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humanists to assess if (or how) we may begin to coexist harmoniously with the
mosquito. The mosquito is humanity’s deadliest animal, killing over a million
people each year by transmitting malaria, yellow fever, Zika and several other
diseases. Yet of the 3,500 species of mosquito on Earth, only a few dozen of them
are really dangerous—so that the question arises as to whether humans and their
mosquito foe can learn to live peacefully with one another.

Chapters assess polarizing arguments for conserving and preserving
mosquitoes, as well as for controlling and killing them, elaborating on possible
consequences of both strategies. This book provides informed answers to the
dual question: could we eliminate mosquitoes, and should we? Offering insights
spanning the technical to the philosophical, this is the “go to” book for exploring
humanity’s many relationships with the mosquito—which becomes a journey to
finding better ways to inhabit the natural world.

Mosquitopia will be of interest to anyone wanting to explore dependencies
between human health and natural systems, while offering novel perspectives to
health planners, medical experts, environmentalists and animal rights advocates.

Marcus Hall is an environmental historian and professor at the University of Zurich.
In exploring changing human relationships with the natural world, Hall has turned
to such subjects as restoring, rewilding, invasive species, warfare, earth art, chronobi-
ology, malaria, and parasites. His books include Earth Repair, Restoration and History,
Crossing Mountains, and (with Marco Armiero) Nature and History in Modern Italy.
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FOREWORD

Clifford Mutero

Imagine a world without mosquitoes. They have all died. Everywhere. It would
be an easy thing to envision, because most people consider them too dangerous
for health, and a great nuisance due to their irritating whine. Now imagine there
were no lions, not even in the zoo. This starts to sound sad and scary, doesn’t
it—as though human beings will be next on the list? But why does one feel that
way about lions but not mosquitoes? After all, both are dangerous animals. Both
view people as food.

I borrow the poetic opening to this foreword from John Lennon’s 1971 iconic
song “Imagine.” Songs are powerful in giving us words with which to express
thoughts about issues that may initially appear simple but which are, upon closer
scrutiny, complex and could benefit from an external dose of inspiration. The
songs that work for me are from the 1960s and 1970s eras, the kind you can
whistle during your morning shower. That very song, “Imagine,” provided the
backdrop to my thoughts as I grappled with the scenario of the world being
inhabited peacefully by mosquitoes and people when the editors of Mosquitopia
approached me to write a foreword for this book. From the initial description
of the multi-author chapters envisaged here, it was clear that there were no easy
answers to the mosquito question. As one who has spent more than half of his life
conducting research into mosquito-related issues, my informed position is that it
is all about setting boundaries: dealing with mosquitoes is no different than how
we address other human—wildlife conflicts, assuming that one can even imagine
mosquitoes to be an integral part of wildlife!

Coming from Nairobi, I should know something about human-wildlife con-
tlict; ours is the only city in the world to have a real national park within the city
boundaries. Occasionally a stray lion escapes and will be spotted outside the con-
fines of the park fence. The sighting sends equal ripples of excitement and panic
through the adjacent residential area and across the city, until our well-trained
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game rangers spring into action and manage to divert the beast back into the
park, with or without a little help from a tranquillizer dart. And just like that,
the drama is over. All is quiet again, until the next big escape, which occasionally
ends in the dispatching of the feline to the next world, thanks to a fatal shot from
the rifle of an overzealous rookie ranger. From prehistoric times, people have
proactively attempted and learned to manage the lion and keep it in its place. As
Keith Somerville explains eloquently in his Humans and Lions (2019), another
volume in the Routledge Environmental Humanities Series, proper lion man-
agement helps to keep the peace. And therein lies the explanation about why we
would feel sad if all the lions were to die, while no such emotion manifests itself
when we contemplate mosquitoes disappearing for good, overnight.

In contrast to the case of lions and other big game, researchers and society at
large have failed to engage proactive approaches to keeping mosquitoes at bay via
simple management methods. Lions for their part are kept away from humans by
respecting and allocating them their space, delineated with the occasional length
of electric fencing where necessary. In the case of mosquitoes, people have access
to various means with which they could fence themselves in. Bed nets, mosquito-
proof screens on house eaves and windows and doors, or the occasional topical
repellent are all available at no significant cost. In settled areas considered no-go
zones for mosquitoes, people could also push mosquitoes back to the jungle, to
cohabit with lions and other wildlife by denying them breeding grounds around
human habitations. No-go zones could be accomplished by ensuring that stag-
nant water habitats are unavailable for egg-laying. A range of insecticide-free
tactics such as drainage, tight-fitting lids for domestic water containers, or the
introduction of predators such as fish in open ponds can be employed. The list
of possibilities certainly does not end there, for one might rely on any of sev-
eral forms of environmental management or manipulation. Suffice it to say, the
knowledge has been gathered over the decades, but decisive action is far below
the threshold required to show mosquitoes their place. Researchers often resort
to the argument that mosquitoes have co-evolved to live with humans for mil-
lennia; it would be difficult to change this narrative. Furthermore, we typically
prefer to take the easy way out when we hear that irritating whining sound:
grabbing a can of insecticidal spray and aiming short bursts at the tiny vampires
as they flit about. I would not be surprised to hear that someone even sprayed a
bit of insecticidal killer while reading Rachel Carson’s Silent Spring (1962), the
landmark book about people’s fatal attraction to insecticides and the consequent
scenario of a world without birdsong—if that knee-jerk trend for eliminating
mosquitoes prevailed.

The pitch of my plot so far is that people and wildlife can coexist peacefully,
and in a mutually beneficial way. Among the local communities where I come
from, the term wildlife often connotes the big game animals capable of eating
human beings alive or trampling them to death in a matter of seconds. Along
with lions, leopards and hyenas rank high in the man-eating category while
elephants, rhinos and buffalo are viewed as the big tramplers. Hippos are capable
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of both; their enormous bite often kills, and they are pretty good at stomping,
too. Snakes are in a special category all of their own, feared by both humans and
beasts. Ironically, as noted above, mosquitoes are hardly ever featured as wildlife,
until one comes across a popular graphical representation from a 2014 blog by
Bill Gates depicting the mosquito as “The deadliest animal in the world.”

Even one and a quarter centuries after mosquitoes were discovered as the
spreaders of several of the most deadly disecases known to humans, such as
malaria, managing mosquitoes using the most basic and safe approaches has been
largely all talk, some action and very little learned in terms of how to sustain
momentum. It is as though the research community and society at large resist the
truism that mosquitoes can be effectively managed with incredibly simple and
commonplace approaches.

Intentional forestalling of potential conflict has come to be accepted as the
best practice for human-wildlife co-existence, with expected mutual benefits
for people and environmental conservation. Virtually all people on the planet
are aware of the various benefits human beings derive from the natural environ-
ment, be they in relation to food, water, building materials and the entire range
of other resources and ecosystem services that contribute to people’s health and
well-being. But visceral fear and phobias are also commonplace among people
with regard to the many potential dangers lurking in the wild, especially in the
form of large carnivores and snakes. Consequently, peaceful and fulfilled coex-
istence is difficult to imagine without a red line being deliberately drawn by
human beings to separate humans from wildlife. The delineation is also made
by the natural environment itself, when the feeling of “trespassers will be eaten”
hits a crescendo of goosebumps as we venture to explore the wild side. Failure
to respect such red lines can only lead to dire consequences for the human race.

A key take-home point from the foregoing is that mosquitoes belong to wild-
life. Period. For this reason alone, there ought to be that red line limiting their
flirtation with people. Assuming this argument holds water, our mindsets then
need to change, to be able to view mosquitoes as wildlife, with a right to exist,
just as do lions, seal pups, pandas and polar bears. Should mosquitoes breach the
protective barriers we set for ourselves, we could for a time allow these beauti-
ful creatures with highly sophisticated mouthparts to draw the small amount of
blood they need to develop a batch of eggs; at least until we ramp up environ-
mental management measures that can drive these critters back to the wild. If
mosquitoes are denied access to human habitations, they will over time learn to
spend the rest of their lives in the wild, participating in the food web shenanigans
that characterize all of nature’s biodiverse fauna and flora. The human-mosquito
relationship could be that of live and let live, achievable through an ecosystem
management approach that ensures both human health and well-being, and the
health of our ecosystems.

Way back in 1976, I somehow figured we should not be too quick to reach
for the insecticide spray can when mosquitoes come calling after listening to
the late Professor Thomas Odhiambo, a renowned Kenyan entomologist and
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environmentalist, who delivered an exhilarating lecture about “anophelism
without malaria.” As an undergraduate student and budding entomologist, I
had keenly hung on Prof Odhiambo’s every word since he was the founder and
Director of the International Centre of Insect Physiology and Ecology (ICIPE)
in Nairobi. The lecture focused on the nascent scientific revelations about the
existence of An. maculipennis as a species complex. Before there was knowledge
about the occurrence of sibling species and their attendant vectorial capacities,
it was a mystery why malaria was absent in parts of Europe where the mosquito
species complex existed. Of course, we are now aware that malaria’s scarcity
arose because certain sibling species found in such areas were inefficient vectors
of the disease. Odhiambo’s lecture opened my eyes to the reality that we do not
need to kill every mosquito in sight, and certainly not with insecticides that are
potentially harmful to human health and to non-target organisms. His follow-up
lecture dwelt at length on the insecticidal horrors highlighted in Carson’s Silent
Spring. Many years later, I came to appreciate Odhiambo’s and Carson’s views
even more while conducting malaria research in a rice-irrigation scheme in cen-
tral Kenya. In this setting, malaria habitually affected people on a seasonal basis
up to about 2006. After this, malaria declined to non-detectable levels, suggest-
ing local elimination of the disease. And the population of Anopheles arabiensis,
a well-known vector of malaria in most of Africa, never declined in the rice-
irrigation scheme. This mosquito continues to thrive to this day and hundreds of
them can still be collected as they rest during the day inside a single unprotected
house, having either fed on people indoors or outdoors, or on cattle. Yet locally
transmitted malaria cases are a thing of the past, at least as of the last time I
checked in 2018.

The question therefore is, would it still be necessary to eliminate mosquitoes
in settings where there is no current evidence of mosquito-borne diseases and
no strong predicters for the emergence or re-emergence of these maladies? I am
more inclined to think that unless a situation is forecast to lead to a definite out-
break of disease, anti-mosquito activities should be strictly ecologically friendly
and aimed mainly at minimising—not eradicating—the biting nuisance in situa-
tions where mosquitoes are attacking people near human habitations and during
social gatherings. Deviations and exemptions to this rule should be for short
periods only. Mosquito control products should be re-evaluated regularly for
their effectiveness and assessed for unintended or known negative impacts on the
health of people and their environments, including those products that eliminate
Chironomid larvae, thereby denying food to many fish species. Entomological
surveillance should nonetheless continue to be an essential means of determining
whether parasites and viruses are circulating in a residual mosquito population, a
practice that will promote environmentally benign mosquito control efforts in a
time-bound and cost-effective manner.

A preoccupation with eliminating mosquitoes with expensive frontier tech-
nology in settings devoid of evidence of the diseases they transmit may be a
luxury—and an unjustified way of spending limited resources which could be
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more meaningfully diverted to stocking health facilities with medications for
emergency cases, or helping strengthen health systems in general. Pre-emptive
strikes could be analogous to game rangers, accompanied by community mem-
bers, invading the national park to kill the lions and green mambas just in case
they escaped their confines and harmed innocent people. True, mosquitoes may
be different because some of them have become used to living in domestic habi-
tats and won'’t leave people alone without a bite, not to mention their high nui-
sance value certainly linked to their annoying buzz! But these bothers are not
strong enough reasons to pander to people’s whims by running mosquitoes out
of town at whatever cost.

I believe many of these views are articulated in clearer and more detailed
ways in the chapters of this volume. If the reader has misgivings, I recom-
mend reading Mosquitopia alongside my own Mosquito Hunter (2017). Both are
insightful and informative in their own ways, not only about mosquitoes but
also about the much wider natural world of which we are all a part of. Learning
to live with our pests and with our enemies is the only way the world will truly
be as one.
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KILLING MOSQUITOES

Think before you swat

Marcus Hall and Dan Tamir

Am I not mosquito enough to out-mosquito you?
—D.H. Lawrence, “The Mosquito” (1920)

Global warming is ushering us into a new mosquito epoch. Ready or not, mos-
quitoes are coming faster than before, both indigenous and non-, human-biting
and not, disease-carrying and sometimes—disease-carrying. What are we to do
with these buzzing creatures, and what has been done with them so far? Usually
perceived as a pest or at least as a nuisance, their mere presence often prompts
us to take action. Are we able to control, or locally exterminate them, and with
what side effects? Or is it more realistic to admit that the three most threatening
mosquito genera—the disease carrying Aedes, Anopheles and Culex—are really
controlling us? In recent years, yellow fever has kept spreading even as malaria
has been retreating, but over half of the world’s population is still exposed to
these and other dangerous mosquito-carried diseases which also include dengue,
West Nile, chikungunya and Zika. Control them we should; we must do, if we
are to avoid the next pandemic and survive our mosquito-borne Anthropocene.
COVID-19 has been humanity’s latest collective horror, but across deep time,
and likely into the foreseeable future, mosquitoes will be responsible for inflict-
ing incalculably greater degrees of suffering and anguish.

But there are important reasons to protect mosquitoes, and not just because
these creatures are amazing products of millions of years of evolution—since
protecting them may in some instances assist us in the battle against various
human diseases. Most obviously, we may want to save some mosquitoes for the
simple reason that one needs to preserve a few of them in order to figure out
how to kill the rest of them—with other practical reasons detailed below. Yet
more subtle justifications for saving mosquitoes centre, for instance, on food
web dynamics, whereby in our efforts to poison these creatures, or disrupt their
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habitat, or rearrange their DNA, we may, through ecological loops, actually
cause damage to other biological entities, such as mosquito predators, and end
up increasing a mosquito’s fitness and its ability to multiply and spread across the
earth. Perhaps the sciences of mosquito control, or certain sectors of them, have
not yet advanced to a stage that we can trust.

Some years ago, Nature journalist Janet Fang posed the simple but powerful
question about what the ecological consequences might be of eradicating
mosquitoes (Fang 2010). A concerted campaign across the twentieth and twenty-
first centuries, after all, has been dedicated to this very goal. In sifting through
the evidence, Fang’s final answer is that in the case of this blood-sucking insect,
humanity and even ecosystems could probably get along just fine without it. She
reports on the views of one ecologist who feels that mosquitoes could readily
be replaced in the food web, with many mosquito predators eventually able to
switch to moths or houseflies or other sources of food. Although she outlines
a host of possible disruptions stemming from the disappearance of mosquitoes,
such as the loss of their pollination activities and other ecosystem services, she
concludes by quoting entomologist Joe Conlon who believes that ecosystems
“will hiccup and then get on with life. Something better or worse would take
over.” Or as Conlon elaborates in his own blog, “I would rather eat raw onions
and celery for the rest of my life if I could do away with the little bastards”
(Conlon 2011).

In these introductory pages we highlight some of the main arguments for
saving mosquitoes, before reminding ourselves of vital reasons for setting out to
control and eradicate them. Ours is not a comprehensive list, and our main goal
here is to stimulate readers to begin thinking about the many reasons for sav-
ing or else exterminating these creatures, while outlining some pressing points
that will be taken up in subsequent chapters. Confronting this question of how
far we can, or should, pursue the goal of mosquito elimination is our central
purpose of this book, seeing if there may be a kind of peaceful coexistence that
we can achieve with these creatures. In the end, rather than pushing an ultima-
tum that it must be us or them, can humanity promote and practice a kind of
“Mosquitopia” with these little humming creatures, humanity’s most dangerous
companions? Could we develop a relationship with this insect that will allow
healthy cohabitation?

The project of searching for and identifying a possible harmonious coexist-
ence involving humans and mosquitoes has implications for the lives and life-
styles of many millions of people affected by mosquito-borne pathogens. But it
also becomes a crucial test case for identifying the proper place of people in the
natural world. Although mosquitoes are amongst the most intimate of animals
accompanying humanity across millennia, similar questions may be asked about
scores of other species, including such charismatic ones as bears, dolphins, rhi-
nos and orangutans, whose prospects are shaky, to say the least. The majority of
human—animal interactions, as well as the greater part of the sixth species extinc-
tion crisis we are experiencing, involve many smaller jewels in the treasure box
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of creation. The mosquito then becomes one example, and an emblematic one
to start with.

Some reasons for saving mosquitoes

The first reason for making our truce with mosquitoes is strategic. We must
remind ourselves that we are ultimately battling diseases, not mosquitoes, and
that there may be more effective, more economical, and more ethical ways to
do this than killing that little, ubiquitous insect. Malaria, for instance, once
emanated from swamps and the bad air they produced, although with more
evidence it became clear that mosquitoes, rather than effluvia, were the vectors
(or transmitters) of the malaria parasite. Should we be putting greater efforts
into battling this microscopic Plasmodium rather than the carriers of them, as
by developing more effective malaria drugs? Or should we be focusing at still-
smaller levels, as by managing the chemical reactions set in motion by the
Plasmodium, or else by treating the resulting symptoms, to let the body take
care of itself? Two generations ago, zoologist Marston Bates considered the use
of the powerful insecticide, DDT, to be the “sledge hammer approach to mos-
quito control” since this chemical caused so much collateral damage to other
living things, from birds and fish to desirable insects such as bees (Bates 1953).
An early anti-malarial medication such as Atabrine was itself a sledge hammer
approach in the human bloodstream, since people often felt quite nauseous
after taking it. With the ecological knowledge accumulated and the micro-
biological techniques developed since then, isn’t it more realistic to see all
population-level control techniques, whether applied to wetlands or to human
bodies, as sledge hammers? And as our understanding of mosquito-borne dis-
eases becomes more precise and accurate, the surgical response of today may
seem like a sledge hammer tomorrow.

Eradicating any of the mosquito-borne diseases may therefore necessitate the
extermination not of mosquitoes, but of the pathogens themselves. The malari-
ologists” phrase of “anophelism without malaria” (or, the presence of anopheles
mosquitoes without malaria) is known in many countries where the disease prac-
tically disappeared decades ago. Notwithstanding the differences in ecologies of
other vectors and their transmission mechanisms, can we aim at parallel situations
of “aedeism without dengue” or “culexism without West Nile”? The distancing
of a pathogen from a human population—and even its total elimination—may
be less challenging and less problematic than insect eradication. Because there are
pros and cons to every health remedy, we need to return to ecological principles
as well as cost—benefit analyses, before marching forward with any one strategy
for disease control.

A second justification for preserving mosquitoes centres on medical reasoning.
Modern epidemiological research reveals that there may be important benefits to
maintaining discrete, residual levels of pathogens in a population so as to main-
tain immunological signals that our bodies can react to and maintain resistance
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against. Madagascar provides a telling example: when malaria was largely eradi-
cated from parts of that large island between 1960 and 1980, it returned there
several years later with more deadly virulence. Maintaining some mosquitoes
there, and with them the diseases they transmit, means that human physiologies
would not become naively adapted to an environment only temporarily free of
this or that disease (Carter and Mendis 2002). A related issue is that certain kinds
of less dangerous malaria can provide a degree of protection from more danger-
ous forms of it: a person infected by Plasmodium vivax is often given some resist-
ance against being infected by the more lethal Plasmodium falciparum (Snounou
and White 2004). In this case, a normal, mosquito-transmitted vivax malaria can
be the lesser evil of contracting falciparum malaria.

There are also important ecological reasons for keeping mosquitoes buzzing,
based on arguments pointing to the special role of these arthropods in ecosystems.
Metric tons of flying biomass certainly alter natural processes, whether as foodstuff
for other organisms or as modifiers of animal behaviour, as in the case of caribou
and Homo sapiens who move or migrate to avoid them. Enormous numbers of
friendly insects fall victim to the many projects of mosquito control (T6rok et al.
2020). Mosquitoes carry parasites and pathogens, not only to humans, but also to
many other mammals, birds and reptiles. Microbes transmitted by mosquitoes to
bats help control the numbers of the latter, thereby controlling the human diseases
spread by these winged mammals. Moreover, it is only female mosquitoes that
transmit pathogens by feeding on blood while their male counterparts generally
subsist innocuously on plant nectars. Some mosquitoes even control other species
of mosquitoes, since certain adult species feed on larvae of other species (Roux
and Robert 2019). These mosquito-borne benefits are a sampling of reasons for
maintaining at least some mosquitoes in ecosystems, or else bringing many of
them back if drastically reduced.

Yet another rationale for saving mosquitoes is the evolutionary one. As an
example, parasites and hosts coevolve, sometimes with beneficial results for
both, since both members in such relationships generally become more tolerant
of the other through time. Or at least this is the argument of Nobel laureate
Joshua Lederberg for why the virulence of parasites can diminish over decades
and centuries (Méthot 2012). Cautious hands-off approaches to vector control
therefore allow nature to take its course, with harmful results balanced increas-
ingly by beneficial ones over the longer run. There appear to be indispensable
long-term roles for many of our bodily symbionts, and human acts of interfer-
ence in their transmission may, over the short or long term, cause more harm
than good.

From a more cognitive perspective, we may identify ethical reasons for leaving
mosquitoes alone. Do humans have the right to kill or exterminate other crea-
tures—or the right to transform or disrupt whole ecosystems? Is it justifiable to
exterminate when we are still quite unsure how the many parts of an ecosystem
fit together? If we are placing humans at the top of the pyramid of creation,
what does that tell us about ourselves and our place in the future? To date, we
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have never been able to rid islands or continents of mosquitoes despite dogged
efforts to do so—or at least not for very long: what makes us believe we can
exterminate them now? More often than not, hubris has been the rule, not the
exception, in describing humanity’s attitude towards managing the non-human
world. The question of eliminating mosquitoes should not be undertaken while
being detached from wider global and environmental contexts. Our current and
ongoing sixth mass extinction episode is gathering force, already eliminating
thousands of species, while impoverishing the biosphere and annihilating mil-
lions of years of evolution. Such dramatic changes carry with them exceptional
uncertainty, notably as potential adverse repercussions, be they ecological, polit-
ical and/or economic. A key general guideline is the precautionary principle
which may be phrased: “in case of doubt, stop.” Such precautions may be more
applicable to biodiversity preservation than to almost any other environmental
problem (Myers 1993).

The scope of the extinction crisis may contribute to a notion of helplessness,
by assuming that the saving of a few species of insects is a marginal concern that
would not change much. Yet the severity of the crisis may pose a super-premium
on applying the precautionary principle even more broadly: the burden of proof
is on those aiming at eradication—call it deliberate extinction. As in so many
other issues, a decent portion of modesty is a key strategy for making the right
decision.

And yet—is it even thinkable that humans can propose a moral justification
for not seeking every means possible to curtail or eliminate disease-spreading
organisms? Is it ethically responsible to pay so much attention to insects and their
needs when humans are made sick by them, and even die? Can it be advisable, or
right, to rely on expert opinion, when the individuals directly affected by anti-
mosquito treatments hold different viewpoints? Involving local communities in
decisions about the tactics and timing of mosquito control is a relatively new
recommendation of pest-control agencies.

From an economic perspective, millions of Euros and thousands of researchers
are now dedicated to finding more effective vector control. In terms of spend-
ing efficiency, should these limited resources be diverted to other measures,
such as bed nets, tighter houses, better equipped hospitals, and health education?
Mosquito control is one of many health measures, and may merit lesser priority
depending on circumstance or period. Yet another economic issue focuses on
the potential utility of mosquitoes to industry or science; for example, mosqui-
toes can detect minuscule quantities of carbon dioxide, and produce amazing
anti-coagulants, with both traits suggesting entrepreneurial opportunities unless
these are curtailed by exterminators.

Last but not least is the aesthetic dimension of mosquitoes. Insects in general,
and mosquitoes in particular, are exquisitely engineered organisms, supremely
adapted to their various roles, and elegantly effective in carrying them out.
We cannot help but admire them, even paint them, sculpt them, and remark
on their carefully tuned soundscapes. Mosquitoes manage to pair with each
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other by matching the frequencies of their beating wings, so that sound artists
can amplify and project these harmonic vibrations to demonstrate this insect’s
underappreciated acoustic attributes (Borrell 2009, BBC News 2013). Even with
all the harm these insects cause, they are also beautiful, inspiring creatures. Of
course, beauty by itself cannot be a justification for sparing harbingers of disease;
but it should certainly prompt us, at the very least, to ponder saving rather than
squishing these little humming beasts.

Key reasons for killing mosquitoes

Of course, beyond the many motives and justifications for protecting mosqui-
toes, there are also urgent reasons for ridding ourselves and the planet of these
creatures. The list here is shorter, but may be just as powerful. The first and
obvious reason is human health. Despite reasons for saving mosquitoes some of the
time, or at least saving certain mosquitoes under certain situations, there remains
a dire need to eradicate the disease-carrying varieties, utilizing even extreme
measures to accomplish this goal—since the mosquito may be humanity’s dead-
liest foe (Spielman and D’Antonio 2001, Winegard 2019). A crucial reason why
some mosquito-borne diseases are not more pervasive today than in past decades,
at least in some regions, is that former mosquito controllers were reasonably suc-
cessful in their missions, bringing mosquito numbers down long enough so that
the pathogenic virus, bacteria and protozoa they carried dropped below danger-
ous threshold levels. Although the percentages of people contracting malaria
around the world are lower today than ever before, outbreaks of dengue and
yellow fever are more serious in many areas than they were a decade or two
ago (Mosquito Reviews 2020, WHO 2014, Jones 2012). We must assume that
pandemics of mosquito-borne diseases could be brought into better control by
intensifying the many anti-mosquito campaigns being waged around the world.

A second and related reason for stepping up mosquito control centres on
practical motives: the project of exterminating mosquitoes allows us to avoid
other, undesirable health or economic side-effects of dealing with these diseases,
such as ingesting nauseating medications or diverting resources away from
other pressing social issues. A case in point is when malaria-exposed soldiers
and civilians during World War II avoided taking their prophylactic quinine or
Atabrine because of the sickening side effects of this drug (Hall 2010). Finding
a magic bullet that removes mosquitoes from ecosystems may therefore have
ulterior beneficial consequences beyond curtailing disease, including the ability
to redirect healthcare to combat other illnesses. Systematic sterilization of
mosquitoes might allow wetlands to remain wet, for example, since draining
them would no longer be required to disrupt mosquito habitat.

The control of mosquitoes might also be justified through a consideration of
striving for better ecosystem management. Our human-altered biosphere means that
mosquito numbers and their distribution are no longer natural, no longer in bal-
ance, so that human action is required to bring those balances into better harmony.
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After all, today’s abundance of mosquitoes and their accompanying pathogens can
be traced in part to human agency. Since irrigation projects, say, or water-filled
containers and discarded car tyres have favoured mosquito breeding in many parts
of the world, then we can be better justified in seeking ways to diminish mosquito
numbers. Here, Stewart Brand’s dictum that “We are as Gods, and may as well get
used to it” holds true for mosquito management (Brand 1968).

In a related issue, it seems appropriate in the context of human—mosquito
relations to mention the Anthropocene: the current geological era in which Homo
sapiens is modifying the entire planet. No place on earth has been spared by our
alteration of ecosystems and our movement of creatures, with mosquitoes being
part of that trend. The long coexistence of humans and mosquitoes made it only
natural that we bring our winged companions with us across oceans and conti-
nents, while setting the table for them and preparing comfortable breeding sites
(Kennedy and Lucks 1999, Boomgard and ’t Hart 2010). After Europeans settled
in certain areas of coastal South Africa, for instance, mosquito swarms arose
where they were once rare: one explanation is that newly erected metal roofs on
houses concentrated rainfall into puddles, thereby multiplying mosquito habitat
and so mosquito-borne disease. A rational human response would therefore aim
at resetting environmental equilibria, seeking to shrink mosquito habitat there.
Such an argument could be used for justifying efforts to exterminate invasive
alien Asian Tiger mosquitoes (Aedes albopictus) that never used to buzz across the
Americas and across Europe before being introduced there by humans, but are
now propagating at least 20 threatening diseases in these continents (Bhaumik
2013). Altering stream ecology by introducing alien Gambusia fish for slurping
up mosquito larvae, as has already been carried out in many areas of the world
beyond their native North America, may be part of the necessary quest to re-
engineer the earth.

In a different light, there are also strong justifications for killing mosquitoes
from the perspective of economic development. Poverty levels tend to worsen in a
malarial environment, for instance, but evidence is inconclusive about whether
mosquito-borne diseases are causes or effects of this impoverishment. While
some experts claim that malaria blocks a country’s economic development to
result in poverty (Gallup and Sachs 2001), others assert that it is the continuous
and deep impoverishment in communities that fosters the spread of malaria
(Packard 2007). The eftects of disease on development may hinder globalization,
polarize private and public sectors, and disrupt international trade. The project
of killing mosquitoes can be a catalyst for escorting a nation out of dependency.

A last-but-not-least reason for exterminating mosquitoes is human comfort.
Pesky and nuisance mosquitoes drive people inside or away from their favourite
places. In areas where mosquito-borne diseases are not a threat, the act of remov-
ing these bloodthirsty insects would still seem a good reason to continue fund-
ing mosquito-control agencies. After all, clearing mosquito swarms allows other
organisms easier access to their grounds, including humans. Coastal wetlands,
as in New Jersey, were virtually uninhabitable until early-twentieth-century
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drainage measures decimated mosquito populations and brought up land values
(Patterson 2009). There is also evidence predicting that mosquitoes that cur-
rently do not feed on people may, with climate change or other stressors, develop
a preference for human blood to then transmit the pathogens they carry (Rose
et al. 2020). So, yes, even when the level of nuisance is “bearable,” the physical
and mental well-being of humans cannot be ignored, especially if we want to
mobilize fellow men and women to confront other environmental and health
challenges.

The case for killing mosquitoes here, or conserving them there, therefore
goes to the core of what it means to be human in the natural world. The above
points offer just a sampling of reasons for supporting either side of the question
about what should be done with these biting insects—and certainly there are
many other reasons to be added. The following chapters take up these reasons,
expanding them while suggesting still other areas that need to be addressed.
How we interact with, show mercy for, declare war on, or learn to live with
our most dangerous game becomes a parable of our future on this planet. “I do
favor insect control in appropriate situations,” the great naturalist Rachel Carson
once declared, even if the question that obsessed her to the end of her days was
“whether any civilization can wage relentless war on life without destroying
itself, and without losing the right to be called civilized” (Carson 1962a, 1962b).
Mosquitoes present us with a supreme case for identifying ways to simultaneously
promote people and pests on the same earth. A “Mosquitopia” is therefore a
balanced relationship between ourselves and our main insect adversary that can
permit us to both survive and prosper into the next epoch. Acknowledging the
benefits and rights of our pathogens, parasites and predators (large and small),
and then adjusting our lives and lifestyles to make room for them, is the pathway
to a better existence.

What is in this volume

The book you are holding includes five parts for exploring the general question
of whether we could, or should, eliminate mosquitoes. A vast experience dem-
onstrates that insect controllers have been able to eliminate some mosquitoes, in
some places, some of the time, but they have never been able to eliminate them
completely to finally achieve species eradication. To date, the eradication of a
pest has been achieved for only two microbial creatures, these being the viruses
that cause smallpox and rinderpest—and only a few laboratory samples of such
viruses survive to this day. Yet in the case of mosquitoes, we need to ask whether
we could ever manage to eradicate this creature, and just as importantly, whether
we would want to see this creature disappear forever. Even if eradicators and
controllers focus their efforts on just a handful of the deadliest of some 3,500
mosquito species, as several authors maintain in the following chapters, we still
need to ask hard questions: are the resources dedicated to their elimination bet-
ter diverted to other health projects; are the inevitable collateral damages of the
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battle worth the cost; and are we ever able to know what is best for the earth’s
ecosystems? Even the project of pest control, as the first step toward pest eradication,
requires us to think hard about resource allocation, collateral harm and the limits
of our human abilities.

The book’s first part prepares the reader for subsequent chapters by including
essential information about the mosquito, its habits and traits—especially those
related to its often painful encounters with humans. Here the reader can ponder
examples of the intricate and elaborate ways in which humans and mosquitoes
interact and the manners in which their life paths are intertwined. Even ento-
mologists and anthropologists will find new ideas here that will help them reflect
on the rest of the book. The second part is historical in character, drawing atten-
tion to past case studies and experiences. These mosquito stories stretch from
Africa to England, from North America to Malaysia, spanning zones tropical
to temperate; from distant eons of prehistory to the twenty-first century. This
is not an attempt at compiling a comprehensive social or environmental history
of mosquitoes; rather, this retrospective part presents examples of evidence and
experience for elucidating issues worth considering when thinking about and
dealing with mosquitoes today.

The book’s third part centres on what can be termed (not without some
provocation) “the enemy” and our perception of it as such. Beyond the obvious
view of the mosquito as humanity’s clear and present danger, this part challenges
that view. How deeply are we committed to mosquito-as-adversary, and what
may be done to alter that perspective? This buzzing insect feeding on blood
may be anthropophilic (human-loving), but it may never become domestic (human-
obedient). The next, fourth part is focused on us, humans: how do we react to
mosquitoes? How should we understand them and put them in context within
our larger living planet? Mosquitoes present us with nuisance and pathogens,
and one wonders to what extent we can expect to live out our lives without
confronting hardship and disease. The fifth and concluding part presents recent
techniques and practices used for coping with mosquitoes and mosquito-
borne diseases, some of which involve genetic engineering (such as CRISPR-
Cas9 technology) along with applied evolution. By reviewing conduct and
experimentation in the laboratory and the field, these chapters show what is now
being achieved, while putting the results in wider ecological and social contexts.
Building successful new relationships with mosquitoes demands technological
and scientific understanding to be carried out with social and political sensitivity.

The world is warming—and buzzing

Mosquitopia, as a project, emerged from INFRAVEC?2 (2017-2020), a European
Union Horizon2020 research initiative aimed at understanding and controlling
disease vectors, especially mosquitoes. Weighing mostly on the natural sciences,
especially for identifying ways to repel or exterminate these creatures, a small
part of INFRAVEC2 was also dedicated to examining the human side of dealing
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with mosquitoes. Our mission as humanists and social scientists was to reflect
on these creatures and suggest ways to better understand interactions between
species, human and insect.

A first consideration of our collaborative project suggests that its mere existence
is already a success, by providing more evidence of the necessity and feasibility
of bridging the gap opened between the natural sciences on the one side, and the
social sciences and humanities on the other. The separation of these “two cultures”
has been one of the gaps of thinking throughout the twentieth century, precisely at
a time when humans were conducting concerted campaigns against the mosquito
(Snow 1959). Despite brilliant scientific innovations combined with enormous
technological progress, such campaigns have hitherto not been crowned total
successes. We may plausibly assume that strengthening the connections between
natural and humanistic sides of our encounters with the mosquito will contribute
to achieving more satisfactory results. Our multi-disciplinary collaboration might
be considered an “environmental humanities of the mosquito,” since the issues
raised require environmental insights from many disparate fields (Hall et al. 2015).
Mosquitoes evoke health questions, but also ecological, ethical, anthropological,
historical and literary questions, with the theme of our book being that crucial
answers to the mosquito question require the full range of human inquiry.

Here, we acknowledge with gratitude the financial and organizational con-
tributions from INFRAVEC2, EU Horizon2020 for helping develop this project,
along with crucial support received for our initial symposium from the Rachel
Carson Center for Environment and Society (Munich), as well as in our later
publication stages from the University of Zurich, Department of Evolutionary
Biology and Environmental Studies and the Swiss National Science Foundation.
We also thank the many institutions that have supported our authors in develop-
ing their chapters, and Douglas Da Silva for developing the index and Jayanthi
Chander for project management.

We close this brief introduction by reflecting on Italy’s famous Sardinian Project
(1946-1951), which in the annals of mosquito control stands out as perhaps the pre-
mier instance in which men, women and their machines, together with metric tons
of insecticide, composed mostly of DDT, were unleashed in a concerted action
against Anopheles labranchiae, this island’s most notorious malaria mosquito vector.
At the height of this five-year campaign, some 30,000 mosquito eradicators fanned
out across the Mediterranean island, draining wetland habitat, straightening mean-
dering rivers, introducing Gambusia mosquito fish, and spraying DDT—by hand
and airplane, in liquid and powder form—in every open well, on every watery
spring, inside almost every house and stall. The goal of the Sardinian Project was to
eliminate across this large and rugged island every single An. labranchiae, whether
in larva or adult form, so that this mosquito would never again fly here, and its
future control would never again be necessary, finally extinguishing the age-old
scourge of malaria from its shores. The campaign’s final report explained that

Eradication was regarded as an objective which could be attained only
through a complete concentration of effort. The end result was to be either
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success or failure, eradication or failure to eradicate, and any additional
objectives would weaken the principal one.
(Logan 1953)

But in the end, following five seasons of dust and drudgery, spraying and respray-
ing, and then scouting for surviving mosquitoes to spray again, it became clear that
An. labranchiae had not been completely eliminated, and that these insects would
continue to buzz into the foreseeable future. Meticulous field work demonstrated
that Sardinia’s eradicators had come very close to achieving their goal, calculating
that 99.936% of this species of mosquito had been exterminated from the island.
Yet by the standards of the Rockefeller Foundation that oversaw the campaign, the
Sardinian Project was deemed a “failure” because eradication had not been achieved.
Malaria had been expunged from the island, but a few An. labranchiae remained,
with the survivors surely showing DDT resistance and passing this resistance to their
offspring that would continue propagating across the land. Here there was failure to
eradicate the mosquito, but success at controlling the main disease it carried (Brown
1998).

In our own more humble mosquito project that follows, we hope that any
success of bringing together humanists, social scientists and natural scientists

FIGURE 1.1 A 60 X life-size model of the common house mosquito (Culex pipiens), by
Alfred Keller 1937. Museum fiir Naturkunde Berlin. Photograph by Marcus
Hall.
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will not be judged as narrowly as was the Sardinian Project. We believe that
environmental humanities of the mosquito can show pathways to success, or at
the very least, pathways that need to be taken to avoid failure in understanding
the mosquito. The project of controlling and even eradicating mosquitoes must
be scrutinized from many perspectives in order to judge whether it is technically
feasible, ecologically compatible and ethically reasonable (Angelone et al. 2020).
In the end, judging the success or failure of Mosquitopia will ultimately lie with
the reader, and how the reader may build new relationships with the mosquito.

Bibliography

Angelone, Samer, Marcus Hall, and Dan Tamir. 2020. “Mosquitopia?

Peaceful coexistence between humans and mosquitoes” (Video, 7 min.),
https://www.youtube.com/watch?v=_-5BvgP78al&t.

Bates, Marston. 1953. “Preface.” In John Logan. The Sardinian Project: An Experiment in
the Eradication of an Indigenous Malarious Vector. Baltimore: Johns Hopkins University
Press.

BBC News. 2013. Can the buzz of mosquitoes be art? Nov. 1 at https://www.bbc.com/
news/av/entertainment-arts-24766729 on 21.10.2020.

Bhaumik, Soumyadeep. 2013. Aggressive Asian tiger mosquito invades Europe. Canadian
Medical Association Journal, 185(10): E464—4.

Boomgard, Peter and Marjolein ’t Hart. 2010. Globalization, environmental change, and
social history: An introduction. International Review of Social History, 55(s18): 1-26.
Borrell, Brendan. 2009. Mosquitoes mate in perfect harmony. Nature. doi:10.1038/

news.2009.1167

Brand, Stewart. 1968. Whole Earth Catalog 1 Menlo Park, CA: The Portola Institute, 2.

Brown, Peter. 1998. Failure-as-success: Multiple meanings of eradication in the
Rockefeller Foundation Sardinia project, 1946—1951. Parassitologia, 40(1-2): 117-130.

Carson, Rachel. 1962a. Speech to the Women’s National Press Club (Dec. 5). Quoted
in Shirley A. Briggs, “Rachel Carson: Her Vision and Her Legacy.” In G. Marco, R.
Hollingworth, W. Durham, eds. 1987. Silent Spring Revisited. Wash., D.C.: American
Chemical Society, 7.

Carson, Rachel. 1962b. Silent Spring. Boston: Houghton Miftlin, 99.

Carter, Richard and Kamini Mendis. 2002. Evolutionary and historical aspects of the
Burden of Malaria. Clinical Microbiology Reviews, 15(4): 564—594.

Conlon, Joe. 2011. Mosquito genocide. Nothing But Science at https://nothingbutscience
wordpress.com/tag/joe-conlon/ on 28.5.19.

Fang, Janet. 2010. A world without mosquitoes. Nature, 466:432—434.

Gallup, John Luke and Jeffrey Sachs. 2001. The economic burden of malaria. The
American_Journal of Tropical Medicine and Hygiene, 64(1,2): 85-96.

Hall, Marcus. 2010. Environmental imperialism in Sardinia: Pesticides and politics in
the struggle against malaria. In Nature and History in Modern Italy, Marco Armiero and
Marcus Hall, eds. Athens: Ohio University Press, 70-86.

Hall, Marcus, Philippe Forét, Christoph Kueffer, Alison Pouliot and Caroline Wiedmer.
2015. Seeing the environment through the humanities: A new window on grand
societal challenges. GAIA, 24(2): 134-136.

Jones, Richard. 2012. Mosquito. London: Reaction Books.

Kennedy, Donald and Marjorie Lucks. 1999. Rubber, blight, and mosquitoes:
Biogeography meets the global economy. Environmental History, 4(3): 369-383.

Logan, John. 1953. The Sardinian Project: An Experiment in the Eradication of an Indigenous
Malarious Vector. Baltimore: Johns Hopkins University Press.


https://www.youtube.com
https://www.bbc.com
https://www.bbc.com
http://dx.doi.org/10.1038/news.2009.1167
http://dx.doi.org/10.1038/news.2009.1167
https://nothingbutscience.wordpress.com
https://nothingbutscience.wordpress.com

Killing mosquitoes 15

Meéthot, Pierre-Olivier. 2012. Why do parasites harm their host? On the origin and
legacy of Theobald Smith’s ‘law of declining virulence’. History and Philosophy of the
Life Sciences, 34: 567.

Mosquito Reviews. 2020. Statistics for Mosquito-Borne Diseases and Deaths at https://mo
squitoreviews.com/learn/disease-death-statistics/ on 21.10.2020.

Myers, Norman. 1993. Biodiversity and the precautionary principle. Ambio, 22(2/3):
74-79.

Packard, Randall M. 2007. The Making of a Tropical Disease: A Short History of Malaria.
Baltimore: The Johns Hopkins University Press.

Patterson, Gordon. 2009. The Mosquito Crusades: A History of the American Anti-Mosquito
Movement. New Brunswick: Rutgers University Press, 83.

Rose, Noah, etal. 2020. Climate and urbanization drive mosquito preference for humans.
Current Biology, 30(18), https://doi.org/10.1016/j.cub.2020.06.092.

Roux, Olivier and Vincent Robert. 2019. Larval predation in malaria vectors and its
potential implication in malaria transmission: An overlooked ecosystem service?
Parasites & Vectors, 12: 217.

Snounou, Georges and Nicolas White. 2004. The co-existence of plasmodium: Sidelights
from falciparum and vivax malaria in Thailand. Trends in Parasitology, 20(7): 333-339.

Snow, Charles Percy. 1959. The Two Cultures and the Scientific Revolution. New York:
Cambridge University Press.

Spielman, Andrew and Michael D’Antonio. 2001. Mosquito: The Story of Man’s Deadliest
Foe. New York: Hyperion.

Torok, Edina, et al. 2020. Unmeasured side effects of mosquito control on biodiversity.
European Journal of Ecology, 6.1: 71-76.

Winegard, Timothy C. 2019. Mosquito: A Human History of Our Deadliest Predator. New
York: Hutton.

World Health Organization. 2014. Yellow fever global annual reported cases and YFV
coverage, 1980-2014 at http://158.232.12.119/emergencies/yellow-fever/maps/arc
hive/en/ on 21.10.2020.


https://mosquitoreviews.com
https://mosquitoreviews.com
https://doi.org/10.1016/j.cub.2020.06.092
http://158.232.12.119
http://158.232.12.119

2

THE MOSQUITO

An introduction

Frances M. Hawkes and Richard |. Hopkins

Mosquitoes are some of the most intensely studied creatures on the planet and
their role in disease transmission and nuisance biting makes them worthy of
such attention. There are over 3,500 species of mosquito on earth, being found
everywhere except in Antarctica. Yet, from this great diversity, only a small
handful can carry the pathogens that cause human disease and it is these species
which have been studied most thoroughly. For the purposes of public health,
this substantial body of research has helped us to understand mosquito-borne
disease transmission and informed the development of mosquito and disease
control methods. A fascinating spinoff of that body of research has been to reveal
a complex biology, showing the mosquito’s incredible and unusual behavioural,
anatomical and physiological traits.

Animal behaviours are linked to the intricate displays of brightly coloured
tropical birds, the long-range migrations of grazing mammals, the semaphore
flashing of fireflies in a darkened landscape, together with an infinite variety of
other activities and colourful patterns across the animal kingdom. Mosquitoes,
like all animals, are driven by a fundamental set of needs. The behavioural
organization of an individual animal species is at the core of understanding
the ecology of that species. In Dutch Biologist Nikolaas Tinbergen’s classic
1963 paper, “On aims and methods of ethology,” he defines four categories
of explanations of animal behaviour: causation, evolution, development and
function (Tinbergen, 1963). In pragmatic terms, these categories can then be
regarded as either “proximate” or “ultimate” causes of a behaviour. The pat-
terns of behaviour exhibited by mosquitoes are complex and driven by sensory
systems that are adapted to the environments they inhabit and the ecological
niches they exploit. Their life cycle, anatomy, physiology and behaviour make
these creatures both an extraordinary object of study and crucial to human
culture.

DOI: 10.4324/9781003056034-2
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FIGURE 2.1 The mosquito life cycle. Image courtesy of Louise Malmgren/NRI.

Mosquitoes are holometabolous insects. This means that, just as caterpillars
develop into butterflies, mosquitoes undergo a complete metamorphosis, hatch-
ing from eggs into larvae, then into a pupal phase (where the juvenile form liquifies
and reforms into the adult body), finally hatching as fully adult flies (Figure 2.1).
All mosquitoes therefore start life as an egg with a gravid female mosquito lay-
ing as many as 250 of them in each clutch. Since the mosquito’s juvenile stages
are aquatic, eggs must be deposited in or near water, or somewhere where water
may return after flood or rainfall. The female’s choice of location for laying eggs
is a critical factor for determining the offspring’s survival in the immature stages
(eggs, larvae and pupae). Once an egg has been laid then the immature must
develop in the site selected by its mother. Broadly speaking, mosquito eggs are of
two types: rapid-hatch eggs which are laid directly on or adjacent to the water
surface, which hatch within a couple of days; and delayed-hatch eggs typically
laid adjacent to water or on moist soil or vegetation some metres distant from
water. Delayed-hatch eggs can survive for long periods—months or years—
being resistant to desiccation and undergoing extremes of temperature that may
include freezing winters. Egg laying varies widely by mosquito species, from
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single eggs to small rafts of eggs cemented to each other and placed directly on
the water or else laid nearby, always ready to hatch as soon as the water level rises.

A gravid female mosquito aims to hatch her eggs in a water resource that is
sufficiently rich in nutrients and long-lasting to allow the larvae to grow, develop
and produce pupae from which adult mosquitoes can successfully emerge. Her
selection of a laying site is dependent upon various chemical, visual, olfactory
and tactile cues that influence the behaviour of the female before an egg is laid
(Ignell and Hill, 2020). For some Anopheles mosquitoes, water vapour itself is
attractive to gravid females (Okal et al., 2013), while tall riparian vegetation
has been found to be a deterrent to laying eggs (Low et al., 2016). Whatever the
egg-laying strategy of the species, the female’s search for a location to lay her
eggs may last several days. Mosquito flight is generally favoured by warm humid
conditions, and if the wind is too strong then mosquitoes will not attempt to
tly. Whilst generally associated with flights relatively close to the ground, some
gravid females have been captured hundreds of metres in the air with little being
known about these long-range movements.

Dictated by the availability of aquatic habitats, mosquitoes are found in a
wide range of environments from the tropics to the Arctic circle. Their larvae
can be found wriggling in vast marshlands, flood plains and wherever else water
collects continuously or periodically, such as in small tree holes or human-made
containers, which have become ideal reproductive niches for many species. Even
the water-filled leaf axils of such plants as bromeliads can be mosquito larvae
habitat. After hatching, the young mosquito larva harvests nutrients from the
water. Larvae are essentially detritivores, filter feeding on decomposing organic
matter, bacteria and algae for several weeks, spending much of their time at the
water’s surface to take in air, much like a snorkeler. As they build food reserves
necessary to tide them through the intense process of metamorphosis, larvae can
be aggressively predated on by fish, amphibians and other aquatic invertebrates.
Moreover, once emerged as adults, mosquitoes transfer huge volumes of biomass
into the terrestrial food web, in turn contributing to the diets of insectivorous
mammals, birds and other invertebrates. So fundamental are mosquitoes in the
food chain that when their numbers were controlled in the Camargue region
of southern France, breeding success of the house martin, Delichon urbicum, was
reduced by some 25% compared to untreated areas (Poulin et al., 2010).

After progressing through four larval stages, or instars, the mosquito is ready
to pupate. Pupae physically resemble so many commas swimming in the water,
and though they do not feed, they are highly mobile and respond to the slightest
threat by tumbling down through the water to escape potential predation. When
the mosquito pupa is fully developed, it will rise to the surface of the water one
last time. Here the adult mosquito is ready to emerge, and so straightens its body,
splits open its exoskeleton and emerges upright into the air (Figure 2.2)

After resting briefly on the surface of the water, the adult mosquito must take
a short shaky flight to find a refuge, typically in surrounding vegetation, where it
rests to allow its newly pumped-up wings to dry and properly harden.
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FIGURE 2.2 An emerging male Culex pipiens. Photo by Anders Lindstrom/SVA.

As a consequence of the wide range of their larval habitats, there is a cor-
respondingly large variation in emergence patterns of different mosquito spe-
cies. Whilst the number of mosquitoes that are able to grow in and emerge
from the water in a tin can will always be small, the numbers emerging from
larger bodies of water can be massive and dramatic. This is most apparent for
species such as the inland floodwater mosquito, Aedes vexans, a highly cos-
mopolitan mosquito found in many countries with a range covering every
continent except Antarctica and South America. Although capable of trans-
mitting a range of human pathogens, Aedes vexans is best known for its role
as a nuisance mosquito, hence its binomial name: the Latin vexdre means to
torment or harass. This mosquito does not lay its eggs directly in the water
but in the moist soil above the waterline. After a period of drying, these eggs
can survive for years waiting for the water level to rise and be sufficiently
warm. If the water is too cold or clear, the eggs will not hatch. When suitable
waters do come to inundate meadows or river flood plains, Aedes vexans eggs
can hatch across vast areas; hundreds of larvae can be found in a litre of flood-
water, equating to over 100 million larvae per hectare (Becker et al., 2010),
the subsequent emergence of adult mosquitoes reaching biblical proportions.
Such population levels of this, and other floodwater species, can become so
extreme as to deter all normal human activities. Vexare indeed.

Once emerged as adults, both male and female mosquitoes feed extensively on
sources of plant-based sugars, such as those found in nectar and fruit juices. Only
the adult female mosquito seeks a blood meal, which has the requisite nutrients
to support egg development. When the female does feed on blood it does not
necessarily select humans as the source of this blood, and indeed humans are
rarely a mosquito’s main blood source. Other mammals, birds or reptiles will
also satisfy the palate of some mosquito species. It is when the mosquito selects a



20 Frances M. Hawkes and Richard ]. Hopkins

human for its blood meal that the insect earns its reputation as an annoyance and
harbinger of disease.

It might also be noted that while the majority of mosquito species follow this
general dietary pattern, there is a notable exception in the genus Toxorhynchites.
This group includes the world’s largest mosquito, Toxorhynchites speciosus, whose
wingspan may be four times larger than most other species. The idea of a giant
mosquito may seem somewhat terrifying; however, the 90 or so species in this
genus are particularly noteworthy because the adults do not take any blood meals
at all and feed exclusively on plant sugars. This is on account of the predatory
nature of the larvae, which kill live prey—including other mosquito larvae—in
order to acquire sufficient reserves of protein for egg development when adult. So
aggressive are the predatory (and even cannibalistic) appetites of Toxorhynchites
amboinensis larvae that this species has been cultivated and distributed as an
effective form of mosquito biocontrol, especially for the control of species of
mosquitoes that typically breed on shipping containers and which are associated
with the transmission of dengue and Zika virus (Collins and Blackwell, 2000).

The secret life of a mosquito

Whilst for most people, mosquitoes are defined by an incessant whining that
disturbs their sleep at night or by an intense swollen itch on their ankle, there
is far more to mosquito biology than their interactions with humans. These are
but brief moments in their admittedly rather short lives—in the tropics most
individuals will seldom survive longer than a month as adults. Throughout the
course of their adult life, mosquitoes must perform a series of complex searches
for resources at different times and in different places across the landscape. They
interact not only with their blood-meal host, but with plants that are also sources
of food, with a mate, and with places and structures for resting and laying their
eggs. The resources that each individual insect searches for vary in their spatial
and temporal availability and are sometimes to be found in widely differing
environments. The behaviour of a searching adult mosquito is driven by external
cues in the form of chemical and visual signals that the insect must process to
guide its searches.

The organs that the mosquito uses to inform the searches are all remarkable
in their own way. Stimuli that are visual, chemical and aural all play important
roles at some point in the life of the adult mosquito. The compound eyes of
night-active mosquitoes are amongst the most sensitive to low light levels in the
animal kingdom and the structure of the nocturnal mosquito eye is uniquely
adapted to maximize this sensitivity. Such eye sensitivity enables visually guided
tlight in light conditions equivalent to moonless, starless nights, although such
sensitivity comes at the expense of visual resolution, with the world appearing
as a heavily pixelated image of light and dark patches. The mosquito antenna is
another remarkable organ. It can detect odours that distinguish potential hosts,
sugar meal sources and egg-laying (oviposition) sites. This antenna not only
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has humidity and thermal receptors, it is also endowed with one of the most
sensitive sound detectors in the insect kingdom, the Johnston's organ. Described
by and named after Christopher Johnston (1855), these are the most complex
mechanosensitive organs yet found in insects. This doughnut-shaped organ
at the base of the antenna detects minute vibrations from sound waves. The
Johnston’s organ’s extreme sensitivity to sound allows a flying mosquito to detect
the tones produced by the wingbeats of other flying mosquitoes and distinguish
these from tones produced by its own wings. Fascinatingly, conspecific male
and female mosquitoes not only detect the sound of each other’s wingbeats, they
also adjust their own wingbeat frequency to match that of their potential partner
during flight, producing a harmonious duet in a prelude to mating (Gibson and
Russell, 20006).

Often, all the resources that a mosquito needs can be found in a relatively
small area, with conventional wisdom being that mosquitoes, on the whole,
travel relatively short distances, generally less than a few hundred metres, with
exceptions of up to several tens of kilometres being documented. With the high
habitat diversity and host availability found in some environments, there may
be little need to travel far. However, research carried out in Africa’s Sahel has
demonstrated that malaria mosquitoes fly hundreds of metres up, where they
may be carried on the wind for distances of around 300 kilometres in a single
night (Huestis et al., 2019). The majority of these insects were found to be
blood-fed females, so that their travel over long distances may have significant
repercussions for transmitting such diseases as malaria and for the ecological
aspects of their searching for egg-laying sites during prolonged periods of
drought.

In any case, flying between resources and in search of shelter requires a great
deal of energy and adult mosquitoes need to feed in order to gather the energy
that flight requires. Whilst people generally think of mosquitoes as exclusively
blood-feeding, sugar feeding is a cornerstone of adult mosquito life. Newly
emerged mosquitoes cannot survive for long without taking in a sugar meal and
it is the consumption of sugar that facilitates females in their search for blood.
Although female adult mosquitoes in all but a few species require a blood meal
to produce eggs, both male and females feed on nectar and other sources of plant
sugars to provide energy. Given the choice, the majority of female mosquitoes
will consume a sugar meal before they take blood, with floral nectar being by
far the most important of the sugar sources for mosquitoes. Although the phrase
“sugar feeding” is commonly used, it is perhaps a misnomer for the process of
mosquitoes feeding on plants, since mosquitoes gain greater value from a plant’s
other nutrients than simple carbohydrates. “Phytophagy” may therefore be the
more appropriate way to describe mosquito feeding (Peach and Gries, 2020).
It has even been further demonstrated that compounds present in nectar can
differentially affect the development of malaria parasites within the mosquito to
such an extent that their feeding on certain plants can suppress the malaria cycle
in the insect phase (Hien et al., 2016).



22 Frances M. Hawkes and Richard J. Hopkins

Since floral meals are the most significant contributor to mosquito phytophagy,
thenhow do mosquitoes find thiskey food source? In general, itis common amongst
phytophagous insects that their attraction to the plant is governed by a gestalt of
signals available to guide the insect to the correct plant. It is almost certainly the
case for mosquitoes seeking nectar to fuel their flights that their search is based on
a range of signals coming from flowers. The visual cues associated with flowers
and insects have been extensively explored for day-flying pollinators, such as
bees, but less is known about floral visitation by nectar-foraging mosquitoes.
Broadly speaking, nectar-foraging mosquitoes often visit flowers that are white
or pale yellow to the human eye. For nocturnal species of mosquito, this can be
linked to the fact that many flowers that make nectar available at night are often
pale flowers, which have a strong contrast against the dark landscape, thereby
offering stronger visual cues for the pollinators. In addition to visual cues, floral
odours, metabolic heat and the nocturnal respiration of carbon dioxide are all
associated with floral location by mosquitoes (Peach et al., 2019). Floral feeding
by mosquitoes has been relatively understudied compared to other aspects of
mosquito biology. It can be concluded that mosquitoes do feed on extrafloral
nectaries and on fruit juices, and that mosquitoes will utilize a broader range of
plant material than just flowers when flowers are scarce.

Such nectar-feeding habits mean that mosquitoes may have arole in pollination.
Mosquitoes appear able to pick up small clusters of pollen during nectar feeding,
thereby facilitating plant pollination, even if there are very few documented
cases of obligate pollination by mosquitoes. The blunt-leaved orchid, Platanthera
obtusata, which can be found in the bogs, swamps and wooded fens of northern
North America, is one such mosquito-pollinated plant, with Aedes communis
attracted to the orchid’s chemical compounds (Lahondeére et al., 2020).

While locating plant-based sugars is one occupation of male mosquitoes,
their other chief activity is mate-seeking. The growing importance of research
about male mate-seeking stems from an interest in mating disruption or using
modified males to spread characteristics which disrupt a mosquito’s ability to act
as a vector of disease (Takken et al., 2006). Like most insect species, male adult
mosquitoes typically emerge slightly ahead of females by a day or so, requiring
that extra time to become sexually mature. When females emerge, they are often
ready to mate almost immediately. It is common for many mosquito species
to have mating “swarms” formed predominantly by the males, usually around
dusk. These swarms often form close to visible structures or other conspicuous
landmarks, although the exact mechanisms that guide the positioning of these
mating swarms are poorly understood. Most female mosquitoes will mate just
once during their lifetime, storing the sperm to fertilize all subsequent eggs
they produce. Alongside the genetic material that allows sexual reproduction
to take place, various proteins are also transferred from the male to the female
during mating. This transmitted chemical concoction triggers changes in female
behaviour, switching from mate-seeking to searching for blood to nourish her

eggs.
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Commonplace misconceptions regarding the seemingly indomitable ability
of mosquitoes to locate and bite us—and us specifically, rather than anybody
else—arise from an awareness that our body odour or something of our scent is
somehow detectable and traceable by mosquitoes. Olfaction is indeed the critical
mechanism that females use to locate a suitable blood meal. The mosquito’s
primary scent-sensing organs are the antennae. These paired appendages are
covered with hundreds of tiny hairs called sensilla, each capable of detecting
airborne molecules, including various chemical odours emanating from animal
skin (Sutcliffe, 1994). Breath also releases important telltale chemicals and
mosquitoes carry a pair of sensory palpi next to the antennae crucial for detecting
those, too.

Like other blood-sucking insects, adult female mosquitoes are highly attracted
to carbon dioxide. Produced during respiration by every vertebrate animal and
exhaled in the breath, carbon dioxide is an extremely reliable indicator of the
presence of living animals and, thus, potential blood meals. Of course, carbon
dioxide is also a natural component of the atmosphere, but malaria mosquitoes
can detect changes in concentration of as little as 0.01%. Such minute changes
in concentration are sufficient to trigger flight in mosquitoes at rest (Healy and
Copland, 1995). Trails of the molecule can also be identified by mosquitoes from
some distance, with Anopheles melas able to detect plumes of carbon dioxide at 18
metres (Gillies and Wilkes, 1969). This first detection of carbon dioxide initiates
a complex sequence of behaviours that ultimately lead the insect to its prey.

For some species of mosquito, carbon dioxide appears to be all that they
require to locate the source of a blood meal; the stronger the signal, the better.
In the case of Culex tarsalis, the greater the volume of carbon dioxide released,
the more mosquitoes are attracted to the source (Reeves, 1953; Allan, Bernier
and Kline, 2006). For Anopheles species that can carry malaria, their attraction
to carbon dioxide can have important implications for the spread of mosquito-
borne disease. For example, women in the later stages of pregnancy exhale about
21% more carbon dioxide per breath, meaning that, other factors remaining
equal, the number of Anopheles gambiae attracted to pregnant women can double
(Lindsay et al., 2000). Since such women are at greater risk of complications from
malaria, this particular aspect of mosquito behaviour can produce dangerous
consequences to those most vulnerable.

‘While the carbon dioxide in the air is a generic clue that a host may be nearby,
it provides no definitive information about which kind of animal is producing
the gas. For opportunist species, such as the Caribbean tree hole mosquito, Aedes
mediovittatus, any blood-carrying animal is targeted, be it sheep, rat, pig, horse,
cow, goat, cat, dog, chicken or human (Barrera et al., 2012). Other mosquitoes
are even more catholic in their diet, with Culex erraticus, for example, also feeding
on reptiles, amphibians, as well as birds, large-hooved mammals and humans
(Clements, 1999).

But several medically important mosquito species are extremely specific in
their preferred host. Indeed, a key factor in making Anopheles gambiae a highly
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efficient malaria vector is its faithful choice of humans for a blood meal, a trait
known as anthropophily. Once infected with human malaria parasites after
the first feeding, a female mosquito can feed several more times, potentially
transmitting parasites to a new human host each time (a cow, to consider a
different vertebrate, cannot become infected with human malaria and so suffers
no ill-effects if fed upon by mosquitoes carrying human malaria; from the human
point of view, every blood meal taken from non-human vertebrates is one less
chance to spread infection). Anopheles gambiae evolved its extreme specialization
to humans through ongoing association with agricultural communities, which
provided it with reliable sources of food and niches for resting and oviposition
(Besansky et al., 2004). How, then, can this species that is so discerning in its
host, distinguish between all animal sources of carbon dioxide and pinpoint a
human? And is every person’s scent equally appetizing to a hungry mosquito?

An animal’s emanations of sweat, breath and bacteria are composed of a
complicated array of volatile compounds. Around 350 different chemicals have
been identified in human skin odours alone (Bernier et al., 2000). Anopheles
gambiae’s sensitive antennae detect those chemicals that are tied most closely to
humans alone. Chemical analysis and direct recording of electrical signals from
live Anopheles gambiae antennae revealed the identity of these compounds (Cork
and Park, 1996). Yet even if a mosquito can detect an odour compound, it does
not always respond to it, making behavioural research into their responses to
chemical stimuli a delicate operation, with results that may vary according to
an odour’s concentration, volume or the presence of other odours at the same
time. Key, behaviour-influencing compounds include carboxylic acids, lactic
acid and ammonia (related to sweat production and its incubation, respectively),
and octenol, which is more abundant in cattle, for example, than humans and
may therefore aid Amnopheles gambiae in discriminating between them. All of
these odours stem from communities of bacteria that live harmlessly on our
skin but vary from person to person, and it is these individual differences that
affect attractiveness to mosquitoes, regardless of the gender or age of the person
(Verhulst et al., 2011); thus, certain unfortunate people are genuinely more
attractive to malaria mosquitoes than others, simply by virtue of their unique
skin microbiota (Qiu et al., 2006). Moreover, recent evidence suggests that an
infection of Plasmodium parasites enhances one’s production of volatile chemicals
attractive to malaria mosquitoes (Robinson et al., 2018). In this way, Plasmodium
seems to be luring mosquitoes in for a blood meal that will serve to propagate
the plasmodium.

How valid are claims that consuming garlic or spicy foods, or vitamin B
supplements, might disguise a person’s odour fingerprint, and make it less
appealing to mosquitoes? There is limited evidence that a person’s diet can alter
his or her attractiveness to a mosquito—although the results of a study about beer
consumption offer some intriguing news: controlling for individual variation
and baseline attractiveness, researchers found that those drinking a litre of beer
caused more malaria mosquitoes to fly towards them than those drinking a litre
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of water (Lefevre et al., 2010). Researchers speculate that ingesting alcohol
causes changes in breath and volatile odours that are more attractive to Anopheles
gambiae—with implications for beverage choice when needing to confront this
particular mosquito.

Beyond the dangers presented by a handful of disease vectors and nuisance
biters, most other mosquito species will rarely, if ever, bite a person. Much
less is known of the details of life histories and ecological interactions of these
other species, as they have not been deemed so worthy of research. However,
some investigations are beginning to reveal the stunning complexity in other
mosquito—host interactions.

Cold-blooded hosts, such as toads, frogs, salamanders, lizards and even
mudskippers (amphibious fish), are important blood sources for many mosquitoes
in the genera Mimomyia, Uranotaenia and Deinocerites. Since body heat has been
shown to be an important signal for other mosquitoes locating hosts over
short distances, these colder hosts present a challenge. It turns out that several
mosquito species, including Japanese Uranotaenia yaeyamana, American pale-
footed Uranotaenia lowii and European Uranotaenia unguiculata, are apparently
sensitive to the sounds of their hosts, since recordings of certain frog calls have
been shown to attract these mosquitoes (Borkent and Belton, 2006; Tamashiro
et al.,, 2011; Camp et al., 2018).

While the idea of mosquitoes feeding on frogs and toads may seem peculiar,
there are very few groups of animals off the menu to at least one or two species
of mosquito. Researchers have recently identified the mystery host animals of
Uranotaenia sapphirina, a mosquito from eastern North America characterized by
attractive stripes of iridescent blue scales, tracing it to various annelid worms and
leeches (Reeves et al., 2018). Even fish blood has been extracted and identified
from the gut of engorged Aedes baisasi mosquitoes (Tamashiro et al., 2011). DNA
sequencing of blood meals has been used to verify that these mosquitoes also
feed on various species of eel, goby, mudskipper, rockskipper (or blenny) and
triggerfish common to mangrove lagoons and rocky reefs (Miyake et al., 2019).
Many of these fish are amphibious or air-breathing and some eels will wriggle
out of the water and across muddy ground, while others inadvertently expose
their upperparts to air when feeding in shallow waters. Aedes baisasi is able to
exploit these brief moments of vulnerability.

‘Whatever a mosquito’s choice of host animal, the insect must undertake the
risky business of landing on and puncturing the host’s skin. The mouthparts of
all insects are derived from common structures, with adaptations to suit their
particular diets, be they nectar, grain or, in the case of mosquitoes, blood. A
mosquito’s long and slender mouthparts, collectively known as a proboscis, are
supremely adapted to the task of blood feeding and give the mosquito a reputation
as a flying syringe—yet the underlying anatomy is far more sophisticated than
a simple needle. Once the female has landed on a suitable host, she begins to
probe, repeatedly driving her mouthparts into the host. Using a pair of blade-
like mandibles, which in other insects may grasp or slice food, the mosquito
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pins the host skin firmly in place. A second pair of serrated maxillae proceed to
saw through the surface of the skin. These appendages are so sharp that the host
is often quite unaware of their action. Once the skin is pierced, the mosquito
inserts two hollow tubular structures through the skin to search for a blood
vessel from which to draw the vital fluid. The first tube, called the labrum,
moves freely, bending and curving as it probes the tissue until it detects a suitable
capillary (Choumet et al., 2012). When a vessel is located, the labrum pierces
it and begins drawing up the host’s protein-rich blood. Meanwhile, the second
tubular structure, called the hypopharynx, injects the mosquito’s saliva into the
surrounding tissue. This saliva contains over 100 proteins that keep the blood
flowing while slowing the immune and defensive responses of the host (Vogt et
al., 2018). The proteins include also anesthetics that numb the area surrounding
the bite, anti-inflammatories to maintain blood pressure, vasodilators to keep
blood vessels wide and anti-clotting agents to keep the blood flowing near the
feeding site.

It is the host’s inflammatory immune response to mosquito saliva that results in
the painful, itchy welts associated with the insect’s bite. Yet, the impressive array
of chemicals within mosquito saliva may also include compounds of significant
value in developing the next generation of pharmaceutical medicines. Researchers
have found that anophelin, the salivary protein produced by Anopheles gambiae as
an anti-coagulant, can be modified for helping to dissolve human blood clots,
thereby opening up new possibilities for developing novel drugs that can prevent
stroke and deep vein thrombosis (Watson et al., 2018).

A mosquito’s reliance on blood feeding is the characteristic that allows
mosquitoes to transmit pathogens from infected to healthy hosts. Pathogens
are taken up by mosquitoes incidentally when the latter are imbibing a blood
meal. These viruses and parasites, which accumulate in the mosquito’s salivary
glands, are then injected into new hosts along with saliva during the probing
phase. However, this is not the full story, since only a small fraction of the 3,500
mosquito species can transmit human pathogens, mostly limited to those of just
three genera: Anopheles, Aedes and Culex. Only mosquitoes of the genus Anopheles
can transmit human malaria parasites, and only three species of over 500
described anophelines are responsible for the majority of malaria transmission.
It is worth remembering that most species of mosquitoes rarely, or never, bite
humans, having specialized instead to take blood meals from other mammalian,
avian, reptilian or amphibian hosts.

Moreover, the simple exchange of blood and saliva is insufficient for making
a mosquito into a vector, at least not instantaneously. Most mosquito-borne
pathogens must undergo a process of replication or development within the body
of the mosquito, which can take up to 23 days for Plasmodium vivax (Thomas et al.,
2018), but can be as quick as two days in the case of dengue viruses, depending
on environmental conditions (Chan and Johansson, 2012). Should the insect feed
on another host before this process is complete, she will not yet be able to pass on
viable infective agents. Yet proof that the mosquito can successfully imbibe blood
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from infected hosts, and then inject pathogen-laden saliva into uninfected hosts,
is shown by the nearly 700 million cases of mosquito-borne illnesses occurring
each year (World Mosquito Program, 2020).

It would be a mistake to assume that the presence of the pathogen is
unproblematic to the mosquito, for even the immune system of the vector will
attempt to tackle the invading pathogen (Rodrigues et al., 2010). A female
mosquito consuming a meal from a malaria-infected human can ingest thousands
of gametocytes (the stage of malaria parasites found in infected human blood).
By digesting these gametocytes and exposing them to other toxic processes, her
immune system can reduce their numbers from thousands to the tens (Smith
et al., 2014). Moreover, white blood cells belonging to the host animal and
ingested by the mosquito during feeding will also continue to target the malaria
parasite for hours after entering the mosquito gut (Lensen et al., 1997). But even
this two-pronged attack can fail to halt the malaria parasite’s growth. Despite
these gametocyte elimination processes, a small number may still survive to
form oocysts (the parasite’s next developmental stage) on the outside of the
mosquito’s gut lining. When mature, these burst open, each releasing thousands
of sporozoites, which migrate to the mosquito’s salivary glands ready to infect the
next suitable host. The successful development of just one oocyst is, therefore, all
it takes for the mosquito to become infectious.

Vectors, too, can be stricken by the effects of the pathogens which infect
them following a blood meal. Dengue virus, for instance, detrimentally affects
the fecundity and fitness of its principal vector, Aedes aegypti. Dengue-infected
mosquitoes lay fewer or no eggs, with adult longevity being halved (Sylvestre
et al., 2013). Malaria parasites can also upset the normal reproductive processes
in anophelines. By promoting cell death in the lining of the insect midgut, the
rodent malaria, Plasmodium yoelii, is found to cause Anopheles stephensi to reabsorb
ovarian follicles, essentially destroying the next clutch of eggs the female would
have produced (Hopwood et al., 2001).

In other considerations, certain parasites have been shown to manipulate
their hosts for enhancing their own chances of survival. Malaria parasites have
highly complex associations with their mosquito and vertebrate hosts, and it has
been suggested that these single-celled protozoa may also influence mosquito
physiology and behaviour to increase the probability of their survival and
transmission. The introduction of a malaria parasite into a mosquito vector
undoubtedly changes the mosquito, although whether such changes are truly
an adaptive manipulation or simply a side effect of infection can be difficult
to determine (Hurd, 2003). Nonetheless, several studies suggest that parasites
produce physiological and behavioural changes in mosquitoes that favour their
onward transmission.

It has been determined that wild Anopheles gambiae mosquitoes infected with
the most deadly human malaria parasite, Plasmodium falciparum, take blood meals
from more than one person in a single night, whereas uninfected mosquitoes
are more likely to feed on a single individual. Such multiple feeding behaviour
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increases the number of contacts between the infected mosquito vector and
human hosts, thereby increasing the transmission potential of the parasite (Koella
etal.,, 1998). Laboratory studies also emphasize the complexity of the vector—host
relationship. Research has shown that Anopheles gambiae mosquitoes infected with
Plasmodium berghei (a strain of rodent malaria) were willing to probe a mouse’s
skin more often than uninfected mosquitoes (Choumet et al., 2012). Although
the source of this behaviour is unknown, it may nonetheless confer advantage
to the parasite by increasing the likelihood that a mosquito successfully feeds on
blood and passes the parasites to the next host.

Ultimately, we realize that the unflattering reputation of mosquitoes may
be well-earned. Their visceral parasitic strategy for acquiring nutrition can
certainly appear more gruesome, and less honourable, than other predators
going about their lives in the animal kingdom. That they stalk us and fre-
quently attack in stealth, often under the cover of darkness, and target specific
individuals may be perceived at some level as both devious and personal. That
their feeding aggravates us, disturbs our rest, creates an itch that can stay for
days and may even infect us with debilitating and potentially deadly disease
elevates mosquitoes to the level of the positively dastardly. It may therefore
seem unsurprising for those of us involved in the study of this insect to be
asked, “What is the point of a mosquito?” Although scientists aim to avoid
teleological explanations for natural phenomena, some of the less commonly
studied aspects of mosquito biology already demonstrate biotic interactions
that are much more complicated than those of a simple blood-sucking pest and
carrier of disease. Although we are just beginning to uncover some of their
more cryptic behaviours, much work remains to be done. Thousands of mos-
quito species have evolved marvelous and intricate biological adaptations for
generating diverse behavioural and ecological traits that are still unknown to
science. The activities of mosquitoes in the ecosystem are as sophisticated and
specialized as that of any other creature, and indeed more complex than many.
The study of mosquito biology may reveal biochemical, anatomical and behav-
ioural secrets that may not only enrich our understanding of nature but also
become a source of bioinspiration in future sciences and technologies, from the
design of pain-free microneedles (Gurera et al., 2018) to algorithms for flying
drones (Nakata et al., 2020). Critically, the overwhelming majority of insects
that fall within the Culicidae do not pose a threat to human health or comfort,
so caution must be exercised when discussing “mosquitoes”, generically, as carri-
ers of disease. For the mosquitoes that are vectors of disease, it is the pathogens
and parasites they harbour which cause us morbidity and mortality, and in
some cases not without cost to the infected mosquito itself. This is key. While
malaria cannot persist without mosquitoes, mosquitoes can persist without
malaria, or dengue, or Zika. When driven to distraction by the whining of a
mosquito or the itch from their bite, many will not realize that “that wretched
mosquito” is but one of myriad species each occupying a unique niche in the
environment. Appreciating these subtleties in how we frame debates about
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“mosquito eradication” can inform a more nuanced discussion, where these
key differences call for differences in our response.
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UNDERSTANDING
MULTISPECIES MOBILITIES

From mosquito eradication to coexistence

Uli Beisel and Carsten Wergin

Extensive loss in biodiversity and warming climates mean that the world faces
an unparalleled historical situation of global multispecies suffering. In light
of this, it is crucial we widen our discussions about social-cultural change in
the Anthropocene from narrow human-centred considerations towards more
speculative fields of more-than-human relations. One of the most persuasive
methods to account for such entangled lifeworlds is found in “multispecies
storytelling,” a method that recognizes the human and the more-than-human
in onto-epistemic partnership (Haraway, 2016). Multispecies stories challenge
anthropocentric narratives that tend to depict the bodies of other species as
rhetorically passive resources for human appropriation, whether as consumptive
commodities in global economies, or as metaphors and symbols in aesthetics and
media. Along these lines, the method of “multispecies ethnography” is a vital
tool to study and account for ecological assemblages in ways that aim to highlight
and address epistemic inequalities (Kirksey and Helmreich, 2010). Important,
though, is that more-than-human relations are not considered a harmonious or
romantic endeavour. Rather, often the pressing question for humans in more-
than-human encounters is about “how to survive”—a question that is more often
than not answered with calls for eradication of non-human disease carriers.
Here we focus on mosquito-borne diseases where the question of human sur-
vival and non-human extinction has been prominent for many decades. Our aim
is to weave insights about the history of malaria and human—mosquito relations
in West Africa together with those of a multispecies ethnography of invasive
mosquitoes in Germany. Following threads of multispecies mobility, we show
how particular human mobility has come to render mosquitoes killable in colo-
nial West Africa. At the same time, we can see how through globalization and
warming climates, mosquitoes remain highly active and mobile. We focus on
what is considered number four of the “100 world’s worst invasive alien species,”
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FIGURE 3.1 Asian tiger mosquito (Aedes albopictus). Source: Wikicommons.

the Aedes albopictus (GISD, 2019, see also Kraemer et al., 2019). Ae. albopictus, also
known as the “Asian tiger mosquito” due to its striped legs and body, is consid-
ered native to the tropical and subtropical areas of Southeast Asia but is today
found in many parts of the globe, including Australia, Africa and the Americas
(see Figure 3.1). It is an epidemiologically important vector for the transmission
of many viral pathogens, including those of yellow fever, dengue and chikungu-
nya. Ae. albopictus can also host the zika virus and potentially transmit it between
humans.

It is important to note that Ae. albopictus are considered by the European
Centre for Disease Prevention and Control (ECDC)’s Ae. albopictus factsheet as
“one of the top 100 invasive species” (ECDC, 2020). It is thus subjected to a
rhetoric of “illegality” and “border control” that is enmeshed with global trade,
as much as climate change concerns, race and power politics. As Ernwein and
Fall show, this border and invasion rhetoric is also utilized in communications
about invasive plants (Ernwein & Fall, 2015). In her work, Fall further shows
how this rewrites “the nation state as the most pertinent scale for identity poli-
tics” (Fall, 2013: 171). For Ae. albopictus, this tendency is exemplified by a quote
from a recent article about the introduction of mosquitoes from Africa to Europe
via the Mediterranean Sea. Finding Ae. albopictus caught in traps on Pantelleria,
Lampedusa and Linosa, the author presumes links to the arrival of refugees but
omits the relevance of global trade for the dispersal of mosquitoes:

Aedes albopictus was found on all three islands under investigation. The
consequences on public health with regard to the presence of this mos-
quito vector and the migrant people entering the country from Africa
and the Middle East are also discussed (...) The detection of the Asian
tiger mosquito on these islands, which represent the last European strip of land
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facing Africa, has important implications for public health policy and should
prompt the national authorities to implement tailored surveillance activi-
ties and reinforce plans for preparedness strategies in such contexts.

(Di Luca et al., 2017, emphasis added)

Through this framing, invasive mosquitoes are linked to migrating humans in a
problematic way, that is not only dehumanizing and delegitimizing refugees and
migrants, but also establishing a wrong, racially charged idea of how invasive
mosquitoes travel and extend their habitats. It has been shown in scientific
studies that the movement of invasive species is mainly to be linked to trade-
related mobility. As the ECDC factsheet also notes, Ae. albopictus are known to
travel in used car tyres and “lucky bamboo” (ECDC, 2020). Clearly, economic
ties and their diverse technologies of transport are the crucial factor. Yet, human
mobilities, from leisure tourism to forced migration, all also have profound
impacts on public health. In general, with globalization, mobilities have become
more dynamic and complex (Sheller & Urry, 2006), but also more controllable
due to innovations in transportation, border control, media and communication
and surveillance technologies. These technologies are actively used in the control
of invasive species, which has in the last decade received more attention under the
label of biosecurity (Dobson et al., 2013). However, these measures are usually
not successful at keeping mosquitoes out of a territory or country. Biosecurity
initiatives are in practice rather aimed to control and contain mosquitoes and
minimize the disease risk. So, while mosquito eradication has been attempted
several times in history, mosquitoes have proven to be good at utilizing human
infrastructures and adaptive to changing ecological conditions.

In order to address the complex socio-ecological dynamics at play, there is
certainly a need to consider the Asian tiger mosquito as a learning species—a
migratory species that makes use of and stimulates social-cultural change,
and in doing so reveals problems typical of those of the Anthropocene, such
as the prioritization of the economy over planetary health. The movement of
the mosquito further calls into question the quest for local eradication strategies
while demanding transdisciplinary research partnerships. Increased sightings
of the Asian tiger mosquito in Germany have growing potential to generate
anxiety in the wider public, since the animals can theoretically transmit a suite of
serious infectious diseases (see also Ernwein & Fall, 2015). At the same time, this
mosquito, as a sentinel device older than humans, also offers a form of “radical
hope” in our age of global environmental degradation through its capacity to
adapt to climate change and counteract violent human efforts to propel it to
extinction (Lear, 2006).

In what follows, we draw together historical observations on how anxieties
about and reactions to mosquitoes are interlinked, and furthermore, how these
have played out in racialized politics of the past. To do so, we initially turn to
malaria as a mosquito-borne disease with a well-documented history, recount-
ing certain aspects of the localization of this disease in particular regions of the
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world and imbued with imperial logics that serve to make mosquitoes objects of
eradication. We then consider Ae. albopictus and its connection to contemporary
questions of mobility, eradication and multispecies coexistence.

Histories of mosquito—human relations

We believe that when men appeared, mosquitoes were already an ancient
form of life, with needles sharpened and adapted to the procurement of
vertebrate blood. Very likely too, the mosquito had already formed its
close partnership with the protozoan that is the cause of malaria. In what
vertebrate the plasmodia first existed as parasites we don’t know, but it
seems likely that they were not long, as time 1s measured, in adapting their
metabolism to the chemistry of man’s cells and fluids. One assumes (...)
that disease is as old as life.

(Russell, 1955: 2)

Malaria is one of the most widely known vector-borne diseases across the globe,
and it has been so for millennia. Long before health reports started to compile
disease mortalities, Indian Vedic texts called malaria “the King of Diseases.”
Malaria symptoms were outlined in the writings of Hippocrates in fourth cen-
tury BC Greece, while genetic tests have linked malaria to the death of King
Tutankhamun in Egypt. Centuries before, the Chinese treated malaria fever
with the ginghao plant, whose active ingredient, artemisinin, remains the stand-
ard WHO treatment up to present. Mala aria, medieval Italian for “bad air,”
reflects how the fever was believed to emanate from unhealthy air in swamps.
The etiological significance of air was overturned in the late nineteenth century
when French army physician Charles Laveran, working in Algeria, observed
Plasmodium parasites in a patient’s blood-slides. Ronald Ross, a British Garrison
Surgeon working in India, is credited with associating the life cycle of the avian
Plasmodium parasite with the Anopheles mosquito.

Despite the historic evidence for the global distribution of this vector-borne
disease, and that of mosquitoes as its main “distributor,” malaria remains defined
by a particular physical and socio-economic geography. Indeed, conceptions
of the Global South by European colonialists were deeply influenced by the
experience of mosquito-borne diseases. Many colonial accounts speak of
bountiful and, at the same time, barren and nasty lands (Blaut, 1993). Such
portrayals are firmly influenced by the experiences of struggling with fever and
other illnesses. Both tropes—the bountiful and the nasty—were instrumental
for justifying colonialism (cf. Blaut: 77). What became popularly known as
“the white man’s burden” is thus strongly linked to mosquito-borne diseases,
which in turn supported a deterministic view of colonial landscapes and their
populations, and helped to establish a contrast between so-called natives and
Europeans (cf. Arnold, 2000: 81, see also Carlson, 1984: 15-16; Webb, 2014).
In other words, perceived differences in vulnerability to vector-borne diseases
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opened the door to violence and racial segregation policies, such that African
children, for example, were hypothesized to be disease reservoirs for parasites
(Ross, 1910).

Segregation measures ramified across the colonies to find white populations
fenced off from African housing, a spatial relationship whose legacies one can still
trace through housing developments in what has become known as gated com-
munities (Webb, 2014). Such practices of geographical distancing demonstrate a
mutual influence between the wish (and ability) to tame the environment and racial
discourses, which are rooted in overtones about the “natural” superiority of one
population over another. These discourses also locate the mosquito in some areas
but not others. Mosquitoes, infectious diseases, as well as native human populations
can all be confined to particular environments where the natural turns nasty, thereby
justifying orders to “keep one’s distance.” The quote from this chapter’s introduction
demonstrates how racial discourse still impacts our perception of the global spread
of mosquitoes. David N. Livingstone adds that in the colonial past, “disease ecology
and moral cartography were much closer than distant cousins” (Livingstone, 2002:
173). What is central here is that a rhetoric of invasion and border control attached
to the challenges of global containment of Aedes albopictus is still manifested in our
political and scientific engagements.

Such long-standing socio-political entanglements of race and society provide
the background against which mosquito control mechanisms, from containment
to extinction, are conceived and exercised. The following paragraphs discuss
how this discourse goes hand in hand with rendering mosquitoes killable and
extinction-able. As shown, the history of international malaria control interven-
tions was an integral part of colonial practices that were not only informed by
a misunderstanding of the transmission of malaria but were also highly racial-
ized. Indeed, as postcolonial scholars such as Chakanetsa Mavhunga have argued,
these interventions stand in contrast with African practices of living with mos-
quitoes, as colonial rule was introducing, “a new dynamic of relations (...) from
co-existence to exterminating the insect” (2018: 12).

In the late nineteenth century, the violent politics of extermination and eradi-
cation received new technological tools from imperialist science. The scientific
documentation of the Plasmodium parasite and the malaria transmission mecha-
nism laid the foundations for new technological innovations in malaria control.
Based on these discoveries, larviciding, screening and the creation of ditches,
for instance, became crucial elements of malaria and yellow fever control as in
the building of the Panama Canal (Gorgas, 1915; D’Antonio & Spielman, 2001:
124ft). Further, more elaborate technological innovations were developed dur-
ing World War II, most notably the malaria drug chloroquine and the insecticide
DDT, which eventually led the WHO to officially endorse a Global Malaria
Eradication Program (GMEP). To appreciate the importance that the GMEP
had for the WHO, it is important to remember that the WHO was founded in
1948 and hence was very much a post—=World War II institution, with the GMEP
being one of its first major projects.
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But Africa, the continent with most cases of malaria, was not included in the
GMEDP, partly because of worries about the holoendemic status of malaria in the
vast part of sub-Saharan Africa. Experts feared that an incomplete eradication
campaign could diminish the acquired partial-immunity of Africans, and
this would have resulted in an even greater malaria mortality than before the
campaign. As Dobson et al. (2000) argue, the WHO’s decision to exclude Africa

s

was based on racial stereotypes about “African monotony” together with the
little-understood relationship between endemicity and immunity. Of course, this
decision to exclude Africa from the programme also meant that the eradication
campaign was in fact never truly global, as its name claimed.

By many indications, the results of GMEP were generally mixed at best,
which can also be seen in the abandonment of the programme after a mere 14
years (Packard, 2007). A crucial obstacle for the eradication campaigns that was
not considered at the time was related to the adaptability of both mosquitoes and
the disease itself. Before 1945 only a dozen species were known to be resistant to
pre-DDT insecticides. However, by 1960 already 139 species were reported to
be resistant against DDT (Carson, 1962: 234). Thus, the potency of DDT was
compromised by the evolution of mosquitoes (cf. Packard, 2007: 155). Countries
that managed to achieve eradication mostly lay in sub-tropical climates with
unstable, seasonal disease transmission; the only high-transmission regions
that managed to eradicate malaria were island nations. In addition, as shown
by historical analyses of malaria elimination in the United States (Humphreys,
2001), in Italy (Snowden, 2006) and in Argentina (Carter, 2007), sustainable
reductions in disease incidences came about because of a multifaceted approach,
which included not only the killing of the mosquitoes, but comprehensive
social, economic and environmental changes. The number of malaria incidences
remained low because industrial agriculture brought more distance between
humans and mosquitoes, and because there was more investment in healthcare
and public welfare. Humphreys quotes a malariaologist of the day, who, judging
the effect of the DDT campaign, said that “the best we can claim in this country

EER)

is that ‘we kicked a dying dog’™ (2002: 149). Comprehensive social treatment of
malaria was a must, if the aim was its disappearance; the GMEP’s strong reliance
on technical tools spelled failure for its eradication campaign.

Still, many other retrospective analyses continue to regard the WHO’s
eradication campaign as highly successful. This reading of the GMEP praises
chemical tools such as DDT, and marginalizes other more complex evaluations
and interventions aimed at human—mosquito coexistence (Kelly & Beisel, 2011).
The impact of this other eradication narrative is reflected in contemporary
discussions about mosquito control, as well as in the Gates Foundation’s push
for malaria eradication and as a rationale for the WHO’s malaria eradication
programme (https://www.who.int/malaria/areas/elimination/en/).

These simplifications of the history of mosquito control in Africa and the first
malaria eradication campaign have—by relying on imperial and racial logics—
rendered the mosquito killable and eradicable. In addition, while mosquito-borne
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diseases have been present also on the European continent until the beginning of
the twentieth century, disease transmission was successfully interrupted through
improved health infrastructures (for the case of Italy, see Snowden, 2006). The
modernist success against mosquito-borne diseases in combination with the his-
torical narratives described above, has also established a narrative that locates dan-
gerous, infectious disease-carrying mosquitoes in countries of the Global South,
and so enables the narrative of a menacing “invasive species” to be extended to
mosquitoes. One also sees that eradicating highly mobile, biologically complex
mosquitoes that populated the earth long before humans existed, has not been
easy. Indeed, the failures of earlier eradication campaigns would encourage more
humble attempts in dealing with these ancient pesky creatures. The next section
takes up this issue of identifying more effective contemporary mosquito control
measures, especially the control of mobile, so-called invasive mosquito species.

A multispecies mobilities approach to Aedes albopictus

What can be learned from the history of mosquito control in Africa when devising
mosquito control in Germany? We suggest that this historical framing requires
us to attend to situated practices of multispecies mobility in a socio-ecological
way. Contemporary interpretations of mosquito—human relations compare these
with human encounters with animals, bacteria and other microorganisms within
multispecies entanglements (Whatmore, 2002; Hinchliffe, 2007; Kirksey &
Helmreich, 2010). Here, analyses focus on the interwovenness, or “material-
semiotic knottings” of humans with other forms of life—such as understanding
dogs and humans as companion species, and bacteria as constituents of human
bodies (Haraway, 2008).

While initial studies centred on the moments “when species meet” (ibid.) or on
tracing non-human “presences” in urban centres (Hinchliffe et al., 2005), later stud-
ies turned to more troubled forms of multispecies coexistence (Buller, 2008; Collard,
2012; Barua et al., 2013; on insects/mosquitoes: Beisel et al., 2013; Kelly and Lezaun,
2014; Beisel, 2015). As Nading shows for Aedes aegypti in Nicaragua, humans, mos-
quitoes and dengue virus are deeply entangled so that “changes in bodies reverberate
through landscapes, and vice versa” (Nading, 2014: 10).

The view of landscapes and infrastructures as shared lifeworlds of mosquitoes
and humans provides a way for understanding mosquito—human relationships
in a manner wider than the biter—bitten dyad. But how can one track entangled
human-non-human mobility in such a way as to limit our impulses stemming
from such loaded terms as “invasiveness” and “eradication” and instead search for
ways to live together on a mobile and warming planet? Here we sketch a multi-
species approach to dealing with what is considered a new arrival in Germany:
the Aedes albopictus mosquito. Just as humans and goods move, disease vectors
and pathogens utilize global connectivities to expand their habitat. As the 2020
SARS-CoV-2 pandemic painfully showed, a better understanding of the mobil-
ity patterns of disease agents and their vectors is crucial for the early detection
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of outbreaks and their successful containment. The geographical distribution
of Aedes mosquitoes has continuously broadened over the last decades, with
the many species in this genus spreading to different countries through human
activities and transportation. Alongside these mosquitoes, arboviral diseases also
moved to unprecedented places.

The Mediterranean Basin offers a case in point. Since the Late Bronze
Age, this region has continued to be a global hotspot for trade, transport and
migration. As a result, countries surrounding the Mediterranean Sea share not
only goods but also common health threats posed by vector-borne diseases
transmitted by mosquitoes (Jourdain et al., 2019). Since at least the 1960s, the
Asian tiger mosquito’s geographical distribution has continuously expanded, a
process which stems from increased global travel and trade, urban development
and tourism, and also climate-change phenomena, such as changing land use
and management. As a result, diseases like dengue or chikungunya are no longer
considered restricted to tropical and subtropical regions, and are developing a
strong urban component (Jourdain et al., 2019: 10).!

After spreading to the United States via imported second-hand automobile
tyres from Asia, Ae.albopictus is now found in Mexico’s Yucatan Peninsula
(Salomoén-Grajales, et al. 2012), where dengue is a concern not only for
medical entomologists but also for the local tourist industry, which depends on
an international draw to its world heritage sites. In 1990-1991, Ae. albopictus
were again found in used tyres traded from Georgia (USA) to Italy, having
previously emerged in Albania in 1979, arriving there in a shipment of goods
from China.

Recent surveys showed that these mosquitoes have now spread across the
entire peninsula of Italy, parts of Sicily and Sardinia, and into Switzerland. In
late 2007, the first Ae. albopictus eggs were discovered in southwestern Germany
(Pluskota et al., 2008), where they continue to arrive via freight transport from
Italy and Switzerland. Ae. albopictus migrate along the German A5 motorway and
have by now settled in the Rhine-Neckar metropolitan region, which counts
approximately 2.4 million inhabitants. In multispecies terms, truck drivers
and gardeners have become companion species of mosquitoes. The mosquito’s
disregard for political and economic borders creates a significant challenge for
possible control mechanisms, and places these insects alongside other “hyper-
objects” such as CO, or micro-plastic, which also demand political decision-
making for crossing and transgressing national borders (Morton, 2013).

Meanwhile, dengue and chikungunya remain a health threat in many African
countries. Tanzania is a good example: there, Aedes mosquitoes are so far mainly
associated with major urban centres, but Ae. aegypti have recently been shown
to have high incidence rates in small towns, too (Kahamba et al., 2020). In
early 2005, this species was implicated in a major outbreak of chikungunya in
the Indian Ocean, especially in the southern states of India, and in a dengue
outbreak in Havelock, a tourist destination in the Andaman and Nicobar archi-
pelago (Sivan et al., 2016).
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This entangled globalization of mobile humans and mosquitoes demands a new
research focus on transmission that is fostered by transdisciplinary collaboration.
In particular, the increased mobility of the Aedes mosquitoes highlights crucial
linkages between humans and non-humans that remain understudied in the
traditional fields of entomology, global medicine and health research. Rather
than continuing to focus on imperially minded war on nature, or focusing on
false localizations of which mosquitoes are “native” or “invasive,” sustainable
mosquito control in times of climate change will need to learn to account for
the interlinked mobilities of humans, mosquitoes and goods, as well as to be
adaptive by developing infrastructures accounting for changing multispecies
environments.

Infrastructuring multispecies environments

Societies organize movement through the environment with relatively enduring
patterns: namely, infrastructures. However, environments are not passive
receivers of infrastructures but actively impact on how the latter come into
being. Infrastructuring environments means organizing, knowing and managing
a multiplicity of relations (cf. Blok et al., 2016).

Asthe history of mosquito control aptly shows, the dominance of the eradication
approach has not only been more complicated, but also more destabilized
through climate change and biodiversity decline. Despite all efforts made in
the past, mosquitoes’ transgression of political, cultural and economic borders
remains a significant challenge with regard to selecting control mechanisms.
Most entomologists and disease ecologists prioritize the tracking and monitoring
of vector movements. As mentioned earlier, unwittingly aiding vector mobility,
travellers, truck drivers and gardeners become Aedes’ “companion species”
(Haraway, 2005). Such entanglements of species are most visible in the diverse
ways in which they share infrastructures. This sharing of truck and train routes,
planes, or boating facilities challenges conventional assumptions of how human
and non-human species live separate lives in a shared environment. Related to
this, categorizations into developed regions vs. emerging regions—us vs. them—
need to be replaced by mobile documentation and experiences of place-making.
One way to confront health threats arising from the spread of Aedes albopictus
and its adaptations to human environments is therefore to become attuned to
how human—mosquito entanglements shift due to new infrastructurations in our
shared environments, in order to (re)negotiate the arrival of new vector species
by recording how local communities perceive and react to mosquito presence.

An increased emphasis on bottom-up and citizen science research can
help deliver new information on these changing human—mosquito relations.
Helpful here would be a multi-sited approach of “following the mosquito,” for
example by travelling with trucks from Italy to Germany (cf. Marcus, 1998).
Other fields useful for developing multispecies ethnographic interventions
are existing surveillance systems that are drawn upon to confront the global
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spread of arboviruses. These surveillance technologies are meant to allow for
interdisciplinary collaboration and promote cooperation between academic
institutions, regional, national and international government agencies. The focus
here is on the main routes of introduction, and on infrastructures such as ports,
airports or ground crossings like railway nodes and communication and trade
routes, as much as on tourist areas. In Germany, such work has already been
conducted by the regional health department R hein-Neckar-Kreis, the Institute
of Dipterology and the mosquito control association (KABS), with emerging
international partnerships such as TIGER, the Tri-national Initiative Group of
Entomology in Upper Rhine Valley (TIGER, 2019).

Due to Ae. albopictus’ aftinity to human environments, further crucial research
sites include used tyre storage facilities, greenhouses and green urban spaces such
as vacant lots. Studies show that mosquitoes move befween continents mainly via
used tyres and to a lesser extent in lucky bamboo, and that they move within con-
tinents via the traffic of roadways, as shown by Ae. albopictus’ proclivity to enter
vehicles (Jourdain et al., 2019: 12-13).

Added to these trends of mosquito dispersal are micro-level movements, for
example in backyards that share watering cans among neighbours. Collaborative
analyses between entomologists, ecologists and anthropologists would shed light
on the socio-ecological dynamics that stem from these entangled mobilities of

FIGURE 3.2 Computer monitor displaying a section of the Rhine meadows under
surveillance. Colour-codes identify the surveillance and control methods
used. Source: Carsten Wergin; KABS, https://www.kabsev.de.
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FIGURE 3.3 Burned-out KAPS helicopter. The translated newspaper headline reads:
“Danger of mosquito plague along the Rhine: helicopter of mosquito
fighters burns out.” Copyright: SWR.de, 2019.

mosquitoes and humans, offering answers to the question about the role infra-
structures play in the transmission of infectious diseases.

Of final concern are the very infrastructures used to study and control the
spread of mosquitoes. The control of moving mosquitoes demands that some
infrastructures be similarly mobile, since a focus on infrastructures and infra-
structural environments means to trace the shifting mobilities of who moves
where and when; and whose (im)mobilities engender fresh movement. A spec-
tacular case in point was when the German mosquito control association KABS
encountered trouble in June 2019 when it lost control of their helicopter at the
peak of the mosquito season (Figure 3.3). This piece of equipment is used to spray
the bacteria-produced toxin Bacillus thuringiensis israelensis (Bti) that, if digested,
kills the larval stages of vulnerable mosquito species. The helicopter is thus of
central importance when it comes to impacting potential mosquito habitat.

In sum, a multispecies approach to mosquito control is necessary because of
the impossibility of infrastructuring environments based exclusively on human
needs, since environments extend across time and space “involving distributed
ecologies typically linking thousands of people, computers, sites, and events”
(Blok et al., 2016: 13). Embracing the question of how one can (re)present more-
than-human agencies, collectives and collaborations in more equitable terms
(Wergin, 2018), the global spread of Ae. albopictus clearly needs to be understood
not as yet another unintended effect of capitalist expansionism, but as part and
parcel of the continuous “becoming-with” of human and more-than-human
actors. In line with this analysis, one can realize that infrastructuring multispecies
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environments will bring us into contact with “two essentially contested ‘fron-
tiers” those of the global (environment) and the future (of the collective)” (Blok
et al., 2016: 14). Rather than trying to eliminate their presence, we suggest that
better understanding their entangled mobilities helps us to work towards social-
cultural change and planetary health, since the multispecies story of Aedes albop-
ictus highlights the close entanglement of health, mobility and migration with
the “wicked problems” of climate change, extinction and global environmental
degradation.

Conclusion

Many mosquito control interventions have in the past been closely related to
the politics of imperial expansion and colonialism. These connections have
played heavily on how mosquitoes and human vulnerability to mosquito-borne
diseases have been understood. Mosquitoes were not only rendered killable but
were also firmly placed in tropical habitats of the Global South, inviting the
language of “invasiveness” whenever these creatures moved. Yet one should
realize that mosquitoes are older than humans and have always been mobile
travellers on this planet. Alongside such facts, one might also remember that
most mosquito eradication campaigns have not been very successful. And indeed,
where they were successful, careful analysis suggests that changed multispecies
infrastructurings were the main factor leading to local demise of the mosquito,
and not the techno-fixes of eradication campaigns.

Rather than continuing to set our hopes on a new suite of magic bullets,
we suggest that a focus on the entanglements of human and mosquito mobility
is urgently needed to detect disease outbreaks early and to develop successful,
locally supported control strategies. How are human and mosquito mobilities
linked? What methods are most suitable to understand their entanglements and
develop more successful control measures? Ae. albopictus has shown tremendous
resilience in adapting to different geographical and climatic conditions by taking
advantage of human-made environments and infrastructures, which hasled to its
successful global spread. These anthropogenic environments warrant surveillance
at points of entry to understand introduction pathways, causes and routes of
invasions and connect these to different aspects of its biology and ecology. Yet,
a systematic transdisciplinary collaboration that combines research strands on
human, vector and viral mobility is still rare.

Such transdisciplinary endeavours point to the fact that humanity is itself an
enterprise that needs rethinking. Understanding human—mosquito movements
through effective global partnerships among affected communities requires close
collaboration between entomologists, social scientists, technologists and the
communities themselves for jointly and systematically developing transdisciplinary
methodologiesbased on comparative dataanalysis ofhuman and mosquito mobilities.
Since the fast-paced spread of Ae. albopictus is intertwined with international trade
and human mobility, we believe that intervention to slow or halt its spread is
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possible. Its control, however, needs in-depth analyses of multispecies coexistence,
rather than a continued focus on eradication of unwanted companion species.

Note

1 For example, an average January temperature of 0°C was usually considered the
survival threshold for Aedes albopictus diapausing eggs. However, the species was
found in Trento (Italy) despite minimum temperatures of —10°C and an average
January temperature of =5°C (Jourdain et al., 2019: 14)
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THE LONG ARC OF
MOSQUITO CONTROL

James L.A. Webb, |r.

Longbefore the emergence of Homo sapiens, our early hominid ancestors frequently
found themselves in close proximity and intimate contact with mosquitoes. Our
distant ancestors sojourned nearby bodies of saltwater in order to harvest shellfish
and catch marine fish as a source of protein, and by the shores of freshwater
rivers, lakes and streams to catch freshwater fish, have ready access to drinking
water and hunt animals that came to rehydrate themselves. Mosquitoes likewise
were drawn to watery environments. Many species needed salt marshes or the
edges of bodies of fresh water in which to lay their eggs, which would develop
into larvae, pupae and adult mosquitoes.

In deep time, the biological destinies of human beings and mosquitoes became
intertwined. The females of some mosquito species began to take blood meals
from humans as well as other animals. Through these blood meals, necessary to
nurture their ova, some mosquito species acquired viral and protozoal parasites,
eventually evolving the capacity to host these parasites and transmit them. In
early tropical Africa, where Homo sapiens spent most of its early career, the watery
environments were conducive to the spread of mosquito-borne diseases such as
malaria, yellow fever and lymphatic filariasis. The disease burden of malaria was
so strong that it produced widespread genetic adaptations in human populations
(Webb 2009).

In both saltwater and freshwater environments, mosquito populations could
be exceedingly dense and constitute a nearly unbearable nuisance as well as a
health burden. Our ancestors did what they could: they built smoking fires
and in some world regions such as West Africa applied plant repellents to their
bodies to try to keep mosquitoes at bay (Iroko 1994). These measures constituted
an early chapter in the long struggle of humanity to limit our exposure to
mosquitoes. They were only partially effective, however, and had little impact
on the transmission of mosquito-borne disease.
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Mosquitoes and ecological transformations

During the long transition from gathering and hunting to the cultivation of
foodstuffs, human beings transformed local environments to make them
suitable for agriculture. In the process, we produced a wide range of unintended
consequences, some of which altered our relationships with mosquitoes. In
tropical Africa, for example, the clearing of West African rainforest to facilitate
the spread of yam vegeculture produced environments that collected rainwater
in small puddles that were conducive to mosquito breeding. Some species of
Anopheles mosquitoes (the genus that can transmit malaria) bred nearby early
agricultural villages and evolved to specialize in taking human blood meals,
thereby intensifying the transmission of malaria (Webb 2009).

In some world regions, societies undertook large-scale environmental transfor-
mations of watery landscapes in order to make them suitable for farming or herding.
One prime example is that of the North Atlantic wetlands. Since Roman times,
the marshlands of Europe had repeatedly been ditched and/or diked, to drain the
wetlands and/or block the inflow of saltwater (Hatvany 2003). These tactics pro-
duced varied results. In the notorious marshlands of Kent, England, the diking of the
marshlands in the sixteenth century may have inadvertently improved the habitat
for Anopheles atroparvus, the most important malaria mosquito vector in the British
Isles, and consequently increased malaria transmission. But by the second half of the
nineteenth century, the incidence of malaria in these wetlands had dropped dramati-
cally. Marsh drainage likely played an important role, although there were other fac-
tors involved in the decline, such as improved housing with screened windows and
doors and the ready availability of such medicines as quinine and other antimalarial
alkaloids isolated from cinchona bark (Dobson 1980). Another contribution to the
reduction in malaria transmission was the colonization of the British marshlands,
beginning in 1870, by a hybrid species of marsh grass, Spartina townsendii. This plant
spread throughout the marshlands of the British Isles and along the coasts of Atlantic
Europe, stabilizing silt and elevating the wetlands, making them suitable for “recla-
mation,” which generally meant ways to make grasslands available to grazing live-
stock (Ranwell 1967). Endemic malaria in England was eliminated by the end of the
nineteenth century (Dobson 1980).

Vigorous programmes of wetland management and mosquito reduction like-
wise developed on the other side of the North Atlantic, when European migrants
transferred their knowledge of marshland utilization to North America. Some
burgeoning seaports saw nearby salt marshes filled in for industrial and urban
growth projects. In the area around Boston after the late eighteenth century, for
example, some 81% of marshes were converted to other uses (Seasholes 2018). In
the agricultural regions of the northeastern seaboard of the United States, farm-
ers drained salt marshes in order to boost yields of coastal marsh grasses for ani-
mal bedding, feed, and roof thatching, and in the process significantly reduced
mosquito densities which in turn made work on former wetlands more feasible.
In the second half of the nineteenth century, some farmers installed tidal gates to
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drain salt marshes for converting them to freshwater crops (Bourn and Cottam
1950, Crain et al. 2009).

During the economic depression of the 1930s, US governmental programmes
such as the Civilian Conservation Corps and the Works Progress Administration
offered employment in draining coastal wetlands in the eastern and southern
states. Over all, more than 90% of the saltwater marshes between Virginia and
Maine had ditches dug into them. The marsh draining work reached all the
way down the eastern seaboard to Florida and around the Gulf of Mexico as far
as Texas (Patterson 1998, 2009). Such ditch-digging programmes had a dual
purpose. Their primary goal, pursued long before the Great Depression, had
been to reduce the density of Aedes sollicitans and Aedes taeniorhynchus, saltwater
mosquitoes targeted principally because their aggressive biting habits rendered
much of the coastal seaboard uninhabitable; it should be noted that these Aedes
mosquitoes could also transmit viral pathogens that caused Eastern equine
encephalitis and Venezuelan equine encephalitis, even if such infections were
generally low, going typically undiagnosed. The secondary goal of drainage
programmes was to control malaria (Daiber 1986), although most malaria
transmission occurred in ecological zones that were not coastal.

Malaria and yellow fever mosquito control

Since its introduction in the seventeenth century, the principal mosquito-borne
disease threat to human beings in the Northwestern Atlantic had been malaria.
In this temperate region, transmission of malaria occurred during the summer
months. The shores of New England lakes were prime breeding grounds for the
Anopheles quadrimaculatus mosquito, a competent malaria vector that fanned out-
breaks of disease when warm weather brought vacationers and locals to the lakes
for recreation (Holmes 1838). Protected riverbanks and eddies also provided
good mosquito habitat, and in Canada, particularly in southern Ontario and
Toronto, malaria was also a seasonal scourge.

In the late nineteenth and early twentieth centuries, key scientific discoveries
revealed the role of mosquitoes in transmitting malaria and yellow fever. In 1880,
Alphonse Laveran identified malaria plasmodia in the infected blood of malaria
sufferers in Algeria. In 1897, Ronald Ross in British India demonstrated that the
anopheline species was the vector for bird malaria, and in 1898, Giovanni Grassi and
his Italian colleagues found that other anopheline species were the vectors that trans-
mitted human malaria, and they described the life cycle of the falciparum malaria
parasite. In 1900, Walter Reed of the US Army medical corps in Cuba confirmed
the hypothesis of Carlos Finlay that mosquitoes transmit the yellow fever virus, and
that Aedes aegypti mosquito is its regional vector in the Americas (Harrison 1978).

Armed with these new understandings, public health scientists focused their
efforts to control malaria and yellow fever on the destruction of mosquito habi-
tat. The fact that malaria was a globally distributed disease meant that there
was a large variety of anopheline mosquitoes able to transmit the disease, albeit
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with a broad range of competency in so doing. Malarial vector species bred in
a variety of habitats and relied on various feeding behaviours. The formidable
challenges in understanding such vectors helped create the discipline of “tropical
medicine.” Although malaria existed in wealthier nations of the Global North,
including northern regions such as Sweden and Canada, the principal burden of
this disease was borne by populations throughout the tropics. In part, this was
because the malaria parasites common in the Global North, Plasmodium vivax and
Plasmodium malariae, were less lethal than Plasmodium falciparum, common in the
Global South, and because the mosquito vectors in the Global North were not
as competent in transmitting in the parasites. Similarly, the principal burden of
yellow fever was concentrated in tropical regions, although some European and
North American cities in the eighteenth to early twentieth centuries also suf-
tered the scourge of yellow plague (Coleman 1987, McNeill 2010). Other wide-
spread mosquito-borne diseases, such as dengue fever and chikungunya fever,
were also principally transmitted in the tropics, although they were not scientifi-
cally identified until the mid-twentieth century.

The nature of the efforts to control vectors of yellow fever and malaria
differed, because their breeding habitats differed. Aedes aegypti was a domestic
mosquito, which meant that it bred principally in anthropogenically altered
environments, often in or near human dwellings. By contrast, the array of malaria
mosquito vectors was typically not domestic. They bred in marshes, river eddies,
lake and pond edges, tree stumps and even small depressions from footprints
which collected rainwater. The struggle against yellow fever involved military
or quasi-military programmes, mandating city and town dwellers to destroy
mosquito habitat in their immediate surroundings, or else harnessing military
forces to carry out these functions within domestic spaces. In early-twentieth-
century Havana, for example, the US military carried out a programme of urban
“sanitation” that involved fumigating the city centre, together with the oiling
or removal of water-collecting vessels with open lids. In Brazil in the 1930s, the
public health department, under the leadership of Fred Soper, organized a quasi-
military strategy of regularly inspecting domestic spaces to ensure compliance
with the orders to eliminate Aedes aegypti breeding sites (Stepan 2011).

In the early twentieth century, disease control programmes that targeted
malaria-carrying mosquitoes were carried out in many tropical and subtropical
regions (Watson 1921, Harrison 1978, Farley 2003). They were most successful
when focused on identifying local malarial vectors and on detailed knowledge of
their spatial distribution and bionomics, which included their breeding habitats,
feeding habits and flight ranges. This focused approach to local epidemiologi-
cal intervention was known as species sanitation. It was pioneered by Malcolm
Watson in the Federated Malay States during the early years of the twentieth
century (Watson 1921). During a visit to the Dutch East Indies, Watson taught
the basics of the local epidemiological approach using anopheline bionomics to
the Dutch scientist Nicolaas H. Swellengrebel, who would use this method to
transform anopheline breeding grounds in both the Dutch East Indies and the
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Netherlands themselves (Verhave 2011). This method was also taken up with
success by the French in Algeria, shortly after the conclusion of the First World
War (Sergent and Sergent 1947). Later in his career, Watson brought the tech-
niques of species sanitation to the copper-mining zone in central Africa (Watson
1953). In the southern United States, beginning in the 1930s, the construction of
hydro-electric dams had a major impact on local densities of both nuisance and
malaria-vector mosquitoes, when authorities carried out control measures such
as oiling and brush removal (United States Public Health Service and Tennessee
Valley Authority 1947).

Species sanitation was not the only approach to malaria control. Some early
malaria specialists took the view that the best approach to controlling malaria
was to raise the socio-economic status of the aftlicted populations, with the anti-
malarial drug quinine being useful in restoring the health and maintaining the
economic productivity of those stricken by malaria (Verhave 2011). The Italians,

FIGURE 4.1 Miraflores, the Panama Canal Zone: a West Indian man sprays larvicide into
a ditch as part of a mosquito control programme implemented during the
construction of the Panama Canal. Photograph, 1910.
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beginning in 1904, undertook a nationwide campaign to provide quinine to the
entire population in order to cure and protect by prophylaxis (Snowden 2006).
This was broadly successful in reducing mortality, but was less so in reduc-
ing morbidity. Yet even in Italy, by the 1920s, there was a programmatic turn
towards mosquito control, with a major focus on the draining of the notoriously
unhealthy Pontine marshes near Rome. With assistance from the Rockefeller
Foundation, the Italians undertook a marshland drainage programme comple-
mented by the application of Paris Green, an arsenic-based insecticide that killed
the anopheline mosquito larvae in the newly dug drainage canals (Russell 1952).

Targeted species sanitation seemed feasible once basic entomological research
revealed that the number of truly dangerous mosquito species was very small.
Much of the world’s heavy burden from mosquito-borne disease was carried by
just a few dozen Anopheles and even fewer Aedes species. These basic facts became
well-established early in the era of modern mosquito control, and for this reason
there were never any global, regional or subregional programmes to eradicate all
mosquito species, quite apart from the sheer impracticality of any such undertakings.

A predominant role for synthetic insecticides

Over the decades, chemical larvicides came to play a substantial role in the con-
trol of the anopheline vectors. By the 1930s, with the use of Paris Green as a
larvicide, it became possible to eliminate two species of mosquitoes that had
spread beyond their regional habitats in sub-Saharan Africa. Anopheles arabiensis

FIGURE 4.2 Nettuno, Italy: a long, narrow drain (to aid mosquito control) in a field.
Photograph, ca. 1910-1940.
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was eliminated in northeastern Brazil in the 1930s, and following the discovery
of DDT during the Second World War, Anopheles gambiae, which had infiltrated
Egypt from the south, was locally eradicated. Neither of these campaigns used
drainage or flooding to accomplish their goals.

These successes in South America and North Africa with Paris Green
anticipated the experimentation with DDT during the last phases of the Second
World War and in the immediate post-war period. The most significant of the
early undertakings was the post-war programme to stop malaria transmission
on the island of Sardinia, which then shifted to target the species eradication
of the island’s malaria vector, Anopheles labranchiae. Workers sprayed DDT on
breeding sites across the entire island, as well as in the interiors of buildings, as
an investigative project to test whether regional eradication of an indigenous
mosquito species was possible. The results showed that malaria had largely been
eliminated from Sardinia, but not the mosquito. The complete island-wide
eradication of Anopheles labranchiae proved unattainable. The few remaining
covert breeding sites, along with the inadvertent reintroduction of Anopheles
labranchiae to the island, allowed for the re-establishment of scattered malaria
infections, although at dramatically reduced levels (Brown 1991, Hall 2010).

In the United States, malaria had all but disappeared by the end of the
1940s. The construction of dams and the treatment of impounded waters, the
draining of wetlands, the relocation of populations from low-lying areas, and
the ready availability of prophylactic and curative quinine had achieved most
of this success, and in the final years of the decade the application of DDT for
mosquito control played a small role (Humphreys 2001). In much of Western
Europe, there was a comparable reduction in malaria transmission, owing to
the draining of wetlands, increases in agricultural production and standards of
living, the screening of houses, and the availability of quinine (Bruce-Chwatt
and de Zueleta 1980).

Following a post-war period of experimentation with DDT for malaria control,
in 1955 the World Health Organization launched a global campaign based princi-
pally on indoor residual spraying with synthetic insecticides—principally DDT—to
reduce mosquito densities and to interrupt malaria transmission. The malaria spe-
cialists considered it a race against the clock: although it was clear from the start
that the wide application of DDT would select for resistance in insects and that it
was only a matter of time until mosquito resistance emerged, the logic of the pro-
gramme balanced upon the notion that rolling out the programme rapidly would be
the best hope for interrupting disease transmission globally before resistance emerged
(Packard 1998). The Global Malaria Eradication Programme (GMEP) racked up
impressive victories, greatly reducing the levels of morbidity and mortality in all
world regions outside of sub-Saharan Africa and achieving, on some islands such
as Taiwan and most of the Caribbean islands, the complete interruption of malaria
transmission. Yet by the time the programme ended in 1969, it was clear that in
most other regions, continued spraying with DDT and other residual insecticides
would not be able to put an end to malaria transmission. Resistance to insecticides



56 JamesL.A. Webb, r.

had indeed emerged in some regions; international donors and national govern-
ments were unwilling to bear the ongoing costs of the GMEP; malaria specialists
deemed the eradication effort in sub-Saharan Africa to be infeasible, owing to an
array of insurmountable obstacles (Webb 2011, 2014); and crucially, the GMEP was
in political terms judged a failure because it did not achieve its goal of global malaria
eradication (Litsios 1996).

A somewhat different scenario played out with regard to yellow fever. Fred
Soper, who had directed the regional eradication of Anopheles arabiensis in Brazil,
the successful yellow fever suppression campaign against Aedes aegypti in that
country, and the regional eradication of Anopheles gambiae in Egypt, was a dedi-
cated advocate of species sanitation who embraced DDT as a crucial larvicide.
Soper became director of the Pan American Health Organization in 1947,
launching a programme to eradicate Aedes aegypti from the Western Hemisphere.
It enjoyed large successes, but as political wills and economic resources waned in
the early 1960s, Aedes aegypti began to fully recolonize and then expand beyond
its previous range (Gubler 2004, Stepan 2011, Webb 2016).

DDT, disease control, and environmentalism

DDT, like the earlier lead- and arsenic-based insecticides, worked against a full
range of insects, including those which threatened agriculture (Whorton 1974).
In the post—Second World War years, farmers began to use the chemical broadly,
and during the 1950s and 1960s, the use of DDT in agriculture spread globally.
DDT was effective in sharply increasing crop yields and limiting losses owing to
insect infestations. This was immensely important in many regions of the world,
including those that were struggling to produce enough food for their burgeoning
populations as well as those struggling to overcome the devastation of the world
war. Yet the apparent “agricultural miracle” of DDT, even early on, had shown
intimations of a dark side. There were warning signs that the profligate use of
insecticides in agriculture produced broad, untoward ecological consequences.
Biologists and wildlife specialists reported that heavy applications of DDT killed
fish, birds and rodents in addition to insects. Initially, these reports had limited
impact. It was not until the publication of Rachel Carson’s 1962 blockbuster
Silent Spring—a book whose title evoked a future world without birdsong—that
a general alarm was rung. The book crystallized the issue of how ecological
damage stemmed from the profligate use of pesticides. It played a major role in
the birth of environmentalism as a political movement.

The early environmental movement produced tangible results. In 1972, under
mounting political pressure, the US government banned DDT for agricultural
purposes, reserving it exclusively for use in public health emergencies. This was
understandably counted as a major victory by the environmental movement.
Yet, ironically, DDT was the least toxic of the chlorinated hydrocarbons used
as pesticides, and after its agricultural ban, farmers substituted more dangerous
organophosphates (Davis 2014).
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The environmental movement also sought more broadly to limit the
“destruction” of the environment, and activists advocated for the reversal
of earlier land-use transformations, such as the “reclamation” of wetlands
through drainage. By the 1980s, the memory of earlier struggles against
mosquito-borne diseases had faded. The environmentalists, charged with
concerns that human activities were bringing humanity towards a critical
tipping point, after which ecological recovery would be increasingly difficult
if not impossible, sought to ban synthetic insecticides, including DDT, even
for disease control. This put the environmental movement in the Global
North on a collision course with public health specialists in the Global South,
where malaria was killing one or two million people every year (Murray et
al. 2012).

The conflict came to a head in the 1990s, when environmentalists pushing
for a universal ban on persistent organic pollutants (POPs) ran up against a
consortium of states in the Global South that lobbied for the continued use
of DDT and other synthetic insecticides that helped control vector-borne
diseases. The result was an accommodation that allowed for ongoing use of
DDT and other chemical insecticides in disease control, where needed—in
the Global South.

Taking the long view, it is evident that the historical experiences with mos-
quito-borne disease in the Global North and the Global South underlay the
different attitudes towards DDT and other synthetic insecticides. In the Global
North, in the last decades of the twentieth century, memories of mosquito-borne
disease were distant. In the eighteenth and nineteenth centuries, yellow fever
had exacted a significant toll along the Gulf Coast of the United States and had
ignited intermittent epidemics along the eastern seaboard. The last outbreak had
occurred in 1905 in New Orleans. By the 1940s, malaria in the United States
had been defeated. Western Europeans had experienced their last outbreak of
yellow fever in the mid-nineteenth century and saw the incidence of malaria
drop to near zero in the immediate post—Second World War years. By contrast,
mosquito-borne disease in the Global South resurged in the late twentieth cen-
tury. In the 1980s, malaria deaths increased sharply in tropical Africa, and the
annual toll remained high until the second global malaria eradication campaign,
launched in the 2000s, cut the number of annual malaria deaths approximately
in half through the use of insecticide-treated bed nets, indoor house-spraying
with DDT and other residual insecticides, and artemisinin-based medications
(Webb 2014). Yellow fever annually took an estimated total of tens of thousands
of African lives, until a massive immunization campaign was launched in the
2010s (Garske et al. 2014).

In the twenty-first century, a new mosquito challenge has emerged from
the cauldron of climate change. The Asian “tiger mosquito,” Aedes albopictus,
which successfully breeds in small collections of rainwater, has extended its range
around the world by virtue of the global trade in used tyres. It exploits both
domestic and non-domestic breeding sites, and it is capable of transmitting the
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same arboviruses (yellow fever, dengue fever, chikungunya and Zika) as Aedes
aegypti. Aedes albopictus, however, has a geographical range far more extensive than
that of Aedes aegypti. Some specialists fear that the expansion of Aedes albopictus
may portend the transmission of dengue fever, chikungunya and Zika in eastern
North America, Southern Europe, East Asia and Australia.

In recent years, new tools have become available for mosquito control,
including the release of “sterile” or otherwise genetically modified mosquitoes,
in order to prevent disease transmission. These new approaches to mosquito
control have been controversial. Some observers have raised concerns about the
potential for deleterious and unintended biological consequences. The ethical and
ecological issues are still under discussion. Some limited releases of genetically
modified mosquitoes have been carried out, but the practice has not become
widely accepted.

The long history of human—mosquito relations will continue to be fraught.
In the past, a few targeted efforts to eliminate mosquito vector species have been
successful on a regional basis. There has never been, however, any serious proposal
for the regional elimination or global eradication of all mosquito species. Because
relatively few mosquito species pose threats to human health, any such proposal
for regional elimination or global eradication would be misguided as well as
ecologically perilous. For the foreseeable future, efforts to suppress mosquito-
borne disease transmission will continue to concentrate on the most dangerous
species, and in virtually all regions the goal will remain the reduction of these
vector populations rather than their local elimination.
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DOMESTICATED MOSQUITOES

Colonization and the growth of
mosquito habitats in North America

Urmi Engineer Willoughby

Humans never wanted to cultivate habitats that encouraged mosquito breeding
and habitation. However, human settlements and agricultural landscapes
often created conditions that attracted mosquitoes, and humans themselves
provided a crucial source of blood that enabled the survival and fecundity of
several mosquito species. In North America, mosquito populations grew in the
context of European colonization and African slavery. Prior to 1500, indigenous
mosquitoes lived alongside Native American agricultural communities, as they
did in Afro-Eurasia. By the sixteenth century, ecological changes resulting from
the Columbian Exchange brought new species of mosquitoes to the Americas.
Human migrations and environmental alterations caused by colonization also
enabled the expansion of regional, indigenous mosquito populations such as
Anopheles, which proliferated in the seventeenth through nineteenth centuries.
At the same time, ongoing transatlantic commerce, migrations, and urban ports
facilitated the growth and dominance of a newly imported species, Aedes aegypti
(Ae. aegypti).

It is possible to discern historical patterns of the emergence and growth of
mosquito habitats from accounts of contemporary observers, medical and epi-
demiological records, and present-day research on mosquito-borne diseases.
Historical accounts such as travel journals, diaries and medical literature often
include observations of local flora and fauna, including insect life. These provide
insights on the presence of mosquitoes, as well as the relative increase or decrease
in their abundance. Historical records that indicate the presence of yellow fever
and malaria is especially helpful in determining the presence of an established
population of a particular species capable of carrying the requisite viruses and
parasites: accounts of the earliest recorded epidemics of yellow fever demonstrate
the presence of Ae. aegypti, while descriptions of intermittent and miasmatic
fevers indicate the presence of various Anopheles species. Present-day studies of
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vector mosquitoes show the global spread of certain Aedes species (Ae. aegypti and
Ae. albopictus), and regional dominance of dozens of Anopheles species throughout
the world. Given the rise of mosquito populations stemming from humanity’s
propensity to transport these insects and encourage their growth, are humans
responsible for the prolific rise of anthropophilic (human-loving) mosquito pop-
ulations? Since humans accidently enabled the growth of mosquitoes, are they
justified in their efforts to control these mosquitoes and even seek to eradicate
them? And is it even possible for humans to eradicate a species that has adapted
and evolved to live alongside humans?

Settlement

Mosquito populations grew alongside human settlements in native America.
Various indigenous species of Anopheles mosquitoes lived in the diverse forest,
wetland and grassland environments of eastern North America, including An.
quadrimaculatus, An. albimanus, An. pseudopunctipennis and others (Kiszewksi et al.
2004, 488; Webb 2009, 67). In western North America, native Anopheles species
included An. pseudopunctipennis, An. freeborni, perhaps An. crucians (Sinka et al.
2010, 8—9; Mullen et al. 2002, 243). Native North American experiences indicate
a familiarity with mosquitoes. It is likely that native agricultural practices,
for example, such as the construction of chinampas and maize fields, attracted
mosquitoes. For centuries, Indigenous farmers in Mexico built chinampas, or
islands of raised fields within lakes and lowlands. Anopheles mosquitoes readily
bred in these maize fields, as well as on lake shores, in canals and in swamps
surrounding Tenochtitlan and other cities in the Valley of Mexico and the Yucatan.
Deforestation and the construction of maize fields throughout the Mississippi
Valley likely created mosquito habitats in this lowland valley. It follows that
mosquito populations likely decreased with the decline of Mississippian Cahokia
and Moundpville urban centres in the fourteenth and fifteenth centuries.

The habits of Anopheles mosquitoes vary greatly according to species. Some
species rarely live near human settlements, while others commonly occupy
areas close to human dwellings. Several species’ attraction to human settlements
appears to arise from their desire to feed on human blood and breed in human-
built environments. In the Caribbean and Central America, it is likely that An.
albimanus populations lived near Indigenous settlements. In mainland North
America, several species, including An. albimanus, An. pseudopunctipennis, An.
freeborni, An. quadrimaculatus and An. walkeri, may have adapted to living near
Indigenous agricultural settlements in the Valley of Mexico, the Great Lakes
region and the Mississippi Valley.

European colonization in the Caribbean and Mexico created additional habitats
that attracted An. albimanus. Entomological studies demonstrate that this species
has developed a strong preference for feeding on human blood and breeding
in humanized environments, such as in cleared fields near human settlements,
rather than in forested areas away from human communities. It would seem



Domesticated mosquitoes 63

that the construction of roads and use of domesticated animals for transport also
contributed to the growth of mosquitoes. Entomologists have shown that An.
albimanus can breed in very small pools of water, such as in borrow pits, wheel
ruts and hoof prints (Sinka et al. 2010, 10).

In mainland North America, European exploration and early contacts
with Indigenous peoples and environments also indicate the presence of
native mosquitoes. Historical evidence indicates that malaria parasites arrived
in North America with the earliest European colonists in the sixteenth and
seventeenth centuries. Malaria had been endemic in parts of Europe during
this period, especially in coastal regions of Italy, Iberia and England, which
emerged as maritime centres. Malaria parasites then found new hosts in native
Anopheles species in the Americas. Even if there is not much evidence for malaria
during the early contact period, it is possible that malaria was at the root of
cycles of fever and hunger that caused high mortality and that afflicted newly
established colonial settlements and exploratory missions. Moreover, malaria
appears to have been part of the cycle of disease and famine that devastated
the English settlement at Jamestown in 1607 (Hirsch 1883, 229; Singer 1962,
455—456; Webb 2009, 74). In 1718-1720, the first French expeditions in the
Mississippi Delta endured a severe cycle of fever and hunger that are consistent
with symptoms of malaria (Usner 1992, 34-36). However, there is not much
evidence that malaria was a significant presence or problem in North America
until the mid-seventeenth century, when outbreaks appeared more frequently
in New England after about 1650. It is possible that malaria played a role in
disease epidemics that afflicted Native American populations in the southeast
in the sixteenth through eighteenth centuries. However, as Paul Kelton and
others have argued, the highest rates of depopulation occurred during the Great
Southeastern Smallpox Epidemic that began in 1696, and slave raids exacerbated
population loss and disease vulnerability in the region (Kelton 2007, 189-191,
Usner 1992, 18-24).

Indeed, Anopheles mosquitoes in the Mississippi delta lived alongside a diversity
of insects and other species in the wetland environment. French missionary
accounts that describe the earliest European experiences in the region demonstrate
the presence of large numbers of mosquitoes drawn to the blood of humans who
ventured into the swamps. In 1727, the French missionary Father Du Poisson
travelled up the Mississippi River from New Orleans to the Arkansas post, and
described in great detail his encounters with insects, including mosquitoes—
or maringouins in vernacular French. Beginning his journey in May, which he
described as “the season of the greatest heat, which is increasing every day,” he
also complained about the lack of food. However,

the greatest torture—without which everything else would have been
only a recreation, but which passes all belief, and could never be imagined
in France unless it had been experienced—is the mosquitoes, the cruel
persecution of the mosquitoes. ... This little creature has caused more
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swearing since the French came to Mississippi, than has been done before
that time in all the rest of the world.
(Thwaites 1900, 289)

Du Poisson goes on to describe the “millions of mosquitoes” that attacked him
and his companions in the morning, afternoon and throughout the night.

As newcomers built new settlements in close proximity to mosquito habitats,
settlers provided an abundant food source for mosquito populations. Early colonial
settlements may have disrupted some mosquito habitats but they created many
new ones. Settlement activities included land clearance, water management,
shelter construction and crop cultivation. In many cases, the clearing of land
caused deforestation and resulted in the decline of numerous animal species,
particularly those that lived in the forest canopy, including rodents, bats and birds
that fed on mosquitoes (Moore 2000, 421; McNeill 2010, 48; Watts 1987, 39).
At the same time, drainage canals created new freshwater ponds, which provided
additional breeding spaces. Accounts of European and Euro-American colonial
settlements in North America often described outbreaks of fever, which fit the
description of malaria. By the end of the colonial period, malaria was endemic in
pockets throughout the eastern Atlantic and Gulf coasts, indicating the presence
of Anopheles.

Ongoing European and American settlement in the eighteenth and nineteenth
centuries helped establish large populations of An. quadrimaculatus across eastern
North America, which grew in tandem with the establishment of agricultural
settlements in the Ohio and Mississippi Valleys. Such presence of An. quadri-
maculatus became established in rural areas throughout eastern North America,
as 1s indicated by ongoing outbreaks of malaria among early colonists during the
territorial expansion of the United States in the early nineteenth century (Nash
2006, 23; Humphreys 2001; Ackerknecht 1945; Chapin 1884). In the 1920s,
entomologists found that in the Mississippi Delta region, An. quadrimaculatus
“greatly predominates over all other species” (Barber et al. 1927, 2494), owing in
part to the observation that both An. quadrimaculatus and An. walkeri populations
grew near human dwellings. Both species continue to show a preference for
feeding on humans and living in built environments. Entomologists reveal that
An. walkeri adults “enter dwellings at night to feed on humans and then retire to
secretive daytime hiding places” (Carpenter et al. 1955, 55). Similarly, An. quad-
rimaculatus are mainly night-time feeders, and then rest during daylight hours
“in dark corners in buildings, underneath houses, in stables, in hollow trees, and
other shelters” (Carpenter et al. 1955, 52). An. Quadrimaculatus also prefers large
natural and artificial bodies of water, including lagoons, lakes, marshes, rice
fields and irrigation channels (Sinka et al. 2010, 8—11). It seems that, over the last
500 years in North America, the single most important event to favour multipli-
cation and growth of two key mosquito species was the arrival and expansion of
Old World settlers.
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Plantation agriculture

The rise of African slavery and plantation agriculture in the Atlantic Americas
transformed mosquito—human relationships. The combination of the Atlantic
slave trade and plantation agriculture in the Caribbean, Atlantic and Gulf Coast
regions led to the growth of North American mosquito populations, including
native Anopheles species and new Aedes species from Afro-Eurasia.

Such human-caused environmental transformations allowed Ae. aegypti
mosquitoes to become a globally dominant species that lived alongside humans
in maritime and urban environments in the seventeenth through nineteenth
centuries. Entomologists today consider Ae. aegypti to be a “domesticated” species
because of its proclivity to inhabit human settlements and thrive in human-
built environments. In the wild, Ae. aegypti live and breed in forests, laying eggs
in tree holes and other cavities. But when exposed to human environments,
they typically breed in artificial water containers made of various materials
including clay, wood, cement and, more recently, plastic, in close proximity to
human residences (Carpenter et al., 1955, 262). Aedes originated in sub-Saharan
Africa, and spread throughout the globe with European colonial projects in the
seventeenth through nineteenth centuries. Although it is unknown exactly when
Ae. aegypti became an anthropophilic species, it is possible that living alongside
early agricultural communities in tropical West Africa, or being transported to
the Americas after 1500, accelerated this process. Later, after arriving in the
Americas, Ae. aegypti travelled across the Pacific on ships and boats to become
established in urban environments of coastal Asia and Australia by the close of
the nineteenth century (Powell and Tabachnick 2013, 12-13).

The notion of “domesticated” mosquitoes offers an ironic understanding
of their evolutionary relationship with humans. Historically, humans have
unintentionally supported the growth of numerous animals and plants, usually
considered to be pests or weeds, such as lice, rats, cats and jackals, and in some
places even bears. The increase of mosquito numbers in humanized environments
demonstrates the evolutionary success of mosquitoes, as well as their tenacious
ability to resist human efforts to control or eradicate them. Anthropophily
benefited mosquitoes that survived by being able to consume human blood
meals, even if such mosquitoes did not provide any known benefit to human
communities. Due to the role of certain mosquito species as vectors of disease,
their attraction to people has caused devastating diseases and mortality to human
populations.

Popular sources have depicted mosquitoes as humanity’s most dangerous
threat, including Bill Gates who has called them “the deadliest animal in the
world” (Gates 2016). From the perspective of Ae. aegypti, it has increased its
temporal and spatial reach by adapting to human environments. One of the
key ways in which Ae. aegypti modified its behaviour was by developing a
preference for blood of humans over non-human primates. Sedentary human
communities provided an abundant and stable source of blood—as opposed to
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feeding on migratory birds or ungulates—so that Ae. aegypti’s adaptation to
humans allowed it to grow beyond its former geographical reach (Powell and
Tabachnick 2013, 11).

Ae. aegypti has been remarkably successful in colonizing the Americas. This
mosquito grew on plantations and throughout the infrastructure that supported
transatlantic capitalist networks, including densely populated port cities and
ships. Because Ae. aegypti served as the main vector of the yellow fever virus, it is
possible to trace the presence of the species by studying epidemic patterns. Yellow
fever incidence in the Atlantic World can therefore reveal links between trans-
atlantic commerce, plantation agriculture, urbanization and the growth of Ae.
aegypti populations. Such events suggest that Ae. aegypti arrived in the Americas
in the centuries of accelerated Atlantic trade between 1600 and 1800, with the
earliest known outbreak of yellow fever occurring in the 1640s in Barbados,
followed by various epidemics in the Caribbean that indicated this mosquito’s
presence on Atlantic ships and in port cities. By the 1700s, seasonal waves of Ae.
aegypti were entering South Carolina and the Chesapeake, extending as far north
as Quebec (Patterson 1992, 857, Augustin 1909, 652).

That sugar plantations in the Caribbean, Brazil and Louisiana attracted
Ae. aegypti populations is evidenced by large-scale epidemics during the early
phases of establishing plantations and port cities. The earliest known outbreaks
of yellow fever were in sugar colonies in Barbados, as well as in Guadeloupe,
St. Kitts and Cuba. Descriptions of Caribbean plantations show the ubiquity of
mosquitoes and other insects. In Jamaica in 1688, Hans Sloane described how
enslaved residents of sugar plantations lit fires to repel “gnats, mosquitoes, and
flies.” James Goodyear and others explain that sugar cultivation and production
served to facilitate the growth of Ae. aegypti mosquitoes in several ways. There
was clearance of land for sugar fields, which increased deforestation with the
demand for wood to fuel sugar mills. To create additional plantations in lowland
regions, there was clearance of marshes, swamps and bogs. Drainage canals
and ditches also raised susceptibility to flooding, and created new freshwater
habitats for mosquitoes. For example, on Louisiana plantations in the nineteenth
century, drainage ditches and canals were excavated to keep sugar crops from
flooding. French authorities had granted land tracts for plantations that formed
90-degree angles to the river, so that each had river access with a back swamp for
drainage, creating additional freshwater ponds and ditches for mosquitoes to lay
eggs (Willoughby 2017; Hilliard 1979, 258-263). The plantations also fostered
growth of Ae. aegypti mosquitoes by creating breeding places in clean water
collected in cisterns, water-barrels and clay pots (McNeill 2010, 205; Goodyear
1978, 13).

In addition to fostering Ae. aegypti populations, plantation environments like-
wise enabled the growth of Anopheles populations. The drainage ditches, canals
and irrigated fields served to create many breeding spaces for this other mosquito
species too. In the Caribbean, deforestation and soil erosion in lowland envi-
ronments created new freshwater swamps, providing ideal breeding places for
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An. albimanus due to the species’ preference for freshwater habitats with ample
sunlight, algae and other organic matter. Other Anopheles species fed on a planta-
tion’s domesticated animals, providing the mosquito with abundant nutritional
resources (McNeill 2010, 55-56).

Rice cultivation was especially important for creating new habitats for
Anopheles species in the Americas. Rising rates of malaria on rice farms of the
Caribbean, Suriname and Brazil implied a rising presence of Anopheles. There
was a similar pattern in North America, where malaria and mosquitoes followed
rice cultivation in South Carolina, Georgia and Louisiana. Before the establish-
ment of large-scale commercial rice production in the 1680s, South Carolina
was relatively healthy compared to Caribbean colonies, where there was closer
contact between Anopheles and people. As J.R. McNeill explains, the wetlands
of coastal South Carolina “suited Anopheles’ habits even before the installation of
a rice economy, but the extensive irrigation of fields with shallow and stagnant
water, full of organic debris, made good conditions much better.” Four floodings
each year provided especially favourable breeding grounds for An. quadrimacula-
tus. In South Carolina, plantations required the felling of trees and the construc-
tion of ponds and reservoirs, combined with ditches and canals for irrigation
and drainage. These new habitats, in close proximity to enslaved African and
Afro-American living quarters, provided female mosquitoes with a large supply
of human blood and ample space to lay eggs (McNeill 2010, 205; McCandless
2011, 45, 126).

Similarly in Louisiana, subsistence rice production provided an abundance
of ideal mosquito habitat. In 1718, the French Western Company ordered the
purchase of enslaved Africans who could cultivate rice, along with barrels of
rice seed from the African coast (Hall 1992; Dart 1931, 173). Rice farming
grew substantially in the 1720s, with the result that by the 1730s, rice was the
primary grain of local consumption. Ample evidence shows that it was con-
sumed by European colonists, creoles, enslaved Africans, and African Americans
(Hall 1992, 10, 122; Morris 2012, 48). In this period, rice was being cultivated
with various methods in the lowlands of South Carolina, Georgia and Louisiana
to produce still more Anopheles habitat (Gray 1933, 66). These regions became
centres of endemic malaria in North America, demonstrating an association
between rice cultivation and Anopheles growth, mirroring experiences in West
Africa and Italy (McNeill 2010, 57; Boccolini et al., 2012). Meanwhile, growing
plantation economies in North America also enabled expansion of Ae. aegypti,
especially in Boston, Philadelphia and New York in summer, and Charleston,
Norfolk and New Orleans year around.

Urban environments

Entomologists consider Ae. aegypti to be an “urban species” because it prefers
feeding on human blood and breeding in artificial containers. The growth of
the Atlantic trade system led to the establishment of numerous port cities that
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connected North America and Europe to ports across the tropical and subtropical
Atlantic. Carrying pathogens, Ae. aegypti migrated across the Atlantic and around
the world, multiplying into large populations wherever people transported it.
Ae. aegypti, following the path of humans, migrated out of Africa, successfully
colonizing most tropical and temperate coasts. By the late eighteenth and early
nineteenth centuries, Atlantic ports were developing into large cities with high
levels of traffic, dense residential development and diverse human communities
with origins in Africa, Europe and the Americas.

Urban growth promoted environments favourable to Ae. aegypti through
deforestation, urban construction, flooded landscapes and human immigration.
Environmental alterations that removed forest cover and created new freshwater
habitats provided a base for these mosquitoes. Their populations would then
grow in concert with new canals and construction projects.

Outdoor and indoor urban spaces provided still more habitat for Ae. aegypti.
Preferential breeding spaces of Ae. aegypti included any artificial container that
could hold clean water, ranging from reservoirs, ponds and cisterns to gutters and
drains. In coastal ports that depended on rainwater, cisterns promoted growth of
mosquito populations. With the discovery in the early twentieth century of Ae.
Aegypti’s role in transmitting yellow fever, public health authorities labelled this
species the “cistern mosquito” (Boyce 1906, 11). Urban gardens also provided
mosquitoes with breeding spaces. Inside homes, adult mosquitoes rested “in
closets, cupboards, cabinets, behind doors, and even behind picture frames.”
Female mosquitoes would then feed at night in lighted rooms (Willoughby 2017,
16; Carpenter et al., 1955, 262).

Newcomers from the Old World (both free and enslaved) provided a large,
diverse population of humans for Ae. aegypti to feed upon. Although this mos-
quito species can feed on other mammals, it has shown a preference for human
blood over that of domesticated livestock. With Ae. aegypti carrying and trans-
mitting yellow fever, the presence of this disease tracks the movement of the
mosquito, from Havana to Port-au-Prince, from Charleston to Boston. By the
end of the eighteenth century, colonial port cities up and down North America’s
Atlantic seaboard supported large populations of Ae. aegypti, which were becom-
ing naturalized in their new urban habitat. One of the most memorable yellow
fever epidemics in US history took place in Philadelphia in 1793, in the aftermath
of the Haitian Revolution. The epidemic swept the young United States’ first
capital city, which became an important national centre of medical institutions.

By the nineteenth century in New Orleans, yellow fever’s annual summer
visit showed the extent to which Ae. aegypti had become established in the
city. Here, mosquitoes bred in urban spaces along the waterfront, in residential
areas, yards, gardens and cemeteries. Many of the city’s unique architectural
features, such as the ornamental above-ground cemeteries, proved to be espe-
cially attractive to this anthropophilic mosquito. Ongoing immigrant waves of
non-immune peoples created ongoing conditions for epidemics: human blood
provided mosquitoes with nutrition and city architecture provided them with
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habitat (Willoughby 2017). The construction of railroads connecting the ports
to interior cities further increased the reach of Ae. aegypti. The spread of urban
Ae. aegypti populations after the American Civil War led to the nation’s worst
yellow fever epidemic, which after breaking out in 1878 radiated up from New
Orleans throughout the Mississippi Valley, causing pain and suffering as far north
as Chicago and Pittsburgh (Willoughby 2017, 116).

Conclusion

Reviewing the history of how humans domesticated mosquitoes in North
America would suggest that it may never be possible for humans to completely
eliminate mosquitoes. People did not choose to domesticate these mosquitoes,
and efforts to eliminate them over the long term have never been successful.
Homo sapiens has inadvertently enlarged mosquito habitats, or else created
habitats suitable for newly arriving mosquito species. In many cases, efforts to
eradicate mosquitoes have revealed the role played by humans in attracting them.
For example, in Panama in the early twentieth century, entomologists working
to control malaria and yellow fever in the Canal Zone found that some Anopheles
mosquitoes, including An. albimanus, preferred living and breeding in newly
constructed landscapes. Human engineering projects attracted mosquitoes that
preferred to live near human structures including workers” quarters, construction
sites and railroads (Sutter 2007, 743-744). The rapid evolution of mosquitoes to
pesticides further emphasizes the role that humans play in cultivating mosquitoes
that are more resilient and genetically adapted to man-made chemical poisons.

Although the majority of mosquito species are content to live in the wild,
a few species have shown strong preferences for human-modified environ-
ments, ranging from small agricultural settlements to large urban metropolises.
The attraction of Anopheles and Aedes to humans and humanized environments
would indicate that we may have no choice but to try to learn to live peace-
fully with mosquitoes. The fact that the settlement of North America involved
the domestication of mosquitoes indicates that human societies will probably
continue to attract mosquitoes simply by existing. Humans may in the end
need to approach mosquito control cautiously and through a more thought-
ful approach, while understanding the importance of built environments and
wetlands to the life of these disease-carrying insects. As it becomes clear that
powertful control measures like pesticides are not sustainable, changes in urban
planning and rural land management may be the best way to diminish mos-
quito populations over time.

Humans and mosquitoes share a long history of coevolution and adaptation,
and some mosquito species have learned to depend on Homo sapiens for sur-
vival. While humans could easily envision a happy future without these irritat-
ing and deadly pests, more and more mosquitoes have come to rely on humans
for their sustenance and reproduction. As long as humans continue to transform
wild and forest lands, it seems likely that humans will continue to be bothered
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by mosquitoes, with the ecological limits of mosquitoes expanding to merge
with human communities. Mosquito numbers grew substantially in the second
half of the twentieth century, ushered in by the ecological impacts of globaliza-
tion, urban development, human population growth and climate change. The
effects of climate change have already allowed Aedes and Anopheles mosquitoes
to expand their range in North America, with Aedes becoming common in the
western United States. If these trends continue, it is probable that humans and
mosquitoes will be in even more frequent contact with each other across a wid-
ening geographical range.
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COULD WE/SHOULD WE
ERADICATE MOSQUITOES?

The case of the yellow fever vector!

Nancy Leys Stepan

It is impossible to write about controlling infectious diseases without having the
pandemic of coronavirus in the forefront of our minds. COVID-19 has brought
home to all of us very forcefully indeed the incompleteness of our scientific
knowledge in the face of novel pathogens, the lack of government preparedness
despite repeated forewarnings, and the often fumbling and inconsistent nature of
public policies when we are faced with mass public health threats.

Zika provides another example of an uncertain response to an epidemic less
universal in scope than coronavirus, but deeply worrying. In 2015 world health
experts began to hear about an eruption of an apparently novel viral infection in
northeastern Brazil. Zika was not in fact unknown to scientists; but its association
in the Brazilian outbreak with microcephaly in newborn infants was unexpected
and shocking, and led the World Health Organization (WHO) in early 2016 to
declare a Public Health Emergency of International Concern (PHEIC) (Lowe
et al., 2018). Zika eventually spread to over 80 countries (Chippaux and
Chippaux, 2018). Almost overlooked at the time, but also very troubling, was an
outbreak of yellow fever in the states of Rio de Janeiro and Sio Paulo later that
same year—one of the largest such outbreaks in Latin America in decades. And
let’s not forget the epidemics of chikungunya and especially dengue fever that
have plagued the country in recent years (Gubler, 2004).

What distinguishes these viral diseases from COVID-19 is that they involve,
either directly or potentially, an insect vector or transmitter, the Aedes aegypti
mosquito, an age-old “enemy” of public health. In response to Zika, the
President of Brazil, Dilma Rouseff, hastily targeted the mosquito, sending in
220,000 soldiers to help with insecticiding, while acknowledging that Brazil
was already losing the battle against the insect. This was the country that had
once almost eradicated this mosquito. So what had happened? Why had vector
eradication been given up? Could we do it again? Should we?
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After all, most of the more than 3,500 species of mosquito recognized by
scientists so far do not transmit diseases to humans. Some species do not bite
humans at all, and others are merely a nuisance, with many of them remaining
very useful to local ecologies, as pollinators or as food for other animals. So we
should learn to live with them.

It’s the exceptions that we worry about. Ever since Ross and Grassi proved
in 1897-1898 that anopheline mosquitoes transmit malaria, and the Reed
Commission established in 1900 that the Aedes aegypti mosquito transmits yellow
fever, getting rid of these mosquito vectors has been taken to be a legitimate,
even necessary, method of disease control. All thought of ecological balance or
cooperative living with insects seems to fly out the window once we are in the
midst of a mosquito-transmitted epidemic.

It is these dangerous mosquitoes that form the crux of the question asked in
this book: “If we could rid ourselves of mosquitoes, would we still want to?”
This question does an excellent job of focusing attention on critical matters of
ecology and ethics in relation to mosquitoes. But as a medical historian who
has engaged with the messy details of past efforts to control mosquitoes, I find
it difficult to abstract the “could we?” part of the story from the “should we?”.
Difficult, that is, to disentangle or bracket off eradication or the “getting rid
of” process, because embedded in the “could we?” are already many issues
of “should we?”. How is extermination (or severe reduction) of a mosquito
species to be carried out, and at what cost? What eradication methods do we
propose? Are there ecological and/or ethical issues associated with these meth-
ods? What does “eradication” of a mosquito species imply: local elimination,
or worldwide reduction to zero? Is it possible to eradicate an entire mosquito
species?

For answers to such questions I turn to what is possibly the best piece of his-
torical evidence available, the extensive pre— and post—=World War II campaign
to definitively eradicate the Aedes aegypti mosquito from the entire continental
Americas. I evaluate why, given the existence of an excellent vaccine against yel-
low fever, the eradication of a mosquito species was chosen as the main method
of urban yellow fever control in the Americas, and why the French colonial
authorities in West Africa focused largely on mass vaccination instead.

I end the chapter by bringing the issue of mosquito eradication/control back
to our ongoing worries about the return and spread of the Aedes aegypti mosquito
in the Americas, Africa and Asia, keeping in mind the epidemiologically difficult
conditions of contemporary urban life. As noted already, Aedes aegyptiisimplicated
in the transmission of dengue and chikungunya, as well as yellow fever and Zika.
Other Aedes species, such as A. albopictus, are also capable of acting as vectors for
these diseases. Is mass vaccination the path to follow, assuming a vaccine is even
available? Or is vector control still a necessary part of disease control? What
about social investments and infrastructural improvements?

I use the Aedes aegypti eradication campaign here as paradigmatic of a cer-
tain style or model of mosquito eradication and/or control. In concluding my
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chapter, I contrast that style with a potential alternative model, though in the
end, I am only able to sketch the outlines of that model.

The background: eradicating malaria mosquitoes

The campaign to eradicate the Aedes aegypti mosquito was led by Dr. Fred L.
Soper, first in his position as a Rockefeller Foundation (RF) officer in Brazil,
where from 1930 until 1942 he directed the R F-Brazilian National Cooperative
Yellow Fever Service, and second, in his capacity as Director from 1947 to 1959
of the Pan American Health Organization (PAHO), the American regional
office of WHO.

As the arch-eradicationist of his day, Soper was associated with most of
the eradication campaigns of the twentieth century, against yaws, smallpox,
malaria and yellow fever. In the case of malaria and yellow fever, mosquito
reduction was a well-established method of halting disease transmission. Soper’s
contribution was to try to shift the focus of eradication from the disease, to
the vector mosquitoes themselves. Instead of mosquito reduction, Soper aimed
for vector extirpation. A larger-than-life character, admirable in his tenacity,
Soper was also dogmatic and often wrongheaded. A gift, in short, to medical
historians.

Abrieflook at three experiments with mosquito eradication focused on malaria
vectors provide context to Soper’s much longer effort to extirpate the urban
yellow fever mosquito, Aedes aegypti. Malaria at the time was understood to have
a very complex etiology, involving multiple factors—ecological, environmental
and social, as well as vectorial. In the face of causal complexity, Soper offered
instead blunt simplicity, with equivocal results.

First Soper tried to wipe out the highly “efficient” and anthropophilic malaria
vector, Anopheles gambiae, from an area in the northeast of Brazil (1938-1941), and
then again in Upper Egypt (1944—1945), both times in response to severe malaria
epidemics. Concentrating his anti-malaria efforts exclusively on eliminating the
gambiae, using the pre-DDT insecticide house spraying and anti-larval methods
perfected for yellow fever, and ignoring all other causes of the epidemics (e.g.
troop mobilization, population displacements or other malaria vectors), Soper
attributed the end of these malaria epidemics entirely to the disappearance of the
gambiae species in the two regions (Packard and Gadelha, 1997; Stepan, 2011).

At the time, a malaria expert hailed the vanquishing of the gambiae as “one
of the greatest accomplishments in all malariology” (Stepan, 2011). Yet in
truth, the results were ambiguous. The gambiae mosquito was a recent arrival
in both Brazil and Egypt, and so not fully integrated into the local ecology.
Soper’s extermination efforts were noteworthy examples of stopping invasions
of a dangerous species—and of potential relevance today, as mosquito species
expand into new places as a result of climate change, human mobility and other
factors—but not a true test of the possibility of eradicating an indigenous or
well-established mosquito species over a large area, let alone the world.
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A third species eradication campaign (1946-1950), this time against Anopheles
labranchiae on the very malarial island of Sardinia, was such a test, indeed a
genuine experiment, organized by Soper, with the backing of the Rockefeller
Foundation and the post-war Italian government, in a deliberate attempt to rid
the island completely of an indigenous malaria-transmitting mosquito species.
The campaign was based on the spraying of thousands of tons of the new wartime
discovery, DDT, from the air and in homes. At the end of five years, malaria
had disappeared, and did not reappear when spraying stopped—seemingly a
very satisfactory public health result. But the mosquito itself survived, if only
in severely reduced numbers. Considered a test of mosquito eradication, the
Sardinian Project proved that completely eradicating a well-established mosquito
was very difficult, even impossible, at least by spraying DDT over the kind
of terrain where this mosquito was found. Turning this around, the best that
could be said was that species eradication was apparently not essential to malaria
eradication (Hall, 2010; Stepan, 2011).

From Soper’s viewpoint, this was a hard lesson to learn, one reason no doubt
why he barely acknowledged it as such. In fact, he continued to refer to the
eradication of the main malaria vector in Sardinia as though it were a fait accompli,
a rare lapse in a person given to accuracy. He chose to ignore the ambiguities
of the results and continued to endorse the concept of species eradication, even
though the concept was dropped from the most important post-war eradication
effort, the WHQO’s Malaria Eradication Programme (MEP), where the aim was
eradication of the disease, not its vectors. As happens so often in public health,
Soper had devised his strategy while operating with incomplete knowledge—in
these cases, incomplete knowledge of insect ecology.

Eradicating Aedes aegypti: the rationale

Soper’s anti—Aedes aegypti campaign is the least remarked on of his four-vector
extermination efforts, but perhaps the most interesting because it was by far the
most sustained of its kind, and because it captures so well the ambition as well as
the ambiguities of what was aimed for.

Paradoxically, Soper advocated Aedes aegypti eradication just when it was
being realized that yellow fever is not the kind of disease that could, on biological
grounds, be eradicated, the long-standing goal of the RF. Unexpected outbreaks
of yellow fever in rural areas of Brazil had led to the belated realization by the mid-
1930s that an animal reservoir of the virus existed, the virus being transmitted
in rural areas from forest animals, mainly monkeys, to humans by the bite of
mosquitoes other than the urban Aedes aegypti, such as species of Haemogogus.
Searching for yellow fever in the main cities and for a single vector, the RF had
for years overlooked, or rejected the diagnosis of, yellow fever outbreaks in rural
areas. The jungle (or sylvatic) cycle of yellow fever showed that it was wrong to
rely on the exclusively urban identity of yellow fever, on which the RF had based
its yellow fever eradication strategy.
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In rethinking yellow fever epidemiology, it was evident that yellow fever
could not be eradicated short of killing off all forest animals harbouring the
virus. The RF accordingly abandoned its goal of yellow fever eradication in the
late 1930s, leaving as its legacy of decades of anti—yellow fever work, its new 17D
yellow fever vaccine.

Soper saw the matter differently. As director of Brazil’s national anti—yellow
fever service, he had begun in the early 1930s to extend mosquito control to
include small rural towns where yellow fever also circulated. Without aiming for
it as such, he found that the methods he was using were resulting in the complete
disappearance of Aedes aegypti. Inspections in town after town showed that the
mosquito was gone. From the late 1930s on, as the RF abandoned eradicating
the disease, Soper began to promote the idea that public health efforts should
shift to complete mosquito eradication (Soper and Wilson, 1942; Soper, 1963)
(See Figure. 6.1).

True, jungle yellow fever would remain a constant potential source of the
virus, but this yellow fever cycle was sporadic and involved only populations
working on the rural borderlands with forests where the animals lived. In the
1930s, Brazil was already an increasingly urbanized country, and it was in the
cities that the greatest number of deaths from yellow fever occurred. Soper’s
public health contribution was to replace mosquito reduction with a new
absolute: the complete elimination of a vector that was highly adapted to urban
and human life. In this way, urban yellow fever itself would be eliminated.

The trouble, as Soper saw it, with aiming for mere Aedes aegypti control (that
is, simply reduction of mosquitoes and their larvae to low numbers), as previ-
ous yellow fever campaigns had done, was that the authorities invariably relaxed

FIGURE 6.1 Fred Soper preparing for an inspection tour of Maranhao, Brazil; 1920s.
Image courtesy of the National Library of Medicine.
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controls as the urban cases of the disease diminished. The outcome was the
eventual return of yellow fever from its rural home to cities, often in explosive
epidemics. Why, then, not eradicate the urban mosquito once and for all and
stop these cycles?

Soper acknowledged that such an absolutist goal was hard to achieve; it required
more money and effort upfront, and more determination. But once achieved, there
were huge savings to be had in terms of safety and costs; all controls in urban areas
could be given up; with the urban vector wiped off the face of the earth, it could
never return to act as a vector again. Making urban areas safe in this way, control and
surveillance would be focused eventually on rural areas where yellow fever was only
sporadic. The majority of the population, located in cities and towns, would be free
of yellow fever forever. To work, however, this new concept of eradication had to
be absolute. Any chance that Aedes aeygpti mosquitoes might be reintroduced from
the outside, into an urban area made free of them for years, would be potentially
disastrous, as by this time the city would be filled with highly susceptible people who
had never had yellow fever and so never acquired the immunity conferred by a mild
childhood infection.

Yellow fever and vaccination

And what about vaccination, usually considered the magic tool of preventive
medicine? The isolation of the yellow fever virus in 1927 had provided scientists
with an animal model and had led to an intense search for a vaccine. In 1932
French researchers at the Pasteur Institute in Dakar, Senegal, produced a yellow
fever vaccine based on one strain of the virus, and in 1937 the Americans,
working at the RF laboratory in New York, and relying on the different “Asibi”
strain of the virus, produced their own 17D vaccine, used to this day.

Almost immediately, the French launched mass vaccination campaigns in
their West African colonies, despite their vaccine’s comparatively high numbers
of negative neurotropic side effects, notably encephalitis. The scratch method of
application in smallpox was well established in Africa, and smallpox vaccination
had been made compulsory in the French colonies early, so the yellow fever
vaccine was administered by the scratch method, by itself or more often together
with smallpox vaccine. The epidemiology of yellow fever was complex in Africa,
involving different transmission cycles and several Aedes species in addition to A.
aegypti, factors making mosquito control difficult to carry out beyond selected
places like airports. Immunity surveys were still mapping the geography of
yellow fever distribution; the population in Africa was still largely rural, and
accustomed to mandatory vaccination for smallpox. In the circumstances, mass
vaccination was a rational approach to yellow fever control.

Fear of yellow fever outbreaks among the troops mobilized for World War II led
to some 14,300,000 people receiving the single yellow fever or the mixed yellow
fever—smallpox vaccine, out of a total population of some 16 million in French
West Africa (Peltier, 1947). Altogether 53 million people were vaccinated by the



Could we/should we eradicate mosquitoes? 79

French colonial authorities between 1939 and 1953. In fact, the use of yellow
fever vaccination led to the virtual disappearance of yellow fever in francophone
West Africa for decades. Nothing like the French colonial vaccination effort was
undertaken in British colonial West Africa, where numerous outbreaks of yellow
fever occurred (Monath, 1991).

The RF vaccine differed from that of the French in requiring an injection
rather than a scratch. The 17D vaccine was tested in Brazil, and by the end of
1938 over a million people in the country had been vaccinated. Initially, this
vaccine also produced negative side effects, notably hepatitis, which was only
eliminated when human serum, the source of contamination, was removed from
the vaccine. Once this problem was solved, vaccination of people exposed to the
rural cycle of yellow fever was resumed. Over time, the 17D vaccine would be
considered safer than the French vaccine (the latter ceasing production in 1982),
but the RF conceded at the time that the low-cost scratch immunization made
better sense in large rural populations of French colonial West Africa (Durieux,
1956; Frierson, 2010; Strode, 1951).

As head of the RF-Brazilian yellow fever service, Soper was responsible for
supervising the production, testing and distribution of the 17D vaccine in Brazil
(Benchimol, 2001). But he had reservations about relying exclusively on the new
vaccine; it was expensive to produce and required a cold chain for its distribution.
He also worried that demand would outrun supplies. More than this, because
yellow fever is often a silent, under-reported disease, Soper was alert to the fact
that, unless rural vaccination rates were kept up, the virus could pass unnoticed
via its initial rural path into urban areas which, if still infested with Aedes aegypti
mosquitoes, could have outbreaks of yellow fever before vaccination could be
hurriedly introduced to halt its spread. Once administered, a further interval
of time (roughly ten days) had to pass before individuals acquired adequate
immunity. For these reasons, Soper was always sceptical of controlling yellow
fever solely by vaccination. In this respect, Soper may have been right—an issue
taken up at the end of this chapter.

Eradicating Aedes aegypti in practice

So much for the rationale for Aedes aegypti eradication. Crucial to its execu-
tion—the “could we?” question—was the confidence Soper had in his methods.
As originally established by William Gorgas in Havana in 1901, these involved
a mix of the social, biological and chemical, packaged into a top-down, single-
disease, military-style campaign: the isolation of those infected, removal of water
receptacles near human habitations, and destruction of mosquitoes by chemicals
such as crude oil mixed with paraffin and floated on water as a larvicide. Gutters
were cleared. Gambusia fish were sometimes introduced to water tanks to eat
larvae. Beginning in the 1920s, the arsenic-based chemical, Paris Green, was
used in place of oil, in a process called “Greening” by RF personnel. Pyrethrum
insecticides were sprayed inside houses
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These chemicals had nothing like the potency of DDT, so success with
mosquito reduction or actual elimination depended on systematic attention to
public health administration: to the routinization of house visits, meticulous
larviciding, tight supervision of the “mosquito brigades” of inspectors looking
for mosquito infestations, and rigid controls of householders, making sure they
kept water receptacles empty or covered to prevent Aedes aegypti breeding in
them.

This is where Soper excelled, his methods being described as “perfectionism
at the end of the line.” To the established anti-mosquito techniques, Soper added
new ones to make otherwise invisible mosquitoes visible, such as the use of
“mother squads” of mosquito inspectors to hunt down hidden breeding female
mosquitoes in houses, the carrying out of immunity surveys to identify otherwise
unsuspected locations of yellow fever, and the creation of a “viscerotomy”
service to conduct post-mortem analyses to detect overlooked yellow fever
deaths (Lowy, 1997; Stepan, 2011). Backed by Brazil’s authoritarian president,
Soper had the tools and resources to pursue Aedes aegypti eradication across the
country.

The fundamental shift towards the “chemicalization” of anti-mosquito work
came with the World War II discovery of the insecticidal properties of DDT.
Released for civilian use at the end of the war, DDT was cheap, available,
apparently safe, and much more powerful in its residual effects as a larvicide and
adulticide than anything before it. It proved irresistible. Having participated in
the first uses of DDT against typhus and malaria in Italy during his wartime
service, Soper was quick to realize how its superior, long-lasting insecticidal
properties would be crucial in his mosquito-killing projects.

Eradicating Aedes aegypti: the impossible task

When Soper had begun in the late 1930s to talk about exterminating the
Aedes aegypti from all of Brazil, “yellow fever experts from Rio to New York
laughed at him. They declined to be Soperized” (Stepan, 2011). But to Soper,
getting rid of the mosquito was everything. Being elected Director of the Pan
American Health Organization (PAHO) in 1947 gave him a wider stage for his
eradicationist philosophy, Soper managing to persuade all the member countries
of PAHO to embrace the eradication programme against A. aegypti throughout
the continental Americas—even though there had been just one outbreak of
urban yellow fever in the Americas in the preceding 15 years, and even if it
meant ignoring the negative outcome of the Sardinia experiment.

And at first all went well. In 1958, Brazil became the first country in the
Americas to be declared Aedes aegypti—free. Soon, country after country was
being certified as Aedes aegypti—tree too. By 1964, the vector had been successfully
eradicated in most of South and Central America. Yellow fever disappeared.
Thought of as a control effort, this was an impressive result. But thought of as a
mosquito eradication campaign, not so.
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It turned out that only “most” countries were Aedes aegypti—free—there
was the rub. Absolute success proved elusive, as continent-wide elimination of
the mosquito was not maintained for very long, with constant reinvasion of
mosquitoes into areas previously certified as clear. In 1976, the PAHO countries
were still at their eradication project, but by this point with only ten countries
certified as entirely free of the Aedes mosquito. Brazil, the largest endemic center
of yellow fever in the Americas, had lost its Aedes aegypti—free status.

In regard to these failures, Soper blamed the USA for not doing its part and
allowing its Aedes aegypti mosquitoes to invade Mexico. The USA had in fact
always been reluctant participants in the project. The USA refused to take much
action throughout the 1950s, despite having signed on to do so in 1947. The
country had not suffered an indigenous case of yellow fever for 40 years, had
no jungle reservoirs of the virus, and preferred to rely on the excellent yellow
fever vaccine. Only in 1963 did the USA agree to get involved, less because of
conviction about feasibility than as a political “goodwill” gesture. Terminating
the project in 1968, the USA thought Aedes aegypti eradication was unnecessary
and anyway unachievable (Sencer, 1969).

The USA’s halt-hearted participation and then withdrawal from the mosquito
eradication project came just as public attitudes towards synthetic organic
insecticides were changing. Rachel Carson’s target in Silent Spring (1962) was
DDT’s overuse in agriculture; only one chapter in her trenchant book addressed
synthetic insecticides in public health. Her main point there was to warn that
excessive use of pesticides was creating insect resistance, leading public health
officials to seek out new and yet more powerful insecticides, which resulted in
yet more insect species acquiring resistance ... in a never-ending escalation.

Those involved in anti-malaria and yellow fever campaigns knew this to be
true. Yet DDT continued to be used in public health (the USA banned it for
agricultural use in 1972). After all, in the many WHO-connected expert reports
on insecticides and safety, the conclusion was almost invariably drawn that the
benefits of using DDT for public health purposes far outweighed its risks, despite
mosquito resistance. Public health use of the new insecticides was, as it were,
bracketed or protected as a special case.

But slowly, support for the Aedes eradication project was disappearing. One
factor was simply programme fatigue, with countries tiring of directing so much
effort against A. aegypti when mosquito and yellow fever indices were already so
low as to be virtually non-existent—ryet absolute eradication proved so elusive.
The strategy of species eradication was not based on a medical emergency or
an overwhelming medical problem but was, as Soper said, a deliberate effort to
consolidate the gains of previous decades, and guarantee future freedom from
yellow fever to the cities and towns of the Americas. It was a difficult case to
make: if control methods had done such a good job, why aim for something
so difficult as exterminating every last mosquito? “When could eradication be
said to be complete and final,” asked a French delegate at a PAHO meeting in
1970, “considering that a few mosquitoes were enough to cause re-infestation?”
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(Stepan, 2011). It was proving hard, if not impossible, to prevent constant rein-
festation of already certified countries from across their borders. Simultaneous
extermination of Aedes aegypti across the Americas seemed a Sisyphean task.
And yet, old dreams die hard. Soper retired from PAHO in 1959, but the
organization carried on its species eradication mission well into the 1970s. But by
1985 it was time to give up, with PAHO finally admitting that the goal of Aedes
aegypti eradication was unrealistic, and shifting its aims to keeping mosquito
indices low. By the late 1990s, even routine control measures were being cut
back in Brazil and elsewhere in the name of cost-saving, with the unsurprising
outcome that A. aegypti returned everywhere, to then unleash epidemics of
dengue, and now Zika. Soper’s A. aegypti campaign had shown that mosquitoes

are among the most resilient of animals; they resist their extermination (see
Figure. 6.2).

Could we/should we, ecologically/ethically?

Turning now to some of the ecological and ethical issues tied up in the “could
we/should we” nexus, Soper’s eradication efforts were decidedly “pre-” and
even “anti-” ecological. He famously declared that he regretted the term “ecol-
ogy” had ever been invented. He knew very little about Anopheles gambiae or A.
labranchiae when he set out to eradicate them in northeastern Brazil, Upper Egypt
and Sardinia, treating them as though they were the same, in relation to eradica-
tion methods, as the very different Aedes aegypti mosquito.

FIGURE 6.2 Map of Aedes aegypti distribution in South and Central America in the 1930s,
1970 and 2011. Creative Commons [from Gubler, DJ. 2011. “Dengue,
Urbanization and Globalization: The Unholy Trinity of the 21st Century.”
Tiopical Medicine and Health, 39(4) Suppl: 3-11.doi: 10.2149/tmh.2011-S05].
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Soper knew much more about the behaviour of Aedes aegypti, but as was so
often the case in eradication campaigns, assumptions about universal ecology
meant setbacks when confronting ecological complexity. A case in point was the
discovery that in the Caribbean, Aedes aegypti could breed high up in tree holes,
rendering ineffective spraying regimes that assumed this mosquito only bred
near human habitations. The question about the possible ill effects of complete
removal of a species from its habitat does not seem to have even been raised.

Nor were ethical questions raised in Soper’s eradication projects about the
risks of Paris Green and then DDT to humans, animals and the environment
more generally. There was no mention about seeking consent to inspect people’s
homes or spray them with powerful chemicals; instead, mandatory inspections
were often imposed on houscholds, with fines for non-compliance. Soper
maintained that eradication worked best under authoritarian governments:
“if you have democracy, you cannot have eradication,” was his view. It was a
“command from the top” model that reflected his experience in Brazil under
the authoritarian President of the 1930s, Getalio Vargas. It was not a model that
translated well into more democratic settings, where consultation, community
participation and citizens’ consent are necessary for success. Furthermore, a single
disease focus, with its separate and unique organizational structure, also had
limits, since integrating the needs of other public health activities was difficult.

Finally, the over-reliance on a biomedical model of public health meant that
there was a strong bias against or neglect of social methods of controlling disease,
such as installing piped water, screened windows and ensuring regular rubbish
collection as ways to ward off mosquito-borne diseases. It is well known that
improved housing and socio-economic conditions were and are factors in the
secular declines of diseases, but investments to overcome social and economic
inequality were by and large absent from post-war campaigns to control and
eradicate mosquitoes.

Control versus eradication

So we end with the same question we started with: Could we/should we eradicate
mosquitoes?

It seems to me that something has to be done to keep in check the mosquitoes
that transmit dangerous human diseases. But what and how? Sending 220,000
soldiers to Brazilian neighbourhoods to deal with Zika was more an exercise in
public relations than a thought-out project of public health. Community vector
control 1s judged to be generally unsuccessful as well, so how can our strategies
be reconfigured? Why has anti-mosquito work been neglected in Brazil, even
though dengue epidemics were, even before Zika, a recurring problem? Why
has it been so hard to remodel public health around vector control using appro-
priate ecological, biological and social methods?

New tools, such as releasing Wolbachia-infected mosquitoes to control
dengue, are being tried out as demonstration experiments (Dorigatti et al.,
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2018). I doubt that they will escape the “could we/should we” entanglements.
What are the effects of releasing bio-engineered mosquitoes on the ecological
balance? Are their risks understood? How will members of the public be putin a
position to evaluate them? Would some “old tech” methods be better?

I ask these questions in light of the fact that arboviruses represent some
of today’s most important global health threats, products of intensive human
migration, urbanization, globalization, climate change, inadequate vaccination,
and failures of former vector control efforts. Aedes aegyptiis now found worldwide
(Gubler, 2011; Ferguson, 2018). Annually, there are 200,000 detected cases of
yellow fever and 30,000 deaths, figures WHO regards as underestimates by a
factor of 10 to 250 (Tomori, 2004). Africa is the chief worry; after independence,
vaccination rates in countries at risk fell off sharply. In 1986-1992, despite the
importation of 20 million doses of yellow fever vaccine, Nigeria was unable to
control an epidemic. In 2017, WHO announced a new yellow fever initiative,
“Eliminate Yellow Fever Epidemics” (EYE) in response to further urban
outbreaks in Africa, with the goal of restoring depleted stockpiles of the vaccine
over a ten-year period (Bres, 1971; Garske et al., 2014). We must ask, therefore,
was Soper right? Is vaccination going to be available and enough, absent other
methods of disease mitigation, including improvements in sanitation and urban
infrastructure? And what about Zika, and dengue—one with no vaccine, the
other with a vaccine of very partial efficacy, and neither with treatment other
than palliative care?

Soper always considered “species eradication” his most original contribution
to public health. Later, all four of his efforts were judged to be failures, or at best
limited in relevance to health policies, in methods and outcomes. As a result,
Soper’s reputation suffered a dramatic decline after his death. But before we
write off Soper as a discredited figure in public health, might we look again,
to reassess his work in the light of present-day post-Zika concerns? There is, of
course, no going back to the Soper era: new ways to control mosquitoes must be
found to suit our own day’s political, ecological and scientific circumstances. But
could certain “Soperian moments” suggest ways for reimagining some methods
of dealing with mosquitoes, short of the utopian dream of complete eradication?

The downsides of Soper’s approach are obvious: a chemical and polluting
model; a reliance on a universal one-size-fits-all ecology; disregard for social
needs such as housing and sanitation; the lack of community participation; little
ongoing research; use of military rather than cooperative metaphors; and so on.
And meanwhile, post Soper (he died more than 40 years ago), cities like Recife
in Brazil, where Zika first erupted, are far larger, more chaotic, more unequal
and more trash-filled than ever before. Controlling Aedes aegypti is much more
difficult than before.

But we must also acknowledge Soper’s positive contributions. These would
include efficiency in surveillance and tenacity in anti-mosquito efforts; enormous
attention to detail; inspections of the inspectors; adequate funding and political
commitment (Downs, 1968). Above all, Soper continued his work even in the



Could we/should we eradicate mosquitoes? 85

absence of mosquitoes and/or cases of yellow fever. Such ongoing methods and
preventive attitude are rare and are very different from an epidemic-generated,
reactive and generally ineffective resort to mosquito reduction (Ooi et al., 2006).

The lesson of history is that revised methods of mosquito control are needed
in the short-to-intermediate term (Ferguson et al., 2016, Ferguson 2018). We
also need to keep in mind that, originally, the anti-mosquito yellow fever vector
programmes aimed not at complete eradication, but at reducing the targeted
mosquito indices to a low level, below which the transmission of the pathogen
was found not to be sustainable. In the case of yellow fever, reducing the
incidence of Aedes aegypti mosquito larvae to a presence in 5% or less of houses in
a targeted population stopped yellow fever transmission for decades throughout
the Americas.

The goal of mosquito reduction, tailored to epidemiological circumstances,
along with much more participatory models of public health than in the past, seems
to me to combine the positive aspects of Soper’s determination to deal with the
mosquito as a major factor in disease transmission, with René Dubos’s ecological
view that takes into account the dynamic and continuous processes by which
insects, pathogens and humans interact, adapt and co-evolve (Litsios, 1997). This
view achieves a better balance between human health and environmental health
as we adjust our policies to confront climate change, which may well spread
mosquito-borne infections and accelerate the loss of species.

Controlling mosquitoes raises difficult ethical and ecological questions;
but aiming for the reduction of specific mosquito populations, by new means,
including social ones, is possible, and less distorting of public health than aiming
for vector eradication.

Note

1 Sections of this chapter are drawn from my book on eradication (Stepan, 2011).
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FIGHTING NUISANCE ON
THE NORTHERN FRINGE

Controlling mosquitoes in Britain
between the World Wars

Peter Coates

“Mosquito pest conference—in England!” This incredulous headline appeared
in a London-based magazine, West Africa, which covered news items about
Britain’s West African colonies.! Whether in the 1920s or at other times in the
twentieth century, the British tendency has been to think that mosquito problems
were “far away.” The 34 species of mosquitoes native to Britain, admittedly, is a
modest, even trifling number compared to the global total of circa 3,500 species.
And most of Britain’s mosquitoes do not even belong to the disease-transmitting
family. Britain’s mosquitoes are categorized as nuisance mosquitoes—after all,
West Africa referred to the mosquito as (mere) pest. Just five British mosquitoes
are Anopheline and only one, Anopheles atroparvus, Europe’s major malaria carrier,
breeds in big enough numbers and sufficiently close to humans to serve as an
efficient vector of one of malaria’s main parasites, Plasmodium vivax (West Africa
1927, BMCI, AMWL; Manchester Guardian 1929: 8; Snow 1998: 9; Marshall
1938: 2).?

But a comparatively small number of lethal varieties does not mean that the
mosquito chapter of British domestic history is unimportant. A century and a
half ago, the connection between Britain and mosquitoes was stronger. Anopheles
atroparvus was apparently the species that transmitted a native strain of malaria
known as ague. Endemic for centuries to the coastal marshlands of Essex and Kent,
and watery lowlands including the fenlands of East Anglia and the Somerset Levels
in southwest England, ague—aka marsh fever—killed or debilitated thousands
of young, old, undernourished, sick and poorer residents of wetland regions
(Dobson 1998: 312, 321). By 1900, ague had pretty much died out, not because the
parasite’s mosquito vector had been eliminated, but thanks to extensive drainage,
advances in public health care and improved sanitation. Increased separation of
human dwellings from livestock and a growing cattle population also transformed
mosquito biting habits by providing alternative sources of blood meals (Peacock
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1859: 453, 478; James 1929: 71-87; MacArthur 1951: 76-79). Combined with
decreasing virulence of the malaria parasite, growing resistance in the human
patient and greater availability of quinine, lowland England saw this scourge
disappear.* Once ague was gone, the mosquito, itself, effectively disappeared from
domestic British history—although British imperial history is another matter.

This chapter explores questions of control, and the desirability and feasibil-
ity of elimination from the unlikely perspective of Britain’s interwar mosquito
experience.” The case study considered here is the British Mosquito Control
Institute, or BMCI, established in 1925. This non-medical enterprise started out
five years earlier as the Hayling Mosquito Control in the English Channel’s resort
of Hayling Island near Portsmouth, to combat a particular nuisance mosquito that
was making local residents” and vacationers’ lives miserable. The Institute’s locally
successful “anti-mosquito crusade” from 1921 to 1924 (Daily Mail 1925: 15), sub-
sequently expanded under a new name in purpose-built premises (1925-1939),
is examined within a wider geographical framework that includes campaigns to
eliminate deadly varieties of mosquito, from Italy’s Pontine Marshes to the Panama
Canal and various parts of Britain’s empire (Birmingham Post 1927; Morning Post
1925a). “From Nairobi to Hayling Island is a far cry,” ruminated a local journalist,
“but it sounds in our ears” (Portsmouth Gazette 1930).

The deadly-disease—carrying mosquitoes of Nairobi can be regarded, from a
strictly biological standpoint, as a human population reduction agent; or, as entomol-
ogist Daniel Strickman of the US Department of Agriculture observed bluntly a dec-
ade ago, “The ecological effect of eliminating harmful mosquitoes is that you have
more people” (Fang, 2010: 432). But even if there were no human lives to be saved
in combatting non-lethal mosquitoes in Hayling Island, one should not underesti-
mate the efforts expended against what Sir Ronald Ross referred to as, at first sight,
a “wholly insignificant creature” (Ross 1926: 481). Ross, who began his malaria
research in India 30 years earlier, and was now director-in-chief of London’s Ross
Institute and Hospital for Tropical Diseases, made this remark at BMCI’s opening
day on 31 August 1925. To gain a deeper understanding of the non-lethal mosquitoes
that inflicted such “injuries” as depressed real estate value and lost tourist revenue, I
situate the BMCI'’s exploits within parallel efforts across the North Atlantic to control
nuisance mosquitoes in coastal New Jersey. I then compare control strategies adopted
at Hayling Island with larger-scale, more heavily chemicalized interventions beyond
Britain after the first deployment of DDT in 1942 and the subsequent worldwide war
against malaria. Such comparisons allow us to engage with themes of imperialism,
macro- and micro-strategies of control as well as species sanitation. We will find a
consensus among applied entomologists in Britain regarding the desirability of con-
trolling nuisance mosquitoes, but a recognition that doing so was not always feasible.

It should also be pointed out that mosquitoes need not carry deadly dis-
eases to be lethal to humans or non-humans. Technically non-lethal varieties
claim the occasional human death from, say, septicaemia when a bite becomes
inflamed and infected, resulting in blood poisoning. A. Moore Hogarth, the
founder and chairman of the London College of Pestology, recorded 21 deaths
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over a seven-year period in Britain (1921-1928) that were “definitely traced or at
least reasonably attributed to mosquito bites” (Hogarth 1928: 40—42). The focus
here, though, is on the “discomfort” and “general annoyance” mosquitoes of the
inter-war period inflicted (Marshall [undated A], MP, LSHTM?®; Simpson’ in
Hogarth 1928: 15).

In search of comfort

The British press reported with gusto the declaration of war on the pesky mosquito
on Hayling Island in 1920 and did not flag in its coverage of the subsequent
waging of warfare against the insect “enemy” (Daily Express 1920; Turnbull
1925: 228; Morning Post 1925b; Evening Standard 1925). This coverage cannot
be fully appreciated without reference to malaria contracted in Britain during
the latter stages of World War One by soldiers and civilians who had never set
foot abroad. The sites and distribution of locally contracted cases from August
1917 onward closely matched the incidence of indigenous malaria in 1860, with
the highest numbers along the south and southeast coasts (Ministry of Health
(MoH) 1949, Appendix IV, 33).® In north Kent, for example, at the military
camps and hospital near Sheerness, Isle of Sheppey, and at Grain Fort, Isle of
Grain, Anopheles mosquitoes were “generally abundant” in the “marshland and
stagnant pools, intersected with dykes [that] surround the station” as well as
indoors (Parsons 1919: 95-112; Newman 1919: 11). Ministry of Health officials
reckoned demobilized troops brought in the parasite from the Salonika campaign,
as well as from Mesopotamia, Egypt and German East Africa (Macdonald 1919:
179-180, 184, 193; Ross 1919: 324; James 1920: 83-93).

Medical authorities worried that infected soldiers or “carriers” bitten by local
Anophelinemosquitoeswouldspread malariaacross Britain duringdemobilization,
at a time when A. maculipennis was “ubiquitous and extraordinarily numerous”
(James 1920: 81-83, 85) (Figure 7.1). An official source logged 178 documented
cases of malaria of “indigenous” origin in southeast England in 1917 with none
classified as severe, being all “Benign tertian” and with no deaths (Grove 1919:
44-50). This hardly constituted a major public health problem. Yet the report’s
author was troubled by Anopheles’ presence “sometimes in notable abundance,
practically in any part of England where the conditions are favourable to their
breeding” (Newsholme 1918: A2).

Inspired by successful control of yellow fever and malaria in the Canal Zone
of Panama with drainage and larvicide—and similar initiatives in Egypt and
Sudan—the Royal Army Medical Corps’ First London Sanitary Company was
assigned to control “dangerous areas” such as north Kent. The detachment not
only applied chemical larvicides to self-contained pools and sheep-dipping
wells, it also fumigated farm steadings and cleaned cobwebby attics and lime-
washed stables where A. maculipennis hibernated. Mainly, though, its job con-
sisted of routine maintenance work neglected by civil authorities during wartime
such as clearing the “quagmire of vegetation” from ditches, dykes and ponds,
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FIGURE 7.1 Male mosquito, Anopheles maculipennis (atroparvus), 1901. Credit: Wellcome
Collection. Attribution 4.0 International (CC BY 4.0).

“brushing the shores” and filling in derelict canals that multiplied mosquito
habitat. Collectively, these tasks were described as anti-malaria measures, not
anti-mosquito measures (Macdonald 1919: 175, 249, 245-246, 248, 251, 255;
Buchanan and Newsholme 1919: 1iv; Macfarlane 2012). The objective was “limi-
tation” and “reduction,” not eradication, a modesty of ambition that character-
ized anti-malaria measures as “petty.” The informing “principles” were to limit
the extent of “open water” and otherwise diminish water bodies’ suitability as
breeding grounds (Macdonald 1919: 248-249, 254).

The gravity of the menace®

With locally contracted cases of nonindigenous malaria drying up once all
troops were back, and the First London Sanitary Company clipping the wings
of Anopheles in north Kent, a new war on a different kind of mosquito began
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along the marshy coast of Hampshire. This 1920 campaign is rumoured to
have started when the BMCI’s founder, John F. Marshall, a trained mechani-
cal engineer, barrister and, later, self-taught entomologist, found that guests at
his Hayling Island villa were complaining of being bitten by mosquitoes while
playing tennis and afterward “eating their cucumber sandwiches on the lawn”
(Service 2003, BMCI, AMWL)."” Hogarth recalled that Hayling Island had
become “almost uninhabitable” and was “rapidly ceasing to exist as a pleasure-
resort” (Hogarth 1928: 48). Marshall reported that residents usually “vacate
their homes in July and August, and leave the island as far as possible to the
mosquitoes” (Marshall 1930, MP, LSHTM)." He related how “a visitor arriv-
ing at a house adjoining the Salterns [on the edge of the saltmarshes| for a
projected stay of some weeks [September 1922] was compelled to depart on
the next day” (Marshall 1924, Marshall, LSHTM). When Sir Ronald Ross first
visited the island in August 1922, he underestimated the gravity of the prob-
lem. Until, that is, Marshall

took me to a sheltered spot in his garden where there were innumerable
mosquitoes. It was then that I suddenly found two or three of them engag-
ing in extracting blood from the back of my neck. I have seldom had such
an experience, even in the West Indies.

(Daily News 1925)

Garden parties were not the only outdoor activities mosquitoes ruined. And
Hayling Island was not the only place afflicted. Various sources testify to the
severity of the mosquito “scare” along England’s south coast during the 1920s,
and how, to quote Country Life magazine, a bite could destroy the “whole 1dyll
of a summer evening” (Manchester Guardian 1925; Times [London] 1926;
Country Life 1926: 4). According to the Ministry of Health’s advisor on tropi-
cal diseases, Colonel S.P. James, who was also a member of BMCI’s governing
council, “the abundance of these insects in nearly every rural district ... is greater
than in many exceedingly malarious places in the tropics” (James 1929: 75).12
High society’s mosquito “problem” stemmed from greater numbers
combined with closer human—insect contact. Expansion of breeding grounds
also encouraged larger populations. “The Salterns” area of southeastern Hayling
Island had been reclaimed from the nearby estuary by building earthen sea
walls, but such coastal defences had slid into disrepair over the decades. This
neglect restored stagnant, brackish waters that made excellent breeding grounds
for Aedes (Ochlerotatus) detritus, one of two British saltwater varieties, which, of
the 17 local mosquito species, was soon identified as the main culprit (Marshall
1924, MP, LSHTM; MoH 1949: 18-19; Nature 1949: 16). Breeding sites for
nuisance varieties such as A. defritus were not only restored; they also resulted
from unintended environmental transformations. Humans had enlarged
mosquito empires across the tropical world through jungle clearance and various
landscape disrupting “earth-works” (James 1920: 16—17; Sutter 2007: 743—745).
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And wartime and post-war Britain was no exception to the human enlargement
of mosquito breeding sites, as Willoughby’s chapter attests. Water accumulated
in pockets left by wartime bombings and latrines dug at military camps. Newly
fashioned recreational landscapes were also mosquito-friendly, with golf’s rising
popularity leading to a multiplication of courses that incorporated water features,
or outdoor camping spreading empty sardine tins and jam jars (Hogarth 1928:
5758; MoH 1949: 18: MoH 1962: 5, 21). Greater numbers of people travelling
and spending time out of doors exposed more human flesh, and so promoted
more human—mosquito encounters (Hogarth 1928: 48).

Marshall’s Institute was not only the first attempt in the United Kingdom
to combat nuisance mosquitoes. It also furnished the UK’s only opportunity
“for studying the various details of a mosquito control organization in actual
and continuous operation,” not least by showcasing the particular challenges of
undertaking these studies in a residential area (Marshall 1924: 10). Existing pub-
lications (in English) about mosquitoes and their control were focused largely on
disease-carrying mosquitoes in “foreign parts,” and so practically irrelevant to
controlling Britain’s non-lethal varieties (Marshall 1928: 4). (Figure 7.2) Those

FIGURE 7.2 “How to recognise a mosquito” in John E Marshall, A Mosquito Summary
(Hayling Island: British Mosquito Control Institute) [undated], p. 1. Credit:
In the possession of Jolyon Medlock, Public Health England. Reproduced
courtesy of Jolyon Medlock.
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who oversaw the Institute’s activities were nonetheless steeped in the context of
the tropics: “men learned in the ways of mosquitoes in India, the Gold Coast,
or at Khartoum, where it is not merely a nuisance” (The Children’s Newspaper
1928, Marshall, LSHTM). When the BMCI began to identify and study the
habits of Britain’s non-Anopheline mosquitoes, it would borrow heavily from
the methods of the tropics.

One example of the transfer of knowledge from tropical to temperate was the
formation of a small local workforce known as a Mosquito Brigade, a practice
Ross pioneered in the Indian Medical Service. The task of these brigades was
to wipe out or treat with petroleum all sources of standing water, not only all
marshes, ponds and ditches, but also puddles and water accumulated in tree boles,
sites that would not have been considered as breeding environments when the
miasma theory held sway (Ross 1902; Christophers and Bentley 1908: 21-22).
Ross-style brigades came to play a particularly vital role on Hayling Island because
local public authorities felt non-lethal mosquito control was not their responsibil-
ity. In many countries, as Marshall pointed out, the owner of the land on which
mosquitoes breed is required by law to bear part of the costs of control, besides
providing controllers access to the land. Hogarth pointed out that in New South
Wales, Australia, powers to enforce mosquito destruction had been vested in
local governments since 1906 (Hogarth 1928: 111-113; O’Gorman 2017: 496).
However, in Britain, despite the Public Health Act of 1876, which included “any
pool, ditch, gutter, watercourse, sink, cistern, cesspool or drain so foul or in such
as state or so situated as to be nuisance or injurious or dangerous to health,” local
municipalities had been reluctant to act on mosquito control (Westminster Gazette
1927; Yorkshire Post 1927). The official line the town council adopted in a south-
coast resort in nearby Dorset was that “there are no mosquitoes in Weymouth.”
Disputing this, one of Hogarth’s correspondents insisted that the council was actu-
ally “afraid of the existence of mosquitoes getting known” for fear of putting off
visitors, and so, “takes no steps to destroy them” (Hogarth 1928: 50). Marshall also
suspected that many seaside resorts adhered to a do-nothing policy because they
figured that “first-time” blissfully mosquito-unaware visitors would come in suf-
ficient quantities to compensate for those who did not return because of the nasty
mosquito surprises awaiting them (Marshall 1928: 37).

Another obstacle faced proponents of control. Not only was permission
required to “drain away [a private landowner’s] mosquito-infested waters” but
funding for control work needed to be secured (Marshall 1928: 37). BMCI (an
incorporated organization) and its predecessor, the Hayling Mosquito Control,
were unofficial initiatives, funded entirely from private sources (largely Marshall’s
personal wealth), since the Ministry of Health had no mandate to spend public
funds on non-lethal mosquitoes (Marshall 1928: 10). Given the government’s
lack of support, “education of local public opinion in support of the work” was
particularly essential (Marshall 1927: 9). One local headmaster, for example,
organized an annual “Mosquito Control Class” where he enlisted schoolchildren
to collect samples (Marshall 1928: 10; Lancet 1925).
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A pleasure-killing pest across the Atlantic

The existence of a type of juvenile Mosquito Brigade at Hayling Island dem-
onstrates how a local temperate-zone mosquito campaign was shaped by more
lethal threats faced by its distant tropical counterparts. Beyond Britain’s tropi-
cal colonies, the Institute’s awareness and frame of reference also extended to
American efforts to combat disease-bearing mosquitoes, especially in Cuba,
Panama and the Philippines where yellow fever and malaria had raged (Daily
Mirror 1925; Observer 1925: 5). Yet mosquito control within US borders provides
a closer parallel with BMCI’s efforts. Only rarely did Marshall, or the press and
medical journals, acknowledge that the main precedent for controlling “general
annoyance” mosquitoes was from the United States’ northeast coast (Marshall,
undated A: 3, Marshall, LSHTM; Marshall 1925b: 6, 17; British Medical Journal
[BM]] 1930: 328).

Organized efforts to deal with comparable saltwater mosquitoes, such as Aedes
sollicitans, the white-banded salt marsh mosquito, began in coastal marshlands of
states such as New Jersey in the early 1900s. “Magnificent dwellings,” lamented
a realtor in the 1890s,

tind no purchasers because ... as soon as dark sets in, piazzas must be aban-
doned to escape the annoyance of these little nuisances. In almost any car
in any morning train to the city during the summer, somebody may be
heard talking of mosquitoes.

(Smith 1904: 462, in Patterson 2009: 12)

Fifteen years later, Hayling Island residents and visitors expressed identical senti-
ments regarding what Americans dubbed the “pleasure killing pest” (Chicago
Daily Tribune 1914). Indeed, Marshall’s organization was a British equivalent of
the village improvement societies and town protective associations that emerged
in New Jersey from 1901, eventually broadening into state-level organizations
such as the New Jersey Mosquito Control Association.

Like their British counterparts, Americans who fought Aedes sollicitans
thought that eliminating this nuisance would deliver economic benefits,
including more tourists and higher property values. Tensions within US
mosquito-control circles were often framed as comfort versus disease: those
concerned with public health wanting to curb lethal mosquitoes complained
that politicians were more responsive to businesspeople moaning about lost
profits (Patterson 2009: 88-89). As in England, awareness of a mosquito
problem did not guarantee action. Weymouth town council’s disinclination to
acknowledge a local mosquito problem is a pattern of denial and inaction also
observable in areas of the USA where mosquitoes were malarial. In northern
California, irrigation infrastructure boosted land values but created excellent
breeding conditions for anophelines, particularly where rice was cultivated and
there were concomitant water seepages and leaks. Until 1915, many American
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realtors opposed public funding of mosquito control for fear that such efforts
would only draw attention to the problem and deter prospective buyers
(Patterson 2009: 83, 107, 122).

A “practically intolerable”" nuisance

In 1924, prompted by the growing number of mosquito-bite—related illnesses,
and even deaths, together with accumulating complaints about interference with
outdoor pursuits, the council of Hogarth’s College of Pestology offered a prize
for the best essay on Britain’s “Mosquito Menace.” The competition attracted
almost 500 entrants from across the world. The winner, P.G. Shute, an assistant
to Colonel James and a veteran of anti-mosquito campaigns in the tropical British
Empire, received his gold medal from Ross in the presence of various luminaries
at a luncheon in London. Shute’s central recommendation for combating Aedes
detritus was to shrink its breeding grounds through drainage and infilling." Two
other points emerged at the lunch that day. Firstly, the need to instil in public
authorities, and a rather ignorant and apathetic public, an awareness of “the real
urgency of the mosquito evil in this country” (Hogarth 1928: 18). The second
imperative was to equip those whose enlistment would be crucial to the success
of a coordinated campaign—DBoy Scouts, Girl Guides and “village naturalist
circles’—with the means “readily to distinguish and identify at least the more
common and mischievous species of British mosquitoes” (Hogarth 1928: 18;
Liverpool Evening Express 1928).

Despite this sense of urgency and their liberally employed rhetoric of warfare
(Marshall 1925a: 475), Marshall and his associates did not exaggerate the
threat that British mosquitoes posed. They scrupulously distinguished between
species such as A. detritus and the Anopheline “tribe.” They were also clear that
nothing less than the disintegration of Britain’s modern sanitary system would
be required to re-establish malaria as a “native disease” (Hogarth 1928: 37).
Nonetheless, for the likes of Hogarth, Marshall and Ross, “seaside” mosquitoes’
non-lethality was no reason to accept they were an unavoidable part of life—as
was the weather or taxes, about which you could complain ad nauseam, but just
had to live with.

Marshall saw no possibility of coexistence at Hayling Island. Either he and
his fellow residents had to go, or their little tormentors had to go (Olver 2014).
It was a stand-off. Sir Richard Gregory, editor of Nature, who presided over
the Institute’s opening ceremony in 1925, also took the crusading “us or them”
position:

Man to-day is “up against” the mosquito, and has to fight in order to live
at all. In many places, it is a question of mosquito or man, and if the insect
is permitted to breed without any control ... man must finally leave the
place.

(Daily Telegraph 1925: 12)
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One reporter offered the following headline of Gregory’s talk: “Man against the
insect: scientist says we must conquer or die” (Daily Express 1920; Western Mail
1925). Ross’s opening address adopted a similar tone. Emphasizing the direct
value to the world’s tropical regions of the research conducted at this unlikely
place, he cast mosquitoes of all kinds (indeed all pestiferous insects that preyed on
us, our crops or livestock) as an insufferable affront to human authority:

Nothing in human history is more remarkable than the contrast between
the comparatively rapid and easy victory of man over the great beasts
and reptiles and his total helplessness throughout the ages in the face of
attack by the tiniest of living things. The empire of the disease-bearing
insects has, indeed, been very widely extended in many regions at the
same time that ancient and modern weapons were swiftly exterminating
the dangerous brutes.

(“Mosquito control,” Daily Telegraph, 2 September 1925: 8)

Ross gave his speech al fresco, before an audience of some 350, in the very
garden where he was famously tormented in 1922 (and where Marshall’s
guests were unable to enjoy their refreshments). His former molesters” absence
testified to the Hayling campaign’s unambiguous success (Times 1925). By the
summer of 1923, unsolicited testimonies from locals had already pointed to
the remarkable elimination of mosquitoes. A happy repeat visitor reported
to Marshall in August 1926 that during her current two-month stay, “I have
not seen a mosquito with the exception of those in your [Institute’s] cages”
(Marshall 1924: 12; BMCI, 8th report 1930). The BMCI had apparently
worked out not only which kind of mosquito was biting townsfolk and vaca-
tioners, but it had unleashed a multi-pronged assault on the larvae and breed-
ing grounds of Aedes detritus.

“No stagnating sea water, no mosquito nuisance”'

The work at Hayling Island (covering under seven square miles) was targeted
rather than indiscriminate, based on the conviction that control strategies
should be micro-strategies, carefully tailored to the habits and micro-habitats
of individual mosquito species rather than blanket spraying, as would occur in
Sardinia after 1945 (Hall 2010). A researcher summed up the nuanced approach
adopted on Hayling Island: “itisidle to blame the domestic water butt if the insects
are coming from a pond in a neighbouring wood” (BM]J 1930 : 328). Marshall’s
team quickly learnt they were dealing with enormous diversity in species,
hatching habits and breeding places (BMCI 17 May 1928, MP, LSHTM). Initial
collecting activities in the autumn of 1920 disclosed that the “local nuisance”
was almost exclusively caused by Aedes (Ochlerotatus) detritus, a species particularly
active in daytime that was also exceptional among British mosquitoes for other
reasons. It was not until the following summer, after experiments in a makeshift
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laboratory revealed that A. detritus would breed in stagnant water comparable
in salinity to seawater, that Marshall and his staft figured it out. A. detritus was
a “long-distance” species with an unusual flight range of up to five kilometres
whose breeding grounds were situated two kilometres westward and eastward of
its biting grounds in the central residential district (Marshall 1928: 9).

They also discovered that, exceptionally among British mosquitoes, A. detritus
eggs and larvae can survive the winter. Eggs laid in dry marshland vegetation
remained in suspended animation until submerged by tidal action or otherwise
wetted. If the weather was mild, the production of adults could continue
from April to November—a remarkably long hatching-out period for British
mosquitoes (BMJ 1930: 328-329). The campaign’s key finding? Successful
control at the local level depends on establishing the precise identity of the
problem-causing mosquito and thorough study of its attributes (Marshall 1927,
BMCI, AMWL; Marshall, Nature 1942: 2). As Marshall explained:

Each species displays great discrimination as regards the special situations
which it selects for its breeding, and its choice depends upon a number of
factors which it no doubt understands better than we do. Certain species
appear to possess a sufficient knowledge of engineering to enable them to
lay their eggs in depressions ... which, although dried up at the time when
eggs are deposited, are destined to collect water in the wetter months.
(Marshall, undated B: 3, Marshall, AMWL)

This approach belongs, of course, to an era before DDT was available as a super-
weapon in the mosquito controller’s arsenal. Marshall’s views on DDT are not
recorded and we can only speculate over whether he would have embraced it
wholeheartedly should it have been available in the 1920s. Gordon Patterson
divides mosquito control in the USA into two eras before general uses of DDT
were banned in 1972: the pre-DDT period of mechanical control (c. 1900
to 1942) and the period of chemical control (1942—1972) (Patterson 2016:
2). Adapting this periodization to the UK, the mechanical era is the same (c.
1900-1942) but the chemical era lasts longer, until 1986. Nuisance mosquito
control before DDT was pursued in Britain through a blend of short- and long-
term measures. The former consisted of larvae suffocation by spreading paraffin

and crude oil or other chemicals on the water surface'®

as well as biocontrol (in
other words, leaving larvae-gobbling fish to do the job in certain water bodies).
Long-term measures comprised “abolition” of existing and potential macro- and
micro-level breeding grounds whether “natural” or “man-made” (MoH 1949:
20-26). The main methods adopted at Hayling Island, after A. detritus breeding
grounds were pinpointed, were through drainage and infilling of marshlands (*a
permanent cure” (Turnbull 1925: 228)).

Targeting of breeding grounds rather than mosquitoes themselves—a method
also adopted, among others, on the Pontine marshes after 1922 but mainly

during the 1930s—was in stark contrast to the favoured strategy of some local
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authorities in England at the time: spraying stagnant waters within or close to
residential areas. This was not just a waste of money, said the critics. Spraying’s
ineffectuality undermined public confidence in anti-mosquito activities more
generally (Manchester Guardian 1929: 8; Country Life 1925: 430; Caprotti
2006: 145-155; The Field 1924: 502-503).

If a heavy-handed, heavily chemical, top—down approach that ignores species’
particularities and specificities on the ground can be characterized as hard, and
its more measured opposite as soft, then the Hayling Island approach was “an
intimate strategy of detection and destruction of breeding sites” (to borrow
a phrase from a study of divergent control strategies in two cities in Arizona,
Tucson and Phoenix (Shaw et al. 2010: 375)). Biocontrol methods are not
necessarily “soft” if they involve the introduction of a non-native species such as
the mosquitofish, Gambusia. However, just as Hogarth had noted that industrial
pollutants were killing oft larvae-gobbling fish, helping explain nuisance
mosquitoes’ proliferation in southern England in the early 1920s, Marshall
warned, in proto-ecological reasoning, against indiscriminate application of
chemical larvicides and paraffin that might inflict collateral damage, wiping

9

out the mosquito’s “benevolent” “natural enemies” such as fish. Marshall and
colleagues instructed their “mosquito brigades” that established water bodies
such as cattle ponds and ornamental lakes contained natural allies in the form
of fish and other amphibians that feast on eggs and larvae (Hogarth 1928: 57).”
In his writings, Marshall never referred to Surgeon Major William C.
Gorgas, who led US sanitation campaigns in Cuba and Panama in the early
1900s. But Gorgas’s appreciation of the heterogeneity of a potential breeding
site, characterized as “on-the-ground, labor-intensive, and environmentally
complex” (Shaw et al. 2010: 376), was something that also informed Marshall’s
every move. Gorgas famously remarked (allegedly, c. 1900) that to combat
mosquitoes, one needed to think like a mosquito (Soper 1965: 860; Macdonald
1965: 871; Stepan 2011: 92). Marshall would have echoed these sentiments.

If only we could, should we?

Despite mission accomplished on Hayling Island—subject to regular inspection,
maintenance of drainage works and treatment of stagnant water—Marshall
accepted that “permanent eradication of mosquitoes from even a limited area
is ... a matter of impossibility” (Marshall 1928: 27). This reflected respect for
the indomitability of an opponent that has been around in the same form and
life cycle for at least 80—105 million years and an appreciation of the limits of
the science and technology, at least in the pre-DDT era. In today’s discourse of
ecosystem services and benefits, the presence of nuisance and disease-carrying,
if sublethal, mosquito varieties within a wetland represent a potential disservice
(Dwyer et al. 2016: 555, 557, 559-560; Knight et al. 2017: 431-440).

Marshall’s views on whether the mosquito—A. defritus specifically, or more
generally—possessed any positive merit are hard to discern from the written
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record. There is one solitary glimpse but its value as a gauge of what Marshall
actually thought may be compromised by its whimsical tone and context. As he
told a local Rotary Club in 1923:

I have noticed that scarcely a week passes without my being asked to give
a reply to the query: “what good, if any, do mosquitoes do in the world?”
I must confess that, up to the present, I have been unable to give any satis-
factory answer to this conundrum: but the next time I am asked this ques-
tion I am going to say: “The mosquito is a two-winged insect to which I
am indebted, up to now, for two highly enjoyable visits to Gosport.”
(Marshall 1923, BMCI, AMWL)

That does not mean that Marshall adhered to the view, as articulated recently
by Janet McAllister of the Centers for Disease Control and Prevention in Fort
Collins, Colorado, that “we haven’t wanted anything from mosquitoes except
for them to go away” (Fang 2010: 433). Nor can we extrapolate that he would be
willing to contemplate any available means to rid the world of mosquitoes. And
there is no suggestion that he ever wrestled with the profound moral implications
of whether it was right to commit specicide, by deliberately wiping out a spe-
cies. His organization, after all, was not called the British Mosquito Elimination
Institute. Despite what he told members of Gosport’s Rotary Club, I doubt he
would have been happy with total elimination: that would have left nothing for
him to study. Journalists wrote of “extermination” as the goal or ideal (Liverpool
Courier 1925). But Marshall knew this was unattainable, since unending warfare
was required to avoid a return to “the bad old days of 1920” (J.H.P., undated)."

In his speech opening the BMCI—in which he name-checked various “white
man’s graves” (London Evening News 1931) that mosquito control had made safe
and habitable, Panama, Havana, Hong Kong, the Malay states and Ismailia—Ross
looked ahead to what sounded like a mosquito-tamed utopia: “And the day may
come — indeed, I am sure it will come — when all those fertile tracts of the world
which are now dominated and ravaged by King Malaria and King Mosquito will
be laid open to civilisation” (Marshall 1928: 16; Ross 1926: 486; Times 1925).
In fact, his was not an unambiguous call to rid the entire earth. Ross’s vision
was confined to areas desirable for agricultural development and settlement by
white Europeans where malaria was prevalent. Regardless of feasibility, it was
simply unnecessary to eradicate mosquitoes wherever they were found. As Ross
explained with reference to the control of A. aegypti, and “How Panama was
made healthy,”

Our work for the general extermination of insect pests is designed chiefly
for the protection of cities and towns. We cannot expect—indeed, there is
no need—to drive mosquitoes and the like out of jungles and marshy tracts
away from civilisation.

(Observer 1925)
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This viewpoint, with its implicit distinction between “country” or “wild”
anophelines and peri-domestic varieties such as A. aegypti, should not be
confused, though, with an enlightened ethos of coexistence through live-
and-let-live: whereas native peoples could coexist with mosquitoes in the
tropics, the same could not be expected of Europeans. As long as there were
uninhabited tracts, or places thinly and sporadically populated by non-Euro-
peans, then there would always be places where the mosquito’s empire would
remain uncontested.

Restoring agency to a creaturely nuisance

The “social evil”—to borrow a term popular in 1920s Britain (Country Life
1927: 108)—caused by non-lethal varieties inhabiting the northern frontiers
of the mosquito’s global imperium has now been effortlessly eclipsed by the
far graver evil of its deadly compatriots. And yet the merely annoying mos-
quito that ruins a camping trip (rather than an English picnic with cucum-
ber sandwiches) provides the springboard for the most recent book on “our
deadliest predator.” Timothy Winegard’s opening gambit is the scenario of
an unwitting American vacationer slumping into a lawn chair to relax with a
chilled beer after an exerting hike: “Before you can enjoy your first satisty-
ing swig, however, you hear that all-too-familiar sound” (Winegard 2019:
7). Here is Winegard’s hook: who would have thought that an insect most of
us know as a pesky intrusion on a summer’s evening has played such a pro-
found role throughout human history? Reviewers of Winegard’s book have
highlighted the “tiny” mosquito’s “outsize role” and “outsized effects” in our
history (Mirsky 2019; Hemingway 2019). The challenge that the irritating,
party-pooping mosquito posed to what Hogarth referred to as “the pleasures
of outdoor life” in southern England in the early 1920s (Hogarth 1928: 17)
is patently trivial compared to the worldwide, centuries-long, life-and-death
struggle against its distant deadly relatives. The predicament A. detritus created
was especially paltry within the wider context of the post-1919 outbreak of
malaria epidemics across southern and eastern Europe. In 1923, in the Soviet
Union alone, an estimated 18 million people out of 110 million were aftlicted
by malaria, resulting in over 60,000 deaths (Gachelin and Opinel 2011: 432).
Still, the case of one obscure mosquito species along the southern coast of
England provides an intriguing example of an insect pest whose role was far
from undersized.
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Notes

1

10
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18

The headline was prompted by a gathering of medical officers and sanitary inspectors
in Surrey (Britain’s first) to plan mosquito control in that county for the coming
summer. BMCI, AMWL refers to the papers of the British Mosquito Control Institute
(BMCI), Hayling Island, Hampshire, in the Sir Ronald Ross Collection, Archives
and Manuscripts, Wellcome Library for the History and Understanding of Medicine,
London (BMCI, AMWL).

Anopheles atroparvus was originally identified as A. maculipennis (Marshall 1938: 2).
A. maculipennis/Anopheles atroparvus is zoophilic and lives and hibernates in pigsties,
stables and cowsheds.

At the time, improved drainage that eliminated bad air and bad waters was offered
as the main explanation for ague’s demise, but drainage inadvertently created new
breeding places in the shape of ditches and canals (Malaria Commission 1927: 28-29).
Britain is not mentioned in Evans (1989).

MP, LSHTM refers to: John Frederick Marshall Papers, Library and Archives,
London School of Hygiene and Tropical Medicine, London (LSHTM).

William John Ritchie Simpson was author of studies such as Maintenance of Health
in the Tropics (1916) and a founder of the London School of Hygiene and Tropical
Medicine.

Only in summer are England’s temperatures warm enough for an infected mosquito
to complete its parasitic cycle (15-20 days). Temperatures and humidity levels are
highest along the southern and southeast coasts.

This subheading is taken from the title of Chapters 3 and 4 in Hogarth, British
Mosquitoes and How to Eliminate Them (1928).

For details of Marshall’s life and career (he was heir to a family business fortune), see
Snow and Snow (2004: 23-28).

The Institute, housed in new premises adjacent to Marshall’s residence (“Seacourt”),
consisted, on the ground floor, of a demonstration museum, laboratory, a drawing
and record office, a photographic room, dark room and mechanical workshop, and,
on the first floor, a library, projection room, secretarial offices and research areas.
After 1925, Hayling Mosquito Control continued to exist as the Hayling Island
Branch of BMCI, which remained responsible for local control measures, whereas
BMCI concentrated on research (pure and applied), advisory and educational work
(BMCI 1928: 3, MP, LSHTM; Marshall 1925a). After 1939, BMCI’s work shrank to
local mosquito control.

James was a retired lieutenant colonel in the Indian Expeditionary Force (IEF) “D,”
and former IEF assistant director of Medical Services (Sanitary). BMCI’s governing
council’s membership list reads like a roll-call of the great and the good of British
imperial and tropical science.

Marshall 1925b.

Shute’s essay (“Mosquito eradication”) was reproduced as Appendix A in Hogarth
1928: 125-127.

Hayling Mosquito Control, undated, MP, LSHTM.

Chemical larvicides, such as disinfectant (cresol) and copper sulphate, were deployed
where windy conditions tore apart the surface film of oil or vegetation broke it up,
allowing air to reach larvae (Marshall 1921: 1).

1920s British mosquito researchers were curious about biocontrol practised elsewhere,
such as transplantation of top-water minnow from North Carolina to waters in the
northern USA and Central America, and French proposals for stocking young eels
(Observer 1922; London Evening News 1926). Recognition of certain aquatic spe-
cies’ larvae consumption did not extend to a larger awareness of the place of mosquito
larvae and adults at the bottom of a food pyramid. Researchers have recently revisited
the mosquitofish’s reputation as a “reliable ally”” in mosquito control (Fang 2010: 433).
On the pursuit of control and elimination as different goals, see Cockburn 1961.
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THE MOSQUITO AND MALARIA

Would mosquito control alone
eliminate the disease?

Willem Takken

In the third decade of the twenty-first century, malaria continues to be one of
the world’s most devastating infectious diseases, mostly in low-income countries.
The disease is caused by Plasmodium parasites, which are transmitted between
humans by mosquitoes of the genus Anopheles. The World Health Organization
reported 228 million cases in 2018, with around 405,000 deaths. The majority
of these cases occurred in tropical Africa, and most deaths were children below
age five (WHO 2019). With so many new annual infections and deaths, the
disease levies enormous burdens, particularly in malaria-endemic countries.
It is estimated that an African household spends on average 10% of its annual
income on malaria prevention and control, and that the combined economies of
Africa lose US$4 billion per year due to the disease (Sachs and Malaney 2002,
Shretta et al. 2016, Sarma et al. 2019). For example, the average annual cost of
malaria to society was recently estimated at US$7.80 per uncomplicated case
and US$107.64 per severe case in an endemic area of Mozambique (Alonso et al.
2019). Using these figures and considering all cases to be uncomplicated, malaria
prevention and treatment currently cost the world some US$1.7 billion per year.

Human malaria is caused by five species of the genus Plasmodium, of which
Plasmodium falciparum and Plasmodium vivax are most prevalent, and most respon-
sible for the disease. P. falciparum is the main malaria killer, being especially
virulent in non-immune people, particularly young children (White et al. 2014).
The parasite has a complex life cycle, starting when infectious sporozoites are
injected into the human bloodstream by the bite of an anopheline mosquito. The
parasite then undergoes a series of developments in the human host to eventually
develop male and female gametes, which can be found in the peripheral blood
(Figure 8.1). This development process can vary from 10 to 20 days, depend-
ing on the Plasmodium species and condition of the human host. After male and
female gametes are ingested by an anopheline mosquito, the gametes fuse into a
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FIGURE 8.1 Plasmodium life cycle (Source: Su et al., Nature Reviews Genetics 8: 497-506,
2007).

zygote, which subsequently develops into an oocyte. Next, oocytes migrate to
the interior wall of the mosquito’s midgut where they grow out into oocysts in
which the sporozoites develop. After 7 to 10 days, mature oocytes burst, with the
sporozoites migrating to the salivary gland, from where another mosquito bite
can start the transmission cycle again (Warrell and Gilles 2002).

It was the discovery of Sir Ronald Ross in 1897 that malaria parasites developed
in the mosquito which led to the realization of the importance of this creature
to malaria transmission: without anopheline mosquitoes, human malaria could
not exist (Ross 1900). Before Ross’s discovery, malaria was generally treated
by administering quinine and prevented, if possible, by temporarily vacating
residences during the “fever season” for healthier areas or else draining nearby
pestilential swamps thought to carry the “bad air” of malaria (Webb 2009).

Malaria epidemiology and RO

Following his discovery of the life cycle of Plasmodium, and the role of mosquitoes
in this process, Ross developed one of the earliest epidemiological models for the
prediction of a vector-borne disease (Ross 1910). The model was based on the
basic reproductive number, R0, and gave a central role to the mosquito vector.
The model was further developed by McDonald (MacDonald 1957), and rapidly
became a standard for the design of malaria control and prevention programmes
(Figure 8.2).

The basic reproductive number, RO, represents the rate with which malaria
spreads through a human community and is defined as the expected number
of cases directly generated by one case in a population where all individuals
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FIGURE 8.2 Basic reproductive number of malaria (adapted from Smith et al., PLOS
Biology 5:531-542,2007).

are susceptible to infection (Anderson and May 1992, Wilson et al. 2020). It is
assumed in this equation that no other individuals are infected by the pathogen
or immunized to the disease. When RO is greater than 1, the number of infected
individuals will increase, whereas when RO is less than 1, the disease will die
out. The mosquito is represented in the model by its human biting rate ma and
its daily survival rate p. Indirectly, the Plasmodium infections in the mosquito,
represented by factor b (viz. the proportion of mosquitoes developing parasites),
also relate to the role of the mosquitoes in the model." Given the central role of
mosquitoes in the basic reproductive number, it follows that effective vector con-
trol can lead to a rapid decline of new infections, meaning that vector control is
one of the pillars of combatting malaria. In the history of malaria control, many
efforts have been directed at eliminating the mosquito vectors to halt the spread
of the disease.

Short history of malaria control

Until the development of affordable (synthetic) malaria drugs, the disease was
treated primarily with quinine, a drug originating from the Peruvian cinchona
tree that acted on the parasite itself (Rocco 2003). Following the discovery
of the role of the mosquito in malaria’s transmission cycle, control strategies
were reoriented towards reducing human—mosquito contact. At first this was
done with environmental management through the removal or modification of
breeding sites. Famous examples of these were the anti-malaria works at the
Panama Canal (Dehne 1955) and the environmental management methods in
Malaysia and Indonesia (Watson 1921, Takken et al. 1990) where the breeding
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sites of malaria mosquitoes (swamps) were drained and predatory mosquito-
eating fish were released in rice fields. These methods were quite effective and
led to strong reductions or even local elimination of malaria.

In the 1920s, Paris Green, an inorganic insecticide containing copper
acetoarsenite, was developed for mosquito control. The compound was
successfully used to eradicate the invasive African malaria mosquito Anopheles
arabiensis (Anopheles gambiae sensu lato) from Brazil (Killeen et al. 2002) and in
1944 it was used on a widescale for malaria control in Italy (de Zulueta 1998).

During the Second World War, the synthetic insecticide dichlorodiphenyl-
trichloroethane (DDT) was introduced as a novel, effective, mosquito control
tool as it could be used to kill adult mosquitoes by treating the resting sites
of the mosquitoes, especially walls and ceilings in houses and stables. At the
same time, the synthetic malaria drug chloroquine was developed, and both
tools were used in tandem for the dramatic control of malaria in many parts
of the world. Initial results were so successful that the World Health Assembly
launched a global malaria eradication campaign in 1955. The campaign was
highly successful in eradicating malaria from temperate climate zones, but its
application in tropical climate zones proved more complicated: the enormous
scale of the malaria endemic combined with a rapid development of insecticide
resistance and a growing scarcity of financial resources drew the global cam-
paign to a halt. In 1969 the campaign was officially ended, with malaria per-
sisting in large parts of the world, many considered as low-income countries,
where malaria continued to cause heavy burdens. In many countries, malaria
mosquitoes had become resistant to DDT, rendering this compound and its
derivatives obsolete.

The discovery in the 1970s of a new class of insecticides, the synthetic pyre-
throids, led to a renewed interest in malaria vector control. It was found that bed
nets treated with these new synthetics, or Insecticide-Treated Nets (ITNs), gave
far better protection against malaria than untreated nets. The insecticide on the
nets killed mosquitoes landing on the net, as well as deterring them (Alonso et al.
1991, Lindsay et al. 1993). Large-scale trials with I'TNs in several African coun-
tries proved so successful that the World Health Organization included them in
its Roll Back Malaria programme (WHO 2005).

The new global malaria eradication campaign launched in 2007 appeared
hopeful, and led to a 50% reduction of global malaria, of which at least 78%
was due to vector control with ITNs and indoor residual spraying (IRS) (Bhatt
et al. 2015). This rapid decline of malaria since the launch of the Roll Back
Malaria programme in 2000 was, however, put to a halt after 2015, with little
turther progress reported since then (WHO 2019). One of the reasons for this
halt in progress is the rapid and widespread development of insecticide resistance,
a repeat of what happened in the DDT era (Hemingway et al. 2016, Ranson
and Lissenden 2016). Should the high degree of insecticide resistance in many
anopheline populations be a reason to abandon vector control, even with meth-
ods that go beyond insecticides? After all, it was through vector control that the
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earliest successes of malaria control were achieved, with only limited successes
derived from anti-malarial drugs (Bhatt et al. 2015).

The Global Vector Control Response

Despite significant reductions in malaria achieved under the Roll Back Malaria
programme, an increase in programme costs and the rapid rise in insecticide
resistance, a new approach to disease vector control was required. The WHO’s
Global Vector Control Response (GVCR) was launched in 2017 aiming for
Integrated Vector Management (IVM), which is a toolbox of mosquito control
methods designed to suppress or eliminate malaria vectors (WHO 2017). The
toolbox includes environmental management, house improvement, biological
and rationale methods as well as insecticides. With this greater emphasis on
non-chemical methods, while strategically employing novel insecticides, it is
expected that resistance can be delayed and insecticides can be utilized over
a longer period. The GVCR encourages intersectoral collaboration and social
aspects of vector control through community engagement.

The World Health Assembly adopted the GVCR unanimously in May 2017,
with member states subsequently playing an active role in adapting this latest
push for improving health through their national malaria control programmes.

Current tools for malaria vector control

e Environmental management: mosquitoes depend on aquatic sites for egg-
laying and larval development. Drainage of such sites can be highly effective,
but often requires engineering works which can be costly. Irrigated rice
fields offer special potential as breeding sites for anopheline mosquitoes.
Intermittent irrigation is another effective method for periodic killing of
immature mosquitoes (Liu et al. 2004) and can be conducted at small and
large scales. At the community level, removal of small puddles and water
bodies in the peridomestic area has been practised as a method for malaria
vector control (van den Berg et al. 2018).

e Housing improvements: many Anopheles species, in particular those that feed
readily on humans, have developed the habit of using houses as feeding and
resting sites. The most important African malaria vectors, Anopheles gambiae
sensu stricto, An. coluzzii and An. funestus, are highly anthropophilic and take
nearly all blood meals indoors during nocturnal hours. This is the reason
why bed nets are such effective tools for malaria prevention (see below).
Screening of doors and windows, and screening or closure of eaves, has been
shown to prevent mosquito entry, and even to reduce malaria risk (Kirby et
al. 2009). Housing improvement is considered an important component of
malaria control and currently several studies are under way to develop this
into a practical tool (Lindsay et al. 2002, Tusting et al. 2017, Mburu et al.
2018).
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e Biological control: natural products or organisms that kill mosquitoes are
used for biological control. These include predatory fish, pathogenic fungi
and bacteria. Of the last organisms, Bacillus thuringiensis israelensis (Bti) and
Bacillus sphaericus have been particularly popular for malaria vector control
(Fillinger et al. 2009, Tusting et al. 2013, Afrane et al. 2016, Dambach et al.
2019). Such bacteria can be described as biological insecticides.

e  Bio-rationale methods: these approaches for control are based on disrupting
the growth and development of mosquitoes as well as their communication
systems. The most widely used bio-rationale (or “biorational”) tools are insect
growth regulators (IGRs). These are products that mimic juvenile hormones
and interfere with the growth and development of an insect. In mosquito
control, common products are methoprene (Altosid®), pyriproxyfen and
diflubenzuron (Dimilin®), and they are mostly used as larvicides. IGRs
have been widely used for the control of nuisance mosquitoes as well as for
the control of mosquitoes transmitting viruses like dengue, chikungunya
and Zika. By contrast, insect growth regulators are rarely used for malaria
control.

e  Chemical control: despite the widespread presence of insecticide resistance
in many species of malaria mosquitoes, insecticide-impregnated bed nets
continue to provide good protection, albeit to a lesser degree than in the
period before insecticide resistance (Yang et al. 2018). It is less clear if
there will still be a role for indoor residual spraying (IRS) in future malaria
programmes, as this method does not provide protection against mosquito
bites, unlike bed nets, once the mosquitoes have become resistant. The
Innovative Vector Control Consortium (IVCC), which consists of a network
of private and public organizations, is working on the development of novel
classes of insecticides and novel strategies for application of insecticides,
as by combining several different classes of insecticides or combining an
insecticide with a synergist (Hemingway 2017, Gleave et al. 2018). It is
expected that within a few years, new chemical products will be available to
replace current insecticides (Knapp et al. 2015, Killeen 2020).

e Behavioural control: mosquitoes respond to visual, acoustic and chemical
cues for intra- and interspecific interactions. Knowledge of these cues can
be used to manipulate the behaviour of the mosquitoes, leading to reduced
vector densities and possibly vector eradication. Some behavioural control
depends on mosquito gender, as outlined below.

Male mosquitoes: males form swarms when searching for a mate using
aggregation cues. These swarms can be manipulated by acoustic and
chemical cues aimed at mating disruption (Cator et al. 2011, Wooding et
al. 2020). Male mosquitoes feed on nectar, and toxic sugar baits have been
developed to alter the mosquitoes’ nectar-feeding behaviour, leading to
significant reductions in mosquito populations (Traore et al. 2020).

Female mosquitoes: female anophelines feed primarily on vertebrate
blood. Vertebrate hosts are located with odorous cues emitted by the host
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(Takken and Knols 1999), and synthetic odour cues that mimic a human
have been employed to mass trap host-seeking mosquitoes with the aim for
reducing their biting intensity and, subsequently, Plasmodium transmission
rate. In a recent study in Kenya it was shown that mass trapping with odour-
baited traps led to a 30% reduction in malaria prevalence (Homan et al.
2016). Female mosquitoes can also be manipulated to lay their eggs in
selected sites, using odorant cues that attract gravid females (Lindh et al.
2015, Eneh et al. 2016, Schoelitsz et al. 2020). Such sites can be laced with a
biological larvicide (Bti), as an alternative and efficient way of larval control.

Push-pull: repellents are compounds that deter mosquitoes so that
they move away from feeding and resting zones. Currently, there is much
interest in the pyrethroid compound transtluthrin, as this acts not only as an
insecticide, but also as a strong repellent, disrupting the mosquito’s ability to
land and/or bite. Transtluthrin can be impregnated into fabrics and nettings,
producing mosquito-free zones (Syafruddin et al. 2020). When repellents
are combined with an attractant, a push—pull system can be created that is
under investigation as a novel tool for malaria control (Menger et al. 2015,
Hiscox et al. 2019, Mmbando et al. 2019).

e  Genetic control: advanced technologies in molecular and cellular biology
have made it possible to identify and manipulate mosquito genes that regulate
specific traits of their biology (Adolfi and Lycett 2018). For example, genes that
regulate reproduction can be knocked out leading to sterilization of mosquito
populations. It is also possible to modify genes that increase susceptibility of
Plasmodium infections, thus rendering mosquito populations vulnerable and
unable to transmit the malaria parasite. A third genetic method relies on
introducing a gene that regulates host-seeking behaviour, so that mosquitoes
no longer recognize their preferred blood host. Some of these technologies
are in advanced stages of development, but some are also under strong ethical
scrutiny, meaning that these technologies should not be applied in the field
until proven safe and acceptable to society (James et al. 2018).

e Community engagement: for decades, malaria control was undertaken as
a vertically led programme, often run by national or regional public health
offices. Communities were generally ill-informed as it was thought that
any form of effective malaria control, conducted by the health office, was
acceptable because it would lead to less morbidity and fewer deaths, and
therefore was of unquestionable benefit to those communities. Public health
officials were often poorly trained in public information technologies, and
the community typically learned very little through their health centres
about how they could obtain malaria treatment and which vector control
tools would be applied. Communities were often not consulted beforehand
about their own wishes or needs.

Much has changed since insecticide-treated bed nets were introduced globally
(Nabarro 1999). Bed-net users needed to be instructed how to use the nets, and
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also how to care for their nets, with nets being especially needed for children
under five years old. Public information campaigns were organized, which led to
the awareness that involving the community in malaria control could be hugely
beneficial. Also, the advent of the internet, mobile phones and other tools of
communication have led to radical changes in the exchange of public health
information. Indeed, community engagement has become one of the four pillars
of the GVCR and no malaria intervention programme today can do without it
(Mutero et al. 2015, Oria et al. 2015, Gowelo et al. 2020).

Future trends and prospects

Malaria is a pernicious disease that can only be managed by integrating several
tools designed to kill the parasite in malaria patients, and by preventing new
infections by interrupting the transmission of Plasmodium parasites. As the
mosquito is responsible for malaria transmission (by biting twice!), mosquito
control or elimination remains central to any programme of malaria prevention
until a vaccine becomes available. As discussed, insecticide-impregnated bed
nets and indoor residual spraying combined with good disease diagnostics and
treatment are currently the best options for malaria control (WHO 2019). Great
efforts are being made to develop malaria vaccines (Wilson et al. 2019), but until
effective vaccines are widely available, our best options are to continue with
efforts of mosquito control combined with proper disease management (Ashley
et al. 2018). Rapidly advancing resistance against common malaria drugs is a
serious cause for concern (Menard and Dondorp 2017, Uwimana et al. 2020),
and illustrates the urgency of developing an effective vaccine.

The control of mosquito vectors remains a solid strategy for preventing
malaria. The insecticide-based methods are considered a temporary solution,
as the selective pressures caused by these insecticides on the target mosquito
population will inevitably result in new forms of genetic or behavioural resistance
(Hemingway 2018). It is now well accepted that Integrated Vector Management
should be the leading strategy for controlling malaria vectors, and this strategy is
emphasized in the Global Vector Control Response (WHO 2017). New in this
programme is the emphasis on, firstly, community engagement, to obtain better
support from the target communities and, secondly, monitoring and surveillance,
to better understand the dynamics and extent of malaria disease and its mosquito
vectors.

This chapter focuses on the mosquito vector, because of its central role in
the transmission of malaria parasites. In the opinion of the author, it is unlikely
that malaria vectors can be eliminated completely from a region or continent
because of their high resilience against interventions. It should be realized that
in all places where malaria has been successfully eliminated (Europe, North
America), the mosquito vectors are still around. Malaria vectors were combatted
to reach temporary low levels of population density so that the parasite reservoir
could be more easily cleared with case management. Similarly, in many cases
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today, it is feasible to reduce mosquito populations to such low densities that the
Plasmodium reservoir drops below a threshold and can be cleared from the human
population. In such areas, “anophelism without malaria” (Aitken et al. 1954), can
be the mainstay for many years, with active surveillance detecting the occasional
and accidental malaria reintroduction. In most malaria-endemic areas, however,
this total clearance of disease appears difficult, and the malaria control strategy
should be aiming for low levels of transmission, possibly with known hotspots
for targeted clearance, and adequate and effective public health teams for case
management and health information.

By selecting the correct tools from the available toolbox, malaria can be
controlled effectively. It is expected that further development of new tools may
lead to more effective management and control of malaria, possibly leading to
local elimination of the disease.

As this volume goes to press, the world has been deeply affected by the
emergence and impact of COVID-19. The resources for dealing with this
pandemic have had serious consequences for the control programmes of other
infectious diseases, in particular the neglected tropical diseases such as malaria.
Indeed, it was recently predicted that if malaria activities such as case management
and distribution of Long-Lasting Insecticide Nets (LLINs) is halted, the malaria
burden could more than double within one year (Sherrard-Smith et al. 2020).
As these malaria prevention activities are highly dependent on the availability of
scarce resources, this is one more reason to switch to a control programme that
is based on the IVM principle, which is more sustainable and makes malaria-
endemic countries less dependent on external resources.

Acknowledgements

I thank the stimulating discussions with Steve Lindsay and Ann Wilson, which
have greatly contributed to the thoughts and opinions expressed in this chapter.

Note

1 Many readers will recognize the RO from news about the COVID-19 pandemic;
however, it is important to realize that in many malaria endemic areas, RO is
frequently greater than 5, which allows for a very rapid spread of the disease, and
is proof of the difficulty faced by malaria control programmes, where RO must be
reduced to less than 1.
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LIVING WITH MOSQUITOES IN
DISEASE-FREE CONTEXTS

Attitudes and perceptions of
risk in English wetlands

Adriana Ford, Mary Gearey and Tim G. Acott

Mosquitoes are amongst a small coterie of insects whose mention within general
conversation provokes an instant reaction. Joining ticks, horseflies and midges,
mosquitoes conjure in the mind a time, a place, of interaction. Human and
mosquito lives are entwined. Most people can recollect mosquito encounters—
of high-pitched whines that prevent sleep, of walking through swarms on a
summer’s evening, of inflamed bites scratched until they bleed. Mosquitoes are
intrinsic to what cultural cartographer Rebecca Solnit (2010) describes as the
“living maps” of our perambulations through our lives and through places; an
unbidden fellow traveller whose companionship we never quite manage to shake
off, and whose presence appears at the most intimate of times.

Humans and wetlands have been interconnected across time, deep time.
Though deep time is a contentious term (Irvine 2014), we can say that over the
millennia, humanity’s dependence on wetlands for all aspects of survival is non-
contestable (Schmidt 2017). This is true even now, as wetlands across the globe
provide a range of ecosystem services which humans depend on, including food
provisioning in forms as diverse as agro-industrial rice production, cranberry har-
vesting, subsistence fishing, foraging and wildfowling. Human development is
closely linked with wetland environments, and this in turn has meant that humans
have sought to live alongside fellow wetland species—including mosquitoes.

This interspecies co-mingling as espoused by Haraway (2007) has not neces-
sarily prompted empathy with other forms of being. The progression towards
settled farming practices, from the Neolithic onwards, resculpted landscapes
anthropomorphically. Cleared forests, for example, have become over time the
sites of our present-day peatlands (Gearey et al. 2000). This is evident more
clearly in the ways in which wetland ecosystems have been adapted by humans
over time, particularly in the Global North, where draining wetlands to extend
agricultural land becomes, over time, closely tied with nation-building and forms
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of political economy (Gearey et al. 2020) and, by extension, colonialist projects
of empire building (Howell 2018). This encroachment of human activity upon
and within wetlands disrupted and altered human—mosquito relationships. Social
historians (Watts 2006, Cohen 1983) cite the development of drainage channels
as part of wetland co-option into agricultural artefacts as the driver of increased
incidences of malaria. These drainage channels provide emergent breeding
grounds for mosquitoes. More intensive forms of agriculture bring humans and
mosquitoes into closer proximity to enable vector transmission of the disease.

Malaria, once known as ague, was endemic in Britain from the fifteenth cen-
tury and was often associated with wetland areas as “marsh fevers,” attributed to
“the noxious vapours of stagnant marshes” (Dobson 1989: 3). In the first half of the
twentieth century, prominent scientists at the British Mosquito Control Institute on
Hayling Island, just off the south coast of England in Hampshire, facilitated research
and shaped public consciousness around the “gravity of the menace” of the British
mosquito (Hogarth 1928, Coates, this volume). However, with indigenous malaria
eradicated in the UK in the mid-twentieth century, local British attention to mos-
quitoes declined. Yet in the twenty-first century, with increasing global temperatures
facilitating the spread of mosquitoes and mosquito-borne diseases in other parts of
Europe (Semenza and Suk 2018), combined with tabloid headlines designed to pro-
voke fear and panic—"Horror as plague of killer mosquitos are headed to Britain
as fears ramp up over insects —mosquitoes, and their breeding grounds, may once
again be viewed with anxiety (Hudson 2019, also see Swain 2012, Daily Mail 2019).
Mosquitoes in Britain, of which there are 36 recorded native species, are monitored
by public health authorities such as Public Health England (e.g. Vaux and Medlock
2015, Public Health England 2017) and local district councils (see Dover District
Council 2020). Most of the native species in Britain do not transmit diseases, but
some species have transmission capability (e.g. West Nile virus by Culex mosquitoes,
and dengue and chikungunya by the invasive species Aedes albopictus). However, lit-
tle is known about the perceptions towards mosquitoes in countries such as the UK,
where mosquito-borne diseases are only a possible risk and not yet (or no longer)
a reality. Are mosquitoes on people’s consciousness as a native pest and cause for
concern, or do people live in relative harmony alongside them? Might perceptions
towards mosquitoes affect wetland management, restoration and creation, or are they
inconsequential when viewed alongside the multiple values, or perhaps other risks or
challenges, associated with wetlands?

Within a broader exploration of the values of English wetlands and the
management of mosquitoes in the interdisciplinary WetlandLIFE project, an
initiative of the Valuing Nature Programme of the UK Research Councils,
we relied upon the Community Voice Method (CVM) for filming inter-
views and making documentaries (Ranger et al. 2016), focusing especially on
human experiences and perceptions of mosquitoes. Fifty-six wetland users at
three sites of different English wetland typologies (Somerset Levels, Bedford
urban wetland parks and the Alkborough Flats), provided a snapshot into
experiences and perceptions of these notorious insects in a very local context
[see Box 9.1 and Figure 9.1].
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FIGURE 9.1 WetlandLIFE case study sites. Courtesy of WetlandLIFE, UK.

The interviews of farmers, reserve managers, volunteers, walkers, bird-
watchers, and other recreational wetland users and local residents, conducted
throughout 2018, were designed to capture people’s relationships with their local
wetland environments, to interrogate the ways in which their sense of place and
attendant health and well-being practices are produced and articulated within
these spaces, and to suggest implications these have for wetland management.
In this chapter, we present our findings from the mosquito-related dialogue, a
deliberate line of exploration, which helps us to understand how people experi-
ence living with mosquitoes in disease-free contexts such as the UK. Some of
these views are also captured in a short film, Mosquito & Me — a narrative on mos-
quitoes in English wetlands in 2018 (Ford, 2019b).
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BOX 9.1 ENGLISH WETLAND CASE STUDY SITES

Three case study sites in England were chosen for in-depth research in the
WetlandLIFE project, each representing one of three drivers for wetland expan-
sion identified in the “Wetland Vision for England” (Hulme 2008) — farmland
reversion, coastal realignment and urban wetlands. The ecological research in
WetlandLIFE also included a further nine study sites; over the course of the pro-
ject across the 12 sites, more than 39,000 adult mosquitoes, representing 19
British species, were collected and identified (Hawkes et al. in prep).

The Somerset Levels (South West England) was chosen as an example of
farmland reversion wetlands, as former peat-harvesting sites. The study
site consisted of two separate but neighbouring wetland nature reserves,
Shapwick Heath and Westhay Moor, which form part of an assembly of
wetlands known collectively as the Avalon Marshes. For the Community
Voice research, the broader landscape (the “moors” or “the Levels”),
which are prone to flooding, were also included. In the WetlandLIFE
ecological study, traps in this study site yielded the second-highest mos-
quito abundance (over 9,000 adult mosquitoes). This included nine spe-
cies, the majority (81%) were Aedes cantans/Aedes annulipes, which are
not considered disease vectors, but can be serious nuisance-biters for
mammals, including humans and livestock (Hawkes et al. in prep).
Alkborough Flats, in a rural part of North Lincolnshire (North East
England) on the southern side of the Humber Estuary, was chosen as a
coastal wetland. It is the site of one of the largest managed realignment
(MRA) schemes in Europe, which was aimed primarily at reducing flood
risk further inland. The site, which prior to the MRA scheme was low-
lying agricultural land, is now an established wetland nature reserve.
“The Flats” are overlooked by the small village of Alkborough. In the
ecological study, Alkborough Flats was the site of the single trap with
the greatest number of mosquitoes (11,228 mosquitoes), 92% of which
were the species Aedes caspius, which can be a severe nuisance-biter.
Anopheles claviger, a recognized malaria vector (although not historically
in Britain), was also present (Hawkes et al. in prep).

Two country parks with wetland habitats, located close to Bedford town
centre (East of England), were chosen as the location of urban wetland
research. There are few natural lakes in Bedfordshire and both the study
sites—Priory Country Park and Millennium Country Park—were created
from the former sites of industrial extraction of gravel and clay. Both
parks are managed for recreation, wildlife conservation, environmental
education and community participation, as well as cultural and heritage
value, and have high visitation. In the ecological study, the Bedford sites
had the greatest species richness, with 13 species present, but yielded
moderate to low numbers of adult mosquitoes (Hawkes et al. in prep).
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This following section explores what Mick Smith (2013) has described as the
relevance of post-humanist perspectives for uncovering the myriad ways that
humans and the-more-than-human collaborate together. These often low-vis-
ibility “ecological communities” provide ways to counter dominant extinction
narratives that view certain life forms as a pest and possibly a threat to human
health. One can consider the ways in which scientific funding has been provided
to try to eradicate those insects and animals seen as threats: termites, tsetse flies
and tape worms amongst others. Yet removing these creatures entirely from the
“web of life” (Moore 2015) may have untold long-term consequences for food
chains and ecosystems. In other words “staying with the trouble,” to reiterate
Haraway (2016), enables us to recognize that other forms of “being together”
may enable alternative sustainable futures. When we consider mosquitoes as
potential disease vectors, understanding how they are currently valued and fac-
tored into wetland ecosystems may help us all manage change in the future. To
understand mosquitoes as the “enemy” is to view ourselves within a framing in
which nature is a battlefield and humans are the conquerors. Posthumanism,
by contrast, seeks to recognize the fundamental connectivity of humans within
nature, and that our animal selves have always been connected in relationships
of kinship both with other animals and attendant environments. Malone (2019:
107) has described this connectivity as, “a recognition that we are animal, we are
nature, and we carry the ghostly tracings of our shared past.”

Human-mosquito interactions: interrogating the lived
experiences of interspecies co-mingling

Whilst ecological surveillance provides information on the status, distribution
and abundance of endemic mosquitoes, and identifies occurrences of invasive
species (Public Health England 2017), an analysis of the “lived experience” of
human—mosquito interactions, derived from the social sciences, provides insight
into what the presence of mosquitoes means to people. The experiences, or
encounters, people have with mosquitoes may influence their attitudes towards
perceived risks, and so possibly towards the habitats with which they are associ-
ated, such as wetlands, and how these habitats should be used or managed. As
a baseline for understanding how people are living with mosquitoes, one thus
needs knowledge of people’s experiences with mosquitoes. Do they see mosqui-
toes? Do they get bitten by them or experience other types of interactions with
them? Have such interactions changed over time?

As anticipated when considering various wetland sites, we found the extent
and frequency of human—mosquito interactions varied considerably across the
sites, individuals and time. In many cases, human—mosquito interactions were
not experienced at all in their local wetlands—mosquitoes were neither seen, nor
telt—particularly at the urban sites in Bedford. Some respondents said they had
never even thought about mosquitoes in the context of their local wetland site,
until participating in this study (we made clear that the sites were not chosen
because there is an exceptional mosquito problem!). Often though, mosquitoes
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were noticeably present, seen visibly (although people can mistake other insects
for mosquitoes)—sometimes just one or two, sometimes in swarms, and usually
in the summer months—and of course, sometimes the mosquitoes were felt.
And it was not just the human—mosquito interactions that were relevant; farm-
ers reported bothersome swarms, and biting, by mosquitoes, of their horses and
livestock.

Perception of change may influence perception of future risk; thus, if mos-
quito presence appears to be increasing, that may create or add to fears for the
future. We had no preconception about whether there may have been more,
less or the same current density of mosquitoes compared to the past in our
study sites, and most of our respondents could not identify or recollect any
patterns or changes in mosquito presence and density over time. There were
some exceptions though; for example an ornithologist in Bedford noted that
“they’ve declined quite a lot; there were quite big swarms of them 20 years ago

. which they’re not nows; it’s just the occasional one or two in comparison to
what they used to be” (Int. B10), and in Somerset a farmer noted: “I think we
are so close to open water and over the years, the 20 years that we’ve been here,
living as a couple here with our family, I would say that it has progressively,
year on year, got worse” (Int. S2). Some participants of the Alkborough site
emphasized that they had not seen a “before and after” change in mosquitoes
since the creation of the wetlands, although one farmer perceived there to be
more of them, and more vicious:

There are more. There are more. And I don’t know whether it’s just because
there are more, but they seem to be hungrier. If you're down there on the
wrong sort of day, it’s bad, and also the cows suffer far more with flies than
they did in the past. But it’s not an insurmountable problem.

(Int. A8)

These apparently inconsistent claims about mosquito numbers may seem
perplexing. One explanation is that mosquitoes can be misidentified, giving
rise to a perception of change that is not actually occurring. Another possibility
is that even at the same study site, there are diverse habitats and ways of
interacting with the wetlands that vary by location, time of day or duration.
The heterogeneity of mosquito habitats, and therefore their populations, can
create very localized experiences. Another explanation may lie in the context
within which insects, and particularly mosquitoes, are viewed in individual
cultural contexts. Attitudes and perceptions of risk are both culturally coded
and heuristically shaped. The ways in which we frame our “sense of place”
is a two-way dynamic between our lived experiences and the wider “meta-
narratives” of the contemporary social representations we are embedded
within, and then communicated through various forms of epistemological
knowledge dissemination, whether pedagogical, scientific, legal, medical or
cultural. Articulations of mosquito encounters, and perceptions of risk, then
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become something much more; they become articulations of a sense of place,
and of the actors’ own understanding of their contribution to world-making.
As we explore in the sections below, understanding these often contrary
articulations of perceptions of mosquitoes within English wetlands may be less
about differences in species and habitat across the wetland sites, and more about
which actors share sensibilities around their own senses of place within natural
settings.

To explore sensitivities to place and to the mosquitoes that inhabit them, the
next section reports on the ways in which study participants articulated their
experiences with mosquitoes. Even if some of the participants did not encounter
mosquitoes in their local wetlands, one can learn from those who do, allowing
us to identify three types of impacts associated with mosquitoes: health impacts,
the nuisance factor and behavioural adaptions.

Health impacts

As mosquitoes in the UK no longer transmit diseases to people, their effects on
human health is virtually absent when compared to countries that are rife with
mosquito-borne diseases. The only negative effects of mosquitoes in the UK stem
from their bites. Many of our participants had observed that some individuals are
more susceptible, and react more severely, to a mosquito bite, even if most agreed
that a mosquito bite was a trifling occurrence. There were some exceptions to
this generalization, the most notable being in Somerset, where a couple with
children on a small farm located near a wetland environment complained about
vicious mosquitoes. There, mosquitoes have led to skin reactions in one child
who required medical treatment:

One of them, from a very young age, whenever she was bitten, she has
eczema as well, and it just would exacerbate her eczema, and then she
would end up with very bad skin infections which most summers would
result in two or three courses of antibiotics. We’re just finding now that her
skin problems are still continuing, even though she’s at an age when really
she should be growing out of it, so that’s requiring some more significant
treatment now.

(Int. S2)

Another farmer at Somerset reiterated the severe reaction one might get from a
mosquito bite: “my whole hand swelled up didn’t it, for about three or four days.
I couldn’t do anything with it” (Int. S17). In the Alkborough site, one participant
living just above the Flats shared an even more serious story of biting mosquitoes,
albeit from 20 years ago:

There’s been rare mosquitos, when I lived in [the neighbouring village] Walcot
we all got bit one year and we had terrible reactions that sort of hospitalized
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alot of my friends. It was my 18th party, and they all got bit and they swelled
up really, really badly. Some had to go to A&E, some just went to the doctor’s
and got a prescription. Okay it was 20 years ago, but there was a really ... they
said there was a really bad batch so to speak that people had reacted.

(Int. A6)

Whilst other parts of Europe have seen a number of incidences of mosquito-
borne diseases that adversely affect human health (Semenza and Suk 2018),
there has not been a reported case of a mosquito disease infection in the UK
for decades. However, tick-borne Lyme disease is a recognized growing health
concern, debilitating its human host in episodic cycles over many years, serving
to diminish the concern over mosquitoes. The arthropodal enemy has appar-
ently shifted. Mosquito bites in the UK, even severe reactions to them, pale in
comparison with the threats carried by ticks, which lurk in grasses and attach to
our skin with neither whine nor flight to alert us to their presence. Returning
once again to Smith (2013), one must also consider the web of life’s connectiv-
ity to the tick’s survival, which like the mosquito, depends on the blood of a
host mammal or bird to provide the sustenance for its reproductive cycle. This
connects us again to the ecological community in which humans are enmeshed
with other species. A mosquito may be less enemy than co-respondent; to live
alongside one another may be to accept how each affects the other’s well-being.

The nuisance factor

Although mosquitoes may be perceived as an irritant in the UK rather than
something to be immediately feared, they are still considered a nuisance by many
of the respondents, and perhaps a blight to long English summers. Negative
human—mosquito interactions are easy to recall particularly by marring the
“rural idyll.” Here, human contentment rests with a natural setting, prompting
an idea of a wholesomeness and sense of well-being that can only be gained in
nature—even if this is illusory. Mosquitoes, along with such sensory irritants
as smelly slurry pits and obstructive electricity pylons, disrupt our imaginative
framing of what the countryside should look like and what we, as humans, should
experience. All of the disruptors can be classed as “nuisance factors.”

Even so, many participants reported that mosquitoes are not something they
have thought much about in a UK or local context. They gauge local mosquitoes
in comparison with other places where they have perceived a far worse experience,
particularly Scotland’s west coast or tropical countries. Another internal gauge is
their comparison of mosquitoes with more problematic creatures—particularly
midges, and horseflies—who may combine forces to disrupt a paradisiacal
weekend retreat. One respondent volunteered that:

Our worst experience of, I don’t know about mosquitoes, is the West Coast
of Scotland, isn’t it? The midges and stuff like that, and there are a few
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months in the year where I feel that we shouldn’t visit our relatives because
you just get bitten to death, in fact you can come home and you’re sort of
red. In Lincolnshire, the worst thing is youre in a wooded area, you get
horse flies and stuff don’t you?

(Int A1)

Another participant noted more graphically that in Scotland, “the mosquitoes
come attached with chainsaws” (Int. S11) (Figure 9.2 and 9.3).

The irritation and annoyance effected by mosquitoes, though not universal
amongst respondents, commonly elicited such terms such as “hate” and “death.”
Yet, as will be discussed further, these negative reactions place mosquitoes as free
agents who loom large in the imagination as foraging biters. The role of humans
in creating mosquito-friendly habitats was rarely mentioned in conversations:
nature as salve and nature as irritant reveals our complex positionality with our
other-than-human brethren. Wickson (2010) sums up a positivist approach to
human relationships with nature, declaring “Mosquitoes: just how much bio-
diversity does humanity need?” Whilst humans may remain centre stage as
administrators of life on the planet, there is less likely to be simple acceptance of

FIGURE 9.2 Estuarine flooded habitat for the Aedes caspius mosquito (an aggressive
human biter) at Alkborough Flats, a managed realignment site in North
Lincolnshire, UK. Photography by Frances Hawkes/ NRI.
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FIGURE 9.3 A wetland environment and mosquito habitat in the urban Bedford study site
in East of England, UK; 13 species of mosquito were found in WetlandLIFE
adult mosquito traps in Bedford. Photography by Frances Hawkes/ NRI.

mosquito—human interactions and instead there may be a move to enact change,
especially change which favours human benevolence.

Behavioural adaptations

Where mosquitoes are present and a nuisance, there are three main approaches
to dealing with them: ignoring them; managing their habitat and directly con-
trolling them; or adapting one’s behaviour accordingly. The last two methods,
of course, are not mutually exclusive, but from the individual’s perspective,
behavioural adaptations are more controllable than influencing a mosquito
management plan. Adaptations are dependent on the need and based on the
extent or expectation of the problem, along with the ability and willingness to
change. Many of our participants did not experience any mosquito interactions
at all, and so required no adaptations; but for those who did notice mosquitoes,
they reported taking many of the typical precautions. This included wearing
appropriate clothing (e.g. long sleeves or not using yellow), avoiding certain
places at certain times of day, using repellents and fires, consuming brew-
er’s yeast (for purportedly altering the taste of blood), and even, closing one’s
mouth to avoid accidentally ingesting them! One extreme adaptation, given its
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association with more tropical environments, was draping bed nets, which was
taken up by the family in Somerset referred to earlier:

Two of my younger sisters, they [the mosquitoes] just seem to really like
them; they have to sleep under mosquito nets because it’s that bad some of
the time, there is a lot of them down here.

(Int. S2)

People’s willingness and ability to adapt their behaviours are a vital part of
learning to live with mosquitoes, and in so doing, minimizing the loss of value
from the wetland environment—either by not enjoying it, or not being able to
carry out such typical activities as bird-watching, strolling, farming, etc.

For our participants whose work orleisure time involved long motionless periods
in the wetlands, including bat surveyors, ornithologists and wildlife photographers
whose patience is repaid with an intimate knowledge of the flora and fauna or
animal cosmologies, adapting to attendant mosquito environments is a pragmatic
choice for using these spaces. Risk plays less of a role here than general comfort,
and behavioural adaptations become a routine response to wetland conditions.
These practices are sometimes multifunctional: insect repellent combined with
sunscreen; longer sleeves to shield from sun and bug or the repellent actions of
nettles and brambles; hats to prevent glare when peering through binoculars or
camera lenses. The mosquitoes’ inclusion in the matrix of wetlands means that
preparations for visiting these areas become a ritual that adds to a person’s sense of
place: the insect repellent joins the thermos, the walking pole, the rucksack and
the journal with pens. These moments of preparation attend to Shamai’s (1991:
348) exploration of a sense of place as a processive collective that combines the
recalled, the imagined and the actual: “A place is never merely an object, but part
of a larger whole that is being felt through the “actual” experience of meaningful
events.” In this respect, the anticipation of a mosquito encounter is an accepted
aspect of immersion into that space, even (or perhaps, especially) if the respondent
finds it onerous or challenging. As Shamai explains,

the definition of a sense of place is: feelings, attitudes, and behaviour
toward a place which varies from person to person, and from one scale to
another (e.g. from home to country). Sense of place consists of knowledge,
belonging, attachment, and commitment to a place or part of it.

(Shamai 1991: 354)

It is this “commitment” to a particular place that comes through clearly in our
fieldwork. Our respondents’ lives are embedded within these wetlands through
their own volition. The attendant discomforts and “risks” of working within,
living alongside, or utilizing these wetlands are connected with each person’s
own criteria for the negative and positive aspects of these sites, with mosquitoes
occupying a shifting cost—benefit analysis as just one of many factors that must
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be contemplated. We realize then that human—mosquito interactions are embed-
ded within wider personal ontologies of being-in-the-world; our perceptions
are shaped both by expectation, constructed through cultural representations
and social norms, and by experiencing phenomena which either support or run
counter to these expectations. The Heideggerian encounter of “being-in-the-
world” is simultaneously lived phenomena and part imagination and interpreta-
tion (Zahorik and Jenison 1998).

Friend or foe? Perceptions of mosquitoes

We have focused so far on the “lived experience” with the mosquito, the
interactions people have with this insect and how they respond to these
encounters. Yet, people’s ability or willingness to live alongside mosquitoes
also depends on their broader views, their interests and values, and their
wider experience and understanding of mosquitoes in the world (Gearey
et al. 2020). We must also recognize the importance of companionship or
empathy that humans find with other animals, the “more-than-human”, as
an essential component of being human, and of making sense of the world.
As Carol Smart suggests (2011: 36):

The field of human-animal interactions alerts us ... to be attentive to non-
verbal communications and (to) forms of interaction not underscored by
talk. It is a sensory world and as such is also part of everyday life.

Such sensorial experiences of a closeness with the animal world (see Ford 2019a) have
been described in post-humanist philosophy as “the animal turn.” Here, the hierar-
chy between humans and animals is flattened, focusing instead on interconnectivity
and a web of life (Moore 2015) that depends on codependency. Specifically, we
sought to reveal people’s attitudes towards mosquitoes, linking them with broader
experiences, and asking specifically whether they could be “friend” or always “foe.”

Friend

Mosquitoes are normally dominated by negative connotations, as a nuisance
and as killers. But from the perspective of many of the people we interviewed,
“Could we or should we eliminate mosquitoes?” is a question that does not
concern them since they simply do not experience mosquito interactions in their
local wetlands. For those who do notice mosquitoes, they consider them mostly
as nuisance rather than health threat. Of these mosquito-sensitive people, many
have learned to live alongside the insects, adapting to them when using wet-
lands. Mosquitoes apparently occupy a fairly “neutral” role in the minds of many
wetland users. Still, one wonders if mosquitoes can ever be viewed positively,
as a “friend”? Our interviews revealed that, yes, the mosquito is indeed viewed
positively, especially for the role that it plays in ecosystems. One conservationist
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with a deep passion for birds declared, “I love mosquitoes! I’ll say it again, I love
mosquitoes!” (Int. B8). His message was simple: mosquitoes are an insect, and
insects provide food for birds; the more mosquitoes (and insects in general), the
more birds. Insect populations, generally, have been in global decline, with some
40% of species threatened with extinction (Sinchez-Bayo and Wyckhuys 2019),
and with the insect trend in the UK being no exception (Leather 2017). As the
conservationist explained “I’'m convinced that one of the biggest problems facing
... our bird life, certainly farmland birds and wetland birds, is the lack of insects”
(Int B8). The importance and decline of insects were mentioned by several oth-
ers, including a reserve manager:

I feel like even when I first moved here 30 years ago there were a lot more
insects in the area and there were a lot more mozzies and midges, I think.
I think we’re losing invertebrates massively ... I see them as a food source
for birds and amphibians, so a sort of source of life.

(Int S9)

Indeed, most participants across stakeholder groups acknowledged, or at least
assumed, that mosquitoes play a role in the functioning of ecosystems, particularly
as food for birds and bats. “It’s an inconvenience but everything has its place,”
noted a farmer, “and maybe without the mosquitos we wouldn’t have so many
swallows. So it’s swings and roundabouts” (Int. A8). “They’re a fact of life and to
be honest,” said a conservation volunteer, “they are probably the biggest factor in
the food chain; there are billions of them out there” (Int S11).

Another theme that emerged from the interviews was the rights of mosqui-
toes to exist as part of the ecosystem. “They’re just part of the wildlife. They’ve
got as much right to be here as anything else” (Int. B1). This is an ethical or
moral argument that involves animal intimacies, and decentring humans as
the central object of study. Anna Tsing’s declamation, “human nature is an
interspecies relationship,” is the foundation of much of the WetlandLIFE pro-
ject. Understanding and appreciating the close connectivity between humans,
other animals and wetlands enabled us to appreciate how these multi-species
spaces are the fabric of life on this planet. Many respondents considered mos-
quitoes integral to that fabric, part of the food web, or simply justifiable in
their own right.

Nor are viewpoints static, inert parts of our consciousness; people constantly
change their perceptions of things around them. In addition to the behavioural
adaptations to mosquitoes mentioned above, there are perceptual adaptations to
mosquitoes. Could we (or should we) change our perception of the mosquito
from foe to friend? One Somerset resident saw this as something he might strive
for: “I suppose if I was being consistent, I'd say I need to understand the sort of
beings of mosquitoes and why they’re there and cherish them, no doubt, but I
haven’t got to that stage yet! (Int. S1). Another Somerset resident adopted this
approach, seeking to “learn to love the mosquito,” as she says:
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One night I came out here and it was incredibly warm. It was a summer even-
ing and I bumped into a group of people, only one of whom I knew at the
time, a guy called Dave. He’s a chef and a fisherman and you get absolutely
plagued by mosquitos in the height of summer here and it can be pretty annoy-
ing. It was one of those nights, every single inch of the air was vibrating with
insects. Dave is a fisherman and was in absolute raptures about this and was
pointing out the swarms and he talked about the lifecycle of larvae and he
talked about the way that this was the basic food stuff of fish, so the beginning
of the whole food chain and how vital it was. It was fascinating and I thought
there’s no point in me carrying on being irritated with the mosquitos because
it’s not going to make them go away. So, if I can get a bit of Dave’s love for
them, perhaps it’ll help. So, yeah, I try to learn to love the mosquito and I did
find them significantly less troublesome after that

(Int. S5)

It seems that if people understand more about mosquitoes, their biology, and their
place in nature, then their attitude towards these creatures may even shift from tol-
eration to admiration. Indeed, a reserve manager in Bedford confessed to discovering
anew admiration: “I find them fascinating” (Int. B13). Or to quote one of England’s
early mosquito foes, A. Moore Hogarth (1928), “we may have to modify the popular
view of the mosquito as an entirely useless pest; indeed, as a subject for Nature study
the mosquito, especially the male mosquito, is a thing of beauty” (pp. 30-31).

Foe

Our responses to mosquitoes are greatly shaped by the dominant historical
and contemporary cultural representations we live amongst. The vast majority
of practices that surround navigating mosquitoes are built on narratives of
destruction, most particularly the need to obliterate this foe. Timothy Winegards’s
work Mosquito: A Human History of Our Deadliest Predator (2019) highlights all too
readily the contemporary, populist view of these animals as a merciless villain
to be annihilated. The mosquito’s label as an enemy of humankind took root in
the early 1900s, after Sir Ronald Ross revealed the link between mosquitoes and
malaria. Yet, beyond imported mosquito-borne diseases such as malaria carried
by soldiers returning from war, Britons have lived alongside mosquitoes without
the risk of contracting their diseases for over a century. Still, some Somerset
residents knew local stories of malaria, or “ague,” which they explicitly linked
to wetlands.

I've heard stories about mosquitoes. A local farmer tells me a story there
used to be some sort of fever here centuries ago, that people used to get a
fever and it was from the marshes, and he said it was probably caused by all
the mosquitoes. So, they’ve been here for a long time.

(Int. S19)



Living with mosquitoes 137

FIGURE 9.4 Dr Bracey, using a punt to visit patients in flooded moors of Somerset, circa
1913. Photograph courtesy of Hazel Hudson.

There were also rumours of a house in the Somerset moors, near Westhay
Reserve, that used to treat ague—"It was an ague fever house. That’s why the
corner was always called Ague House Corner” (Int. S20)—along with a doctor
who used to paddle across the marshes to treat those with the illness (Figure 9.4):

the local doctor would go out in his boat to them. If it was flooded, he had
a flat bottomed turf boat and he would punt out to them and treat them.
They lived upstairs if it was flooded. But I can’t remember ... yeah, there
were quite a few of them were suffering from this disease, whatever it was,
that they called malaria.

(Int. S10)

Yet despite this knowledge of indigenous malaria in Britain, there is not much
explicit anxiety linked to mosquitoes or wetlands. Instead, most fear of mosquitoes
stems from news about recent epidemics, global travel and climate change. Headlines
about the 2015-2016 Zika outbreak, particularly in South and North America, led
to heightened mosquito awareness. Although Zika’s responsible mosquito, Aedes
Egypti, does not live in the UK’s cooler climate, 314 cases were confirmed across the
country in those travelling from affected regions (Public Health England 2019). It is
therefore not surprising that some of the respondents did mention Zika, along with
the more familiar malaria, as a possible future risks for the UK:

I think the concern around mosquitoes is if they were here in great numbers
. we saw this horrible disease in places such as, parts of South America,
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in Brazil, I can’t remember the exact name, Zika, the Zika virus; if that
was to spread to Europe and then into the UK, that could have devastating
consequences really for us as humans.

(Int. B5)

And it is not just human diseases that are of concern when it comes to viewing
mosquitoes as foe. For farmers, and other respondents grazing Exmoor ponies,
they envisioned the primary diseases to be those confronting their domestic ani-
mals. Several references were made to Bluetongue, for example, a livestock dis-
ease vectored by midges. As a farmer near Alkborough explained,

I think as livestock farmers we’re always worried about any insect, particu-
larly if it’s coming on a wind source from Europe ... obviously we keep
having threats of bluetongue and other associated diseases—and so, yes,
there’s always a big worry with any specific insect

(Int. A9)

The connection between climate change and the northerly expansion of mosquito-
borne diseases, and human agency as cause of and responder to climate change, was
viewed by some respondents as additional justification for confronting the climate
crisis: “With climate change we know things like Zika virus have been moving ...
and it’s why we should all take climate change seriously and we should do something
about it” (Int. A12). The human role in spreading invasive mosquitoes (and the
diseases that they carry) were also mentioned with reference to international trans-
portation, and airports where “disease-ridden mosquitos would get a foothold” (Int.
B2). The now heightened awareness of the role of travel in spreading disease and
accelerating the COVID-19 pandemic will certainly heighten awareness, and indeed
anxiety, of human agency in future mosquito threats.

Searching for Mosquitopia in English wetlands

So then, is it possible, at least in English wetlands, to learn to live side-by-side
with mosquitoes without us killing them or them killing us? Or more specifically,
might perceptions toward mosquitoes affect wetland management, restoration
and creation? To provide an answer from an English perspective, realizing that
wetlands are currently disease-free, we must declare that people living in or near
these wetlands are already living in a form of Mosquitopia. Even if mosquitoes
once transmitted malaria across the British Isles, with some of today’s wetland
users familiar with past “marsh fevers” and “ague,” there are now many people
who live, work or recreate in the breeding grounds of several mosquito species—
coexisting with the mosquito “foe” through reluctant toleration, indifference or
even admiration. A species often portrayed as villain, or nuisance, has shown itself
to be an appreciated strand in the web of life, supporting a food chain that sustains
other, perhaps more charismatic species appreciated by people in wetland land-
scapes, some of which form the very reason people visit wetlands at all.



Living with mosquitoes 139

Yet the yin of mosquitoes cannot ignore the yang of mosquitoes when devel-
oping plans to manage, restore and create wetlands. Mosquitoes here do cause
severe nuisance in these wetlands even if they pose minor health threats, and so
require human adaptations to fend off the wetland cohabiters. Whilst not at the
forefront of people’s concerns, the perceived possibility of mosquitoes carrying
diseases to humans, or livestock, in the future, may modify the human—wet-
land—mosquito nexus. As Medlock and Vaux (2013) explain in the context of
newly created wetlands (as in Alkborourgh), there is a “need for a case-by-case
approach to design and management to mitigate mosquito or mosquito-borne
disease issues now and in the future.”

In 1928, A. Moore Hogarth wrote British Mosquitoes and How to Eliminate
Them. If we want to avoid contributing to the “extinction narrative” but instead
want to maintain a form of Mosquitopia, we need to prepare for a possible future
in which mosquitoes are more prevalent, or even carrying diseases—although
the actual risk in the UK is currently considered negligible. As one respondent
from Bedford put it,

I think every animal somewhere or insect has a role to play, I'm perhaps
not quite sure what their role in the ecosystem is, but I would assume that
we’d probably do more damage by trying to eradicate them, as opposed
to, by having them.

(Int. B5)

Through hearing the voices of those intimately connected to wetlands, we iden-
tified three key steps towards this goal. The first step, that of monitoring, is a
case of “know thy enemy”; or as conservation volunteer in Somerset conveyed:

Monitoring it helps. It helps know what species there are. It helps to know
what relative numbers there are so that if there are radical changes, and
those radical changes are likely to impact on other organisms, then I think
we need to know and make rational decisions about that.

(Int. S6)

The second step is to develop safe and effective management options, while
recognizing that a balance must be sought. In particular, chemical methods
of control may be viewed unfavourably, with more sympathetic management
options (such as wetland design and management) being preferable, as an angler
in Bedford, illustrated:

I am aware that some of the chemicals that have been used to destroy
mosquitoes really can do other damage so I would hope that there’s
research going on so if that were to be the case, then we’ve got a solution
in waiting.

(Int B15)
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The third step is education and adaptation. Should English mosquitoes carry
diseases in the future, a response might be developed by considering experiences
with Lyme disease, which is managed through education and awareness of
precautionary measures for avoiding and removing ticks. Indeed, many people
already adapt to nuisance mosquitoes, and would extend these adaptations should
the risk heighten:

I think you’d probably adapt to it because you’d find out what the risks
were and what you could do to control the risks to yourself, and you would
either dress or medicate accordingly, which is what we tend to do with
ticks ... you would find a way to adapt to be able to carry on doing what

you wanted to do.
(Int. A1)

Our respondents choose to live their lives embedded within these wetlands,
having formed meaningful and intimate connections with these landscapes,
developing senses of place and well-being, while confronting challenges that
arise. Wetlands and people have formed strong relationships. Some of these
places have always been wetlands; some were created over the last few thousand
years during the transition from nomadic to settled farming; a few have been
reclaimed more recently from coastal plains or constructed to replace other
kinds of landscapes. Despite their differences and similarities, their histories
recent and distant, wetlands are the setting for human—mosquito relationships.
Humans and mosquitoes continue to coexist; both have, so far, resisted extinc-
tion unlike so many other creatures on this planet. The fact that mosquitoes
still buzz demands a grudging respect for this most tenacious animal brethren.
Communicating widely their role as pollinators, as fodder and biomass for a
range of wetland creatures, whilst implementing sensitive management of their
habitats where they are or may become bothersome, will play an essential part
in developing a new, more intimate human—mosquito corps d corps.
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AWEWONDEREXCITEMENT

Kerry Morrison and Helmut Lemke

Little one

I hold my breath

So you can’t find me
He’s still breathing
Bite him

This is the story of two artists who set out to shift perceptions of the mosquito
from a nuisance and the spoiler of summer evenings to an arresting creature,
more breath-taking than blood-taking, and a creature worthy of the appreciation
of a public venturing out of doors.

This is a very northern and indeed very British story: from a country where
mosquitoes have not transferred deadly diseases to humans for a long, long time.

At the beginning of their story, before the artists began their wetland mosquito
quest, the artists’ understanding of mosquitoes was limited to being bitten,
itching, scratching and scorning the beast. However, both were experienced in
creating artwork in response to the natural environment, the more-than-human,
and human-and-nature interdependencies; and finding and conveying “beauty”
and value in the natural world where others saw “ugly” and “pest.” Yet, this
venture presented a new challenge, as never before had they championed wildlife
that bites, seemingly without provocation, and wildlife that is seen as a real threat
to human health.

The artists are Kerry Morrison and Helmut Lemke. This is their mosquito
story.

In 2017, we, as a collaborative partnership, were selected from an open call to
artists to be a part of the WetlandLIFE research project, a three-year, UK research
initiative within the Valuing Nature Programme' funded through UK Research
and Innovation. Bringing together an interdisciplinary team, WetlandLIFE set
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out to explore ecological, economic, social, and cultural values of wetlands in
England, exploring ecological connections and focusing on mosquitoes and
mosquito management—now and in the future, given climate change scenarios
of a wetter and warmer England. The research also explored the disvalue of
wetlands, specifically how these watery and buggy areas are negatively perceived
and how mosquitoes in particular are perceived and reported with disdain,
historically and currently.

To extend knowledge and understanding about wetlands and mosquitoes, the
research team launched an open call to artists. The description read:

Perceptions of wetlands vary considerably—from disease-ridden “swamps”
that should be drained for farmland or housing, to wildlife havens generat-
ing local employment and enjoyment for thousands of visitors. Meanwhile,
the mosquitoes that live in them are typically seen as a nuisance with no
useful purpose—few people champion them for their aesthetic or intrin-
sic value, and their contribution to the resilience of wetland ecosystems
remains largely unrecognized.

We are looking for artists whose work can contribute to our knowledge
and appreciation of wetlands and mosquitoes ... This might be done by
communicating the findings of researchers about wetlands and mosquitoes
to new audiences, challenging how we think about them, or changing how
we feel about them—perhaps helping us connect with them in new ways.

A challenging and very tall order. Nevertheless, we grew excited about the pros-
pect of exploring wetlands and mosquitoes, their aesthetic and intrinsic value,
and how we may perceive them. We were thrilled to be selected and itching to
begin on our journey of learning within the multidisciplinary research team of
entomologists, social scientists, human geographers, historians, natural capital
economists and artists (Figure 10.1).

The WetlandLIFE research project required the establishment of three,
in-depth, case study sites connected to wetland expansion. Three wetland
habitat types were selected and the research sites secured: farmland reversion
at Alkborough Flats, North Lincolnshire; coastal realignment at the Somerset
Levels; and urban wetlands at Priory Country Park and the Millennium Country
Park, Bedford.

We were then allocated Alkborough Flats, Priory Country Park and the
Millennium Country Park as our creative practice and research sites. The Somerset
Levels were allocated to a third commissioned artist: creative writer, Victoria
Lesley. (Sadly, part-way through the research project the ranger team at Priory
Country Park were made redundant due to government cuts. This resulted in us
not being able to continue with socially engaged work in Priory Park.)

As artists—not entomologists—we were starting from a position of knowing
almost nothing about mosquitoes, their habits or their anatomy, and found ourselves
on a dramatic learning curve, gorging on any informative publication we could
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FIGURE 10.1 “In the van a little one sleeps.” Drawing graphite and ink on paper by
Kerry Morrison.
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find about mosquitoes. The entomologists in the team helped us with our hunger
by feeding us germane publications. From the outset, we found a synergy between
our entomologist partners and ourselves; palpable in conversations was a passion and
shared love for the vilified in nature. They invited us on a site visit to one of the
reconnaissance research sites, the Kent Marshes, which enabled us to experience how
a mosquito expert reads the landscape, which is notably different to how many art-
ists read landscapes. Both artists and entomologists move through the landscape with
focused intent and although they eye the same subjects, the mosquito and the terrain,
their interpretation varies by discipline. The entomologist hones in on specifics of
habitat: where mosquitoes are likely to breed, feed and overwinter. The artist lets
their ears and eyes bask in the aesthetic whilst envisaging an array of interventions
and expositions. This detail of difference reveals how our professional disciplines
guide our research and interpretations of landscape and emphasizes the strengths of
a multidisciplinary team. If we wish to capture and make greater sense of a natural
setting, more than one perspective is required. Our journey of learning also took
us into the laboratory where we experienced cutting-edge mosquito research. We
observed acoustic research tracking mating patterns and sounds. We experienced
how mosquitoes are bred and supported in an artificial setting, which included the
human feeding of adult females (Figures 10.2— Figures 10.3)

These background experiences were crucial to our understanding of the sub-
ject, the mosquito, and our understanding of a scientist’s connection to their
research and its subject. Through this initial step, our perception of the mosquito
shifted: from a nuisance that is a potential threat to human health, to an insect
that is integral to a functioning ecosystem, which includes many other species
dependent upon the mosquito eggs, larvae and adults as food sources. More than
that, we were amazed to discover that mosquitoes follow an intricate mating
ritual, which involves males singing and dancing in murmurations to attract
females. Only when a male and female harmonize with the beats of their wings
do they mate. We had come to realize that the mosquito is a highly developed
and successful insect that imbues awe.

We were in AWE
A = appreciation W = wonder E = excitement
We were inspired.

With a deeper understanding of mosquitoes and our new-found awe and wonder
of this creature, we then designed our field research, which we framed around
the question of how contemporary art practice can reorient the value of these
landscapes and its vilified insect inhabitants. We aimed to (re)present a wetland
nature aesthetic that intrigues and allures new audiences, and conserves and pro-
tects the seemingly ugly—which we know has ecological value and provides
ecosystem services.? Aesthetics is often equated to beauty. Yet, when it comes
to the health of an ecosystem, its beauty—or ugliness—would seem irrelevant.
Irrespective of aesthetics, ecosystems can provide multifarious health and well-
being benefits. Yet, the value of nature and the cultural services it provides may
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FIGURE 10.2 “Itching for Understanding” mosquito. Drawing by Kerry Morrison.

FIGURE 10.3 Map illustrating Wetland Life Research Sites. Drawing by Helmut Lemke.
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be heavily dependent on aesthetics. So we asked: how do we shift the perception
of a disease-ridden “swamp” to a landscape permeated with value and therefore
with beauty? Having examined mosquitoes in more detail, we had discovered
their tangible beauty: the iridescent streaks at 10X magnification, the harmonic
buzzing when amplified, the murmuration choreography of mating males. In
exploring the physical landscape of two urban wetlands and a farmland reverted
to wetland, we aimed to discover which other layers of beauty emanated from
these habitats Figures 10.4, 10.5 and 10.6.

Inspired with awe and sparkling with new mosquito insights, we set about our
artistic investigations—art practice research—at Alkborough Flats, Priory Park
and Millennium Park with the aim to:

e Immerse ourselves in the landscape.

e  Explore the patterns that connect the mosquito to our enjoyment of wetland
habitats.

e  Converse with people we met about “this” wetland and its wildlife inclusive
of mosquitoes.

e Illuminate what is beautiful about mosquitoes.

e Highlight the role and benefits of mosquitoes within the delicate web of
interdependence in wetland ecosystems.

e  Create new artwork to challenge how we think about mosquitoes and wet-
lands, thereby raising awareness and understanding towards the hopes that
we can shift how we feel about mosquitoes emotionally, aesthetically, eco-
logically and socially.

e Create new conversations about the values and meanings of wetlands and
mosquitoes for repositioning the vilified mosquito.

Our on-site interventions began through a process of art whereby art is a verb:
the action of doing. Art as verb, as action, moves away from the idea of art as
noun and object on display, as we most often experience in art galleries. Instead,
art happens beyond traditional art venues and moves into everyday places or
specific locations whereby the art can connect to everyday life (human and non-
human) and the lived experiences of that location. This social practice, which is
also conversational, engages people and addresses issues directly relevant to their
lives. This is not a new concept, but one that has been evolving since the late
1960s with the rise of Happenings, community art and the feminist art move-
ment. In the UK, artist (and co-founder of the Artist Placement Group) John
Latham argued that artists with an understanding of art as process, who work
across disciplines, are skilled in “imaginative and durational thinking, that can
produce a transformation in the viewer’s consciousness of the world” (Latham, in
Kester, 2004, p. 62).° In creating art as process, out in wetlands, we were creat-
ing a more social art that invites interaction: art that is ecologically and socially
engaged. Our social and ecological approach creates a situation where people can
talk, be listened to, and reason and learn together. It enables a situation where
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FIGURE 10.4 Mosquito eggs, Greenwich University. Alternatively, through the artists’ lens:
objet trouvé mosquito filter drawing. By Kerry Morrison and Helmut Lemke.

FIGURE 10.5 Alkborough Flats“Reeds and Wind.” Ink on paper. Drawing by Helmut Lemke.

FIGURE 10.6 “Kerry and the Art Cart.” Drawing on Alkborough Flats, 2018. Photograph
by Kerry Morrison and Helmut Lemke.
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we can pass on the knowledge we have gained about mosquitoes and wetlands
as a result of being part of the WetlandLIFE interdisciplinary research team.
Furthermore, our understanding of the world of wetlands increases and becomes
informed by voices that exist outside of academia and the art world. This way
of working is exhilarating and humbling. It is ever fresh and enlightening, and
often yields the unexpected (Figures 10.7, 10.8 and 10.9).

We therefore created a mobile unit as our studio on wheels, the repository
for our equipment and resources, our shelter, our desk, our hub, our wetland
art cart.

Through creating a visual spectacle—a performative happening*—we made
visible what we do as artists: data collection, sound recording, drawing, photo-
graphing, mapping, creative writing. Our approach, which is both performative
and socially engaging, raised curiosity, sparking conversations with visitors about
wetland life and valuing nature, inclusive of mosquitoes. With our art cart, we
immersed ourselves in each of the three wetland landscapes, deepening our con-
nectedness to wetland habitats and wildlife, learning about other’s connectedness
to “this” wetland and expanding our understanding of wetland aesthetics: the
smells, the sounds, the views, the tactility. We observed movements and stillness,
human life, more than human life, patterns created by nature, patterns that con-
nect us (Figures 10.10 and 10.11).

We engaged in on-site conversations with stakeholders, visitors and locals.
We documented and recorded sights, sounds, movements, patterns and conver-
sations. Our process of performative patterns, action and dialogue resulted in
new, shared experiences and unfolding narratives. We imaged ways of integrat-
ing these experiences and narratives with the wider WetlandLIFE research. The
artist’s rendition alone cannot convey the whole wetland ecosystem. The artist
can frame the chaotic and soggy and sometimes seemingly hostile in ways that
reimagine the subject and re-present a challenging landscape or species wrapped
up in the presentation of the artwork. However, if we want to have a holistic
or a panoramic view of wetlands, inclusive of mosquitoes, an interdisciplinary
approach is required and research needs to be integrated. Within WetlandLIFE
we were part of a multidisciplinary team. The team approach was interdiscipli-
nary, whereby we extended thinking beyond our single disciplinary boundary
to share and gather methodologies, findings and knowledge. Together, com-
bined knowledge, combined experiences, and combining research, creates a
holistic view of wetlands and their Nested Ecosystem Services,’ inclusive of
non-material value. Mindful that the WetlandLIFE project had been commis-
sioned by UK Research and Innovation with typical outputs being academic
papers and therefore not readily accessible to non-academics, we wanted to
return to the wetlands to convey this much bigger, much richer, much deeper
interdisciplinary picture of wetland life to visitors and stakeholders. We aimed
to create a mechanism, through art, that could bring together the WetlandLIFE
research into one interactive and public hub. We wanted to create a bridge, or
a conduit, between the academic, the art and the everyday. Our desire was to
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FIGURE 10.7 WoW Wetlands on Wheels. On site, Millennium Park, Bedford. Photograph
by Kerry Morrison and Helmut Lemke.

FIGURE 10.8 Kerry inside WoW just before visitors arrive. Photograph by Kerry
Morrison and Helmut Lemke.

FIGURE 10.9 The kitchen, left intact so that refreshments could be offered to visitors in
WetlandLIFE mosquito food-chain mugs. Photograph by Kerry Morrison
and Helmut Lemke.
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FIGURE 10.10 Display cabinet for small and fragile artefacts and curiosities, including
the objet trouvé mosquito filter drawing. Photograph by Kerry Morrison
and Helmut Lemke.

FIGURE 10.11 The wet laboratory: a mini research lab with mosquito and wetland insect
specimens, microscope, mosquito research papers, entomological diagrams
of mosquitoes and the sound of mosquitoes buzzing. Photograph by
Kerry Morrison and Helmut Lemke.
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make accessible the breadth of WetlandLIFE research to a broader and more
diverse audience, thereby devilifying the mosquito and demystifying wetland
ecosystems.

We imagined WoW—Wetlands on Wheels—as an immersive micro experi-
ence to facilitate the appreciation, wonder and excitement, or awe, of wetlands
and mosquitoes.

WoW: a touring site-specific micro studio/lab/gallery of WetlandLIFE
research. WoW: an immersive micro experience. WoW: a participatory space for
conversations and exchange about wetlands and wetland research that offers visi-
tors new ways of seeing and connecting to mosquitoes and wetland ecosystems.
WoW: a repurposed vintage caravan (Figures 10.12 and 10.13).

Every part of the exterior and the interior of WoW conveyed elements of the
WetlandLIFE research.

Almost all team members (Tim Acott, Frances Hawkes, Anil Graves, Joe
Morris, Peter Coates, Mary Geary, Victoria Leslie, Jolyon Medlock and Lionel
Feugere) participated in the creation of WoW, sharing elements of their research
for the WoW experience. Tea-towels were printed with the Nested Ecosystem
Service diagram; a screen displayed wetland photographs; the walls were covered
with economic valuation diagrams and equations, entomological illustrations,
historic newspaper cuttings about mosquitoes, maps and poetry.

Integral to our artwork is participation and creating opportunities for people
to engage. Through headphones, visitors to WoW could listen to underwater
wetland sounds, mosquitoes buzzing and harmonizing, and excerpts from a short
story by Victoria Lesley.

In July of 2019, WoW toured to Millennium Park. Our presence, and the
presence of others, within the exposition animated WoW and transformed it
into a live and interactive experience. WoW came alive and was filled with, and
surrounded by, wetland life exchanges.

Every day, for 14 days, we interacted with WoW visitors and also offered
“Itching for Understanding” workshops led by us with sound recording and
nature drawing; Dr Frances Hawkes, a mosquito behavioural entomolo-
gist who took visitors on mosquito safaris; and Professor Joe Morris and Dr
Sharanya Basu Roy, Ecosystem Service and Natural Capital economists, who
offered a wetland ecosystem valuation walk and a natural capital talk with tea
and biscuits. These workshops gave the visiting public insights into creative
approaches and wetland academic research happening in their park (Figures
10.14, 10.15 and 10.16).

WoW was far more than a static spectacle and repository of research; it was a
place of interaction, engagement, activity, learning and conversations facilitated
through social engagement and workshop activities. Encounters ranged from
brief exchanges to in-depth conversations. As visitors learned about mosquitoes,
we learned about their connectedness to “this” wetland. A regular visitor who
came to see us daily at Millennium Park once worked at this site before it was a
wetland. He has witnessed the landscape change over the decades, from a brick
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FIGURE 10.12 Sound station and reference library. Photograph by Kerry Morrison and
Helmut Lemke.

FIGURE 10.13 Mesmerized by mosquito sounds. Photograph by Kerry Morrison and
Helmut Lemke.
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FIGURE 10.14 Helmut talking to WoW visitors at Millennium Park, Bedford, summer
2019. Photograph by Kerry Morrison and Helmut Lemke.

FIGURE 10.15 Mosquito safari around the Millennium Park, Bedford, led by Dr Frances
Hawkes. Photograph by Kerry Morrison and Helmut Lemke.

FIGURE 10.16 Mosquito Larvae ‘wriggler’. Drawn by a young person on the mosquito
safari and gifted to Kerry and Helmut.
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factory, to a post-industrial wasteland site, to wetland reclamation. With awe
and wonder he watched nature and wildlife taking root and flourishing where
there were once furnaces, brick-dust, clay and pits. Now retired, his daily con-
stitutional, whatever the weather, is a walk through the wetland nature reserve.
He’d never given much thought to the mosquitoes before we arrived: they were
just there. But learning about their behaviour and experiencing the mosquito
safari with Dr Hawkes shifted his perception about mosquitoes. Before we left
Millennium Park he told us he would champion the mosquito and tell people how
important they are for wetlands. He was not a lone convert; others who engaged,
also commented that their perceptions of mosquitoes and attitude towards them
had shifted. No longer would they see mosquitoes as pests, but as integral parts
of the landscape and ecosystem. For some, there was no getting away from the
fact that the mosquito is a biting, bloodsucking nuisance. However, learning
about their behaviour enlightened them on how to avoid being bitten, whilst still
enjoying the wetland. One visitor admitted that she avoids wetlands and only
comes to Millennium Park because they have a café. Learning about mosquito
behaviour offered her windows of opportunity to explore the wetlands, oppor-
tunities that she was now keen to take. Learning in a novel way that mosquitoes
are not omnipresent, learning that only females bite, learning that females only
feed on blood during breeding, combined with learning about the wetland food
web, shifted perceptions and increased appreciation, not only of mosquitoes, but
also of wetlands (Figures 10.17).

WoW’s second tour was to Alkborough Flats, North Lincolnshire. This
winter exposition from January to February, 2020, ran concurrently with
“Reclaiming Wetland Values: Marsh, Mud and Wonder”,® an exhibition at
the Royal Geographic Society, London, which brought together two Valuing
Nature wetland research projects: WetlandLIFE and Coast Web.” WoW
became an outpost to the exhibition in London, livestreaming wetland sights,
sounds and encounters, along with our creative endeavours, which included
writing and performing songs and poems, drawing, and performances out on
the Flats.

Alkborough Flats is a very different wetland than Millennium Park. The lat-
ter was created for wildlife and for visitors, and includes a car-park, children’s
play area, café, shop and bike hire, as well as offering nature and conservation
workshops and talks for children and adults. Millennium Park offers a full family
excursion. In contrast, Alkborough Flats offers very few facilities. It is a farmland
conversion on the Humber Estuary. It floods. The tenant farmers have adapted
and now farm sheep and rare cattle breeds, as part of a small rural community.
The Flats, open to the public, house three bird hides and no amenities. But, there
are birds in abundance here, which attract plentiful birders from far and wide.
These differences make for a very different site, with very different visitors. The
heart of winter is perhaps not the ideal time to engage with wetland tourists
about mosquitoes, since there are no mosquitoes around. However, winter is
a magical time to spend in any wetland: a low sun shining through the amber
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FIGURE 10.17 “Alkborough Flats.” Untitled drawing. Charcoal and graphite on paper
by Helmut Lemke.
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reeds, a stillness of the air on a frosty morning, cold biting at your cheeks, frozen
ripples at the base of reed stalks, and certainly the migrating visitors, winter wad-
ers and native marsh birds.

We pitched up next to the entrance gate and connected to London and the rest
of the team through Skype. This way, The Royal Geographic Society London
exhibition and audience were in Alkborough Flats, and the WoW visitors, and
the Flats, were in London.

Due to the cold, much of our time was spent in WoW. When we were not
in WoW we were out on the Flats, livestreaming our wetland walks and sights
from the bird hides; talking to people we met; and performing in nature (Figures
10.18, 10.19 and 10.20).

When in WoW, we invited visitors to come in out of the cold wind for a cup
of tea with biscuits and a chat about bird life, the beauty of wetlands, the value of
wetlands and the role mosquitoes play in the complexity of wetland ecosystems.
The birders we engaged with were already aware of the importance of mosqui-
toes. They added to our wetland experience by sharing their knowledge of birds
and wildlife photography. Their dedication to capturing the perfect shot of a bird
was impressive, as was their knowledge of the environment: they knew where
to perch and wait for the perfect shots. The locals we met, mainly dog walkers
from the village, knew less about the site’s ecology and wildlife. Their connect-
edness to the Flats was more experiential: a great place to walk, feel the fresh air
on your face and hear the wind through the reeds. Although a wetland is about
ecology, it is also about how we move through and experience the more-than-
human, regardless of knowing the names of species or the mechanics of nature.
And, at certain times of the year, as we move through wetlands there are critters
that annoy us and reduce the pleasure of our experience. What we discovered,
when speaking to those who love wetlands for their aesthetics and their cultural
rewards, was that the sharing of what we knew about mosquitoes shifted their
perceptions. In leaning about the interdependencies of a wetland system, and
the role that mosquitoes (and other insects) play, visitors’ attitudes towards them
relaxed.

All of this time, our presence in WoW and on Alkborough Flats was live
broadcast to the exhibition in London. Museum-goers there were able to engage
with us or simply observe two artists, nearing the end of their story, writ-
ing, drawing, performing, recording and conversing all things—wetlands and
mosquitoes.

“Itching for Understanding—WoW” is an artwork that could not have existed
without teamwork, collaboration and audience participation. It was a transdisci-
plinary ecological artwork, which brought together science, humanities, art and
economics and in doing so created a novel space for knowledge exchange: a space
that was inviting, lyrical and fun. Perhaps, when it comes to nature appreciation,
value, and de-vilification, it is less about research dissemination, and more about
how we disseminate research.
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FIGURE 10.18 WoW at Alkborough Flats. January 2020. Photograph by Kerry Morrison
and Helmut Lemke.

FIGURE 10.19 “Bitter cold outside, cosy warm inside.” Drawing and livestreaming to
London, the Royal Geographic Society exhibition: “Reclaiming Wetland
Values: Marsh, Mud and Wonder”. Photograph by Kerry Morrison and
Helmut Lemke.

FIGURE 10.20 Reed performance. Kerry Morrison and Helmut Lemke, World Wetland
Day 2020. Still video shot. Photograph by Kerry Morrison and Helmut

Lemke.
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ENACTING POLITICS
WITH MOSQUITOES

Beyond eradication and control

Jean Segata

It was 2016. I was researching public health policy for dengue fever among
mosquito workers in Brazil’s coastal city of Natal. But there were more diseases
there than just dengue. It was also the time of Zika and chikungunya, and that
early fall, locals were also sharing pictures of dead monkeys. On WhatsApp
and Facebook, news was spreading as quickly as the viruses. Many people were
confused. They talked about yellow fever too, and truths about all these diseases
were mixed with half-truths.’

Little monkeys lived in the parks, stealing the tourists’ food and posing for
selfies with them. The precise number of monkey deaths was unknown, and
workers could not reach a consensus about precise numbers. On social media,
people spoke of more than 100 deaths; Lucas, a young mosquito worker, spoke
of 40; and Carlos said there are only a half dozen. Lucas warned us that the
monkeys’ deaths were probably caused by yellow fever, but Carlos cautiously
disagreed, saying he would rather wait for new tests being carried out at the
Evandro Chagas Institute in Belém do Pari, a leading research centre since
the days of the Rockefeller Foundation in Brazil. Local health officials had
technologies to monitor mosquitoes and ill people, but it had no means by which
to map yellow fever’s virus. Amid uncertainties, I asked them, “Is there yellow
fever here?” Both looked at each other, and Carlos replied:

We have no budget for yellow fever, and I don’t even know if we could
deal with a new epidemic. We've already had a lot of trouble with dengue,
Zika and chikungunya—so yellow fever too? We must tweak the numbers.
There is the tourism; there are vaccines. We have to think about everything.
Let me explain: we’ll develop a project to request funding to make the
epidemic, and send it to the Ministry [of Health]. In the report we’ll put
in some pictures of monkeys and show their tests, and explain the troubles
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we’ve been having with mosquitoes. And let’s hope they approve it. So, we
will install the epidemic, you understand? If we are then rolling in money,
we’ll have a yellow fever epidemic, and whatever else you want ... But
I don’t know. The summer is over and the mosquitoes didn’t help us. I
hardly saw any. And now, with all this trouble in Brasilia, I don’t know ...
Maybe the epidemic will happen only next year or never. No one knows.

(Carlos, mosquito worker. Natal, February 2016)

I did not know what to say when I heard that answer. Carlos knew what he was
talking about. In Natal, the battle against dengue was already permanent, having
constituted a state of emergency for at least 30 years. Mosquitoes shaped all those
diseases, and Carlos had made his career confronting all of them (Segata 2017,
2019). Local newspapers would refute rumours of yellow fever with claims that
it was all fake news. But a few months later, dead monkeys were reported in
Minas Gerais, Sio Paulo, Rio de Janeiro and Bahia as well. Trying to downplay
the problem, the authorities said it was a kind of jungle yellow fever. But in the
spring of 2017 people began to die across the country. Many wondered whether
the disease was returning.

This chapter explores human—mosquito relations in the context of public
health policies for epidemics: some of these relations are complex and go beyond
the simple eradication or control of mosquito populations. Although such control
programmes are being updated with new epidemiological knowledge, there are
recalcitrant political frameworks that must be considered. Efforts to eradicate
or control mosquito epidemics cost lives and bring suffering since people and
mosquitoes alike resist top-down political machinations. Relations between
humans and this insect go beyond eradication and control, producing complex
political encounters and negotiations.

The first part of this chapter summarizes two different experiences from
fieldwork in Natal and Porto Alegre, Brazil, highlighting the use of new digital
and health technologies in monitoring and controlling mosquitoes as well as the
people living with them. For more than a century, the Aedes aegypti mosquito was
known as one of the main vectors of such diseases as yellow fever, dengue and
more recently Zika and chikungunya. The mosquito’s worldwide distribution
puts it at the crossroads of global health science, politics and capitalism. Aedes
aegypti is the harbinger of epidemic risk, in all its aspects. Not only do viruses
travel with it, but knowledge, technology and material opportunities travel along
as well: from international parameters defined by experts in the World Health
Organization, to those who offer new perceptions of nature, or else represent
financial interests of chemical industry shareholders at the World Bank. Local
programmes for mosquito control have therefore been aligned with the interests
of global health and its political connections to security. But things do not always
work as imagined. The following descriptions show how fragile these local
projects are and demonstrate ways such projects leak into global technologies
and institutions.
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The second part of this chapter explores ambivalences between new
epidemiological knowledge supported by digital-biological technologies and old
epidemiological knowledge represented by the framework that organizes policies
of mosquito epidemics. In recent decades, epidemics have been straining global
health guidelines, which have increasingly invested in predictive technologies
over preventive medicine, in a broader set of so-called preparedness and response
policies (Collier & Lakoff 2008, Reis-Castro & Heidrickx 2013, MacPhail
2014, Nading 2014, Caduff 2015, Lakoff 2017, Keck 2020). The maxim of this
understanding can be summed up in the idea that it is no longer a question of
whether a pandemic is going to happen or not. The experts predict pandemics will
happen, and the question is then to know when and whether we shall be prepared
for them. However, it is also necessary to realize that the focus of these policies
is not new, especially in the context of mosquito epidemics. For this reason, I
take up how current ethnographic situations can be compared to their historical
counterparts, to show how certain “preparedness and response” mechanisms are
actually militarized mosquito-centric approaches that preserve social inequality.
Nonetheless, some new technologies facilitate human—mosquito interactions and
help the people involved to construct a common political infrastructure.?

My goal in this chapter is to show that since colonial times, the project of
hiding tropical epidemics has largely been a broad machination of government.
This works through a tropical unconsciousness. When risks and uncertainties
are enacted, new discourses, institutions and technologies are then triggered in
attempts to contain them. Mosquito eradication and control programmes serve
to control and repress the lives of those they mean to save. In the end, people and
mosquitoes are resistant to these top-down political pressures. Both are unruly.
Both are beyond control.

Natal and the digital mosquitoes

“Here, everything is digital, even mosquitoes,” said Lucas about the new
approach to monitoring dengue epidemics in Natal, named vigi@dengue. Using
traps scattered throughout the city and having an “at” in its name, this digital
tracking system aimed to produce a high-tech update on local public health
policy (Natal 2015).

Entomological data from the traps is combined with epidemiological data
provided by the local healthcare system, detailing the exact location of people
either sick with dengue or suspect of being infected by the virus. Cross-checking
the locations of notified patients and mosquito eggs found in the traps indicates
virtual territories of risk on the city map.

Coloured circles that vary from white to red according to the “danger,”
highlight potential areas of risk. The epidemic risk is an imaginary value
calculated by the virtual presence of mosquitoes and sick people in the same space.
Red circles are designated as “combat zones,” in which mosquito workers are
supposed to take a series of measures required by the Ministry of Health (Brasil
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2005, 2009). These measures include using pesticides to combat mosquitoes
inside houses and other private properties. Aedes aegypti is the enemy; workers
must visit all residences, check for breeding places, and eliminate them (Segata
2016a, 2016b, 2017).

Public health policymakers used to say that with technology, one can run
but never hide: for them, vigi@dengue creates a sense of omnipresence and
effectiveness. Indeed, technocratic fantasies about real-time monitoring have
recently become a trend in epidemic surveillance systems (Caduff 2014a, 2014b,
2015, Lakoff 2015, 2017, MacPhail 2014). New digital technologies promote
trust in more precise identification of risks and their control. The problem is that
humans and mosquitoes do not always behave like binary codes.

The vigi@dengue was inaugurated in late 2015. Local newspapers praised
the programme, heralding that the city was finally armed against the mosquito.
The programme managers were already talking about delegations of politicians
coming from other cities and districts interested in learning about it. Some of the
mosquito workers, however, were less enthusiastic. Indeed, the project had some
problems. They usually complained that “working with mosquitoes is not easy.”

The first problem is that vigi@dengue’s software receives inconsistent data,
caused mainly by under-reporting of disease cases. Since access to medical services
may be difficult in Brazil (Biehl et al. 2012, Biehl 2013), many ill people in Natal
did not even bother to seek professional medical treatment, complaining about
delays in care and the lack of proper care. Instead of waiting in long lines at the
hospitals, they went directly to pharmacies. When someone caught dengue, Zika
or chikungunya, the common treatment was simply to stay home, drink more
water and treat symptoms such as temperature and pain with home remedies.
Such patients went “under the radar” of the health system, and their cases were
not included in the data.

A second problem is the weak correlation between infections data and mosquito
data. Most of the information comes from the perspective of entomology
overestimating the presence of mosquitoes. Epidemiological data considers
patients’ home addresses, but people can be bitten anytime and everywhere,
whether at work, while commuting, or at leisure time (Segata 2017, 2019). The
“enemy’” does not always live in one’s backyard.

A third problem is that the number of mosquitoes is estimated according
to the quantity of eggs found. The number of eggs, in turn, is figured out by
the surface these occupy on the trap, since mosquito eggs are too small to be
numbered. As Lucas says, “you must have a manha,” with manha being slang for
a kind of skill acquired in daily experience. “Mosquito eggs look like ground
coffee,” he said. “You only give a peek, and kick a number.” Official reports
constantly claim that 90% of eggs are those of Aedes aegypti, although this is not
tested. Additionally, eggs are not checked for the presence of viruses. All such
estimates are built on the assumption that the presence of mosquitoes in a certain
area is sufficient to explain the incidence of the disease. The keyword in this
game is probability—what philosopher Ian Hacking (2002) defined as a kind of
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“guide to life” which never freed itself from subjective functions of interpretation
and belief. Probability is not a method, but is aimed at a goal, supported by
the empowerment of numbers. Similarly, entomological data derived from the
vigi@dengue’s algorithm came from a mix of practice, sensitivity, popular
mathematics and haste. Sometimes, the accuracy of computational calculation
must count on luck (Segata 2017).

Prophets of Porto Alegre

It was Friday and everything seemed calm in the Vectors and Rodents Office of
the Porto Alegre Department of Health. As we were talking about the unstable
weather, the low number of mosquitoes and the uncertainty about renewing
the contract with the company conducting mosquito DNA tests, the phone
rang. Ligia answered, and after listening silently for a while she pulled out the
computer screen to check some maps. Following a short conversation, she hung
up the phone and explained that people were calling to report mosquitoes in
their vicinity.

People find mosquitoes in their house or on a nearby street and complain.
But we know something about mosquitoes, and monitor everything ...
In the past, people were moving from door to door applying poison and
killing mosquitoes wherever they could find them, but now we try to find
out if they are dangerous or not ... So you don’t need to worry: if they
don’t carry a virus, they don’t have a disease. Most mosquitoes are healthy.
We have to learn to live with them, not all of them are bad.
(Ligia, Public Policy Manager, Municipal Health
Department. Porto Alegre, April 2017)

“Creating a new concept is part of the job,” Ligia said, ending the conversation
by complaining that “working with people is not easy.” She argued that people
assume that mosquitoes are not monitored nor does the department know which
ones are infected. The popular belief was that the authorities were lying, and that
nobody cares about their complaints.

Public authorities use modern technologies in Porto Alegre as well, but there
they use traps to catch adult mosquitoes for DNA mapping rather than relying on
eggs (Vargas 2018, Segata 2018a). More than 1,200 traps are set and geolocated,
each carrying a QR code to identify it (Figure 11.1). Mosquitoes caught in
them are mailed on a weekly basis to Belo Horizonte, as each mosquito sample
corresponds to a specific trap. Their DNA is sequenced using PCR (polymerase
chain reaction) technology, and when a virus is detected, the laboratory in Belo
Horizonte warns the Department of Health in Porto Alegre. This data enables
the Department of Health to locate infected areas (Figure 11.2a, Figure 11.2b).

The Department of Health operates a website called “Onde estd o Aedes?”
(Where 1s the Aedes?), which provides maps with information about the presence
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FIGURE 11.1 Mosquito workers planning an intervention in Porto Alegre, May 2018.
Photograph by Jean Segata.

FIGURE 11.2A Inspecting a mosquito trap in Porto Alegre, May 2018. Photograph by
Jean Segata.

of mosquitoes and viruses: Zika, dengue, chikungunya and, recently, yellow
fever as well. In addition, the website presents tables and graphs with information
about the origins of the virus in various locations: when it appeared, and whether
humans were infected, or just mosquitoes. “The mosquito is our partner,” Ligia
told me. “People must learn to live with them. You can see on the map, our
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mosquitoes are healthy and they help us fight the virus,” Ligia explained: in
Porto Alegre, the mosquito was even deemed a sort of prophet, by providing a
set of indices that may predict epidemics.

Using mosquitoes to predict epidemics reflects a recent trend in science that
relies on plants and animals to be sentinels for supporting biosecurity policies
(Keck 2009, 2020, Lakoff 2015, 2017). Reports of sick monkeys, observations
of behavioural changes in birds, reports of problems with plants and marine
creatures—all serve as indicators of possible epidemics, environmental disasters or
climatic changes. Of course, the illnesses of human beings also provide warning
signs: avian and swine flu, mad cow disease, pneumonic plague, Leishmaniasis
and problems with so-called invasive species—all these issues determine the
shape of the political, moral and epistemological debates that involve animals,
human health, their infrastructures and environments (Caduff 2014a, Keck
2010, Nading 2014). Keeping such issues in mind, social anthropologists have
developed the idea of “multispecies ethnography” with the aim of placing at the
centre of attention those creatures that were formerly maintained at the margins
(Kirksey & Helmreich 2010, Tsing 2012). As a result, “animals, plants, fungi and
microbes once confined in anthropological accounts to the realm of zoe or ‘bare
life'—that which is killable—have started to appear alongside humans in the
realm of bios, with legibly biographical and political lives (Kirksey & Helmreich 2010:
545-546, emphasis mine). Thus, next to Lévi-Strauss’s encyclopaedic animals
are “good to think” and Marvin Harris’s materialistic animals are “good to eat,”
we now have the opportunity to take lessons from Donna Haraway’s (2007)
suggestion that “animals are good for living together.” Porto Alegre mosquitoes
have been converted into co-workers helping health authorities to find viruses.
Taking them seriously can be very useful in studying humans in society.

Despite such developments in human—animal relations, the government’s new
digital tools of epidemic intelligence still operate in the same top-down tradition
that hierarchizes knowledge and practices. They are derived from applied
science, and form a type of laboratorial experiment spread across the world
(Segata 2018b). Professional decisions about public health are guided largely by
theoretical and methodological choices rooted in techno-scientific assumptions
than by rich analyses of individual environments, indigenous knowledge, local
practices and tried-and-tested experiences. The most affected populations are
often not part of public policy-making, but rather mandatory partners in their
implementation. Digitalization and geneticization lead to molecularizing and
squelching of relations (Rabinow 1996, Fischer 2003, Rose 2013). In Natal and
Porto Alegre alike, digital logic—based on DNA scans and binary codes—shapes
the devices meant to define relations between humans, mosquitoes and their
environments (Segata 2018a).

It should be noted, finally, that technologies serve to separate people from
people, but they also separate people from other beings, artefacts and moral
regimes. As Antina von Schnitzer (2013) argues, practices go beyond specific
projects and therefore must be made sensitive to the political and creative sides of
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technologies. I first heard about the “Onde esta o Aedes?” website when I went
to live in Porto Alegre in 2016. When searching for an apartment there, I was
told by a real estate broker that the Moinhos de Vento neighbourhood would be
a good choice. At his office, the broker turned to his laptop, and pointing to the
government map said: “Look on the screen, here you're going be free of mos-
quitoes. It’s always green.” The small inconsistency, though, is that no traps are
set in Moinhos de Vento. Both in Porto Alegre and Natal, traps are not placed in
prosperous neighbourhoods. Authorities do indeed find mosquitoes, but exactly
where they want to find them: among poor people.

Recalcitrance, uncertainties and futures

“You gotta find the enemy before it finds you,” Ligia told me in an effort to
justify her software, data-mining systems and PCR budget. “You must always
be prepared ... As long as there are mosquitoes, there will be new biosecurity
products.” What she said reinforces the impression that biosecurity emerges as a
global project for converting public health into a security issue. The merging of
health and safety and the scaling up of the production of biosecurity goods and
services has often been justified by a flexible idea of globalization: presumably, the
expanding production of animal and vegetable products and their international
trade—together with the global circulation of human beings—necessitate it,
with modern microbiology facilitating it. This explanation, however, is not the
whole story, and other explanations come to mind.

For Stephen Collier (2011), there is a tendency to transfer public health to a
state of mind that almost disappeared at the end of the Cold War. This tendency to
conflate safety with health was enhanced during the emergence of influenza in the
early twentieth century, especially avian and swine flus, but also Ebola and more
recently Zika and the COVID-19 pandemic. The global economy’s vulnerability
to terrorism materialized not only in the 2001 attack on the Twin Towers, but also
in the bioterrorism manifested in anthrax letters dispatched the same year. Spurred
on by speeches promising catastrophes, these events revived an imagery of threats
ranging from nuclear bombs to mutant and antibiotic-resistant superbugs or deadly
strains of a sleeping virus able to cross oceans on commercial aircraft (Caduff
2014a). Biosecurity launched a variety of messages: in Europe, the term became
linked to food security and the handling of agricultural and livestock products;
in Australia, biosecurity signified reducing negative effects of invasive species;
and in the United States, the term addressed dangers of human contamination by
biological agents, whether from zoonotic diseases or the pathogens of bioterror-
ism (Bingham & Hinchlifte 2008). Biosecurity policies and practices are typically
woven within local contexts, although they almost always import problems and
solutions from the Global North to the Global South. In the end, events described
as threats on a global scale have mobilized new economies of risk, prevention and
response to epidemics. Biosecurity is the buzzword that health capitalism uses to
fuse health and security into a single commodity (Segata 2020).
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The Aedes aegypti mosquito is one of the most sophisticated technologies
created by tropical medicine since it causes epidemics (Benchimol 2001, 2011,
Segata 2018a). For more than 100 years, this mosquito has been widely known to
transmit the viruses of yellow fever and dengue, and more recently those of chi-
kungunya and Zika. This little insect has subsequently become part of the infra-
structure of science and health policies (Lowy 2006, Segata 2018a): although the
diseases are quite different, they are all shaped by mosquitoes; accordingly, most
public health policies surrounding these diseases rely on the monolithic method
of killing mosquitoes with pesticides (Augusto et al. 1998). Mosquito-centrism is
the principal symptom of our health policies. It is as persistent as the militariza-
tion of those policies.

The discovery of the mosquito’s role as a disease vector went hand in hand
with the beginning of US interventions in Latin America. The movement for
the independence of Cuba and the construction of the Panama Canal provide
two examples: in both cases, yellow fever began killing people. So, when
General William Gorgas took action against the disease, the mosquito became
an enemy and the war against it began: enemies and warfare, but also territories,
campaigns, mapping, control, combat and struggle (Espinosa 2009, Lowy 2006,
2017, McNeill 2010, Stepan 2011). Military semantics were everywhere, and
they were especially prevalent when the Rockefeller Foundation led the great
campaign against yellow fever in Latin America from the 1920s to the 1950s,
with the secret weapon unveiled as DDT. It sought to “kill the enemy before it
killed us.” Rockefeller Foundation experts established an international standard
known as the “mosquito index” which measured the effectiveness of health
programmes based on the link between mosquito habitats and human habits.
Based on this logic, efficient mosquito control involved surveillance and joint
control of humans, the insects that preyed upon them, and the territories they
both shared (Lowy 1990, 1996, 1999, 2006, Segata 2017).

In the lexicon of an epidemic, the virus is an “invisible enemy,” a “terrorist”
that must be “fought.” In arming themselves to defeat this microscopic enemy,
epidemiologists must turn on the vector, for it has wings and can be neutralized
with the push of a spray nozzle. The mosquito therefore becomes enemy number
one, because it can be attacked. The metric tons of poison, the heaps of dead
animals, the transformed environments are the war-torn landscapes of an
extended mosquito battle, still not won.

This imagery is even older. Before the mosquito, theories of miasmas and
contagion supported hygienist policies in Latin America and the Caribbean. In
Rio de Janeiro, sanitary policies led to the destruction of cortigos, or dense hous-
ing developments: poor and black people were persecuted and expelled from
city centres under the accusation that they were dirty and dangerous (Figure
11.3a, Figure 11.3b). Pasteurian theories led Oswaldo Cruz and his colleagues to
force vaccinations on the population and invade private homes to apply pesticides
(Benchimol 1992, 2001, 2003, Chalhoub 1993, 2013). Social politics reinforced
microbial politics: as humans, their bodies and territories came to be controlled
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FIGURE 11.3A Caricature of Oswaldo Cruz “cleaning up” the Morro da Favela (Rio
de Janeiro) published in Jornal O Malho, 8 June 1907.The criticism was
that sanitary policies classified poor people and microbes as threats to the
development of the nation. Unknown author.

by the state at the end of nineteenth century; microbes revealed by Pasteur would
also come under state control. Hygienists and government employees established
standards for what they believed to be “pure” social relations, that is, relations
that would not be derailed by microbial eruptions, relations that could be pre-
dicted, and therefore rationally ordered (Paxson 2008).

The point is that despite DNA and new digital technologies, policies act in
the same exclusionary manner as they did a century ago. Geolocation of breed-
ing sites supports the maintenance and the production of distorted moralities
and heightened inequalities (Segata 2016a, 2016b). In Natal, the lack of running
water in poor neighbourhoods means that people must store water in buckets,
where mosquitoes lay eggs. But referring only to the presence of mosquitoes
takes an infrastructural issue and renders it an issue of personal responsibility
amongst the poor. I found that during my fieldwork, personal responsibility for
mosquitoes caused tense situations in which declarations about “the neighbour’s
mosquitoes” or “people with the red spot” became accusatory categories. Living
in a red-designated area is an accusation of being dirty—and hence having both
one’s physical property and social status devalued.
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FIGURE 11.3B Current situation in low-income communities in Brazil. Area with
mosquito breeding spots in Porto Alegre, May 2018. Photograph by Jean
Segata.

The outcome is that the mere act of control or testing of a house for mosqui-
toes is conceived as a threat. As Lucas once said,

You must go from door to door and hunt the mosquito, but people don’t
like it ... They become furious because they think we’re accusing them
of being the “owners of the mosquito.” They’re just living their lives,
and we’re just doing our mission, but people think we’re persecuting
them because they might be dirty and guilty. It’s not true, but I don’t get
involved: I don’t want to take a bullet—something which has happened.
(Lucas, mosquito worker. Natal, November 2015)

In Natal, simply receiving a visit makes one into a “polluter,” meaning that
this person is the reason others get sick. As Lucas mentioned, conflicts are
common, including violence against health agents (Segata 2017). Moreover,
the virtual software makes the actual suffering invisible. The software never
touches the ground and requires no physical protection, while the workers do.
All the workers I lived with in Natal had already fallen ill with dengue, Zika
or chikungunya. They were not given repellent, appropriate clothing, even
sunscreen, and the poisons they used were also handled without gloves (Segata
2018b).
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FIGURE 11.4 Doing fieldwork among mosquito workers. Porto Alegre, May—June 2018.
Photograph by Jean Segata.

In Porto Alegre, the government has implemented one of the most innova-
tive public policies in Brazil by controlling disease through sequencing mosquito
DNA. The technology is enchanting, but it contrasts dramatically with the fact
that in one of the Brazilian cities with the highest per capita income, 44% of the
population still do not have basic sanitation (Segata 2018b). Porto Alegre uses
PCR for identifying mosquitoes, but lacks the most basic infrastructure of sealed
and separated pipes for carrying drinking water and sewage. Although mosquito
traps here are placed only in poor areas, some of the people who get sick live in
wealthy neighbourhoods. Ashamed of getting “a poor person’s disease,” these
dengue victims often hide being sick (Figure 11.4).

The other health workers in Porto Alegre that help locate viruses are the mos-
quitoes. Their terms of work are harsh: after all, some of them get caught in traps,
and if they’re found alive, they are usually crushed with the tip of a toothpick, intu-
bated, and centrifuged in a laboratory to finish their careers as “genetic material”
on a microscope slide. Sentient as they may be, mosquitoes nonetheless become
a killable otherness. They do not receive the same respect as dogs suffering from
Leishmaniasis, whose conviviality and contagion mobilize broad efforts of care
and moral debate (Lewgoy et al. 2020). Mosquitoes are hardly animate creatures,
and certainly not “persons” like dogs. They don’t even have a face, as Lévinas
(1984) might point out—and therefore they do not deserve moral consideration.

But mosquitoes are resistant. They are like the mushrooms that Anna Tsing
describes in her travels: unruly (Tsing 2005, 2012). They remind us that we are
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not always in control. When one considers the yellow fever that killed Europeans
who reached the warm sands of Latin America and the Caribbean, one realizes
that mosquitoes were the first anti-colonialists (McNeill 2010). They resisted
America’s whitening, as well as the pesticide industry and global health impe-
rialism. They always come back—even if it may take a while—and they make
policy managers a little worried when they do not reappear immediately. Too
much or too little rain may destroy their eggs, for example. Carlos complained
about this when I asked him about yellow fever in Natal: “The mosquitoes were
not collaborating that year,” he explained. The epidemic investigation might fail.
Sometimes mosquitoes are not very skilled with politics.

A lack of mosquitoes seems like a good sign, except for the mosquito workers
and professional politicians. These both need the “mosquito’s salary” to live, and
without mosquitoes, budgets are not renewed. Beyond any dreams of control
or eradication, health authorities must convince the federal government that
mosquitoes still pose a threat. There is a political calculation to be made, and that
is why computer models use historical information to predict future scenarios.
A virtual catastrophe of an uncertain tomorrow, based on data from the past,
justifies the costs and the structures of the present. The “struggle” is not about
prevention, but about production and action on what is uncertain, always ready
to get out of control. Uncertainty has become a subject of its own in global
health policy. “Being alert and prepared” is a condition of suspending the present
to create “the promise of infrastructure” (Appel et al. 2018). Such infrastructure
produces expectations, allocates life—and in my case—offers false certainties in
the form of digital technologies and genetic codes.

Conclusions

Beyond declarations of control and eradication, human—mosquito relations
in Brazil are manifested in politics. New technologies and practices support a
complex space of power. DNA and algorithms work on the same mathematical
principle, and both may be expressed digitally: software or combinations of
acids and proteins inscribe realities supported by confidence in computational
calculation and in the universal materiality of biology. Although the world is not
digital, our modern way of managing it has become so. Yet we cannot confuse
genetic and computational modelling with life itself.

Digital life technologies are integral to new global infrastructures of health
capitalism, manifested in information packages such as those used in Natal and
Porto Alegre. At the beginning of the twentieth century, the internationalization
of public health was based on technologies aimed at killing microbes; today,
it is time to sell powerful global programmes aimed at managing local public
policies. The goal for public health is still the same: surveillance and control of
populations and territories. Now, however, the interest shifts from preventing
widespread risk to “predicting enacted threats.” These associated intelligences
do not prevent epidemics from happening, but they do predict a future for which
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we must prepare. A large task of health workers is to produce data to feed to
predictive technologies, rather than acting on concrete problems of the present.
As Gerda Reith (2004) explains, risk helps us to colonize the future—with
ongoing anti-mosquito policies depending precisely on this. The problem is that
for all of this to function, “everyone must do their part,” including, of course,
people, but also mosquitoes, epidemiology, entomology, algorithms and viruses.
As my colleague Carlos once concluded,

"mosquitoes are a gold mine and each epidemic is a blank check. But they

have to be more discreet and collaborate with us: if we show up too much,

we must kill them; but if they are eradicated, the money won’t come”.
(Carlos, mosquito worker. Natal, November 2015)

A lot of information has been produced by the intel of these new epidemics:
maps, indexes, historical series, data sets that promise predictive ability and best
response. But when monkeys started to die in Natal, mosquito workers did not
know if yellow fever was coming back. The time of the disease did not coincide
with the time of information, much less with that of bureaucracy. Digitalized
and prophet mosquitoes are not always able to foresee new epidemics. They
nonetheless help in predicting budgets that support the continuity of the few
public health policies. In the right quantities, they are good partners.

Notes

1 This chapter is based on a talk presented at the Princeton University in December
2018. I am grateful to Jodo Biehl for the invitation, and to Alex Nading and
Amy Moran-Thomas for comments during the writing. I am also grateful to
Jessica Leinaweaver for the support and favourable environment for teaching
and research during my stay at the Center for Latin American and Caribbean
Studies at Brown University, and to Andrea Mastrangelo at the Centro Nacional
de Diagndstico e Investigacién en Endemoepidemias — CeNDIE of the Ministry
of Health, Argentina. The research was supported with grants from CNPq (The
Brazilian National Council for Scientific and Technological Development)
and from CONICET (National Scientific and Technical Research Council of
Argentina). An earlier version of this chapter was published in Spanish in the
Colombian Journal Tabula Rasa (Segata 2019).

2 In this context, an important guide to my work is the intersection of ideas as “architec-
tures of domestication” in David Andersons et al.s (2017), also the idea of “infrastructure”
as used by Susan Star (1999) and Bryan Larkin (2013) and of the “ontological politics”
of Annemarie Mol (1999). Infrastructure refers to a subtle apparatus of governmentality
that includes artefacts, institutions, discourses and knowledge (Star 1999). The elements
that form these apparatuses cannot be reduced to a type of neutral stage where science
and politics take place—before this, an infrastructure is also political (and makes politics).
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ERADICATION AGAINST
AMBIVALENCE

Alex Nading

The problem with eradication is that it is an all-or-nothing affair, and the
problem with all-or-nothing affairs is that they lead to impoverished thought.

Here is what I mean. When the French structuralist Claude Levi-Strauss
famously wrote that animals are “good to think,” he meant that we need animals,
in all their categorical diversity—the domesticated, the companionate, the
hunted, the sacrificial—in order to make sense of the world (Levi-Strauss 1963,
89). What follows is not, Reader be assured, a structuralist argument against
eradication, but it does seem worth noting that the value of human action is more
accurately measured by asking what humans do with the world than what they do
fo the world (see e.g. Haraway 2008; Beisel 2010).

One less species walking, swimming or buzzing around the Earth is one less
species to “think.” With just one less species to think—no matter how unsavoury
or dangerous or repulsive that creature may be—humans will be left with fewer
political, social and ethical possibilities. Reflecting on my own ethnographic
work around mosquitoes, I want to make the case that thought—compound,
distributed, interspecies, ecological thought—has public health value. Such
thought is anathema to all-or-nothing certainty (Morton 2010). Looking
across a variety of mosquito-borne disease control projects, I submit that killing
mosquitoes is good for public health not because of the certainty of thought it
evinces in humans but because of the ambivalence it produces.

Before moving any further with that provocation, let me clarify that species
eradication 1s categorically different from disease eradication. There is a fundamental
distinction between the social and cultural categories of illness (the experience of
ill health) and disease (the pathology that occasions that experience). For example,
just a few years ago, the world became briefly consumed with the spread of the
mosquito-borne Zika virus, but as long-term anthropological work with Zika-
affected families has shown, the illness was anything but indiscriminate. Poor
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Black women and children in Brazil fared far worse than others, both during
the epidemic and in the years that followed (Diniz 2017). Zika infection causes
a range of long-term complications in children born to infected mothers, and
while the cost of confronting the epidemic in its acute phase was high, research
with affected families in Brazil’s northeast reveals how parents of children born
with congenital Zika syndrome (CZS) continue to struggle to marshal resources
to care for their loved ones (Williamson 2020). A similarly uneven pattern of
both morbidity and social suffering emerged for COVID-19, a disease whose
eradication seems too far off to contemplate just now. In the United States, data
on the race or ethnicity of people with cases of coronavirus show that the rate of
death among Black Americans is three times the rate among whites.'

Although viruses, arguably, are not species, animal vectors are. Mosquitoes,
the most prominent among such vectors, are not charismatic. They occupy an
unusually negative niche in the human imagination, just about everywhere. That
said, mosquitoes are fascinating creatures, and the ones that transmit diseases
among humans are uniquely adapted to the environments humans occupy or
build, from rivers to sewers, savannahs to garbage dumps.

What kind of a thought, then, is the thought of eradication? How might it
differ, for example, from the thought of extinction? In the popular imagination,
the current era of extinction, known as the Sixth Extinction, is frequently
understood as a tragic side effect of human—nonhuman encounters: the collateral
damage of mass human migration, fossil-fuel burning and logging (Kolbert
2014). Extinction is presented as the practical consequence of human action, less
as a thought than as an afterthought. As Thom Van Dooren explains, the purpose
of hunting passenger pigeons was not to eradicate them from the Earth, but by
1914, the last passenger pigeon had died (Van Dooren 2014). There are interesting
evolutionary biological arguments about the precise mechanism that led to that
particular extinction, but it did become a touchstone in nascent conservation
and environmental movements. The ethical question that energized those early
movements, and which continues to drive many varieties of environmentalism
today, concerns what to do about the human capacity to destroy ecosystems,
species by species, and how that capacity might be curtailed in the name of
sustainability and even health.

If extinction is a side effect and eradication is a purposive endeavour, then it
is only the intentionality of the act of killing that seems to distinguish eradica-
tion from extinction. Alternatively, we might say that the difference has less to
do with what the killer intends than with how the killer reacts. Many humans
have reacted to extinction with a combination of horror and sadness—or at
least a degree of wistfulness. The human agents of eradication, on the other
hand, tend to look on their works with a troubling sense of triumphalism
(Stepan 2011).

But neither the mourning that follows extinction nor the anticipatory
triumph of eradication are innocent. As Juno Salazar Parrefas (2018, 12)
describes, anti-extinction activists view their efforts to save threatened species
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in decidedly “moral,” if mostly secular, terms. A veritable cottage industry of
conservation tourism has grown up around efforts to protect endangered oran-
gutans, whales and turtles. Tourists are drawn to exotic locales to participate
in conservation because they feel compelled to take responsibility for the harm
done to these creatures by extractive industries such as logging or drilling. To
an extent, they recognize that the agent of extinction is not humanity writ
large, but a particular historical slice of it.

Meanwhile, attempts to eradicate so-called invasive plants and animals
(including some mosquito vectors) may hinge on a kind of eco-moralism. In
the interest of keeping ecosystems “pristine,” or of maintaining landscapes in a
form that reflects a valued historical heritage, environmentalists in the United
States, for example, have convinced state and federal governments to essentially
criminalize the propagation of nutria, Asian carp, kudzu and fire ants. That US
environmentalist anxieties about invasive species have arisen alongside right-
wing anxieties about the racial and ethnic purity of European and American
states is, as Hugh Raffles (2011) argues, more than a historical accident. The
landscapes supposedly threatened by invasives are not, of course, “pristine.”
They are products of white-settler colonialism and the attempted eradication
of indigenous people. As Frances Roberts-Gregory (2020) has written, draw-
ing on her environmental research and activism in Southeast Louisiana, spaces
of conservation in the United States remain explicitly and implicitly coded as
white spaces.

Attempts to both stave off the tragedy of extinction and achieve the triumph
of eradication are products of a white, Western and enduringly colonial atti-
tude to the non-human world, in which experts of a certain colour and gender
style themselves as the stewards of nature.? Such attitudes, to paraphrase Parrefias
again, too often cast blame for biological crisis on the very people who interact
most intimately with—who often have cultivated a capacity to think with—inva-
sive or threatened species (Parrefias 2018, 13). Thinking with leads to a renewed
appreciation not only of the uniqueness of particular creatures but also of the
richness of the ecologies humans and other species create together (see Beisel and
Wergin this volume).’

Aedes Aegypti, for example

The species of mosquito that has buzzed around much of my anthropological
research, Aedes aegypti, is a creature whose existence and form as seen from the
vantage of evolution looks rather indistinguishable from its existence and form
as seen from the vantage of human history. Ae. Aegypti is best known as the vec-
tor for urban yellow fever, dengue and Zika viruses, but its status as an arbovi-
rus vector par excellence is intimately tied to its envelopment in historical events
caused and shaped by humans. Human settlement, traffic in enslaved people,
wars and colonial trade and agriculture acted as evolutionary drivers in this mos-
quito’s story.
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The dengue virus probably originated in Southeast Asia as a “sylvatic” patho-
gen circulated among primates by Ae. albopictus mosquitoes. As human settle-
ments encroached on the forest, peri-sylvatic transmission, in which humans
could acquire the virus from apes but weren’t particularly good at passing it to
one another, became more common. Cases of dengue in humans were probably
isolated, rarely resulting in widespread transmission (Gubler and Kuno 1997).
Meanwhile, in eastern Africa another peri-sylvatic mosquito, Ae. aegypti, slowly
began to change its habits, settling in villages and towns and feeding exclusively
on humans. Trade in and out of Southeast Asia brought more people to ports,
and as the region urbanized, Ae. aegypti thrived. As it turned out, the African Ae.
aegypti was a highly competent carrier of Southeast Asian dengue—even more
competent than its cousin Ae. albopictus. As people moved from place to place,
Ae. aegypti moved, too. Already accustomed to laying eggs in gourds and ceramic
bowls, it travelled along caravans and trade routes, stowing away on slave ships,
drifting to the Indies, back to Africa, and eventually over to the Americas (Endy
et al. 2010). By the mid-eighteenth century, at the height of the slave trade, den-
gue epidemics were occurring regularly in port cities around the world (Slosek
1986).

Through the nineteenth and early twentieth centuries, dengue remained a
relatively minor epidemiological problem. World War Two was a watershed
moment. The Pacific theatre was the site of road building, airstrip construction
and shipping. The bombing and clear-cutting of Southeast Asian landscapes
permitted mosquitoes and viral strains to spread as never before. Then, in the
years after the war, there was a massive campaign against malaria, yellow fever
and dengue mosquitoes, with the insecticide DDT as its centrepiece. That
campaign showed some success for a certain period of time. By 1970, the wonder
chemical had helped eradicate Ae. aegypti from most of the Western Hemisphere.
It took just 20 years, however, for the mosquito to return. This return coincided
with the era’s structural adjustment policies. Implemented at the urging of the
World Bank and the International Monetary Fund, structural adjustment policies
gutted spending for health and public works. When these austerity measures
intersected with intensified global transportation and trade in the late 1980s,
dengue emerged as a serious health problem (Castro et al. 2010). Today, the
Ae. Aegypti mosquito continues to develop resistance to locally applied pesticide
regimes (Nading 2017).

Talk of mosquito eradication frequently appeals to the expertise of (mostly
Northern, mostly white) entomologists and epidemiologists (Stepan 2011).
Many of these scientific experts have cultivated their own capacity to think with
mosquitoes, and they frequently share an appreciation of their diversity and even
their beauty (see Hawkes, this volume). I still recall listening to one expert, an
entomologist, reproduce the perfect pitch of beating mosquito wings with her
own voice. Morrison and Lemke in this volume make the convincing case that
non-expert publics can learn to think with the mosquitoes that surround them
through participation in creative art installations.



Eradication against ambivalence 187

Thinking with mosquitoes in Nicaragua

There is another group of people who have cultivated a deep sense of what it
means to think with mosquitoes. I am referring to mosquito control workers in
Nicaragua who, until recently, relied on organophosphate larvicides to kill Ae.
Aegypti, but who are now switching to the biological toxin Bacillus thuringiensis
israelensis, or Bti. These mosquito control workers view themselves as eliminators,
not eradicators. They are in the business of killing mosquitoes, but not of ridding
the Earth, or even their neighbourhoods, of them. This is a difference that makes
a difference.

It turns out that it matters how you kill mosquitoes, not just in terms of the
chemical you apply but also in the thought you bring to the act. It is of course
possible to eliminate lots of mosquito larvae with either organophosphates or
Bti. Doing so would not take much more thought than crushing a single adult
mosquito with the palm of your hand. Mosquito control workers, however,
encounter mosquitoes over and over again, in a variety of microhabitats, from
upturned cookie jars to chicken troughs to bottle caps. For many of them, this
repetition does not make killing rote or mindless. On the contrary, under these
circumstances, the labour of killing induces a thoughtful appreciation of the
complexity of the worlds shared and shaped by people, insects and microbes.

Mosquito control in Nicaragua is mostly done by low-paid community health
workers (CHWs). During my fieldwork outside Managua, most of these CHWs
were women who had little formal background in either science or public health
(Nading 2014). Like the indigenous inhabitants of Malaysia’s Sarawak described
by Parrefas (2018), these women are precisely the kinds of people whose per-
spectives on human—insect relations are too often overlooked in policy. And like
the mosquitoes themselves, it is mostly women—who are figured as responsible
for managing the domestic spaces where most urban arbovirus vectors breed—
who bear an inordinate share of the blame for the persistence of epidemics. If
mosquitoes are not killed in high-enough numbers, and if rates of mosquito-
borne disease are foo high, this will be portrayed as a failure of women’s domestic
labour. Much as the conservationist ideas of nature I discussed above are fre-
quently coded as white, the notion of hygiene in Nicaragua is frequently gen-
dered female.

In brief, the job of the CHW in mosquito control is to think with mosquitoes,
particularly female mosquitoes, about where to lay eggs. It 1s in the small, usu-
ally domestic bodies of water that harbour Ae. aegypti eggs where human and
mosquito habitats meet. These might be in palm fronds, bromeliads, washbasins
or old automobile tyres. The shared domestic or “interior” lives of humans and
mosquitoes are difficult to replicate artificially (Kelly and Lezaun 2017). And
it is not enough to “think like a mosquito,” for a mosquito never thinks on its
own. Mosquitoes move about the world by transducing physical vibrations into
nervous-system signals. Their thoughts, then, are inseparable from their sur-
roundings. They are inseparable from the thought that householders bring to
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FIGURE 12.1 A Nicaraguan community health worker discussing the Aedes aegypti life
cycle with a householder. Photograph by Alex Nading.

the arrangement of decorative flowers or the care of domestic animals. To think
with mosquitoes is to think with one’s kin and neighbours, human and other-
wise (Figure 12.1).

One of the things CHWs report over and over again is that they find them-
selves unable to stop looking for mosquitoes and their breeding grounds,
whether at their home, at the homes of others, or elsewhere. They have devel-
oped a version of what philosopher Timothy Morton (2010) calls “the ecologi-
cal thought,” the recognition of a deep interconnectedness between beings and
things. For Morton, once ecological thought has been planted, it is inescapable.
Such thought is neither naive nor unconscious. It entails a recognition of the
vast scale of entangled life. Nor is ecological thought a fancy term for New Age
fantasy. In the ecological thought, intimacy is as important as vastness and, as
Kath Weston (2017) reminds us, intimacy is not always pleasant. Even when we
acknowledge that the kind of intimacy between humans and mosquitoes is “full
of ambiguity and darkness,” it does not follow that the next step is to sever that
relationship (Morton 2010, 100).

In the 1960s, the US Department of Agriculture took just this sort of step,
justifying its attempts to eradicate fire ants with DDT based on a Cold War—
inflected nationalism (Buhs 2004: 385). The view that the “invasive” ant was a
threat to the idealized American landscape was opposed by, among others, Rachel
Carson, who believed that ecological relations could not be neatly mapped onto
the borders of human communities. Ae. aegypti, too, has been denigrated as an
invasive creature by its self-styled enemies (Nading 2015). As an act that severs
some relationships, eradication is simultaneously an act that preserves others.
Latent in the discourse of eradication is the notion of a common good.
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Who better to carry out the project of eradication, then, than the community
health worker?

Though he advocates an environmental philosophy rooted in the inescapable
relationality of life, Morton rejects the “ecology of community” as a Romantic
fallacy (2010, 101; 127). Whereas Carson opposed place-based or nation-based
action as inadequately attentive to the scalar dynamics of changing ecosystems,
Morton is more concerned with the ways that place-based or nation-based
action elides the ambiguity that undergirds all ecological relations. For Morton,
community is too clean a term to encompass forms of intimacy like viral
transmission or chemical exposure.

Nicaraguan CHWs speak frequently of “community” (comunidad). 1f they
are Romantics, they are not rosy-eyed Romantics. Comunidad is not so much
centred on the geographical place from which they operate (as in the local clinic,
or a pandemic’s “front-lines” of action) as it is the animating purpose of their
mosquito control work. Comunidad is a form of becoming, a way of making sense
of one’s social, professional and environmental surroundings, not a geographical
demarcation. Indeed, when presenting themselves to householders around
Managua, community health workers would often say, “This is community.”

In Nicaragua, the figure of the CHW has its origins in the country’s 1979
popular Revolution, which was preceded by the 1978 Alma Ata Declaration
on primary health care. The Alma Ata Declaration advocated for a horizontal
approach to healthcare provision, and it saw low-level figures like CHWs as the
actors best positioned to ensure a form of care that was holistic and integrated,
rather than targeted and disease-focused. After Alma Ata, the presence of active
CHWs in developing countries became a proxy for the political empowerment
of underserved populations. After the Revolution, Nicaragua was among
the most successful at putting these recommendations into practice. In the
early Revolutionary period, roughly from 1979 to 1984, Nicaragua’s CHWs
styled themselves as multiplicadores (multipliers) of public health. They were
influenced by a Freirean critical pedagogy, which favoured a dialogical and
collaborative approach to learning about and confronting social problems (Freire
1970). Instead of styling themselves as “experts,” CHWs banded together to
learn with their neighbours about health problems and their relationship to
underdevelopment. After decades of dictatorship in which most health services
had been systematically denied to the majority of Nicaraguans, their hope was
that demands for better care would emanate from the grassroots to the centres
of political power. Evidence suggests that their advocacy led to improvements in
roads, sewers, gutters and potable water systems (Nading 2014).

Among the CHWs with whom I worked between 2006 and 2011, there
was a shared sense that hunting for and eliminating (rather than eradicating)
mosquitoes in their domestic breeding grounds could double as a fruitful way
of doing comunidad, of forging solidarity among human neighbours. Peri-urban
Managua remains a context of entrenched poverty and low-grade violence.
Under these conditions, CHWs, who hail from the same communities in which
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they hunt for mosquitoes, understand that doing comunidad has a public health
value on its own. Though their work is closely audited by the Ministry of
Health, CHWs are not overly concerned with bureaucratic accounting of how
many insects they have killed. To put it pithily, it’s the thought that counts.
People are more likely to report threats to health and actively monitor the
quality of their shared environments if they have regular, meaningful contact
with representatives of the public health service. The act of thinking within
an ecology—of witnessing and intervening in the intimate relations between
humans and mosquitoes (and chickens and dogs and palms and plastic bottles)—
yielded public health benefits that did not appear in dengue control records.
CHWs regularly confronted householders who would blame neighbours for
the presence of dengue and mosquitoes, but they also frequently would expect
to relay questions and complaints back to the Ministry of Health, even about
health problems beyond dengue. According to the CHWs, effecting a “quality”
mosquito control visit meant taking extra time to listen to neighbours’ problems
and to help solve them. This was the most fulfilling part of their job. Comunidad
connoted an ecological thought.

Though at first glance it would appear that the presence of mosquitoes was
a mere pretence for discussing other health-related matters, Nicaraguan CHWs
were not just instrumentalizing the mosquito’s presence for a larger purpose.
Getting people’s attention required attending to—and getting the attention of—
mosquitoes (Kelly and Lezaun 2017). The indeterminacy of the encounter (a
dengue intervention? a social call? the consciousness-raising work of a Freirean
pedagogue?) was the source of its value (Redfield 2016). Finding and destroy-
ing the mosquito’s breeding ground was also a pathway to fostering solidarity.
Mosquitoes were never fully eradicated, just as comunidad was never fully real-
ized. This meant that for CHWs, the repetitive, never-quite-complete job of
killing mosquitoes was not a chronic failure but a continuous form of sociality.
Openness came not from the anticipated triumph of eradication but from the
ambiguity and darkness of human—mosquito intimacy. As Morton (2010, 100)
summarizes, “If we edit out the ambiguity and darkness, we achieve nothing but
aggression.” The mosquito could not be abstracted from comunidad. The grave
threat of mosquitoes had to be confronted as a part of a larger suite of problems
(Figure 12.2).

Beyond mosquito killing

The ecological thought that the CHWSs call comunidad is not limited to mos-
quito-related endeavours. It resonates through other human—insect encoun-
ters. Consider, for example, human encounters with bedbugs, the pests that
infest cities around the world, including in the USA, where I live and work.
E. Summerson Carr (2015) studied how social workers dealt with bedbugs in a
residential facility for homeless people suffering from mental illness and addic-
tion. Carr emphasizes that these social workers do not see their job as one of
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FIGURE 12.2 A community health worker “hunting” for mosquitoes in a domestic house
lot. Photograph by Alex Nading.

eradication. Rather, they are constantly (if sometimes frustratingly) doing battle
with bedbugs with no simple expectation of triumph. Despite repeated fumi-
gation, the circulation of people and objects through the centre makes total
elimination unlikely. For the social workers, “the bedbug infestation provides
... fertile grounds to formulate ideas about the nature, limits, and possibilities of

>

rather than

human agency and responsibility, in ways that ultimately bolster’
compromise—their “professional practice.” For the social workers, doing a good
job means not being “a more intentional actor” but rather “a more attentive one”
(Carr 2015, 264-265). As Ann Kelly and Javier Lezaun explain with regard to
mosquitoes, attention “describes ... a double movement: granting attention to
and capturing the attention of” (2017, 388).

It may therefore be the partiality and ambiguity of mosquito killing, not its
totality, that can translate into a sustained commitment to public health. Here,
I use the term “public health” in its broadest sense, not only as a project of
managing specific diseases such as malaria and dengue fever, but also as project
of improving infrastructure, reducing crime and providing access to food and
water, among other things. All current approaches to Ae. aegypti control, from
systematic house-to-house larviciding, to genetic modification, to Wolbachia
application, are incomplete successes. Evidence shows that the common thread
across these approaches is not a sense of triumph but one of ambivalence (Reis-
Castro 2012; Kelly and Lezaun 2014; Sims forthcoming).

Here Morton’s planetary environmental philosophy can be linked to proposi-
tions like those of Peter Redfield (2016) and Maria Puig de la Bellacasa (2017),
who suggest that the best we may hope for when it comes to implementing
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technologies is that they reignite our sense of care and attention each time we
deploy them. In their clunkiness and imperfection, mosquito-killing technolo-
gies, particularly the organophosphate larvicides that my CHW friends deployed
against Nicaraguan Ae. aegypti, do just this: they encourage care and attention
towards fellow human beings as well as fellow creatures. As with dangerous mos-
quitoes, our relationship to the technologies that kill them is ambiguous (Morton
2010). There are many reasons to dislike these insecticides (they are poisons,
after all) but they remain meaningless until they are deployed. They, too, are
tools for enriching ecological thought. Even when a householder in Nicaragua
refuses to let a CHW treat her water receptacles with larvicide, the chemical
opens up space for what Redfield (2016) calls a “practice of community.” As
Redfield notes, “The one advantage of uncertainty, doubt and ambivalence is
an imperative to pause and consider them” (Redfield 2016, 177). A mosquito-
killing technology that kills too efficiently—even if it may produce a welcome
outcome such as the reduction or eradication of disease—is not a thinkable pub-
lic health approach because it eliminates ambivalence.

Ambivalence can be built into mosquito control work. Rosie Sims
(forthcoming) has carried out recent ethnographic studies within the World
Mosquito Program (WMP), the Australia-based project that seeks to curb
Ae. aegypti’s ability to spread dengue by infecting mosquito populations with
Wholbachia bacteria (Sims forthcoming). Even wildly successtul Wolbachia infection
programmes will not mean the end of dengue or Zika once and for all. In fact,
the Wolbachia project has a limited (50-year or so) horizon of efficacy. Tellingly,
the WMP does not style Wolbachia as a “magic bullet.” Its approach is quite
different from that of projects with the goal of curbing mosquito populations
through, for example, genetic modification (Nading 2015). WMP organizers
seem quite aware that their work will produce as much ambivalence towards
mosquitoes as it eliminates. As Sims argues, the project reverses the elimination
model by asking the public to consider what it might mean to live and think
differently with mosquitoes. It provides no clear answer to the question of what
living and thinking with mosquitoes might look like.

Eradication fails as a public health measure precisely because it forecloses the
possibility of ambivalence. Ultimately, the goal of mosquito eradication does
not make good policy, not because it is categorically unethical or ecologically
catastrophic, but because it artificially insulates public health from the messy
realities of a life lived, and a thought thought.

Notes

1 For updated data see: https://www.apmresearchlab.org/covid/deaths-by-race

2 This is far from an original point. For more on this idea, see Carter 2018; Finney
2014.

3 A similar variety of white Euro-American moralism is evident in the Global Polio
Eradication Initiative, a public—private partnership that joins the WHO with non-
governmental partners like the Rotary Club to promote vaccination in those parts
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of the world where polio remains a problem. Critical studies of this initiative have
noted that while the push to eradicate polio garnered huge support from Northern
donors, enthusiasm for vaccination is less appealing in places like Karachi, Pakistan,
where polio remains. One reason for this is the perceived link between eradication
and neo-colonial power (Closser 2012).
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THE INNOCENT MOSQUITO?

The environmental ethics of
mosquito eradication

Anna Wienhues

Who has not swatted at least one mosquito? Surely most people have crushed
at least one mosquito on a hot summer evening and did not think that there
could be anything morally wrong about stopping that nuisance. After all,
diseases transmitted by mosquitoes are a major global health issue: malaria,
dengue fever and Zika—to name a few—are diseases transmitted by mosquitoes,
with substantial impact on the well-being of a large part of the world’s human
population. Some mosquito-borne diseases such as the West Nile virus are
hosted by other animals before being spread to humans (that is, they are zoonotic
diseases, like the 2020 coronavirus pandemic), thereby situating this global health
problem in a web of interspecies entanglements. To address this proliferating
problem, drastic means might be considered necessary, such as eradication,
bringing to extinction an entire mosquito species that transmits diseases, or at
least drastically diminishing their populations. Can such large-scale eradication
practices be morally justified?

That is the question that I will focus on in this chapter with a specific focus on
the eradication of entire vector species which is a broader aim than the elimina-
tion or control of a few populations of that species. Instead of providing arguments
from within public health ethics on the problem of mosquito-borne diseases, this
chapter rather looks through an environmental ethics lens to illustrate what can
be said to plead the mosquito’s case. The upshot in this “mosquito debate” is that
we must acknowledge that in case of eradication something of moral relevance
would be lost, even if we have good reasons to advocate such drastic methods:
namely, mosquitoes matter. This chapter does not attempt a definitive answer
or recommendation for action, but instead lays out the landscape of potential
normative arguments. Importantly, the problem-framing influences what we
perceive as morally salient features of a situation. If mosquito-borne diseases
are considered to be borne out of a conflict of interests between humans and
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mosquitoes, then it needs to be kept in mind that the mosquitoes are “innocent”
in several senses of the term as discussed later.

Environmental ethics is a field within moral philosophy that considers
questions such as whether nature has a value that is independent of its usefulness
to humans; or whether animals can be considered to be holders of moral rights.
It is useful to briefly engage with some arguments from this literature in order
to provide a picture as inclusive as possible, covering a range of issues that
are relevant to environmental moral theorizing. Moreover, this picture is not
complete, since I look at the problem only from a Western analytical philosophy
perspective. Introducing arguments in favour of the mosquito does not mean
that there are no good counterarguments and other considerations that might
outweigh the mosquito’s case. As we will see, also from an environmental ethics
perspective, it is not always easy to justify the strong discomfort some may feel
about different mosquito eradication proposals.

Of course, a full assessment of the mosquito problem would need much more
detailed analysis than can be provided here, and many more nuanced questions
regarding less drastic means than complete vector species eradication need to be
asked, such as disease control by insecticide treated bed nets (ITN), or regarding
the different means of disease eradication, in general, and the eradication of
mosquito species, in particular. The discussion will rather remain at quite an
abstract level. Regarding the elimination of mosquito populations in a specific
area, for example, one could ask whether certain practices (such as spraying
large areas with biological or non-biological agents) are morally preferable or
inferior to other options (such as releasing genetically altered mosquitoes into
an ecosystem) in addition to questions about feasibility, even if we would reach
the conclusion that eradication of disease-carrying mosquito species was all-
things-considered necessary. While the elimination or reduction of mosquito
populations does not have to add up to species eradication and therefore these
constitute distinct aims, it is also the case that different means of eradication or
elimination need to be distinguished regarding whether they have broad adverse
effects or constitutes means of “farget killing” the vector species in question.

Three preliminary points can be made. First, the following considerations
are based on the assumption that complete eradication of certain mosquito
species might be possible in the near future (despite not being possible at the
moment), leaving aside the question regarding which interventions this would
entail. Second, eradication is the focus here as it constitutes the most “extreme”
form of disease-control from the mosquito’s perspective—although most of what
follows is also applicable to deliberations about population control as well. Third,
although a nuanced analysis would distinguish between reducing the disease
burden and eliminating it completely, we shall simply assume that there are
strong normative prerogatives for both of these goals.

The following discussion is divided into five sections. The first section sketches
the broader “moral landscape” of the mosquito eradication and control question
to identify a few important considerations that go beyond environmental ethics,
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narrowly conceived. The second section shows how the lives of mosquitoes
matter morally in themselves or as members of a species, while the third section
discusses how the lives of mosquitoes might matter also indirectly in our moral
deliberations. The fourth section is dedicated to the subject of how eradicating
mosquito species constitutes a form of self-defence and whether this might
constitute an appropriate framing of the disease-carrying mosquito conflict,
with the last section summarizing the main points and offering some concluding
remarks.

The moral landscape

The environmental ethics questions considered here are situated in the broader
discourse of moral philosophy which includes other fields with important con-
tributions to the issue of mosquito eradication, especially political philosophy
and bioethics. Here there are four (not exhaustive) general issues that stand out.

For one, mosquito eradication and control require us to think about legitimacy.
That is, who should decide about such interventions? In essence, this issue
revolves around informed consent and political legitimacy. Matters of informed
consent, as discussed in bioethics, account for the need of patients making
voluntary decisions about their own medical treatment in clinical practice and
medical research (see Manson and O’Neill 2007). Yet in this context it is more
apt to speak of “group consent” (see Deplazes-Zemp 2018). Thus, field trials
and other interventions on mosquitoes require the informed consent—or rather
authorization via appropriate procedures—of the affected human communities in
order to gain legitimacy (Meghani and Boéte 2018, Neuhaus and Caplan 2017),
which leads also to the political dimension of legitimacy. Mosquito eradication
projects are large-scale enterprises with effects that can transcend spatial and
temporal borders to affect distant communities and future generations, involving
inputs from national and international governmental and non-governmental
agencies. This generates questions of political legitimacy (which is a contested
area of debate) in terms of, for instance, the democratic authorization required
to justify political power (see Buchanan 2002).

There is a second issue of risk, and the way it is embodied by different
interventions which I will consider briefly in the third section. A complicated
subject, risk is integral to any eradication and control proposal according to
methods, aims and potential kinds of risks involved. It is precisely due to such
risks that questions of legitimacy become especially salient.

A third issue that arises regards questions of distributive justice, since the burden
of mosquito-borne diseases particularly affects the poor which, in turn, is linked
to the uneven capacities of health services and relevant infrastructure (Greisman
et al. 2019). There are also often special risks for pregnant women and children
who catch a mosquito-borne disease. Such an unequal global distribution of the
burden of disease can possibly be exacerbated by other influences such as climate
change (WHO 2017). Accordingly, a global health justice lens then introduces a
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range of questions about such issues as the fair distribution of costs of and access
to interventions, and duties to aid the most affected. Moreover, the interactions
between different dimensions of injustice—economic, health-related and envi-
ronmental—need to be kept in view.

Finally, and as the fourth issue, insofar as steering and monitoring people’s
behaviour constitute important elements of an eradication strategy, then we must
be sensitive to questions about how they interfere with people’sautonomy and right
to privacy (Greisman et al. 2019). In light of these issues, we must acknowledge
that the eradication of certain mosquito species would be of significant benefit
(at least in the short term) to many people living in areas where mosquitoes
are endemic. The dramatic impact mosquito-borne diseases have on the lives
of many humans constitutes the main—and weighty—reason for eradication
due to the fundamental interests to life and health at stake. Since several other
chapters in this volume are already dedicated to the human dimensions of this
ethical problem, we shall turn to other issues. As a consequence, we need to
differentiate between what would be all-things-considered justified and what
would be justified from the incomplete environment ethics perspective that I am
presenting here.

Why mosquitoes matter

The question of whether we should eradicate disease-carrying mosquitoes is a
significant challenge for many environmental ethicists who are committed to
biological conservation aims. Many ethicists will not be satistied with simply dis-
missing the mosquito’s place in the ecosystem as a “romantic notion” (compare,
for instance, Fang 2010: 434). Moreover, amongst these are also ethicists with
biocentric or ecocentric commitments who argue there are many more morally
relevant attributes in nature than just sentience (such as in terms of the capacity
to suffer pain). So, they will not be impressed by the possibility of a pain-free
“specicide” (compare, for instance, Judson and Pugh in Bates 2016, and, in more
detail, Pugh 2016). In the end, any comprehensive answer to the question about
whether we should eradicate disease-carrying mosquitoes will involve a complex
set of moral trade-offs. In favour of the protection of the mosquitoes in question,
a combination of four different (but not exhaustive) kinds of arguments could
be presented based on (1) caring about each individual mosquito, (2) the value
of each species, (3) what eradication says about our moral character and (4) whether
the potential benefits outweigh the risks of interventions. I address each of these
issues in turn, starting with the first two in this section.

The moral considerability of each individual mosquito

As biocentrists will argue, focusing on sentience alone oversimplifies the
moral landscape, because all living beings matter morally in themselves. That
means that the life of each individual mosquito is morally considerable and
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must be accounted for in our moral deliberations. As Paul Taylor phrased it,
“[t]he biocentric outlook on nature ... includes a certain way of perceiving and
understanding each individual organism. Each is seen to be a teleological (goal-
oriented) centre of life, pursuing its own good in its own unique way” (Taylor
1986: 44—45). From this perspective each individual mosquito matters in itself
independent of whether humans consider it useful, harmful or beautiful.

This theoretical commitment entails that the well-being of even such
dangerous creatures as Aedes aegypti must be acknowledged and integrated
into our moral deliberations. Although this is the necessary conclusion of any
biocentric position, it is also of course a contested idea. Putting it very crudely,
critics who argue that this goes too far usually maintain that either only humans
are morally considerable (Kant 1997, 1998) or else that non-human beings also
have moral standing, but only if they exhibit some basic capacities such as in
terms of awareness or an ability to suffer pain (Singer 1975, Regan 1984). Both
perspectives exclude mosquitoes from the moral realm as beings that matter in
themselves as—based on present knowledge—it is unlikely that they feel pain,
for instance.

In contrast, others might counter that it seems convincing to attribute moral
standing to individual mosquitoes—and that they therefore deserve considera-
tion in eradication programs—but accounting for that standing would be so
demanding on our actions that we should exclude them from our moral consid-
erations nevertheless. Besides that such considerations feed into issues we will
look at in the following sections, it is important to point out that being a holder
of moral status (in terms of being morally considerable) is not enough to explain
the full moral context that needs to be taken into account, and so does not suffi-
ciently explain what we should and should not do. Living beings matter in them-
selves, but what is ultimately morally justifiable also depends on the contextual
and relational features of the situation. If a biocentrist would be committed to
declaring that harm ought not be inflicted on any being with moral status under
any circumstances, this would not constitute a viable position. We can refuse to
pick a specific flower in a field or to kill a specific spider in our living room, but
we eat plants; insects die on our windshields. And beyond contextual and rela-
tional considerations (which always matter but on which theories diverge), dif-
ferent theories also provide different accounts of the relative weight of the moral
status of a mosquito compared to that of other beings with moral status —if they
deem mosquitoes morally considerable at all. Broadly speaking, the options are
between egalitarian accounts, where all beings (but not all kinds of interests)
matter exactly the same (Taylor 1986), and hierarchical accounts, where mos-
quitoes have less moral significance than, for example, sentient animals (Agar
2001), or else non-hierarchical accounts, in which the moral significance of dif-
ferent living beings is incommensurable which strongly emphasizes contextual
and relational considerations (Wienhues 2020).

Even if moral standing is insufficient for safeguarding all mosquitoes even
in situations that do not involve substantial public health considerations, the
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minimum that this requires of us is to consider whether there are alternative
means that are as good from a public health perspective that do not require such
drastic actions that might harm such a large number of mosquitoes. Alternatives
to mosquito eradication include, for example, vaccines, the reduction of mos-
quito breeding grounds or the improvement of healthcare and sanitary facilities
which might create considerable public health benefits. If individual mosquitoes
are morally considerable, then we have an additional reason for seriously con-
sidering disease-control interventions that cause less harm to mosquitoes than
eradication campaigns might do.!

The moral value of each mosquito species

Besides the moral status and related inherent worth of an individual mosquito,
we may also attach some kind of moral value to each mosquito species (which, in
turn, is related to considerations about biodiversity) which is particularly relevant
if we speak about species eradication. The instrumental value of a species refers
to its current or potential usefulness for humans, for example in terms of what
some call “ecosystem services.”> Whether certain mosquito species have such
instrumental value depends ultimately on empirical evidence about, for instance,
their role in various ecosystems, and whether ecosystems could perform these
functions if the species were removed. However, can a mosquito species also be
conceived as non-instrumentally valuable?

Some think that this is the case. From such a perspective each disease-carrying
mosquito species can indeed be attributed value that goes beyond its instrumental
value, if it has any. Yet, there is a range of different positions that can be taken on
this matter. Amongst other things, one’s position on the value of species depends,
on the one side, on what position on values one takes (such as debates between
objective and subjective value accounts) and on the other side, on one’s position
regarding what constitutes a species (such as the debates about the ontological
status of species).?

For example, a fairly common claim is that species hold some form of objective
“natural historical” value (Rolston 1995, but compare Sandler 2012), which is
a type of non-instrumental value.* Holmes Rolston III develops a bold version
of the idea of natural historical value, arguing that each extinction is a kind
of “superkilling” (1995: 523) because “a biological species is not just a class. A
species 1s a living historical form ... propagated in individual organisms, that
flows dynamically over generations” (1985: 721). Such reasoning suggests that
the human-caused loss of a species and its associated natural historical value
is morally problematic and given that this constitutes an “objective” value it
is independent from peoples’ preferences. Here, people are not required to
personally care about mosquitoes for them to be valuable in an objective natural
historical sense.

Yet even Rolston, as a strong advocate of biodiversity conservation, argues
that the “duty to species [not to cause their extinction] can be overridden, for
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example with pests or disease organisms” (2001: 410). Thus, even if a mosquito
species holds natural historical value, things do not look good for our mosqui-
toes. Moreover, the moral value of different species may be considered to be dif-
ferently morally weighty. In terms of natural historical value, one consideration
might be that a lack of distinctiveness of a species implies that it is not as valuable
as another, recognizing that there are more than 3,000 mosquito species with
differing degrees of distinctness around the world. Because only a small num-
ber of these mosquito species actually transmits diseases to humans, the case for
protecting them based on their moral value needs to be supplemented with other
considerations in their favour.

Adding context

Of course, considering the value of mosquitoes as either individuals or as species
is neither sufficient for reaching a moral judgement for their protection, nor is it
the only route for constructing an argument that speaks against their eradication.
So far, we have only considered what matters morally (that is, has moral standing
or value), but these considerations have to feed into normative theories (such as
theories that focus on rights, utility or moral character). In this chapter I cannot
give justice to the range of aspects different normative theories can bring to
the subject of mosquito eradication and, thus, I will limit myself to mentioning
just a few considerations that stand out (the points three and four mentioned
previously)—starting with virtue ethics.

Hubris

To many people, the concern about hubris is an intuitive criticism to visions
of mosquito eradication. Environmental virtue ethics is the most obvious lens
for understanding this concern, because it puts emphasis on a person’s moral
character. In this context, the question that poses itself is whether eradicating
entire species is compatible with being and acting as the kind of person that has
internalized a range of different virtues (that is, excellent character traits). Of
course, even here there is a large variety of theoretical accounts, all of which
propose a range of environment-specific virtues such as humility or gratitude as
central attitudes towards nature. What actions such theories justify depends, on
the one side, on what they consider morally valuable, as discussed before, and on
the other side on the content of the relevant virtues (Sandler 2016).

Context is very important for virtue ethics approaches. However, at first
view at least, it seems that different environmental virtue ethics, including
varieties that do not acknowledge the moral standing of individual mosquitoes,
are at least sceptical of plans to eradicate several mosquito species. On the face of
it, such plans appear hubristic by misrepresenting humanity’s appropriate role in
nature in addition to being epistemically hubristic by overestimating humanity’s
ability to control nature. That is problematic insofar as hubris is understood
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as a vice, and insofar that such plans are incompatible with such virtues as
humility in our actions and our stance toward the environment. Such concerns,
of course, appear particularly pressing if one also presupposes a particular way
of understanding humanity’s place in nature that rejects the role of a master or
a manager.

In terms of hubris and humility such an endeavour to eradicate mosquitoes
appears to share similarities with other controversial human interventions in
nature, such as plans to address climate change through geoengineering (Meyer
and Uhle 2015) or genetic crop modification through biotechnology (Sandler
2004). Whether different accounts of environmental virtue ethics ultimately
reject or justify such wide-ranging human interventions—including the
eradication of disease-carrying mosquito species—involves taking into account
all morally relevant contextual features, humanity’s health burden being one of
such crucial concerns.

Risks

A person who is not convinced by virtue-based perspectives might, however,
think differently about risk-based arguments and still be inclined to favour a
precautionary approach in light of the risks involved in any such intervention (even
if done for purely human-focused reasons) when weighted against its potential
benefits. Much recent work about ethics and disease-carrying mosquitoes are
written from a public heath perspective and highlight this specific question of
risk—usually linked to the importance of community engagement mentioned
earlier—in light of the current development of gene drives for containing
mosquito-borne diseases (Greisman et al. 2019, Patrio Neves and Druml 2017,
Resnik 2014, Resnik 2017).

Gene-drive systems, as technologies of genome editing, are developed, for
example, as means for eradicating mosquito species or else creating resistances
to pathogens (such as a virus) in a target population of mosquitoes. For instance,
Jonathan Pugh (2016), who does not consider mosquitoes to be morally con-
siderable in themselves, does not find the “hubris objection” convincing while
discussing gene-drive technologies potentially being used on disease-carrying
mosquitoes as a means of eradication. Still, he argues that a better understanding
of the potential effects and success of mosquito eradication will be important to
make well-informed moral decisions. Indeed, Pugh is right when claiming that
“epistemic humility” does not involve the dismissal of biotechnology based on
it having some risk (Pugh 2016: 580). Yet, the potential irreversibility of gene
drives, for example, is definitely a risk to take into account. Even by relying on
solutions less technical than gene drives, the eradication of a species by more
“conventional” means carries a risk for ecosystems and may be irreversible (when
putting the controversial possibility of “de-extinction” with technological solu-
tions aside). Accordingly, one might still be inclined to favour the precautionary
principle in light of the risks involved in any intervention—even ones carried
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out for purely human-focused reasons—which are intertwined with a range of
empirical questions.’

Self-defence

So far, we have seen several ethical considerations that can justify a reluctance in
wanting to eradicate mosquitoes. This reluctance may be based on a mosquito’s
moral standing, the natural historical value of a mosquito species, concerns about
our own moral character or concerns about risk. In turn, these considerations
will be part of a broader assessment of mosquito eradication proposals, most
inclusively by providing a pluralistic picture that engages with different norma-
tive theories. Besides the virtue ethics approach mentioned above, one could ask
questions about whether mosquitoes have certain rights that must be accounted
for or whether certain strategies are better than others to maximize well-being.
However, there is an additional dimension to dealing with mosquitoes not yet
addressed. The question is what constitutes the appropriate problem-framing
of the conflict between humans and disease-carrying mosquitoes and can it be
framed as a matter of self-defence?®

Humans stand in a multitude of different moral relationships with non-human
animals, each of which comes with a different set of moral demands. For example,
most mosquito species do not prey on humans, a fact which makes living alongside
them on a shared planet possible as long as human impact on their habitats, say in
the forms of soil degradation or air pollution, is contained.” The case is different,
however, for our relationship with those few mosquito species that “prey” on
humans by having a preference for human blood. Yet, again only a subset of these
anthropophilic mosquito species also carry malaria, dengue fever, Zika and so on.

At first glance, these cases of disease-carrying mosquitoes look like
straightforward cases of self-defence which usually are considered morally
permissible even if killing the aggressor is the only means to defend one’s own
life. For instance, self~defence could be a way of justifying the extermination
of the smallpox pathogen, which was declared accomplished in 1979 (WHO
2019). Mosquitoes, like insects generally, have not featured prominently in
the environmental ethics literature, but a self-defence framing stands out in
this context. For instance, James Sterba has argued for a “Principle of Human
Defense” which allows one to act against “harmful aggression” through harming
and killing individual animals as well as whole species, when necessary (Sterba
2005: 295). This would cover the disease-carrying mosquito case and allow for
their eradication despite the fact that Sterba, as a biocentrist, is committed to
attributing moral standing to each individual mosquito. By analogy, if someone
innocent was attacked by a human aggressor with a knife, we would judge
violent self-defence permissible, with the human aggressor remaining a person
with moral standing (see also Taylor 1986).

Indeed, Sterba explicitly mentions that killing disease-carrying mosquitoes is
a justifiable act of self~-defence and states the following;:
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In the case of human aggression, however, it is sometimes possible to effec-
tively defend oneself and other human beings by first suffering the aggres-
sion and then securing adequate compensation later. Because in the case
of nonhuman aggression by the members of other species with which we
are familiar, such an approach is unlikely to work, justifying more harm-
ful preventive actions such as killing a rabid dog or swatting a mosquito,
potentially carrying disease. There are simply more ways to effectively stop
aggressive humans than there are to effectively stop aggressive nonhumans.

(Sterba 1998: 364, italics added)

Sterba makes killing a mosquito, and in extension the eradication of a whole
species, a bit more palatable by pointing out that in the case of mosquito “aggres-
sion” we do not have as many options of self-defence as we do with human
conflicts. If someone vandalizes my house, I can demand compensation after the
fact; but this is not the case for the mosquito who can place me in the hospital
for months and neither can we “discuss” our differences in a conflict-resolution
scenario. Yet, this does not necessarily allow any kind of self-defending actions
because the question remains whether there are methods for protecting human
health that are less harmful to mosquitoes whilst being effective enough, as men-
tioned above. For instance, Jake Monaghan argues that while a biocentric posi-
tion allows for killing in self-defence, it demands “programs which make the
mosquitoes malaria-resistant, if it is at all a possibility” (2018: 134). Of course,
such programmes come with their own set of issues (particularly, when involving
gene drives) that have to be taken into account. Moreover, for self-defence to be
applicable, humans must apply “reasonable care” (Taylor 1986: 265) in avoid-
ing contact with disease-carrying mosquitoes. Given the wide global spread of
mosquitoes and the common use of disease-control measures (such as bed nets or
protective clothing) this condition seems to be met in many instances.

Nevertheless, there is still some background missing from the mosquito story,
namely that the mosquito is merely instrumentalized by the disease that it car-
ries, the disease being the real “aggressor” from which we need self-defence.
The real source of the problem is the microbe that produces malaria, dengue
fever and Zika, with mosquitoes merely being the “vehicle” that transmits them.
Accordingly, it is more apt to understand the disease-carrying mosquito as the
“innocent” vector. The way we frame a problem determines what we identify as
its morally relevant features and so the emphasis can be put on different aspects
of the problem.

On the one hand, it can be seen as a clear case of (collective) self-defence
where a large section of humanity justifiably tries to defend itself from an aggres-
sion against its health and lives. Excluding some forms of genetic modification
(which would change the problem-framing), killing may be the only way to fend
off such aggression if it comes from entities that are “innocent” in the sense of
having no awareness of the consequences of their actions. The mosquito is not
a moral agent. On the other hand, although all mosquitoes that feed on human
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blood cause irritation, the dangerous “predator” that is targeted for eradication
in this case is the disease (i.e. the virus or parasite) that they carry. So, one way
of framing the issue would be to consider the eradication of the mosquitoes—
now “innocent” by not being the ultimate source of the harm—as problematic
“collateral damage” of the eradication of the diseases in question. That would be
closer to a case of killing a bystander or hostage which carries a bigger moral bur-
den. In a sense, the mosquito is “taken hostage” by the virus or the parasite that
uses the mosquito’s body as a resource. If that is an appropriate representation of
the problem at hand, then it deviates in certain respects from the straightforward
case of self-defence.

This illustrates, for one, that there are different senses in which the mos-
quito may be portrayed as “innocent.” For instance, there is the unaware mos-
quito scenario and in that sense the mosquito constitutes an innocent threat. Yet,
the mosquito also constitutes an innocent threat if it is instrumentalized by the
virus which also does not constitute a moral agent. This is the hostage scenario,
with an unaware virus. It follows that there are at least two ways in which the
mosquito might constitute an innocent threat, and many might think that the
second scenario intuitively requires more to be at stake to justify doing harm
to the mosquito in fending off the disease. Although some might believe that
self-defence against innocent threats is justified, others regard it as inappropri-
ate to be conceived as self-defence, since the threat is innocent.® In that case,
the problem would need to be framed as a matter of negative side-effects in the
form of eradicating a species necessary for achieving the goal of a healthier world
for people. That would mean that the human—mosquito conflict could not be
framed as a matter of defence.

It therefore matters if the envisaged mosquito “specicide” is the outcome of
a genuine self-defence scenario, or whether the mosquitoes are just bearing the
burden of humanity’s wish to make the Earth safer for itself, which includes a
broad set of practices that affect the life and well-being of non-humans. Because
there are alternatives to specicide when it comes to controlling mosquito-borne
diseases, one must keep in mind that the eradication of the “innocent” mosquito
cannot be disentangled from the broader web of potential moral failings. One
needs to consider whether mosquito eradication proposals potentially constitute
a means of obscuring other social and economic factors that can contribute to
the prevalence of mosquito-borne diseases, such as the considerations of justice
mentioned in the first section.” For instance, a focus on mosquito eradication
might obscure that there are pressing social justice concerns such as about neces-
sary access to health services that need to be addressed urgently. The swatting
of a single mosquito that landed on my arm therefore needs to be distinguished
from a practice of species eradication that is connected to a range of other moral
and political decisions that depend on broader ethical considerations regarding
humans and non-humans alike.

Of course, this discussion of “innocence” depends on the mosquito itself hav-
ing moral standing, as discussed previously. Such considerations mean that a
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disease-carrying mosquito is not equivalent to a virus-infected computer, for
example. Any perspective that denies moral standing to mosquitoes will perceive
the mosquito problem as less complex than presented here. Beyond the question
of “innocence,” another dimension of the mosquito problem considers the ques-
tion of how far this scenario constitutes a matter of self-defence.

So far, we have simply framed defence as a collective self-defence in which
“humanity” defends itself. In practice, there are considerable regional differences
that are in the process of transformation due to climate change, with not all
regions and communities being equally affected by mosquito-borne diseases.
Some regions and some individuals are not affected at all while others must deal
with several mosquito-borne diseases at once. More accurately would then be
to frame it as a matter of self~defence of certain affected communities, if that
is the course of action that they choose to pursue. Or, it could be framed as a
third-party defence, because in practice such large-scale eradication programmes
are instigated by national and international organizations in aid for the affected
communities. As such the defence of others would generate additional issues to
take into consideration in comparison to a straightforward case of self-defence
(for instance, is there a duty to defend the affected party and, if so, by whom?).
This question of agency therefore links, in turn, to broader questions of global
health justice, such as regarding potential duties to finance mosquito interventions
and technology transfer and reintroduces challenges of political legitimacy and

informed consent.!’

The upshot

As we have seen, whether the eradication of a mosquito species can be considered
morally defensible depends on a range of normative and empirical questions. I
have outlined how some of these considerations can be brought in the mosquito’s
favour. These may be based, inter alia, on the moral standing of individual
mosquitoes, the moral value of a whole mosquito species, and concerns about
hubris and risk.

Yet these considerations neither exhaust all that can be said from an
environmental ethics perspective nor are they meant to deny the strong moral
prerogative to reduce the health burden of mosquito-borne disease. That we
have reached the point of even asking the question about whether mosquitoes
should be eradicated, indicates that we must carefully consider its context to
make sure that nothing of moral relevance is overlooked. For one, we need to ask
whether, and in what form, the self-defence scenario is an appropriate problem-
framing. Next, we must consider whether there are any alternative means which
might be all-things-considered morally preferable. If alternatives to eradication
are viable—and since the eradication of disease-carrying mosquitoes may be
impossible—then part of the debate should be about whether there are moral
demands, such as in terms of global justice, to fund alternative efforts to reduce
diseases carried by mosquitoes and other vectors. It would also be valuable to take
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a step back to think about how the mosquito question is the product of moral
failures that have perpetuated the global problem of mosquito-borne diseases.
Such considerations lead us also to political questions, such as vested interests in
different technologies, which will influence which set of options are available.
Even if our answer is ultimately affirmative—that we do need to eradicate
certain mosquito species to the best of our abilities—doing so still requires
awareness that something of moral value will be lost (e.g. in terms of the
species) and that something of moral status has potentially been harmed (that is,
individual mosquitoes). The upshot is that taking all these moral considerations
seriously will leave us with an awareness that the eradication of these species
cannot be taken lightly. Any environmental ethics theory that dismisses such a
loss oversimplifies the complex and conflictual moral decision-making at play,
even when we have very good reasons to defend and protect our own health.

Notes

1 Of course, depending on how we define harm and the well-being of individual mos-
quitoes, it is not necessarily the case that all potential forms of eradication or control
interventions would cause any harm to individuals. What constitutes harm to insects
is an area of debate, but most generally, it seems that methods that kill adult mosqui-
toes are likely to involve harm to individuals while preventing them from coming to
life in the first place does not.

2 But note that “ecosystem services” can also be understood more broadly, involving
more than instrumental values only.

3 Most plausible to me, the non-instrumental moral value of species is not identical to
the moral status of individuals as discussed in the last section (Sandler 2012), but that
still leaves a range of options.

4 Non-instrumental value is often labelled as “intrinsic value” but for a nuanced
differentiation between various uses of “intrinsic value” see O’Neill 1992.

5 Besides questions about which kinds of risk for humans (e.g. adverse ecological
effects) and their likelihood we deem acceptable or not, gene-drive technology is
also entangled in a host of other normative questions that I cannot do justice to here.
See Preston and Wickson (2019) for a comprehensive overview. For instance, such
technological interventions raise also questions about naturalness, the ontology of
species and new responsibilities in light of changing relationships between humans
and non-human beings. For example, accounts that consider “naturalness”—which is
a contested concept (see Siipi 2008)—to confer a non-instrumental moral value might
deem synthetic gene drives particularly problematic by introducing an “artificial”
element into nature.

6 Ultimately, that is a matter of choice. Alternatives need to be considered and the
appropriateness of the self-defence analogy can be challenged.

7 It has been argued that keeping environmental degradation to a minimum is even
a matter of doing justice to non-human living beings. Yet, while the destruction of
mosquito habitats is a matter of (distributive) justice, the conflict between disease-
carrying mosquitoes and humans is not (Wienhues 2020).

8 For an overview of defence against animals see Kagan 2019. See also Monaghan
(2018) for a biocentric argument that justifies self-defence against innocent threats.

9 Such concerns particularly apply to the employment of biotechnological means such
as gene drives. See Preston and Wickson (2019).

10 An additional matter of third-party defence is the question of the affected domestic
animals. Based on the idea that we are standing with domesticated animals in a
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different relationship than with animals such as the mosquito (see Palmer 2010), it
could be argued, for example, that the defence of domestic animals from mosquito-
borne diseases is necessitated by a duty of care for these animals (of course, while
putting aside questions about the moral legitimacy of animal husbandry in the first
place).
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MOSQUITO CONTROL

Success, failure and expectations in the context
of arbovirus expansion and emergence

Isabelle Dusfour and Sarah C. Chaney

Mosquitoes are considered humanity’s most dangerous animal due to their
capability to transmit a large number of deadly viruses and parasites, causing
millions of illnesses and deaths annually, along with enormous economic loss
(WHO 2020, Bradshaw et al. 2016). Among the 3,500 known mosquito species,
however, only a few are vectors of these pathogens.

A vector is a mosquito that is able to pick up, amplify and transmit a pathogen
from one vertebrate to another through blood feeding (Marcondes 2019).
Only female mosquitoes are hematophagous (blood-feeders) and are therefore
responsible for all mosquito-borne disease transmission. Yet not all female
mosquitoes can transmit pathogens and some are better at it than others: the
ability of any given mosquito to transmit disease from one vertebrate to another
depends on its behaviour, how it fits into the ecosystem of the human-built and
the natural world, and its internal biology. Each of these factors can be targeted
with vector control strategies to interrupt the transmission of disease.

One way of reducing mosquito populations is to alter environmental factors
necessary for mosquito breeding or to apply chemicals that target flying adults
(adulticiding) or immature aquatic larval stages (larviciding). However, as we
will see as we explore successes and failures of mosquito control, many chemi-
cal tools seem to have reached the end of their effectiveness as a stand-alone
strategy. Despite decades of chemical control efforts over the past 50 years, the
world has faced the intensification of dengue outbreaks, the re-emergence of
yellow fever, the spread of chikungunya and Zika and the emergence of zoonotic
diseases accompanied by the geographical expansion of major vectors (Wilder-
Smith et al. 2017). Vector control departments are now faced with a challenge
to expand beyond immediate prevention of human disease towards a global
approach that encompasses the biology, behaviour and biodiversity of mosquito
species, their ecology and what makes them effective or ineffective vectors—in
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order to formulate a realistic, multi-faceted, environmentally friendly and effi-
cient mosquito control strategy.

This chapter reviews what has been done so far to control Aedes aegypti,
current challenges raised by the expansion of Aedes albopictus and growing threats
of zoonotic viruses, and what innovations are under development to reduce
mosquito-borne transmission of viruses. French overseas territories and the
Americas are the focus here due to the special challenges they are facing to
control mosquito vectors.

Controlling Aedes species in urban areas:
Aedes aegypti and Aedes albopictus

Aedes aegypti and Aedes albopictus are the main urban vectors of arboviruses, the
arthropod-borne viruses of yellow fever, dengue, chikungunya and Zika that
threaten more than 3 billion people living in Aedes-infected areas worldwide
(Wilder-Smith et al. 2017). Aedes species are optimally adapted for transmitting
viruses from human to human: they can carry multiple arboviruses, are
anthropophilic (prefer humans for blood feeding), bite during the day and feed
multiple times, fly only short distances and prefer to breed in small human-made
containers. Additionally, Aedes eggs are resistant to desiccation, giving them the
advantage of spreading their offspring to new territories worldwide through
human travel and commercial trade (Kraemer et al. 2019, Marcondes 2019).

Even though the two dominant Aedes vector species look very similar,
their biology, ecology, behaviour and history of colonization reveal important
differences. Ae. aegypti originated from forests of the western part of Africa and
began spreading around the world through the transatlantic slave trade in the
sixteenth century (Powell et al. 2018). This forest-dwelling species adapted
to urban areas by becoming more anthropophilic and breeding specifically in
human-made containers such as cisterns and buckets. This urban mosquito is
closely tied to human habitation in all steps of its life cycle and is found less
abundantly in rural areas and rarely in natural breeding sites. Ae. aegypti has
colonized urban areas of subtropical and tropical regions around the world and is
the main vector of the yellow fever virus, along with dengue viruses, and more
recently chikungunya and Zika viruses.

Aedes albopictus, the Asian tiger mosquito, originates from forests in Asia and
has become the world’s most invasive mosquito species, colonizing all areas of the
planet over the last 30 years within its preferred temperature range. Even though
its ecological niche seems similar to that of Ae. aegypti, this species tends to be
more rural, develops in a larger variety of natural and human-made breeding sites
and adapts to a wide range of temperatures due to its capacity to lay cold-resistant
eggs that can survive winter temperatures during its diapause stage (Paupy et al.
2009). Ae. albopictus is also less selective about hosts and can be found feeding
on animals as well as humans. It does not transmit dengue and yellow fever
quite as efficiently as Ae. aegypti and has until recently been considered more of
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a nuisance than a public health concern. However, Ae. albopictus revealed its true
colours during the 2006-2007 chikungunya outbreak that hit the Indian Ocean
Islands, Central Africa, India and Italy. Ae. Albopictus’ growing distribution to
more temperate latitudes and its ability to transmit about 26 different arboviruses
between human and animal hosts makes it a growing threat in temperate regions
(Paupy et al. 2009).

In some areas, the ranges of these two species overlap, sharing resources, often
laying eggs in the same breeding sites and intermingling in ways that were never
possible in their native ranges. Ae. albopictus has largely displaced the longer-
established Ae. aegypti in many areas in the southeastern United States, creating
complex interactions of competition, cross-mating and evolutionary pressures
between these two invasive species (Bargielowski et al. 2013). The ongoing
expansion of these two species to new locations in urban and rural communities
makes them a central concern for public health. Due to the similarities between
these species, control methods are often the same regardless of the presence of
one or both species in the area.

Vector control: where, when and who?

The most familiar stage of the mosquito, the winged adult, is the form that is
responsible for disease transmission. However, the mosquito’s life cycle involves
both aquatic and aerial stages, all of which can be targeted by mosquito control
methods for preventing disease. The World Health Organization (WHO)
provided the first guidelines for dengue control and prevention, including vector
management, in the 1990s, but the importance of Aedes control took a new turn
with the strong support given to the Global Vector Control Response by member
states during the World Health Assembly in 2017 (WHO 1997, UNICEF/
UNDP/World Bank/WHO 2017). These guidelines include protocols for
environmental management of natural and human-made mosquito breeding
sites, chemical and biological control agents for treatment of larval and adult
stages and best practices for encouraging community engagement (WHO 2012).
Mosquito control activities are most successful when multiple approaches are
combined and coordinated with other health, environmental and community
sectors to produce an integrated approach to mosquito management.

Vector control measures targeting the aquatic larval and pupal stages focus
on the removal of human-made containers where Aedes mosquitoes prefer to lay
eggs, or these watery habitats can be treated with chemical or biological com-
pounds (i.e. Bacillus thuringiensis) to arrest development or kill immature stages
and consequently reduce adult population density (Achee et al. 2015). Preventive
measures such as the regular removal of stagnant water (locations A—E, in Figure
14.1) or covering water storage containers are strongly recommended (control
measures 1-5 in Figure 14.1). Deployment of larvivorous fish or copepods alone
or in combination with other methods has shown low levels of efficacy (Lazaro
et al. 2015, Han et al. 2015).
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FIGURE 14.1 Suitable habitats for Aedes species and vector control methods. Aedes albop-
ictus and Ae. aegypti breed in human environments. Ae. albopictus also develops in more
natural habitats such as ponds, plants that hold water or tree holes (A). Both species are
often found breeding in flower pots (B), gutters (C), water containers (D) and water col-
lected in garbage of all sorts such as tyres, fridges and discarded containers (E). To reduce
vector—human contact, several measures are used by people and public health authorities.
Source reduction eliminates suitable places for females to lay eggs by properly covering
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water storage (1, 2), removing stagnant water (3), cleaning houschold premises (4), avoid-
ing garbage accumulation (5) and treating large ponds or reservoirs. To prevent human—
vector contact, people at high risk can stay under bed nets even though Aedes mosquitoes
are daytime biters, and screening can be installed in windows (6). Additionally, insecticide
spatial spraying is performed indoors (7), outdoors (8—9) and occasionally by aircraft (10).
The successful control of Aedes mosquitoes is based on the coordinated efforts of com-
munities and public health authorities and by educating the youngest generation to take
an active role in prevention (1). llustration by Vincent Jacquet.
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Interventions against adults aim to kill them in their aerial stage or interrupt
female biting to prevent human—vector contact. Measures that target adult fer-
tility and their ability to produce viable eggs aim to reduce future generations
that may transmit disease (control measures 6—10 in Figure 14.1). Various adult
behaviours can be targeted, including mating, host-seeking, blood-feeding, rest-
ing and egg-laying (oviposition). Current Aedes adult control in most countries
around the world is based primarily on spraying chemical insecticides formulated
for outdoor application via trucks or hand-operated backpacks or in targeted
locations where adults can be found resting, such as vegetation for Aedes albop-
ictus or indoor areas for Aedes aegypti (Achee et al. 2015, Faraji and Unlu 2016).
Aircraft are also occasionally used as an emergency method (Britch et al. 2018,
Likos et al. 2016).

An appropriate combination of vector control measures that target both
immature and adult stages of the life cycle is recommended for maximizing
density reduction and interrupting eventual virus transmission (Hierlihy et al.
2019). In areas with endemic arbovirus transmission, a low density of mosqui-
toes is achieved by routine larval control year round, with vector control teams
implementing breeding site removal or treatment. During periods of high arbo-
virus transmission or epidemics, chemical applications, both indoor and outdoor,
are used to control adults and reduce mosquito—human contact. Community
involvement and participation in reducing breeding sites in urban areas requires
sustained education and dedicated social mobilization (location 1, Figure 14.1).
A combination of routine surveillance of mosquito breeding activity and disease
cases in humans and potential animal hosts is essential for triggering early control
strategies for preventing widespread disease transmission.

The decision of when, where and how to control mosquito populations is best
made through integrated entomological and epidemiological surveillance as part
of a comprehensive management plan (UNICEF/UNDP/World Bank/WHO
2017, Roiz et al. 2018). Without the commitment of political, operational and
community stakeholders, such a plan cannot be sustainably developed, validated,
funded and implemented (Horstick et al. 2010). Furthermore, local governance
and operational policies are structured differently depending on local transmis-
sion patterns and the available human capacity and resources. In the end, the
successful early interruption of disease transmission depends on interagency pre-
paredness and coordinated actions (Roiz et al. 2018).

Success stories in Aedes aegypti and disease control

The efficacy of vector control is measured at different steps: lowering density
and/or human—vector contact, epidemiological impact and its sustainability over
time. There is some evidence that mosquito density can be reduced for a period of
time thereby preventing epidemics, but few studies have rigorously demonstrated
the long-range efficacy of vector control interventions (Wilson et al. 2015,
Bowman et al. 2016). Part of the challenge is demonstrating effectiveness of a
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specific vector control strategy in a treatment area compared to a similar control
area with no such intervention. Such experimental protocols are hard to justify
during a public health emergency since the control area could be exposed to
higher risk of infection and disease. This is part of the reason why clear evidence
on the epidemiological impacts of vector control is scarce. However, there are
three examples of sustainable success stories in interrupting yellow fever and
dengue transmission.

Several reports claim stories of successfully eradicating yellow fever in the
early 1900s in the Americas and the Caribbean when the yellow fever virus
and its transmission by Aedes aegypti was first described (Soper 1963). Following
reports of early successes in reducing urban yellow fever cases and the discov-
ery of DDT (dichlorodiphenyltrichloroethane) as an effective tool in this effort,
the Rockefeller Foundation embarked on a worldwide yellow fever and malaria
eradication programme in the 1940s (Soper 1963). Combining vaccination with
mosquito control, the Rockefeller programme paved the way for modern vector
control techniques by relying on large-scale indoor residual spraying of DDT.
The effects on Ae. aegypti populations were drastic and the species was believed
to be eradicated in the Americas. For a decade no record of either the mosquito
or any of the diseases it carried was published.

However, a subsequent progressive recolonization of the mosquito across
the continent brought dengue fever and other arboviruses with it (Soper 1963).
Pockets of urban yellow fever outbreaks were controlled with vaccination.
Malathion and other organophosphorus compounds became the new adulticides
of choice, combined with removing larval breeding sites and engaging com-
munity through education campaigns. During outbreaks, outdoor spraying of
insecticides was favoured over indoor residual spraying.

The return of Ae. aegypti was accompanied by an increase in dengue
outbreaks, as all four dengue serotypes colonized the Americas. One country
was an exception: for 15 years from 1981 to 1997 Cuba managed to remain
free of dengue and recorded very low densities of this mosquito. During this
period in Cuba an intense programme of surveillance and control was enforced
in two phases by combining adult and larval control. The first phase involved
massive ultra-low volume (ULV) spraying of malathion by aerial and ground
application both indoors and outdoors. Phase two involved nationwide breeding
source removal with education programmes for the general population and law
enforcement that focused on limiting suitable conditions for larval development
in backyards and houses. This combination of vector control methods was
accompanied by an emphasis on entomological surveillance, source reduction
and larval control (Armada Gessa and Figueredo Gonzilez 1986). However, in
1997 an increase in vector density, most likely due to weakening in surveillance,
along with the introduction of foreign infections, caused the re-emergence of
dengue on the island (Kouri et al. 1998).

Another example of success occurred in Singapore during the 1960s, when
authorities combined strict larval control with law enforcement after the
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emergence of dengue transmission in the island city-state (Oo1 et al. 2006). The
programme resulted in low incidence of disease and low entomological indices
for 15 years. However, since the 1980s, dengue cases have increased in the city
despite low mosquito numbers. Several reasons are hypothesized to explain this
disease expansion: the absence of immunity, reduced vector surveillance for
case detection, introduction of foreign cases, and possibly a shift in mosquito
behaviour.

Aside from these examples, worldwide Aedes vector control efforts have not
succeeded in sustainably reducing the arbovirus burden in recent decades.

Reasons for failure: chemical and social

These experiences present many lessons to inform future surveillance and control
strategies. Investigating the reasons for what has failed to sustain long-term
effects 1s crucial to developing strategies for stopping the transmission of Aedes-
borne diseases. The massive elimination campaigns of the 1940s in the Americas
relied heavily on chemical control methods and top-down organization, neither
of which are feasible or sustainable today. The authoritarian campaigns were
successful for a period of time but led to neglected surveillance and vector
control programmes once the vector was thought to be eradicated. Ae. aegypti has
now recolonized all of South America, reaching all the way to its southernmost
temperature limit in Argentina where it recolonized the capital, Buenos Aires,
in 1991 (Zanotti et al. 2015).

With our current understanding of the long-term environmental consequences
of chemical insecticides, the mass spraying of DDT and similar materials is no
longer an acceptable strategy, and not only because of environmental concerns.
Indeed, chemical control methods for both larvae and adults are reaching the end
of their effective use for sustainable control because Aedes populations worldwide
are becoming resistant to a wide range of compounds. Early evidence of resistance
was found with DDT, followed by resistances to a range of organophosphates
including the larvicide temephos (Moyes et al. 2017). Malathion remains a useful
compound for mosquito control, but its toxicity to mammals restricts its use. The
biological insecticide Bacillus thuringiensis var. israelensis, for which no resistance
has yet been observed, has largely replaced temephos.

Pyrethroids, then, have become the insecticide of choice: inexpensive,
harmless to wildlife, and applicable indoors as spatial and residual spray, outdoors
as ultra-low volume (UVL) aerosol, and even impregnated in cloth material.
These advantages are leading to a monotherapy conducive to the widespread
development of resistance (Moyes et al. 2017). In addition, since 2010, pyrethroids
are the only approved compounds for adult insect control in the European Union.
In the absence of any alternative, some areas such as French overseas territories
have arrived at a chemical control dead-end.

Aside from the widespread mosquito resistance, the method of spraying large
quantities of insecticide in the environment is itself controversial because of the
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lack of evidence for efficacy, high cost, slow operational response, low com-
munity acceptance, and the potential impacts on non-target organisms in the
environment (Esu et al. 2010, Knauer et al. 2017). Selective pressures exerted
on Aedes populations from vector control are compounded when the same pyre-
throid insecticides are used against pest mosquitoes, found in household insec-
ticides and impregnated gardening and personal protection materials, driving
pyrethroid resistance even further and possibly preventing its reversal (Macoris
et al. 2018, Gray et al. 2018).

We have arrived at the point where both chemicals and the methods for apply-
ing them may be ineffective for controlling Aedes, with few acceptable alternatives
existing. At the very least, chemical applications for emergency tools could be
regained by mandating non-chemical alternatives for non-emergency situations,
or by developing novel compounds that target the vectors with other modes of
action and that are more selective for mosquitoes (Dusfour et al. 2019). In the
absence of novel tools that are validated, recommended or available, one possibility
is to increase the use of pyrethroid-impregnated materials (in window curtains,
for example) and the reinstatement of indoor residual spraying with pyrethroids
(Samuel et al. 2017, Banks et al. 2015). These options are less harmful for the
environment as they are localized to the indoors and effective against non-resistant
strains of Ae. aegypti which prefer to rest indoors. For Ae. albopictus mosquitoes that
tend to rest outside households, these alternatives would not be effective. In the
absence of efficient compounds against adults, the only other effective options are
the application of larvicides or the alteration of larval breeding sites for large-scale
mosquito population control. Typically, water collection areas or containers are
drained to eliminate putative breeding sites, covered to prevent egg-laying, filled
in with sand to keep moisture for gardens without stagnant water or manipulated
in such a way that mosquito larvae cannot develop or grow.

Because Aedes females prefer to lay eggs in small human-made containers of
water, households (especially those without reliable piped water) are an impor-
tant source of breeding grounds for the mosquito. Community engagement,
therefore, is essential for comprehensive larval control. However, such engage-
ment has not shown long-lasting success outside of the Cuban and Singaporean
examples, both of which involved strong, authoritarian enforcement. Even
though education and promotion plans were integrated into strategies, top—
down approaches push the population to rely on authorities and to ignore their
own personal role and responsibility in source reduction (Perez-Guerra et al.
2009, Mieulet and Claeys 2014). This behaviour is exacerbated by the belief that
neighbours are not doing enough and individual efforts are made in vain (Ibarra
etal. 2014). The mosquito is generally and universally hated mainly because of its
bite: people are often more motivated by the nuisance they cause than by diseases
they transmit (Dickinson and Paskewitz 2012). Reducing Aedes breeding sites,
however, does not always have a direct and noticeable effect on the perception
of overall nuisance, since bites may continue even from a diminished population
or from other mosquito species. In contexts where other, more critical health
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and safety concerns dominate, mosquito-borne diseases may not take priority
in the lives of the community so that communication tools developed by vec-
tor control authorities may be ignored or misunderstood (Mieulet and Claeys
2014, Anderson et al. 2020). Being sensitive to local beliefs and instilling a basic
understanding of disease transmission and the mosquito life cycle are also criti-
cal for mobilizing the population to act as participants in mosquito control and
participate in bottom-up interventions (Ibarra et al. 2014, Paz-Soldan et al. 2011,
Frank et al. 2017). Developing effective social strategies to support vector con-
trol strategies has therefore become a key recommendation and the WHO has
published recommendations for guiding and supporting socially sensitive vector
control teams (Bartumeus et al. 2019, Parks and Lloyd 2005).

A team of vector control specialists cannot possibly monitor all potential
breeding sites when larvae can develop into adults in only two weeks under
optimal temperature conditions; therefore, involving communities in control and
surveillance is essential for efficiently covering or disrupting all possible breeding
sites (Gubler and Clark 1996). Successful examples of community engagement also
highlight the importance of regular surveillance protocols to monitor mosquito
activity, disease incidence and mosquito resistance and then sustain these efforts
over time (Bardach et al. 2019, Sulistyawati et al. 2019). This integrated approach
has been advocated for decades but requires intensive and constant efforts from
all stakeholders, even during periods when there is no disease transmission. The
best results require political commitment, sustainable allocation of resources for
planning and surveillance, as well as the training of public health authorities as
part of an integrated and holistic approach for mosquito control. Despite decades
of Aedes vector control experiences, widespread comprehensive and sustained
strategies of mosquito control are not currently the norm in most endemic areas
(Roiz et al. 2018). As a consequence, sound strategies have by and large failed to
be implemented or sustained (Gubler 2005, Roiz et al. 2018, WHOPES 2010).

In the face of dramatic recent increases in dengue and other arboviruses,
few success stories and little solid evidence for effective mosquito control, many
questions are left open about the future prevention of vector-borne diseases
(Bowman et al. 2016). For decades, the challenges and the calls for action have
been stated in publications and reports—yet dengue remains a neglected disease.
With a 30-fold increase in the past 50 years, dengue is finally being taken seriously
(UNICEF/UNDP/World Bank/WHO 2017, WHO 2012). The re-emergence
of yellow fever, the Zika outbreak and the emergence of other novel sylvatic
arboviruses carry a warning to authorities and the public about an imminent
threat. Aedes-borne arbovirus transmission is finally drawing the attention of
researchers to develop new tools for surveillance and control.

The future of control against Aedes and disease

The global community is facing new challenges in controlling arboviruses.
At the same time, modern vector control is still placed firmly in the dream
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of past successes, expecting old tools and old methods to be efficient against
new diseases, impacting only the targeted vector, while being environmentally
friendly, sustainable and acceptable by communities all over the globe. Clearly,
new tools and strategies are urgently needed.

As the number of available and effective compounds continues to decrease,
it is of primary importance to regain the efficacy of pyrethroids and avoid
further development of resistance. Integrated vector control must include
monitoring insecticide resistance and measuring current insecticide efficacy in
a comprehensive plan (Dusfour et al. 2019). Available control compounds are
scarce but remain crucial for emergency control during outbreaks. As mentioned
earlier, the efficacy of spatial sprays is debatable but pyrethroids could be used for
indoor residual spraying or impregnation of materials. To reduce the selection
pressure for resistance, alternative tools must be developed, validated and
deployed.

To ensure the quality and effectiveness of proposed products and tools,
the WHO has established the Prequalification Team (PQT), which replaces
the WHO Pesticide Evaluation Scheme (WHOPES). The PQT supports the
development, evaluation and adoption of novel control methods. An independent
Vector Control Advisory Group provides additional guidance to product
developers, innovators and researchers, including guidelines on the acquisition
of epidemiological data, study design and new vector interventions. This group
also provides advice to the WHO Strategic and Technical Advisory Group for
neglected tropical diseases.

Based on the failure to maintain long-term successes in past control efforts
and the expanded knowledge that the research and vector control communities
have accumulated over the years, a more integrated view of vector strategies
and technological advances has led to a suite of novel tools and new methods to
implement them. While professional teams are still mainly responsible for imple-
mentation, the general public is now involved at an early stage, becoming an
obvious and necessary component to establish and sustain vector control knowl-
edge and practices in the affected communities (Kolopack et al. 2015, Ernst et
al. 2015). Research in citizen and social sciences such as anthropology are also
accompanying the expanded use of social networks and integrating mobile and
geospatial technologies for providing new potential for vector control (Sousa et
al. 2017, Hamer et al. 2018). Better understanding of the community’s percep-
tion, knowledge, practices, beliefs and reluctance/acceptance of mosquito control
is crucial for developing appropriate local communication and media messages
(McNaughton 2012). Education must be sustainably implemented beginning at
a young age, and adapted to local beliefs, habits and infrastructure. People must
mobilize not only for vector control but also for surveillance in cooperation with
a coordinated public health framework.

The research and development of new tools for targeting vector species is
revealing more efficient and environmentally friendly techniques. One category
is based on the knowledge of the vector’s biology, behaviour and ecology to trap
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or otherwise prevent it from coming into contact with people. For example,
there are autodissemination traps, which exploit the cryptic behaviour of
oviposition, when adult mosquitoes pick up a residue of larvicide that they then
spread to other breeding sites (Maoz et al. 2017). Toxic baits that contain a sugar-
insecticide compound target behaviours of both adult male and female sugar-
feeding (Revay et al. 2014). Those tools are currently under evaluation, and even
though some have proven their efficacy in reducing mosquito density, none have
yet demonstrated epidemiological successes. These tools are relatively easy to
implement and can be widely distributed, although their chemical composition
may require authorization in areas where they are not commercially available.
The fact that such tools rely on community involvement may factor into their
chances of success (Faraji and Unlu 2016). Other tools such as the trapping of
large numbers of adults through attractant compounds and behaviour-modifying
compounds have shown promise in lab tests. However, better attractant
compounds are still needed to demonstrate significant reductions in mosquito
density (Degener et al. 2015, Obermayr et al. 2015).

The second category of novel control technologies relies on genetic modifi-
cation (GM) of the mosquito (Qsim et al. 2017). The objective here is to pro-
duce non-fertilized eggs or non-viable offspring, thereby reducing the density of
future generations. The sterile insect technique can be achieved through several
methods. One method focuses on producing sterile males by irradiation (SIT);
another relies on genetically modified mosquitoes to carry a lethal gene (RIDL);
a third method utilizes insect incompatibilities with Wolbachia-modified mosqui-
toes (II'T) (Crawford et al. 2020, Kittayapong et al. 2019, Thomas et al. 2000).
The last has the advantage of inhibiting arbovirus multiplication and interrupt-
ing its transmission (Ryan et al. 2019). In addition, the RNA interference tech-
nique is being tested for mosquito control as both SIT and insecticidal tools
(Giesbrecht et al. 2020). Whether alone or in combination, SIT, RIDL and IIT
mosquitoes have proven to be of some efficacy in controlling insects in field
trials, but so far such techniques have shown only preliminary evidence for con-
trolling disease (Crawford et al. 2020, Bellini et al. 2013, Carvalho et al. 2015,
Kittayapong et al. 2019).

The general public and government agencies are often sceptical about geneti-
cally modified or altered mosquito technologies and more evidence for their
efficacy 1s needed before they can become part of a public campaign to improve
their acceptance (Ernst et al. 2015, Kolopack et al. 2015). Such concerns were
heightened with the discovery in Brazil that genetically modified Ae. aegypti
transferred some of their GM genes into the wild population (Evans et al. 2019).
In Europe, GM mosquitoes are highly regulated and access to such technology is
controlled and limited. Because mosquitoes irradiated to produce sterile offspring
(SIT) are not considered genetically modified, some have been used and tested
in Italy and in Reunion Island, France. Guidelines and principles for evaluating
fertility-altered mosquitoes are different from one country to another (Panjwani
and Wilson 2016). In any case, all methods targeting mosquito fertility entail
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significant costs to maintain dedicated infrastructure and personnel for long-
term mosquito mass-rearing and release (Meghani and Boéte 2018). At present,
none of the new tools are fully validated or widely available, leaving traditional
insecticides and source reduction methods as the sole pillars for controlling mos-
quitoes in the context of disease epidemics.

Zoonotic and epizootic mosquito control

While urban vectors and their associated arboviruses are at the centre of con-
trol efforts in both temperate and tropical areas, a growing concern is arising
around zoonotic diseases. Viruses (and other pathogens) cycle between forest-
dwelling mosquitoes and wild animals. Viruses such as Zika can be transmitted
to humans when the virus enters an urban cycle with Aedes mosquitoes or it
can be aided by bridge mosquitoes like Ae. albopictus that move between rural
and urban habitats (Pereira et al. 2020). Many of these viruses infect humans as
accidental and dead-end hosts, meaning that the virus may infect a human but
is insufficiently amplified in the human body to be transmitted to another mos-
quito (Weaver and Reisen 2010, Wilder-Smith et al. 2017). Such is the case for
West Nile virus, Usutu, Eastern equine encephalitis and Serogroup California
viruses, which have all attracted attention in Europe and North America in
the last few years (Gill et al. 2019, Lindsey et al. 2020, Vilibic-Cavlek et al.
2019, Calzolari et al. 2020). West Nile virus is of particular concern, and has
received more research since its arrival and expansion in North America in the
late 1990s.

With the emergence of more viruses using humans as dead-end hosts, con-
trolling transmission has become an important challenge. The culprit mos-
quito species do not all belong to the genus Aedes, with Coquillettidia, Culex and
Culiseta also implicated, mosquitoes with vastly different ecologies and some
already recognized as nuisance pests (Sherwood et al. 2020, Hesson et al. 2019,
Martinet et al. 2019). Several of these latter mosquito species transmit viruses
to humans with varying abilities. Their physiological and ecological require-
ments are as different as are their life cycles over the seasons. Unlike Aedes, few
are container-breeders, for example, creating complications for integrated vec-
tor control strategies in areas they coinhabit with other vectors. Such mosqui-
toes do not transmit disease as readily in their urban cycles, with the effect that
there is not as much research about ways to include their habits in integrated
vector control plans.

Controlling these other vector mosquitoes therefore presents difficult chal-
lenges. Personal protection and prevention measures such as topical repellents
are recommended along with larval control; controlling adults or releas-
ing sterile males are not recommended against West Nile virus (Hongoh et
al. 2016, Campagna, Trudel and INSPQ 2018, CDC 2019b). Reduction of
West Nile vectors by larvicides or adulticides often depends on mass spray-
ing, a decidedly old-fashioned technique. Strategies tend to be implemented
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in emergency mode relying on tools already in place for controlling nuisance
or other vector mosquitoes (CDC 2019a, Werth 2019). With such outbreaks
occurring with increasing frequency and greater severity, the means of con-
trolling target mosquitoes or otherwise reducing disease transmission should
be carried out with consideration for environmental impacts. To complicate
matters, some of these species are already resistant to insecticides, leaving their
efficacy unproven in both reducing mosquito numbers and transmitting dis-
eases (Scott et al. 2015, Dunbar et al. 2018). Novel control methods need to be
developed but the knowledge of these species is scarce, leaving the first-line
strategy one of heightening people’s awareness of using personal protections
and developing efficient surveillance tools (Kading et al. 2020, Hongoh et al.
2016, Lindsey et al. 2020).

Conclusion

Since the discovery of the mosquito’s capacity to transmit pathogens that cause
diseases, humanity has tried to control these vectors to reduce the disease
burden. The vectorial systems involve hosts, vectors and pathogens in the
natural environment in a complex interplay that is constantly evolving under
selective pressures. To reach a point where people and mosquitoes can achieve
a sustainable and acceptable equilibrium that simultaneously preserves human
health and protects the environment, one must aim to integrate all aspects of
the ecology of mosquito-borne disease with the habits of the few mosquitoes
that transmit those diseases. Just as the Aedes aegypti mosquito has fully adapted
to living with humans, people must learn to adapt their own habits and
urban environments to minimize their exposure to this and other dangerous
mosquitoes. Targeted and integrated approaches for reducing the transmission
of urban mosquito diseases have been advocated for decades but are unevenly
applied due to their costs, limited human capacity, community apathy and
weakness of the political will that is required to sustain these efforts during
interepidemic periods. With the rising threat of mosquito-borne diseases, these
approaches must be strengthened and adapted if we want to reduce pathogen
transmission.
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DESIGNER MOSQUITOES?

Prospects and precautions of genome-
edited insects for public health

Ramya M. Rajagopalan

Some of the most fascinating of the new methods [for controlling insect
pests| are those that seek to turn the strength of a species against itself—to
use the drive of an insect’s life forces to destroy it.

—Rachel Carson, Silent Spring, 1962

Among the many influences theorized across human societies as the animat-
ing “life force” giving rise to the splendid diversity of Earth’s biomes, perhaps
none has been so fetishized by the public and scientific consciousness as the
biochemical macromolecule known as deoxyribonucleic acid or DNA: made
up of sequences of the nucleotides A, T, G and C, code for genes and genomes
throughout the plant, animal and microbial kingdoms. DNA metaphors, like the
“book of life” and “the age old language of the living cell,” have been critiqued
for their over-simplification of life processes (Keller 1995). Nevertheless, the idea
of DNA as the animating molecule of life has been fashioned into a ubiquitous
icon of heredity, unfairly burdened with the responsibility of an outsized and
deterministic influence on the entirety of the intergenerational processes that
support life on earth. This “mystique” of DINA as the control centre of all life
(Nelkin and Lindee, 2004) is increasingly contested. New research in fields such
as epigenetics show that DNA is but one factor among a host of complex biologi-
cal, social and environmental interactions to which living things are subjected
and which shape them at every stage of development, within and across genera-
tions. But the chemical and informational simplicity of DNA, and its ubiquity
across lifeforms, have become a convenient conceptual platform from which to
fantasize about the possibility of manipulating and modifying DNA, and of shap-
ing life into new forms that are subservient to human desires.

The dream of altering or rewriting DNA has been made concrete in the
twenty-first century through a set of techniques known as “gene editing” or
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FIGURE 15.1 Schematic of CRISPR -Cas9 mediated gene editing. Source: Adapted from
Jinek et al. 2012.

“genome editing,” which have transformed scientific research. Gene editing
repurposes the bacterial surveillance system known as CRISPR-Cas9, which
microbes use as a kind of immune mechanism to identify and defend against
invading pathogens like viruses. The catalytic engine of this molecular machine
is the enzyme Cas9. Short sequences of ribonucleic acid (RNA) guide Cas9 in
locating complementary target sequences in the genome, where Cas9 separates
and cuts the two strands of DNA, initiating the rewriting of the target DNA
sequence (Figure 15.1). This seemingly simple sequence of steps comprises a
powerful molecular technology. Indeed, CRISPR-Cas9—mediated gene editing
is just the latest in a long line of genetic engineering tools developed by molecu-
lar biologists who have sought to read, write, cut, paste and rewrite DNA to
meet human needs.

Since the 1960s, scientists have used genetic engineering to successfully
mass-produce vital protein-based drugs like insulin, blight-resistant crops and
catalytically active enzymes that form laundry detergent and cheese. Yet many
early genetic-modification tools were imprecise, time-consuming and expen-
sive, restricting their possible applications. CRISPR-Cas9 represents a new—if
controversial—kind of genetic engineering that can theoretically be used to cut,
paste or edit any piece of DNA, in any organism on the planet, relatively easily
and cheaply. This technology is potentially world-changing.

Envisioning it as a kind of genetic surgery, enthusiasts see limitless pos-
sibilities for gene editing, from curing disease, to improving crops, eliminat-
ing insect and fungal pests, and transforming living things into what humans
wish them to be. Alongside hopes of transforming health care, agriculture and
species conservation, the spectre of CRISPR-Cas9 has also sparked intense
debate. This gene-editing technology may allow humans to make irrevocable,
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permanent changes to other species, but its downstream consequences are still
poorly understood.

Within global public health, recent efforts have sought to harness gene editing
to accelerate the “end of malaria” and other vector-borne diseases. By geneti-
cally modifying disease-carrying insects, the aim, borrowing Rachel Carson’s
framing, is to use the very “life forces” of the vector to destroy itself, or at least
to block its ability to transmit the pathogens that have long decimated human
populations. As this chapter discusses, the ways in which genetic engineer-
ing figures in controlling vector-borne disease illuminates the social, political
and economic complexities of utilizing a high-tech approach, challenging our
assumptions about the role of human intervention in a delicate global ecosystem.
As with any technology, genetic engineering technologies can embody specific
political and moral orientations to the problems they seek to address.

The elusive nature of vector control

Efforts to manipulate the genetic composition of mosquitoes follow on a long
history of often frustrated attempts to rid human societies of mosquito-borne dis-
ease. For centuries mosquitoes have been viewed as pests, insects whose tiny size
belies the throbbing, itchy sting of their blood-sucking bite. But they also serve as
unwitting vectors for parasites, like those of the genus Plasmodium, which cause
malaria, a debilitating disease that devastates hard-hit communities in South and
Southeast Asia, sub-Saharan Africa, and northern South America. Annually, hun-
dreds of thousands of children and adults lose their lives or their livelihoods to
malaria (WHO 2020). Among the 112 genera and over 3,500 species of mosquitoes
which have been identified, the females of just a handful of species in three genera
bite humans to nourish developing eggs, sometimes transmitting disease-causing
viruses and parasites. These Anopheles, Aedes and Culex mosquitoes have been the
focus of efforts to use genetic approaches for vector control.

In the 1940s, the development of the potent insecticide known as dichlorodi-
phenyltrichloroethane (DDT) fueled over three decades of vector control and
eradication campaigns aimed at alleviating the public health burdens posed by
mosquitoes (Stepan 2011). The World Health Organization (WHO) initiated the
Global Malaria Eradication Programme in the 1950s in an effort to eliminate
malaria in Europe, Asia and the Americas, in part by spraying millions of tonnes
of DDT. However, DDT is quite toxic and persistent in the environment, and
humanity’s growing reliance on it was destroying fragile ecosystems (Carson
1962). Further, mosquitoes rapidly began to develop resistance to DDT and to
later pyrethroid-based insecticides that replaced it, even when exposed to previ-
ously lethal concentrations.

As eradication attempts faltered and were suspended in the 1960s, mosquito
vectors returned and brought with them a resurgence of disease. Some nations
and localities temporarily or permanently quashed vector-borne diseases, as
the United States did for mosquito-borne malaria, while others struggled with
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rebound malaria. Surviving a bout of malaria could also be protective; when
DDT dramatically reduced local mosquito populations and thus the incidence of
malaria infections over several years, children no longer encountered the para-
site early enough in their development to acquire short-term immunity. Some
rebounds were therefore even more deadly than the original epidemics (Cohen
et al. 2012).

Into the lively, bloody politics animating failed mosquito eradication
campaigns, then, the new DNA editing technologies are being tested as a
means of exerting genetic control over insect pests. These high-tech efforts are
unfolding in the 2000s in the context of a renewed malaria elimination agenda
crafted by the WHO’s Global Malaria Programme, in concert with governments
and philanthropies. Under their auspices, research groups around the world have
pivoted to developing novel chemistries for next-generation insecticides, and
more controversially, re-engineering the very DNA of mosquitoes. Twenty-
first-century biotechnology might enhance the arsenal of vector-borne disease
control, but not without social, political and ecological ramifications. It also
unleashes the power to alter the direction of evolutionary change in target species
(Noble et al. 2018). Community members, civil society groups, journalists,
scientists, policy-makers, regulators and ethicists, have all raised cautions about
deploying genetically edited mosquitoes into the wild.

Gene drives: high-tech mosquito control?

Several types of genetically modified mosquitoes are currently under develop-
ment. The British-based company Oxitec has field-tested millions of labo-
ratory-made, transgenic Aedes aegypti mosquitoes in Brazil and the Cayman
Islands, in an effort to control dengue, Zika, chikungunya and yellow fever.
They have yet to publish epidemiological results from these open field experi-
ments, which could take years. Oxitec engineered male mosquitoes with a
gene that kills female offspring; when the modified males are released and mate
with wild females, only males survive to adulthood, leading to population
collapse. This approach has sparked heated debates about safety, risks and the
environmental and health consequences of releasing large numbers of geneti-
cally modified mosquitoes, with strong opposition voiced by environmental
and civil society groups. Oxitec has also sought to conduct field trials in the
United States. In 2016, municipal governments in the Florida Keys held a
non-binding referendum asking residents if they would assent to a release of
Oxitec’s mosquitoes in their neighbourhoods. There was significant opposition
to a release (Bloss et al. 2017). Nevertheless in 2020, the US Environmental
Protection Agency and mosquito control district boards in the Keys approved
the release of Oxitec’s mosquitoes, scheduled for 2021.

Another approach known as “gene drive” aims to control malaria-transmit-
ting Anopheles mosquitoes. Gene drives short-circuit the usual patterns of genetic
inheritance to ensure that a particular version of a gene is inherited more often
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FIGURE 15.2 Gene drives override typical patterns of inheritance. Source: Adapted from
E. Otwell and M. Tefler, in Saey 2015.

than by chance. Most genes are represented twice in animal genomes; each chro-
mosomal copy or “allele” has a roughly equal (50%) chance of being passed down
to a given offspring. A gene drive skews these probabilities in favour of one allele
over the other. In a CRISPR-Cas9—based gene drive, gene-editing capabilities are
embedded within the target organism itself, permitting the non-engineered allele
to be rewritten with the same sequence as the engineered allele (Gantz and Bier
2015a, b). This allows any stretch of engineered DNA chosen by humans to be
propagated from generation to generation to both chromosomal copies in virtually
all descendants of a mosquito breeding population, as illustrated in Figure 15.2.
Practical applications of gene drives are enormous, but ethically fraught. Gene
drives could theoretically be engineered into any target species, to rapidly spread a
desired trait to every individual in a wild population. This would give humans the
ability to permanently alter any wild species, with just a few genetic tweaks in the
lab. Advocates of gene drive, such as some scientists and their funders, are excited
by its prospects, framing it as a transformative public health tool that could finally
crush the scourge of malaria. They see CRISPR-Cas9 gene-editing technology as
a marked improvement over brute-force approaches of blanket insecticide spray-
ing, thereby restricting human-induced changes to only a few species within a
diverse geographic area or ecosystem. As philanthropist Bill Gates has written,
“The promise of gene editing is that, instead of killing a bunch of mosquitoes
indiscriminately, we could eliminate only the dangerous ones in a particular area.
That would buy us time to cure all the people there of malaria” (Gates 2019).
Gene drives tantalize with their potential precision, targeting only certain
genes in certain species, interrupting the devastating feature of mosquito vectors,
which is their role as intermediate hosts for organisms pathogenic to humans.
In the public health campaign against malaria, gene drives are being fashioned
into “biomedical weapons” (Packard 2007) against two Anopheles vector species,
stephensi and gambiae. The Bill and Melinda Gates Foundation and the Tata Trusts
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of India have both committed millions to fund research on gene-drive technol-
ogy for malaria control, using suppression and replacement gene drives in West
Africa, and a replacement gene drive in South Asia, respectively. Both types of
gene drive are still in the research and development phase.

Suppression gene drives: eliminate mosquitoes
by preventing reproduction

Target Malaria, a not-for-profit research consortium supported in part by
the Gates Foundation, is designing suppression gene drive technology in
Anopheles gambiae. The mosquitoes are under development in labs at Imperial
College in the UK, as well as in Italy and the United States. Target Malaria
is working with stakeholders, regulatory bodies and communities in Burkina
Faso, Mali, Uganda and Ghana, to explore the feasibility of field release trials.
Their approach exploits an “Achilles’ heel” in the mosquito genome creating
gene-drive-modified mosquitoes with self-destructive genetic mutations. The
mutations would disrupt reproduction, heavily favouring male over female
offspring, and rendering any female offspring sterile. If released in the wild,
the lab-made male mosquitoes would mate with female mosquitoes and
spread the sterilizing mutation to the entire population, resulting over time
in a population of mostly males. As with the Oxitec mosquitoes, with fewer
and fewer mating partners, the population would eventually crash, effectively
wiping it out (Kyrou et al. 2018). Thus, the suppression gene drive could
locally eliminate a target species.

Replacement gene drives: eliminate disease
by vaccinating the mosquito

Rather than wiping out target mosquitoes, the second type of gene drive, known
as a replacement (or modification) drive, seeks to break their disease transmission
capabilities, rendering them harmless. These gene drive mosquitoes are under
development at the Tata Institute for Genetics and Society and the University
of California at Irvine Malaria Initiative, supported by funding from the Tata
Trusts in India and the Gates Foundation, respectively. Engagement efforts are
underway to explore the feasibility of field release trials for Anopheles stephensi
in India and Anopheles gambiae in Sio Tomé and Principe. In this approach,
engineered mosquitoes would encode small proteins designed to destroy invad-
ing Plasmodium parasites, thus “immunizing the mosquito” against the parasite
(Aguilera 2020). If released in the wild, modified mosquitoes would mate and
spread the parasite-defence genes, halting malaria-causing Plasmodium in their
tracks before they ever reach humans. Over several generations, these replace-
ment drives are projected to substitute a disease-spreading mosquito population
with one that is incapable of transmitting malaria to humans (Gantz et al. 2015).
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Gene drives: reimagining human-mosquito relations

While suppression gene drives aim to disrupt mosquito reproduction, replacement
gene drives aim to disrupt infectious disease transmission. Importantly, both exploit
the natural life-cycle behaviours of mosquitoes, their intricate mating rituals and
reproductive movements, to effect human-desired, population-level alterations.
Gene drives would harness, in Rachel Carson’s words, the very “life forces” of the
mosquito to destroy itself or its ability to transmit pathogens to humans. Gene drives
therefore represent a new kind of public health tool by conscripting mosquitoes as
central actors in the solution to the human health problems they themselves pose.

But suppression and replacement drives carry out their purposes in very differ-
ent ways, each representing a contrasting vision, and a different set of political and
moral orientations to the question of how human—mosquito relationships ought to
look going forward. Suppression gene drives posit that a better world is one absent of
vector-transmitting mosquitoes, aligning closely with the vision of earlier eradica-
tion campaigns. This anthropocentric and arguably reductive view serves to amplify
the rhetoric of an age-old war between humans and mosquitoes, their significance to
humans and ecosystems defined entirely by the fact that they transmit human disease.
This position spotlights the pernicious role of mosquitoes in igniting pandemics that
can devastate humans and their governments, economies, and health and welfare sys-
tems. It sidelines appreciation of mosquitoes’ exquisite biology, the singular evolution
of each unique species among a proliferation of thousands, and their remarkable abil-
ity to adapt to a variety of ecological niches and climates. Suppression drives reflect
a moral orientation to efficiently control—and ideally eliminate—the handful of
mosquito species that spread human diseases, so that we may peacefully coexist with
the many other harmless mosquito species.

By contrast, replacement gene drives fundamentally reorient our views away from
the assumption that mosquitoes are merely subservient to human needs. By render-
ing mosquitoes harmless, replacement gene drives serve to reimagine mosquitoes as
vital parts of ecological systems that are not simply harbingers of disease. If historical
campaigns waged against these winged creatures have taught us anything, it is that
human efforts to completely wipe out disease-harbouring mosquitoes are likely to
fail. Replacement gene drives could foster a new dynamic in human—mosquito rela-
tions, encouraging the view that humans and mosquitoes can coexist peacefully and
amicably with each other, provided their antagonistic activities are deactivated. Here
there is a move beyond the contours of a war metaphor being played out in mosquito
eradication campaigns, which rely on a rhetoric of extermination and extinction, to
one positioning mosquitoes as vital elements in a humanized world.

Social and ethical concerns around using
gene drives for vector control

At first glance, a replacement gene drive sketches the possibility of a benign out-
come dramatically reducing or even eliminating malaria, at least locally, without
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exterminating the mosquito vector. Genetic-control enthusiasts point to what they
see as declining efficacies of existing malaria control strategies, such as insecticides
and bed nets, due in part to growing resistance among wild mosquito populations.
Yet many scientists acknowledge that gene-drive techniques will be insufficient to
wipe out malaria, though they may complement existing control strategies in reduc-
ing malaria transmission (NASEM 2016). The current director of WHO’s Global
Malaria Programme, Pedro Alonso, cautions that eradication might be an unrealistic
goal even if genetic technologies can be deployed successtully (WHO 2019).

Owing to their ability to irrevocably change species’ germ lines, both types
of gene drives have become the focus of intense social, political and ethi-
cal scrutiny, inciting guarded responses from government leaders, regulators
and others tasked with assessing their safety and risk profiles. It is useful to
distinguish two, somewhat overlapping sets of concerns around gene drives.
The first has to do with social, political and economic dimensions of gene
drives as a vector control strategy, raising questions around inequality, wealth,
power and poverty within and beyond malaria-endemic regions. The second
set of concerns has to do with environmental impacts of gene drives, including
ecological risks and orientations around how humans may wish to structure
their current and future relationships with mosquitoes and other species in the
natural world, of which we are part.

The sociopolitics of gene-drive-modified mosquitoes

Relations of power, political and economic, typically configure choices and deci-
sions about whether and how a given technology could or should be used. Gene
drives are similarly entangled in social and ethical debates that raise questions about
the undue influence of power, politics and access. For example, some civil society
groups have cautioned against the injection of philanthrocapital into global health
concerns, which allows private charities to exert a defining influence on framing
priorities and their solutions. Although gene-drive advocates have promised to
provide most of the economic resources for developing and deploying gene drives,
this strategy represents a substantial financial investment that, some argue, could
be used to more effectively reduce malaria in other ways, as discussed below. In
addition, research and development on genetically modified mosquitoes is primar-
ily being conducted by labs of the Global North, in the USA and Europe, quite
distant from the sites of their intended release in Asia, Africa and Latin America.
This raises concerns about how to avoid replicating colonial paternalisms, and how
to distribute decision-making authority to those who are most affected by deci-
sions to deploy a gene drive or not. It is important to acknowledge that gene drives
are forms of power mediated by individuals and organizations that have likely
never had to experience a debilitating life with malaria. Furthermore, not all stake-
holders may view the problem as fundamentally one that can be addressed by the
techno-logics of genetic solutions.
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Thus, a key consideration for assessing gene-drive-modified mosquitoes is to
identify whose interests are served by them. Guidance frameworks for gene-drive
development have called for the involvement of diverse stakeholders in trans-
parent, open, equitable and accountable science and decision-making (NASEM
2016). Risks and harms stemming from these technologies are likely to accrue
most to those near a release site. Assessing whether communities actually desire
gene drives as part of malaria control efforts, and, if so, which design best meets
local needs, will require sustained public engagement activities, knowledge shar-
ing and dialogue about potential benefits and harms that are sensitive to local
culture, language and religious practices. In many communities, landscapes are
culturally significant, and traditions and beliefs about the place of human inter-
vention are built around a long history of careful environmental stewardship.
Indigenous communities have valuable local knowledge of disease transmission
and ecosystem dynamics, and involving them as active and equal partners in
gene-drive design and decision-making could ensure that gene drives do not
amplify existing vulnerabilities (Titingfong 2020). Such eftorts should ensure
that conflicts of interest are minimized by involving a range of stakeholders as
partners in decision-making, especially because developers and funders of gene
drives are interested parties with respect to decisions about their implementation.

Defining the relevant community could be challenging, as gene-drive-engi-
neered mosquitoes are not likely to obey political boundaries. There are cases
of mosquitoes being carried by winds hundreds of kilometres from their point
of origin (Huestis et al. 2019) which complicates the use of mosquitoes as pub-
lic health tools (Biesel and Boete 2013). Areas lying near national or regional
borders may be particularly contentious. Some have proposed that every com-
munity member be given opportunities to voice opinions, raise concerns and
register their free, prior and informed consent, while others suggest that elected
or appointed leaders make the final decisions. As gene-drive release areas are
proposed, the prevailing political, social and regulatory contexts of each should
be accounted for to inform the most suitable approaches for empowering local
communities in decision-making about their collective futures.

Finally, some worry that gene drives are reductive and not as cost-effective as
other anti-malarial strategies, or that they fail to generate returns commensurate
with the expense of creating them. Although CRISPR-Cas9 gene-editing tech-
nology is relatively inexpensive, using it to design a gene drive is a very capital-
intensive endeavour. Because malaria is concentrated in regions characterized by
wide economic disparities, stemming from centuries of exploitive, often violent
colonization, affected communities may give first priority to poverty reduction,
educational and employment opportunities, and access to adequate health care,
over deploying a technology whose efficacy and side effects remain uncertain.
Observers of genetic modification approaches have pointed out that alternative
means of addressing malaria might have far greater impacts on reducing morbid-
ity and mortality of a mosquito-borne disease, by using large capital injections
to shore up health infrastructure, or investing in socioeconomically precarious
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regions in ways that would address inequities in access to housing, education and
employment. Such holistic investments would not only help alleviate malaria, a
preventable and treatable disease linked to socioeconomic status, but also raise
the overall standard of living, ameliorating public health far beyond the quelling
of a single disease.

Assessing environmental risks of gene-drive modifications

Gene drives represent an expensive, high-tech endeavour to address what
may be considered fundamentally social problems of vector-borne disease.
Today’s patterns of mosquito distribution are legacies of military conquest
and colonization, stemming from a long history of human encroachment on
natural habitats. Major malaria outbreaks have followed human reshaping of
natural landscapes which fundamentally altered the distribution and flow of
water across the land (Packard 2007). Water is an important feature of malaria
transmission because it is in stagnant pools that females lay their eggs and expand
their population. In recent times, such landscape modifications often stemmed
from redirecting water for power-generating dams or irrigating crops, leading to
flooding in some areas and droughts in others.

Given this history, a key challenge for gene drives is to accurately assess
their risks to organismal and ecosystem health, and their potential for disrupt-
ing relationships between them. The ecological impacts of gene drives are not
yet understood. The World Health Organization, the US National Academies,
and various national and local regulatory bodies, have all proposed stepwise,
phased testing pathways through which gene drives might proceed, begin-
ning with laboratory studies, and moving to confined and open field trials if
local communities approve. Iterative rounds of data collection and assessment
at each step are critical for evaluating efficacy, safety and environmental, ento-
mological and epidemiological impacts. Could gene drives somehow damage
ecosystems or reduce biodiversity? Some have argued that gene-drive-modi-
fied organisms may be pervasive and invasive, advising caution (Noble et al.
2018). Others, particularly civil society groups, worry that gene drives may be
less precise and targeted than intended, potentially transferring altered DNA
sequences to non-target mosquito species, or worse, to other organisms up and
down the food chain. Although it still remains unclear how exactly a gene
drive would perform in the wild and whether it could successfully eliminate
a mosquito species locally, there is much to be learned about how mosquitoes,
individually or collectively, interact with complex ecosystems, and what their
elimination might mean to the biotic and abiotic environment. Might local
elimination of a mosquito species inadvertently lead to local collapse of food
webs? Could another mosquito species expand into the territory of the old,
occupy its niche, and become a new vector for malaria parasites? What level
of knowledge must be attained about knock-on effects and risks to humans,
other species, and local ecological webs, before a mosquito gene drive could
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be deemed safe to deploy? Which uncertainties can be tolerated, and which
cannot? Are there ways to know if a gene drive is getting out of control, and
if so, which measures could be implemented to halt or interrupt the escalating
impacts of a renegade drive? Gene-drive researchers are using mathematical
modelling to investigate possible impacts on shared environments, and develop
mitigation strategies, but few methods currently exist to answer these questions
satisfactorily, and better assessment tools must be developed.

And finally, how might gene-drive-modified mosquitoes impair our under-
standing of and relationships with parasites, malaria and mosquitoes? What
might be undesirably lost in our ability to control vector-borne disease through
the process of deploying gene drives? For example, gene drives could powerfully
shape mosquito evolution, and in turn, shape human susceptibility to mosqui-
toes. Gene-drive scientists worry about the potential for mosquitoes to evolve
resistance to gene drives, just as they did to DDT; such resistances arise readily
in the lab. Some wild mosquitoes may find ways to escape the effects of the
gene drive, retaining their ability to transmit malaria, and possibly rebounding
worse than before. Indeed, any intervention in nature for eliminating or neu-
tralizing a harmful species runs the risk of ultimately aiding its own undoing,
even hastening the evolution of new resistances that evade human control. So,
while replacement gene drives are designed to convert current vectors into non-
vectors, they may also convert these vectors into more virulent varieties (Hayes
et al. 2019). Such evolutionary side effects could have long-term implications for
future efforts to control malaria. Considered another way, redesigning mosqui-
toes might also redesign the human experience of mosquitoes, and the malaria
they transmit, and not necessarily for the better. Gene drives therefore present
planetary scale implications, and the practical and ethical work required to assess
and make decisions surrounding them needs to be commensurate with that scale.

Conclusion: the politics of technoscience

This chapter outlines some of the prospects and precautions of genetic technologies
for the control of mosquito-borne diseases. Gene drives are enlivened biotechnolo-
gies that aim to tweak mosquito DNA to nudge their biology in directions less
pernicious to humans. In so doing, they internalize the problem of vector-borne
disease to the mosquito, rather than to the larger web of social, economic, and
political inequalities that render such diseases fatal in some bodies and treatable in
others. The questions attending gene-drive technologies require us to complicate
the assumption that technologies are innocent or somehow apolitical. As theorists
of technology remind us, technologies are never ethically or politically neutral.
Rather, they are “forms of life” that “restructure our physical and social worlds,
and so how we live” (Winner 1983). The technology of gene drive, an altered but
living, respiring, mosquito, is doubly a “form of life” (Sandler 2019). Technologies
express the ethical and political orientations of their designers, and the futures they
wish to implement. The two gene-drive designs of suppression and replacement
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represent starkly different responses to the question of whether disease-carrying
mosquito species should exist. The choice of a suppression gene drive expresses
a view that disease-carrying mosquitoes are primarily pests and so should be tar-
geted for elimination, whereas a replacement/modification approach sees value in
preserving mosquitoes as part of local ecologies, designing a gene drive for com-
promising only this insect’s ability to transmit human disease. In the first scenario,
there might not be mosquitoes left to bite humans; in the second, mosquitoes
would bite, but not transmit infectious pathogens.

A choice of two mosquito scenarios dovetails into a larger set of dilemmas
that loom in the discourse of genetic engineering: to what extent is it acceptable
for humanity to manipulate nature to serve its own interests? Is it ethical to edit
other species at will, shaping them to have the properties we want or desire, to
serve our needs, fancies or whims? Are extreme measures, such as destroying a
mosquito species, justified if they help save human lives from a debilitating dis-
ease like malaria, which has a disproportionate impact on children made vulner-
able by economic inequality, imbalanced power relations and climate change?
Would it be unjust not to try to deploy gene drives to eradicate disease vectors?

And yet, gene drives for malaria control can open the door to an ethical
slippery slope. Should humans collectively decide it acceptable to genetically alter
one species because it serves as a key node in a major health threat, how much
easier does it become to justify altering any species, whether viewed as a threat
or simply a mild nuisance that may interfere with human agendas and visions? In
considering ways to govern decisions about exercising such consequential power,
this chapter implores us to nurture humility towards each other and towards the
ecosystems of which we are a part.

Genetic technologies dazzle, hypnotically. In so doing, such technologies
inflate the illusion of control. But gene drives may not be a saviour. Even if
deployed, a gene drive may not be as effective or efficient as anticipated,
demanding that we lower our expectations about the human power to “control”
mosquitoes or malaria, much less eradicate them. Mosquitoes adroitly and rapidly
adapt their relations with us, reacting to our activities, and as with DDT, may
resist our efforts to control them. Thoughtful and deliberate interrogations of
likely outcomes of our control methods will help us prepare for resistances that
are likely to arise.

Suppression and replacement gene drives represent different political and
moral orientations to the challenges posed by mosquito vectors. Each gene drive
envisions a different future for malaria control and for reorienting mosquito—
human relationships, with competing technopolitics at play in aiming to elimi-
nate or else refashion insect vectors. By seeking opposite avenues for living with
and alongside mosquitoes, they may differ in their political, social, ecological and
health implications. Gene drives of all stripes threaten to rupture our relation-
ships with mosquitoes, and while this rupture could be beneficial, the journey
towards these benefits should also alert us to the dense and complex relations we
have with mosquitoes across the political, economic and moral orders of society.
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THE MOSQUITOME

A new frontier for sustainable vector control

Frederic Simard

Invasive Aedes mosquitoes such as Aedes aegypti and Ae. albopictus, that support
the bulk of inter-human arbovirus transmission causing dengue, chikungunya,
Zika, yellow fever and others to come, are urban mosquitoes that have largely
benefited and expanded from ongoing human settlement and development,
such as deforestation, urbanization and increased global trade. In tropical areas,
major human malaria vectors (Anopheles spp.) are also typically considered as
highly anthropophilic mosquitoes, showing strong feeding preference for human
blood over other vertebrate hosts, hence strongly contributing to inter-human
transmission of life-threatening malaria parasites. All these major disease vectors
are highly dependent upon humans, not only as a reliable source of blood
for their hematophagous females, but also because human transformations to
natural environments and ecosystems create numerous opportunities for these
mosquitoes to breed and to rest, with low exposure to most of their natural
enemies that do not develop in culturally modified areas. These major disease
vectors represent only a small fraction of the more than 3,500 known mosquito
species, but they have significantly diverged from their wild counterparts, both
in their ecology (biting behaviour, host preference, reproductive dynamics, larval
ecology, etc.) and their genetics (genetic diversity, gene duplications, insecticide
resistance mutations, etc.) (Neafsey et al., 2015). As a matter of fact, we humans
have been the major drivers of the recent evolutionary history of this group of
highly synanthropic disease-vector mosquitoes, shaping what now appears to be
a set of unintentionally domesticated animals that thrive where people live.

The emergence and rapid spread of resistance to artificial chemical
insecticides in all major mosquito disease vectors over the last 30 years is an
emblematic, ultimate evolutionary step in the adaptation of these mosquitoes to
human environments. Indeed, insecticide resistance seriously jeopardizes recent
public health success in the control of malaria in Africa, as well as significantly
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hindering any preventive or reactive interventions against the highly invasive,
virus-transmitting Aedes mosquitoes (Hemingway et al.,, 2016; Moyes et al.,
2017). Is this another battle we are losing against our tenacious old foes? Is this
the next step in our evolutionary arms race that is tightly linking us to this or
that mosquito species, when we consider the pathogens they transmit? What
happens next, and when and where will it end? In this chapter, I argue that
‘vector control” to biologically

3

it is time for a paradigm shift from aggressive
sensitive and evolutionally lucid management of synanthropic mosquito vector
populations, aiming at shrinking ecological niches of pathogen transmission in
order to prevent their emergence and spread in human populations. Applying the
principles of evolutionary biology to the control of mosquito-borne pathogens
may suggest novel opportunities for sustainable control of diseases that result in
mosquitoes helping us combat rather than propagate the diseases they transmit.

Humans and their “Mosquitome”

Just as the “Microbiome” defines a community of bacteria, fungi, viruses and
other microbes that inhabit a particular environment, be it the gut or skin of
a human host, it is useful to introduce the term “Mosquitome” to describe the
group of mosquitoes that thrive where people live, being composed of a handful
of highly synanthropic mosquito species that have successfully adapted to humans
and human-made environments. Species of the Mosquitome have come to
closely depend on the presence of human beings for breeding and proliferating.
Indeed, these mosquitoes have developed very specific and distinctive attributes
when compared to their wild counterparts, resulting in them contributing to
most of the world’s burden of mosquito-borne infectious diseases. Singling
out the Mosquitome, rather than all mosquitoes, might help focus public and
stakeholders’ attention on the accurate disease target while avoiding harm to
the larger amalgam that includes other natural mosquito species of benefit to
ecosystems. The scope of such a Mosquitome should include the African malarial
mosquitoes, Anopheles gambiae s.I. complex (which includes An. gambiae s.s., An.
coluzzii and An. arabiensis) and An. funestus; the invasive Indian species, An.
stephensi; and the highly invasive Aedes aegypti and Ae. albopictus that transmit
such arboviruses as dengue, yellow fever, Zika and chikungunya. Although each
mosquito species has its own evolutionary pathway, humans have played a key
role in shaping the evolutionary trajectories of each and every species within the
Mosquitome, serving to fine-tune this weapon of mass destruction that it has
become.

Crucially, mosquitoes need blood to reproduce; specifically, female mosquitoes
need blood to mature and then to lay their eggs. Strong, anthropophilic
preferences for human blood over other vertebrate blood have been shown to
be a heritable, genetically encoded phenotype that has arisen and disappeared
at multiple occasions in the course of mosquito evolution (Besansky, Hill &
Costantini, 2004; Neafsey et al., 2015). Indeed, specializing in human ecosystems
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has provided the Mosquitome with one of the most widespread and reliable
sources of blood on Earth. Humans are gregarious animals that live in groups
making them easy to locate. Moreover, humans shape their own environments
wherever they settle, often removing many natural enemies of the mosquito,
be they competitors or predators, such as insects, birds, bats and fish. Changes
in land use through deforestation, agriculture and urbanization provide further
opportunities for mosquito breeding and resting. In fact, beyond being a nearly
inexhaustible source of blood, humans also provide mosquitoes with reliable and
permanent access to water surfaces crucial to developing larvae.

The major human malaria vector in Africa, An. gambiae, lays its eggs in tem-
porary water pounds with no vegetation, producing larvae that are highly “heli-
ophilic,” or requiring direct exposure to sunlight to develop. Such surface-water
collections are widespread during the rainy season throughout sub-Saharan
Africa. And in areas where the rainy season is short, human environmental mod-
ifications for water management and irrigation, such as dams and rice fields, offer
good breeding opportunities that expand mosquito presence and density in both
space and time (Gimonneau et al., 2012). In equatorial areas with dense vegeta-
tion that blocks direct sunlight, deforestation and urbanization can expand suit-
able environments for An. gambiae that seek breeding habitats. As a result of these
mosquito habitat preferences, there is a strong correlation observed between the
presence of people, villages, roads and agricultural areas, and the presence of
the An. gambiae complex in areas of sub-Saharan Africa (Costantini et al., 2009;
Simard et al., 2009). In this respect, it has been hypothesized that the An. gam-
biae’s preference for feeding on humans over other vertebrates resulted from the
colonization of suitable larval development sites by ancestral populations of the
mosquito in Central Africa some 5,000 years ago, when Bantu agriculturalists
adopted “slash and burn” agricultural techniques to open up the forest canopy
and favour the breeding of larvae in the vicinity of humans (Ayala & Coluzzi,
2005).

In the same way, recent findings based on genomic, ecological and behavioural
data obtained from various populations of Ae. aegypti strongly suggest that its
preference for human-biting originally evolved as a by-product of breeding in
human water containers, such as tanks and jars, in areas where doing so was
the only way to survive the long and harsh Sahelian dry season (Rose et al.,
2020). Here again, humans have been a reliable source of both water and blood,
becoming a host of choice for those mosquitoes that have been able to adapt
and continue to adapt to this human environment. In this way, Ae. aegypti, the
“yellow fever mosquito” of African origin, was able to take hold and become the
human nemesis that it is.

It is therefore fair to claim that tight relationships and intense long-lasting
interactions between humans and their Mosquitome have long been driving
mosquito-borne disease evolution. A recent and emblematic example of this
evolution is the rapid rise of resistance in all major human disease-vector
mosquitoes to all insecticidal compounds that have been used to control them
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(Hemingway et al., 2016; Moyes et al., 2017). Some of the mechanisms used
by mosquitoes to resist insecticides have been thoroughly described and can be
monitored in wild mosquito populations. Longitudinal studies in the field as well
as molecular, physiological and genomic studies have described the origin and
spread of these resistances in vector populations, unraveling their extraordinary
evolutionary potential, which is driven by short generation times and high levels
of fecundity. Other studies have suggested that insecticide resistance may arm
the mosquito with a non-specific detoxifying enzymatic capability that enables
cross-resistance to other kinds of human-linked xenobiotics and pollutants,
thereby further promoting mosquito colonization of areas with high human
densities (Chouaibou et al., 2008).

Humans have therefore not only facilitated the instalment of their Mosquitome
across the planet, but they have been a key contributor to the movement and
dispersal of this group of highly anthropophilic mosquito species. This is
especially the case for both Aedes species which have spread across the world by
human transportation. In this way, Ae. aegypti originated in Africa and populated
the Americas and Europe during the slave trade, while adapting to breeding
conditions onboard ships (Powell & Tabachnick, 2013). More recently, the
Asian tiger mosquito (Ae. albopictus) has also benefited by increased globalization
and international trade, to spread from Southeast Asia to North America and
the rest of the world within decades (Hawley, 1988; Paupy et al., 2009). Their
physiological and behavioural traits have facilitated unintentional transportation
of their eggs and mated females across long distances (Hawley, 1988; Eritja et al.,
2017). Both Ae. albopictus and Ae. aegypti produce eggs that resist desiccation for
several months; both prefer day-time host-seeking and biting activities; and both
have a marked preference for breeding in small temporary water collections,
such as tree holes, rock pools and other artificial water holders, leading to their
nickname as “container mosquitoes.”

One realizes that humans have indeed shaped the evolutionary history of
a handful of highly synanthropic mosquitoes that take advantage of human-
modified environments to thrive and spread. In other words, we humans are
a major evolutionary driver of the Mosquitome. The good news is that basic
knowledge of medical entomology and mosquito physiology combined with
recent advances in mosquito genomics, ecological modelling and evolutionary
biology should now allow us to modify the evolution of the Mosquitome for
preventing, rather than promoting, the transmission of mosquito-borne human
diseases.

The Mosquitome and disease transmission

One must remember that mosquitoes are not the problem; rather, the diseases
they transmit are the problem. By applying evolutionary principles, mosqui-
toes can become part of the solution to limit mosquito-borne diseases. To
date, synanthropic mosquitoes have been considered as pests that need to be
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fought and ultimately eliminated for the sake of public health. And to date,
only transient successes have been achieved in controlling the diseases they
transmit, with many regions seeing more mosquitoes flying than ever before.
Adopting the Mosquitome approach may help identify novel opportunities to
tackle the challenge of sustainably controlling diseases in a changing world.

There are at least three biological tenets relevant to the status of major human
disease vectors that are characteristic of the Mosquitome species (Cohuet et al.,
2010): (1) a high level of contact with humans, especially by preferring to bite
humans over other vertebrates; (2) genetic compatibility with the pathogen
for sustaining pathogen development; and (3) unusual mosquito longevity for
allowing this vector to bite susceptible hosts after the pathogen has reached the
salivary glands. All these specificities result from well-adapted, co-evolutionary
processes between mosquitoes and their human hosts, and between the transmit-
ted pathogen(s) and vector-specific assemblages (see Duvallet et al., 2017 and
references therein).

Existing data suggest that there is a correlation between a mosquito species’
level of anthropophily (measured as the level of preference for human blood), and
its longevity (measured as daily survival), with mosquitoes from the Mosquitome
being champions in both categories (Figure 16.1). Greater longevity is a key
parameter to vector capacity because it enables the female mosquito to survive
long enough for the pathogen to develop in her body, infest her salivary glands
and be transmitted through subsequent biting (Garrett-Jones, 1964; Cohuet et
al., 2010). Longer lifetimes are a remarkable trait of synanthropic mosquitoes,
reflecting their divergence from their wild counterparts in the course of their
adapting to domestic habitats, and facilitating pathogen transmission. Thus, a key
strategy for disease control is to curb the extraordinary longevity of Mosquitome
species, thereby diminishing pathogen transmission intensity, while preserving
mosquito biodiversity as a whole.

Longevity is correlated not only with anthropophily in mosquitoes. Indeed,
as is true for all living species, longevity and fecundity are major traits of a
species’ fitness that appear to suffer “antagonistic pleiotropy” or genetic expres-
sions that offer beneficial as well as detrimental effects. Conflicts in resource
allocation result in an evolutionary trade-off between survival and early life
fecundity that is an important basis of an organism’s life-history strategy. This
trade-off has long been recognized and studied in a number of organisms, from
insects to plants and mammals. Long-lived organisms tend to invest less in
early-life reproduction, often spreading out their offspring in time and space,
compared to short-lived organisms that may rely on a single, massive repro-
ductive event during their adult life. Most mosquitoes tend to follow the strat-
egy of massive early reproduction, and here again Mosquitome mosquitoes
stand out; as compared with non-vector species of Culex and Mansonia genera,
major human malaria mosquitoes typically lay their eggs in successive batches
across their lifespan, investing less in early-life fecundity (Clements, 1992).
This continuous fecundity may indeed benefit such mosquitoes since the An.
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FIGURE 16.1 Schematic relationship between anthropophily and longevity in African
Anopheles mosquito species. Anthropophily was measured as the proportion
of blood meals taken on humans in natural mosquito populations in Africa
(in Bruce-Chwatt et al., 1966; Gillies & de Meillon, 1968). Longevity was
assessed through the average parous rate determined in natural mosquito
populations (from Gillies, 1963; Hamon, 1963). Bold-font mosquito
species belong to the Mosquitome and are major human malaria vectors.
Anopheles pharoensis and An. mascarensis have been found naturally infected
with P falciparum in the field but their contribution to overall malaria
transmission is anecdotal and minimal. Other mosquito species listed are
zoophilic mosquito species that rarely bite humans, and are therefore not
involved in human malaria transmission.

gambiae complex that inhabit harsh sub-Saharan savannahs and that rely on very
intermittent surface waters, can hedge their bets to survive in this stochastic
environment (Cohen, 1966). Such reproductive behaviour, also referred to as
“skip oviposition,” has also been described for the container-breeding Aedes
species (Reiter, 2007). Extended lifespan, with extended periods of reproduc-
tion, is therefore an asset for both the mosquito vector to ensure survival of
its progeny, and the pathogen to extend its transmission opportunities. The
advantages of human-modified environments for decreasing the risk of extrin-
sic mortality from predation and for competitively acquiring resources, such as
water, blood and nectar, further promoted the evolution of longevity within
the Mosquitome.
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Mosquitoes from the Mosquitome therefore present very peculiar biologi-
cal traits that most likely evolved through intense, ancient and ongoing contact
with humans. Many human pathogens, including some of the historically most
deadly ones such as the malaria parasite or the amaril virus, have taken advantage
of this intimate human—mosquito relationship for their own, widely successful
inter-human transmission. By recognizing this relationship, it might now be in
our hands to drive the Mosquitome’s evolutionary trajectory back to a situation
where mosquitoes do not transmit diseases, rather than continuing to naively try
to eliminate this group of highly adaptive organisms with enormous evolution-
ary potential.

Mosquitome management for
sustainable disease prevention

Until now, all strategies for mosquito vector control have relied on the assumption
that any method of decreasing vector fitness is the best way to control disease.
However, as demonstrated by the widespread use of synthetic insecticides,
aggressive control tools will invariably result in selection for resistance.
Furthermore, elimination of mosquitoes is not, and should not, be a requirement
for interrupting disease transmission. An alternative and more effective approach
to disease and vector control may well rely on strategies to create evolutionary
incentives to the Mosquitome that will restore its former life history traits of
epidemiological importance, especially longevity and anthropophily, to ranges
typically observed in non-vector species. In other words, we must utilize
evolutionary processes to drive the Mosquitome back to its natural, pre-human
condition, rather than constantly attempting to counteract the effects of such
processes. Countering Mosquitome longevity and anthropophily is likely the
only way to achieve sustainable mosquito-borne disease prevention and vector
risk-mitigation.

Opportunities exist to disentangle vector fitness from pathogen transmission
(Michalakis & Renaud, 2009). Because only old female mosquitoes are actively
involved in transmitting pathogens, strategies aimed at reducing their lifespans
by killing them late in life, after they have reproduced but before they are able
to transmit pathogens, would diminish natural selection of resistance. Biological
agents such as fungi in the genus Beauvaria and bacteria in the genus Wolbachia
have been considered good candidates for late-life control. By developing slowly
in infected mosquitoes, the fungus allows the female to mate and lay several
batches of eggs before it eventually dies from infection. For their part, strains
of Wholbachia serve to speed up senescence in dengue-transmitting mosquitoes,
shortening their lifespan and reducing the efficiency of viral transmission.
Exposing the Mosquitome to this kind of innovative, late-life vector control,
the theory and development of which is still being worked out, may therefore
provide significant control of disease transmission, with fewer impacts on
mosquito populations.
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From an evolutionary perspective, a shift towards relying on late-life-acting
control strategies—while reducing selection for resistance—may also promote
selection of more subtle life-history adaptations in the mosquito by reallocating
resources towards short-term reproduction from longer-term survival. Indeed,
experimental evolution experiments conducted with the model fly Drosophila
have shown that exposing flies to different extrinsic mortality regimes over 50-90
generations resulted in shifts towards higher fecundity and reduced lifespan even
in the absence of selection (Stearns et al., 2000). Such investigations corroborate
the claim that insects are able to quickly adapt their life-history strategies to
changes in their environment, as by balancing fecundity and longevity to optimize
reproductive outputs. Just as mosquitoes of the Mosquitome increased their
lifespan when adapting to novel, low-risk human environments, the drosophila
study shows that it may be possible to reverse this trend and decrease the lifespan
of anthropophilic mosquitoes. Indeed, extrapolating the drosophila experiment
results to mosquitoes and malaria transmission, Ferguson and colleagues (2012)
demonstrated that a similar drop in mean longevity (7.7% over 90 generations
in the drosophila study) would result in more than 80% reduction in malaria
transmission due to the non-linear relationship between vector longevity and
vector capacity. These authors propose that a similar evolutionary shift may
be induced in malaria-vector mosquitoes through enforced vector-control
interventions, and that this shift can act as a hidden weapon that eventually
eliminates malaria transmission when the vector’s lifespan drops below the
parasite’s development time. Other evolutionary outcomes that include selection
for parasites developing faster in their vector mosquito, or increased innate vector
competence in mosquito progenies, may further interfere, and so need to be
monitored in the frame of scaling-up vector-control interventions.

Opportunities also exist to manipulate host preference in mosquitoes, with
existing genetic variation in the Mosquitome allowing for natural selection
to drive mosquitoes away from human scent when it becomes associated with
higher fitness cost. Although host-preference in mosquitoes is influenced by
environmental factors such as host availability, there is also a genetic basis to this
preference. Ecological and ethological studies conducted in the field and lab have
documented plasticity and strong shifts in host choice in response to divergent
selection pressures, while genome-wide investigations have shown that the
genetic basis to host preference in mosquitoes is as complex as it is evolutionarily
labile (Besansky et al., 2004; Lyimo & Ferguson, 2009; Neafsey et al., 2015).
Anthropophily therefore might not only be subdued, but also eliminated when
the Mosquitome finds a fitness incentive for switching hosts. We should hence
develop these fitness incentives in the Mosquitome for alternative host-choice by
better protecting humans from aggressive bites and, at the same time, by offering
other possible prey or artificial blood sources for the Mosquitome in our cities. The
development of novel personal protection tools, including improved repellents
and attractants to manipulate vector behaviour, next-generation mosquito nets
and screens to protect homes from vector intrusion, and replenished urban
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biodiversity to dilute mosquito-biting pressure on humans, will be an integral
part of such an endeavour.

Finally, opportunities also exist for increasing resilience of the domestic
environment to mosquito breeding and spreading. Rational use and storage of
water is becoming a pressing need stemming from climate change, and the way
we address this urgent challenge will have a dramatic impact on the Mosquitome’s
ecology, and associated risks of disease transmission. Limiting surface water is
key to reducing mosquito habitat suitability, and diminishing mosquito presence,
density and viability. It should also be recognized that given the Mosquitome’s
adaptability to human-shaped environments and its extraordinary evolutionary
potential, we may be doomed to share some of our space with these mosquitoes.
Thus, just as we are learning how to manage our microbiome so that it can help
us minimize infections and other detrimental impacts to our bodily ecosystem,
we can also learn how to manage our Mosquitome so that it can help us develop
more harmonious public health. Monitoring and managing our Mosquitome in
a way that limits mosquito breeding in and around human dwellings will serve
to limit transmission of diseases. Moreover, maintaining a resilient Mosquitome
should, by occupying suitable habitats, hinder invasion by external mosquito
populations with greater vector competence. Reducing vector capacity of
the Mosquitome will require increasing extrinsic mortality for reducing life
expectancies in resident mosquito populations. One way of decreasing mosquito
longevity is by increasing natural mosquito enemies in cities and agricultural
settings, which will produce novel equilibria in the Mosquitome life-history
traits. Some mosquito threats in human settlements can be countered by such
novel tools as mosquitoes controlling other mosquitoes. Additional mosquito-
control techniques such as female-driven delivery of specific insect growth
regulators, application of mosquito-specific pathogens to larval development
sites, sterile-insect techniques or genetically modified mosquitoes that contain
altered vector competence and/or altered vector reproduction (see also Moyes et
al., 2017; Roiz et al., 2019) may all contribute to selecting for reduced longevity
in the Mosquitome. The challenge now resides in our ability to carry out a
gradual implementation of these complementary tools within the framework of
concerted, locally designed and inclusive Mosquitome management strategies.
Such a challenge will come at the cost of accepting to live with our Mosquitome.
By willingly coinhabiting our Mosquitome, we may finally be achieving
a Mosquitopia: that state in which mosquitoes and people can harmoniously
coexist.

This scenario thus offers a paradigm shift in the way we set out to control
mosquito vectors and the diseases they transmit by relying on long-term
risk-mitigation of pathogen transmission, rather than short-term mosquito
elimination. It is time to take care of our Mosquitome and recognize our duties
in husbanding this highly specific evolutionary branch of biodiversity (Martin et
al., 2015; Johnson & Munshi-South, 2017). We should strive to increase extrinsic
vector mortality in cities through every means, work to (re)install mosquito
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biological enemies such as predators, competitors and pathogens, design
effective late-life-acting control tools and chemicals that shorten mosquito
lifespan while preserving lifelong fecundity, and monitor the infrastructure of
our neighbourhoods and water-management systems in order to limit breeding
opportunities. Recentadvancesin evolutionary biology and emerging frameworks
of urban ecology and commensalism in anthropogenic environments should help
identify opportunities for translating theory into action (Roche et al., 2018;
Hulme-Beaman et al., 2016). We must also build upon recommendations from
the World Health Organization for tackling research gaps and fostering intra-
and inter-sectoral collaboration for implementing the Global Vector Control
Response (WHO, 2017; Roiz et al., 2019).

Concluding remarks

The spring of 2020 was indeed silent. But this silence was due not to the reasons
outlined in Rachel Carson’s book. A sky without planes, traffic without motion
and the general economic shutdown were due to a pandemic. The dramatic
experience of COVID-19 highlighted the novel fate of infectious diseases in our
globalized world and called for integrating preventive measures for sustainable
disease mitigation. Mosquito-borne diseases are a prime public health threat for
the next global emergency. They require the utmost attention. At the same time,
the preservation of biodiversity has become a major societal and ecological chal-
lenge requiring immediate action, with one of the most pressing moves being an
escape from our insecticide era to protect our food and health.

In this world view, I propose the Mosquitome as a concept like that of the
microbiome to emphasize: (1), that when dealing with major human disease-
vector mosquitoes, one deals with a very tiny fraction of the overall mosquito
biodiversity and one that relies on very specific ecological attributes; (2), that this
specific assemblage of mosquito species is tightly associated with and dependent
upon humans; and (3), that we have long lived with these creatures and should
now learn to benefit from that close association. In this view, mosquito elimination
is no longer an expected or even a desirable outcome. Rather, acknowledging
the Mosquitome as an integral part of our immediate environment prompts our
long-term commitment to its management. Vector control programmes need to
be transformed into Mosquitome management strategies to achieve sustainability
in disease risk-mitigation while helping preserve biodiversity and improving
ecosystem functioning, locally and globally.
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MOSQUITO UTOPIAS
AND DYSTOPIAS

A dispatch from the front lines

Indra Vythilingam

Utopia is a term to describe things that are perfect in all aspects whereas a dystopia
is just the opposite; both share characteristics of science fiction and fantasy. But
when considering mosquitoes, one should bear in mind that these creatures have
lived for aeons on planet Earth and they too need to survive. As mentioned
in earlier chapters there are about 3,500 species of mosquitoes but only a few
hundreds of them are disease vectors. They carry either viruses or parasites that
can infect humans and animals and which can lead to mortality if not treated.
However, to a lay person, a mosquito is a mosquito, and is responsible for the
misery it causes.

Control measures are instituted only towards mosquitoes that are vectors. This
is especially true in tropical countries which are burdened with vector-borne
diseases. The control measures are targeted to the behaviour of the mosquitoes
and thus, only some non-vector mosquitoes and insects will be affected by these
measures. The World Health Organization promotes elimination of diseases like
filariasis and malaria (WHO 2017) and many countries have obtained elimination
status. But this does not mean that the vectors have all been eliminated. Rather,
we have achieved “anophelism without malaria™ the requisite vectors are still
there but without the pathogens they used to carry. And in the case of malaria as
well as other vector-borne diseases, it is only the female mosquitoes feeding on
blood that transmit the disease.

How do mosquitoes behave in the human community? What are the forces
which determine whether the diseases carried by them will sweep through,
leaving a trail of death and disaster; or entrench themselves for a long-drawn
struggle; or invade but lightly and disappear? There is no simple answer to this
complex situation. Vector-borne diseases in a community are social expressions
of the biological relationship between the pathogens, their human hosts and the
mosquitoes which bring all of them together. The different species of mosquitoes
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responsible for these different diseases have developed their roles very well and
each species has its own niche as described in the early chapters of this book. We
know that Ae. aegypti and to some extent Ae. albopictus are responsible for the
spread of many arboviral diseases such as dengue (Solomon 2006). Some species
of Anopheles are responsible for the spread of malaria while Culex quingefasciatus
and species of Mansonia are responsible for the transmission of filariasis (Wharton
1960). Unfortunately, Southeast Asia has the greatest number of Anopheles species
that are vectors of malaria (Hii and Rueda 2013).

Here I summarize the various control measures that have been instituted
against the vector mosquitoes and the pros and cons of the new control measures
to be instituted. It is very clear that countries plagued by vector-borne diseases
are only targeting the vector mosquitoes. All other mosquitoes on this planet
can survive.

Anopheles and malaria

Although there has been great progress in the reduction of malaria infections
over the years, the number of malaria cases worldwide in 2018 was about
228 million, of which 93% occurred in the African region, followed by 3.4% in
Southeast Asia (WHO 2019). Fortunately, there are reasonably effective drugs
to control malaria and so some might raise the question why should one even
try to kill the mosquitoes? An argument in point is that the threat of malaria is
not shared equally across the population: pregnant women and children are most
susceptible to the disease, with high risk of mortality if not treated early enough.
It is therefore of crucial importance to control these vector mosquitoes to prevent
the transmission of the parasites to humans.

Control of Anopheles larvae

The history of malaria control in Malaya must be attributed to Sir Malcolm
Watson who started his work here in Klang in 1900 (Watson 1921, Singh et al.
1988). As a district surgeon he was seeing many malaria cases in a district hospi-
tal, as in 1901 when there was a huge epidemic rampant in that region. Watson
was attracted to the idea of trying to prevent malaria rather than merely treat-
ing cases admitted to the hospital. He initiated a programme of clearing and
drainage of the foothill swamps in and around the town. They used both the
herringbone drains and the foothill contour drains which proved to be effective
(Watson 1921). The number of malaria cases fell from more than 300 in 1901 to
50 in 1903.

At about the same time in Port Swettenham (near Klang), which was opened
in 1901, about 68% of the labourers and government staff came down with
malaria. The species that was responsible for malaria in the area was An. sundai-
cus which was breeding in brackish water. Thus, bunding (or diking), drainage
and the exclusion of saltwater by building tide-gates were carried out. These
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measures proved to be successful in the port area (Figure 17.1). Subsoil drains
were also built in other areas around Kuala Lumpur where An. maculatus was the
vector (Singh et al. 1988). These mosquitoes breed in streams open to sunlight.

Anti-malaria oil was also applied to all breeding sites. This was discontin-
ued when oil became expensive and the insecticide Abate 500E was introduced.
However, over time when these drains with clean water became sullage drains
as people settled in these areas, larviciding was stopped since Anopheles breed in
clean water and not in sullage (or dirty) water. As Watson described his work
controlling mosquitoes: “As we learn more, perhaps the time will come when we
shall be able to say to one species of Anopheles, ‘Come,” and to another, ‘Go,” and
shall be able to abolish malaria with great ease, perhaps at hardly an expense” (
(Watson 1921: 292) (Figure 17.1).

Control of Anopheles mosquitoes

DDT has been used for control of malaria vectors with success as mentioned in
several chapters of this book. The publication of Rachel Carson’s Silent Spring
caused a hue and cry against the use of DDT, especially for agricultural purposes.
However, for malaria control it would still be allowed on a case-by-case basis
(Mouchet 1994). In Malaysia, a pilot project was started in 1960 in the coastal
area of Selangor to determine the efficacy of DDT to control malaria. There
were 33 Anopheles species in the area and of these only five were known to be
vectors (Moorhouse 1965). DDT was sprayed at 2gm/m? on the inside walls

FIGURE 17.1 Inspecting a bunding near Klang. From Malcolm Watson 1921.The pre-
vention of malaria in the Federated Malay States: a record of 20 years'
progress. E.P. Dutton & Company.
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of houses—referred to as indoor residual spraying (IRS). This was carried out
because it was observed that the Anopheles mosquitoes, after entering the house,
rest on the wall, bite a human and then rest on the wall again before flying out.
Thus, Anopheles mosquitoes are able to absorb enough insecticide to kill them-
selves. The vectors were An. campestris, An. letifer, An. maculatus, An. sundaicus
(now known as An. epiroticus) and An. umbrosus. The house-spraying apparently
eradicated the An. campestris species but not the rest (Moorhouse 1965). This is
mainly due to their different behaviour patterns.

With the introduction of DDT to malaria control and, of course, detection
and treatment of human cases, malaria was considerably reduced in coastal areas
but the results were less noticeable in the hilly areas of Malaysia. In the late 1980s
it was observed that the Anopheles mosquitoes began entering houses to bite and
then exit without resting on the walls. This was when insecticide-treated bed
nets (ITNs) were tested and found to be useful. It has been reported that a large
percentage of malaria has been reduced due to the use of ITNs (Fegan et al.
2007).

However, the problem now faced by the malaria programme is that the vectors
are biting in the early part of the night and more commonly outdoors rather than
indoors. Previously the peak biting times would be around 10.00-12.00 pm but
now it is 7.00—8.00 pm. It should be noted that the control is targeted towards
the vector; if other pest mosquitoes show similar behaviour, of course there is a
possibility that they will be killed.

Monkey malaria infecting humans

Besides the main pathogens of human malaria, the simian malaria parasite of
Plasmodium knowlesi is now infecting humans. All countries in Southeast Asia
have reported cases of P. knowlesi infections, with the exception of Timor-Leste
(Vythilingam et al. 2018). The Leucosphyrus group of Amnopheles mosquitoes,
which feeds on the long-tailed macaques, becomes infected by biting these
monkeys and then transmitting the parasite to humans who they bite later. The
first such case was reported in 1965 in Malaysia (Chin et al. 1965) and then
a second case in the 1970s (Fong et al. 1971). After extensive research, it was
postulated that simian malaria will remain in monkeys and will not be transmitted
to humans (Warren et al. 1970). But then a large outbreak of P. knowlesi was
reported in 2004 (Singh et al. 2004) to now become the predominant species
affecting humans in Malaysia (Hussin et al. 2020). Moreover, a second simian
malaria parasite, P. cynomolgi, is now being transmitted to humans in Southeast
Asia (Ta et al. 2014, Singh et al. 2018, Grignard et al. 2019, Imwong et al. 2019).

The reason for the transmission of these two malaria parasites is perhaps due
to deforestation and other human changes to the landscape (Fornace et al. 2019).
Long-tailed macaques are now found on the forest fringe, adjacent to new farms,
so that mosquitoes that were originally only forest-dwelling, have followed
macaques to their new surroundings (Vythilingam et al. 2018). In the 1960s,
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mosquito species that were mainly biting macaques (Warren and Wharton 1963)
are now biting both macaques and humans (Vythilingam et al. 2018). These
mosquitoes are biting in the early part of the night and outdoors (Vythilingam et
al. 2018), making control measures difficult to conduct since it is not possible to
treat the macaques. Control of mosquitoes is especially difficult in the forest and
forest fringes. This is how new diseases emerge all the time.

Aedes and arboviral diseases

Arboviruses transmitted by the Aedes mosquitoes (Ae. aegypti and Ae. albopictus)
are mainly chikungunya, dengue and Zika. The history and natural history of
each of these viruses have been well elaborated in various chapters of this book.
Here I mainly add how other mosquitoes and insects can be affected by some
indiscriminate methods used for controlling vector mosquitoes. For example,
dengue became a problem in Southeast Asia in the early 1970s, but since there
are no drugs to treat dengue, vector control became the hallmark for controlling
this disease in the region.

House-to-house larval surveys

House-to-house larval surveys were conducted to compute the House Index and
the Breteau Index, which are measures to determine the density of mosquitoes
in an area. In most urban areas in the early 1970s and 1980s, water supply was a
problem, so people used to store water, sometimes in open containers. As a result,
the Ae. aegypti index was very high. With continuous house surveys and health
education, the Aedes House Index in Malaysia has been reduced from 58.8% to
2.0% (Mudin 2015). Nonetheless, dengue cases have increased over the years.
In Malaysia and in Singapore, the enactment of a new law, “The Destruction of
Disease-Bearing Insects Act (DDBIA),” meant that people could be penalized if
mosquitoes were found breeding in their homes (Ooi et al. 2006, Vythilingam
and Wan-Yusoff 2017). People are now advised to apply the larvicide temephos
(Abate 1 SG) to their storage water or else ensure that water containers are well
covered to prevent mosquitoes from laying eggs there. In Vietnam, biological
control with the crustacean, Copepod mesocyclops, has been used for feeding on the
Aedes larvae (Nam et al. 2012).

Adult control

Fogging or ultra-low volume (ULV) insecticide spraying, is only carried out
when dengue cases are reported, and this is done to kill infected adult mosquitoes
to break the chain of transmission. All other mosquitoes and insects will be killed
as well. Fogging is carried out at the house where the infection case occurred
and in houses within 200 metres. However, during an epidemic, ULV spraying
is conducted on a large scale since it can cover larger area. Studies have shown
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that ULV spraying is not very effective since the droplets only get carried as far as
the living room of the house and thus mosquitoes hiding in closets and bedrooms
will not be killed (Vythilingam and Wan-Yusoff 2017).

It was also found that there was no significant difference when ovitraps
were set before fogging, during fogging and after fogging, as the first pupae
emerged around day ten on all occasions (Chua et al. 2005). There was also no
significant difference in the number of immature Aedes mosquitoes during the
three fogging periods (Chua et al. 2005). It shows that the ULV spraying neither
eliminated nor reduced the number of gravid Aedes mosquitoes. Forty-eight
hours after ULV spraying, dead insects, spiders, and even small animals like frogs
and snails were found in the ovitrap; in the garden, dead ants and spiders were
also observed. Furthermore, one may assume that, following ULV treatment, the
destruction of the natural predators of the mosquitoes could have contributed
to the increase of immature mosquitoes (Chua et al. 2005). However, it is also
known that Ae. aegypti are resistant to pyrethroids—the insecticides typically
used in ULV (Leong et al. 2019)—especially in dengue epidemic areas. Other
studies have also shown that space-spraying has not been effective in dengue
epidemics (Esu et al. 2010). Since Ae. aegypti have been shown to be resistant to
pyrethroids in most countries, mosquitoes are given an advantage if managers do
not change insecticides.

Vectors of filariasis

Vectors of filariasis are varied. In Malaysia and the surrounding regions Mansonia
mosquitoes are the main vector for Brugian filariasis. As a matter of fact, the first
proof of transmission of a human disease by a mosquito was demonstrated by
Patrick Manson in South China in 1878 (Mak 1983): Manson demonstrated that
Culex quinquefasciatus was responsible for the transmission of Wicheriria bancrofti
which had been discovered 15 years earlier. In India and other regions where .
bancrofti is predominant Cx. quinquefasciatus is the vector, whereas Ae. Polynesinsis
is the vector in the Pacific islands. Some species of Anopheles are also vectors
for filariasis. Thus, one can see that many different species of mosquitoes are
involved in the transmission of filariasis. Unlike other vector-borne diseases,
a single bite by an infected mosquito will not give rise to filariasis. A male and
female microfilaria must be introduced before the person can be infected. In
Malaysia, filariasis has been brought to very low levels. The control was based
mainly on mass blood surveys and treatment of people rather than directed
towards controlling mosquitoes.

Control of Mansonia mosquitoes

There are six species of Mansonia which have been incriminated as vectors: Ma.
annulata, Ma. annulifera, Ma. bonneae, Ma. dives, Ma. indiana and Ma. uniformis
(Wharton 1962). Early experiments in the laboratory showed that Mansonia
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were only moderately susceptible to DDT, dieldrin and benzene hexachloride
(BHC). Semi-field trials in trap huts against three Mansonia species concluded
that dieldrin was more effective than DDT and BHC. A pilot trial was
conducted in an area along with mass treatment. There was a decrease in the
microfilaria rate but no observable differences in the infection and transmission
rates in the vectors (Wharton et al. 1958). This also could be due to animal
reservoirs.

The physical removal of floating vegetation is one method of reducing the
number of vectors since the immature stages are attached to the roots of plants.
Large-scale drainage and irrigation schemes and developments like filling
swamps have reduced vector populations. Along with drug administration it was
possible to reduce the incidence of filariasis.

Culex and arboviral diseases

Various species of Culex mosquitoes are vectors of Japanese encephalitis (JE)
and West Nile virus. West Nile virus occurs in North America, Africa, Europe,
Middle East and West Asia. The Culex mosquitoes obtain the virus while feeding
on birds and transmit it to humans. Human-to-human transmission does not
take place in West Nile virus, nor in JE. JE is endemic in an area inhabited
by about 1.9 billion people in Southeast Asia and Asia, being transmitted by
many different species of Culex mosquitoes of which Cx. tritaeniorhynchus and
Cx. gelidus are the main vectors (Vythilingam et al. 1997, Kabilan et al. 2004).
Fortunately, a vaccine is available for JE. Although a number of JE isolates were
found in various species of Culex mosquitoes in a study in Malaysia (Vythilingam
et al. 1997), cases of JE are only sporadic and isolated transmissions occur
occasionally.

Control of Culex vectors

To control the vectors of JE, it is recommended to carry out residual spraying
of pig farms in endemic areas where the disease is a major problem. In other
areas, houses surrounding the pig farms usually have screens on doors and
windows to prevent the entry of mosquitoes. In rice-field areas where there is
breeding of JE vectors, alternate wet and dry irrigation, or the use of fish or
other natural products like Azolla, can be used to control the larvae (Keiser et
al. 2005).

Culex quinquefasciatus is a cosmopolitan mosquito found in most parts of
the world. It breeds in polluted water such as sewerage drains, cesspits, septic
tanks, cesspools. This mosquito plays a major role in lymphatic filariasis; its
control is difficult since it has developed insecticide resistance to all four classes
of insecticides (Jones et al. 2012). Effective control of Cx. quinquefaciatus is
best carried out by thoroughly cleaning the environment, as well as by source
reduction and floating polystyrene beads into breeding sites (Jones et al. 2012).
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FIGURE 17.2 Discarded tyres near Perth, Australia (Creative Commons; photo by Alex
Dawson 2008).

Gene modification

Mosquitoes do not need passports to cross international borders. In an era in
which human agency has reached every corner of the globe and every aspect of
life on Earth, humans are responsible for the spreading of mosquitoes, especially
the Aedes genus whose eggs can withstand desiccation and are carried across
countries and oceans by water trapped in used tyres (Gubler 2012). Accordingly,
most of this genus and especially Ae. albopictus has established itself and will prob-
ably not be eliminated from the planet in the near future. Control measures are
only instituted if mosquitoes are found to be disease bearing (Figure 17.2).

One should also understand that it is not necessary for large numbers of mos-
quitoes to be present to cause a disease. For example, Ae. aegypti is easily dis-
turbed and thus can feed on multiple hosts to acquire a full blood meal (Scott et
al. 1993), meaning that if the mosquito is infected it can pass the pathogen on to
many people during a single blood meal (Platt et al. 1997). Singapore is a good
example, where the Aedes index is very low but where a large number of cases is
reported (Ooi et al. 2006).

Scientists have produced (and are producing) genetically modified (GM)
mosquitoes to help control the Ae. aegypti with mixed results. The UK biotech
company, Oxitec, has developed a mosquito inserted with a RIDL gene (release
of insects carrying a dominant lethal) that can only survive in water with tet-
racycline. The control strategy is to release the adult males into the wild so that
when they mate with the wild females, they will produce offspring that cannot
survive, since there is an absence of tetracycline (Massonnet-Bruneel et al. 2013).
In Brazil, following large releases of such a mosquito, there are now three differ-
ent populations of the Ae. aegypti found in nature, with a significant transfer of
the tetracycline-dependent genome into the wild population. Eighteen months
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after release of these GM mosquitoes, observations showed that the population
which had been initially suppressed began to rebound, becoming as it was before
release (Evans et al. 2019). The cautionary note is that these releases may end up
promoting more robust populations of mosquitoes in the future, with ultimate
effects on the ecosystem remaining unknown.

With the production of the GM mosquitoes, especially the Anopheles, one
needs to understand that these mosquitoes are produced in laboratories either
in the UK or in USA and they have to be shipped to and released in tropical
countries where malaria occurs. The vectors for malaria are varied and many
species are involved and the eggs cannot withstand desiccation. This would
involve a huge sum of money for a developing country where malaria is occurring
and specialized laboratories need to be set up for the production of the GM
mosquitoes. Thus, such mosquitoes may only remain as a laboratory tool and are
not realistic strategies for public health (Beisel and Boete 2013).

It is also a known fact that mosquitoes have developed resistance to insecticides
by changing one or more of their genes (Hemingway et al. 2004) and that malaria
parasites have developed resistance to drugs, including artemisinin (Ashley et al.
2014). It is therefore possible that in the long run these GM mosquitoes, which
are refractory to the parasites, may one day become susceptible to them. At
that point in time, malaria may rebound with a vengeance and the expertise to
control the disease and vectors may not be available. We have lessons to learn
from what has happened with the COVID-19 pandemic.

Most arthropods and insects are inhabited by Wolbachia bacteria (Moreira et al.
2009). However, Wolbachiais absent in Ae. aegypti. This observation led researchers
to inoculate Wolbachia from drosophila into Ae. aegypti. Due to cytoplasmic
incompatibility (CI), a male Ae. aegypti with Wolbachia that mates with the wild
female will produce inviable progeny, meaning that release of male Ae. aegypti
with Wolbachia can suppress this mosquito’s population. In addition, a female Ae.
aegypti with Wolbachia that mates with a wild male will produce all progeny with
Wolbachia, which can be very advantageous for disease management since these
bacteria are able to inhibit the ability of Ae. aegypti to carry dengue, chikungunya
and Zika viruses (Moreira et al. 2009). As a result, the World Free Mosquito
Programme felt it beneficial to release Wolbachia-intected Ae. aegypti in order to
infect wild Ae. aegypti and make them incapable of spreading viral diseases. What
will happen to this initiative in years to come? A recent study showed that Ae.
aegypti infected with Wolbachia were still susceptible to chikungunya and Zika
viruses at low levels and not entirely refractory as suggested in earlier studies
(Tan et al. 2017). Studies also showed that Wolbachia blocked dengue virus in Ae.
aegypti by 37.5% (Bian et al. 2010).

Community participation in vector control

It is not easy to eliminate mosquitoes from this planet. The common domestic
Ae. aegypti was once nearly eliminated from the Americas in the 1930s but then
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rebounded after the programme was stopped (Dick et al. 2012). In theory it looks
very simple to get rid of Aedes mosquitoes yet this species has been successful at
colonizing new areas and causing more diseases despite human efforts to eradicate
it. The typical top—down approach utilized by most governments was not very
successful at removing breeding sites. Though successful for a short time, this
eradication programme was not sustainable. Thus, it is now generally felt that a
bottom-up approach will offer greater success at mosquito control. Community
participation has been successful in Cuba, for example, where mosquito control
has been more sustainable (Gubler and Clark 1996). Yet in Malaysia, even though
community members have demonstrated good knowledge about dengue and its
associated mosquitoes, they have shown little willingness to follow through with
dengue control (Selvarajoo et al. 2020).

Even if a mosquito does not have the brain of a primate, it has been highly
successful at living and sharing the planet with humans. Now researchers are
producing GM mosquitoes and releasing them at large scale to outcompete wild
mosquitoes. What researchers perhaps fail to appreciate is that GM mosquitoes
will eventually die off, allowing wild mosquitoes to bounce back, possibly with
a vengeance. Another irony is that we now tell community members that GM
mosquitoes are our friends, so please do not kill them. What will happen in the
future?

Environmental changes such as land-cover fluxes, deforestation and landscape
modifications are also known to affect the distribution and density of mosquitoes.
Such changes are the result of human processes. A changing climate can also
promote a higher abundance of mosquitoes (Schaffner and Van Bortel 2013) and
facilitate their development in a shorter time. It seems that the more humanity
modifies the earth, the more that mosquitoes will thrive in our environment.

Conclusion

Since mosquito control is sometimes dependent on knowing the behaviour of
the vectors, mosquitoes not exhibiting such behaviours may not be killed or
eliminated. Mosquitoes also have the habit of changing their behaviour in order
to escape being killed. When we speak of elimination of malaria or of filariasis,
we are referring to eliminating the disease. But the species of mosquitoes
responsible for transmitting these diseases will remain; thus the ecosystem will
not be disrupted.

In the end, mosquitoes are part of the ecosystem and so will probably never be
eliminated. Control measures only target the vector mosquitoes and will allow
many other organisms to survive and provide food for still other organisms.
The current trend in mosquito control is moving towards creating more
mosquitoes, albeit ones that cannot transmit diseases. How far this strategy will
succeed remains to be seen. Mosquitoes will not be wiped out from planet Earth.
They are smarter than humans and will survive for years to come. To quote
Andrew Spielman, “mosquitoes are well adapted to a very unstable, transient
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environment. They’re the first organism in and the first out of a newly created
body of water” (Spielman 2001). Mosquitoes are here to stay and there is a place
for each species. Mosquitoes will thrive in the ecosystem as they have done for
millions of years.
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AFTERWORD

Ashwani Kumar

Mosquitoes and their survival instincts fascinate. Yet, in matters of mosquitoes,
one gets caught in a dilemma. Mosquitoes do both good and bad to humanity.
One must consider whether nature could do without these blood seekers and
disease agents? Not really—for not all mosquito species are disease vectors! Shall
we or shall we not let them go? Have we not tried enough and failed? Have we
learned our lessons yet or not? These are some of the questions that come to mind
when considering the lessons of Mosquitopia.

Our knowledge about mosquitoes is not new. In ancient India, Susruta the
author of Susruta Sambhita in the second century AD described five kinds of
mosquitoes (or “Mashakah”) in Sanskrit, namely, Samudrah (marine or coastal
mosquito), Parimandalah (very small mosquito), Hastimashakah (elephant mos-
quito), Krishnah (black mosquito) and Parawatiyah (hill/foothill mosquito).
Rao (1984) mentions that from these divisions of mosquito taxa, knowledge
about mosquitoes in India is at least 1,800 years old.

The destruction that mosquitoes cause!

Historically, mosquitoes were perceived as the agents of disruption and havoc of
various human civilizations. Together with their pathogens and parasites, mos-
quitoes colluded in killing more people than all the wars fought on the earth.
Even the mightiest of warriors, the likes of “Alexander the Great,” fell to a bite of
a mosquito laden with Plasmodium. Mosquitoes showed no mercy on the Vatican
clergy either. In August 1590, Pope Sixtus V and, a month later, his successor
Urban VII, died of malignant fever (Celli 1925). In a disastrous Vatican conclave
of 1632, eight cardinals and 30 secretaries succumbed to the deadly Plasmodium.
Mosquitoes were certainly not God-fearing.
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Hate at first sight

The very sight of a mosquito annoys and irks. The immediate and voluntary
response is to squash it before it syringes out the “red fluid” from the vein.
Terrified humans have called mosquitoes “pesky bastards,” “agents of doom,”
“flying syringes,” “nasty and evil” and all else. Ranting frustration against a
fellow species, however justified, is morally and ethically misplaced as we are
informed by Mosquitopia. After all, it’s simply the game of survival that species

play in nature.

From sledge hammer to resurrection

From an evolutionary perspective, mosquitoes are far superior to humans.
Mosquitoes display a remarkable instinct for survival through plasticity in their
behaviour which is intimately attuned to their immediate environs. Perfecting
life strategies seem to be their constant endeavour. It is in the greatest interest of
humankind to preserve mosquitoes for the good they do by way of their ecosys-
tem services in the food web and pollination of plants. They are the objects of
scientific curiosity as one of nature’s supreme manifestations of millions of years
of evolution.

To start off this volume, Marcus Hall and Dan Tamir make a compelling
case for a balanced approach while dealing with these wonderful creatures. The
sledge hammer approach to eliminating mosquitoes has only led to their greater
fitness, in their opinion. They conclude: In the end, rather than pushing an ulti-
matum that it must be us or them, can humans promote and practice a kind of
“Mosquitopia” with these little humming creatures, humanity’s most dangerous
companions? Could we develop a relationship with this insect that will allow
healthy cohabitation?

A manifestation of fascinating evolution

In Chapter 2, we have Hawkes and Hopkins’s excellent descriptions of the mos-
quito’s powerful sensors; its ability to match wingbeats as nuptial strategy; the
variety of host-seeking cues; the advanced blood-sucking armature or proboscis;
its blood-feeding strategies of piercing and locating the vein; the properties of its
saliva that are angiogenic, inflammatory and anaesthetic; and its fecundity and
breeding choices. Their indomitable survival instincts only raise one’s inquisi-
tiveness about the innumerable classical features of these amazing creatures and
are a powerful reminder of how far mosquitoes have come in their evolutionary
journey. By appearance, so beautiful are some of the mosquito species that they
will give high-fashion models a run for their money! A look at the shiny and
the multi-hued Sabethes cyaneus will leave no doubts in one’s mind (Figure 18.1).

The discovery of an amber fossil of a mosquito in Canada resembling Paleoculicis
minutus suggests that today’s mosquito personifies a refined biological system by
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FIGURE 18.1 Sabethes cyaneus, mosquito (photo: Paul). Source: https://featuredcreature.
com/now-this-is-buzzworthy-species-of-mosquito-is-worlds-most-bea
utiful/

taking advantage of at least 79 million years of evolution. It then becomes obvi-
ous that a mere 300,000-year-old hominid, Homo sapiens, may be no match for
this sophisticated bio-machine that has been engineered, shaped and perfected
for millions of years.

Such different time scales suggest that human evolution is on a hopelessly slow
track when it comes to accumulating and transferring useful mutational changes
and genetic recombinations to future generations. Thus, it takes about 6,570
days (or 18 years) for humans to become biologically productive and start one
new generation. During the same time, with 40 days of maximum life, a typi-
cal mosquito would pass through some 164 generations. Even adjusting for the
several months spent in hibernating eggs (in inclement weather) and overlapping
generations, the mosquito’s wheel of life turns much faster than that of humans
to provide these insects with much faster natural selection advantages.

An entangled destiny of mosquitoes and humans

Mosquitoes and humans are companions. Uli Beisel and Carsten Wergin
(Chapter 3) remind us that mosquito—human entanglements can be “infra-
structuring environments.” Loss of biodiversity, global warming, and height-
ening trade and travel provide new opportunities for sharing environments for
resources and habitats so that humans actively promote mosquito expansion with
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their mobility and create feeding, resting, and breeding opportunities for mos-
quitoes. Citing the expanding distribution of Aedes aegypti and Aedes albopictus in
Europe and Americas with used car tyres, and with lucky bamboo in Germany,
they point out that “Just as humans and goods move, disease vectors and patho-
gens utilize global connectivities to expand their habitat.”

Elaborating on human—pathogen—mosquito entanglements, together with
global warming and accelerating inter-country connectivity, Beisel and Wergin
predict that several mosquito species will find new ways to expand. The One
Belt One Road (OBOR) initiative is just one ongoing infrastructural project for
enhancing maritime trade and overland travel between Asia, Europe and Africa
that will bring the world ever closer together. Vigilance of these networks may
also provide insights into better ways for hindering vector movement, especially
at the points of entry. The International Health Regulations division of WHO
remind us that movement and expansion of invasive species is real.

The mosquito surge and human response

In Chapter 5, Urmi Engineer Willoughby argues that humans domesticated vec-
tors by promoting anthropophilic behaviour and mosquito companionship when
human settlers and slaves cultivated sugarcane in the Americas during the nine-
teenth century. Tenacious mosquito behaviour led to their evolutionary success,
and their ability to pose an ongoing threat to humanity. Bill Gates calls them
“the deadliest animal in the world” (Gates 2006).

Our early shot at a mosquito

Mosquito control campaigns in the last two centuries have been focused on
water drainage and marsh reclamation resulting in a significant impact on
vector populations and in reducing malaria burden (James Webb, Chapter
4). This was followed by the use of Paris Green, as in the project of eliminat-
ing Anopheles arabiensis from Northeast Brazil, and Anopheles gambiae from
Egypt during one of the most meticulous anti-mosquito campaigns that led
to the successful eradication of these two invasive malaria vectors. Buoyed
by these successes led by Fred L. Soper, the Rockefeller Foundation sought
to eradicate Anopheles labranchiae from the island of Sardinia in Italy with
DDT as larvicide and adulticide. Although mosquito numbers were drasti-
cally reduced, thereby eliminating malaria, complete eradication of the vec-
tor proved elusive, with An. labranchiae returning to occupy its lost ground in
later decades. Similar projects were carried out against Aedes aegypti in Brazil
starting in 1947. Although highly successful in its initial years, Aedes aegypti
numbers in South America would return by the 1960s. Moreover, the col-
lateral damage of DDT was showing greater manifestations around the globe,
leading to the destruction of non-target fauna. Rachel Carson’s famous Silent
Spring (1962), which painted a picture of a world without birdsong, evoked
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a strong response. Subsequent environmentalism and activism led to restrict-
ing DDT in agriculture and public health. Webb reminds us that only a few
mosquito species are vectors, and that removing other species of mosquitoes
and non-target organisms could prove perilous to humanity.

One sees that the battle of survival and superiority between humans and
mosquitoes has been raging for centuries. And for the most part, mosquitoes
have been holding the upper hand. One wonders who will have “the last
laugh.” Can humans achieve the Sisyphean task of exterminating mosquitoes
even if they wished to? Could we or should we accept the inevitable and halt
our fight for environmental, biological and mechanical reasons so that we can
settle for something less than elimination of the invincible mosquito? Fred
L. Soper’s fight-to-finish strategy to William Gorgas’ calibrated and selective
approaches provide us with lessons to guide our future course as explained by
Nancy L. Stepan (Chapter 6). The very thought of eradication appears to be
misplaced and in a quagmire: the goal should remain that of reduction, not
complete elimination, of vector populations.

The mosquito as art

What an inspiring and fascinating impression that artists Kerry Morrison and
Helmut Lemke (Chapter 10) create in the minds of the wetland visitors and
the readers from their mobile carrier, Wetlands on Wheels (WoW)! Viewing
the world from the eyes of an artist adds another dimension to the nature of
complexities. Fantasizing about mosquitoes to awaken human sensitivities
through the medium of art brings together science and culture on the single
canvas of life.

Mosquito and human rights

Do mosquitoes have rights as individuals and as species? Anna Wienhues
(Chapter 13) questions the very morality of humans in killing an individual
mosquito and also in trying to eliminate and eradicate mosquito species. It
becomes apparent that the principle of hubris and risk applies to Homo sapiens
in their quest to dominate all life forms on the planet in the sense of owner-
ship. Wienhues points out that even if some mosquitoes act as vehicles for
disease agents, they are, themselves, innocent victims. In defending their
action for preventing infection and suffering, making a case for the extinc-
tion of an entire species 1is totally unjustified both morally and ethically, even
though it may not be physically and biologically plausible. Also, can a few
humans who venture to exterminate mosquitoes assume the moral and ethi-
cal responsibility of all humanity? Is moral, political, financial and informed
consent crucial for such responsibility? Even if killing disease agents and vec-
tors is justified as a matter of human rights, the talk of eradicating mosquitoes
may be against a mosquito’s natural rights.
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Mosquito management

Management of pestiferous mosquitoes, and drainage of wetlands in the early
twentieth century proved a practical and sustainable control strategy on Hayling
Island, in South West England, and in the New Jersey marshlands. How mosqui-
toes harassed the guests of John F. Marshall, including Ronald Ross in 1922, is
a telling story (Chapter 7, Peter Coates). The successes of the British Mosquito
Control institute (BMCI) in draining the Hayling island marshlands in three
years using tropical wisdom was an astonishing feat. During a subsequent visit
to the same island in 1925, not a single bite was experienced by Ross and other
guests. This points to the fact that today's highly chemical-dependent approach is
short-term, never-ending and unsustainable. The integration of decades of gath-
ered wisdom must shape the future of mosquito control. Suffice to mention that
humans often live close to marshlands for food and livelihood, as emphasized by
Ford, Gearey and Acott (Chapter 9).

In present times, William Takken (Chapter 8), advocates community engage-
ment and implementing an integrated approach, that of combining environ-
mental management (e.g. effective drainage) with housing improvements
(mosquito-proofing and screening), biological control (with larvivorous fish and
Bacillus thruringiensis israelensis), bio-rationale methods (insect growth regula-
tors and attractive toxic sugar baits), chemical control (indoor residual spray and
long-lasting insecticide nets) and behavioural control (repellents/attractants). All
of these methods form the backbone of the Global Vector Control Response of
the WHO which stresses operational research and global entomological capac-
ity-building as a foundation for judicious interventions in a sustainable control
strategy.

Alex Nading (Chapter 12) raises an interesting issue of ambivalence while
dealing with mosquitoes. On the one hand, there is talk of extermination of
mosquitoes, and on the other, the same insects are modified and propagated for
human welfare. As an example of this ambivalence, Wolbachia is a gram-nega-
tive endosymbiont bacterium naturally present in about 60% of insect species
and has the ability to check dengue, chikungunya, and Zika viruses. However,
Wolbachia infection in Aedes aegypti (the vector of these viruses) is rare. This
observation has convinced the World Mosquito Programme (WMP) to advocate
the release of Wolbachia-infected Aedes aegypti from the laboratory for curbing
these viruses. Interestingly, the mating of a Wolbachia-infected male Aedes aegypti
with an uninfected wild female will cause cytoplasmic incompatibility, resulting
in sterile eggs. Over a period of time, this mating process will eliminate the local
wild Aedes aegypti population, thereby diminishing the associated vector-borne
diseases.

Isabelle Dusfour and Sarah Cunard Chaney (Chapter 14) list various methods
employed to control mosquitoes and feel that most such methods have reached
the end of their chemical life since mosquitoes have become quite resistant to
most insecticides. Biological control agent Bacillus thuringiensis israelensis has, by
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and large, proved itself to be safer and more effective than the larvicide temephos.
Newer tools and techniques have become available such as releasing genetically
modified insects with a dominant lethal gene (RIDL), sterile insect technique
(SIT), insect incompatibilities with Wolbachia-modified mosquitoes (IIT) and
gene drive. These methods are, however, at an early stage of experimentation
as explained by Ramya Rajagopalan (Chapter 15). Paradoxically, many of the
above techniques require mass production of mosquitoes in the laboratory for
release in the field to control or replace wild populations. In the ongoing scru-
tiny of the safety and desirability of these latest control techniques, the authors
conclude that it is more critical than ever to search for a sustainable and accept-
able equilibrium that simultaneously preserves human health and protects the
environment. One must aim to integrate the social aspects of mosquito-borne
diseases with the ecological habits of the mosquitoes that transmit those diseases.

Indra Vythilingam (Chapter 17) highlights the worldwide campaign to elimi-
nate malaria and filariasis with the support of the WHO. She professes how vec-
tors and vector-borne diseases evolved and were addressed with different tools
and strategies in Malaysia. Her most striking example shows how deforestation
and human settlements led Anopheles to infect humans with Plasmodium knowlesi,
a monkey malaria originating in local macaques. The author cautions against the
use of genetically modified mosquitoes, citing the example of Oxitec Aedes aegypti.
Eighteen months after the release of these GM mosquitoes, observations showed
that the wild population which had initially been suppressed began to rebound to
pre-release levels (Evans et al. 2019). The cautionary note here is that these releases
may end up promoting more robust populations of mosquitoes in the future, with
ultimate consequences for the ecosystem remaining unknown. It may also be an
unrealistic or uneconomic strategy for many disease-endemic countries to set up
sophisticated, GM-mosquito—producing laboratories, and then transport, moni-
tor and evaluate GM- or Wolbachia-transinfected vector populations. Vythilingam
underscores the paradox of convincing communities to carry out repeated releases
of mosquitoes rather than preventing mosquito breeding in the first place.

An enigma of sorts!

From an anthropological perspective and the Brazilian narrations of Jean Segata
(Chapter 11), one realizes the complexity of combining existing mosquito popu-
lations, patients ailing with yellow fever, and equivocal responses of authorities
with yet another Aedes-borne outbreak that worsens incidence of dengue, chi-
kungunya and Zika. As the face of disease changes its epidemiological dimen-
sions, human perceptions and disease-detection technologies need to occupy
the already crowded space for effective responses from municipalities, health
workers, bureaucrats and political leaders. The mosquito, the scientists and their
research and the healthcare institutions, alongside the human suffering, when
combined with public health measures and job security of mosquito workers, all
become nuts and bolts of the same inexorable machine: “the disease.” The very
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movement of this machine depends on a disease continuum, its modulations and
its dimensions in time and space. What an enigma of sorts!

The Mosquitome

Frederic Simard introduces (in Chapter 16) the intriguing concept of the

bl

“Mosquitome,” which by his definition is the assemblage of mosquitoes that
thrive where people live. He reminds us that human transformations of the
natural environment are responsible for creating opportunities and habitat
for mosquitoes, with the Mosquitome being composed of a handful of highly
synanthropic mosquito species. This concept helps to separate mosquitoes into
disease vectors living in the vicinity of human settlements from those that do
not cause us harm—and indeed may carry out important roles in ecosystems.
Here, elimination of mosquitoes should not be the goal; rather, the main strat-
egy should focus on methods to reduce longevity and control mosquitoes of the
Mosquitome so that they do not transmit their pathogens. Quoting Michalakis
and Renaud (2009), Simard mentions that opportunities exist to disentangle
vector fitness from pathogen transmission. Beauvaria and Wolbachia are considered
good candidates for the late-life control of mosquitoes. In this way, mosquitoes
can lay eggs but die before infecting humans with dangerous microbes. Local
breeding containers and puddles must be drained; house-screening and insect-
proofing will reinforce a methodology that targets the Mosquitome.

Mosquitopia

Mosquitopia is thus a treasure trove in the hands of explorers, nature lovers, ento-
mologists and mosquito managers alike. It is an assemblage of deep insights into
the world of mosquitoes, and is as much a philosophical expression of human
appreciation of nature as it is a catalogue of the human successes and failures
when dealing with mosquitoes. The volume sounds a wake-up call for the
human race that stands at the crossroads of the old and the new, still searching for
tools and methods to limit mosquitoes. Mosquitopia is a timely statement when
global warming’s effects are appearing more ominous in a world that is poised
to further empower the old foe. Our wise authors implore us to raise human
conscience and steer away from the aims of extermination and eradication and
towards appreciating the moral and ethical rights of all life forms. Mosquitoes
arrived several million years before Homo sapiens walked on this planet and will
surely continue buzzing much after our species is gone. The sane approach? To
“live and let live”.

A mosquito!
Tiny and fascinating
superbly adapted
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amazingly powered
hated and victimized
facing extinction
returned emboldened
Better thee understand
my rights in thy space
A shared destiny
Better humans beware!
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