input bit-width n. The circuits are either generated with
AMG [38], BOOLECTOR [39] or GENMUL [40].

For the upper part of Table I we generated proof certificates
with AMULET [9] to validate the correctness of simple
multiplier circuits [9]. We modified AMULET to generate
proofs in our new PAC format.

Our previous approach [9] to tackle complex multipliers
also relies on SAT solving. We substitute complex final-stage
adders in multipliers by simple ripple-carry adders. A bit-level
miter is generated, which is passed on to a SAT solver to verify
the equivalence of the adders. Computer algebra techniques
are used to verify the rewritten multiplier. Since two different
solving techniques are used, two proof certificates in distinct
formats are generated. SAT solvers generate a DRUP proof and
computer algebra techniques produce a PAC proof. In order to
obtain a single proof certificate we translate DRUP proofs into
PAC [22]. In the experiments of [22] all gate constraints of
the given multiplier, the equivalent ripple-carry adder, and the
bit-level miter are assumed as initial set of constraints G. We
even added polynomials that define Boolean negation to the
initial constraint set (cf. Sect. II-A). All these polynomials are
now added using extension rules. This preserves the models
of the gate constraints of the given multiplier. Experiments for
these proof certificates are shown in the lower part of Table I.
The second column shows the input bit-width, the third column
shows the number of generated proof steps and the fourth the
highest degree of the polynomials.
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Table I
PROOF CHECKING (IN BOLD THE FASTEST VERSION)

multiplier n steps deg
PACTRIM PACHECK PASTÈQUE

no delete no index default default uloop

(106) sec MB sec MB sec MB sec MB sec MB sec MB
btor 128 0.4 3 10 105 5 273 11 100 5 92 22 3 886 17 1 773
btor 256 1.6 3 60 459 25 1 144 62 435 25 364 105 21 157 79 4 364
btor 512 6.3 3 395 2 066 138 4 956 402 1 972 141 1 461 531 64 412 416 22 292
sp-ar-rc 128 0.6 4 16 156 6 454 16 148 6 136 31 5 002 23 1 608
sp-ar-rc 256 2.3 4 92 687 29 1 858 96 651 27 541 139 32 525 102 8 769
sp-ar-rc 512 9.4 4 587 3 107 146 7 683 617 2 965 134 2 171 608 64 412 471 25 632
sp-ar-cl 32 1.6 256 31 405 23 773 36 354 21 353 121 40 654 113 9 492
sp-dt-lf 32 0.3 46 3 82 2 122 3 73 2 73 11 1 679 11 886
bp-ct-bk 32 0.2 25 2 57 1 86 2 52 1 51 8 1 600 7 1 068
bp-wt-cl 32 5.6 764 242 1 716 193 4 324 302 1 430 181 1 428 786 58 867 774 64 404

The columns PACTRIM show the time and memory usage of
our previous proof checker PACTRIM. For that we reproduce
proofs of [9], [22] in the original PAC format. These proofs
are also used in the column “no index” to show the backward
compatibility of PACHECK. It can be seen that PACTRIM and
PACHECK behave similar on the original PAC format.

The effect of deletion rules and indices in PACHECK can also
be seen in Table I. Deletion rules reduce the memory usage by
at least a factor two, although the effect on runtime is limited.
Using indices reduces the runtime by 30 to 80%. Note that in
our earlier experiments [22] the proof checking time is slightly
faster than in the column “no index”, because we did not use
proper extension rules, which requires the additional checks
p ∈ Z[X]/〈B(X)〉 and p2 − p ≡ 0 mod 〈B(X)〉.

Furthermore, we can compare the performance of PACHECK
and PASTÈQUE. The memory usage for PASTÈQUE depends
on the garbage collector, which likely explains the peak around
64 GB (half of the available memory). The verified checker
PASTÈQUE is less efficient. It is both much slower and
more memory hungry. Verified checkers of SAT certificates
[41], [42] have the same level of efficiency as state-of-the-art
checkers [43], likely because of the imperative style (unlike
our pure functional code) and the more efficient memory usage
by managing most memory directly (e.g., for clauses) instead
of relying on the garbage collector.

VII. CONCLUSION AND FUTURE WORK

We presented our proof checkers PACHECK and PASTÈQUE
which are able to check PAC proofs efficiently. Our new proof
format includes an extension rule, which is able to capture
rewriting techniques. Furthermore, we added a deletion rule
and used indices for polynomials. Our experiments showed that
these optimizations cut memory usage in half and reduce the
runtime by around 30–80%. PACHECK was four times faster
than PASTÈQUE and used an order of magnitude less memory,
whereas PASTÈQUE was formally verified in Isabelle.

In the future we want to capture more general extension rules
in PAC as the calculus from Section II allows. We imagine
that it can be extended in two ways. First, we could relax the
condition p2 = p. This condition is necessary to have v2 = v,

but could be lifted even if it means that vn cannot be simplified
to v anymore, requiring to manipulate exponents. Second, we
currently restrict the extension to the form v = p where p
contains no new variables. The correctness theorem does not
rely on that and we leave it as future work to determine whether
lifting one of these restrictions can lead to shorter proofs.

In the newest version of our tools [9] no redundant proof
steps are generated, hence no backward proof checking is nec-
essary unlike SAT certificates. This might still be interesting
in other applications. Another idea for future work is to bridge
the gap between C and Isabelle, either by imperative code or
by verifying the C code directly.
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