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Preface
 

Land stewardship and management are important topics in the Earth 
Charter and United Nations Sustainable Development Goals. The processes 
to improve soil quality and land use have global importance. Research, devel
opment, and practices to remediate land are advancing with new approaches 
in many countries. Great progress has been made in the science and engi
neering related to phytotechnologies for contaminated soil during the years 
from 1990 to the present. 

In February, 1989, the Great Plains/Rocky Mountain Hazardous Substance 
Research Center was established with headquarters at Kansas State University 
and funding from the U.S. Environmental Protection Agency. Research on 
the beneficial effects of vegetation in contaminated soil became an important 
thrust of the center at several of the participating universities. One of the 
early projects involving phytoremediation with biomass production investi
gated the impact of trees planted at the edge of the field to reduce the amount 
of nitrogen that goes into the stream when storm water flows off of the field. 
From this early start, much research to develop phytotechnologies to address 
contamination problems in soil and ground water has been conducted, and 
the results have been reported. The efforts to advance the science of phyto
technologies have been helped by the International Phytotechnology Society 
and by a number of international events including NATO Science for Peace 
and Security Program Advanced Research Workshop in Ukraine in 2007. 

Economic analysis has shown that phytotechnologies are the most cost-
effective options because soil quality is improved and costs associated with 
applications are low. The five hazardous substance research centers were 
established by U.S. Environmental Protection Agency to address contami
nation problems where risk needed to be reduced. Land improvement is an 
important goal of the Earth Charter, U.N. Sustainable Development Goals, 
and U.N. Food and Agriculture Organization. There are many locations 
where improvements in soil quality are beneficial and application of phy
totechnology with biomass production is not driven by risk reduction, but 
rather by the goal of improving soil quality and site productivity. With the 
growth in population and the need to reduce the concentration of green
house gases in the atmosphere, all land needs to be used effectively. There 
are presently many locations where phytotechnologies can be applied to 
improve soil quality and make better use of the site. 

In 2004 Valentina Pidlisnyuk visited Kansas State University as part of her 
Fulbright scholar program. After this visit cooperative efforts related to phy
totechnologies with biomass production were established and carried out. 
The preparation of manuscripts for this book is one of the activities of the 
NATO Science for Peace and Security Program Multiyear Research Project 
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G4687 entitled Phytotechnology for Cleaning Contaminated Military Sites. 
Many of the results of the NATO project have been published in journals 
with citations and references included in this book. The contents of the book 
include results from research completed as part of the NATO project but also 
results from other studies. From 1990 to the present, there has been a great 
progress related to sites with metals and sites with organic contaminants. 
Military sites and lands contaminated by mining, pesticides, petroleum, and 
chlorinated solvents are included. 

One of the reasons to make use of phytotechnology with biomass produc
tion at contaminated sites is to restore the site to a useful state where biomass 
is being produced, soil quality improvement is happening, and organic car
bon is being sequestered in the soil. The process of establishment of vegeta
tion after an industrial site or mining site has been closed can benefit from 
the application of soil amendments and efforts to modify the physical prop
erties of the soil. The health of the ecosystem can be improved through better 
understanding of the biological populations and their contributions to soil 
health. 

Miscanthus is a large perennial and rhizomatous grass imported to Europe 
from East Asia as an ornamental plant in the 1930s. In 1990 it started to 
be investigated as an energy crop, and since 2000 there has been research 
and development on applications of its biomass as a raw material in dif
ferent industries. While there are a variety of Miscanthus species, most of 
the research has been with Miscanthus × giganteus (M.× giganteus), which is a 
hybrid of Miscanthus sinensis and Miscanthus sacchiflorus. Miscanthus shows 
the highest harvest among second-generation crops; it can reach a height of 
3 m; the crop has a C4 photosynthetic pathway, an excellent environmental 
profile to increase soil carbon, nutrients, and biodiversity. Miscanthus needs 
to be planted only once; it has the potential to provide annual harvests for 
20 years, because it is a perennial, nutrient runoff and leaching are small. 
The yield of a fully established plantation is often between 10 and 20 t ha−1 

on a dry matter basis with values as large as 25–30 t ha−1 depending on local 
conditions and agricultural practices. The energy content is comparable to 
wood with values around 17 MJ t−1 of dry biomass. 

Since 2000 there has been an increased effort to grow M. × giganteus on 
contaminated soils at postindustrial and former military sites and on mar
ginal and abandoned lands. The biomass yield is often lower, and this has 
stimulated phytomanagement research on improving soil quality and bio
mass production. Generally two main approaches are under consideration: 
adding different amendments to improve soil quality and actions to affect 
the rhizomes and plants such as adding plant growth regulators. Soil amend
ments include fertilizers, biosolids, biochar, manure, sludge, compost, and 
activated carbon. The addition of microorganisms such as endophytes and 
plant growth-promoting bacteria and chemicals such as plant growth regu
lators are beneficial for Miscanthus. 
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Miscanthus biomass can be used for different purposes; it contains cel
lulose, hemicellulose, and lignin. Cellulose has important applications in 
bio-based materials including paper. Hemicellulose protects cellulose from 
enzymatic hydrolysis, and lignin is primarily responsible for recalcitrance 
to chemical and enzymatic degradation. Miscanthus removes carbon from 
the atmosphere as it grows; this carbon can be incorporated into building 
materials and stored as part of a building for many years. The importance of 
making products from renewable biomass has received significant attention 
recently. 

The book includes chapters on phytotechnologies for inorganic contami
nants where phytostabilization is important and organic contaminants where 
biodegradation is desired. Phytomining is included because of its growing 
importance and recent progress. The science and technology on establish
ing vegetation at contaminated sites and the benefits of adding soil amend
ments and plant growth regulators are discussed as well. Phytotechnologies 
improve soil health and ecosystem services as well as produce valuable bio
mass. There is a chapter on plant feeding insects, nematodes, and other top
ics associated with Miscanthus plant health. Two chapters address products 
of Miscanthus: one is on bioenergy as an alternative of growing importance 
while the other is on biomass as a material for composites, building mate
rials, and biodegradable and renewable products to replace plastics from 
petroleum. 

This book is for faculty, students, research scientists, environmental and 
agricultural professionals, gardeners, farmers, landowners, and government 
officials. An important goal for this book is to have value for all who are 
working on phytotechnology projects to reduce risk and/or improve soil 
quality at contaminated sites. It will also be interesting for those who are 
working to improve soil quality on marginal and abandoned lands. The book 
will be very beneficial for those who are new to the topics and want to learn 
to apply phytotechnologies and biomass production with its further convert
ing to energy and bioproducts. 

Larry E. Erickson 
Valentina Pidlisnyuk 



https://taylorandfrancis.com


xi

Acknowledgments

The NATO-supported Multiyear Research Project of the Science for 
Peace and Security Program entitled Phytotechnology for Cleaning 
Contaminated Military Sites has supported research in the Czech Republic, 
Ukraine, Kazakhstan, Poland, Croatia, and the United States with match-
ing funds provided by the participating universities and research organi-
zations, i.e., Jan Evangelista Purkyne University, Kansas State University, 
National University of Life and the Environmental Science, National 
University “Lvivska Polytechnilka”, Institute of Plant Biology and 
Biotechnology. Thank you for the financial support and the related efforts 
to provide research laboratory space and equipment, and administrative 
support. Many individuals have worked on research projects, helped with 
 supporting tasks, and assisted with efforts to make newly published litera-
ture available, first of all young researchers and PhD students from NATO 
teams: Artem Medkow, Bulat Kenessov, Ethan Duong, Hana Malinská, 
Iwona Gruss, Kamilya Abit, Kumar Pranaw, Lyudmila Kava, Maria 
Ovruch, Martyn Sozanskyi, Svitlana Yaschuk, Vitaliy Stadnik, Volodimir 
Kvak, and Zafer Alasmary who have been involved in the Lab and Field 
NATO project research in Ukraine, Kazakhstan, and the United States, 
analysis and evaluation of the numerous data. KSU students have worked 
on design projects related to potential uses of Miscanthus in building appli-
cations and energy. Thank you to all who have helped.

Many authors have helped with chapters in order to include important 
content. Thank you to all authors, to Danita Deters and Aigerim Mamirova 
for helping with the manuscripts, figures, and tables.

We thank Zafer Alasmary, Marek Bury, Lawrence Davis, John Dolman, 
and Mark Janzen for permission to use their photos of plants.

We thank Fort Riley and the U.S. Department of Army for use of  military 
land for a field research site, Dolyna regional council and personally 
Volodymyr Garazd†, Mayor of Dolyna, Ukraine for use of the postmili-
tary site, Tokarivka regional farmers, Ukraine for assistance with the field 
research and active participation in the project’s events. We specifically thank 
Oleksandr Mazurchak, First Vice-President of “Mayor’s Club”, Ukraine, for 
the constant professional support during the NATO-supported Multiyear 
Research Project’s life.

† Mr. Garazd passed away on January 6, 2021.



https://taylorandfrancis.com


xiii 

   
 
 
 
 
 
 
 
 

 
 
 

  
 
 

 

 
 

 
 
 
 

Editors
 

Larry E. Erickson has been associated with chemical engineering at Kansas 
State University, USA, since 1957 as a student and since earning a PhD in 1964 
as a faculty member. In 1985, he helped to establish a research program at 
K-State to address hazardous substance issues. From 1989 to 2003 he directed 
the Great Plains/Rocky Mountain Hazardous Substance Research Center, 
with financial support from the U.S. Environmental Protection Agency and 
other sources. This consortium of universities began conducting research with 
vegetation and helped to develop phytotechnologies to address contaminated 
soil problems. He serves on the editorial board of the International Journal of 
Phytotechnology and the journal Environmental Progress and Sustainable Energy. 
He is currently an emeritus professor of chemical engineering at K-State. He 
has helped to provide leadership for the Center for Hazardous Substance 
Research at K-State since 1989 and has been part of the leadership team at 
K-State for the NATO project that Valentina Pidlisnyuk leads. 

Valentina Pidlisnyuk, DrSc, serves as professor at the Department of 
Environmental Chemistry and Technology, Jan Evangelista Purkyne 
University in Usti nad Labem, the Czech Republic. Her research interests 
include sustainability, phytotechnologies, value chain of biomass and bio
products, and environmental policy and management. She teaches PhD and 
master’s courses in phytoremediation and Erasmus graduate courses in sus
tainable management of contaminated sites, fundamentals of sustainability, 
and global environmental change.  She serves as a topic editor at the Plant and 
the Journal of Elementology and is a member of the editorial board of the Central 
and Eastern European Journal of Management and Economics. Prof. Pidlisnyuk has 
worked with more than 50 graduate students and advised four PhD students 
who successfully defended their theses. Currently she is advising three PhD 
students. 

Prof. Pidlisnyuk received a professorship in Environmental Sciences from 
the Ukrainian Ministry of Education and Science, was confirmed by the 
Ministry of Education and Science of Slovakia, earned a doctorate in colloi
dal chemistry at the Institute of Colloidal and Water Chemistry, National 
Academy of Science of Ukraine, and a master’s degree in chemistry at the 
National State University, Ukraine, confirmed by Carl University in Prague, 
Czech Republic. She accomplished a Fulbright Research Program at the 
University of Georgia, USA, and an Environmental Management Program at 
the Japan International Cooperation Agency, Japan. 



https://taylorandfrancis.com


xv

Contributors

Nikola Bilandžija
Faculty of Agriculture
University of Zagreb
Zagreb, Croatia
0000-0001-9513-958X

Jan Černý
Department of Environmental 

Chemistry and Technology
Jan Evangelista Purkyně University
Ústí nad Labem, Czech Republic
0000-0001-5823-4537

Lawrence C. Davis
Department of Biochemistry and 

Molecular Biophysics
Kansas State University
Manhattan, Kansas 
0000-0002-9044-0282

Larry E. Erickson
Tim Taylor Department of Chemical 

Engineering
Kansas State University
Manhattan, Kansas 
0000-0001-7012-4437

Hermann Heilmeier
Institute of Biosciences
Technische Universität 

Bergakademie Freiberg
Freiberg, Germany
0000-0001-5935-0396

Ganga M. Hettiarachchi
Department of Agronomy
Kansas State University
Manhattan, Kansas 
0000-0002-6669-2885

Aigerim Mamirova
Department of Biotechnology
Al-Farabi Kazakh National 

University
Almaty, Kazakhstan
0000-0002-4274-5081

Diana Nebeská
Department of Environmental 

Chemistry and Technology
Jan Evangelista Purkyně University
Ústí nad Labem, Czech Republic
0000-0002-4388-5297

Asil Nurzhanova
Laboratory of Plant Physiology and 

Biochemistry
Institute of Plant Biology and 

Biotechnology
Almaty, Kazakhstan
0000-0003-4811-0164

Valentina Pidlisnyuk
Department of Environmental 

Chemistry and Technology
Jan Evangelista Purkyně University
Ústí nad Labem, Czech Republic
0000-0002-1489-897X

Melissa Prelac
Paying Agency for Agriculture
Fisheries and Rural Development
Zagreb, Croatia

Kraig Roozeboom
Department of Agronomy
Kansas State University
Manhattan, Kansas
0000-0003-1225-5177



xvi Contributors

John Schlup
Tim Taylor Department of Chemical 

Engineering
Kansas State University
Manhattan, Kansas 

Pavlo Shapoval
Department of Physical, Analytical 

and General Chemistry
National University Lvivska 

Polytechnika
Lviv, Ukraine

Andrzej Skwiercz
Department of Plant Protection
Research Institute of Horticulture in 

Skierniewice
Skierniewice, Poland

Tatyana Stefanovska
Department of Entomology
National University of Life and 

Environmental Sciences of 
Ukraine

Kyiv, Ukraine

Josef Trögl
Department of Environmental 

Chemistry and Technology
Jan Evangelista Purkyně University
Ústí nad Labem, Czech Republic

Donghai Wang
Department of Biological and 

Agricultural Engineering
Kansas State University
Manhattan, Kansas

Barbara Zeeb
Department of Chemistry and 

Chemical Engineering
Royal Military College of Canada
Kingston, Ontario, Canada

Zeljka Zgorelec
Department of General Agronomy
University of Zagreb
Zagreb, Croatia

Jikai Zhao
Department of Biological and 

Agricultural Engineering
Kansas State University
Manhattan, Kansas
0000-0002-0119-8640



 

 
 
 

 
 
 
 
 

 
 
 
 

  

   
   
   

   
   
   

 

1 
Introduction 

Larry E. Erickson and Valentina Pidlisnyuk 

Abstract 

Land management is an important sustainability challenge in many 
locations because of contamination and/or degradation. There are 
many aspects related to reducing risk associated with contaminants in 
soil and improving soil quality. The science and engineering of phy
totechnologies with biomass production have been advanced in many 
countries with much of the research being published after 1985. In 
most phytotechnology applications at contaminated sites, improving 
soil quality is a priority, and productive use of the land is one of the 
goals. Remediation of contaminated soil has great value for society 
and being able to produce a biomass product to improve the econom
ics is very beneficial in countries where resources to address environ
mental challenges are limited. Miscanthus is a very valuable biomass 
product and an effective plant for many applications because of its 
properties. Since partial funding has been provided by NATO, an 
effort has been≈made to address topics that are important to NATO 
countries in this work. 

CONTENTS 

1.1	 Soil Quality .....................................................................................................1
 
1.1.1 Soil Contamination............................................................................2
 
1.1.2 Types of Contaminants .....................................................................3
 

1.2 Phytotechnology with Biomass Production...............................................3
 
1.3 Miscanthus......................................................................................................3
 
1.4 Case Studies....................................................................................................4
 
References.................................................................................................................4
 

1.1 Soil Quality 

Soil quality is a high priority because of food and other useful products 
that can be produced through agriculture and forestry. Each plot of land 
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2 Phytotechnology with Biomass Production 

has features that can be nurtured in order to improve soil quality and crop 
productivity. Stewardship of soil and the restoration of contaminated sites 
are important in many countries. 

The soil scientist characterizes soil in terms of physical properties such 
as particle size distribution, chemical properties such as pH and percent 
nitrogen (N), and biological properties such as number of microorganisms 
per gram of soil. Soil quality depends on having a desirable amount of many 
different substances in soil. 

1.1.1 Soil Contamination 

This book has a focus on phytotechnologies for contaminated sites. The 
NATO funding for multiyear research project of the Science for Peace and 
Security Program (SPS MYP) #G4687 entitled Phytotechnology for Cleaning 
Contaminated Military Sites has a goal to improve the economics of phytore
mediation by producing plant biomass that has economic value. There are 
many locations in the world which are contaminated with substances in the 
soil that reduce the value of the products that are harvested because yield is 
reduced or the products are of lower quality. In some cases, health and safety 
issues may prevent the land from being used for the production of food and 
feed crops. Risk reduction is one of the important issues in many locations 
where contaminants are present. 

There is value in approaching the topics in this book using a sustainability 
approach in which social value, environmental quality, and economic ben
efits are all considered to be important. Each site with contamination has the 
potential to be improved such that it can be used productively for the ben
efit of society. Many investigators have reported on their efforts to develop 
methods and approaches that advance the science and engineering associ
ated with phytotechnologies. One of the goals of this book is to collect and 
write about some of these developments. 

The research site at Fort Riley, Kansas, where Miscanthus has been estab
lished has lead in soil. Because of its use for military purposes, lead in soil is 
a contaminant of concern at a number of military sites. At a research site at 
Dolyna, Ukraine, there are other inorganic contaminants in the soil. 

Petroleum contaminated soil is common on military lands and at sites 
where vehicles are refueled. Petroleum refineries often have one or more 
contaminated areas. Pipeline spills are commonly found in many coun
tries, and the spill may be due to military operations designed to disrupt 
supplies. Pesticides are often contaminants of concern on military lands 
and at other locations. 

There are many locations where mining operations have ended with land 
that needs to be restored to better quality. Minerals, coal, lime, and other 
products are mined to obtain useful raw materials, but there are other solid 
residues that remain at the site. These mine tailings are often an important 
challenge in efforts to improve soil quality. 



 

  

  

 

  

 

3 Introduction 

Salt is a contaminant of concern when it is present in soil at a high 
concentration. High salt concentrations may be from oil and gas production 
or irrigation water that has too much salt. 

Coal ash is a residue from coal combustion for electricity or to fire a boiler 
at an industrial site. There are also residues from other industrial processes 
such as steel mills. 

1.1.2 Types of Contaminants 

There are two important types of contaminants in soil: inorganic and organic 
substances. Organic contaminants such as gasoline can be biodegraded by 
biological processes to carbon dioxide and water. Inorganic contaminants 
such as lead, other trace elements such as zinc, and salts do not biodegrade. 
They are managed by other processes such as phytostabilization. Both types 
of contaminants are important and are considered in this book. 

1.2 Phytotechnology with Biomass Production 

One of the core topics in this book is how to restore soils that are contami
nated. There are many ways to make use of the beneficial effects of vegeta
tion in contaminated soil. The concept of using plants to both improve soil 
quality and produce a product that has commercial value has been inves
tigated by a number of research teams and used in practice (Alexopoulou 
2018; McCutcheon and Schnoor 2003; Nsanganwimana et al. 2014; Pidlisnyuk 
et al. 2014). This is one of the core topics of this book, which will be described 
further in other chapters. While the NATO project research has been with 
Miscanthus, there are many other plants that have the potential to be used 
commercially to both improve soil quality and harvest a product that can be 
marketed and sold. 

1.3 Miscanthus 

The focus of this book includes growing Miscanthus at contaminated sites 
in order to have a product to harvest and sell. Miscanthus has been the sub
ject of considerable research because of the large amount of biomass that 
can be produced (Alexopoulou 2018; Lewandowski et al. 2000; Jones 2020). 
Miscanthus crops may exceed 3m in height and annual yields may be more 
than 25 Mg ha−1 (Jones 2020). Miscanthus genetics and the development of 
hybrids that have desirable features are important. Establishing Miscanthus 



  

 

 

 

  
 

   

 

 

  

 

4 Phytotechnology with Biomass Production 

plants and other vegetation in contaminated soil is the subject of a separate 
chapter because of its importance. Soil fauna have great value in improving 
soil quality when Miscanthus is grown in contaminated soil. 

The markets for Miscanthus include its use as a biofuel and as a bio-based 
product in buildings, paper industry, vehicles, or other applications. The eco
nomics associated with the marketing of Miscanthus vary with location and 
with the efforts in various countries to have policies to reduce greenhouse 
gas emissions. 

1.4 Case Studies 

This book includes several recent examples of efforts to produce Miscanthus 
while also improving soil quality at field sites in several countries. At each 
field site, there are applications of the science and technology described in 
the various chapters. The details of many of the case studies are presented in 
other publications which are included in the references associated with each 
case study. 
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2 
Phytotechnologies for Site Remediation 

Valentina Pidlisnyuk, Ganga M. Hettiarachchi, 
Zeljka Zgorelec, Melissa Prelac, Nikola Bilandžija, 
Lawrence C. Davis, and Larry E. Erickson 

Abstract 

Phytotechnologies for inorganic contaminants include phytoextrac
tion, phytostabilization, phytotransformation, and phytohydraulics. Soil 
amendments may be added to increase contaminant solubility when 
phytoextraction is implemented. For phytostabilization soil amendments 
may be added to reduce contaminant availability, such as transformation 
to a less soluble compound. Phytotransformation is the process of chang
ing the contaminant to another form to reduce risk of movement or tox
icity. Phytohydraulics may be applied with phytostabilization when the 
design includes evapotranspiration to reduce transport of the contami
nants away from the point of contamination. Plants used for phytostabi
lization should be able to grow well in the contaminated soil, produce a 
product of value and commercial interest, and evapotranspire sufficient 
water to achieve containment of the contaminants. The uptake and trans-
location of the contaminants to aboveground biomass should be small 
enough to allow the plant biomass to be used for a commercial purpose. 
Miscanthus is among the most promising energy crops for phytoremedia
tion: it grows well in contaminated soil, evaptranspires large quantities of 
water, and produces high-quality cellulose. The use of soil amendments 
can help to minimize contaminant uptake and improving soil quality is 
an important issue. Several other energy crops that have good potential 
for phytostabilization application are introduced in this chapter as well. 
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2.1  Introduction

Phytoremediation technology was established as an environment-friendly 
concept to restore polluted sites before 1990, and a year later the term was 
used. Generally, phytoremediation technology can be divided into six 
 subtypes depending on the contaminant origin and the mechanisms of 
 restoration (USEPA, 1998). In order to remediate sites polluted by contami-
nants of inorganic origin (mainly trace elements) the following processes are 
proposed (USEPA, 1998):

 1. phytoextraction – remediation mechanism is based on the uptake 
of contaminant by roots and its transmigration to the aboveground 
 tissues (leaves, stems, branches);

 2. rhizofiltration – remediation mechanism is represented by the 
 accumulation of contaminants in roots;

 3. phytostabilization – remediation mechanism is based on the 
 contaminant immobilization in soil by plant root exudates.

In case of remediation sites polluted by contaminants of organic origin the 
following processes are in the focus (USEPA, 1998):

 4. phytodegradation – remediation mechanism is based on absorbing 
the contaminants by roots and converting them by plant enzymatic 
activity to safe compounds;

 5. rhizodegradation – remediation mechanism is based on the provi-
sion of favorable environmental conditions for microorganisms to 
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7 Phytotechnologies for Site Remediation 

be able to degrade the contaminants in the rhizosphere, plant roots 
release organic compounds (nutrients, enzymes, organic acids, etc.) 
to reach favorable conditions; 

6. phytovolatilization – remediation mechanism is based on absorbing 
the contaminants by roots and releasing them to atmosphere. 

The term phytotechnologies, which replaces the earlier term phytoremedia
tion, is also known as green-remediation, and in general, means using plants 
to degrade, extract, contain, transform into less harmful forms, or immobi
lize contaminants in soil, water, or air with inorganic or organic compounds. 
Phytotechnology mechanisms and technological effects are summarized in 
Table 2.1. Some phytotechnologies have gained public acceptance compared 
to other remediation techniques and multiple related terms, such as phytoma
nagement, have been introduced. As far as phytomanagement is concerned, this 
concept is newer and covers economic benefits (Robinson et al., 2009). In addi
tion to using plants to reduce the risks posed by soil contamination, the concept 

TABLE 2.1 

Phytotechnology Mechanisms and Effect of Technology 

Effect of Phytotechnology 
Technology Mechanism Definition 

Reduce 
contaminant 
concentration 
(extraction, 
degradation) 

Phytoextraction/ 
Phytomining/ 
Phytoaccumulation 

Phytodegradation/ 
Phytotransformation 

Rhizofiltration/ 
Rhizodegradation 

The removal of inorganic contaminants from the 
soil through plant uptake, and subsequent 
harvest and removal of biomass. 
Phytoextraction, phytomining, or 
phytoaccumulation are typically used to remove 
metals from the soil (e.g., As extraction by Pteris 
vittata (brake fern) (Ma et al., 2001); Ni by 
Alyssum species (Li et al., 2003). 

The breakdown of contaminants by the metabolic 
processes in a plant. Also includes the breakdown 
of contaminants in the soil by enzymes or other 
products produced by the plant. Primarily used 
for organic contaminants. 

The breakdown or degradation of organic 
contaminants in the soil. The contaminants are 
either adsorbed onto the root surface or are 
absorbed by the plant roots. Due to enhanced 
microbial activity in the rhizosphere (the zone of 
soil influenced by the roots), the contaminants are 
broken down. This process can be enhanced by 
fertilization. 

(Continued) 
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TABLE 2.1 (Continued) 

Phytotechnology Mechanisms and Effect of Technology 

Effect of Phytotechnology 
Technology Mechanism Definition 

Reduce 
contaminant 
bioavailability 
without 
reducing total 
concentrations 
(immobilization) 

Reduce 
contaminant 
movement 
(containment) 

Phytovolatilization 

Phytosequestration/ 
Phytostabilization 

Phytotransformation 
(inorganics) 

Phytostabilization 
(Phytorestoration, 
In place inactivation) 

Phytohydraulics 

The uptake of contaminants by plants and 
release them into the atmosphere as they 
transpire water (direct phytovolatilization). 
Contaminant is removed from the soil and may 
be degraded as it moves through the plant’s 
vascular system before final removal from the 
system. This can be used for both organic (e.g., 
volatile organic compounds) and inorganic 
contaminants (e.g., Se, and Hg). Additionally, 
contaminants can be volatilized from soil due to 
plant root activities (indirect 
phytovolatilization) (Limmer & Burken, 2016) 

This process sequesters, or reduces, contaminant 
bioavailability through precipitation or 
immobilization of contaminants in the soil, on 
the root surface, or within the root tissues 
(Laperche et al., 1996). 

The transformation of contaminants 
by the metabolic processes in a 
plant. It also includes the 
transformation of contaminants in 
the soil by enzymes or other 
products produced by the plant. 
This can be used for nutrients and 
other inorganic contaminants. 

Plants are used to stabilize contaminated soils 
or sediments, thus protecting them from 
transport by wind or water erosion. The 
main function is to contain the contaminated 
material. However, this is usually combined 
with adding soil amendment to reduce 
contaminant movement in soil 
(e.g., phytostabilzation of Pb contaminated 
military site soil using Miscanthus in 
combination with P amendments (Alasmary 
et al., 2020)). 

This process is used to limit the movement 
of contaminants with water. Plants are 
used to increase evapotranspiration, 
thereby controlling soil water and 
contaminant movement. This mechanism 
contains the contaminant by modifying 
site hydrology to reduce the vertical or 
horizontal movement of water in the soil 
(Narayanan et al., 1999). 
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includes converting the obtained biomass into useful products (Evangelou 
et al., 2015; Robinson et al., 2009); in other words, “phytomanagement is a com
bination of phytoremediation and sustainable site management with economic 
return” (Conesa et al., 2012; Pandey & Bajpai, 2019). 

The goal of this section is to provide an overview of various plant-based 
techniques for remediation of contaminated soils and to introduce research 
and applications of plant cultivation in contaminated areas to obtain biomass, 
with emphasis on Miscanthus as the phytoagent (Pidlisnyuk et al., 2014). 

2.2 Phytotechnologies 

The two most commonly used phytotechnologies for inorganic contami
nants are phytoextraction and phytostabilization. In the phytoextraction 
process the plant’s ability to accumulate trace elements is important. Based 
on the relative uptake and bioaccumulation potential, plants can be grouped 
into three categories: excluders, indicators, and accumulators (Adriano, 2001; 
Hunt et al., 2014) (see Figure 2.1). 

The ability of plants to accumulate trace elements from the soil can be 
estimated by the enrichment coefficient (EC) or the bioconcentration factor, 
which are expressed as the ratio of defined trace element concentrations 
in the plant material (mg kg−1 of dry matter) and in the soil (mg kg−1 of 
dry soil). In addition, translocation factor (TLF) value reflects the levels of 
plants’ phytoextraction potential accounting as a ratio of the contaminants’ 
concentrations in the aboveground biomass to their concentration in roots 

FIGURE 2.1 
Three groups of plant categories based on their uptake behavior of trace elements: excluders, 
indicators, and accumulators. (Modified from Hunt et al., 2014.) 



  

  

 
 
 
 

  
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

   

  
 
 

10 Phytotechnology with Biomass Production 

(Baker, 1981; Mamirova et al., 2020). Malayeri et al. (2008) and Zgorelec (2009) 
grouped plant species according to their ECs uptake capacities related to 
trace elements and sensitivity to trace element contamination as follows: 

high-accumulator plants EC 1–10 
medium-accumulator plants EC 0.1–1 
low-accumulator plants EC 0.01–0.1 
nonaccumulator plants EC < 0.01 

The sensitivity or tolerance of plants to excess trace elements depends on plant 
species and their genotypes. Even among crops, sensitivity varies widely 
(Adriano, 2001). Excluders are tolerant to high-trace elements concentrations and 
their tolerance is achieved by preventing the absorption and translocation of 
toxic elements to aboveground biomass. However, the observed concentrations 
in the root are lower than those in the soil. These species have low potential for 
metal extraction, and EC value is less than one (Lasat, 1999). They are insen
sitive to trace elements over a wide range of concentrations, and a common 
example is various grass species. Indicators are plant species sensitive to trace 
elements and consequently certain symptoms can be manifested. Such plants 
are not tolerant to high concentrations of trace elements, and examples are grain 
and cereal crops (Adriano, 2001). Accumulators are plants which accumulate 
trace elements in various concentrations, however, in concentrations which are 
still lower than in case of hyperaccumulators. Hyperaccumulation is a specific 
characteristic inherent in certain species. The majority of hyperaccumulators 
are endemic plants which grow in soils rich in trace elements and behave like 
strict metallophytes (Baker & Brooks, 1989), where certain facultative metallo
phytes can survive in soils poor in the trace elements (Rascio & Navari-Izzo, 
2011). These plants have developed special mechanisms for element uptake 
and tolerance to high concentrations. The mechanisms are genetically condi
tioned because the plant tissues do not manifest toxicity symptoms typical in 
plants due to high element concentrations. For successful hyperaccumulation 
the concentrations of the trace elements in the above-ground biomass have to 
be extremely higher compared to their content in the soil (Pulford & Watson, 
2003). The negative aspect of hyperaccumulators is low biomass yield. 

2.3 Phytostabilization of Arable Land 
Contaminated with Trace Elements 

Phytostabilization uses plants to reduce contaminated soil material movement 
via water or wind. The approach is commonly used in combination with soil 
amendments to reduce contaminant bioavailability and to assist plant growth. 
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The term “bioavailability” is defined as the fraction of an element in soil which 
is available for absorption by humans, animals, or plants. In the processes of 
in situ inactivation or chemical stabilization the appropriate soil amendments are 
used for immobilization of contaminants in soil (Attanayake et al., 2014; Berti & 
Cunningham, 1997; Brown et al., 2003; Defoe et al., 2014; Hettiarachchi et al., 2000). 
Contaminant immobilization is achieved through enhanced sorption in soil, 
absorption and accumulation in roots, adsorption to roots or precipitation within 
the root zone, and physical stabilization of soils (USEPA, 2000). Phytostabilization 
assisted with soil amendments can also support re-establishment of vegetation 
at contaminated sites lacking native grasses because of high concentrations of 
phytotoxic trace elements or poor soil characteristics, i.e., low pH and poor 
agrichemical and physical characteristics (Gudichuttu, 2014; Solís-Dominguez 
et al., 2012; Tordoff et al., 2000; Wijesekara et al., 2016). Phytostabilization is rec
ommended when other remediation approaches are not feasible due to extended 
contaminated area. It is also useful in case of limited funds for another reme
diation technique. The advantages of phytostabilization are low cost, simple 
implementation, and aesthetic aspects (Berti & Cunningham, 2000). The disad
vantages are as follows: needs a long period (usually 30–40 years) for restoration 
of the certain area, problems connected with disposal of contaminated biomass, 
limited development of root system, seasonal and climate dependence. 

There are two types of plants suitable for a phytostabilization process. 
One group is formed by plants tolerant to high concentrations of contami
nants, i.e., trace element excluders. Another group is represented by species 
with highly developed root systems that can immobilize contaminated sub
stances through uptake, precipitation, or reduction. In this case rather often 
relevant contaminants are concentrated in the roots and only a small portion 
of contaminants can move to the aboveground part of the plant. 

Careful selection of plant species is the determining factor for the success of 
phytostabilization. Plant characteristics and soil properties are both impor
tant for proper selection of the most suitable phytoagent. Native species 
which can survive in targeted contaminated soil are made a preferred 
choice in many phytostabilization processes (Solís-Dominguez et al., 2012). 
In addition, the plants appropriate for phytostabilization are grasses and 
fast-growing plants which can provide sufficient coverage with developed 
root systems to stabilize trace elements. Selected plants should be simple for 
further maintenance after establishment. 

2.4 Bioenergy Crops and Phytostabilization Options 

Bioenergy crops are promising candidates for phytostabilization of soils 
contaminated with trace elements due to their good ability to grow in con
taminated and marginal soils (Pidlisnyuk et al., 2014). Below the main energy 
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crops proposed for application in phytoremediation process are character
ized. It should be noted here that for the same energy crop, different results 
have been observed. Differential response is due to multiple reasons, such as 
soil type, soil amount (for example, small pot studies with insufficient amount 
of soil), nature of soil contamination (field contaminated versus trace element 
spiked soils, aged versus not aged, or fresh), and cleaning methods employed 
for plant materials (i.e., inability to remove surface contaminations). 

Arundo donax L. (Giant reed, Figure 2.2) is a perennial, tall, and upright 
grass with highly efficient C3 photosynthesis. It belongs to the Poaceae family. 
The origin of Giant reed is not yet accurately defined; however, it is believed 
to be native from Asia or the Mediterranean basin. The plant is tolerant to 

FIGURE 2.2 
Arundo donax, Manhattan, KS Nov 2020. Photo by Lawrence Davis. 
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unsuitable growing conditions, yet showing best growth in areas with 
good access to water (Angelini et al., 2005). Giant reed is cultivated well in 
moderate, subtropical, and tropical areas of both hemispheres (Herrera & 
Dudley, 2003). It grows between 6 and 8 m high, while in ideal conditions 
the height can exceed 10 m. It is a promising crop for energy production in 
the Mediterranean climate in Europe and Africa. The advantage is that the 
crop is adapted to long drying periods (Jeguirim & Trouvé, 2009; Zema et al., 
2012). Plantings can last 12–15 years and may annually produce up to 60 t of 
dry biomass ha−1 in Central and Northern Italy (Angelini et al., 2005; Pilu 
et al., 2013). A considerable amount of research is reported in Table 2.2 about 
phytoremediation potential of A. donax in a variety of contaminated soils; 
however, results are mixed. 

Panicum virgatum L. (Switchgrass) (Figure 2.3) is an upright, coarse, peren
nial C4 grass. It belongs to the Poaceae family and originates in North America 
and Canada. The plant can be produced over an extensive geographic range, 
and the annual harvested biomass is up to 25 t of dry matter ha−1 (Parrish 
et al., 2012) while stem can grow up to 2.7 m. Switchgrass develops well in 
marginal soils and shows good results in both fine and coarse textured soils 
(Rinehart, 2006). The recommended seeding rate is 200–400 germinating 
seeds m−2. Usually, the amount of seeds for one ha varies from 4 to 10 kg ha−1 

(Moser & Vogel, 1995; Teel, 2003; Vassey et al., 1985; Vogel, 1987, 2000; Wolf & 
Fiske, 2009). Currently cultivation of switchgrass uses mainly hybrids. Some 
studies with trace elements are reported in Table 2.3. 

TABLE 2.2 

Phytoremediation Potential of Arundo donax L. to Different Trace Elements 

Trace Element Phytoremediation Potential Reference 

Cd Rhizofiltration in hydroponics 
Phytoextraction 
Uptake potential from the 
media 

Cr Accumulator 
Cu Phytoextraction 

Rhizofiltration 
Hg Uptakes and accumulates 

Hg in roots 
Ni Uptake potential from the 


media
 
Pb Not efficient in removing 


Pb from the media 
Certain genotypes have 
phytoextraction potential; 
others are excluders 

Zn Phytoextraction in 
hydroponics 

Dürešová et al. (2014); Sagehashi et al. (2011) 
Barbafieri et al. (2011); Chierchia, (2011); 
Sabeen et al. (2013); Yang et al. (2012) 

Papazoglou et al. (2005); Papazoglou et al. 
(2007) 

Fiorentino et al. (2013); Kausar et al. (2012) 
Chierchia (2011); Elhawat et al. (2014) 
Bonanno (2012) 
Bonanno (2012) 

Bonanno (2012); Papazoglou et al. (2005); 
Papazoglou et al. (2007) 

Barbafieri et al. (2011); Bonanno (2012) 
Sidella (2014) 

Dürešová et al. (2014) 
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FIGURE 2.3 
Switchgrass, (Panicum virgatum) courtesy of Professor John Dolman, K-State. 

TABLE 2.3 

Phytoremediation Potential of Panicum virgatum L. to Different Trace Elements 

Trace Element Phytoremediation Potential References 

Cd Rhizofiltration Abe et al. (2008); Chen et al. 
Phytoextraction 
Accumulator 

(2008); Sankaran & Ebbs (2007) 
Gerst (2014); Juang & Lee (2010) 
Chen et al. (2012) 

Cr Phytoextraction in hydroponics 
Potential remediator 
Rhizoextraction 

Chen et al. (2012) 
Shahandeh & Hossner (2000) 
Li et al. (2011) 

Hg Not efficient Gerst (2014) 
Pb Excluder 

Favorable for phytoremediation 
Not efficient as accumulator 

Gleeson (2007) 
Johnson (2014) 
Żurek et al. (2013) 

Zn Accumulator Chen et al. (2012) 
Favorable for phytostabilization 

Pennisetum purpureum Schum. (Napier grass or Elephant grass) is a dense 
rhizomatous perennial C4 grass which is often crossed with P. americanum to 
obtain a hybrid with better properties (Figure 2.4). It belongs to the Poaceae 
family and originates from sub-Saharan Africa; currently, it is widespread in 
tropical and subtropical regions. This species prefers areas with high precipita
tion; however, it also tolerates dry conditions due to a well-developed vigorous 
root system. The best growth is reported for deep, fertile loams, although it 
grows well on more marginal lands. P. purpureum is an aggressive grass able 
to grow rapidly, colonize new areas, and form dense thickets; moreover, the 
species is recognized globally as a very invasive grass. Pennisetum purpureum 
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grows forming thick clumps up to 1 m in diameter, with stems branched 
above, reaching 4–7 m height. Leaf length and width are around 100–120 cm 
and 1–5 cm, respectively (CABI, 2014). This plant can be used as a source for 
cellulosic  bioenergy, fodder, cover material, bedding, and paper (Adekalu et 
al., 2007; Kabi et al., 2005). Positive results were recorded when it was used 
for treatment of waste sludge (Dhulap & Patil, 2014) and soil contaminated by 
hydrocarbons (Ayotamuno et al., 2006). Phytoremediation potentials of ele-
phant grass for  different trace elements are reported in Table 2.4.

Sida hermaphrodita L. Rusby (Virginia mallow) is a C4, honey plant spe-
cies (Figure 2.5) which belongs to Malvaceae family (mallows); it originated in 
North America. During the 1930s the plant was introduced to former USSR, 
and  currently it can be found in all parts of Europe. Virginia Mallow is toler-
ant to extreme types of continental climate and can survive in cold conditions 

FIGURE 2.4
Pennisetum purpureum Schum (Elephant grass).
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TABLE 2.4 

Phytoremediation Potential of Pennisetum purpureum Schum. to Different Trace 
Elements 

Trace Element Phytoremediation Potential References 

Cd	 Rhizofiltration 
Phytoextraction 
Accumulator 

Cr Excluder 
Accumulator in humid 
conditions 

Cu Excluder 
Pb Excluder 

Accumulator 
Zn Excluder 

Lotfy et al. (2012)
 
Abdel-Salam (2012); Zhang et al. (2010)
 
Ogunkunle et al. (2014)
 
Lotfy & Mostafa (2014)
 
Ogunkunle et al. (2014)
 

Ogunkunle et al. (2014); Yang et al. (2010)
 
Xia (2004); Yang et al. (2010)
 
Ogunkunle et al. (2014)
 
Ogunkunle et al. (2014); Zhang et al. (2010)
 

FIGURE 2.5 
Sida hermaphrodita a perennial dicot used for forage, or biomass production. With two harvests 
per year it can serve for biogas production with a total annual harvest exceeding 26 Mg/ha. 
This photo, courtesy of Professor Marek Bury, ZUT, Szczecin, Poland, shows regrowth after a 
first harvest, alongside the crop maturing with flowers. 

(even without snow at temperatures below −20°C) and dry conditions if the 
average annual precipitation ranges between 400 and 500 mm. Height in full 
maturity varies from 1 to 4 m, commonly reaches about 3 m (Borkowska & 
Molas, 2012). Its life span is about 25 years (Kasprzyk et al., 2013), the annual 
yield ranges from 15 to 20 t of dry matter ha−1 when cultivated in clay loam soils 
(Borkowska, 2007). In case of unfavorable conditions, the cultivation is often pro
vided with the addition of sewage sludge; in this condition yield ranges from 
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none to 11 tons of dry matter ha−1 (Borkowska & Wardzinska, 2003). The well-
developed root system allows it to efficiently use limited nutrients and water 
from marginal soils (Borkowska & Wardzinska, 2003). S. hermaphrodita grows 
well in stony or sandy soil with high yields, and best growth is reported for 
moderately humid areas. Hybrids and cultivars are mainly cultivated now 
because they have higher yields than the original species. The data about 
phytoremediation potential of Virginia mallow are summarized in Table 2.5. 

Sorghum × drummondii Steud. (Sudan grass) is an annual, warm-season, fast 
growing plant (Figure 2.6), which belongs to Poaceae family and is a hybrid of 
S. bicolor and S. arundinaceum, and possesses C4 photosynthesis. Sudan grass 
is originally from Southern Egypt and Sudan; in 1909 it was imported to the 
US where it began to be grown as a fodder species. The crop is widespread 
in South America, Australia, South Africa, Central and Northern Europe. It 
shows best growth in areas with average annual precipitation between 600 
and 900 mm, nevertheless tolerates drought periods, and can be produced in 
all soil types (FAO, 2012). Recently S. drummondii has attracted interests due to 
its ability to remove trace elements from different media (Table 2.6). According 
to Pivetz (2001) it can absorb and accumulate Co. Application of microbial 
inoculants improved the remediation process (Shim et al., 2014). Utilization 
of certain mycorrhizal fungi which form a symbiosis with S. × drummondii 
can increase the accumulation of trace elements from the contaminated soil 
(Gaur & Adholeya, 2004). 

The Miscanthus genus belongs to the Poaceae (or grasses) family (Figure 2.7). 
It has C4 photosynthesis with high water and nutrient-use efficiency and cold 
tolerance (Chung & Kim, 2012). The genus can be found within high lawns of 

TABLE 2.5 

Phytoremediation Potential of Sida hermaphrodita L. to Different Trace Elements 

Phytoremediation 
Trace Element Potential References 

Cd	 Phytoextraction 
Rhizofiltration 
Potential accumulator 

Cr Efficiently removes Cr 
from the media 

Cu Efficiently removes Cu 
from the media 

Rhizoextraction 
Ni Efficient in 

phytoextraction 
Rhizoextraction 

Pb Phytoextraction 
Accumulator 

Ociepa (2011)
 
Antonkiewicz & Jasiewicz (2002)
 
Borkowska et al. (2001); Krzywy-Gawrońska (2012)
 
Borkowska et al. (2001)
 

Borkowska et al. (2001)
 
Antonkiewicz & Jasiewicz (2002); 

Krzywy-Gawrońska (2012) 

Krzywy-Gawrońska (2012) 
Antonkiewicz & Jasiewicz (2002) 

Krzywy-Gawrońska (2012) 
Kocoń & Matyka (2012) 

Zn Phytoextraction Krzywy-Gawrońska (2012) 
Accumulator Borkowska et al. (2001) 
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FIGURE 2.6 
Sudan-Sorghum forage hybrid at the USDA Plant Materials Center, Ashland Bottoms, 
Manhattan, KS, August 2013. Photo courtesy of Mark Janzen, Natural Resources Conservation 
Services, USDA. 

TABLE 2.6 

Phytoremediation Potential of Sorghum × drummondii Steud. to Different Trace 
Elements 

Trace 
Element Phytoremediation Potential References 

Cd	 Excluder 
Rhizoextraction 

Cu	 Excluder 
Pb	 Suitable for phytoremediation 

Chemically induced remediation 
Excluder 

Zn	 Excluder 

Angelova et al. (2011); López-Chuken and 
Young (2005); Zwonitzer et al. (2003) 

Da-lin et al. (2011) 
Angelova et al. (2011); Tari et al. (2013)
 
Murányi and Ködöböcz (2008)
 
Zhuang et al. (2009)
 
Angelova et al. (2011)
 
Angelova et al. (2011)
 

Eastern Asia, from tropics and subtropics to Pacific islands, warm temperate 
regions, and subarctic areas. Wide adaptability to various environmental 
factors makes M. × giganteus a sterile triploid hybrid of M. sinensis and M. 
sacchariflorus, suitable for cultivating in different European and Northern 
American climatic conditions (Greef & Deuter, 1993, See Chapter 5 for fur
ther information about breeding of various hybrid Miscanthus and differ
ent species properties). Plant biomass annual yield ranges from 8 to 45 t dry 
biomass ha−1 (Bilandžija, 2015; Heaton et al., 2008; Lewandowski et al., 2000; 
Maughan et al., 2012; Miguez et al., 2008) with long sustainable productivity 
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FIGURE 2.7 
Miscanthus at Fort Riley, site, KS. USA. (Photo: Zafer Alasmary, Kansas State University, 
KS, USA.) 

after the establishment of up to 20 years, or more. M. × giganteus has a high 
carbon sequestration capacity as well because of its dense rhizome and root 
system (Chung & Kim, 2012). Commonly, the initial planting density per ha is 
between 10,000 and 13,000 plants. The main characteristics of Miscanthus as 
a prospective biofuel crop are as follows: exceptional cultivation adaptation 
in different climatic and pedological conditions, possibility to grow in soils 
of inferior quality, high dry matter yields, high energy value, exceptional 
resistance to diseases and pests, and low demand for nutrients. As a natural 
sterile hybrid, invasive spread is much lower in comparison with some other 
energy crops (Bilandžija, 2014). 

2.5 M. × giganteus as an Effective Phytoagent 

Plants have to meet certain requirements for application in phytoremediation 
of contaminated sites: to be resistant to pests, plant diseases, and contaminants 
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of different origin; to be able to grow at the same site long term. M. × giganteus 
has all of these properties (Clifton-Brown et al., 2008; Dauber et al., 2010). The 
plant is among the more promising bioenergy crops due to high yield, water 
and nutrient use efficiency, and lignocellulose content. Lewandowski et al. 
(2016) pointed that M. × giganteus has only weak ability to absorb contaminants; 
therefore, it can be cultivated in contaminated soils while obtaining relatively 
clean biomass. 

The selection of Miscanthus for phytomanagement of different contami
nated areas with simultaneous production of alternative energy source is 
getting popular (Amougou et al., 2011; Dubis et al., 2019; Kołodziej et al., 
2016; Kvak et al., 2018; Lewandowski et al., 2005; Matyka & Kuś, 2016; Roik 
et al., 2019; Tryboi, 2018). Thus, because Miscanthus covers 15% of the total 
bioenergy plant market in some Eastern European countries (Geletukha 
et al., 2016), can stabilize and accumulate some trace elements, absorb and 
degrade contaminants of organic origin, facilitate carbon deposition, and 
improve physico-chemical properties of soil, this plant may be successfully 
applied for restoration of postmining (Kharytonov et al., 2019; Nurzhanova 
et al., 2019; Pidlisnyuk et al., 2020a, b) and postmilitary (Alasmary, 2020; 
Pidlisnyuk et al., 2018, 2019) sites (Table 2.7). Miscanthus brings ecologi
cal benefits with economic profit due to using biomass for energy and 
bioproducts. 

2.5.1 Miscanthus Tolerance to Metals and Removal Capacity 

Miscanthus’ ability to grow in soils contaminated by trace elements 
(Alasmary, 2020; Pidlisnyuk et al., 2019; Wilkins, 1997) is determined by the 
following factors (Wang et al., 2020): 

TABLE 2.7 

Phytoremediation Potential of M. × giganteus to Different Trace Elements 

Trace Element Phytoremediation Potential Reference 

Cd Rhizoextraction 
Excluder 
Phytostabilization 

Arduini et al. (2006) 
Fernando and Oliveira (2004) 
Nsanganwimana et al. (2015) 

Cr Rhizoextraction 
Excluder 

Arduini et al. (2006) 
Fernando and Oliveira (2004) 

Cu Excluder Fernando and Oliveira (2004) 
Hg Excluder Fernando and Oliveira (2004) 
Ni Excluder Fernando and Oliveira (2004) 
Pb Excluder 

Excluder 
Phytostabilization 

Pavel et al. (2014) 
Fernando and Oliveira (2004) 
Nsanganwimana et al. (2015) 

Zn Accumulator 
Excluder 
Phytostabilization 

Pogrzeba et al. (2013) 
Fernando and Oliveira (2004) 
Nsanganwimana et al. (2015) 
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a. Miscanthus root systems are large and well-developed, and plant 
metabolism is vigorous. Also, carbon-containing compounds 
released by plant roots supply the microorganisms located in rhizo
sphere (Rhizobacteria) with nutrients and organic acids (Hromádko 
et al., 2014; Zgorelec et al., 2020). Such acids can suppress trace ele
ment toxicity. Guo et al. (2017) reported that under Cd stress M. 
sacchariflorus roots secreted malate which mitigated Cd toxicity for 
the plant, by reducing its absorption. 

b. Antioxidant and photosynthetic activities of Miscanthus are well 
developed. The antioxidant defense system plays a crucial role in plant 
stress response. Along with the ability to mitigate stress-induced dis
turbances, it can serve as an indicator of trace element toxicity-induced 
stress. An increase of malondialdehyde content reflects Cr stress (Jiang 
et al., 2018). Significant increases in chlorophyll content, superoxide 
dismutase, and peroxidase activities are observed in M. floridulus and 
M. sacchariflorus growing in soil slightly contaminated by Pb, Zn, or 
Cd (Zhang et al., 2015). M. × giganteus behavior was similar under Pb 
and Zn stresses (Nurzhanova et al., 2019). 

c. The Miscanthus rhizosphere contains many microbial colonies that 
participate in plant–soil interaction (Wang et al., 2020). Schmidt et al. 
(2018) reported that plant inoculation with bacteria and fungi isolated 
from different Miscanthus species’ rhizospheres improved plant 
growth. Firmin et al. (2015) obtained the same result after inoculat
ing M. × giganteus by Funneliformis mosseae. Inoculation of Miscanthus 
rhizomes with plant growth promoting bacteria increased the biomass 
by ~77% after first vegetation season in postmining soil contaminated 
by trace elements (Pidlisnyuk et al., 2020a; Pranaw et al., 2020). 

2.5.2 Changes in Soil Parameters Induced by 
Miscanthus Phytoremediation 

Miscanthus planting in contaminated soils can increase soil carbon con
tent, enhance aggregate stability, and improve water-holding capacity. 
The improving effect of the plant on soil physiochemical properties is 
mainly attributed to decomposition of underground organs and litter of root 
residuals in soil (Wang et al., 2020). McCalmont et al. (2015) showed that the 
decomposition of litter and underground organs of Miscanthus provides a 
large amount of organic carbon to soil, which increases soil organic matter, 
promotes soil nutrient cycling, improves the texture, structure, and water-
holding soil capacity, and reduces soil nutrient loss. 

Miscanthus was cultivated in marginal soil with the application of 
soil amendments, biochar, and biosolid, that enhanced the abundance of 
humus and mycorrhizal fungi, and improved soil fertility and hydraulic 
properties. Biosolids exerted the most pronounced effect (Allami et al., 2019). 



     

  

      

 

 
   

 
   

  

 
    

     

  
  

 
   

22 Phytotechnology with Biomass Production 

Zhang et al. (2020) applied mixed planting of Miscanthus, Masson pine, 
and Bamboo for phytoremediation of a mining area. After 3 years of cul
tivation, the abundance of the mixed vegetation was tremendously higher, 
and microflora in remediated soil was larger in comparison with the control 
one. Miscanthus significantly reduces the release of NOx and increases the 
absorbing capacity for CH4. The net release of greenhouse gases was reduced 
to an extent of 4.08 t CO2-eq per hectare per year (Mi et al., 2018). 

In the long run during Miscanthus cultivation, soil carbon sequestration 
could be significantly different (Holder et al., 2019). During one life cycle (15 
years), Miscanthus may release twice the amount of greenhouse gas in com
parison to permanent grassland. Compared to the grassland soils, the surface 
soils of Miscanthus fields tend to have a risk of acidification due to higher 
concentrations of P and K (Hu et al., 2018). Therefore, when evaluating the 
impacts of Miscanthus cultivation, soil characteristics and soil organic car
bon stability should be taken into consideration in the long-term perspective. 

2.6 Miscanthus Phytotechnology in Action 

2.6.1	 M. × giganteus Application for Phytoremediation of Trace 
Elements’ Contaminated Mining Soil, Tekeli, Kazakhstan 

The research soil was sampled around the Tekeli Mining and Processing 
Complex of “Kazzinc”, Kazakhstan. Soil was contaminated by trace 
elements in concentrations that exceeded the maximum permissible levels 
in Kazakhstan, i.e., the exceeding for Pb was in 29 times, As – 5 times, Zn – 
11 times, Sr – 22 times, Cu – 13 times. Research soil belonged to saline and 
sandy types; its pH (water) ranged from 8.3 to 9.9 (Nurzhanova et al., 2019). 

The experiment lasted two vegetation seasons. During the experiment soil 
and M. × giganteus tissues (root, stems, and leaves) were analyzed for the con
tent of eleven trace elements: As, Pb, Zn, Co, Ni, Cr, Cu, Sr, Mn, V, and U. These 
elements mainly accumulated in the M. × giganteus root system. Accumulation 
of Zn, Sr, and Mn was higher than others (Figure 2.8). M. × giganteus behaved 
as an excluder (BСF and TLF values are lower than 1) preferentially accumu
lating the observed trace elements in roots; however, in relation to Mn, Sr, and 
Zn the plant acted as extractor (BСF < 1 and TLF ≥ 1) (Nurzhanova et al., 2019). 

2.6.2	 M. × giganteus Application for Phytoremediation of Post-
Industrial Soil Contaminated with Trace Elements, Bakar, Croatia 

This experiment was based on monitoring of M. × giganteus phytoremediation 
potential in relation to post-industrial soil of Rijeka-Bakar industrial zone, 
Croatia, which was contaminated by different trace elements (Pidlisnyuk 
et al., 2020b). The biomass parameters and concentrations of Ti, Mn, Fe, Cu, 
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FIGURE 2.8 
Element accumulations in M. × giganteus tissues during two vegetation seasons 

Zn, As, Sr, and Mo in stems, leaves, and roots were analyzed in each of three 
vegetation seasons at harvest. The following categories were used as features 
affecting the phytoremediation process: the difference in trace elements 
distribution along the plant; trace element concentrations in the researched 
soil; different regimes of trace elements absorption by roots and transmigra
tion to plant organs; and vegetation season. Results of the statistical analy
sis (Pidlisnyuk et al., 2020b) showed that the main factor was trace element 
organ distribution which was essential for Ti, Fe, and Cu. The difference in 
trace element concentration in soil significantly correlated with Zn and Mo 
was essentially lower with As, Sr, and Mn, while for Ti and Cu correlation was 
not detected. The impact of the combined effect of two factors (trace elements 
organ distribution and difference in trace element concentration in soil) was 
detected for two elements: more prominent for Cu and smaller for Ti. 

The plants organs (variable “Zone”) mainly affect the trace elements con
centration variations, i.e., accumulation in specific plants part: it was the most 
essential for Ti, Fe, and Cu and the smallest for Mn. The second factor (trace 
elements concentration in soil – variable “Experiment”) was the most essen
tial for Zn and Mo; however, much less for As, Sr, and Mn; limited for Fe; and 
was not observed for Ti and Cu. The combined effect of the above two factors 
was detected for two elements: higher for Cu and lower for Ti (Figure 2.9). 

2.6.3 Field Study Results, Fort Riley, Kansas, USA 

In a field study established in 2016, on an US Army reservation in Fort Riley, 
KS, Miscanthus was planted in an area with soil total Pb concentration rang
ing from 900 to 1500 mg kg−1 and near-neutral soil pH. Five treatments were 
evaluated: (i) control without tillage with existing vegetation; (ii) no-tillage, no 
additional amendments planted with Miscanthus; (iii) tilled soil, no additional 
amendments planted with Miscanthus; (iv) tilled soil amended with triple 
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FIGURE 2.9 
The components of the element concentration variation (after Box-Cox transformation) depended 
on plant organs (variable 1 – “Zone”), experiment treatment (variable 2 – “Experiment”), and its 
interaction (1*2) (with vegetation duration as a covariate). Notes: Zone – the effect of the plant 
organs (roots, leaves, stems), experiment – the effect of the experiment treatments (level 1–5), 
1*2 – the interaction effects of the Zone and Experiment. 

superphosphate (at 5:3 Pb:P molar ratio) planted with Miscanthus; and (v) 
tilled soil amended with organic P source (class B biosolids applied at 45 Mg 
ha−1 air-dry weight basis) planted with Miscanthus. Results from 2016 to 2018 
showed that one-time addition of soil amendments to Pb-contaminated soil 
supports establishing and stabilizing Miscanthus, increasing biomass yield as 
well as reducing phytoavailability and bioaccessibility of Pb (as measured by 
physiological-based extraction test procedure developed by Ruby et al. (1996) 
and modified by Medlin (1997)). Moreover, biosolids-treated plots showed 
improved soil enzyme activities, organic carbon, and microbial biomass 
(Alasmary et al., 2020). X-ray absorption spectroscopy results indicated pyro
morphite, Pb associated with Fe minerals, and Pb adsorbed to humic acid were 
the dominant Pb species in P-amended and nonamended soils (Unpublished 
data, Alasmary and Hettiarachchi). The results suggest that Miscanthus can 
be grown successfully in Pb-contaminated military site soils combined with 
soil amendments, while minimizing the associated environmental risks. 

2.7 Conclusions 

Using energy crops in phytostabilization of soils contaminated with trace ele
ments is one of the green technologies that provides ecological, economic, 
and social solutions for contaminated areas, while meeting energy needs and 
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mitigating climate change. The classification of plant species into correspond
ing groups (hyperaccumulator, accumulator, indicator, excluder) is complex 
as different conditions (soil type, pH, climate, location, media, plant proper
ties, choice of cultivars, etc.) can influence plant uptake of trace elements and 
there is no universal approach. Miscanthus proved its ability to grow and 
to remediate soils contaminated by trace elements with sufficient biomass 
yield. Besides the obvious advantages of Miscanthus as a phytoremediation 
agent, its cultivation on the marginal and slightly contaminated lands can 
improve the soil biological parameters, such as basal respiration, microbial 
biomass carbon, fluorescein diacetate hydrolytic activity, other enzymatic 
activities, and simultaneously prevent soil and water erosion. The applica
tion of Miscanthus in phytomanagement can improve soil health and help to 
supply biomass for utilization to obtain energy or bioproducts. Utilization of 
Miscanthus for phytomanagement of differently contaminated soils is a pro
spective green technology with potential widespread commercial feedback. 
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3 
Remediation of Sites Contaminated 
by Organic Compounds 

Lawrence C. Davis, Barbara Zeeb, Larry E. Erickson, 
Aigerim Mamirova, and Valentina Pidlisnyuk 

Abstract 

The transformation and biodegradation of organic contaminants in soils 
with plants occur in plants as well as in soil. Microorganisms have the 
ability to biodegrade many compounds and microbial populations are 
larger when plants are present because of root exudates. In this chap
ter, petroleum compounds, explosives, solvents, pesticides, and persis
tent organic pollutants are included. Miscanthus, trees, and many other 
plants have important phytoremediation applications to organic con
taminants. Phytoremediation studies with Miscanthus show that toler
ance to organic contaminants is good and that Miscanthus is an effective 
plant for phytoremediation. Positive biodegradation results are reported 
with hemp, which is another plant with commercial value. Because of the 
importance to NATO, phytoremediation research progress with explo
sives is an important part of this chapter. There has been good research 
progress in phytoremediation applications with poplar trees where poly
chlorinated biphenyls have been investigated. Some recent phytoreme
diation advances with dioxins are included. Recent phytoremediation 
results with Miscanthus growing in pesticide-contaminated soil show 
that Miscanthus is able to grow in soils where mixtures of chlorinated 
pesticides are present. 
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3.1 Introduction 

There have been many studies of phytoremediation where organic con
taminants are present and are the focus of the research or the cleanup. 
Phytoremediation with biomass production to obtain useful products is the 
emphasis in this book, but is far less common. If remediation goals at a site 
can be profitable because a useful product is harvested and sold, this has 
value for the project. With organic contaminants, it is possible to restore land 
to a state of productive use. In this chapter the emphasis will be on both soil 
remediation and how it can be accomplished by plants that have economic 
value. Miscanthus × giganteus (M. × giganteus) is the primary focus of this 
book, but because there is a dearth of information about the use of that plant 
in remediation of organics, most examples are drawn from other species. 

3.2 Types of Organic Contaminants 

There are many organic compounds present in soil and ground water as con
taminants. Petroleum hydrocarbon (PHC) contaminated soil is one of the 
major areas of investigation and application as PHCs are among the most prev
alent pollutants in the environment (e.g., Abdullah et al., 2020). For example, 
in Canada, approximately 60% of contaminated sites involve PHC contamina
tion, often impairing the quality and uses of land and water (CCME, 2008). 
Hence, large land areas such as closed petroleum refineries, soils associated 
with restoration of coalmine lands, and spills at petroleum production areas 
need to be remediated. Explosives in soil are important in this book because 
of the emphasis on content that is of interest to NATO. Wood treatment sites 
with creosote, aircraft de-icing chemicals near airports, and many types of 
solvents at dry cleaners and vehicle repair shops are present in many coun
tries. Persistent organic pollutants (POPs) such as the industrial chemicals, 
polychlorinated biphenyls (PCBs), and pesticides like DDT are present in soil 
as contaminants at many locations worldwide (Tarla et al., 2020). These organic 
contaminants adversely affect human and environmental health globally as 
they are subject to long-range transport via slow global distillation and persist 
in soils long after their initial deployment (Chlebek & Hupert-Kocurek, 2019). 

3.2.1 Remediation of Petroleum Contaminants 

Petroleum spills and leaking tanks have resulted in many sites where 
organic compounds are present in soil. There is a significant literature on 
phytoremediation and bioremediation of soils with petroleum contaminants 
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(Chan-Quijano et al., 2020; Fiorenza et al., 2000; McCutcheon & Schnoor, 2003; 
Tang, 2019). Locations with petroleum and natural gas production opera
tions, pipelines, refineries, storage sites, gasoline stations, vehicle mainte
nance shops, and parking lots are some of the places where hydrocarbons 
are routinely found in soils. Leaking underground storage tanks have been 
found at many locations including service stations, buildings where heating 
oil is used, and on farms where fuel for vehicles is stored. 

Most PHCs have very low solubility in water and often the separation of 
a two-phase mixture of oil and water allows some valuable recovery of the 
oil phase when a “pump and treatment” system is used to recover product. 
Gasoline, kerosene, and diesel fractions are liquid at ambient temperature; 
however, some petroleum compounds are solids under ambient tempera
tures. When microorganisms feed on petroleum compounds, they may 
be found at oil phase surfaces. Polycyclic aromatic hydrocarbons (PAHs) 
are natural petrogenic materials although they can also be products of 
incomplete combustion of hydrocarbon fuels. Often, they are the most 
hazardous components of fuel spills because many PAHs are classified as 
carcinogenic (Cachada et al., 2016; Henner et al., 1997). Loss from soil to 
atmosphere is an important route of dispersal for petroleum fractions with 
reasonable vapor pressures, and fairly low water solubility. For instance, 
gasoline, kerosene, and jet fuel will dissipate from soils relatively quickly 
if the soil is porous. Plants which remove water from soils often facilitate 
diffusive loss of contaminants trapped beneath the water table by lower
ing the water table. 

Petroleum compounds provide carbon and energy, but nitrogen (N) and 
phosphorus (P) are also needed to support growth of both the plants and 
microorganisms. Because N and P are needed, fertilizer is often added as 
part of the phytoremediation plan. Organic fertilizers such as manure add 
to microbial diversity, which is often beneficial (Chan-Quijano et al., 2020). 
Many different bacteria participate in the biodegradation of PHCs, and some 
authors have generated lists of different species that have been isolated 
(e.g., Chan-Quijano et al., 2020). Research on the biodegradation of hydro
carbons was ongoing when phytoremediation research to address PHC-
contaminated soil began in the 1990s. 

Several of the early field studies in the 1990s were carried out by Banks 
and coworkers (Fiorenza et al., 2000). The results from several field studies 
are included in McCutcheon & Schnoor (2003). Grasses have been among 
the more beneficial plants in the research on biodegradation of petroleum 
compounds (Chapter 11 by Hutchinson, Banks and Schwab in McCutcheon 
& Schnoor (2003)). Although many forage grasses have only very limited use 
in industrial biomass production, the early research demonstrated beneficial 
effects of plants in field-scale PHC degradation. Plant roots provide an active 
environment, which contains compounds and organisms that are beneficial 
for microbial degradation processes. Often, they enhance soil aeration by 
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removing pore water. Many degradative reactions are oxygen-dependent, 
although some are anaerobic.

One good example of phytoremediation using trees for removing fuel con-
taminants from a shallow aquifer was reported by Nichols et al. (2014). In their 
study, ~579,000 L of diesel, jet fuel, and gasoline (all moderately volatile) were 
present at the start of the project in an area of two hectares. Poplar, willow, and 
pine trees were planted at the site in 2006 with most of the 3250 trees being 
poplars. When poplar and willow trees died, they were replaced by cuttings 
from the healthy trees at the site. Soil-gas sampling was used to follow the 
progress of the remediation and determined a 95% loss of total PHCs (TPH), 
and a 99% loss of mass of benzene (very volatile). As the trees grew, their 
ability to pump water increased and this was beneficial. In this example, the 
TPHs were all liquids at ambient conditions. Methyl-tert-butyl ether (MTBE), 
a highly water-soluble fuel additive, was taken up by the trees and released 
to the atmosphere. As the rate of release to the atmosphere was limited by the 
rate of evapotranspiration of the water that the MTBE was dissolved in, the 
concentration of MTBE in the atmosphere was very small (Narayanan et al., 
1999), and in addition, MTBE has a very short atmospheric half-life on the 
order of 3 days (Squillace et al., 1997). There is no doubt that other constitu-
ents passed through the trees at lower levels proportional to their water vs 
lipid solubility. Toxicity to plants would limit this uptake for levels of benzene, 
toluene, ethylbenzene, and xylenes. Less polar lipids, found in crude oil and 
environmentally aged petroleum fractions, are generally much less toxic.

Combining the use of vascular plants and microbes (bacteria and/or fungi) 
is proving to be a promising approach for degrading a variety of organic con-
taminants including PHCs. Studies carried out recently have largely focused 
on the potential of endophyte and rhizosphere plant growth promoting bac-
teria to increase the efficiency of phytodegradation (e.g., Becerra-Castro et al., 
2013; Chlebek & Hupert-Kocurek, 2019). These bacteria, possessing catabolic 
genes, mineralize organic contaminants within the plant or rhizosphere, 
reducing their phytotoxicity, while promoting the growth and development 
of plant root and shoot biomass (e.g., Afzal et al., 2014; Arslan et al., 2017; 
Glick, 2010; Santoyo et al., 2016).

Cannabis sativa is an annual dioecious herb capable of growing to heights 
of 5 m and having long tap roots. This plant has been grown since ancient 
times for use in a wide range of applications. Fibers from hemp are exten-
sively used in products that include fabrics and textiles, ropes, yarn, carpet-
ing, construction and insulation materials, etc. (Johnson, 2014). The short and 
woody fibers in the hemp’s stalk interior are known as “hurds” and are used 
in the manufacture of animal bedding, paper, and composites. Hemp seed is 
used in various foods and beverages and oil from hemp seed is widely used 
in industrial oils, cosmetics, and pharmaceuticals. In addition, cannabinoids, 
a group of compounds found in Cannabis (with the most notable being the 
phytocannabinoid tetrahydrocannabinol (THC)), are used medicinally, spiri-
tually, and recreationally (e.g., Bilalis et al., 2019). The term “hemp” is used 
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to denote cannabis that contains 0.3% or less THC content by dry weight. In 
recent years, C. sativa (hemp) has been studied as a bioenergy crop as it grows 
well on marginal lands and has the capacity to produce high volumes of bio
mass (e.g., Kumar et al., 2017). Asquer et al. (2019) reported biogas production 
using hemp straw was comparable to most other energy crops. This annual 
crop can be grown in climates where winters are too cold, making successful 
maintenance of perennial M. × giganteus unreliable. 

C. sativa (hemp) was studied in the remediation of two PAHs, benzo[α] 
pyrene and chrysene (Campbell et al., 2002). The authors carried out experi
ments over 45 days in soil spiked with benzo[α]pyrene and chrysene at 25, 50, 
and 75 µg g−1 and found reductions in contaminants in all cases. They addi
tionally found that the mass and growth of Cannabis plants to increase at 
all three concentrations leading them to suggest that metabolites of the two 
PAHs studied may have stimulated the growth of hemp. 

Research to improve PHC phytoremediation processes is continuing, and 
there has been significant progress in the last 6years. In 2019, Tang reviewed 
studies on the biodegradation of TPHs (Tang, 2019). Ren et al. (2017) discuss in 
detail some of the complexity in remediating PHC because the larger aromat
ics are tightly sorbed to organic matter, and minerals of soil giving them very 
low accessibility to organisms. The sorption/desorption processes are chal
lenging to predict for the vast number of constituents in PHC mixtures such 
as crude oil, and residuals from refining. Laboratory experimentation may 
not align well with effects observed in the field with “aged” materials because 
of the very slow rates of sorption/desorption observed in real soil structures, 
particularly in micropores of mineral or biochar fractions (Ren et al., 2017). 

3.2.2 Remediation of Explosives 

Large areas of land are contaminated with explosives or their residues. 
Landmines, unexploded ordnance (UXO), and explosive compounds in soil 
are important issues in many countries. Globally more than 80 countries 
have land contaminated by explosives (Robledo et al., 2009), including more 
than 100 million antipersonnel mines (Hemapala, 2017). In Europe, there are 
UXOs from World War 2 that still need to be removed. For example, Ukraine 
has ~7000 km2 of land with UXOs, and this resulted in 2078 casualties from 
2014 to 2017 (Dathan, 2020). Due to military conflicts in Asia and the Middle 
East, more than 150 million ha have explosives present as UXOs and/or as 
contaminants in soil (Via, 2020). In the USA, there are more than 2000 sites 
with soil contamination due to explosives (Via, 2020). Contaminated soil 
locations include sites for the manufacture of explosives, assembly plants 
where explosives are, or were, packed into shells, and sites where explosives 
have been stored. 

There has been good progress in developing robotic methods to identify and 
remove landmines, one of the principal forms of UXO (Hemapala, 2017; Robledo 
et al., 2009). Kalderis et al. (2011) provided a comprehensive review of research 
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on the biodegradation of TNT (2,4,6-trinitrotoluene), RDX (Royal Demolition 
Explosive; cyclotrimethylene-trinitramine; 1,3,5-trinitroperhydro-1,3,5-tri
azine), and HMX (high-melting explosive; octogen; cyclotetramethylene-tetra
nitramene; 1,3,5,7-tetranitro-1,3,5,7-tetrazocane). Water solubility is largest for 
TNT (130mg L−1), followed by RDX (42mg L−1), and HMX (5mg L−1) facilitat
ing their transfer to organisms. Biodegradation pathways are presented in the 
Kalderis’ et al. (2011) review. The greatest success to date with bioremediation 
and phytoremediation has been with TNT, the simplest and most soluble of 
the common explosives. Lists of bacteria and fungi that biodegrade TNT, RDX, 
and HMX are provided in the Kalderis et al.’s (2011) review along with data on 
toxicity of these explosive compounds to microorganisms and invertebrates. 

Phytoremediation field studies of TNT have been reported, and a good sum
mary of the few reported, is provided by Via (2020), along with degradation 
pathways of TNT within plants, and a list of plants with results. A field-scale 
wetland treatment system for TNT and RDX in water was designed and imple
mented at the Iowa Army Ammunition Plant (McCutcheon & Schnoor, 2003). 

The concept of phytoremediation with biomass production on sites with 
explosive contaminants needs further development. One tropical biomass crop, 
vetiver grass (Chrysopogon zizanoides), a relative of sorghum, has been tested for 
its capacity to take up and degrade TNT (Das, 2014). When urea was added to the 
soil system, uptake increased as much as 90% of the input 100mg kg−1 amount of 
TNT in 22days. Miscanthus may be a good plant for field-scale phytoremediation 
of soils contaminated with explosive compounds; however, further research is 
needed on the fate of TNT, RDX, and HMX in soils where Miscanthus is grown. 
In many cases, the actual degradation is microbially driven, and hence many 
different plant species may facilitate the process (Esteve-Núñez et al., 2001). On 
the other hand, TNT metabolism and detoxification within plants may differ 
between plant species. The process has been well characterized in the dicot 
Arabidopsis (Gandia-Herrero et al., 2008), but thus far not in grasses. 

3.2.3 Remediation of Chlorinated Hydrocarbons 

Many chlorinated organic compounds have found their way into soil and 
ground water. The liquid forms are especially challenging to deal with 
because they are often denser than water and move to the bottom of an 
aquifer, gradually contaminating that water by slow diffusive dissolution. 
Chlorinated solvents such as trichloroethylene have been used for a number 
of beneficial applications in machine shops and dry-cleaning operations, and 
they are found in soil and groundwater at many locations. Volatile solvents 
dissolved in water can be taken up into plant roots. Plant evapotranspiration 
releases water into the atmosphere and the chlorinated solvents in the water 
are released into the atmosphere. Because of the low vapor pressure of water 
at ambient temperatures, only about 18 mg L−1 of water (1 mM) can be evapo
rated into the air phase. In consequence, huge volumes of air are needed for 
evapotranspiration, and thus the concentrations of the volatile chlorinated 
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solvents in the air are very low. The dilution factor of this process is about 
55,000, varying with temperature and relative humidity of the “incoming” 
air (Narayanan et al., 1995, 1999). In the atmosphere, trichloroethylene has a 
short half-life as solar radiation generates hydroxyl radicals. 

Keeping soluble chlorinated organic compounds out of drinking water 
sources is challenging. Once they have found their way into an aquifer, in situ 
treatment in the aquifer may be a better treatment alternative than pump
ing the water out (Santharam et al., 2011). The effectiveness of phytoremedia
tion is limited by the ability of roots to reach the contamination. Sometimes 
efforts are made to install trees below the soil surface, in an excavated pit or 
well, in order to reach the contaminated zone (Negri et al. in McCutcheon & 
Schnoor, 2003). 

There are many examples of phytoremediation field studies where microbial 
transformations and evapotranspiration of chlorinated aliphatic compounds 
are observed (McCutcheon & Schnoor, 2003). The vegetation effectiveness 
is better for contaminants that are near the soil surface compared to aqui
fers that are located deeper below the ground surface. Vegetation has been 
used to pump contaminated water into the atmosphere as a way to man
age contaminants that are present at a site (Doucette et al. in McCutcheon & 
Schnoor, 2003). An alternative is to pump contaminated water to the surface 
and use it to irrigate trees or other vegetation (Jordahl et al. in McCutcheon & 
Schnoor, 2003). Deep-rooted, water-seeking trees have been used effectively 
and economically for remediation of chlorinated compounds (Shang et al. in 
McCutcheon & Schnoor, 2003). They have value when harvested. 

PCBs are classic examples of POPs. They are primarily an intentional 
industrial product, used for 50 years or more as an insulating oil (liquid) in 
capacitors and electrical transformers (USEPA, n.d.). Their extreme hydro
phobicity results in strong sorption to organic matter in soils. As discussed 
by Ren et al. (2017), the nature of sorption may vary with the nature of the 
soil matrix, depending on the specific types of transformed organic matter 
present, and types of clay and other minerals in the soil. Thus, different PCB 
congeners may sorb/desorb differently on different soils. The same caveat 
applies to dioxins and pesticides (see below). 

The ability of microbe and plant species to access these POPs varies greatly, 
depending on whether the plant or microbe produces surfactants, or specific 
lipid binding proteins in the rhizosphere (Terzaghi et al., 2021). Those authors 
compared seven species and some combinations of species, including pump
kin with fescue, and the effect of compost or redox cycling with fescue. Other 
species were treated with other methods including redox cycling, pairwise 
growth, or ammonium thiosulfate addition. Fescue and a combination with 
pumpkin gave the best rates of degradation of the complex mixture of PCBs, 
of which they analyzed 79 congeners. This included the most highly chlori
nated classes. They noted that levels of organic C, as compost, altered rates. 
It was proposed that it serves as a source of dissolved organic carbon which 
facilitates microbial degradation of PCBs. 
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Biochar, the charcoal obtained by incomplete combustion of plant material, 
may alter the relative sorption of POPs. For example, in a greenhouse experi
ment, the addition of 2.8% (by weight) biochar to soil contaminated with 136 
and 3.1 μg g−1 of PCBs, reduced PCB root concentration in the known phyto
extractor Cucurbita pepo ssp. pepo by 77% and 58%, respectively, in addition to 
increasing aboveground plant biomass (Denyes et al., 2012). Further, in the first 
in situ experiment conducted at a Canadian PCB-contaminated Brownfield 
site, two types of biochar were statistically equal at reducing PCB uptake into 
plants as granular activated carbon (AC), reducing PCB concentrations in 
C. pepo root tissue by up to 74% (Denyes et al., 2013). Biochar-equivalent may 
be a natural material in black soils, where the black color is due to ancient and 
modern products of fires. Nartey & Zhao (2014) thoroughly review various 
processes for the production of biochars and Denyes et al. (2014) discuss the 
importance of their physical, chemical, and biological characterization. 

Ficko et al. (2011) conducted a field study in which three promising phy
toextracting perennial weed species (Chrysanthemum leucanthemum, Rumex 
crispus, and Solidago canadensis) were planted in monoculture plots at two 
PCB‐contaminated sites in southern Ontario and followed over 2 years to 
investigate the effects of plant age, contaminant characteristics, and spe
cies‐specific properties on PCB uptake and accumulation patterns in plant 
tissues. Results indicated that shoot contaminant concentrations and total 
biomass were dependent on plant age and life cycle (vegetative and repro
ductive stages), which affected the total amount of PCBs phyto-extracted on 
a per-plant basis. Even at suboptimal planting densities of 3–5 plants m−2, all 
three weed species extracted a greater quantity of PCBs per unit area (4800– 
10,000 μg m−2) than the known PCB‐accumulator Cucurbita pepo. Calculated 
PCB extractions based on theoretical optimal planting densities were signifi
cantly higher at both sites and illustrated the potential of these weeds for site 
remediation. 

An excellent example of plant-assisted remediation using trees may be found 
in Ancona et al. (2017). They used poplar trees, with drip irrigation, to remediate 
a site near transformers at a power station in southern Italy. At this site, which 
was also used as a dump for assorted wastes, the long-term spillage of PCB oils 
followed by recent efforts to clean up the site had dispersed into the soil to depths 
up to 40cm. Within 1year of planting trees, in rows spaced 2m apart with trees at 
0.5m within the rows, levels of many congeners decreased from more than five
fold above regulatory limits to levels below those limits. The effect decreased 
as distance from the trees increased. Some lesser chlorinated congeners were 
taken up into the trees in limited amounts, while other more hydrophobic (more 
chlorinated) ones sorbed tightly to the roots. Overall, soil levels decreased >90%, 
and levels within the trees did not exceed those of the rhizosphere, despite large 
uptake of water over the course of a year. This result is not unexpected. Ancona 
et al. (2017) cite more than 50 articles describing microbial and plant-assisted 
degradation of PCBs, though mostly in pot studies. Chekol et al. (2004) docu
mented the rhizosphere effect for PCBs with three legumes and four grasses, 
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while Liu & Schnoor (2008) quantitatively documented the preferential uptake of 
lesser chlorinated PCBs into hydroponic poplars. 

Dioxins (polychlorodibenzo-p-dioxins) are chlorinated aromatic com
pounds similar to PCBs but having two oxygen bridges between two ben
zene rings. Polychlorinated benzofurans have one oxygen bridge and one 
direct benzene-benzene bond. They arise as by-products of chlorination of 
phenols and during combustion of organic matter in the presence of O and 
Cl (Campanella et al., 2002). All of these are toxic to greater or lesser extent, 
but very persistent in environment, and so nonpolar that they accumulate 
in lipids of living organisms, and hence through the food chain. Fungi and 
root-associated organisms may facilitate their degradation. Bacteria of sev
eral genera are known to degrade specific congeners with varying efficiency. 
Many are aerobes, but some dechlorinations occur with anaerobes (Field & 
Sierra-Alvarez, 2008). Plants have been used to enhance the rates of degra
dation by providing nutrients to microbes, aerating the root zone, inducing 
microbial metabolism enzymes, and to do some metabolic reactions within 
the plant (Campanella et al., 2002). Over the past two decades there have 
been advances in this area, but challenges remain (Mench et al., 2010). There 
are many more recent papers discussing degradation of these compounds by 
microbes (Saibu et al., 2020), but little new work with plant pathways. 

3.2.4 Remediation of Pesticides 

At many locations in the world, soils are contaminated with pesticides 
because of poor management, spills, and the need to clean out sprayers. A 
recent review describes applications of phytoremediation to restore lands 
that are contaminated with pesticides (Tarla et al., 2020). The toxicity of pes
ticides to vegetation is one of the challenges in selecting plants for use at a 
contaminated site. There has been progress in the identification and use of 
microorganisms and plants that have good capability to degrade some pesti
cides. Soil amendments such as manure or biochar can be added to contami
nated sites to dilute pesticides, sorb them out of soil solution, and provide 
additional microorganisms to aid in the establishment of vegetation. Use of 
vegetation that naturally grows well in the region is recommended. 

Khalid et al. (2020) review many applications of biochar specific to pesti
cides. Deliberate augmentation with biochar to enhance bioremediation is 
becoming a common practice; however, sorption to biochar also reduces avail
ability of pesticides and herbicides to plants, and can thus delay their remedia
tion (Khalid et al., 2020). For example, in an in situ study at Point Pelee National 
Park in Canada (PPNP), biochar significantly reduced DDT (p,p’-dichlorodi
phenyl-trichloroethane) accumulation in earthworms (49%) but did not signifi
cantly reduce plant uptake of DDT (Denyes et al., 2016). Other amendments, 
particularly other carbon-rich materials including humic substances, charcoal, 
bio-coal and AC, sorb the contaminants in soils (Beesley et al., 2011) and may 
also reduce the bioavailability for plants (Khalid et al., 2020). It is important 
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to note that as shown by Nartey & Zhao (2014) different kinds of biochar pre
pared in different ways from different starting materials may have different 
effects. 

Among pesticides, there is a large class of obsolete pesticides (insecticides) 
containing significant amounts of chlorination, resulting in persistence. 
Examples include aldrin/dieldrin/endrin, lindane (α-hexachlorocyclohexane), 
chlordane, chlordecone (Kepone), DDT, heptachlor, toxaphene, and oth
ers. Many of these are banned in many countries, but residues and waste/ 
abandoned sites are still present (Agbeve et al., 2013; Tarla et al., 2020). 
Weathered DDT is still found in many locations, and portions of Africa con
tinue to use it for control of malaria-bearing mosquitos (Tarla et al., 2020). 
Many other pesticides are present in agricultural/horticultural soils and in 
plants harvested from such soils. For instance, Agbeve et al. (2013) found 
β-HCH, δ-HCH, γ-HCH, heptachlor, aldrin, γ-chlordane, α-endosulfan, 
p.p′-DDE (2,2’-p,p’dichlorodiphenyl-1,1-dichloroethene), dieldrin, endrin, 
β-endosulfan, p.p′-DDD (2,2’-p,p’dichlorodiphenyl-1,1-dichloroethane, p.p′
DDT, and methoxychlor in roots of Cryptolepis sanguinolenta, a traditional 
antimalarial herb of Ghana, in both dry and rainy season’s growth. Roots 
were thoroughly washed before analysis, which may have reduced the pesti
cide load, though perhaps not completely, as sorption is quite strong on root 
surfaces. The detected levels were below regulatory limits except for some 
samples with high aldrin/dieldrin. It is not known whether the various pes
ticides were long-term residues, or from banned products still being used. 
Tarla et al. (2020) discuss some of the problems with waste pesticide disposal. 

There is potential for phytoremediation of DDT because it is taken up by some 
vascular plants (Lunney et al., 2004) particularly some species of the Cucurbitaceae 
family. Zucchini, a popular edible vegetable, accumulates large amounts from 
contaminated soil. It also accumulates aldrin, dieldrin, and endrin, such that 
it may be used to remove these residues from agricultural lands long con
taminated with high levels, above current regulatory limits (Otani et al., 2007). 
However, very few species take up these compounds (only 2 of 15 families tested 
by Otani et al. (2007)), limiting ability to clean up many sites. 

Paul et al. (2015) conducted a field investigation at three DDT‐contaminated 
areas in PPNP in Canada. Cucurbita pepo (pumpkin) and three native grass spe
cies, Schizachyrium scoparium, Panicum virgatum, and Sporobolus cryptandrus, were 
grown at three different sites in PPNP having low (291ng g−1), moderate (5083ng 
g−1), and high (10,192ng g−1) soil DDT contamination levels. A threshold soil 
DDT concentration was identified at ∼5000ng g−1 where the DDT uptake into 
C. pepo was maximized, resulting in plant shoot and root DDT concentrations of 
16,600 and 45,000ng g−1, respectively. Two of the native grass species (P. virgatum 
and S. scoparium) were identified as potential phytoextractors, with higher shoot 
extraction capabilities than that of the known phytoextractor C. pepo when opti
mal planting density was taken into account. Hexachlorocyclohexane, a com
mon persistent contaminant (Agbeve et al., 2013; Tarla et al., 2020), has been 
remediated using plants also (Becerra-Castro et al., 2013). 
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White and Kottler (2002) used citric acid to augment the remediation of 
weathered DDT/DDE (DDT metabolite) with four species of plants including 
clover, hairy vetch, mustard, and ryegrass. Uptake of DDE was significantly 
increased while the region around the roots was depleted in concentration. 
Other surfactants and organic acids have been used to enhance the release 
of POPs. This is commonly characterized as chemically augmented phytore
mediation. In order to improve the phytoremediation potential of plants and 
microbes, one may try using surface-active compounds including synthetic or 
biosurfactants (Agnello et al., 2014; An et al., 2011; Ramamurthy & Memarian, 
2012); several different organic acids (Agnello et al., 2014; Gonzalez et al., 
2010); and nanoparticles (Pillai & Kottekottil, 2016; Rani et al., 2017). 

Herbicides, fungicides, and insecticides produced and used in recent years 
tend to have less residual action and decreased environmental stability 
than highly chlorinated POPs. Nevertheless, their remediation/detoxifica
tion is still necessary to avoid toxic effects on nontarget organisms during 
accidental exposure, and from field run-off during sudden rains, as they are 
typically applied at concentrations that are >100 × toxic levels (e.g., Fairchild 
et al., 1998; Plhalova et al., 2012). 

Loffredo et al. (2020) found Cannabis sativa L. seedlings to be very effective in 
removing the systemic fungicide metalaxyl-M from water. Residual compounds 
accumulated in the hemp tissues over 7days were much lower than the amounts 
removed from the medium, suggesting efficient metabolization. When hemp 
was allowed to germinate and grow in columns filled with soil contaminated 
with metalaxyl-M and the herbicide, metribuzin, it showed a noticeable remedi
ation capacity. The authors used this study to suggest that hemp is a promising 
candidate for phytoremediation of wastewater and soil from pesticides. 

3.3 Landfills and Containment 

Containment of contaminants is an issue at landfills where waste is deposited 
and managed. In order to control contaminant movement within landfills, 
trees are often planted on the down gradient side to remove contaminated 
leachate from the site. This concept has also been used at the edges of fields 
to capture agricultural chemicals with a riparian strip to prevent them 
from entering a creek or river. There are significant savings when vegeta
tion is used for pump-and-treat applications (Negri et al. in McCutcheon & 
Schnoor, 2003). The organic contaminants may be biodegraded or transpired 
and destroyed in the atmosphere. Trees that have the ability to reach the 
water table and have value when harvested are generally recommended for 
these applications. Trees have been used to some extent directly on land
fill covers, but native plants, including shrubs and forbs, are recommended 
(USEPA, 2015). Deep-rooted grasses may also be effective. Grasses have been 
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widely used for landfill covers to reduce water infiltration, but less so as a 
means to control leachate, once it is formed. Gąbka & Wolski (2011) described 
a successful study of active management of leachate by watering various turf 
grasses with collected landfill leachate at a closed landfill in Poland. In warm 
subtropical to tropical climates, vetiver grass has been used since 1994 and 
shown to be highly effective for managing a wide range of leachates either 
actively by irrigation, or passively by planting directly into the leachate 
seepage path (Vetiver Network International, 2017). Miscanthus has suitable 
characteristics for temperate climates including deep rooting where poten
tial crop evapotranspiration exceeds normal precipitation (see Chapter 5 for 
information on water usage by Miscanthus). 

3.4 Phytoremediation of Organic 
Contaminants with Miscanthus 

Miscanthus is a C4 grass related to sugarcane and sorghum, with a rich 
microbiome. Thus, it is anticipated that it can facilitate rhizoremediation of 
many organic compounds. Field data on its capacity to do so are not abun
dant because until recently cultivation of Miscanthus was of most interest 
as a source of bioenergy, not remediation of contaminated sites. There are a 
limited number of greenhouse pot studies with selected compounds. These 
are discussed in reviews by Nsanganwimana et al. (2014) and Pidlisnyuk 
et al. (2014). By that date only the work of Técher et al. (2012a) reported a 
field study of significant organic [PAH] contamination. That same group 
showed that exudates of Miscanthus roots stimulated microbial degrada
tion of some PAHs in microcosm studies (Técher et al., 2012b), while an ear
lier study showed enhancement of degradation of diesel fuel also (Técher 
et al., 2011). 

One recent study (Wechtler et al., 2020) examined dissipation of PAHs from a 
technosol (mixture of dredged sediments and contaminated soil). Plants used 
were M. × giganteus, white clover (T. repens), and a co-culture of the two. After 
a growing season of 263days, there was a significant decrease of 16 priority 
PAHs, with ~30% decrease in the monocultures and co-culture compared to 
an unplanted technosol. This lowered the integrated average cancer risk from 
about 4.3 to 3.4. The co-culture also lowered the predicted ecotoxicity more 
than each monoculture, showing a greater decrease of anthracene and pyrene. 

Miscanthus is known to have resistance to herbicides similar to that of 
maize (Anderson, 2011), but mechanisms are undefined, whether by meta
bolic tolerance, deactivation of the herbicide or exclusion from the plant. 
Anderson (2011) tested more than 20 herbicides, at several rates of application 
for control of broad-leaf weeds or other grasses (pre-emergence). Many her
bicides were tested in greenhouse studies and some at small scale in a field. 
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Recalcitrance of PAHs and PCBs varies widely so that success with a few 
congeners or homologs is no guarantee of success with all forms. The earli
est remediation study with Miscanthus that we can identify was by Wilke 
and Metz (1993). They analyzed a suite of six PCB congeners and six PAHs 
from a long-term contaminated site in Germany, which also had high levels 
of toxic metals including Cd and Zn relative to regulatory standards. The 
contamination source was sewage sludge irrigation and the soil total organic 
carbon was 6.7%. Growth of Miscanthus sinensis (M. sinensis) or Polygonum 
sachalinense was less effective in the undiluted soil containing 72 mg kg−1 

of Cd and 1800 mg kg−1 of Zn, >1600 µg kg−1 of PCBs and 3062 µg kg−1 of 
PAHs than in a soil diluted with brown podzol. That soil had only 0.77% 
of TOC and a pH 4.1. It is not known which element or compound was the 
main contributor to growth inhibition. Depending on bioavailability, Zn 
at 1800 mg kg−1 at the pH < 5 (pH 4.8 in undiluted soil) could be strongly 
inhibitory. Over a range of dilutions giving 1×, 5×, 10×, 20× of the regulatory 
limit of 1.5 mg kg−1 for Cd, both PCBs and PAHs were accumulated only 
in roots, to a maximum of 975 µg kg−1 of PCBs and 2083 µg kg−1 of PAHs at 
approximately 1:1 dilution of the contaminated soil (to 20 × 1.5 mg kg−1 of 
Cd). Degradation products were not measured. Neither PCB nor PAH con
geners were detected in stems and leaves in this pot study. No more recent 
studies with PCBs have been reported. 

Little is known of the tolerance or degradation capacity of Miscanthus for 
POPs including chlorinated pesticides. One study was completed with the 
insecticide chlordecone (trade name Kepone) by Liber et al. (2018). This per
sistent material with a half-life of ~30years may be present in soils at levels 
of >1mg kg−1. Using 14-C labeled material in a greenhouse study with dense 
planting of 49 plants in 0.81m2, accumulation above soil level (expressed as 
mg kg−1) was observed only in roots of both M. × giganteus (5 mg kg−1 in roots, 
0.17mg kg−1 in rhizomes, 0.15mg kg−1 in shoots) and M. sinensis (15 mg kg−1 in 
roots, 0.5 mg kg−1 in rhizome, 0.3 mg kg−1 in shoots) during the second grow
ing period of 2 and then 6 months. In a second experiment with M. sinensis 
over two growth periods of 10 months each, accumulation into aboveground 
tissues from 8 mg kg−1 in soil was less in the second period, to only about 
2 mg kg−1, presumably because of increased organic matter in the root zone. 
Calculated harvestable plant contamination under hypothetical field con
ditions (1mg kg−1 soil) indicated about 1g ha−1year−1 would be removed by 
harvesting Miscanthus. With a contaminant load of perhaps 2 kg ha−1 (~1mg 
kg−1, ~20 cm depth). This is a trivial amount for recovery, though important 
for appropriate use of the harvested crop. 

A study by Nurzhanova et al. (2017) presented the application of M. sinensis 
to phytoremediation of soil heavily polluted by DDT and its metabolites. The 
aged contaminated soil was sampled around a destroyed storehouse for chlo
rinated pesticides in Kazakhstan, and chemical analysis showed large pesti
cide concentrations in the soil. For example, DDT concentrations in the soil 
exceeded the maximum permissible concentration (MPC) limit value by 62 
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times. The results showed that M. × giganteus could not develop in soil with a 
concentration of DDT higher than 45× MPC limit of DDT and its metabolites, 
while M. sinensis was able to develop in pesticide contaminated soil till 62× 
MPC. The observation showed (Table 3.1) that M. × giganteus mainly accumu
lated the chlorinated pesticides in roots despite high pesticide concentration 
in the soil. With increasing concentration of DDT and its metabolites in the 
soil, the total uptake of 4,4’-DDE increased, uptake of 2,4’-DDD remained the 
same, and uptake of DDT decreased. In the case of M. sinensis, 4,4’-DDE and 
4,4’-DDT were mainly accumulated in roots while 2,4’-DDD appeared more in 
aboveground biomass (Nurzhanova et al., 2017). 

The phytoremediation potential of M. sinensis and the influence of two 
amendments, Tween 20 and AC added to the process, was studied with aged 
polluted soil from Kazakhstan (Mamirova et al., 2020). The soil contained 
heavy metals and 24 chlorinated pesticides (DDT and metabolites, HCH and 
isomers, endrin, keltan, aldrin, dieldrin, chlordane, and others) in concen
trations that exceeded the MPC by 10–100 times (Table 3.2). Results showed 
that amendments changed M. sinensis physiological parameters. Specifically, 
Tween 20 increased the plant height by 16.6%, while AC increased it only by 
3.6%, yet it was statistically significant. The opposite tendency was detected 
in the case of root dry mass. The addition of Tween 20 and AC decreased 
the mass by 64% and 49.7%, respectively, while the aboveground biomass 
increased by 6.6% in the presence of AC and decreased by 5% in the presence 
of Tween 20. 

Ten out of twenty-four chlorinated pesticides present in the soil were 
found in Miscanthus biomass; however, only five translocated from roots to 
aboveground plant parts. When soil was amended with Tween 20, the num
ber of pesticides taken up was six, while when the soil was amended by AC 
only four pesticides were taken up (Figure 3.1). Tween 20 increased the total 
uptake of pesticides except for 2,4’-DDD where uptake decreased by 38.7%. AC 
decreased the total uptake of pesticides by 46.6%–92.1% (Figure 3.1). The pesti
cides in plant tissues were distributed differently: γ-HCH and dieldrin mainly 
accumulated in the aboveground biomass while α-HCH, β-HCH, aldrin, 2,4’
DDD, and endrin accumulated in the roots. When plants were grown in con
taminated soil without amendments, 4,4’-DDE and 4,4’-DDD were distributed 
almost equally in different plant parts, while 4,4’-DDT mainly accumulated in 
the leaves and stems. When contaminated soil was amended by Tween 20, the 
effect changed: 4,4’-DDE was mainly accumulated in aboveground biomass; 
4,4’-DDD and 4,4’-DDT in the roots. The presence of AC affected the phytosta
bilization potential of M. sinensis in relation to 4,4’-DDE, 4,4’-DDD, 4,4’-DDT, 
i.e., they were mainly accumulated in the root system (Mamirova et al., 2020). 

Calculation of the uptake index for ten chlorinated pesticides showed that 
in soil contaminated by pesticides without or with amendments, M. sinensis 
accumulated 4,4’-DDE more than 4,4’-DDT, followed by 4,4’-DDD which can 
be explained by high concentration of 4,4’-DDE in the studied soils and its 
bioavailability due to lower hydrophobicity level. 
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TABLE 3.2 

Concentrations of Chlorinated Pesticides in the Aged Soil 

Chlorinated Pesticides MPC KZ,a (µg kg−1) MPC EU,b (µg kg−1) Concentration (µg kg−1) 

2,4’-DDD 100 10.0 14,072.0 ± 5,239.0 
4,4’-DDD 100 10.0 11,434.0 ± 7,302.0 
4,4’-DDE 100 10.0 777.9 ± 292.0 
4,4’-DDT 100 10.0 10,023.0 ± 2,471 
Aldrin 2.5 7.0 230.2 ± 59.1 
Chlordane 100 4.3 48.1 ± 27.6 
Chlorobenzilate 20 - 32,061.0 ± 12,669.0 
Dibutyl chlorendate - - 2134.6 ± 477.6 
Dieldrin 0.5 7.0 132.9 ± 51.1 
Endosulfan α 100 0.003 5.5 ± 0.0 
Endosulfan β 100 0.003 253.1 ± 163.1 
Endosulfan sulfate - - 118.7 ± 76.5 
Endrin 1 2.9 44,085.0 ± 17,335.0 
Endrin aldehyde - 2.9 1087.0 ± 198.0 
HCB 500 50.0 4.7 ± 1.9 
Heptachlor 50 0.7 214.7 ± 0.0 
Heptachlorepoxide 50 0.052 3029.0 ± 1192.0 
Hexabromobenzene 30 28.0 201.4 ± 129.9 
Keltan (Dicofol) 100 - 34.4 ± 0.0 
Methoxychlor 1600 900.0 435.6 ± 281.1 
α-HCH 100 220.0 89.2 ± 0.0 
β-HCH 100 92.0 25.5 ± 16.4 
γ-HCH 100 0.01 488.0 ± 152.0 
δ-HCH 100 - 67.4 ± 13.7 

Source: Modified from Mamirova et al. (2020). 
a Maximum Permissible Concentration (MPC) values for the Republic of Kazakhstan (MHRK & 

MEPRK, 2004). 
b MPC values as for EU (Crommentuijn et al., 2000; Van de Plassche, 1994). 

In conclusion, Miscanthus is likely to tolerate at least moderate levels of 
organic contaminants, unless they are specific plant growth regulators, or 
membrane disruptors. Whether it is able to metabolize particular organic 
compounds can only be determined confidently with plants of that genus. 
There are suggestions that different species or biovars and cultivars (CVs) 
may vary in capacity within a genus, in general, but there is little clear evi
dence with Miscanthus. The work of Mamirova et al. (2020) indicates there 
may be differences for some DDT metabolites. There will no doubt be other 
examples. 
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FIGURE 3.1 
Total content of chlorinated pesticides in M. sinensis, units – µg (Modified from Mamirova et al. 
(2020). 
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4 
Phytomining Applied for Postmining Sites 

Hermann Heilmeier 

Abstract 

The economics associated with establishing and growing vegetation at 
contaminated sites can be improved if a metal that has commercial value 
can be extracted from the soil by plants. Phytomining is the process of 
extracting a product such as nickel from soil using hyperaccumulator 
plants that are able to grow in the contaminated soil and accumulate a 
metal product of value. After harvesting the plant biomass, drying it, 
and burning it for energy recovery, the ash can be processed to extract 
the metal of interest. Nickel and gold are good examples of products 
that have commercial value when phytomining is implemented at a con
taminated site. Solar energy is used in phytomining, and soil quality is 
improved in many cases by increasing soil organic carbon and improv
ing biological health and diversity in the soil. This chapter includes a 
review of phytomining and an analysis of its applications at contami
nated sites containing metals that have commercial value. 
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4.1 Introduction 

Phytomining uses the capacity of plants and their associated microorgan
isms to extract and accumulate trace elements at high concentrations in their 
(above-)ground biomass (phytoextraction). However, in contrast to applica
tions of phytoextraction for removing toxic trace elements (e.g., heavy metals, 
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arsenic, selenium) from the environment as one option of phytoremediation 
(Pilon-Smits, 2005), the aim of phytomining processes is to extract com
mercially valuable elements from sources where the concentration of these 
elements is too low for economic activities applying conventional mining 
technologies, such as subeconomic ore bodies, mineral wastes (mine tail
ings), metal-bearing, or polluted soils, e.g., in (post-)mining areas (Heilmeier 
& Wiche, 2020; Naila et al., 2019; Sheoran et al., 2009). Most prominent exam
ples in phytomining applied “hyperaccumulator” plants, particularly for 
nickel (e.g., Anderson et al., 1998; Kidd et al., 2018; Li et al., 2003) or gold 
(e.g., Wilson-Corral et al., 2011). The term “hyperaccumulator” had been pro
posed by Brooks et al. (1977) for plant taxa that accumulate above 1000mg 
kg−1 of nickel (Ni) in their aboveground dry biomass. In the meantime, the 
term “hyperaccumulator” has been applied to a number of different ele
ments, with respective adjustments of the concentration level (Jaffré et al., 
2018; Rascio & Navari-Izzo, 2011; Van der Ent et al., 2013). Hyperaccumulator 
plant species were first suggested by Chaney (1983) for the purpose of phy
tomining. Nicks & Chambers (1995, 1998) were the first to perform field trials 
on phytomining of Ni, using the naturally occurring Ni-hyperaccumulator 
Streptanthus polygaloides. Brooks et al. (1998) argued that phytomining of Ni 
should be generally feasible due to a number of plants which accumulate 
Ni to high shoot concentrations (>10,000mg kg−1) and produce high biomass 
(> 10 t ha−1). Soon, other elements such as thallium, copper, cobalt, and par
ticularly gold have been tested for their phytomining potential (Anderson 
et al., 1998; Sheoran et al., 2013; Wilson-Corral et al., 2011, 2012). 

In this chapter advantages and limitations of phytomining will be dis
cussed, followed by a description of field experiments, particularly for phy
tomining of gold and Ni applying the so-called “hyperaccumulator plants” 
and recommendation for agronomic practices as derived from these experi
ments. Problems of economic viability and environmental implications will 
be addressed, based on the outcomes of various modelling studies. Examples 
on options of commercial application include phytomining for Ni from ultra
mafic soils, production of nanoparticles as catalysts, and extraction of valu
able elements such as rare earth elements (REEs) from secondary sources for 
raw materials such as mine tailings. 

4.2 Advantages and Limitations of Phytomining 

In comparison to conventional mining technologies phytomining has 
several advantages. The two most important advantages are the fact that 
phytomining offers the option to exploit ores that are not economic for 
conventional mining approaches (Anderson et al., 1999), and the low cost 
of operation (Robinson et al., 2003). Further advantages are the use of 
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cheap solar energy for creating a “bio-ore”, low energy inputs for melting, 
less SOx emissions due to bio-ore being sulfur-free, the improvement of 
site quality and other synergy effects with related industries as a conse
quence of biomass growth, e.g., generation of bioenergy (combustion, 
fermentation, generation of heat and biofuels), and the public acceptance 
as a “green” technology (Ali et al., 2013; Harris et al., 2009; Koptsik, 2014; 
Robinson et al., 2003; Saxena et al., 2020). With respect to the environment 
the sequestration of atmospheric carbon dioxide (CO2) in plant biomass and 
due to enrichment of soils with organic matter and other ecosystem effects 
such as increased soil biodiversity, improved agronomic crop productivity, 
land restoration and pollution control are of relevance, which have to be 
considered in complete economic analyses (Kidd et al., 2018; Saxena et al., 
2020). Thus, already around the turn of the century, Li et al. (2003) pointed 
to the option of sales of carbon credits. Robinson et al. (2009) emphasized 
the positive effects of phytomining in the remediation of sites polluted and 
degraded, e.g., due to mining and metallurgical processes, tailings, dumps, 
etc. The reduction of erosion (wind, surface runoff) and leaching of toxic 
substances to groundwater will improve water quality (Saxena et al., 2020). 
In summary, phytoremediation is “safe, aesthetic, nonaggressive, nonde
structive” (Koptsik, 2014). 

However, there are also severe limitations and restrictions negatively 
affecting the general applicability and success of phytomining. The most 
important limitation is due to the plants’ shallow rooting system which 
allows for minerals close to the surface only to be extracted via this “green” 
technology (Hunt et al., 2014; Robinson et al., 2003). Furthermore, adverse 
site conditions, e.g., poor physical and chemical properties of soils on con
taminated sites, usually limit plant growth severely; most stressful soil 
factors are the low content of nutrients and soil organic matter, and high 
soil acidity leading to solution of heavy metals (Hunt et al., 2014; Koptsik, 
2014). Koptsik (2014) and Saxena et al. (2020) point out that for climatic and 
seasonal reasons, phytomining is more suitable in tropical and subtropi
cal climates. Robinson et al. (2003, 2009) emphasize that phytomining is a 
long-term process with a much larger demand for area per unit of valuable 
elements compared to conventional mining and therefore may cause huge 
environmental disturbances in case, e.g., of clearing of natural vegetation 
for phytomining. Even if the total concentration of target elements in the 
soil may be high, their availability to the plants is often too low for effec
tive uptake (Heilmeier & Wiche, 2020; Robinson et al., 2009; Sheoran et al., 
2009). Hyperaccumulators with high uptake rates often show a low biomass 
production (Hunt et al., 2014; Robinson et al., 2003). Thus, two options for 
increasing element uptake of nonaccumulator plants have been proposed: 
(i) genetically modified plants (e.g., Hunt et al., 2014; Koptsik, 2014; Saxena 
et al., 2020); (ii) “induced hyperaccumulation” via applying chelating soil 
amendments (e.g., Hunt et al., 2014; Koptsik, 2014; Robinson et al., 2003; 
Wang et al., 2020; Wilson-Corral et al., 2012). 
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4.3 Field Experiments on Phytomining 

Whereas part of the initial experiments on phytomining had been conducted 
under totally artificial conditions in the laboratory, applying, e.g., solubiliz
ing agents such as ammonium thiocyanate for phytoextraction of gold (e.g., 
Anderson et al., 1998), systematic field trials, following the pioneering work of 
Nicks & Chambers (1995, 1998) and Robinson et al. (1997a, b) on Ni, have been 
performed by Anderson et al. (2005) for gold (Au), testing the two plant species 
Brassica juncea (Indian mustard) and Zea mays (corn), commonly used for phytore
mediation and as energy crops. Applying an empirical model on the relationship 
between Au concentration in the soil and in plants obtained from laboratory and 
greenhouse studies, they suggested a minimum Au concentration in the sub
strate of 2mg kg−1 to achieve a gold concentration in crops of 100mg kg−1, which, 
given a biomass harvest of 10t ha−1, would yield an economically viable gold 
recovery of 1kg in plants per hectare. The authors proposed reclamation of spent 
heap-leach piles or retreatment of waste dumps, e.g., from artisanal gold mining 
as possible applications. Later on, Wilson-Corral et al. (2011), by application of 
chemical amendments, achieved average Au concentrations in leaves and stems 
of Helianthus annuus (sunflower) up to 19 and 21mg kg−1, still being well below 
the economic threshold proposed by Anderson et al. (2005). A field experiment 
to assess phytomining feasibility for artisanal gold mining tailings with tobacco 
plants, applying NaCN as chelating agent, however yielded Au concentrations of 
1.2mg kg−1 dry leaf biomass only (Krisnayanti et al., 2016). 

The most promising element for phytomining at present is Ni (Kidd et al., 
2018; Nkrumah et al., 2016). In a large number of experiments some ten plant 
species, with a focus on Alyssum murale (syn. Odontarrhena chalcidica) (e.g., 
Matko Stamenković et al., 2017; Rosenkranz et al., 2019), have been tested for 
their phytomining potential on ultramafic or Ni contaminated soils in differ
ent parts of the world. A major outcome from these studies is the positive effect 
of fertilization with nitrogen (N), phosphorus (P), and potassium (K) and of 
addition of organic matter on biomass of Ni hyperaccumulating plants, and 
the increase of Ni uptake and accumulation in shoots by adjustment of soil pH 
(optimum pH 5–7), addition of sulfur (S), or inoculation with (rhizo-)bacteria 
and mycorrhiza (Kidd et al., 2018; Nkrumah et al., 2016; Rosenkranz et al., 2019). 

4.4 Agronomic Practices 

As shown above for gold, the application of synthetic solubilizing agents greatly 
enhances Au uptake and accumulation in the aboveground biomass (Anderson 
et al., 1998; González-Valdez et al., 2018; Wilson-Corral et al., 2011). However, 
apart from the high costs of chelators, chemically induced hyperaccumulation, 
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as already pointed out by Robinson et al. (2003), bears a number of serious envi
ronmental risks, such as persistence time of the chelators in the environment, 
leaching of mobilized toxic trace elements to ground water, or toxicity to plants 
and their associated microbes being used for phytomining (Hunt et al., 2014; 
Robinson et al., 2009; Saxena et al., 2020; Wang et al., 2020; Wilson-Corral et al., 
2011). For that reason, more “natural” approaches such as soil management 
via conventional agricultural technologies have been initiated already among 
the first field trials, e.g., management of pH and fertilization (both inorganic, 
e.g., NPK, and organic, e.g., composted sewage sludge) for enhancing plant 
growth and phytoaccumulation of Ni (Chaney et al., 2007; Kidd et al., 2018; Li 
et al., 2003). Later on, co-cropping has been adopted for enhancing phytoextrac
tion (Tang et al., 2012). Due to the low availability of target elements often limit
ing phytomining success (Heilmeier & Wiche, 2020; Sheoran et al., 2009), the 
stimulation of biological activity in the soil, particularly the rhizosphere, seems 
to be a most promising approach (Robinson et al., 2009). Apart from enhanc
ing biomass production by Plant Growth Promoting Rhizobacteria, the exuda
tion of metabolites such as organic acids and metal-chelating siderophores by 
soil microorganisms may change speciation of trace elements and thus greatly 
increase their solubility and bioavailability in the rhizosphere (Kidd et al., 2018; 
Koptsik, 2014; Saxena et al., 2020; Wiche et al., 2017). 

Plant-targeted approaches include both traditional breeding for combin
ing agronomic traits relevant for successful phytoaccumulation (Hunt et al., 
2014; Li et al., 2003; Nkrumah et al., 2016; Robinson et al., 2009) or genetic 
approaches (Koptsik, 2014; Li et al., 2003), particularly for metal transporters 
(Hunt et al., 2014; Robinson et al., 2009). The most important criteria when 
selecting plant species for phytomining are as follows (Hunt et al., 2014; 
Koptsik, 2014; Li et al., 2003; Nkrumah et al., 2016; Saxena et al., 2020): 

•	 easy cultivation as an agricultural crop, e.g., high rates of germina
tion and establishment, easy propagation via seeds or cuttings 

•	 adaptation to site climatic and edaphic conditions 
•	 resistance to diseases and pests 
•	 rapid growth 
• high biomass yield 
•	 extensive root system (deep, highly branched) 
• high tolerance of elevated concentrations of (toxic) trace elements 

and extreme soil properties (pH, salinity) 
• high specificity for target element(s) 
• high uptake and translocation of target element(s) from roots to shoot 
• high accumulation potential for target element(s) in aboveground 

plant parts 
• potential for use as energy crop (burning, fermentation) 
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No single plant species will show all these traits; however, collection of 
germplasm from a diversity of accumulator plant species, testing potentials 
for agronomic yield and element accumulation on a variety of substrates 
with various soil management, and either conventional breeding or genetic 
manipulation should contribute to generate optimum “phytominers”. 

In conclusion, from an agroecosystem point of view, a combination of the fol
lowing practices is the most promising approach (Kidd et al., 2018; Li et al., 2003; 
Nkrumah et al., 2016; Robinson et al., 2009; Tang et al., 2012; Wang et al., 2020): 

•	 soil management 
•	 soil amendments (regulation of pH, inorganic, and organic 

fertilizers) 
•	 ploughing → decrease of soil heterogeneity (patchiness of con

centration of target elements); translocation of target elements 
from deeper soil horizons close to soil surface 

•	 crop management 
•	 planting: seeding depth, seed bed preparation, germination 

requirements, direct seeding, seed pelletization, transplanting 
•	 planting density (dependent on soil physical properties, organic 

matter and nutrient levels, plant species) 
•	 plant life form (annual, perennial) 
•	 co-cropping/intercropping → affects conditions in the rhizo

sphere → increased bioavailability of target element(s) 
•	 weed control 
•	 harvest methods: machinery for aboveground biomass, time 

of harvesting (effect on element and bioenergy yield); double 
harvesting 

•	 plant breeding 

Widening the scope from the earlier focus on (hyper-)accumulators to the 
whole soil–plant agrosystem has been mirrored in the term “agromining” 
(Nkrumah et al., 2018). “Metal crops”, i.e., plant species accumulating heavy 
metals, precious elements, or REEs, with a high biomass yield, have now 
become the focus of research (Li et al., 2020). 

4.5 Economic Viability and Environmental Considerations 

The agro-ecological expenditures related to plant cultivation as discussed 
above are only part of the costs of a complete phytomining approach, which 
also include processing of the plant biomass for recovery of the economically 
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valuable elements. First crude economic analyses of phytomining, based 
on chelate-induced phytoextraction for increasing the solubility of, e.g., 
gold (Au), considered the costs for synthetic ligands added to the soil only 
(Anderson et al., 1998). Later on, more advanced economic models, including 
specified costs for site preparation, seeding, plant cultivation, application of 
fertilizers and chelating agents, and harvesting, yielded that expenditures 
for gold recovery by solvent extraction are the most dominant costs, which, 
however, can be dramatically reduced by burning biomass, thus reducing the 
volume of material for solvent extraction (Anderson et al., 2003). Burning of 
dry plants (e.g., Odontarrhena muralis with 1% Ni in the plant mass) yielded a 
concentration factor for Ni of ca. 12 (Kidd et al., 2018). Thus, depending on the 
initial plant concentration of Ni (1%–2% in several hyperaccumulators of the 
Brassicaceae family), Ni concentration in the ash may reach values of 10%–20% 
which is much more than in Ni ore mined from laterites (Simonnot et al., 2018). 
Robinson et al. (2003) developed a detailed mathematical model for assess
ing economic viability of phytomining as a function of multiple variables 
(costs for planting and producing biomass, value of biomass, and bio-ore) 
including interest rates and compared phytoextraction with alternative tech
nologies. Applying their model to phytomining of Ni and Au in Australia, 
Harris et al. (2009) concluded that the most decisive factors for profitability 
are metal prices and the content of extractable metal(s). Another application 
of the same model by Wilson-Corral et al. (2012) concluded that phytomining 
for Au should be economically lucrative for metalliferous or abandoned mine 
sites. For less precious metals than gold, such as Ni, Van der Ent et al. (2015) 
emphasized the added market value of Ni catalysts for organic chemistry or 
pure Ni salt crystals. 

An important issue neglected in early cost-benefit analyses is related to 
generation of bioenergy, e.g., via fermentation or combustion, and to increase 
of soil organic matter and sequestration of atmospheric CO2 particularly on 
infertile marginal soils, the sale of carbon dioxide credits as already pointed 
out by Li et al. (2003). Carbon credits are part of a more holistic environmental 
evaluation of phytomining as proposed by Van der Ent et al. (2015). Kidd et al. 
(2018) advocated Life Cycle Assessment (LCA) as the most recognized method 
with many applications in agriculture and phytoremediation (see literature 
cited in Kidd et al., 2018). One of the first applications of LCA in the framework 
of phytomining was performed by Rodrigues et al. (2016), who considered, 
among others, toxicity to humans and environmental pollution caused by soil 
erosion (e.g., eutrophication) as a consequence of nonconservative agriculture. 
Erosion control, e.g., by contour farming or winter cover crops, can reduce not 
only loss of valuable metals but also impairment of human and ecosystem 
health. In addition, the use of biomass of accumulator plants not only reduces 
costs of phytomining but avoids atmospheric CO2 increase by substituting 
fossil fuels. Already 1year earlier, Echevarria et al. (2015) had emphasized a 
number of ecosystem services such as amelioration of soil quality, produc
tion of biofuel, conservation and restoration of biodiversity (protection of rare 
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and endangered species, support of pollinating insects), and enhancement of 
carbon storage in soils. Apart from these positive ecological and environmen
tal effects, Kidd et al. (2018) critically discuss also possible negative effects of 
phytomining on biodiversity (introduction of exotic species, behavioral con
sequences for pollinators by metal contents of flowers), soil CO2 emissions as 
dependent on agricultural management, depletion of natural resources (e.g., 
water in case of irrigation), and the natural environment (land use and land 
use change), and emphasize the need for more research on descriptors and 
indicators, assessment methods, and cause-and-effect chain models on eco
system services (Bouma & van Beukering, 2015; Kumar, 2010). 

4.6 Options for Commercial Application of Phytomining 

Although phytomining has a number of technological, economic, and envi
ronmental advantages, among others due to limitations as discussed in 
Section 4.2 (limited soil volume explored by plant rooting systems, adverse 
site conditions, low bioavailability of target elements), there is limited experi
ence with field experiments (see Section 4.3) and technological applications. 
The most well-known and popular application of phytoremediation is the 
use of Alyssum murale for extracting Ni from ultramafic soils at the shores of 
Lake Ohrid in Albania, e.g., by the French company Econick (2018), based on 
long-term research on improving phytomining efficiency, e.g., by fertiliza
tion, weed control, and planting techniques (Bani et al., 2015). Ni recovered 
by hyperaccumulator plants can be processed, e.g., via hydrometallurgical 
technologies which have already been developed up to pilot scale for the pro
duction of Ni salts (ammonium and nickel sulfate hexahydrate, nickel sulfate, 
nickel acetate, etc. (Simonnot et al., 2016). 

Already 10years earlier, Haverkamp et al. (2007) suggested to synthesize 
metal nanoparticles by plants for catalytic purposes. Harumain et al. (2017) 
tested the suitability of plant species from various growth forms (mustard, 
miscanthus, willow) to extract palladium (Pd) from mine-sourced tailings. 
Although the accumulation of Pd was still below the target for commercially 
available 3% Pd-on-carbon catalysts, authors emphasize the strong potential 
for supplementary Pd supply by phytomining and positive environmental 
effects due to re-vegetation of tailings and other areas contaminated by min
ing activities and the restoration of their ecosystem functions. 

The potential of both woody (e.g., Populus tremula) and nonwoody 
(e.g., Phragmites australis and Phalaris arundinacea) plant species for extracting 
valuable elements such as germanium and REEs from a dump field has also 
been demonstrated by Midula et al. (2017). An alternative source for conserva
tion of primary resources by phytoextraction was suggested by Rosenkranz et 
al. (2017): waste incineration bottom ash. “Exotic” elements investigated so far 
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were studied by Novo et al. (2015) for phytomining potential of Rhenium with 
Indian mustard (expected profit ca. 4000 US-$ ha−1) and Shi et al. (2020) for plati
num group metals to obtain nanoparticles, both under controlled conditions. 

One of the earliest extended field experiments on phytoremediation of a former 
Uranium mining site (plot size 2 m×2m, 1m deep) was performed by Willscher 
et al. (2013) at Ronneburg (Thuringia, Germany). Soil improvement (amendment 
with calcareous top soil, mycorrhiza+bacteria) reduced the concentration of 
contaminants in seepage water, and rates and loads of seepage water. Neither 
ethanol fermentation nor biogas production was inhibited by uranium or heavy 
metals accumulated in low concentrations in the plant biomass; thus, the plant 
material from phytoremediation could be used for winning of bioenergy. 

Another large-scale experiment for remediation of polluted soils via phy
totechnologies has been carried out in Southwestern Europe (PhytoSUDOE, 
2019). Nonfood crops, supported by soil amendments such as compost and 
bioaugmentation (inoculation with beneficial microorganisms), have been 
cultivated for rehabilitation of contaminated sites and production of useable 
biomass in Portugal, Spain, and France. 

As shown by Harumain et al. (2017) and Midula et al. (2017), mine tailings 
are a huge reservoir of secondary resources, not only of elements consid
ered traditionally in phytomining such as gold and nickel but also of less 
common elements such as palladium (Pd), germanium (Ge), and REEs. The 
phytomining potential for Ge and REEs has been investigated for a number 
of herbaceous plant species (both forbs and grasses) at experimental field 
sites close to Freiberg (Saxony, Germany), with the option to generate bio
energy either via fermentation or combustion. Whereas grasses such as Ph. 
arundinacea, Avena sativa, or Zea mays proved to be good accumulators for Ge 
due to their high capacity for uptake of the chemically similar Silicium, forbs 
like Fagopyrum esculentum or Brassica napus turned out to accumulate high 
amounts of REEs (Wiche & Heilmeier, 2016). Intercropping of A. sativa (oat) 
with Lupinus albus (white lupine), a leguminous plant with a high capacity for 
exudation of organic acids (e.g., citric acid) which can increase bioavailability 
of elements in the soil, increased accumulation of REEs in oat (Wiche et al., 
2016). According to an economic analysis by Rentsch et al. (2016), both the 
accumulation of target elements in the plants and the high costs of extraction 
of target elements from fly ash after combustion of fermentation residues 
from biogas production are key factors for economic feasibility. 

4.7 Conclusions and Perspectives 

Although there are still major challenges to be passed for an economically via
ble application of phytomining on a broad scale, such as selection and improve
ment of promising target plants and the low bioavailability of target elements 
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in the rooting environment, there are already some successful approaches, 
particularly for the element Ni, applying naturally occurring hyperaccumu
lator plants on ultramafic soils. Bio-ores produced via phytomining have a 
number of advantages compared to mineral ores, such as low energy demand 
for melting and less emissions of sulfur dioxide. Furthermore, plants have the 
capacity to synthesize nanoparticles with a high catalytic and absorptive activ
ity. Nevertheless, optimizing processing of bio-ores for recovery of target ele
ments and an improved understanding of plant–microbe–element interactions 
and stimulation of rhizosphere processes (e.g., via co-cropping) to increase 
bioavailability and thus accumulation of target elements in plants will be key 
parameters for economic viability of phytomining at the individual business 
company level. Economic return can be increased by utilizing bioenergy (fer
mentation, combustion) from accumulator plants; however, this requires more 
breeding efforts considering the low biomass yield of most (hyper)accumulator 
plants. Returning fermentation residues from biogas production as fertilizers 
to field sites will not only increase biomass yield of accumulator plants via fer
tilizing effects but also close nutrient loops (circular economy). Furthermore, 
application of organic matter from fermentation residues on marginal sites will 
improve soil conditions, reduce soil erosion, and thus contribute to soil and 
(ground-)water protection. In addition, sequestration of atmospheric CO2 due 
to long-term soil improvement allows sales of carbon dioxide credits, which 
will not only increase financial returns on a microeconomic level but should 
also be included as positive effects of phytomining at the macroeconomic level 
as part of a more holistic economic and ecological evaluation of mining. 
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Establishing Miscanthus, Production 
of Biomass, and Application 
to Contaminated Sites 

Lawrence C. Davis, Valentina Pidlisnyuk, Aigerim Mamirova, 
Pavlo Shapoval, and Tatyana Stefanovska 

Abstract 

The establishment of vegetation on sites with contamination to improve 
soil quality, reduce risk, and produce a biomass product depends on 
many local conditions. Site characterization results, remediation goals, 
local markets for biomass products, soil properties, climate, tempera
ture, annual and seasonal precipitation, past experience at similar sites, 
and availability of soil amendments are some aspects to consider. This 
chapter addresses the establishment of Miscanthus and its application 
when growing in contaminated soil. Plant selection and breeding of 
Miscanthus is reviewed briefly. Water is very important for the establish
ment of Miscanthus, and issues related to rainfall during the first weeks 
and months are reviewed. Plant nutrition and soil amendments affect 
growth and biomass yield. The time of harvest for Miscanthus affects 
nitrogen use because much more nitrogen is removed if the harvest is 
in the fall compared to winter harvest. The effects of soil amendments 
on the fate of contaminants and plant growth are included because the 
knowledge of how to obtain beneficial results by adding soil amend
ments has advanced significantly. Improved results have been reported 
for Miscanthus production when plant growth regulators have been 
added. Results from recent literature are included. 
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5.1  Plant Selection and Breeding

The cultivar (CV) of Miscanthus × giganteus (M. × giganteus) that is used in 
most studies in the US and many places in Europe is a sterile triploid hybrid 
of diploid M. sinensis (receiving 1n) and tetraploid M. sacchariflorus (receiving 
2n) but with some additional ancestral contribution from M. sinensis (Mitros 
et al., 2020). It was brought from Japan to Europe by 1930 and sold as a deco-
rative plant until the 1980s when it was promoted, initially in Denmark, as 
a potential source of biomass (Nielsen, 1990; Pude, 2008). The most widely 
grown clone in the US was derived from material at the Chicago Botanical 
Garden and later designated as the Illinois clone. A CV named “Freedom” 
developed at University of Mississippi from a USDA germplasm collection 
appears to have essentially the same genotype. A strain obtained by K-State 
from Bluemel Nursery in 2007 is actually tetraploid M. sacchariflorus. Below it 
is identified as M. sacchariflorus Bluemel. Material obtained from Bluemel in 
1987 and grown at the Minnesota Arboretum in Minneapolis appears identi-
cal in observable phenotype, to the Illinois clone of M. × giganteus obtained 
from Maple River Farms of Owosso, Michigan in 2018 (Davis L. personal 
observation). The Bluemel Nursery website states that Bluemel obtained his 
original M. × giganteus material in Europe (Switzerland) in 1960. Thus, we are 
working with a very narrow genetic base and there is no reason to think that 
we have a best widely adapted hybrid.
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Some groups have attempted to improve performance by making triploid 
or tetraploid hybrids of the two above-mentioned species, or by development 
of selections from either of the parental species for desirable traits. The paren
tal species have relatively wide distributions within East Asia and one can 
find a wide range of phenotypes with different winter hardiness, daylength 
sensitivity of flowering, and other important characteristics. Kalinina et al. 
(2017) reported in detail a program to test multiple germplasms, plus some 
new crosses, with M. × giganteus for a reference at multiple sites over a wide 
range of climatic conditions. Results varied greatly over both years of study, 
and sites, across Europe from Wales to Russia and Turkey. One triploid 
hybrid M. × giganteus, “Nagara” bred in Europe by M. Deuter, has been used 
to some extent in North America but its expected winter hardiness, observed 
in Urbana, IL (Dong et al., 2019), has not proved out in practice in Ontario, 
Canada (Sage et al., 2015). 

There are several major practical challenges with managing Miscanthus 
hybrids. One is concern for potential invasiveness of new fertile lines. Self-
incompatibility may reduce problems with a single clone, but it is a hazard 
of seed-grown hybrids. Both of the parental species of M. × giganteus are 
classified as invasive in some states within the US. That does not mean that 
they are prohibited, but it reduces their acceptability for widespread distri
bution and growth, because they may become seriously invasive under some 
climatic conditions. 

Further, in the US there are not mandates for use of carbon neutral strate
gies unlike in Europe (Clifton‐Brown et al., 2017) so that the biofuels mar
ket is not good. Ethanol from maize grain is the largest such biofuel and 
cellulosic, derived from fermentation of cellulose, are unable to compete 
economically. There is a small market for the direct use of M. × giganteus 
as fuel, animal bedding, or dietary fiber, but that is satisfied by already 
available M. × giganteus materials (Moberly Monitor, 2017; UIFM, 2020). The 
situation is quite different in Europe, so that some large breeding programs 
continue there. 

An excellent review of the longest continuous breeding program, based 
in Wales, is described by Clifton-Brown et al. (2019). Four tracks of breed
ing strategy were used to make most rapid progress with a perennial crop, 
with a goal of identifying a seed-based production plan, rather than clonal 
propagation as used with M. × giganteus. High yield, cold tolerance, drought 
tolerance, climatic adaptability over a wide geographic area were among the 
many characteristics being searched for in progeny of thousands of possible 
crosses from a starting point of 240 genotypes. 

A large practical concern in breeding and selection is for propagation 
and establishment from seed (Xue et al., 2015). Miscanthus seeds are quite 
small and the plantlets do not become competitive with agricultural weeds 
until after at least a season’s growth. They are also very sensitive to drought 
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immediately after planting, or in the following months (Anderson et al., 
2015). These factors mean that any seed-propagated crop will require inten
sive care in the first year. This makes it uncompetitive with even the costly 
propagation of clonal M. × giganteus, for which methods of propagation have 
been improved. A single improved clone such as Nagara, which is also a 
sterile triploid, might be competitive if it has a significant advantage over 
M. × giganteus in yield, hardiness, or ease of propagation. 

5.2 Plant Establishment 

For M. × giganteus, good establishment of a productive field can be challeng
ing. It reaches peak production after 2–4 years and may last in excess of two 
decades, so that doing it right the first time is expected to pay off. It is not 
inexpensive to do correctly. 

Four critical factors for success are weight (of the propagule); water (to 
promote root growth); weeds (which must be controlled); weather (which can
not be controlled). Anderson et al. (2011) provide a good example for one spe
cific region of the US where production of biomass approaches its maximum. 

5.2.1 Weight 

It has been observed that for direct planting in a well tilled field, likelihood 
of success in establishment increases with propagule weight. Typically, 
dormant rhizomes are purchased/provided with a weight of less than 
25–30 g. Success is much higher when they weigh at least 60 g (Pyter et al., 
2010). Preparation costs per propagule, which includes number that can be 
obtained per unit area of nursery, amount of material to be dug, sorted, and 
packed, and shipping weight charges, become issues as mass per propagule 
increases (Figure 5.1). 

An alternative which in some settings can reduce costs is using stem buds 
for propagation in a winter nursery in a warm climate/greenhouse, and 
then shipment of the actively growing plants, commonly called plugs, to the 
planting sites. This has been successful in Iowa, USA (Boersma & Heaton, 
2012, 2014a, b). For large-scale biomass production the University of Iowa 
contracted with a commercial plant propagation company to grow small 
individual plants during winter, prepared to ship at the appropriate plant
ing time in late April. Each stem from a rhizome can yield about five bud 
plants, from the most basal, commonly underground, buds, and each 25 g 
propagule may yield two shoots which allows a ten-fold more rapid increase 
of plants than simply using rhizome pieces from a second or third year field 
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FIGURE 5.1 
(a) Three sizes of rhizome piece used for propagation, with fresh weights of about 10, 25, and 
50 g. The number of active shoot buds and total reserves is approximately proportional to size. 
Terminal buds are most active, a kind of apical dominance. The 10 g pieces are suitable for 
planting in an intensively managed nursery to produce larger propagules for the next year. The 
25 g piece is of a size typically used for planting. The 50 g piece is at the minimum of preferred 
size for a high percentage of successful establishment. It possesses multiple potential shoots 
at rhizome tips. (b) An ideal propagule, found at the base of a 10 ft tiller, with three distinct 
rhizomes attached, each of which will grow one strong tiller in the following spring and total 
weight >60 g. Such good materials are found at the perimeter of 2- and 3-year-old clumps. Older 
interior rhizomes are less effective, less vigorous. 

of M. × giganteus (Boersma and Heaton, 2014a, b). However, often the costs 
of this mode of stem and rhizome bud propagation exceed that of using rhi
zomes directly. Micropropagation was found by Kołodziej et al. (2016) to be 
more expensive in southeast Poland than use of rhizomes, in part because of 
poor plantlet survival in field conditions (~80%) and the need for replacement 
plants, but also because the price of rhizomes is relatively lower by a factor of 
2–3. For new CVs, in vitro micropropagation may be worthwhile but it is cost
lier than either of the above techniques according to Kołodziej et al. (2016). 

Comparing rhizome to plantlet propagation with M. × giganteus, Ouattara 
et al. (2020) tested at six diverse sites in northern and central France followed 
over 6 years. They found that the rhizomes were less effective for both establish
ments in year 1 and regrowth in year 2. Establishment was 77% and regrowth 
was 86% compared to 87% and 94% for the plantlets from small rhizomes 
(~10 g) or stem buds. By comparison seed-grown M. sinensis (not directly field 
seeded but started as plantlets, mixed genotypes) gave high establishment and 
regrowth, the same as M. × giganteus plantlets. M. sinensis had lower yields 
than M. × giganteus over all years, but less year to year variability. 

A significant hindrance to direct sowing of Miscanthus seed is allelopathy. 
Awty-Carroll et al. (2020) documented this problem and identified a complex 
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mixture of extractables present in seed including proanthocyanidins and 
vanillic acid. This makes it difficult to use seed clusters to enhance stands. 
In controlled competition there appeared to be root competition and it was 
also observed in field scale that shoot competition was a problem. Thus, 
when using direct seeding, it proved a challenge to obtain good stands. 

The relative price and success of rhizome vs plantlet propagation seem to 
differ between situations and countries. Much of the variation in success may 
depend on summer water and winter weather. Overplanting by 25%–50% may 
be an economically viable alternative to assure an adequate stand (Boersma & 
Heaton, 2014a). 

5.2.2 Water 

Adequate water is essential to establish growth of rhizomes. Available water 
is decreasing in many areas while being found in excess in others. Caslin 
et al. (2011) report that soil moisture must be at least 40% of field capacity at 
planting. The rhizomes desiccate rapidly when kept at ambient temperature 
without water. Drought at this stage is fatal. If rain is insufficient, supplemen
tal water is necessary. Providing supplemental water to 1 ha of M. × giganteus 
(>10,000 plants) can be costly. Drip irrigation would require 1.1 km of drip 
tubing with nozzles at plant spacing (up to 1 m apart), plus additional fittings. 
With drip irrigation, watering needed will depend on the soil water-holding 
capacity within a zone comprising several liters surrounding each rhizome. 
The equivalent of 10 cm depth of water in an area 15 cm in radius (7 L) will 
wet soil to a depth of about 30 cm. This uses 70 m3 of water for 10,000 plants. 
To supply each plant with a supplemental 10 cm water uses 1000 m3 of water 
if using sprinkler irrigation. 

For a first-year crop, drip irrigation can allow large savings if water is 
expensive. During peak growth later in the establishment year, water use 
may be greater than 5 cm depth wk−1. There must be sufficient supply to have 
significant percolation of water to depths greater than the root depth during 
establishment, to encourage their downward growth. Roots of M. × giganteus 
are reported to reach depths of >2 m, though the large majority of roots, when 
water is available, remain much closer to the surface. Rhizomes of M. × gigan
teus are usually within the top 15 cm (Sage et al., 2015) (Figure 5.2). 

In the study described by Kalinina et al. (2017), drip irrigation was used 
in Turkey during second to fourth years, with sufficient irrigation (23 cm in 
year 2) added to nearly match the potential evapotranspiration. The amount 
of irrigation used in year 1 was not stated but it was enough to result in 
rapid growth of the plants, so that yields, averaged over all trialed CVs that 
were better in the first year than other sites, were also better in the second 
year (>10 t ha−1), though not for lack of water in the more temperate settings 
of other sites. The longer, warmer growing season in Turkey may have been 
largely responsible for higher production. See discussion below about geog
raphy of factors for Miscanthus growth. 
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FIGURE 5.2 
Excavated section at the edge of a plot of M. × giganteus showing tillers arising from ground 
with prominent rhizomes, long thin exploratory roots, and short highly branched roots that 
explore the soil for water and nutrients. The length of roots penetrating into deeper soil 
depends on water availability and soil porosity. The green tiller at center right is shown as 
Figure 5.1b, a perfect propagule. 

When the canopy closes and the crop matures to optimum production, 
after a minimum of 2–3 years but sometimes near a decade, water use is 
at least 200 L kg−1 aboveground dry matter accumulation (Clifton-Brown & 
Lewandowski, 2000; Mantineo et al., 2009). In dry climates, more water is lost 
than in humid ones. Hot and windy conditions also increase water losses. The 
highest reported total dry matter production may reach 40 t ha−1 which requires 
a minimum of 0.8 m water during the active growing season. This usually 
implies a total rainfall or irrigation of >1 m year−1. Moisture deficit explained 
70% of the variance in M. × giganteus yield, at Rothamstead, UK, which had the 
largest available data set (Richter et al., 2008) with yields that ranged from 5 to 
18 t ha−1. There was an average of 12.8 t ha−1 across 14 UK sites over 3 years. 

There are few quantitative reports on minimum water requirements for 
successful growth of M. × giganteus in relation to different climates. In south
ern Oklahoma (34.2 N latitude) yields are consistently low because summer 
rainfall is insufficient (Kering et al., 2012). Temperatures are high, probably 
too high, and skies are clear. Fully irrigated maize grown somewhat further 
north in southwest Kansas (~38 N latitude), with some of the highest solar 
availability in the nation, produces yields to 19 t ha−1 grain and near 38 t ha−1 

total dry matter (KCYCW, 2019). Comparable maize grain yields are obtained 
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in southern Nebraska (~41 N latitude) at over 17 t ha−1, near 34 t ha−1 biomass, 
with contest winners exceeding 19 t ha−1 of grain (NCGA, 2019). 

Miscanthus yields may be higher in temperate zones of southern Europe, 
e.g., Croatia northward (~45 N latitude), where longer daylength promotes 
summer growth and delays flowering of M. × giganteus if water is not limit
ing. On the other hand, yields of M. × giganteus in the US are not generally 
higher in southern states, below ~30 N latitude, where daylength is shorter 
sooner, even when rainfall and soil fertility are not limiting. Lee et al. (2018) 
provide results for maintenance stages of M. × giganteus production in com
parison with other biomass energy crops (selected cultivars of switchgrass, 
sorghum, and sugarcane) in the U.S. Rainfall, and in some cases fertilizer 
application, affected productivity at most sites, after successful establish
ment. Productivity was most variable in Mead Nebraska (~41.2 N latitude), 
ranging from 15 to 35 Mg ha−1, while other sites had intermediate but more 
stable yields. This was primarily a function of variable rainfall in Nebraska 
plus a variable long growing season. 

Lee et al. (2017) reported a strong interaction of water availability and N 
fertilization at Urbana, IL (~40 N latitude). For an established study (from 2008 
to 2009) yields declined in a droughted summer of 2012 for the unfertilized 
plots while remaining relatively high and stable with N fertilization at 60 kg 
ha−1 year−1. Plots were 10 × 10 m and 100 plants, with four replicates of each 
treatment. Water availability was extremely reduced, 68% and 90% below his
toric averages over 2 months, June and July in 2012, August and September in 
2013. Yields for 0 kg ha−1 added N vs 60 kg ha−1 were: in 2011, 15.9 vs 23.3 Mg 
kg ha−1; in 2012, 11.6 vs 24.8; in 2013, 15.3 vs 28.8; in 2014, 8.5 vs 25.9. The low 
rainfall in 2013 continued throughout the remainder of the year at <1/2 of the 
30-year average (28 vs 61 cm) for the latter half of the year. Although rainfall 
in 2014 was above average, the unfertilized plot may have been unable to take 
advantage of that abundance. Averaged over the 4 years, yield in the fertilized 
plots was double that of the unfertilized (25.5 vs 12.8 Mg ha−1 year−1). 

It should be noted, however, that Lee et al. (2018) reported rather different 
yield data for experiments with the same treatment design at the same, or 
a very nearby location. For instance, in 2014 the unfertilized plots yielded 
the same as in 2013, while in 2012 yields of both unfertilized and fertilized 
plots were about half of their respective yields in 2013. Neither paper offers 
any comment on the large apparent differences. Sampling of biomass yield 
seems to have been done differently in the two studies. Lee et al. (2017) used 
five 1 m2 quadrats per plot while Lee et al. (2018) used one 4 m2 sample at the 
center of the 10 × 10 m plot. Even with such a large sample, some replicates 
in some years varied from others within a treatment, by more than two-fold 
as shown in their supplemental data. These results indicate that interpreting 
Miscanthus yields in terms of known variables such as rainfall is challenging. 

In a dry summer Mediterranean climate (Sicily) restoring 25% (~15 cm) 
or 75% (~45 cm) potential evapotranspiration water by irrigation increased 
yields of both Arundo donax and M. × giganteus energy crops studied by 
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Mantineo et al. (2009). The common name of Arundo donax is giant cane or 
giant reed, and it bears some similarity to M. × giganteus in adaptability and 
productivity, as discussed below. Even when irrigation was stopped in the 
fourth year of study, M. × giganteus yielded over 27 Mg ha−1. Yield decreased 
somewhat in the fifth year with no irrigation. Significant winter rainfall 
must have been stored in the soil column, although soil water capacity was 
reported as ~10 cm in the top 0.8 m of total 1.2 m soil depth. 

Successful M. × giganteus establishment in this Mediterranean climate was 
absolutely dependent on irrigation because of very limited summer rainfall 
(Mantineo et al., 2009). Cosentino et al. (2007) had earlier measured Water 
Use Efficiency (WUE) for M. × giganteus grown with limited irrigation in the 
same environment and found it was above 4.5–4.8 g L−1 aboveground dry 
matter production in consecutive years. They noted that the WUE declined 
as more water was provided to ~2.5 and 3.5 g L−1. The reported numbers are 
consistent with the work of Clifton-Brown & Lewandowski (2000) in a green
house experiment where water amounts are more easily measured. The work 
of Cosentino et al. (2007) and Mantineo et al. (2009) suggests that M. × gigan
teus can produce high yields with less water than most crops. 

In no year does the M. × giganteus WUE reach the WUE of A. donax in the 
same location, which was above 4 g L−1 beginning with the second year. 
The authors note that A. donax did not go totally dormant in winter, unlike 
M. × giganteus, and so may it make better use of available water in winter. Of 
course, in colder climates such advantage is not available. The aboveground 
vegetation of A. donax like that of M. × giganteus is frost sensitive, though per
haps not so much so. Below-ground rhizomes are killed at about −5°C for 24 
hours, a bit more tolerant than M. × giganteus (Pompeiano et al., 2015). 

It is clear from the above studies, and general knowledge of crop physiol
ogy, that water-holding capacity of soil, in addition to total applied water, and 
deep roots are all critical for maximizing yield when dependent on rainfall. 
One recent study from Ukraine (Doronin et al., 2019) shows that the use of 
water-retaining materials can benefit rhizome development when that is the 
goal, as in the preparation of large rhizomes for transplanting. Water-holding 
materials can allow for longer survival in transitory droughts and are widely 
used in potting materials for planters that are intermittently watered. This 
might not be economical for field-scale production but could benefit nursery 
preparation of planting materials. 

5.2.3 Weeds 

Detailed studies of herbicide tolerance of M. × giganteus were done by Eric 
Anderson for his M.S. degree at University of Illinois (2010). Tolerance to 
broad-leaf herbicides (mainly auxin analogs) was the same as for maize, as 
expected. Tolerance of wider-spectrum herbicides and of those designed for 
control of grassy weeds were also reported. A more extensive greenhouse 
study by Smith et al. (2015a) considered 22 PRE- and 22 POST-planting 
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herbicides with several energy crops. They noted that M. × giganteus from 
rhizomes was more tolerant than seedlings of hybrid Miscanthus. 

Careful field preparation and use of a broad spectrum, short-lived herbi
cide such as glyphosate has been found to be important for obtaining good 
vigorous M. × giganteus stands in the US and UK (Caslin et al., 2011; USDA/ 
NRCS, 2011). For regulatory reasons we cannot make specific recommen
dations for U.S. registered herbicides in Europe or Asia, and vice versa. 
Song et al. (2016) confirm the essential need for strong weed control and 
provide a useful example of the range of herbicides that are effective with 
M. sacchariflorus in Korea. Similar results are described for M. × giganteus 
(Roik et al., 2019). 

Management of weeds after M. × giganteus has begun growing requires 
special care to not damage the plants. Tillage methods can only be used 
between rows, carefully avoiding close approach to the plants themselves. 
Herbicide application must be under strictly defined conditions of temper
ature, soil moisture, and wind speed to meet regulatory requirements and 
avoid damaging stressed plants. Because M. × giganteus is a single clone; 
no genetically modified (GM) form of the plant is available to make use of 
resistance to specific herbicides, unlike maize resistant to glyphosate and 
dicamba. 

A comparison study in Kentucky and Virginia by Smith et al. (2015b) 
showed that weed competition in those two locations, on ground previously 
in no-till rotations with winter cover-cropping, was not a significant obstacle 
for several energy crops including M. × giganteus CVs Illinois, Nagara, and 
(tetraploid fertile) PowerCane. The main difference between this study and 
the earlier work in Illinois was that the soils of Illinois are richer in N, having 
been in crop rotations requiring high N levels, mainly maize. They may also 
have larger seed banks of weedy species. 

Our first effort to grow Miscanthus in the field began May 1, 2015, 
at Ft. Riley, KS (~39 N latitude). It made use of large propagules of the 
M. × giganteus Bluemel strain kept 1 month or 13 months at 4°C, and smaller 
plantlets grown under lights during the previous summer, autumn, and 
winter. Those were grown under several conditions including soil from the 
planting site, with or without fertilizer; perlite, or perlite plus vermiculite 
both with 1/2 strength Hoagland’s solution. Rhizomes (60–90 g) harvested 
from larger potted (~12 L) plants stored cold 6 or 18 months, and freshly har
vested (from a field site) actively growing rhizomes were also tested. Some 
plantlets were grown up and then stored 5 months in cold. 

The site was grassland, with alfalfa, normally mowed several times per 
year. All vegetation was cut to ~1–2 cm with a “weedeater” and propagules 
were planted at 45 cm intervals in 11 rows, spaced 45 cm apart. Including bor
der edges, the plot was 6 × 6 m. Fertilizer, tillage, and herbicide treatments 
were avoided. Every Miscanthus plant was marked with a bamboo stick. Rain 
was abundant, with three intervals of >10 cm rain, after 3 days, during the 
following 3 weeks and again during 2 weeks. Weeds were trimmed down to 
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<10 cm on two occasions, June 1 and June 18. Rain was adequate through the 
remainder of the season. No further weed control was used. 

Survival was recorded on May 5, 2016, when plants had emerged from win
ter dormancy. The plantlets stored cold in perlite or perlite + vermiculite and 
knocked off at planting, had as fraction of survivors, 7/11; with mixture left 
on, 8/11; small rhizome propagules, or actively growing rhizomes 9/11; all 
other treatments 11/11. Some of the more vigorous plants in one border row 
had extended runner rhizomes over 50 cm out into the surrounding area. In 
December 2016 this plot had a biomass of 8.0 ± 1.9 t ha−1 (N = three samples of 
0.81 m2) comparable to the 2016 year 1 yield of the study by Alasmary (2020), 
which was done immediately adjacent to this trial plot. 

5.2.4 Weather 

While climate change is a long-term transition that may alter the optimum 
growth regions for M. × giganteus, changeable weather is the present chal
lenge. Average winters have become warmer over much of the US, but occa
sional sudden changes are much more damaging to M. × giganteus. Late 
spring frosts or sudden early autumn frosts can have large consequences 
(Kaiser and Sacks, 2015). In springtime, energy expended in sending forth 
shoots is lost when a sudden freeze severely injures them. 

A major collaborative study of Miscanthus production and efforts to model 
its productivity in the US (Lee et al., 2018) has 58 authors. It was initiated 
in 2008 and compared Miscanthus with several other potential bioenergy 
sources including switchgrass, forage sorghum, “energycane” which is a ver
sion of sugarcane, and mixed grasses. Weather and geography were obvious 
variables. The duration and locations of trials for the different crops var
ied. For Miscanthus a 6-year study was done in five locations. At two ini
tial locations, in Illinois and Indiana, there was high winter mortality of the 
transplants which had been started from ~25 g propagules in a greenhouse 
prior to planting in June/July 2008 (rather late). In Illinois 75% of plants were 
lost. The severely damaged Indiana site was replaced by one in the Virginia 
Piedmont in 2010. That site is climatically milder but with soils and terrain 
generally less suited to annual row crops. 

We observed signs of significant prior frost damage on early emerging 
M. sacchariflorus Bluemel when we were planting on May 2, 2017, 2 weeks 
after the expected date of the last killing frost in our climate. The year-old 
plants in the study of Alasmary (2020) were ~50 cm tall by May 2, showing 
damaged foliage. A 2-year-old (2015) trial plot which had not been harvested 
the previous autumn had much shorter plants with far less damage (per
sonal observation). Residual vegetation presumably delayed soil warming 
and shoot emergence. 

Sudden fall frosts are reported to damage first year M. × giganteus in 
Illinois because the plants tend to remain green longer during their first year 
(Boersma et al., 2015). This frost damage in turn reduces the translocation of 
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nutrients back to the rhizome (Aurangzaib, 2012). Sage et al. (2015) observed 
and quantified a similar effect on a new triploid M. × giganteus hybrid 
(Nagara) in Ontario, Canada. In this instance 3/4 of the leaf N failed to trans-
locate. Similar effects may be observed for other nutrients. 

During winters, especially the first winter, M. × giganteus is vulnerable 
to freezing damage. When soil temperature drops below −3°C to −5°C at a 
depth of 4–10 cm, rhizomes are killed (Dong et al., 2019; Heaton et al., 2010). 
Insulation of the planting with straw, dropped foliage, or other means may 
be critical for good establishment in places where such cold is likely. In a 
long-term study described by Maughan et al. (2012) and Lee et al. (2017), 75% 
of a 2008 summer planting of potted, actively growing rhizomes was lost in 
the first winter. These had been greenhouse grown from 25 g rhizomes in 
9 × 9 × 12 cm pots so they were much larger than typical plantlets, but were 
planted rather late in mid-July. The missing plants were replaced in 2009 
(Maughan et al., 2012). 

A fall planting of M. × giganteus ~25 g rhizomes at Mimon, Czech Republic, 
was fully destroyed by an 8-day February–March period of air minimum 
temperatures at −10°C to −18°C and maxima below 0. Soil temperatures were 
not determined. Only 1/10 of a previous spring planting in that same loca
tion survived (Nebeska D. personal observation). 

Kucharik et al. (2013) developed a predictive model for likelihood of win
ter loss, based on a 30-year climate record across the Midwest US. The effect 
of insulation of the crop by straw and leaf matter at various depths was also 
calculated. A layer of 5 cm gave significant protection in many regions but the 
northern portions of several states near the Canadian border (~49 N latitude) 
had a 50% likelihood of losses even with protection. So far as we are aware no 
comparable model has been generated for Europe, although it is feasible to do 
so. Somewhat surprisingly, in the studies described by Kalinina et al. (2017), 
M. × giganteus survived winter even in the vicinity of Moscow, Russia (~55.75 
N latitude), because soil temperatures never dropped below 0°C in the winter 
of 2012–2013. 

Seasonal droughts of varying magnitude have a strong negative effect on 
biomass yield, when irrigation is unavailable. Kering et al. (2012) described 
this effect in southern Oklahoma where half of carefully pot-grown 
M. × giganteus plants died during the 2 months of 2008 following transplanta
tion to a field site, while other biomass grasses had high survival. Biomass 
yield of the M. × giganteus never approached that of the other crops over the 
study period even though precipitation returned from 58 cm in 2008 to near 
average 97 cm year−1 value in the second and third years (130 and 91 cm, 
respectively). In Eastern Ukraine, a planting of M. × giganteus failed in 2017 
when summer rainfall dropped from an average of 7 to only 1 cm during 
July although the annual total was close to the average 45 cm (Stefanovska T. 
personal observation). 

Failures of timely rain following a 2017 planting at Ft. Riley, Kansas 
(~39 N latitude), resulted in loss of ~1/4 of the M. sacchariflorus Bluemel 
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(Davis L. personal observation) contrasting with zero losses in 2016 with 
abundant rain (Alasmary, 2020). During 2018 a direct comparison was 
done with M. × giganteus and the M. sacchariflorus Bluemel strains both 
at the Ft. Riley site and at the Kansas State University North Farm site 
(~39.2 N latitude). At the former location there was a failure of rains over 
several weeks, and nearly total loss (>90%) of both CVs (two replicates each 
of 16 plants planted on 45 cm centers). At the North Farm where some 
supplemental irrigation was available, four replicate plots each of 36 plants 
grown on 45 cm centers were compared. Survival of the Bluemel strain 
was much higher (~3/4) than that of M. × giganteus (<1/2) perhaps because 
larger propagules of 60–90 g vs 25 g were available. Even in autumn 2020, 
the M. × giganteus plants remain as individual clumps of <50 cm diame
ter, while the Bluemel strain plants, with no supplemental irrigation since 
early summer 2017, are invading the entire planting (Davis L. personal 
observation). This is consistent with observations mentioned above where 
it sometimes takes more than 4 years to reach maximum productivity 
which depends on total number of stems (tillers) and number of leaves on 
each (Lee et al., 2017) (Figures 5.3 and 5.4). 

In southeastern Kansas the Mound Valley experiment station (~37.2 N lati
tude) had an average yield of 11.3 t ha−1 for the third to fifth years of grow
ing Illinois and “Freedom” M. × giganteus CVs (which are genetically near 
identical M. × giganteus). There was no correlation of yield to annual rainfall 
amounts of 91, 130, and 104 cm in years 3–5 (2014–2016). In the establishment 
year (2012) a significant fraction of the plants failed despite occasional irriga
tion. These were replaced in 2013 and the 2013 yield was about 5.4 t ha−1. In 

FIGURE 5.3 
Comparison of characteristic leaf form of M. sacchariflorus (lower right), with M. × giganteus 
(upper left) on September 11, 2018 prior to flowering of the latter. Leaves of M. sacchariflorus are 
wider than those of M. × giganteus. 
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FIGURE 5.4 
Direct comparison of growth habit of M. × giganteus (front right) and M. sacchariflorus Bluemel 
(left, and behind) at the North Farm site, K-State, KS, in the fall of 2018. The M. × giganteus 
was obtained from Maple River Farms and planted on May 1, 2018. It produced flowers in 
early October. (See Figure 5.3 for a photo taken in mid-September.) The flowering M. × giganteus 
stands out above the M. sacchariflorus allowing easy visualization of the first-year clumps. The 
M. sacchariflorus is also senescing. View is from south to north showing the two series of four 
plots in a checkerboard pattern. Gaps in the M. × giganteus plot are where propagules failed. 
Photo taken in mid-October. 

that year 2 summer drought periods, each of over 1-month duration, may 
have reduced the second-year yield although the overall annual precipita
tion was 88 cm. Alternatively, the crop may not have closed canopy to fully 
exploit resources (Moyer, 2017). 

5.3 Site Characterization 

For any site it is essential to characterize basic properties. Unless you intend 
to do research and know some specific details about previous contamina
tion of the site, it is really just a matter of the standard agronomy questions. 
What are soil pH, texture (percentage sand, silt, clay), organic C, cation 
exchange capacity, and available nutrients (N, P, K, and micronutrients)? 
Are there problems of weeds, excess or insufficient water, any hazards from 
unexploded ordnance? Also very important is whether the site was recently 
treated with persistent herbicides that could interfere with the establishment 
of M. × giganteus. If the land is marginal but being used for agriculture, it 
may be important to know the kind of crop being managed in the years prior 
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to the establishment of Miscanthus planting. Legumes may supply carry
over nitrogen. Long-term grasslands might have relatively few aggressive 
weeds that are common in highly fertilized crop rotations. Following heavily 
fertilized crops such as maize, omitting N fertilizer may help reduce weed 
growth in the first year. 

If there is known contamination, you will need analysis of extractable 
and bioavailable levels of the contaminants. Do some plants grow success
fully on the site now? What type of soil is it – natural, reclaimed after min
ing, a result of extreme grading as for an airfield, or technosol (something 
manufactured somehow, such as waste dumps, dredged sediments, or mine 
wastes, combined with other materials)? Is it a uniform area or heteroge
neous, for instance, with many different smaller contaminated areas, as in 
an abandoned pesticide storage area? Does soil texture changes with depth? 
Are there known health hazards for workers? Can you have some certainty 
of access for multiple seasons to establish a harvestable perennial crop? 

For a research plot one should do a more detailed investigation in order to 
later verify changes produced during Miscanthus growth. For instance, to 
validate claims of successful remediation of organic contaminants it is essen
tial to have good information on the starting concentrations of the contami
nants of concern across the site. This means using a systematic regimen of 
sampling to appropriate depths and with a spacing suitable to the expected 
variation or heterogeneity of the site. For a large area uniformly contami
nated, perhaps 10 samples ha−1 is sufficient; for a more heterogeneous site in 
an area where there are many exposed receptors (people or animals) one may 
need more than 100 samples ha−1. This is especially important if the contami
nants of concern are taken up and stored in Miscanthus because they could 
spread the exposure beyond the site when harvested and transported, and 
then processed in some way. 

5.4 Plant Nutrition and Supplementation 

Soil fertility amendments, if any are needed, will vary with the results of initial 
characterization. These may include mineral or organic fertilizers, or possibly 
trace elements such as B or Mo. Organic fertility amendments often are animal 
or treated human wastes which typically contain trace elements. In the US, 
“biosolids” is a term used to describe the final product of a residential sewage 
waste treatment plant. They are closely regulated, much more so than animal 
wastes. Biosolids are often stabilized with additives such as lime or iron. They 
are high in organic carbon and the pH is usually near neutral giving efficiency 
in sorbing metals. Because there is a reasonably high concentration of total N 
in such waste (4%–8%), biosolids often can serve as an adequate N source for 
a crop (Evanylo, 2006). Levels of P and K are often beneficial to add to the soil, 
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but the applied N rate is generally used in determining the proper amounts to 
apply (USEPA, 1994). In addition, high iron in biosolids will increase trace ele
ment sorption capacity of the receiving soil. High organic matter will contrib
ute to both trace elements and organic contaminant retention. Further, high 
organic carbon will promote microbial activities, enhancing organic contami
nant degradation, and nutrient cycling. Biosolids applications are also limited 
by concentrations of specific toxic elements (e.g., As, Pb, Cr, Cd, Zn); however, 
regulated biosolids (such as Class A and B biosolids in the USA) contain very 
low levels of trace elements. The field experiment at Ft. Riley, KS, had one 
treatment of biosolids in its design (Alasmary, 2020). 

Other nutrient amendments of soil might include other sources of organic 
matter such as composted animal confinement wastes. These are a useful 
source of N, P, K but in varying amounts depending on the animal source 
and the diet of the animals, which will be very different for ruminants, 
nonruminant mammals, and poultry. Waste from nonruminants is often 
very high in P, to the extent that struvite mineral (magnesium ammonium 
phosphate) can be recovered in large quantities by intentional treatments 
(Castro-Diaz S., personal communication). In some settings excess P may be 
the limiting factor for biosolids application. Optimum pH for Miscanthus 
growth is about 5.5–8. Acidic soils would benefit by application of lime to 
raise pH into this range. Both calcium and magnesium are essential for 
crop growth. Based on harvested material in winter, Miscanthus biomass 
removes relatively little N, P, or K from soil, about 5 kg t−1 of N, 0.5 kg t−1 of 
P, and 7 kg t−1 of K (Iqbal et al., 2017). Earlier harvest before leaf fall, nutrient 
translocation, and rainfall leaching of biomass will remove more, often a lot 
more. As mentioned above, Nagara CV of M. × giganteus was noted to retain 
3/4 of the leaf N when injured by fall freezing (Sage et al., 2015). Hence an 
early harvest may remove 20 kg t−1. 

Very often it has been observed that added N does not benefit a Miscanthus 
crop in the planting year. In some situations, added N is beneficial in later 
years. As recognized by Lee et al. (2017), some locations receive higher lev
els of N deposition from the atmosphere than others do. Places with high-
density animal production may release higher amounts of ammonia to the 
atmosphere from hydrolysis of urea. At Konza prairie, a relatively “pristine” 
preserve, near Kansas State University, nitrogen deposition in rainfall and 
particulates amounted to ~10 kg ha−1 year−1 over the first 18 years of the 
21st century, although there appears to be a downward trend to <9 kg ha−1 

year−1 in the past decade. Lee et al. (2017) suggested that deposition rates 
were significantly higher in Europe. A reported value of 14 kg ha−1 year−1 

for Germany may be found at Schaap et al. (2017). For the UK, the historic 
trend is downward in this century and reported as about 10 kg ha−1 year−1 

in 2010 (Tomlinson et al., 2011). For some regions of the UK deposition rates 
were at least two-fold higher in the 1990s when early studies of Miscanthus 
were done. The reported deposition rates could support a yield of several 
Mg ha−1 without depleting soil N at all. This is an example of large geographic 
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variability independent of typical climatic rainfall and temperature differ
ences and geographic factors such as latitude and altitude. 

Lee et al. (2018) observed quite variable responses across sites and years in 
the US. Added N at 60 or 120 kg ha−1 was rarely detrimental, and sometimes 
beneficial. The work of Lee et al. (2017) in Illinois (~40 N latitude) showed 
that very high yields of biomass were obtained with added N, at rates of 
60 and 120 kg ha−1 year−1, but the higher rate gave no improvement over the 
60 kg ha−1 rate. Yields were reasonable in the 0 N control plots, but averaged 
half the yield of the N-fertilized plots over years 2011–2014, where drought 
may have affected yields (see discussion above under water). In other studies, 
mass balance calculations suggest that the crop may fix atmospheric N by a 
symbiotic association (Davis et al., 2010). Bioavailability of adequate P may be 
decreased at high pH in soils with abundant calcium. This combination pro
duces calcium hydroxyapatite, which is quite insoluble at pH 8. Miscanthus 
extracts K efficiently from soil, but it seems to be a common practice to add 
a small supplement proportional to amounts removed with the crop, espe
cially after several years of harvest. 

A significant concern may be overfertilization of Miscanthus, if it is 
intended for combustion. This is because high K and high Cl lead to corro
sion and slag formation in the combustion chamber. It has been reported that 
use of large amounts of biosolids can result in plants taking up excess levels 
of these elements, far above disagree strongly what is essential for growth, 
lowering the end use value of the biomass (Kołodziej et al., 2016). Those 
authors applied “sewage sludge” one time in amounts up to 60 dry matter t 
ha−1 and observed that peak productivity was reached at about 10–20 t ha−1 

in later harvests, but all levels appeared inhibitory in the first year. Nitrogen 
(total) levels in the biosolids were 7.45% with relatively high ammonium N 
of 2.35% at the time of application and tilling into 40 cm depth during the 
autumn prior to planting Miscanthus. The ammonium presumably volatil
ized or nitrified over winter. If not, it might be toxic at up to 250 mg kg−1 of the 
top 40 cm soil. The cause of first-year inhibition by sewage sludge is unclear, 
because there were not high concentrations of toxic trace elements or sodium 
according to data presented by the authors. The Zn level in the sludge was 
1000 mg kg−1, which when applied at 60 Mg ha−1 would increase the Zn level 
of soil by only 15 mg kg−1 for the top ~40 cm. 

A rather different approach was taken by Dubis et al. (2020) who grew 
Miscanthus in Poland for 5 years with high applications of mineral fertil
izer (90 kg ha−1 of N, 80 kg ha−1 of P2O5, 120 kg ha−1 of K2O), and only then, 
after-stable yields were obtained, compared doses of 100 or 160 kg ha−1 of 
N applied as sewage sludge (~13 and 20 Mg ha−1, varying by year) versus 
mineral N at comparable rates and 50 kg ha−1 of P2O5 and 100 kg ha−1 of K2O 
applied to the mineral fertilizer treatments. Overall, yields varied only ~20% 
over 6 years, between 17 and 22.5 t ha−1, presumably as a function of weather, 
with control plots consistently ~20% lower than three treatments which did 
not differ from one another, and about 10%–15% lower than the lower level of 
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applied sludge. This experiment indicated that for this soil, adding back N at 
the level that it is withdrawn by harvest is beneficial. Harvest was done rela
tively early in autumn, when only 1/3 of leaves up the stem had dried, for use 
in silage for biogas production. Thus, the offtake of N was much greater than 
it would be in a late winter harvest. For instance, Kołodziej et al. (2016) saw a 
decrease of nearly two-fold in ash content of M. × giganteus when comparing 
autumn with spring harvested material. Iqbal et al. (2017) showed that off-
take varies with harvest date at multiple locations with multiple CVs, consis
tent with the estimate that early harvest before nutrient translocation would 
remove 100–160 kg year−1 of N, while later winter harvest would decrease 
this to 1/2 or 1/3 the amount. For combustion, lowered total mineral content 
is very important, whereas for biogas production it is not. 

5.5 Role of Soil Amendments 

Inorganic commercial fertilizers contain N, P, K, as their main nutrients 
in the form of various salts, sometimes with Ca, Mg, Zn, S, B, or trace ele
ments added for specific soil types. These along with different organic fer
tilizers (compost, ash, manure, activated carbon) have historically been the 
primary soil amendments (Antonkiewicz et al., 2019; Boakye-Boaten et al., 
2016; Lehmann et al., 2003). In the last 25 years different wastes like sew
age sludge and digestate are becoming popular as soil amendments as well 
(Antonkiewicz et al., 2020; Kirchmann et al., 2017; Tabak et al., 2020). In addi
tion, biochar, the solid material obtained from the carbonization of biomass/ 
waste or through pyrolysis, is currently proposed as both a soil amendment 
and carbon sequestration medium (Agegnehu et al., 2016; Faria et al., 2018; 
Lehmann et al., 2006). Application of soil amendments boosts the soil fer
tility balance and improves soil quality, resulting in increased crop yields 
(Hu et al., 2018; Humentik et al., 2018). Improvements in soil fertility result 
in greater uptake of macronutrients and micronutrients by plants, mainly in 
the second cropping season, and higher biomass productivity. Soil benefits 
include optimizing soil pH, increasing moisture holding capacity, attracting 
more beneficial fungi and microbes, improving cation exchange capacity, 
and retaining nutrients. These benefits have been shown to increase yield in 
biomass and crops under variable conditions (Chan et al., 2008). One obvi
ous energy cycle is to grow Miscanthus, pyrolyze it to recover energy, and 
use the residual biochar as a source of minerals and carbon for Miscanthus 
cultivation again. 

The impacts of application of different soil amendments to the produc
tion of energy crops on regular agricultural soils are well represented in the 
literature. However, the improvements of biomass production when these 
crops are produced on marginal or contaminated soils are not researched 
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so well. Only a few publications have evaluated changes in the phytoreme
diation parameters of the second-generation biomass crop Miscanthus when 
it is growing on contaminated soil receiving different soil amendments 
(Alasmary, 2020; Ameen et al., 2018; Kucharski et al., 2005; Mamirova et al., 
2020). See Chapter 3 for some specific examples. 

5.5.1 Impact of Soil Amendments on the Phytoremediation 
of Soil Contaminated by Organic Substances 

Low molecular weight compounds. Plant roots secrete a wide range of chemical 
compounds: multicarboxylic organic acids including aconitic, citric, malic, 
malonic, oxalic, succinic, and tartaric acids; sugars and sugar conjugates; 
amino acids and peptides; phenolics, some of which are allelopathic; and 
diverse enzymes. Often the exudation results from complex interactions with 
the root microbiome (Korenblum et al., 2020). Exudation is sometimes ini
tiated by lack of nutrients, pollutant toxicity, or anoxia (Dakora & Phillips, 
2002; Zeng et al., 2008). Root exudates thus serve to interact directly with con
taminants, or indirectly by their influence on the microbiome. See Chapter 2 
for more details. 

In 1995, Hülster & Marschner proposed a hypothesis that root exudates 
can bind with persistent organic pollutants in soil and form a more hydro
philic complex which can be more easily absorbed by roots and translo
cated to aboveground biomass. Campanella & Paul (2000) supported this 
hypothesis, finding that Cucurbita pepo and melon (Cucumis melo) root exu
dates bind dioxins and furan molecules facilitating their translocation to 
aboveground biomass. They suggested that at least some part of this mix 
of carrier molecules was proteinaceous. The impact of organic acids, citrate, 
and EDTA (ethylenediaminetetraacetic acid) on the p,p′-DDE (p,p’-dichlo
rodiphenyl-1,1-dichloroethene) uptake by Cucurbita pepo, Trifolium incarna
tum, Brassica juncea, Vicia villosa, and Lolium multiflorum was investigated by 
White et al. (2003) and White and Kottler (2002). They observed significant 
increases in uptake of p,p′-DDE for Cucurbita pepo (succinic acid – 19%; tar
taric acid – 27%; malic acid – 31%; malonic acid – 36%; oxalic acid – 45%; 
citric acid – 58%; EDTA – 80%) and for Trifolium incarnatum, Brassica juncea, 
and Vicia villosa (citrate – 39%). Citrate also chelated metals, altering their 
bioavailability. More recently a 17 kDa protein of the major latex protein 
class was identified in the xylem sap of C. pepo and shown by genetic means 
to be correlated with enhanced translocation of broad classes of POPs (Inui 
et al., 2013). So, it may be that there are multiple facilitators of their uptake 
at multiple steps. 

Surface-active compounds. Surfactants are chemical compounds that 
decrease surface tension. Surfactants can reduce the hydrophobicity of 
organic compounds, for example, nonionic surfactants decreased the hydro
phobicity of polychlorinated biphenyls in a soil-water system (Park & Boyd, 
1999). There are surfactants of chemical (Tweens, Polysorbate, Triton) and 
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biological (e.g., rhamnolipids) origins. Gonzalez et al. (2010) reported that 
adding Tween 80 (nonionic) to contaminated soils effectively enhanced p,p-
DDT, p,p-DDE, and α-cypermethrin solubility while adding sodium dodecyl 
sulfate (anionic) increased the solubility of two other pesticides (α-endosulfan 
and endosulfan sulfate). 

Rhamnolipids, also called biosurfactants, are glycolipids produced by 
Pseudomonas, Burkholderia, and other genera (Abdel-Mawgoud et al., 2010). 
Amendment of soil contaminated with p,p′-DDE by adding biosurfactants 
increased accumulation of pesticides in roots, leaves, and fruits of Cucurbita 
pepo ssp. Pepo (hyperaccumulator) and C. pepo ssp. Ovifera (nonaccumulator) 
mainly by reducing its net hydrophobicity (White et al., 2006). 

Carbon-rich materials. Application of carbon-rich materials (biochar, acti
vated carbon, lignite, etc.) in a phytoremediation process aims to stabilize 
organic pollutants by reducing their bioavailability (Denyes et al., 2012). A 
comparative study on potential of biochar and activated carbon to decrease 
the bioavailability of polychlorinated dibenzo-p-dioxins and -furans showed 
reduction of their bio-uptake in earthworms by 51.6%–90.3% (Chai et al., 
2012). In the Chai et al. (2012) research, contaminant reduction was higher in 
soil treated by activated carbon whereas in Denyes et al. (2013) it was almost 
the same. The effectiveness of carbon-rich materials also depends on the way 
they were added to the system. In a mechanically mixed system (24 hours, 
30 rpm rotation in a drum) activated carbon reduced polychlorinated biphe
nyl levels 1.7 and 1.4 times more efficiently in the plant Cucurbita pepo and 
earthworm Eisenia fetida, respectively, while the effectiveness of biochar was 
higher by 2.0 and 1.7 times, respectively, as compared to simply digging the 
material into soil at a contaminated site (Denyes et al., 2013). Contact of con
taminant and sorbent is slow in natural systems. 

Nanoparticles. Nanoremediation is a relatively new area of environmental 
biotechnology, based on the ability of Ag, Au, Mg, and Fe nanoparticles to 
facilitate dehalogenation of halocarbon pesticides. Nanoparticles can either 
directly react with contaminant or participate in its conversion into less toxic 
forms (Adeleye et al., 2013). Nanoparticles have been shown to be an efficient 
amendment able to degrade 100% of DDT in various matrices (Tian et al., 
2009). Applying zero-valent iron nanoparticles (nZVIs) for DDT dechlorina
tion in water and soil systems showed that the potential of nZVIs to decom
pose DDT was higher (92%) in water than in soil (22.4%) over the same time 
(El-Temsah et al., 2016). Unfortunately, different modes of preparation of the 
nZVI yield different eco-toxicity, which is nontrivial when it is applied in 
large amounts to obtain effective degradation of POPs such as DDT. The 
nZVIs were able to degrade lindane (γ-HCH (hexachlorohexane)) within 24 
hours to γ-3,4,5,6-tetrachlorocyclohexane (an unstable intermediate) (Elliott 
et al., 2009). The high rates were largely driven by the very high surface area 
of nanoparticles, compared to larger ZVI particles. 

Initial research combining nano- and phytotechnology to restore soil pol
luted by a chlorinated pesticide (endosulfan) included three tropical plant 
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species: Alpinia calcarata, a large monocot in the ginger family; Ocimum sanctum, 
a perennial dicot type of basil; and Cymbopogon citratus, a true grass commonly 
called lemon grass, grown without or with nZVIs in pots (Pillai & Kottekottil, 
2016). These three species had been selected from 11 species grown at a level 
of 1 mg kg−1 endosulfan. The endosulfan concentration in soil for testing nZVI 
effects contained 1140 μg kg−1, while the optimized level of nZVI was 1 g kg−1. 
Ten mL kg−1 of Tween 80 was used to disperse the nZVI; there were three rep
licates of six treatments. A. calcarata showed better phytoremediation potential 
in comparison to C. citratus and O. sanctum in both treatments: on the 7th day 
it removed 52% of endosulfan from pots without and 82% for pots with nZVIs; 
while on the 28th (last) day, endosulfan removal was 81% without and 100% 
with nZVIs at a level of 1 g kg−1. In the case of O. sanctum, addition of nZVIs to 
the system led to endosulfan removal increasing 3.7-fold over the plant alone 
(72% vs 21%) on day 28. With C. citratus, the main nZVI enhancement of endo
sulfan removal was observed after seven days (63% vs 5%). By day 14 the differ
ence was 81% vs 60% and on day 28 with nZVIs removal was 86% and without 
nZVIs it was 65% (Pillai & Kottekottil, 2016). The patterns of rate difference are 
very nonlinear indicative of a perhaps second-order rate. Thus, the combined 
technology of nano- and phytoremediation is one of the promising areas for 
the remediation of organochlorine pesticides. 

5.5.2 Impact of Soil Amendments on Miscanthus 
Production in Postmilitary Soil 

The impact of soil amendments on Miscanthus biomass parameters was 
evaluated under field conditions with the crop cultivated in postmilitary soil, 
slightly contaminated by trace elements in Dolyna, Western Ukraine. Three dif
ferent soil amendments were tested: lime GOST 14050-93; mineral fertilizer 
“Smolokot” (the nutrient content is N:P:K = 8:8:12, +7% MgO + microele
ments); organic fertilizer “Agrolife” (N:P:K = 10:10:10 with chicken compost); 
and their mixture. Different fertilizers were mixed with the soil in a dose of 
40 g per plant, while lime was 30 g per plant. The presoaked M. × giganteus 
rhizomes were planted directly into this mixture at a depth of 10 cm. Results 
are presented in Figures 5.5–5.7. Treatment A1 is a control, with rhizomes 
soaked in water, planted without amendments to soil. A2–A5 all have rhi
zomes soaked in Charkor plant growth stimulant added 4 ml L−1 water. A2 
has lime, A3 has AgroLife fertilizer, A4 has Smolokot fertilizer, and A5 has 
all three. All plots were 25 m2, with A1, A2, A5 receiving 56 propagules, with 
A3, and A4 having 42. There were three replicates of each treatment. 

Through analysis of results from 3 years monitoring of M. × giganteus 
development in the contaminated military soil with application of different 
soil amendments, it may be concluded that the greatest effect was obtained 
when all three amendments were applied and the biggest influence was 
observed for dry mass production (Figure 5.7). The impact was small on crop 
height (Figure 5.6). 
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FIGURE 5.5 
The mean winter survival rate of M. × giganteus grown in the “postmilitary” soil with 
amendments, measured in spring of indicated year. 

FIGURE 5.6 
Plant heights of M. × giganteus when grown in “postmilitary” soil with amendments, measured 
in autumn of indicated year. 

5.5.3 Impact of Soil Amendments on Miscanthus Biomass 
Production in Contaminated Postmining Soil 

M. × giganteus was tested for revitalization of postmining land with biomass 
production (Kharytonov et al., 2019). The research soil consisted of the mix
ture of loess-like loam and red-brown clay which had passed through a long
term phytomelioration stage. The soil humus content was about 1.5%, and the 
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FIGURE 5.7 
Mean dry biomass per surviving plant of M. × giganteus for different amendments in the 
postmilitary soil. 

ratio of humic and fulvic acids was 0.2–0.5, which indicates a weak humus 
accumulation and active destruction of the soil mineral part. M. × giganteus 
showed sufficient tolerance and good enough growth and development in 
this postmining soil during 2 years of experimentation (Figure 5.8). 

In order to determine the impact of amendments on the growth and devel
opment parameters of M. × giganteus, different amendments were applied: 
mineral fertilizer with a balance of nutrients N60:P60:K60 kg ha−1; ash of sun
flower hulls or sewage sludge each in the amount 10 t ha−1; a mixture of ash 
and sewage sludge (total 10 t ha−1); a double dose of sludge (20 t ha−1). The 
amendments were incorporated into soil in a dry form once before planting. 

FIGURE 5.8 
Miscanthus biomass productivity (% increase over control plots) in the postmining soil with 
different amendments. (Modified from Kharytonov et al., 2019.) 
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The results showed that the application of amendments positively affected 
the growth parameters of Miscanthus (Figures 5.8). The biggest effect was 
observed when plants grew in soil amended by mineral fertilizers, while the 
application of ash showed minimal increases of the growth parameters. 

The increase of growth parameters promoted the enhancement of above 
ground biomass yield, and the degree of this enhancement was correlated 
with growth parameters, though for each the enhancement was different. In 
the case of ash application, yield increased by only 6.5% compared with the 
control, while the addition of mineral fertilizer or sewage sludge significantly 
increased the biomass yield by 2–2.3 times. As a result, Miscanthus produc
tivity in the second year was 11.6 t dry matter (DM) ha−1 with sludge and 
11.9 t DM ha−1 with mineral fertilizer. This research confirms earlier reported 
data (An et al., 2011; Kołodziej et al., 2016) that sewage sludge is conducive to 
increasing Miscanthus biomass yield. 

The results illustrate that application of soil amendments can increase plant 
productivity by 50%–140% and that one can obtain Miscanthus yields similar 
to arable lands. Special attention should be paid to using sewage sludge as a 
promising substitute for organic fertilizers while growing M. × giganteus on 
postmining lands. 

5.6 Geography and Soil Types 

In the extensive review of Heaton et al. (2010) there is a very useful discussion 
of the impact of geology and soil type on M. × giganteus productivity. They 
cite several studies which indicate that an optimum soil is neither too sandy 
nor too dense, but intermediate in texture. This increases both water-hold
ing capacity and aeration. Depth of soil is also important as water capacity 
depends on both texture and depth of soil. Capacity may be underestimated 
if a site is underlain by very porous rock which can effectively release water 
to the overlying soil during drought events or which can be reached by plant 
roots. Reasonable levels of clay improve capacity to store essential minerals 
including K, Ca, Mg, and cationic trace elements. Lee et al. (2017) attributed 
the N response observed in their long-term study in part to the sandy nature 
of the soil being used and its relatively low retention of N. Organic matter 
increases the formation of aggregates and improves the overall tilth of the soil. 
In its native habitat of Japan, M. sinensis is able to pioneer and grow on volcanic 
ash-derived soils, and tolerates high levels of Al at low pH (Stewart et al., 2009). 
It contributes large amounts of organic matter to the developing soil in those 
conditions, where frequent fires over millennia have also contributed biochar. 

As an example of successful production of Miscanthus on a potentially 
unfavorable site, we may consider the work of Skousen and co-workers in 
West Virginia (Scagline et al., 2015; Skousen et al., 2013). The site (38°49′ N, 
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80°11′ W) had been surface-mined, restored with mixed overburden, and 
15 cm soil covering, fertilized, limed, and planted with mixed grass and 
legumes 25 years earlier. It had been managed as mown forbs during that 
time. Five replicate plots of 0.4 ha were planted to each of two types of 
M. × giganteus – public and private from Mendel Biotechnology (unnamed 
but likely Illinois and Nagara CVs). All plots were planted into a sod previ
ously killed with glyphosate herbicide applied twice, fall and spring prior 
to planting. Planting density was 12,300 plugs ha−1. Even with a >20% loss 
of plants this would still produce an appropriate plant density. Other plots 
received two types of switchgrass, drilled into the killed sod. Yields of 
switchgrass were 7.9 and 7.3 t ha−1 while the private M. × giganteus yielded 
13.7 and the public 14.4 t ha−1 in year 5. The private CV increased yield 
much more rapidly over years than the public, reaching 22 t ha−1 in year 3. 
However, all measures of Miscanthus had large variation (SD ~50%, N = 5 
plots) likely because all yield measures were based on random selections of 
six plants, from large (0.4 ha) plots. 

These M. × giganteus yields are very like those reported in the south-
central Virginia Piedmont region (~36°56′ N, 79°24′ W) in the same years by 
Lee et al. (2018) and Battaglia et al. (2019). Switchgrass yields in West Virginia 
(WV) were better than unfertilized soil of the Virginia (VA) portion of Lee 
et al. (2018) studies, but lower than on fertilized plots. For switchgrass, six 
0.21 m2 quadrats were sampled on each of the WV switchgrass plots, but 
again the SD was very large. A critical methodological difference is that the 
studies of M. × giganteus coordinated by Lee et al. (2017) used a 4 m2 sample 
from the center of a plot of 10 × 10 m. With N = 4 for each different nitro
gen fertilization level, the reported Standard Error of the Mean was much 
smaller, closer to 10%. In the VA switchgrass study, there was a positive, usu
ally large, response to added N each year. Their yields were measured by 
complete biomass harvest on full plots of at least 0.5 ha. 

A very useful European example is the work of Jeżowski et al. (2017) who 
grew M. × giganteus on lignite mine spoils, with sewage sludge and mineral 
fertilizer supplements. Three years prior to planting Miscanthus, a mix of 
Medicago species was planted on the site which was roughly leveled. The 
wet sludge (1 Mg per 5 × 5 m treatment plot) was applied in the autumn prior 
to the Miscanthus planting and was incorporated into the soil to a depth 
of ~30 cm. This corresponds to 400 t ha−1 wet wt, 80 t dry matter wt (DM). 
Rhizomes were planted on 1 m centers, 25 per plot, in a randomized, three 
complete blocks design. Treatments were D0 = no addition, D1 = addition of 
~80 Mg ha−1 (DM) of municipal sewage sludge, D2 = sludge + 200 kg ha−1 com
mercial fertilizer, D3 = sludge + 400 kg ha−1 of commercial fertilizer. With a 
composition listed as 13:19:16 for N:P:K, the added fertilizer makes a modest 
N contribution of ~26 kg ha−1 to D2 and ~52 kg ha−1 to D3. Total N for the sludge 
was 43.4 kg Mg−1 DM (4.3%) for an applied rate of over 3400 kg ha−1, although 
most would be organic N. If this mineralizes at a rate of 2% per year it contrib
utes all the N needed by the amount of biomass produced, over a long time. 
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Biomass yields increased year by year, but D1–D3 did not differ signifi
cantly from one another in any year. Within treatments yield estimates 
varied ±20%. “From the center of each plot, six randomly selected plants 
were collected”. Yields in year 3 were ~9 Mg ha−1 for the control D0 and ~15 
Mg ha−1 for the three treatments with sludge. This represents a positive use 
for a marginal land. The authors estimated that it might take 7–10 years to 
become profitable as a crop, because of establishment and harvest costs. 

Overall, there is good evidence that geographic location is very important 
to potential M. × giganteus yields, as reviewed by Heaton et al. (2010), indepen
dent of fertility of soil, addition of fertilizers, and other nutrient amendments. 
Latitude influences time of flowering and yield. Higher latitudes delay flower
ing. Rainfall patterns (timing and amounts) and temperature regimes determine 
the regions where rain-fed crops can be successfully grown for maximum pro
duction. Continental vs oceanic climates markedly affect stability of yields. For 
the U.S. there are adaptability maps showing likely zones of relative yield, based 
on models of M. × giganteus growth patterns. There have been enough regional 
studies to indicate that in some locations alternatives other than M. × giganteus 
are more productive at least for a few years of study (Smith et al., 2015b). There 
have not been sufficient long-term studies to say how they would fare over the 
course of decades. Similar maps have also been developed with alternate bio
energy crops including maize, switchgrass, sorghum, and select sugarcane CVs 
identified as “Energy Cane” (Matsuoka et al., 2014). For total biomass production 
in the south of US, M. × giganteus cannot compete with Energy Cane. 

Very sophisticated models of growth patterns for M. × giganteus in Europe 
have been developed. Early examples are discussed in Heaton et al. (2010). 
These have good predictive values when key features including latitude, 
hours of light, water, and temperature are input to the models. 

5.7 Role of Plant Growth Regulators in 
Production of M. × giganteus 

Plant growth regulators (PGRs, earlier term “phytohormones”) are a group 
of treatment substances used for enhancing plant growth (Procházka & 
Šebánek, 1997). There are five main classical groups of natural PGRs: aux
ins, cytokinins, gibberellins, ethylene, abscisic acid; in addition, there is a 
class of “new plant hormones” formed by brassinosteroids, salicylic acid, jas
monates, and strigolactones. For each class there are substances chemically 
or biologically synthesized and used as mimics or inhibitors (agonists and 
antagonists in biochemical terminology). Also, oligosaccharides, systemin, 
polyamines, reactive oxygen species, and reactive nitrogen species including 
nitric oxide possess activities similar to those of plant hormones in various 
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systems (Bhattacharyya & Jha, 2012; Chen et al., 2009; George et al., 2008; 
Ponomarenko et al., 2010, 2017). 

Applications of PGRs have been studied in Europe for increasing the 
production of different agricultural crops: wheat, maize, sunflowers 
(Ponomarenko et al., 2010; Tsygankova et al., 2013a). A total of 14 different 
PGRs produced by Agrobiotech Company (Ukraine), based on natural active 
ingredients, were tested on Sorghum bicolor L., sunflowers, wheat, and maize 
production, and the best results were received for two PGRs, Stimpo and 
Regoplant. While growing sunflowers, treatment with these PGRs increased 
the plant weight by 6.4% and the number of seeds in a head by 13.0%. In the 
case of maize production such treatment increased plant height by 11.5%, leaf 
surface area by 12.7%, and root length by 12.5%. 

The application of PGRs to plants that grow on contaminated land may pro
tect the photosynthetic apparatus from oxidative shock induced by contami
nants, increase root length, increase shoot growth, enhance the transpiration 
rate and yield (Israr et al., 2011; Liphadzi et al., 2006). The use of PGRs usually 
results in benefit with little risk of negative environmental effects, and PGRs may 
also boost plant immunity to pests and pathogens (Ponomarenko et al., 2013; 
Tsygankova et al., 2013b). Only a few publications exist on the impact of PGRs 
in M. × giganteus production, when a crop was grown on regular agricultural 
soil during one vegetation season (Zinchenko, 2013). Treatment of M. × giganteus 
before planting with three PGRs Regoplant, Emistin, and Agrostimylin pro
duced by AgroBiotech Company (Ukraine) increased the activity of photosyn
thesis and improved the survival rate. The treatment by PGRs stimulated plant 
development by increasing the number of stems and the overall crop height. The 
application of the same PGRs, Regoplant, Emistin, and Agrostimylin, increased 
the photosynthesis rate when M. × giganteus was cultivated in the soil contami
nated by radionuclides and gave an increase in the biomass at harvest of about 
18.8%–25.3% (Zinchenko et al., 2016; Zinchenko et al., 2009). 

5.7.1 Lab Research on Impact of PGRs on Phytoremediation 
with Biomass Production Using Soils from Military 
Sites Contaminated with Trace Elements 

The impact of two PGRs, Stimpo and Regoplant, was tested in pots, with four 
soils taken from two military sites of different origins (Dolyna, Ukraine and 
Mimon, Czech Republic, two from each area). Soils in both cases were slightly 
contaminated by heavy metals (Nebeská et al., 2019). PGRs were produced 
by AgroBiotech Company (Ukraine) and consisted of a balanced composi
tion of biologically active compounds, namely, analogues of phytohormones, 
amino acids, fatty acids, oligosaccharides, microelements, and bioprotective 
compounds. The treatment of rhizomes was done before planting and by 
spraying on the biomass during growth. The results obtained (Nebeská et al., 
2019) showed that the main factor driving the increase of biomass parameters 
was the agricultural characteristics of the soil: the better it was the greater 
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the effect of PGRs treatment was (case of Dolyna soil). Conversely, the effect 
was almost negligible in soils poor in nutrients and organic matter (case of 
Mimon soil). Between the two tested PGRs the effect of Regoplant was more 
obvious. The best results were obtained with combined treatment of applica-
tion to rhizomes before planting and spraying of biomass during the vegeta-
tion season (Nebeská et al., 2019).

The impact of PGR treatment on phytoremediation parameters was evalu-
ated as well. When M. × giganteus was growing in soil richer in nutrients 
the process of metals uptake was in accordance with the general trend for 
Miscanthus (Pidlisnyuk et al., 2014) and recognized as phytostabilization. That 
is, the majority of the metals accumulated in the roots. The bioaccumulation 
behavior of the monitored metals was different when a crop was grown in 
sandy soil with poor nutrient content. While the nonessential elements Cr and 
Pb were as expected dominantly accumulated in roots, Ni was not detected 
and biogenic elements (Mn, Cu, Zn) were more intensively taken up into shoots 
in comparison with roots. This was attributed to stress caused by deficient soil 
characteristics (Kabata-Pendias & Pendias, 2001; Nebeská et al., 2019).

5.7.2  Field Research on Impact of PGRs on Biomass 
Parameters of M. × giganteus during Field Production 
on the Marginal and Slightly Contaminated Lands

Two PGRs, Stimpo and Charkor, were evaluated in the field conditions and 
tested for production of Miscanthus on marginal agricultural land in the 
Central Ukraine (Pidlisnyuk & Stefanovska, 2018). The dose for the treatment 
was the same as in the Lab experiment (Nebeská et al., 2019). The results 
received after first year of plant’s growth showed about 20% increase of bio-
mass when rhizomes were treated by Stimpo, and about 28% increase when 
rhizomes were treated by Charkor (Table 5.1).

TABLE 5.1

Bioparameters of M. × giganteus When a Crop Was Produced on the Marginal 
Agricultural Land with Treatment of Rhizomes by PGRs 

Treatment
Structure of 
Harvest (%) Harvest, Dry Biomass/Plant (g) Increase (%)

Water (control) Leaves 21.0 6.5 -
Stems 79.0

Stimpo plantation Leaves 21.0 7.8 20
Stems 79.0

Charkor 1 plantation Leaves 26.0 8.3 28
Stems 74.0

Charkor 2 plantation Leaves 26.0 8.3 28

Stems 74.0

Source: Modified from Pidlisnyuk and Stefanovska (2018).
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In another experiment in Dolyna, Western Ukraine, the PGR Charkor 
showed the best results in comparison with Stimpo and Regoplant during 
multiple years of M. × giganteus production on the military soil slightly con
taminated with trace elements (Figures 5.9–5.11). Application of Charkor 
improved the overwinter survival rate, average plant height at harvest, and 
dry biomass productivity in comparison with control treatment by water or 
two other tested PGRs: Stimpo and Regoplant. 

FIGURE 5.9 
Winter survival rate of M. × giganteus plants, until spring of the indicated year. 

FIGURE 5.10 
Average plant height of M. × giganteus at harvest, cm. 

http:5.9�5.11
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FIGURE 5.11 
Dry biomass productivity of M. × giganteus, Mg ha−1

. 

PGRs can be recommended as substances which improve the biomass 
parameters of M. × giganteus when the crop is growing on marginal or 
slightly contaminated soils of military origin. The best results were received 
for Charkor which showed the biggest increase of biomass along with 
improvement of the survival rate compared to other tested PGRs, Stimpo and 
Regoplant. When PGRs were applied to soil depleted of nutrients the effect of 
these substances was very little. 
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6 
Balancing Soil Health and 
Biomass Production 

Larry E. Erickson and Kraig Roozeboom 

Abstract 

Soil is a living ecosystem with many different microorganisms (bacteria, 
fungi, and actinomycetes), microfauna (protists and nematodes), meso
fauna (arthropods, insects, mites, rotifera), and macrofauna (earthworms, 
termites, spiders, and isopods). Biodiversity is beneficial to soil health 
and improving biodiversity as part of a phytoremediation project is very 
desirable. Adding soil amendments such as compost or manure often 
improves soil health. Soil organic carbon is an important variable that 
provides carbon and energy for the organisms. At many sites with con
taminants soil organic carbon is low at the start of the project. Soil health 
affects human health because the concentrations of elements and com
pounds in harvested fruits and vegetables depend on concentrations in 
the soil. If zinc concentration is low in a garden soil, there may be zinc 
deficiency in humans because of low concentrations in food from that 
garden. This chapter reviews aspects of soil quality and soil health and 
addresses the importance of improving soil health as part of a phytrore
mediation project. 
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6.1 Introduction 

Soil health, the capacity of soil to function as a vital living ecosystem, 
impacts the productivity of soil and ultimately human health. Reversing 
soil degradation by rebuilding healthy soils is a central theme of the emerg
ing regenerative agriculture movement (Schreefel et al., 2020). Soils con
taminated by military or other activities may require additional attention 
to address contamination and improve soil health. For example, biological 
organisms in the soil may have been reduced in number because of the 
contamination. 

This chapter addresses the role of phytoremediation in improving soil 
health in the presence of contaminants. One goal at contaminated sites is to 
reduce risk of harmful exposure to contaminants, but a concurrent goal can 
be to improve the soil health sufficiently so the land can provide ecosystem 
services such as crop production. Soil health can be characterized based on 
physical, chemical, and biological properties. 

Soil health and soil quality have both been used commonly. Soil health 
often includes the state of a population of living organisms in soil, while 
soil quality often refers to the physical and chemical state of the soil. Soil 
health is recognized as a local, regional, and global concern (Karlen & Rice, 
2017). Education, research, and good practices are needed to improve soil 
quality. Government policies that are designed to improve soil health are 
beneficial. 

6.2 Properties of Soils 

The physical properties of soils include porosity, bulk density, water-holding 
capacity, texture, aggregation, infiltration, and penetration resistance. 
Chemical properties include concentrations of nutrients such as nitrogen, 
phosphorus, and potassium (N, P, and K), macronutrients such as calcium, 
micronutrients, such as zinc, organic carbon, pH, salinity, cation exchange 
capacity, and electrical conductivity (Brady & Weil, 2002). Biological proper
ties include numbers of microorganisms, earthworms, other fauna, and soil 
respiration (Whalen & Sampedro, 2010). 

Soil health is related to the measured values of soil properties, but contami
nation, availability of contaminants, and physical properties such as compac
tion affect soil health also. Actions to improve soil properties, such as adding 
amendments and building soil carbon, which is linked to both soil quality 
and soil health (Blanco-Canqui et al., 2015), can be beneficial to soil health 
and the phytoremediation process. 
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6.3 Soil Quality 

In the world today, soil quality is poor in many locations. Low concentra
tions of nutrients and organic carbon result in lower yields. Salinity is an 
issue in locations where irrigation water has contributed to an increase in salt 
concentration. In this book, the emphasis is on applications of phytoremedia
tion at contaminated sites. Many of these sites have physical issues because 
water-holding capacity is poor, porosity is low, and root penetration is diffi
cult because of compaction. Both soil contamination and degraded soil qual
ity must be addressed at many sites. 

Soil tilth, the physical state of the soil for growing plants, often needs to 
be improved at many sites where phytoremediation is used to address con
tamination. The conditions at the soil surface and the conditions up to 20cm 
below the surface are important for establishing vegetative cover. Good soil 
drainage and beneficial populations of bacteria, fungi, earthworms, nema
todes, and other organisms are desirable (Chauhan & Mittu, 2015). 

Assessment approaches of soil quality and indicators of soil health have 
been reviewed with respect to soil threats, ecosystem services, and functions 
(Bünemann et al., 2018). A total of 65 sets of indicators were reviewed; organic 
carbon, pH, available nitrogen, phosphorus and potassium, water storage, 
texture, and bulk density were included more than all other indicators. 
Biological indicators are important but are less commonly included in assess
ments because of the skills needed; however, including them can improve 
assessment results. The interpretation of assessment results requires experi
mental expertise or information on each test and its desired range of values. 
It is useful to be able to relate the ecosystem services to the values of the 
measured variables. 

The United Nations Sustainable Development Goals include goal 2, which 
is zero hunger, and goal 15, which is life on land (sustainably manage for
ests, combat desertification, halt and reverse land degradation, and halt bio
diversity loss). This goal 15 includes improving the health of ecosystems by 
addressing soil health to improve livelihoods. As population increases and 
quality of life improves, there is a great need to improve soil quality and the 
productivity of ecosystems that benefit from good soil health. As the effort to 
reduce greenhouse gas emissions advances and the transition to biodegrad
able products expands, land is needed for many purposes, and good soil 
health should become a priority for all countries. 

The Food and Agriculture Organization (FAO) estimates that about one-
third of soils that are used for agriculture have poor soil quality because of 
past use and management (FAO, 2011; Jian et al., 2020; Rodríguez-Eugenio 
et al., 2018). Low soil fertility, nutrient depletion, loss of soil from erosion, 
and low concentration of organic carbon are common reasons for poor soil 
quality. In a national survey in China, 16.1% of soil samples had measured 
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values of one or more substances such as lead that exceeded the standards 
that are recommended for safety (Palansooriya et al., 2020). 

Sustainable soil management for all soils is recognized as an important 
goal for society by FAO, and guidelines and principles have been devel
oped (FAO, 2015, 2017). The guidelines include as follows: (i) minimize 
soil erosion; (ii) enhance soil organic matter content; (iii) foster soil nutri
ent balance and cycles; (iv) minimize soil salinization and alkalinization; 
(v) minimize soil contamination; (vi) minimize soil acidification; (vii) pre
serve and enhance soil biodiversity; (viii) minimize soil sealing; (ix) prevent 
and mitigate soil compaction; (x) Improve soil water management. Soil bio
diversity and soil organic matter content are related because carbon, nutri
ents, and energy to support microorganisms and soil fauna are provided by 
the soil organic matter. 

The principles in the soil charter recognize soil as a key resource that 
provides ecosystem services for food security. Sustainable soil manage
ment is based on knowledge of the physical, chemical, and biological state 
of the soil, and education about soils is beneficial. Global biodiversity of soil 
organisms is an important resource that needs to be sustained (FAO, 2015). 

6.4 Soil Health Affects Human Health 

Soil health has an impact on human health. The state of physical, mental, and 
social well-being is important for good human health (Brevik et al., 2020). The 
goal to create social and physical environments that contribute positively to 
good human health for all includes high-quality soil health that functions as 
a vital living ecosystem for growing plants that are beneficial to animal and 
human health. One example of soil health impacting human health is hypo
thyroidism/multinodular goiter because of soil deficiency in iodine. Another 
example is metal concentrations in foods that exceed the acceptable limits 
based on food safety (Brevik et al., 2020). Brevik et al. (2020) contains exten
sive tables on (i) properties of soils that may affect human health, such as 
zinc deficiency; (ii) persistent organic pollutants identified by the Stockholm 
Convention, such as chlordane; and (iii) human pathogens found in soil, such 
as Salmonella. Metals in soils are a global problem because of soil contami
nation associated with military activities, mining, industrial operations, and 
irrigation of crops with wastewater. The metals find their way into foods and 
are ingested, and inhalation of dust with metals is of concern. Pesticides are 
a major concern in many locations because about 25 million people working 
in agriculture are affected by pesticides each year (Brevik et al., 2020). 

Phytoremediation is one of the better methods to improve soil health where 
pesticide-contaminated soil is found (Tarla et al., 2020). Micro- and macro-
organisms in soil affect plant growth and health. Arbuscular mycorrhizal 
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fungi have been found to enhance product yields and nutrient content. Plant 
growth promoting bacteria have been added to soil with beneficial results 
(Brevik et al., 2020; Pidlisnyuk et al., 2020). Endophytic bacteria and fungi 
produce enzymes that improve bioremediation of organic contaminants 
(Fagnano et al., 2020). Earthworms and nematodes are examples of macro-
organisms that enhance nutrient cycling and diversity in soils. Earthworms 
improve soil structure and tilth. They are also impacted by pollutants and 
their population size is a measure of soil health. 

6.5 Improving Soil Health Using Phytotechnology 

Phytotechnology with biomass production can have multiple goals includ
ing (i) addressing contamination; (ii) improving soil health; (iii) improving 
biomass production of a useful product; (iv) adding soil carbon to improve 
soil quality and sequester carbon in the soil. Soil amendments may be added 
at contaminated sites because they are beneficial for the phytoremediation; 
however, it is desirable in selecting amendments to consider all four of the 
above goals. Soil amendments can impact pH, microbial populations, nutri
ent concentrations of N, P, K, and organic carbon, porosity, texture, salinity, 
and trace element concentrations. 

A recent review by an international group of authors (Palansooriya et al., 
2020) addressed soil amendments for soils containing potentially toxic ele
ments. The authors present three valuable tables with information on a list 
of potentially toxic elements (As, Ba, Cd, Co, Cr, Hg, Ni, Mn, Mo, Pb, Sb, 
Se, V) including their chemistry in soils; organic soil amendments (animal 
waste, biochar, biosolids, compost, plant residues) that are beneficial in con
taminated soils; and inorganic soil amendments (clay minerals, coal fly ash, 
industrial waste, liming materials, metal oxides, and phosphates) that have 
been used. The review includes information on many projects where soil 
amendments have been applied to reduce the availability of toxic elements. 

Many organic soil amendments have beneficial value for soil health because 
the increase in soil organic matter improves soil structure, water-holding 
capacity, and nutrient availability. Biomass production is improved, micro
bial populations are larger, and the ecosystem functions better. The review 
includes a comprehensive discussion of research with biochar amendments 
in soils with toxic elements, including some information on 29 field studies 
reported by O’Connor et al. (2018). The yield with Miscanthus was increased 
using biochar in one of the studies. In general contaminant bioavailability 
was reduced by adding biochar, but the magnitude of the effect may decrease 
when pH decreases over time. Soil amendments have been reported to be 
cost-effective and beneficial to soil health and biomass production. When 
selecting amendments, it is important to evaluate their composition because 
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toxic substances, salts, and other contaminants may be present. When using 
organic amendments at a new site where vegetation is being established, 
there may be a need to add soil fauna to enhance biodiversity. 

In some applications of phytotechnology, there is a need to improve the bio
logical state of the soil in order to improve soil health. The well-developed soil 
ecosystem includes about four trophic levels of organisms. Archaea, bacteria, 
fungi, actinomycetes, and algae provide ecosystem services by degrading 
organic compounds and making nutrients more available to plants. These are 
very small microorganisms of the order of 1 μm. Microfauna include protists 
(protozoa) and small nematodes that consume bacteria and other microor
ganisms. The microfauna are frequently larger than 2 μm and often less than 
1mm. There are soil mesofauna such as arthropods (insects), mites (acari), 
larger nematodes, and rotifera that are often in the size range between 0.1 
and 5mm. Macrofauna are about 1–50mm in size and include earthworms, 
termites, spiders, and isopods (Whalen & Sampedro, 2010). Earthworms are 
very beneficial; they improve the texture of soil and nutrient cycling. 

Although not conducted on a contaminated site, research comparing 
perennial crops such as miscanthus (Miscanthus sacchariflorus) and switch-
grass (Panicum virgatum L.) with annual crops such as maize (Zea mays L.) and 
sorghum [Sorghum bicolor (L.) Moench] as potential cellulosic biofuel feed-
stocks illustrates the potential for achieving production and soil health goals 
simultaneously. Ethanol production potential of the perennial crops was less 
than that of the annual crops but still surpassed 3 m3ha−1year−1 averaged over 
10 years in the Central Great Plains of the US (Roozeboom et al., 2019). In 
that time, soil organic carbon increased in the 0–15 cm soil depth beneath 
perennial crops by 0.8–1.3 Mg C ha−1year−1 (McGowan et al., 2019). Greater 
soil organic carbon was associated with improvements in several parameters 
generally associated with greater soil health: root biomass, abundance of 
arbuscular mycorrhizae and saprophytic fungi, and soil aggregation, which 
is also associated with reduced soil loss. 

6.6 Conclusions 

Soil health and soil quality are very important because ecosystem services 
such as crop yields are greater when soil health is very good. In applications 
of phytoremediation with biomass production, it is beneficial to have multiple 
goals to reduce the effects of the contamination on soil health and to improve 
soil health and biomass productivity. Soil amendments that add organic car
bon and living organisms may help to improve soil health, plant growth, and 
nutrient cycling. Education is generally of significant value because of the 
complexity of soil ecosystems and the many properties of soils that affect soil 
health and ecosystem services. 
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7 
Plant–Microbe Associations 
in Phytoremediation 

Asil Nurzhanova, Aigerim Mamirova, Josef Trögl, 
Diana Nebeská, and Valentina Pidlisnyuk 

Abstract 

Microorganisms are important partners with plants in phytotechnology 
applications. Plant–microbe relationships in phytoremediation include 
those of rhizobacteria which colonize root surfaces and biodegrade 
organic contaminants and other organic matter; endophytic bacteria that 
colonize the inner surface of plant stems and biodegrade organic com
pounds; and plant growth-promoting bacteria (PGPB) that have benefi
cial effects for plants. Plants produce organic substrates for the microbial 
populations. Because of root exudates, there are healthy numbers of bac
teria near root surfaces that help with nutrient cycling and other ecosys
tem services. There is an emphasis on plant–microbe associations with 
Miscanthus; studies are conducted with and without PGPBs in soils con
taminated with metals. Effects of PGPBs on bioconcentration factor and 
translocation factor are reported for Miscanthus growing in metal-con
taminated soil. 
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Microorganisms play key roles in soil ecosystem functions and supply 
important services, especially organic matter mineralization, nutrient 
cycling, and contribution to formation of humic substances (Blagodatskaya 
& Kuzyakov, 2013). Microorganisms associate with all parts of plant and 
form various interactions (Arora, 2013), and the term holobiont is used 
to stress the ubiquity of plant–microbe interactions (Hassani et al., 2018). 
The plant–microbe cooperation can be classified by various criteria, and the 
crucial benchmark is the profit which plant gains from such interactions 
which usually are neutral or positive (with mutualistic or symbiotic micro
organisms); however, sometimes they could be negative (with parasitic or 
pathogenic microorganisms). 

The symbiotic microorganisms can be classified as endosymbionts (living 
inside plant) or exosymbionts (living on the surface of plant). Symbiosis is a 
both-side positive relationship; nevertheless it is always described as “give 
cheap and take expensive”, i.e., partners invest their surpluses and cover 
insufficiencies from the partner. Plants, as photoautotrophic organisms, 
mainly supply organic substances produced during photosynthesis. Indeed, 
microbial partners, often heterotrophic, consume them, provide to plants 
mineral nutrients (like fixed nitrogen or available phosphate), and protect 
against parasites or regulatory substances (Arora, 2013). 

The effectiveness of phytoremediation depends on soil contamination level 
and historical background of soil exploitation. It also depends on the presence 
and accessibility of contaminants in the rhizosphere, their bioavailability to 
plant’s root system, and the ability of plant–microbe association to intercept, 
absorb, accumulate, and/or degrade the contaminants (Vangronsveld 
et al., 2009). The plant–microbe associations are used to increase contam
inant bioavailability and mobility in different environmental matrices 
(soil, water, wetlands, etc.) (Alkorta et al., 2004; Chu & Chan, 2003; Epelde 
et al., 2008; Mukherjee & Zimmerman, 2013). Contaminants inhibit plant 
growth and development and thereby reduce the phytoremediation effec
tiveness (Thion et al., 2013). In order to overcome this reduction, the plant– 
microbe partnership is used (Mitter et al., 2016). For example, the use of the 
C65 strain allowed Populus euphratica to more efficiently extract zinc from 
the contaminated environment, facilitating growth inhibition caused by 
heavy metals (Zhu et al., 2015). 

7.1 Role of Plant–Microbe Association in Phytoremediation 

The numerous studies are focused on using microorganisms (rhizo- and 
endophytic bacteria) for increasing the efficiency of phytoremediation tech
nology and stimulating the plant development (Mitter et al., 2016). The main 
part of the research has been done in greenhouse conditions, while in situ 
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field experiments have been rare (Glick, 2010; Guo & Chi, 2014; Kidd et al., 
2017; Muratova et al., 2003a; Ren et al., 2019). 

Rhizobacteria colonize the roots’ surface while endophytic bacteria colo
nize the inner surface of stem without harming the plant, and both of the 
microorganisms are susceptible to biotic and abiotic factors. Another advan
tage of endophytes is that microorganisms are able to degrade the organic 
pollutants commonly widespread in endophytic populations. Endophytes 
can reduce the pollutants’ phytotoxicity and the evaporation of volatile 
organic compounds (Shehzadi et al., 2014). Since endophytes are present 
inside the plant, they can interact more closely with the host plant in compar
ison with rhizobacteria. Before entering to plant, endophytes have to settle 
in rhizosphere and to attach to root surface. Organic compounds, i.e., root 
exudates, act as signals for the chemotactic movement of bacteria. During 
the transition from the plant rhizosphere to the endosphere, colonizing bac
teria have to be able to quickly adapt to very different environment, i.e., pH, 
osmotic pressure, carbon source, and oxygen availability. They also have to 
overcome the plant’s protective response to invasion, that is, the reactive oxy
gen species production, which causes stress for invasive bacteria. The impor
tant advantage of applying the endophytic degraders in phytoremediation 
technology is that any toxic xenobiotic absorbed by the plant can decompose 
inside the plant, thereby reducing the phytotoxic effect and eliminating any 
toxic effects on the herbivorous fauna living in or near contaminated sites 
(Ryan et al., 2008). 

7.1.1 Endophytic Bacteria 

Endophytic bacteria were first used to clean soil contaminated with organo
chloride herbicide 2,4-dichlorophenoxyacetic acid (Germaine et al., 2006). 
They reduced the accumulation of organic compounds in plant tissues and 
transpiration value. The improved degradation of pollutants was correlated 
with increasing the quantity of bacteria which were able to decompose pollut
ants in the plants. Woody plants: poplar and willow have been used to clean 
soil contaminated with various organic chemicals (Newman & Reynolds, 
2005); inoculation of these plants with endophytic bacteria enhanced plant 
growth and degradation of various organic compounds. The partnership of 
different plant species and endophytes has been studied (Afzal et al., 2012; 
Germaine et al., 2006; Kang et al., 2012; Wang et al., 2010; Weyens et al., 2009; 
Yousaf et al., 2011), i.e., willow and Burkholderia sp. HU001, Pseudomonas sp. 
HU002 for Cd accumulation; poplar and Enterobacter sp. PDN3; multiflorum 
chaff (L. multiflorum var. Taurus) and Pseudomonas sp. ITRI53, Pseudomonas 
sp. MixRI75 with hydrocarbon degradation; multiflorum chaff (L. multiflo
rum var. Taurus), horned chaff (L. corniculatus var. Leo), alfalfa (M. sativa var. 
Harpe) and Enterobacter ludwigii with hydrocarbon degradation; poplar and 
Pseudomonas putida W619-TCE; lupine yellow and Bacillus cepacia VM1468; 
corn and wheat and Burkholderia cepacia FX2; peas (Pisum sativum) and 
Pseudomonas putida; wheat (Triticum sp.) and corn (Z. mays) and Enterobacter sp. 
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12J1; peas (Pisum sativum) and Pseudomonas putida VM1450 with the destruc
tion of 2,4-dichlorophenoxyacetic acid. The potential of endophytic bacte
ria to enhance phytoremediation of soil contaminated with diesel fuel was 
compared with the potential of rhizobacteria (Afzal et al., 2012; Andria et al., 
2009). Endophytes showed higher levels of colonization, especially in roots 
and shoots, and higher levels of expression of alkane-cleaving genes (alkB 
and CYP153) than the rhizobacterial strain. Inoculated endophytes colonize 
both the rhizosphere and the endosphere but are also metabolically active 
with respect to the decomposition of organic pollutants in soil and in plant 
itself (Afzal et al., 2014). 

7.1.2 Rhizobacteria 

The significant role of rhizobacteria in plant life is illustrated (Adesemoye & 
Kloepper, 2009; Afzal et al., 2014; Hayat et al., 2010; Mitter et al., 2016; Ortíz-
Castro et al., 2009; Simpson et al., 2011). Active secretion by root cells of vari
ous substances, such as sugars, polysaccharides, amino acids, tricarboxylic 
acids, oxalic, malic, succinic and citric acids, fatty acids, sterols, phenols, 
enzymes and proteins, provides nutrients to microorganisms: inside root tis
sues and to root surfaces (rhizoplane) as well as to rhizosphere in close sur
roundings of roots (Döbereiner, 1989; Fan et al., 2018; Mitter et al., 2016). Plant 
exudates contribute to xenobiotic degradation through the following actions 
(Anderson & Coats, 1995): 

•	 selective increasing in microorganisms destructors; 
• increasing metabolism associated with growth; 
• induction of joint metabolism with some microorganisms that have 

genes and plasmids responsible for degradation of pollutants. 

Microorganisms secrete phytohormones, small molecules, or volatile com
pounds that can act directly or indirectly activate plant immunity or regulate 
plant growth and morphogenesis (Bhattacharyya & Jha, 2012; Glick, 2003; 
Ortíz-Castro et al., 2009). Indirect stimulation of plant growth is caused by 
reduction or preventing the harmful influence of phytotoxic compounds. It 
may include reducing iron prepared for phytopathogens in the rhizosphere; 
synthesis of enzymes that lyse fungal cell walls; competition with harmful 
microorganisms for their location on plant roots surface. Direct stimulation 
of plant growth by bacteria is caused by following factors (Dimkpa et al., 
2008; Glick, 2003; Loper & Henkels, 1999; Rodríguez et al., 2006): 

• providing plants with substances that are synthesized by bacteria 
(e.g., microbial nitrogen fixation); 

•	 synthesis of siderophores, which can dissolve and accumulate iron 
from soil and supply it to plant cells; 
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• production of various phytohormones, including auxins (e.g., indole
3-acetic acid, cytokinins, and gibberellins) that affect growth; 

• dissolution of minerals such as phosphorus which become readily 
available to plant; 

• production of compounds which can influence growth and develop
ment, for example, 1-aminocyclopropane-1-carboxylic acid. 

In the presence of pathogenic microorganisms, rhizosphere bacteria can syn
thesize various biocontrol agents (antibiotics, enzymes, siderophores, etc.) 
that suppress the growth of unwanted microbiota (Loper & Henkels, 1999; 
Mitter et al., 2016). Being developed on roots, the rhizosphere microbiomes 
affect plants by converting complex organic substances into accessible forms 
which stimulate growth and affect the morphology and physiology of plants; 
production of other specific metabolites, for example, ethylene, which causes 
early flowering (Glick, 2006). 

Plant growth-promoting rhizobacteria (PGPR) are useful free-living rhizo
sphere bacteria that stimulate the plant’s growth and are in association with 
them; they are found inside and around plant roots (Kloepper & Schroth, 
1981; Belimov et al., 2005, 2009). These microorganisms are involved in com
plex ecological interactions in the rhizosphere, where they can influence 
plant health, growth, and stress response under unfavorable conditions, 
since some of them have a high destructive potential for pollutants (Glick, 
2003; Hayat et al., 2010; Mitter et al., 2016). 

PGPR have been widely used for improving crop development as biologi
cally friendly fertilizers (Adesemoye & Kloepper, 2009; Ortíz-Castro et al., 
2009; Simpson et al., 2011; Singh et al., 2011). Later the area of PGPRs applica
tion expanded, and they are considered for use in soil bioremediation, since 
many rhizosphere bacteria belonging to the PGPR group are resistant to pol
lutants (Costa et al., 2014). PGPRs are involved in processes of metal migration 
and have converted them to biologically available and soluble forms through 
effects of siderophores, organic acids, biosurfactants, biomethylation, and 
redox processes as part of the designed plant–microbial complexes (Ali et al., 
2013; Belimov et al., 2005; Oh et al., 2015; Zhu et al., 2015). Effectiveness of 
phytoremediation depends on the activity of plant microbiome (Afzal et al., 
2014; Weyens et al., 2009). 

Campanella and Paul (2000) suggested that the root system of Cucurbita pepo 
secretes exudates of protein origin, which play an important role in the bio
degradation of organochlorine compounds. Microbial degradation of pesti
cides mediated by enzyme systems is a promising approach for destruction 
of these toxic substances (Pascal-Lorber & Laurent, 2011) and assisted in the 
degradation of 4,4′-dichlorodiphenyl trichloroethane. Due to root exudates, 
the plant ensures the stable functioning of microorganisms, and they, in 
turn, contribute to the growth and development of the plant (Doornbos et al., 
2012). Synergistic effects caused by interaction of plants and microorganisms 
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stimulated the phytoremediation of soil contaminated by trace elements and 
organics: oil, polyaromatic hydrocarbons, polychlorinated biphenyls, organo
chlorine, nitroaromatic, and organophosphate compounds (Guo & Chi, 2014; 
Kidd et al., 2017; Muratova et al., 2003b). Through the inoculation of Populus 
euphratica by PGPR strain Phyllobacterium sp. C65, which produced auxin, 
assisted Populus euphratica to extract Zn more efficiently (Zhu et al., 2015). 

7.2 Impact of PGPB Isolated from Contaminated 
Soil to Phytoremediation with Miscanthus 

In order to increase the biomass harvest of Miscanthus while growing in con
taminated soils (Ben Fradj et al., 2020; Nsanganwimana et al., 2014; Pacheco-
Torgal & Jalali, 2011), two main approaches can be used: 

•	 soil treatment by different amendments such as fertilizers, sludge, 
biosolids, citric acid, Ethylenediamine tetraacedic acid (EDTA), and 
fungi (Antonkiewicz et al., 2019; Damodaran et al., 2013; Han et al., 
2018; Hu et al., 2018; Alasmary, 2020); 

• plant rhizome treatment by co-composting, plant growth regulators, 
and microorganisms (Khan et al., 2017; Leech et al., 2020; Nebeská 
et al., 2019). 

The effectiveness of PGPB in the phytoremediation of metal contaminated 
soils can be explained by their ability to facilitate the adaptation of host plants 
to suboptimal soil conditions during stress state; promote plant growth; vary 
the bioavailability; relieve phytotoxicity in soil by producing amino acids, 
proteins, and antibiotics; and increase contaminant translocation within the 
plant (Oves et al., 2013). Also, PGPB can reduce the metals harmful effect by 
reduction, oxidation, methylation or de-methylation, compartmentalization, 
and conversion to a less toxic state (Hassan et al., 2017). Zeng et al. (2020) 
investigated the positive role of extracellular polymeric substances produced 
by Bacillus sp. S3 to detoxify different metals. Ndeddy Aka and Babalola (2016) 
showed that inoculation of soil by PGPB: Pseudomonas aeruginosa KP717554, 
Alcaligenes faecalis KP717561, and Bacillus subtilis KP717559 increased the 
amount of soluble Ni, Cd, and Cr in the soil by 51%, 50%, and 44%, respec
tively. Ma et al. (2015) researched the phytostabilization potential of PGPB in 
relation to metal contaminated soils: inoculation by Pseudomonas sp. A3R3 
improved plant biomass production while Psychrobacter sp. SRS8 inocula
tion increased the accumulation of metals by plants. PGPB and Miscanthus sp. 
association in the metal contaminated soil was researched by Babu et al. 
(2015) and Schmidt et al. (2018). An endophytic PGPB Pseudomonas koreensis 
was explored for enhancing the production of Miscanthus sinensis growing in 
soil contaminated by As, Cd, Cu, Pb, and Zn (Babu et al., 2015). 
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Bacillus altitudinis KP-14 (B. altitudinis KP-14) is a plant growth-promoting 
bacterium isolated from postmining metal contaminated soil (Pranaw et al., 
2020). The microbiological profile of B. altitudinis KP-14 is shown in Figure 7.1. 
The inoculation of M. × giganteus rhizomes by this PGPB led to increasing of 
plant morphological parameters: aboveground (leaves and stems) and roots 
biomass increased by 23%, 86%, and 76%, respectively. In addition, artificially 
contaminated by Pb soil the increase in the root dry weight was detected. 

The analysis of metal behavior in artificially contaminated by Pb soil is 
presented in Table 7.1. Increasing of Pb concentration in soil led to decreas
ing in Zn and Cu accumulation in roots. The inoculation of M. × giganteus 
rhizomes resulted in increasing uptake of metals from the research soil: Mn 
(by 103%) > Zn (by 65%) > Sr, Pb (by 50%) > Cu (by 40%). These results can 
be explained by the ability of PGPB to mitigate metals tolerance (Babu et al., 
2015; Schmidt et al., 2018). The metals tolerance mitigation process can be 
reached by their transformation into bioavailable and soluble form, organic 
acids, and siderophore production, diminishing phytotoxicity and altering 
the phytoavailability in contaminated soils (Ma et al., 2016). 

The inoculation of M. × giganteus rhizomes by the PGPB B. altitudinis 
strain KP-14 significantly enhanced plants’ bioparameters and influenced 
the phytoremediation parameters: increased bioconcentration factor (BCF) 
and decreased translocation factor (TLF) while it was grown on the metal-
contaminated soil. The increasing of BCF values can be explained by the 
rising of metals mobility; nevertheless, the phytoremediation process that 

FIGURE 7.1 
The tolerance profile and plant growth-promoting properties of Bacillus altitudinis strain KP-14. 
(Modified from Pidlisnyuk et al., 2020.) 
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TABLE 7.1 

Trace Element Behavior in M. × giganteus Tissues during Growth in Artificially 
Contaminated by Pb Soil 

Trace 
Element Without B. altitudinis KP-14 With B. altitudinis KP-14 

Pb Mainly accumulated in roots. 

Zn Mainly accumulated in roots; 
the share accumulated in 
aboveground biomass increased 
from 13% to 20%. 

Cu Mainly accumulated in roots; 
Accumulation in stems increased 
with increasing Pb concentrations 
in soil. 

Mn Mainly accumulated in the 
aboveground biomass; 

the share in aboveground biomass 
(leaves in stems) was varied from 
66% to 86%. 

Sr It evenly distributed throughout the 
plant; 

highest accumulation was in stems; 
the share in aboveground biomass 
varied from 50% to 69%. 

Mainly accumulated in roots; 
translocation to aboveground biomass 
decreased. 

The share accumulated in aboveground 
biomass increased from 16% to 22%; 

the share accumulated in roots decreased by 
25.4% while the lead content in roots 
increased. 

The share accumulated in stems remained 
almost the same (2%, 8%, and 4%) with 
increasing Pb concentration in soil. 

accumulation in roots increased by 58%–295%. 
total uptake increased as well (by 60%–238%). 
The total uptake increased, with increasing Pb 
concentration in soil, the effect decreased 
from 62% to 26%; 

accumulation in aboveground biomass 
decreased from 64% to 52%. 

It evenly distributed throughout the plant; 
highest accumulation was in the roots; 
accumulation in aboveground biomass 
(leaves and stems) reduced from 46% to 27%. 

Source: Modified from Pidlisnyuk et al. (2020). 

occurred could still be characterized as phytostabilization. The M. × gigan
teus root biomass increased with increasing Pb concentrations to tackle the 
Pb toxicity in the soil. With regard to the places of accumulation, the metals 
were divided into three groups: Pb, Zn, and Cu were predominantly accu
mulated in the roots; the Sr distribution was almost equal within the whole 
plant; and Mn predominantly accumulated in the leaves and stems. 

7.3 Influence of Rhizobacteria Isolated from 
Miscanthus Rhizosphere to Phytoremediation 
of Trace Elements Contaminated Soil 

The rhizosphere plays a significant role in phytoremediation of soil contami
nated with trace elements (Jing et al., 2007). PGPRs are of interest among 
rhizosphere microorganisms (Shrivastava, 2017), because they facilitate the 
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adaptation of host plants to suboptimal soil conditions during stressful con-
ditions and increase the efficiency of phytoremediation (Hassan et al., 2017; 
Oves et al., 2013).

The PGPR strain Agrobacterium sp. Zn1-18 was used as an inoculant to 
increase the efficiency of phytoremediation of trace elements contaminated 
soil using M. × giganteus plants. The strain was isolated during the germina-
tion period from the rhizosphere of M. × giganteus when crop was cultivated 
in trace elements contaminated postindustrial soil (Table 7.2). Isolated strain 
showed PGPR properties: the ability to fix atmospheric nitrogen, to dissolve 
hard-to-reach phosphates, to synthesize siderophores, to produce phytohor-
mone indolacetic acid (IAA), and ability to grow in medium that contains Zn 
ions up to 4.0 mmol L−1 and Pb ions up to 2.5 mmol L−1.

Agrobacterium sp. Zn1-18 showed a significant effect on the bioparameters 
of M. × giganteus plants: the aboveground biomass of treated crop increased 
by 50%; the biomass of roots decreased by 77.3% on comparison with control 
untreated crop. Upon inoculation of M. × giganteus rhizome the roots’ dry 
weight decreased by 34.8% while the dry weight of the aboveground biomass, 
on the contrary, increased by 7.1%. When comparing M. × giganteus grown 
on control and contaminated soils in the presence of PGPR, results revealed 
that the Agrobacterium sp. Zn1-18 increased the productivity of aboveground 
 biomass by 7.1% while reduced the root dry weight. Thus, Agrobacterium sp. 
Zn1-18 promoted the growth and development of M. × giganteus on trace 
 elements contaminated post-industrial soils.

TABLE 7.2 

The Trace Element Concentrations in the Research Soils

Trace Element MPC (mg kg−1)

The Total Trace Element Concentration in 
Soil (mg kg−1)

Control Soil Contaminated Soil

V 150 50.5 ± 3.5 60.0 ± 12.0
Cr 6 35.0 ± 2.8 44.0 ± 7.1
Mn 1500 690.0 ± 56.5 810.0 ± 42.4
Fe n/a 19,600 ± 424 21,450 ± 2,757
Co 5 14.5 ± 0.7 18.0 ± 1.4
Ni 4 32.0 ± 5.6 39.2 ± 2.8
Cu 3 31.0 ± 2.8 31.5 ± 7.7
Zn 55 101.0 ± 12.7 180.0 ± 14.1
As 2 11.5 ± 0.7 22.5 ± 4.9
Sr 7 66.0 ± 1.4 81.3 ± 0.8
Ba 0.1 125.0 ± 21.2 210.1 ± 28.2
Pb 32 20.0 ± 21.2 230.0 ± 44.2
U n/a 0.8 ± 0.1 1.3 ± 0.2

Depth of soil sampling: 0–60 cm.
MPC, maximum permissible concentration.
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The analysis of the abovementioned trace elements content in the roots and 
aboveground biomass of M. × giganteus, when growing on contaminated and 
control soil with and without inoculation of Agrobacterium sp. Zn1-18, showed 
changes in the phytoremediation process (Figure 7.2). When crop grew in 
contaminated soil without inoculation of As, Pb, Co, Cr, Cu, V, and U accu
mulated mainly in the roots; Zn, Mn, and Sr—in the aboveground biomass; 
Ba and Ni accumulated uniformly in roots and aboveground biomass. When 
rhizomes were inoculated, phytoremediation potential of M. × giganteus 
changed: content of Zn, Mn, As, Pb, Co, Cr, V, U, and Sr increased in roots, 
Ni accumulated in all plant parts, Cu accumulated mainly in the aboveg
round biomass, and for this trace elements accumulation increased by 41% 
compared to uninoculated system. 

The calculated bioaccumulation factor and TLF coefficients (Nurzhanova 
et al., 2019) showed that inoculation of M. × giganteus rhizomes with strain 
Agrobacterium sp. Zn1-18 increased the crop potential to extract As, Mn, 
Ba, Cu, Cr, Zn, and Sr from soil to aboveground biomass. The TLF values 
for Mn, Sr, Ba, Zn were ≥ 1, while for As, Cu, Pb, Co, Ni, V, Cr it was < 1 
(Figure 7.2). 

Overall using strain Agrobacterium sp. Zn1-18 reduced the total content of 
trace elements in plant tissues which may be due to decreasing of root dry 
weight which decreased adsorption surface and changed phytoremediation 
parameters. 

FIGURE 7.2 
Influence of PGPB on the migration of elements from the M. × giganteus root system to the 
aboveground biomass. 
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7.4  Changing of Soil Microbial Communities during 
Miscanthus Production at the Contaminated Military Land

The soil from the former military site (Sliač, Slovakia) contaminated by 
 different trace elements was under investigation. M. × giganteus showed 
good growth in this soil during two vegetation seasons (Pidlisnyuk et al., 
2018). The changes in soil microbial community, physiological state of soil 
microorganisms, and metabolic activities were investigated; rhizosphere and 
bulk soils were distinguished from each other (Nebeská et al., 2018).

During two-years growing period, the most significant changes could 
be attributed to time: comparison of first growing season vs. second grow-
ing season (Table 7.3). The indicators showed slight positive  influence of 
M. × giganteus to soil and microbial community, which was documented 
by increased soil respiration, proportion of the fungal biomass, and 
decreased microbial stress indicators (trans/cis PLFA and cy/pre PLFA). 

TABLE 7.3

Summary of the Changes of Soil Nutrients, Microbial Community Characteristics 
and Metabolic Activities during 2-Years Vegetation of M. × giganteus in Sliač Soil

Parameter
First Growing Season vs. 
Second Growing Season Rhizosphere × Bulk Soil

Available P [mg kg−1 dwt] 0.27 1.02
Available K [mg kg−1 dwt] 1.90 0.00
Available Ca [mg kg−1 dwt] 0.03 0.32
Available Mg [mg kg−1 dwt] 1.72 2.82
S [%] 9.75↓ *** 2.15
Ntot [%] 5.78↓ ** 0.67
TOC [%] 0.14 0.08
Phosphatases [U g−1 dwt] 55.71↓ *** 2.52
Arylsulfatases [U g−1 dwt] 2.54 0.48
Proteases [U g−1 dwt] 12.42↑ *** 0.01
Oxidases [U g−1 dwt] 18.55↓ *** 0.51
Peroxidases [U g−1 dwt] 117.98↑ *** 0.16
Respiration [U g−1 dwt] 8.03↑ *** 0.94
PLFAG+ [mg kg−1 dwt] 13.82↑ *** 0.00
PLFAG− [mg kg−1 dwt] 6.27↓ ** 0.29
PLFAAc [mg kg−1 dwt] 176.94↓ *** 0.58
PLFAFungi [mg kg−1 dwt] 27.64↑ *** 0.98
trans/cis 2.92↓ * 3.27↑ *
cy/pre 82.77↓ *** 7.61↑ ***

Source: Modified from Nebeská et al. (2018).
Comparison was carried out by MANOVA: F-ratio statistic and its p-value; * p < 0.1, ** p < 0.05, 
*** p < 0.01; ↑ indicates a significant increase or ↓ a significant decrease.
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The only negative change was decreasing the concentration of  nutrients: 
S and Ntot, likely due to consumption by M. × giganteus and storage in 
rhizomes; other indicators did not change significantly, in particular, 
 activities of extracellular enzymes.

The positive effect of M. × giganteus on soil microorganisms can be registered 
by decreasing of stress indicators in rhizosphere soil in comparison to bulk soil.
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8 
Plant Feeding Insects and Nematodes 
Associated with Miscanthus 

Tatyana Stefanovska, Valentina Pidlisnyuk, and Andrzej Skwiercz 

Abstract 

Plant feeding insects and nematodes have the potential to impact 
Miscanthus growth and product yield. The biological ecosystems asso
ciated with Miscanthus include many organisms that are beneficial to 
Miscanthus; however, a number of pests have been identified and stud
ied. Some plant feeding pests have importance for both Miscanthus and 
some food and feed crops. It is important to consider pest migration 
from one crop to another when fields are nearby. Miscanthus mealybugs, 
aphids, May beetles, nematodes, armyworms, and rootworms have been 
found in fields of Miscanthus. Norovirus and Tobrivirus have nematode 
vectors that may transmit these viruses. This chapter provides informa
tion on important plant feedings insects, nematodes, and other pests that 
have been found with Miscanthus and have been studied and reported 
in published literature. 
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8.1 Introduction 

Bioenergy systems aimed at replacing fossil fuels with bio-based resources 
contribute significantly to the shift in agricultural and marginal land use 
(Warner et al., 2013). The creation and/or conversion of land occupied by 
bioenergy systems can result in the loss of areas, currently providing addi
tional ecosystem services (Cook, 1991; Stefanovska et al., 2015; Reid et al., 
2020), including the loss of diversity of flora and fauna (Elshout et al., 2019). 
By reducing plant varieties in bioenergy crop plantations, insect and nema
tode species/functional diversity, community structure will be affected by 
modifying the associates’ food webs (Landis & Werling, 2010). Bioenergy 
crops and adjacent to them food/feed crops can be affected by this reduction 
(Thomson & Hoffmann, 2011). Biofuel crops’ changing may also influence 
the temporal and spatial distribution, and efficacy of beneficial organisms 
involving in pest control that would reduce or decrease the efficacy of bio
control (Werling et al., 2011). 

Miscanthus spp. produces high yield with low input (Gołąb-Bogacz et al., 
2020) on agricultural as well as marginal, deteriorated, and contaminated 
land (Gruss et al., 2019) and determines the great socio-economic potential 
(Ben Fradj et al., 2020). M. × giganteus is a habitat for many insects and nem
atodes, which can hold beneficial and plant-feeding status (Winkler et al., 
2020). This chapter will be focused on plant feeding insects and nematodes 
that were reported on Miscanthus plantations in Europe and USA during 
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different stages of crop development with explanation of their potential to 
reduce the crop yield. 

8.2 Plant Feeding Insects with Piercing-Sucking Mouth Parts 

8.2.1 Miscanthus Mealybug 

M. × giganteus parenteral plants M. sacchariflorus and M. sinensis are suscep
tible to several pests in native countries (Stefanovska et al., 2017a). Mealybug 
Miscanthiococcus miscanthi Takahashi (Hemiptera: Pseudococcidae) is a 
subtropical species (most often distributed within the boundaries of 23.24°– 
30.16° Northern Latitude); however, it can be spread to higher latitudes: 
44.10°. Several studies show that in Southeastern states of the US, Miscanthus 
mealybugs are becoming a significant problem (Wheeler, 2013). 

8.2.1.1 Identification 

The body of mealybug adult females is wingless, soft, and oval, approxi
mately 3mm long. They are covered by white wax. Male mealybugs are up to 
2 mm long with four eyes, two wings, and long tails. Newly hatched nymphs 
(crawlers) are flat, oval, and yellow, and generally do not have a waxy coating. 
Older nymphs are covered with fluffy, white wax. 

8.2.1.2 Life Cycle 

Adult females and crawlers overwinter and commonly emerge by May. Adult 
females of most mealybugs lay 100–200 or more eggs in cottony egg sacs that 
are attached to crowns, leaves, or twigs. It takes about a month for crawlers to 
mature. Spreading of Miscanthus mealybugs generally happens via propa
gating infested plants or blowing of crawlers into nearby plants. This pest 
has three generations per year. 

8.2.1.3 Damage 

The species suck sap from plant phloem, causing yellowing and twisting of 
leaves, stunted and slowing down of plant growth. Insects also can dam
age plants by excreting the sticky honeydew which may be a substance for 
black sooty mold fungus growth. The good signs of a possible infestation of 
Miscanthus mealybug are purple spots on infested stems. 

Because M. × giganteus is capable to form a strong root system and big 
vegetative mass, a thick layer of dead organic litter can serve as niche for 
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warm climate mealybug M. miscanthi, and for various indigenous coccid spe
cies feeding on cereals (Kosztarab & Kozár, 2012). Moving to the root system 
under the cover of organic litter Miscanthus mealybug is capable to survive 
at air temperature which is much lower than in its natural habitat conditions 
(Stefanovska et al., 2017a). 

8.2.2 Aphids 

Twenty-one aphids are known to use Miscanthus (mostly M. sinensis) as a 
host; therefore, there is a potential for aphid damage of the crop. Results of 
field study carried out by Semere and Slater (2007) demonstrated domination 
of family Aphidiidae among Homoptera. There still is a gap in information about 
broad Aphid biodiversity at Miscanthus. The extensive field surveys carried 
out in USA (Bradshaw et al., 2010) and laboratory studies (Pallipparambil 
et al., 2014) indicated that among the insects reported in Miscanthus, the 
yellow sugarcane aphid, Sipha flava Forbes, is a potential pest of M. × gigan
teus. Sipha flava (Homoptera: Aphididae) is native to North America (Hentz 
& Nuessly, 2002) and has been recorded on approximately 60 plant species, 
including Cyperaceae, Poaceae, and Commelinaceae (Kindler & Dalrymple, 1999). 

8.2.2.1 Identification 

Wingless yellow sugarcane aphids and nymphs are 1.3–2 mm in length bright 
yellow or green at the low temperature, and the insect body is tightly covered 
by hairs. Rows of spots are present down the top and along lateral margins 
of the abdomen. The spots’ size and tailpipes are reduced compared to other 
aphid species. 

8.2.2.2 Life Cycle 

The species reproduce by parthenogenesis during the year in warmer cli
mates, but sexual forms occur in regions with cold winters and it can over
winter in eggs. Development to adulthood takes 8–15days and is highly 
dependent on temperature and host plants. This pest has many generations. 

8.2.2.3 Damage 

The yellow sugarcane aphid causes damage to sorghum, sugarcane, and 
several species of lawn pasture grass (Kindler & Dalrymple, 1999). Feeding 
initially results in leaves turning to yellow or red, depending on the host 
plant and temperature. Prolonged feeding can lead to premature senescence 
of leaves and plant or stalk death. Colonies or groups of sugarcane aphids are 
located around the midrib of the bottom side. Additionally, sugarcane aphids 
are prolific producers of honeydew which supports growth of sooty mold 
fungi. Yield reductions commonly occur due to feeding damage to early 
plant growth stages (Hentz & Nuessly, 2004), resulting in chlorosis and death 
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of three pairs of leaves. Besides direct damage, yellow sugarcane aphid also 
transmits sugarcane mosaic potyvirus (Blackman & Eastop, 2000). 

The S. flava was first recorded on M. × giganteus in 2008 in leaf damage 
collected from seven locations of Indiana, Illinois, Nebraska, Kentucky, and 
Iowa (Bradshaw et al., 2010). Aphids were found on young to old plantings 
(1–21year) in large populations. Aphids feeding leads to leaf death. The 
symptoms of M. × giganteus infestations, specifically yellowing and redding 
of leaves, were very similar to sugarcane (Nuessly & Hentz, 2002) and sor
ghum (Costa-Arbulú et al., 2001). The S. flava damage has economic impor
tance as a key factor of M. × giganteus plantation establishment during the 
first year of vegetation. 

Corn leaf aphid Rhopalosiphum maidis L. (Homoptera: Aphidiidae) is native 
to Asia, although they have spread almost worldwide. It occurs sporadically 
in cool temperature climate (Blackman & Eastop, 2000). In several countries it 
is considered as an economically important pest of Poaceae (Gramineae) mono-
cot crops, namely, wheat, barley, sorghum, and M. sinensis (Carena & Glogoza, 
2004; Huggett et al., 1999). This damage potential is especially concerning 
because most plant viruses are transmitted by aphids (Hull, 2002) and R. maidis 
can transmit the RPV strain (cereal yellow dwarf virus) of barley yellow dwarf 
luteovirus (BYDV) to M. × giganteus (Huggett et al., 1999; Jarošová et al., 2013). 

8.2.2.4 Identification 

The wingless corn leaf aphid is oval, about 2 mm, blue-green in color with 
black antennae, legs, and tailpipes. The body and legs are black. The nymphs 
are similar to adults with smaller size and underdeveloped antennae and 
tailpipes. The winged form of the aphid is about the same size as the wing
less ones, with dark green to black body and black tailpipes. 

8.2.2.5 Life Cycle 

The species reproduce via parthenogenesis. It overwinters in both eggs and 
females (in warmer climates) on cereal grasses. The optimum temperature 
for development is around 30°C. Corn leaf aphids live in large colonies on 
their host plants. 

8.2.2.6 Damage 

The corn leaf aphids feed by removing plant sap from the phloem. The typi
cal signs of feeding while insect in high population are leaf mottling and/ 
or discoloration and reddening. The plant vulnerability to insect damage 
increases under drought stress. The aphids also produce honeydew, which 
covers the leaf surface. Mold fungi colonize the honeydew producing a black 
layer of fungal colonies on corn leaf surface causing the reduction of the pho
tosynthetic leaf activity. 
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Natural R. maidis infestation of M. × giganteus was found in Indiana, Illinois, 
Nebraska, Kentucky, and Iowa (USA) in 2008 survey. Species was observed 
on the young M. × giganteus whorls in first-year plantings (Bradshaw et al., 
2010). The infestation of young tillers resulted in yellowing of upper leaves 
and occurred later compared to S. flava. 

Other aphids that specialize on Poaceae family that may infest Miscanthus 
in countries with temperate climates and vector of pathogens are bird-cherry 
oat aphid Rhopalosiphum padi L., wheat aphid Schizaphis graminum Rondani, 
and oat aphid Sitobion avenae Fabricius. Results of 2-years’ field surveys 
conducted in 2010–2011 in three regions: Zhytomyr, Vinnitsa, and Kyiv in 
Ukraine (Stefanovska et al., 2017b) found that species with piercing-sucking 
moth part, namely, aphids and trips were most frequently observed among 
50 herbivorous species which were recorded (Figure 8.1). 

Bird-cherry oat aphid was recorded as a more frequently observed pest 
among Aphidiidae family on 1–5-year-old plantations in all three locations in 
this study with low population, attacking plants of first year stands, causing 
yellowing of leaves. 

While carrying out the survey of M. × giganteus in Lower Silesia (Poland), 
Hurej and Twardowski (2009) recorded R. padi, which was the dominant spe
cies among other aphids. The population was low, however, aphid attacked 
young plants of first year vegetation. 

The field study of M. × saсhariphlorus herbivores in Northern France 
(Coulette et al., 2013) showed that population density of bird-cherry aphid 
R. padi which is generalist was the lowest among polyphagous species, 
i.e., green peach aphid Myzus percicae Sulzer and bean aphid Aphis fabae Scop. 
Results of laboratory experiment indicated that Miscanthus is not suitable for 
these three aphids and even it has the potential to act as a barrier to restrict 
spreading of phytoviruses (Coulette et al., 2013). 

FIGURE 8.1 
Frequency of occurrence of herbivorous individuals by families at the investigated locations in 
2010–2011 growing seasons: А − Zhytomyr, B − Vinnitsa, C − Kyiv (1), D – Kyiv (2). (Modified 
from Stefanovska et al., 2017b.) 
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8.3 Plant Feeding Insects with Chewing Mouth Parts 

8.3.1 Generalist Coleoptera 

May beetle (Melolontha melolontha L.) and June beetle (Amphimallon solstitialis 
L.) (Coleoptera: Scarabaeidae) are the most destructive pests of turf grasses 
and cause economic threat as polyphagous pest of many fields, horticul
ture and orchard crops, including Poaceae (Gramineae) monocot crops which 
Miscanthus plants belong to. 

8.3.1.1 Identification 

Adults of May beetle are stocky insects that vary in color: shade of brown 
and tan to dark chocolate with length of 22–30 mm. The larvae (grubs) – fat, 
C-shaped whitish yellow grubs with brown heads in length of 40–45mm in 
final instar. 

8.3.1.2 Life Cycle 

May beetles develop for 3–5 years. It hibernates in the stage of grubs and 
adults. Grubs live in the soil feeding on plant roots for several years. For 
pupating they move deeper in the soil, later emerging from the ground as 
adults in the spring. 

8.3.1.3 Damage 

Adult beetles eat up leaves and flowers, preferring trees. Grubs feed on dead 
organic matter and plant roots, resulting in visible water stress and ulti
mately ending in the death of the plant. The larval stages of these beetles are 
more harmful to crops. 

M. melolontha was the dominant species observed (Stefanovska et al., 2017b) 
in two out of three regions in a field survey of M. × giganteus growing in 
Ukraine (Figure 8.2). The reduction of M. × giganteus seedlings at first year of 
vegetation due to feeding grubs on roots was observed in a field infected by 
M. melolontha L. and A. solstitialis L. in population density – 7.2 grubs m−2. The 
second and third grub instar causes the biggest damage. Preplanting treat
ment of rhizomes by insecticides had positive effect on seedling emergence, 
survival, and further plant height (Sabluk et al., 2014). 

8.3.2 Generalist Lepidoptera 

Fall armyworm Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is one 
of the important polyphagous pests distributed in Brazil, Argentina, USA 
(Clark et al., 2007; Montezano et al., 2018), and Africa (De Groote et al., 2020). 



  

 

 

  

 
 

  
    

148 Phytotechnology with Biomass Production 

FIGURE 8.2 
Variation of insect species and genera on M. × giganteus in three location of Ukraine, 2010–2011. 
А − Zhytomyr, B − Vinnitsa, C – Kyiv. (Modified from Stefanovska et al., 2017b.) 

It caused significant yield reduction on corn, soybean, cotton, and diverse 
grasses; pest has two strains: rice and corn. 

8.3.2.1 Identification 

The moths have a wingspan of 32–40mm. The adult moths have a brown or 
gray forewing and a white hindwing. Male fall armyworms have more pat
terns and a distinct white spot on each forewing. The hind wing is similar for 
both sexes: silver white with a narrow dark border. Larvae are a light green 
to dark brown with longitudinal stripes. In the sixth instar, larvae can reach 
4.5 cm long (Brambila, 2009). 

8.3.2.2 Life Cycle 

The Fall armyworm hibernates in the stage of pupa; however, it is not tolerant 
to low temperature and can survive only in mild winters and when freezing 
occurs all stages are usually killed. Adults can migrate over 500 km. They lay 
eggs on the leaves of the host. Young larva hatch from eggs in 1–10 days and 
migrate to the whorl. The duration of life cycle depends on the season and in 
winter is longer-lasting. The number of generations is two (northern regions) 
and up to six (tropics). 
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8.3.2.3 Damage 

Larvae cause damage on the leaves when they hatch by consuming foliage. 
Young larvae initially consume leaf tissue from one side, leaving the opposite 
epidermal layer intact. The older larvae begin to make holes in leaves and 
eat from the edge of the leaves inward. Feeding in the whorl of corn often 
produces a characteristic row of perforations in the leaves. 

Fall armyworm S. frugiperda was found to infest the whorls of M. × giganteus 
in field plots (Prasifka et al., 2009). Greenhouse study using fall armyworm 
population collected in the field from natural infestation indicated that both 
corn and rice strains of S. frugiperda are able to develop and reproduce on 
Miscanthus along with other hosts, including corn. In this experiment fall 
armyworm evidently preferred corn to Miscanthus; however, relative sur
vival of rice strain fall armyworm was greater on Miscanthus. Thus, this dan
gerous pest can infest the biomass and food/feed crop (Prasifka et al., 2009). 

Stefanovska et al. (2017b) observed two Noctuidae species in M. × giganteus: 
Turnip Moth Scotia segetum L. and Silver Y-Moth Autografa gamma L., feeding 
on planting at first year of vegetation (Figure 8.2); however, no conspicuous 
symptoms were found. 

8.3.3 Generalist Coleopteran 

The Western corn rootworm Diabrotica virgifera virgifera Le Conte is a native 
to North America, where it is considered as the main pest of corn (Yu et al., 
2019). The pest is present in many European countries, spreading constantly 
year by year (Toth et al., 2020). Corn is the only crop in which high population 
densities can develop. 

8.3.3.1 Identification 

The adults, 5–6 mm long, are dark yellow in color and there are three black 
stripes on the wing covers. Newly hatched larvae are nearly colorless, but 
gradually turn white as they feed and get older. Mature larvae reach about 
13 mm long, and are creamy, white with a brown head capsule. 

8.3.3.2 Life Cycle 

Western corn rootworms produce one generation per year (Chiang, 1973). 
The pest overwinters in the soil in egg stage. The larvae hatch from eggs 
from late spring to early summer. The larvae move around in the soil, feed
ing on the maize roots. Their development lasts approximately 1 month. 
Larvae pupate in the soil and emerge as adults in 5–10 days. Adults emerge 
throughout the summer period and can mate several times. Females lay eggs 
in small clutches near the base of corn stalks, where they remain unhatched 
for the winter (Gray et al., 2009). 
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8.3.3.3 Damage 

Pest causes damage in the stage of larvae who feed on both the leaves and 
the silk of the female inflorescence of corn. Larvae feeding reduced plants’ 
ability to take water and nutrients. Initially, injured root tips are discolored 
or have brown lesions; after some time, primary or secondary roots can be 
completely pruned. Western corn rootworm produces a single generation 
each year (Yu et al., 2019). 

Miscanthus is suitable for larval development for both European (Gloyna 
et al., 2011) and the US (Spencer et al., 2009) populations of the western corn 
rootworm. Since Western corn rootworm survives on M. × giganteus, it has 
economic consequence. Without crop rotation and tillage, the risk of Western 
corn rootworm from M. × giganteus as biomass crops into nearby food and 
feed crops, including corn may significantly increase. This is especially chal
lenging in upscaling of M. × giganteus production in agricultural and mar
ginal land in intensive monoculture systems. 

8.4 Plant Feeding Nematodes Associate with M. × giganteus 

The limited number of reported nematodes in M. × giganteus can be 
explained by restricted range of researches conducted in this area. Plant-
feeding nematodes according to the feeding habits are commonly assigned 
to the following trophic groups: obligate plant feeders, facultative plant 
feeders that alternatively feed on fungi or bacteria, and fungal feeders that 
alternatively feed on plants (Yeates et al., 1993). Plant parasitic nematodes 
(PPNs) are a very important group of pests because of economical aspect 
of ability to decrease food and feed crops (Bernard et al., 2017). This nema
tode group is studied most profoundly (Emery et al., 2017). Because of the 
relatively small portion of M. × giganteus plantations and short times since 
beginning of cultivation, this is still not clear to which extent PPNs can con
tribute to this crop yield loss. 

In the frame of multistate parasitic nematode survey of 37 miscanthus and 
48 switch grass plots across Iowa, Illinois, Georgia, Kentucky, South Dakota, 
and Tennessee (USA), the following PPNs were present: lesion (Pratylenchus 
spp.), needle (Longidorus spp.), dagger (Xiphinema spp.), lance (Hoplolaimus spp.), 
stunt (Tylenchorynchus spp.), spiral (Helicotylenchus spp.), and ring (Criconema 
spp.) (Mekete et al., 2009; Mekete et al., 2011a, b). The damage thresholds of 
M. × giganteus PPNs have not been reported yet. Mekete et al. (2011b) used 
values existing for monocotyledon hosts to compare it with recorded PPNs 
densities. It was found that population densities of Helicotylenchus, Xiphinema, 
Pratylenchus, Hoplolaimus, Tylenchorhynchus, Criconemella, and Longidorus spp. 
exceeded threshold value ranges reported for another monocotyledon host. 
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8.4.1 PPNs − Potential Vector of Plant Viruses 

The nematode survey associated with M. × giganteus was provided in 
established crop’s stands of 1–10 years of age representing, consequently, eight 
locations and six soil types in Ukraine (out of which three were contaminated 
by trace elements) and nine localities covering eight soil types in Poland 
(Figure 8.3). 

The obtained results indicated that group of plant-feeding species was rep
resented by 53 species belonging to 22 genera and 10 families (Stefanovska 
et al., 2020). Comparison of population density of plant-feeding nematodes 
recorded in both Ukraine and Poland with the damage threshold values 
established by Mekete et al. (2011b) demonstrated that the populations of 
several PPNs, which are known as vector of plant viruses, were above the 
estimated damage threshold. 

Two dangerous plant viruses, specifically Norovirus (NEPO) and 
Tobravirus (TOBRA), have nematode vectors. The only known nematode vec
tors of NEPO are in the genera Xiphinema and Longidorus whereas TOBRA is 
transmitted by Trichodorus and Paratrichodorus (Macfarlane, 2003; MacFarlane 
& Neilson, 2009). 

A total of ten nematode species capable of vectoring plant viruses 
were recorded in Ukraine and Poland in surveyed M. × giganteus planta
tions. Two species of the genus Longidorus: L. elongatus and L. attenuatus 
were observed only in Poland with a population range of 284–300 indi
viduals per 100 cm3. They exceeded the damage level (5–25 individuals 
per 100 cm3) by 2.5-fold. Species of the genus Xiphinema were associated 
with M. × giganteus plantations in both countries with population den
sities below the estimating threshold. Nematodes of genera Xiphinema 
would not likely impact negatively the crop development and biomass 
yield in the observed plantations. These results are not inconsistent with 
Mekete et al. (2011b) who showed that this genus was potentially dam
aging for M. × giganteus. Emery et al. (2017) observed that Miscanthus is 
suitable to Xiphinema. 

Three species of genus Trichodorus in Poland T. sparsus, T. similis, and T. 
viruliferus vs. one species in Ukraine T. sparsus were recorded. PPNs of genus 
Paratrichodorus recovered from the root zone of M. × giganteus were repre
sented by two species: P. pachydermus and P. teres in both countries. 

8.4.2 Ecto-, Endoparasites, and Hyphal/Root Feeders 

Nematode species representing ectoparasites belonging to the genera 
Mesocriconema, Criconema, Paratylenchus, Geocenamus, Bitylenchus, Merlinius, 
Neodolichorhynchus, Sauertylenchus, Scutylenchus, and Amplimerlinius were 
recovered at the maximum population densities of 60–70/100cm3 of soil. 
These values are considerably lower than in suggested damage threshold 
value that is estimated as 300–600 nematodes per 100cm3. 
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FIGURE 8.3 
Cluster analysis and NMDS procedure, where (a) cluster arrangement, Y-scale on the chart is 
the Euclidian distance between sampling points (presented solution with six clusters repre
senting soil types A, B, C, D, E, and F); (b) the projection of clusters (A, B, C, D, E, and F) in the 
space of the first two dimensions. (Modified from Stefanovska et al., 2020.) 
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Two families Pratylenchus and Helicotylenchus in survey samples repre
sented endoparasite and semi-endoparasite nematodes. Four species of the 
lesion nematodes Pratylenchus were recovered in both countries. Population 
densities of P. crenatus and P. neglectus were greater than the estimated dam
age thresholds (50–100 individuals per 100 cm3 of soil) and can be viewed as 
the potential pathogen of M. × giganteus. Pratylenchus spp. are known as very 
dangerous plant pathogens responsible for lesion disease that rank third 
place in the world list of the most economically important species (Jones & 
Fosu-Nyarko, 2014). This finding for Ukraine and Poland was in agreement 
with results obtained earlier by Mekete et al. (2011a) in the US. 

Spiral nematodes Helicotylenchus were found in densities of 300 individu
als per 100 cm3, that is, lower densities than the established threshold value. 
Hyphal and root feeders were represented by nematodes from four genera: 
Cylindrolaimus, Rhabditis, Plectus, and Anaplectus that were recovered from 
samples with population densities up to 25 individuals per 100 cm3 of soil. 

The characteristics of PPNs associated with M. × giganteus demonstrated 
(Mekete et al., 2011b) that economically important nematodes, specifically needle 
Longidorus elongates (Longidoridae) and root-lesion nematodes Pratylenchus crena
tus and Pratylechchus neglectus (Pratylenchidae), share with M. × giganteus other 
hosts from the same plant family (Gramineae). The fact that all PPNs reported to 
feed on M. × giganteus are pests of corn, sugarcane, or sorghum raises concerns 
that the production of that crop in the large scale may increase pests not only on 
M. × giganteus but also on the numbers in existing food and feed crops. 

8.4.3 The Indication of M. × giganteus Plantation 
State with Plant-Feeding Nematodes 

M. × giganteus as a perennial grassland crop generally shows its maximum 
productivity in the third year of cultivation (Lewandowski et al., 2018). 
Knowledge based on interaction between PPNs and Miscanthus stands 
in different age is important to predict biomass productivity during the 
long-term growing. The PPNs community is determined both by temporal 
changes and environmental factors (Zhukov et al., 2018). Temporal stages of 
M. × giganteus plantations development in a wide geographical district by 
PPN species impact the plant damage under representative soil types. 

The distribution of nematodes recorded in study in Ukraine and Poland 
was evaluated by applying the nonmetric multidimensional scaling approach 
(NMDS) indicated spatial heterogeneity of sampling points and community 
dynamics (Figure 8.3). 

The relationships among the hyphal and root hair feeders, semi-endopara
sites, and ectoparasites were suggested as indicators for assessing the state of 
M. × giganteus plantations with different years of cultivation with two aspects 
which were considered. It was determined (Figure 8.3) that the abundance of 
hyphal and root hair feeders expanded with increasing of plantation age, 
whereas the abundance of ectoparasites decreased. The increase in hyphal 
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and root hair feeders with increasing age of planting was associated with the 
reductions in the number of all other trophic groups of parasitic nematodes. 
Therefore, the increase in hyphal and root hair feeders was the most impor
tant marker of the planting age of the M. × giganteus (Stefanovska et al., 2020). 
This result was in a good agreement with findings of de Goede et al. (1993) 
which showed an increase in the number of hyphal and root hair feeders in 
the successional series of crop development. 

The research studies carried out for 20years indicate that intensive involve
ment of M. × giganteus into biomass systems in conventional agriculture and 
phytotechnologies stimulates several problems, specifically, worsening the 
pest problem at other hosts from the same plant family and direct damage 
of Miscanthus that negatively impacts crop yield. However, considering 
the perennial nature of M. × giganteus, its long cultivation may support the 
increase of biocontrol agents, capable to regulate pest population and keep 
it under damaging level. It is still not clear to what extent these groups of 
organisms contribute to yield reduction, and consequently needs for pest 
management systems that should have been addressed are rather uncertain. 
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Economics of Phytoremediation 
with Biomass Production

Larry E. Erickson, Jan Černý, and Valentina Pidlisnyuk

Abstract

The economics associated with phytotechnologies includes environmen-
tal, social, and ecosystem costs and benefits associated with the proj-
ect. There are local costs and benefits associated with the site as well as 
global benefits because of carbon sequestration. Improvements in soil 
quality have long-term benefits and increase the value of the land. Risk 
reduction has health and safety benefits as well as improved value for 
the land. For many contaminated sites, there are many benefits associ-
ated with phytoremediation with biomass production that have value for 
society such as improved aesthetic values, better conditions for wildlife, 
employment benefits because of the project, and better quality of life in 
the community. While it would be great if the biomass produced would 
fully cover project costs, this should not be expected. One of the most 
important benefits associated with phytotechnologies is the addition of 
soil organic matter and the associated improvements in the health of the 
biological populations that are beneficial to plant productivity. The eco-
nomics of phytoremediation with biomass production using Miscanthus 
is included in this chapter.
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9.1 Introduction to Phytoremediation 
with Biomass Production 

In this chapter, the economic aspects of phytoremediation with biomass 
production are addressed with full consideration of environmental, social, 
ecosystem, and economic benefits associated with the improvement of each 
contaminated site using a sustainable remediation approach. The benefits of 
soil remediation with biomass production include risk reduction, improve
ments in soil quality and soil health, biomass products, carbon sequestra
tion, reduced soil erosion, community aesthetic benefits, and better habitat 
for birds and wild animals. 

9.2 Sustainable Approach 

When economic considerations are integrated with environmental impacts 
and social values, environmental metrics such as air quality, water quality, 
soil health, and ecosystem conditions are introduced. Social metrics of human 
health, quality of life, safety, aesthetic value, and impact on quality of employ
ment can be considered. The economic analysis should include both direct 
and indirect costs and benefits. 

The economics of greenhouse gas (GHG) emissions based on the avoided 
social cost of carbon is part of the sustainable approach. Increasing the 
amount of soil organic matter and soil organic carbon is beneficial in estab
lishing vegetation, and this can be considered in the global carbon balance. 
In the majority of phytoremediation with biomass production projects, soil 
organic carbon will be increased and biomass will be produced. Policies 
that provide incentives to reduce GHG emissions or increase soil organic 
carbon may be included in the analysis (Mikhailova et al., 2019). The Paris 
agreement on climate change and those working to reduce GHG emissions 
have included initiatives to increase soil carbon as part of the Paris climate 
pledges (Paustian et al., 2019; Rumpel et al., 2018). The National Academies 
have described a new research agenda on carbon sequestration in soils to 
help achieve the goals of the Paris agreement (NASEM, 2019). 

There are many sustainability indicators that have been proposed for use in 
a sustainable remediation framework (Bardos et al., 2018). The International 
Sustainable Remediation Alliance has been established to encourage net
working among organizations and countries that are making use of sustain
able approaches to remediation of contaminated sites (Bardos et al., 2018). One 
of the results of using sustainability indicators has been to find that qualita
tive methods often lead to simple sustainability assessments that produce 
good decisions that are supported by the participants. When working with 
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community representatives, there is value in using methods and concepts 
that are understood by all participants, especially when this leads to a good 
remediation plan. 

The System of Environmental Economic Accounting (SEEA) has been 
developed to include the value of ecosystems in evaluating contaminated 
sites; the system includes the ability to include soil quality and carbon 
sequestration in ecosystem accounting (Hein et al., 2020; SEEA, 2014). Natural 
capital has value for society, and there is a global effort to extend accounting 
to include the value of ecosystems so that site remediation benefits can be 
fully communicated. 

9.3 Benefits of Remediation 

The total amount of land with contaminated soil is great. Values in the lit
erature include that 28.3% of the land area in Europe has soil contamination 
(Ben Fradj et al., 2020), and more than 20 million ha worldwide are contami
nated (Evangelou et al., 2012). The estimated amount in the United States 
is about 9 million ha (U.S. EPA, 2011). In addition, there are between 1 and 
6 billion ha of degraded soil that need to have soil organic matter added to 
improve soil quality and land productivity (Rumpel et al., 2018). 

As population increases it becomes more important to remediate contami
nated sites and use the land for beneficial purposes. There are many benefits 
associated with converting an unused contaminated site into a site that is used 
for biomass production. By addressing the contamination such that risk is 
reduced, the site can be used with vegetation to consume carbon dioxide and 
produce oxygen and plant biomass that can be used by society. Soil quality 
and soil health can be improved by adding soil amendments such as manure 
and/or biosolids from wastewater treatment to increase soil organic carbon. 

There is value to establishing Miscanthus or another biomass crop on the 
site that produces a useful product and adds soil carbon to the root zone. 
Soil organic carbon improves nutrient cycling, the ecological functioning of 
the organisms in the root zone soil, and the water holding capacity of the 
soil (Lal, 2016). Better soil health is one of the major ecosystem benefits of 
phytoremediation with biomass production. 

The increase in soil carbon in the root zone has value with respect to car
bon sequestration for the global carbon balance and Paris agreement on cli
mate change. At sites with metals in the soil, adding organic carbon to soil 
reduces the availability of the metals. 

The benefits of phytoremediation include the aesthetic value of a green 
site that provides better habitat for native wildlife compared to the site prior 
to remediation. Ornamental vegetation can be used for phytoremediation 
where parks or arboretums are established for public use and enjoyment 
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(Capuana, 2020). Phytoremediation reduces soil erosion and the spread of 
contaminants because of wind and water. 

The social value of phytoremediation with biomass includes employment 
to carry out the remediation and to harvest the biomass. There would also 
be employment associated with the conversion of the biomass into products. 
The quality of life and safety near the site should be improved. 

The economic costs and benefits include the costs associated with the phy
toremediation with biomass production project. There are costs for site char
acterization, development of the remediation plan, and implementation of 
the plan. There are annual costs of caring for the site, harvesting the biomass, 
and selling the product. The annual income includes the net receipts for the 
biomass. There is economic value associated with the improved soil quality 
and the carbon sequestration, also. 

The estimated value of the avoided social cost of carbon is $42.00/metric ton 
of carbon dioxide (Mikhailova et al., 2019; U.S. EPA, 2016). This is the estimated 
global value of reducing GHG emissions in the form of carbon dioxide by 
1 metric ton. This is an appropriate value to use when the social benefit of add
ing soil organic carbon to a remediation project is to be included in the analysis. 

The concept of reducing GHG emissions by adding organic carbon to soil 
has received significant attention, and the idea has strong support (Lal, 2016; 
Mikhailova et al., 2019; NASEM, 2019). 

There is value in improving soil quality at contaminated sites. Many of these 
sites have little or no economic value in their present state; however, if the soil 
can be improved by establishing vegetation and producing a biomass product 
such as Miscanthus or wood that can be harvested and sold, the value of the 
site increases. Since productive land sells for more than $10,000/ha in many 
locations, one of the ecosystem benefits of phytoremediation with biomass 
production is the improvement in soil quality associated with the project. 
If one can remediate a contaminated site so that it can be used productively 
with products of the same quality as nearby farms, this is beneficial for society. 

One way to improve the global carbon balance is to use phytoremediation 
with biomass production to establish trees on contaminated sites. Growing 
trees will increase soil carbon below ground and plant carbon above ground. 
At $42.00/ton of carbon dioxide avoided, it may be beneficial to do this at 
many sites. The soil carbon below Miscanthus after 8–10 years is about 
90 MgC ha−1 (Cattaneo et al., 2014; Dondini et al., 2009; Hansen et al., 2004), 
which adds about $13,860 ha to the value of the project. Trees also have 
significant amounts of carbon in the soil and associated with their roots 
(Mikhailova et al., 2019). The amount of carbon added assumes that the site 
has very low soil carbon prior to the start of the remediation project. 

The improvement in soil quality and the carbon added to the site are impor
tant ecosystem and economic reasons to go forward with phytoremediation 
projects. If one can move from the state of an abandoned site to one where a 
product is being produced, this has social value because of the employment 
that is created. 
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The cost of reforestation to reduce the amount of carbon dioxide in the atmo
sphere of $1–$10/ton of carbon dioxide is relatively low compared to many 
alternatives (Gillingham & Stock, 2018). If this is accomplished using phytore
mediation at a contaminated site, land is restored to a productive use. In their 
work, they show that adding carbon to soil and aboveground vegetation is inex
pensive compared to capturing carbon dioxide from combustion processes. 

9.4 Motivation for Action 

Vegetation is established at sites for several different reasons. Regulatory 
agencies may require land owners to reduce risk and/or contaminant move
ment due to wind and/or water erosion. Land owners may want to improve 
soil quality in order to use the land productively. There may be an interest 
to improve aesthetics and the quality of life in the neighborhood. A forest 
may be established to grow trees that benefit the global carbon balance and 
accumulate wood for future use. 

The Tri-State Mining area in southeast Kansas, northeast Oklahoma, and 
southwest Missouri includes more than 80,000ha (800km2). While there has 
been some remediation, there is a need to do more phytostabilization to reduce 
risk and improve soil quality so the land can be used more productively. After 
the mining ended, there has been some research related to establishing vegeta
tion on the mine tailings that are found in southeast Kansas. This abandoned 
mine land is a good example of a site where organic matter such as manure or 
biosolids need to be added to help establish vegetation. The motivation at this 
site includes risk reduction, carbon sequestration, better aesthetics, soil quality 
improvement, and future profitable use of the land. 

There is a significant effort to meet the goals of the Paris agreement on 
climate change. Each contaminated site that is restored using phytoremedia
tion with added soil carbon and productive vegetation contributes positively 
to the effort to stop the accumulation of carbon in the atmosphere. There are 
many good choices with respect to what to plant. Locally adapted vegetation 
should be considered. It is also important to improve the ecosystem at the site 
so more and better ecosystem services are able to be provided. 

9.5 Economics of Phytoremediation 

The global interest and significant use of phytoremediation is because of its 
low cost compared to other methods (Pivetz, 2001). There have been many 
sites where this technology has been used successfully. The cost of using 
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vegetation is often less than half of that for alternative technologies (Fiorenza 
et al., 1999; McCutcheon & Schnoor, 2004; Pivetz, 2001). 

Phytoremediation has received much attention because the ecosystem at 
the contaminated site has generally been improved at sites where it has been 
implemented. The costs associated with growing vegetation are modest and 
supporting equipment is available because agriculture is global in its reach. 
Many people know how to grow plants and harvest produce. 

The major costs associated with phytoremediation at field sites have often been 
associated with establishment of vegetation because amendments are needed to 
enable plants to grow at the site. The cost of amendments, moving them to the 
site, and incorporating them into the soil depend on the amount needed, dis
tance transported, and process of incorporation into the soil at the site. 

Analytical laboratory expenses can be one of the significant costs associ
ated with phytoremediation. If the site is used for production of Miscanthus 
or to grow trees, the need for chemical analysis is reduced compared to 
growing food crops on the site. The analytical expense to characterize the 
contamination at the site is independent of the remediation method and 
often completed before a remediation method is selected. 

9.6 Economics of Biomass Production 

One of the goals of this book and the authors is to reduce the cost of remedia
tion by producing products on contaminated sites that can be harvested and 
marketed. Miscanthus has significant biomass production and many poten
tial uses. There has been great progress in developing Miscanthus as a crop 
to produce on contaminated sites. The economics of growing Miscanthus 
have been described in several publications (Hastings, 2017; Khanna et al., 
2008; Witzel & Finger, 2016). The cost of establishment of Miscanthus using 
rhizomes is expensive, and there is great interest in developing less expen
sive methods such as planting seeds (Ben Fradj et al., 2020; Hastings, 2017). 
Witzel and Finger (2016) have reviewed 51 economic studies of Miscanthus 
in Europe and North America. They point out that location and regional 
demand for the Miscanthus impact the economics. Biomass yields vary with 
soil quality and weather, and these factors affect the economics. 

Miscanthus as harvested has a relatively low density, and this impacts 
transportation costs and the cost of delivery to markets. If it is used for bed
ding or as a solid fuel near to where it is produced, transportation costs are 
small. It can be pelleted to increase the density and make it easier to handle 
and transport. 

Miscanthus has high-quality cellulose which has value in making some 
products; however, there are many sources of cellulose including trees, 
wheat straw, and switchgrass. Thus, the price for Miscanthus is related to the 
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general price for biomass that contains cellulose. Paper products can be made 
from Miscanthus. Large quantities of biomass are used in many parts of the 
world for making many types of paper. 

As greater efforts are made to reduce GHG emissions, more policies to 
encourage renewable sources of energy may be approved. If the combustion 
of coal would have a charge of $42/Mg of carbon dioxide added to it for each 
Mg = mega gram produced, this would make using Miscanthus biomass in a 
coal-fired power plant much more competitive because the cost of using coal 
would more than double in the USA. 

Miscanthus and other biomass crops that may be produced using phytore
mediation at a contaminated site can be used as feed to an anaerobic digester 
or as feed to an ethanol plant. The price of natural gas would be increased by 
about $2.19/million BTUs if the $42/Mg carbon dioxide charge would be added. 
This value is $2.08/million kJ using metric units. Adding this value to the price 
of natural gas makes methane from renewable sources much more competitive. 

One approach to including the social value of carbon in decision-making 
would be to have a global carbon tax of $42/Mg carbon dioxide on mined 
fuels with the tax revenue used to support projects that add soil carbon to 
improve agriculture and restore contaminated sites using phytoremediation 
with biomass production. 

9.7 Bioeconomy of Miscanthus in Europe 

The modern bioenergy provided 5.1% of total final energy demand in 2018, 
accounting for around half of all renewable energy in final energy consump
tion. Bioenergy provides around 9% of industrial heat demand and is con
centrated in bio-based industries such as paper and board. Biofuels, mostly 
ethanol and biodiesel, provide around 3% of transport energy, and global 
biofuels production increased 5% in 2019 (REN21, 2020). 

The European Union (EU) is the global leader in modern bioenergy 
production. In 2011, EU reaffirmed its objective to reduce GHG emissions 
by 80%–95% by 2050 compared to 1990 levels (Communication from the 
Commission to the European Parliament, 2011; Zappa et al., 2019). The Europe 
2020 (2010) strategy seeks to address structural weaknesses in the economies 
of EU individual member states, economic and social problems, and pressure 
to reduce the proportion of nonrenewable (fossil) fuels and replace them with 
renewable energy sources (RESs) in the overall energy mix (solar, wind, geo
thermal, hydropower, and biomass energy) which account about 14% of global 
energy production. In between 2000 and 2015 EU more than doubled the 
share of bioenergy in gross final energy consumption (Tsemekidi Tzeiranaki 
et al., 2020). EU 2030 strategy (2017) called for sharing of renewable energy 
in gross energy consumption for at least 32% by 2030 with annual growth 
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of RES min 1.3%, which will allow to go beyond EU commitment under the 
Paris Climate Agreement to reduce GHG emissions by at least 40% by 2030, 
compared to 1990 level (European Commission, 2019; RER 2030, 2019). 

Germany is the largest producer of biomass which forms 23.6% of renew
able electricity, and this share increased by 82.8% from 2008 to 2018 (Winkler 
et al., 2020). Providing sustainably produced feedstock for a growing bioecon
omy is an important contribution to increase decarbonization of the German 
economy (Kiesel, 2020). In 2017 in the Czech Republic gross production of 
electricity from renewable sources accounted for 11.1% of the total domestic 
gross electricity production, and the share of renewable energy in primary 
energy sources was approximately 10.5% in 2017 (Ministry of Industry and 
Trade of the Czech Republic, 2018). 

Perennial crops appear to be ideal for EU bioeconomy development; 
however, their cultivation plays a minor role in EU agriculture, and only 
about 43,800ha of agricultural land were used for their production in 2015 
(Cosentino et al., 2018). It may be explained by uncertainties about the eco
nomic viability and financial returns of these relatively novel crops, the 
long-term allocation of agricultural land to their production, the high invest
ment costs for initial establishment (Sherrington et al., 2008), and absent of 
markets for biomass from perennial crops, in particular, from Miscanthus 
(Lewandowski et al., 2016; Witzel & Finger, 2016). 

However, since 2018, Miscanthus has been included in the so-called 
“Greening” of the EU (Regulation (EU) 2017/2393), which might be advanta
geous for farmers to cultivate Miscanthus. In Central and Eastern Europe 
Miscanthus has a potential for bioenergy and bioeconomy (Dubis et al., 2019; 
Kvak et al., 2018; Tryboi, 2018). Biomass of this crop is becoming among impor
tant sources of energy in Ukraine (Roik et al., 2019) as country suffers from 
lack of imported fossil fuels and looks for substitution sources (Geletukha, 
2017). By 2035 the share of renewable energy in the Ukrainian energy balance 
is expected to be 25%, with essential input of bioenergy plants. Two types of 
energy crops are cultivated in Ukraine currently, fast-growing willow (79%) 
and M. × giganteus (15%) (Geletukha et al., 2016). 

The comprehensive literature review (Witzel & Finger, 2016) overviewed 51 
scientific papers dealing with economics of Miscanthus cultivation to reveal 
the factors influencing the adoption decision of farmers. The most crucial fac
tors for the profitability of Miscanthus and adoption decision of the farmer 
are diverse, including the following aspects: the expected lifespan, biomass 
yields, prices, establishment and opportunity costs, and subsidization pos
sibilities. The large uncertainty is concerning the key parameters: yields and 
prices. Across 51 reviewed studies, mean yield assumptions ranged from 10 
to 48 t dry biomass ha−1 while the assumptions concerning mean prices range 
from €48 to €134/ton of dry mass. And absence of an established market for 
biomass is mentioned as a major impediment leading to increased market 
risks for Miscanthus feedstock. 
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The perspective of bioenergy crop cultivation has to fulfill the following 
requirements (Von Cossel et al., 2019): 

• providing a beneficial social and ecological contribution in increas
ing of agro‐ecological biodiversity and landscape aesthetics; 

•	 ensuring cultivation on marginal agricultural land or slightly con
taminated land which allow to avoid competition with food crop 
production; bioenergy crops have to be able to cope with the given 
biophysical constraints on marginal agricultural lands; 

•	 resilience of bioenergy cropping systems toward the growing cli
mate change effect; 

• fostering rural development and supporting the vast number of 
small‐scale family farmers, managing some 80% of the global agri
cultural land and natural resources. 

The production costs and labor requirement of Miscanthus cultivation and 
processing to bioproducts: animal bedding, combustion, and biogas were 
assessed recently (Winkler et al., 2020). The approach based on summarizing 
of the best practices of Miscanthus cultivation during multiyear production, 
including first year establishment phase, and harvest phase starting from the 
2nd year till 20th year. The cultivation cost assessment with conversion to 
selected bioproducts is presented in Tables 9.1–9.3. The biggest investment is 
at the first year of plantation establishing from which the largest investment 
is for purchasing of rhizomes and labor cost. Another important cost driver 
is the field-to-farm distance. It was concluded (Winkler et al., 2020) that the 
implementation of Miscanthus into farming systems can be profitable in the 
following cases: (i) for lands with unfavorable conditions, such as awkward 
shapes, slopes, or low soil quality; (ii) for greening areas or soil protection cor
ridor; (iii) when Miscanthus is directly used in own farm. Also profitable is to 
cultivate Miscanthus in smaller plantation up to 1ha, and to utilize biomass 
for combustion, animal bedding, and anaerobic digestion, and from these 
three pathways production of animal bedding defined as the most reasonable 
(Winkler et al., 2020). 

Miscanthus has a potential to play an important role to provide sustain-
ably produced feedstock for the biogas sector (in short-term) and bioeconomy 
(in long-term) (Kiesel, 2020). It will assist to achieve net zero GHG emissions, 
since it can provide sustainably produced feedstock and a renewable carbon 
source for the chemical industry, which requires carbon for varieties of prod
ucts. Miscanthus is suitable for biogas production, being more environmental 
in comparison with annual crops, may assist to decrease the environmental 
impact of the biogas sector. A market pull for Miscanthus biomass while uti
lized for biogas production may stimulate further investments into this crop. 
Development of integrated on-farm biorefineries for Miscanthus feedstock 
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utilization and biogas production may be an attractive business model for 
farmers which simultaneously reduces environmental impacts of agriculture 
by decreasing cultivation of annual crops (Kiesel, 2020). 

9.8 Conclusions 

The benefits of phytoremediation of contaminated sites include site improvement, 
carbon sequestration, and biomass products. Because of the growing impor
tance of land, greater efforts should be made to improve soil quality and reclaim 
abandoned properties. Environmental, social, and economic values should be 
considered in applying a sustainable development approach to making deci
sions using phytoremediation with biomass production. 
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10 
Miscanthus Biomass for Alternative 
Energy Production 

Jikai Zhao, Donghai Wang, Valentina Pidlisnyuk, and Larry E. Erickson 

Abstract 

Biomass such as Miscanthus that is produced using phytoremediation can 
be used as a biofuel. In some locations it is used for heating homes that 
are located close to where it is produced. This chapter considers alternative 
energy technologies for Miscanthus and other plants, including liquid fuels 
such as ethanol, methane from anaerobic digestion, and pyrolysis (thermal 
Processing). Pretreatment alternatives to convert cellulose to glucose are 
reviewed because the economics of ethanol production from Miscanthus are 
impacted by the efficiency of cellulose hydrolysis to glucose. Size reduc
tion of Miscanthus is often the first step in the process because enzymes 
for hydrolysis are more effective when there is large surface area. Ethanol 
that is produced by fermentation as a liquid is easier and less expensive to 
transport compared to Miscanthus biomass and methane from anaerobic 
digestion. Methane that is produced by anaerobic digestion is a mixture 
of methane and carbon dioxide. It can be used locally as a fuel, but it is 
expensive to distribute over a significant distance by pipeline. This chapter 
reviews pretreatment methods for Miscanthus prior to anaerobic digestion. 
There is a need to make good use of the hemicellulose and lignin because 
the economics are better when all of the harvested Miscanthus is used with 
good conversion efficiency. 
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10.1 Introduction 

The gradual depletion of nonrenewable fossil fuels and environmental dete
rioration due to the growing demand for energy sources and concern over 
greenhouse gas emissions have attracted considerable attention to explor
ing renewable and sustainable biofuels and supporting sustainable eco
nomic development (Arnoult & Brancourt-Hulmel, 2015). Lignocellulosic 
biomass, mainly composed of carbohydrate polymers (cellulose and hemi
cellulose) and an aromatic polymer (lignin), is widely identified as a prom
ising alternative with great potential for biofuels production (Ho et al., 
2019; Kim et al., 2016). Biological conversion of lignocellulosic biomass into 
ethanol, methane, hydrogen, heat, power, bio-oil, and syngas can reduce 
overdependence on petroleum-based fuels and mitigate climatic change 
(Brosse et al., 2012; Ge et al., 2016; Ziolkowska, 2014). In particular, bioetha
nol derived from lignocellulosic biomass has been utilized as a substitutive 
transportation biofuel to conventional gasoline (Bailey, 2018; von Blottnitz 
& Curran, 2007; Wyman, 2008). 

The biomass of the second-generation crops including Miscanthus is pro
cessed to energy through distinct conversion routes: thermochemical and 
biochemical (Damartzis & Zabaniotou, 2011). The thermochemical route 
consists of the pyrolysis and/or gasification and subsequent gas cleaning 
and conditioning processes, followed by the Fischer–Tropsch synthesis for 
the production of synthetic liquid fuels. The biochemical route involves 
the enzymatic transformation of cellulose and hemicellulose to sugars and 
subsequent fermentation to bioethanol. The second route, although having 
more cost reduction potential due to its most recent development and con
stant effort for optimization, is less prone to commercialization than the first 
alternative. These two main pathways of biomass processing are illustrated 
in Figure 10.1. 

The differences among the thermochemical processes are determined by 
the operation conditions of feed properties, oxidizer (air, oxygen or steam) 
amount, temperature, heating rate, and residence time. 

10.2 Evaluation of Biomass Suitability for Energy 

The key criteria for evaluating the suitability of plants as a raw material for 
combustion are the amount of biomass from 1ha of cultivation, the amount of 
heat obtainable per unit weight of biomass, the cost of establishment of plan
tation, and the content of mineral substances determined as ash. The amount 
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FIGURE 10.1 
Schematic illustration of the main biofuel production pathways. (Modified from Damartzis & 
Zabaniotou, 2011.) 

of biomass yield and the heating value for some grass plants are illustrated 
in Table 10.1. 

Miscanthus as a rhizomatous C4 perennial grass with low maintenance, 
rapid CO2 absorption, significant carbon sequestration, and high biomass 
yield characteristics has been regarded as a dedicated energy crop for bio
fuels production, especially in Europe and North America (Ge et al., 2016; 
Hastings et al., 2009; Heaton et al., 2008; Lee & Kuan, 2015; Zub & Brancourt-
Hulmel, 2010). The yield and chemical composition of Miscanthus biomass 
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TABLE 10.1 

Biomass Yield from Grass Crops, Calorific Value, and the Cost of 
Cultivation 

Plant Species Biomass Yield (t ha−1) Heating Value (MJ kg−1) 

Tall wheatgrass 6.6–10.4 17.89 
Tall oatgrass 7.5–12.4 18.29 
Miscanthus 12.2–21.6 18.56 

Source: Modified from Danielewicz et al. (2015). 

are commonly influenced by the cultivation site, growing conditions, and 
harvest time (Arnoult et al., 2015; Kim et al., 2012; Le Ngoc Huyen et al., 
2010), thus resulting in significant variation in bioconversion performance 
(Boakye-Boaten et al., 2016; Hodgson et al., 2010; Iqbal & Lewandowski, 
2014). The heterogeneous nature of Miscanthus biomass allows its bio
conversion into several added-value biofuels. For bioethanol production, 
pretreatment is an essential step to reduce the recalcitrance of biomass, ren
dering cellulose more amenable and accessible to enzymes (Lee & Kuan, 
2015; Sun et al., 2016). 

Anaerobic digestion and dark fermentation are usually used to convert 
Miscanthus biomass to biomethane and biohydrogen (de Vrije et al., 2009; 
Vasco-Correa & Li, 2015). During anaerobic digestion, anaerobic microbes 
can convert organic matter: pentose and hexose into biogas, methane 
and carbon dioxide (Frigon & Guiot, 2010). Dark fermentation is carried 
out under anaerobic conditions in which heterotrophic microorganisms 
degrade sugars by oxidation (Guo et al., 2010). The enzymatic attack of the 
microorganisms directly limits biomethane and biohydrogen production 
from lignocellulosic biomass. Appropriate pretreatment conditions are 
often required to accelerate conversion efficiency, including mechanical, 
thermochemical, and fungal methods (Frigon & Guiot, 2010; Guo et al., 
2010). The potential of biogas production can also be affected by geno
types, harvesting time, and growing season (Mangold et al., 2019; Schmidt 
et al., 2018; Wahid et al., 2015). 

At high temperatures, Miscanthus biomass can be subjected to thermo-
chemical pretreatment to produce heat, power, bio-oil, and biogas that are 
compatible with current petrochemical infrastructures (Liu et al., 2017). 
Research findings indicate that operational temperature was the most influ
ential factor in the yield and properties of bio-oil (Heo et al., 2010). Also, spe
cific thermochemical reactors (fluidized bed, spouted bed, and fixed bed) 
assisted with catalytic and surfactant additives have been used to improve 
the conversion yield and quality of biofuels (Banks et al., 2014; Melligan et al., 
2011; Yorgun & Şimşek, 2008). In this chapter, the biomass yield and chemical 
composition of Miscanthus biomass are summarized. The intrinsic mecha
nism of representative pretreatment methods used for bioethanol, biometh
ane, and biohydrogen production is thoroughly explained. Thermochemical 
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conversion (combustion, pyrolysis, and gasification) of Miscanthus biomass 
to heat, power, bio-oil, and syngas is also presented. In addition, the internal 
and external factors that have significant influences on anaerobic digestion 
and thermochemical conversion performances of Miscanthus biomass are 
discussed. The flowchart for Miscanthus biomass conversion to different bio
fuels is illustrated in Figure 10.2. 

The management practices for Miscanthus production (soil nutrient com
position, amendments, irrigation, climate (precipitation, temperature)) are 
directly correlated with the properties of biomass and its potential for biofuel 
production (Cerazy-Waliszewska et al., 2019; Frydendal-Nielsen et al., 2016; 
Mangold et al., 2019; Wahid et al., 2015). 

Representative studies on the chemical compositions of Miscanthus bio
mass are summarized in Table 10.2. Significant variations were identified in 
cellulose, hemicellulose, and lignin between the Miscanthus biomass sam
ples, i.e., it is for cellulose 31.0–46.0%, for hemicellulose 13.6–35.4%, and for 
lignin  10.7–26.7%. 

A comparison of chemical characteristics reveals differences in intrinsic 
genotypes, cultivation conditions, and harvesting times (Alam et al., 2019; 
Kim et al., 2012; Le Ngoc Huyen et al., 2010). Cellulose (d-glucose poly
mer) condenses through β (1–4) glycosidic bonds (Updegraff, 1969). Robust 

FIGURE 10.2 
Flowchart of Miscanthus biomass conversion into biofuels: (a) bioethanol; (b) biomethane and 
biohydrogen; and (c) heat, power, bio-oil, and syngas. 
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TABLE 10.2 

Chemical Composition of Miscanthus Biomass 

Composition (%, Dry Basis) 

Cellulose Hemicellulose Lignin Reference 

46.0 27.8 10.7 Wang et al. (2010) 
44.4 29.1 20.4 Alam et al. (2019) 
44.3 30.3 21.7 Alam et al. (2019) 
44.1 29.4 22.7 Alam et al. (2019) 
43.3 13.6 26.3 Dash and Mohanty (2019) 
43.1 23.6 26.3 Yang et al. (2015a) 
41.2 21.2 25.1 Kang et al. (2013) 
40.3 24.1 24.1 Cha et al. (2015b) 
39.7 29.0 20.2 Alam et al. (2019) 
39.5 30.5 22.0 Alam et al. (2019) 
39.3 29.5 19.2 Alam et al. (2019) 
39.2 23.5 21.4 Li et al. (2013) 
38.6 17.9 25.4 Han et al. (2014) 
38.0 18.5 20.9 Vasco-Correa et al. (2016) 
37.2 30.9 21.9 Alam et al. (2019) 
37.1 27.4 21.5 Alam et al. (2019) 
37.0 22.1 23.3 Han et al. (2011) 
36.3 22.8 21.3 Boakye-Boaten et al. (2015) 
31.5 29.2 26.7 Si et al. (2015) 
31.0 35.4 25.3 Si et al. (2015) 
31.0 32.8 25.6 Si et al. (2015) 

hydrogen bonds between and within cellulose strands are attributed to its 
high crystallinity. Miscanthus biomass is rich in cellulose (31.0%–46.0%) 
(Table 10.2). Taking into consideration that the removal of hemicellulose and 
lignin during the pretreatment process can lead to an approximate two-fold 
concentration of the remaining cellulose in pretreated biomass, high cellu
lose content in raw Miscanthus biomass would benefit the fermentable sugar 
concentration and final bioethanol titer. Hemicellulose (d-pentose polymer), 
a heterogeneous polysaccharide mix, is mainly composed of a β-d-xylose 
monomer in Miscanthus biomass, ranging from 13.6% to 35.4% (Table 10.2). 
Moreover, the hemicellulose is associated with the chemical and physical 
characteristics of subsequent biofuel. For example, the solubilization and 
elimination of hemicellulose are often critical to pretreatment effectiveness to 
increase enzymatic accessibility to cellulose (Zhao et al., 2020a). In the case of 
the lignin complex, it is randomly methoxylated and incorporated by lignols 
(p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol). Lignin content 
in Miscanthus biomass is in the range of 10.7%–26.7%. Its lower free radicals 
make it more inert and could form nonproductive hydrophobic interaction 
with cellulase, thus reducing sugar and bioethanol yields. 
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10.3 Bioethanol Production 

Several studies have reported using various pretreatment steps to reduce 
the recalcitrance of Miscanthus biomass for the valorization of macromol
ecules (Brosse et al., 2012; Ge et al., 2016). Miscanthus biomass is character
ized by complex components, composing of cellulose, hemicellulose, and 
lignin (Zub & Brancourt-Hulmel, 2010). Therefore, an optimal combination 
of various pretreatment strategies is essential for efficient fractionation and 
further bioethanol production. The processing methods include mechani
cal treatment to improve the biomass maneuverability, thermochemical 
steps for the disruption and solubilization of unproductive compounds, 
and subsequent enzymatic hydrolysis and fermentation (Figure 10.1). The 
effectiveness of such processing procedures on the chemical composi
tion, sugar recoveries, inhibitor formation, lignin removal, and bioethanol 
production performances is summarized and discussed in the following 
subsections. 

10.3.1 Physicochemical Pretreatment 

The reduction of particle size by mechanical chopping, grinding, or milling 
is often an initial pretreatment step of the solid starting feedstocks to facili
tate subsequent thermochemical or enzymatic hydrolysis and fermentation 
disrupting their structural regularity and reducing the degree of crystallin
ity and polymerization (Hendriks & Zeeman, 2009). Generally, small particle 
sizes are preferred for efficient enzymatic hydrolysis due to their specific 
surface area, i.e., sugar accessibility. The particle size distribution is directly 
associated with chemical composition, sugar recoveries, delignification, and 
fermentation performances (Khullar et al., 2013). Generally, mechanical treat
ment by itself is incapable of disrupting and depolymerizing lignin that seals 
cellulose and hemicellulose tightly (Sun et al., 2016). Many thermochemical 
methods to conduct after preliminary size reduction have been investigated, 
including either the utilization of concentrated and dilute acid and alkali 
(Alam et al., 2019; Scordia et al., 2013; Si et al., 2015; Yoo et al., 2016; Zhao 
et al., 2020b), liquid hot water (LHW) and steam explosion (Li et al., 2013; Yeh 
et al., 2016), organosolv and ionic liquids (Brosse et al., 2009; Dash & Mohanty, 
2019; Kim et al., 2018), or a combination of processing (Auxenfans et al., 2014; 
Rodríguez et al., 2011; Wang et al., 2010; Zhu et al., 2015). However, depend
ing on the pretreatment conditions, various components might be formed as 
inhibitors that limit enzymatic activity. 

Dilute acid (organic and inorganic acids) and alkali (metal hydroxide and 
aqueous ammonia) pretreatments have been extensively explored to enhance 
the enzymatic digestibility of Miscanthus biomass (Alam et al., 2019; Ji et al., 
2015; Si et al., 2015; Vanderghem et al., 2012; Yoo et al., 2016). Since gluco
sidic bonds of cellulose and hemicellulose are susceptible to acid, a high 
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proportion of hemicellulose and some of cellulose are hydrolyzed into slur
ries during pretreatment, and sugar degradation compounds such as furfural 
and hydroxymethylfurfural (HMF) as well as aromatic lignin degradation 
compounds can be generated (Mosier et al., 2005; Zhao et al., 2020a). Dilute 
acid pretreatment is commonly performed with high temperature (>150°C) 
and short time (<1hour). Moreover, ethanol yield depends on pretreatment 
conditions applied (acid dose, reaction time, and temperature) (Ji et al., 2015). 
Alkali pretreatment can efficiently cleave and decompose the chemical cross-
links (ether and ester bonds) between carbohydrates and lignin, resulting 
in a structural alteration of lignin and elimination of hemicellulose (Zhao 
et al., 2020b). The solubilization of disrupted lignin and hemicellulose ren
ders Miscanthus biomass more amenable to enzymes due to the increment of 
cellulosic accessibility. Furthermore, alkali pretreatment is conducted under 
relatively low temperatures but long residence times, followed by multiple-
washing for removing small lignin units and other inhibitors. 

LHW and steam explosion as the category of hydrothermal pretreatments 
have attracted considerable attention for pretreatment of lignocellulosic bio
mass and solubilization of amorphous hemicellulose. During pretreatment, 
water can be autoionized into acidic hydronium ions that cleave the glyco
sidic bonds of hemicellulose, resulting in the formation of acetic acid, which 
in turn catalyzes breaking cellulose and hemicellulose into oligosaccharides 
and monomeric sugars (glucose and xylose) (Mosier et al., 2005). Thus, harsh 
pretreatment temperatures (180°C–230°C) induced further degradation and 
decomposition of monosaccharides into inhibitors (e.g., furfural and HMF) 
(Li et al., 2013). The formation of inhibitors in hydrolysates can cause sugar 
loss and inhibit subsequent enzymatic hydrolysis and fermentation. Thus, the 
detoxification process is commonly needed. Also, since the cellulose and lignin 
are more robust than hemicellulose, they are amenable for recovery. Therefore, 
hydrophobic interaction between residual lignin and cellulose during enzy
matic saccharification is inevitable if there is no surfactant addition. 

Organosolv and ionic liquids as green solvents offer the advantage of 
clean fractionation of lignocellulosic biomass into individual components 
with high purity (Brosse et al., 2009; Dash & Mohanty, 2019; Kim et al., 2018). 
Organosolv allows for the efficient fractionation of starting biomass into a 
solid residue rich in cellulose and a liquid fraction containing organosolv 
and water-soluble lignin and hemicellulose (Brosse et al., 2009). Ionic liquids 
owing hydrogen bond acceptor with high polarity can dissolve Miscanthus 
biomass, and ionic liquids having acetate, chloride, and phosphate anions 
show desirable solubility properties (Padmanabhan et al., 2011). However, 
excessive reagents are consumed for washing pretreated biomass to avoid 
lignin recondensation. Besides, the sealed condition required for organosolv 
and ionic liquid recoveries increases production costs, limiting their feasibil
ity in commercialization. 

To compensate for the drawbacks of a single pretreatment, the physical 
and chemical combinations such as microwave-assisted with acid and alkali 
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(Zhu et al., 2015), dilute acid presoaking coupled with wet explosion (Sørensen 
et al., 2008), dilute acid assisted with ionic liquids (Auxenfans et al., 2014), 
alkaline peroxide and electrolyzed water (Wang et al., 2010), ammonia with 
ionic liquids (Rodríguez et al., 2011), and aqueous ammonia with electron 
beam irradiation (Yang et al., 2015b) have been proposed to boost sugar and 
ethanol yields of Miscanthus biomass. Although some of these approaches, 
when combined, are potentially efficient for removing lignin and hemicel
lulose, complicated procedures need extra capital investment and operating 
costs. Besides, research only demonstrates their feasibility in the laboratory, 
more industrial or life cycle assessments coupled with detailed process eco
nomics are required before commercialization. 

10.3.2 Enzymatic Hydrolysis and Fermentation 

Apart from chemical compositions caused by external and intrinsic ele
ments and pretreatment methods as discussed previously, solid and enzyme 
loading, surfactant addition, and applied microorganisms are also respon
sible for enzymatic hydrolysis and fermentation performances of biomass 
(Vanderghem et al., 2012). 

Low solid loading would be beneficial for shortening enzymatic hydroly
sis and fermentation duration and reaching high ethanol yield but causing 
low ethanol titer, which could be unable to meet the minimal requirement 
(around 40 g L−1) for commercial ethanol distillation. Simultaneous sac
charification and fermentation (SSF) of Miscanthus biomass was commonly 
conducted at solid loading less than 15% with the maximum ethanol titer 
less than 30 g L−1 (Cha et al., 2015a; Scordia et al., 2013; Yoo et al., 2016). Given 
60% of cellulose in pretreated Miscanthus biomass and 90% of glucose-to
ethanol conversion efficiency, the lowest solid loading for SSF should be 
greater than 13% to achieve 40 g L−1 of ethanol concentration. Increasing 
solid loading within certain limits would theoretically enhance ethanol 
concentration. High solid loading with advantages of high ethanol titer 
and less water consumption is preferred from cost-efficiency and environ
mental standpoints (Chen et al., 2016). However, the decrease in glucan-to
ethanol yield is inevitable due to hydrophobic absorption between lignin 
and cellulase inhibiting enzymatic absorption and insufficient mixing 
(Kristensen et al., 2009). Several improvement strategies, such as surfactant 
addition (Alam et al., 2019), size reduction (Khullar et al., 2013), and thermo-
tolerant microbial strains (Cha et al., 2015a), have been explored to enhance 
enzymatic saccharification and microbial digestion at high solid loading. 
However, initial studies aimed only to ferment glucose derived from cel
lulose using hexose-consuming microbial strains such as Saccharomyces 
cerevisiae. Recently, modified strains from genetic engineering capable of 
digesting pentose and hexose simultaneously and pentose-metabolizing 
bacterial strains of Escherichia coli have been developed to ferment the 
potential sugars in biomass sufficiently. 
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10.4 Biomethane and Biohydrogen Production 

Biomethane and biohydrogen production is a renewable and sustainable tech
nological process for Miscanthus biomass by anaerobic digestion (Figure 10.1). 
Compared to grain such as maize, Miscanthus-based biogas presents more 
economical and environmental advantages (Wagner et al., 2019). 

Traditionally, Miscanthus biomass is first subjected to mechanical chop
ping and inoculated with anaerobic sludge performing SSF at thermophilic 
and mesophilic conditions (Klimiuk et al., 2010). The sewage or wastewater 
sludges, crop silages, and animal manures are commonly utilized as inocu
lum, which is composed of acetogenic bacteria and methanogens (Guo et al., 
2010; Kiesel & Lewandowski, 2017; Klimiuk et al., 2010). During fermenta
tion, biomacromolecules (cellulose and hemicellulose) are hydrolyzed to 
monomeric sugars (hexose and pentose) and then digested to organic acids 
and hydrogen by homoacetogens. The acetic acid and hydrogen generated 
as critical intermediates are rapidly consumed and transformed into CH4 

by methanogens (Guo et al., 2010). The potential of Miscanthus biomass for 
methane production has been reported to differ according to biomass har
vest time, genotype, and plant fractions (Mangold et al., 2019; Schmidt et al., 
2018; Wahid et al., 2015). This variation is associated with the compositional 
differences in the starting biomass, which can be mainly reflected by lignin 
incrustation that slowed down the enzymatic hydrolysis efficiency of poly
saccharides (Klimiuk et al., 2010). In the case of fermentation, operational 
conditions, such as slurry pH, pressure, temperature, and microbial strains, 
also reflected notable differences in fermentation processes and were directly 
correlated with the conversion efficiency of carbohydrates to methane and 
hydrogen (Guo et al., 2010). 

For biomethane production, physicochemical pretreatment methods have 
been often proposed to enhance biomass-to-biogas conversion efficiency by 
fractionation and decomposition of recalcitrant structures of Miscanthus 
biomass. Similar to bioethanol production, these mainly include size reduc
tion, ensiling, steam explosion, LHW, acid, alkali, aqueous ammonia soak
ing, hydrogen peroxide, and enzymatic pretreatments (Jurado et al., 2013; 
Katukuri et al., 2017; Li et al., 2016; Menardo et al., 2013; Michalska et al., 
2015; Nges et al., 2016; Zhou et al., 2017). However, the effectiveness of the 
pretreatment highly varied with pretreatment methods and conditions. For 
example, ensiled biomass showed higher methane yield and digestion rate 
than unensiled biomass (Mangold et al., 2019). Aqueous ammonia soaking 
increased methane yield by 25%–27% (Jurado et al., 2013), and hydrogen per
oxide pretreatment increased methane yield by 49% (Katukuri et al., 2017). In 
the case of biohydrogen, one-step extrusion-NaOH pretreatment at moderate 
temperature resulted in 77% delignification and more than 95% of cellulose 
recovery as well as enhanced hydrogen yield (de Vrije et al., 2002). Mild alkali 
pretreatment assisted with Caldicellulosiruptor saccharolyticus and Thermotoga 
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neapolitana strains to achieve hydrogen yields of 2.9 to 3.4mol H2 per mol of 
hexose, corresponding with 74%–85% of sugar yield (de Vrije et al., 2009). 
Although pretreatment functions to boost sugar conversion yield, effective
ness of the chosen pretreatment should be comprehensively determined by 
all-sided criteria, including sugar loss, inhibitor formation, sugar conversion 
yield, and capital input. 

10.5 Thermochemical Conversion 

Thermochemical conversion technologies, including combustion, pyrolysis, 
and gasification, are commonly utilized to produce heat, power, bio-oil, and 
syngas from lignocellulosic biomass (Liu et al., 2017; Saidur et al., 2011). The 
absence or presence of oxygen is the crucial difference between combustion 
and pyrolysis. The thermochemical conversion of Miscanthus biomass is 
discussed in the next section. 

10.5.1 Heat and Power Generation 

It has been reported that more than 90% of the world’s bioenergy was 
obtained from the direct combustion of lignocellulosic biomass due to its 
high maneuverability and economic characteristics (Vassilev et al., 2013), as 
shown in Figure 10.1. 

The calorific value is one of the most important parameters of biomass 
intended for use as a source of energy. The calorific value can be determined 
as higher heating value (HHV) which is the amount of heat released during 
fuel combustion when all products are turned back to precombustion state 
(25°C), so the heat of water condensation is included in value. 

M. × giganteus elemental content and calorific value when the crop is 
produced at the regular agricultural land are summed up in Table 10.3 
(Lewandowski et al., 2000) and Table 10.4 (Nebeska et al., 2019). 

The use of Miscanthus biomass to produce heat and power, and the inter
connection between combustion properties and agronomy practices (flow
ering, fertilization, senescence, and harvesting time), particle size, and 
genotypes are described (Baxter et al., 2012, 2014; Bilandzija et al., 2017; 
Clifton-Brown et al., 2004; Finnan & Burke, 2016; Iqbal & Lewandowski, 2016; 
Iqbal et al., 2017; Jensen et al., 2017; Lanzerstorfer, 2019; Meehan et al., 2013; 
Osman et al., 2017; Wilk et al., 2017). However, the presence of high quantities 
of alkali metal species in biomass ash often results in the formation of liquid 
phases such as alkali sulfates, silicates, and chlorides during combustion, 
which is responsible in slagging, fouling, corrosions, and agglomeration of 
bed material (Cruz et al., 2019; Morris et al., 2018; Nunes et al., 2016). In addi
tion, the agglomeration severity is also related to operational variables, such 
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TABLE 10.3 

M. × giganteus Biomass Elemental Content and Calorific Value 

Country Austria Germany Denmark Greece 

Age of stand (years) 3 3 3–5 2–3 
Month of harvest January/ February/ January/ End of growing 

February March April season 
Water content (% fresh water) 30 16–28 21–48 38–44 
Ash (% dry matter) 2.79 1.62–4.02 - 1.60 
N (% dry matter) 0.49 0.19–0.39 0.58–0.67 0.33 
P (% dry matter) - - -
K (% dry matter) - 0.52–0.94 0.31–0.48 -
S (% dry matter) 0.04 0.07–0.10 - -
Cl (% dry matter) 0.24 0.10–0.17 0.04–0.12 -
C (% dry matter) 48.3 47.8–49.7 - -
Calorific value (MJ kg-1) 19.12 17.05–18.54 - -

Source: Modified from Lewandowski et al. (2000). 

TABLE 10.4 

The Calorific Value of Miscanthus Biomass While Produced in the Regular 
Agricultural Soil 

Location of the 
Miscanthus Plantation Harvesting Time HHV (MJ kg−1) Reference 

Croatia Autumn & winter & 18.19 ± 0.27b Bilandzija et al. (2017) 
spring 

France n/d 17.80b Jeguirim et al. (2010) 
Germany March 17.74 Michel et al. (2006) 
Poland July 19.04b Dukiewicz et al. (2014) 
Spain n/d 18.07 ± 0.16b García et al. (2012) 
United Kingdom October 17.5 4± 0.13a Jensen et al. (2017) 
United Kingdom February 17.58 ± 0.05a Jensen et al. (2017) 
United Kingdom September 18.20a Mos et al. (2013) 
United Kingdom February 18.80a Mos et al. (2013) 
United Kingdom February 19.19 ± 0.30a Baxter et al. (2014) 

Source: Modified from Nebeska et al. (2019). 
a Calculation from ultimate analysis.
 
b Calorimetry.
 

as combustion temperature, fluidizing gas velocity, and additives (Morris 
et al., 2018). To date, ashes (bottom ash and fly ash) obtained after combus
tion are currently (around 70%) landfilled (Cruz et al., 2019). To valorize bio
mass ash, the biomass will be treated through hot water washing before the 
combustion process to remove the problematic chemical elements from the 
biomass efficiently and reduce acid gas formation and corrosion in the boiler 
(Gudka et al., 2016). 
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TABLE 10.5 

Combustion Heats of M. × giganteus Biomass Produced at the 
Military Soil from Mimon (Czech Republic) and Control Soil 

HHV (MJ kg−1) 

Biomass from control soil 17.30 ± 0.2 
Biomass from Mimon soil 17.10 ± 0.2 
Other Fuels 
Dry wood (20%) 16.0 
Brown coal (from Most, Czech Republic) 11.7–17.2 
Black coal (from Ostrava, Czech Republic) 22.8–29.2 
Coke 27.5 
Mineral oil 40.6–42.3 
Wheat straw 15.5 
Paper 14,1 
Waste plastics (separated) 23.0 
Waste tires 25.0 

Source: Modified from Nebeska et al. (2019). 

In Table 10.5 the HHV value of M. × giganteus biomass produced at the 
military site (Mimon, Czech Republic) and control soil is presented (for 
sum: leaves + stems). The biomass was taken after 2 years of vegetation and 
harvested at the end of vegetation. In comparison, the amount of energy 
(combustion heat) obtained from burning of other fuels is summarized. 

Even though the measuring was done for Miscanthus biomass that was 
not yet fully mature, the combustion energy was quite high, comparable to 
energy produced by wood or brown coal. When M. × giganteus was culti
vated in Mimon soil, it had a slight negative effect on the value of combustion 
heat (17.10 ± 0.2 for biomass from Mimon military soil compared to 17.30 ± 0.2 
for biomass from control soil). 

10.5.2 Bio-Oil and Syngas Production 

Pyrolysis and gasification have attracted considerable attention to convert 
Miscanthus biomass into liquid bio-oil, solid biochar, and syngas (carbon 
dioxide, carbon monoxide, hydrogen, and hydrocarbons) (Jayaraman & 
Gökalp, 2015). These are achieved by reacting the biomass at high tempera
tures (more than 400°C), without combustion, with a controlled amount of 
oxygen and steam, as shown in Figure 10.1. During pyrolysis and gasifica
tion, a number of chemical reactions are involved in the formation of bio
oil and syngas, including dehydration, depolymerization, isomerization, 
aromatization, decarboxylation, and charring (Kan et al., 2016; Wang et al., 
2017), which occur chaotically as the observation of transitional behav
ior through thermogravimetric analysis (Jayaraman & Gökalp, 2015). The 
decomposition of biomass components was reported to vary: hemicellulose 
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(250°C–350°C), cellulose (325°C–400°C), and lignin (300°C–550°C) (Isahak 
et al., 2012; Kan et al., 2016). After fast pyrolysis, bio-oil, syngas, and bio
char typically account for 60%–70%, 13%–25%, and 12%–15%, respectively 
(Isahak et al., 2012). 

The yield and quality of bio-oil and syngas during pyrolysis or gasification 
can be determined by parent biomass (organic composition, inorganic impuri
ties, harvesting time, senescence time, and genotype) and operational (pretreat
ment, temperature, size reduction, feed rate, gas flow rate, and catalytic type) 
factors (Banks et al., 2014; Bok et al., 2013; Dickerson & Soria, 2013; Greenhalf 
et al., 2013; Heo et al., 2010; Kim et al., 2016; Kim et al., 2014; Melligan et al., 2011; 
Mos et al., 2013; Yorgun & Şimşek, 2008, 2003). Although biomass inorganics 
remain predominantly in the biochar, the fraction ejected as well as fine bio
char particles entrained can have drastic impacts on the bio-oil properties and 
product yields (Liu et al., 2017). Inorganic impurities create specific challenges 
ranging from corrosion and fouling of surfaces to rapid and permanent deacti
vation of catalysts (Liu et al., 2017). Moreover, the chemical interaction between 
hemicellulose and lignin induces the generation of lignin-derived phenols, 
limiting hydrocarbon formation (Wang et al., 2011), and the cross-link between 
lignin and cellulose has a negative influence on the formation and distribution 
of pyrolysis products (Hosoya et al., 2007). 

In order to make the biomass amenable, mechanical refining, thermal 
(torrefaction, steam explosion, ultrasound, and microwave irradiation), 
chemical (acid, alkali, and ionic liquid), and biological (microbial consor
tium and enzymes) pretreatments have been widely proposed to enhance 
biomass conversion efficiency and quality of bio-oil and syngas (Kan et al., 
2016; Wang et al., 2017). However, these are not reviewed in this chapter 
due to the limited available studies. Regardless of which pretreatment is 
used, the intrinsic mechanism is mainly to (i) modify structural character
istics and alter chemical composition by decomposing hemicellulose and 
disrupting lignin; (ii) increase energy density; (iii) eliminate mineral sub
stance (ash content). From the intrinsic mechanism, CO2 and CO mainly 
derive from the degradation and recombination of carbonyl (C=O) and 
carboxyl (COO) groups (Qu et al., 2011), while CH4 is primarily ascribed 
to methoxyl (–O–CH3) and methylene (–CH2–) groups and H2 results from 
aromatic C=C and C–H groups (Liu et al., 2008). Therefore, changes in cel
lulose, hemicellulose, and lignin content of biomass would cause elemen
tal variation, thus influencing the final composition and quality of bio-oil 
and syngas during pyrolysis. 

The application of bio-oil obtained from biomass pyrolysis as candidate 
combustion fuels for electricity and heat production has been extensively 
investigated (Kan et al., 2016). However, due to the poor quality (weak vol
atility, high viscosity, and high corrosiveness), its long-term operation in a 
diesel test engine is still unfeasible (Bridgwater, 1999). Therefore, further bio
refining and upgrading of bio-oil using catalytic cracking technologies, high-
pressure hydroprocessing, steam reforming, and gasification are needed to 
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render it matchable to engines (Butler et al., 2011; Kan et al., 2016). For syngas, 
it can be directly used for gas combustion in spark ignition and compression 
ignition engines as well as further biofuel synthesis (Qu et al., 2011). 
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11 
Miscanthus as Raw Materials 
for Bio-based Products 

Valentina Pidlisnyuk, Larry E. Erickson, Donghai Wang, 
Jikai Zhao, Tatyana Stefanovska, and John R. Schlup 

Abstract 

There is great interest in products from Miscanthus because large 
quantities of biomass can be produced annually. There are simple uses 
such as bedding for animals, mulch for horticulture applications, and 
insulation to improve energy conservation. Miscanthus has excellent 
natural absorbent qualities which makes it very attractive for spill 
management and as a bedding material. Compostable foodservice 
ware has been produced from Miscanthus to replace products from 
plastic that do not biodegrade. Building applications include fiber
board, particleboard, and composites. Miscanthus has high-quality cel
lulose for material applications and is an excellent source of cellulose 
where high quality is important. Nanocellulose applications from this 
crop are of interest and this is an active area of research, and cellulose 
from Miscanthus for paper production is one of the applications that is 
included in this chapter. 
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11.1 Introduction 

Miscanthus harvests provide large quantities of biomass. This chapter 
includes a review of alternative uses for Miscanthus that is produced at 
phytoremediation sites and regular agricultural lands. Since the loca
tions and sizes of contaminated sites have diversity, it is good to have 
many potential uses for the biomass that is produced and harvested 
(Nsanganwimana et al., 2014). The interest in products that are biodegrad
able is growing because of pollution associated with plastic products that 
do not biodegrade. 

The major constituents in Miscanthus are cellulose, hemicellulose, and lig
nin. These substances are very common in grasses, bushes, and trees. Wheat 
straw, corn stover, switchgrass, giant reed, reed canary grass, bamboo, and 
many other plants are good sources of cellulose, hemicellulose, and lignin. 
Because of all of the different sources, there is competition in the market
place. There are also huge markets for biomass all over the world. The pulp 
and paper industry is an example. Biomass is used for energy, and it is bet
ter to burn renewable carbon than coal. The average breakdown of these 
components is shown in Table 11.1. 

In the development of products from Miscanthus, the importance of mak
ing products from renewable biomass rather than from petrochemicals has 
received significant attention recently (Alexopoulou, 2018; Eschenhagen et 
al., 2019; Moll et al., 2020; Peças et al., 2018; Wang et al., 2018). Miscanthus 
removes carbon from the atmosphere as it grows; this carbon can be incor
porated into building materials and other bio-based products, thus reducing 
the time associated with the carbon cycle. Carbon associated with sequestra
tion is rapidly removed from the atmosphere and stored in bio-based prod
ucts for many years. 

Some products from Miscanthus are easy to implement and have use at 
many locations in numerous formulations. Examples of applications that 
require little processing of the Miscanthus include bedding for livestock 
and mulch in horticulture applications. It can also be employed as a soil 

TABLE 11.1 

Miscanthus Biomass Dry Weight Composition (wt. %) 

Parameter Value 

Cellulose 42–50 
Hemicellulose 25–28 
Lignin 12–16 
Ash 2.5–3 
Water 10.5 
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amendment to add organic carbon and nutrients to a site. Like other types of 
biomass, Miscanthus pellets can be used as a fuel in stoves designed to burn 
pelletized wood and another biomass. This chapter will review the utiliza
tion of Miscanthus in bio-based materials. 

11.2 Material Products 

11.2.1 Agricultural Products 

11.2.1.1 Bedding Applications 

Bedding is an important resource for raising confined livestock. Due to its 
similarity to other agriculture materials employed in this application, over 
the last 10years, there has been growing interest in Miscanthus as a high-
quality product as bedding for poultry, pigs, sheep, cattle, and horses. One of 
the advantages of this application is that it has value in many locations. Its 
use in this application is straightforward, and it can be used directly without 
processing. It has good absorbent qualities, and it lasts longer than many 
other alternatives (Van Weyenberg et al., 2015). It is a clean product; the addi
tion of the used bedding (Miscanthus with manure added) to soil has been 
shown to improve soil quality. 

11.2.1.2 Mulch Applications 

Mulch is used in many locations having diverse beneficial uses. Miscanthus 
may be used as a sustainable mulch in gardens and other horticulture appli
cations such as in a new orchard (Samson et al., 2018). Mulch formed from 
the crop improves the aggregate stability of the soil to which it is applied. 
The increase in organic matter formation results in increases in the microbial 
numbers and earthworm populations. Phosphorus and potassium concen
trations often increase while evaporation, weed growth, and soil erosion are 
reduced. This application is simple and it provides a good alternative for har
vested Miscanthus in many countries. 

11.2.2 Insulation 

Miscanthus may be used for insulation in buildings to improve energy effi
ciency. A very clear example of this application was demonstrated in Wales 
with the construction of a house utilizing baled Miscanthus during 2017 
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(Construction Manager Magazine, 2017). Once framed, Miscanthus bales 
are placed within the frame in a manner similar to that employing wheat 
straw bales. The demonstration project was a collaboration between the 
University of Aberystwyth, the Centre for Alternative Technology, UK, and 
Terravesta (a company specializing in Miscanthus technology). In addi
tion to taking advantage of Miscanthus as insulation, a primary goal is 
to reduce the large carbon footprint associated with conventional housing 
construction. 

As an insulation material, harvested product may be used directly. 
However, there are several processing alternatives in using Miscanthus for 
insulation (Moll et al., 2020). A comprehensive review of insulation mate
rials from biomass is available (Liu et al., 2017). Low thermal conductivity 
is important in insulation materials. In some applications sound absorption 
is very important as well. There is a growing interest in renewable materi
als because of the importance of reducing greenhouse gas emissions. This 
has resulted in an increase in the use of natural biomass insulation materials 
(Bozsaky, 2019) with a patent being issued for such applications (Huesemann-
Lammert, 2006). 

In 2012 Karl Schock, a German engineer, began the development of an 
insulating board based on Miscanthus or Napier grass. These are now fab
ricated through a German company, ISOCALM (GmbH, 2012), and are mar
keted as plaster carrier mats with thermal insulation. The reported thermal 
conductivity is 0.45 W m−1 K−1. 

Cardenas et al. (2015) demonstrated the use of Miscanthus as a block-type 
insulation material. While exploring formulations and processing condi
tions, thermal conductivities ranging between 0.079 and 0.116 W m−1 K−1 were 
obtained. The flexural strength of the Miscanthus product resembled that of 
expanded polystyrene, type IX. 

Biomass insulation materials can be used in the natural form as some of 
the examples above illustrate. However, two obvious issues of concern with 
thermal insulation applications are fire safety and the impact of biological 
organisms using the Miscanthus as a food source. Any application as an 
insulation material must meet product standards related to fire safety. The 
integrity of the material must remain even if microbes and other organisms 
are present. Additives such as borax and aluminum sulfate may be added to 
improve fire resistance and reduce mold growth (Lopez Hurtado et al., 2016). 
Formulations have been reported which include ~1.75wt.% borax, 1.75wt.% 
sodium carbonate, and 0.5 wt.% fungicide. 

The experience gained from formulating cellulose insulation with recy
cled paper may well be applicable. The thermal conductivity of cellulose 
insulation is approximately 0.040 W m−1 K−1; that value increases with mois
ture content. Low moisture content is desirable as it does not support mold 
growth. Borate salts, boric acid, and aluminum sulfate are often mixed into 
cellulose fibers to prevent combustion and mold growth (Lopez Hurtado 
et al., 2016). 
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11.2.3 Composites, Building Materials, Cement 

The construction industry relies on a diverse array of board products in 
which lignocellulose fibers and particles take a variety of forms. These 
products include plywood, particleboard, fiberboard, and strand board. All 
of these products typically involve the use of some kind of bonding agent. 
Typical fiberboard compositions are similar to 82% of wood/lignocellulose, 
9% of resin, 1% of paraffin, and 8% of water. 

Fiberboard and particleboard can be produced from Miscanthus and used 
as insulation and paneling (Tajuddin et al., 2016). Particleboard from this crop 
has good qualities when produced by hot pressing and steam processes. The 
data in Table 11.2 below provide data on a Miscanthus fiberboard fabricated 
by Velasquez et al. (2002). Property data for medium-density fiberboard is 
provided as a comparison. 

Lignin has been used as an adhesive in the production of particleboard. It 
has a glass transition temperature of about 200°C and is an effective binder 
when particleboard is produced by hot pressing. Good results have been 
obtained using Miscanthus. This was the approach employed by Velasquez 
et al. (2002) and Salvadó et al. (2003). An example of hot-pressing conditions 
is 180°C and 5.3 MPa for 10 minutes, yielding a board thickness of 5mm and 
product density of 1.0 g cm−3 (Tajuddin et al., 2016). In a comparison with 
other natural fibers, Miscanthus had the largest value of modulus of rup
ture at 61 MPa. In some work, additional lignin is added to improve bonding 
(Hubbe et al., 2018). While there has been significant progress in the develop
ment of insulation and building materials from Miscanthus biomass, particle 
size, the aspect ratios of the cellulose fibers, and bonding of particles are 
areas of ongoing research (Moll et al., 2020). 

The development of lightweight concrete through the incorporation of 
biomass is not a new concept with a patent issued in 2008 with the assignee 
being Miscanthus-Holdings, SA (Luxembourg) (Hohn, 2008). Several 
studies of Miscanthus-based lightweight concrete have been reported 
(Chen et al., 2017, 2020; Ezechiels, 2017; Waldmann et al., 2016). In addition 

TABLE 11.2 

A Comparison of Properties for a Miscanthus Fiberboard versus Typical Data for 
Medium-Density Fiberboard 

Specific 
Density Modulus 
(Mg m−3) (MPa kg−1 m3) 

Rupture 
Modulus 

(MPa) 
Thickness 
Swelling 

Water 
Adsorption Reference 

Miscanthus 
fiberboard 

0.99–1.2 6.0 50–60 5%–60% 20%–40% Velasquez 
et al. (2002) 

Regular medium-
density 
fiberboard 

0.9–1.0 ~6–8 60–90 - - CES 
Edupack 

(2017) 
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to producing a lower density concrete, formulations have been developed 
that have attractive acoustic absorption properties (Chen et al., 2017) and 
improved environmental impact (Courard & Parmentier, 2017). Typical 
densities are in the range of 0.65–1.25 Mg m−3. A thermal conductivity of 
0.17 W m−1 K−1 was reported at a density of 0.800 Mg m−3. The goal has been 
to achieve compressive strengths exceeding 2.5 MPa; a 9 vol% fiber content 
has been shown to reduce the density by 20%. The volume content of the 
fiber in the mix is the important metric. It is important to realize that a 
fiber content of 9 vol% corresponds to 0.98 wt.% in the mix. 

11.2.4 Composite Materials 

The incorporation of Miscanthus fibers in composites has been investigated 
and the results have generated significant interest in developing products 
for use in buildings, vehicles, and other applications (Moll et al., 2020; 
Muthuraj et al., 2017). The amount of each component in the system, the 
dispersion of the fibers within the matrix, the particle size and aspect ratio 
of the Miscanthus fibers, the conditions of processing are important vari
ables in producing composites for specific applications (Moll et al., 2020; 
Nagarajan et al., 2013). Materials in composites should be selected based on 
the desired properties for the application. The material properties of green 
composites have been reviewed and compared to those of other materi
als (Dicker et al., 2014). Biocomposites have the potential of lower costs 
and lower densities when compared to more traditional polymer matrix 
composites. 

Miscanthus fibers have been incorporated into biocomposites. While any 
number of resin systems could be employed as the matrix, the materials 
selected for the matrix should be biodegradable if the biocomposite is to be 
truly biodegradable (Muthuraj et al., 2017). Polylactic acid, maleic anhydride, 
and poly(butylene succinate) (Muthuraj et al., 2015), poly(3-hydroxybutyrate
co-hydroxyvalerate) (Zhang et al., 2014), and biodegradable binary blends 
(Muthuraj et al., 2017) are examples of matrices used with Miscanthus fibers 
to form biocomposites. 

Miscanthus fiber length has been found to be an important variable for 
impact strength (Muthuraj et al., 2016). Nanocellulose fibers have excellent 
properties when they are incorporated into composites (Barbash et al., 2019, 
2020; Yang et al., 2019). The crop can be used as a raw material for the produc
tion of nanocellulose and cellulose nanocrystals (Cudjoe et al., 2017). Cellulose 
nanofibers may have crystalline domains, width between 3 and 20nm, and 
length between 100 and 4000 nm (Yang et al., 2019). Nanocrystalline films 
have been formed with tensile strengths ranging from about 50 to 100MPa 
(Barbash et al., 2020). The cellulose in Miscanthus has excellent quality for 
material applications, and it can be produced in large quantities at a reason
able price. 

http:0.65�1.25
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11.2.5 Hemicelluloses 

Hydrothermal processes may be used to extract hemicelluloses from 
Miscanthus at temperatures from 160°C to 180°C (Wang et al., 2018; Xiao 
et al., 2017). Arabinoxylans are the most common hemicellulose polymers 
in Miscanthus (Schäfer et al., 2019). Hydrolysis of the hemicellulose yields 
mostly xylose and a small amount of arabinose (Schäfer et al., 2019). For some 
applications of cellulose, it is beneficial to remove most of the hemicellulose. 
There is a market for xylose as a raw material for fermentation and other uses. 

11.3 Processing of Miscanthus to Fibers, Pulp, and Papers 

Pulp for paper production is divided into three main categories (Liu et al., 
2018): wood fiber, nonwood fiber, and waste paper; the shares of which in 
the pulp and paper industry are currently 63%, 3%, and 34%, respectively. 
Nevertheless, the increasing potential of nonwood resources is a conse
quence of decreasing of forest resources (Lwako et al., 2013). The overall 
potential of nonwood plant raw materials which can be processed to pulp 
is about 2.5 billion tons per year and is renewed annually (Saijonkari-
Pahkala, 2001). The use of nonwood plant raw materials in the production of 
pulp goes back to the origins of the paper industry and remains an urgent 
focus for the industry as forestry resources diminish (Ververis et al., 2004). 
Promising alternative plants include different crops, and Miscanthus is a 
leading candidate (Danielewicz et al., 2018) due to its high growth rates, 
high lignin content, and ability to grow on marginal and degraded lands, 
where the food production is prohibited. This latter factor eliminates com
petition with food production. The pulp from perennial grass biomass can 
to be added to the existing wood feedstock (Bocianowski et al., 2019a, b), be 
processed separately (Danielewicz et al., 2015), or mixed with waste papers 
(Cappelletto et al., 2000). 

Generally, the paper manufacturing process has several stages, i.e., raw 
material preparation and handling, pulp manufacturing, pulp washing 
and screening, chemical recovery, bleaching, stock preparation, and paper-
making (Bajpai, 2018). Paper production is basically a two-step process in 
which a fibrous raw material is first converted into pulp, and then the pulp 
is converted into paper. The harvested wood is first processed so that the 
fibers are separated from the unusable fraction of the wood, the lignin. Pulp 
making can be done mechanically or chemically. The pulp is then bleached 
and further processed, depending on the type and grade of paper that is to 
be produced. In the paper factory, the pulp is dried and pressed to produce 
paper sheets. Post use, an increasing fraction of paper and paper products is 
recycled, which avoids landfilling or incinerating. 
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For papermaking, the internodes of Miscanthus stalks have better cellular 
composition than the nodes and pith. The stalks require less alkali for Kraft 
pulping compared to birch (Danielewicz et al., 2018; Kordsachia & Patt, 1991). 

The technique used for the pulping operations consists of three procedures: 
preliminary dry-mechanical treatment which initially compresses the crop’s 
stems, a high yield pulping process, followed by a peroxide bleach sequence. 
Cappelletto et al. (2000) argued that cells found in biomass, i.e., epithelial, scle
renchyma, parenchyma, and medullar rays do not possess the correct dimen
sions for papermaking. Hence, it is necessary to reduce the number of these 
cells prior to the pulping process by dry-mechanical treatment. This divides 
the raw material into uniform segments and to remove leaves and pith. In 
turn, this pretreatment decreases the chemical consumption during pulping, 
thus reducing pollution of wastewater. To generate papermaking pulps from 
fibrous fractions of Miscanthus, a four-stage mechanical pretreatment oper
ation was designed (Cappelletto & Mongardini, 1997). The first stage com
pacted the Miscanthus stalks by cutting the raw material using a blade mill. 
The second step used fans to transport the cut material, and the third stage 
contained a cyclone that was utilized to divide light fractions. Finally, the last 
stage separated hefty fines. These operations help to obtain a higher number 
of fibers because foreign matter like dust, sand, and pebbles are removed; it 
eliminates useless material such as leaves, pith, epithelial, and parenchyma 
cells of stems. The resulting material will contain a higher percentage of fibers. 

There are few standard methods for obtaining pulp from wood and non-
wood raw materials, i.e., the sulfate, sulfite, and neutral-sulfite methods. 
These negatively influence the environment because of the application of 
sulfur-containing reagents for lignin removal from plant materials. Most of 
the lignin is removed during cooking, but there is some residual lignin that 
can be removed in an additional stage by bleaching, using chlorine-based 
and oxygen-based chemicals (Smook, 2002). 

It has been shown that variations of the growing conditions may consid
erably influence the cooking results during pulping of Miscanthus sinensis 
(Kordsachia et al., 1993). Two different raw material samples were obtained 
from 3-year-old plantations in Germany and Sweden, and harvested 
in spring. The raw material grown in Germany gave better cooking results, 
in particular, higher pulping yields (Table 11.3). 

TABLE 11.3 

Comparison of Pulp Strength of Two Different Sources of M. sinensis 

Country of Breaking Runability 
Origin Cooking Process Length (km) Tear Strength (cN) Factor 

Germany AS/AQ 8.32 70.8 7.6 
NS/AQ 8.12 61.8 7.1 

Sweden AS/AQ 7.80 74.0 7.6 
NS/AQ 7.71 80.8 7.9 

Source: Modified from Kordsachia et al. (1993). 
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Cooking of the leaf-fraction results in much lower yield, brightness, and pulp 
viscosity in comparison with stalks (Kordsachia et al., 1993). However, when 
whole plant material is cooked, the adverse effect of leaves is hardly evident. 
Miscanthus sinensis has some outstanding features in comparison with other 
nonwood pulping raw materials, i.e., high delignification rate obtained with 
a low chemical change. The high yield, good bleaching ability, and excellent 
strength properties nearly match those of pulps prepared from poplar.

Organosolvent delignification has been suggested as an environmentally 
friendly process and an alternative way for obtaining pulp. Organic reagents 
have the potential to remove lignin and hemicelluloses at boiling temper-
atures. A variety of organic solvents such as esters, alcohols, ketones, and 
organic acids have been offered for cooking (Barbash et al., 2011). Among 
organic solvents, acetic acid is regarded as a potential agent to achieve exten-
sive delignification due to its relatively low cost. The application of hydrogen 
peroxide during cooking promotes delignification of raw materials; increased 
brightness can also be achieved by delignification with peroxyl compounds. 
At the same time, less pronounced degradation of the cellulose is observed 
during cooking with such compounds. The cooking process is carried out at 
low temperature which helps to reduce energy consumption.

11.4  Production of Pulp from M. × giganteus Biomass 
Produced on Pb-Contaminated Soil

A laboratory experiment was done to evaluate the production of pulp from 
Miscanthus biomass growth in Pb contaminated soil with concentrations in 
between 583 and 604 mg kg−1; other trace elements, Mn, Ni, Cu, Zn, Sr, Zr, 
were detected in smaller concentrations (Table 11.4). The biomass for produc-
tion of pulp was harvested in spring 2018.

TABLE 11.4 

Content of Trace Elements in the Soil of Three Replicated Plots, mg kg−1

Trace Elements Plot 1 Plot 2 Plot 3

Mn 452 ± 34.31 764.93 ± 50.32 468.19 ± 34.98
Fe 15,975 ± 92 16,949 ± 95 17,799 ± 97
Ni 16.29 ± 8.40 14.48 ± 8.65 17.34 ± 8.73
Cu 127.70 ± 5.83 134.80 ± 6.21 130.25 ± 6.20
Zn 130.15 ± 6.33 174.99 ± 7.18 146.42 ± 11.64
Sr 78.72 ± 2.08 80.72 ± 2.11 76.51 ± 2.16
Zr 665.84 ± 4.01 678.75 ± 4.08 660.72 ± 4.10
Pb 604.16 ± 9.60 612.01 ± 8.67 583.15 ± 8.83
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Cooking of pulp from Miscanthus stalks was done by the peracetic method, 
which is environmentally friendly than traditional sulfate and sulfite meth
ods of cellulose production and is characterized by lower energy costs com
pared with conventional and other organosolvent methods of delignification 
(Barbash et al., 2011, 2020). 

The chemical composition of different parts of the Miscanthus stalks in 
comparison with other nonwood plants raw materials and hardwood and 
softwood species is given in Table 11.5. 

It can be seen that according to the content of cellulose the mixture of 
Miscanthus stalks exceeds the content of cellulose in a mixture of wheat 
straw, rapeseed, hemp, wood; however, it is similar to a mixture of flax. 
Miscanthus stalks have a relatively high lignin content, close to the lignin 
content in rapeseed and spruce stems; have a close mineral content (ash 

TABLE 11.5 

Chemical Composition of Different Parts of Nonwood Plant Raw Materials and 
Wood, % from Mass of Absolutely Dry Raw Materials 

Solubility in 

Parts Plants Cellulose Lignin Water NaOH RFWa Ash 

M. × giganteus 

Mixture 53.3 ± 1.47 25.5 ± 0.645 3.3 ± 0.49 25.1 ± 0.79 1.86 ± 0.15 1.71 ± 0.14 
Internodes 55.8 ± 1.48 25.1 ± 0.63 3.0 ± 0.48 24.1 ± 0.78 2.04 ± 0.16 1.60 ± 0.13 
Knots 46.6 ± 1.39 27.0 ± 0.65 4.2 ± 0.51 27.9 ± 0.81 1.81 ± 0.17 1.77 ± 0.15 

Wheat Straw 

Mixture 44.3 ± 1.33 16.5 ± 0.58 10.1 ± 0.5 38.4 ± 0.99 5.2 ± 0.2 6.6 ± 0.18 
Stalk 46.2 ± 1.34 18.6 ± 0.60 6.0 ± 0.48 36.2 ± 0.98 4.6 ± 0.19 4.2 ± 0.17 
Leaves 42.3 ± 1.35 15.2 ± 0.59 9.8 ± 0.52 40.1 ± 1.05 6.5 ± 0.19 9.4 ± 0.19 

Rape 

Stalk 35.6 ± 1.28 22.9 ± 0.65 11.6 ± 0.52 25.6 ± 0.81 4.8 ± 0.19 3.3 ± 0.16 
Root 28.3 ± 1.29 27.7 ± 0.71 10.9 ± 0.53 31.5 ± 0.82 2.4 ± 0.21 5.4 ± 0.18 

Flax 

Mixture 59.6 ± 1.41 10.9 ± 0.58 4.1 ± 0.49 13.6 ± 0.77 4.7 ± 0.19 2.4 ± 0.14 
Fiber 69.5 ± 1.52 6.1 ± 0.61 3.7 ± 0.43 13.4 ± 0.66 3.6 ± 0.11 1.5 ± 0.12 
Wood part 42.0 ± 1.36 23.6 ± 0.73 5.2 ± 0.54 19.4 ± 0.82 5.2 ± 0.24 2.8 ± 0.15 

Hemp 

Mixture 46.2 ± 1.33 17.0 ± 0.53 6.9 ± 0.49 25.0 ± 0.69 2.2 ± 0.13 2.6 ± 0.12 
Bast 67.8 ± 1.51 6.5 ± 0.48 3.8 ± 0.47 20.8 ± 0.57 1.9 ± 0.12 1.5 ± 0.11 
Wood part 42.2 ± 1.34 12.5 ± 0.69 5.1 ± 0.53 22.9 ± 0.72 3.7 ± 0.15 2.9 ± 0.14 

Wood 

Birch tree 41.0 ± 1.29 21.0 ± 0.54 2.2 ± 0.52 11.2 ± 0.68 1.8 ± 0.15 0.5 ± 0.07 
Spruce 46.1 ± 1.35 28.5 ± 0.61 7.3 ± 0.54 18.3 ± 0.59 2.9 ± 0.18 0.2 ± 0.05 

Source: Modified from Barbash et al. (2018). 
a RFW, resins, fats, waxes. 
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TABLE 11.6 

Content of the Trace Elements in Pulp, mg kg−1 

Trace Elements Sample 1 Sample 2 Sample 3 Average Value 

Ti 3.64 ± 1.12 2.97 ± 1.08 3.53 ± 1.40 3.38 ± 1.20 
Mn 2.24 ± 0.25 2.21 ± 0.23 2.96 ± 0.31 2.47 ± 0.26 
Fe 16.02 ± 0.35 16.13 ± 0.33 25.02 ± 0.47 19.06 ± 0.38 
Ni 0.24 ± 0.08 0.28 ± 0.08 0.29 ± 0.10 0.27 ± 0.09 
Cu 88.77 ± 0.43 81.31 ± 0.39 104.67 ± 0.50 91.58 ± 0.44 
Zn 23.14 ± 0.21 20.94 ± 0.19 28.55 ± 0.26 24.21 ± 0.22 
Sr 0.22 ± 0.01 0.19 ± 0.01 0.24 ± 0.02 0.22 ± 0.01 
Sn 0.71 ± 0.06 0.62 ± 0.06 0.76 ± 0.07 0.70 ± 0.06 
Pb 13.06 ± 0.12 11.68 ± 0.12 15.08 ± 0.16 13.28 ± 0.13 

content) to other nonwood plant materials; and significantly exceed the 
value of this indicator in softwood and hardwood (Danielewicz et al., 2015). 
The organosolvent peracetic pulp from M. × giganteus with the duration of 
cooking 90 minutes was selected for investigation of physical properties. 
The strength properties of handmade sheets from peracetic pulps had the 
following physical and mechanical parameters: breaking length 8300 m, 
tear resistance 310 mN, burst resistance 220 kPa. The obtained data testify 
to high physical and mechanical indicators and the possibility of using 
this cellulose in the production of various types of paper and cardboard 
(Barbash et al., 2020). 

This pulp was analyzed for the content of Pb and other elements; using 
the X-Ray Roentgen-fluorescence analysis, results are presented at Table 11.6. 
The concentrations of Mn, Fe, Ni, Cu, Zn Sr, Pb and Zr are limited, so pulp 
may be used for further processing. 

The research describes the conversion process of M. × giganteus biomass 
produced in trace elements contaminated soil to pulp using peracetic treat
ments. The delignification of initial raw material yielded pulp with a low 
lignin and ash content and high brightness at low energy costs and in a short 
cooking time with limited concentration of trace elements. 
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12 
Conclusions and Recommendations 

Larry E. Erickson, Valentina Pidlisnyuk, and Lawrence C. Davis 

Abstract 

Contamination of soil is a global concern. All inhabited parts of the 
world have land that is not being used productively because of past 
activities that have reduced soil quality. Improving the effectiveness 
and efficiency of phytotechnologies as well as reducing the costs of site 
restoration have value for society as better methods are used for revital
ization of the contaminated sites. Great progress in developing phyto
technologies with biomass production has been reported. Miscanthus 
has been used with good results at many sites because the plant grows 
well in different marginal and contaminated soils. New knowledge 
has been developed on actions to take to increase biomass production 
at contaminated sites. The benefits of harvesting useful products and 
improving soil health during Miscanthus growth including those with 
adding amendments positively influenced the economics of land rec
lamation using phytotechnologies. Increased efforts to apply phyto
technologies with biomass production to improve contaminated sites 
and processing of harvested Miscanthus to different bioproducts are 
recommended. 
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12.1 Conclusions 

The applications of phytotechnologies depend on climate, local conditions 
including soil health, and plans for the site. The plans to address a contami
nation issue at a specific site should be developed based on available infor
mation on the site and on science and engineering knowledge. Miscanthus 
is one of many plants that have value for phytoremediation applications and 
has been investigated in several studies with positive results. 
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The contents of this book and in the references that have been included 
provide very useful information. Phytoremediation with biomass produc
tion has value as sustainability of land use is considered at specific sites that 
have contamination from past military and mining activities or other uses. 
Social value, environmental goals, and economic benefits enter into consider
ation as plans are developed. There has been very significant scientific prog
ress during the last 30years and many successful field applications have been 
carried out as reported in this book. 

Chapters 2 and 3 review progress in developing phytotechnologies for 
addressing inorganic and organic soil contaminants, respectively. Miscanthus 
has been grown in many different environments with good results. Energy 
crops have been used in soils with trace elements contamination as well as 
at sites with organic contaminants. Phytostabilization with biomass produc
tion has been developed and applied at sites with inorganic contaminants 
such as lead and other trace elements. Methods to reduce the bioavailability 
of the trace elements are beneficial where biomass production is the primary 
objective and the uptake of trace elements into the biomass is intended to 
be small. There are many biomass products such as wood and paper where 
small quantities of trace elements in the finished product are acceptable with 
respect to health and safety. National and international regulations of course 
must be observed in this regard. 

For soils with organic contaminants, the better options use strategies in 
which the contaminants are biodegraded or transformed by chemical pro
cesses. The goal is often to improve soil health such that the concentra
tions of any contaminants are reduced to levels so that they are no longer 
a concern, or are converted into less harmful products. Phytoremediation 
with biomass production can be implemented at many sites with organic 
contaminants where the biomass products are cellulosic fiber rather than 
food or feed products. 

The economics associated with establishing and growing vegetation at 
contaminated sites can be improved if a trace element that has commercial 
value can be extracted from the soil by plants. Chapter 4 addresses to phy
tomining – the process of extracting a product such as nickel from soil using 
hyperaccumulator plants that are able to grow in the contaminated soil and 
accumulate a element product of value. Typically, after harvesting the plant 
biomass, drying it, and burning it for energy recovery, the ash can be pro
cessed to extract the element of interest. 

The establishment of vegetation at some field sites requires a significant 
effort because of the physical state of the site, soil quality, and toxicity of the 
contaminants. Chapter 5 provides information on the science and technol
ogy for best practices when establishing vegetation at a contaminated site. 
Soil amendments, tilling, plant selection and production, water and weed 
management, harvest timing and nutrient optimization considerations are 
reviewed. Microbial ecology is altered by soil amendments and tilling, often 
in a positive way. Chapter 7 reviews biological options at contaminated sites 
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and the benefits of adding microbial populations. Plant–microbe associations 
act to improve the growth of vegetation, and overall soil health. 

In applications of phytoremediation with biomass production, it is useful 
to have multiple approaches to reduce the effects of the contamination on 
soil health and to improve soil health and biomass productivity. Chapter 6 
reviews processes to improve soil health and enhance ecosystem services. 
Soil amendments that add organic carbon and living organisms may help to 
improve soil health, plant growth, and nutrient cycling. 

Plant-feeding insects and nematodes have the potential to impact 
Miscanthus growth and product yield. It is important to consider pest migra
tion from one crop to another when fields are nearby. Chapter 8 provides 
information on important plant-feeding insects and nematodes that have 
been found in Miscanthus plantations and have been studied and reported 
in published literature, including Miscanthus mealybugs, aphids, May bee
tles, plant parasitic nematodes, armyworms, and rootworms. 

A forward-looking approach in economic aspects of phytoremediation 
with biomass production is addressed in Chapter 9. This is followed by 
alternative ways to convert Miscanthus biomass to energy (Chapter 10) 
and to different bioproducts (Chapter 11). Economic aspects are intro
duced with full consideration of environmental, social, ecosystem, and 
economic benefits associated with the improvement of each contaminated 
site. A sustainable remediation approach is used along with options for 
increasing the value chain of Miscanthus. The benefits of soil remedia
tion with biomass production include risk reduction, improvements in soil 
quality and soil health, biomass products, carbon sequestration, reduced 
soil erosion, community aesthetic benefits, and better habitat for birds and 
wild animals. The potential of Miscanthus to produce sustainable feed
stock for energy, or to be converted to pulp, building materials and paper 
is characterized. 

The NATO project field site at Fort Riley, Kansas, has been used to inves
tigate the growth of Miscanthus in soil that contains lead from past military 
activities (Alasmary, 2020). Miscanthus establishment was successful, and 
the crop grew well in the lead-contaminated soil under the climatic condi
tions at the site. Tilling and soil amendments were beneficial to growth and 
crop yield. Lead uptake into the biomass was reduced by adding biosolids as 
an amendment; simultaneously, soil health was improved, based on micro
bial numbers and composition, and organic carbon increased with time. The 
soil health at Fort Riley field site was investigated by assessing the effects on 
the nematode community of growing Miscanthus, tilling, and adding soil 
amendments. Significant changes were observed in trophic group structure 
with Miscanthus compared to the soil with mixed plant cover. Tilling the 
soil prior to establishment of the Miscanthus and adding biosolids as an 
amendment affected the nematode community and important soil processes. 
Tilling and tilling plus adding biosolids affected the nematode community 
the most. The most conserved population of the trophic structure was the 
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bacterivores. There was also an increase in herbivores associated with the 
biosolids amendment (Alasmary et al., 2020). 

The NATO project field site at Dolyna, Western Ukraine (former military 
site contaminated by various trace elements), has been used to ensure the suc
cessful cultivation of Miscanthus at the site and to investigate the impact of 
agricultural practices on Miscanthus biomass and phytoremediation param
eters. These include incorporation of soil amendments, both mineral and 
organic, and/or treatment of rhizomes with Plant Growth Regulators (PGRs). 
Three and four years’ cultivation of the crop at this military site showed 
good growth of Miscanthus with increasing biological parameters and har
vest value (Chapter 5). Field experiments have shown the positive prospects 
for application of the Miscanthus phytotechnology with biomass production 
developed at contaminated military sites within NATO SPS MYP G4687 to 
other locations in Ukraine and Czech Republic where there is need to revital
ize the postmilitary sites and to produce biomass for energy and bioproducts. 

The NATO project research field established on marginal agricultural 
land at Tokarivka, Central Ukraine, illustrated the positive impact of diffe
rent PGRs on Miscanthus development and harvest values on marginal land 
(Pidlisnyuk and Stefanovska, 2018). The successful reclamation of mined 
lands has been achieved by applying the best practices that are described in 
the book (Chapter 5). 

One long-term phytotechnology option in the restoration of contaminated 
land is to develop it into a forest. Trees have been planted at many different 
sites, especially minelands, to address contamination and improve soil health. 
Some neglected sites eventually revert to forests if the climate is suitable. The 
Forest Service of the U.S. Department of Agriculture has developed the for
estry reclamation approach, which has been used for successful reforestation 
of mined lands. A book with best management practices has been published 
by the U.S. Forest Service (Adams, 2017). Miscanthus has some specific advan
tages over woodlands when terrain permits its planting and harvest. First, it 
will yield useful product as quickly as even rapid-cycling poplars or willows, 
within 3–4years. Because it is harvested annually, rather than on a longer rota
tion,  it assures that biomass or income can be available every year. Second, it 
is far easier to remove if plans for the land are changed. This is a significant 
advantage on military or postmilitary lands that may be in transition. Third, 
Miscanthus is easily made into locally useful materials such as clean animal 
bedding or mulches, or used directly for combustion, and it will relatively rap
idly decompose in situ without the need for chipping, unlike wood. This can 
more quickly and economically enhance soil tilth which is often an important 
component of the remediation of contaminated lands. 

Economic issues are important and may limit choices at contaminated 
sites. Because of climate change, more decisions are being made based on 
sustainability and triple bottom line considerations. Adding organic car
bon to the soil and improving soil health have value for society and may be 
included in making decisions. Since some benefits of phytoremediation such 



 

  

  

 
 

 
 

 
 
 
 

221 Conclusions and Recommendations 

as adding soil carbon have both soil benefits and global value because of 
climate benefits, there is a need to include all benefits in making decisions. 

Taking a wide overview of the materials in the present volume, it is becom
ing clear that Miscanthus production is developed to the stage that it can 
be treated more like a commodity than a specialty crop. Technologies are 
well developed for reproduction of rhizome propagules, and micropropaga
tion has become routine. There is a good understanding of the water and 
weed management needs for successful establishment of fields. Weather 
and climate change remain uncontrollable factors but genetic technologies 
are available to address both cold and heat injuries to plants. While there is 
legitimate concern for dangers of invasiveness in seed reproduction of crops, 
transformation of apical meristem tissues or somatic embryos (Kim et al., 
2010), followed by regeneration of a single clone, should be feasible. 

An additional tool in the kit of molecular biologists is the CRISPR-Cas sys
tem, the recently discovered, Nobel prize winning, DNA editing enzyme 
system, which can be used to edit in or out various gene sequences. No trace 
of the tool remains in the product, so that it behaves as if a random spontane
ous mutation. This will allow one to edit out pollen function, for instance, to 
convert an optimal tetraploid M. × giganteus into a sterile hybrid. One might 
also alter the flowering locus C system (Ruelens et al., 2013) or its equivalent 
to delay flowering time, or fully disrupt flower development in a desirable 
CV, so that it fails to bloom either at most latitudes of interest, or entirely. 
This should significantly enhance biomass yields at lower latitudes, where 
early flowering seems to limit biomass, as discussed in Chapter 5. We rec
ognize that in the European context some might raise objections to these 
technologies, although they introduce no foreign DNA by any means other 
than conventional hybridization. As a strictly nonfood crop, Miscanthus is 
exempt from such strictures in many countries. Time and necessity may also 
change minds. 

12.2 Recommendations 

Ideally all land should be used for beneficial purposes. Improving soil health 
and increasing organic carbon in soil should be high priorities because of 
both local and global benefits. Further research and development of phyto
technologies with biomass production is recommended, including additional 
research with Miscanthus. An important issue is how best to use Miscanthus 
biomass not only for energy production but also for conversion to differ
ent bioproducts. High yields with prominent content of lignocellulose, low 
requirement for nutrient inputs, and low susceptibility to pests and diseases 
make Miscanthus an excellent feedstock for producing fiber based materials 
such as construction or paper industry products. Future research and practice 
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should concentrate on looking into the full Miscanthus chain starting from 
production while ensuring sustainable land management, through ensuring 
optimal conditions for storing biomass, with development of proper tech
nology for biomass processing into fibrous materials, pulp, and paper when 
Miscanthus has been harvested from marginal or contaminated soils. Some of 
the genetic techniques discussed above promise to enhance sustainable land 
management, allowing larger production of renewable energy and biomate
rial without increasing land requirements. This is an essential component of a 
transition to a fully sustainable societal energy (and Miscanthus) cycle. 
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