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Abstract Analogical arguments are ubiquitous vehicles of knowledge transfer
in science and medicine. This paper outlines a Bayesian evidence-amalgamation
framework for the purpose of formally exploring different analogy-based infer-
ence patterns with respect to their justification in pharmacological risk assessment.
By relating formal explications of similarity, analogy, and analog simulation, three
sources of confirmatory support for a causal hypothesis are distinguished in recon-
struction: relevant studies, established causal knowledge, and computational mod-
els.

Key words: scientific inference, pharmacology, epistemology, Bayesian confirma-
tion, evidence, relevance, similarity, analogy, computer simulation

1 Introduction: scientific inference in pharmacology

Pharmacological research is often driven by many forces at once: Cost effectiveness
must be balanced against extensive data-collecting, potential risk against probable
benefit, and breadth of applicability against well-documented higher confidence for
smaller target groups. Many such decisions must be taken during the development
stages of a certain drug before the desired effectiveness and safety level is reached
and the drug is allowed to be marketed. A language for expressing both benefit and
safety is found in the probabilistic language of expected utilities and dis-utilities.
Nevertheless, the formalization of a given decision problem in such vocabulary can
only be as informative about future drug users as the evidence it is rooted in. Yet,
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whether it is all the evidence about the drug’s effects that is to be taken into con-
sideration, or only the best evidence available, is the subject of an ongoing dis-
cussion in the philosophy of medicine. A recent paper by Landes, Osimani, and
Poellinger (Landes et al, 2017) explores the possibility of amalgamating all avail-
able evidence in a Bayesian reconstruction of scientific inference for the integrated
probabilistic assessment of a drug’s causal (side-)effects. Key to this endeavor is the
distinction of the conceptual levels involved: (i) the causal hypothesis, (ii) testable
indicators of the causal claim, i.e., theoretical consequences of the causal hypothe-
sis, and (iii) concrete evidence (actual data) speaking for or against the respective
indicators (thereby indirectly supporting the hypothesis, or not). Close to pharmaco-
logical practice, it is furthermore useful to introduce an additional meta-evidential
level for the purpose of encoding the qualified assessment of the data at hand. This
allows to conceptually distinguish the content of an evidential report from its weight
in the evaluation of the hypothesis: Different pieces of evidence may possess differ-
ent levels of significance (iv).

One important justification of the confirmatory support a piece of evidence lends
to a given hypothesis (by virtue of it being evidence for an indicator of the very
hypothesis) is the postulate (or implicit assumption) of analogy between the cir-
cumstances generating the evidence and the hypothesis’ intended (future) scope of
application. Sir Austin Bradford Hill lists analogy as one of his famous guidelines
towards an informed assessment of potential causes in epidemiology:

In some circumstances it would be fair to judge by analogy. With the effects of thalidomide
and rubella before us we would surely be ready to accept slighter but similar evidence with
another drug or another viral disease in pregnancy.” (Hill, 1965, p. 11)

The aim of this paper is to explore different analogy-based inference patterns
in the above-sketched layered reconstruction of scientific reasoning, with respect to
their justification in pharmacological risk assessment. In particular, different aspects
of similarity shall be made transparent in order to compare conceptually different
types of evidence in analogical reasoning. Three interrelated questions shall be ad-
dressed in the following sections:

1. How can analogy considerations be used to explicate the relevance of evidence
for a hypothesis under consideration? (Sec. 2)

2. How can an already well-established hypothesis be used as a supporting analog
in confirming a hypothesis about a similar drug? (Sec. 3)

3. By what standards can a mechanistic computational model of a substance’s
causal effects as a theoretical analog lend evidential support to a causal hypothe-
sis about the actual substance? (Sec. 4)

2 In this passage, Hill refers to (i) severe disabilities (even death) among babies linked to the
over-the-counter drug thalidomide, prescribed in the 1960s in Germany as Contergan to alleviate
morning sickness in pregnant women, and to (ii) miscarriage or children born with the congenital
rubella syndrome (CRS) due to infection by the rubella virus during pregnancy.
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Before we can trace the role of analogy in pharmacological research, though, a
formal reconstruction of the dynamics underlying scientific hypothesis testing shall
be outlined in the following.

1.1 Evidence amalgamation and hypothesis confirmation

Causal inference in pharmacology is a difficult task due to sometimes sparse, of-
tentimes very heterogeneous evidence, different standards for evidence evaluation
and integration, and many sources of random and systematic error. In their plural-
ist, conciliatory approach, Landes, Osimani, and Poellinger (Landes et al, 2017)
propose a blueprint for tracing the epistemological dynamics of evidence amalga-
mation, viewing risk assessment in pharmacology from a meta-perspective. In their
framework, causal hypotheses (about adverse drug reactions) and evidential reports
(about concrete studies) are related in such a way, that successively cumulating ev-
idence allows for probabilistic causal inference. One important point of departure
for this approach is Bovens’ and Hartmann’s general reconstruction of scientific in-
ference (Bovens and Hartmann, 2003) in which the epistemic dynamics of all the
dependencies between a hypothesis, testable indicators implied by the hypothesis,
and evidence for/against such indicators can be visually traced in the graph of a
Bayesian network: The conceptual categories are depicted as layers of nodes, with
directed edges between the layers marking those paths along which confidence in the
hypothesis is boosted (or lowered). The probabilistic model underneath the graphi-
cal representation supplements the Bayesian network with quantitative information
by encoding (i) conditional degrees of (un)certainty about all variables, and (ii) how
these degrees will change under local updates.

The example in Fig. 1 illustrates the epistemological structure: The causal hy-
pothesis (Hyp) entails n theoretical indicators (i.e., testable consequences Indj, ...,
Ind,), which are to be supported by concrete evidence reports Repy, ..., Rep, on
the lowest level. Since evidence reports are based on concrete data (e.g., clinical
trials, historical studies, or lab experiments), it will be desirable in many cases to
modulate their significance for the assessment of a particular causal hypothesis for
various reasons: The source of information seems undependable, the quality of a
study might be doubtful, the reliability of method or measurement device is not
guaranteed, test group and target group deviate in relevant details, and so on. To be
able to express such levels of significance, the report nodes in the graph come with
an additional weight node ¢ (for the moment simply a blackbox placeholder for the
aforementioned significance dimensions, used below to encode evidential relevance
in particular, see Sec. 2). The degree to which a given evidence report supports the
hypothesis depends precisely on its “weight”, i.e., its relevance to the hypothesis,
the reliability of the source, the error-proneness of the methods used to generate the
data, and so on. Such weight nodes might in general be shared between reports — for
example in cases where more than one report is based on data generated by the same



4 Roland Poellinger

measurement device. While Bovens and Hartmann utilize this weighting parameter
to explicate the reliability of a report, Landes, Osimani, and Poellinger — aiming at
hypothesis confirmation in pharmacology — split this weighting parameter into two
variables (reliability and relevance) in order to distinguish the quality of method and
information source from questions of external validity (by encoding the degree to
which study results can be extrapolated to the target).?

What it means to be an observable consequence of the hypothesis is implicitly
stated by the following inequality (see also Bovens and Hartmann 2003, p. 90):

P(Ind;|Hyp) = p; > q; = P(Ind;|=Hyp), (1)

where ‘Hyp’ is to be understood as shorthand for ‘Hyp = true’, and analogously
for the other variables (in the following, context disambiguates if a variable or its
instantiation is referred to).

Fig. 1: Example of how a causal hypothesis, multiple testable consequences, and
weighted evidence reports might be related in a Bayesian network.

3 As implied by this way of distinguishing reliability and relevance, the relevance weight (attached
to a given evidential report) is really meant here to capture the degree of external validity. Of
course, there are other ways in which a study can be relevant to the hypothesis — for example, if it
is conducted by an acknowledged authority. In the framework of Landes, Osimani, and Poellinger
(Landes et al, 2017), this way of being relevant to the hypothesis would be encoded in the reliability
weight, which collects all sources of bias.
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The conditional in/dependencies between the epistemic categories can be read
off the structure in Fig. 1 by utilizing the graphical d-separation criterion:* All
directed edges mark positive influence between adjacent nodes (variables, respec-
tively), which makes all Hyp, Ind, and Rep variables positively correlated (condi-
tional on the empty set). Following Bovens and Hartmann (2003), the weight vari-
ables are independent of the theoretical categories (i.e., hypothesis and indicators)
and may be used to account for exceptions.’ I will treat the a-weights as binary
modulators throughout the paper (with o = 1 indicating significance and &« = 0 in-
dicating insignificance, respectively); nevertheless, the formal framework can easily
be extended to allow for a more fine-grained (in many cases more appropriate) rep-
resentation.

The in/dependencies visualized in Fig. 1 can be summed up probabilistically as
follows, for all i (1 <i < n):

Hyp,Ind; 1 o; 2)
P(Rep;| Ind;,o;=1)=1 3)
P(Rep;|—Ind;,a; =1) =0 4
P(Rep;| Ind;,o; =0) = (5)
P(Rep;|—Ind;,o; = 0) =
P(Rep;| o, =0)=gq;

Eq. 2 precisely encodes the independent assignment of the weighting parameter. Eq.
3 and Eq. 4 show that an evidence report marked as “significant” to the hypothesis
is aligned with the respective indicator. The loose term “‘significance” is meant to be
understood in this context as a quite general concept up for interpretation — it does
not refer to statistical significance of study results, but rather to the quality of evi-
dence (as meta-information), e.g., in terms of reliability or relevance, as discussed
below. Eq. 5 explicates what happens when an evidence report is qualified as “ut-
terly insignificant” to the hypothesis: In that case, whether the report speaks for or
against the respective indicator becomes probabilistically independent of the truth
value of this very indicator variable (with 0 < g; < 1). In particular, an evidence re-
port considered irrelevant for the investigated hypothesis should not influence one’s

4 The graphical d-separation criterion (with d for directional) distinguishes conditionally depen-
dent (sets of) variables from conditionally independent ones by drawing on structural information,
i.e., on how arrows are directed along the paths between the (sets of) variables under consideration;
see, e.g., Geiger et al (1990).

3 In this case, independence between the weight variables and the hypothesis “may or may not be a
realistic assumption”, as Bovens and Hartmann concede, and they extend their discussion to cases
where such weight nodes (reliability of evidence reports) and the hypothesis are made dependent
through auxiliary theories (see Bovens and Hartmann 2003, pp. 107ff.). For the purpose of this
paper, though, the standard for assigning values to weight variables is assumed to be fixed prior to
hypothesis testing.
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confidence in the truth of the hypothesis’ indicators.®

With this Bayesian framework at hand, explicating what it means for a given
piece of “significant” evidence to confirm a causal hypothesis is straightforward:
An evidence report Repy is said to confirm the hypothesis Hyp iff it raises Hyp’s
probability, i.e., iff

P(Hyp|Repx) > P(Hyp). (©6)

Obviously, this inequality does not hold for o = 0, i.e., for “insignificant” evidence
reports (unreliable sources of evidence or evidence irrelevant for the hypothesis
etc.). Consequently, what it means for a given piece of evidence to be “significant”
to a hypothesis must be defined before we can start confirming this very hypothesis.
Analogical reasoning shall be exploited towards that goal in the following.

1.2 Analogy as inferential pattern

At the heart of analogical arguments lies the assumption of (sufficient) similarity
between the two relata (or aspects thereof, respectively). The concept of similarity
comes with a mixed bag of notorious epistemological issues of its own, though. For
example, if two drugs are to be related in an analogical argument, the following
questions come to mind: What does it mean to be sufficiently similar in the case
under consideration? In what way does the difference between the first and the sec-
ond drug influence changes in expected outcome values? How specific are a drug’s
properties? If they are highly specific — to what extent can this drug be used in
an analogical argument, if at all? Despite these conceptual difficulties, science and
history are full of successful examples of analogical reasoning, even in the case of
scientific discovery: In the nineteenth century, secured knowledge about acoustics
was employed in the discovery of spectral lines. Guided by the image of a harmonic
oscillator, physicists were able to focus their attention to groups of spectral lines
with specific frequency patterns from the beginning (see Bartha’s in-depth overview
of analogical arguments in Bartha 2013, as well as Unruh 2008, Dardashti et al
2017, and Hesse 1952 for discussions of analog arguments in physics).

In pharmacology and epidemiology, reasoning by analogy is a key mode of
knowledge transfer from study to target population. Indeed, because of the context
sensitivity of many causal associations in the biological realm, these associations
can hold only in specific populations, and therefore evidence about causal effects
related to one population may not license similar conclusions about another popu-
lation, unless the two populations have been established as analogous (in relevant
respects). Knowledge about an agent’s mechanisms and about its impact on the bi-
ological environment might be sparse and come from quite heterogeneous sources,

% The Bayes net structure in Fig. 1 for example illustrates that Ind; is influenced by (since d-
connected to) o once we know the value of the “collider variable” Rep;.
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however. Yet, already if only little information about the agent’s class of molecules
is available, for example, this can justifiably be exploited for causal assessment via
analogy.

As Bartha (2010) points out, analogical arguments fall into a different category
than regular evidence as such. Consider the general form of an analogical argument
(see Bartha 2013):

1. yis similar to x (in certain known respects), (A)
2. x has additional property A,
3. therefore: y has property A’ (similar to A).

This argument obviously encodes basic evidence about x which is then used to make
inferences about y. It is unclear, as Bartha points out, how such a structured argu-
ment could be encapsulated in a single evidential proposition to figure as a condition
in the scheme of Bayesian confirmation, stated in Eq. 6 above. Moreover, according
to Bartha, even if we were to condense a full analogical argument into one such ev-
idential proposition A, the postulated similarity between source and target domain
must have been established before A can be used in confirmation, which makes A
“old evidence” and useless for confirmation (since it does not boost the degree of
belief in the hypothesis). This becomes obvious once Eq. 6 is relativized to fixed
background knowledge K. With the analogical argument A entailed by K, we get
P(Hyp|A,K) = P(Hyp|K).

With the above-sketched Bayesian reconstruction of scientific hypothesis testing
at hand, we already have a structure-rich framework utilizable for a different formal-
ization of analogical reasoning: The key idea is to understand analogy not as single
nodes, but to trace confirmation by analogy along the edges in the graph. In other
words, analogical arguments shall be understood and expressed rather as inferential
patterns than as “evidence nodes”.

The evidence-amalgamation framework can be operationalized for this purpose
in the following ways:

1. The question of applicability of a study’s findings is best phrased in terms of cor-
respondence between study and target populations, where correspondence shall
be understood as similarity (above a certain threshold): If study and target pop-
ulations are sufficiently similar, researchers are licensed to reason about causal
links in the target population by analogy with their test cases. The extent to which
this kind of transfer is licensed is encoded in the framework as relevance of avail-
able reports (such that independent reports are each assigned a different degree
of relevance with respect to the investigated hypothesis). The more characteris-
tics are shared between study and target, the higher the relevance of evidence
obtained in this study for the hypothesis under investigation. This case is treated
in Sec. 2.
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2. The investigated causal hypothesis Hyp may be related to a second causal hy-
pothesis Hyp* which has already been established in previous studies. Now, if
scientists have sufficient reason to postulate analogy between Hyp and Hyp*
(e.g., a high degree of chemical or functional similarity), knowledge about this
second causal hypothesis supports the first hypothesis Hyp via analogy. This
case requires an extension of the layered network introduced above and will be
treated in Sec. 3.

3. As a special sub-case of 2., I will discuss how Hyp can possibly be confirmed
by way of computational modeling (instead of by relating it to a second causal
hypothesis Hyp* about a biological system): In cases where scientists want to
confirm mechanistic assumptions, computer simulation has become a viable al-
ternative to costly, unethical, or otherwise inaccessible experimental studies. As-
sumptions about the efficacious mechanistic relationships may be modeled in a
virtual analog to find out more about the protein a drug binds to or to simulate
an agent’s interaction with the biological system, for instance, w.r.t. dosage (see,
e.g., Britton et al 2013 and Carusi et al 2012). In order to treat this special case I
will tweak the network structure even further in Sec. 4.

My aim in this paper is to exploit the concept of analogy in explicating these dif-
ferent knowledge transfer strategies. To this end, I will investigate the confirmatory
dynamics of analogical reasoning in a formal way: All three abovementioned cases
shall successively be located in the evidence-amalgamating framework for the pur-
pose of unifying the inferential patterns and emphasizing their structural differences
at the same time. I will start by discussing ways of designing possible (compara-
tive or numerical) distance measures for expressing similarity (between substances,
populations, etc.).

2 Learning from relevant evidence

2.1 Heterogeneous evidence

The evidence-amalgamating framework, as introduced above, presents itself as a
tool for describing specific cases in that it can be adapted to accommodate specific
pieces of evidence for (or against) specific theoretical consequences of the causal
hypothesis under consideration. At the same time, it is meant to be understood as
a normative statement about the quality of the causal assessment: The more infor-
mation about the indicator variables is available, the more reliable the assessment
of the hypothesis. This is especially true in the case of causal hypotheses, given the
variety of methodological approaches towards discovering causal associations in the
sciences.’

7 Landes et al (2017) contains a non-exclusive list of six causal indicators derived from Hill’s
guidelines in Hill (1965). See also Poellinger (n.d.) for a discussion of the conceptual relationships
of these causal indicators and the ramifications of theory choice in causal assessment.
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The multi-layered framework introduces report nodes as placeholders for hetero-
geneous pieces of evidence. The reports can come from all levels of the “evidence
hierarchy” — the framework treats all these levels as relevant in causal assessment:
Systematic reviews, meta-analyses of randomized clinical trials or observational
studies, comparative non-randomized studies (cohort or case-control studies), ev-
idence of (sub-)mechanisms from basic science (lab experiments etc.), as well as
expert judgment. Relevant information may come also from single case reports,
case series, and animal studies. Amalgamating these different types of evidence has
not only epistemological value (since it traces the epistemological dynamics from
observed signals of Nature to the establishment of hypotheses) but also methodolog-
ical value (since it readily accommodates different approaches towards evidence as-
sessment and related disputes like the seeming tension between paradigms such as
best-evidence vs. pluralistic approaches).

2.2 Relevance

However heterogeneous the evidence, different evidence reports (understood as data
interpreted relative to the hypothesis under consideration) will be attributed different
levels of significance for the hypothesis: Virtually no pharmacological study allows
for straightforwardly transferring shown results from studied population to target
population of possible future drug users — population size, inherent structure, spe-
cific circumstances, possible interactions with uncontrolled substances, etc. might
be similar, but will virtually never be the exact same (see Chan and Altman 2005, p.
1180, Doll and Peto 1980, Worrall 2007, p. 992). Furthermore, patient inclusion cri-
teria for participation in RCTs will skew the inference transfer from study to target
population even more (see, e.g., Revicki and Frank 1999 and Upshur 1995, p. 483).
When the results of animal studies are to be applied to a population of future hu-
man drug users it becomes quite clear that questions of applicability must be settled
first before such transfer is licensed.® Moreover, in their recent analysis of the role
of evidence about a substance’s mechanisms in risk assessment, Lujan, Todt, and
Bengoetxea (Lujan et al, 2016) point towards the lack of guarantee that similarity of
modes of action may warrant extrapolation of phenotypic effects from one chemical
to another — chemicals considered similar in important respects might not necessar-
ily produce similar effects (for a given population). And finally, when laboratory ex-
periments yield information about some component of the causal mechanism (e.g.,
at the molecular level or in terms of cell behavior), the significance of this (partial)
result for the hypothesis about the entire mechanism must be determined first.’

8 LaFollette and Shanks (1995) argue, e.g., that animal studies are limited to hypothesis generation.
9 In particular, the question must be answered whether the partial result can be combined in
an additive fashion with information about further sub-mechanisms, or whether complex inter-
dependencies forbid partitioning the full mechanism into stand-alone modules.
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In all these cases scheme (A) is applied implicitly or explicitly: The hypothesis
is confirmed by analogy, i.e., its degree of confidence is raised by a given evidence
report, once similarity between studied subjects (or objects) and intended applica-
tion is established. In the framework of Landes, Osimani, and Poellinger, this type
of significance of a given evidence report for a hypothesis to be tested is expressed
as evidential relevance factor (whose value is to be determined outside the model),
cf. Landes et al 2017, Sec. 3.3:1°

Ideally, pharmacological studies would license the same inferences for the studied popula-
tion and the target population of future drug users. In reality, studies are not conducted on
the entire population of future drug users but on a much smaller number of patients, see
Chan and Altman 2005, p. 1180, Button et al 2013 for this problem in neuro science, Doll
and Peto 1980 in cancer research and a philosophical discussion of this problem in Worrall
2007, p. 992. Additionally, studied populations, in particular in RCTs, often fail to be rep-
resentative for the target population due to strict patient inclusion criteria, see Revicki and
Frank 1999 and Upshur 1995, p. 483. Therefore, there is a need to reason by analogy from
the studied population to the population of interest [. .. ] The relevance pertaining to an item
of evidence measures how well the observed results in a study population can be transferred
to the target population of future drug users.

support by analogy

Fig. 2: Support by analogy from the level of evidence reports (Repy,...,Rep,) up-
wards to the hypothesis under consideration.

Fig. 2 illustrates this relationship between an item of evidence and the target:
When hypothesis Hyp is on the test bench, testable consequences Indy,...,Ind,
(indicators of causation) are supported (or not) by evidence reports Repy,...,Rep,.
Since the framework is set up in Bayesian fashion, once the value of Repy is fixed

10 Note that I am distinguishing evidential relevance (as a property of evidence relevant in causal
assessment) from causal relevance (as a property of a variable causally relevant to a second variable
in a causal model), cf. footnote 18. Also see footnote 3 above for a remark on other interpretations
of relevance.
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(e.g., to Repy = true, indicating that there is evidence in support of Ind) = true),
the respective significance variable oy will determine the relative strength of Repy’s
contribution to Hyp (since — in Bayesian terms — knowing a collider’s value opens
the flow of information along the path the collider lies on). Note, that — in principle
— two (or more) report nodes might share the same significance, as exemplified in
Fig. 1, when inter-dependencies are to be indicated (in terms of either reliability or
extrapolability, i.e., relevance).

If we now interpret the a-layer as encoding information about the relevance of
our evidence reports, we can try to make the relationship between oy and Hyp trans-
parent in terms of similarity.'!

2.3 Measuring distance

In order to be able to compare the hypothesis and incoming evidence reports, the
structural ingredients of these categories shall be made explicit in more detail. In
risk assessment, Hyp is meant to be a causal hypothesis about a specific (harmful)
side-effect E of a certain drug D — to be abbreviated as ‘D(@©E’ in the follow-
ing. Since the evidence-amalgamating framework is intended to yield quantitative
(probabilistic) information for decision-making (e.g., in terms of expected utilities),
D © E must be evaluated in a quantitative framework that allows for the specifica-
tion of all relevant causal relations in a suitable formal model M. One important
modeling decision will be the separation of parameters influenced within the model
(i.e., ‘observed’ or ‘endogenous’ variables — in particular, the modeled effects and
side-effects of interest, along with further variables on the causal path from drug to
potentially harmful outcome) from ceteris paribus conditions (‘context’ or ‘world’
or ‘circumstances’, encoded as ‘exogenous’ variables in a causal model). A fourth
parameter shall be added to our language to express precisely these contextual con-
ditions, i.e., the ceteris-paribus aspects of the population for which the causal mech-
anism is to be tested. The parameter U shall sum up those characteristics of pop-
ulation plus environment that will not be changed by, e.g., a clinical trial (as, e.g.,
average age, nutrition habits, aspects of the medical history, socio-economic status,
etc.).!> We can accordingly expand Hyp to encode the aforementioned ingredients:

11 Note that for such an interpretation the prior of the network is required to be set up in such a way
that the ocs render the Reps independent of (i.e., irrelevant to) the hypothesis Hyp in the extreme
case. Formally: P(Hyp|Repy = true, oy = irrelevant) = P(Hyp | oy, = irrelevant) = P(Hyp). See
also my discussion of the prior in Sec. 1.1 above.

12 This suggests that the distinction between changeable and unchanged aspects of the study pop-
ulation will be a static one prior to modeling. Nevertheless, Paul and Healy discuss cases in which
the modeler is forced to revisit her model because a clinical trial impacts on relevant character-
istics of the population in a sort of feedback loop (see Paul and Healy 2016 on Transformative
Treatments). For the present purpose it is uncritical to assume that the initial model can be refined
at later stages to accommodate previously exogenous assumptions into the model as endogenous
parameters/relations.



12 Roland Poellinger
Hyp: D©E in model M with context U @)

Explicating the causal hypothesis in this way is not meant here to express a spe-
cific commitment as to how (C) is to be interpreted. In particular, it is not meant to
confine the investigation to an epistemic, model-relative theory of causality. This
specific way of encoding the causal hypothesis is rather meant to be as informa-
tive as possible about the intended scope of the causal claim and to mark deviations
between studies and target with respect to population characteristics (information
about age, multimorbidity, and so on, encoded in U(;)) and structural assumptions
(confounders, causal history, possible disablers, etc., encoded in M(k)).13

Now, using a piece of evidence for the confirmation of a hypothetical causal
effect E by analogy may be licensed for different reasons:

1. Similar substance D: The substance used on the study population is similar to the
substance to be applied to the target population. Of course, if an experimental
setup is designed with D(© E in mind, the experiment will generally test the
causal effects of D itself. Nevertheless, what may vary is the administered dosage
or indeed the final formula with respect to additional components.

2. Similar causal model M: Causal efficacy is judged with respect to similar mod-
eling assumptions (variables and their order, causal in/dependencies, and so on)
in the study and for the intended application. For example, when cohort studies
point to the existence of a causal path between paracetamol and asthma, knowl-
edge about these studies can only be transferred to a population of future drug
users if the core causal assumptions are kept fixed. Postulating a deviating causal
structure for the target, e.g., a common cause of paracetamol use and asthma in-
stead of a causal path, would prevent using evidence from such cohort studies for
predicting the effects of certain policy interventions towards decreasing asthma
morbidity.

3. Similar context U: Contexts, i.e., study and target population plus respective en-
vironment, are similar in relevant respects. For example, when drugs are tested
on animals first, pigs are one of the preferred species, because they share much
of the human genetic make-up and consequently many of the complex genetic
diseases, such that a drug’s causal effects in pigs can to some extent be used in
inference about human biology.

Scheme (A) above can now be adjusted for learning from relevant evidence in
the evidence-amalgamating layered reconstruction of scientific inference:

1. (D,M,U) is similar to (Dy, My, Uy), (A¥)
therefore, by stipulation: Repy is relevant for Hyp, i.e.,  is high,

13 If the causal hypothesis is thought of as a causal graph, D, E, and U are meant to represent
designated (sets of) variables with token values in a causally interpreted structure M (possibly
encoding the specifics of direct causal relations and assumptions about causal in/dependencies on
type level). Note that, more generally, M and M; can be thought of as sets of structural constraints,
i.e., as classes of causal graphs.
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2. Repk: (p[Dk,Ek,Mk,Uk]

with E similar to the hypothesized E,
3. therefore: @'[D,E,M,U]

with @' similar to P,

where @ is a quantitative or qualitative statement about (the components of)
the study (and @' a statement about the target, respectively). For example, &
might encode the conditional probability P(Ey | Dy) = g; therefore, by analogy, @':
P(E|D) = ¢ (for high o4). Note that, by design, Rep; will influence Hyp on a path
through a suitable (set of) mediating indicator variable(s). If now Rep; makes a
positive contribution to the indicator level, it will boost confidence in Hyp, thereby
confirming D) E:

P(DOE |Repy,0x) > P(DOE).

The inference pattern (A*) crucially relies on a high relevance parameter oy
which is determined in assessing the similarity of the triples (D, M, U and (Dy, My, Uy).
The literature on similarity conceptualizations and measures is vast, spanning from
Lewis’ lexicographic comparative similarity of possible worlds (Lewis, 1973a) to
Shepard’s geometric account in terms of vector distances (Shepard, 1980) and to
contrast approaches evaluating similarity by weighting and comparing properties
(see, e.g., Tversky 1977, Weisberg 2012, and Weisberg 2013).'* Some are formu-
lated in a symmetric way, others encode asymmetric relations. All approaches seem
tied to specific practices and purposes with seemingly none universally applicable.
Nevertheless, with analogical arguments employed successfully in pharmacological
research, general features of the similarity concept needed for (A*) shall be outlined
in the following.

Claiming that (D,M,U) is similar to (Dy, M, Uy) (as in line 1 of the inference
scheme for relevant evidence) quite generally means that the individual components
are in the same equivalence class (by pairs), formally: Dy € [D]., My € [M].., and

14 These accounts of similarity share the intuition that comparing two things means (i) comparing
certain aspects of those things and (ii) aggregating one’s evaluation of those aspects in a certain
manner.

Lewis’ idea of comparative similarity is tightly connected to his concept of causation, where a
cause—effect relation is evaluated in terms of the corresponding counterfactuals. The cause reveals
its power in the effect event where the rest of the world remains unperturbed, i.e., as similar as
possible to the state of world prior to the cause event. Lewis suggests a priority ordering for the
assessment of similarity, where local changes in physical facts are understood as a lesser deviation
from actuality than far-reaching global changes in natural laws, see Lewis (1973b).

The geometric account locates an object’s properties (deemed relevant for comparison) in a multi-
dimensional space by assigning a specific value to each of those properties. Similarity is then
spelled out in terms of vector distance from a reference object.

The question of how to assign such values is circumvented in the contrast approach which deals
well with similarity as partial identity, since in this approach degrees of similarity are assessed
by assigning weights to co-instantiated identical properties (which might make the approach suit-
able rather for comparing different states of one and the same object than for comparing different
objects).
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U U ]N.IS These equivalence classes are induced by (i) the components of the hy-
pothesis, D, M, U, and (ii) highly purpose-oriented considerations as to balancing
the properties to be compared (i.e., as to how properties are to be ordered in Lewis-
style approaches, as to how which properties are metrized in geometric approaches,
and as to how properties are to be weighed in contrast comparisons). Presenting sim-
ilarity this way allows a research community to fill in a meaningful, informative un-
derstanding of similarity, and it separates purpose-driven considerations concerning
how to suitably define an equivalence relation from the decision about if and when
two components actually are equivalent (relative to a specific definition). Note that
however dissimilar study and target, if some Hyp’s components (D, M,U) and some
Repy’s components (Dy, My, Uy) were not understood to be comparable whatsoever,
Rep;. would not be considered evidence for Hyp in the first place.

The threshold between sufficient similarity and unacceptable deviation is straight-
forwardly encoded as a component’s membership of the respective equivalence
class. Line 1 in (A*) can thus be understood as follows:

(D,M,U) is similar to (Dy, My, Uy :< 8)
Dy € [D].. and M;. € [M]... and Uy, € [U].~.

Meaningfully evaluating the different components’ membership of a given equiv-
alence class calls for the distinction between similarity of numeric properties and
similarity of structural properties. In the following I will outline possible paths one
might take towards assessing similarity both of the numeric and the structural type.

2.3.1 Similarity of numeric properties

I will first consider the question of how to possibly compare arrays of numeric prop-
erties (or properties represented numerically, respectively). What it means to be a
member of an equivalence class in that case can be expressed in a weighted geomet-
ric approach as the following criterion (with X schematically representing D, M,
U):
— -

Xc€[X]w:od(Boxi,foX)<ox. )

Eq. 9 states that component X (e.g., some study population Uy) is similar to X (e.g.,

the target population U) for a purpose-oriented similarity evaluation ~, explicated
as distance between vectors of m properties x,i, .o, (of X) and xb X" (of X)

15 In the formal notation used here, ~ denotes some (reflexive, transitive, and symmetric) equiv-
alence relation (equivalence w.r.t. a given property) such that for a domain A, some object a € A,
and an equivalence relation ~ on A: [a].. := {x € A|x ~ a}. The expressions [D]~, [M]~, and [U].
are to be understood as encoding each a specific equivalence relation, since — to be precise — each
category comes with its own standards for how equivalence classes are to be generated. If standards
are set high, e.g., Dy might be in the class [D].. only if it is identical with D, while comparing U
and Uy will naturally demand flexibility for possibly very different populations. (I will not add a
further index, though, to avoid notational clutter.)
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above a certain distance threshold ¢ (relative to component X). To keep the criterion
as generally applicable as possible, the elements of x{ and ¥ should represent nor-
malized values of the properties measured for comparison. When comparing two
populations, for example, their relevant characteristics, such as, e.g., average age
and population size, might be mapped onto scales of equal magnitude, to arrive
at a balanced aggregate assessment. Additionally, the vectors to be compared are
weighted by componentwise multiplication (denoted by ‘o’) with relative weights
B',...,B™, indicating the relative importance of each property for comparison, i.e.,
its contribution to the similarity measure.'®

Of course, the distance measure d must be specified (Euclidean distance, Man-
hattan distance, etc.) and the set of properties to be compared chosen carefully — in
particular, a simple distance measure might not be straightforwardly applicable if
the selected properties are dependent. What counts as independent and what not is,
again, ultimately to be decided in a purpose-oriented, context-sensitive way. In par-
ticular, different similarity standards could lead to different in/dependence require-
ments. A toy example may serve as an illustration of such dependencies: Consider
the task of comparing different apples. If shape and color are to be compared, then
a big red apple is more similar to a big green apple than to a small green apple.
If, however, “naturalness” is used as similarity standard, then a big red apple might
be considered more similar to a small green apple than to a big green apple, since
the natural apple naturally ripens from small and green to big and red, and not to
“unnatural” big and green. The latter case precisely illustrates the dependency be-
tween properties, and how such dependency is relative to the similarity standard to
be employed.

Example.

The following simplified case equally shows advantages and shortcomings of such
a geometric approach. Consider the assessment of a potential side-effect of a drug
targeted at elderly people, who are likely to be using multiple medicines and likely
to be affected by multiple diseases (note that those properties are dependent to a
certain degree). Similarity between this specific target population and a test group
(associated with report Repy) might be determined in comparison of property triples
W = (u',u?,u?) and u} = (u},u?,u}) where the properties to be compared are all
numeric and partitioned into meaningful classes w.r.t. the current investigation. For
example, it might be meaningful to distinguish the class of people who take 1 drug
from the class of people who take 2 drugs, but it might not be particularly useful

16 Componentwise multiplication of two vectors (also referred to as “Hadamard Product’) multi-
plies vectors A and B (both of length 1) element by element and returns a vector C (also of length
n). Example: (a,a,a) 0 {(0,a,b,) = (0,2a,ab).
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to draw the line between 11 and 12 multiple drugs. In our example, the selected

characteristics u ) of Uy are partitioned as follows:

7

u%k): (Average) age with integer values between 0 and 100 years of age;

u%k): (number of) multiple medicines in five classes:

0,1, 2, 3-5, > 5 medicines;
u?k): (number of) multiple diseases in four classes:
0,1, 2, > 2 diseases.

To be able to attach numbers to the vectors, we have to translate the description of
U and Uy into concrete values step by step:

1.

Suppose that the target population is described as 70 years old (on average), as
taking 1 more medicine besides the tested drug (i.e., 2 in total), and as having
more than 2 diseases considered relevant for the investigation (one targeted, the
other possibly interacting).

. The study is conducted on a population of 55 years on average with the same

amount of medicines taken but with only one disease (the targeted one).

. To be able to aggregate those properties on the same level, those characteristics

are mapped onto the unit interval with respect to the partitions stated above.
Moreover, for the current purpose, each class is simply represented by its central
value (e.g., if the unit interval is partitioned into four intervals of equal length, the
second interval, ranging from .25 to .5 is represented by its central value .375.).

. Suppose further that — for the current investigation — average age is considered

somewhat important (50%), whether multiple drugs are taken or not is consid-
ered highly important (100%), and the number of diseases is negligible (with
importance of 0%).

The following tables show the step-wise calculation of the difference between
weighted components needed for the determination of the distance between vectors

W and u—lz:
study population target population
class normalized quantized class normalized quantized
u,ﬁ: 55 /== .55 A T —— = 7
u: 2 comm S5 W 2 comem S5
u,f: ] o 375 W >2 o .625

B study target A

oy 525 35 075
w155 0
( :0 0 0 0

17 In this example, study and target are compared merely in terms of population characteristics
Im . In general, though, differences between the substances and between the causal structures will
also play a role in assessing the weight of a report, as explicated in Eq. 8. For sake of illustration it
might be assumed here that substances and causal structures have been found equivalent w.r.t. the
present purpose.
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The upper tables show each property’s class and its normalization in the unit in-
terval (graphically with class partitions, and quantized using those classes’ central
values). The lower table shows the absolute differences between the individual com-
ponents, weighted by corresponding f3-values (relative importance). In our example,
only age figures in the calculation of similarity between the two populations (since
both groups take two medicines in total and the number of diseases is considered
unimportant for the current comparison). If a Euclidean measure is to be used for
calculating the distance, we arrive at the following value:

d(Foﬁ,?o?) = \/(ﬁl S —ul))? = \/(.5 -(35—.275))°=.053  (10)

If, for comparison, the number of diseases were indeed to be taken into consideration
with a relative importance weight of .25, the dissimilarity increases:

AB o B o F) = (11)
VB =)+ (B0 =) =
\/(.5 -(35-.275))% + (25 (.625— 375))° =

V/.0375% +.0625% = .073

A oy benchmark value for testing sufficient similarity with the target population
(as formulated in Eq. 9) will have to be defined with respect to the theoretical max-
imum distance and to allowable deviations from the target characteristics. Once oy
is fixed and sufficient similarity between study and target properties is shown, the
report Repy, can be flagged as relevant (with a high degree of confidence in oy, i.e.,
1 in the binary formulation), and (A*) will allow inference by analogy from relevant
evidence to the hypothesis under consideration.

There are various ways to refine the distance measure and adjust it to one’s needs.
Two remarks on the difficult task of choosing a suitable measure shall conclude this
section:

1. The example above illustrates that the chosen Euclidean distance measure com-
pletely disregards identical properties, even such with high relative importance,
since it is defined to simply collect deviations. In the example, the identical prop-
erties u” and u,% could be missing from the vectors o and u_k> and could receive
high or low relative importance — the Euclidean distance would return the same
value in all these cases. This goes against the intuition “the more identical prop-
erties two property vectors share, the lower their distance”. If this intuition is to
be encoded formally, though, an additional weighting factor must be added to
the distance measure. Each component x' (0 < i < m) of X might additionally be
multiplied by its relative B-contribution, e.g., in the following way:
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d(Boxt, B Z( (xi, — x) )zz,jf:ﬁ]) (12)

Using d’ on our example case above returns a lower dissimilarity, thus reflecting

the intuition that identical properties contribute to our similarity assessment (in
decreasing dissimilarity). With Z’;‘Zl B’ = 1.5, we have:

d(Boxi,Bo¥)= (13)

/ 1
03752 3= .022

And again, for comparison — for d’ with relative importance of .25 for ui, we get:

— —
d(B'ox}, B o¥) = (14)
2 5 2 25_
\/(.5.(.35.275)) ‘175 (25 (625 375)) " 1 = 031

2. If, e.g., a certain property is required to be identical in study and target popula-
tion in order to grant transferability of study results, partial identity, being central
to the contrast account of similarity, can be expressed in a straightforward gen-
eralization of the geometric approach exemplified above: Instead of determining
sufficient similarity for full vectors o and u_;z, those vectors are partitioned into
sub-vectors. i and uj are then considered sufficiently similar iff all distances
of corresponding sub-vectors are lower than associated ¢-values. For example,
average age, number of medicines, and number of diseases (as in the case above)
might be partitioned into sub-vector 1, average age plus number of diseases,
and sub-vector 2 containing number of medicines only. If now the number of
medicines taken is to be identical in target and study population (e.g., it might be
required to be only the investigated drug), then the o-value for sub-vector 2 is set
to 0, while the o-value for sub-vector 1 might be higher to allow for approximate
correspondence.

2.3.2 Similarity of structural properties

When it comes to determining whether two structures (or, alternatively, sets of struc-
tural constraints) My and M are sufficiently similar, things are different: There is no
straightforward way of encoding topology on a numeric scale. In particular, it de-
pends very much on the given case what the comparison criteria are, and how they
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possibly interact to jointly suggest a similarity ranking over a set of causal struc-
tures.

Nevertheless, the relevance of a given study for the investigated hypothesis cru-
cially depends also on structural knowledge about the (hypothesized) causal associ-
ations in both study and target. For example, when an RCT on animals supports a
dose-response relationship between drug D and adverse drug reaction E, this report
can only be considered relevant if assuming a causal path from D to E is compatible
with knowledge about the target’s causal structure. And conversely, as soon as fur-
ther studies show the association to be spurious in human drug users, the relevance
of the animal study for the current investigation will be downgraded.

The following compilation presents a (non-exhaustive) list of structural proper-
ties to consider when comparing causal topologies. The respective questions can be
understood as a heuristic survey for assessing structural similarity:

1. Shared variables: How many and which variables are shared between study and
target? How influential are the ones that are not shared?

2. Causal in/dependencies of shared variables: Are the causal (conditional) in/dependencies
of the variables shared by study and target in agreement? In other words, are the
causal ir/relevance relations in study and target the same?'® If not, is the dis-
agreement resolvable (e.g., by including suspected confounders)?

3. Presence of co-factors: If a causal structure marks contributing causes or nec-
essary pre-conditions — can these be identified both in study in target? Are the
co-factors shared between study and target? How weighty are those that are not
shared?

4. Distance between D and E: How many mediating variables lie on the path be-
tween D and E? If one structure contains more such mediators, does this reflect
temporally or spatially higher actual distance? And do such mediators mark pos-
sible points for disruption by disablers, such that the causal process must be
considered “less stable”?

5. Interacting influences: If E is influenced through multiple paths which jointly
(but non-additively) produce E, then identifying these influences (and their inter-
action) in study and target is crucial for transferring predictions about the effect
of interventions on D - this is particularly important in the case of masked back-
up mechanisms present in the target.

6. Differences between study and target: Going beyond the points above, one might
also utilize knowledge about how and where two causal structures differ. Infor-
mation about differences at key stages along the causal path from D to E will
be most helpful if those stages screen off influences of minor stages “upstream”
along the causal flow (i.e., above or before). This idea is exploited in comparative
process tracing, where two processes are investigated in stepwise comparison of
their entities. Steel relates this method to external validity in Steel 2008, p. 89:

18 See Pearl 2000, Sec. 7.3.3 for a discussion of causal relevance. Note, that I am distinguishing
causal relevance as part of the causal knowledge (encoded as report nodes) from epistemic or
inferential relevance (encoded as attributional Rlv weight nodes).
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[TThe greater the similarity of configuration and behavior of entities involved in the
mechanism at [...] key stages, the stronger the basis for the extrapolation.

The reliability of comparative process tracing depends on correctly identifying the
points at which significant differences between the model and the target are likely to
arise. Significant differences are those that would make a difference to whether the
causal generalization to be extrapolated is true in the target.

The strategy summarized here is especially suitable for causal chains with such
key variables — identifying precisely those variables (and describing deviating
behavior in study and target) will help in deciding whether given study results
provide an insight into the target. One of the virtues of comparative process trac-
ing is indeed that it points to the portions of a causal structure that allow for an
effective assessment of the similarity between study and target.

This list of structural properties is meant to provide a guide in making implicit
assumptions about study and target explicit. Just like in the case of comparing nu-
meric properties above, all these considerations feed into the purpose-oriented expli-
cation of a similarity measure which ultimately determines what sufficient similarity
means in light of the investigated hypothesis.'® As above, once sufficient similarity
between structural properties of study and target is shown, a particular report Repy
about M}, can be flagged as relevant (with a high degree of confidence in o, i.e., 1
in the binary formulation), and (A*) will allow inference by analogy from relevant
evidence, summarized in Repy, to the hypothesized causal association, D (©) E in the
causal structure M, thereby facilitating Bayesian confirmation:

P(DOE |Repy, &) > P(DQE).

2.4 Extrapolating with good arguments and breaking the
extrapolator’s circle

I want to conclude Sec. 2 with a discussion of two points in the current debate on
analogical reasoning in causal assessment. The first is Nancy Cartwright’s worry
about external validity, namely that even highly reliable RCT methodology only
provides an insufficient warrant for the transferability of evidence from study to
target (Cartwright, 2011; Cartwright and Stegenga, 2011). The second is a much-

19 The way it is presented here, one’s assessment of such similarity between study and target is
obviously relative to the set of aspects included in one’s considerations. There is an argument
to be made here that possible further differences not considered should lower one’s confidence
in the similarity assessment. In principle, in the Bayesian framework employed, it is possible to
add an unspecified counter-weight (much like an error term) in order to encode one’s uncertainty
about potentially neglected, though relevant differences between study and target. Yet, assigning a
number to this weight is a subjective task again. Indeed, I would like to argue that such analogy-
based arguments are inherently perspectival: They rest on a specific choice of relevant aspects
(reasonably motivated) and a specific way of relating those aspects (non-arbitrarily). Thus, making
the ingredients of such arguments explicit helps refining or potentially also refuting them.
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discussed riddle about the soundness of analogical arguments — the ‘extrapolator’s
circle’ (Guala, 2010; Steel, 2008).

2.4.1 What can make RCT evidence relevant?

In her discussion of predictions about the effectiveness of policy interventions in the
context of evidence-based policy (EBP), Cartwright points out that “[t]he EBP liter-
ature rates positive outcomes in well-conducted RCTs as gold standard evidence for
effectiveness predictions” (Cartwright, 2011, p. 221). And she critically continues:

Conventionally cited facts, like similarity between target and experimental situations, are
then supposed to make this likely. But this is the wrong way to look at the relation between
experimental results and the claims whose truth they bear on. Experimental results can help
justify confidence that the same result — or that some different result — will hold elsewhere;
i.e., they can be evidence for one of these claims. Whether they are evidence depends on
whether they play the right kind of role in a good argument for that claim. Similarity, or
just the right kind of dissimilarity, might play a role, but if so, only by fitting into a good
argument.

What then might a good argument look like that makes RCT results evidence for effective-
ness predictions?

In this passage, Cartwright expresses precisely the worry that prompted Landes,
Osimani, and Poellinger (Landes et al, 2017) to disentangle reliability and rele-
vance as meta-evidential attributes. In order to address the question “What can make
RCT evidence relevant?”, Cartwright presents the following argumentative template
(Cartwright 2011, p. 222; formatting adjusted):

A1 x plays a causal role in the principle that governs y’s production there.

A2 x plays the same causal role here as there.

A3 The support factors necessary for x to operate are present for some individuals
here.

Therefore: x plays a causal role here and the support factors necessary for it to
operate are present for some individuals.

In this argument, x is to be understood as a cause of y, ‘here’ indicates the tar-
get, ‘there’ the study. The four lines evidently resemble scheme (A) above: A2 and
A3 establish similarity in the relevant (numeric, structural) aspects, and A1 encodes
the RCT evidence (e.g., some effect size) to be transferred to the target in the con-
clusion. In the Bayesian framework presented above, the existence of such a good
argument would be encoded as high relevance, consequently making the RCT re-
sult evidence for effectiveness predictions by boosting the weight of the respective
evidential report.



22 Roland Poellinger

2.4.2 The extrapolator’s circle

In his discussion of mechanistic reasoning for the purpose of extrapolation, Daniel
Steel (see Steel 2008, p. 78) presents the following challenge any viable account of
extrapolation ought to address (see also Guala’s comments in Guala 2010):

[A]dditional information about the similarity between the model and the target — for in-
stance, that the relevant mechanisms are the same in both — is needed to justify the extrap-
olation. The extrapolator’s circle is the challenge of explaining how we could acquire this
additional information, given the limitations on what we can know about the target. In other
words, it needs to be explained how we could know that the model and the target are similar
in causally relevant respects without already knowing the causal relationship in the target.

In the account of Landes, Osimani, and Poellinger (Landes et al, 2017), this circle
is broken since the proposed Bayesian framework can be used to probabilistically
model successive evidence accumulation and amalgamation. At the beginning of the
process, experimental results from basic science might contribute causal knowledge
about a drug’s metabolization — and even if this knowledge only illuminates part of
the target mechanism, it can often be considered robust and highly relevant. Once
animal studies come into play to answer more specific research questions, knowl-
edge from previous unrelated studies (done on the same animals, maybe with simi-
lar substances) figures in forming a relevance estimate for the current investigation.
Step by step, a picture of the target’s causal structure emerges: The careful extrapo-
lator can thus utilize the previous stage for his assessment of the next. While Steel
proposes mechanism-based comparative process tracing (see also Sec. 2.3.2 above)
as a solution to the extrapolator’s circle, the Bayesian evidence-amalgamation ap-
proach presents a different type of ‘process tracing’ in providing a toolbox for trac-
ing the dynamic process of evidence synthesis from a higher-level epistemological
perspective.

The focus of this section lay on the confirmatory support of relevant pieces of evi-
dence for a causal hypothesis (“upwards” in the evidence-amalgamating framework)
— the next section will consider cases where an independently confirmed causal link
serves for boosting one’s confidence in a hypothesized relation.

3 Transferring knowledge from confirmed causal links

When Hill states that “with the effects of thalidomide and rubella before us we
would surely be ready to accept slighter but similar evidence with another drug or
another disease in pregnancy” (Hill, 1965), he refers to the case of an independently
confirmed causal link providing support to a hypothesis still unsettled. Unlike in
the case of learning from relevant evidence along the vertical upward arrow in Fig.
2, it is not an evidence report about an indicator of Hyp itself, but instead a well-
tested second hypothesis Hyp* that boosts belief in Hyp. Even though little might
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be known about the mechanisms of substances D* and/or D, Hyp is considered to
share relevant theoretical consequences with Hyp* (or variants thereof).

In order to formalize knowledge transfer across theoretical networks, our concep-
tual frame needs to be widened slightly. In a recent paper on analogical inference in
physics, Dardashti et al (2017) discuss analogies between experimentally accessible
test setups and potentially less accessible target systems we want to gain insights
about. The authors introduce the formal concept of analog simulation for this pur-
pose which shall be introduced briefly in the following before it is applied in the
context of pharmacology.

Analog simulation bridges two basic frames: The source system is prepared, ma-
nipulated, and observed to make inferences about the target system. Let us introduce
some terminology first to relate all concepts in a formal way:>°

1. The target system T (a class of situations of interest) is to be modeled as .#7 in
a suitably chosen modeling framework .27;

2. .t is constrained by certain background assumptions o7, summarizing theo-
retical and empirical knowledge as well as the domain of conditions Zr to which
the model is intended to apply;

3. 7 can be used to predict phenomena Pr and will in turn be validated by evi-
dence in accordance with Pr;

4. The accessible source system S is to be modeled as .#s in a suitably chosen
modeling framework Z;

5. s is constrained by background assumptions o7, containing the domain of
conditions Zs to which the model is intended to apply;

6. Just as on the T side, .#s can be used to predict phenomena Ps and will in turn
be validated by evidence in accordance with Ps.

The source system S will now allow analog simulation of target T’s behavior if
(i) there exist exploitable structural similarities between .#g and .#7 sufficient to
define a syntactic isomorphism robust within the domains Zs and Zr, respectively,
and if (ii) this isomorphism is prompted by and based on a set of model-external
empirically grounded arguments, abbreviated as MEEGA.

Figure 3 relates these elements in a conceptual graph: The rounded box on the
left side contains all elements of the target frame, while the right box contains all el-
ements of the source system. MEEGA prompt the establishment of a bridge between
theoretical networks in the form of a syntactic isomorphism as translation between
the systems’ components.

In Dardashti et al (2017), the terminology is illustrated with an example from
physics, where observations of phenomena Ps in table-top fluid systems boost con-
fidence in theoretical assumptions <77 about gravitational phenomena described in

20 In the following, I deviate from Dardashti et al (2017) in notational details.
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Fig. 3: The analog simulation scheme: Framework .27 (left box) is used to model
target system 7' in model .#7; source system S is accordingly treated in framework
%5 (right box).

framework Zr. The syntactic isomorphism (motivated by additional knowledge
about the underlying physics of both frames) allows for the transfer of knowledge
about acoustic Hawking radiation in the fluid system to Hawking radiation in black
holes.

Now, the three-layered reconstruction of scientific domains on both sides of the
syntactic bridge essentially represents the same conceptual categories as our lay-
ered reconstruction of inference in pharmacological research in Fig. 2: Scientific
hypotheses entail system constraints which in turn predict (and are tested by) real-
world phenomena. The syntactic isomorphism can be understood as a formal expres-
sion of similarity in terms of partial identity under translation. The set MEEGA can
be understood to empirically, pragmatically, and semantically prompt the choice of
relevant theoretical elements to be mapped onto each other. Syntactic isomorphism
alone (unaware of semantic context) would be too weak a requirement for analogy
since it can be used to translate far more models into each other than one would like
to call analog. With the analog simulation scheme at hand, we can now trace the
confirmatory boost of a well-tested causal link to an unsettled hypothesis in phar-
macological research.

Fig. 4 shows the independently confirmed hypothesis Hyp* on the right side,
e.g., as in Hill’s example, the confirmed link between thalidomide (D*), also known
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support by analogy

[ similarity assumption ]

Fig. 4: Support by analogy from a second drug (i.e., from established knowledge
about hypothesis Hyp*) to the hypothesis under consideration.

as Contergan, and phocomelia (E*). Frame-external similarity assumptions (e.g.,
about the population of pregnant women, or even new evidence for relevant relations
shared by both M and M*) suggest an understanding of theoretical variables Indy
in terms of Ind}, e.g., a characteristic dose-response curve hinting at functional
properties shared by D and D*. Having established such a mapping between relevant
theoretical elements, updating one’s beliefs about the variables /nd; amounts to
updating one’s beliefs about the variables Ind; and, moreover, to updating one’s
belief about Hyp (quite in the Bayesian sense).?! Consequently, old evidence Rep*
about Hyp* can indeed provide novel support for Hyp across theoretical networks,
with

o
P(Hyp|Rep™) > P(Hyp). (15)

How exactly this theoretical bridge between two frames might look and how a
relevance filter is to filter out precisely those properties and those indicator variables
relevant for the posited analogy, is a subject of current discussion in the philosophy
of science; see, e.g., Dardashti et al (n.d) on analog simulation in Bayesian terms,

2l As an illustration, consider the following: In many cases, evidence for similarity of the drug’s
causal effects comes from mechanistic knowledge, maybe in relating the molecular structure of the
substances to known classes of biochemical processes. So, if D* is known to be harmful because of
its capacity to block some specific mechanism, and if this capacity is judged to be relevant in com-
paring D and D*, then such blocking behavior should be part of Hyp’s testable consequences Indj.
Owing to differences in the investigated substances, the testable consequences of Hyp and Hyp*
are in general not identical, but can be related non-arbitrarily in motivating a specific theoretical
mapping, i.e., some isomorphism at a suitably chosen level of description.
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or Beebe and Poellinger (n.d.) on confirmation from analog models in formal exten-
sions of Bayesian networks.

4 Confirmatory support from in silico simulation

When insights are to be gained about mechanistic workings of biochemical phenom-
ena that are not directly observable in vivo, one strategy of choice is computational
modeling and simulation. As in the cases of learning from relevant evidence (Sec.
2) and transferring knowledge from confirmed causal links (Sec. 3), using computa-
tional models to learn about biological, medical, or pharmacological facts is based
on analogy between simulation and target system.

The argumentative strength of analog simulation in physics is based on the fact
that two physical systems are related on the grounds of model-external background
assumptions about common underlying physical principles. In the case of computa-
tional simulation, we seemingly loose two important aspects:

(M) Computational simulation does not link two physical systems but rather a
physical and a virtual system; and

(N) the set of model-external, empirically grounded assumptions (MEEGA) is
replaced by model-internal, theoretical principles in the implementation phase:
The symbolic system .#s is constructed directly from .#r’s background assump-
tions.

These aspects raise questions about virtues of materiality (M) and novelty of
virtual outcomes (N). Both shall be addressed in the following.

Computer simulations follow their source code and will behave like programmed
as virtual, artificial environments, lacking the material link (M).22 The position of
the skeptic about computer simulation is pointedly summarized by Diez Roux in
her discussion of the distinction between observation-based and simulation-based
causal inference in epidemiology (Diez Roux, 2015, p. 101):

[...] there is a fundamental distinction between causal inference based on observations (as
in traditional epidemiology) and causal inference based on simulation modeling. The tra-
ditional tools of epidemiology are used to extract (hopefully) reasonable conclusions from
necessarily partial and incomplete (often messy) observations of the real world. [...] In
contrast, when we use the tools of complex systems, we create a virtual world (based on
prior knowledge or intuition) and then explore hypotheses about causes under the assump-
tions encoded in this virtual world. In the simulation model, we cannot directly determine

22 This topic is a subject of current discussion in the philosophy of science with some authors re-
garding computational models as simply an implemented variant of scientific models as such (e.g.,
Frigg and Reiss 2009), while others emphasize as a special feature of computer simulations the
possibility to experiment with such models as virtual test objects (e.g., Parker 2009 and Morrison
2015).
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whether X causes Y in the real world (because the world in which we are working is of
our own creation); we can only explore the plausible implications of changing X on levels
of Y under the conditions encoded in the model. In the real world, we have fact (what we
observe) and we try to infer the counterfactual condition (what we would have observed if
the treatment had been different). In the simulated world, everything is counterfactual in the
sense that the world and all possible scenarios are artificially created by the scientist.

Nevertheless, even though computational models are virtual constructs, if they
are to be employed for inference about our world they are required to be anchored
in reality just as any classical scientific model. In a systematic review of successful
agent-based computational models, Casini and Manzo (2016) aim to address Diez
Roux’s worries. In particular, they pin down various trends which have shown to
increase the fruitfulness of such models. In the following I derive from their dis-
cussion three conditions that might even be understood as applicability criteria for
causal inference from computational, agent-based models (ABMs) in general:

“Ideal” ABMs are to be

1. based on problem-related theoretical knowledge (rather than merely common-
sense, mathematical, topological etc. assumptions),

2. shaped by data,

3. and iteratively calibrated by more data where the model shows weaknesses.

Fig. 5 illustrates the relation between target system and computational model in
the analog simulation scheme, which I modify here to accommodate the anchor-
ing concept: The source system (our computational model) inherits all theoretical
background assumptions from the target side. The arrow from .7y directly to .#
represents the preparation of the simulation system as logical cross-dependency,
which can be called model-internal in a sense: Without model-external motivation
provided by MEEGA, the rigid link from o7 to .#s expresses the instantiation of
the theoretical assumptions .27 in a concrete (computational) model .Zs within the
constraints of .o/7. Whenever incoming data alters the background assumptions .77,
M (the implementation) can (must) be revised accordingly.

What this picture reveals, though, is that — as formulated above in (N) — the
prediction of Pg now turns into plain inference from <7r. Consequently, it would
not make sense to use Ps for the confirmation of hypothesis .o/7. Whatever theory
of confirmation is to be employed, analog reasoning will only be justified if source
and target systems are kept sufficiently independent: The computational model must
not be determined by the target system in order to leave room for the possibility of
disconfirmation.”>

What are our options? — The direct, logical dependence between o7 and .#
may be disrupted by a reintroduced <7 in different ways: (i) <7 might be built

23 In the context of modeling with Bayesian networks, this demand is captured in the requirement
that all variables represent distinct events.
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Fig. 5: The virtual source system inherits the target’s theoretical background as-
sumptions; the arrow from o7 to .# represents the preparation of .Zs as logical
cross-dependency.

upon a lower-level/finer-grained theory than 77, (ii) o7 might draw on a different
set of parameters, (iii) <7 might incorporate theories from different domains, (iv)
/s might utilize databases generated from previously conducted material simula-
tions. Of course, the list is certainly not exhaustive, and strategies might possibly be
combined. Once the cross-link from @7 to . is disrupted by integrating external
assumptions, Ps regains its confirmatory support towards .27-.%* In a case study on
computational modeling of cell proliferation mechanisms in systems biology, Osi-
mani and Poellinger (n.d.) identify different ways in which a computer simulation
can provide novel insights about the object of interest and confirmatory support to a
scientific hypothesis:

1. The bottom-up combination of independently secured pieces of knowledge may
produce unexpected results precisely because the components’ interaction might
influence the functioning of the whole mechanism.

2. Combining mechanistic knowledge from different sources might reveal surpris-
ing insights about hidden mechanisms in mismatches between virtual measure-
ments and expectation.?

24 This strategy introduces a secondary set of model-external, empirically grounded arguments
in the picture which is first motivated by the logical cross-link between the two frames and later
guided by anchoring considerations. See Osimani and Poellinger (n.d.) for a detailed reconstruction
of model creation, verification, and validation for computer simulation in systems biology.

25 For a discussion of surprise in computer simulation see Parke (2014).
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3. Moreover, novel insights might be generated when phenomena (potentially not
predictable from a small set of basic rules) emerge in iterations of a complex
computer simulation.

support by analogy
< |
implementation
/—/%

Fig. 6: Support by analogy from a computational model of the target system to the
hypothesis about the target.

Fig. 6 illustrates the conceptual dependencies in confirmation by analogy in our
layered reconstruction of pharmacological research: Hyp is implemented by us-
ing the theoretical background assumptions about D (©) E in the first version of the
computational model. By refining and enriching this model during verification and
validation, the logical cross-dependency between Hyp and its implementation is dis-
rupted to an extent that allows for novel ‘observations’ during runs of the simulation,
such that analogy can be used for the confirmation of Hyp once more.

5 Conclusions

The evidence-amalgamation framework, introduced in Sec. 1, opens the possibil-
ity of tracing the dynamics of analogical reasoning across distinct epistemological
categories: theoretical hypothesis (Hyp), testable indicators (/nd), and evidence re-
ports (Rep). Within this layered reconstruction of scientific inference, the concept of
Bayesian confirmation can be utilized to formulate precisely how a causal hypoth-
esis about a drug’s potentially harmful side-effects is confirmed or disconfirmed.
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This paper distinguishes three analogy-based inference patterns significant in phar-
macological research:

1. Inference from relevant reports: When the conditions of a given study corre-
spond to the intended application of the investigated hypothesis, reports about
the study are marked as relevant for the hypothesis, thus facilitating knowledge
transfer from evidence to hypothesis. In Sec. 2, study and target conditions are
broken into three components: the drug itself (D), the causal model implicit in
the hypothesis (M), and the respective population (U). Pair-wise comparison is
based on a similarity measure to be chosen w.r.t. the nature of the investigation;
e.g., the components might be compared using a geometric measure of similarity
as given by the distance between property vectors like in the example case. Obvi-
ously, some important decisions are to be taken outside the framework presented,
though: Questions as to how to arrive at selection criteria for the properties to be
compared are left for another paper.

2. Inference from established causal knowledge: Sec. 3 discusses analogical in-
ference from a second well-tested hypothesis Hyp*. In this case, the connection
between source and target is not established via similarity but across a syntactic
isomorphism between the hypotheses’ consequence sets, i.e., a theoretical map-
ping on the indicator level. Once this bridge is defined (motivated and justified
by model-external empirically grounded arguments), evidence for Hyp* (the es-
tablished hypothesis) will also boost confidence in Hyp (the hypothesis under
investigation).

3. Inference from computational models: If the analog system is a virtual, compu-
tational model of the investigated hypothesis, the bridge between source and tar-
get is not motivated by model-external considerations but much rather by model-
internal constraints. Sec. 4 discusses how an artificial system can possibly pro-
vide support for a causal hypothesis about an actual drug with real risk.

While the paper focuses on hypothesis testing for the purpose of risk assess-
ment in pharmacology, the second and third pattern in the list above make the role
of analogical reasoning in the formulation of a hypothesis obvious. In particular, a
computer simulation will support an investigated hypothesis if the codebase is not
merely constructed from theoretical assumptions about the target hypothesis, but
infused with further theoretical considerations or additional sources of knowledge,
thereby breaking the logical dependency between source and target (see Sec. 4).
Once a theoretical bridge is established on the indicator level, unexpected, surpris-
ing, possibly unpredictable evidence reports about an analog system will propel hy-
pothesis discovery and theory revision. Indeed, this extends beyond computational
modeling: When Otto Schaumann created meperidine, the first fully synthetic opi-
oid pain medication, in 1937, he observed that meperidine and morphine produced
similar physiological signs when administered to rats in lab experiments. In addi-
tion, meperidine was known to share chemical structural properties with morphine.
Schaumann consequently (and rightly) hypothesized that meperidine also shares
morphine’s narcotic effects (see Bartha 2013). This further episode of successful
inference by analogy illustrates the peculiar nature of pharmacology, integrating
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different levels of description from chemical structure to clinical observation. Jus-
tifying analogical arguments by reconstruction calls for a framework capable of
accommodating heterogeneous sources of evidence that allows tracing confirma-
tory support across distinct epistemological categories — possibly also from analog
systems. The collection of modules presented in this paper may serve as a toolbox
for such justification in the scientific dialog between hypothesis testing and theory
revision.
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