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Preface
In 2018, real-time ray tracing arrived in consumer GPU hardware and swiftly
established itself as a key component of how images would be generated
moving forward. Now, three years later, the second iteration of this hardware
is available, mainstream game consoles support ray tracing, and
cross-platform API standards have been established to drive even wider
adoption. Developers and researchers have been busy inventing (and
reinventing) algorithms to take advantage of the new possibilities created by
these advancements. The “gems” of knowledge discovered during this
process are what you will find in the pages that follow.

Before diving into the treasure trove, we want to make sure you know
the following:

> Supplementary code and other materials related to this book can be
found linked at http://raytracinggems.com.

> All content in this book is open access.

Open access content allows you to freely copy and redistribute any chapter, or
the whole book, as long as you give appropriate credit and you are not using it
for commercial purposes. The specific license is the Creative Commons
Attribution 4.0 International License (CC-BY-NC-ND).1 We put this in place so
that authors, and everyone else, can disseminate the information in this
volume as quickly, widely, and equitably as possible.

Writing an anthology style book, such as this, is an act of collective faith. Faith
that the authors, editors, publisher, and schedules all converge to produce a
worthwhile result for readers. Under normal circumstances this is a difficult
task, but the past year and a half has been anything but “normal.” This book’s
call for participation was posted in late November 2019, just as the COVID-19
virus began to emerge in Asia. In the 18 months since, a once-in-a-century
pandemic has surged. Its impact has touched every person on Earth—and it is
not yet over. The virus has taken lives, battered livelihoods, and broken the
way of life as we knew it. We postponed this book with the quiet conviction

1https://creativecommons.org/licenses/by-nc-nd/4.0/.
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that the coronavirus would be overcome. As time passed, the development of
vaccines made breakneck progress, remote work in quarantine became a new
staple of life, and authors began to write about computer graphics again. As a
result, this book was written entirely during quarantine. We sincerely thank
the authors for their passion and dedication—and faith—all of which made
this book possible under extraordinary circumstances.

Further thank-yous are in order for the individuals whose support made this
book possible. Without a doubt, this book would not have happened without
Jaakko Haapasalo, Charlotte Byrnes, Eric Haines, and Tomas Akenine-Möller.
Thank you to Ankit Patel, Ethan Einhorn, Peter Harrison, Fredrik Liljegren,
Eric Reichley, and Ilkka Koho for their efforts on financing, marketing, and
coordinating with partners.

We are especially grateful to Natalie Pao, Susan McDermott, and the entire
team at Apress for their resilience as the ground shifted beneath us. We
thank Steven Hendricks and the team at Fineline Graphics & Design for their
swift and high-quality work on figures throughout the book.

We thank Craig Hynes, Alexey Panteleev, Amanda Lam, and Jennifer Reyburn
for their work on the cover designs, interior spreads, and visual design of the
entire book. The NVIDIA Creative team that created Marbles at Night (featured
on the cover) includes Gavriil Klimov (Creative Director), Jacob Norris (Lead
Environment Artist), Andrej Stefancik (Senior 3D Artist), Gregor Kopka (Lead
3D Artist), Artur Szymczak (Senior Lighting Artist), Chase Telegin (Technical
Artist), Alessandro Baldasseroni (Lead 3D Artist), Fred Hooper (Lead VFX
Artist), and Ilya Shelementsev (Senior 3D Artist).

We extend a special thank-you to our partners who generously created
content for the special edition covers. These include the following:

1. Ubisoft (Watch Dogs: Legion): Patrick Ingoldsby, Fotis Prasinis,
Matthew Mackillop, Kenny Lam, and team.

2. Epic Games (Fortnite): Paul Oakley, Scott James, Jon Kiker,
Laura Schreiber, and team.

3. Remedy Games (Control): Tatu Aalto, Mikko Orrenmaa, and team.

4. id Software (Quake II RTX).
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Last, but not least, major credit and thanks are due to our excellent team of
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Munkberg, Angelo Pesce, Josef Spjut, Michael Vance, and Cem Yuksel—for
their careful reviewing, editing, and guidance.

—Adam Marrs, Peter Shirley, and Ingo Wald
June 2021
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Foreword
by Andrew Glassner and Ignacio Llamas

Think globally, act locally. This idea was introduced by town planner Patrick
Geddes in 1915 [4]. This principle leads me to buy the things I need from local,
independent stores, and to prefer food that has been grown nearby. Over a
hundred years since this idea emerged, it’s still guiding not just me, but also
social activists, environmentalists, and people making images with
computers.

Prior to Jim Kajiya’s seminal rendering equation paper in 1986 [3], image
rendering was a growing collection of algorithms that generally each bit the
apple in a different way. The rendering equation neatly organized and
described the two essential operations at the heart of image rendering:
finding the light arriving at a point, and computing the light leaving that point
in a given direction. The information needed to solve the equation was
gathered globally, from the entire environment, and the final solution was
computed locally, at the point being shaded. That is, gather globally,
shade locally.

An important feature of the rendering equation for us, the wise readers of Ray
Tracing Gems II, is that it is an integral equation that can be solved numerically
using a collection of point samples. When we think about the problem of
finding the light incident at a point, ray tracing is the obvious and elegant way
to find those samples.

Wait, that’s not fair. Obvious is one of those words that implies that all the
smart people would think of any given thing immediately and they’d all agree.
Calling something “obvious” implies that if you didn’t immediately think of
exactly that and agree with everyone else, then you’re not smart. Obvious is a
punishment word, like intuitive.

Ray tracing as we know it in this book would not be obvious to the ancient
Greeks, and they were as smart as anyone around today. Consider the Greek
philosopher Empedocles, who was born around 440 BCE. He’s the fellow who
came up with the theory that all objects are made up of earth, air, fire, and

xxiii



FOREWORD

water. Because everything is formed by some mixture (or change in the
mixture) of these elements, something had to do that mixing and changing.
That work was taken on by two additional forces: love, which brought the
elements together, and strife, which pulled them apart.

Less well known today is Empedocles’ theory of light, now called emission
theory (or extramission theory). The key idea of emission theory asserts that
our ability to see the world around us begins with a burning fire that we each
carry inside our head. When our eyelids are open, this firelight escapes in the
form of rays shooting out of our eyes, illuminating the world before us [2].
Essentially, emission theory holds that we are human flashlights. The light we
beam out into the environment bounces off of the objects around us and back
into our eyes, and thus we behold the world. Plato believed in emission
theory, and even Ptolemy’s famous book Optics described phenomena as
complex as refraction using rays of light coming from the eyes.

It’s easy for us to refute emission theory in any number of ways today.
(Challenge: name three ways to disprove emission theory in 30 seconds.
Ready? Go!) But that’s in retrospect. At the time, the theory made sense to
people, and despite Euclid expressing some doubts, emission theory was the
accepted explanation of vision for at least a thousand years. I find it startling
that roughly half of the people alive today believe in emission theory [6].

The impact of emission theory on western culture can still be seen in today’s
language and entertainment. A common idiom in American English describes
someone feeling a strong, joyful emotion by saying that “their eyes lit up,” as
though their passion had stoked their internal fire, causing their eyes to glow.
The title character in the Superman comics has “heat vision,” a superpower
that lets him make anything extremely hot just by staring at it. The comics
show this power with red beams shooting outward from his eyes, making his
target hot enough to smoke, or even erupt in flames. All thanks to the rays
coming out of his eyes, carrying the heat of his inner super-fire.

Given all of the evidence for the Sun as our primary source of light, and the
flaws in emission theory, why has that theory dominated Western thinking for
so long? One reason is that before the Enlightenment and the development of
the scientific method, appeal to authority was an acceptable means for
settling almost any kind of argument. For example, in about 350 BCE Aristotle
stated that, “Males have more teeth than females in the case of men, sheep,
goats, and swine …” [1]. For centuries thereafter, Aristotle’s opinions were
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still so influential that people believed that men had more teeth than women.
Despite farmers and doctors constantly looking into the mouths of people and
animals, nobody felt the need to bother counting the teeth they found there, or
announcing what they found if they did. If Aristotle said that men have more
teeth than women, then they do. In the same way, Empedocles told everyone
that we see things by beaming light outward from our eyes, so that
settled that.

An appealing feature of emission theory is its efficiency. The fire in our heads
lights up the things we need to see, and nothing else. This seems like a
sensible use of an important resource. After all, why would you waste valuable
head firelight on things you’re not looking at? All other matters aside, the
efficiency argument is a good one. Firelight is precious, and only so much of it
can fit inside one’s head, so it makes sense to be as frugal with it as possible.

This efficiency is at the heart of Turner Whitted’s classic paper that introduced
modern ray tracing [5], which brilliantly combined the minimal number of
rays required by emission theory with the transport of light described by
modern optics. When we generate eye rays (and rays from a point to be
shaded), we’re pretending to practice emission theory, but then we use
modern optics to bring the light back to carry out the shading step.

This marriage of the ancient and the modern approaches to light brings us to
the newest of the new: the cutting-edge ray tracing algorithms in this book.
From its humble beginnings as a thought experiment almost 2500 years ago,
we’re now using ray tracing to simulate rays of light using GPUs with billions
of transistors, each only a few nanometers across. Elegant, powerful, and
capable of generating images both beautiful and accurate, ray tracing is once
again ascendant. What was old is new again, and it works better than ever.

With the tools in this book, I hope you’ll be able to keep the fire in your head
well stoked with great ideas and positive emotions, and to send rays into the
environment that let you create beautiful and meaningful work as you gather
globally, and shade locally.

—Andrew Glassner
Senior Research Scientist, Weta Digital

January 2021
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* * *

By the time this book releases, it will have been over three years since we
(NVIDIA) launched RTX at GDC 2018. The first RTX GPUs, based on the Turing
architecture, arrived soon thereafter, making hardware-accelerated real-time
ray tracing available for the first time ever on widely available consumer
GPUs.2 At the time we announced RTX at GDC 2018, we were running the Star
Wars “Reflections” real-time ray tracing demo on a $68,000 DGX Station with
four NVIDIA Volta GPUs (our most powerful GPUs at the time). As a result, it
was not surprising that the technology was met with reasonably high levels of
skepticism. What was perhaps more surprising to us was the relatively
nonexistent speculation about what would come a few months later in our
next GPU architecture launch. Clearly, the world was not quite ready for
real-time ray tracing, and few gave much thought to the possibility of
real-time ray tracing making it into games so quickly after.

As with any new technology, there is an adoption phase before widespread use
takes hold. Our past experiences introducing new GPU hardware features told
us that key new features can take about five years to gain widespread
adoption (and it usually takes a few more years for these to trickle down to
GPUs in mobile devices). Ray tracing, however, was quite different from the
many previous features in the 25-year history of consumer GPUs. This was
perhaps the most significant technological advance in GPUs since
programmable shading was introduced 15 years earlier. The ray tracing
capability we introduced enabled real-time rendering developers, for the first
time, to think about rendering algorithms in radically new, yet more natural,
ways. Real-time ray tracing opened up a world of algorithmic choices that
were previously confined to offline rendering, which had started the
transformation from rasterization techniques and physically plausible
rendering hacks to physically based rendering with ray tracing about a decade
earlier. We believed this presaged what we were about to see in the real-time
rendering world—and we were not wrong.

Because ray tracing provides such a radical new tool, it gathered a level of
interest we rarely see among the top rendering developers. This allowed us to
have a significant showing at launch with several engines and over ten games
showing ray traced visuals. Nevertheless, this was still early days for all of us

2Imagination Technologies had ray tracing hardware designs, but these did not become available in widely
used consumer products.
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working on real-time ray tracing. Despite the relative success of this launch
event, it was difficult to convey to the average person the significance of the
technological advance we were in the midst of.

In the three years since Turing’s reveal, there has been a growing
understanding of just how transformative real-time ray tracing is. It not only
enables higher-quality graphics in games, but also improves workflows
across many industries that are increasingly relying on digital models and
virtual simulations. By rendering physically based photorealistic imagery in
real time, without long precomputation times, we unlock faster iterative
workflows in architecture, product design, animation, and visual effects.
Increasingly, we are seeing real-time ray traced rendering become central to
robotics and autonomous driving, where accurate simulations of the physical
world are used to train AI-based algorithms that are powering the next
technological revolution. All of these use cases rely on ray tracing for the
simulation of light transport, but ray tracing is also involved in lesser-known
applications including the simulation of other physical phenomena, such as
sound wave and electromagnetic wave propagation. These are also going to
become increasingly important across various industries.

By now you may be wondering why I am providing this brief personal
perspective of how real-time ray tracing was introduced to the world. If you
are reading this book, you probably know something about ray tracing and
rendering already. So, as you are spending time reading this foreword, there
is one message I want you to take away from it. I want to reaffirm your belief
in ray tracing. I want you to see how impactful real-time ray tracing can be,
and with that hopefully motivate you to learn as much from this book as you
can. I truly believe real-time ray tracing is one of those enabling technologies
that has the power to create ripples across many fields. Ray tracing is here to
stay, and it will become as widely used across the world in the next few years
as mobile phones are. It is for this reason that this series of books, Ray
Tracing Gems, is now in its second iteration. Ray Tracing Gems exists to gather
and distribute the ever-increasing knowledge earned from our collective
experiences—and ultimately help make the impact of our work more
significant to the world.

Our journey is still just beginning. There are many things yet to be done to
improve what we can do with real-time ray tracing. As with any tool, ray
tracing must be used wisely. We must trace those rays that are most useful.
Sampling algorithms help us do this. In addition, ray tracing alone is not
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sufficient to generate beautiful images. It must be combined with complex
physically based material models, backed by quality content, and executed
efficiently in the presence of the wide variety inherent to the real world.
Furthermore, because rendering algorithms using ray tracing are usually
based on stochastic sampling with low sample budgets, some noise often
remains even with the best sampling algorithms. Smart denoising algorithms
are needed to make real-time ray tracing feasible. Finally, ray tracing needs
something to trace rays against. The geometric and volumetric models of the
world must be stored in efficient acceleration structures that are fast
to update.

These are just a few of the key high-level challenges in front of us. There are
many specific problem areas within these challenges that deserve full
chapters or even PhD dissertations. You will find a curated selection of
solutions to such problems in this book. I hope you find the chapters within
useful and inspiring, and that they make your ray tracing experience that
much more satisfying.

—Ignacio Llamas
Omniverse RTX Lead, NVIDIA

January 2021
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NOTATION
Here we summarize the mathematical notation used in this book. Vectors are
denoted by bold lowercase letters, e.g., v, and matrices by bold uppercase
letters, e.g., M. Scalars are lowercase, italicized letters, e.g., a and v. Points
are uppercase, e.g., P. This is summarized in the following table:

Notation What It Represents

P Point

v Scalar

v Vector

v̂ Normalized vector

M Matrix

The components of a vector are accessed as

v =

vx
vy
vz

 =

v0
v1
v2

 =
(
vx vy vz

)⊺, (1)

where the latter shows the vector transposed, i.e., so a column becomes a
row. To simplify the text, we sometimes also use v = (vx, vy, vz), i.e., where the
scalars are separated by commas, which indicates that it is a column vector
shown transposed. We use column vectors by default, which means that
matrix/vector multiplication is denoted Mv. The components of a matrix are
accessed as

M =

m00 m01 m02
m10 m11 m12
m20 m21 m22

 =
(
m0,m1,m2

)
, (2)

where themi, i ∈ {0, 1, 2}, are the column vectors of the matrix. For
normalized vectors, we use the following shorthand notation:

d̂ =
d
‖d‖

, (3)
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i.e., if there is a hat over the vector, it is normalized. A transposed vector and
matrix are denoted v⊺ and M⊺, respectively.

A direction vector on a sphere is often denoted by ω and the entire set of
directions on a (hemi)sphere is Ω. Finally, note that the cross product
between two vectors is written as a× b and their dot product is a · b.
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PART I

RAY TRACING FOUNDATIONS

This part covers various fundamental topics in ray tracing, including camera
ray generation, bounding box construction, ray intersection, soft shadow
edges, texture filtering, ideal reflection and refraction, motion blur, and
translucency. We start with a summary of photographic terms as they apply to
ray tracing and end with a full implementation of a reference path tracer.
Along the way, we also explore a topic in spectral rendering of volumes. Many
of the chapters in this part include source code snippets to make the
techniques simple to understand and use.

Chapter 1, A Breakneck Summary of Photographic Terms (and Their Utility to Ray
Tracing), explains terminology used in photography and videography in terms
understandable to ray tracing authors and users. Photography and
videography terminology has developed over more than a century, and some
of it is rather confusing, or downright misleading. This gem explains it all!

One of the most commonly used operations in any efficient ray tracer is to
determine whether a ray hits an axis-aligned bounding box (AABB). Chapter 2,
Ray Axis-Aligned Bounding Box Intersection, describes the most optimal
implementation of a ray/AABB intersection test, including some neat tricks.

To generate an image, a ray tracer shoots many rays from the camera
position. Chapter 3, Essential Ray Generation Shaders, describes the most
common projections and lens approximations, and how to map image (pixel)
positions to ray directions.

When object geometry is represented with coarse triangles or quadrilaterals,
each covering many pixels, a problem often arises: the edge between
illuminated and shadowed parts of the object is very sharp—much sharper
than the otherwise smooth shading. This is called the shadow terminator
problem. Chapter 4, Hacking the Shadow Terminator, describes a method that
moves the shading points to overcome this pesky issue.

When sampling textures, it is important to access the appropriate texture
resolution (mipmap level) to achieve an optimal balance between texture blur
and sampling noise, while maximizing cache performance. Several gems
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cover various aspects of this topic. The first is Chapter 5, Sampling Textures
with Missing Derivatives. It is common to use texture coordinate differentials
when sampling textures. This chapter describes what to do if such
differentials are not available, introducing an efficient approach based on the
camera matrix and geometry visible in a pixel.

Ray cones are a fast, approximate way to calculate the mip level for texture
lookups. Chapter 6, Differential Barycentric Coordinates, describes a simple
and efficient method to compute differentials of barycentric coordinates,
which in turn can provide the differentials of texture coordinates needed for
texture filtering. Chapter 7, Texture Coordinate Gradients Estimation for Ray
Cones reformulates the problem to utilize hardware-supported instructions.
This maintains almost the same visual results and leads to more convenient
shader code.

Mirror reflection and ideal refraction is at the heart of classic recursive ray
tracing. Chapter 8, Reflection and Refraction Formulas, provides a clear and
concise refresher on how to compute reflection and refraction directions.

The magnitude of reflection and refraction follows the Fresnel equations,
which can be approximated with Schlick’s simple formula. Chapter 9, The
Schlick Fresnel Approximation, discusses the accuracy of this approximation
for dielectric materials and presents an extended Schlick approximation
for metals.

Some of the chapters earlier in this part describe how to use ray cones for
texture map sampling and how to propagate ray cones at reflections.
Chapter 10, Refraction Ray Cones for Texture Level of Detail, extends this with a
recipe for propagating ray cones at refractions.

Chapter 11, Handling Translucency with Real-Time Ray Tracing, describes
various practical approaches to efficiently render translucent materials in a
real-time ray tracing setting, for example reusing shading results computed
for directly visible points.

When rendering moving geometry, the bounding volume hierarchy needs to
represent the motion. Chapter 12, Motion Blur Corner Cases, describes how to
combine geometry from different sample times, how to bound geometry that
has both transformation and deformation motion, and how to deal with
incoherent motion.
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For spectral rendering of volumes, one usually needs to convert RGB inputs
for the volume attenuation coefficients to spectral values. Chapter 13, Fast
Spectral Upsampling of Volume Attenuation Coefficients, introduces a simple
and fast method to do this conversion that gives very good results.

Chapter 14, The Reference Path Tracer, describes a simple path tracer that
serves two purposes: (1) to generate reference images to compare other
implementations against and (2) to supply code examples that can be used as
a foundation for adding path tracing to existing rendering engines.

The information in this part builds upon and supplements the basics of
modern ray tracing introduced in 2019’s Ray Tracing Gems. It is intended to
help you better understand the fundamentals of modern ray tracing. Enjoy!

Per Christensen
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CHAPTER 1

A BREAKNECK SUMMARY OF
PHOTOGRAPHIC TERMS (AND
THEIR UTILITY TO RAY TRACING)
Trevor David Black
Google

ABSTRACT

The pursuit of photography and videography has a dizzying number of terms
to remember. It takes months of practice and thousands of shots to
understand at an intuitive level how photographers talk about their craft. As
quickly as possible, this chapter aims to explain the terms of photography and
videography—boiling them down to their most basic mathematics and
utility—before quickly covering their significance to ray tracing and outlining
feasible implementations for a select few terms.

1.1 INTRODUCTION

Photography is a hobby and a profession that is absolutely filled with
misinformation. This should hardly come as a surprise: The fundamental
aspects of photography are deeply rooted in optical physics and
electromagnetism. Getting started with photography is already difficult
enough—there are so many terms and fiddly details—that expecting an
amateur to also develop a keen understanding of undergraduate physics is
simply asking for too much. This problem is compounded by the amount of
information that is created by photographers to simplify these concepts for
photographers, and the information that is created to simplify those
simplifications. It would be remarkable for anyone to develop a keen
understanding of the grammar of the hobby and of the underlying science
without digging through academic texts. If you’re reading this, then it is
assumed that you are interested in learning both how photography works as a
craft and how photography works from a fundamental mathematics and
physics perspective. It is also assumed that you’re interested in taking
concepts learned from photography and adapting them for use within a ray
tracing context. You will find reading this chapter that a ray tracing camera is
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in many respects an idealized camera, and true—physical—camera systems
leave a lot to be desired. That said, you’ll frequently encounter cases where
the idiosyncrasies of physical systems need to be modeled within virtual
contexts, the big examples being depth of field, chromatic aberration, and
rolling shutter. If you work at a studio, this understanding might allow you to
have more in-depth conversations with the cinematographers and camera
personnel on set. Starting with the basics, this chapter provides a concise and
utilitarian summary of the most common terms of photography.

PHOTOGRAPHY A hobby and/or profession infected with the obsession of
expressing ideas through the capturing of photons.

CAMERA A device that captures photons and embeds them in a storage
medium for later viewing.

1.2 DIGITAL SENSOR TECHNOLOGY

PHOTODETECTOR A passive electronic element that converts photons into
electrical current. Photodetectors usually have a nonlinear response curve.
The same as a photosensitive diode.

PHOTOSITE A single photodetector. A single pixel.

SENSOR A plane of photosites aligned to a Cartesian grid. The sensor is
responsible for sampling and digitizing the electrical currents produced by
incident photons for each individual photocell.

SENSOR MODULE The electrical module that contains the digital sensor
and all associated optical filters.

Every sensor module has a unique transfer function. This can depend on a
tremendous number of factors and is usually not worth modeling in its
entirety. Rather, if you need to simulate a specific sensor module, it is usually
best to sample that sensor directly. For sampling digital sensors, see
Physlight [8]. For an example of a fictional spectral sensitivity graph, see
Figure 1-1.

PIXEL PITCH The physical distance between the centers of any two adjacent
pixels, usually measured in micrometers.

IR/UV FILTER An optical filter placed in front of the sensor to absorb
infrared (IR) and ultraviolet (UV) wavelengths. The sensitivity of the
photodetectors can vary wildly from one product to the next, but the
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Figure 1-1. This figure depicts three separate things. First, it shows a fictional spectral sensitivity
(black) that extends outside of the normal perception of the electromagnetic spectrum. To
compensate for this unnecessary extension, an IR/UV cut filter (purple) is depicted that blocks IR
and UV photons. Finally, the combination of the two is depicted as the final spectral sensitivity of
the sensor module (green) that more closely matches human perception.

photodetectors found in most cameras are sensitive to wavelengths outside of
human sensation. Specifically, they can go as short as 300 nm (ultraviolet) to
as long as 1200 nm (infrared). The IR/UV optical filter allows a sensor to more
closely approximate human sensitivity.

IR and UV should not be a problem for you unless you are working with assets
that emit those frequencies. If you are attempting to emulate the
photodetectors of a specific sensor, failure to include the IR/UV filter will
produce an inaccurate, washed-out image.

BLACK AND WHITE SENSOR MODULE A grid of photosites with an IR/UV
filter. Each photosite captures all incident photons with wavelengths
between—roughly—400 nm and 700 nm. The sensor outputs a single
numerical value for each pixel that represents the integral of all photons over
the capture period. A black and white sensor captures luma (brightness) data
only and has no capacity for chroma (color) data. A fictional sensor module
with its IR/UV cut filter and final spectral sensitivity can be seen in Figure 1-1.

COLOR SENSOR A black and white sensor with an additional optical filter
that is made up of a mosaic of colored glass. The mosaic has a repeating
pattern that specifies a colored optical filter for each individual pixel. This
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(a) Bayer pattern (b) Quad Bayer (c) X-Trans (d) URSA 12K

Figure 1-2. A depiction of three common sensor mosaics (Bayer, Quad Bayer, and X-Trans) and
one uncommon sensor mosaic (URSA Mini Pro 12K).

colored glass is typically red, green, blue, or clear. A red filter will
approximate the human long cone, a green filter will approximate the human
medium cone, and a blue filter will approximate the human short cone. The
LMS (long, medium, short) system is defined in Colorimetry [9]. One can
crudely approximate the degradation of chroma and luma energy for any
given mosaic pattern by converting from RGB to XYZ [3].

BAYER PATTERN The most common mosaic pattern found in color
sensors [1]. Others do exist and are used, see Sony [10], Fujifilm [4], and
Buettner [2]. A 2× 2 repeating pattern consisting of two green filters, one red
filter, and one blue filter.

The two green filters are along one diagonal, the red and blue filters along
another. The mosaic for the Bayer filter is depicted in Figure 1-2, alongside
other mosaic patterns of note. The Bayer filter captures roughly 45% of the
luma data and 29% of the chroma data. The information capture of the Bayer
filter is crudely approximated as follows:0.49000 0.31000 0.20000
0.17697 0.81240 0.01063
0.00000 0.01000 0.99000

 · 14

10
0

 + 2

01
0

 +

00
1


 =

0.32750.4531
0.2525

 (1.1)

DEMOSAICING The signal processing algorithm that approximates full RGB
color for each pixel. This will be different for each mosaic pattern. Before
demosaicing, each pixel in the sensor will only have a single color or luma
value. Full RGB displays require three data points for each pixel.

Knowing the specific demosaicing algorithm may be necessary if compositing
on top of a raw recording.
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FOVEON SENSOR A sensor made up of three vertically stacked photodiodes
in the bulk of the semiconductor that removes the need for a mosaic pattern.
Each photocell consists of a stack of three photodiodes one each for red,
green, and blue wavelengths. Each photocell reads out a full RGB triple,
allowing for full RGB images without the need for demosaicing. The creation
of the Foveon sensor was chronicled in The Silicon Eye [5].

A useful mental model is treating ray tracing cameras as being similar to
Foveon sensors.

ALIASING A distortion or artifact that causes a sampled signal to be
different from the original signal. This is common in images with places of
high-frequency data. A good place to find aliasing in photographs is in fabric.
Aliasing can be especially problematic in sensor modules with mosaics as
adjacent photocells can have different filters and capture different
information. In Bayer patterns this can lead to high-frequency noise where
green and red information alternate (or green and blue alternate).

This is the same type of aliasing that is seen in ray tracing. Aliasing in
physical capture tends to be more distracting due to mosaics.

ANTIALIASING FILTER An optical filter placed in front of a sensor to reduce
the presence of aliasing artifacts in an image. It is effectively an optical
blurring element that reduces high-frequency information from reaching the
sensor. Special attention is given to removing moire, as it is the most
distracting of aliasing artifacts.

MOIRE A distracting visual artifact that appears when two patterns are
imperfectly overlapped. Patterns of high-frequency detail overlap and form
visually striking low-frequency patterns.

1.3 FILM

FILM A physical capture and storage medium, often a photosensitive
sandwich of chemicals layered onto a plastic substrate. The film is placed at
the rear of the camera to capture incoming photons. Depending on the type of
camera, film stock can be loaded into the camera one at a time or can be
wound through the camera in either the horizontal or vertical direction.

FILM NEGATIVE A storage medium for film, also the raw capture out of the
camera. For a film stock with the negative characteristic, increasing photons
darkens the image. The output from a film negative will have inverted luma
and chroma data.

13
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FILM POSITIVE (REVERSAL FILM) A film stock with the positive
characteristic. The output from the film does not have inverted luma and
chroma data.

NEGATIVE A negative image. Colloquially used to refer to any immediate
output from a capture device.

35MM FILM A film stock where the width of the roll is 35 mm. This is the
most commonly used film throughout most of the twentieth century.

8MM FILM A film stock where the width of the roll is 8 mm.

16MM FILM A film stock where the width of the roll is 16 mm.

70MM FILM A film stock where the width of the roll is 70 mm.

65MM FILM A film stock where the width of the roll is 70 mm. 70mm film is
sometimes referred to as 65mm for historical reasons. Note that the
photosensitive region of “65mm” film is not 65 mm in any dimension.

1.4 COMMON CAPTURE DIMENSIONS

ASPECT RATIO The ratio of the horizontal dimension to the vertical
dimension of the photosensitive region, represented in an X : Y format. For
film stock this is the ratio of the physical dimensions of the photosensitive
region. For digital sensors this is the ratio of the horizontal pixel count to the
vertical pixel count.

35MM PHOTOGRAPHIC FILM The film stock most common to photographic
applications in the twentieth century. The film traverses through the camera
horizontally, such that the film is unwound with the perforations at the top and
bottom of the camera. The 35mm photographic film stock has a
photosensitive region with a vertical resolution of 24 mm. This is due to the
space taken up by the perforations above and below the photosensitive region.
35mm photographic film has a horizontal resolution of 36 mm. Leading to a
complete resolution of 36 mm by 24 mm and an aspect ratio of 3:2.

35MM MOVIE FILM The film stock most common to moviemaking in the
twentieth century. The film traverses through the camera vertically, such that
the film is unwound with the perforations at the sides of the camera. There is
an audio strip that stores captured audio that sits between the perforations
and the photosensitive region on one side of the film stock. 35mmmovie film
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has a horizontal resolution of 22 mm and a vertical resolution of 16 mm,
leading to a complete resolution of 22 mm by 16 mm and an aspect ratio
of 1.375:1.

When creating a ray tracing sensor designed to mimic a real film camera,
don’t just use the width of the film stock as the width of your virtual sensor,
i.e., don’t just set your width to 8 mm, 16 mm, 35 mm, or 70 mm. The real
photosensitive region is never the full width as there may be an audio strip or
perforations.

35MM SENSOR (FULL FRAME) A digital sensor with a photosensitive region
designed to mimic 35mm photographic film. It has arbitrary pixel resolution
with a sensor size of 36 mm by 24 mm and an aspect ratio of 3:2.

CROPPED SENSOR (APS-C) A digital sensor with a photosensitive region
that has roughly half the area of 35mm photographic film. It has arbitrary
pixel resolution with a sensor size approximating 23.4 mm by 15.6 mm and an
aspect ratio of 3:2.

FOUR THIRDS SENSOR A digital sensor with a photosensitive region that
has roughly one quarter the area of 35mm photographic film. It has arbitrary
pixel resolution with a sensor size approximating 17.3 mm by 13 mm and an
aspect ratio of 4:3. The Four Thirds name does not come from the aspect ratio,
rather it refers to the associated cathode ray tube size.

SUPER 35MM SENSOR A digital sensor with a photosensitive region
designed to mimic 35mmmovie film. It has arbitrary pixel resolution with a
sensor size of 24.89 mm by 18.66 mm and an aspect ratio of 1.33:1.

MEDIUM FORMAT Photography taken using a photosensitive region (film or
sensor) that is larger than 35mm photographic film but smaller than large
format (photography). This means that medium format photosensitive regions
fall between 36 mm by 24 mm and 130 mm by 100 mm. Medium format can
also be of arbitrary aspect ratio.

LARGE FORMAT (PHOTOGRAPHY) Photography taken using a photosensitive
region (film or sensor) that is 130 mm by 100 mm or larger.

LARGE FORMAT (VIDEOGRAPHY) Videography taken using a photosensitive
region that is larger than a Super 35mm sensor.
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1.5 COMMON CAPTURE RESOLUTIONS

2K (DCI 2K) A pixel resolution of 2048 by 1080.

4K (DCI 4K) A pixel resolution of 4096 by 2160.

DCI 8K A pixel resolution of 8192 by 4320.

HIGH-DEFINITION (HD) A pixel resolution of 1920 by 1080.

ULTRA-HIGH-DEFINITION (UHD) A pixel resolution of 3840 by 2160.

8K A pixel resolution of 7680 by 4320.

1.6 LENSING

LENSING A mathematical operation that bends incoming parallel lines such
that they converge toward a single central point. Lensing is depicted in
Figure 1-3 with a simple thin lens model.

The thin lens model is used frequently in ray tracing cameras and may satisfy
the majority of your visual needs.

FOCAL POINT The single central point toward which parallel lines are bent.

Longitudinal Axis
F

f

Figure 1-3. The lensing of incoming photons by a thin lens model. The focal length is determined
by the intersection of the incoming parallel lines and the lensed lines. Both faces of the optical
element model the surface of a sphere. The focal point is denoted with F. The focal length is
denoted with f.
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F

f

Figure 1-4. The wonderful Carl Zeiss Jena Biotar 58/2 photographic lens. Real photographic
lenses can have incredibly complicated optical and mechanical designs. The lensing drawn here is
a slightly wrong exaggeration to more clearly depict the focal length.

PHOTOGRAPHIC LENS A physical enclosure made up of optical elements
that lenses incoming photons toward a focal point in front of the
photosensitive region. A fictional photographic lens is depicted in Figure 1-4.

FIELD OF VIEW The amount of the universe in front of the lens that is visible
to the focal point. This is represented by a solid angle and is usually
measured in degrees or radians for each dimension.

HORIZONTAL FIELD OF VIEW The angle, in radians or degrees, that
constitutes the widest view of the universe visible to the focal point.

VERTICAL FIELD OF VIEW The angle, in radians or degrees, that constitutes
the tallest view of the universe visible to the focal point.

PINHOLE CAMERA A blackbody box with a small hole punched in one side
and a photosensitive region on the opposite side. The small hole, called an
aperture, is the focal point for a pinhole camera. An ideal pinhole camera has
minimal defocus blur, but lets in very few photons.

FOCAL LENGTH The distance from the focal point to the plane where the
incident parallel lines and the converging lines intersect. This is a physical
property of the lens, and the camera has no effect on it. The focal length is
shown in Figures 1-3 and 1-4. The horizontal and vertical dimensions of the
field of view can be calculated from the focal length (and vice versa) with the
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following:

hfov = 2 arctan
(
photosensitive width

2 · focal length

)
, (1.2)

vfov = 2 arctan
(
photosensitive height

2 · focal length

)
. (1.3)

APERTURE/IRIS An opening in the camera and lens that is (ideally) the sole
source of photons to the photosensitive region. The apertures of
interchangeable lenses are usually of variable size where the radius can
expand or contract. An increase in radius lets in more photons but increases
the size of the circle of confusion. A decrease in radius lets in fewer photons
but decreases the size of the circle of confusion. The term aperture is
commonly used in photography, whereas the term iris is more commonly used
in videography, but they both represent the same thing.

CIRCLE OF CONFUSION An optical blur caused by the convolution of photon
cones emanating from adjacent scene features. The radii of these photon
cones are directly proportional to the aperture/iris.

FOCAL PLANE (PLANE OF FOCUS) An idealized plane orthogonal to the
longitudinal (forward) axis of the lens. Any object or feature intersecting the
plane of focus is projected onto the sensor plane in the maximum detail that
is possible for that lens.

DEFOCUS BLUR A blurring caused by the circle of confusion for any object
not intersecting the focal plane.

DEPTH OF FIELD The distance between the two planes, one near and one
far, wherein all objects appear sharp or in focus. All objects and features that
do not perfectly intersect the plane of focus will experience defocus blur. A
crude simplification is to say that a feature will only appear sharp if the circle
of confusion is smaller than the pixel pitch of the sensor. Depth of field can
sometimes colloquially be used to refer to defocus blur. This is wrong. Don’t
do this.

STOP A doubling. Multiple stops represent powers of two. One stop is 2×,
two stops is 4×, three stops is 8×, etc.

ENTRANCE PUPIL The appearance of the aperture as viewed from the front
of the lens. The diameter of the entrance pupil is not the diameter of the
aperture. The entrance pupil can be thought of as the aperture as “seen” by
the photons incident to the front lens element.
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APERTURE NUMBER The ratio of the focal length to the diameter of the
entrance pupil. Also called the f-number, it is a physical property of the lens.
Note that as the aperture width decreases, the aperture number goes up (as
the entrance pupil is correlated with aperture width). The f-number is not to
be confused with f, which denotes the focal length in the figures.

F-STOP The quantization of the aperture number. The f-stop is usually
written in terms of powers of

√
2 (e.g., f1.4, f2.0, f2.8, etc.), which are one stop

apart, or powers of
√
2/3 (e.g., f1.4, f1.6, f1.8, f2.0, etc.), which are one third of

a stop apart. As an example, a lens with an f-stop of f2.0 has a focal length
that is twice the width of its entrance pupil.

TRANSMITTANCE The light transmission efficiency of a lens. If 100% of the
incident photons to the front element of a lens are transmitted to the rear of a
lens, the lens has a transmittance of 1.0. The successive layers of glass in a
lens can cause some of the photons to be absorbed in the lens wall or
reflected back out into the scene. It is common to see lenses with a
transmittance between 0.7 and 0.9.

T-STOP The f-stop of a lens modified by the transmittance of the lens. The
t-stop of a lens is calculated as

T =
f-stop√

transmittance
, (1.4)

where the f-stop is a numerical value (e.g., 1.4, 2.0, 2.8). As an example, an
f2.0 lens with a transmittance of 0.7 and an f2.4 lens with a transmittance of
1.0 will have a similar quantity of photons transmitted through to the sensor.

1.7 SHUTTER

SHUTTER SPEED The duration that the photosensitive region is sensitive to
photons.

FRAME RATE The number of photographic frames that are captured per
second for a video. Common frame rates are 24 frames per second and
23.976 (24/1.001) frames per second for movies in NTSC countries, 30 frames
per second and 29.97 (30/1.001) frames per second for television in NTSC
countries, and 25 frames per second for both movies and television in
PAL countries. The frame rate must be lower than the inverse of the
shutter speed.
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SHUTTER ANGLE The duration that the photosensitive region is sensitive to
photons normalized by the inverse of the frame rate. A shutter speed of zero
is 0 degrees. A shutter speed of one over the frame rate is 360 degrees:

shutter angle = shutter speed · frame rate · 360 degrees (1.5)

A commonly seen example in movies is a shutter time of 20 ms for 24 frames
per second, which has a shutter angle of 172.8 degrees.

180 DEGREE RULE The appearance of smooth and lifelike motion blur in
videographic work is considered to be the strongest when shooting with a
shutter angle of 180 degrees. For films shot in 24 frames per second, the
shutter speed would be set to 1/48 seconds, or 21 ms.

ROLLING SHUTTER An undesirable delay in the readout of pixel values
causing top left pixels to be sampled before bottom right pixels. If every pixel
has a 1 nanosecond delay after the previous pixel, a 4K readout will delay
8,000,000 ns, or 8 ms. If you are shooting at 30 frames per second,
corresponding to a 33 ms frame time, then the very last pixel will be offset
from the first pixel by nearly a quarter of a frame. If you are compositing work
onto real camera sensors, you may need to add rolling shutter to your render.
Rolling shutter is depicted in Figure 1-5a.

GLOBAL SHUTTER All pixel values are sampled at the same time. A global
shutter has no rolling shutter. Global shutter is depicted in Figure 1-5b.

(a) Rolling shutter (b) Global shutter

Figure 1-5. An image depicted with rolling shutter and without rolling shutter. Notice that moving
objects will distort as parts of the frame are captured later. Take special notice that rotating
objects, such as wheels and rotors, will take on an unnatural looking S-curve shape.
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1.8 EXPOSURE

EXPOSURE A quantization of the amount of light captured in an image. The
exposure at the focal plane is fully described by

exposure =
Ltπ(U – f)2TCh cos4(θ)

4A2U2 , (1.6)

where L is the scene luminance, t is the shutter time, U is the distance to the
focal plane, f is the lens’s focal length, A is the lens’s f-number, T is the
transmittance of the lens, C is the camera flare correction factor, h is the
vignetting factor, and θ is the angle of the image point from the longitudinal
axis of the lens. The mathematics is condensed from ISO 12232 [6].

ISO/GAIN Digital amplification. This is a gross oversimplification. It is
recommended that you speak to your asset creator about how they are most
comfortable specifying asset exposure. This is most commonly done in terms
of (1) ISO, (2) exposure value (EV), (3) decibels, or (4) f-stop. The ISO of a
digital sensor is thoroughly defined in ISO 12232 [6]. The term ISO is
commonly used in photography, whereas the term gain is more commonly
used in videography, but they both represent the same thing. Even though ISO
is an acronym (referring to the International Organization for Standards), it is
pronounced “iso” as in the Greek prefix meaning “equal.”

CLIPPING The brightness beyond which a photosensitive region is no longer
able to distinguish differences in exposure. Digital sensors clip in the
highlights, so there is a maximum brightness above which any additional light
will only be read out as the clipping value. Negative film clips in the shadows,
so there is a minimum brightness below which any reduction in light will only
be read out as the clipping value.

Clipping can occur in digital sensors due to either the saturation of photosites
or the maximum representable value in a fixed point number system being
surpassed. Simple ray tracers are commonly written such that they clip at the
white point for the intended final media format.

NOISE FLOOR For a digital sensor, the exposure value at which the
signal-to-noise ratio falls below a certain value (this value is usually 2:1 or
1:1). The primary sources of noise in captured images are photon shot noise,
dark current noise, analogue processing readout noise of image sensors, and
quantization noise of A/D (analog to digital) converters. Noise characteristics
of digital cameras is defined in ISO 15739 [7].
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Figure 1-6. A typical histogram for a scene with a single bright source of light. A value of 0
represents middle gray. Each mark is a stop up or down. Digital sensors have a much smaller
highlight latitude than film; in this example, digital sensors clip only at 4 stops. Conversely, digital
sensors have much higher shadow latitude, 6 stops versus film’s 4 stops. Exposing to the right in
a digital camera pushes as much of the scene out of the noise floor as possible. Exposing to the
left for film keeps as much of the scene out of the nonlinearity as possible.

DYNAMIC RANGE For digital sensors, the ratio of the brightness at clipping
and the brightness of the noise floor of the sensor. Dynamic range is depicted
along with ETTR and ETTL in Figure 1-6.

EXPOSURE TO THE RIGHT (ETTR) Photos taken with a digital sensor should
be taken with the settings that produce the highest exposure without clipping
the highlights. This maximizes detail in both the shadows and the highlights.
If a histogram is a left-right axis with shadows on the left and highlights on
the right, the digital photographer is encouraged to push their exposure
to the right.
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EXPOSURE TO THE LEFT (ETTL) Photos taken with a negative film should be
taken with the settings that produce the lowest exposure without clipping the
shadows. This maximizes detail in both the shadows and the highlights. If a
histogram is a left-right axis with shadows on the left and highlights on the
right, the film photographer is encouraged to push their exposure to the left.

WHITE BALANCE The color representation of white. Both the camera and
the lights in a scene will have specific white balances. These may be tunable
by color temperature along with various hue and/or saturation adjustments.

LOG RECORDING An increase in the dynamic range of video recording by
moving the luma gamma from a linear to a logarithmic curve. For cameras
that record video luma in 8 or 10 bits, the predominant source of noise is
quantization noise from the A/D converters. Compressing the luma curve to
fit within the decreased bit count with a log curve helps reduce quantization
errors. The video can then be reversed in the edit to capture maximal dynamic
range. Recording in log may complicate exposing to the right due to the
compressed information in the highlights. The dynamic range boosting
effects of log recording can be seen in Figure 1-7.
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Figure 1-7. The same histogram data that is presented in Figure 1-6, only now reduced to an
8-bit A/D converter. The drop in dynamic range guarantees that some part of the scene will either
clip (as a highlight) or appear with an objectionable amount of noise. Compressing the scene
using a log gamma allows a much better portrayal of the scene, and allows us to protect our
highlights without too much noise.
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RAW RECORDING A special type of video capture that enables additional
modifications in the edit. What exactly raw capture entails depends on the
camera manufacturer and on the raw protocol. The raw capture may support
adjusting ISO or white balance while editing, may already be demosaiced, may
be compressed, or may be compressed with lossy compression.

1.9 EQUIVALENCY

BLOCKING The placement of objects and people within the image. The look
and feel of an image can be finely tuned by varying the position of subjects
and other contrasting elements within the frame.

35MM EQUIVALENT A standardized framework by which a photographer
might reason about their camera or lens. A lens that is designed for a camera
without a 35mm photographic sensor may be described in terms of a similar
lens that is designed for a 35mm photographic sensor. In this way a
photographer can reason about the field of view and the depth of field for a
lens provided they’ve already memorized these qualities for a lens of the
35mm photographic sensor. This removes the need to memorize field of view
and depth of field for all sensor sizes, as they can be computed for any sensor
size quickly.

CROP FACTOR A tool used to compare the photometric qualities of cameras
with differing photosensitive region sizes. The crop factor can be either:

1. The ratio of the film/sensor width to the width of 35mm photographic
film:

crop factor =
width
36mm

. (1.7)

2. The ratio of the film/sensor diagonal to the diagonal of 35mm
photographic film:

crop factor =
diagonal
43mm

. (1.8)

35MM EQUIVALENT FOCAL LENGTH The physical focal length of the lens
multiplied by the crop factor of the photosensitive region. 35mm equivalent
focal length and 35mm equivalent depth of field are depicted in Figure 1-8.

35MM EQUIVALENT EXPOSURE The exposure of a lens does not vary with
crop factor. The sensitivity and noise floor of the camera might change with
crop factor (owing to the smaller/larger photosensitive region), but two
different cameras set to the same ISO/gain value will capture the same
scene with similar exposure values.
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(a) Full frame 85mm f2.0 on full frame (b) Crop sensor 56mm f1.4 on crop sensor

(c) Full frame 85mm f2.0 on crop sensor (d) Crop sensor 56mm f1.4 on full frame

Figure 1-8. A depiction of the impact of sensor size on field of view. If you start with a static tripod,
a static subject, and a static background of point lights, your choice of focal length and sensor size
has a tremendous impact on the photo characteristics. Assuming a static environment, an 85mm
f2.0 on a full frame camera will have a similar field of view and depth of field as that of a 56mm f1.4
on a crop sensor camera. However, if you were to mount that same 85mm f2.0 lens onto a crop
sensor camera, you would actually get the field of view and depth of field of an equivalent full
frame 127.5mm f3.0 lens. If the photographer wanted to match the blocking of the 85mm full
frame, they would either need to change to a 56mm f1.4 lens or physically need to move the
camera back according to the crop factor. With that said, if you were to do the reverse and mount
the 56mm f1.4 crop sensor lens onto a full frame camera, you would get the field of view and depth
of field of an equivalent full frame 56mm f1.4 lens. The problem with mounting a crop sensor lens
onto a full frame camera is that the lens will fail to cover the full frame sensor and you will likely
get strong vignetting, leading up to complete blackness outside the lens coverage.

35MM EQUIVALENT DEPTH OF FIELD The depth of field for a lens does not
vary with crop factor. However, If a photographer attempts to capture the
same blocking across two different cameras with differing sensor sizes, the
depth of field will be the “true” depth of field multiplied by the crop factor of
the sensor. The depth of field will only vary based on the true f-stop of the
aperture (not the 35mm equivalent aperture) and the distance to the subject.
However, the crop factor of a camera will change the field of view for a lens on
that camera. For smaller sensors, with a positive crop factor, the 35mm
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equivalent focal length will be larger than the true focal length, this means
that the field of view will be narrower. Maintaining the same blocking in the
shot requires moving your subjects farther back. This in turn will increase the
depth of field. So, maintaining consistent blocking will alter the depth of field
by the crop factor. 35mm equivalent depth of field and 35mm equivalent focal
length are depicted in Figure 1-8.

35MM EQUIVALENT APERTURE A useful but misleading term for the f-stop
of the lens multiplied by the crop factor of the photosensitive region. The
f-stop of an aperture encodes two things: the depth of field and the exposure.
Lenses are frequently referred to by their 35mm equivalent aperture, but this
can be slightly misleading. For example, an f1.8 on a crop sensor may be said
to have an f2.7 35mm equivalent, due to the 1.5 times crop factor. But this is
misleading because the depth of field will increase by the crop factor (if
maintaining shot blocking), but the exposure will not vary. So, an f1.8 on a
crop sensor will have the depth of field (if maintaining shot blocking) of an
equivalent f2.7 lens, but will have the exposure of an equivalent f1.8 lens.

1.10 PHYSICAL LENSES

PRIME LENS A lens designed and marketed as having a fixed focal length.

ZOOM LENS A lens designed and marketed as having a controllable
focal length.

ULTRA-WIDE ANGLE LENS A lens with a 35mm equivalent focal length less
than 24 mm.

WIDE ANGLE LENS A lens with a 35mm equivalent focal length between
24 mm and 35 mm.

STANDARD LENS A lens with a 35mm equivalent focal length between
35 mm and 60 mm.

TELEPHOTO LENS A lens with a 35mm equivalent focal length between
60 mm and 200 mm.

SUPER TELEPHOTO LENS A lens with a 35mm equivalent focal length
greater than 200 mm.

MINIMUM FOCUSING DISTANCE The closest distance from the sensor plane
to which a lens can focus, or the distance from the sensor plane to the
nearest plane of focus.
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MACRO LENS A lens designed and marketed as having a small minimum
focusing distance. Macro lenses are described by their magnification ratio at
minimum focusing distance. A macro lens with a 1:1 magnification ratio will
project an object at perfect scale onto the sensor; e.g., a macro lens with a 1:1
magnification will project a 20-mm-wide object as a 20-mm projection onto
the sensor plane.

LENS COVERAGE The diameter of the image circle that is projected onto the
sensor plane by the lens. The area outside of the image circle is guaranteed
to vignette and is possibly completely black, the area inside of the image
circle is the projected image. A lens with a 43mm coverage will cover a full
frame photographic sensor with a complete projection. A lens with a 29mm
coverage will cover a cropped sensor with a complete projection, but will fail
to cover a 35mm photographic sensor such that there will be heavy vignetting
leading to total blackness at the periphery. It is generally undesirable to use
lenses that do not cover your sensor size.

1.11 BOKEH

BOKEH The aesthetic quality of the out-of-focus regions of an image,
pronounced “bo-kay” from the Japanese word for blur. Typically used to
describe the appearance of point lights that are outside the plane of focus,
bokeh technically describes the appearance of all features outside the plane
of focus. Bokeh can describe the shape of the circle of confusion, where the
“circle” may actually be an N-gon or a cat’s eye. Bokeh also describes how
the circles of confusion for any adjacent features in a scene will combine once
projected onto the image sensor. The softness of a lens’s bokeh is defined by
the distribution of light in the circle of confusion. The three softnesses of
bokeh are depicted in Figure 1-9.

(a) Under-corrected bokeh (b) Corrected bokeh (c) Over-corrected bokeh

Figure 1-9. A portrait-style image depicted with the three kinds of softness for bokeh. Notice how
two-dimensional the over-corrected bokeh background looks compared to the under-corrected
bokeh background.
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CORRECTED BOKEH The most common bokeh type found in consumer
lenses where the photons for the circle of confusion are uniformly distributed
throughout the circle of confusion. Point lights appear as flat disks of light.

OVER-CORRECTED BOKEH The photons for the circle of confusion are
predominantly from the edge of the circle. Point lights appear as soap
bubbles, colloquially called soap-bubble bokeh. The out-of-focus areas are
considered to be quite distracting. Today, over-corrected bokeh is seen as
more of an aesthetic choice, rather than being strictly desirable. Lots of old
lenses exhibit over-corrected bokeh and presenting over-corrected bokeh in
your shot is an effective means of pretending that a scene was shot in the past.

UNDER-CORRECTED BOKEH The photons for the circle of confusion are
predominantly from the center of the circle. It is often described as having a
“diffuse” quality. The out-of-focus areas lack sharp features or contrast and
reinforce a separation between in-focus and out-of-focus regions of an image.

N-BLADE APERTURE (WHERE N IS A NUMBER) The variable aperture in
most lenses changes its diameter by rotating a set of N concave blades closer
to the lens center (shrinking the aperture) or closer to the lens wall
(expanding the aperture). This can cause the out-of-focus regions of a camera
to appear as N-gons instead of perfect circles.

CAT’S-EYE BOKEH The out-of-focus areas of an image take on the shape of
a cat’s eye instead of a circle. Cat’s eye bokeh predominantly come from two
different effects. For lenses with aspherical elements, the bokeh at the
periphery of the image can be laterally compressed, producing out-of-focus
areas that appear as ellipses. The other predominant form of cat’s eye occurs
when the circle of confusion for a feature falls partially outside of the
entrance pupil or the exit pupil. Instead of a perfect circle, the bokeh appears
as the intersection of two circles, due to some of the light falling outside of a
pupil, leading to a shape that is the overlapping projection of two circles. The
shape associated with the intersection of two circles is actually called a lens.

There is a very simple means of controlling the quality of bokeh for a virtual
scene. When choosing an initial random ray direction for a thin lens model,
rather than sampling randomly from the unit disk, sample randomly from a
bokeh texture. This is just a two-dimensional grayscale picture that
represents the shape and probability of the aperture. A perfectly corrected
bokeh disk would just be a gray circle within a black background. An
over-corrected bokeh would be a gray circle that tapers toward max white at
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the edges, whereas an under-corrected bokeh would be a gray circle that
tapers toward black at the edges. This can also be used to simulate shapes,
such as the common N-gon and cat’s eye, or can be used for more exotic
shapes, such as stars and spirals.

1.12 VARIOUS LENS IMPERFECTIONS

FOCUS BREATHING An undesired effect where the focal length of a lens will
change as the lens changes focus. For many lenses focusing closer to the
camera increases the focal length (zooming in), and focusing farther from the
camera decreases focal length (zooming out).

PARFOCAL A parfocal lens will maintain the same plane of focus as the user
changes the focal length. This is desirable in videographic work where the
videographer can zoom in on their subject and maintain sharp focus.

VARIFOCAL A varifocal lens will shift its plane of focus as the user changes
the focal length. This is undesirable in videographic work.

VIGNETTING A drop in exposure from the center of the image to the edges of
the image. This is caused by a drop in photons captured at the frame of an
image due to blockage by mechanical elements or incomplete coverage by
any of the individual optical elements.

Vignetting can be cheaply modeled as a post-processing effect by selecting at
what angle (from the longitudinal axis) or what radius (from the center of the
image) vignetting starts, at what angle or radius vignetting ends, the darkness
at the end of vignetting, and the interpolation function between the two
extremes. More than two anchor points can be used for a more complex
vignetting pattern. This same technique can also be used to counteract
vignetting on physical lens systems to produce even exposure across the
image, but note that you will have an increased noise floor where the image
was raised up.

RECTILINEAR LENS A lens that projects straight lines in the environment as
straight lines on the sensor plane. (See Figure 1-10a.)

CURVILINEAR LENS A lens that projects straight lines in the environment
as curved lines on the sensor plane.

BARREL DISTORTION The distortion where a curvilinear lens projects
straight lines in the environment as curved lines that bow outward away from
the image center. (See Figure 1-10b.)
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(a) Rectilinear (b) Barrel (c) Pin cushion (d)Mustache

Figure 1-10. A Cartesian grid drawn with no major distortion, with barrel distortion, with pin
cushion distortion, and with both (mustache distortion).

PIN CUSHION DISTORTION The distortion where a curvilinear lens projects
straight lines in the environment as curved lines that bow inward toward the
image center. (See Figure 1-10c.)

MUSTACHE DISTORTION The distortion where a curvilinear lens projects
straight lines in the environment as curved lines that exhibit both barrel and
pin cushion distortion, creating curving lines that form in waves reminiscent
of a mustache. (See Figure 1-10d.)

FISHEYE LENS A lens that attempts to capture the entire hemisphere in
front of the lens. Fisheye lenses will have significant barrel distortion as they
map a hemisphere onto a plane.

FLARING A smear of light in the captured image due to a bright light source
incident to the lens. Instead of only being captured at the projected location of
the light, the bright spot will bounce either off of glass elements inside the
lens or off of the lens wall and produce a visible bright smear somewhere in
the captured image. The light source does not need to be within the lens
projection, its photons only need be incident to the lens. This can be a source
of lost contrast in an image.

Many types of lenses exhibit unique and interesting flaring. This can be
cheaply simulated as a post-process on a final image by identifying places of
high exposure and producing your desired flare shapes. The big problem with
this approach is that it can fail to capture the angle of incidence for those spots
of bright exposure, as the flaring characteristic of lenses is best characterized
by their response to a collimated beam of light from various angles.

SPHERICAL ABERRATION Imperfect lensing caused by spherical optical
elements. The incoming parallel lines do not correctly converge to a single
point, and it appears as softness in a captured image.
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F0

f

F1

(a) Longitudinal lensing error, where incident photons with differing wavelengths will be lensed by differing foci
along the longitudinal axis

(b) No longitudinal chromatic aberration (c)With longitudinal chromatic aberration

Figure 1-11. Longitudinal chromatic aberration is caused by differing indices of refraction across
the electromagnetic spectrum. A thin lens will exhibit severe loca as the single optical element is
guaranteed to act as a prism. In this example, differing focal lengths causes features closer than
the plane of the focus to shift purple—shifting the orange point lights toward pink—and features
farther than the plane of focus to shift green—shifting the orange point lights toward yellow.

LONGITUDINAL CHROMATIC ABERRATION Imperfect lensing that causes
different wavelengths of light to have differing focal lengths, colloquially
referred to as loca. The foci of differing wavelengths vary along the
longitudinal axis of the lens. This can cause a chroma shift for objects that do
not fall directly on the plane of focus. An example of the lensing and its effect
on images can be seen in Figure 1-11.

TRANSVERSE CHROMATIC ABERRATION (COLOR FRINGING) Imperfect
lensing that causes gradations of chroma or luma (known as fringing) along
borders of high contrast, also called lateral chromatic aberration. The
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F

f

(a) Transverse lensing error, where incident photons at an oblique angle with differing wavelengths will be
projected onto differing radii along a transverse line

(b) No transverse chromatic aberration (c)With transverse chromatic aberration

Figure 1-12. Transverse chromatic aberration is caused by differing the radius of photon
convergence across the electromagnetic spectrum. The photons all converge on a single plane
orthogonal to the longitudinal axis, but converge at differing points along a transverse line on that
plane. This can cause visible color fringing at borders of high contrast. In this example, transverse
chromatic aberration causes noticeable purple and green fringing at borders of high contrast in
the corners of the image. It is common for there to be no color fringing in the highlights due to the
highlights being clipped. This figure has its background set to just under clipping so that green
fringing is still present.

wavelengths for all light coming from an oblique angle to the front element
will all converge on the plane of the focal point, but each wavelength will
converge at a differing radius from the focal point. The foci for oblique lines
will vary laterally (along the plane) by wavelength. Transverse chromatic
aberration is depicted in Figure 1-12.

FIELD CURVATURE The shape and orientation of the “plane” of focus. The
plane of focus is never truly perpendicular to the longitudinal axis of the

32



CHAPTER 1. A BREAKNECK SUMMARY OF PHOTOGRAPHIC TERMS (AND THEIR UTILITY TO RAY TRACING)

lens in a physical lens, and it is also never a true plane but actually a
curved surface.

This can be simulated by changing how the simulated optical elements are
modeled. The plane of focus can be rotated by rotating the thin lens model’s
unit disk off of the longitudinal axis of the lens. The plane of focus can be
curved by mapping the thin lens model’s unit disk onto a curved surface.

DIFFRACTION An undesirable effect leading to reduced sharpness in
physically captured images. Diffraction in photography almost always refers
to the reduction in sharpness at high f-numbers (small apertures), where the
effects of wave diffraction can create interference that is larger than the
pixel pitch.

1.13 OPTICAL ELEMENTS

OPTICAL ELEMENT A single part of the lensing apparatus, usually made of
glass, with a defined shape and size.

SPHERICAL ELEMENT An optical element whose sides are either flat or
model a spherical curve.

ANAMORPHIC ELEMENT An optical element with one or both sides that are
cylindrical.

ASPHERICAL ELEMENT An optical element that is rotationally symmetric
about the longitudinal axis, but which has one or both sides that are not flat,
spherical, or cylindrical.

SPHERICAL LENS A lens that only contains spherical elements.

ASPHERICAL LENS A lens that only contains spherical and aspherical
elements. Wide angle and ultra-wide angle lens frequently use aspherical
elements to optimize for the wide field of view.

COATING The coating that is applied to optical elements to achieve certain
optical qualities. Coatings are applied for such technical reasons as altering
the incident index of refraction or altering the wavelengths that are absorbed.
Coatings can be applied for aesthetic reasons such as controlling contrast,
sharpness, or flaring.
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1.14 ANAMORPHIC

ANAMORPHIC LENS A lens that contains one or more anamorphic
elements. An anamorphic lens is defined by its squeeze ratio, typically
between 1.3:1 and 2:1. An anamorphic lens will squeeze the horizontal
dimension during image capture, and the image will need to be desqueezed in
post-production. A 2:1 anamorphic lens with a 50mm focal length will
maintain the vertical field of view of a 50mm lens, but will have the horizontal
field of view of a 25mm lens. The cylindrical elements occasionally produce
horizontal flaring in the image. Anamorphic lenses will have oval bokeh. They
are synonymous with Hollywood filmmaking due to their use in many
popular films.

1.15 CAMERA MOVEMENT

PAN A rotation of the camera about its vertical axis.

TILT A rotation of the camera about its horizontal axis.

ROLL A rotation of the camera about its forward axis.

TRUCK A translation of the camera along its horizontal axis.

DOLLY A translation of the camera along its forward axis.

BOOM A translation of the camera along its vertical axis.

TRACK A translation of the camera along an arbitrary plane, usually
following a subject.
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CHAPTER 2

RAY AXIS-ALIGNED BOUNDING
BOX INTERSECTION
Peter Shirley, Ingo Wald, and Adam Marrs
NVIDIA

ABSTRACT

The slabs test is the dominant approach to determine if a ray hits an
axis-aligned bounding box (axis-aligned 3D rectangle that encloses a region).
There is a particularly clean way to code this algorithm that is widely used but
not singled out very well in the literature, and this chapter describes it.

2.1 THE METHOD

Though most intersection tests find where a ray hits an object, along with
information such as surface normals and material properties, for ray tracing
acceleration structures, we often just need to know whether or not a ray hits a
bounding object. A common one is an axis-aligned bounding box (AABB), the
3D analog of a rectangle. There has been a plethora of different tests devised
to do this, but the dominant method is the slabs test of Kay and Kajiya [2].
Their algorithm takes a ray defined by an origin o and direction v,
p(t) = o + t ∗ v, and decides whether or not the ray hits an axis-aligned
bounding box with corners p0 and p1 by computing the ray’s intersections with
three “slabs” and then seeing if it is ever within all three slabs at once. A slab
is the region of space enclosed by two parallel planes. Kay and Kajiya’s
insight is that the intersection of three slabs is a volume, and if a ray hits a
volume, it must be simultaneously inside all three slabs at once.

In the case of an AABB, we can define the bounding box as the intersection of
three slabs, each parallel to one of the cardinal axes. The x-slab is the region
of space sandwiched between the two planes x = x0 and x = x1. This is an
infinite thing with finite thickness like an infinite piece of drywall or steel
plate. If the ray is not parallel to the slab, then it will hit the slab boundaries
at t-values tx0 and tx1. The ray is inside the slab for the interval t ∈ [tx0, tx1].
Note that there are analogous intervals for y and z and each of these intervals
could be increasing or decreasing. Using the slabs test, we see that if there is
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any overlap of all three intervals, the t-values will indicate that the ray is
inside the bounding box, so an “is there an overlap?” test is the same as a
“does the ray hit?” test. A nice aspect of framing the test in terms of interval
overlap is that most ray tracers have a [tstart, tfinish] interval of valid
hit distances, which can be rolled into the slabs test.

Almost all implementations of the slabs test follow the same patten and differ
only in details. As discussed by Majercik et al. [4], various practitioners [1, 3]
have found a natural and compact way to express the slabs algorithm in
terms of vector syntax. We present that here in a version that includes the
t-interval as a fourth interval overlap test.

1 // boxLower and boxUpper are the minimum and maximum box
2 // corners; the interval [rayTmin,rayTmax] is the interval of
3 // the t-values on the ray that count as a hit; invRayDir
4 // is (1/vx,1/vy,1/vz), where v is the ray direction.
5 bool slabsBoxTest(/* box to test ray against */
6 vec3 p0, vec3 p1,
7 /* the ray to test against the box */
8 vec3 rayOrigin, vec3 invRayDir,
9 real rayTmin, real rayTmax)
10 {
11 // Absolute distances to lower and upper box coordinates
12 vec3 tLower = (p0 - rayOrigin)*invRaydir);
13 vec3 tUpper = (p1 - rayOrigin)*invRaydir);
14 // The four t-intervals (for x-/y-/z-slabs, and ray p(t))
15 vec4 tMins = (min(tLower,tUpper), rayTmin);
16 vec4 tMaxes = (max(tLower,tUpper), rayTmax);
17 // Easy to remember: ``max of mins, and min of maxes''
18 real tBoxMin = max_component(tMins);
19 real tBoxMax = min_component(tMaxes);
20 return tBoxMin <= tBoxMax;
21 }

Note that this code will produce the correct answer for ray directions that
contain zero components provided the underlying hardware is IEEE
floating-point compliant (see Williams [5] for an explanation). A caution on
the code above is that it will return false for the case of a ray origin on the
box and a ray direction in a box face (where a NaN will occur), and if this is not
desired behavior, the code will need to be modified.
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CHAPTER 3

ESSENTIAL RAY GENERATION
SHADERS
Morgan McGuire and Zander Majercik
NVIDIA

ABSTRACT

The most fundamental step in any ray tracing program is the ray generation
(or “raygen”) program that produces the rays themselves. This chapter
describes seven essential projections that should be in every toolkit and gives
parameterized raygen shader code for each.

3.1 INTRODUCTION

The ray generation projections we present are useful as primary (a.k.a. view
or eye) rays for a camera as well as for light probe computation and photon
emission. Many of these were not previously available in a convenient, drop-in
raygen form but were instead published as image space transformations or
rasterization pipeline vertex programs. We discuss the following essential
projections:

> Pinhole (perspective): Standard/rectilinear/planar perspective projection.

> Thin lens: Gaussian lens model for generating in-camera depth of field.

> Generalized Panini: Better than pinhole for ultrawide displays.

> Fisheye: Traditional wide field of view for pinhole projection.

> Lenslet: Light field slab parameterization; grid of fisheyes.

> Octahedral: Good for reflection probes.

> Cube map: Both texel-to-ray and ray-to-texel transformations.

> Orthographic (parallel): Good for scientific and engineering visualization.

> Fibonacci uniform sphere: Good for ambient occlusion and radiosity.
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For each projection, we provide the shader code, an image showing the
projection applied to a 3D scene, and a discussion of when the projection is
useful. We also include subpixel offset code for supersampling using a Halton
sequence. We begin with a discussion of the shared camera-to-world
transformation and diagrams showing the ray generation model and
parameters. We release all code from this chapter into the public domain so
that it can be used without restriction.

3.2 CAMERA RAYS

3.2.1 CAMERA SPACE

For simplicity, we refer to the origin space of the rays as the mathematical
camera space and reference a viewer where there is an image plane. There
may not be a camera in the real-world sense—for example, if rendering
light probes.

The shaders in this chapter generate rays in camera space, using the
convention that x̂ = right, ŷ = up, and ẑ = toward the viewer. Because the ray
tracing acceleration structure is typically built in world space, these rays
must be transformed from camera space to world space for tracing. We
present this common transformation code here and omit it from the individual
ray generation shaders in the remainder of the chapter.

Let a ray be defined by:

1 #ifndef GLSL // For HLSL, OptiX, and CUDA
2 # define vec3 float3
3 # define mat4x3 float4x3
4 # define mat3x3 float3x3
5 #endif
6

7 struct Ray {
8 vec3 pos; // Origin
9 float min; // Distance at which intersection testing starts
10 vec3 dir; // Direction (normalized)
11 float max; // Distance at which intersection testing ends
12 };

We interleave the distances with the vec3 types because when working with
large numbers of rays or rays stored in buffers, this gives better 4-vector
alignment in memory.

Camera orientations can be parameterized in many ways, but we always
assume that the camera’s axes are orthonormal; the camera itself is not
somehow skewed or stretched.
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When the camera’s orientation (i.e., camera-to-world transformation) is
described by a mat3x3 rotation matrix cameraRotation whose columns are
the axes of the camera space and a vec3 center of projection
cameraTranslation, the camera-to-world transformation is:

1 worldRay.dir = matmul(cameraRotation, cameraRay.dir);
2 worldRay.pos = cameraTranslation + cameraRay.pos;

If the camera’s orientation is instead packed into a single mat4x3
cameraToWorldmatrix, then this transformation becomes:

1 worldRay.dir = matmul(mat3x3(cameraToWorld), cameraRay.dir);
2 worldRay.pos = cameraToWorld[3] + cameraRay.pos;

Finally, when the camera is described by a mat4x3 world-to-camera matrix,
the transformation is:

1 worldRay.dir = matmul(cameraRay.dir, mat3x3(worldToCamera));
2 worldRay.pos = worldToCamera[3] + cameraRay.pos;

Note that we adhere to the OpenGL column-major naming convention:
mat4x3means “4 columns, 3 rows.”

3.2.2 NEAR AND FAR PLANES

Rasterization generally requires a near z clipping plane. The alternative is
very careful handling of the singularity at z = 0, for which many engines are
not prepared. Rasterization also typically employs a far z clipping plane,
although the far plane is not mathematically required. In fact, better precision
is available for nearby surfaces under depth buffering when taking the limit of
the projection matrix as the far plane moves to an infinite distance [2].
However, a finite far clipping plane is very useful for limiting the number of
visible primitives. Because rasterization in particular requires linear time in
the number of primitives, that is an important performance optimization.

Ray tracing does not mathematically require a near or far clipping plane and
is easier to implement without them. However, there are several reasons to
introduce them. Ray tracing performance generally decreases as the length
of the ray increases, until the ray leaves the bounding box of the scene. It is
often useful to integrate ray tracing and rasterization into the same pipeline.
In this case, the ray tracer’s results should match the near and far clipping of
the rasterization pipeline. Finally, when an object comes very close to the
camera, it can become arbitrarily large and confuse the viewer. A real camera
cannot get arbitrarily close to an object because the camera itself takes up
space, so this should be resolved by the physics or UI parts of the graphics
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system. When those are too simple or fail, it is sometimes helpful to clip a
nearby object instead of filling the screen. It is also sometimes useful to clip
nearby objects, to peek inside of them in either engineering or debugging
contexts. Of course, it is also sometimes useful to not clip nearby objects, for
example to prevent cheating in games by peering through a wall.

When clipping is desirable, the best way to implement it is by modifying the
ray.min and ray.max instead of moving the ray’s origin. This preserves
precision and is already accounted for by the ray traversal and intersection
hardware.

For spherical and octahedral projections and for some cube maps, the
clipping “plane” is usually a sphere, so set the min and max as:

1 ray.min = abs(zNear);
2 ray.max = abs(zFar);

We insert the absolute value because graphics systems have differing sign
conventions for clipping plane parameters. The numbers used here must be
nonnegative.

For the other projections and some cases of cube maps, clipping is to a plane.
But because rays are generally not along the camera-space ẑ axis, the
clipping distance differs for each ray and is not the same as the clipping plane
depth. The ray approaches the clipping plane at a rate that is the inverse of
the dot product of rayDir and the camera-space ẑ axis, which is simply the z
component of the direction:

1 ray.min = abs(zNear) / ray.dir.z;
2 ray.max = abs(zFar) / ray.dir.z;

When clipping is not desirable, simply set the near plane to a distance of zero
and the far plane to infinity:

1 #ifdef GLSL
2 // Positive infinity IEEE 754 float32
3 const INFINITY = uintBitsToFloat(0x7F800000);
4 #elif HLSL
5 const INFINITY = asfloat(0x7F800000);
6 #else // CUDA/OptiX
7 # include <cmath>
8 #endif
9

10 ray.min = 0.f;
11 ray.max = INFINITY;

We use the bitwise representation of infinity to work around the limitation that
GLSL and HLSL have no standardized infinity or maximum float
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Listing 3-1. DirectX MSAA subpixel offsets, with pixel center (0.5, 0.5). (From [10].)

1 const vec3 s1[] = {{0.5f, 0.5f}};
2 const vec3 s2[] = {{0.25f, 0.25f}, {0.75f, 0.75f}};
3 const vec3 s4[] = {{0.375f, 0.125f}, {0.875f, 0.375f},
4 {0.625f, 0.875f}, {0.125f, 0.625f}};
5 const vec3 s8[] = {{0.5625f, 0.6875f}, {0.4375f, 0.3125f},
6 {0.8125f, 0.4375f}, {0.3125f, 0.8125f},
7 {0.1875f, 0.1875f}, {0.0625f, 0.5625f},
8 {0.6875f, 0.0625}, {0.9375f, 0.9375f}};
9 const vec3 s16[] = {{0.5625f, 0.4375f}, {0.4375f, 0.6875f},
10 {0.3125f, 0.375f}, {0.75f, 0.5625f},
11 {0.1875f, 0.625f}, {0.625f, 0.1875f},
12 {0.1875f, 0.3125f}, {0.6875f, 0.8125f},
13 {0.375f, 0.125f}, {0.5f, 0.9375f},
14 {0.25f, 0.875f}, {0.125f, 0.25f},
15 {0.0f, 0.5f}, {0.9375f, 0.75f},
16 {0.875f, 0.0625f}, {0.0625f, 0.0f}};

literal/constant, although vendors support various extensions such as
1.#INF. For OpenGL 4.1 and later, division by zero will also generate the
correctly signed infinity.

3.2.3 SUPERSAMPLING

Averaging the contributions of multiple rays per pixel or texel reduces aliasing
artifacts. This is the strategy that multisample antialiasing (MSAA) [4] and
temporal antialising (TAA) [12] use under rasterization. For ray tracing, the
rays must be offset in image space, which changes their directions but not
origins (except for orthographic cameras, which are the opposite).

To apply a subpixel offset to each ray, we just change the fractional pixel
coordinate before computing the ray itself. The offsets may be chosen by hand
or according to a mathematical pattern. The standard DirectX MSAA
subsampling patterns for 1, 2, 4, 8, and 16 samples per pixel are given in
Listing 3-1. A common pattern for an arbitrary number of low-discrepancy
subpixel offsets is the 2,3 Halton sequence in Listing 3-2. Because it runs in
O(N logN) time in the number of samples, this should be precomputed on the
CPU for the desired number of samples and then passed to the ray generation
shader.

3.2.4 VIEW CAMERAS

Consumer real-world cameras today place the image plane orthogonal to the
view axis. Professional photographers may also use view cameras, which have
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Listing 3-2. C code for generating N Halton samples.

1 void generateHaltonSequence(int N, int b, float sequence[]) {
2 int n = 0, d = 1;
3 for (int i = 0; i < N; ++i){
4 int x = d - n;
5 if (x == 1) {
6 n = 1;
7 d *= b;
8 } else {
9 y = d / b;
10 while (x <= y) {
11 y /= b;
12 }
13 n = (b + 1) * y - x;
14 }
15 sequence[i] = (float)n / (float)d;
16 }
17 }
18

19 void generateSubpixelOffsets(int N, Vector2 offset[]) {
20

21 float xOffset[N];
22 float yOffset[N];
23

24 generateHaltonSequence(N, 2, XOffset);
25 generateHaltonSequence(N, 3, YOffset);
26

27 for (int i = 0; i < N; ++i) {
28 offset[i].x = XOffset[i] - 0.5f;
29 offset[i].y = YOffset[i] - 0.5f;
30 }
31 }

an additional degree of freedom for rotating and translating the image plane
relative to the view axis and center of projection [8]. This physical design was
once more common and is why old-fashioned large format cameras have an
accordion-pleated bellows objective. A view camera allows distorted
perspective projection and tilt/shift focusing. Today, these effects are often
simulated in digital post-processing. A ray tracer can generate these effects
in camera by modifying the ray generation shader. Because it is uncommon,
we do not detail the transformations here, but the general idea is simple:
transform the 3D camera-space virtual pixel sampling position before
computing the ray to it from the center of projection.

3.2.5 PARAMETERS

To reduce the size of each code listing, Listing 3-3 gives the set of all
parameters for all projections as global variables. In most cases, some
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Listing 3-3. The global parameters used by subsequent listings in this chapter.

1 // Edge-to-edge field of view, in radians
2 float cameraFOVAngle;
3

4 // 0 = cameraFOV is the horizontal FOV
5 // 1 = vertical
6 // 2 = diagonal (only used for fisheye lens)
7 int cameraFOVDirection;
8

9 // Integers stored as floats to avoid conversion
10 vec2 imageSize;
11

12 // Center of projection from cylinder to plane,
13 // can be any positive number
14 float paniniDistance;
15

16 // 0-1 value to force straightening of horizontal lines
17 // (0 = no straightening, 1 = full straightening)
18 float paniniVerticalCompression;
19

20 // Scalar field of view in m, used for orthographic projection
21 float cameraFovDistance;
22

23 // Lens focal length in meters,
24 // would be measured in millimeters for a physical camera
25 float lensFocalLength;
26

27 // Ratio of focal length to aperture diameter
28 float fStop;
29

30 // Distance from the image plane to the lens
31 // The camera is modeled at the center of the lens.
32 float imagePlaneDistance;

expressions of parameters such as the tangent of the field of view can be
computed on the host outside the shader to avoid expensive operations per
ray. We give the straightforward shaders here so that the derivations are clear
and trust the implementor to recognize these optimization opportunities.

3.3 PINHOLE PERSPECTIVE

Pinhole perspective projection simulates a camera with a pinhole aperture
(i.e., approaching a zero radius). It is the common rectilinear perspective
projection used for rasterization graphics and by artists for most perspective
line drawings with a small field of view. (See Figure 3-1.)

The “multi-point” perspective artists refer to, such as 1-point perspective or
2-point perspective, is about techniques for executing pinhole projection by
hand and has no mathematical significance for the projection itself. The
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Image Plane

Field of View

Camera Rays

Projection Center

Figure 3-1. Top-down labeled view of a pinhole perspective projection (150◦ field of view). Note
the significant angular distortion at the extreme edges of the field of view.

points in the context are the places where sets of 3D parallel lines converge to
a point on the image plane; there are always an infinite number of such
points. The only reason that artists identify a small number of them is that
those are the dominant lines of their composition—for example, the lines
along the edges of buildings or roads.

A lens is not required for image formation. The aperture creates an image.
When it is a pinhole, the image resolves well. However, the amount of light
that passes through is also small, which makes real pinhole camera images
very faint (and noisy). To use such a camera, the photographer must
compensate with a very long exposure time. That in turn requires a static
scene to minimize motion blur. In computer graphics, we can scale the
intensity of the image independently from exposure time and aperture size, so
a computer graphics pinhole camera can produce an image that is perfectly in
focus everywhere, bright, and free of photon noise. Such image
transformations are more nuanced with a physical camera (see Chapter 1).

Listing 3-4 gives the pinhole projection, which produces images such as
Figure 3-2. It is useful for exactly matching a rasterization pipeline. Note that
-pixel.y corrects for the screen space being upside down (bottom left to top
right as opposed to top left to bottom right).

Pinhole projection preserves straight lines and scales objects at equal
distances along the view axis by equal amounts. When a physical display is
flat and exactly matches the virtual display parameters including the position
of the viewer, pinhole projection gives the correct projection for an eye staring
straight ahead to perceive the display as a window into the virtual world,
except that there is no defocusing due to depth or stereo vision.
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Listing 3-4. Pinhole perspective projection.

1 // Pixel is the integer position >= 0 and < imageSize.
2 Ray generatePinholeRay(vec2 pixel) {
3 float tanHalfAngle = tan(cameraFovAngle / 2.f);
4 float aspectScale = (cameraFovDirection == 0) ? imageSize.x : imageSize.

y;
5 vec3 direction = normalize(vec3(vec2(pixel.x, -pixel.y) * tanHalfAngle /

aspectScale, -1));
6 return Ray(vec3(0.f), direction, 0.f, INFINITY);
7 }

Figure 3-2. Example of pinhole perspective projection.

When the viewer looks away from the center of the display or moves their
head from the center of projection, the projection is incorrect for what they
would see if the display were a window. Because the human visual system is
adaptive, most people usually do not notice that the projection is incorrect in
this case and cannot only understand the scene but still feel comfortable.
All 2D artwork and computer graphics has always relied on this. We can
change the parameters, such as presenting a wider field of view than the
display really subtends, and the image is still acceptable. However, if the field
of view is very wide or is curved, the necessary distortion for creating a
window-like view for a centered eye can make the image unacceptable to a
non-centered one.

For a field of view greater than about 110◦ on ultrawide 32:9 displays, curved
displays, IMAX theatres, projection domes, and so forth, other projections
may be better for minimizing motion sickness and shape distortion in the
periphery. For large fields of view, the objectionable distortions are that
objects are very small in the center of the screen, objects at the edge of the
screen appear heavily skewed, and camera rotation causes rapid shape and
size distortions between those regions. The pinhole projection is also
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inherently limited to a field of view of less than 180◦, because at that extent an
infinitely large screen is required.

3.4 THIN LENS

A large aperture on a real camera increases the amount of light available and
thus shortens the necessary exposure, reducing motion blur. It also
defocuses the entire image because the shape of the aperture is convolved
with the image, turning all points in the picture into overlapping, blended
pictures of the aperture itself. The role of the lens in a camera is to make all
rays to a certain depth converge on the image plane, so that one plane can be
represented as sharply in focus in the image. Graphics professionals refer to
the circle of confusion as the 2D region on the image plane that they consider
acceptably in focus; for computer graphics, this is approximately the region of
a pixel.1 All other depths have varying blur, which increases based on the
distance from that focal plane. The focus field is the 3D region that
corresponds to the depths producing blur less than the circle of
confusion in 2D.

This defocusing is a valuable aesthetic tool for composition because it allows
de-emphasizing of the background or extreme foreground framing elements.
The depth of field is the z-extent of the focus field. A large depth of field is good
for landscapes, where both near and far elements should be approximately in
focus. A shallow depth of field is good for portraits and conversations, where
the audience’s attention should be directed to a specific character.

A single, thin lens can produce mathematically ideal focus for a single
frequency of light and a small image, with the relationship between the radius
(measured with an f-stop), curvature (described by a focal length, usually
measured in millimeters), and distance from the image plane determining the
depth of field and in-focus plane. In a real camera, a single lens would create
chromatic aberration, barrel distortion from miscalibration or a large field of
view, vignetting from the edges of the camera body, and other distortions
from imperfect manufacturing. These are effects that graphics systems often
simulate in order to make the images match what we are accustomed to
seeing in photography or film. Ironically, they are also effects that camera
manufacturers seek to minimize. The objective of a modern camera that is
casually called a “lens” is actually a barrel that contains multiple lenses with
various coatings that seek to simulate a single ideal lens.

1Photographers have a related but slightly different definition—see Chapter 1.
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Listing 3-5. Lens camera projection.

1 Ray generateThinLensRay(vec2 pixel, vec2 lensOffset) {
2

3 Ray pinholeRay = pinholeRay(pixel);
4

5 float theta = lensOffset.x * 2.f * pi;
6 float radius = lensOffset.y;
7

8 float u = cos(theta) * sqrt(radius);
9 float v = sin(theta) * sqrt(radius);
10

11 float focusPlane = (imagePlaneDistance * lensFocalLength) / (
imagePlaneDistance - lensFocalLength);

12

13 vec3 focusPoint = pinholeRay.direction * (focusPlane / dot(pinholeRay.
direction, vec3(0.f, 0.f, -1.f)));

14

15 float circleOfConfusionRadius = focalLength / (2.f * fStop);
16

17 vec3 origin = vec3(1.f, 0.f, 0.f) * (u * circleOfConfusionRadius) + vec3
(0.f, 1.f, 0.f) * (v * circleOfConfusionRadius);

18

19 vec3 direction = normalize(focusPoint - origin);
20

21 return Ray(origin, direction, 0.f, INFINITY);
22 }

Figure 3-3. Thin lens projection with 128 rays per pixel.

In graphics, the common practice is to directly model the single ideal lens and
then post-process the image to introduce desirable imperfections [1]. The
standard model of an ideal lens is called the Gaussian thin lens model. It can
be parameterized using photographer settings or with scene-based metrics
describing the desired effect directly. Listing 3-5 gives the ray generation
shader and conversion between the two sets of parameters. It depends on a
random position per ray within the lens. Using a single ray per pixel will
produce a defocused but noisy image. Averaging multiple rays per pixel
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produces a smoother result. We rendered Figure 3-3 using 128 rays per pixel,
which was obviously slower than the corresponding image with a single ray
per pixel. The cost of multiple rays can be amortized in various ways,
including reprojection from previous frames or decoupling rays from pixels
and reusing their hit results.

3.5 GENERALIZED PANINI

Above a 70◦ horizontal field of view, distortions of shapes in a pinhole
projection become noticeable. For a very wide (e.g., 160◦) field of view, objects
at the center of the screen are relatively small, but objects at the sides are
very large—so movement between the two regions is disorienting for viewers.
For games and flythroughs on ultrawide aspect displays, this is particularly
objectionable as the object of interest is usually compressed in the center and
the acceleration of objects in the periphery is distracting.

Eighteenth-century artists such as Panini (also spelled Pannini) faced the
same problem for wide field of view compositions and developed alternative
projections. The Generalized Panini projection [11] can preserve vertical
straight lines while approximately preserving shapes and horizontal straight
lines throughout the field of view (see Figures 3-4 and 3-5). It produces the
most distortion for straight lines near the edges of the vertical field of view,
where they become large arcs. Figure 3-6 (center) shows that Panini
produces the appearance of a less distorted image than pinhole projection for
a wide field of view.

Panini Distance

Ρfov/2

fov/2

1

M

Figure 3-4. Diagram of the Panini projection. The green lines mark the field of view from the
perspective of the camera. The orange lines mark the stretched field of view from the virtual
Panini camera that projects the cylinder back to the plane. The length M is used to compute the
coordinates of the point on the cylinder to project (see Listing 3-6).
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Image Pixels
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Camera Ray Origin

Panini Projection Lines
Panini Distance
Panini Projection Center

Figure 3-5. Top-down view of rays generated according to the Panini projection. The second
projection is a pinhole projection with a center offset from the camera position. The red lines show
the projection of that pinhole onto the image plane. The blue lines show the camera rays that are
actually traced into the scene before they are projected onto the image pixels.

Figure 3-6. Comparison of projections at a wide 150◦ horizontal field of view. Top: pinhole
perspective. Middle: Panini with d = 1. Bottom: Fisheye. For flythroughs and gaming at a wide
field of view, we recommend Panini. Note that the pinhole and Panini projections each have the
same horizontal field of view (but different vertical fields of view).
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Listing 3-6. Generalized Panini projection.

1 Ray paniniRay(vec2 pixel) {
2 vec2 pixelCenterCoords = vec2(pixel) + vec2(0.5f) - (imageSize / 2.f);
3 vec2 hv = (pixelCenterCoords / (imageSize.y / 2.f)) * (cameraFovAngle /

2.f) *
4 (bool(cameraFovOrientation == 0) ? 1.f : (float)resolution.y /

resolution.x);
5

6 float halfFOV = cameraFovAngle / 2.f;
7 float halfPaniniFOV = atan(sin(halfFOV), cos(halfFOV) + paniniDistance);
8

9 hv *= halfPaniniFOV;
10

11 float M = sqrt(1 - square(sin(hvPan.x) * paniniDistance)) +
paniniDistance * cos(hvPan.x);

12

13 float x = sin(hvPan.x) * M;
14 float z = (cos(hvPan.x) * M) - paniniDistance;
15

16 float S = (d + 1) / (d + z);
17

18 float y = lerp(tan(hv.y) * (d + z), tan(hv.y) * z, verticalCompression);
19

20 vec3 direction = normalize(x, y, -z);
21

22 return Ray(vec3(0.f), 0.f, direction, INFINITY);
23 }

The generalized Panini projection as implemented in Listing 3-6 is derived as
follows. First, the 3D world is projected onto a vertical cylinder of unit radius
about the camera. The cylinder is then pinhole projected onto a second
camera that is some distance behind the main camera. We call the distance
between the two cameras paniniDistance, which is any nonnegative number.
Increasing this distance interpolates the projection of the cylinder:
0 = rectilinear cylinder projection, 1 = cylindrical stereographic projection.
As paniniDistance goes to infinity, the projection approaches cylindrical
orthographic. The other parameter applies a vertical compression that
straightens horizontal lines. We call this parameter
paniniVerticalCompression, which takes any value from
0 (no compression) to 1 (full compression).

Many photography programs post-process other panoramic formats into
Panini projections, and rasterization game engines post-process pinhole
projections to Panini. The drawback in each case is that the center of the
image will be blurry where it is expanded and the edges will alias and have
empty regions where they are compressed. Alternatively, a rasterization
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pipeline can perform Panini projection in the vertex shader. Because Panini
projection does not preserve all straight lines, this will give incorrect edges
and perspective interpolation of attributes such as depth and texture
coordinates for large triangles. Ray tracing a Panini projection directly avoids
all of these problems.

3.6 FISHEYE

Fisheye projection is a projection of the sphere onto a tangent plane. Unlike
pinhole projection, which equalizes distance between pixels, fisheye
projection equalizes angular distance. This avoids the skewness of objects in
the extreme field of view while introducing significant barrel
distortion—straight lines are rendered as curved lines that bow outward from
the image center.2

As with pinhole projection, fisheye projection is parameterized on the field of
view. In addition to horizontal and vertical fields of view, fisheye projections
are often specified by a diagonal field of view. This allows a fisheye projection
to fully fill a rectangular aspect ratio even at large fields of view.

Code for the fisheye projection is given in Listing 3-7. Images for horizontal,
vertical, and diagonal field of view at 180◦ are given in Figure 3-7.

Listing 3-7. Fisheye projection.

1 Ray generateFisheyeRay(vec2 pixel) {
2 vec2 clampedHalfFOV = min(cameraFovAngle, pi) / 2.f;
3 vec2 angle = (pixel - imageSize / 2.f) * clampedHalfFOV;
4

5 if (cameraFovOrientation == 0) {
6 angle = (pixel - imageSize / 2.f) / imageSize.x;
7 } else if (cameraFovOrientation == 1) {
8 angle = (pixel - imageSize / 2.f) / imageSize.y;
9 } else {
10 angle = (pixel - imageSize / 2.f) / length(imageSize);
11 }
12

13 // Don't generate rays for pixels outside the fisheye
14 // (circle and cropped circle only).
15 if (length(angle) > 0.5.f * pi) {
16 return Ray(vec3(0.f), 0.0f, vec3(0.f), -1);
17 }
18 vec3 dir = normalize(vec3(sin(angle.x), -sin(angle.y) * cos(angle.x), -

cos(angle.x) * cos(angle.y)));
19 return Ray(vec3(0.f), 0.f, dir, INFINITY);
20 }

2The opposite effect, where straight lines bow inward to the image center, is called pincushion distortion.
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Figure 3-7. Top: fisheye circle (180◦ vertical). Middle: cropped circle (180◦ horizontal).
Bottom: full frame (180◦ diagonal).

3.7 LENSLET

Lenslet arrays have many applications in near-eye displays and light field
rendering [6, 7]. A standard lenslet array is a 2D array of images with the
same field of view but different centers of projection. The centers of projection
are computed as offsets from the camera origin to simulate a lenslet array
camera, which produces lenslet images as in Figure 3-8. The individual
microlenses can also be modeled with thin lenses or fisheye lenses if desired.

Real-world near-eye displays often use a specific lens or combination of
lenses to create each microlens in the lenslet array. The image formed under
each microlens is called the elemental image. The display behind the lenses is
rendered using a lenslet array projection. Because lenslet arrays require a
different center of projection for each microlens, rasterization cannot produce
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Figure 3-8. An image through a microlens array in a near-eye display. (Figure from Lanman and
Luebke [6].)

the correct elemental images in a single view—each elemental image must
be rasterized separately. Ray tracing the elemental images directly is easily
accomplished in a single ray generation shader, which can also provide
custom projections or ray patterns depending on the microlens setup.

Figure 3-9 shows a lenslet array with pinhole projection lenses. Ray
generation shader code parameterized by the number of lenses and lens
separation distance is given in Listing 3-8.

Figure 3-9. Lenslet array, simulated as a grid of pinhole lenses.
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Listing 3-8. Parameterized lenslet array with pinhole projection lenses.

1 Ray generateLensletRay(ivec2 pixel, float numLenses, float lensSeparation) {
2 vec2 unitCoord = (pixel.xy - imageSize / 2.f) / length(imageSize);
3 float2 lensCenter = round(unitCoord * numLenses) / numLenses;
4 float2 lensCoord = (unitCoord - lensCenter) * numLenses;
5 vec2 angle = (cameraFovAngle / 2.f) * lensCoord;
6 vec3 dir = normalize(tan(angle.x), tan(angle.y), -1);
7 return Ray(lensCenter * lensSeparation, 0.f, dir, inf);
8 }

3.8 OCTAHEDRAL

Spherical to square projections are useful for sky domes, reflection probes,
and light field probes. There are many such projections, including the classic
graphics sphere maps and cube maps. As shown in Figure 3-10, an
octahedral mapping [9] of the sphere produces relatively low distortion, has
few boundary edges, and maps the entire sphere to a single square. These
properties make it a popular modern choice.

Figure 3-10. Partitioning of the sphere into an octahedron flattened to the plane. (Diagram from
Cigolle et al. [3].)
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Listing 3-9. Pixel centers in a square image mapped to octahedral rays on the sphere.

1 float signNotZero(in float k) {
2 return (k >= 0.f) ? 1.f : -1.f;
3 }
4

5 vec2 signNotZero(in vec2 v) {
6 return vec2(signNotZero(v.x), signNotZero(v.y));
7 }
8

9 vec2 octEncode(vec3 v) {
10 float l1norm = abs(v.x) + abs(v.y) + abs(v.z);
11 vec2 result = v.xy * (1.f / l1norm);
12 if (v.z < 0.f) {
13 result = (1.f - abs(result.yx)) * signNotZero(result.xy);
14 }
15 return result;
16 }
17

18 vec3 octDecode(vec2 o) {
19 vec3 v = vec3(o.x, o.y, 1.f - abs(o.x) - abs(o.y));
20 if (v.z < 0.f) {
21 v.xy = (1.f - abs(v.yx)) * signNotZero(v.xy);
22 }
23 return normalize(v);
24 }
25

26 vec3 generateOctahedralRay(vec2 pixel) {
27 pixel /= imageSize; // Image is square for octahedral projection.
28 pixel = (pixel - vec2(0.5f)) * 2.f;
29 return Ray(vec3(0), octDecode(pixel), 0.f, INFINITY);
30 }

The projection operates by folding each corner of the square into the center,
thus double-covering a diamond shape. Inflating this while maintaining edges
and faces produces an octahedron, the eight-sided regular polyhedron, with
no distortion. Further inflating the octahedron without preserving edges or
faces maps that shape to the full sphere with minimal distortion. Pixel
adjacency on the interior of the original square is the same as adjacency on
the sphere, and for each half-edge of the square, there is a simple adjacency
mapping to the reflected half-edge. All four corners of the square map to a
single point on the sphere.

Listing 3-9 takes each texel center in the image and projects it through the
octahedral mapping into a ray direction. For convenience, the inverse
mapping from direction to pixel is also shown.
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Listing 3-10. Per-face six-texture projection of a cube map.

1 vec3 generateCubeMapRay(vec2 pixel, int face, int API) {
2 // Create the ray in the space of the cube map face.
3 Ray cubemapSpaceRay = pinholeRay(pixel);
4

5 mat3x3 faceRotation = { 1.f, 0.f, 0.f,
6 0.f, 1.f, 0.f,
7 0.f, 0.f,-1.f };
8 switch(face) {
9 case 0: // +x
10 faceRotation = { 0.f, 0.f,-1.f,
11 0.f, 1.f, 0.f,
12 1.f, 0.f, 0.f };
13 case 1: // -x
14 faceRotation = { 0.f, 0.f, 1.f,
15 0.f, 1.f, 0.f,
16 -1.f, 0.f, 0.f };
17 case 2: // +y
18 faceRotation = {-1.f, 0.f, 0.f,
19 0.f, 0.f,-1.f,
20 0.f,-1.f, 0.f };
21 case 3: // -y
22 faceRotation = {-1.f, 0.f, 0.f,
23 0.f, 0.f, 1.f,
24 0.f, 1.f, 0.f };
25 case 4: // +z
26 faceRotation = {-1.f, 0.f, 0.f,
27 0.f, 1.f, 0.f,
28 0.f, 0.f,-1.f };
29 case 5: // -z
30 // Nothing to do
31 }
32

33 return vec3(0, faceRotation * cubemapSpaceRay.direction, 0, inf);
34 }

3.9 CUBE MAP

Cube maps project a sphere onto the six faces of a cube. Each face of a cube
map is just a 90◦ field of view, square image looking along a different axis, so
the rays for rendering a cube map are generated by the pinhole camera
projection. However, there are many conventions for the ordering and
orientation of the faces. Listing 3-10 gives the DirectX, Vulkan, and OpenGL
transformation matrices for each face for use with pinhole projection.

Figure 3-11 shows a common alternative visualization for a cube map in
which all six faces are packed into a single rectangular texture as a cross.
This atlas is inefficient at runtime for memory and for sampling because it is
not supported by hardware cube map sampling and filtering. However, it is
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Figure 3-11. Six faces of a cube map visualized as a cross.

useful for visualization and artist manipulation, and some engines accept
cube maps in this format directly.

3.10 ORTHOGRAPHIC

Orthographic projections are common for engineering and scientific
visualization applications and were once common in 2.5D video games. All
camera rays in an orthographic projection are parallel, so there is no
perspective scale change. This is also the projection used by shadow maps for
directional lights. As can be seen in Figure 3-12, orthographic projection
preserves straight lines, but not lengths or angles.

An orthographic camera is parameterized by the world-space extent of the
image and aperture because it has no perspective; the field of view angle is
effectively zero degrees. Listing 3-11 gives the orthographic ray generation
shader.
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Figure 3-12. Orthographic projection.

Listing 3-11. Orthographic projection, where the field of view is in distance units instead of
radians.

1 vec3 generateOrthographicRay(vec2 pixel) {
2 pixel *= cameraFovDistance;
3 vec3 origin = vec3(pixel, 0.f);
4 return Ray(origin, vec3(0.f,0.f,-1.f), 0.f, INFINITY);
5 }

3.11 FIBONACCI SPHERE

Algorithms such as ambient occlusion and radiosity sample rays in a sphere
or hemisphere and then weight and filter the results. Latitude-longitude
generation produces rays that bunch up at the poles and are spread out near
the equator, as well as aligning on great circle arcs in ways that produce poor
sampling patterns. A better way to generate uniformly distributed rays on a
sphere is the spherical Fibonacci [5] pattern shown in Figure 3-13.

Figure 3-13. The spherical Fibonacci pattern (right) distributes ray directions uniformly and with
low discrepancy by wrapping a rotated regular lattice around a cylinder (center) and then
projecting onto a sphere (left). (Figure from Keinert et al. [5].)
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Listing 3-12. Uniform, low-discrepancy rays in all directions using spherical Fibonacci mapping.

1 vec3 sphericalFibonacci(float i, float n) {
2 const float PHI = sqrt(5) * 0.5f + 0.5f;
3 float fraction = (i * (PHI - 1)) - floor(i * (PHI - 1));
4 float phi = 2.f * pi * fraction;
5 float cosTheta = 1.f - (2.f * i + 1.f) * (1.f / n);
6 float sinTheta = sqrt(saturate(1.f - cosTheta*cosTheta));
7

8 return vec3(cos(phi) * sinTheta, sin(phi) * sinTheta, cosTheta);
9 }
10

11 Ray generateSphericalFibonacciRay(int index) {
12 float numRays = imageSize.x * imageSize.y;
13 return Ray(vec3(0.f), 0.f, sphericalFibonacci(index, numRays), inf);
14 }

Listing 3-12 gives the code for generating the ith of n Fibonacci points on a
sphere, which the ray generation shader then uses to produce the ray
direction. In this case, the “image” doesn’t make sense in a 2D context, but it
is often still a good way to store the ray hits, G-buffer values, and so on, so we
choose n to be the product of the image dimensions.
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CHAPTER 4

HACKING THE SHADOW
TERMINATOR
Johannes Hanika
KIT/Weta Digital

ABSTRACT

Using ray tracing for shadows is a great method to get accurate direct
illumination: precise hard shadows throughout the scene at all scales, and
beautiful penumbras from soft box light sources. However, there is a
long-standing and well-known issue: the terminator problem. Low
tessellation rates are often necessary to reduce the overall load during
rendering, especially when dynamic geometry forces us to rebuild a bounding
volume hierarchy for ray tracing every frame. Such coarse tessellation is
often compensated by using smooth shading, employing interpolated vertex
normals. This mismatch between geometric normal and shading normal
causes various issues for light transport simulation. One is that the
geometric shadow, as very accurately reproduced by ray tracing (see
Figure 4-1, left), does in fact not resemble the smooth rendition we are
looking for (see Figure 4-1, right). This chapter reviews and analyzes a simple
hack-style solution to the terminator problem. Analogously to using shading

VanillaVanilla OursOurs

Figure 4-1. Low-polygon ray tracing renders are economical with respect to acceleration
structure build times, but introduce objectionable artifacts with shadow rays. This is especially
apparent with intricate geometry such as this twisted shape (left). In this chapter, we examine a
simple and efficient hack to alleviate these issues (right).
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Figure 4-2. A screen capture of the Blender viewport, to visualize the mesh and vertex normals
used for Figure 4-1. The triangles come from twisted quads and have extremely varying normals.
There are tiny and elongated triangles at the bevel borders especially at the back, which is where
some artifacts remain in the render.

normals that are smooth but inconsistent with the geometry, we will use
shading points which are inconsistent with the geometry but result in smooth
shadows. We show how this is closely related to quadratic Bézier surfaces but
cheaper and more robust to evaluate.

4.1 INTRODUCTION

Ray tracing has been an elegant and versatile method to render 3D imagery
for the better part of the last 50 years [1]. There has been a constant push to
improve the performance of the technique throughout the years. Recently, we
have seen dedicated ray tracing hardware units that even make this approach
viable for real-time applications. However, since this operates hard at the
boundary of the possible, some classic problems resurface. In particular,
issues with low geometric complexity and simple and fast approximations are
strikingly similar to issues that the community worked on in the 1980s and
1990s. In this chapter we discuss one of these: the terminator problem.

In 3D rendering, geometry is often represented as a polygon mesh. In fact,
today triangle meshes are the ubiquitous choice. While quad meshes are
often used to reduce memory footprint, individual quads are often treated as
two triangles (instead of a bilinear patch) internally. We will thus limit our
discussion here to triangle meshes. These can be used for intricate shapes
such as Figure 4-1, which are tessellated and triangulated as illustrated in
Figure 4-2. In this particular example, the shape is only very coarsely
tessellated. The mesh contains long and thin triangles as well as a large
variation of normals throughout one triangle (marked with blue in the image).
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Figure 4-3. Two incarnations of the terminator problem. Left: a (very) coarsely tessellated sphere
is illuminated. The sphere surface (dashed) we were trying to approximate would show smooth
shadow falloff, but the flat triangle surface facing the eye in this example would be rendered
completely black. Using vertex normals (i.e., Phong shading) to evaluate the materials smoothly
does unfortunately not render the shadow rays visible. For this to happen, we need to start the
shadow rays at the dashed surface. This chapter proposes a simple and cheap way to do this.
Right: the bump terminator problem is caused by mismatching hemispheres defined by the
geometric normals (black) and the shading normals (blue). This kind of problem persists even
when using smooth base geometry.

To hide the discretization artifacts coming from this, shading is traditionally
performed using a normal resulting from barycentric interpolation of vertex
normals across the triangle [9]. Using normals that are inconsistent with the
geometric surface normal can lead to various issues, for instance with
symmetry in the light transport operator [13]. Woo et al. [16] point out a
particular issue with ray traced shadows, which we illustrate again in
Figure 4-3, left. Say we want to render the dashed, smooth surface, but an
accurate representation is too expensive to intersect with a ray. We thus use a
triangle mesh indicated by the blue solid. The triangle facing the viewpoint to
the left should show a smooth falloff in shading to approximate the dashed
surface well. Instead, because it is facing away from the light source, it will be
rendered completely black: rays traced from the triangle surface to the light
will correctly and accurately report that this surface is in shadow.

This problem is well understood and solutions using small user-driven
epsilon values to push out the shading point from the triangle surface have
been proposed as early as 1987 [11]. Some years later, CPU ray tracing had
advanced significantly [15, 2], so objects with low tessellation became
interesting for real-time display. Such meshes are prone to showing the
terminator problem. Consequently, in a side note in [7, Section 5.2.9], a simple
way of determining an adaptive epsilon value was proposed as an inexpensive
workaround. In this chapter, we evaluate this approach in a bit more depth.
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4.2 RELATED WORK

Over the years, many approaches have been proposed to work around the
problems arising with shading normals. They can be roughly classified into
three groups. The first deals with geometry terms arising in bidirectional light
transport. Veach [13] observed that shading normals introduce an
inconsistency between path tracing and light tracing. He proposed a
correction factor based on the ratio of cosines between the geometry and
shading normals. The pictures in this chapter are rendered with a
unidirectional path tracer and thus do not use this correction factor. In fact,
the method proposed here, as is mostly the case when working with shading
normals, is not reciprocal.

The second class involves smoothing the shadow terminator by altering the
shading of a microfacet material model. These approaches start from the
observation that a shading normal other than the geometric normal can be
pushed inside the microfacet model, as an off-center normal distribution.
This idea can be turned into a consistent microsurface model [10], and from
there the surface reflectance can be derived by first principles. Since the extra
roughness introduced into the microsurface will lead to some overshadowing,
multiple scattering between microfacets can be taken into account to brighten
the look. This technique has been simplified for better adoption in practice
and refined to reduce artifacts caused by the simplifications [3, 4, 5]. These
approaches start from the observation that a bump map can make the
reflectance extend too far into the region where the geometric normal is, in
fact, shadowed (see the left two mismatching hemispheres in Figure 4-3). In
this case the result will be black, but the material response is still bright,
leading to a harsh shading discontinuity. The simple solution provided is to
introduce a shadow falloff term that makes sure that the material evaluation
smoothly fades to black. This is illustrated in Figure 4-4. As an example, we
implemented Conty et al.’s method [4]. Note that our material is diffuse, and
thus violates the assumptions they made about how much energy of the lobe
is captured in a certain angular range. Thus, the method moves the shadow
region, but not far enough by a large margin, at least for this very coarsely
tessellated geometry. The best we could hope for here is to darken the
gradient so much that it hides the coarse triangles completely, leading to
significant look changes as compared to the base version.

In some sense Keller at al. [8, Figure 21] are also changing the material
model. They bend the shading normal depending on the incoming ray, such
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No FixNo Fix OursOurs No FixNo Fix OursOurs

No FixNo Fix OursOurs Conty et al.Conty et al. Base MeshBase Mesh

Figure 4-4. This is how the problem illustrated in Figure 4-3 manifests itself in practice. Top row:
without bump map; left two: direct illumination from a spotlight only; right two: with global
illumination and an environment map. Note that the indirect lighting at the bottom of the sphere
does not push out the shading point in any of the images. Bottom row: with a bump map applied.
The hack leaves the look of the surface untouched as much as possible. Conty et al.’s shadowing
term [4] does not help on the diffuse surface.

that a perfectly reflected ray would still be just above the geometric surface.
This changes the hemisphere of the shading normal, whereas in a sense we
change the hemisphere of the geometric normal. At least we make sure that
some shadow rays will yield a nonzero result even when cast under the
geometric surface.

In general, it is hard to create a consistent microsurface model in the
presence of both normal maps and vertex normals. Figure 4-5 illustrates the
issue. Schüßler et al. [10] cut the surface into Fresnel lens–like microsteps,
where one side (orange in the figure) corresponds to the shading normal. To
complete the model and make it physically consistent, there needs to be
another microfacet orientation (drawn in light blue) to close the surface.
When two triangles meet at the same vertex with the same normal, the
orientation of these additional microfacets lead to a discontinuity.

On the other hand, we only want to smooth out the geometric shadow
terminator; i.e., we are dealing with shadow rays more than with misaligned
hemispheres for geometric and shading normal. This means that we can
make assumptions about slow and smooth variation of our normals across
the whole triangle. It follows that the technique examined here does not work
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Figure 4-5. The microsurface model of Schüßler et al. [10] at a vertex with a vertex normal (blue).
The facets oriented toward the shading normal (orange) have a smooth transition at the vertex
(facing the same direction in this closeup). However, the light blue facets orthogonal to the
geometric surface (dashed) will create a discontinuous look.

for normal maps, but could likely be combined with a microfacet model
addressing the hemisphere problem.

The third approach is the obvious choice: resolve issues with coarse
tessellation by tessellating more finely. A closely related technique is called
PN triangles [14]. One constructs Bézier patches from vertices and normals,
usually the cubic version [12]. Van Overveld and Wyvill [12] also mention the
possibility to do quadratic, which is more closely related to the technique
examined here. The main difference is that we don’t want to tessellate but
only fix the shadows instead.

4.3 MOVING THE INTERSECTION POINT IN HINDSIGHT

As a minimally invasive change to fix the harsh shadow from coarsely
tessellated geometry, we want to move only the primary intersection point
away from the triangle, ideally to a location on a smooth freeform surface (i.e.,
the dashed surface in Figure 4-3). For this, we want to look at how a simple
quadratic Bézier patch is constructed from vertices and vertex normals.

Figure 4-6 shows a triangle with vertices A,B,C, an intersection point P, and
an illustration of the barycentric coordinates u, v,w on the left. To construct a
point P′ on a quadratic Bézier patch defined by these vertices, these
barycentric coordinates, and the vertex normals nA, nB, nC, we use de
Casteljau’s algorithm. First, we construct additional control points AB,BC,CA.
We have some freedom in how to do this; options have been discussed in the
literature [14, 12]. Then, we use the barycentric coordinates u, v,w to compute
three additional vertices A′, B′, and C′ from the three triangles (A,AB,CA),
(AB,B,BC), and (CA,BC,C), respectively. These three new points form another
triangle, which we interpolate once more with the barycentric coordinates
u, v,w to finally arrive at P′.
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Figure 4-6. Left: illustration to show our naming scheme inside a triangle. Right: schematic of
the barycentric version of de Casteljau’s algorithm. P′ is computed as the result of a quadratic
barycentric Bézier patch, defined by the corner points A,B,C as well as the extra nodes
AB,BC,CA. These will in general not lie in the plane of the triangle ABC.

Let’s have a look how to place the extra control points such as AB. The
patches should not have cracks between them, so the placement can only
depend on the data available on the edge, for instance, A,B, nA, nB. Note that,
even then, using a real Bézier patch as geometry would potentially open
cracks at creases where a mesh defines different normals for the same
vertex on different faces. When only moving the starting point of the shadow
ray, this is not a problem. We could, for instance, place AB at the intersection
of three planes: the two tangent planes at A, nA and B, nB as well as the
half-plane at (A + B)/2 with a normal in the direction of the edge B – A. These
three conditions result in a 3× 3 linear system of equations to solve. This
requires a bit of computation, and there is also the possibility that there is no
unique solution.

Instead, let’s look at the simple technique proposed in [7, Section 5.2.9]. The
procedure is similar in spirit to a quadratic Bézier patch as we just discussed
it, and it is summarized in pseudocode in Listing 4-1. An intermediate triangle
is constructed, and the final point P′ is placed in it by interpolation using the
barycentric coordinates u, v,w. The difference to the quadratic patch is the
way this triangle is constructed (named tmpu, tmpv, tmpw in the code
listing). To avoid the need for the extra control points on each edge, the
algorithm proceeds as follows: the vector from each corner of the triangle to
the flat intersection point P is computed and subsequently projected onto the
tangent plane at this corner. This is illustrated in Figure 4-7, right. This
procedure is very simple and efficient, but comes with a few properties that
are different than a real Bézier surface, which we will discuss next.
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Listing 4-1. Pseudocode of the simple shading point offset procedure outlined in [7].

1 // get distance vectors from triangle vertices
2 vec3 tmpu = P - A, tmpv = P - B, tmpw = P - C
3 // project these onto the tangent planes
4 // defined by the shading normals
5 float dotu = min(0.0, dot(tmpu, nA))
6 float dotv = min(0.0, dot(tmpv, nB))
7 float dotw = min(0.0, dot(tmpw, nC))
8 tmpu -= dotu*nA
9 tmpv -= dotv*nB
10 tmpw -= dotw*nC
11 // finally P' is the barycentric mean of these three
12 vec3 Pp = P + u*tmpu + v*tmpv + w*tmpw

A

AB

P'
B A v uP

P'

B

Figure 4-7. Left: 2D side view visualization of a quadratic Bézier patch (for the w = 0 case),
showing the line between A and B. The barycentric coordinates (u, v) are relevant for this 2D slice:
de Casteljau proceeds by interpolating A and AB in the ratio v:u, as well as AB and B. The two
results are then interpolated using v:u again to yield P′. Right: our simple version does not require
the point AB for the computation: it projects the intersection point P on the flat triangle
orthogonally to the tangent planes at A and B (note that AB lies on both of these planes, but we
don’t need to know where). These temporary points are then interpolated in the ratio v:u again, to
yield the shading intersection point P′. The Bézier line from the left is replicated to emphasize the
differences.

4.4 ANALYSIS

To evaluate the behavior of our cheap approximation, we plotted a few side
views in flatland, comparing a quadratic Bézier surface to the surface
resulting from the pseudocode in Listing 4-1. The results can be seen in
Figure 4-8.

The first row shows a few canonical cases with distinct differences between
the two approaches. In the first case in Figure 4-8a, the two surfaces are
identical, as both vertex normals point outward with a 45◦ angle to the
geometric normal. In Figure 4-8b, an asymmetric case is shown; note how
the point AB is moved toward the left. It can be seen that our surface (green)
has more displacement from the flat triangle, only approximately follows the
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Figure 4-8. 2D comparison against quadratic Bézier: (a) Canonical case, equivalent.
(b) Asymmetric case, no tangent at B and out of convex hull with control point AB. (c) Degenerate
case not captured by quadratic Bézier. (d) Concave case clamped by min() in our code. (e–h) The
behavior when moving AB toward the geometric surface.

tangent planes at both vertices, and is placed outside the convex hull of the
control cage of the Bézier curve. Though all this may be severe downsides for
sophisticated applications, the deviations from the Bézier behavior may be
acceptable for a simple offset of the shadow ray origin.

In Figure 4-8c, a degenerate case is shown: both vertex normals point in the
same direction. This happens, for instance, in the shape in Figure 4-2 at the
flanks of the elevated structures, where one normal is interpolated toward the
top and one toward the bottom, but with both pointing the same direction. The
approach to solve for AB by plane intersection now fails because the two
tangent planes are parallel, and no quadratic Bézier can be constructed. This
is a robustness concern, especially if the vertex normals aren’t specifically
authored for quadratic patches or are animated.

In Figure 4-8d the concave case is shown. Because we clamp away positive
dot products, such a case will evaluate to the flat surface instead of bulging to
the inside of the shape. This is the desired behavior: we don’t push shadow
ray origins inside the object.

The second row varies the distance of AB to the surface. In Figures 4-8e
and 4-8f, AB is far away from the surface, where the former is almost
degenerate. The quadratic Bézier patch consequently moves the curve very
far away, too. This may not be the desired behavior in our case, as animation
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might have caused a normal to be this extreme by accident. The cheap
approximation stays much closer to the geometric surface.

Figures 4-8g and 4-8h show vertex normals closer to the geometric normal
than 45◦. Here, the situation turns around, and the cheap surface is farther
away from the geometry than the Bézier patch. At these small deviations,
however, this is much less of a concern.

In summary, the cheap surface is only approximately tangent at the vertices
and violates the convex hull property with respect to the control cage.

4.5 DISCUSSION AND LIMITATIONS

The surface examined in this chapter does not strictly follow the tangent
condition at the vertices. Because we only use it to offset the origin of the
shadow ray, this is not a big issue: the shading itself will use the vertex
normal to determine the upper hemisphere for lighting.

We have seen that the cheap surface does not obey the control cage of the
Bézier patch. Instead, it is farther from the surface for small vertex normal
variations, and closer for large variations, as compared to the Bézier surface.
As the interpolation is just quadratic, it does not overshoot or introduce
ringing artifacts of any kind.

The larger offsets for small variations may lead to shadow boundaries that
are slightly more wobbly than expected. See, for instance, Figure 4-1 just
above the blue inset. The shadow edge was already choppy because of the low
tessellation both in the shadow caster and in the receiver. Offsetting the
shadow ray origin seemed to aggravate this issue. However, in the foreground
(to the left of the orange inset), the opposite can be observed: the shadow
edges look smoother than before.

We have seen that the surface offset can work with concave objects in a sense
that it will not push the shadow ray origins inside the object. However, special
care has to be taken when working with transparent objects. Transmitted rays
may need to apply the offset the other way around, i.e., flip all the vertex
normals before evaluation.

The mesh in Figure 4-2 was modeled with bevel borders, i.e., the sharp
corners consist of an extra row of small polygons to make sure that the edge
appears sharp. If such creases are instead modeled using face-varying vertex
normals, the shadow ray origins will have a discontinuous break at the edge.
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Note that the surface will still be closed and the shading will depend on the
normals, so this only affects the shadows.

Further, the method is specifically tailored for vertex normals. This means
that for multi-lobe and off-center microfacet models, such as multi-modal
LEADR maps [6], there is still a necessity to adapt microfacet surface models
or adjust the shadowing and masking terms.

We only discussed shadow rays for evaluation of direct lighting. The same can
be said about starting indirect lights when material scattering is used. In this
case, the effect of the shadow terminator is a bit different and more subtle;
see, for instance, the bottom half of the spheres with global illumination
enabled in Figure 4-4.

4.6 CONCLUSION

We discussed a simple and inexpensive side note on the terminator problem
from the time when CPU ray tracing became interesting for real-time
applications. This method effectively resembles quadratic Bézier patches, but
is cheaper to evaluate and also works in degenerate cases where creating the
additional control points for such a patch would be ill-posed. It only offsets
the shading point from which the shadow ray is cast; the surface itself
remains unchanged. This means that low-polygon meshes will receive
smooth shadows without resorting to more heavyweight tessellation
approaches that may require a bounding volume hierarchy rebuild, too. In the
long run, the problems of low-polygon meshes may go away as finer
tessellations will become viable for real-time ray tracing. Until then, this
technique has a valid use case again.
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CHAPTER 5

SAMPLING TEXTURES WITH
MISSING DERIVATIVES
Maksim Aizenshtein and Matt Pharr
NVIDIA

ABSTRACT

A key part of rendering high-quality imagery without aliasing has been to use
first-order differentials of texture coordinates to determine spatially varying
filter kernels for texture map lookups. With traditional rasterization, a variety
of techniques have been developed to do this, but the most common one used
today is to compute differences among adjacent pixels in a 2×2 quad of pixels.
However, doing so is not always possible with modern rendering techniques,
including both some forms of deferred shading as well as ray tracing.

Approaches based on ray differentials and ray cones have successfully been
applied to this problem in ray tracing, but it is also possible to compute these
differentials analytically based on the projective transformation and the scene
geometry. This chapter derives such an approach, which requires no auxiliary
storage, is computationally efficient, and requires only a few tens of lines of
code to implement. An implementation of the technique is included in the
supplementary material.

5.1 INTRODUCTION

Modern GPU pixel shaders provide explicit derivative functions, ddx() and
ddy() in HLSL and dFdx() and dFdy() in GLSL. These functions are capable
of estimating derivatives of any expression and do so by computing first-order
differences with adjacent pixels. When texture lookup functions are used in
shaders, such derivatives are computed automatically by the GPU based on
the provided texture coordinates in order to both determine which mip level to
use as well as what area to filter over in that mip level.

With modern rendering techniques, those functions may be either not
available or not applicable. For example, with deferred shading, if it is
necessary to perform texture lookups after the G-buffer has been created,
then although taking differences of texture coordinates with adjacent pixels
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gives a reasonable result if the adjacent pixel is part of the same primitive, it
may give wildly incorrect results if it is not. When the texture is fetched during
rasterization, the GPU takes care of this edge case (so to speak), so it is not a
concern. Though texture coordinate derivatives could be stored as additional
channels in the G-buffer for this case, doing so would consume both memory
and bandwidth.

Another important case is ray tracing. Methods like ray differentials [5] have
been applied to carry derivative information along with rays, giving accurate
texture coordinate derivative estimates that lead to well antialiased images,
though at a relatively high storage cost. Especially on the GPU, where keeping
the size of the ray payload small is important for performance, this cost may
be prohibitive. Akenine-Möller et al. [1, 2] have developed more lightweight
ray derivative representations that give good results. Both of these
approaches can be applied to computing texture derivatives on geometry that
is directly visible from the camera without using any auxiliary storage.

The method described in this chapter provides another option. It directly
computes derivatives at any point in the scene that are fully accurate for
points directly visible from the camera, without requiring any additional
storage. Unlike ray differentials and ray cones, however, it does not account
for the effect of reflection or refraction from surfaces in the filter estimates
that it computes for secondary ray intersection points; if curved specular
surfaces are present in the scene, this approach may lead to either aliasing or
blurring for texture lookups at secondary reflections.

5.2 TEXTURE COORDINATE DERIVATIVES AT VISIBLE POINTS

For a point on a triangle that is inside the viewing frustum, it is possible to
analytically compute the derivatives of the triangle’s texture coordinates at
that point given the camera matrix (including projection to the screen), the 3D
coordinates of the triangle’s vertices, the texture coordinates associated with
each vertex, and the point on the triangle.1 Our approach is based on first
computing the derivatives of the barycentric coordinates at the point on the
triangle and then computing the derivatives of the texture coordinates using
the chain rule. (A related approach is described by Ewins et al. [4], who also
evaluate a number of approximations such as derivatives that are constant
over each triangle.)

1The technique can be generalized to shapes besides triangles, though we will focus on triangles here.
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We will describe the method in the context of directly visible points with ray
tracing, but it applies equally well to texture lookups during deferred shading.
At the end of this chapter, we will discuss how this technique can be used to
compute approximate texture filter widths for secondary intersections in a
ray tracer.

5.2.1 INPUTS AND NOTATION

We expect that the world-space intersection point of the camera ray with the
scene geometry and the camera matrix M is provided. We will also assume
that the original triangle vertices X0, X1, and X2 are available in homogeneous
coordinates. Because we have the matrix M that is the combined projection
from world space to screen shape, our strategy is to first evaluate the
screen-space derivatives of the barycentric coordinates (u, v) of the
intersection point. Once these are known, we can readily obtain the
screen-space derivatives of the desired texture coordinates via the chain rule.
(More generally, the barycentric derivatives can be used to compute the
derivatives of any interpolated per-vertex value at the point.)

If not already available, both barycentric coordinates can be found by
computing the areas of two triangles formed by two of the triangle’s vertices
and the ray intersection point and dividing them by the triangle’s total area.
These barycentric coordinates can equivalently be computed in world space
or using the 2D screen-space projection of the corresponding points.

In the following, symbols with a tilde denote the screen-space projection of
the corresponding variable:

X̃ = MX. (5.1)

We will make frequent use of the symbol w to denote the linear form (row
vector) w = (0, 0, 0, 1). Finally, when used, superscript indices will signify
coordinates.

5.2.2 OVERVIEW

In order to obtain derivatives of texture coordinates, we use the relation
between texture coordinates and barycentric coordinates. Given the three
texture coordinates (si, ti) at the vertices of a triangle, the (s, t) texture
coordinates for the point corresponding to the barycentric coordinates
(u, v) are (

s
t

)
=

(
s0
t0

)
+

(
s1 – s0 s2 – s0
t1 – t0 t2 – t0

)
·

(
u
v

)
. (5.2)

79



RAY TRACING GEMS II

We are interested in finding the derivatives of (s, t) with respect to (x, y)
coordinates at a point X̃ in screen space, which is

d
(
s, t
)

d
(
X̃1, X̃2

) =

(
s1 – s0 s2 – s0
t1 – t0 t2 – t0

)
·

d
(
u, v
)

d
(
X̃1, X̃2

) . (5.3)

Given barycentric derivatives, the texture derivatives are easily computed
using the following shader code:

1 float2x2 ComputeTexCoordDerivatives(
2 float2x2 dst_dx1x2, float2 st0, float2 st1, float2 st2) {
3 float2x2 dtc_duv = float2x2(st1.x - st0.x, st2.x - st0.x,
4 st1.y - st0.y, st2.y - st0.y);
5 return mul(dtc_duv, dst_dx1x2);
6 }

Our task, then, is to compute the derivative on the right-hand side of
Equation 5.3. Before we consider evaluating this expression, there is an
important technical detail: the coordinates of X̃ are not independent, and so
the derivative cannot be evaluated as a partial derivative. The dependency is
in the third component (depth), which is determined completely by the first
two components through linear screen-space interpolation in the triangle.

Switching to partial derivatives using the chain rule, we have

d
(
u, v
)

d
(
X̃1, X̃2

) =
∂
(
u, v
)

∂X̃
· dX̃

d
(
X̃1, X̃2

) . (5.4)

Applying the chain rule again to the first factor on the right-hand side gives

d
(
u, v
)

d
(
X̃1, X̃2

) =
∂
(
u, v
)

∂X
· ∂X
∂X̃
· dX̃

d
(
X̃1, X̃2

) . (5.5)

Though there are some subtleties lurking under the notation, the three
factors on the right-hand side of Equation 5.5 give the road map for our task.
Reading left to right, first we will find the derivative of the barycentric
coordinates in terms of the world-space point X. Next, we will convert those
to be derivatives in terms of screen space X̃. Finally, we disentangle the
relationship between (x, y) individually in screen space and the complete
screen-space point X̃, giving independent derivatives in x and y.

We will consider each of these factors in turn.
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5.2.3 WORLD-SPACE DERIVATIVES

For the first factor on the right-hand side of Equation 5.5, we start by defining
A as the 2×3 matrix of two vectors corresponding to two edges of the triangle:

A =
[
X1 – X0 X2 – X0

]
. (5.6)

In turn, the point X inside the triangle with barycentric coordinates u, v is
given by

A

(
u
v

)
= X – X0. (5.7)

The partial derivative ∂(u, v)/∂X is therefore given by

∂
(
u, v
)

∂X
= A+, (5.8)

where A+ is the Moore-Penrose inverse, also known as just the pseudoinverse
matrix. Although A+ is 2× 4, the relevant 2× 3 part of it has a simple closed
form. If we here denote the columns of A as A1 and A2, and the cross product
is denoted by ×, then we have

N̂ = A1 × A2, (5.9)

A+ =
1

N̂ · N̂

[
A2 × N̂
N̂× A1

]
. (5.10)

The function that computes A+ and then returns the partial derivatives of the
barycentric coordinates with respect to world-space coordinates follows
directly.

1 void BarycentricWorldDerivatives(
2 float3 A1, float3 A2,
3 out float3 du_dx, out float3 dv_dx) {
4 float3 Nt = cross(A1, A2) / dot(Nt, Nt);
5 du_dx = cross(A2, Nt);
6 dv_dx = cross(Nt, A1);
7 }

5.2.4 FROM WORLD SPACE TO SCREEN SPACE

The next step is to find the middle factor on the right-hand side of
Equation 5.5. The unprojected Cartesian point X can be found using the
inverse of the camera matrix M and dividing by the inverse of the projected
homogeneous component,

x =
M–1X̃

wM–1X̃
, (5.11)
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and the partial derivative can be readily obtained from this equation using the
product rule,

∂X

∂X̃
=

M–1

wM–1X̃
–
M–1X̃wM–1(
wM–1X̃

)2 , (5.12)

which simplifies to

∂X

∂X̃
=
(
wMX

) (
I – Xw

)
M–1. (5.13)

The corresponding implementation is straightforward:

1 float3x3 WorldScreenDerivatives(
2 float4x4 WorldToTargetMatrix , float4x4 TargetToWorldMatrix ,
3 float4 x) {
4 float wMx = dot(WorldToTargetMatrix[3], x);
5 float3x3 dx_dxt = (float3x3)TargetToWorldMatrix;
6 dx_dxt[0] -= x.x * TargetToWorldMatrix[3].xyz;
7 dx_dxt[1] -= x.y * TargetToWorldMatrix[3].xyz;
8 dx_dxt[2] -= x.z * TargetToWorldMatrix[3].xyz;
9 return dx_dxt;
10 }

5.2.5 DEPTH DERIVATIVES

Finally, the derivatives of screen-space depth with respect to screen-space x
and ymust be found to calculate the last factor on the right-hand side of
Equation 5.5. These derivatives can be evaluated explicitly for triangles,
because in that case the depth is linear in screen space. However, a more
general approach is taken to ensure applicability for other surfaces.

Locally the surface can be expressed in implicit form as

F
(
x
(
X̃
))

= 0. (5.14)

By the implicit function theorem,

∂X̃3

∂
(
X̃1, X̃2

) = –
(

dF
dX̃3

)–1
· dF

d
(
X̃1, X̃2

) , (5.15)

whereas
dF
dX̃

=
∂F
∂X
· ∂X
∂X̃

. (5.16)

Here x is a homogeneous vector, so the last coordinate doesn’t appear
explicitly in F; hence, there’s no dependency on it in F. We can obtain

∂F
∂X

= γ
[
n, 0

]
, (5.17)
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where n is the linear form of the surface unit normal and γ is some scale of it.
Combining Equations 5.13, 5.16, and 5.17, we get

dF
dX̃

=
(
wMX

)
γ

[
n,

[
–n, 0

]
· X
]
M–1. (5.18)

Then, we denote

ñ =
[
n,

[
–n, 0

]
· X
]
M–1. (5.19)

Now recombining the components into Equation 5.15 gives

∂X̃3

∂
(
X̃1, X̃2

) = –
ñ1,2
ñ3

. (5.20)

The subscripts are the covariant coordinates. Thus, the depth derivatives have
been obtained if the normal of the surface at the point is known:

1 float2 DepthGradient(
2 float4 x, float3 n, float4x4 TargetToWorldMatrix) {
3 float4 n4 = float4(n, 0);
4 n4.w = -dot(n4.xyz, x.xyz);
5 n4 = mul(n4, TargetToWorldMatrix);
6 n4.z = max(abs(n4.z), 0.0001) * sign(n4.z);
7 return n4.xy / -n4.z;
8 }

5.2.6 PUTTING IT ALL TOGETHER

Combining Equations 5.8, 5.13, and 5.20 into Equation 5.5 yields the desired
derivatives of barycentric coordinates with respect to screen-space
coordinates. The following function uses the previously defined functions to
compute the corresponding values and returns the derivatives:

1 float2x2 BarycentricDerivatives(
2 float4 x, float3 n, float3 x0, float3 x1, float3 x2,
3 float4x4 WorldToTargetMatrix , float4x4 TargetToWorldMatrix) {
4 // Derivatives of barycentric coordinates with respect to
5 // world-space coordinates (Section 5.2.3).
6 float3 du_dx, dv_dx;
7 BarycentricWorldDerivatives(x1 - x0, x2 - x0, du_dx, dv_dx);
8

9 // Partial derivatives of world-space coordinates with respect
10 // to screen-space coordinates (Section 5.2.4). (Only the
11 // relevant 3x3 part is considered.)
12 float3x3 dx_dxt = WorldScreenDerivatives(WorldToTargetMatrix,
13 TargetToWorldMatrix , x);
14

15 // Partial derivatives of barycentric coordinates with respect
16 // to screen-space coordinates.
17 float3 du_dxt = du_dx.x * dx_dxt[0] + du_dx.y * dx_dxt[1] +
18 du_dx.z * dx_dxt[2];
19 float3 dv_dxt = dv_dx.x * dx_dxt[0] + dv_dx.y * dx_dxt[1] +
20 dv_dx.z * dx_dxt[2];
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21

22 // Derivatives of barycentric coordinates with respect to
23 // screen-space x and y coordinates (Section 5.2.5).
24 float2 ddepth_dXY = DepthGradient(x, n, TargetToWorldMatrix);
25 float wMx = dot(WorldToTargetMatrix[3], x);
26 float2 du_dXY = (du_dxt.xy + du_dxt.z * ddepth_dXY) * wMx;
27 float2 dv_dXY = (dv_dxt.xy + dv_dxt.z * ddepth_dXY) * wMx;
28 return float2x2(du_dXY, dv_dXY);
29 }

5.3 FURTHER APPLICATIONS

5.3.1 TRILINEAR SAMPLING

If only trilinear sampling is needed, it is possible to obtain an expression for
the fractional mip level directly. The matrix on the left-hand side in
Equation 5.3 transforms tangents in screen space to tangents in texture
space. Consider only unit length tangents v:

u =
d
(
w · s, h · t

)
d
(
X̃1, X̃2

) · v, (5.21)

where w and h are the width and the height of the texture, respectively. A
question that can be asked is: what is the resulting direction (of u) that yields
the minimum and maximum scaling of the vector v? These two directions are
the anisotropy directions for texturing sampling, whereas the scaling factors
are the anisotropy magnitudes. These directions and magnitudes are the left
singular vectors and the singular values (of the matrix), respectively. If only
trilinear sampling is desired, then only the singular values are needed to
determine the needed mip level to sample. At this point there are several
options to choose from:

> Use the maximum singular value.

> Use the minimum singular value.

> Use any other value in the singular value spectrum.

Using any value that is not within the singular value spectrum will definitely
lead to either blurring or aliasing. Using the maximum singular value will
produce the smoothest, but possibly blurry, results. Using the minimum
singular value will produce the sharpest, but also potentially aliased, results.
It is also possible to interpolate between the two to find some middle ground.

The actual mip level is the base-two logarithm of the selected value.
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5.3.2 SECONDARY RAY INTERSECTION POINTS

It is necessary to carry some information with the ray in order to compute
accurate filter kernels at secondary intersection points, especially after
scattering from curved specular surfaces. The approaches described earlier
can be applied, or a more sophisticated method like Belcour et al.’s [3] can
be used.

However, in many cases approximating the texture coordinate derivatives at
secondary points using the same derivatives as would have if they were
directly visible works reasonably well [6]. Our technique requires that the
visible point be inside the viewing frustum, however, which is not necessarily
the case for secondary intersection points. In that case, the point can be
rotated so that it lies inside the viewing frustum; placing it along the viewing
axis works well. Möller and Hughes [7] describe an efficient algorithm for
generating such rotation matrices.

5.3.3 MATERIAL GRAPHS

When materials are evaluated through a material graph (as opposed to a fixed
material), then the derivatives can be used as inputs to the graph system. If
the system supports automatic differentiation, then the derivatives for every
sample can be evaluated correctly.

5.4 COMPARISON

Figures 5-1 and 5-2 illustrate the effect of anisotropic filtering versus bilinear
filtering from mip level 0. Figure 5-3 shows accumulated bilinear filtering and
serves as a reference.

5.5 CONCLUSION

We have presented an efficient method for computing texture derivatives for
ray tracing and deferred shading that is based purely on the local geometry of
a visible point and the camera’s projection matrix. It does not directly handle
secondary ray intersections and will give inaccurate filter width estimates in
that case, especially in the presence of specular reflections. However, for
directly visible points and for applications where that is not a concern, our
approach is effective.
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Figure 5-1. Anisotropic filtering.

Figure 5-2. Bilinear filtering from mip level 0.
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Figure 5-3. Accumulated bilinear filtering from mip level 0.
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CHAPTER 6

DIFFERENTIAL BARYCENTRIC
COORDINATES
Tomas Akenine-Möller
NVIDIA

ABSTRACT

We describe an optimized way to compute differential barycentric
coordinates, which can be employed by implementations of ray differentials.
This technique can be used for texture filtering computations for ray tracing.

6.1 BACKGROUND

A ray is described as R(t) = O + td, where O is the ray origin, d is the
normalized ray direction, and t is the distance along the ray from the origin. A
ray differential [3] is useful for tracking the size of the footprint along a ray
path and is described by (∂O∂x ,

∂O
∂y ,

∂d
∂x ,

∂d
∂y ), where x and y are pixel coordinates.

This is illustrated in Figure 6-1.

Computing differential barycentric coordinates is an important part of any ray
differential implementation. To be able to compute the differential barycentric
coordinates at a hit point defined by t, we need to compute the differential
origin, (∂O

′

∂x ,
∂O′

∂y ), at the hit point. We first describe how this is done and then
use that result in Section 6.2 to compute differential barycentric coordinates.

d

ду
дd

дx
дd

дx
д0

дy
д0

0

Figure 6-1. A ray is defined by an origin, O, and a direction, d. A ray differential consists of
differentials of both the ray origin and the ray direction, i.e., ( ∂O

∂x ,
∂O
∂y ,

∂d
∂x ,

∂d
∂y ). These together

form a beam, which is traced through the scene.
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Assuming that the current ray differential is (∂O∂x ,
∂O
∂y ,

∂d
∂x ,

∂d
∂y ), we need to

propagate the ray differential along the ray, R(t) = O + td, to the first hit point,
at distance t from the origin, O. The normalized interpolated normal at the hit
point is called ni. Propagation of the differential ray origin [3] is done as

∂O′

∂x
=
∂T
∂x

–
∂T
∂x · ni
d · ni

d, (6.1)

where ∂T
∂x = ∂O

∂x + t∂d∂x is the differential width in x of the ray beam at the hit
point, without projection onto the normal at the hit point. A similar expression
is used for ∂T∂y . Note that

∂d
∂x and ∂d

∂y are not updated during propagation. Also,

for eye rays, we have ∂O
∂x/y = (0, 0, 0), which means that Equation 6.1 becomes a

little simpler in the first step.

Now, it only remains to compute the differential ray direction, (∂d∂x ,
∂d
∂y ), of the

eye ray, which is needed for ∂T∂x . (This part can also be found in a chapter in
Ray Tracing Gems [1].) In the DirectX Raytracing API, a common way to
compute a normalized camera ray direction is

p = (px, py) =
(
2 · x + 0.5

w
– 1, –2 · y + 0.5

h
+ 1
)
, (6.2)

g = pxr + pyu + v, (6.3)

d =
g
‖g‖

, (6.4)

where w× h is the resolution of the image, pixel (0, 0) is at the upper left
corner of the image, and (x, y) are the integer pixel coordinates. Note that
(x + 0.5)/w is in [0, 1] and that 0.5 has been added to get to the pixel center, so
we get a perfect match between rasterization and ray tracing. These 0.5
terms can be replaced with random values in [0, 1] for jittering, if desired. The
final values for p are in [–1, 1]. The camera orientation is given by the vectors
(r,u, v), which are right, up, and view, respectively. In our case, these are
(r,u, v) = (afr′, fu′, v′), where a is the aspect ratio, f = tan(ω/2), where ω is the
vertical field of view, and (r′,u′, v′) are the normalized camera frame vectors.
In Falcor [2], which is the research platform where we have implemented our
methods, (r,u, v) are all multiplied by the focal distance, but since we
normalize d in Equation 6.4, we have omitted that factor here. It is important
to specify how d is computed because its differential depends on it.
Differentiating Equation 6.4, we get

∂d
∂x

=
2(kgr – krg)

wk3/2g
,

∂d
∂y

=
–2(kgu – kug)

hk3/2g
, (6.5)

where kg = g · g, kr = g · r, ku = g · u, and g is specified by Equation 6.3.
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P1

u 
= 

1

u 
= 

0

P2

P0

v = 0

v = 1

mu

u 
= 

0.
5

nt

Figure 6-2. A triangle with three vertices P0, P1, and P2. The barycentric coordinates (u, v) are
also visualized, together with the “normal”mu of the edge through P0 and P2. The triangle plane
normal, nt, points outward toward the reader, orthogonal to the paper/display.

6.2 METHOD

Next, we describe how to compute the differentials of the barycentric
coordinates, (u, v), at a hit point inside a triangle.

The vertices of the triangle are P0, P1, and P2, and we assume that the
triangle normal is nt. To compute differential barycentrics, Igehy [3, page 182]
teaches that edge equations that go through the edges should be computed,
and those should evaluate to 0.0 for points on the edge and to 1.0 for a vertex
not being an edge vertex. Exactly how these edge equations are constructed
was left out. We describe the details of one way of doing this and some
optimizations. Let us start with the edge equation going through P0 and P2,
which is connected to the barycentric coordinate u, as shown in Figure 6-2. A
reasonable approach is to compute a “normal,” here calledmu, of the edge
that is also perpendicular to the triangle normal nt, i.e.,

mu = (P2 – P0)× nt = e2 × nt. (6.6)

Similarly for v, we havemv = (P1 – P0)× nt = e1 × nt. The plane equation is
thenmu · (X – P0) = 0, where X is any point on the plane with normalmu. The
edge equation then becomes eu(X) = mu · (X – P0). However, it needs to be
normalized so eu(P1) = 1, which can be obtained as e′u(X)=eu(X)/eu(P1). As it
turns out, only the normal vector of the plane equation is needed for these
computations [3], and this normalized normal, here called lu, is then

lu =
1

mu · (P1 – P0)
mu =

1
mu · e1

mu, (6.7)
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and similarly for v, we get

lv =
1

mv · (P2 – P0)
mv =

1
mv · e2

mv. (6.8)

The triangle plane normal nt can be computed as nt = e1 × e2, which does not
need to be normalized for our purposes because we already normalized the
plane equations in Equations 6.7 and 6.8.

Igehy also computes a plane equation for the third barycentric coordinate w,
but since w = 1 – u – v, we have ∂w/∂x = –∂u/∂x – ∂v/∂x, which we choose to
exploit because it is faster. The differential barycentric coordinates are
then [3](

∂u
∂x

,
∂v
∂x

,
∂u
∂y

,
∂v
∂y

)
=

(
lu ·

∂O′

∂x
, lv ·

∂O′

∂x
, lu ·

∂O′

∂y
, lv ·

∂O′

∂y

)
, (6.9)

where we use Equation 6.1 for the differential of the ray origin, (∂O
′

∂x ,
∂O′

∂y ).

Finally, let us assume that the texture coordinates at the vertices are denoted
ti = (tix, tiy). To be able to use anisotropic texture filtering available on GPUs,
we need the differentials of the texture coordinates. Recall that the texture
coordinates are interpolated as t(u, v) = (1 – u – v)t0 + ut1 + vt2. This expression
can be differentiated, and we can use the differential barycentric coordinates
(Equation 6.9) to find the differential texture coordinates as

∂t
∂x

=
(
–
∂u
∂x

–
∂v
∂x

)
t0 +

∂u
∂x

t1 +
∂v
∂x

t2 =
∂u
∂x

(t1 – t0) +
∂v
∂x

(t2 – t0), (6.10)

and similarly for ∂t∂y . We provide an implementation of ray differentials in
Falcor [2]. The important parts can be found in the TexLODHelpers.slang file,
with some functions listed in the next section.

6.3 CODE

The RayDiff struct together with the most important functions are listed
here. The key function is computeBarycentricDifferentials(), which
implements Equations 6.7–6.9. Its results are stored in the output variables
dBarydx and dBarydy. The input to computeBarycentricDifferentials()
deserves some attention: edge01 and edge02 are triangle edges in world
space, which can be computed as follows:

1 edge01 = mul(vertices[1].pos - vertices[0].pos, (float3x3)worldMat);
2 edge02 = mul(vertices[2].pos - vertices[0].pos, (float3x3)worldMat);
3 triNormalW = cross(edge01, edge02);
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1 struct RayDiff
2 {
3 float3 dOdx;
4 float3 dOdy;
5 float3 dDdx;
6 float3 dDdy;
7

8 static RayDiff create(float3 dOdx, float3 dOdy,
9 float3 dDdx, float3 dDdy)
10 {
11 RayDiff rd;
12 rd.dOdx = dOdx; rd.dOdy = dOdy;
13 rd.dDdx = dDdx; rd.dDdy = dDdy;
14 return rd;
15 }
16

17 // Implements Equation 6.1 of this chapter.
18 RayDiff propagate(float3 O, float3 D, float t, float3 N)
19 {
20 float3 dodx = dOdx + t * dDdx; // Igehy Equation 10
21 float3 dody = dOdy + t * dDdy;
22 float rcpDN = 1.0f / dot(D, N); // Igehy Eqns 10 & 12
23 float dtdx = -dot(dodx, N) * rcpDN;
24 float dtdy = -dot(dody, N) * rcpDN;
25 dodx += D * dtdx;
26 dody += D * dtdy;
27

28 return RayDiff.create(dodx, dody, dDdx, dDdy);
29 }
30 };
31

32 // Implements Equation 6.10 of this chapter.
33 void interpolateDifferentials(float2 dBarydx, float2 dBarydy,
34 float2 vertexValues[3], out float2 dx, out float2 dy)
35 {
36 float2 delta1 = vertexValues[1] - vertexValues[0];
37 float2 delta2 = vertexValues[2] - vertexValues[0];
38 dx = dBarydx.x * delta1 + dBarydx.y * delta2;
39 dy = dBarydy.x * delta1 + dBarydy.y * delta2;
40 }
41

42 // Implements Equation 6.9 of this chapter.
43 void computeBarycentricDifferentials(RayDiff rayDiff,
44 float3 rayDir, float3 edge01, float3 edge02,
45 float3 triNormalW, out float2 dBarydx, out float2 dBarydy)
46 {
47 float3 Nu = cross(edge02, triNormalW);
48 float3 Nv = cross(edge01, triNormalW);
49 float3 Lu = Nu / (dot(Nu, edge01));
50 float3 Lv = Nv / (dot(Nv, edge02));
51

52 dBarydx.x = dot(Lu, rayDiff.dOdx); // du / dx
53 dBarydx.y = dot(Lv, rayDiff.dOdx); // dv / dx
54 dBarydy.x = dot(Lu, rayDiff.dOdy); // du / dy
55 dBarydy.y = dot(Lv, rayDiff.dOdy); // dv / dy
56 }
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CHAPTER 7

TEXTURE COORDINATE GRADIENTS
ESTIMATION FOR RAY CONES
Wessam Bahnassi
NVIDIA

ABSTRACT

Ray cones were presented as a fast, approximate way to calculate a suitable
mip level index for a particular texture sample in a ray tracing shader setup.
Though the original technique was doing all the mathematics needed to
compute the final mip level index, in this chapter we reformulate the problem
in a different way that relies on existing hardware-supported instructions.
This maintains almost the same visual results and leads to more convenient
shader code. It also further simplifies and reduces the number of instructions
from the original ray cones implementation, though we do not claim this
necessarily leads to better performance.

7.1 BACKGROUND

Texture sampling under real-time ray tracing suffers the same limitations as
when sampling textures in shader stages outside the pixel shader stage. The
lack of texture coordinate derivatives inhibits the ability to rely on the
hardware logic for choosing a suitable mip level index for the given sample. In
particular, it is the hardware’s inability to internally derive the screen-space
derivatives that prevents using sampling functions like HLSL’s
Texture.Sample(), which internally calculates a suitable mip level index.

Techniques to manually compute the proper texture mip level index exist, the
latest of which was published in Ray Tracing Gems [2]. In that chapter, two
techniques were mentioned: ray differentials and ray cones. Ray cones are
faster to compute than ray differentials, and they provide good-quality results
for real-time rendering purposes.

This chapter details the process of computing a cone that follows the
launched ray as it hits surfaces and uses the cone size at each hit location to
compute a suitable mip level index for textures sampled for the hit triangle.
The computation starts with a triangle-based level of detail (LOD) value and

95A. Marrs, P. Shirley, I. Wald (eds.), Ray Tracing Gems II, https://doi.org/10.1007/978-1-4842-7185-8_7 
© NVIDIA 2021 

https://doi.org/10.1007/978-1-4842-7185-8_7


RAY TRACING GEMS II

adds to it two factors: distance-based and normal-based. The result of the
full computation produces a mip level index that can be fed to functions like
HLSL’s Texture.SampleLevel().

Because that method calculates a mip level index, the calculation—or at least
part of it—is texture-specific. This makes sense as different texture
dimensions will result in different mip level index values under the same
sampling location. For ray cones, we can split the mathematics into two
parts: UV-coordinates-dependent and texture-size-dependent. This way, it is
possible to reduce redundant calculations when sampling multiple textures at
the same UV coordinates. However, the texture-size-dependent part of the
calculations must be repeated for each texture. This involves first finding out
the texture dimensions in some way, either by passing them as shader
constants or by calling functions like HLSL’s Texture.GetDimensions().

The following code listing shows a full HLSL implementation of the technique
and illustrates pseudocode to sample a texture using the provided functions.

1 float2 TriUVInfoFromRayCone(
2 float3 vRayDir, float3 vWorldNormal, float vRayConeWidth,
3 float2 aUV[3], float3 aPos[3], float3x3 matWorld)
4 {
5 float2 vUV10 = aUV[1]-aUV[0];
6 float2 vUV20 = aUV[2]-aUV[0];
7 float fTriUVArea = abs(vUV10.x*vUV20.y - vUV20.x*vUV10.y);
8

9 float3 vEdge10 = mul(aPos[1]-aPos[0],matWorld);
10 float3 vEdge20 = mul(aPos[2]-aPos[0],matWorld);
11 float3 vFaceNrm = cross(vEdge10, vEdge20); // In world space
12

13 // Triangle-wide LOD offset value
14 float fTriLODOffset = 0.5f*log2(fTriUVArea/length(vFaceNrm));
15 float fDistTerm = vRayConeWidth * vRayConeWidth;
16 float fNormalTerm = dot(vRayDir, vWorldNormal);
17

18 return float2(fTriLODOffset, fDistTerm/(fNormalTerm*fNormalTerm));
19 }
20

21 float TriUVInfoToTexLOD(uint2 vTexSize, float2 vUVInfo)
22 {
23 return vUVInfo.x + 0.5f*log2(vTexSize.x * vTexSize.y * vUVInfo.y);
24 }
25

26 // Compute ray cone parameters for a particular UV coordinate set.
27 float2 vTriUVInfo = TriUVInfoFromRayCone(...);
28

29 // Then for each texture to be sampled on that
30 // UV coordinate set, do:
31 uint2 vSize;
32 tex.GetDimensions(vSize.x, vSize.y);
33 float fMipIndex = TriUVInfoToTexLOD(vSize, vTriUVInfo);
34 float4 vSample = tex.SampleLevel(sampler, vUV, fMipIndex);
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In the next section we show that it is possible to reduce the calculations in the
ray cones technique further.

7.2 RAY CONE GRADIENTS

Hardware support for texture sampling is offered at different levels. In HLSL
terms, Texture.SampleLevel() represents the lowest-level sampling
function available, where the caller is responsible for providing the mip level
index, and the function can provide at most trilinear filtering (combining eight
texels). On the high-level end, Texture.Sample() only needs a sampling
location and relies on the hardware’s internal computations for the mip level
index, and can internally combine even more than eight texels if, for example,
the specified sampler requested anisotropic sampling. As mentioned before,
Texture.Sample() requires operating in conditions not satisfied in ray tracing
shaders. In between the two extremes, HLSL provides Texture.SampleGrad(),
which instead of taking a particular mip level index, takes the derivative
information that Texture.Sample() internally requires to operate with all its
capabilities. Texture.SampleGrad() is not subject to the restrictions that
Texture.Sample() has. Thus, it can work just as well as
Texture.SampleLevel() in a ray tracing shader. For ray cones,
Texture.SampleGrad() has a few benefits over Texture.SampleLevel():

1. Gradients are a property of the UV coordinate set only, whereas the mip
level index is a product of both the UV coordinate set and the texture
dimensions. Using Texture.SampleGrad() allows the shader to skip all
the texture-dependent calculations (e.g., texture size and mip level index
calculation). This means less shader instructions to execute and more
convenient use as well.

2. Also, Texture.SampleGrad() can respect anisotropic filtering if the
sampler demands it. This assumes that the provided derivatives have
anisotropy in them. However, this chapter will not cover the anisotropic
derivatives mathematics because the goal here is to provide fast
calculations for the standard trilinear filtering case. The anisotropic
sampling derivatives mathematics is unnecessary if only regular
trilinear filtering is required. Please refer to Möller et al. [1] for details
on supporting anisotropy for ray cones.

One possible disadvantage of Texture.SampleGrad() is that it is a
considerably more complex instruction than Texture.SampleLevel(), and
thus can be slower to execute.
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In order to use Texture.SampleGrad(), the mathematics for ray cones must
be modified to compute UV derivatives instead of a mip level index.

The concept is simple: The ray cone tracks the pixel size throughout the ray
tracing process. At any hit point, the ray cone can be projected on the hit
surface. The projected size represents how much triangle area the projected
pixel covers, and thus how much UV coordinate area is covered by the pixel.
Since the UV gradients are to be used for isotropic trilinear filtering, there is
no need to be precise about the gradients’ directions nor the angle between
them. It is safe to assume that it is just 90◦. In this case, the covered UV
coordinate area can be assumed to be a square, where the square root of the
area value will give the length of its side. The resulting gradients are thus any
two perpendicular 2D vectors with the side length just calculated. For
simplicity, we use (side_length, 0) and (0, side_length).

The following code listing shows an example implementation of this idea. It is
immediately evident how the gradient calculations lead to fewer instructions.
There is no need to interrogate the sampled texture for its dimensions
anymore, and calls to log2() are removed because these were needed for
mip level index calculation. Note that the calculations in this code listing
assume a quad face instead of a triangle face. This saves a couple of
unnecessary multiplies and does not affect the final result as the calculation
looks for a coverage ratio only.

1 float4 UVDerivsFromRayCone(
2 float3 vRayDir, float3 vWorldNormal, float vRayConeWidth,
3 float2 aUV[3], float3 aPos[3], float3x3 matWorld)
4 {
5 float2 vUV10 = aUV[1]-aUV[0];
6 float2 vUV20 = aUV[2]-aUV[0];
7 float fQuadUVArea = abs(vUV10.x*vUV20.y - vUV20.x*vUV10.y);
8

9 float3 vEdge10 = mul(aPos[1]-aPos[0],matWorld);
10 float3 vEdge20 = mul(aPos[2]-aPos[0],matWorld);
11 float3 vFaceNrm = cross(vEdge10, vEdge20);
12 float fQuadArea = length(vFaceNrm);
13

14 float fNormalTerm = abs(dot(vRayDir,vWorldNormal));
15 float fPrjConeWidth = vRayConeWidth/fNormalTerm;
16 float fVisibleAreaRatio = (fPrjConeWidth*fPrjConeWidth)/fQuadArea;
17

18 float fVisibleUVArea = fQuadUVArea*fVisibleAreaRatio;
19 float fULength = sqrt(fVisibleUVArea);
20 return float4(fULength,0,0,fULength);
21 }
22

23 // Compute ray cone parameters for a particular UV coordinate set.
24 float4 vUVGrads = UVDerivsFromRayCone(...);
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25

26 // Then for each texture to be sampled on that
27 // UV coordinate set, do:
28 float4 vSample = tex.SampleGrad(sampler, vUV, vUVGrads.xy, vUVGrads.zw);

7.3 COMPARISON AND RESULTS

Both Texture2D.SampleLevel() and Texture2D.SampleGrad() ray cone
implementations were compared for quality and performance. The visual
comparison shown in Figure7-1 demonstrates very minor differences between
the two due to the mathematical reformulation for Texture2D.SampleGrad().
Please note that the original range in the difference image is between 0 and
1/255. The colors were scaled up greatly to make the differences
distinguishable by human vision. The difference image zooms into the area
marked by the red rectangle from the comparison images.

When both images are compared to a reference Texture2D.Sample()
implementation, the difference ratio is similar for both ray cone
implementations. There are two reasons for those differences. First, ray
cones themselves use approximations to speed up the calculations, which
means that both the original implementation and the gradients-based
approach shown here will be subject to differences from a reference
Texture2D.Sample(). Second, the hardware implementation for computing

(a)Mipmapping using ray cones and
Texture2D.SampleLevel()

(b)Mipmapping using ray cones and
Texture2D.SampleGrad()

(c) Zoomed-in highlighted difference between the images (a) and (b)

Figure 7-1. Comparison images produced by the sample application.
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Time Mip 2 Mip 3 Mip 4 Mip 5
Texture2D.Sample() 7.15 ms 69,136 254,604 77,100 0

Original ray cones 21.23 ms 5,208 169,262 209,900 16,470
Ray cones with gradients 24.33 ms 5,202 169,234 209,924 16,480

Table 7-1. Performance results collected on an NVIDIA RTX 3080 graphics card.

the mip level index in Texture2D.Sample() and Texture2D.SampleGrad() is
most probably different than an implementation written manually in shader
code, and can also differ between hardware vendors.

This slightly reduces the value of relying on Texture2D.Sample() as an
absolute reference point for mipmapping results. For example, one approach
might result in slight bias toward higher-detailed mipmaps, whereas another
approach might bias to the opposite. Those differences can also affect
performance depending on data access patterns and cache mechanisms.

The comparison data in Table 7-1 was gathered from drawing a simple static
textured 3D cube 1000 times using instancing in one draw call. All instances
are the same and drawn on top of each other with equal-greater depth testing
to maximize the number of pixel shader invocations. This is important
because the performance differences are otherwise too tiny to measure and
can be easily lost in the noise in typical rendering scenes.

The pixel shader samples six different 2048× 2048 32-bit (ARGB8888)
textures using a bilinear sampler with point filtering for mipmaps. The
textures have unique colors in each mip to allow counting of the number of
pixels sampled from each mip. The table compares three ways of sampling
the textures: the standard Texture2D.Sample() (which is possible in this test
because it is run as a pixel shader), the original ray cone calculations and
Texture2D.SampleLevel() (via the use of a simulated primary ray), and
sampling using ray cones with gradients (Texture2D.SampleGrad()).

The time is the full scene rendering time measured on an RTX3080 GPU. The
“Mip” columns in the table indicate the number of pixels produced from each
mip level of the textures. The sum of the pixels on each row is the same for
other rows. However, the distribution of pixels among mips differs depending
on the technique used. Please note that each pixel samples the texture six
times, multiplied by 1000 runs, so the actual number of texture samples in
this case is 6000 multiplied by the numbers in the table.
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(a)Mipmaps selected by ray cones and
Texture2D.SampleLevel()

(b)Mipmaps selected by ray cones and
Texture2D.SampleGrad()

(c)Mipmaps selected by Texture2D.Sample()

Figure 7-2. Images produced by the performance test. The sampled texture’s dimensions are
2048× 2048. Red is mip 2, cyan is mip 3, yellow is mip 4, and purple is mip 5.

Table 7-1 and Figure 7-2 show the differences between the three techniques.
Obviously there is a big cost for ray cones compared to a straight
Texture2D.Sample() instruction. However, it is interesting to see that the
gradients approach incurs a performance hit compared to the original ray
cone approach despite that, in general, the gradients approach seems to
slightly favor less-detailed mipmaps in this particular test setup. When
validating the produced shader disassembly, the gradients approach indeed
generated half the number of instructions of the original ray cones for
sampling the texture. This directs the performance difference toward the cost
of the Texture2D.SampleGrad() instruction itself on the test GPU. The test
scenario also fails to highlight the benefits of savings in arithmetic
instructions because it is completely bound by texture sampling.

Keep in mind the heavy exaggeration performed by the test. Typical scenes do
not usually incur 1000 layers of overdraw. In typical scenes the performance
difference between the original ray cones and gradients might not be evident
at all, but the convenience of the simplified code and sampling with
Texture2D.SampleGrad() is a nice gain by itself.
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7.4 SAMPLE CODE

The sample code for the techniques outlined in this chapter is available on the
book’s source code GitHub repository. The application is written for D3D12. It
has multiple code paths to showcase the differences between all the
techniques referenced here. The scene is made of a single cube viewed from
an orbiting camera and is drawn using either rasterization or ray tracing,
depending on the mode selected by the user. The modes are as follows:

1. Mode 1: Draw using rasterization and use the standard
Texture2D.Sample() HLSL instruction. This is the reference for
mipmapping quality. This is also the application’s initial mode.

2. Mode 2: Draw using ray tracing and sample the texture using
Texture2D.SampleLevel(), where the mip level index is fixed to level 0
(the most detailed level). The visual results suffer from heavy aliasing
due to lack of mipmapping.

3. Mode 3: Draw using ray tracing and sample the texture using
Texture2D.SampleLevel(), where the mip level index is computed
according to the original ray cone implementation.

4. Mode 4: Draw using ray tracing and sample the texture using
Texture2D.SampleGrad(), where the mip level index is computed
following the new approach described in this chapter.

To toggle between the modes, simply press the mode’s corresponding
number on the keyboard (1–4).

7.5 CONCLUSION

Ray cones are a simple and fast way to support mipmapped texturing under
environments where screen derivatives are not available, such as ray tracing
shaders. In this chapter we presented a ray cone implementation that relies
on Texture2D.SampleGrad() as a more convenient alternative to the split
approach needed by the original ray cones and Texture2D.SampleLevel().
The visual results are very similar to the original ray cone results. This
approach reduces the arithmetic from the original ray cone implementation,
but the use of the Texture2D.SampleGrad() instruction has been shown to
have a performance cost that can outweigh the arithmetic instructions
savings depending on the application’s bottleneck.
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CHAPTER 8

REFLECTION AND REFRACTION
FORMULAS
Eric Haines
NVIDIA

ABSTRACT

Surfaces reflect. Glass, water, and similar materials both reflect and refract.
The reflection and refraction formulas are at the heart of ray tracing. These
are not easy to find in the literature in the vector forms needed for generating
rays. This chapter is a reference for determining outgoing ray directions
under simplified, ideal conditions.

8.1 REFLECTION

For a mirror reflective surface, the reflection formula is

r = i – 2(i · n)n, (8.1)

where i is the incoming ray direction, n the surface normal, and r the
reflection direction. See Figure 8-1. The normal direction is expected to be
normalized (equal to a length of one) in this form. The normal can point in
either direction (e.g., upward or downward) and the formula still works. The
incoming ray direction does not have to be normalized, and the outgoing
direction vector will be computed having the same length as the incoming one.

The pseudocode, available at the book’s source code website, is simply:

1 void ReflectionDirection(Vector I, Vector N, Vector & R)
2 {
3 R = I - 2*VecDot(I,N)*N;
4 }

8.2 REFRACTION

Light hitting water, glass, or other transparent material can reflect off the
surface or can travel into the medium along the refraction direction. These
materials have an additional factor that determines how they affect the ray,
the index of refraction or refractive index [6]. In physical terms, light’s speed
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Figure 8-1. Reflection and refraction terms.

through a material is found by dividing by that material’s index of refraction.
This value for a material typically varies with wavelength, which is why prisms
work and why we see rainbows. Temperature and pressure can also affect a
material’s refractive index, such as seen with heat haze.

In rendering, we often use the simplification that the index of refraction is
held constant across wavelengths, so that there is just one refraction ray
direction. Refractive index measurements are standardized as being taken at
the center of the yellow “sodium doublet” wavelength, about 589 nanometers,
under normal environmental conditions. The index of refraction is defined as
exactly 1.0 for a vacuum. It is a tiny bit higher than 1.0 for air and other gases.
Water’s is 1.333, window glass’s is 1.52, and diamond’s is 2.417 [3, 5]. The
index of refraction is usually denoted by the Greek letter η, pronounced “eta.”

Snell’s law [3] states that when light travels from one medium to another, the
sine of the angle of incidence θ1 and sine of the angle of refraction θ2 are
related to their respective refractive indices η1 and η2 by

η1 sin θ1 = η2 sin θ2. (8.2)

For example, crossing from air to water, η1 is essentially 1.0 and η2 is 1.333. If
the incoming ray’s angle θ1 is at, say, 60 degrees, the outgoing angle θ2 is then
arcsin(sin(60)/1.333), or 40.51 degrees.

As another example, if a ray travels from inside the glass wall of an aquarium
into the water enclosed, η1 is 1.52 and η2 is 1.333. Crossing from a medium
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with a high index of refraction to that of a lower one, total internal reflection [3,
7] can occur, in which no transmission takes place:

η1
η2

sin θ1 > 1. (8.3)

This equation can be reorganized to compute the critical angle,

θ1 = arcsin(η2/η1). (8.4)

For our glass to water example, total internal reflection then occurs above an
incidence angle of arcsin(1.333/1.52), about 61.28 degrees.

Because of this possibility, the following pseudocode computes a normalized
refraction direction T and returns true only when total internal reflection
does not occur. It assumes that the incoming ray direction I is also
normalized. Note that n1 stands for η1 and n2 for η2.

1 bool TransmissionDirection(float n1, float n2,
2 Vector I, Vector N, Vector & T)
3 {
4 float eta = n1/n2; /* relative index of refraction */
5 float c1 = -VecDot(I, N); /* cos(theta1) */
6 float w = eta*c1;
7 float c2m = (w-eta)*(w+eta); /* cos^2(theta2) - 1 */
8 if (c2m < -1.0f)
9 return false; /* total internal reflection */
10 T = eta*I + (w-sqrt(1.0f+c2m))*N;
11 return true;
12 }

This is one of Bec’s methods [1], which is efficient when ray directions are
expected to be normalized. Other comparable formulas include Whitted’s [4],
which does not assume the incoming direction is normalized, and Heckbert’s
two methods [2], the second of which has fewer overall operations by using
more divisions. Heckbert [2] and Pharr et al. [3] provide derivations.

The strength of the contributions from reflection and refraction rays in
shading the surface is the subject of Chapter 9.
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CHAPTER 9

THE SCHLICK FRESNEL
APPROXIMATION
Zander Majercik
NVIDIA

ABSTRACT

Reflection and refraction magnitudes are modeled using an approximation of
the Fresnel reflectance equations called the Schlick approximation. This
chapter presents the Schlick approximation, analyzes its error when
compared to the full Fresnel reflectance equations, and motivates its use in
ray tracing dielectric (non-conducting) materials. It further discusses the
Schlick approximation in the context of metallic surfaces and shows a
possible extension for the Schlick approximation to more accurately model
reflectance of metals.

9.1 INTRODUCTION

When a ray hits a surface during ray tracing, we need to compute how much
light should be transmitted back along it (toward the camera for a primary ray
or toward the earlier path vertex for a secondary ray). Light transmitted back
along a ray hitting a surface is either reflected or refracted from that surface.
Some materials, like glass, will both reflect and refract light. For such
materials, a portion of the energy of an incoming light ray is reflected—the
rest is refracted.

9.2 THE FRESNEL EQUATIONS

Reflection and refraction magnitude vary with a material’s refractive index1 η
and the angle of the incoming light θi (the incoming angle relative to the
surface normal). The portion of light reflected from a ray traveling through a
material with refractive index η1 that hits a material with refractive index η2 at

1A material’s refractive index is the ratio of the speed of light in a vacuum to the speed of light in that material.
For example, water has a refractive index of η = 1.333.
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angle θi is given by the Fresnel equations:

Rs =
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, (9.1)
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. (9.2)

The s and p subscripts denote the polarization of light: s is perpendicular to
the propagation direction and p is parallel. Most ray tracers ignore light
polarization by simply averaging the two equations to arrive at a final
reflection magnitude R = (Rs + Rp)/2.

9.3 THE SCHLICK APPROXIMATION

The Fresnel equations are exact, but complicated to evaluate. In computer
graphics, a simpler approximation, called Schlick’s approximation, is often
used instead. Schlick’s approximation is given by

R(θi) = R0 + (1 – R0)(1 – cos θi)
5, (9.3)

where θi is again the angle of the incident ray and R0 is the reflectivity of the
material at normal incidence (you can check this by substituting θi = 0). Here
is for the Schlick approximation:

1 /** Compute reflectance, given the cosine of the angle of incidence and the
reflectance at normal incidence. */

2 vec3 schlickFresnel(vec3 R0, float cos_i) {
3 return lerp(R0, vec3(1.0f), pow((1.0f - cos_i), 5.0f));
4 }

The Schlick approximation is much faster to evaluate than the full Fresnel
equations. In an optimized implementation, the Schlick approximation can be
32 times faster with less than 1% average error [4]. Further, the Schlick
approximation only depends on the reflectance at normal incidence (R0),
which is known for many materials, whereas the Fresnel equations depend on
the refractive indices η1 and η2.2

2Magnitude R0 can also be computed from refractive indices like so: R0 = ((η1 – η2)/(η1 + η2))2. This makes it
possible to use the Schlick approximation for reflectance at the interface of arbitrary materials. For the most
common case of a material boundary with air, only reflectance at normal incidence is required.
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Fresnel Equations and Schilick Approximation
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Figure 9-1. Graph of the Fresnel equations for s-polarization (blue), p-polarization (red), the
average of s- and p-polarization (dashed purple), and the Schlick approximation (green). The
x-axis shows the angle of incident light (θi, in degrees), and the y-axis shows the portion (0–1) of
incident light reflected. The Schlick approximation closely matches the averaged Fresnel
equations. The Fresnel equations were computed with η1 = 1 and η2 = 1.5 (simulating the
interface of air and glass, with incident light coming from the air). Following these, the Schlick
approximation used 0.04 for the Fresnel reflectance at normal incidence.

Figure 9-1 shows the magnitude of reflected radiance as a function of incident
angle for a light ray traveling through air (η = 1.0) and striking glass (η = 1.5).
The reflectance of s-polarization, p-polarization, their average, and the
Schlick approximation are shown. Relative to the averaged Fresnel equations,
the Schlick approximation gives less than 1% average error with a maximum
error of approximately 3.6% at an incident angle of 85◦.

The key insight is that averaging Rs and Rp already introduces an
approximation to the polarized reflectance. This approximation can have high
error, especially if incoming light is unevenly polarized (see Wolff and
Kurlander [5] for a classic discussion of polarization in ray tracing). Given that
this is already an approximation, it makes sense to fit the approximate curve
with a simple polynomial instead of evaluating the full Fresnel and taking the
average. The Schlick approximation achieves this.
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9.4 DIELECTRICS VS. CONDUCTORS

So far when talking about reflective/refractive materials, we have been
talking about dielectrics—materials that do not conduct electricity, such as
water, wood, or stone. Materials that do conduct electricity, such as metals,
are called conductors. Conductors require a more advanced form of the
Fresnel equations with an additional parameter called the extinction
coefficient (κ). The extinction coefficient represents the attenuation
(amplitude reduction) of light in a volume—a lower extinction coefficient
means that a material is less conductive.

The reflectance of a ray traveling through a dielectric material with refractive
index ηd and striking a conductor with refractive index ηc and extinction
coefficient κ at incident angle θi is given by

Rs =
a2 + b2 – 2a cos θi + cos2 θi
a2 + b2 + 2a cos θi + cos2 θi

, (9.4)

Rp = Rs
a2 + b2 – 2a sin θi tan θi + sin

2 θi tan2 θi
a2 + b2 + 2a sin θi tan θi + sin

2 θi tan2 θi
, (9.5)

with a2 and b2 given by

a2 =
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)2
+ 4η2cκ2 +
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2 – η2d sin
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)}
, (9.6)

b2 =
1
2η2d

{√(
η2c – κ2 – η2d sin

2 θi

)2
+ 4η2cκ2 –

(
η2c – κ

2 – η2d sin
2 θi

)}
. (9.7)

With extinction coefficient κ set to 0, these equations simplify to the dielectric
Fresnel equations (Equations 9.1 and 9.2).

9.5 APPROXIMATIONS FOR MODELING THE REFLECTANCE OF
METALS

The complex Fresnel equations are even more complicated and expensive to
evaluate than the original Fresnel equations. Further, when using the
complex Fresnel equations in practice, it is difficult to gain the benefit of
physical correctness that should come with the higher evaluation cost (see
Hoffman’s discussion of these issues [2]).

For these reasons, we would prefer to continue using the Schlick
approximation (or another approximation) for conductors just as we used it for
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Figure 9-2. Reflectance of aluminum at 450 nm under the complex Fresnel equations (magenta),
the Schlick approximation (green), and the re-parameterized Schlick–Lazányi approximation
(cyan). At a wavelength of 450 nm for incident light, aluminum has refractive index η = 0.61722
and extinction coefficient κ = 5.3031. The Schlick–Lazányi approximation was computed using
α = 6 and a = 1.136 (as in Hoffman [2]). Note that because the graph shows data for a specific
wavelength, a is scalar valued.

dielectrics. The simplest option that works well in practice is to use an RGB
color value for R0 (instead of the scalar value presented in Equation 9.3) to
approximate different reflection behavior along the visible spectrum. Further,
using an RGB color value allows one to use the same material shader to
evaluate reflection magnitude for both metals and dielectrics.

Even when using an RGB color, the Schlick approximation can still show
significant error when evaluated for conductors, especially at glancing angles
(see Gulbrandsen [1] for a parameterization that addresses glancing angles
specifically). This error can be decreased using the Lazányi–Schlick
approximation [3], which adds an error term to the RGB Schlick
approximation to account for metals:

R(θi) = R0 + (1 – R0)(1 – cos θi)
5 – a cos θi(1 – cos θi)

α, (9.8)

where R0 is the RGB reflectance at normal incidence and a and α are
configurable parameters.3 It can be used with a default parameter of α = 6.

3Equation 9.8 presents the error term alongside the RGB Schlick approximation, matching Hoffman [2], and
so differs slightly from the original paper by Lazányi and Szirmay-Kalos [3], which presents a Schlick approx-
imation parameterized by η and κ.
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The parameter a is computed per material based on the Fresnel reflectance
of the material at the angle where the Lazányi error term is highest. For the
exact equation for a and the derivation of the default value for alpha, see
Hoffman [2]. Here is code for the Lazányi–Schlick approximation:

1 /** Return reflectance, given the cosine of the angle of incidence and the
reflectance at normal incidence. */

2 vec3 schlickLazanyi(vec3 R0, float cos_i, vec3 a, float alpha) {
3 return schlickFresnel(R0, cos_i) -
4 a * cos_i * pow(1 - cos_i, alpha);
5 }

Figure 9-2 shows the reflectance curve for aluminum at a wavelength of
450 nm under the complex Fresnel equations, the basic Schlick
approximation, and the re-parameterized Schlick–Lazányi approximation.
Compared to the complex Fresnel equations, the Schlick approximation gives
an average error of 1.5%, with a maximum error of 6.6%. The
re-parameterized Schlick–Lazányi approximation is much closer with an
average error of 0.22%, with a maximum error of 0.65%.
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CHAPTER 10

REFRACTION RAY CONES FOR
TEXTURE LEVEL OF DETAIL
Jakub Boksansky, Cyril Crassin, and Tomas Akenine-Möller
NVIDIA

ABSTRACT

Texture filtering is an important implementation detail of every rendering
system. Its purpose is to achieve high-quality rendering of textured surfaces,
while avoiding artifacts, such as aliasing, Moiré patterns, and unnecessary
overblur. In this chapter, we extend the ray cone method for texture level of
detail so that it also can handle refraction. Our method is suitable for current
game engines and further bridges the gap between offline rendering and
real-time ray tracing.

10.1 INTRODUCTION

Accurate rendering of transparent and semitransparent surfaces is one of the
many appealing features of renderers based on ray tracing. By simply
following the paths of rays refracted on transmissive surfaces, it is possible to
render materials, such as glass and water, with great realism. Ray tracing
enables us to take refraction indices of materials on both sides of the surface
into account and “bend” the rays in a physically correct way, which is an effect
that is difficult to achieve using rasterization and which contributes
significantly to the realistic rendering of semitransparent materials. Here, we
focus on using the ray cone method [1, 2] for the filtering of textures on
surfaces seen by refracted rays to achieve the same level of visual quality as
for reflected and primary rays. An example is shown in Figure 10-1.

The geometry of perfect refraction (and reflection) has been covered in detail
in Chapters 8 and 9 and by de Greve [5], including the interesting case of total
internal reflection and the relation of Fresnel equations to the modeling of
transmissive surfaces. A practical implementation in a ray tracer is covered in
Chapter 11.
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Figure 10-1. Refractive materials, such glass and water, can be rendered accurately using ray
tracing with respect to given indices of refraction. This is a significant improvement compared to
rasterization. This picture was rendered using a fast path tracer, which correctly integrates over
all necessary domains in order to reproduce refraction effects as well as camera defocus blur.

A more complex case is the modeling of refractions on rough surfaces, e.g.,
frosted glass and ice, where rays are not refracted perfectly, but their
direction is randomized. A model for such materials is described by a
bidirectional transmittance distribution function (BTDF). A formal formulation
of such a BTDF employing a widely used Cook–Torrance microfacet model
was provided in the seminal paper by Stam [9], and importance sampling was
added by Walter et al. [10]. A more efficient importance sampling method was
later developed by Heitz [7].

Though the problem of ray cone refraction might at first seem to be the same
as reflection, the fundamental difference lies in the fact that indices of
refraction are typically different for bodies at opposing sides of the hit point
surface, whereas they are always the same for reflecting ray cones. This
introduces the relative index of refraction η, which has significant impact on
the refracted ray direction. It is not only the width of the cone that changes,
but also its geometry. Depending on the relative index of refraction (whether a
ray refracts from an optically denser to a thinner environment or vice versa),
the cones can either shrink or grow. Also, the centerline of the refracted cone
can differ significantly from the direction of the refracted ray. Note that
altering the refracted ray direction to reflect this change is not viable, in our
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Figure 10-2. A glass cube showing refraction in the center and TIR closer to the sides.

opinion, as it could miss geometry that would be hit under certain angles,
essentially sampling a correct footprint from incorrect geometry. Such a
solution would be more expensive as well.

When the ray cone refracts from an optically denser to a thinner environment,
total internal reflection (TIR) can occur. A good real life example is Snell’s
window visible when an observer underwater looks up to the surface. Another
example is shown on the glass cube in Figure 10-2. For incident rays making
an angle with a normal that is larger than a certain critical angle, a perfect
reflection occurs and we can use the ray cone solution for reflected rays. In
those cases, no refraction occurs. A problem occurs on the boundary between
a fully refracted and a totally internally reflected (TIRed) ray, when the ray is
incident under an angle close to the critical angle. In this case, one part of the
ray cone is reflected and other part is TIRed (see Figure 10-3).

The method presented in this chapter calculates an approximate refracted ray
cone that attempts to match the footprint of a “perfectly refracted” cone as
closely as possible without altering the refracted ray direction. As in other
methods [3, 6, 8], we also only follow the part of the cone where the central
ray ends up; i.e., if it is refracted, we construct a refracted ray cone, and if the
central ray is TIRed, we construct a reflected ray cone.

10.2 OUR METHOD

A ray cone is defined by a width w, a spread angle α, a ray origin O, and a
direction d [2], as illustrated in Figure 10-4, left. The curvature approximation
at the hit point is modeled as a signed angle β, where a positive sign indicates
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Figure 10-3. A ray cone (in gray) is transported via a surface interface from a thicker medium to a
thinner one. The central ray of the ray cone is refracted into the red arrow. Note, however, that if
the ray cone is seen as a set of internal rays, four of these will be totally internally reflected, which
forms the yellow part. The rest are refracted into the red volume.

?

d

O w

α

n

β

Figure 10-4. Left: a gray ray cone, defined by an origin O, a direction d, a width w, and a half cone
angle α. The spread of the normal n is modeled by the angle β. Right: we create our refraction ray
cone approximation from the red volume. Dashed lines indicate the curvature of the surface at the
hit point.

a convex surface and a negative sign indicates a concave surface. Our
assumption is that a reasonable approximation will be obtained by handling
the computations in two dimensions, by tracking the lower and upper parts of
the ray cone, and by refracting those with the perturbed normals as shown in
Figure 10-4, right.
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Figure 10-5. The geometric setup used in the derivation of the refracted ray cone.

In the following, all references are made to Figure 10-5. We use the hit point P
as the origin of the two-dimensional coordinate frame, and we use n as the
y-axis andm as the x-axis. The vectorm needs to be orthogonal to n and also
parallel to d, and this can be done with a projection and normalization as

m =
d – (n · d)n
‖d – (n · d)n‖

. (10.1)

We assume that all vectors and points are in this two-dimensional frame.
We create the upper direction vector du by rotating d by +α, and the lower
direction vector dl by rotating d by –α. The upper ray, with direction du, starts
from the origin O offset by w/2 in the direction orthogonal to d, and similar for
the lower ray. These are then intersected with the x-axis, which gives us Pu

and Pl. This is illustrated in Figure 10-5.

We use an augmented refraction function that returns a vector located in the
plane being spanned by the incident ray direction and the normal, and also
orthogonal to the normal, if the ray is TIRed. Otherwise, standard refraction is
used. For example, if d would have been TIRed in Figure 10-5, then our
refraction function would returnm. From the spread of the normal and the
normal itself, n, we also create nu and nl, which are shown in Figure 10-5.
The refracted direction t is computed by calling the refraction function with n
and d and the ratio of indices of refraction. This is done analogously to create
tu and tl using nu and nl.
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Figure 10-6. A refracted cone calculated using our method (light green) and the ground truth
approximated using many rays (red).

Given the computations above, the refracted ray cone is constructed as
follows. The refracted ray cone origin is P and its direction is t. The width w of
the refracted ray cone is computed as

w = wu + wl, (10.2)

where wu and wl are the widths shown in Figure 10-5. The width wu is
computed as the length along a direction that is orthogonal to t from the
origin to the line defined by tu and the hit point Pu, and analogously for wl. The
half cone angle α of the refracted ray cone is computed as half the angle
between tu and tl together with a sign as

α =
1
2
arccos

(
tu · tl

)
sign

(
tux t

l
y – t

u
y t
l
x

)
. (10.3)

In order to further improve the quality of our method, we suggest using
higher-quality anisotropic filtering [1] for hits after refraction has occurred.
The ray cone geometry changes significantly after refracting, as described in
Section 10.1 and illustrated in Figure 10-6. To compensate for the imperfect
approximation of the refracted cone, we can use the anisotropic filter to at
least better match the elliptical footprint at the hit point.

One situation that is not explicitly handled in our method is when the incident
ray is below the perturbed normal of the surface. In this case, a reflection
should occur instead of refraction. However, during our experiments, we did
not detect this situation happening, and without handling it explicitly, our
implementation causes the cone to grow instead of reflecting. To handle this
situation, we propose to clamp incident vectors to be at most 90◦ away from
the normal.
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Our method cannot only be used for perfect refraction, but also for rough
refractions when, e.g., a microfacet-based BTDF is used to generate a
randomized refracted direction based on surface roughness. In this case, the
half-vector used for refracting the incident direction should be used as the
normal for our method because it is, in fact, the normal of the microfacet that
is used to refract the ray. Methods for stochastic evaluation of microfacet
BTDF typically generate these half-vectors, which can be used directly.
Alternatively, we can calculate such a half-vector using

n = –
ηt + d
‖ηt + d‖

. (10.4)

10.3 RESULTS

To evaluate our method, we compare the results to the ground-truth
reference that stochastically samples the correct footprint and to the method
based on ray differentials [8]. In Figure 10-7, we show results from a Whitted
ray tracer with several different texture filtering methods, namely, accessing
only mipmap level 0 (no filtering), using ray cones with isotropic filtering [2],
using ray cones with anisotropic filtering [1], and using ray differentials with
both isotropic and anisotropic filtering [8].

Our test scene contains a reflective sphere, a solid glass cube, and a glass
sphere, where the latter two cover refraction under many angles in one view
and also the case of total internal reflection. However, none of the methods
explicitly handle the boundary between refraction and TIR (which is usually
one or two pixels wide), and only the ground-truth method can render it
correctly—the other methods produce a boundary that is too sharp. Visual
results of our ray cone method are mostly comparable to the ray differentials
(see Figure 10-7). Our method, however, requires less per-ray storage and
overhead. Note that, as mentioned previously, we prefer to use anisotropic
filtering for refraction, which also gives results closer to the ground truth.

Performance of our method is nontrivial to evaluate, as opposed to when only
reflection occurs, as our new method is only used for rays hitting
transmissive materials. We used a test scene containing glass objects and
changed the view so that most of the scene is seen through the lens. Results
are summarized in Figure 10-8. Performance of all methods is near identical,
but slower than simply accessing mip level 0, which is expected. (The
rendering times for the viewpoint shown in Figure 10-1 with path tracing at
4 spp are 76.8 ms for mip level 0, 75.4 ms for ray cones with isotropic filtering,
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Mip Level 0 Ray Cones Isotropic Ray Cones Anisotropic

Ray Diffs. Isotropic Ray Diffs. Anisotropic Ground Truth

Figure 10-7. Results for our refracted ray cone method, which used the Unified method [1] for
computing surface spread. The ground truth was generated by stochastically sampling the
direction inside the screen-space ray cone through a pixel with 10,000 samples per pixel. Note
that anisotropic ray cones generate results that are close to anisotropic ray differentials in the left
zoom-in, whereas in the right zoom-in, the ray cones are more blurry. This is because ray cones
can only model circular cones and this situation requires more flexibility than that. Ray
differentials have a more expensive representation, which allows for better results.

82.7 ms for ray differentials with isotropic filtering, and 84.9 ms for ray
differentials with anisotropic filtering.) The isotropic versions are faster than
the anisotropic ones, but the method when we only use anisotropic filtering
after a refraction event has occurred can be expected to be faster than
anisotropic filtering for all hits in demanding scenes.

We also validated our approach inside a path tracer that stochastically
generates path samples that integrate over both the camera pixel footprint
(antialiasing) and a thin lens aperture (providing a defocus blur effect). We
adapted the ray cone creation procedure in order to better match the double
cone footprint of the light beams generated by such a setup. We take
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Figure 10-8. The Marbles scene rendered at 1920× 1080 resolution with our path tracer. Left:
for reference, the picture rendered using full-resolution textures (mip level 0). Right: our result
using ray cones with isotropic filtering produces visually identical results. The viewpoint in the top
row was rendered using 1000 spp (samples per pixel) for both approaches, and the bottom row
uses 400 spp.

advantage of the standard functionality of the ray cones and create them such
that they start from the camera at aperture width, converge to zero at the
focal distance, and then grow again. This allows our method to access mip
levels with lower resolution even more in the blurry regions of the defocus
blur. In such a path tracing setup, ray cones allow for saving bandwidth during
texture sampling operations, resulting in ca. 1.5% full-frame performance
improvement in the scene presented in Figure 10-1 and Figure 10-8. On this
scene, our approach also renders ca. 10% faster than ray differentials with
isotropic filtering and ca. 12% faster than ray differentials with anisotropic
filtering. As it provides the path tracing integrator with prefiltered bandlimited
texture samples, our approach also improves image convergence, as can be
seen in the low-sample count results presented in Figure 10-9. Those
pictures were rendered at interactive frame rates (62 ms per frame) after
three accumulated frames of a static camera, using 1 spp per frame
(resulting in 3 spp effective) and denoised using the NVIDIA OptiX denoiser.

Our tests were performed using an NVIDIA RTX 3090 GPU (Ampere).
Compared to always accessing the finest mip level (0), ray cones with
mipmapping can achieve speedups in general. This is due to accessing mip
levels with lower resolution more often. However, speedups can be expected
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Figure 10-9. Interactive path tracing after three accumulated frames with low sample count
(1 spp/frame resulting in 3 spp effective) using screen-space denoising and rendered at
1920× 1080. Our approach (bottom insets) provides smoother outputs in the blurry regions
compared to sampling textures at maximum resolution (mip level 0, top insets), which can help
with providing faster convergence speeds.

only for the most demanding scenes with a very large number of
high-resolution textures. We also used uncompressed textures for those
experiments, and enabling texture compression can reduce those speedups.

10.4 CONCLUSION

With the growing use of high-resolution textures and ray tracing in games, it
is important to support a precise solution for their filtering in order to
preserve the fine detail meticulously created by artists. In this chapter, we
have continued development of texture filtering with ray cones and added
support for refraction. Building on top of previous work, ray cones can now
support a range of use cases including reflection, refraction, isotropic or
anisotropic filtering, shading level of detail, integration with or without
G-buffer, and more. Ray cones are a lightweight and relatively
easy-to-integrate method, and we provide a publicly available implementation
as part of the Falcor framework [4] (see the RayFootprint class).
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CHAPTER 11

HANDLING TRANSLUCENCY
WITH REAL-TIME RAY TRACING
Tianyi “Tanki” Zhang
NVIDIA

ABSTRACT

Translucency is a hard problem in real-time rendering. Despite the various
techniques introduced to handle translucency in rasterization, the result is far
from satisfactory, due to the limited geometry surface information outside of
the screen space. For example, multi-layer alpha blending is nontrivial to
implement and can still fail in many cases, not to mention rendering
physically based translucency effects like refraction and absorption. This
chapter provides an overview of translucent rendering effects with the aid of
hardware-accelerated ray tracing. Ray tracing allows techniques to become
possible that are not possible with rasterization, while also improving others.
We are going to show how to implement transparency in ray tracing while also
discussing trade-offs between correctness and accuracy. Instead of focusing
on explaining different algorithms, the major focus of this chapter is
implementation. This chapter will use the terminology of DirectX Raytracing
(DXR) for simplicity, but the methods can also be applied for Vulkan.

11.1 CATEGORIES OF TRANSLUCENT MATERIAL

When we talk about translucency, regardless of how we define the
parameterization of the material models, there are two different categories.
On one hand, physically based translucent materials are modeled through
physical properties, scattering coefficient σs and absorption coefficient σa,
which are generally used to describe participating media. Coefficient σs
describes the probability of an out-scattering event occurring per unit
distance, and σa represents the probability that light is absorbed per unit
distance traveled in the medium [3]. When light travels through a volume,
different events happen (Figure 11-1).

In the real three-dimensional world, all objects—and the space between
them—have a certain volume. We can define scattering and absorption based
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Figure 11-1. Different events when energy travels through a participating medium [1].

on the distance within those volumes. But in a virtual world, not all objects
are created as closed geometries, which simply means that if a ray passes
through the geometry, we will have pairs of intersection points, where the ray
first hits the frontface and then hits the backface. When we want to render
geometries without volume, for example, quads and disks, assuming a
thickness can achieve physically plausible results.

On the other side, opacity-based, non-physically based materials are highly
adopted in game engines. A single float opacity α is applied to indicate how
“transparent” a surface is, as shown in Figure 11-2. The lower the opacity
value is, the more transparent the surface is. The core idea of rendering
semitransparent materials is called alpha blending. There are many different
approaches with the rasterization pipelines, with different pros and cons [1].

11.2 OVERVIEW

Figure 11-3 is a common example that a renderer needs to handle. Shooting
one ray bouncing in the scene and spawning more secondary rays along the
way to make sure all sources of contribution are well sampled is the most
ideal approach, but it requires much more time than a real-time renderer can
afford. Thus, translucency is broken into different effects and handled

0.7

Figure 11-2. When light hits a surface with opacity, it’s easy to think about it as if some part of the
energy will go through. In this example, the surface has an opacity of 0.7, which means that 70% of
the energy is reflected and the remaining 30% of energy goes straight through the surface.
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Figure 11-3. When the ray travels through the scene, the primary ray is refracted and enters the
object, then is refracted again when leaving the object and hitting an object with a scattering
material. The renderer needs to evaluate the radiance at all points by sampling the light and
computing the visibility term to calculate the total throughput that the ray is carrying.

separately in different passes with different assumptions in real time and also
skips the parts that only have limited contribution to the result fidelity.

To shade this example, we will start with a path tracing–style translucent pass
(Section 11.3), which can handle “clear” materials well. Clear materials are
those that only have absorption (or opacity) and do not have scattering.
Section 11.5 introduces a setup to handle visibility for semitransparent
materials, which can also be directly applied to render transparent shadows.

11.3 SINGLE TRANSLUCENT PASS

A good start to handle the translucent effects for a real-time renderer is to
add a path tracing fashion translucent pass, where a primary ray is traced
through the scene for each pixel, refracted upon entering or leaving the
geometries until it reaches the max bounce or hits an opaque surface.
Figure 11-4a illustrates how one ray travels through the scene in that pass. A
primary ray starts from the camera and hits the translucent surface, where
we shade the surface with incoming light radiance. Then, according to the
index of refraction (IoR), the ray is refracted and enters the geometry. When
the ray is inside the geometry, we can also sample the distance and phase
functions to estimate single scattering events. When a ray leaves the
geometry from the other side, the hit point is shaded and absorption-based
transmittance is evaluate according to the Beer–Lambert law.

Unfortunately, the plain approach just described can cause many obvious
visual artifacts in real time. A good example is when a user puts a slice of
glass in front of the camera (Figure 11-5). Because opaque objects are all
shaded with deferred passes before the forward translucency pass and for
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(a) Light transport in the translucent pass (b) Light transport in the opaque pass

Figure 11-4. (a) An example of the light transport in the translucent pass in 2D. The sphere and
cube are translucent and the triangle is opaque. Only a few representative paths are drawn to
keep the figure clean. (b) The main pipeline shades opaque objects only and stores the results in
the G-buffer. In this example, both rays hit the same location. Instead of shading the hit point
again, the renderer can immediately fetch the radiance from the G-buffer to take advantage of the
evaluated result.

performance consideration, the renderer will usually only compute basic
energy contributions like direct lighting. If we want to keep the same level of
fidelity for those opaque objects behind the translucent objects, the pass
needs to invoke all the algorithms for different effects, which can quickly
become very expensive. One trick to improve this issue is to fetch the output
radiance buffer composited from the previous shading passes for opaque
objects when it’s possible, instead of always shading the hit points. Many
different properties of the hit points can be tested against the information in
the G-buffer to tell whether the ray hits something that is included in the
G-buffer, including object ID, world position, normal, etc. See Listing 11-1.

(a)Without fallback (b) Reference (c)With G-buffer fallback

Figure 11-5. (a) A scene with only opaque objects, where part of the view is blocked by a thin slice
of glass, without fetching the G-buffer for refracted rays when the translucent rays hit the opaque
objects. (b) A reference image without the glass slice. (c) When the translucent path hits an
opaque object, the program checks the geometry and material properties and tries to fetch the
G-buffer radiance. Notice that the “over-exposed” looking lines in the figures are not artifacts, but
are the inner bottom face of the glass slice.
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Listing 11-1. Pseudocode of a recursive path tracing–style translucent path.

1 void TraceTranslucency(RayDesc ray, inout float3 throughput, inout float3
radiance, int depth)

2 {
3 if(depth > MAX_DEPTH) return;
4 HitInfo hit = TraceRay(ray, ...);
5 float3 directLightingOutgoingRadiance = shaderHit(hit);
6 // Direct lighting
7 if(hit.isBackHit) {
8 throughput *= exp(-hit.absorptionCoefficient * hit.hitT);
9 }
10 radiance += throughput * directLightingOutgoingRadiance;
11

12 RayDesc reflectionRay = getReflectionRay(ray, hit);
13 TraceTranslucency(reflectionRay, throughput, radiance, depth + 1);
14 RayDesc refractionRay = getRefractionRay(ray, hit);
15 TraceTranslucency(refractionRay, throughput, radiance, depth + 1);
16 }
17

18 void TranslucentRayGen()
19 {
20 uint2 pixelIndex = DispatchRaysIndex().xy;
21 RayDesc ray = GetPrimaryFromPixel(pixelIndex);
22 float3 totalRadiance = 0;
23 TraceTranslucency(ray, float3(1, 1, 1), totalRadiance, 0);
24 OutputToTexture(pixelIndex, totalRadiance);
25 }

11.4 PIPELINE SETUP

The renderer needs to have the ability to invoke a TraceRay() call that only
traces some of the geometries in the rendering pipeline before the developer
can implement the pass in Section 11.3.

There are two steps to achieve it. First, the renderer needs a way to
categorize different materials and be able to tell what kind of material an
object instance has. Second, the shader needs a way to access this piece of
information and filter out undesired geometry. See Listing 11-2.

The InstanceMask field in D3D12_RAYTRACING_INSTANCE_DESC can be used
for the first task. It is an 8-bit mask, declared when constructing geometry
instances for the acceleration structure. Users can use those bits to
categorize geometries. One of the arguments of the TraceRay()
function is InstanceInclusionMask, and the driver will check
!((InstanceInclusionMask&InstanceMask)&0xff) to skip certain
instances. The renderer can take advantage of this feature to decide which
categories are accepted, while others will be ignored during the traversal.
This is the fastest way to filter geometries that also provides a fine granularity
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Listing 11-2. Essential pipeline setups.

1 // Setup on the CPU side
2

3 ///// This part should be shared between CPU and GPU. /////
4 #define INSTANCE_OPAQUE (1<<0)
5 #define INSTANCE_TRANSLUCENT (1<<1)
6 #define INSTANCE_IS_SOMETHING_ELSE (1<<2)
7 //----------------------end shared code---------------------//
8

9 // CPU
10 D3D12_RAYTRACING_INSTANCE_DESC opaqueInstance, translucentInstance;
11 opaqueInstance.InstanceMask |= INSTANCE_OPAQUE;
12 translucentInstance.InstanceMask |= INSTANCE_TRANSLUCENT;
13 // ...
14

15 // GPU
16 // Only trace opaque geometries.
17 uint rayMask = INSTANCE_OPAQUE;
18 // Trace opaque and translucent geometries.
19 // uint rayMask = INSTANCE_OPAQUE | INSTANCE_TRANSLUCENT;
20

21 TraceRay(sceneAcc, flags, rayMasks, /*other arguments*/);

to apply control at the per-ray level. The only con is that there are only 8 bits
available, which can be quickly consumed in a production renderer.

The renderer can bind per geometry data as part of the local root signature
for each hit shader. Another way to store category information is to deploy it
as part of the geometry data. During the runtime, the user can either pass the
categories as payload or configure it as some global constant data bound to
the pass. By conditionally invoking IgnoreHit() in the any-hit shader, the
renderer will be able to filter out geometries with the overhead of any hit
invocation. This approach provides the max system flexibility with the cost of
increased overhead. Although developers can shave off some of the overhead
by enforcing a RAY_FLAG_FORCE_OPAQUE ray flag, closest-hit shader invocation
can still cause large performance penalties if instances invoke many different
ones due to frequent instruction cache misses. Besides, it sacrifices the
chance to handle extra logic through any-hit shaders.

11.5 VISIBILITY FOR SEMITRANSPARENT MATERIALS

We are going to describe transparent shadows that allow objects to partially
block light (as in Figure 11-6), as opposed to traditional shadows where
objects either fully block light or fully let light pass. Because of this, our
visibility term will not be a binary 0 or 1 value but instead will be continuous
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(a) Semitransparent material in real time (b) Path tracing reference

Figure 11-6. Two transparent boxes overlapped with each other. One of the major challenges is to
correctly handle the visibility term, including transparent shadows that fall onto the transparent
geometry.

floating-point values between 0 and 1. This allows semitransparent objects to
cast colorful shadows in the renderer, increasing realism and allowing artistic
effects that go beyond what rasterized monochrome shadow maps can
give us.

The attenuation of visibility, which is transmittance in the real world, happens
when the light passes through some volume so that part of the energy is
absorbed. Because semitransparent materials try to describe opacity without
volume, one way to evaluate the visibility term is by blending the color with
the opacity. Regardless of the material models, let’s say that the surface has
opacity α. Then, the visibility can be represented as (1 – α). Notice that
although α usually denotes a single floating-point number, it can also be
three float numbers, each of which represents the opacity of a single channel
of RGB color.

Given some objects’ opacity values as α0,α1,α2,α3, . . . αn, the overall visibility
v is

v = 1 –
n∏
i=1

(1 – αi) (11.1)

Unlike handling alpha blending for rendering transparent objects, as shown in
Figure 11-7, notice that 1 – v, which is the overall opacity α, is order
independent. This is a good property for implementation because the
renderer can take advantage of an any-hit shader, which can be invoked in
arbitrary order along the ray, instead of casting rays one after another to
process them from front to back. Listing 11-3 shows the setup of computing
the visibility. The ray payload stores the overall visibility v, which is initialized
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Opacity (0, 0.3, 0)
Visiblity (1, 0.7, 1)

(0, 0, 0.5)
(1, 1, 0.5)

(0.9, 0, 0)
(0.1, 1, 1)

(0, 0.3, 0)
(1, 0.7, 1)

(0, 0, 0.5)
(1, 1, 0.5)

(0.9, 0, 0)
(0.1, 1, 1)

0.7

0.1

0.5

0.7
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Figure 11-7. The color of the transparent shadow depends on how much energy from the light
source is left. The result is order independent. In this example, for demonstration, the light ray is
illustrated by three color beams, representing the R, G, and B channels. When going through the
surface, the energy attenuates according to the surface opacity.

Listing 11-3. Visibility ray setup: payload and raygen shader.

1 struct Payload
2 {
3 float3 accumulatedVisibility;
4 float hitT;
5 };
6 struct HitInfo;
7 float3 TraceVisibilityRay(HitInfo hit)
8 {
9 Payload payload;
10 payload.accumulatedVisibility = float3(1, 1, 1);
11 payload.hitT = 0;
12 RayDesc shadowRay = CreateShadowRayFromHit(hit);
13 // It is fine to use RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH.
14 TraceRay(shadowRay, ..., RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH , ...,

payload);
15 return payload.accumulatedVisibility;
16 }

to 1. It is worth mentioning that RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH
still works with this setup—as soon as the visibility reduces to 0 or the ray hits
any opaque objects, the traversal is terminated. Without it, the ray would just
keep testing against transparent hits, even if they were behind an opaque
object that the ray had hit. Another alternative to improve the performance is
to limit the max number of translucent hits with the trade-off of some
artifacts.

We evaluate the material properties to get opacity αi, and v = v ∗ (1 – αi). As
long as the new v is greater than 0, we invoke IgnoreHit() but still update
the hit information to make sure that we still get the correct closest-hit
information through the payload (Listing 11-4). This setup can bring two
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Listing 11-4. Visibility ray setup: any-hit shader.

1 [shader("anyhit")]
2 void ahs(Payload payload)
3 {
4 // geometryData is constant data that bound to the shader with
5 // geometry instance data.
6 // Each any-hit shader includes the corresponding material shader logic.
7 float3 opacity = materialOpacity(geometryData);
8 float3 visibility = float3(1, 1, 1) - opacity;
9 payload.accumulatedVisibility *= visibility;
10 if(payload.hitT == 0) {
11 payload.hitT = RayCurrent();
12 } else {
13 payload.hitT = min(payload.hitT, RayCurrent());
14 }
15 if(any(payload.accumulatedVisibility > 0)) {
16 IgnoreHit();
17 }
18 }

potential outcomes. In some cases, if there is nothing along the ray or all hits
are ignored in any-hit shaders (imagining if we only hit translucent object),
miss shaders will be invoked. In other cases, a closest-hit shader will be
invoked because one ray is accepted in an any-hit shader or any opaque
geometries are hit, where v will not be updated. Developers will need to set v
to 0 in those cases. Optionally, developers can consider overriding the hit
information if that’s the more desired behavior (Listing 11-5).

Any-hit shaders are invoked one after another for all potential hits during the
traversal for non-opaque geometries, although the specification does not
guarantee that those are invoked only once for potential hits between the ray
origin and the max distance, which provides opportunities to optimize the
traversal. As a result, this setup may fail for some edge cases. Although
D3D12_RAYTRACING_GEOMETRY_FLAG_NO_DUPLICATE_ANYHIT_INVOCATION is
available to achieve the correct result, we chose not to do so to keep better
traversal performance in general. When it goes wrong, it will cause the result
to look darker, but so far we have not noticed any of those cases.

By extending this setup, we can also implement stochastic opacity. To keep
this section reasonably concise, we will skip explaining the algorithm of
stochastic opacity [2] and assume the reader understands how to implement
it. The pipeline can render the visibility buffer with one ray and roughly one
invocation of any-hit shader per surface. To render a 16-sample visibility
buffer, we first cast one ray with 16 hitT. The any-hit shaders first check a
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Listing 11-5. Visibility ray setup: closest-hit shader and miss shader.

1 [shader("closesthit")]
2 void chs(Payload payload)
3 {
4 // If we want to get the first opaque closest hit
5 payload.hitT = RayCurrent();
6 payload.accumulatedVisibility = 0;
7 }
8

9 [shader("miss")]
10 void miss(Payload payload)
11 {
12 if(payload.hitT == 0) {
13 payload.hitT = 1.f / 0.f; // Set to INF.
14 }
15 }

random number against the opacity value 16 times to decide whether to
consider the candidate a hit for each individual entry and then update the
corresponding hitT and call IgnoreHit(). Hit distances are then stored in
a buffer.

Listing 11-6 shows how to compute the final color with single ray invocation of
16 samples. After tracing the ray, what’s left is to sum up all 16 samples and
apply alpha correction, as in Listing 11-7.

Listing 11-6. The 16-sample stochastic opacity ray setup.

1 struct VisPayload
2 {
3 float hitT[16];
4 };
5 void ahs(VisPayload payload)
6 {
7 // geometryData is constant data that bound to the shader with
8 // geometry instance data.
9 // Each any-hit shader includes the corresponding material shader logic.
10 float opacity = materialOpacity(geometryData);
11 for(int i = 0; i < 16; i++) {
12 // Pass i as additional seed.
13 bool opaque = opacity > random01(i);
14 if(opaque) {
15 if(payload.hitT[i] == 0) {
16 payload.hitT[i] = RayCurrent();
17 } else {
18 payload.hitT[i] = min(payload.hitT[i], RayCurrent());
19 }
20 }
21 }
22 IgnoreHit();
23 }
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Listing 11-7. The 16-sample stochastic opacity shading pass.

1 struct ShadePayload
2 {
3 float3 finalColor[16];
4 float hitT[16]
5 }
6 void ahs(ShadePayload payload)
7 {
8 // geometryData is constant data that bound to the shader with
9 // geometry instance data.
10 // Each any-hit shader includes the corresponding material shader logic.
11 float opacity = materialOpacity(geometryData);
12 float3 color = materialColor(geometryData);
13 // Fetch 16 hitT and compare against the current T.
14 float visibility = sampleVisibility(DispatchRayIndex().xy, RayCurrent())

;
15 for(int i = 0; i < 16; i++) {
16 // Pass i as additional seed.
17 bool opaque = opacity > random01(i);
18 if(opaque) {
19 if(payload.hitT[i] == 0) {
20 payload.hitT[i] = RayCurrent();
21 payload.finalColor[i] = visibility * color * opacity;
22 } else {
23 payload.finalColor[i] = payload.hitT[i] < RayCurrent() ?

payload.finalColor[i] : visibility * color * opacity;
24 payload.hitT[i] = min(payload.hitT[i], RayCurrent());
25 }
26 }
27 }
28 IgnoreHit();
29 }

11.6 CONCLUSION

Have we solved the translucency problem in real-time rendering with ray
tracing? Absolutely not, it is still an open problem. Besides what we
mentioned so far, a bigger challenge is to handle volumetric scattering. The
fact that this chapter did not introduce a uniform approach is simply because
it does not exist for real time, so we have to make different assumptions and
estimations to render what we can afford.

The biggest gain in terms of introducing ray tracing is adding one extra tool
into developers’ toolboxes, which offers developers easy access to offscreen
geometry information, required for many advanced effects. Although it’s
definitely overstated that the introduction of hardware-accelerated ray tracing
magically solves everything, we are able to shift away part of the focus from
tedious engine-side infrastructure work so that some offscreen information is
available for the rendering pipeline—for example, different shadow map
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techniques, reflection captures, etc. We can expect that more sophisticated
usage of ray tracing pipelines will also help hardware architectures evolve to
help with the challenge that we are facing.
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CHAPTER 12

MOTION BLUR CORNER CASES
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ABSTRACT

This chapter describes efficient ways to handle some corner cases in
motion-blurred acceleration structures for ray tracing. We discuss the
handling of geometries sampled at different time intervals, how to efficiently
bound the movement of geometries undergoing linear transformation and
linear deformation at the same time, and a heuristic for bounding volume
hierarchy (BVH) construction that helps the surface area heuristic adapt to
the presence of incoherent motion.

12.1 INTRODUCTION

Motion bounding volume hierarchy (MBVH) acceleration structures [2] are a
cornerstone of modern production ray tracers. The basic concept is best
described by considering simple linear motion. The single bounding box of a
traditional BVH is replaced with a pair of bounding boxes bounding the
endpoints of the motion. At render time, each ray’s time is used to interpolate
a bounding box for that specific intersection test (Figure 12-1). Modern ray
tracing hardware, such as NVIDIA’s Ampere architecture, now even includes
some hardware accelerated motion blur.

What is less commonly discussed are the issues related to some practical
problems surrounding multi-segment motion blur and, in particular, odd
combinations of various motion key counts among the objects of a scene.
For instance, one early paper [4] suggested simply using an MBVH for
bottom-level acceleration structures, while ignoring it for the top-level
acceleration structure (which may combine objects of various key counts).
This can have disastrous effects on performance as rapid motion can cause
very large bounding boxes with substantial overlap.
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t = 0

t = 0.42

t = 1

Figure 12-1. An MBVH uses a pair of axis-aligned bounding boxes at each level in the tree that can
be linearly interpolated according to a ray’s time to obtain tight bounds around moving primitives.

The classic motion spatial BVH (MSBVH) paper [3] assumes all motion
segments are powers of two such that the timeline is evenly divided and some
bounding boxes can be shared. The spatiotemporal BVH (STBVH) paper [13]
relaxes this assumption by introducing a new kind of split in the tree along the
time domain as well as extending the construction algorithm to have a
time-aware surface area heuristic for detecting when such splits would be
advantageous. We revisit this topic and in particular show how splitting the
time interval upfront leads to an overall simpler implementation
(Section 12.2) that may be advantageous for hardware implementations.

An important implementation detail is the efficient bounding of the
combination of linear motion with linear transformation. Having surveyed
some popular open source implementations for this task, we found that it was
either ignored or handled with overly general approaches. We detail a
particularly simple implementation in Section 12.3.

Finally, we show how incoherent motion can have a substantial impact on
performance. We present a simple build time heuristic in Section 12.4 for
MBVHs that significantly improves performance in these cases.

These methods have been successfully used in the respective Sony Pictures
Imageworks and Autodesk Arnold renderers.
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12.2 DEALING WITH VARYING MOTION SAMPLE COUNTS

12.2.1 MOTIVATION

Film production pipelines frequently assemble scenes authored by large
teams of artists working across multiple departments. This multitude of
sources can occasionally cause the composed scenes to contain objects
sampled at different points in time. Moreover, it is common for a small subset
of objects in the scene to require more motion keys than others. For instance,
spinning wheels or propellers may require a high number of transform
samples, while character motion or fluid simulations may only require linear
motion (two samples).

Rendering APIs and file formats have long recognized the need for this
flexibility, starting with the RenderMan Interface [10], which allowed
specification of arbitrary time samples through the MotionBegin and
MotionEnd calls. Today, both the Alembic and USD file formats have
provisions for storing time-sampled data at arbitrary granularities.

Modern ray tracing APIs, such as Embree [12] and OptiX [8], support
describing geometry starting and ending at arbitrary time values. Both
impose the restriction that the samples be uniformly spaced. In practice this
restriction is sensible as one otherwise needs to deal with nonuniform
acceleration between different objects, which precludes the approach
described next.

12.2.2 TIME SAMPLE UNIFORMIZATION

Dealing with time samples on a single piece of geometry is simple as one only
needs to search for the index of the motion samples that surround the current
ray time.

The more complex case arises when merging objects with different start and
end times into a single structure. What we propose here is to take the union
of all time samples, as shown in Figure 12-2, and decompose the timeline into
non-overlapping segments. If the start and end times or sample counts do
not align across objects, this will produce a nonuniform spacing of time
values in the general case. However, a simple search can still be employed to
find the two nearest time values for a ray with arbitrary time.

Before building the MBVH structures, we take the union of all time samples,
clipped against the current camera shutter. For each consecutive pair of time
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Camera Shutter

Timeline 1012 1013 1014

Object A (sampled on whole frames)

Object B (sampled on 1
2 frames)

Object C (sampled on 1
3 frames)

Union of all object samples

Samples for top level BVH

Figure 12-2. Animation software typically represents time in frame units. Geometry may be
sampled from these frames, or between frames for greater precision. When a production
renderer ingests a scene, it is possible for different geometric elements to have been sampled at
different rates, which yields nonuniform sample spacing for the top-level acceleration structure.

samples, we can build an ordinary MBVH segment. In the example of
Figure 12-2, there are five time samples required for the top-level BVH, or a
total of four MBVH trees. When preparing the bounding boxes for each BVH,
we simply ask each object for its bounding box at the specified time. In fact,
many production renderers allow not only the object deformation to be time
sampled, but also the object’s transformation matrix. Therefore, the union of
all samples should consider both together. When asking for the position of an
object at an instant in time, both the interpolated object-space bounds and
the interpolated transform must be provided.

The fact that the keys are not uniformly spaced is handled during traversal by
a simple search to find the enclosing interval and directing the ray to the
appropriate tree. When traversal of the top-level tree reaches an object, the
original time is used to index the object-level BVH, which will be sampled at
that object’s own frequency.
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For simplicity of exposition we described this process assuming that each
time segment gets its own BVH tree. A more sophisticated strategy is to use a
spatiotemporal BVH [13], which uses a single tree for all samples. The latter
structure has the potential of being more memory efficient, but needs more
careful tuning to ensure that rapid changes of motion are handled efficiently.
Another drawback of the STBVH is that the handling of nonuniform time
spacing will be propagated into the traversal logic. Using an array of MBVHs
keeps the handling of nonuniform sample spacing outside the core traversal
logic, which is appealing for implementation simplicity.

12.2.3 MOTION INTERVAL PRUNING

When following the scheme outlined in the previous section, it is possible for
some time intervals of the top-level acceleration structure to be unreachable
in practice. This can already be seen in the difference between the union of all
object samples and the samples required for the top-level BVH in Figure 12-2.
We give another concrete example here to highlight some shortcuts an
implementation should take when possible.

Let us consider a simple but common scenario that mixes data from two
sources: a character exported from animation software on integer frames
and a particle simulation using velocity and acceleration vectors. The latter is
common as particle counts typically change from frame to frame, making
direct interpolation difficult. In this case, the renderer (or the application
feeding the renderer) will synthesize motion samples from the velocity and
acceleration vectors on the fly. The synthesis should take advantage of the
currently configured camera shutter to maximize the usefulness of the
motion samples. To make this concrete, let us suppose that we are exporting
motion blur for frame 110 of an animation. The shutter interval is set to
[109.4, 110]. The character’s motion samples will correspond to {109.0, 110.0}.
However, the particle data will be synthesized between shutter open and
close. Let us assume that we want four motion samples. This give us particle
data on {109.4, 109.6, 109.8, 110.0}. The final union of all samples in the scene
is {109.0, 109.4, 109.6, 109.8, 110.0}. Naively building a MBVH per segment
would lead to four structures, but due to the shutter, the first will never be
accessed. It is therefore valid to prune this interval from the set. In more
general configurations with additional combinations of sample counts and
centered shutter intervals, this pruning can lead to significant savings.

143



RAY TRACING GEMS II

=

Figure 12-3. The combination of linear deformation and linear matrix interpolation can produce a
quadratic motion path.

12.3 COMBINING TRANSFORMATION AND DEFORMATION MOTION

Most MBVH implementations are specialized to linear motion. However, when
combining both transformation and deformation motion blur, it is possible for
the motion path to become curved, as shown in Figure 12-3. Here, we work
through the example of a linearly interpolated matrix that transforms a
linearly interpolated point. This leads to a quadratic motion path that can
nonetheless be bounded efficiently as linear motion.

We start from a linearly interpolating point and matrix:

P(t) = (1 – t)P0 + tP1, (12.1)

M(t) = (1 – t)M0 + tM1. (12.2)

Though interpolating matrices in this way is somewhat naive, it has the
advantage of inducing a purely linear motion regardless of the transform.
More expressive matrix decomposition and interpolation techniques will
create curved motion blur, which requires a more complex analysis. We refer
the reader to the discussion in Physically Based Rendering on animating
transformations [9, Chapter 2.9] for a good introduction to these higher-order
techniques. One observation worth making is that matrix decomposition
followed by interpolation of the constituents does not generally lead to the
same result as interpolating a hierarchy of transform matrices individually.
This leads some rendering software to need to offer additional controls for the
user to hint at the pivot location for rotations, for instance.

Composing Equations 12.1 and 12.2 gives the motion of the point in world
space (where the instance-level acceleration structure must be constructed).
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f (t)

l0(t)

l1(t)

Figure 12-4. Parabolic arcs can always be bounded by two parallel lines (Equations 12.5
and 12.6). Here, the horizontal axis represents time t ∈ [0, 1] and the vertical axis represents one
of the three spatial coordinates. The two parallel lines can be interpreted as the interpolation of
1D bounding intervals along t. Regardless of what shape the parabola takes, one line will
interpolate the endpoints, while the other will be tangent to the curve.

Expanding the expression shows that it is a quadratic arc:

M(t)P(t) =
(
(1 – t)M0 + tM1

) (
(1 – t)P0 + tP1

)
= A + tB + t2C,

where A = M0P0,

B = M0
(
P1 – 2P0

)
+M1P0,

C =
(
M0 –M1

) (
P0 – P1

)
.

(12.3)

Knowing that the point after transformation traces out a parabolic arc, we
now wish to find a way to bound this motion with tight linear bounds. A
quadratic polynomial over [0, 1] can be tightly bounded by two parallel lines
(see Figure 12-4) as follows:

f(t) = a + tb + t2c, (12.4)

l0(t) = a + t(b + c), (12.5)

l1(t) = a + t(b + c) –
1
4
c. (12.6)

Combining the two derivations in Equations 12.5 and 12.6 and noticing that
A + B + C = M1P1, we obtain the following bounding lines for the arc M(t)P(t):

L0(t) = (1 – t)M0P0 + tM1P1, (12.7)

L1(t) = L0(t) –∆, (12.8)

∆ =
1
4
(M0 –M1)(P0 – P1). (12.9)
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Listing 12-1. Transforming interpolating bounds by interpolated matrices.

1 void transformMovingAABB(
2 const AABB objBox[2],
3 const mat4 m[2],
4 AABB worldBox[2])
5 {
6 // Precompute difference matrix (3x3 is sufficient).
7 const mat3 diff = 0.25f * (mat3(m[0]) - mat3(m[1]));
8 worldBox[0].reset();
9 worldBox[1].reset();
10 // Loop over axis-aligned bounding box corners.
11 for (int i = 0; i < 8; i++) {
12 vec3 p0 = objBox[0].corner(i);
13 vec3 p1 = objBox[1].corner(i);
14

15 // Transform each endpoint.
16 vec3 m0p0 = m[0] * p0;
17 vec3 m1p1 = m[1] * p1;
18

19 // Tweak for quadratic arcs.
20 vec3 delta = diff * (p0 - p1);
21

22 // Grow output boxes.
23 worldBox[0].expand(m0p0);
24 worldBox[0].expand(m0p0 - delta);
25 worldBox[1].expand(m1p1);
26 worldBox[1].expand(m1p1 - delta);
27 }
28 }

Looking at the final result, Equation 12.7 is simply the linear interpolation of
the endpoints. The offset∆ in Equation 12.9 is simply the offset needed to
ensure that we capture the quadratic arc. We can also see that the quadratic
arc only occurs when∆ 6= 0, which happens when both M0 6= M1 and P0 6= P1.
In fact, only the upper 3× 3 portion of the matrices is relevant here because
P0 – P1 is a vector. Therefore, only the scale and rotation parts of the
transform can induce this nonlinear behavior.

We conclude this section by providing a simple implementation of the logic
presented in the context of top-level BVH construction. Given a pair of
matrices M and object bounding boxes B, Listing 12-1 returns a pair of
bounding boxes in world space that linearly bound the curved path swept by
the transformed boxes.

12.4 INCOHERENT MOTION

The last corner case we will discuss is incoherent motion, loosely explained
as occurring when primitives that are near one another for one key, end up far

146



CHAPTER 12. MOTION BLUR CORNER CASES

t = 0 t = 1

Figure 12-5. A good partitioning of primitives at one instant in time can degrade arbitrarily badly
under rapid motion, which can severely impact traversal performance if the BVH build process
only considers one instant in time.

apart in the next key and, equivalently, far-apart primitives end up spatially
near. This is a well-known problem in non-motion blurred animations where
BVH refitting between keys can produce a slow BVH and is often solved by
reverting to full rebuilds [7], though other approaches, such as partial
rebuilds [6], do exist. This approach of changing the BVH tree topology does
not map well to MBVHs where our BVH interpolation is essentially an
on-demand refit interpolated between two keys of identical topology.

When evaluating the surface area heuristic (SAH) during MBVH construction,
it is common to simplify the problem by only looking at one instant in time. As
with refitting of non-motion BVHs, one naive approach that is usually effective
is to use the bound information from the first time sample for SAH
calculations and carry over the topology decisions to the second key. Several
papers [5, 13] recommend using the average of both bounds instead for SAH
calculations.

As shown in Figure 12-5, such simple strategies can occasionally fail and
cause the resulting tree to be quite poor for rays that are far from the time at
which the SAH was evaluated. One possibility to improve such situations,
borrowed from the animated but non-motion BVH literature, is to extend the
SAH by considering both endpoints of the linear motion [11, 1]. However, this
extra computation and data can slow down build performance. Considering
that MBVHs tend to capture less than 40 ms of motion (when rendering for a
24 FPS film), the vast majority of motion will be coherent, which means that
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Figure 12-6. Though key 0 (left) and key 1 (right) look similar, the interpolation between points
(center) is done between random pairs of points, causing extremely incoherent motion. This error
in data submission to the renderer was hard to detect because the scene could not be rendered in
a reasonable time without our heuristic.

this extra time spent in BVH build computation will in the common case likely
not justify the resulting minor render time speedup, especially when time to
first pixel also matters. Likewise, more complex structures, such as the
STBVH that also uses temporal splits, introduce extra complexity that is not
needed in most situations.

Our aim is to improve the rare case of incoherent motion by tweaking the
standard hierarchy construction without imposing any new requirements on
the traversal logic. We do not want to negatively affect the performance in the
common case where the motion is mostly coherent among the primitives. We
found that simply measuring the SAH as usual but switching the key between
build levels gave us most of the quality improvements to the tree without
affecting the performance of the build process or render time of coherent
motion. If the key being evaluated is a leaf, we switch to another key in case it
could be further subdivided. Note that this works best when the number of
keys is less than the tree depth, so that all the keys can influence the build
multiple times. This limitation is not too onerous because animators and
physics simulations usually have coherent movement within this 40 ms
window.

Despite the simplicity of our proposal, the achieved speedups can be
dramatic. The impetus for this optimization is a particle motion seafoam
render, shown in Figure 12-6 with simple shading, whose render time with
production shaders and sample rates was originally so long that artists were
unable to wait for it to finish rendering. After our optimization, artists were
able to render it and then see that the incoherent particle motion was due to a
bug in the indexing of particles in the code sending data to the renderer. In
Table 12-1 we present the render times using just 1 spp and simple shading,
which shows us achieving orders of magnitude speedups. Being robust to
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Traditional Alternating Key
Shutter Interval 0 [0, 1] 1 0 [0, 1] 1
Seafoam CPU 0.1 s 221 s 1137 s 2.7 s 1.3 s 1.1s
Seafoam RTX 8000 0.2 s 111 s 443 s — — —
Seafoam RTX 3080 0.1 s 27 s 101 s — — —
Storks CPU 13 s 101 s 185 s 14 s 25 s 19s
Storks RTX 8000 14 s 88 s 185 s — — —
Storks RTX 3080 15 s 22 s 28 s — — —

Table 12-1. Render time when the shutter interval is fixed on key 0, uniformly interpolated
between key 0 and key 1, or on key 1. Seafoam was rendered with 1 spp, while storks used adaptive
sampling so all images had equal noise levels; both used simple shading. The traditional build
method on CPU uses key 0 to build the BVH, while GPU used the standard OptiX 6.8 Trbvh. OptiX,
as of this publication, does not currently have an alternating key build, so no results are reported.

such degenerate cases is extremely important for the perceived robustness of
the renderer. Note that though our heuristic for this extreme example results
in slower performance when rendering only at key 0, it has consistent
performance for a random time value. In contrast, heuristics that only
consider a single instant in time only achieve high performance near that
instant and have dramatically slower performance everywhere else.

Our second example comes from an actual movie production. In this scene,
artists reported a single frame being much slower to render than the rest of
the animation. Upon closer inspection, the character’s hair undergoes a rapid
change within that one frame (see Figure 12-7). Again, without the presented
heuristic, the frame would render too slowly to even inspect if the image was
correct or not.

Figure 12-7. The character’s hair, modeled as B-spline curves, undergoes a rapid, sub-frame
transition over the course of just two motion keys in this example from the movie Storks. (Image
courtesy Warner Animation Group. ©2016 Warner Bros. Ent. Inc. All rights reserved.)

149



RAY TRACING GEMS II

12.5 CONCLUSION

The techniques in this chapter cover some of the less-discussed aspects of
motion blur acceleration structures. As ray tracing APIs and hardware
implementations take over the low-level details of ray intersection in the
coming years, we expect these types of discussions of corner cases to be
relevant to establishing best practices across implementations.
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CHAPTER 13

FAST SPECTRAL UPSAMPLING
OF VOLUME ATTENUATION
COEFFICIENTS
Johannes Jendersie
NVIDIA

ABSTRACT

Most of the input data for rendering is authored in tristimulus colors. In a
spectral renderer these are usually converted into spectra that have more
than three degrees of freedom while maintaining the authored appearance
under a white illuminant. For volumes there are two additional problems:
(1) the nonlinear color shift over the distance traveled through the volume and
(2) the large amount of data or procedural data. Problem 1 makes it difficult
to preserve the appearance, whereas problem 2 makes it infeasible to
precompute the spectral data. This chapter shows that using box-like spectra
produces the closest fit to a tristimulus render of the tristimulus data. We
propose to optimize two threshold wavelengths depending on the input color
space that are then used to convert the volume coefficients on the fly.

13.1 INTRODUCTION

Our goal is to maximize the similarity of a spectral volume rendering
compared to the rendering in tristimulus color space. Thereby, a volume is
parameterized by coefficients σt = σs + σa in [0,∞], where σt is the attenuation
(also called extinction), σs is the scattering, and σa the absorption coefficient.

The amount of light of wavelength λ reaching a specific distance ℓ along a ray
is called transmittance T. Without loss of generality, let us consider
homogeneous media, where the transmittance is described by the
Beer–Lambert law:

T(ℓ,λ) = e–ℓ·σt(λ). (13.1)

Clearly, the chromaticity changes over distance, if σt is different for different
wavelengths due to the nonlinearity of the transmittance. When rendering in
RGB color space, the attenuation coefficient is a triple σσσt = (σr,σg,σb). An
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Figure 13-1. Volume attenuation σσσt = (1, 10,∞) of (a) yellow light and (b) with spectral
wavelength λ = 580 nm (σt(λ) = 5.5). In (a) red light is absorbed the least, producing a color shift.

example is demonstrated in Figure 13-1a. Figure 13-1b shows a spectral
rendering example for a monochromatic yellow illuminant. The perceived
color at the very left is the same as in Figure 13-1a, but there is no color shift
to the right.

Further, we desire linearitym(σσσt) = m(σσσs) +m(σσσa) of the solution, wherem(x) is
the mapping from RGB to spectral colors. If this would not be the case, we
could still convert only two of the values and derive the third one, but this
would make the behavior less predictable when switching between
parameterizations.

Another problem when rendering inhomogeneous volumes is the vast amount
of data. When converting tristimulus values into spectra, those usually
require more memory for their representation. Another possibility is the
existence of procedural data for which we want to compute the conversion on
the fly. Therefore, the solution should be able to directly convert colors fast,
without an expensive optimization.

13.1.1 KNOWN SOLUTIONS

The problem of upsampling a tristimulus color into a spectrum is well
researched and has received increased attention in the last few years [5, 2].
Most of the approaches aim to create smooth spectra and to enforce energy
preservation of reflectance values, for example by keeping the spectral values
in [0, 1]. In contrast, our target is to convert attenuation coefficients in [0,∞].

In the book Physically Based Rendering [6], Chapter 5 gives a practical
introduction into spectral rendering, where for the conversion of RGB to
spectral colors, the method from Smits [8] is used. It converts RGB colors fast
by creating a linear combination of seven precomputed discrete spectra. The
focus of the method is to produce smooth spectra that will exhibit strong color
shifts in volume renderings.
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The approach of Otsu et al. [5] relies on measured spectra that are converted
into base functions for runtime conversion. Selecting and evaluating the base
functions is relatively costly if done for each fetch in an inhomogeneous
volume renderer, and it would require measured spectra of volume
attenuation coefficients. However, their approach would produce more
realistic spectra than our method. Jakob and Hanika [2] also proposed an
approach that would be feasible with respect to data amount and evaluation
speed using a nonlinear parametric function. However, it is applicable to
neither procedural data nor the unbounded attenuation coefficients.

The approach most similar to our solution is that of MacAdam [3], who
showed that the (inverted) box function maximizes the brightness of a target
saturation. Though we are using box-shaped spectra, too, we apply the
conversion to attenuation coefficients. Instead of optimizing the spectrum for
a single target color, we optimize thresholds to be used over all colors to
achieve a very fast conversion algorithm.

13.2 PROPOSED SOLUTION

Equation 13.1 already introduced how light of a single wavelength or channel
is attenuated. Let us now draw a connection between the tristimulus and the
spectral models. Formally, let I(λ) be the spectral illuminant and c(λ) any
response curve to convert a spectrum into one of the tristimulus values. This
can be any curve for XYZ or RGB space directly as defined by CIE 1931 [7, 4, 1].
Then, the light reaching a specific depth in the volume converted into a
tristimulus color channel c is

Lc(ℓ) =
∫

c(λ) · I(λ) · e–ℓ·σt(λ)dλ. (13.2)

Alternatively, we have

L′c(ℓ) = Ic · e–ℓ·σt(c) (13.3)

to compute the same value in the respective color channel directly. Setting Lc
and L′c to be equal, we get

Ic · e–ℓ·σt(c) =
∫

c(λ) · I(λ) · e–ℓ·σt(λ)dλ, (13.4)

which can only become true if σt(c) = σt(λ) is a constant wherever c(λ) · I(λ) 6= 0
and if Ic =

∫
c(λ)I(λ)dλ. The second condition means that Ic must be the

channel response of the used illuminant. It is reasonable to use Ic = 1
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together with the white point of the target color space, which for example
would be D65 for sRGB color space.

As suggested by Equation 13.4, we have to set σt(λ) = σt(c) wherever c(λ) > 0.
However, we have three color channels with different attenuation coefficients
σr,σg, and σb that overlap each other. We found that selecting the coefficient
of the color channel with the highest response value at the target wavelength
works best. Effectively, this subdivides the visible spectrum into three parts.
Thus, the function executed for conversion is

σt(λ) =


σb if λ < λ0,

σg if λ0 < λ < λ1,

σr otherwise,

(13.5)

where the thresholds λ0 and λ1 are subject to a prior optimization process.

13.2.1 OPTIMIZING THRESHOLD VALUES

As a target function, we propose to minimize the deviation of the chromaticity
xy of the three primaries under the color spaces’ white illuminant I:

argmin
λ0,λ1

(
‖s2xy(I· boxλ0λmin

) – xyb‖2.

+‖s2xy(I· boxλ1λ0 ) – xyg‖2

+‖s2xy(I· boxλmax
λ1

) – xyr‖2
)
,

with boxx1x0 (λ) =

1 if λ ∈ [x0, x1),

0 otherwise,

(13.6)

where s2xy is the conversion procedure from a spectrum to a chromaticity
value (spectrum→ XYZ→ xy) and xyr, xyg, and xyb are the defined
chromaticity coordinates of the primaries (usually red, green and blue). The
box functions with shared boundaries separate the spectrum into three
disjoint intervals over the wavelengths. The difference to the primary makes
sure to select those wavelengths that have a dominant effect on the
respective color channel.

13.2.2 EXAMPLE OPTIMIZED VALUES

We optimized the values for a spectrum of λ ∈ [380 nm, 780 nm] with 5 nm
discretization steps for selected color spaces, yielding the thresholds in
Table 13-1.
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XYZ sRGB ACES ACEScg Rec2020
λ0 500 485 505 505 500
λ1 575 595 550 570 570

Table 13-1. Optimized thresholds for selected color spaces.

13.3 RESULTS

The arguments in Section 13.2 show that only constant spectra will reproduce
the color shift over distances ℓ within a volume. The box-shaped spectra will
maximize the similarity for a tristimulus color space, because they assign the
largest possible constant support region for each color channel. Hence, a
smoother spectrum must deviate more. We use the smooth function to
demonstrate the differences:

σtI(λ) =



σb if λ < λb,

s
(
σb,σg,

λ–λb
λg–λb

)
if λb < λ < λg,

s
(
σg,σr,

λ–λg
λr–λg

)
if λg < λ < λr,

σr otherwise,

(13.7)

where s(x0, x1, t) = x0+ (x1– x0) · (6t5–15t4+10t3) is the smootherstep
interpolation function and λr,λg,λb are optimized values for the three
support wavelengths of the color channels.

Figure 13-2 shows an example spectrum and renderings with both types of
spectral representations. Though many parameterizations look similar,
the smooth spectrum (top) fails to approximate the intent for some
configurations. Figure 13-3 plots the transmittance over ℓ for different
coefficients. Note that the smooth version deviates most where the red and
blue channels are both different from the green one.

13.4 CONCLUSION

This chapter showed that we can use a simple box-shaped spectrum to
directly select the volume attenuation coefficient for a given wavelength λ
(Equation 13.5). This is both extremely fast and highly similar to the
tristimulus authored data. Further, it has the advantage of being linear such
that we can convert individual coefficients and sums of coefficients with the
same result.
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Figure 13-2. Comparison of RGB and spectral rendering for volume coefficients given in RGB.
The proposed method using box spectra (bottom) is closer to the RGB reference than the smooth
spectrum (top).

Figure 13-3. Transmittance for a number of selected attenuation coefficients in sRGB color space
(left boxes) and their difference to the RGB rendering (right boxes). Each block shows RGB, σt
(Equation 13.5), and σtI (Equation 13.7) from top to bottom.
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CHAPTER 14

THE REFERENCE PATH TRACER
Jakub Boksansky and Adam Marrs
NVIDIA

ABSTRACT

The addition of ray tracing to a real-time renderer makes it possible to create
beautiful dynamic effects—such as soft shadows, reflections, refractions,
indirect illumination, and even caustics—that were previously not possible.
Substantial tuning and optimization are required for these effects to run in
real time without artifacts, and this process is simplified when the real-time
rendering engine can progressively generate a “known-correct” reference
image to compare against. In this chapter, we walk through the steps to
implement a simple, but sufficiently featured, path tracer to serve as such
a reference.

14.1 INTRODUCTION

With the introduction of the DirectX Raytracing (DXR) and Vulkan Ray Tracing
(VKR) APIs, it is now possible to integrate ray tracing functionality into
real-time rendering engines based on DirectX and Vulkan. These new APIs
provide the building blocks necessary for ray tracing, including the ability to
(1) quickly construct spatial acceleration structures and (2) perform fast ray
intersection queries against them. Critically, the new APIs provide ray tracing
operations with full access to memory resources (e.g., buffers, textures) and
common graphics operations (e.g., texture sampling) already used in
rasterization. This creates the opportunity to reuse existing code for geometry
processing, material evaluation, and post-processing and to build a hybrid
renderer where ray tracing works in tandem with rasterization.

A noteworthy advantage of a hybrid ray–raster renderer is the ability to
choose how the scene is sampled. Rasterization provides efficient spatially
coherent ray and surface material evaluations from a single viewpoint,1

whereas ray tracing provides convenient incoherent ray–surface evaluation
from any point in any direction. The flexibility afforded by arbitrary ray casts

1NVIDIA’s RTX 2000 series added the ability to rasterize four arbitrary viewpoints at once, but generalized
hardware multi-view rasterization is not common.
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Figure 14-1. An interior scene from Evermotion’s Archinteriors Vol. 48 for the Blender
package [5] rendered with our reference path tracer using 125,000 paths per pixel.

enables a hybrid real-time renderer to more naturally generate and
accumulate accurate samples of a scene to construct a reference image while
not being limited by the artifacts caused by discretization during rasterization
(e.g., see shadow mapping).

In this chapter, we discuss how to implement a path tracer in a hybrid
renderer to produce in-engine reference images for comparison with the
output of new algorithms, approximations, and optimizations used in the
real-time code path. We discuss tricks for handling self-intersection,
importance sampling, and the evaluation of many light sources. We focus on
progressively achieving “ground truth” quality and prefer simple,
straightforward code over optimizations for runtime performance. Although
we do not discuss optimization or the reduction of artifacts such as noise,
improvements in these areas are described in other chapters of this book.

Figure 14-1 is a reference image of an interior scene from Evermotion’s
Archinteriors Vol. 48 for the Blender package [5]. The image is rendered
progressively by our DXR-based path tracer and includes 125,000 paths per
pixel with up to ten bounces per path. To help you add a reference path tracer
to your renderer, the full C++ and HLSL source code of our path tracer is
freely available at the book’s source code website and at
https://github.com/boksajak/referencePT.
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Camera Camera
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Constructed
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Light Path
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Figure 14-2. Monte Carlo Unidirectional Path Tracing. Left: light energy bounces around the
environment on its way to the camera. Right: the path tracer’s model of the light transport from
the left diagram. Surface material BRDFs are stochastically sampled at each point where a ray
intersects a surface.

14.2 ALGORITHM

When creating reference images, it is important to choose an algorithm that
best matches the use case. A path tracer can be implemented in many ways,
and that variety of algorithms is accompanied by an equivalent amount of
trade-offs. An excellent overview of path tracing can be found in the book
Physically Based Rendering [11]. Since this chapter’s focus is simplicity and
high image quality, we’ve chosen to implement a Monte Carlo Unidirectional
Path Tracer. Let’s break down what this means—starting from the end and
working backward:

1. Path Tracing simulates how light energy moves through an environment
(also known as light transport) by constructing “paths” between light
sources and the virtual camera. A path is the combination of several ray
segments. Ray segments are the connections between the camera,
surfaces in the environment, and/or light sources (see Figure 14-2).

2. Unidirectionalmeans paths are constructed in a single (macro) direction.
Paths can start at the camera and move toward light sources or vice
versa. In our implementation, paths begin exclusively at the camera.
Note that this is opposite the direction that light travels in the
physical world!

3. Monte Carlo algorithms use random sampling to approximate difficult or
intractable integrals. In a path tracer, the approximated integral is the
rendering equation, and tracing more paths (a) increases the accuracy of
the integral approximation and (b) produces a better image. Since paths
are costly to compute, we accumulate the resulting color from each path
over time to construct the final image.
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14.3 IMPLEMENTATION

Before implementing a reference path tracer in your engine, it is helpful to
understand the basics of modern ray tracing APIs. DXR and VKR introduce
new shader stages (ray generation, closest-hit, any-hit, and intersection),
acceleration structure building functions, ray dispatch functions, and shader
management mechanisms. Since these topics have been covered well in
previous literature, we recommend Chapter 3, “Introduction to DirectX
Raytracing,” [19] of Ray Tracing Gems [6], the SIGGRAPH course of the same
name [18], and Chapter 16 of this book to get up to speed. For a deeper
understanding of how ray tracing works agnostic of API specifics, see
Shirley’s Ray Tracing in One Weekend series [13].

The code sample accompanying this chapter is implemented with DXR and
extends the freely available IntroToDXR sample [10]. At a high level, the steps
necessary to perform GPU ray tracing with the new APIs are as follows:

> At startup:

– Initialize a DirectX device with ray tracing support.

– Compile shaders and create the ray tracing pipeline state object.

– Allocate memory for and initialize a shader table.

> Main loop:

– Update bottom-level acceleration structures (BLAS) of geometry.

– Update top-level acceleration structures (TLAS) of instances.

– Dispatch groups of ray generation shaders.

With the basic execution model in place, the following sections describe the
implementation of the key elements needed for a reference path tracer.

14.3.1 ACCELERATION STRUCTURE MEMORY

In-depth details regarding acceleration structure memory allocation are often
omitted (rightfully so) from beginner ray tracing tutorials; however, careful
acceleration structure memory management is a higher-priority topic when
integrating a GPU-based path tracer into an existing rendering engine. There
are two scenarios where memory is allocated for acceleration structures:
(1) to store built BLAS and TLAS and (2) for use as intermediate “scratch”
buffers by the API runtime during acceleration structure builds.
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Memory for built acceleration structures can be managed using the same
system as memory for geometry, since their lifetime is coupled with the
meshes they represent. Scratch buffers, on the other hand, are temporary
and may be resized or deallocated entirely once acceleration structure builds
are complete. This presents an opportunity to decrease the total memory use
with more adept management of the scratch buffer.

A basic scratch buffer management strategy allocates a single memory block
of predefined size to use for building all acceleration structures. When the
memory needed to build the current acceleration structures exceeds the
predefined capacity, the memory block is increased in size. Acceleration
structures typically require a small amount of memory (relative to the
quantity available on current GPUs), and the maximum memory use can be
predetermined in many cases with automated fly-throughs of scenes.
Nevertheless, this approach’s strengths and weaknesses stem from its
simplicity. Since any part of the memory block may be in use, buffer resize
and/or deallocation operations must be deferred until all acceleration
structures are built—leading to worst-case memory requirements.

To reduce the total memory use, an alternative approach instead serializes
BLAS builds (to some degree) and reuses scratch buffer memory for multiple
builds. Barriers are inserted between builds to ensure that the scratch
memory blocks are safe to reuse before upcoming BLAS build(s) execute.
This process may occur within the scope of a single frame or across several
frames. The number of BLAS builds that execute in parallel versus the
maximum memory needed to build the current group of BLAS is a balancing
act driven by the application’s constraints and the target hardware’s
capabilities. Amortizing builds across multiple frames is especially useful
when a scene contains a large number of meshes.

14.3.2 PRIMARY RAYS

Time to start tracing rays! We begin by implementing a ray generation shader
that traces primary (camera) rays. This step is a quick way to get our first ray
traced image on screen and confirm that the ray tracing pipeline is working.

To make direct comparisons with output from a rasterizer, we construct
primary rays by extracting the origin and direction from the same 4× 4 view
and projection matrices used by the rasterizer. We compose primary ray
directions using the camera’s basis, the image’s aspect ratio, and the
camera’s vertical field of view (fov). The implementation is shown in
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Listing 14-1. HLSL code to generate primary rays that match a rasterizer’s output.

1 float2 pixel = float2(DispatchRaysIndex().xy);
2 float2 resolution = float2(DispatchRaysDimensions().xy);
3

4 pixel = (((pixel + 0.5f) / resolution) * 2.f - 1.f);
5 generatePinholeCameraRay(pixel);
6

7 RayDesc generatePinholeCameraRay(float2 pixel)
8 {
9 // Set up the ray.
10 RayDesc ray;
11 ray.Origin = gData.view[3].xyz;
12 ray.TMin = 0.f;
13 ray.TMax = FLT_MAX;
14

15 // Extract the aspect ratio and fov from the projection matrix.
16 float aspect = gData.proj[1][1] / gData.proj[0][0];
17 float tanHalfFovY = 1.f / gData.proj[1][1];
18

19 // Compute the ray direction.
20 ray.Direction = normalize(
21 (pixel.x * gData.view[0].xyz * tanHalfFovY * aspect) -
22 (pixel.y * gData.view[1].xyz * tanHalfFovY) +
23 gData.view[2].xyz);
24

25 return ray;
26 }

Listing 14-1. Note that the aspect ratio and field of view are extracted from
the projection matrix and the camera basis right (gData.view[0].xyz), up
(gData.view[1].xyz), and forward (gData.view[2].xyz) vectors are read
from the view matrix.

If the view and projection matrices are only available on the GPU as a single
combined view-projection matrix, the inverse view-projection matrix (which is
typically also available) can be applied to “unproject” points on screen from
normalized device coordinate space. This is not recommended, however, as
near and far plane settings stored in the projection matrix cause numerical
precision issues when the transformation is reversed. More information on
constructing primary rays in ray generation shaders can be found in
Chapter 3.

To test that primary rays are working, it is useful to include visualizations of
built-in DXR variables. For example, the ray hit distance to the nearest
surface (RayTCurrent()) creates an image similar to a depth buffer. For more
colorful visualizations, we output a unique color for each instance index of the
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Figure 14-3. Visualizing geometry instance indices (left) and triangle barycentrics (right) is useful
when testing that primary ray tracing is working properly.

intersected geometry (InstanceIndex()) and triangle barycentrics
(BuiltInTriangleIntersectionAttributes.barycentrics). This is shown
in Figure 14-3. A function for hashing an integer to a color, called
hashToColor(int), is available in our code sample.

It is also helpful to implement a split-view or quick-swap option to directly
compare ray traced and rasterized images next to each other. Even when
displaying only the albedo or hit distance, this comparison mode can reveal
subtle mismatches between the ray traced and rasterized outputs. For
example, geometry may be absent or flicker due to missing barriers or race
conditions associated with acceleration structure builds. Another common
problem is for instanced meshes to be positioned incorrectly because the DXR
API expects row-major transformation matrices instead of HLSL’s typical
column-major packed matrices.

14.3.3 LOADING GEOMETRY AND MATERIAL PROPERTIES

Now that primary rays are traversing acceleration structures and intersecting
geometry in the scene, the next step is to load the geometry and material
properties of the intersected surfaces. In our code sample, we use a bindless
approach to access resources on the GPU in both ray tracing and
rasterization. This is implemented with a set of linear buffers that contain all
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Vertex Buffers VB 0 VB 1 ...VB 2

IB 0 IB 1 ...IB 2

Mat 0 Mat 1 Mat 2

Material Index

10 LSB

Geometry Index

Index Buffers

Material Buffers

Instance ID

14 MSB

Figure 14-4. Bindless access of geometry and material data using an encoded instance ID.

geometry and material data used in the scene. The buffers are then marked
as accessible to any invocation of any shader.

The main difference when ray tracing is that the index and vertex data of the
geometry (e.g., position, texture coordinates, normals) must be explicitly
loaded in the shaders and interpolated manually. To facilitate this, we encode
and store the buffer indices of the geometry and material data in the 24-bit
instance ID parameter of each TLAS geometry instance descriptor. Illustrated
in Figure 14-4, the index into the array of buffers containing the geometry
index and vertex data is packed into the 14 most significant bits of the
instance ID value, and the material index is packed into the 10 least significant
bits (note that this limits the number of unique geometry and material entries
to 16,384 and 1,024 respectively). The encoded value is then read with
InstanceID() in the closest (or any) hit shader, decoded, and used to load the
proper material and geometry data. This encoding scheme is implemented in
HLSL with two complementary functions shown in Listing 14-2.

Listing 14-2. HLSL to encode and decode the geometry and material indices.

1 inline uint packInstanceID(uint materialID, uint geometryID) {
2 return ((geometryID & 0x3FFF) << 10) | (materialID & 0x3FF);
3 }
4

5 inline void unpackInstanceID(uint instanceID, out uint materialID,
6 out uint geometryID) {
7 materialID = instanceID & 0x3FF;
8 geometryID = (instanceID >> 10) & 0x3FFF;
9 }
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Figure 14-5. Visualizations of various properties output by the ray generation shader. From left to
right: base color, normal, world-space position, and texture coordinates.

To confirm that the geometry and material data have been loaded and
interpolated correctly, it is useful to output G-buffer–like visualizations from
the ray generation shader of geometric data (e.g., world-space position,
geometric normal, texture coordinates) and material properties (e.g., albedo,
shading normal, roughness, etc.). These images can be directly compared
with visualizations of a G-buffer generated with a rasterizer, as shown in
Figure 14-5.

14.3.4 RANDOM NUMBER GENERATION

At the core of every path tracer, there is a random number generator (RNG).
Random numbers are necessary to drive the sampling of materials, lights,
procedurally generated textures, and much more as the path tracer simulates
light transport. A high-quality RNG with a long period is an essential tool in
path tracing. It ensures that each sample taken makes meaningful progress
toward reducing noise and improving its approximation of the rendering
equation without bias.

We rely on pseudo-random numbers, which have same statistical properties
as real random numbers and are generated deterministically using one initial
seed value. A common way to generate pseudo-random numbers on the GPU
is to compute them in shader code at runtime. A fast and popular
shader-based method is an xorshift function or linear congruential generator
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Listing 14-3. Initialization of the random seed for an xorshift-based RNG for the given pixel and
frame number. The seed provides an initial state for the RNG and is modified each time a new
random number is generated.

1 uint jenkinsHash(uint x) {
2 x += x << 10;
3 x ^= x >> 6;
4 x += x << 3;
5 x ^= x >> 11;
6 x += x << 15;
7 return x;
8 }
9

10 uint initRNG(uint2 pixel, uint2 resolution, uint frame) {
11 uint rngState = dot(pixel, uint2(1, resolution.x)) ^ jenkinsHash(frame);
12 return jenkinsHash(rngState);
13 }

(LCG) seeded with a hash function [12]. First, the random seed for the RNG is
established by hashing the current pixel’s screen coordinates and the frame
number (see Listing 14-3). This hashing ensures a good distribution of
random numbers spatially across neighboring pixels and temporally across
subsequent frames. We use the Jenkins’s one_at_a_time hash [8], but other
fast hash functions, such as the Wang hash [17], can be used as well.

Next, each new random number is generated by converting the seed into a
floating-point number and hashing it again (see Listing 14-4). Notice how the
rand function modifies the RNG’s state. Since the generated number is a
sequence of random bits forming an unsigned integer, we need to convert this
to a floating-point number in the range [0, 1). This is achieved by using

Listing 14-4. Generating a random number using the xorshift RNG. The rand function invokes
the xorshift function to modify the RNG state in place and then converts the result to a random
floating-point number.

1 float uintToFloat(uint x) {
2 return asfloat(0x3f800000 | (x >> 9)) - 1.f;
3 }
4

5 uint xorshift(inout uint rngState)
6 {
7 rngState ^= rngState << 13;
8 rngState ^= rngState >> 17;
9 rngState ^= rngState << 5;
10 return rngState;
11 }
12

13 float rand(inout uint rngState) {
14 return uintToFloat(xorshift(rngState));
15 }
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the 23 most significant bits as a mantissa of the floating-point number
representation and setting the sign bits and exponent to zero. This generates
numbers in the [1, 2) range, so we subtract one to shift numbers into the
desired [0, 1) range.

In our code sample, we also include an implementation of the recent PCG4D
generator [7]. This RNG uses an input vector of four numbers (the pixel’s
screen coordinates, the frame number, and the current sample number) and
returns four random numbers. See Listing 14-5.

Listing 14-5. Implementation of the PCG4D RNG [7]. An input vector of four numbers is
transformed into four random numbers.

1 uint4 pcg4d(uint4 v)
2 {
3 v = v * 1664525u + 1013904223u;
4

5 v.x += v.y * v.w;
6 v.y += v.z * v.x;
7 v.z += v.x * v.y;
8 v.w += v.y * v.z;
9

10 v = v ^ (v >> 16u);
11 v.x += v.y * v.w;
12 v.y += v.z * v.x;
13 v.z += v.x * v.y;
14 v.w += v.y * v.z;
15

16 return v;
17 }

The four inputs PCG4D requires are readily available in the ray generation
shader; however, they must be passed into other shader stages (e.g., closest
and any-hit). For best performance, the payload that passes data between ray
tracing shader stages should be kept as small as possible, so we hash the
four inputs to a more compact seed value before passing it to the other
shader stages. A discussion of different strategies for hashing these
parameters and updating the hash for drawing subsequent samples is
discussed in the recent survey by Jarzynski and Olano [7].

Both of the RNGs we’ve discussed generate uniform distributions (white
noise) with long periods. The random numbers are generally well distributed,
but there is no guarantee that similar random numbers won’t appear in
nearby pixels (spatially or temporally). As a result, it can be beneficial to also
use sequences of random numbers to combat this problem. Low-discrepancy
sequences, such as Halton or Sobol, are commonly used as well as blue
noise. These help improve convergence speed but are typically only useful for
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sampling in a few dimensions. Some sequences, such as blue noise, must be
precalculated and therefore have limited length. More information on using
blue noise to improve sampling can be found in Chapter 24.

14.3.5 ACCUMULATION AND ANTIALIASING

With the ability to trace rays and a dependable random number generator in
hand, we now have the tools necessary to sample a scene, accumulate the
results, and progressively refine an image. Shown in Listing 14-6, progressive
refinement is implemented by adding the image generated by each frame to
an accumulation buffer and then normalizing the accumulated colors before
displaying the image shown on screen. Figure 14-6 compares a single frame’s
result with the normalized accumulated result from many frames.

Listing 14-6. Implementing an accumulation buffer (ray generation shader).

1 uint2 LaunchIndex = DispatchRaysIndex().xy;
2 // Trace a path for the current pixel.
3 // ...
4 // Get the accumulated color.
5 float3 previousColor = accumulationBuffer[LaunchIndex].rgb;
6

7 // Add the current image's results.
8 float3 accumulatedColor = previousColor + radiance;
9 accumulationBuffer[LaunchIndex] = float4(accumulatedColor, 1.f);
10

11 // Normalize the accumulated results to get the final result.
12 return linearToSrgb(accumulatedColor / gData.accumulatedFrames);

Figure 14-6. A single path traced frame (left) and the normalized accumulated result from one
million frames (right).
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The number of accumulated frames is used to ensure that each frame is
weighted equally when converting the accumulation buffer’s contents to the
final image. We use a high-precision 32-bit floating-point format for our
accumulation buffer to allow for a large number of samples to be included.
Note that typical render target formats in the rasterization pipeline can
depend on hardware auto-conversion from linear to sRGB color spaces when
writing results. This is not currently supported for the unordered access view
types commonly used for output buffers in ray tracing, so it may be necessary
to manually convert the final result to sRGB. This is implemented in our code
sample by the linearToSrgb function.

In addition to amortizing the high cost of computing paths, accumulating
images generated by randomly sampling the scene also naturally antialiases
the final result. Shown in Listing 14-7, antialiasing is now trivial to implement
by randomly jittering ray directions (of primary rays as well as rays traced for
material evaluation). For primary rays, this robust sampling not only removes
jagged edges caused by geometric aliasing, but also mitigates the moiré
patterns that appear on undersampled textured surfaces.

Listing 14-7. Jittering primary ray directions for antialiasing.

1 float2 pixel = float2(DispatchRaysIndex().xy);
2 float2 resolution = float2(DispatchRaysDimensions().xy);
3

4 // Add a random offset to the pixel's screen coordinates.
5 float2 offset = float2(rand(rngState), rand(rngState));
6 pixel += lerp(-0.5.xx, 0.5.xx, offset);
7

8 pixel = (((pixel + 0.5f) / resolution) * 2.f - 1.f);
9 generatePinholeCameraRay(pixel);

This convenient property of accumulation makes it possible to forgo texture
level of detail strategies (such as mipmapping and ray differentials) and
sample only the highest-resolution version of any texture. Since current
graphics hardware and APIs do not support automatic texture level of detail
mechanisms in ray tracing, the benefits of accumulation make it possible for
our reference path tracer to avoid the added code and complexity related to
implementing it (at the cost of performance). Should improved performance
and support for texture level of detail become necessary (e.g., to implement
ray traced reflections in the real-time renderer), suitable methods are
available in Ray Tracing Gems [2], The Journal of Computer Graphics
Techniques [1], and Chapters 7 and 10 of this book.
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ray = generatePrimaryRay();
throughput = 1.0;
radiance = 0.0;
for bounce ∈ {1 . . .MAX_BOUNCES} do

Trace(ray);
if hit surface then

brdf, brdfPdf, ray = SampleBrdf();
throughput *= brdf / brdfPdf;

else
radiance += throughput * skyColor;
break;

return radiance;

Figure 14-7. The basic path tracing loop.

14.3.6 TRACING PATHS

Now we are ready to trace rays beyond primary rays and create full paths
from the camera to surfaces and lights in the environment. To accomplish
this, we extend our existing ray generation shader and implement a basic
path tracing loop, illustrated in Figure 14-7. The process begins by initializing
a ray to be cast from the camera into the environment (i.e., a primary ray).
Next, we enter a loop and ray tracing begins. If a ray trace misses all surfaces
in the scene, the sky’s contribution is added to the result color and the loop is
terminated. If a ray intersects geometry in the scene, the intersected
surface’s material properties are loaded and the associated bidirectional
reflectance distribution function (BRDF) is evaluated to determine the
direction of the next ray to trace along the path. The BRDF accounts for the
composition of the material, so for rough surfaces, the reflected ray direction
is randomized and then attenuated based on object color. Details on BRDF
evaluation are described in the next section.

For a simple first test of the path tracing loop implementation, set the sky’s
contribution to be fully white (float3(1, 1, 1)). This creates lighting
conditions commonly referred to as the white furnace because all surfaces in
the scene are illuminated with white light equally from all directions. Shown
in Figure 14-8, this lighting test is especially helpful when evaluating the
energy conservation characteristics of BRDF implementations. After the
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Figure 14-8. The interior scene rendered using the white furnace test with white diffuse
materials applied to all surfaces.

white furnace test, try loading values from an environment map in place of a
fixed sky color.

Note the two variables, radiance and throughput, declared and initialized at
the beginning of the path tracing loop in Figure 14-7. Radiance is the final
intensity of the light energy presented on screen for a given path. Radiance is
initially zero and increases as light is encountered along the path being
traced. Throughput represents the amount of energy that may be transferred
along a path’s ray segment after interacting with a surface. Throughput is
initialized to one (the maximum) and decreases as surfaces are encountered
along the path. Every time the path intersects a surface, the throughput is
attenuated based on the properties of the intersected surface (dictated by the
material BRDF at the point on the surface). When a path arrives at a light
source (i.e., an emissive surface), the throughput ismultiplied by the intensity
of the light source and added to the radiance. Note how simple it is to support
emissive geometry using this approach!

SURFACE MATERIALS

To render a scene with a variety of realistic materials, we implement BRDFs
that describe how light interacts with surfaces. Most surfaces in the physical
world reflect some subset of the incoming light (or light wavelengths) in a set
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Specular Lobe

Diffuse Lobe

Reflecting RayIncident Ray

Figure 14-9. Importance sampling of a BRDF involves selecting a direction of the reflecting ray,
based on the incident ray direction and surface properties. The image shows several possible ray
directions for the specular lobe (black arrows) and one selected direction highlighted in blue.

of directions defined by the surface’s micro-scale geometric composition.
These parameters of variation create an incredible amount of distinct colors
and appearances. To simulate this behavior and achieve a desired surface
appearance, we (a) attenuate ray throughput according to a material BRDF
and (b) reflect incident light within the solid angle determined by the material
BRDF (often called a lobe). For example, metals and mirrors reflect most
incoming light in the direction of perfect reflection, whereas rough matte
surfaces reflect light in all directions over the hemisphere above the surface.

To properly attenuate the ray throughput, we importance-sample the
material’s BRDF lobes by evaluating the brdf and brdfPdf values shown in
Figure 14-7. Importance sampling ensures that each new ray along the path
contributes in a meaningful way to the evaluation of the surface material [9].
brdfPdf is a probability density function (PDF) of selecting a particular ray
direction over all other possible directions, and it is specific to the importance
sampling method being used. In our sample code, this process is
encapsulated in the sampleBrdf function. This function generates a direction
for the next ray to be traced along a path and computes the BRDF value
corresponding to the given combination of incident and reflected ray
directions. See Figure 14-9.

To ease into BRDF implementation, we recommend starting with diffuse
materials. In this case, incoming light is reflected equally in all directions,
which is simpler to implement. We implement this behavior by generating ray
directions within a cosine weighted hemisphere (see sampleHemisphere in
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the sample code) and using a PDF of brdfPdf = cosω/π. This distributes rays
across the entire hemisphere above the surface proportional to the cosine
term found in the rendering equation. The Lambertian term
brdfWeight = diffuseColor/π can be pre-divided by the PDF and multiplied by
the cosine term, resulting in brdfWeight/brdfPdf being equal to the diffuse
color of the surface.

To support a wide range of physically based materials, we employ a
combination of specular and diffuse BRDFs commonly used in games as
detailed by Boksansky [4]. Note that these implementations return BRDF
values already divided by the PDF, while also accounting for the rendering
equation’s cosine term, so these calculations are not explicitly shown in our
code sample.

SELECTING BRDF LOBES

Many material models are composed of two or more BRDF lobes, and it is
common to evaluate separate lobes for the specular and diffuse components
of a material. In fact, when rendering semitransparent or refractive objects,
an additional bidirectional transmittance distribution function (BTDF) is also
evaluated. This is discussed in more detail in Chapter 11.

Since the reference path tracer accumulates images, we are able to
progressively sample all lobes of a material’s BRDF while only tracing a single
ray from each surface every frame. With this comes a new choice: which
BRDF lobe should be sampled on each intersection? A simple solution is to
randomly choose one of the lobes, each with equal probability; however, this
may sample a component of the overall BRDF that ultimately doesn’t
contribute much to the final result. For example, highly reflective metals do
not have a diffuse component, so the diffuse lobe does not need to be
sampled at all.

To address this, we (a) evaluate a subset of each lobe’s terms ahead of
selection to use to (b) estimate the lobe’s contribution and then (c) use the
estimate to set the probability of selecting the lobe. Lobes with higher
estimated contributions receive higher probabilities and are selected more
often. This approach requires a careful balance between the number of terms
evaluated before selection and the efficiency of the entire selection process.
Note that some terms can only be evaluated once the reflected ray direction is
known, which is expensive to generate.
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pSpecular = getBrdfProbability();
if rand(rngState) < pSpecular) then

brdfType = SPECULAR;
throughput /= pSpecular;

else
brdfType = DIFFUSE;
throughput /= (1 - pSpecular);

Figure 14-10. Importance sampling and BRDF lobe selection. We select lobes using a random
number and probability pspecular. Throughput is divided by either pspecular or 1 – pspecular,
depending on the selected lobe.

In our code sample, we implement BRDF lobe selection using the importance
sampling algorithm shown in Figure 14-10. The probability of choosing a
specular or diffuse lobe as an estimate of their respective contributions
especular and ediffuse is written as

pspecular =
especular

especular + ediffuse
, (14.1)

where especular is equal to the Fresnel term F. We evaluate F using the
shading normal instead of the microfacet normal (i.e., the view and reflection
direction half-vector), since the true microfacet normal is known only after
the reflected ray direction is computed by sampling the specular lobe. This
works reasonably well for most materials, but is less efficient for rough
surfaces viewed at grazing angles. Note that estimate ediffuse is only based on
the diffuse reflectance of the surface. Depending on the way a material model
combines diffuse and specular lobes together, ediffuse may also need to be
weighted by 1 – F.

This approach is simple and fast, but can generate lobe contribution estimates
that are very small in some cases (e.g., rough materials with a slight specular
highlight or an object that is barely semitransparent). Low-probability
estimates cause certain lobes to be undersampled and can manifest as a “salt
and pepper” pattern in the image. Dividing by small probability values
introduces numerical precision issues and may also introduce firefly artifacts.
To solve these problems, we clamp pspecular to the range [0.1, 0.9] whenever it
is not equal to zero or one. This ensures a reasonable minimal sampling
frequency for each contributing BRDF lobe when the estimates are very small.
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TERMINATING THE PATH TRACING LOOP

Since we are tracing paths by iteratively casting rays, we need to handle
termination of the loop. Light paths naturally end when the light energy
carried along the path is fully absorbed or once the path exits the scene to the
sky, but reaching this state can require an extremely large number of
bounces. In closed interior scenes, paths may never exit the scene. To
prevent tracing paths of unbounded length, we define a maximum number of
bounces and terminate the ray tracing loop once the maximum is reached, as
shown in Figure 14-7. Bias is introduced when terminating paths too early,
but paths that never encounter light are unnecessary and limit performance.

To balance this trade-off, we use a Russian roulette approach to decide if
insignificant paths should be terminated early. An insignificant path is one
that encounters a surface that substantially decreases ray throughput, and as
a result will not significantly contribute to the final image. Shown in
Listing 14-8, Russian roulette is run before tracing each non-primary ray, and
it randomly selects whether to terminate the ray tracing loop or not. The
probability of termination is based on the luminance of the path’s throughput
and is clamped to be at most 0.95 so every possible surface interaction, even
those with perfect mirrors, may be terminated. To avoid introducing bias from
path termination, the throughput of the non-terminated path is increased
using the termination probability. We allow Russian roulette termination to
start after a few initial bounces (three in our code sample), to prevent light
paths from being terminated too early.

Listing 14-8. Using a Russian roulette approach to decide if paths should terminate.

1 if (bounce > MIN_BOUNCES) {
2 float rr_p = min(0.95f, luminance(throughput));
3 if (rr_p < rand(rngState)) break;
4 else throughput /= rr_p;
5 }

Integration of Russian roulette into the path tracing loop is shown in
Figure 14-11. This improvement allows us to increase the maximum number
of bounces a path may have and ensures computation time is spent primarily
where it is needed.

SURFACE NORMALS

Since ray segments along a path may intersect a surface on either side—not
only the side facing the camera—it is best to disable backface culling when
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Initialization...
for bounce ∈ {1 . . .MAX_BOUNCES} do

Trace ray and evaluate direct lighting...
russianRoulette = luminance(throughput);
if russianRoulette < rand() then

break;

else
throughput /= russianRoulette;

return radiance;

Figure 14-11. The improved path tracing loop with Russian roulette path termination.

tracing rays (which also improves performance). As a result, special care is
required to ensure that correct surface normals are available on both sides of
the surface. Shown in Listing 14-9, we account for this programmatically by
inverting normals with the same direction as the incident ray.

Listing 14-9. Inversion of backfacing normals.

1 float3 V = -ray.Direction;
2 if (dot(geometryNormal, V) < 0.0f) geometryNormal *= -1;
3 if (dot(geometryNormal, shadingNormal) < 0.0f) shadingNormal *= -1;

A related issue is self-intersections that occur when a ray intersection is
reported for the same surface from which a ray originates. This happens
when the ray origin is erroneously placed on the opposite side of a surface
due to insufficient numerical precision. A simple solution to this problem is to
move the origin away from the surface along the normal by a small fixed
amount ϵ (ϵ ≈ 0.001), but this approach is not general and almost always
introduces light leaking and disconnected shadows. To prevent these
problems, we use the improved approach described in Chapter 6 of Ray
Tracing Gems [16], which is based on calculating the minimal offset necessary
to prevent self-intersections (see Figure 14-12). Note that this approach
works best when the ray/surface intersection position is calculated from the
triangle’s vertex positions and interpolated with barycentrics, as this is more
precise than using the ray origin, direction, and hit distance. This method also
allows us to set the TMin of reflecting rays to zero and prevent
self-intersections by simply updating the ray origin.
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P’

P

Figure 14-12. The offsetRay method in our code sample calculates a new ray origin P′

originating at the ray/surface intersection point P to minimize self-intersections and light leaks
caused by insufficient numerical precision.

14.3.7 VIRTUAL LIGHTS AND SHADOW RAYS

Illumination from the sky produces beautiful results in a variety of exterior
and open interior scenes, but emissive objects (i.e., lights!) are another
important component when illuminating interior scenes. In this section, we
cover virtual lights and shadow rays. This special treatment of light sources is
sometimes referred to as next event estimation.

To support virtual lights, we modify the path tracing loop as shown in
Figure 14-13. At every ray/surface intersection we randomly select one light
(see sampleLight in the code sample) and cast a shadow ray that determines
the visibility between the light and the surface. If the light is visible from the
surface, we evaluate the surface’s BRDF for the light, divide by the sampling
PDF of the light, and add the result multiplied by the throughput to the path
radiance (similar to how we handle emissive geometry). This process is
illustrated in Figure 14-14.

Since point lights are just a position in space without any area, the
contribution of the point light increases to infinity as the distance between the
light and a surface approaches zero. This creates a singularity that causes
invalid values (NaNs) and firefly artifacts that are important to mitigate in a
path tracer. We use a method by Yuksel to avoid this obstacle when evaluating
point lights [20]. Listing 14-10 shows how point light evaluation is
implemented in our sample code. Our code sample supports point and
directional lights, but it is straightforward to implement more light types as
necessary. For debugging use, we automatically place one directional light
source (the sun) and one point light source attached to the camera (a
headlight) in the scene. To improve performance when evaluating lights, we
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Initialization...
for bounce ∈ {1 . . .MAX_BOUNCES} do

Trace(ray);
if hit then

lightIntensity, lightPdf = SampleLight();
radiance += ray.throughput * EvalBrdf() * lightIntensity *
CastShadowRay() / lightPdf;
if bounce == MAX_BOUNCES then

break;

brdf, brdfPdf, ray = SampleBrdf();
throughput *= brdf / brdfPdf;

else
radiance += throughput * skyColor;
break;

Russian roulette ray termination...

return radiance;

Figure 14-13. The path tracing loop modified to support virtual lights.

Camera

1.Hit

2.Hit

3.Miss
Light Source

Figure 14-14. An illustration of the path tracing loop with virtual lights. A primary ray (yellow) is
generated and cast. At every surface intersection, a shadow ray (green) is cast toward selected
light sources in addition to the BRDF lobe ray (blue).

create a dedicated DXR hit group for shadow ray tracing—as these rays only
need to determine visibility—and skip the closest-hit shader in the ray tracing
pipeline.
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Listing 14-10. Evaluating virtual lights in a path tracer.

1 Light light;
2 float lightWeight;
3 sampleLight(rngState, hitPosition, geometryNormal, light, lightWeight);
4

5 // Prepare data needed to evaluate the light.
6 float lightDistance = distance(light.position, hitPosition);
7 float3 L = normalize(light.position - hitPosition);
8

9 // Cast shadow ray toward the light to evaluate its visibility.
10 if (castShadowRay(hitPosition, geometryNormal, L, lightDistance))
11 {
12 // Evaluate BRDF and accumulate contribution from sampled light.
13 radiance += throughput * evalCombinedBRDF(shadingNormal, L, V, material)

* (getLightIntensityAtPoint(light, lightDistance) * lightWeight);
14 }

SELECTING LIGHTS

In the majority of situations, it is not practical to evaluate and cast shadow
rays from all surfaces to all virtual lights in a scene. In the previous section
we depended on the sampleLight function to select one virtual light from the
set of all lights in the scene at each ray/surface intersection. But what is the
“correct” light to select and how should this work?

Shown in Listing 14-11, a simple solution is to randomly select one light from
the list of lights using a uniform distribution, with a probability of selection
equal to 1/N, where N is number of lights (the lightWeight variable in
Listing 14-10 is equal to reciprocal of this PDF, analogous to the way we
handle BRDF sampling). This approach is straightforward but produces noisy
results because it does not consider the brightness of or distance to the
selected light. On the opposite end of the spectrum, an expensive solution
may evaluate the surface’s BRDF for all lights to establish the probability of
selecting each light, and then use importance sampling to select lights based
on their actual contribution.

Listing 14-11. Random selection of a light from all lights with a uniform distribution.

1 uint randomLightIndex =
2 min(gData.lightCount - 1, uint(rand(rngState) * gData.lightCount));
3 light = gData.lights[randomLightIndex];
4 lightSampleWeight = float(gData.lightCount);
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A reasonable compromise between these options is a method based on
resampling introduced by Talbot [15]. Instead of evaluating the full surface
BRDF for all lights, we randomly select a few candidates (e.g., around eight)
with a simple uniform distribution method. Next, we evaluate either the full or
partial BRDF for these candidate lights and stochastically choose one light
based on its contribution. With this approach, we are able to quickly discard
lights on the backfacing side of the surface and select ones that are visible,
brighter, and closer more often. This method is included in our code sample
in the sampleLightRIS function. More details about light selection and
resampling can be found in Chapters 22 and 23.

TRANSPARENCY

The rendering of transparent and translucent surfaces is a classic challenge
in graphics, and real-time ray tracing provides us with powerful new tools to
improve existing real-time techniques for transparency. In our code sample
and shown in Listing 14-12, we include a simple alpha-test transparency mode
where a surface’s alpha value is compared to a specified threshold and
intersections are ignored depending on the result. Any-hit shaders are
invoked on every intersected surface while searching for the closest hit, which
gives us the opportunity to ignore the hit if the surface’s alpha is below the
transparency threshold. To perform this test, the alpha value often comes
from a texture and must be loaded on all any-hit shader invocations. This
operation is expensive, so it is best to ensure that any-hit shaders are only
executed for geometry with transparent materials. To do this in DXR, mark all
BLAS geometry representing fully opaque surfaces with the
D3D12_RAYTRACING_GEOMETRY_FLAG_OPAQUE flag.

Listing 14-12. Implementation of the alpha test transparency using the any-hit shader. Note the
relatively large number of operations performed on every tested surface while searching for the
closest hit.

1 MaterialData mData = materials[materialID];
2 float opacity = mData.opacity;
3

4 if (mData.baseColorTexIdx != -1) {
5 float3 barycentrics = float3((1.0f - attrib.uv.x - attrib.uv.y), attrib.

uv.x, attrib.uv.y);
6 VertexAttributes vertex = GetVertexAttributes(geometryID, PrimitiveIndex

(), barycentrics);
7 opacity *= textures[mData.baseColorTexIdx].SampleLevel(linearSampler,

vertex.uv, 0.0f).a;
8 }
9

10 if (opacity < mData.alphaCutoff) IgnoreHit();
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The alpha-tested transparency discussed here barely scratches the surface of
the complexity that transparency introduces to the rendering process. This
topic deserves an entire chapter (or book!) of its own, and you can learn more
about rendering transparent surfaces in Chapter 11.

14.3.8 DEFOCUS BLUR

Defocus blur, sometimes called a depth of field or bokeh, is an interesting visual
effect that is difficult to implement with rasterization-based renderers, yet
easy to achieve with a path tracer. To implement it, we generate primary rays
in a way that emulates how light is transported through a real camera lens
and then accumulate many frames over time to smooth out the results. Our
code sample contains a simple implementation of this effect using a thin lens
model (see the generateThinLensCameraRay function). More details about
defocus blur can be found in Chapter 1 and Physically Based Rendering [11].

14.4 CONCLUSION

The path tracer described in this chapter is relatively simple, but suitable for
rendering high-quality references for games and as an experimentation
platform for the development of real-time effects. It has been used during the
development of an unreleased AAA game and has proved to be a helpful tool.
The code sample accompanying this chapter is freely available, contains a
functional path tracer, and can be extended and integrated into game engines
without any restrictions.

There are many ways this path tracer can be improved, including support for
refraction, volumetrics, and subsurface scattering as well as denoising
techniques and performance optimizations to produce noise-free results
while running at real-time frame rates. The accompanying chapters in this
book, its previous volume [6], and Physically Based Rendering [11] are
excellent sources of inspiration for improvements as well. We recommend the
blog posts “Effectively Integrating RTX Ray Tracing into a Real-Time
Rendering Engine” [14] and “Optimizing VK/VKR and DX12/DXR Applications
Using Nsight Graphics: GPU Trace Advanced Mode Metrics” [3] for guidance
on the integration of real-time ray tracing into existing engines and on
optimizing performance.
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PART II

APIS AND TOOLS

Since NVIDIA RTX technology introduced ray tracing hardware acceleration to
consumer GPUs, the number of games and applications supporting ray
tracing has skyrocketed, along with the number of developers that need to
interface with one of the standardized ray tracing APIs like DirectX, Vulkan, or
OptiX. This part is devoted to practical introductions to some of the APIs and
tools that are available to help today’s developers learn and apply ray tracing
in their work.

Chapter 15, The Shader Binding Table Demystified, explains succinctly how one
of the trickiest parts of today’s ray tracing APIs works. The shader binding
table is notorious for causing confusion among developers new to ray tracing
on the GPU. This chapter covers in detail what the shader binding table really
is, what it can be used to do, and how the APIs compute indices into the table
at runtime. Finally, this chapter walks through some concrete examples of
common use cases and ways to set up the shader binding table to
achieve them.

Chapter 16, Introduction to Vulkan Ray Tracing, gives the reader a complete
introduction to ray tracing using the Vulkan API’s ray tracing extensions. This
chapter is similar in spirit to the “Introduction to DirectX Raytracing” chapter
from the first Ray Tracing Gems book. Since the first book was published, the
Khronos Group has introduced ray tracing support into the Vulkan API via a
set of extensions that provide an API familiar to users of DirectX Raytracing
and OptiX. These Vulkan extensions provide a standardized and
cross-platform way to access hardware-accelerated ray tracing, as well as
integrate seamlessly with Vulkan rasterization-based applications. Source
code for a complete working example application is provided.

Chapter 17, Using Bindless Resources with DirectX Raytracing, shows how to
avoid the explicit resource binding patterns that have been common with
DirectX rasterization. With bindless techniques, shaders have access to all
loaded textures and other resources, while also using simpler code. Because
rays can randomly intersect anything in the scene, global random access to
resources when ray tracing is essential. In some cases, the new bindless
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patterns are the only practical approach to ray tracing with DirectX. A
complete source code example of a bindless path tracer is included.

Chapter 18, WebRays: Ray Tracing on the Web, introduces a new API built for
doing ray tracing in a web browser, expanding hardware-accelerated ray
tracing access to web applications. WebRays is currently powering the
website Rayground, which allows people to both develop and run ray tracing
applications in their web browser. WebRays supports shaders written in GLSL
via WebGL and provides a JavaScript host-side API and a GLSL device-side
API to enable hardware-accelerated ray/triangle intersections. This ray
casting API has been designed to allow both wavefront and megakernel style
architectures, and it tries to make room for any style of ray tracing pipeline
the user wants.

Chapter 19, Visualizing and Communicating Errors in Rendered Images, offers
developers a useful tool and a framework for evaluating how well their
rendering algorithms are performing in terms of image quality. The FLIP tool
implements a perceptual error metric that is modeled after the way many
experts evaluate their images: by flipping back and forth between an old
image and a new one to watch for which parts of the image change. This
chapter covers how to measure render error in high dynamic range images,
as well as low dynamic range images, and discusses how to read, think about,
and analyze these kinds of measurements. Finally, the chapter applies this
methodology to the evaluation of a new example rendering algorithm to show
how to evaluate and choose rendering parameters. The tool is open source
and comes with implementations for both the CPU and the GPU.

David Hart
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CHAPTER 15

THE SHADER BINDING TABLE
DEMYSTIFIED
Will Usher
Intel Corporation

ABSTRACT

When a ray hits a geometry in the scene, the ray tracing hardware needs
some way to determine which shader to call to perform intersection tests or
shading calculations. The Shader Binding Table (SBT) provides this
information. The SBT is a lookup table that associates each geometry in the
scene with a set of shader function handles and parameters for these
functions. Each set of function handles and parameters is referred to as a
shader record. When a geometry is hit by a ray, a set of parameters specified
on both the host and device sides of the application combine to determine
which shader record is called. The three GPU ray tracing APIs (DirectX
Raytracing, Vulkan KHR Ray Tracing, and OptiX) use the SBT to run user code
when tracing rays in the scene. These APIs provide a great deal of flexibility
as to how the SBT can be set up and indexed during rendering, providing a
number of options to applications. However, this generality makes properly
setting up the SBT an especially thorny part of these APIs for new users, as
incorrect SBT access often leads to crashes or difficult bugs. Translating
knowledge from one API to another can also be difficult due to subtle naming
differences between them. This chapter looks at the similarities and
differences of each API’s SBT to develop a holistic understanding of the
programming model. A few common configurations of the scene, SBT, and
renderer are also discussed to provide guidance through hands-on examples.

15.1 THE SHADER BINDING TABLE

The Shader Binding Table (SBT) contains the entire set of shaders that may be
called when ray tracing the scene, along with embedded parameters to be
passed to these shaders when they are called. Each set of shader function
handles and embedded parameters is referred to as a shader record. There
are three different types of shader records that can be stored in the SBT: ray
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Figure 15-1. An illustration of the ray tracing pipeline. (a) The ray generation shader computes
and traces rays by calling TraceRay. During traversal, rays are tested against primitives in the
leaf nodes of the acceleration structure. (b) The intersection shader is called to compute
intersections when using custom primitives. (c) The any-hit shader is called if an intersection is
found, if the any-hit shader is enabled. After scene traversal is complete, (d) the closest-hit
shader of the intersected geometry is called if a hit was found and the closest-hit shader is
enabled. (e) The miss shader is called if no intersection was found. The closest-hit and miss
shaders can then either return control to the caller of TraceRay or make recursive trace calls.

generation records, hit group records, and miss records. Each ray generation
record provides the handle of a ray generation shader, which acts as the entry
point to the ray tracer and is typically responsible for generating and tracing
rays. Hit group records provide shader functions to be called when a geometry
in the scene is hit by a ray. A hit group record can contain three different
shader function handles, the intersection shader, any-hit shader, and
closest-hit shader, which are called at different stages of the ray tracing
pipeline during ray traversal. Miss records provide a shader to be called when
the ray does not hit any geometry. A ray tracer may have several ray types: for
example, primary and shadow rays. Different hit group and miss records are
typically provided for each ray type. For example, though the intersection
shader must find the closest intersection of a primary ray with the geometry,
for shadow rays it is sufficient to determine that any intersection occurred,
possibly making such tests faster. Figure 15-1 illustrates where the different
shaders are called in the ray tracing pipeline.
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15.1.1 RAY GENERATION RECORDS

A ray generation record consists of a single shader function handle for the ray
generation shader, along with any embedded parameters for the shader. The
ray generation shader acts as the entry point to the renderer, and typically
generates and traces rays into the scene to render it (Figure 15-1a). Each API
also provides a way for shaders to access a set of global parameters. Global
or frequently updated parameters can be passed through these global
parameters, whereas other static data can be passed directly in the ray
generation record’s parameters. Although multiple ray generation records
can be written into the SBT, only one can be called for any individual launch.

15.1.2 HIT GROUP RECORDS

A hit group record can specify three shader function handles along with
embedded shader parameters for them. The embedded parameters are
shared by the three shaders. These shaders are the following:

> Intersection: The intersection shader is required when using custom
geometry and is responsible for computing ray intersections with the
custom primitives. It is called when a ray intersects the custom
geometry’s bounding box to test it for intersection with the geometry
(Figure 15-1b). The intersection shader is not required when using
built-in primitive types.

> Any-hit: The any-hit shader is called if an intersection is found with the
geometry and can be used to filter out undesired intersections
(Figure 15-1c). For example, when using alpha cutout textures, the
any-hit shader is used to discard intersections with the cutout regions of
the geometry.

> Closest-hit: The closest-hit shader is called when ray traversal has
completed and an intersection was found along the ray (Figure 15-1d).
The closest-hit shader is typically used to perform shading of the
geometry or return its surface properties to the caller, and it can trace
additional rays.

All three shaders in the hit group are optional and can be specified or left
empty depending on the geometry with which the hit group is associated and
the ray flags that will be specified when tracing the ray types for which the hit
group will be called. The hit group that is called for a specific geometry
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depends on multiple parameters specified when creating the scene geometry
and tracing the ray, and are discussed in Section 15.2.1.

15.1.3 MISS RECORDS

A miss record consists of a single shader function handle, themiss shader,
and any embedded parameters for the shader. The miss shader is called
when the ray did not hit an object in the scene (Figure 15-1e). One miss record
is typically provided per ray type. For example, for primary rays the miss
shader can return a background color, while for shadow rays it can mark the
ray as unoccluded. However, the miss record ray type is specified separately
from the hit group ray type when tracing a ray to provide more flexibility; this
can be used to implement optimizations for shadow rays (see Section 15.4.3).

15.2 SHADER RECORD INDEX CALCULATION

The main point of difficulty in setting up the SBT and scene geometry is
seeing how the two are coupled together; i.e., if a geometry is hit by a ray,
which shader record is called? The shader record to call is determined by
parameters set on the instance, the trace ray call, and the order of geometries
in the bottom-level acceleration structure containing it. These parameters
are set on both the host and device during different parts of the scene setup
and pipeline execution, making it difficult to see how they interact.

15.2.1 HIT GROUP RECORDS

The scene being rendered can contain multiple instances, where each one
references a bottom-level acceleration structure (BLAS). Each BLAS contains
an array of one or more geometries, with each geometry made up of an array
of built-in triangles, other built-in primitives, or axis-aligned bounding boxes
for custom primitives. The index of a geometry in the BLAS’s array of
geometries is its geometry ID, GID, which can be used to offset into the hit
group record array in the SBT. Each instance can specify a starting offset in
the hit group record array, Ioffset, to specify where the sub-array of hit group
records for its BLAS’s geometries starts.

Additional parameters can be specified when calling TraceRay that affect hit
group indexing: an additional SBT offset for the ray, Roffset, typically referred
to as the ray type, and an SBT stride to apply between each geometry’s hit
group records, Rstride, typically referred to as the number of ray types. Note
that the DirectX Raytracing chapter in Ray Tracing Gems [12] uses a slightly
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Figure 15-2. The hit group records called for each geometry in a simple ray tracer with a single
ray type, i.e., rays are traced with Roffset = 0 and Rstride = 1. The scene geometries are colored by
the hit group record that will be called when rays intersect the geometry. The bunny uses the first
hit group record by specifying Ioffset = 0; the instance of the teapot and Lucy specifies Ioffset = 1 to
use the hit group records following the bunny’s. The teapot and Lucy geometries each have their
own hit group record, which are accessed based on their GID.

different naming convention: Roffset is named Iray, and Rstride is named Gmult.
Here, they are renamed to indicate that these parameters are specified when
calling TraceRay.

The equation used to determine which hit group record is called when a ray
hits a geometry in the scene is

HGindex = Ioffset + Roffset + Rstride ×GID, (15.1)

HG = addByteOffset(&HG[0], HGstride × HGindex), (15.2)

where &HG[0] is the starting address of the array containing the hit group
records and HGstride is the stride in bytes between hit group records in the
array. It is important to note that Ioffset is not multiplied with Rstride
in Equation (15.1). When using multiple ray types, i.e., Rstride > 1, this factor
must typically be accounted for when computing each instance’s Ioffset.
Figure 15-2 illustrates the hit groups associated with each instance’s
geometry in a small scene for a ray tracer with a single ray type.
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15.2.2 MISS RECORDS

The indexing rules for miss records are much simpler than those used for hit
group records. The TraceRay call takes an index into the miss record table,
Rmiss, which specifies the index of the miss record to call. Though many ray
tracers use a different miss record per ray type, and thus Roffset = Rmiss, this
is not required as the two parameters are specified independently. The miss
record location is computed by

Mindex = Rmiss, (15.3)

M = addByteOffset(&M[0],Mstride ×Mindex), (15.4)

where &M[0] is the starting address of the table containing the miss records
and Mstride is the stride between miss records in bytes.

15.3 API-SPECIFIC DETAILS

Now that we have a unified terminology to work with when discussing the SBT
and the parameters that affect its indexing, we can look into how these
parameters are specified in each GPU ray tracing API. The biggest difference
between the APIs, beyond terminology, is in how the embedded parameters
are passed in the SBT and what types of parameters can be embedded. The
GID parameter is set in the same way across the APIs, as it is just the index of
the individual geometry in the BLAS’s array of geometries.

15.3.1 DIRECTX RAYTRACING

The focus of this chapter is just on the SBT and aspects of the API related to
its indexing; for more information about DXR, see the DXR chapter in Ray
Tracing Gems [12], the DXR course at SIGGRAPH [11], the Microsoft Developer
Network DXR documentation [4], the DXR HLSL Documentation [5], and the
DXR specification [6].

EMBEDDED SHADER RECORD PARAMETERS

DXR supports embedding 8-byte handles to GPU objects, such as buffers and
textures, or pairs of 4-byte constants in the SBT. Single 4-byte constants can
also be embedded in the SBT, but must be padded to 8 bytes. When
embedding multiple 4-byte constants, the constants should be paired
together to avoid introducing unnecessary additional padding. The mapping of
the embedded parameters in the shader record to the HLSL shader registers
is specified using a local root signature.
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INSTANCE PARAMETERS

Instances in DXR are specified through the following structure.

1 typedef struct D3D12_RAYTRACING_INSTANCE_DESC {
2 FLOAT Transform[3][4];
3 UINT InstanceID : 24;
4 UINT InstanceMask : 8;
5 UINT InstanceContributionToHitGroupIndex : 24;
6 UINT Flags : 8;
7 D3D12_GPU_VIRTUAL_ADDRESS AccelerationStructure;
8 } D3D12_RAYTRACING_INSTANCE_DESC;

Here are the parameters that affect SBT indexing:

> InstanceContributionToHitGroupIndex: The instance’s SBT offset,
Ioffset.

> InstanceMask: Though the mask does not affect which hit group is
called, it can be used to skip traversal of instances entirely by masking
them out.

TRACE RAY PARAMETERS

The HLSL TraceRay function can be called in the ray generation, closest-hit,
and miss shaders to trace rays through the scene. TraceRay takes the
acceleration structure to trace against, a set of ray flags to configure the
traversal being performed, the instance mask, parameters that affect SBT
indexing for the ray, the ray itself, and the payload to be updated by the
closest-hit, any-hit, or miss shaders.

1 Template<payload_t>
2 void TraceRay(RaytracingAccelerationStructure AccelerationStructure ,
3 uint RayFlags,
4 uint InstanceInclusionMask ,
5 uint RayContributionToHitGroupIndex ,
6 uint MultiplierForGeometryContributionToHitGroupIndex ,
7 uint MissShaderIndex,
8 RayDesc Ray,
9 inout payload_t Payload);

Here are the parameters that affect SBT indexing:

> InstanceInclusionMask: The mask affects which instances are
traversed by taking the bitwise AND of the mask and each instance’s
InstanceMask. If this is zero, the instance is ignored.

> RayContributionToHitGroupIndex: The ray’s SBT offset, Roffset.
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> MultiplierForGeometryContributionToHitGroupIndex: The ray’s SBT
stride, Rstride.

> MissShaderIndex: The index of the miss shader record to call, Rmiss.

15.3.2 VULKAN KHR RAY TRACING

For more documentation about the Vulkan KHR Ray Tracing extension, see
Chapter 16, the extension specifications [2, 3], and the GLSL_EXT_Ray_Tracing
extension [1].

SHADER RECORDS AND PARAMETERS

Vulkan treats the embedded parameters as a buffer block and supports most
of the types of parameters that can be passed through a regular storage
buffer (e.g., runtime sized arrays cannot be passed through the shader
record). The embedded parameters are accessed in the shader through a
buffer type declared with the shaderRecordEXT layout. Buffer handles can
also be passed through the SBT in Vulkan by using the GLSL extension
GLSL_EXT_buffer_reference2. The address of a buffer can be retrieved
using vkGetBufferDeviceAddress and written to the SBT as an 8-byte
constant. The following closest-hit shader demonstrates this approach to
pass references to the index and vertex buffers of the geometry directly in the
SBT. The example also uses the extension GLSL_EXT_scalar_block_layout
to allow using a C-like structure memory layout in buffers.

1 layout(buffer_reference, buffer_reference_align=8, scalar)
2 buffer VertexBuffer {
3 vec3 v[];
4 };
5

6 layout(buffer_reference, buffer_reference_align=8, scalar)
7 buffer IndexBuffer {
8 uvec3 i[];
9 };
10

11 layout(shaderRecordEXT, std430) buffer SBT {
12 VertexBuffer vertices;
13 IndexBuffer indices;
14 };
15

16 void main() {
17 const uvec3 idx = indices.i[gl_PrimitiveID];
18 const vec3 va = vertices.v[idx.x];
19 const vec3 vb = vertices.v[idx.y];
20 const vec3 vc = vertices.v[idx.z];
21 // ...
22 }
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INSTANCE PARAMETERS

The memory layout of Vulkan’s instance structure matches that of DXR:

1 struct VkAccelerationStructureInstanceKHR {
2 VkTransformMatrixKHR transform;
3 uint32_t instanceCustomIndex : 24;
4 uint32_t mask : 8;
5 uint32_t instanceShaderBindingTableRecordOffset : 24;
6 VkGeometryInstanceFlagsKHR flags : 8;
7 uint64_t accelerationStructureReference;
8 };

Here are the parameters that affect SBT indexing:

> instanceShaderBindingTableRecordOffset: The instance’s SBT offset,
Ioffset.

> mask: Though the mask does not affect which hit group is called, it can
be used to skip traversal of instances entirely by masking them out.

TRACE RAY PARAMETERS

The GLSL traceRayEXT function from GLSL_EXT_ray_tracing can be called in
the ray generation, closest-hit, and miss shaders to trace rays through the
scene. The function takes the acceleration structure to trace against, a set of
ray flags to adjust the traversal being performed, the instance mask,
parameters that affect SBT indexing for the ray, the ray itself, and the index of
the ray payload to be updated by the closest-hit, any-hit, or miss shaders.

1 void traceRayEXT(accelerationStructureEXT topLevel,
2 uint rayFlags,
3 uint cullMask,
4 uint sbtRecordOffset,
5 uint sbtRecordStride,
6 uint missIndex,
7 vec3 origin,
8 float Tmin,
9 vec3 direction,
10 float Tmax,
11 int payload);

Here are the parameters that affect SBT indexing:

> cullMask: The mask affects which instances are traversed by taking the
bitwise AND of the mask and each instance’s mask. If this is zero, the
instance is ignored.

> sbtRecordOffset: The ray’s SBT offset, Roffset.
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> sbtRecordStride: The ray’s SBT stride, Rstride.

> missIndex: The index of the miss shader to call, Rmiss.

In contrast to HLSL, ray payloads are specified as shader input/output
variables, where the value of payload selects which will be used. For
example:

1 struct RayPayload {
2 vec3 hit_pos;
3 vec3 normal;
4 };
5 layout(location = 0) rayPayloadEXT RayPayload payload;

15.3.3 OPTIX

For more documentation about OptiX [8], see the OptiX 7 programming
guide [7] and the OptiX 7 course at SIGGRAPH [10].

SHADER RECORDS AND PARAMETERS

OptiX supports embedding arbitrary structs in the SBT, and these structs can
contain CUDA device pointers to buffers or texture handles. A pointer to the
embedded parameters for the shader record being called can be retrieved by
calling optixGetSbtDataPointer. This function returns a void* to the portion
of the SBT after the shader handle containing the embedded parameters.

INSTANCE PARAMETERS

Instances in OptiX are specified through the OptixInstance structure:

1 struct OptixInstance {
2 float transform[12];
3 unsigned int instanceId;
4 unsigned int sbtOffset;
5 unsigned int visibilityMask;
6 unsigned int flags;
7 OptixTraversableHandle traversableHandle;
8 unsigned int pad[2];
9 };

Here are the parameters that affect SBT indexing:

> sbtOffset: The instance’s SBT offset, Ioffset.

> visibilityMask: Though the mask does not affect which hit group is
called, it can be used to skip traversal of instances entirely by masking
them out.
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TRACE RAY PARAMETERS

The optixTrace function can be called in the ray generation, closest-hit, and
miss shaders to trace rays through the scene. The function takes the
acceleration structure to trace against, a set of ray flags to adjust the traversal
being performed, the instance mask, parameters that affect SBT indexing for
the ray, the ray itself, and up to 8 unsigned 4-byte values that are passed by
reference through registers and can be modified in the closest-hit, any-hit, or
miss shader. To pass a struct larger than 32 bytes (8× 4), it is possible to pass
a pointer to a stack variable in the calling shader by splitting the pointer into
two 32-bit ints and reassembling the pointer later in the shader.

1 void optixTrace(OptixTraversableHandle handle,
2 float3 rayOrigin,
3 float3 rayDirection,
4 float tmin,
5 float tmax,
6 float rayTime,
7 OptixVisibilityMask visibilityMask,
8 unsigned int rayFlags,
9 unsigned int SBToffset,
10 unsigned int SBTstride,
11 unsigned int missSBTIndex,
12 // Up to 8 4-byte values to be passed
13 // through registers.
14 // Unsigned int& p0-p7
15 )

Here are the parameters that affect SBT indexing:

> visibilityMask: The mask affects which instances are traversed by
taking the bitwise AND of the mask and each instance’s visibilityMask.
If this is zero, the instance is ignored.

> SBToffset: The ray’s SBT offset, Roffset.

> SBTstride: The ray’s SBT stride, Rstride.

> missSBTIndex: The miss shader index to call, Rmiss.

15.4 COMMON SHADER BINDING TABLE CONFIGURATIONS

Now that we have a unified terminology to discuss the SBT, the scene
parameters, and the trace ray parameters and have seen how this
terminology maps to the specific GPU ray tracing APIs, we can discuss a few
common ray tracer configurations to provide guidance through hands-on
examples. The examples are discussed in an API-agnostic manner, and hit
group records will be shown tightly packed together in the SBT; however, in
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practice some padding may be needed between hit group records, depending
on the API being used and the embedded parameters being passed.

15.4.1 A BASIC RAY TRACER

The basic ray tracer example uses two ray types, and each geometry has a hit
group per ray type, i.e., Rstride = 2. The first ray type, Roffset = 0, is used for
primary rays, the second, Roffset = 1, is used for shadow rays. The primary hit
group’s closest-hit shader will compute and return the surface normal and
material ID through the ray payload; the shadow hit group will mark the ray as
occluded in the payload. Both hit groups will use the same any-hit shader,
which will filter out intersections against parts of the geometry made
transparent by an alpha cutout texture. A miss record is also provided for
each ray type; the primary ray miss record returns a background color
through the payload, while the shadow ray miss record marks the ray as
unoccluded. The hit group records for this renderer are shown in Figure 15-3
on a scene with two instances. Each instance in this example has a unique
BLAS, and thus a unique set of geometries.

Hit group records are written in order by instance and the geometry order
within the instance’s BLAS. Instances in the scene do not share hit groups,

Hit Group Records:

Scene with Two Instances:

Bottom-Level Acceleration Structures:

GID= 0

BLAS
Geometries:

GID= 0 GID= 1

BLAS
Geometries:

HG 0
Primary
Roffset = 0

HG 1
Shadow
Roffset = 1

HG 2
Primary
Roffset = 0

HG 3
Shadow
Roffset = 1

HG 4
Primary
Roffset = 0

HG 5
Shadow
Roffset = 1I0

offset = 0

I1
offset = 2

Figure 15-3. The hit group records for a basic ray tracer with two ray types rendering a scene
with two instances. One of the instance’s BLAS has two geometries. Hit group records are color
coded by the geometry in the scene by which they are used. Rays are traced with Rstride = 2,
primary rays are traced with Roffset = 0, and shadow rays are traced with Roffset = 1.
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and thus the SBT offset for instance i is computed as

Iioffset = Ii–1offset + I
i–1
geom × Rstride, (15.5)

where I0offset = 0 (15.6)

and where Iigeom is the number of geometries in the BLAS used by instance i.

15.4.2 INSTANCING A BLAS WITH THE SAME HIT GROUP PARAMETERS

A common use case of instancing is to place the same mesh, i.e., BLAS, with
the same material parameters, i.e., embedded shader parameters, at
multiple locations in the scene. This can be done efficiently without
increasing the size of the SBT by having each such instance share a single hit
group record. Instead of assigning each instance a unique offset as done in
the previous example, each unique instanced object is assigned an offset in
the SBT. Instances of the same object then use the same Ioffset to reference
the same hit group records. Instance offsets must now be computed in two
steps: First, we find the unique instanced objects in the scene to build a list of
unique instance offsets:

UIioffset = UIi–1offset + UI
i–1
geom × Rstride, (15.7)

where UI0offset = 0. (15.8)

The hit group records for each unique instanced object i are written in the SBT
starting at its unique offset, UIioffset. Then, the instances of this object can use
UIioffset as their instance offset to share this single set of hit group records.

Figure 15-4 illustrates this configuration on a scene with three instances in a
ray tracer with two ray types. Two of these instances reference the same
unique instanced object, the green bunny. These two instances share the
same unique instance offset:

I0offset = I1offset = UI0offset = 0. (15.9)

The next unique instance, with the teapot and Lucy, follows the hit group
records shared by the bunny’s, at I2offset = UI1offset = 2.

15.4.3 DROPPING THE SHADOW HIT GROUP WHEN RENDERING OPAQUE
GEOMETRIES

A trick we can use to simplify SBT setup and reduce its size when rendering
only opaque geometry is to use the ray flags to skip calling the any-hit and
closest-hit shaders for shadow rays. Instead of using the closest-hit shader in
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Figure 15-4. The hit group records for a basic ray tracer with two ray types and instance hit group
record reuse. The instances of the bunny place the same unique object in the scene and can thus
reference the same hit group records by specifying the same Ioffset. Hit group records are color
coded by the geometry in the scene that they are used by. Rays are traced with Rstride = 2, primary
rays are traced with Roffset = 0 and shadow rays traced with Roffset = 1.

the shadow hit group to mark rays as occluded, we will trace rays assuming
they are occluded and use the miss shader to mark them unoccluded. The
shadow hit group is no longer called, and it can be omitted from the SBT. As
each geometry only has a single hit group, the Roffset, Rstride, and Rmiss
parameters will diverge from each other. Both primary and shadow rays are
now traced with Roffset = 0 and Rstride = 1, while Rmiss = 0 for primary rays and
Rmiss = 1 for shadow rays. This means that shadow rays reference the
primary ray hit group. However, shadow rays are traced with ray flags
specifying to skip calling the closest-hit and any-hit shaders and thus will not
actually call this hit group. The only shader called when traversing shadow
rays will be the miss shader, if the ray did not hit anything. Occluded shadow
rays are processed entirely in hardware without any shaders run during
traversal when using built-in hardware accelerated primitives (e.g., triangles).
Figure 15-5 illustrates the resulting hit group record layout for this
configuration.

This approach also works for custom geometries, as shadow rays will simply
use the intersection shader provided in the primary ray hit group record.
However, if it is possible to perform a faster intersection test for shadow rays
that only checks if a hit exists instead of finding the closest one, it may be best
to still provide a separate hit group for shadow rays.
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Figure 15-5. The hit group records for a ray tracer without shadow hit groups. Both primary and
shadow rays are traced with Roffset = 0 and Rstride = 1, with the ray flags for shadow rays set to
skip the closest-hit and any-hit shaders. For primary rays Rmiss = 0, while for shadow rays
Rmiss = 1. In this configuration, shadow rays are assumed to be occluded and are marked
unoccluded by the miss shader.

15.4.4 A MINIMAL ONE OR TWO HIT GROUP RAY TRACER

If all the geometry in the scene use the same hit group shaders, it is also
possible to use a single hit group that is shared by all geometries to create a
minimal SBT. This requires that all geometry in the scene use the same
closest-hit shader and, in the case that the intersection or any-hit shaders
are used, requires that all geometry again use the same ones. Rather than
the parameters being sent for each geometry embedded in the hit group
record, they are stored in globally accessible memory and retrieved using the
instance, geometry, and primitive IDs. All instances then specify their SBT
offset as Iioffset = 0. Note that the instance ID is specified separately from the
SBT offset, allowing each instance to still specify a different ID to be used to
look up the correct data for its geometry. Rays are traced with Rstride = 0 to
cancel out the additional offset applied by GID within a BLAS. Figure 15-6
illustrates the hit group record configuration for a ray tracer with separate
primary and shadow hit groups. This approach can be combined with that
discussed in Section 15.4.3 when rendering opaque geometries, requiring
only a single hit group in the SBT.

As this approach does not embed parameters in the SBT, it can require
additional bandwidth to retrieve data from global memory, though this may
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Figure 15-6. The hit group records for a ray tracer where all geometries use the same primary
and shadow hit groups. All rays are traced with Rstride = 0 to cancel out the GID offset that would
otherwise be applied when looking up the hit group. Shadow rays are still traced with Roffset = 1 to
access the shadow hit group. All object parameters are stored in globally accessible buffers that
are indexed using the instance, geometry, and primitive IDs.

simplify the process of bringing ray tracing pipelines into an existing bindless
rasterizer that already stores geometry data in globally accessible buffers.

15.4.5 DYNAMICALLY UPDATING THE SBT

The examples so far have focused on static scenes, where the entire SBT is
populated and uploaded to the GPU once at the start of the program.
However, in real-time applications or when rendering dynamic scenes,
reallocating, populating, and uploading the entire SBT each time the scene
changes could consume an undesirable amount of bandwidth and impact
performance. This is especially a concern in real-time applications such as
games where the scene changes frequently. The SBT itself is just a buffer on
the GPU that is used as a lookup table for each geometry’s hit group records.
There is no requirement that hit group records in this buffer are tightly packed
nor that they fill the entire buffer’s memory.

Instead, we can implement a linear allocator to assign memory to an
instance’s hit group records as instances enter and exit the scene. Similar to
other strategies for linear allocators, we allocate a large buffer to hold the hit
group records and make sub-allocations within this buffer. Instances that
enter the scene request an allocation of Iigeom × Rstride hit group records from
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Figure 15-7. Hit group records in the SBT can be managed using a linear allocator to handle
dynamic scenes without having to reallocate and repopulate the entire SBT each time the scene
changes. This example shows a ray tracer with two ray types using this approach to update the
SBT as objects enter and exit the scene. (a) Frame 0 contains just the bunny and monkey, which
partially fill the hit group records buffer. (b) The instance with the teapot and Lucy enters the
scene in frame 1, taking the last four entries of the buffer. (c) The monkey exits the scene in
frame 2, leaving an unused region of memory in the buffer.

the allocator to write their hit group records into the SBT. The start of this
allocation is the instance’s offset, Iioffset. Each hit group record must still have
the same stride, HGstride, and each shader that may be used in the scene
must have been included in the ray tracing pipeline when it was created.
Figure 15-7 illustrates this approach on a dynamic scene over three frames as
objects enter and exit the scene.
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15.5 SUMMARY

This chapter has presented a holistic model of the SBT across the GPU ray
tracing APIs to introduce the model in a consistent manner to developers new
to these APIs. This model, combined with the hands-on examples, aims to
provide a fundamental understanding of the SBT programming model.
Similarly, this chapter aims to help developers familiar with some of these
APIs translate their knowledge to others more easily through a unified SBT
terminology and the API-specific mappings discussed. For developers new to
GPU ray tracing, my recommendation is to try implementing some of these
examples in your own renderer to get hands-on experience, starting from the
basic example discussed in Section 15.4.1. Though the discussion in this
chapter has not gone into API-specific details about memory alignment
requirements and strides, padding required between hit group records, or
how embedding parameters may affect strides and padding, the interactive
SBT builder tool on my website [9] can be used to explore these aspects. The
online tool lets you create your SBT, add parameters to hit group records, set
up the scene being rendered, and virtually trace rays to see which hit group
records are called for each geometry.
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CHAPTER 16

INTRODUCTION TO
VULKAN RAY TRACING
Matthew Rusch, Neil Bickford, and Nuno Subtil
NVIDIA

ABSTRACT

Modern graphics APIs offer performant, low-level access to accelerated ray
tracing. With this control and flexibility come complexity and nuance that can
present challenges that are difficult for developers to navigate. This chapter
will serve as an introduction to one method of harnessing the power of
hardware-accelerated ray tracing: Vulkan and the Vulkan Ray Tracing
extensions.

16.1 INTRODUCTION

Readers of the first Ray Tracing Gems book might recall that it contained a
chapter with a similar title, “Introduction to DirectX Raytracing” [15]. This
chapter is very similar in spirit and structure. For those who have not read the

Figure 16-1. Vulkan Ray Tracing in action in Crysis Remastered.
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aforementioned text, or anyone who would like a review, a brief introduction
of ray tracing in the context of the Vulkan API follows.

Consumer-grade ray tracing acceleration hardware was released in 2018.
Varying methods of programmable hardware access were announced shortly
after. One of these ways of controlling hardware acceleration is via Vulkan API
extensions. In late 2020 the official cross-platform Vulkan Ray Tracing (VKR)
extensions were finalized and released.

This chapter assumes that the reader has a working knowledge of the core
Vulkan API or, at a minimum, experience with a modern low-level graphics
API such as Direct3D 12 or console graphics APIs for instance. Additionally, a
fundamental understanding of ray tracing is required. See the first Ray
Tracing Gems volume or an introductory text if necessary.

This chapter focuses on ray tracing pipelines and acceleration structures;
however, the Vulkan Ray Tracing extensions also include VK_KHR_ray_query
for ray queries. These permit ray tracing in non–ray tracing shader stages
such as fragment and compute stages, but without the structure of ray tracing
shaders, much like inline ray tracing in DirectX Raytracing (DXR) Tier 1.1. Ray
queries will not be discussed here, but information regarding them may be
found in the supplementary material listed at the end of this chapter.

16.2 OVERVIEW

Modern graphics programming, which utilizes the GPU, has been a
cross-disciplinary endeavor for some time. It requires mathematical
fundamentals, such as linear algebra and Cartesian geometry. It also
requires knowledge of CPU-side API constructs in order to coordinate
rendering tasks. Additionally, familiarity with GPU-side operations, such as
shaders and fixed-function operations, is necessary to do the actual
rendering work. This chapter will introduce the requisite parts of each of
these and show them applied contextually using a sample ray tracing
application, which is included in the code for this book.

Real-time ray tracing, in the context of modern graphics APIs, can be broken
down into three main high-level concepts. The first of these is the ray tracing
pipeline, which contains details about execution and state. The ray tracing
pipeline contains the shaders that are executed during a ray dispatch and also
describes how they exchange data. The second concept is the use of
acceleration structures (AS), which are spatial data structures that organize
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and abstract scene geometry and enable more efficient scene traversal. They
serve to accelerate ray tracing and intersection testing. The final concept is
the shader binding table (SBT), which is essentially a large array of shader
references with interleaved per-object data. It defines the relationship
between the ray tracing shaders (within the pipeline), their respective
resources, and the scene geometry.

Section 16.3 will prepare the reader to set up their own Vulkan Ray Tracing
application with respect to both software and hardware requirements.
Sections 16.4 through 16.6 walk through core shading concepts and
components, and introduce how to write ray tracing shaders.

Sections 16.7 and 16.8 cover the required CPU-side setup to initialize Vulkan
and create the objects necessary for ray tracing, including acceleration
structure building and shader compilation. These concepts are applied in
Sections 16.9 and 16.10, where they will be used to populate the ray tracing
pipeline and shader binding table, two constructs that dictate how data is
related and operated on between CPU and GPU. This culminates in
Section 16.11, which shows how to bind the necessary pipeline objects and
dispatch rays.

16.3 GETTING STARTED

The amount of system setup to get a ray tracing application up and running is
minimal. Some of this is platform dependent; a platform that supports Vulkan
is required, as is a means of compiling code that uses Vulkan. Vulkan SDK
1.2.162.0 and later now fully support the Vulkan Ray Tracing extensions,
including validation and toolchain support. This is available for download at
the LunarG Vulkan SDK website [8].

Hardware and drivers that support Vulkan and the ray tracing extensions are
also required and are available from multiple vendors. Additionally, there is a
wealth of samples and publications available on the Internet that can be used
to augment the material contained in this chapter. Please see the “Additional
Resources” (Section 16.12) and “References” sections for pointers on where
to go next.

16.4 THE VULKAN RAY TRACING PIPELINE

The GPU ray tracing pipeline (as shown in Figure 16-2) looks much different
than its traditional rasterization-based graphics counterpart. It is similar in
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Figure 16-2. Graph of the Vulkan Ray Tracing pipeline, showing shader stage interactions.

that there are multiple, separate, programmable stages intended for use by
developers to control rendering. The ray tracing pipeline, however, uses a
different set of shaders that interact with each other in a different manner
than the shaders in the rasterization pipeline. It also introduces new
fundamental concepts, such as the ray and ray payload, which are
instrumental in shader operation and facilitate communication between
shader stages. The VK_KHR_ray_tracing_pipeline extension provides the
functionality of the ray tracing pipeline and shader stages.

An enumeration and brief introduction of the ray tracing shader stages
follows:

> Ray generation shader.

> Miss shader.

> Closest-hit shader.

> Intersection shader.

> Any-hit shader.
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Ray generation shaders are the starting point for the ray tracing pipeline. They
are similar to compute shaders, except with the added ability of being able to
specify and launch rays with the HLSL TraceRay() function (traceRayEXT()
in GLSL), and they are typically launched in a regular grid of indices in up to
three dimensions. The TraceRay() function casts a single ray into the scene
to test for intersections and, in doing so, may trigger other shaders, which will
be introduced shortly, in the process. These other shaders are responsible for
further processing and will return their results to the ray generation shader.

Amiss shader is executed when a given ray does not intersect with any
geometry. It may sample from an environment map, for example, or simply
return a color. This shader and the closest-hit shader are capable of
recursively spawning rays by calling TraceRay() themselves.

Closest-hit shaders are one of the three types of shaders in hit groups and are
invoked on the closest-hit point along a ray. Vulkan ray tracing pipelines can
use more than one closest-hit shader; which one is used for a particular
intersection is governed by the pipeline’s shader binding table and the traced
acceleration structure, with details described later. This shader is where
applications typically perform lighting calculations, material evaluation, etc.
Closest-hit shaders are arguably the closest analog the ray tracing pipeline
has to fragment shaders.

The final two shaders, which are introduced next, are optional.

Intersection shaders are used to intersect rays with user-defined geometry.
Ray/triangle intersections have built-in support and thus do not require an
intersection shader.

Ray traversal through the scene may result in intersections with multiple
primitives. Any-hit shaders are executed on each intersection. They can be
used to discard intersections, to enable alpha testing for example, by
performing a texture lookup and ignoring the intersection if the fetched value
does not meet a specified criteria. The default any-hit shader is a
pass-through that returns information about the intersection to the traversal
engine so that it can determine the closest intersection.

The programming model and pipeline just described consider a single ray at a
time from the perspective of the programmer. Rays are isolated from other
rays and do not interact. However, the various shader stages being executed
while evaluating a ray’s trajectory can communicate by using ray payloads.
The ray payload is an arbitrary, user-defined structure passed as an inout
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parameter to the TraceRay() function in HLSL, or via a
rayPayloadEXT/rayPayloadInEXT variable in GLSL. The hit and miss shaders
can modify this structure, enabling them to pass information between stages
and eventually back to the ray generation function, which will use this
information to write results to memory.

16.5 HLSL/GLSL SUPPORT

Vulkan Ray Tracing requires a number of extensions to GLSL and HLSL to
expose the new functionality it provides. This new functionality is exposed to
shaders when compiling to SPIR-V.

16.5.1 GLSL

GLSL shaders obtain access to ray tracing features by enabling the
GLSL_EXT_ray_tracing extension [3]. New storage qualifiers are defined for
the various bits of data that need to be shared between shaders.

rayPayloadEXT declares a variable with storage for a ray payload. This is
typically a small struct that stores ray properties that are needed in hit
shaders, and it is also used to pass hit information from hit shaders back to
the shader tracing the ray. It is allowed on any shader stages that are able to
call TraceRay().

rayPayloadInEXT declares an input ray payload variable, without storage
(which is expected to be allocated in a different stage via the rayPayloadEXT
qualifier). This is allowed on any stage that can be invoked during execution of
TraceRay(). The variable type used in rayPayloadEXT and rayPayloadInEXT
must match between caller and callee.

hitAttributeEXT declares a variable with storage for ray/primitive
intersection data. Explicitly declaring hit attribute storage is only required
when the pipeline includes custom intersection shaders. Default triangle
intersection shaders use an implicit hitAttributeEXT variable layout
consisting of a vec2 with the barycentric coordinates of the intersection point.
The hit attribute variable is read-only for any-hit and closest-hit shaders and
is only read-write in intersection shaders. Storage is implicitly allocated
whenever this qualifier is used in an intersection shader.

The GLSL_EXT_ray_tracing extension also defines a number of built-in
variables and functions to manipulate and trace rays through the scene. The
most commonly used ones are covered here:
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> gl_LaunchIDEXT and gl_LaunchSizeEXT identify a thread in the launch
grid for a ray generation shader.

> gl_PrimitiveIDEXT and gl_InstanceIDEXT identify a primitive when
processing an intersection in a closest-hit, any-hit, or intersection
shader.

> gl_HitTEXT contains the t-value of an intersection along the ray
(accessible in closest-hit and any-hit shaders).

Finally, a number of built-in functions are defined, the most widely used being
traceRayEXT(), which initiates a ray traversal operation. This can be called
from ray generation, closest-hit, and miss shaders.

The full specification for GLSL_EXT_ray_tracing is available from
Khronos [3].

16.5.2 HLSL

Microsoft’s DirectX Shader Compiler (DXC) includes support for generating
SPIR-V bytecode from HLSL source shaders. This has been extended to
include support for KHR_ray_tracing by mapping the equivalent DirectX
Raytracing language primitives, thus allowing DXR shaders to be run on
Vulkan.

SHADER STAGES

Unlike the case with pixel and vertex shader stages, there are no explicit new
profile names for ray tracing shader stages. Rather, all ray tracing stages are
compiled using the lib_6_3 or lib_6_4 target profiles.

Shader stages are identified by annotations on the entry point:
[shader("raygeneration")] declares an entry point as the start of a ray
generation shader, and similarly for intersection shaders
([shader("intersection")]), hit shaders ([shader("closesthit")] or
[shader("anyhit")]), and miss shaders ([shader("miss")]).

INTRINSIC VARIABLES AND FUNCTIONS

A very similar set of intrinsic variables is declared in DXR as well as GLSL for
use in ray tracing shaders, with similar semantics.

The DirectX Shader Compiler repository on GitHub [9] contains extensive
documentation on the mappings between HLSL and SPIR-V.
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SHADER RECORD BUFFER AND LOCAL ROOT SIGNATURES

DXR and VK_KHR_ray_tracing_pipeline differ in one significant way:
per-object resource binding.

Both DXR and VK_KHR_ray_tracing_pipeline define a table of shader
records, where data that is specific to a combination of a given geometry
instance and shader stage can be stored.

In DXR, the shader record table can contain constant values, as well as
resource binding information (known as a local root signature). However,
Vulkan allows only constant values and has no primitive equivalent to the local
root signature. Therefore, when porting to Vulkan, DXR shaders that make
use of the local root signature for per-record resource binding will need to be
modified to use only constant values in the shader record. Constant values in
the shader record are exposed to HLSL using annotation
[[vk::shader_record_nv]], which can only be applied to constant buffer
declarations. This annotation (along with any other annotations following the
[[vk::*]] naming convention) is Vulkan-specific; however, it will be ignored
when compiling for DirectX Intermediate Language (DXIL), so the same
shader code can still be used across both Vulkan and DXR.

16.6 RAY TRACING SHADER EXAMPLE

For an example of how ray tracing shaders work, consider the following GLSL
code samples that use ray tracing to compute ambient occlusion (AO), and
see the generated result in Figure 16-3. This system uses one ray generation
shader, one miss shader, and no ray tracing shaders of any other type.

The ray generation shader will be invoked once per pixel. Each invocation will
first look up its pixel’s corresponding world-space position and normal. To
determine if a given direction is occluded, the invocation will initialize a ray
payload, then trace a ray, making use of the fact that the miss shader is only
invoked if the ray reports no intersections. When called, the miss shader will
set a flag in the payload indicating that the direction was unoccluded. The ray
generation shader can then read this payload to determine if the direction
was occluded.

First, the structure for the ray payload is defined. This definition is done in a
file, ao_shared.h, that is included by both the ray generation and miss
shaders (Listing 16-1).
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Figure 16-3. Ray traced ambient occlusion generated using this chapter’s sample code.

Listing 16-1. ao_shared.h.

1 struct RayPayload // Define a ray payload.
2 {
3 float hitSky; // 0 = occluded, 1 = visible
4 };

The ray generation shader sets hitSky to 0, then calls traceRayEXT(). If
called, the miss shader then accesses the ray payload with which it was called
and sets hitSky to 1 (Listing 16-2).

Listing 16-2. The GLSL miss shader in ao.rmiss.

1 #version 460
2 #extension GL_EXT_ray_tracing : require
3 #extension GL_GOOGLE_include_directive : require
4 #include "ao_shared.h"
5

6 layout(location = 0) rayPayloadInEXT RayPayload pay;
7

8 void main()
9 {
10 pay.hitSky = 1.0f;
11 }

The ray generation shader wraps traceRayEXT() in a function called
ShadowRay(), which will return 1 if the given direction was occluded from the
given origin and 0 otherwise. The ray generation shader also accesses the ray
payload from GLSL location 0 (Listing 16-3).

221



RAY TRACING GEMS II

Listing 16-3. The payload and ShadowRay definition in ao.rgen.

1 #version 460
2 #extension GL_EXT_ray_tracing : require
3 #extension GL_GOOGLE_include_directive : require
4 #include "ao_shared.h"
5

6 // A location for a ray payload (we can have multiple of these)
7 layout(location = 0) rayPayloadEXT RayPayload pay;
8

9 float ShadowRay(vec3 orig, vec3 dir)
10 {
11 pay.hitSky = 0.0f; // Assume ray is occluded
12 traceRayEXT(
13 scene, // Acceleration structure
14 // Ray flags, here saying "ignore any-hit shaders and
15 // closest-hit shaders, and terminate the ray on the
16 // first found intersection"
17 gl_RayFlagsOpaqueEXT | gl_RayFlagsSkipClosestHitShaderEXT |

gl_RayFlagsTerminateOnFirstHitEXT ,
18 0xFF, // 8-bit instance mask
19 0, // SBT record offset
20 0, // SBT record stride for offset
21 0, // Miss index
22 orig, // Ray origin
23 0.0, // Minimum t-value
24 dir, // Ray direction
25 1000.0, // Maximum t-value
26 0); // Location of payload
27 return pay.hitSky;
28 }

With this in place, ambient occlusion can be computed by calling ShadowRay()
with random directions for each pixel and averaging the result, as shown in
Listing 16-4.

The GetPixelInfo() function is a user-implemented function that returns a
pixel’s corresponding world-space position and normal, as well as whether it
shows an object or the sky (in which case it does not compute ambient
occlusion). This could be implemented by reading from a G-buffer or by
tracing a ray into the scene (this chapter’s sample code performs the latter).
The OffsetPositionAlongNormal() function offsets the position a certain
distance along the geometric normal to avoid self-intersection using the
method of Wächter and Binder [14]. Each time GetRandCosDir(norm) is
called, it returns a random direction in the hemisphere defined by norm, with
the probability distribution cosine-weighted in the direction of norm. For the
implementations of these functions, please see this chapter’s sample code.

222



CHAPTER 16. INTRODUCTION TO VULKAN RAY TRACING

Listing 16-4. Ambient occlusion by tracing rays in ao.rgen.

1 layout(..., r8) uniform image2D imageAO; // Output AO image
2 layout(...) uniform accelerationStructureEXT scene; // Built AS
3

4 void main()
5 {
6 // Determine this pixel's world-space position and normal,
7 // whether by using ray tracing or using data from a G-buffer.
8 uvec2 pixel = gl_LaunchIDEXT.xy;
9 bool pixelIsSky; // Does the pixel show the sky (not a mesh)?
10 vec3 pos, norm; // AO rays from where?
11 GetPixelInfo(pixel, pixelIsSky, pos, norm);
12 if(pixelIsSky){
13 // Don't compute ambient occlusion for the sky.
14 imageStore(imageAO, ivec2(pixel), vec4(1.0));
15 return;
16 }
17

18 // Avoid self-intersection.
19 pos = OffsetPositionAlongNormal(pos, norm);
20

21 // Compute ambient occlusion.
22 float aoColor = 0.0;
23 for(uint i = 0; i < 64; i++) // Use 64 rays.
24 aoColor += ShadowRay(pos, GetRandCosDir(norm)) / 64.0;
25 imageStore(imageAO, ivec2(pixel), vec4(aoColor));
26 }

16.7 OVERVIEW OF HOST INITIALIZATION

Until now, the focus has been on what happens during ray traversal and how
to write code that the GPU executes during traversal. However, the setup
required to perform ray tracing in Vulkan has not yet been discussed. In order
to ray trace a scene, an application must do the following:

1. Choose and initialize a Vulkan device that supports the appropriate ray
tracing extensions.

2. Specify the scene geometry and build an acceleration structure.

3. Ensure that resources can be accessed from ray tracing stages.

4. Create a lookup table for the shaders in the scene, and use this to create
a ray tracing pipeline and at least one shader binding table.

5. Dispatch a command to run the ray tracing pipeline with the shader
binding tables.

Sections 16.8–16.10 describe how to initialize Vulkan Ray Tracing following
these steps. When using an engine or framework supporting ray tracing,
these steps may already be implemented.
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Although the process of initialization can be long, much of the API can be
motivated by the vast challenges that the Vulkan Ray Tracing API solves and
the flexibility that it provides. For instance, a system might have multiple
GPUs, necessitating finding and choosing one that supports ray tracing.
Scenes may change over time and can include different vertex formats,
instanced objects, and shader-defined geometry, so support for this appears
in the API for building acceleration structures. Because rays are arbitrary and
may intersect any nonempty geometry, the API uses tables of shader
bindings. Shader binding tables are flexible enough to provide support for
changing shaders between camera and shadow rays, for instance.

16.8 VULKAN RAY TRACING SETUP

Systems can have multiple GPUs, each of which may support a different set of
Vulkan extensions. Because of this, a ray tracing application must select a
physical device that supports the necessary Vulkan Ray Tracing extensions,
then create a logical device with the physical device and extensions. Vulkan
KHR Ray Tracing pipelines require using Vulkan API version at least 1.1, the
VK_KHR_ray_tracing_pipeline extension, and the following extensions on
which VK_KHR_ray_tracing_pipeline depends:

> VK_KHR_acceleration_structure.

> VK_KHR_deferred_host_operations.

> VK_EXT_descriptor_indexing.

> VK_KHR_buffer_device_address.

> VK_KHR_get_physical_device_properties2.

> VK_KHR_shader_float_controls.

> VK_KHR_spirv_1_4.

The last five extensions are part of Vulkan 1.2, so one option is to create a
Vulkan 1.2 instance and a VkDevice with the VK_KHR_ray_tracing_pipeline,
VK_KHR_acceleration_structure, and VK_KHR_deferred_host_operations
extensions.

The sample code in Listing 16-5 finds and creates a VkDevice with the Vulkan
Ray Tracing pipeline extensions, using Vulkan 1.2. After creating an instance
with Vulkan 1.2, use vkEnumeratePhysicalDevices() to list all physical
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Listing 16-5. Finding a physical device supporting ray tracing pipelines.

1 VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
2 std::vector<const char*> deviceExtensions =
3 {VK_KHR_ACCELERATION_STRUCTURE_EXTENSION_NAME ,
4 VK_KHR_DEFERRED_HOST_OPERATIONS_EXTENSION_NAME ,
5 VK_KHR_RAY_TRACING_PIPELINE_EXTENSION_NAME};
6

7 // Find a physical device that supports all above extensions.
8 for(VkPhysicalDevice consideredDevice : physicalDevices)
9 {
10 // Get the list of extensions the device supports.
11 uint32_t numExtensions;
12 NVVK_CHECK(vkEnumerateDeviceExtensionProperties(
13 consideredDevice, nullptr, &numExtensions, nullptr));
14

15 std::vector<VkExtensionProperties >
16 extensionProperties(numExtensions);
17 NVVK_CHECK(vkEnumerateDeviceExtensionProperties(consideredDevice,
18 nullptr, &numExtensions, extensionProperties.data()));
19

20 if(AreExtensionsIncluded(deviceExtensions, extensionProperties))
21 {
22 physicalDevice = consideredDevice;
23 break;
24 }
25 }
26

27 assert(physicalDevice != VK_NULL_HANDLE);

devices on the system, then select a VkPhysicalDevice that supports
VK_KHR_acceleration_structure, VK_KHR_deferred_host_operations, and
VK_KHR_ray_tracing_pipeline using
vkEnumerateDeviceExtensionProperties().

In Listing 16-5, NVVK_CHECK() prints a message and throws an error if it was
given a VkResult other than VK_SUCCESS, and AreExtensionsIncluded()
returns whether all strings in its first argument are included in the vector of
VkExtensionProperties in its second argument.

Next, in Listing 16-6, get the physical device ray tracing pipeline properties by
passing a VkPhysicalDeviceProperties2 structure extended with a
VkPhysicalDeviceRayTracingPipelinePropertiesKHR structure to
vkGetPhysicalDeviceProperties2(). This includes properties of SBTs used
by Section 16.10.

Then, create a structure chain including VkPhysicalDeviceFeatures2,
VkPhysicalDeviceAccelerationStructureFeaturesKHR, and
VkPhysicalDeviceRayTracingPipelineFeaturesKHR objects, and query
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Listing 16-6. Querying physical device ray tracing properties.

1 VkPhysicalDeviceProperties2 physicalDeviceProperties{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2};

2 VkPhysicalDeviceRayTracingPipelinePropertiesKHR rtPipelineProperties{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR};

3 physicalDeviceProperties.pNext = &rtPipelineProperties;
4 vkGetPhysicalDeviceProperties2(physicalDevice, &physicalDeviceProperties);

which features are supported. Create the VkDevice using the list of
extensions and using this structure chain as a list of features to enable, as in
Listing 16-7.

Listing 16-7. Querying features and creating the VkDevice.

1 VkPhysicalDeviceFeatures2 features2{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2};

2 VkPhysicalDeviceVulkan12Features features12{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES};

3 VkPhysicalDeviceVulkan11Features features11{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES};

4 VkPhysicalDeviceAccelerationStructureFeaturesKHR asFeatures{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR};

5 VkPhysicalDeviceRayTracingPipelineFeaturesKHR rtPipelineFeatures{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR};

6

7 features2.pNext = &features12;
8 features12.pNext = &features11;
9 features11.pNext = &asFeatures;
10 asFeatures.pNext = &rtPipelineFeatures;
11

12 // Query supported features.
13 vkGetPhysicalDeviceFeatures2(physicalDevice, &features2);
14

15 // Create the Vulkan device.
16 VkDeviceCreateInfo deviceCreateInfo{VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO};
17 deviceCreateInfo.enabledExtensionCount = uint32_t(deviceExtensions.size());
18 deviceCreateInfo.ppEnabledExtensionNames = deviceExtensions.data();
19 deviceCreateInfo.pEnabledFeatures = nullptr;
20 deviceCreateInfo.pNext = &features2;
21 deviceCreateInfo.queueCreateInfoCount = 1;
22 deviceCreateInfo.pQueueCreateInfos = &queueInfo;
23 NVVK_CHECK(vkCreateDevice(
24 physicalDevice, &deviceCreateInfo, nullptr, &device));

Finally, get addresses to each of the extensions’ functions. For instance, this
chapter’s sample code loads vkCmdTraceRaysKHR() using
vkGetDeviceProcAddr(), then defines a wrapper around calling this function
pointer (Listing 16-8). The full list of Vulkan KHR Ray Tracing functions is
omitted for brevity, but can be found at [12, nvvk/extensions_vk.cpp,
Line 815].
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Listing 16-8. Loading and calling a function added by the ray tracing pipeline extension.

1 PFN_vkCmdTraceRaysKHR pfn_vkCmdTraceRaysKHR
2 = (PFN_vkCmdTraceRaysKHR)
3 getDeviceProcAddr(device, "vkCmdTraceRaysKHR");
4

5 VKAPI_ATTR void VKAPI_CALL vkCmdTraceRaysKHR(
6 VkCommandBuffer commandBuffer,
7 const VkStridedDeviceAddressRegionKHR* pRaygenShaderBindingTable ,
8 const VkStridedDeviceAddressRegionKHR* pMissShaderBindingTable ,
9 const VkStridedDeviceAddressRegionKHR* pHitShaderBindingTable ,
10 const VkStridedDeviceAddressRegionKHR* pCallableShaderBindingTable ,
11 uint32_t width,
12 uint32_t height,
13 uint32_t depth)
14 {
15 assert(pfn_vkCmdTraceRaysKHR);
16 pfn_vkCmdTraceRaysKHR(
17 commandBuffer,
18 pRaygenShaderBindingTable ,
19 pMissShaderBindingTable ,
20 pHitShaderBindingTable ,
21 pCallableShaderBindingTable ,
22 width,
23 height,
24 depth);
25 }

16.8.1 ACCELERATION STRUCTURES

After VkDevice initialization, the next steps are to specify the geometry for the
scene and to use this specification to build an acceleration structure for ray
tracing. Ray tracing relies on finding ray/scene intersections. Imagine a mesh
consisting of n triangles. To find a ray/mesh intersection, a naive algorithm
might test the ray against every triangle in the mesh, taking O(n) time. For
large scenes, this would be prohibitively expensive. One way to make this
faster is to use an acceleration structure, such as a bounding volume
hierarchy (BVH), which groups triangles together into a tree of bounding
boxes based on their position in the mesh (Figure 16-4). By using a tree
structure, the number of potential intersections that must be considered for a
given ray can be significantly reduced, for example from O(n) to O(log n).

Because 3D scenes usually contain multiple objects, Vulkan uses a two-level
acceleration structure format. This allows representing instances of objects
with different transformations and material properties.

A top-level acceleration structure (TLAS) is an acceleration structure of
instances. Each instance points to a bottom-level acceleration structure (BLAS)
and includes an affine transformation matrix for the instanced BLAS, a 24-bit
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Figure 16-4. Left: a possible bottom-level acceleration structure of seven triangle primitives
using a bounding volume hierarchy. Right: a representation of the BLAS as a tree.

instance ID, and a 32-bit shader offset index. Multiple instances can point to
the same BLAS. A bottom-level acceleration structure can be an acceleration
structure of triangles or an acceleration structure of axis-aligned bounding
boxes (AABBs). The former type of BLAS is good for meshes. Each AABB in
the latter type of BLAS represents a procedural object, defined by the
corresponding intersection shader, instead of a mesh. Whenever a ray
intersects an AABB, the device will call the corresponding intersection shader
to determine if and where the ray intersects the procedural object
(Figure 16-5).

TLAS

Instance 0
(transform, data)

BLAS 0 BLAS 1

Instance 1
(transform, data)

Instance 2
(transform, data)

Figure 16-5. A top-level acceleration structure of three instances pointing to either of two
bottom-level structures. BLAS 0 contains triangle geometry, and BLAS 1 contains AABBs that
bound custom sphere primitives (using an intersection shader). The TLAS contains two instances
of BLAS 0 and one instance of BLAS 1.
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This two-level approach provides a good balance between acceleration
structure build flexibility and traversal performance. For instance, individual
BLASs of deforming meshes can be rebuilt without rebuilding the entire
scene, and animating instance transformations only requires rebuilding
the TLAS.

To build a BLAS or TLAS, describe the objects (such as triangles, AABBs, or
instances), then call vkCmdBuildAccelerationStructuresKHR() to build the
acceleration structure. This uses the GPU to generate the acceleration
structure. Because there are many ways to specify and represent geometry,
describing the scene is thus the primary initial challenge when building an
acceleration structure.

Because geometry can change over time, acceleration structures often need
to be modified. When an acceleration structure’s objects change, applications
have a choice between rebuild and refit operations. Rebuilding is required
whenever the topology or number of primitives changes. Refitting is an option
when moving primitives in an acceleration structure, but not adding or
removing any. Refitting preserves the tree structure and is faster than
rebuilding, but might result in slower ray tracing operations than rebuilding.

The next subsections show how to build acceleration structures and also
provide an overview of refitting and compacting acceleration structures.

BOTTOM-LEVEL ACCELERATION STRUCTURE CONSTRUCTION

Both BLAS and TLAS construction involves six steps:

1. Get the host or device addresses of the geometry’s buffers.

2. Describe the instance’s geometry using one or more
VkAccelerationStructureGeometryKHR objects (pointing to triangle,
AABB, or instance primitives) and a
VkAccelerationStructureBuildRangeInfoKHR object (giving the
number of primitives and offsets for building).

3. Determine the worst-case memory requirements for the AS and for
scratch storage required when building.

4. Create an empty acceleration structure and its underlying VkBuffer.

5. Allocate scratch space.
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6. Call vkCmdBuildAccelerationStructuresKHR() with a populated
VkAccelerationStructureBuildSizesInfoKHR struct and range info to
build the geometry into an acceleration structure.

These functions can also be used to build multiple acceleration structures at
once or to build acceleration structures on the host instead of the device. Host
builds can be useful for further parallelizing acceleration structure builds
across the system, but are not supported on all implementations.

The sample code in Listings 16-9–16-15 will show how to build a single BLAS
and TLAS on a device, after uploading a mesh’s vertex and index buffers to the
device and obtaining their device addresses using
vkGetBufferDeviceAddress().

Start by creating a VkAccelerationStructureGeometryTrianglesDataKHR()
structure (Listing 16-9) that specifies where the builder can find the vertices
and optional indices for this triangle data, as well as their formats and
lengths. Its transformData field can point to a VkTransformMatrixKHR()
object (representing a 3× 4 affine transformation matrix) on the host or
device used to apply a transformation to the vertices before building the
BLAS, or the transformData field can be zero-initialized to represent the
identity transform.

Listing 16-9. Specifying triangle mesh data using
VkAccelerationStructureGeometryTrianglesDataKHR.

1 std::vector<float> objVertices = ...;
2 std::vector<uint32_t> objIndices = ...;
3 VkDeviceAddress vertexBufferAddress = ...;
4 VkDeviceAddress indexBufferAddress = ...;
5

6 VkAccelerationStructureGeometryTrianglesDataKHR triangles{
VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR};

7 triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT;
8 triangles.vertexData.deviceAddress = vertexBufferAddress;
9 triangles.vertexStride = 3 * sizeof(float);
10 triangles.indexType = VK_INDEX_TYPE_UINT32;
11 triangles.indexData.deviceAddress = indexBufferAddress;
12 triangles.maxVertex = uint32_t(objVertices.size() - 1);
13 triangles.transformData = {0}; // No transform

Additionally, a triangle can be marked as inactive (as opposed to active) by
setting the X-component of each vertex to a floating-point NaN. Similarly, an
AABB can be marked as inactive by setting the X-component of its minimum
vertex to a floating-point NaN. If an object is inactive, it will be considered
invisible to all rays and should not be represented in the acceleration
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structure. However, switching objects between being active and inactive after
acceleration structure creation requires a rebuild instead of a refit (see
Section 16.8.2).

Point to this VkAccelerationStructureGeometryTrianglesDataKHR struct
using a VkAccelerationStructureGeometryKHR struct, which implements a
polymorphic class in C, representing either triangle, AABB, or instance data.
Also, add a flag to disable any-hit shaders on this geometry for faster ray
tracing performance (Listing 16-10).

Listing 16-10. Encapsulating geometry data in VkAccelerationStructureGeometryKHR.

1 VkAccelerationStructureGeometryKHR geometry{
VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR};

2 geometry.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR;
3 geometry.geometry.triangles = triangles;
4 geometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;

Next, create a VkAccelerationStructureBuildRangeInfoKHR object that
specifies the first vertex to build from, the number of primitives (triangles,
AABBs, or instances) in the AS, and the offsets in bytes into the vertex, index,
and transformation matrix buffers (Listing 16-11).

Listing 16-11. Listing ranges of data to access in
VkAccelerationStructureBuildRangeInfoKHR.

1 VkAccelerationStructureBuildRangeInfoKHR rangeInfo;
2 rangeInfo.firstVertex = 0;
3 rangeInfo.primitiveCount = uint32_t(objIndices.size() / 3);
4 rangeInfo.primitiveOffset = 0;
5 rangeInfo.transformOffset = 0;

To query the worst-case amount of memory needed for the acceleration
structure and for scratch space, partially specify a
VkAccelerationStructureBuildGeometryInfoKHR struct, and then call
vkGetAccelerationStructureBuildSizesKHR() (Listing 16-12).
VkAccelerationStructureBuildGeometryInfoKHR points to an array of
geometries to be built into the BLAS, as well as build settings. In this case,
configure the settings to refer to a BLAS (instead of a TLAS), to build an
acceleration structure (instead of refitting it), and to prefer fast ray tracing
(over fast build times).

Next, create a buffer to use as the backing memory for the acceleration
structure, using the ACCELERATION_STRUCTURE_STORAGE,
SHADER_DEVICE_ADDRESS, and STORAGE_BUFFER usage bits. In this case,
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Listing 16-12. Partially specifying VkAccelerationStructureBuildGeometryInfoKHR and
querying worst-case memory usage.

1 VkAccelerationStructureBuildGeometryInfoKHR buildInfo{
VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR};

2 buildInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
3 buildInfo.geometryCount = 1;
4 buildInfo.pGeometries = &geometry;
5 buildInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
6 buildInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
7 buildInfo.srcAccelerationStructure = VK_NULL_HANDLE;
8 // We will set dstAccelerationStructure and scratchData once
9 // we have created those objects.
10

11 VkAccelerationStructureBuildSizesInfoKHR sizeInfo{
VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR};

12 vkGetAccelerationStructureBuildSizesKHR(
13 // The device
14 device,
15 // Build on device instead of host.
16 VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR ,
17 // Pointer to build info
18 &buildInfo,
19 // Array of number of primitives per geometry
20 &rangeInfo.primitiveCount,
21 // Output pointer to store sizes
22 &sizeInfo);

allocator is a memory allocator, an instance of the nvvk::AllocatorDma
memory sub-allocator class from NVIDIA DesignWorks Samples [11]. Then,
create an acceleration structure which utilizes the buffer using
vkCreateAccelerationStructureKHR(), and add this to the information in
buildInfo (Listing 16-13).

Listing 16-13. Allocating an acceleration structure.

1 // Allocate a buffer for the acceleration structure.
2 bufferBLAS = allocator.createBuffer(
3 sizeInfo.accelerationStructureSize ,
4 VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR
5 | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT
6 | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
7

8 // Create an empty acceleration structure object.
9 VkAccelerationStructureCreateInfoKHR createInfo{

VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR};
10 createInfo.type = buildInfo.type;
11 createInfo.size = sizeInfo.accelerationStructureSize;
12 createInfo.buffer = bufferBLAS.buffer;
13 createInfo.offset = 0;
14 NVVK_CHECK(vkCreateAccelerationStructureKHR(
15 device, &createInfo, nullptr, &blas));
16

17 buildInfo.dstAccelerationStructure = blas;
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Then, allocate the buffer for scratch data, and use its device address in
buildInfo (Listing 16-14).

Listing 16-14. Creating the scratch buffer.

1 nvvk::Buffer scratchBuffer = allocator.createBuffer(
2 sizeInfo.buildScratchSize,
3 VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT
4 | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
5 buildInfo.scratchData.deviceAddress
6 = GetBufferDeviceAddress(device, scratchBuffer.buffer);

Finally, call vkCmdBuildAccelerationStructuresKHR() with an infoCount of
1 to record a command to build the acceleration structure. As this function
takes an array of pointers to VkAccelerationStructureBuildRangeInfoKHR
objects, a pointer to rangeInfo is obtained beforehand (Listing 16-15).

Listing 16-15. Calling vkCmdBuildAccelerationStructuresKHR.

1 VkAccelerationStructureBuildRangeInfoKHR* pRangeInfo = &rangeInfo;
2 vkCmdBuildAccelerationStructuresKHR(
3 cmdBuffer, // The command buffer to record the command
4 1, // Number of acceleration structures to build
5 &buildInfo, // Array of ...BuildGeometryInfoKHR objects
6 &pRangeInfo); // Array of ...RangeInfoKHR objects

When the command buffer completes, the acceleration structure will have
been built.

Multiple acceleration structure builds can be submitted and run in parallel.
However, two acceleration structure builds cannot use the same scratch
space or destination acceleration structure at the same time. This means that
two options for building multiple acceleration structures are to allocate the
maximum scratch space needed for any individual acceleration structure and
then build acceleration structures using pipeline barriers to serialize builds,
or to allocate enough scratch space for all acceleration structures to build at
once and remove the pipeline barriers.

Acceleration structure build information can also be specified by the device
using vkCmdBuildAccelerationStructuresIndirectKHR() if it supports
indirect builds.

TOP-LEVEL ACCELERATION STRUCTURE CONSTRUCTION

A TLAS is built from instances. Each instance contains an address to a BLAS,
so we must first get the device address of one or more BLASs. In
Listing 16-16, our TLAS only contains a single instance.
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Listing 16-16. Obtaining the device address of an acceleration structure.

1 VkAccelerationStructureDeviceAddressInfoKHR addressInfo{
VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR};

2 addressInfo.accelerationStructure = blas;
3 VkDeviceAddress blasAddress
4 = vkGetAccelerationStructureDeviceAddressKHR(
5 device, &addressInfo);

Listing 16-17 shows how to specify an instance using a
VkAccelerationStructureInstanceKHR structure. The transform field of
this structure is a 3× 4 affine transformation matrix. It can be used to
instance BLASs with different transforms; the effect is as if each (x, y, z) vertex
was replaced by

M


x
y
z
1

 =

M00x +M01y +M02z +M03
M10x +M11y +M12z +M13
M20x +M21y +M22z +M23

 , (16.1)

where M is the 3× 4 matrix contained in transform. The
instanceCustomIndex field stores an arbitrary 24-bit integer that shaders
can access. The mask field stores an 8-bit integer; a ray can intersect an
instance only if the bitwise AND of this mask and the ray’s mask is nonzero.
The field instanceShaderBindingTableRecordOffset contains an offset
applied when looking up the instance’s shaders in a shader binding table. The
flags field enables certain features; here, it is used to disable backface
culling. Finally, the accelerationStructureReference field contains the
address of the instance’s BLAS.

Listing 16-17. Specifying an instance.

1 // Zero-initialize.
2 VkAccelerationStructureInstanceKHR instance{};
3 // Set the instance transform to a 135-degree rotation around
4 // the y-axis.
5 const float rcpSqrt2 = sqrtf(0.5f);
6 instance.transform.matrix[0][0] = -rcpSqrt2;
7 instance.transform.matrix[0][2] = rcpSqrt2;
8 instance.transform.matrix[1][1] = 1.0f;
9 instance.transform.matrix[2][0] = -rcpSqrt2;
10 instance.transform.matrix[2][2] = -rcpSqrt2;
11 instance.instanceCustomIndex = 0;
12 instance.mask = 0xFF;
13 instance.instanceShaderBindingTableRecordOffset = 0;
14 instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
15 instance.accelerationStructureReference = blasAddress;

234



CHAPTER 16. INTRODUCTION TO VULKAN RAY TRACING

Similar to how triangle data was stored on the device when using it to create a
BLAS, create a buffer of instances on the device and upload the array of
instances to it (Listing 16-18). This also means that the instance buffer could
be written by the GPU, instead of the CPU. As before, use the
nvvk::AllocatorDmamemory allocator abstraction.

Listing 16-18. Uploading an instance buffer of one instance to the VkDevice and waiting for it to
complete.

1 nvvk::Buffer bufferInstances = allocator.createBuffer(
2 cmdBuffer, sizeof(instance), &instance,
3 VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
4

5 // Add a memory barrier to ensure that createBuffer's upload command
6 // finishes before starting the TLAS build.
7 VkMemoryBarrier barrier{VK_STRUCTURE_TYPE_MEMORY_BARRIER};
8 barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
9 barrier.dstAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR;
10 vkCmdPipelineBarrier(cmdBuffer,
11 VK_PIPELINE_STAGE_TRANSFER_BIT ,
12 VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR ,
13 0,
14 1, &barrier,
15 0, nullptr,
16 0, nullptr);

Also, create a VkAccelerationStructureBuildRangeInfoKHR structure
(described previously) as in Listing 16-19.

Listing 16-19. Specifying range information for the TLAS build.

1 VkAccelerationStructureBuildRangeInfoKHR rangeInfo;
2 rangeInfo.primitiveOffset = 0;
3 rangeInfo.primitiveCount = 1; // Number of instances
4 rangeInfo.firstVertex = 0;
5 rangeInfo.transformOffset = 0;

Next, much like how triangle data was pointed to with a
VkAccelerationStructureGeometryTrianglesDataKHR structure
encapsulated within a VkAccelerationStructureGeometryKHR structure
when building a BLAS, point to the instance buffer using a
VkAccelerationStructureGeometryInstancesDataKHR structure and also
encapsulate it within a VkAccelerationStructureGeometryKHR structure.
Here, GetBufferDeviceAddress() is a function that returns a buffer’s device
address using vkGetBufferDeviceAddress() (Listing 16-20).
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Listing 16-20. Constructing a VkAccelerationStructureGeometryKHR struct of instances.

1 VkAccelerationStructureGeometryInstancesDataKHR instancesVk{
VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR};

2 instancesVk.arrayOfPointers = VK_FALSE;
3 instancesVk.data.deviceAddress = GetBufferDeviceAddress(device,

bufferInstances.buffer);
4

5 // Like creating the BLAS, point to the geometry (in this case, the
6 // instances) in a polymorphic object.
7 VkAccelerationStructureGeometryKHR geometry
8 {VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR};
9 geometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR;
10 geometry.geometry.instances = instancesVk;

Finally, create the TLAS from the VkAccelerationStructureGeometryKHR
and VkAccelerationStructureBuildRangeInfoKHR structures in the same
way that the BLAS was built, with the exception of setting
VkAccelerationStructureBuildGeometryInfoKHR::type to
VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR (Listing 16-21).

Listing 16-21. Allocating and building a top-level acceleration structure.

1 // Create the build info: in this case, pointing to only one
2 // geometry object.
3 VkAccelerationStructureBuildGeometryInfoKHR buildInfo{

VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR};
4 buildInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
5 buildInfo.geometryCount = 1;
6 buildInfo.pGeometries = &geometry;
7 buildInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
8 buildInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
9 buildInfo.srcAccelerationStructure = VK_NULL_HANDLE;
10

11 // Query the worst-case AS size and scratch space size based on
12 // the number of instances (in this case, 1).
13 VkAccelerationStructureBuildSizesInfoKHR sizeInfo{

VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR};
14 vkGetAccelerationStructureBuildSizesKHR(
15 device,
16 VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR ,
17 &buildInfo,
18 &rangeInfo.primitiveCount,
19 &sizeInfo);
20

21 // Allocate a buffer for the acceleration structure.
22 bufferTLAS = allocator.createBuffer(
23 sizeInfo.accelerationStructureSize ,
24 VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR
25 | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT
26 | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
27

28 // Create the acceleration structure object.
29 // (Data has not yet been set.)
30 VkAccelerationStructureCreateInfoKHR createInfo {

VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR};
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31 createInfo.type = buildInfo.type;
32 createInfo.size = sizeInfo.accelerationStructureSize;
33 createInfo.buffer = bufferTLAS.buffer;
34 createInfo.offset = 0;
35 NVVK_CHECK(vkCreateAccelerationStructureKHR(
36 device, &createInfo, nullptr, &tlas));
37

38 buildInfo.dstAccelerationStructure = tlas;
39

40 // Allocate the scratch buffer holding temporary build data.
41 nvvk::Buffer bufferScratch = allocator.createBuffer(
42 sizeInfo.buildScratchSize,
43 VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT
44 | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
45 buildInfo.scratchData.deviceAddress
46 = GetBufferDeviceAddress(device, bufferScratch.buffer);
47

48 // Create a one-element array of pointers to range info objects.
49 VkAccelerationStructureBuildRangeInfoKHR* pRangeInfo = &rangeInfo;
50

51 // Build the TLAS.
52 vkCmdBuildAccelerationStructuresKHR(
53 cmdBuffer,
54 1, &buildInfo,
55 &pRangeInfo);

16.8.2 ACCELERATION STRUCTURE OPERATIONS

Vulkan supports several acceleration structure operations other than building
an acceleration structure from geometry. The following subsections give brief
overviews of cloning, refitting (updating), compacting, serializing, and
deserializing acceleration structures (BLASs or TLASs):

> An acceleration structure can be cloned to another acceleration
structure, copying its data.

> If an acceleration structure’s geometry (triangles, AABBs, or instances)
deforms but the amount of geometry stays the same, the acceleration
structure can be refit to (or updated with) the new geometry. This is
faster than rebuilding the acceleration structure, but the updated
structure may not be as efficient to trace as a rebuilt structure. This is
useful for animated meshes and scenes.

> An acceleration structure can be compacted by copying it with a
compaction flag set to another acceleration structure. This allows the
acceleration structure to take up less memory than allocated by the
worst-case queried amount, unless the worst-case bound was tight.

> An acceleration structure can be serialized to a VkBuffer. This buffer
can then be deserialized on a (possibly different) device to obtain an
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equivalent acceleration structure. For instance, imagine a system where
N devices path-trace an image in parallel: the acceleration structures
used in the scene could be built in parallel, and then each acceleration
structure could be serialized, transferred to, and then deserialized on
the other N – 1 devices. Serialization can also be used for out-of-core
ray tracing.

The next subsections will show how to perform these operations on the
device; however, Vulkan also has functions that can be used to perform these
operations on the host.

CLONING ACCELERATION STRUCTURES

To clone an acceleration structure, as in Listing 16-22, create a
VkCopyAccelerationStructureInfoKHR structure, with src set to the
acceleration structure to copy from, dst set to the acceleration structure to
copy to, and mode set to VK_COPY_ACCELERATION_STRUCTURE_MODE_CLONE_KHR.
Then, call vkCmdCopyAccelerationStructureKHR() with a command buffer
to record to and a pointer to the VkCopyAccelerationStructureInfoKHR
structure. The destination acceleration structure must have been created
with the same parameters as the source acceleration structure.

Listing 16-22. Cloning an acceleration structure.

1 VkAccelerationStructure src, dst;
2 ...
3 VkCopyAccelerationStructureInfoKHR copyInfo {

VK_STRUCTURE_TYPE_COPY_ACCELERATION_STRUCTURE_INFO_KHR};
4 copyInfo.src = src;
5 copyInfo.dst = dst;
6 copyInfo.mode = VK_COPY_ACCELERATION_STRUCTURE_MODE_CLONE_KHR;
7

8 vkCmdCopyAccelerationStructureKHR(cmdBuf, &copyInfo);

REFITTING ACCELERATION STRUCTURES

If its geometry changes, an acceleration structure can be refit to the new
geometry as long as the following are true:

> The acceleration structure was created with the
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_KHR flag.

> The number of geometries has not changed.

> When updating a BLAS, only deformations have occurred.
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> When updating a BLAS, the geometry.triangles.transformData
member has not changed from NULL to non-NULL.

> All flag, format, range, and type members are the same as when the
acceleration structure was last built [5].

For instance, the number of vertices and AABBs may not change, the contents
of each call’s index buffer (if any) must be identical, and no primitives may
have switched between being active and being inactive (see page 229).

For an implementation that uses a BVH for an acceleration structure, for
instance, this could correspond to refitting the nodes of the BVH to fit the new
geometry, without modifying the BVH’s tree structure or requiring a different
amount of memory. This is usually faster than rebuilding the BVH, but the
resulting structure might be less efficient for tracing than a rebuilt
acceleration structure. In particular, refitting usually becomes less efficient
compared to rebuilding as deformations increase in magnitude.

As a result, there are a number of strategies used in deciding when to rebuild
or refit an acceleration structure. Sjoholm [13] recommends rebuilding
TLASs, distributing BLAS rebuilds over frames, and rebuilding visible BLASs
after large and unpredictable deformations, otherwise refitting or skipping
updates entirely if visual errors can be avoided.

To update an acceleration structure, call
vkCmdBuildAccelerationStructuresKHR() as was shown on pages 229
and 233, but with both VkAccelerationStructureBuildGeometryInfoKHR’s
srcAccelerationStructure and dstAccelerationStructure fields set to
the acceleration structure to update and with its mode field set to
VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR.

COMPACTING ACCELERATION STRUCTURES

Building a compacted AS is a two-phase process. In the first phase, we build
an AS into a worst-case-sized buffer, the same way we did before, with a flag
allowing compaction to be enabled. In the second phase, we wait for the AS
build to finish, query the compacted size, allocate an AS of the compacted
size, copy the worst-case-size AS into the compacted AS, and then deallocate
the worst-case-size AS.

In practice, it may be desirable to batch together multiple AS builds, in which
case one may want to execute phase 1 on a set of acceleration structures
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before moving to phase 2, rather than performing these phases sequentially
for each individual AS.

We now describe the lower-level details (see also Listing 16-23). The
first-phase acceleration structure must have been created with the
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_COMPACTION_BIT_KHR flag set.
Then, after recording the acceleration structure build command, record a
pipeline barrier to wait for the build to complete, followed by a
vkCmdWriteAccelerationStructuresPropertiesKHR() command with a
pointer to a query pool of
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR queries to
query the size of the acceleration structure if it were compacted.
vkCmdWriteAccelerationStructuresPropertiesKHR() can also be used to
query the compacted sizes of multiple acceleration structures at once and
write the computed sizes into consecutive elements of the query pool.

Listing 16-23. Computing the compacted size of one acceleration structure.

1 // Create the query pool with space for one AS compacted size query.
2 VkQueryPoolCreateInfo qpci{VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO};
3 qpci.queryCount = 1;
4 qpci.queryType = VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR;
5 VkQueryPool queryPool;
6 NVVK_CHECK(vkCreateQueryPool(
7 device, &qpci, nullptr, &queryPool));
8

9 (build the acceleration structure...)
10

11 // Add a memory barrier to ensure that the acceleration structure build
12 // finishes before querying the compacted size.
13 VkMemoryBarrier barrier{VK_STRUCTURE_TYPE_MEMORY_BARRIER};
14 barrier.srcAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR;
15 barrier.dstAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR;
16 vkCmdPipelineBarrier(
17 cmdBuf,
18 VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR ,
19 VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR ,
20 0,
21 1, &barrier,
22 0, nullptr,
23 0, nullptr);
24

25 // Write the compacted size to the query pool.
26 vkCmdWriteAccelerationStructuresPropertiesKHR(
27 cmdBuf, // Command buffer to record to
28 1, &blas, // Array of acceleration structures
29 VK_QUERY_TYPE_ACCELERATION_STRUCTURE_COMPACTED_SIZE_KHR ,
30 queryPool, // The query pool
31 0); // Index to start writing query results to
32

33 (end, submit, and wait for the command buffer...)
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34

35 // Retrieve the size of the acceleration structure if compacted
36 VkDeviceSize compactedSize;
37 vkGetQueryPoolResults(
38 device, // The VkDevice
39 queryPool, // The query pool
40 0, // The index of the first query
41 1, // Number of queries
42 sizeof(VkDeviceSize), // Size of buffer in bytes
43 &compactedSize, // Pointer to buffer
44 sizeof(VkDeviceSize), // Stride between elements
45 VK_QUERY_RESULT_WAIT_BIT); // Wait for queries to be available.

It is important to check that compactedSize is smaller than the original
acceleration structure size. If this is the same as the original, worst-case
size, then there’s no need to create and copy the data to a compacted
acceleration structure.

Next, create an acceleration structure with a buffer at least compactedSize
bytes long. Finally, call vkCmdCopyAccelerationStructureKHR() (the same
function used on page 238) with VkCopyAccelerationStructureInfoKHR’s
src set to the uncompacted acceleration structure, dst set to the new
acceleration structure, and mode set to
VK_COPY_ACCELERATION_STRUCTURE_MODE_COMPACT_KHR (Listing 16-24).

Listing 16-24. Creating a compacted copy of an acceleration structure.

1 VkCopyAccelerationStructureInfoKHR copyInfo {
VK_STRUCTURE_TYPE_COPY_ACCELERATION_STRUCTURE_INFO_KHR};

2 copyInfo.src = blas;
3 copyInfo.dst = compactedBLAS;
4 copyInfo.mode = VK_COPY_ACCELERATION_STRUCTURE_MODE_COMPACT_KHR;
5 vkCmdCopyAccelerationStructureKHR(cmdBuffer, &copyInfo);

SERIALIZING AND DESERIALIZING ACCELERATION STRUCTURES

To serialize an acceleration structure, first obtain the size of the serialized
data. To do this, create a query pool with queries of type
VK_QUERY_TYPE_ACCELERATION_STRUCTURE_SERIALIZATION_SIZE_KHR; call
vkCmdWriteAccelerationStructuresPropertiesKHR() with the acceleration
structure, the query pool, and a queryType of the above query type; then, read
the sizes from the query pool as on page 239.

After allocating memory with at least the required size, call
vkCmdCopyAccelerationStructureToMemoryKHR() with a
VkCopyAccelerationStructureToMemoryInfoKHR structure whose src is set
to the acceleration structure, dst.deviceAddress is set to the device address
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of the memory, and mode is set to
VK_COPY_ACCELERATION_STRUCTURE_MODE_SERIALIZE_KHR. It is then possible
to retrieve the serialized data from device memory and use it elsewhere.

To deserialize this acceleration structure on another device, first ensure that
the serialized format is compatible with the device. To do this, call
vkGetDeviceAccelerationStructureCompatibilityKHR() with the device, a
pointer to the serialized data, and a
VkAccelerationStructureCompatibilityKHR variable in which to store the
result, as shown in Listing 16-25.

Listing 16-25. Determining if a serialized acceleration structure is compatible with a device.

1 VkAccelerationStructureVersionInfoKHR versionInfo {
VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_VERSION_INFO_KHR};

2 versionInfo.pVersionData = serializedStructure;
3

4 VkAccelerationStructureCompatibilityKHR isCompatible;
5 vkGetDeviceAccelerationStructureCompatibilityKHR(
6 device, &versionInfo, &isCompatible);

The serialized acceleration structure is compatible if the
VkAccelerationStructureCompatibilityKHR variable is then equal to
VK_ACCELERATION_STRUCTURE_COMPATIBILITY_COMPATIBLE_KHR.

To deserialize the serialized data, allocate space for and upload the data to
the device, then allocate an acceleration structure of at least the size of the
original structure. Then, call
vkCmdCopyMemoryToAccelerationStructureKHR() with a
VkCopyMemoryToAccelerationStructureInfoKHR structure whose
src.deviceAddress points to the serialized data on the device, dst is set to
the destination acceleration structure, and mode is set to
VK_COPY_ACCELERATION_STRUCTURE_MODE_DESERIALIZE_KHR.

DESCRIPTOR SET LAYOUTS AND PIPELINE LAYOUTS

Recall that in Vulkan, shaders use descriptors to access resources.
Descriptors are contained in descriptor sets, which are allocated from
descriptor pools. Descriptor set layouts are like function signatures, in that
they say what types of descriptors pipelines can access using descriptor
bindings. Finally, pipelines use pipeline layouts, which include descriptor set
layouts and push constant ranges.
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Figure 16-6. Vulkan Ray Tracing on display in Quake II RTX.

Vulkan Ray Tracing introduces several new shader stages. These are used
when making descriptor bindings and push constants accessible by these
shader stages, for instance. These new stage flags are the following:

> VK_SHADER_STAGE_RAYGEN_BIT_KHR (ray generation).

> VK_SHADER_STAGE_ANY_HIT_BIT_KHR (any-hit).

> VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR (closest-hit).

> VK_SHADER_STAGE_MISS_BIT_KHR (miss).

> VK_SHADER_STAGE_INTERSECTION_BIT_KHR (intersection).

> VK_SHADER_STAGE_CALLABLE_BIT_KHR (callable).

Additionally, Vulkan KHR Ray Tracing introduces a new descriptor type,
VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, for top-level
acceleration structures.

The sample code in Listing 16-26 shows how to create a descriptor set layout
with three storage buffers and one top-level acceleration structure, and how
to create a descriptor pool with space for one descriptor set created using
this layout. Generating a pipeline layout and allocating descriptor sets works
the same as in Vulkan without ray tracing.
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Listing 16-26. Creating a Vulkan descriptor set layout and descriptor pool with ray tracing
shaders and objects.

1 // Descriptor set layout
2 // List all bindings:
3 // Position: 1 storage image, accessible from the raygen stage
4 // Normal: 1 storage image, accessible from the raygen stage
5 // AO: 1 storage image, accessible from the raygen stage
6 // TLAS: 1 acceleration structure, accessible from the raygen stage
7 std::array<VkDescriptorSetLayoutBinding , 4> bindings;
8

9 bindings[0].binding = BINDING_IMAGE_POSITION;
10 bindings[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
11 bindings[0].descriptorCount = 1;
12 bindings[0].stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
13

14 bindings[1] = bindings[0];
15 bindings[1].binding = BINDING_IMAGE_NORMAL;
16

17 bindings[2] = bindings[0];
18 bindings[2].binding = BINDING_IMAGE_AO;
19

20 bindings[3].binding = BINDING_TLAS;
21 bindings[3].descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
22 bindings[3].descriptorCount = 1;
23 bindings[3].stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
24

25 VkDescriptorSetLayoutCreateInfo layoutInfo {
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO};

26 layoutInfo.bindingCount = uint32_t(bindings.size());
27 layoutInfo.pBindings = bindings.data();
28 NVVK_CHECK(vkCreateDescriptorSetLayout(
29 device, &layoutInfo, nullptr, &descriptorSetLayout));
30

31 // Descriptor pool with enough space for 1 set; this needs space for
32 // 3 storage image descriptors and 1 TLAS descriptor.
33 std::array<VkDescriptorPoolSize , 2> poolSizes;
34

35 poolSizes[0].type = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
36 poolSizes[0].descriptorCount = 3;
37

38 poolSizes[1].type = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
39 poolSizes[1].descriptorCount = 1;
40

41 VkDescriptorPoolCreateInfo descriptorPoolInfo {
VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO};

42 descriptorPoolInfo.maxSets = 1;
43 descriptorPoolInfo.poolSizeCount = uint32_t(poolSizes.size());
44 descriptorPoolInfo.pPoolSizes = poolSizes.data();
45 NVVK_CHECK(vkCreateDescriptorPool(
46 device, &descriptorPoolInfo, nullptr, &descriptorPool));

16.8.3 SHADER COMPILATION

In Vulkan, shaders are contained in SPIR-V shader modules, which can
potentially contain entry points for more than one shader. SPIR-V is an
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intermediate representation format, and SPIR-V shader modules can be
generated in several ways, including from the following:

> GLSL code using a separate process such as glslangValidator or
using a library such as shaderc.

> HLSL code using Microsoft’s DirectX Shader Compiler (DXC).

> C++ code using Circle C++.

> Rust code using rust-gpu.

For instance, to translate a file named ao.rgen with a GLSL ray generation
shader to SPIR-V bytecode contained in a file named ao.rgen.spv, call
glslangValidator as follows:

glslangValidator --target-env vulkan1.2 -o ao.rgen.spv ao.rgen

Here, glslangValidator determines that the file represents a ray generation
shader from the input file’s .rgen extension. This can also be configured
using glslangValidator’s -S flag.

A GLSL file may only have one entry point, which must be named main.
However, entry points of SPIR-V modules can be renamed, modules can be
linked together into single files, and other shading languages that can be
translated to SPIR-V do not have this constraint.

Ray tracing shader stages can be specified using the same interface as other
shader stages. A SPIR-V binary blob can be used to create a VkShaderModule
as in Listing 16-27.

Listing 16-27. Creating a Vulkan shader module from SPIR-V bytecode.

1 const size_t spirvSize = ...; // Length of SPIR-V bytecode in bytes
2 const uint32_t* spirvData = ...; // Pointer to SPIR-V data from file
3

4 VkShaderModuleCreateInfo createInfo {
VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO};

5 createInfo.codeSize = spirvSize;
6 createInfo.pCode = spirvData;
7

8 NVVK_CHECK(vkCreateShaderModule(
9 device, &createInfo, nullptr, &aoRgen));

16.9 CREATING VULKAN RAY TRACING PIPELINES

The shading stages of the Vulkan ray tracing pipeline were introduced earlier,
but make up only part of the Vulkan ray tracing pipeline. Ray tracing pipelines
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are also made up of fixed function traversal stages and a pipeline layout. This
section will complement the earlier information and show how to configure
the shaders, as well as the rest of the Vulkan rendering pipeline, in order to
create a Vulkan ray tracing pipeline object. Ray tracing pipeline objects are a
potentially large collection of ray generation, intersection, closest-hit, any-hit,
and miss shaders coupled with a conglomerate of ray tracing–specific
parameters. They are the ray tracing analogue of the graphics and compute
pipeline objects, and they provide the runtime with the full set of shaders and
configuration information for pipeline execution.

Vulkan pipeline creation takes several steps:

1. Load and compile shaders into VkShaderModule structures.

2. Aggregate shader entry points into an array of
VkPipelineStageCreateInfo instances.

3. Create an array of VkRayTracingShaderGroupCreateInfoKHR
structures. These will eventually be used to populate the shader binding
table.

4. Use these two arrays as well as a pipeline layout to create a ray tracing
pipeline object using vkCreateRayTracingPipelinesKHR().

Sample code for loading and compiling shaders can be found in the previous
section. Aggregation of the shader entry points from shader modules is
shown in Listing 16-28.

Listing 16-28. Creating a table of VkPipelineShaderStageCreateInfo objects. This uses three
shader modules and points to the RayGen() entry point of the first shader module, the Miss()
entry point of the second shader module, and the CHS() entry point of the third shader module.

1 std::array<VkPipelineShaderStageCreateInfo , NumRtShaderStages> pssci{};
2

3 pssci[RayGenIndex].sType =
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;

4 pssci[RayGenIndex].module = primaryRayGenShader;
5 pssci[RayGenIndex].pName = "RayGen";
6 pssci[RayGenIndex].stage = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
7

8 pssci[MissIndex].sType =
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;

9 pssci[MissIndex].module = missShader;
10 pssci[MissIndex].pName = "Miss";
11 pssci[MissIndex].stage = VK_SHADER_STAGE_MISS_BIT_KHR;
12

13 pssci[ClosestHitIndex].sType =
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;

14 pssci[ClosestHitIndex].module = closestHitShader;
15 pssci[ClosestHitIndex].pName = "CHS";
16 pssci[ClosestHitIndex].stage = VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR;
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Listing 16-29. Enumerating the elements of an array of shader groups, which contains one ray
generation group, one miss group, and one hit group. The ray generation group lists the index of
the ray generation shader stage. The miss shader group lists the index of the miss shader stage.
The hit group lists the index of the closest-hit stage and does not use an any-hit or intersection
shader.

1 std::array<VkRayTracingShaderGroupCreateInfoKHR , NumRtShaderGroups> rtsgci
{};

2

3 rtsgci[RayGenGroupIndex].sType =
VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;

4 rtsgci[RayGenGroupIndex].type =
VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;

5 rtsgci[RayGenGroupIndex].generalShader = PrimaryRayGenShaderIndex;
6 rtsgci[RayGenGroupIndex].closestHitShader = VK_SHADER_UNUSED_KHR;
7 rtsgci[RayGenGroupIndex].anyHitShader = VK_SHADER_UNUSED_KHR;
8 rtsgci[RayGenGroupIndex].intersectionShader = VK_SHADER_UNUSED_KHR;
9

10 // Miss groups also use the general group type.
11 rtsgci[MissGroupIndex] = rtsgci[RayGenGroupIndex];
12 rtsgci[MissGroupIndex].generalShader = MissShaderIndex;
13

14 // This hit group uses a TRIANGLES_HIT_GROUP group type.
15 rtsgci[HitGroupIndex].sType =

VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
16 rtsgci[HitGroupIndex].type =

VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR;
17 rtsgci[HitGroupIndex].generalShader = VK_SHADER_UNUSED_KHR;
18 rtsgci[HitGroupIndex].closestHitShader = ClosestHitShaderIndex;
19 rtsgci[HitGroupIndex].anyHitShader = VK_SHADER_UNUSED_KHR;
20 rtsgci[HitGroupIndex].intersectionShader = VK_SHADER_UNUSED_KHR;

This array describes the shader stages and will be used to populate a
VkRayTracingPipelineCreateInfoKHR struct later in the code samples.

Next, populate the VkRayTracingShaderGroupCreateInfoKHR array
(Listing 16-29). This describes the shader groups.

Finally, supply the two arrays as well as some additional parameters (pay
close attention to maxRecursionDepth if you plan on performing recursive ray
tracing) to the VkRayTracingPipelineCreateInfoKHR struct, and call
vkCreateRayTracingPipelinesKHR() to create the ray tracing pipeline
(Listing 16-30).

After creation, ray tracing pipeline objects can be bound and ray dispatch can
commence, but not without the shader binding table, which will be
discussed next.
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Listing 16-30. Creating the ray tracing pipeline.

1 VkRayTracingPipelineCreateInfoKHR rtpci {
VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR};

2 rtpci.stageCount = uint32_t(pssci.size());
3 rtpci.pStages = pssci.data();
4 rtpci.groupCount = uint32_t(rtsgci.size());
5 rtpci.pGroups = rtsgci.data();
6 rtpci.maxRecursionDepth= 1;
7 rtpci.libraries.sType = VK_STRUCTURE_TYPE_PIPELINE_LIBRARY_CREATE_INFO_KHR;
8 rtpci.layout = pipelineLayout;
9

10 NVVK_CHECK(vkCreateRayTracingPipelinesKHR(
11 device, // The VkDevice
12 VK_NULL_HANDLE, // Don't request deferral
13 1, &rtpci, // Array of structures
14 nullptr, // Default host allocator
15 &rtPipeline)); // Output VkPipelines

Figure 16-7. Vulkan Ray Tracing in Wolfenstein: Youngblood.

16.10 SHADER BINDING TABLES

The last core fundamental concept not yet discussed in detail is the shader
binding table, commonly referred to by its acronym SBT. It is the mechanism
that specifies which shaders will be executed when a ray intersects with a
particular geometric instance and which resources are used given those
conditions. This was introduced earlier in Section 16.2 as an array of shader
references and associated interleaved per-object data that define the
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relationship between the ray tracing shaders (or pipeline), their respective
resources, and the scene geometry. In a typical scene, objects use a variety of
shaders, materials, and resources. Because a ray has the ability to intersect
with any object in the scene, all shaders and material data must be accessible
from the SBT. This marks a significant departure from the raster graphics
pipeline and workflow where draw submissions are commonly sorted by
material.

This section is a brief introduction to SBTs in the context of Vulkan ray tracing.
For a more comprehensive and thorough discussion of SBTs, see Chapter 15.

In Vulkan the SBT is a VkBuffer containing a group of records that consist of
shader handles followed by in-line application-defined data. These records
will be referred to here as shader records. Shader records in an SBT share a
common stride, which must be large enough to accommodate the largest
shader resource set. The shader handles determine which shaders are run
for a given shader record, and the application-defined data is made available
to the shaders as a shader storage buffer object (HLSL) or shaderRecordEXT
buffer block (GLSL). Function call parameters, the shader pipeline, and
acceleration structures together dictate which shader record will be used for
a given circumstance. The application-defined data commonly includes
resource indices, buffer device addresses, and numeric constants.

The example SBT in Figure 16-8 contains four shader records: one for the ray
generation shader, one for the miss shader, and two hit groups. The hit
groups correspond to different objects in the scene that have different
shading information and are composed of a closest-hit shader and optional
intersection and any-hit shaders. Though this SBT is usable, it is simpler than
what is typically found in real ray tracing applications. SBTs are one of the
most complicated parts of real-time ray tracing, and developers tend to run
into problems here more frequently than in other places.

Shader Binding Table

Shader
Reference

Shader Record
(Ray Generation)

Shader
Data

Shader
Reference

Shader Record
(Miss)

Shader
Data

Shader
Reference

Shader Record
(Hit Group 0)

Shader
Data

Shader
Reference

Shader Record
(Hit Group 1)

Shader
Data

Figure 16-8. Example shader binding table.
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The following is the formula used by the API for calculating the hit group
record address in the shader binding table. It uses function parameters and
acceleration structure data as inputs. Both bottom- and top-level
acceleration structures can influence the calculation, and the function
parameters can come from either the host side or from shaders:

HitGroupRecordAddress = start + stride ∗
(
instanceOffset

+ paramOffset + (geometryIndex ∗ paramMultiplier)
)
, (16.2)

where

> start is
((VkStridedBufferRegionKHR*)pHitShaderBindingTable)->offset.

> stride is
((VkStridedBufferRegionKHR*)pHitShaderBindingTable)->stride.

> instanceOffset is VkAccelerationStructureInstanceKHR.
instanceShaderBindingTableRecordOffset (from the TLAS
instance).

> paramOffset is MultiplierForGeometryContributionToHitGroupIndex
(HLSL) or sbtRecordOffset (GLSL, from the parameter to
traceRayEXT()).

> geometryIndex is the index of the geometry in the BLAS.

> paramMultiplier is RayContributionToHitGroupIndex (HLSL) or
sbtRecordStride (GLSL, from the parameter to traceRayEXT()).

Listing 16-31 will help illustrate shader table creation. The first step is to
compute the size of the SBT using the number of groups and the aligned
handle size so that the buffer can be allocated.

Listing 16-31. Computing a valid size and stride for the SBT.

1 // The number of groups
2 auto groupCount = uint32_t(rayTracingShaderGroupCreateInfo.size());
3 // The size of a program identifier
4 uint32_t groupHandleSize = rtPipelineProperties.shaderGroupHandleSize;
5

6 // Compute the actual size needed per SBT entry by rounding up to the
7 // alignment needed. Nvh::align_up(a,b) rounds a up to a multiple of b.
8 uint32_t groupSizeAligned = nvh::align_up(groupHandleSize,

rtPipelineProperties.shaderGroupBaseAlignment);
9

10 // Bytes needed for the SBT
11 uint32_t sbtSize = groupCount * groupSizeAligned;
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The next step is to fetch the handles to the shader groups in the pipeline,
allocate device memory for the SBT, and copy the handles into it
(Listing 16-32).

Listing 16-32. Allocating and writing shader handles from the ray tracing pipeline into the SBT.

1 // Fetch all the shader handles used in the pipeline.
2 // This is opaque data, so we store it in a vector of bytes.
3 std::vector<uint8_t> shaderHandleStorage(sbtSize);
4 NVVK_CHECK(vkGetRayTracingShaderGroupHandlesKHR(
5 device, // The device
6 rtPipeline, // The ray tracing pipeline
7 0, // Index of the group to start from
8 groupCount, // The number of groups
9 sbtSize, // Size of the output buffer in bytes
10 shaderHandleStorage.data()); // The output buffer
11

12 // Allocate a buffer for storing the SBT.
13 rtSBTBuffer = allocator.createBuffer(
14 sbtSize,
15 VK_BUFFER_USAGE_TRANSFER_SRC_BIT
16 | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT
17 | VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR ,
18 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
19 | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
20

21 // Map the SBT buffer and write in the handles.
22 void* mapped = allocator.map(rtSBTBuffer);
23 auto* pData = reinterpret_cast<uint8_t*>(mapped);
24 for(uint32_t g = 0; g < groupCount; g++)
25 {
26 memcpy(pData,
27 shaderHandleStorage.data() + g * groupHandleSize,
28 groupHandleSize);
29 pData += groupSizeAligned;
30 }
31 allocator.unmap(rtSBTBuffer);

There are a couple of items to be aware of regarding SBTs and their creation.
First, there is no ordering requirement with respect to shader types in the
SBT; ray generation, hit, and miss groups can come in any order. Next, it is
important to pay close attention to alignment. There is no guarantee that
group handle size will be the same as shader group alignment size.

In particular, here are the full requirements for SBT alignment, using fields
from a VkPhysicalDeviceRayTracingPipelinePropertiesKHR object:

> The stride must be greater than shaderGroupHandleSize (in other
words, each SBT record must have enough space for its shader
group handle).

> The stride must be a multiple of shaderGroupHandleAlignment.

251



RAY TRACING GEMS II

> The stride must be less than maxShaderGroupStride.

> The address of the first element in each
VkStridedDeviceAddressRegionKHR region must be a multiple of
shaderGroupBaseAlignment bytes.

16.11 RAY DISPATCH

Once the acceleration structures have been built, the shaders are loaded, the
ray tracing pipeline is in place, and the shader binding table is in order, the
application is finally ready to start dispatching rays. In order to do so, first
bind the pipeline, as well as any descriptor sets and push constants that the
pipeline requires (Listing 16-33).

Note that the listings in this section deviate from the sample the previous
sections followed.

Listing 16-33. Binding the ray tracing pipeline, descriptor set, and push constants.

1 vkCmdBindPipeline(cmdBuffer,
2 VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR ,
3 rtPipeline);
4

5 vkCmdBindDescriptorSets(cmdBuffer,
6 VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR ,
7 rtPipelineLayout, 0, 1, &rtDescriptorSet, 0, 0);
8

9 vkCmdPushConstants(cmdBuffer, rtPipelineLayout,
10 VK_SHADER_STAGE_ALL , 0,
11 sizeof(rtConstants), &rtConstants);

The Vulkan command to dispatch rays, vkCmdTraceRaysKHR(), requires a
command buffer handle, SBT regions for each shader stage type that it will
use, and 3D grid dispatch dimensions. Each SBT region is specified by
populating a VkStridedBufferRegionKHR struct and passing a pointer to that
struct as a parameter to vkCmdTraceRaysKHR() (Listing 16-34).

The size of the dispatch can also be specified by the device using
vkCmdTraceRaysIndirectKHR() if it supports indirect ray tracing pipeline
dispatches.

Remember to include any necessary synchronization, such as pipeline
barriers. An example pipeline barrier appears in Listing 16-35 for reference.
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Listing 16-34. Strided buffer region specification and ray dispatch.

1 VkStridedBufferRegionKHR rayGenRegion = {};
2 rayGenRegion.buffer = shaderBindingTable;
3 rayGenRegion.offset = shaderTableRecordSize * RayGenGroupIndex;
4 rayGenRegion.size = rayTracingProperties.shaderGroupHandleSize;
5

6 VkStridedBufferRegionKHR missRegion = {};
7 missRegion.buffer = shaderBindingTable;
8 missRegion.offset = shaderTableRecordSize * MissGroupIndex;
9 missRegion.size = rayTracingProperties.shaderGroupHandleSize;
10

11 VkStridedBufferRegionKHR hitRegion = {};
12 hitRegion.buffer = shaderBindingTable;
13 hitRegion.offset = shaderTableRecordSize * HitGroupIndex;
14 hitRegion.size = shaderTableRecordSize * numHitRecords;
15 hitRegion.stride = shaderTableRecordSize;
16

17 VkStridedBufferRegionKHR callableRegion = {};
18

19 vkCmdTraceRaysKHR(cmdBuffer,
20 &rayGenRegion,
21 &missRegion,
22 &hitRegion,
23 &callableRegion,
24 width, height, 1);

Listing 16-35. Recording a memory barrier between shader writes from the ray tracing pipeline
stage and shader reads from the compute shader pipeline stage.

1 // Make compute shader stages wait for ray tracing to complete.
2 VkMemoryBarrier memoryBarrier{VK_STRUCTURE_TYPE_MEMORY_BARRIER};
3 memoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
4 memoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
5

6 vkCmdPipelineBarrier(cmdBuffer,
7 VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR ,
8 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT ,
9 0,
10 1, &memoryBarrier,
11 0, nullptr,
12 0, nullptr);

16.12 ADDITIONAL RESOURCES

Even though Vulkan Ray Tracing is relatively new, there are many resources to
supplement this introduction. There are samples available at the Khronos
samples repository [4] that are very accessible to beginners. The NVIDIA
DesignWorks samples collection [11] has various samples with different
levels of complexity [2, 6, 7], which may help mitigate the steep learning curve
encountered while moving beyond the smallest examples. There are also
developer blogs online that discuss topics such as best practices, avoiding
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potential development pitfalls, and leveraging tools to make development and
debugging easier [10, 13].

Examination of an existing implementation such as Falcor [1], or even a larger
game engine, may prove to be insightful and may help chart the course for
implementing a new framework. There is ample opportunity to make large
architectural contributions in this regard.

One potentially great way to extend Vulkan Ray Tracing knowledge would be to
examine a basic tutorial and to augment it with another effect, such as by
adding shadows or reflections to a simple example. Taking bite-size steps
when beginning will prevent becoming overwhelmed by the complexity
inherent in this subject matter. Lastly, contributing to community efforts,
adding to the Vulkan specification, filing bugs, or any other way of getting
involved and immersed in the ecosystem is a great way to learn and to help
others to learn as well.

16.13 CONCLUSION

Vulkan coupled with the ray tracing extensions provides an enormous amount
of capability for the ambitious programmer. This chapter served as a basic
introduction to the fundamentals needed to get a Vulkan Ray Tracing
application up and running. Even reduced to the bare minimum, Vulkan Ray
Tracing applications contain significant complexity. After becoming familiar
with the basics, it is highly recommended that developers keep up to date with
the latest developments to the Vulkan API as well as tools that facilitate
debugging and analysis of applications.
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CHAPTER 17

USING BINDLESS RESOURCES
WITH DIRECTX RAYTRACING
Matt Pettineo
Ready At Dawn Studios

ABSTRACT

Resource binding in Direct3D 12 can be complex and difficult to implement
correctly, particularly when used in conjunction with DirectX Raytracing. This
chapter will explain how to use bindless techniques to provide shaders with
global access to all resources, which can simplify application and shader code
while also enabling new techniques.

17.1 INTRODUCTION

Prior to the introduction of Direct3D 12, GPU texture and buffer resources
were accessed using a simple CPU-driven binding model. The GPU’s resource
access capabilities were typically exposed as a fixed set of “slots” that were

Figure 17-1. The Unreal Engine Sun Temple scene [5] rendered with an open source DXR path
tracer [9] that uses bindless resources.
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tied to a particular stage of the logical GPU pipeline, and API functions were
provided that allowed the GPU to “bind” a resource view to one of the exposed
slots. This sort of binding model was a natural fit for earlier GPUs, which
typically featured a fixed set of hardware descriptor registers that were used
by the shader cores to access resources.

While this old style of binding was relatively simple and well understood, it
naturally came with many limitations. The limited nature of the binding slots
meant that programs could typically only bind the exact set of resources that
would be accessed by a particular shader program, which would often have to
be done before every draw or dispatch. The CPU-driven nature of binding
demanded that a shader’s required resources had to be statically known after
compilation, which naturally led to inherent restrictions on the complexity of a
shader program.

As ray tracing on the GPU started to gain traction, the classic binding model
reached its breaking point. Ray tracing tends to be an inherently global
process: one shader program might launch rays that could potentially
interact with every material in the scene. This is largely incompatible with the
notion of having the CPU bind a fixed set of resources prior to dispatch.
Techniques such as atlasing or Sparse Virtual Texturing [1] can be viable as a
means of emulating global resource access, but may also require adding
significant complexity to a renderer.

Fortunately, newer GPUs and APIs no longer suffer from the same limitations.
Most recent GPU architectures have shifted to a model where resource
descriptors can be loaded from memory instead of from registers, and in
some cases they can also access resources directly from a memory address.
This removes the prior restrictions on the number of resources that can be
accessed by a particular shader program, and also opens the door for those
shader programs to dynamically choose which resource is actually accessed.

This newfound flexibility is directly reflected in the binding model of Direct3D
12, which has been completely revamped compared to previous versions of
the API. In particular, it supports features that collectively enable a technique
commonly known as bindless resources [2]. When implemented, bindless
techniques effectively provide shader programs with full global access to the
full set of textures and buffers that are present on the GPU. Instead of
requiring the CPU to bind a view for each individual resource, shaders can
instead access an individual resource using a simple 32-bit index that can be
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freely embedded in user-defined data structures. While this level of flexibility
can be incredibly useful in more traditional rasterization scenarios [6], they
are borderline essential when using DirectX Raytracing (DXR).

The remainder of this chapter will cover the details of how to enable bindless
resource access using Direct3D 12 (D3D12), and will also cover the basics of
how to use bindless techniques in a DXR ray tracer. Basic familiarity with both
D3D12 and DXR is assumed, and we refer the reader to an introductory
chapter from the first volume of Ray Tracing Gems [11].

17.2 TRADITIONAL BINDING WITH DXR

Like the rest of D3D12, DXR utilizes root signatures to specify how resources
should be made available to shader programs. These root signatures specify
collections of root descriptors, descriptor tables, and 32-bit constants and
map those to ranges of HLSL binding registers. When using DXR, we actually
deal with two different types of root signatures: a global root signature and a
local root signature. The global root signature is applicable to the ray
generation shader as well as all executed miss, any-hit, closest-hit, and
intersection shaders. The local root signature only applies to a particular hit
group. Used together, global and local root signatures can implement a fairly
traditional binding model where the CPU code “pushes” descriptors for all
resources that are needed by the shader program. In a typical rendering
scenario, this would likely involve having the local root signature provide a
descriptor table containing all textures and constant buffers required by the
particular material assigned to the mesh in the hit group. An example of this
traditional model of resource binding is shown in Figure 17-2.

Though this approach can be workable, there are several problems that make
it less than ideal. First, the mechanics of the local root signature are
somewhat inconsistent with how root signatures normally work within D3D12.
Standard root signatures require using command list APIs to specify which
constants, root descriptors, and descriptor table should be bound to
corresponding entries in the root signature. Local root signatures do not work
this way because there can be many different root signatures contained within
a single state object. Instead, the parameters for the root signature entries
must be placed inline within a shader record in the hit group shader table,
immediately following the shader identifier. This setup is further complicated
by the fact that both shader records and root signature parameters have
specific alignment requirements that must be observed. Shader identifiers
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Root Signature 

SRV Table A

SRV Table B
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Descriptor Heap

Descriptor 25
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Descriptor 23
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Descriptor 17

Constants

Figure 17-2. An example of traditional resource binding in D3D12. A root signature contains two
entries for Shader Resource View (SRV) descriptor tables, each of which point to a range of
contiguous SRV descriptors within a global descriptor heap, as well as contains the root Constant
Buffer View (CBV).

consume 32 bytes (D3D12_SHADER_IDENTIFIER_SIZE_IN_BYTES) and must
also be located at an offset that is aligned to 32 bytes
(D3D12_RAYTRACING_SHADER_RECORD_BYTE_ALIGNMENT). Root signature
parameters that are 8 bytes in size (such as root descriptors) must also be
placed at offsets that are aligned to 8 bytes. Thus, carefully written packing
code or helper types have to be used in order to fulfill these specific rules
when generating the shader table. The following code shows an example of
what shader record helper structs might look like:

1 struct ShaderIdentifier
2 {
3 uint8_t Data[D3D12_SHADER_IDENTIFIER_SIZE_IN_BYTES] = { };
4

5 ShaderIdentifier() = default;
6 explicit ShaderIdentifier(const void* idPointer)
7 {
8 memcpy(Data, idPointer, D3D12_SHADER_IDENTIFIER_SIZE_IN_BYTES);
9 }
10 };
11

12 struct HitGroupRecord
13 {
14 ShaderIdentifier ID;
15 D3D12_GPU_DESCRIPTOR_HANDLE SRVTableA = { };
16 D3D12_GPU_DESCRIPTOR_HANDLE SRVTableB = { };
17 uint32_t Padding1 = 0; // Ensure that CBV has 8-byte alignment.
18 uint64_t CBV = 0;
19 uint8_t Padding[8] = { }; // Needed to keep shader ID at
20 // 32-byte alignment
21 };
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For more complex scenarios with many meshes and materials, the local root
signature approach can quickly become unwieldy and error-prone.
Generating the local root signature arguments on the CPU as part of filling
the hit shader table is the most straightforward approach, but this can
consume precious CPU cycles if it needs to be done frequently in order to
support dynamic arguments. It also subjects us to some of the same
limitations on our shader programs that we had in previous versions of D3D:
the set of resources required for a hit shader must be known in advance, and
the shader itself must be written so that it uses a static set of resource
bindings. Generation of the shader table on the GPU using compute shaders
is a viable option that allows for more GPU-driven rendering approaches,
however this can be considerably more difficult to write, validate, and debug
compared with the equivalent CPU implementation. It also does not remove
the limitations regarding shader programs and dynamically selecting which
resources to access. Both approaches are fundamentally incompatible with
the new inline raytracing functionality that was added for DXR 1.1, since using
a local root signature is no longer an option. This means that we must
consider a less restrictive binding solution in order to make use of the new
RayQuery APIs for general rendering scenarios.

17.3 BINDLESS RESOURCES IN D3D12

As mentioned earlier, bindless techniques allow us to effectively provide our
shader programs with global access to all currently loaded resources instead
of being restricted to a small subset. D3D12 supports bindless access to
every resource type that utilizes shader visible descriptor heaps: Shader
Resource Views (SRVs), Constant Buffer Views (CBVs), Unordered Access
Views (UAVs), and Samplers. However, these types each have different
limitations that can prevent their use in bindless scenarios, most of which are
dictated by the value of D3D12_RESOURCE_BINDING_TIER that is exposed by the
device. We will cover some of these limitations in more detail in Section 17.5,
but for now we will primarily focus on using bindless techniques for SRVs
because they typically form the bulk of resources accessed by shader
programs. However, the concepts described here can generally be extended
to other resource views with little effort.

They key to enabling bindless resources with D3D12 is setting up our root
signature in a way that effectively exposes an entire descriptor heap through a
single root parameter. The most straightforward way to do this is to add a
parameter with a type of D3D12_ROOT_PARAMETER_TYPE_DESCRIPTOR_TABLE,
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with a single unbounded descriptor range:

1 // Unbounded range of descriptor SRV to expose the entire heap
2 D3D12_DESCRIPTOR_RANGE1 srvRanges[1] = {};
3 srvRanges[0].RangeType = D3D12_DESCRIPTOR_RANGE_TYPE_SRV;
4 srvRanges[0].NumDescriptors = UINT_MAX;
5 srvRanges[0].BaseShaderRegister = 0;
6 srvRanges[0].RegisterSpace = 0;
7 srvRanges[0].OffsetInDescriptorsFromTableStart = 0;
8 srvRanges[0].Flags = D3D12_DESCRIPTOR_RANGE_FLAG_DESCRIPTORS_VOLATILE;
9

10 D3D12_ROOT_PARAMETER1 params[1] = {};
11

12 // Descriptor table root parameter
13 params[0].ParameterType = D3D12_ROOT_PARAMETER_TYPE_DESCRIPTOR_TABLE;
14 params[0].ShaderVisibility = D3D12_SHADER_VISIBILITY_ALL;
15 params[0].DescriptorTable.pDescriptorRanges = srvRanges;
16 params[0].DescriptorTable.NumDescriptorRanges = 1;

When building our command lists for rendering, we can then pass the handle
returned by
ID3D12DescriptorHeap::GetGPUDescriptorHandleForHeapStart() to
ID3D12GraphicsCommandList::SetGraphicsRootDescriptorTable() or
ID3D12GraphicsCommandList::SetComputeRootDescriptorTable() in order
to make the entire contents of that heap available to the shader. This allows
us to place our created descriptors anywhere in the heap without needing to
partition it in any way.

To access a particular resource’s descriptor in our shader program, we can
use a technique known as descriptor indexing. In HLSL, this technique first
requires us to declare an array of a particular shader resource type (such as
Texture2D). To access a particular resource, we merely need to index into the
array using an ordinary integer. A simple and straightforward way to do this is
to use a constant buffer to pass descriptor indices to a shader, as
demonstrated in Figure 17-3.

1 Texture2D GlobalTextureArray[] : register(t0);
2 SamplerState MySampler : register(s0);
3

4 struct MyConstants
5 {
6 uint TexDescriptorIndex;
7 };
8 ConstantBuffer<MyConstants> MyConstantBuffer : register(b0);
9

10 float4 MyPixelShader(in float2 uv : UV) : SV_Target0
11 {
12 uint texDescriptorIndex = MyConstantBuffer.TexDescriptorIndex;
13 Texture2D myTexture = GlobalTextureArray[texDescriptorIndex];
14 return myTexture.Sample(MySampler, uv);
15 }
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uint LightBufferIdx;

uint EmissiveMapIdx;
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uint NormalMapIdx;

uint ColorMapIdx;

Root Signature 

Figure 17-3. An example of using bindless techniques to access SRV descriptors. A root
signature contains a root Constant Buffer View, which points to a block of constants containing
32-bit indices of descriptors within a global descriptor heap. With a bindless setup the descriptors
needed by a shader do not need to be contiguous within the descriptor heap and do not need to be
ordered with regards to how the shader accesses or declares the resources.

For this example to work, we simply need to ensure that our root signature’s
descriptor table parameter is mapped to the t0 register used by the
Texture2D array in our shader. If this is done properly, the shader effectively
has full access to the entire global descriptor heap. Or, at least it can access
all of the descriptors that can be mapped to the Texture2D HLSL type. One
limitation of the current version of HLSL is that we need to declare a separate
array for each HLSL resource type that we would like to access in our shader,
and each one must have a separate non-overlapping register mapping. A
simple way to ensure that their assignments don’t overlap is to use a different
register space for each resource array. This allows us to continue using
unbounded arrays instead of requiring an array size to be compiled into the
shader.

1 Texture2D Tex2DTable[] : register(t0, space0);
2 Texture2D<uint4> Tex2DUintTable[] : register(t0, space1);
3 Texture2DArray Tex2DArrayTable[] : register(t0, space2);
4 TextureCube TexCubeTable[] : register(t0, space3);
5 Texture3D Tex3DTable[] : register(t0, space4);
6 Texture2DMS<float4> Tex2DMSTable[] : register(t0, space5);
7 ByteAddressBuffer RawBufferTable[] : register(t0, space6);
8 Buffer<uint> BufferUintTable[] : register(t0, space7);
9 // ... and so on

Note that we not only need separate arrays for different resource types like
Texture2D versus Texture3D, but we may also require having separate arrays
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for different return types (expressed using the C++ template syntax) of the
same HLSL resource type. This is evident in the previous example, which has
arrays of both Texture2D as well as Texture2D<uint4> (a texture resource
with no return type has an implicit return type of float4). Having textures
with various return types is an unfortunate necessity for supporting all
possible DirectX Graphics Infrastructure (DXGI) texture formats because
certain formats require the shader to declare the HLSL resource with a
specific return type. The following table lists the appropriate return type for
each of the format modifiers available in the DXGI_FORMAT enumeration:

UNORM float
SNORM float
FLOAT float
UINT uint
SINT int

One consequence of having separate HLSL resource arrays and register
space bindings is that we must have a corresponding descriptor range in our
root signature for each declared array. Luckily for us, it is possible to stack
multiple unbounded descriptor ranges in a single root parameter. This
ultimately means that we only need to bind our global descriptor heap once
for each root signature:

1 D3D12_DESCRIPTOR_RANGE1 ranges[NumDescriptorRanges] = {};
2 for(uint32_t i = 0; i < NumDescriptorRanges; ++i)
3 {
4 ranges[i].RangeType = D3D12_DESCRIPTOR_RANGE_TYPE_SRV;
5 ranges[i].NumDescriptors = UINT_MAX;
6 ranges[i].BaseShaderRegister = 0;
7 ranges[i].RegisterSpace = i;
8 ranges[i].OffsetInDescriptorsFromTableStart = 0;
9 ranges[i].Flags = D3D12_DESCRIPTOR_RANGE_FLAG_DESCRIPTORS_VOLATILE;
10 }
11

12 D3D12_ROOT_PARAMETER1 params[1] = {};
13

14 // Descriptor table root parameter
15 params[0].ParameterType = D3D12_ROOT_PARAMETER_TYPE_DESCRIPTOR_TABLE;
16 params[0].ShaderVisibility = D3D12_SHADER_VISIBILITY_ALL;
17 params[0].DescriptorTable.pDescriptorRanges = ranges;
18 params[0].DescriptorTable.NumDescriptorRanges = 1;

With this approach, we can expand our support for bindless access to many
types of buffer and texture resources. We can even declare our set of HLSL
resource arrays in a single header file and then include that file in any shader
code that needs to access resources. But what about types such as
StructuredBuffer or ConstantBuffer, which are typically templated on a
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user-defined struct type? There are effectively unlimited permutations of
these types, which precludes us from predefining them in a shared header
file. One possible approach for handling these types is to reserve some
additional descriptor table ranges in the root signature that can be utilized by
any individual shader program. As an example, we can define our root
signature with eight additional descriptor ranges using register spaces 100
through 107. If we then write a shader program that needs to access a
StructuredBuffer with a custom structure type, we simply declare an array
bound to one of these reserved register spaces:

1 // Define an array of our custom buffer type assigned to
2 // one of our reserved register spaces.
3 StructuredBuffer<MyStruct> MyBufferArray[] : register(t0, space100);
4

5 MyStruct AccessMyBuffer(uint descriptorIndex, uint bufferIndex)
6 {
7 StructuredBuffer<MyStruct> myBuffer = MyBufferArray[descriptorIndex];
8 return myBuffer[bufferIndex];
9 }

In our original descriptor indexing example, we pulled our descriptor index
from a constant buffer. This is a perfectly straightforward way for our CPU
code to pass these indices to a shader program, and by filling out the constant
buffer just before a draw or dispatch, we can even use this approach to
emulate a more traditional binding setup. However, we are by no means
limited to only using constant buffers for passing around descriptor indices.
Because they are just a simple integer, we can now pack these almost
anywhere. For instance, we could have a StructuredBuffer containing a set
of descriptor indices for every loaded material in the scene, and a shader
program could use a material index to fetch the appropriate set of indices.
The indices could even be written into a UINT-formatted (unsigned integer)
render target texture if that were useful! We can actually start to think of
these indices as handles to our resources, or even as a pointer that grants us
access to a resource’s contents.

When writing shader code that uses descriptor indexing, we must always be
careful to evaluate whether or not a particular index is uniform. In this
context, a descriptor is uniform if it has the same value for all threads within a
particular draw, dispatch, or hit, miss, any-hit, or intersection shader
invocation.1 In our original descriptor indexing example, the index came from
a constant buffer, which means that all of the pixel shader threads used the

1Note that this definition is distinct from its meaning when used within the context of wave-level shader pro-
gramming, where uniformmeans that the value is the same within a particular warp or wavefront.
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same descriptor index. We would consider the index to be uniform in this
case. However, let us now consider a more complex scenario. What if instead
of coming from a constant buffer, the index was passed from the vertex shader
as an interpolant? This would allow the value of that index to vary within the
pixel shader threads. In this case the index would be considered nonuniform.
Nonuniform descriptor indices are allowed in D3D12, however they do require
special consideration. In order to ensure correct results, the index must be
passed to the NonUniformResourceIndex intrinsic before being used to index
into the resource array. This notifies the driver that the index may be varying,
which may require it to insert additional instructions in order to properly
handle the varying descriptor within a SIMD execution environment. On most
existing GPU architectures, the additional cost of these instructions is
proportional to the amount of divergence within the architecture-specific
thread grouping (often referred to as a warp or wavefront). For these reasons
it’s important to be judicious about when and where to make use of
nonuniform indexing. It’s also important to be aware that the results of
nonuniform indexing are undefined when NonUniformResourceIndex is
omitted, which means that forgetting to use it may result in correct results on
one architecture while producing graphical artifacts on others.

Though the additional flexibility afforded to our shaders can be a primary
motivator for adopting bindless-style descriptor indexing, these techniques
can also allow for simplification of application code when deployed
throughout a rendering engine. Accessing a descriptor by indexing inherently
grants us sparse access to all descriptors in a heap, which frees us from
having to keep a particular shader’s set of descriptors contiguous within that
heap. Maintaining contiguous descriptor tables can often require complex
(and expensive) management to be performed by our CPU code, which is
especially true in cases where descriptors need to be updated in response to
changing data.

A very common example is a CPU-updated buffer, often referred to as a
dynamic buffer in earlier versions of D3D. Because the CPU cannot write to a
buffer while the GPU is reading from it, techniques such as double-buffering
or ring-buffering are often deployed to ensure that there is no concurrent
access to the same resource memory. However, the act of “swapping” to a
new internal buffer also requires swapping descriptors (if not using root
descriptors), which causes any existing descriptor tables to become invalid.
Dealing with this might normally require versioning entire descriptor tables,
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or spending CPU cycles updating every table in which a particular buffer is
referenced. With bindless techniques we no longer need to worry about
contiguous descriptor tables, which means that a particular buffer only needs
one descriptor to be updated within a heap whenever the buffer’s contents
change. We still need to be careful not to update a descriptor heap that’s
currently being referenced by executing GPU commands, however we can
handle this at a global level by swapping through N global descriptor heaps
(where N is the maximum number of frames in flight allowed by the renderer).
As long as the descriptors for a buffer’s “versions” are always placed at the
same offset within the global heap, the shaders can continue to access the
buffer using the same persistent descriptor index. For an example of how
these patterns can be used in practice, consult the implementation of
StructuredBuffer::Map() in the DXRPathTracer repository on GitHub [9].

17.4 BINDLESS RESOURCES WITH DXR

Though bindless techniques are very useful in general, their benefits really
begin to become apparent when used in conjunction with ray tracing. Having
global access to all texture and buffer resources is a great fit when tracing
rays that can potentially intersect with any geometry in the entire scene, and
is a de facto requirement when working with the new inline tracing
functionality introduced with DXR 1.1. In this section, we will walk through an
example implementation of a simple path tracer that utilizes bindless
techniques to access geometry buffers as well as per-material textures. The
source code and Visual Studio project for the complete implementation is
available to view and download on GitHub [7].

Our simple path tracer will work as follows:

> For every frame, DispatchRays is called to launch one thread per pixel
on the screen.

> Every dispatched thread traces a single camera ray into the scene.

> In the closest-hit shader, the surface properties are determined from
geometry buffers and material textures.

> The hit shader computes direct lighting from the sun and local light
sources, casting a shadow ray to determine visibility.

> The hit shader recursively traces another ray into the scene to gather
indirect lighting from other surfaces.
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> A miss shader is used to sample sky lighting from a procedural sky
model.

> For materials using alpha-testing, an any-hit shader is run to sample an
opacity texture.

> Once the original ray generation thread finishes, it progressively updates
the radiance stored in a floating-point accumulation texture.

Because we will be using bindless techniques to access our resources, we can
completely forego local root signatures in favor of a single global root
signature used for the entire call to DispatchRays. This global root signature
will contain the following:

> An SRV descriptor table containing our entire shader-visible descriptor
heap (with overlapping ranges for each resource type).

> A root SRV descriptor for our scene’s acceleration structure.

> A UAV descriptor table containing a descriptor for our accumulation
texture.2

> A root CBV descriptor containing global constants filled out by the CPU
just before the call to DispatchRays.

> Another root CBV containing constants that contain application settings
whose values come from a runtime UI controls.

Because we do not need any local root signatures, we can completely skip
adding any D3D12_LOCAL_ROOT_SIGNATURE subobjects to our state object, as
well as the D3D12_SUBOBJECT_TO_EXPORTS_ASSOCIATION subjects for
associating a local root signature with an export. This also means that each
shader record in our shader tables only needs to contain the shader identifier,
as we have no parameters for a local root signature.

When we described the basic functionality of our path tracer, we mentioned
how it needs to compute lighting response every time a path intersects with
geometry in the scene. To do this, we need to properly reconstruct the surface
attributes at the point of intersection. For attributes such as normals and UV
coordinates that are derived from per-vertex attributes, our hit shaders will

2Bindless UAVs can also be used on a device that supports D3D12_RESOURCE_BINDING_TIER_3, which
is currently the case for all DXR-capable GPUs. However, the example path tracer referenced by this chapter
only utilizes bindless techniques for SRVs.
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need to access the vertex and index buffers in order to find the three relevant
triangle vertices and interpolate their data. To facilitate this, we will create a
StructuredBuffer whose elements are defined by the following struct:

1 struct GeometryInfo
2 {
3 uint VertexOffset; // Can alternatively be descriptor indices
4 // to unique vertex/index buffer SRVs
5 uint IndexOffset;
6 uint MaterialIndex; // Assumes a single global buffer, could also
7 // have a descriptor index for the buffer
8 // and then another index into that buffer
9 uint PadTo16Bytes; // For performance reasons, not required
10 };

Our buffer will be created with one of these elements for every
D3D12_RAYTRACING_GEOMETRY_DESC that was provided when building the
scene acceleration structure, which in our case corresponds to a single mesh
that was present in the original source scene. By doing it this way, we can
conveniently index into this buffer using the GeometryIndex() intrinsic that is
available to our hit shaders.3

To complement our GeometryInfo buffer, we will also build another
structured buffer containing one entry for every unique material in the scene.
The elements of this buffer will be defined by the following struct:

1 struct Material
2 {
3 uint Albedo;
4 uint Normal;
5 uint Roughness;
6 uint Metallic;
7 uint Opacity;
8 uint Emissive;
9 };

Each uint in this struct is the index of a descriptor in our global descriptor
heap, which allows hit shaders to access those textures through the SRV
descriptor table in the global root signature. Note that this assumes a rather
uniform material model, where all materials use the same set of textures and
don’t require any additional parameters. However, it would be trivial to add
additional values to this struct if necessary, provided that those values are
common to all materials. It would also be straightforward for a material to
indicate that it did not need to sample a particular texture by providing a
known invalid index (such as uint32_t(-1)). The hit shaders could then
check for this and branch over the texture sample if necessary. A more
complex approach might involve having the Material struct instead provide

3GeometryIndex() is a new intrinsic that was added for DXR 1.1.
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the index of a CBV descriptor, whose layout would be interpreted by the
individual hit shaders. Alternatively, a set of heterogeneous data could be
packed into a single ByteAddressBuffer, where again it would be up to the hit
shader to interpret and load the data appropriately based on the material’s
requirements.

With our shader tables, state object, and geometry/material buffers built, we
can now call DispatchRays() to launch many threads of our ray generation
program. As we mentioned earlier, our simple path tracer will work by
launching one thread for every pixel in the screen. Each of these threads then
starts out by using its associated pixel coordinate to compute a camera ray
according to a standard perspective projection, which effectively serves as a
simple pinhole camera model. Once we’ve computed the appropriate ray
direction, we can then call TraceRay() to trace a ray from the camera’s
position into our scene. This ray’s payload contains a float3 that will be set to
the computed radiance being reflected or emitted toward the camera, which
can then be written into an output texture through a RWTexture2D. Our path
tracer is progressive, which means that it will compute N radiance samples
per pixel every frame (with N defaulting to 1) and update the output
accumulation texture with these samples. This allows the path tracer to work
its way toward a final converged image by doing a portion of the work every
frame, thus remaining interactive.

In order to compute the outgoing radiance at each hit point (or vertex in path
tracer terminology), our closest-hit shader needs to compute the surface
attributes at the hit point and then compute the appropriate lighting response.
Our first step is to use our GeometryInfo buffer to fetch the relevant data for
the particular mesh that was intersected by the ray:

1 const uint geoInfoBufferIndex = GlobalCB.GeoInfoBufferIndex;
2 StructuredBuffer<GeometryInfo> geoInfoBuffer;
3 geoInfoBuffer = GeometryInfoBuffers[geoInfoBufferIndex];
4 const GeometryInfo geoInfo = geoInfoBuffer[GeometryIndex()];

Once we have the relevant data for the mesh that was hit, we can then begin
to reconstruct the surface attributes by interpolating the per-vertex attributes
according to the barycentric coordinates of the ray/triangle intersection:

1 MeshVertex GetHitSurface(
2 in HitAttributes attr, in GeometryInfo geoInfo)
3 {
4 float3 barycentrics;
5 barycentrics.x = 1 - attr.barycentrics.x - attr.barycentrics.y;
6 barycentrics.y = attr.barycentrics.x;
7 barycentrics.z = attr.barycentrics.y;
8
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9 StructuredBuffer<MeshVertex> vertexBuffer;
10 vertexBuffer = VertexBuffers[GlobalCB.VertexBufferIndex];
11 Buffer<uint> indexBuffer;
12 indexBuffer = BufferUintTable[GlobalCB.IndexBufferIndex];
13

14 const uint primId = PrimitiveIndex();
15 const uint id0 = indexBuffer[primId * 3 + geoInfo.IndexOffset + 0];
16 const uint id1 = indexBuffer[primId * 3 + geoInfo.IndexOffset + 1];
17 const uint id2 = indexBuffer[primId * 3 + geoInfo.IndexOffset + 2];
18

19 const MeshVertex vtx0 = vertexBuffer[id0 + geoInfo.VertexOffset];
20 const MeshVertex vtx1 = vertexBuffer[id1 + geoInfo.VertexOffset];
21 const MeshVertex vtx2 = vertexBuffer[id2 + geoInfo.VertexOffset];
22

23 return BarycentricLerp(vertex0, vertex1, vertex2, barycentrics);
24 }

For surface attributes defined by textures, we must fetch the appropriate
material definition and use it to sample our standard set of textures.

1 StructuredBuffer<Material> materialBuffer;
2 materialBuffer = MaterialBuffers[GlobalCB.MaterialBufferIndex];
3 const Material material = materialBuffer[geoInfo.MaterialIndex];
4

5 Texture2D albedoMap = Tex2DTable[material.Albedo];
6 Texture2D normalMap = Tex2DTable[material.Normal];
7 Texture2D roughnessMap = Tex2DTable[material.Roughness];
8 Texture2D metallicMap = Tex2DTable[material.Metallic];
9 Texture2D emissiveMap = Tex2DTable[material.Emissive];
10

11 // Sample textures and compute final surface attributes.

Note how we are able to effectively sample from any arbitrary set of textures
here while using only a single hit shader and no local root signatures! This
use case perfectly demonstrates the power and flexibility of bindless
techniques: all resources are at our disposal from within a shader, and we are
able to store handles to those resource in any arbitrary data structure that we
would like to use.

With the surface attributes and material properties for the hit point loaded
into local variables, we can finally run our path tracing algorithm to compute
an incremental portion of the radiance that will either be emitted from the
surface or reflected off the surface in the direction of the incoming ray. The
full algorithm is as follows:

> Get the set of material textures and sample them using vertex UV
coordinates to build surface and shading parameters.

> Account for emission from the surface.

> Sample direct lighting from the sun and cast a shadow ray.
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> Sample direct lighting from local light sources and cast a shadow ray for
each.

> Choose to sample a diffuse or specular BRDF.

– If diffuse, choose a random cosine-weighted sample on the
hemisphere surrounding the surface normal.

– If specular, choose a random sample from the distribution of visible
microfacet normals and reflect a ray off of that.

> Recursively evaluate the incoming radiance in the sample direction.

> Terminate when the desired max path length is reached.

– Alternatively, use Russian roulette to terminate rays with low
throughput.

As for our miss shaders, we merely need to sample our procedural sky model
in order to account for the radiance that it provides the scene. We can do this
by sampling a cube map texture that contains a cache of radiance values for
each world-space direction, which we can obtain by passing its descriptor
index to the shader through a global constant buffer. One exception is for
primary rays that were cast directly from the camera: for this case we also
want to sample the emitted radiance from our procedural sun, which allows
the sun to be visible in our rendered images. We skip this for secondary rays
cast from surfaces, as we directly importance-sample the sun to compute its
direct lighting contribution.

1 [shader("miss")]
2 void MissShader(inout PrimaryPayload payload)
3 {
4 const float3 rayDir = WorldRayDirection();
5

6 TextureCube skyTexture = TexCubeTable[RayTraceCB.SkyTextureIdx];
7 float3 radiance = 0.0f;
8 if(AppSettings.EnableSky)
9 radiance = skyTexture.SampleLevel(SkySampler, rayDir, 0).xyz;
10

11 if(payload.PathLength == 1)
12 {
13 float cosSunAngle = dot(rayDir, RayTraceCB.SunDirectionWS);
14 if(cosSunAngle >= RayTraceCB.CosSunAngularRadius)
15 radiance = RayTraceCB.SunRenderColor;
16 }
17

18 payload.Radiance = radiance;
19 }
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To support foliage that utilizes alpha testing, we provide an any-hit shader
that samples an opacity map to determine if the ray intersection should be
discarded. We obtain this opacity map from the material data using the same
method that we utilized for the hit shader:

1 [shader("anyhit")]
2 void AnyHitShader(inout PrimaryPayload payload, in HitAttributes attr)
3 {
4 const uint geoInfoBufferIndex = GlobalCB.GeoInfoBufferIndex;
5 StructuredBuffer<GeometryInfo> geoInfoBuffer;
6 geoInfoBuffer = GeometryInfoBuffers[geoInfoBufferIndex];
7

8 const GeometryInfo geoInfo = geoInfoBuffer[GeometryIndex()];
9 const MeshVertex hitSurface = GetHitSurface(attr, geoInfo);
10

11 StructuredBuffer<Material> materialBuffer;
12 materialBuffer = MaterialBuffers[GlobalCB.MaterialBufferIndex];
13 const Material material = materialBuffer[geoInfo.MaterialIndex];
14

15 // Standard alpha testing
16 Texture2D opacityMap = Tex2DTable[material.Opacity];
17 if(opacityMap.SampleLevel(MeshSampler, hitSurface.UV, 0).x < 0.35f)
18 IgnoreHit();
19 }

17.5 PRACTICAL IMPLICATIONS OF USING BINDLESS TECHNIQUES

As this chapter has demonstrated, there are many tangible benefits to
utilizing bindless techniques in a D3D12 renderer. This is true regardless of
whether a renderer makes use of ray tracing through DXR or sticks to more
traditional rasterization-based techniques. However, there are also several
downsides and practical implications of which one should be aware before
broadly adopting a bindless approach.

17.5.1 MINIMUM HARDWARE REQUIREMENTS

Before using bindless techniques at all, it’s important to know the minimum
hardware requirements for using them. As of the time this chapter was
written, all DXR-capable hardware has support for
D3D12_RESOURCE_BINDING_TIER_3, which is capable of utilizing bindless
techniques for all shader-accessible resource types. This means that bindless
can be utilized with DXR without concern that the underlying hardware or
driver will not have support for dynamic indexing into an unbounded SRV,
UAV, or sampler table. However, it may be important to consider what
functionality is supported on older hardware if writing a general D3D12
rendering engine that supports older generations of video cards.
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While the descriptor heap and table abstractions exposed by D3D12 suggest
that they only run on the sort of hardware that can read descriptors from
memory (and are therefore capable of using arbitrary descriptors in a shader
program), in reality the API was carefully designed to allow for older
D3D11-era hardware to be supported through compliant drivers. This class of
hardware falls under the Tier 1 resource binding tier, where the device reports
a value of D3D12_RESOURCE_BINDING_TIER_1 for the ResourceBindingTier
member of the D3D12_FEATURE_DATA_D3D12_OPTIONS structure. Devices with
Tier 1 resource binding limit the size of bound SRV descriptor tables to the
maximum number of SRVs supported by D3D11 (128), which is far less than
the number of textures and/or buffers that most engines will have loaded at
any given time. Therefore, we would generally consider Tier 1 hardware to be
incapable of using bindless techniques, at least outside of certain special-case
scenarios. As of the time this chapter was written, GPUs based on NVIDIA’s
Fermi architecture (GTX 400 and 500 series) as well as Intel Gen 7.5 (Haswell)
and Gen 8 (Broadwell) architecture will report Tier 1 for resource binding [10].

Hardware that falls under the category of Tier 2 resource binding are largely
free of restrictions when it comes to accessing SRV descriptors: these devices
allow SRV descriptor tables to span the maximum heap size, which is one
million. This limit is sufficient for including all shader-readable resources in
typical engines, so we would consider this class of hardware to be
bindless-capable for SRVs. Tier 2 hardware can also bind a full heap of
sampler descriptors (which is capped at 2048), which we would also consider
to be sufficient for bindless sampler access in typical scenarios. However,
there are still limitations for this tier. Tier 2 has a maximum size of 14 for CBV
descriptor tables and a maximum size of 64 for UAV descriptor tables. In
addition, this tier imposes restrictions that require that all bound CBV/UAV
descriptor tables contain valid, initialized descriptors. As of the time this
chapter was written, only GPUs based on NVIDIA’s Kepler architecture (GTX
600 and 700 series) will report Tier 2 for resource binding.4

The most recent graphics hardware will report Tier 3 for resource binding,
which removes the Tier 2 limitations on the number of UAV and CBV
descriptors that can be bound simultaneously in a descriptor table. Tier 3
allows for the full heap to be bound for CBV and UAV tables and also removes
the requirement that these tables contain only valid, initialized descriptors.
With these restrictions removed, we can say that Tier 3 is bindless-capable for

4NVIDIA hardware based on the Maxwell (GTX 900 series) and Pascal (GTX 1000 series) initially reported Tier 2
for resource binding in their earliest D3D12 drivers, but later drivers add full support for Tier 3.
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all shader-accessible resources: Shader Resource Views, Unordered Access
Views, Constant Buffer Views, and Sampler States. This provides us with
maximum freedom and flexibility in terms of providing our shaders with
access to our resources. As of the time this chapter was written, GPUs based
on NVIDIA’s Maxwell (GTX 900 series), Pascal (GTX 1000 series), Volta
(Titan V), Turing (RTX 2000 series and GTX 1600 series), and Ampere
(RTX 3000 series) architectures as well as Intel Gen 9 (Skylake), Gen 9.5 (Kaby
Lake), Gen 11 (Ice Lake), and Gen 12 (Tiger Lake) report Tier 3 capabilities for
resource binding. Tier 3 is also reported by all D3D12-capable AMD hardware,
which includes GCN 1 through 5 as well as newer RDNA-based GPUs.

17.5.2 VALIDATION AND DEBUGGING TOOLS

D3D12 includes an optional debugging and validation layer that can be
invaluable for development. When enabled, this layer can report issues
relating to incorrect API usage and invalid descriptors used by shaders, as
well as incorrect or missing resource transition barriers. Unfortunately, these
kinds of validations become much more difficult to perform for an application
that uses bindless techniques for accessing resources. With a more
traditional binding setup where all required descriptors are provided in a
contiguous descriptor table, a validation layer can track CPU-side API calls in
order to determine the set of descriptors that will be accessed within a
particular draw or dispatch call. This information can then be used to ensure
that these descriptors all point to valid resources and that these resources
have been previously transitioned to the appropriate state.

When an application deploys bindless techniques, the set of descriptors
accessed by a draw or dispatch is no longer visible through CPU-side API
calls. Rather, they can only be determined by following the exact flow of
execution that happens on the GPU in order to compute the descriptor index
that is used to ultimately access a particular descriptor. To address these
scenarios, D3D12 also has a special GPU-based validation layer (abbreviated
as GBV). When GBV is enabled, which is done by calling
ID3D12Debug1::SetEnableGPUBasedValidation(), the validation layer will
patch the compiled shader binaries in order to insert instructions that log the
accessed descriptors to a hidden buffer. The contents of this buffer can later
be inspected, and the information contained can be used to validate
descriptor contents and resource states. This functionality makes it a bona
fide requirement for development of bindless renderers. Unfortunately, the
shader patching process can add considerable time to the pipeline state
object (PSO) creation process, and the patched shaders also cause additional
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performance overhead on the GPU. Therefore, it is generally recommended to
only use it when necessary.

GPU debugging tools such as RenderDoc, PIX, and NVIDIA Nsight Graphics
can also be invaluable for solving bugs during development. Unfortunately,
they suffer from the same issues that validation layers experience when
dealing with bindless applications: it is no longer possible to determine the
set of accessed descriptors/resources for a draw or dispatch purely through
interception of CPU-side API calls. Without that information, a tool might
report all of the resources that were bound through the global descriptor
tables, which would likely be the entire descriptor heap for a bindless
application. Fortunately, PIX has a solution to this problem: when running
analysis on a capture, it can utilize techniques similar to those used by the
GPU-based validation layer to determine the set of accessed descriptors for a
draw or dispatch. This allows the tool to display those resources
appropriately in the State view, which can provide a similar debugging
experience to traditional binding. However, it is important to keep in mind that
this set of accessed resources can potentially grow very large for cases where
descriptor indices are nonuniform within a draw or dispatch.

17.5.3 CRASHES AND UNDEFINED BEHAVIOR

While bindless techniques offer great freedom and flexibility, they also include
the potential for new categories of bugs. Though accessing an invalid
descriptor is certainly possible with traditional binding methods, it’s generally
easier to avoid because descriptor tables are populated on the CPU. With
bindless resources we can instead expose an entire descriptor heap to our
shaders, which provides more opportunities for bugs to cause an invalid
descriptor to be accessed. In a sense these descriptor indices are very similar
to using pointers in C or C++ code on the CPU, as they are both quite flexible
but also provide ample opportunities to access something invalid.

When an invalid descriptor is accessed by a shader, the results are undefined.
The shader program might end up reading garbage resource data that
ultimately manifests as graphical artifacts, or it might cause the D3D12 device
to enter a removed state that occurs after a fatal error is detected. Because
the behavior is unpredictable, it is recommended to leverage both the D3D
validation layers as well as in-engine validation as much possible. Similar to
the concept of a NULL pointer, it is possible to reserve a known value such as
uint32_t(-1) to be used as an “invalid” descriptor index. This value can then
be used when initializing structures containing descriptor indices, and
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debugging code can be written to assert that the index is valid before passing
the data off to the GPU908. It is also possible to write GPU-side shader code
that validates descriptor indices before usage, although it can be much more
complicated to report the results of that validation to the programmer.

To aid in debugging situations where a device removal occurs, it is also
recommended to implement a GPU crash detection and reporting system
within a renderer. Ideally such a system can tell you which particular
command the GPU was executing when it crashed or hung, and potentially
provide some additional information as to the specific reason for device
removal. D3D12 has built-in functionality known as Device Removed Extended
Data (DRED) [3] that can facilitate the gathering of this information. When
enabled, DRED will automatically insert “breadcrumbs” into command lists
that can be read back following a crash in order to determine which
commands actually completed on the GPU. The low-level mechanisms
utilized by DRED can also be triggered manually for applications that want to
implement their own custom system for tracking GPU progress. In addition,
NVIDIA offers their own proprietary Aftermath library [4] that can provide
additional details if the crash occurs on an NVIDIA GPU. In particular, it can
provide source-level information about the shader code that was executing
when device removal occurred, provided the shaders were compiled with
appropriate debug information.

17.6 UPCOMING D3D12 FEATURES

In Section 17.3, which discussed implementing bindless resources in D3D12,
we described the specific steps required for adding the overlapping descriptor
ranges and unbounded arrays of HLSL resource types that are needed for
allowing our shaders to have global access of all resources. This process is
rather clunky and limiting because it adds quite a bit of boilerplate and
doesn’t scale well with the effectively unlimited permutations of the
StructuredBuffer and ConstantBuffer template types. Though the current
setup is workable, it certainly makes one wish for future changes that could
simplify the process of implementing bindless resources.

Fortunately, Microsoft has released a set of HLSL additions as part of Shader
Model 6.6 [8]. These new features include a dramatically simplified syntax for
globally accessing the descriptors within the bound descriptor heaps via the
new ResourceDescriptorHeap and SamplerDescriptorHeap objects:

1 StructuredBuffer<Material> materialBuffer;
2 materialBuffer = ResourceDescriptorHeap[GlobalCB.MaterialBufferIndex];
3 const Material material = materialBuffer[geoInfo.MaterialIndex];
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4

5 Texture2D albedoMap = ResourceDescriptorHeap[material.Albedo];
6 Texture2D normalMap = ResourceDescriptorHeap[material.Normal];
7 Texture2D roughnessMap = ResourceDescriptorHeap[material.Roughness];
8 Texture2D metallicMap = ResourceDescriptorHeap[material.Metallic];
9 Texture2D emissiveMap = ResourceDescriptorHeap[material.Emissive];
10

11 SamplerState matSampler = SamplerDescriptorHeap[material.SamplerIdx];

This new syntax completely removes the need for declaring unbound arrays of
HLSL resource types and also makes it unnecessary to add any descriptor
table ranges and root parameters to the root signature. The only requirement
is that the root signature be created with a new
D3D12_ROOT_SIGNATURE_FLAG_CBV_SRV_UAV_HEAP_DIRECTLY_INDEXED flag
that is available in the latest version of the D3D12 headers.

Taken together, this new functionality greatly reduces the boilerplate and
friction encountered when using bindless techniques with earlier shader
models. Consequently, it is expected that the new syntax will become the
dominant approach once the new shader model is widely available to
developers and end users, and that the older syntax will eventually fall out of
use. However, we do not feel that this fundamentally changes the overall
benefits and drawbacks of using bindless techniques, therefore it will still be
important to consider the trade-offs presented earlier in the chapter before
deciding whether or not to adopt it.

17.7 CONCLUSION

In this chapter we demonstrated how bindless techniques can be used in the
context of DirectX Raytracing and discussed the various benefits and practical
implications of utilizing bindless resources for this purpose. We hope that the
reasons for choosing bindless are quite clear, especially when it comes to
future rendering techniques that make use of DXR 1.1 inline tracing. Bindless
techniques are here to stay and are likely to be a core feature of future APIs
and graphics hardware. For current development, programmers are free to
determine whether to adopt them completely throughout their renderers or to
selectively make use them for specific scenarios.

For a complete example of a simple DXR path tracer that makes full use of
bindless techniques for accessing read-only resources, please consult the
DXRPathTracer GitHub repository [9]. Full source code is included for both
the application and shader programs, and the project is set up to be easily
compiled and run on a DXR-capable Windows 10 PC with Visual Studio 2019
installed.
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ABSTRACT

This chapter introduces WebRays, a GPU-accelerated ray intersection engine
for the World Wide Web. It aims to offer a flexible and easy-to-use
programming interface for robust and high-performance ray intersection
tests on modern browsers. We cover design considerations, best practices,
and usage examples for several ray tracing tasks.

18.1 INTRODUCTION

Traditionally, ray tracing has been employed in rendering algorithms for
production and interactive visualization running on high-end desktop or
server platforms, relying on dedicated, native, and close-to-the-metal
libraries for optimal performance [2, 5]. Nowadays, the Web is the most
ubiquitous, collaborative, convenient, and platform-independent conveyor of
visual information. The only requirement for accessing visual content online
is a web browser on an Internet-enabled device, dispensing with the
dependence on additional software.

The potential of the Web has driven Khronos to release the WebGL
specifications in order to standardize a substantial portion of graphics
acceleration capabilities on the majority of new consumer devices and
browsers. As a result, frameworks like ThreeJS and BabylonJS emerged,
enabling various visualization applications that take advantage of the Web as
a platform [4]. However, these solutions have been explicitly designed for
widespread commodity rasterization-based graphics, before ray tracing was
popular. There is currently no functionality exposed that accommodates
client-side GPU-accelerated ray tracing on this platform.
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Figure 18-1. The Space Station scene rendered using a unidirectional path tracer implemented in
WebRays (trace depth 4).

We developed WebRays to fill this gap, by aiming for an as-thin-as-possible
abstraction over any underlying graphics, or potentially compute, application
programming interface (API). Following the successful design of modern ray
tracing engines, WebRays exposes an easy-to-use and explicit API with
lightweight support for acceleration data structures, to enable ray/triangle
intersection functionality in Web-based applications. It is by design not
intended to implement a specific image synthesis pipeline. Instead, it offers a
framework for ray tracing support that can either act as a core API for
implementing diverse rendering pipelines and algorithms or as a
complementary toolkit to harmoniously coexist with and enhance
rasterization-based graphics solutions (see the example in Figure 18-1). This
is achieved by allowing access to ray tracing functionality both with
stand-alone intersection procedures and individual ray tracing function calls
from within a standard shader program.

A prototype version of the API was successfully utilized for the
implementation of the Rayground platform [7]. Rayground is an open,
cross-platform, online integrated development sandbox and educational
resource for fast prototyping and interactive demonstration of ray tracing
algorithms. It offers a programming experience similar to a standard,
GPU-accelerated ray tracing pipeline that allows customization of the basic
ray tracing stages directly in the browser.
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In this chapter, we cover the system architecture and programming interface
design as well as provide representative usage examples via code snippets for
a gentle introduction to WebRays.

18.2 FRAMEWORK ARCHITECTURE

Modern APIs that support ray intersection acceleration, such as DXR and
OptiX [2, 5], are designed to give explicit control to developers. Users are
given as much freedom as possible over resource management and control
flow. WebRays sets a similar goal.

18.2.1 DESIGN GOALS

We want to bring ray tracing functionality to modern browsers, with no
specific conditions or exceptions and irrespective of platform. We strive for
independence from a particular specialized or low-level graphics API. Users
refer to engine resources using opaque handles, and information about
internal storage types is only communicated to the user in order to help
achieve optimal performance. Having often been on the user end of similar
frameworks, we recognized the need for a modern API that simultaneously
supports two different approaches to ray tracing:

> Wavefront: A simple, general-purpose execution model for tracing
arbitrary ray batches in bulk.

> Megakernel: A programming interface for ray tracing within a GPU
shader.

In wavefront ray tracing, the entire process is divided into small, discrete
phases, corresponding to specific kernels, which are executed successively
and process data in parallel (Figure 18-2, left). On the other hand, in the

Wavefront Ray Tracing Megakernel Ray Tracing
N

Application WebRays APIShader

Generate Intersect

hit
miss

Get Shade Cull

N

Respawn Generate Intersect

hit

Get Shade Cull Respawn

Figure 18-2. Wavefront and megakernel ray tracing conceptual models. Left: ray tracing consists
of simple parallel steps. Note that all stages (except Intersect) can be executed on either host side
or device side. Right: A monolithic kernel is responsible for the entire ray tracing process.
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megakernel approach, a single kernel is launched. All operations including
intersections, visibility determination, shading, etc. take place within this
single kernel (Figure 18-2, right). This allows user code to closely follow the
underlying algorithm and can therefore be considered more
programmer-friendly. However, given the nature of modern streaming
processors, it can lead to serious occupancy and divergence issues as the
potential execution paths and access patterns may vary significantly.

Each approach operates under different design considerations, and we
wanted to properly support both. In WebRays, this is completely up to
application logic, and the user can also combine the two strategies. To this
end, the API offers both a host-side interface implemented in JavaScript and a
device-side interface implemented in the backend’s shading language (GLSL).
Performance-sensitive parts of the library are written in C++ and compiled to
WebAssembly.

WebRays is not intended as a stand-alone pipeline for image synthesis. It
does not introduce features such as specific shading models and material
properties, nor does it enforce a particular image synthesis algorithm. In the
same spirit, with WebRays you do not write kernels that respond to specific
events. The developer is free to implement their own pipeline, which of
course comes at the cost of more user-defined “glue” code. With this generic,
yet complete, ray tracing support, one can even build wrapper APIs on top of
WebRays to conform to popular ray tracing frameworks. Finally, capturing the
typical needs of practical rendering implementations, it currently supports
triangle primitives.

18.2.2 HOST-SIDE API

The JavaScript API is accessible through the standard web development
workflow. Working with this host-side API is very similar to most ray
intersection engines. To start, users submit triangle meshes to build
acceleration data structures over their geometric data. These acceleration
data structures are built on the CPU and later uploaded to the GPU for fast
intersections. The API uses handles to refer to these structures on both the
host and the device sides. Users “submit” rays for intersection by allocating
and populating appropriately formatted ray buffers. Similarly, intersection or
occlusion results are returned to the user through appropriately formatted
intersection buffers. These allocations are handled by the user to allow for
full control over the application’s GPU memory management. To facilitate a
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wavefront approach, the host-side API offers functions that take a batch of
rays, identify ray/geometry intersections in parallel, and finally store the
results in properly formatted buffers. Nothing needs to leave the GPU in this
process, and the results are ready to be consumed in a shader or fetched back
to the CPU.

18.2.3 DEVICE-SIDE API

The device-side API enables users to write megakernels and hybrid rendering
solutions. The biggest challenge is to be able to provide access to geometric
data and ray tracing functionality in a flexible and unobtrusive manner. Like
early OpenGL, current programmable graphics pipelines for the Web are
configured with string-based shaders provided in source form. In WebRays,
the shader code that constitutes the device-side API for ray intersection
functionality is a simple string, automatically generated by the engine.
Developers can acquire this string via an API call and prepend it to their own
source code.

The attached code gives access to in-shader intersection routines and helper
functions for accessing geometric properties of intersected objects. We did
not want to offer yet another shader abstraction layer as this would not fit
well with existing graphics applications that want to add ray intersection
functionality. All calls and variables are appropriately isolated in their own
namespace, in order to avoid clashes with users’ code.

The WebRays intersection engine allocates GPU resources for internal data
structures, which need to be bound to the user’s program for the device-side
API to function properly. These resources are commonly passed from the host
to the device through shader binding locations. The API offers a function that
returns a binding table containing the name, type, and value of the resource
that needs to be bound to the shader before execution.

WebRays is currently implemented on top of WebGL 2.0. The remainder of the
text exposes several WebGL-specific implementation details and best
practices. Familiarity with any OpenGL version will greatly help the reader.

18.2.4 ENGINE CORE

Device-side computation in WebGL 2.0 is available via plain fragment shaders.
Also, memory allocation and sharing must be handled through standard
textures. When memory needs to be exchanged between WebRays and the
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rest of the application, e.g., passing a ray buffer for intersection and receiving
the results, it is passed using appropriately formatted textures. Thankfully,
the support of multiple render targets in WebGL 2.0 makes this process quite
streamlined.

The intersection engine and the application achieve interoperability by both
operating on the same WebGL context. In order to help users manage their
GPU resources, WebRays is transparent about its memory requirements,
layouts, and bindings. These design decisions help the intersection engine
work closely with the application and allow for maximum performance by
keeping ray tracing resources resident on the GPU every step of the way.

18.2.5 ACCELERATION DATA STRUCTURES

Geometry loading from external sources is left to application code, similar to
other modern APIs [2, 5]. WebRays is optimized for triangle meshes, which
constitute the most common geometric representation for 3D models. The
API supports two types of acceleration data structures (ADS): top-level
(scene-wide) acceleration structure (TLAS) and bottom-level (per-object)
acceleration structure (BLAS). A TLAS can contain one or more BLASs.
Instancing is also supported by inserting the same BLAS into the TLAS
multiple times with different transformation matrices.

The internals of the WebRays data structures are not exposed to the user. The
library internally allocates and deallocates GPU resources for triangle data.
We employ bounding volume hierarchies (BVHs) as acceleration data
structures, as they have proven their worth in terms of balanced performance
and construction cost. Specifically, we use a custom variant of a wide BVH [8],
which has shown good performance for incoherent rays.

18.3 PROGRAMMING WITH WEBRAYS

The basic control flow of a WebRays application is outlined in Figure 18-3. The
general steps are setup, init, update, and execute, all of which are determined
by the context of the intended execution model and algorithm.

> Setup: The application gets a handle to the WebRays host-side API
functions (Section 18.3.1).

> Init: The ADSs based on the scene’s geometry are created
(Section 18.3.2). In case of wavefront ray intersections (Section 18.3.5),
ray and intersection buffers are also allocated and filled accordingly
(Section 18.3.3).
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WebRays Wavefront/Megakernel Ray Intersection Pipelines

WebGLIntersectionEngine(...) CreateAds(...), AddShape(...), 
AddInstance(...), 
RayBufferRequirements(...),
IntersectionBufferRequirements(...),
OcclusionBufferRequirements(...)

 Host-side API

Update(...), UpdateInstance(...),
GetSceneAccessorString(...),
GetSceneAccessorBindings(...)

Setup
1. Create WebRays 
 Context

Init
1. Create ADS
2. Create Βuffers

Execute
1. Ray Generation
2. Wavefront Model
1. Megakernel Model

Update
1. Build ADS
2. Stitch & 
 Compile Shaders

QueryIntersection(...),
QueryOcclusion(...)

Device-side API

wr_QueryIntersection()
wr_QueryOcclusion()
wr_GetInterpolatedPosition()
...

Figure 18-3. Top: basic WebRays application control flow for wavefront and megakernel ray
tracing. Steps in black are common for both pipelines. Bottom: a summary of the basic functions
exposed by the WebRays API and how these map to each application stage.

> Update: The ADSs are actually built (or updated), and data is
synchronized between CPU and GPU memory (Section 18.3.2). In the
case of megakernel ray tracing, the dynamically created WebRays
device-side API code must be prepended to the user-provided fragment
shader, before compilation.

> Execute: Rays are generated (Section 18.3.4) and their intersections
handled either within a viewport-filling rectangle draw pass (wavefront
rendering) or directly within the user fragment shader in the
megakernel approach (Section 18.3.6). After execution has finished, the
resulting intersection data can be used by the application in a multi-pass
manner by repeating the cycle.

18.3.1 SETUP

For WebRays to function in the HTML document, users specify a canvas object
that will be enabled with WebGL capabilities at runtime. The WebRays API is
accessible via a single JavaScript file, loaded as usual:

1 <body>
2 <canvas id="canvas" width="640" height="480"></canvas>
3 </body>
4 <script src="webrays.js"></script>

Because all access to device-side rendering is handled via WebGL, one also
needs to access the WebGL context in one’s own script:

1 var gl = document.querySelector("#canvas").getContext("webgl2");

The intersection engine context is initialized by providing the newly created
WebGL context:
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1 var wr = new WebRays.WebGLIntersectionEngine(gl);

From this point on, users can start using both the gl and the wr objects to
perform rasterization and ray tracing, respectively.

18.3.2 POPULATING THE ACCELERATION DATA STRUCTURES

Before tracing any rays, a bottom-level acceleration structure must first be
constructed for the mesh geometry. In the following code, we assume that the
mesh has been loaded using an external library with the corresponding mesh
class providing access to the vertex, normal, and texture coordinate buffers,
along with their respective strides:

1 function build_blas_ads(mesh) {
2 let blas = wr.CreateAds({ type: "BLAS" });
3 let shape = wr.AddShape(blas,
4 mesh.vertex_data, mesh.vertex_stride,
5 mesh.normal_data, mesh.normal_stride,
6 mesh.uv_data , mesh.uv_stride,
7 mesh.face_data);
8 return [blas, shape];
9 }

Each vertex position and normal vector is a float[3] and each texture
coordinate pair a float[2]. For the index buffer, the API expects an int[4].
The xyz components contain the offsets to each of the triangle’s vertices
within the attribute buffers. The w component is user-provided and is always
available during intersections. This can be used to store application-specific
data like material indices, texture indices, and more.

The blas variable is an opaque handle that can later be passed to host-side or
device-side WebRays API functions in order to refer to this specific structure.
The user can add multiple shapes to a single BLAS. The returned shape
variable is a handle that is used by the engine to identify the specific geometry
group within the BLAS.

A TLAS is created similarly to a BLAS, but the user adds instances of existing
BLASs to the TLAS via their handles:

1 let blases = [];
2 let tlas = wr.CreateAds({ type: "TLAS" });
3 for (mesh in meshes) {
4 let [blas, shape] = build_blas_ads(mesh);
5 let instance = wr.AddInstance(tlas, blas, mesh.transform);
6 blases.push(blas);
7 }
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An instance’s transformation can later be updated using the returned
instance handle with the following code:

1 wr.UpdateInstance(tlas, instance, transform);

Up to this point, none of the provided scene geometry resources have been
submitted to the GPU. The user must call the following function in order to
commit and finalize the created structures:

1 let flags = wr.Update();

The returned flags indicate whether the device-side accessor code string or
the bindings were affected by the update operation. It is advised to call this
function every frame, as it does not incur an additional cost when no actual
update is required and it enables the programmer to react on a significant
change.

For example, if the returned flags indicate a change in the device-side API, the
user is expected to get the new device-side API code as well as the updated
bindings using the following snippet:

1 let accessor_code = wr.GetSceneAccessorString();
2 let bindings = wr.GetSceneAccessorBindings();

The accessor code is a plain string that needs to be prepended to the user’s
shader code before compilation. Bindings are mostly relevant at program
invocation time during rendering.

18.3.3 RAY AND INTERSECTION BUFFERS

The ray structure declaration that WebRays uses internally resembles the one
described in the Ray Tracing Gems chapter “What Is a Ray?” [6]. Intersection
data use a packed representation and are not intended to be directly read by
the user. However, they can be passed to API functions within the shader in
order to get intersection-specific attributes. Occlusion data simply indicate if
any geometric object was found between the user-defined ray extents.

Ray buffers have memory requirements for two vec4 entries. Users are
required to fill two buffers corresponding to a vec4(origin, tmin) and a
vec4(direction, tmax) in order to submit rays for intersection. Intersection
and occlusion buffers use integer buffers. Because ray tracing commonly
requires high-precision arithmetic operations, the API provides helper
functions to give a hint to the user about which is the optimal storage and
internal texture format.
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1 let dimensions = [width, height];
2 let ray_req = wr.RayBufferRequirements(dimensions);
3 let intersect_req = wr.IntersectionBufferRequirements(dimensions);
4 let occlusion_req = wr.OcclusionBufferRequirements(dimensions);
5 let origins = tex2d_alloc(ray_req);
6 let directions = tex2d_alloc(ray_req);
7 let intersections = tex2d_alloc(intersect_req);
8 let occlusions = tex2d_alloc(occlusion_req);

The preceding code allocates two vec4 buffers for storing ray information and
two integer ones for storing intersection and occlusion results. The returned
requirement structure contains the type of the buffer along with the expected
format and dimensions. The engine supports both 1D and 2D buffers,
depending on the dimensions of the passed array. Note that 2D buffers fit
naturally to image synthesis. For example, in the current WebGL
implementation, the most common buffer type is backed by an appropriately
formatted 2D texture. Thus, the tex2d_alloc call is an application helper
function for allocating such buffers in WebGL.

18.3.4 RAY GENERATION

Ray buffers can be populated either in the host-side JavaScript code or by
utilizing a GPU shader. Each design choice depends on the performance
characteristics of the application. The simplest and most efficient method to
populate ray buffers is by using the native graphics API. Because WebGL does
not have access to compute shaders, launching a shader for ray generation
and/or handling of intersection data on the device side is simply performed
via a fragment shader over a viewport-filling rectangle in a specific viewport
matching the ray batch size. Although one can fill ray data and read back
intersections in the host-side code via a read pixels operation, it is
advantageous to always perform such operations on the GPU.

For example in WebGL, the textured-backed ray buffers can be attached as
render targets in a framebuffer object, and ray properties can be written
using a fragment shader. This way, setting the ray direction, origin, and valid
ray interval is trivial:

1 origin_OUT = vec4(origin, tmin);
2 direction_OUT = vec4(direction, tmax);

The newly populated textures can then be passed to WebRays as ray buffers
for intersection or used as input in any stage of the application’s rendering
pipeline. It is important to note that intermediate storage of rays is not a
requirement in order to perform intersections. Using the device-side
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intersection API, a ray can be generated, intersected, and consumed within a
single shader. A typical use case is that of shadow rays (Section 18.4.3), where
a new ray can be sampled and queried directly within the shader with the
result being accessible immediately.

18.3.5 HOST-SIDE INTERSECTIONS

WebRays offers host-side API functions for ray intersection and occlusion
queries. Intersection queries return closest-hit information encoded in an
ivec4. Occlusion queries are useful for binary visibility queries. As expected,
they are faster than regular intersection queries, due to their any-hit
termination criterion.

1 let rays = [origins, directions];
2 wr.QueryIntersection(ads, rays, intersections, dimensions);
3 wr.QueryOcclusion (ads, rays, occlusions, dimensions);

The ads that the API expects is the same handle that is created on the host
side during acceleration data structure creation (Section 18.3.2). origins and
directions are the properly formatted and populated ray buffer textures,
whereas intersections and occlusions are appropriately formatted
intersection buffer textures (Section 18.3.3) that will receive intersection and
occlusion results, respectively.

Because in essence all these buffers are basic textures, the programmer can
pass them to shaders as regular uniform sampler variables. This way, users
can bind the already-filled intersection texture and apply application-specific
operations in parallel, on the GPU. This approach completely decouples
intersection operations from application logic, giving users full control of how
they manage ray queries and process the results. The same holds for the
consumption of intersection results.

18.3.6 DEVICE-SIDE INTERSECTIONS

The device-side API enables intersection queries within the shader as well as
access to geometric properties of intersected objects. For intersection
queries, WebRays provides two function variants, wr_QueryIntersection and
wr_QueryOcclusion. These take as a parameter the handle of a previously
created acceleration data structure ads. wr_QueryOcclusion returns the
result of a visibility test, whereas wr_QueryIntersection provides the closest
intersection point encoded in a single ivec4. This value can be subsequently
passed to other intersection-specific API accessor functions to obtain
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interpolated position, normal, texture parameters, barycentric
coordinates, etc.

The following shader code, which implements a basic renderer using ray
casting, demonstrates the usage of those two functions. Primary ray hits can
either be calculated in the shader (lines 8–10) or obtained from a previous
separate shader invocation (line 12). The ads uniform can be treated as a
single int and passed to the shader with the appropriate glUniform variant.

1 uniform int ads;
2 uniform sampler2D origins;
3 uniform sampler2D directions;
4 uniform isampler2D intersections;
5 ...
6 ivec2 coords = ivec2(gl_FragCoord.xy);
7 // Case 1: Query primary ray intersections.
8 vec4 origin = texelFetch(origins, coords, 0);
9 vec4 direction = texelFetch(directions, coords, 0);
10 ivec4 hit = wr_QueryIntersection(ads, origin, direction, tmax);
11 // Case 2: Or obtain already calculated primary ray hits.
12 ivec4 hit = texelFetch(intersections, coords, 0);
13 ...
14 // Miss
15 if (!wr_IsValidIntersection(hit)) {
16 color_OUT = ...
17 return;
18 }
19 // Intersect
20 ivec4 face = wr_GetFace(ads, hit);
21 vec3 geom_normal = wr_GetGeomNormal(ads, hit);
22 vec3 normal = wr_GetInterpolatedNormal(ads, hit);
23 vec3 position = wr_GetInterpolatedPosition(ads, hit);
24 ...
25 // Shade intersected point
26 color_OUT = ...

18.4 USE CASES

This section describes how a number of fundamental and modern
applications of ray tracing to image synthesis can be implemented with
WebRays. We demonstrate how the versatile design and high-performance
implementation of WebRays can be used in pure ray tracing implementations
(Sections 18.4.1 and 18.4.2) as well as hybrid rendering (Section 18.4.3).
Timings across several devices are provided for all experiments in
Figure 18-4, to give a feeling of the expected performance. The complete
source code of the WebRays examples is provided in the accompanying
repository of the book. The source code aims to get developers started with
WebRays, moving from trivially simple to moderately complex ray tracing
examples. Furthermore, we briefly describe Rayground (Section 18.4.4), an
interactive authoring platform for ray tracing algorithms based on WebRays.
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nVidia RTX 2080

nVidia GTX 970

nVidia GTX 1060†

Scene

21 5.3 51 12.2 6.2 444.3

50 5.1 140 35.0 19.5 1473.0

60 5.8 188 41.0 25.0 1934.5

Intel HD 630† 290 34.2 626 131.0 93.0 61814.0

AMD RX 580 54 6.0 200 37.0 9.0 1925.0

Device

(triangles)

(35k) (143k) (143k) (109k) (51k) (4.6k) (123k)

Figure 18-4. Expected performance on a variety of desktop and laptop† GPU devices. Timings
show the total frame time, in milliseconds, of each use case, including shading, intersections, and
post-processing. Scenes are rendered at a native 1024× 768 resolution.

18.4.1 AMBIENT OCCLUSION

Ambient occlusion is a non-physically-accurate illumination technique, highly
popularized in the games industry due to its relative simplicity and efficiency.
Using ray tracing, it can be estimated by stochastically sampling the visibility
of the shaded point over a hemisphere centered at its normal vector.

The following code demonstrates how WebRays visibility queries can be used
to estimate ambient occlusion in a fragment shader. The sample_count
corresponds to the number of directions selected by importance sampling,
and dmax the near-field extent. The position and normal of the shaded point
come from the previous ray casting example of Section 18.3.6, but they can be
derived by other means, such as a forward rasterization pass (Section 18.4.3).
The shaded result using the Fireplace scene and a near-field extent of 1.5 m
is shown in Figure 18-5, left.

1 ...
2 float occlusion = 0.0;
3 for (int s = 0; s < sample_count; s++) {
4 vec3 direction = CosineSampleHemisphere(normal);
5 bool occluded = wr_QueryOcclusion(ads, position, direction, dmax);
6 occlusion += occluded ? 1.0 : 0.0;
7 }
8 occlusion /= float(sample_count);
9 // Ambient lighting visualization
10 color_OUT = vec4(vec3(1.0 - occlusion), 1.0);

18.4.2 PATH TRACING

Path tracing is an elegant method that estimates the integral of the rendering
equation using Monte Carlo simulation. It produces accurate photorealistic
images because all kinds of light transport paths are supported and sampled.
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Figure 18-5. Monte Carlo integration in WebRays. Left: the Fireplace scene using ray traced
near-field ambient occlusion. Middle and right: a unidirectional path tracer (trace depth 4) with
next event estimation used for the Fireplace scene (middle) and the ToyCar model (right).

Using WebRays, a path tracer can be developed in either a wavefront or a
megakernel manner. Due to the lack of bindless resources in WebGL,
materials should be packed into a shared buffer and textures should be
packed into a texture atlas, in order to minimize texture bindings. In the
following code, a unidirectional path tracer with next event estimation is
implemented using a wavefront approach, where rays are generated using a
pinhole camera and intersections are resolved using the primitive and
material ID of the intersected primitive.

1 [origins, dirs] = Generate(camera); // Get primary rays.
2 while(depth < depthmax) {
3 // Ray intersection test
4 wr.QueryIntersection (ads, [origins, dirs], hits, dimensions);
5 // Get new shadow and outgoing rays.
6 [origins, occ_dirs, dirs] = ResolveIntersections(hits);
7 // Shadow rays test
8 wr.QueryOcclusion(ads, [origins, occ_dirs], occs, dimensions);
9 // Compute local illumination.
10 ResolveDirectIllumination(hits, occs);
11 depth++; // Increase path length.
12 }

The ResolveIntersections call is responsible for populating the next
outgoing ray buffer and the shadow ray buffer and is listed in the following
code. This can be done efficiently by launching a single 2D kernel. Using
multiple render targets, the kernel is responsible for populating the ray
texture buffers. The last two textures correspond to the shadow rays and the
outgoing rays leaving the intersection point. The first texture stores the ray
origin, which is the same for both rays.

1 vec3 wo = -direction_IN.xyz;
2 vec3 origin = wr_GetInterpolatedPosition(ads, hit);
3 vec3 normal = wr_GetGeomNormal(ads, hit);
4
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5 float light_distance;
6 vec3 shadow_ray, wi;
7 LightSample(origin, /*out*/shadow_ray, /*out*/light_distance);
8 BxDF_Sample(origin, wo, /*out*/wi, /*out*/scattering_pdf);
9

10 direction_OUT = vec4(wi, tmax);
11 shadow_direction_OUT = vec4(shadow_ray, light_distance - RAY_EPSILON);
12

13 origin += normal * RAY_EPSILON;
14 origin_OUT = vec4(origin, RAY_EPSILON);

After executing this kernel, the textures are forwarded to QueryIntersection
and QueryOcclusion respectively. Direct illumination is computed in
ResolveDirectIllumination based on the results produced from
QueryOcclusion and the bidirectional scattering distribution function BxDF of
the hit point.

1 vec3 origin = wr_GetInterpolatedPosition(ads, hit);
2 vec3 Li = LightEval(origin, light, wi, light_pdf, light_dis);
3 ...
4 vec3 Ld = vec3(0.0);
5 int occlusion = texelFetch(occlusions, coords, 0).r;
6 if(occlusion == 0) {
7 vec3 BxDF = BxDF_Eval(origin, wo, wi);
8 Ld += throughput * BxDF * NdL * Li / light_pdf;
9 }
10 color_OUT = vec4(Ld, 0.0);

Figures 18-1 and 18-5 (middle and right) show how this efficient WebRays
path tracing implementation can be used to compute global illumination
images for interior and outdoor scenes.

18.4.3 HYBRID RENDERING

Rendering on the Web is usually performed using a rasterization-based
pipeline via either a deferred or a forward rendering approach. With WebRays,
ray tracing becomes available to both desktop and mobile browsers and can
be used to replace or complement some components of the typical
rasterization pipeline, enhancing the quality of the rendered image.

AMBIENT OCCLUSION

In real-time applications, either ambient occlusion is precomputed, for static
scenes, or near-field ambient occlusion is computed in real time, using
screen-space information stored in the G-buffer. Screen-space techniques,
due to their view-dependent nature, fail to capture occlusion from objects that
are offscreen or occluded by other geometric objects from the camera’s point
of view. Ray tracing can be utilized to compute accurate ambient occlusion
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without these drawbacks. The shaded point’s position and normal can be
reconstructed from the G-buffer, and ambient occlusion can be estimated as
described in Section 18.4.1.

SHADOWS

Ray-traced shadows provide accurate and crisp boundaries and can work in
complex lighting conditions such as arbitrarily shaped light sources. They
offer a superior method for shadow calculations than the prevalent method
for computing shadows in real-time graphics that uses shadow maps [1].

In a hybrid renderer, the shaded point position can be reconstructed from the
depth buffer, populated during the G-buffer rasterization or a depth prepass
step. Then, any number of occlusion rays can be cast toward the light sources
and checked for visibility.

1 // Shadow ray computation
2 vec3 origin = ReconstructPositionFromDepthBuffer();
3 float distance;
4 vec3 direction;
5 LightSample(origin, /*out*/direction, /*out*/distance);
6 // Shadow visibility test
7 bool occluded = wr_QueryOcclusion(ads, origin, direction, distance);
8 float visibility = occluded ? 0.0 : 1.0;

Occlusion queries are very fast as they terminate on the first encountered
primitive intersection. Alpha-tested geometry would require a more complex
hit kernel, where transparency of the hit point on the primitive should be
taken into account. Soft shadows can be easily computed by sampling
directions toward the light source surface area. Figure 18-6, left, presents
soft shadows of thin geometry produced from a distant light source, whereas
in the middle of the figure, colored soft shadows produced from a textured
area light are demonstrated.

REFLECTION AND REFRACTION

Complex light paths resulting from reflected and transmitted light are very
difficult to compute using a rasterization pipeline. Ray tracing offers a robust
way to handle such difficult phenomena.

In a hybrid rendering pipeline, rays are spawned from the reconstructed
position from the depth buffer toward a random direction inside the reflection
or transmission lobe defined by the material properties and traced into the
scene. Each hit point is then evaluated and shaded, and a new ray is spawned
and traced into the scene. This recursive procedure is usually performed up
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Figure 18-6. Hybrid rendering in WebRays. Left and middle: accurate soft shadows in the Tree
and Mosaic scenes. Right: reflection and transmission events (trace depth 6) captured in the
Kitchen Table scene.

to a maximum number of iterations depthmax based on the number of light
paths that the specific scenario requires. An example using WebRays is
presented in the following code, where the recursive procedure is performed
inside a single shader and rays are traced using the in-shader API call
wr_QueryIntersection. Each hit point is evaluated and a new ray is
spawned, or the procedure terminates in the event of a miss. Accurate
reflection and transmission results from the above shader are presented in
Figure 18-6, right.

1 // Geometry information computation
2 vec3 position = ReconstructPositionFromDepthBuffer();
3 vec3 normal = ReconstructNormalFromGBuffer();
4 BxDF bxdf = ReconstructMaterialFromGBuffer();
5 vec3 wo = normalize(u_camera_pos - position);
6

7 // Compute new ray based on the material.
8 vec3 wi, throughput = vec3(1.0), color = vec3(0.0);
9 Sample_bxdf(bxdf, normal, wo, /*out*/wi, /*out*/throughput);
10

11 while(depth < depthmax) {
12 ivec4 hit = wr_QueryIntersection(ads, position, wi, tmax);
13 if (!wr_IsValidIntersection(hit)) { // Miss
14 color += throughput * EvaluateEnvironmentalMap(wi);
15 break;
16 }
17 else { // Surface hit
18 position = wr_GetInterpolatedPosition(ads, hit);
19 normal = wr_GetInterpolatedNormal(ads, hit);
20 bxdf = GetMaterialFromIntersection(hit);
21 wo = -wi;
22

23 vec3 Ld = EvaluateDirectLight(position, normal, bxdf, wo);
24 color += throughput * Ld;
25

26 Sample_bxdf(bxdf, normal, wo, /*out*/wi, /*out*/throughput);
27 }
28 depth++;
29 }
30 color_OUT = color;
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Figure 18-7. Left: the Rayground interface, with the preview window and the shader editor. Right:
two representative ray traced projects created online on this platform: Whitted ray tracing and
stochastic path tracing.

18.4.4 RAY TRACING PROTOTYPING PLATFORM

WebRays has been deployed at the core of the Rayground platform, which is
hosted at https://www.rayground.com. The Rayground pipeline offers a
high-level framework for easy and rapid prototyping of ray tracing algorithms.
More specifically, it exposes one declarative stage and four programmable
ones. In the declarative stage, users describe their scene using simple shape
primitives and material properties. The scene is then submitted to WebRays
in order to build and traverse the acceleration data structure. The four
programmable stages are the standard generate, hit,miss, and post-process
events. The graphical user interface consists of two discrete sections, the
preview window and the shader editor. Visual feedback is interactively
provided in the preview canvas, and the user performs live source code
modifications as shown in Figure 18-7.

18.5 CONCLUSIONS AND FUTURE WORK

We have presented WebRays, a GPU-accelerated ray intersection framework
able to provide photorealistic 3D graphics on the web. The versatile design of
WebRays allows it to adapt to a broad range of application requirements,
ranging from simple intersection queries to complex visualization tasks.

Admittedly, the low-level nature of the API requires a good amount of
boilerplate code from the user. In the future, we intend to provide wrapper
abstraction APIs that model more constrained yet popular programmable ray
tracing pipelines. Keeping an eye toward future advances on Web-based
accelerated graphics, we plan to offer a WebGPU backend implementation of
WebRays, as soon as the latter becomes available to browsers, in order to
provide a standard way to express ray tracing ubiquitously, so it ultimately
benefits the entire 3D online graphics industry.
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CHAPTER 19

VISUALIZING AND
COMMUNICATING ERRORS IN
RENDERED IMAGES
Pontus Andersson, Jim Nilsson, and Tomas Akenine-Möller
NVIDIA

ABSTRACT

In rendering research and development, it is important to have a formalized
way of visualizing and communicating how and where errors occur when
rendering with a given algorithm. Such evaluation is often done by comparing
the test image to a ground-truth reference image. We present a tool for doing
this for both low and high dynamic range images. Our tool is based on a
perception-motivated error metric, which computes an error map image. For
high dynamic range images, it also computes a visualization of the exposures
that may generate large errors.

19.1 INTRODUCTION

Rendering comparisons are often done using one of three methods. One may,
for example, display the results of two algorithms next to each other and a
ground-truth reference next to them. Another method, called pooling, shows
tables containing single values, acquired using image error measures,
corresponding to the error between the algorithms’ outputs and the
reference. There are several issues with both of these approaches, however.
Showing images next to each other makes it much more difficult to spot
differences that could be rather large, and it may also hide smaller errors,
such as chrominance differences, which can be hard for a human observer to
find. One problem with condensing the errors in an entire image down to a
single value is that it will discard information about where the errors are
located, which may be crucial knowledge during algorithm comparisons. For
example, the same, condensed error could be given both for a test image with
several fireflies or for a test image suffering small color shifts—using the
pooled error, we cannot tell the difference.
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Another presentation option is to show a full error map, with the same
resolution as the reference and test images, in which each pixel value
indicates the error between the two images in that pixel. When using an error
map, we gain the possibility to pinpoint where in the test image errors are
present, which in turn can aid us in deciding their causes and impact on the
visual experience. Several works have used error maps to compare and
present their results. However, many have used error metrics whose outputs
are not necessarily indicative of the error an observer would perceive when
shown the images. Instead, the error metrics most commonly used are
simple difference computations, such as the relative mean squared error
(relMSE) or the symmetric mean absolute percentage error (SMAPE), which
are not based on human perception and often do not agree with it. Other
commonly used error metrics also exhibit nonintuitive error maps [3]. The
SSIM [18] metric, though popular, has similar issues, as has been further
explained elsewhere [14].

In this chapter, we will give an overview of an alternative metric called FLIP [3,
4] and present a tool which is based on it. FLIP is inspired by perception
research and the qualities of the human visual system. It outputs a per-pixel
error map that indicates where an observer would perceive errors, and the
magnitude those errors would be perceived to have, as the observer
alternates between the reference and test images on top of each other. FLIP
was designed with this alternation in focus, as it is the viewing protocol most
commonly used by rendering practitioners. Originally, FLIP was limited to
images with low dynamic range (LDR) [3]. It was later extended to handle high
dynamic range (HDR) images [4] as well. Because HDR images are exposure
compensated and tone mapped before they are shown to the viewer on an
LDR display, it is the error in the resulting LDR image that is of interest. An
important part of this, however, is the choice of exposure. As illustrated in
Figure 19-1, different errors can be seen under different exposures. The HDR
version of FLIP takes this into account by considering several exposures
during its evaluation. After giving a brief overview of the LDR and HDR
versions of the metric, we introduce a tool that leverages both versions and
that a developer may use to visualize and communicate the perceived errors
in rendered images. In the final section, we use the results of FLIP to evaluate
the quality of different algorithm configurations and investigate how it relates
to their performance.
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Figure 19-1. A reference image rendered at two million samples per pixel (spp) and a test image
at 256 spp of the Attic scene are shown under three different exposures. The tool presented in this
chapter allows the user to compute, visualize, and communicate the error an observer would
perceive between the LDR test and reference images when alternating between them. In the
zoom-ins, we see that the errors have different magnitude in the different test images. Some
errors are largest in the left image, some in the middle one, and some in the right image. While
large in one image, the error could also be unnoticeable in another. When working with HDR
images, the exposure compensation and tone mapping carried out before the images are
displayed is sometimes unknown, meaning that the HDR image could be displayed as any of the
LDR images presented in this figure. Thus, examining the error in an HDR test image requires the
user to compare the probable LDR versions of it to the corresponding LDR reference images—a
tedious and time-consuming task if done manually, but which is automated by our tool.

19.2 FLIP

We base our work on the low dynamic range and high dynamic range versions
of FLIP, which is a perception-motivated error metric targeting rendered
images. The original metric, LDR- FLIP [3], acts on LDR images, while the
second version, HDR- FLIP [4], was made to handle HDR images. Our tool,
presented in Section 19.3, chooses the option that corresponds to the dynamic
range of the input images. Next, we briefly introduce LDR- and HDR- FLIP.

19.2.1 LDR- FLIP

LDR- FLIP [3] takes an LDR reference image and an LDR test image and
produces an error map together with pooled values, which are numbers that,
in different ways, aim to describe the overall error between the two images.
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In particular, LDR- FLIP approximates the difference an observer would
perceive when alternating between the test and reference images—a viewing
protocol often used in rendering algorithm development. The algorithm
consists of a color pipeline and a feature pipeline, both of which consider the
observer’s distance from the display and the display’s size, and combines the
results into an error map.

The color pipeline first applies spatial filters, based on contrast sensitivity
functions, to the images. This removes high-frequency detail that we cannot
perceive at a certain distance from the display. The images are then
transformed into a perceptually uniform color space, i.e., a space where
distances between colors correspond better with the perceived distance than
in, e.g., RGB space. In LDR- FLIP, the perceptually uniform color space of
choice was the simple L∗a∗b∗ space [7]. A small adjustment, to account for
the Hunt effect [8], is then applied. The Hunt effect predicts that color
differences appear larger at higher luminances than lower ones. The color
distance is then measured using a metric [1] that works well also for large
color differences, which are often present in rendered images. This distance
is then mapped into a color difference in [0, 1] in a way that compresses large
color differences, for which it is hard to tell which difference is larger, to a
smaller range and that extends the range for smaller differences.

The feature pipeline aims at comparing the edges and points (collectively
called features) in the images. Because the human visual system is sensitive
to edges and because points, e.g., fireflies, often occur in rendered images,
comparing the feature content between the reference and test images is
important to assess the quality of the test image. In the feature pipeline,
features are first detected in both the reference and test images. A feature
difference is then computed between the results and is mapped to [0, 1],
similar to the color difference. The per-pixel error, called∆E, is then

∆E =
(
∆Ec

)1–∆Ef , (19.1)

where∆Ec is the color difference and∆Ef is the feature difference.

In some applications, providing and examining error maps for each image
pair is not feasible. In such cases, some level of pooling, or data reduction, is
necessary. Both the LDR and HDR versions of FLIP provide such pooling
alternatives. As a first step, the user may choose to reduce the final LDR- or
HDR- FLIP error map into a weighted histogram, where each bin has been
weighted by the error in the center of the bin. This weighting will make larger
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errors more pronounced, which helps the user spot the presence of artifacts
such as fireflies, information that is otherwise easily clouded by the large
number of lower errors in the image. The histogram plots also contain
indicators for statistical measures of the error map, including the mean,
weighted median, minimum, and maximum error. These values are always
output by our tool. If only one value is to be recorded per image pair, the mean
is a relatively good option, as discussed in Section 19.6. We refer the reader to
Section 19.4 for an example where pooling is used.

19.2.2 HDR- FLIP

While low dynamic range images have color components with integer values
in [0, 255], or those values remapped to 256 values in [0, 1], high dynamic
range images can have any values. We have, however, limited our work to
values that are nonnegative. Recently, FLIP was extended to handle HDR
images [4]. HDR images are often exposure compensated, by multiplying the
image with a factor 2c, where c is the exposure compensation value, and then
tone mapped before they are shown on an LDR display. As noted in
Section 19.1, errors in HDR images that are visible using a certain exposure
compensation value may be invisible at another exposure compensation
value, and vice versa. In many cases, such as in real-time rendered games,
the exposure compensation value may be determined arithmetically on the
fly, which possibly leads to a wide range of exposures. This was considered by
Munkberg et al. [12], who proposed an idea where the HDR images were
exposure compensated using several exposures within a certain range and
then the mean squared error (MSE) was accumulated over the results and
turned into a peak signal to noise (PSNR) value.

The idea of computing errors over an exposure range was refined by
Andersson et al. [4], as follows. First, the exposure compensation start and
stop values, cstart and cstop, are computed automatically from the reference
HDR image. Second, both exposure compensation and tone mapping are
taken into account. Third, instead of MSE, the perception-motivated LDR- FLIP
measure is used on each pair of LDR images. Finally, instead of taking the
per-pixel average, the maximum of all LDR- FLIP values per pixel is recorded,
as that is the largest error an observer might see when shown the HDR image
on an LDR display. This resulted in a more reliable error measure for HDR
images compared to mPSNR [12], RMAE, SMAPE [17], relMSE [16], and
HDR-VDP-2 [11].
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Figure 19-2. An illustration of how HDR- FLIP works using a crop of an image from the
BistroNight scene. A reference HDR image is compared against a test HDR image, where the
latter was path traced with 16 samples per pixel. The top two rows of small images show the
reference (top) and the test (middle) images, after exposure compensation and tone mapping. The
respective LDR- FLIP images of these two are shown in the third row. The bottom three rows
contain the same types of images, but for the second half of the exposure range. The entire
exposure range goes from cstart = –8.6 to cstop = 3.3. The HDR- FLIP error map (top right)
contains the per-pixel maximum error of all LDR- FLIP images. The exposure map (bottom right)
visualizes from which exposure the maximum error originates, where dark is the shortest
exposure, within the used exposure range, and bright is the longest. This means, for example, that
the maximum errors on the Librairie sign comes from the lower exposures. The HDR- FLIP error
map reveals, however, that those errors are small.

Figure 19-2 illustrates the power of HDR- FLIP. For these results, we have
used the FLIP default of 67 pixels per degree in the calculations. Unless
otherwise stated, this will be what is used for each FLIP result presented in
this chapter. Per default, the error maps produced by FLIP use themagma
color map [10], shown in the top right of the figure, to indicate different error
levels. It goes from almost black for low errors to a “hot” color for large
errors. These are properties that make the interpretation of the error map
intuitive and easy as, e.g., zero error maps to black. This, together with the
fact that it is perceptual in the sense that each increment in error maps to the
same increment in perceived color difference and that it is friendly to those
who are color blind, is why the magma map was chosen. The exposure map
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too uses a certain color map, called viridis [10]. It shares the perceptual and
color-blind-friendliness of magma, and its luminance increases over the
map. Unlike magma, viridis is not black for the lowest value. This is beneficial
for the interpretation of the exposure map as the lowest value in an exposure
map could be anything, not just zero as was the case for the error maps.
Looking back at the results in Figure 19-2, it is noteworthy that there are
errors in the LDR- FLIP image with the lowest exposure and errors in the
LDR- FLIP image with the highest exposure that both end up in the composite
HDR- FLIP image, as is revealed by the exposure map.

Besides helping with visualizing the error in HDR images, HDR- FLIP also
saves time for developers. Indeed, for HDR images, a developer would need
to alternate between the multitude of possible LDR versions of the reference
and test images, each pair generated using a different exposure
compensation value, in order to, for example, be convinced that the errors are
sufficiently small. HDR- FLIP gathers this information into a single error map,
which makes for a significantly faster analysis.

19.3 THE TOOL

With this chapter, we provide a command line tool, written in C++, CUDA, and
Python, that computes and outputs FLIP information according to the user’s
preferences. The tool, code, and instructions are publicly available at
https://github.com/NVlabs/flip. In this section, we explain what the tool does
and in the next we provide and discuss example use cases.

The minimum required inputs to the FLIP tool are one reference image and
one test image. For LDR images, the default output from FLIP is the full error
map together with the mean, minimum, maximum, weighted median,
weighted first quartile, and weighted third quartile error. As explained in
Section 19.6, the mean FLIP value is what is preferably communicated if the
metric is reduced to a single number. For HDR images, the default output is
the same as for LDR images, with the addition of the automatically calculated
exposure range. Furthermore, using a command line argument, the tool can
output the weighted histogram of the FLIP error map, as seen in the top of
Figure 19-5 in the next section. The tool can also produce an overlapping
histogram, as seen at the bottom of Figure 19-5. Options also include using a
logarithmic scale on the y-axis, and setting a maximum value on the y-axis for
easier comparison between different test outcomes.
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Some options affect the results directly. For both LDR and HDR input, the
user may input the observer’s distance from the monitor (in meters) and the
monitor’s width (in meters and pixels). With these, the number of pixels per
degree can be computed, which will be used in the FLIP calculations.
Alternatively, one may input the number of pixels per degree directly. In the
case of HDR input, the user may choose to input either one or both of the start
and stop exposures, as well as the total number of exposures that will be
used in the calculation. Manually choosing the start and stop exposures can
be beneficial when they are known, which may eliminate unnecessary
calculations and error indications. Per default, the start and stop exposures
are computed automatically as described in the HDR- FLIP paper [4]. For
HDR, the user may also choose the underlying tone mapper of HDR- FLIP. By
default, an ACES approximation [13] is used, and it is the tone mapper used
for all results in this chapter.

Finally, the tool provides some extra output options. The user may choose to
output the FLIP error map in grayscale or magma (default), or choose not to
output an error map at all. In the case of HDR images, outputting the
exposure map is optional. It is also possible to output all intermediate
(exposure compensated and tone mapped) LDR images resulting from the
HDR input images. The full set of options and instructions are available at
https://github.com/NVlabs/flip.

19.4 EXAMPLE USAGE AND OUTPUT

In this section, we will demonstrate the usage of our tool. First, we will study
an LDR example, where most focus will be on the LDR- FLIP error map. After
that, two algorithms that generate HDR output will be compared using
HDR- FLIP’s pooled variants, weighted histograms, error maps, and
exposure maps.

Figure 19-3 shows a reference and a test image [6] of the Buddha scene.
Recall that the LDR- FLIP error map represents the error an observer sees
while alternating between the reference and test images under the given
viewing conditions. From the error map alone, we can see where those errors
are located and how large they are. For example, we see that there is a large
error on the upper right arm of the statue (to the left in the image), as well as
in the background. This is easily confirmed by looking at the LDR images, or
even better by flipping between the two. The error map also indicates some
error on the foot of the statue that is generally smaller than the error on the
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Reference Test LDR- FLIP

Figure 19-3. Reference and test images of the Buddha scene, together with the LDR- FLIP map.

arm and the background, which can be confirmed by examining the LDR
images. With this example, we see how LDR- FLIP can help us to quickly get
an overview of the magnitude and location of the differences an observer
would perceive when alternating between two images and how this can help
communicate the differences without explicitly alternating between them.

Next, we will use the tool to examine the error in HDR images. As opposed to
the LDR- FLIP error map, the HDR- FLIP result cannot be said to represent the
error an observer would see while alternating between the images, as we
never present the HDR images, but only exposure compensated and tone
mapped versions of them. This is under the assumption that we use LDR
displays. The HDR- FLIP error map instead represents the largest error per
pixel that an observer would see while alternating between pairs of equally
exposure compensated and tone mapped reference and test images. The
exposure range and tone mapper used for this are chosen such that the
HDR- FLIP error map is computed using a large portion of the probable LDR
stimuli that the two HDR images could generate. We note that the exposure
range and tone mapper can be manually chosen as well (Section 19.3), in case
any of them is known.

In the next example, we have rendered the ZeroDay scene with two different
direct illumination algorithms, simply denoted A and B, respectively, and we
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will use our tool to compare the two. The reference and the two test images,
for a certain exposure compensation factor, are shown in Figure 19-4. We
have marked some difficult areas for the two algorithms, in green for
algorithm A and in blue for B. The region marked in white seems to be
handled well by both algorithms. First, we will look at the pooled error values,
specifically the mean HDR- FLIP error for A and B. Using three decimal digits,
we have that the mean error for A is 0.524, while the mean error for B is
0.525, which implies that the two algorithms perform similarly overall.
Looking at Figure 19-4, however, we see that the algorithms generate very
different outputs.

In Figure 19-5, we present the weighted histograms of the HDR- FLIP error
maps for A and B as well as a plot where the histograms are overlapped,
which facilitates a visual comparison of the two. The histograms reveal that
the errors are slightly differently distributed, where A produces more errors
in the mid-high range, while the image generated by B has more errors in the
mid and top range, with the latter implying artifacts such as high amplitude
noise. Notice that, similar to the mean, the other pooled values presented in
the histograms are close, also implying small differences between the
algorithms’ output.

Next, we consider the full HDR- FLIP error maps of the test images from
algorithms A and B, shown in Figure 19-6, together with the corresponding
exposure maps. In the error maps, we see that the two algorithms generate
very different results, as was implied by the LDR images shown in Figure 19-4.
Algorithm A generates more error in the middle third of the image, while
algorithm B generally has more large errors in the top and bottom thirds of
the image. The area highlighted in blue in the LDR images presented in
Figure 19-4 is an example showing that B tends to blur reflected emitters. On
the other hand, in the green highlighted areas in the same figure, we see that
A shows particular difficulties with noise in the dark regions. The figure also
indicates that A struggles more with noise than B does, in general. These
issues are represented well in the HDR- FLIP maps, shown in Figure 19-6. In
those error maps, we also see large errors in the region corresponding to the
white marked area in Figure 19-4, despite the errors being seemingly small in
that figure. This is a consequence of the error becoming larger with longer
exposures. We can see that this is the case by examining the exposure maps,
which contain many bright colors, indicating that the maximum error is often
seen at longer exposures. The medium-bright (greener) parts of the exposure
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Figure 19-4. The reference and test images for algorithms A and B, where we have marked, in
green for A and in blue for B, difficult areas for the two. Within the shared, white rectangle, both
algorithms seem to perform well. All images have been exposure compensated with c = 0.2 and
tone mapped for display.
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Figure 19-5. Top: the weighted histograms of the HDR- FLIP error maps for algorithms A (left)
and B (right). Bottom: the top two histograms overlapped.
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Figure 19-6. HDR- FLIP error maps and exposure maps for algorithms A and B. The automatically
computed start and stop exposures are shown in the lower right color map.
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Figure 19-7. Six out of the eleven LDR images and LDR- FLIP error maps used to compute the
HDR- FLIP results presented in Figure 19-6. We can see how errors in some areas are larger for
lower and medium exposures, whereas other areas show the largest error for higher exposures,
as revealed by the exposure maps in Figure 19-6.

maps reveal that many of the largest errors would be seen at medium-range
exposures, such as the one used in Figure 19-4, whereas the dark parts of the
maps indicate that short exposures are needed, too.

For completeness, we present several of the LDR images used to compute the
HDR- FLIP images in Figure 19-7. With these, we can confirm that the
analysis we just conducted, based solely on a small set of LDR images and the
HDR- FLIP information, was correct and that analyzing the LDR images one by
one would have led to similar conclusions. This implies that HDR- FLIP yields
results that allow us to correctly carry out an analysis of the error between
the HDR test and reference image. We note how the pooled values, while
sometimes sufficient, can be deceiving as they can be similar for two images
even though the images are vastly different. They might indicate larger errors
for an image that are perceived as less erroneous than another. The
histograms reveal more about the error distributions and can, for example, be
used to differentiate between an image with many small errors and an image
with few large ones, which the mean error could not. However, they do not
provide any information about where the errors are located. For this
information, the full error maps are required, as was seen in the example.
Thus, unless pooling is strictly necessary, it is recommended that full error
maps be used when communicating the errors in the test images.
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19.5 RENDERING ALGORITHM DEVELOPMENT AND EVALUATION

After analyzing the different outputs of FLIP in Section 19.4, we will now look
at using the results for algorithm development. In particular, we will
investigate the relationship between image quality and frame time for
different parameter configurations of the ReSTIR algorithm [5]. We do this by
evaluating the GPU frame time and HDR- FLIP errors of the different
configurations and plot the results in a diagram, with frame time on one axis
of the diagram and HDR- FLIP mean values on the other. In this diagram, we
may find the Pareto frontier. For configurations on the Pareto frontier, it holds
that one dimension (e.g., image error) cannot be lowered without the second
dimension (e.g., frame time) becoming worse, so this is an excellent way to
provide information about the best performing configurations.

The ReSTIR algorithm features a plethora of configuration options and large
parameter spans. We will focus on subsets of both. In particular, we look at
the four parameters listed next while the remaining configuration is kept
fixed. For details about the parameters, consult the original ReSTIR paper [5].
We run the biased version of ReSTIR as part of an optimized path tracer and
render one sample per pixel (spp). In our resulting diagram, we encode the
parameters so that each configuration is uniquely visualized by a marker. We
refer the reader to Figure 19-8 and its legend for an example. The encoding is
outlined in this list:

> Use final visibility indicates that a ray is traced during shading to the light
that was picked. This is encoded by the shape of the markers in the
diagram.

> Use denoiser states that a denoiser is applied to the output of ReSTIR
and is encoded by the color of the markers’ outlines. Unlike the original
ReSTIR paper [5], we do not use the OptiX denoiser [15], but instead the
ReLAX denoiser from the NVIDIA Real-Time Denoisers SDK [9].

> #initial light samples specifies how many initial light samples ReSTIR
uses. The light sample count ranges from 1 to 32 and is recorded inside
the markers.

> #spatial neighbors represents the number of taps that are done in one
iteration of spatial reuse and is a number ranging from one to five. This
is encoded by the color of the markers.
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Figure 19-8. Top: reference images of the five viewpoints used to evaluate the image quality of
the ReSTIR configurations in the BistroNight scene. The images are exposure compensated with
factor c = –3.0. Bottom: diagram showing the frame time and HDR- FLIP error for the different
ReSTIR configurations. The properties of the markers indicate the configuration, as explained by
the legend. The blue line is the Pareto frontier, which is a list of the best configurations.

Our experiment is set up in the BistroNight scene. The quality measurements
are done for frames generated using five different camera locations and
angles, or viewpoints, namely those shown at the top in Figure 19-8. For a
viewpoint, we first render a reference with two million spp, which are enough
samples for the renderer to converge in the scene. Then, using a given
ReSTIR configuration, we generate a test image of the same viewpoint and
compute the mean HDR- FLIP error between the reference and the test image.
After repeating this for each viewpoint, the final quality value of the
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configuration is the average of the HDR- FLIP means over the five frames. For
the performance measurements, we first render frames for three minutes as
a warm up period for the GPU, which in our experiments is an NVIDIA Quadro
RTX A6000. Then, for each configuration, we render warm-up frames for an
additional 30 seconds, followed by the recording of frame times for
30 seconds. This procedure makes for reasonably reliable rendering time
evaluations. During the performance measurements, the camera moves
through the scene, following a path chosen such that each of the five
viewpoints used for the quality evaluation are included. The results of the
experiment in the BistroNight scene are shown in the diagram in Figure 19-8.

Next, we analyze the results in Figure 19-8 by identifying different clusters of
configurations. Initially, we note three large clusters of configurations, one
that includes denoising (indicated by red outlines) and two that do not (black
outlines). The two that do not are separated by whether or not they use final
visibility (squares or circles). From the well-separated cluster that uses
denoising, we see that the denoiser has a large effect on both quality and
performance. Using the denoiser improves image quality but reduces
performance, which is expected. Now, looking at the two clusters for which a
denoiser is not used, we see that when final visibility is enabled, i.e., when a
ray is traced to the light that was picked, the quality and performance are
worse than when it is not enabled. However, for the configurations that use a
denoiser, this is not always the case, as indicated by the squares in the bottom
right in the diagram. Those squares indicate that when we use a denoiser,
together with many spatial neighbors (indicated by brighter colors inside the
marker) and initial light samples (number inside the marker), using final
visibility leads to better quality compared to not using it. Lastly, by observing
the numbers and colors in the markers, we see that, in general, an increased
number of initial light samples and spatial neighbors both increase quality,
but lead to longer frame times.

The blue curve in Figure 19-8 indicates the Pareto frontier. Following the
frontier from the top left, where we have the shortest frame times, we see
that if we do not use a denoiser, the best configurations are those that do not
use final visibility (circles with black outlines). One can then optimize for
quality or frame time by changing the number of initial light samples and
spatial neighbors—more will reduce the error but increase frame time.
Adding a denoiser may increase quality further. For low light sample counts
and few spatial neighbors, the frontier indicates that final visibility should not
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be used. At the end of the curve, where the image error is lowest, the
configurations do, however, use final visibility, together with high light sample
counts and a large number of spatial neighbors.

The results of our experiment indicate that using final visibility without a
denoiser is the only choice that consistently increases both frame time and
image error simultaneously. The following example, which is centered around
Figure 19-9, aims to explain why this was the case. The figure shows four
exposure compensated and tone mapped test images. In particular, they are
insets from the fifth viewpoint used in the experiment (see Figure 19-8) and
exposure compensated with the longest exposure used to compute the
HDR- FLIP errors. Each test image was generated with 32 initial light samples
and five spatial neighbors. What differs between the configurations is
whether or not they use final visibility and the denoiser. The test images are
presented together with the reference and their corresponding LDR- and
HDR- FLIP maps. First, consider the two images that are generated without
the denoiser. Comparing those, we see that the shadows are best localized in
the image generated with final visibility. They are, however, much darker than
those in the other image, which results in large FLIP errors. The dark
shadows are a consequence of pixel saturation not being possible when a
pixel has the value zero. When such pixels are exposure compensated with
long exposures, they remain zero, whereas pixel values that are positive
increase significantly and eventually become saturated. This implies that,
when we compare those pixels, the error increases with exposure, until it is
maximal. On the other hand, when we compare two nonzero pixels, the error
has a maximum for some exposure, after which it generally decreases after
either the reference or test pixel has become saturated. We see that there are
significantly fewer pixels with value zero in the test image that does not use
final visibility, which results in a lower HDR- FLIP mean. When we instead
consider the images that are generated with a denoiser, we see that the
tables are turned and using final visibility results in the highest-quality image.
This follows from the fact that the denoiser spreads information between
pixels and leaves few with value zero, which ultimately makes the test image
generated with final visibility more similar to the reference at high exposures.

We conclude by noting that the previous experiment has shown how a
developer may use the Pareto frontier to select one of many algorithms
and/or configurations to achieve desired quality and performance. Lastly, we
wish to repeat that developers should be cautious about drawing conclusions
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Figure 19-9. Images including one part of the rightmost viewpoint in Figure 19-8, tone mapped
under a long exposure (c = 4.7). First, we show the reference. Then, we have one column per
ReSTIR configuration for four different configurations, where the columns’ titles indicate the
configuration. In the first row, we show the generated test image exposure compensated and tone
mapped similar to the reference. The second and third rows show the LDR- and HDR- FLIP maps,
respectively. We consider configurations that either use or do not use final visibility and a
denoiser, while the remaining parameters are identical (32 initial light samples and five spatial
neighbors). The mean HDR- FLIP errors for the full images generated with the four configurations
were, from left to right, 0.47, 0.52, 0.43, and 0.41. We see that, while the shadows in the second
configuration lead to large errors, adding the denoiser to it results in the image that most closely
resembles the reference out of the four.

regarding image quality based only on pooled values of error metrics, such as
the mean of an LDR- or HDR- FLIP error map. Though they may give a general
idea of the error between a test and corresponding reference image, only full
error maps have the potential to fully describe the error.

19.6 APPENDIX: MEAN VERSUS WEIGHTED MEDIAN

In the original paper about LDR- FLIP [3], it was recommended that the
weighted median be chosen if only a single error value was to be reported.
There are some issues with the weighted median, however, that make its
output nonintuitive. For example, if all pixels have a FLIP error of 0.0, then all
pixels will fall in the first bucket. Assuming that we use the default 100
buckets, the first bucket’s center point is 0.005, and thus, the weighted
median will be 0.005 because we search for it in the weighted histogram. So,
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even though all errors are 0.0, the reported number is not 0.0, which is
counterintuitive. Alternatively, an equilibrium (center of mass) equation could
be used to compute the weighted median, but then pixels with weight 0.0
would have no effect on the computation. This means that if all pixels had 0.0
error, except one that had an error of 1.0, the weighted median would be 1.0,
which is also counterintuitive. Instead, we recommend using themean error if
a single error value is to be reported, as it returns the expected results in the
cases discussed and is a well-known and easily computed measure.
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PART III

SAMPLING

Ray tracing is almost synonymous with sampling. After all, tracing a ray is the
same as sampling a point on a piece of geometry. But the number of rays we
can trace within each frame is limited, so the money is on the question: to
where should we trace these rays?

The chapters in this part all provide different, complementary answers,
ranging from simple techniques that are useful in any practitioner’s toolbox to
advanced algorithms that efficiently render millions of light sources.

Chapter 20, Multiple Importance Sampling 101, introduces a very powerful, yet
simple, procedure for combining multiple sampling strategies such that the
strengths of each are preserved. Multiple importance sampling is a
fundamental tool that can be utilized to great effect in almost any situation
where samples have to be drawn. This chapter gently introduces the topic by
the example of combining material and light sampling in direct illumination,
culminating in a fully fledged low-noise path tracing algorithm.

Chapter 21, The Alias Method for Sampling Discrete Distributions, presents a
constant-time algorithm for randomly selecting an element with
predetermined probability from a potentially large set. It is one of those
algorithms that once you know about it, you keep finding a use case for it: be
that sampling a texel proportional to its brightness or randomly selecting a
light source proportional to its power.

However, sometimes the set of possible samples is not predetermined, and
instead each sample arrives one by one as a stream of data. For this situation,
Chapter 22, Weighted Reservoir Sampling: Randomly Sampling Streams,
describes an algorithm for sampling elements from such a stream in a single
pass. This technique was only recently introduced to ray tracing, but it has
already shown great promise by allowing the efficient reuse of “good”
samples from neighboring pixels or even previous frames.

Combined, the techniques just listed can make up sophisticated rendering
algorithms that can handle seemingly impossible situations. Chapter 23,
Rendering Many Lights with Grid-Based Reservoirs, presents a holistic
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approach to tackle the difficult problem of selecting only the few most
important out of millions of light sources, which enables visual effects that
were infeasible to get in real time prior to ray tracing.

Lastly, it is important to consider not only the probabilities of samples but also
the pattern in which they are arranged. Chapter 24, Using Blue Noise for Ray
Traced Soft Shadows, is a deep dive into the world of sample patterns with
blue-noise characteristics, showing how such samples may lead not only to
lower rendering error compared to independent samples, but also to images
that are easier to denoise and that look more visually pleasing.

After reading this part, you will have learned a few versatile tools for deciding
where to trace these oh-so-valuable rays. But the adventure is far from over,
because the elusive theoretically optimal sampling procedure—the one that
has zero noise—will always keep beckoning for a newer, better algorithm.

Thomas Müller
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CHAPTER 20

MULTIPLE IMPORTANCE
SAMPLING 101
Anders Lindqvist
NVIDIA

ABSTRACT

We present the basics ofmultiple importance sampling (MIS), a well-known
algorithm that can lower the amount of noise in a path tracer significantly by
combining multiple sampling strategies. We introduce MIS in the context of
direct light sampling and show how it works in a path tracer. We assume that
the reader has already written a simple path tracer and wants to improve it.

20.1 DIRECT LIGHT ESTIMATION

We will be focusing on the problem of direct lighting in a path tracer. The
content is heavily inspired by Veach’s doctoral thesis [4]. Our problem
statement is that for a given surface point P with a normal n and a material,
we want to estimate the direct light being reflected in a direction ωo. We will
use code to illustrate all concepts, but the direct light integral we are
estimating is

Lr(P,ωo) =
∫
Ω
Le(r(P,ωi), –ωi)︸ ︷︷ ︸

light

f(P,ωo,ωi)(n · ωi)︸ ︷︷ ︸
BRDF and cosine

dωi, (20.1)

where r is a ray tracing function that shoots a ray into the scene and picks the
first visible surface (if any), Le is the emission color at a surface point, and f is
the bidirectional reflectance distribution (BRDF) that describes how light is
reflected at the surface.1 The integral is over all directions ωi from which
lights come over the hemisphere Ω around the normal. The word estimate
here is used in a Monte Carlo sense in that we want to be able to average
several such estimates to get a better estimate.

A first path tracer will most likely employ one of two techniques to handle
direct lighting: material sampling or light sampling. We will describe them

1Here, we assume that if r does not hit a surface, it causes Le to become black.
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Listing 20-1. Direct light using cosine hemisphere sampling.

1 vec3 direct_cos(vec3 P, vec3 n, vec3 wo, Material m) {
2 vec3 wi = random_cosine_hemisphere(n);
3 float pdf = dot(wi, n)/PI;
4 Intersect i = intersect(P, wi);
5 if (!i.hit) return vec3(0.0);
6 vec3 brdf = evaluate_material(m, n, wo, wi);
7 vec3 Le = evaluate_emissive(i, wi);
8 return brdf*dot(wi, n)*Le/pdf;
9 }

both and discuss their pros and cons. Though we only talk about emissive
surfaces in our examples, the same methods can be used with a sky dome or
skylight as well.

20.1.1 COSINE HEMISPHERE SAMPLING

We start with an even more basic sampling variant. In cosine hemisphere
sampling we use no knowledge of the material or the light sources when
choosing samples. Instead, we only sample according to the n · ωi term in
Equation 20.1. Choosing directions in a way that is not uniform over the
hemisphere is called importance sampling and is directly supported by the
Monte Carlo integration framework.

The code in Listing 20-1 shoots one ray into the scene and gives out an
estimate. Because this is the first Monte Carlo integrator, we show a full
evaluation using N samples for a given surface point P, normal n, and material
mat.

1 vec3 estimate = vec3(0.0);
2 for (int i=0; i<N; i++) {
3 estimate += direct_cos(P, n, mat);
4 }
5 estimate /= N;

When we go to full path tracing, we will use a different surface point for each
sample in order to get antialiasing, but the principles are the same when
estimating the integral. Note that the two dot products in Listing 20-1 cancel
out and, as we only generate directions in the hemisphere around the normal,
there is no need to clamp the dot products.

20.1.2 MATERIAL SAMPLING

In material sampling we select directions with a probability that is
proportional to f(P,ωo,ωi)(n · ωi), as shown in Listing 20-2. For a fully diffuse
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Listing 20-2. Direct light using material sampling.

1 vec3 direct_mat(vec3 P, vec3 n, vec3 wo, Material m) {
2 vec3 wi;
3 float pdf;
4 if (!sample_material(m, n, wo, &wi, &pdf)) {
5 return vec3(0.0);
6 }
7 Intersect i = intersect(P, wi);
8 if (!i.hit) return vec3(0.0);
9 vec3 brdf = evaluate_material(m, n, wo, wi);
10 vec3 Le = evaluate_emissive(i, wi);
11 return brdf*dot(wi, n)*Le/pdf;
12 }

Listing 20-3. Direct light using light sampling.

1 float geom_fact_sa(vec3 P, vec3 P_surf, vec3 n_surf) {
2 vec3 dir = normalize(P_surf - P);
3 float dist2 = distance_squared(P, P_surf);
4 return abs(-dot(n_surf, dir)) / dist2;
5 }
6

7 vec3 direct_light(vec3 P, vec3 n, vec3 wo, Material m) {
8 float pdf;
9 vec3 l_pos, l_nor, Le;
10 if (!sample_lights(P, n, &l_pos, &l_nor, &Le, &pdf)) {
11 return vec3(0.0);
12 }
13 float G = geom_fact_sa(P, l_pos, l_nor);
14 vec3 wi = normalize(l_pos - P);
15 vec3 brdf = evaluate_material(m, n, wo, wi);
16 return brdf*G*clamped_dot(n, wi)*Le/pdf;
17 }

material, this is exactly what we do with the cosine hemisphere sampling
technique. For a more glossy material, this could mean that we more often
select directions close to the reflection direction.

20.1.3 LIGHT SAMPLING

In light sampling we pick positions on the light sources themselves. This is
different from cosine hemisphere sampling or material sampling where we
do not use any scene information (except the surface normal and surface
material in material sampling).

In Listing 20-3 the sampling of light sources chooses points on surfaces in the
scene. In order to be compatible with Equation 20.1, we must apply a
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geometric factor G [4, Equation 8.3], which may look familiar to anyone who
has implemented light sources in real-time graphics. It accounts for the fact
that if we choose a point on a surface, we must take attenuation into account;
points far away should be darker. If we look at sampling using directions—like
we do for cosine hemisphere and material sampling—there is nothing in
there. Instead, it is implicit in the fact that we hit things far away with a lower
probability. In Listing 20-3 we see the factor G at the end. If there is
something blocking the emissive surface (like another surface, emissive or
not), sample_light will return false and we will not get any contribution. Note
that unlike Veach we have chosen to not include dot(n, wi) in G. This is
reflected in our function name geom_fact_sa.

A first implementation of sample_lights in a scene where all the light
sources are spheres or quads could look something like Listing 20-4.

Listing 20-4. Sample light sources.

1 bool sample_lights(vec3 P, vec3 n, vec3 *P_out, vec3 *n_out,
2 vec3 *Le_out, float *pdf_out)
3 {
4 int chosen_light = floor(uniform()*NUM_LIGHTS);
5 vec3 l_pos, l_nor;
6 float p = 1.0 / NUM_LIGHTS;
7 Object l = objects[chosen_light];
8

9 if (l.type == GeometryType::Sphere) {
10 float r = l.size.x;
11 // Choose a normal on the side of the sphere visible to P.
12 l_nor = random_hemisphere(P-l.pos);
13 l_pos = l.pos + l_nor * r;
14 float area_half_sphere = 2.0*PI*r*r;
15 p /= area_half_sphere;
16 } else if (l.type == GeometryType::Quad) {
17 l_pos = l.pos + random_quad(l.normal, l.size);
18 l_nor = l.normal;
19 float area = l.size.x*l.size.y;
20 p /= area;
21 }
22

23 bool vis = dot(P-l_pos, l_nor) > 0.0; // Light front side
24 vis &= dot(P-l_pos, n) < 0.0; // Behind the surface at P
25 // Shadow ray
26 vis &= intersect_visibility(safe(P, n), safe(l_pos, l_nor));
27

28 *P_out = l_pos;
29 *n_out = l_nor;
30 *pdf_out = p;
31 *Le_out = vis ? l.material.emissive : vec3(0.0);
32 return vis;
33 }
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Figure 20-1. Scene description (upper left), cosine hemisphere sampling (upper right), material
sampling (lower left), and light sampling (lower right). Roughness is shown in the first image with
black being low roughness and white being high roughness. The color of the emissive light sources
are shown as well. We can see that material sampling best captures the sharp reflections of the
emissive spheres in the rightmost half-sphere. Light sampling has far less noise but struggles
near the emissive quad on the left. All images are rendered using the same amount of samples.

The function safe offsets the position by the normal such that it is moved out
of self-intersection.

20.1.4 CHOOSING A TECHNIQUE

Light sampling works very well for scenes with diffuse surfaces but less so
for scenes with glossy materials. If the BRDF only includes incoming light in a
small region on the hemisphere, it is unlikely that light sampling will pick
directions in that region. Light sampling also struggles where emissive
surfaces are very near the position from which we sample. This can be seen
at the base of the emissive quad in Figure 20-1 where there is noise. Material
sampling works best when we have highly reflective surfaces and large light
sources that are easy to hit. In Figure 20-1 we can see that only material
sampling finds the emissive surfaces on the reflective half-spheres with low
roughness.

When we fail to pick the best strategy, we are punished with noise. This
happens because we find the light sources with a direction that is relevant for
the BRDF only with a very low probability. Once we get there, we boost the
contribution a lot by dividing by the really low probability. We could try to pick
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a technique based on the roughness value of the surface, but it is very error
prone because the optimal choice also depends on the size and proximity of
the emissive surfaces. Per-scene tweaks of thresholds are never fun, and
here we might even have to tweak on an even finer level.

20.1.5 MULTIPLE IMPORTANCE SAMPLING

Let us start by considering what would happen if we would render the image
once using each technique and blend them together evenly. What would
happen for pixels where one technique was good but the other ones were
really bad? Unfortunately, there is nothing from the noise-free images that
“masks” the noise from the bad images. The noise would still be there, only
slightly dimmed by blending in the good image. Like we discussed in the
previous section, there is no optimal strategy even for a single surface point;
the choice will be different on different parts of the hemisphere!

A better way was shown in Chapter 9 of Veach’s thesis [4]. It shows how
multiple importance sampling can be used to combine multiple techniques.
The idea is that whenever we want to estimate the direct light, we use all
techniques! We will assume that all of our techniques generate a surface
point and give us a probability of choosing that surface point. With MIS we let
each technique generate a surface point. Then we compare the probability of
generating that surface point with the probability that the other techniques
would generate that same point. If the other techniques can generate that
surface point with a higher probability, we let them handle most of it, maybe
all of it.

To determine the per-sample-per-technique weights, we need some sort of
heuristic. Veach introduced a heuristic called the balance heuristic and proved
that is close to optimal. See Listing 20-5.

Listing 20-5. Balance heuristics for two techniques.

1 float balance_heuristic(float pdf, float pdf_other) {
2 return pdf / (pdf + pdf_other);
3 }

By plugging in the probability from the material sampling technique and the
light sampling technique into the balance heuristic, we can determine the
weights to use. Almost. First, we need to adapt the material sampling to also
generate surface points. Material sampling generates a direction. By
shooting the ray into the scene, we can find the surface point and normal
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representing that sampled direction. The probability of choosing that surface
point then can be obtained by combining the probability of choosing the
direction and the geometric factor G like we did for light sampling earlier, as
shown in Listing 20-6.

Listing 20-6. Direct light using MIS.

1 vec3 direct_mis(vec3 P, vec3 n, vec3 wo, Material m) {
2 vec3 result = vec3(0.0);
3 vec3 Le, m_wi, l_pos, l_nor;
4 float l_pdf, m_pdf;
5 // Light sampling
6 if (sample_lights(P, n, &l_pos, &l_nor, &Le, &l_pdf)) {
7 vec3 l_wi = normalize(l_pos - P);
8 float G=geom_fact_sa(P, l_pos, l_nor);
9 float m_pdf=sample_material_pdf(m, n, wo, l_wi);
10 float mis_weight=balance_heuristic(l_pdf, m_pdf*G);
11 vec3 brdf=evaluate_material(m, n, wo, l_wi);
12 result+=brdf*mis_weight*G*clamped_dot(n, l_wi)*Le/l_pdf;
13 }
14 // Material sampling
15 if (sample_material(m, n, wo, &m_wi, &m_pdf)) {
16 Intersect i = intersect(P, m_wi);
17 if (i.hit && i.mat.is_emissive) {
18 float G=geom_fact_sa(P, i.pos, i.nor);
19 float light_pdf=sample_lights_pdf(P, n, i);
20 float mis_weight=balance_heuristic(m_pdf*G, light_pdf);
21 vec3 brdf=evaluate_material(m, n, wo, m_wi);
22 vec3 Le=evaluate_emissive(i, m_wi);
23 result+=brdf*dot(m_wi, n)*mis_weight*Le/m_pdf;
24 }
25 }
26 return result;
27 }

The function sample_lights_pdf in Listing 20-7 says at what probability the
light sampling would choose this emissive surface point, given that it was
queried with the position and normal at which we are currently evaluating.

Listing 20-7. Sample lights pdf.

1 float sample_lights_pdf(vec3 P, vec3 n, Intersect emissive_surface) {
2 Object object = objects[emissive_surface.object_index];
3 if (!object.material.is_emissive) return 0.0;
4 float p = 1.0/NUM_LIGHTS;
5 if (object.type == GeometryType::Sphere) {
6 float r = object.size.x;
7 float area_half_sphere = 2.0*PI*r*r;
8 p /= area_half_sphere;
9 } else if (object.type == GeometryType::Quad) {
10 float area_quad = object.size.x * object.size.y;
11 p /= area_quad;
12 }
13 return p;
14 }
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Figure 20-2. MIS (left) and MIS weights (right). Red means that material sampling had larger
weights; green means that light sampling had larger weights.

It should give out the same probability for a surface as sample_lights. If
sample_lights has an advanced scheme to select lights and adjust
p_choose_light accordingly, then sample_lights_pdfmust replicate
that so it can give out the same probability. The same goes for
sample_materials_pdf.

We can see the result in Figure 20-2 for our example with two techniques.
There, we can also see the average MIS weight being used for the two
techniques with green for light sampling and red for material sampling. If we
compare Figure 20-1 with Figure 20-2, we see that we get less noise in the
MIS render close to emissive objects. We also manage to find the emissive
objects in the highly reflective spheres, something that light sampling failed
to do. This is where material sampling is better than light sampling. Unlike
material sampling we still have the low noise result that we did with light
sampling when we move away from the emissive objects. It should be noted
that while MIS give us a very practical way to combine multiple techniques, it
would be far better if we could use a technique that choose samples
according to the full product of both the material and the light sources—and
maybe even taking the visibility into account!

We can think of MIS as doing two separate renders: one image using material
sampling with the material MIS weight applied and one image using light
sampling with the light sampling MIS weight applied. These two images are
independent in the sense that they can choose completely different directions
or surface points during sampling. They do not even have to use the same
number of samples! The idea is just that they each do what they do best and
leave the rest to the other render. Two such renders using each technique
with MIS weight applied can be seen in Figure 20-3.
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Figure 20-3. Material sampling contribution (left) and light sampling contribution (right) (scaled
by a factor of two).

The choice to do MIS with a measure over surfaces instead of over solid
angles was done to simplify this chapter. It is possible to do both, but the
alternative is more complicated to describe. Our choice also makes it easy to
use it in our path tracer in the next section. If we had instead chosen to do MIS
using a measure for probabilities over solid angles, then we could still use the
balance heuristic; it is usable as long as the probabilities use the same
measure. Veach has a more general form of the balance heuristic where it
can be used with any number of techniques and also with a different amount
of samples from each technique. There are also alternatives to the balance
heuristic [4, Section 9.2.3], but these are outside of the scope of this chapter.

20.2 A PATH TRACER WITH MIS

Now it is time to put it all together to get a full path tracer! We assume that
you have written a path tracer before, so we will mostly add in the MIS of
direct light in Listing 20-8.

The throughput—tp—says how future contributions should be weighted. If a
path encounters a dark material, tp will be lower after bouncing the light.

The result can be seen in Figure 20-4 where we compare light sampling and
MIS. Because we can reuse scene intersection from the material sampling
ray to also do our bounce lighting, the only major extra work compared to a
path tracer with only light sampling is the call to sample_lights_pdf, which
is only invoked when our bounce light ends up at an emissive surface. So if
you are lucky, your path tracer could get MIS more or less for free!

20.3 CLOSING WORDS AND FURTHER READING

In this chapter we discussed using MIS to handle direct lighting, but it can
also be used to combine multiple ways to do bounce lighting or to balance
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Listing 20-8. Path tracing using MIS.

1 vec3 pathtrace_mis(vec3 P, vec3 n, vec3 wo, Material m) {
2 vec3 result = vec3(0), tp = vec3(1);
3 while (true) {
4 vec3 Le, m_wi, l_pos, l_nor;
5 float l_pdf, m_pdf;
6 // Light sampling
7 if (sample_lights(P, n, &l_pos, &l_nor, &Le, &l_pdf)) {
8 vec3 l_wi = normalize(l_pos - P);
9 float G=geom_fact_sa(P, l_pos, l_nor);
10 float m_pdf=sample_material_pdf(m, n, wo, l_wi);
11 float mis_weight=balance_heuristic(l_pdf, m_pdf*G);
12 vec3 brdf=evaluate_material(m, n, wo, l_wi);
13 result+=tp*brdf*G*clamped_dot(n, l_wi)*mis_weight*Le/l_pdf;
14 }
15 // For material sampling and bounce
16 if (!sample_material(m, n, wo, &m_wi, &m_pdf)) {
17 break;
18 }
19 Intersect i = intersect(safe(P, n), m_wi);
20 if (!i.hit) {
21 break; // Missed scene
22 }
23 tp*=evaluate_material(m, n, wo, m_wi)*dot(m_wi, n)/m_pdf;
24 if (i.mat.is_emissive) {
25 float G = geom_fact_sa(P, i.pos, i.nor);
26 float light_pdf=sample_lights_pdf(P, n, i);
27 float mis_weight=balance_heuristic(m_pdf*G, light_pdf);
28 vec3 Le = evaluate_emissive(i, m_wi);
29 result+=tp*mis_weight*Le;
30 break; // Our emissive surface doesn't bounce.
31 }
32

33 if (russian_roulette(&tp)) break;
34

35 // Update state for next bounce; tp captures material and pdf.
36 P = i.pos;
37 n = i.nor;
38 wo = -m_wi;
39 m = i.mat;
40 }
41 return result;
42 }

Figure 20-4. Path tracing using light sampling (left) and MIS (right).
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different techniques to do volumetric lighting. It is a tool that can be applied
whenever you have multiple techniques that each have pros and cons but that
could work well together!

The concepts shown here are explained very well in Veach’s doctoral
thesis [4]. Kondapaneni et al. [1] proved that we can improve on the balance
heuristic if we also allow negative MIS weights. Shirley et al. [3] show how to
make better light sampling strategies for many types of individual light
sources, and Moreau and Clarberg [2] present a system supporting scenes
with many lights sources.
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CHAPTER 21

THE ALIAS METHOD FOR
SAMPLING DISCRETE
DISTRIBUTIONS
Chris Wyman
NVIDIA

ABSTRACT

The alias method is a well-known algorithm for constant-time sampling
from arbitrary, discrete probability distributions that relies on a simple
precomputed lookup table. We found many have never learned about this
method, so we briefly introduce the concept and show that such lookup tables
can easily be generated.

21.1 INTRODUCTION

When rendering, we often need to sample discrete probability distributions.
For example, we may want to sample from an arbitrary environment map
proportional to the incoming intensity. One widely used technique inverts the
cumulative distribution function [2]. This is ideal for analytically invertible
functions but requires an O(logN) binary search when inverting tabulated
distributions like our environment map.

If you can afford to precompute a lookup table, the alias method [5] provides a
simple, constant-time algorithm for sampling from arbitrary discrete
distributions. However, precomputation makes it less desirable if taking just a
few samples from a distribution or if the distribution continually changes.

21.2 BASIC INTUITION

Let’s start by reviewing how we often generate samples without the alias
method. Imagine a discrete distribution, as in Figure 21-1. Bins have arbitrary
real-valued weights, and we want to randomly sample proportional to their
relative weights.

Using traditional cumulative distribution function (CDF) inversion, we first
build a discrete CDF, e.g., in Figure 21-1. We pick a uniform random number
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Figure 21-1. Left: a simple discrete distribution. Center: its discrete cumulative distribution
function. Right: an alias table for the distribution.

ξ ∈ [0 . . . 1), place it on the y-axis, and select as our sample the first bin it falls
into (moving left to right). Our example has weights summing to 16, so we
choose the black bin if ξ ≤ 5

16 , the light gray bin if 5
16 < ξ ≤ 1

2 , etc. Here,
finding a bin corresponding to ξ is straightforward, with at most three
comparisons. But if sampling from a light probe, linearly searching each bin
is costly. Even a fast binary search uses dozens of comparisons and walks
memory incoherently.

Essentially, table inversion picks a random value then walks the tabulated
CDF asking, “do you correspond to my sample?” Optimization involves
designing a good search.

Instead, the alias method asks, “wouldn’t it be easier with uniform weights?”
You could easily pick a random bin without a search. Clearly, our weights are
unequal. But imagine sampling bins as if uniformly weighted, say using the
average weight. We would oversample those weighted below average and
undersample those weighted above average.

Perhaps we could correct this error after selection? If we pick an
oversampled bin, we could sometimes switch to an undersampled bin. This
seems feasible; if sampling proportional to average weight, there’s an equal
amount of under- and oversampling.

Figure 21-1 also shows a table reorganizing weights from our distribution into
equal-sized bins. We call this an alias table (though that term is a bit
overloaded).

To sample, first choose a bin uniformly. Use random ξ ∈ [0 . . . 1) to check
whether to switch due to oversampling, based on threshold τ . If ξ ≥ τ , switch
to a different bin.
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21.3 THE ALIAS METHOD

Now let’s formalize this basic intuition. The alias method consumes N
elements with positive weights ωi. It samples from them, proportional to their
relative weights, in constant time—two uniform random variates and one
table lookup per sample.

A formal alias table is an array of N triplets {τ , i, j}, where τ is a threshold in
[0 . . . 1) and i and j are samples or sample indices. With care imay be stored
implicitly, so that table entries are tuples {τ , j}. Basic tables do not store or
reconstruct weights ωi.

To sample via the alias method, uniformly select ξ1, ξ2 ∈ [0 . . . 1). Use ξ1 to
pick from the N triplets, i.e., select triplet located at position bξ1Nc. Then,
return i if ξ2 < τ , otherwise return j.

Interestingly, only two choices i and j are ever needed in any bin. In fact,
proving this is the only tricky part of the alias method. This property arises by
construction during table creation, though it subtly breaks the visual intuition
developed in the previous section.

21.4 ALIAS TABLE CONSTRUCTION

Our goal is not efficient construction, but providing a clear and correct
algorithm. Optimal O(N) table construction algorithms are left for further
reading. We give a simple divide-and-conquer approach similar to a proof by
induction.

We start with our N input samples and their weights ωi. We can easily
compute the average sample weight 〈ω〉; the summed weight is∑

i∈N ωi ≡ N〈ω〉. Here is the idea for our simple construction: With a series of
N steps, create one tuple {τ , i, j} per step. Each tuple has aggregate weight
〈ω〉, so after one step we have N – 1 samples left to insert, with total weight
N〈ω〉 – 〈ω〉 (still with an average of 〈ω〉 per sample).

Each of these N steps looks as follows:

1. Sort the (remaining) input samples by weight.

2. Create a tuple {τ , i, j}, where i is the lowest-weighted sample, τ is ωi/〈ω〉,
and j is the highest-weighted sample.

3. Remove sample i from the list of remaining samples.

4. Reduce sample j’s weight ωj by 〈ω〉 – ωi (i.e., ωj = (ωj + ωi) – 〈ω〉).
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Figure 21-2. The steps to build an alias table from the discrete distribution in the upper left. The
blue line is the average weight.

Due to the sort, the highest-weighted sample j has above average weight
(ωj ≥ 〈ω〉) and the lowest-weighted sample i has ωi ≤ 〈ω〉. This ensures that
τ ≤ 1 and that only two samples are needed to fill the tuple (because
ωi + ωj ≥ 〈ω〉). It also ensures that, after creating {τ , i, j}, all weight from
sample i has been fully accounted for in the table. Sample j’s weight gets
reduced, as some is included in the newly created tuple.

To see why only two samples are needed per tuple, note that step 4 can
reduce ωj below 〈ω〉. In other words, we do not “scrape excess” probability
from high-weighted samples into low-weighted ones as if moving dirt with an
excavator. We actively ensure that merging two samples gives a complete
tuple—even if that leaves the formerly highest-weighted sample with a
below-average weight.

Figure 21-2 demonstrates an alias table built from a slightly more complex
distribution. Each step creates exactly one alias table tuple, requiring N steps
for a distribution with N discrete values. The last step is trivial, as just one
sample remains.

21.5 ADDITIONAL READING AND RESOURCES

As a well-known algorithm, many resources discuss the alias method. Many
introductory statistics textbooks and Wikipedia provide good starting points.
The original paper by Walker [5] is a fairly easy read, and Vose [4] provides an
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O(N) table build that observes that you can provide the guarantees outlined in
Section 21.4 without any sorting. Devroye [1] presents a clear, more
theoretical discussion. Schwarz [3] has an outstanding webpage with clear
pseudocode and figures detailing the alias method, Vose’s O(N) build, and a
discussion of numerical stability.
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CHAPTER 22

WEIGHTED RESERVOIR SAMPLING:
RANDOMLY SAMPLING STREAMS
Chris Wyman
NVIDIA

ABSTRACT

Reservoir sampling is a family of algorithms that, given a stream of N
elements, randomly select a K-element subset in a single pass. Usually, K is
defined as a small constant, but N need not be known in advance.

22.1 INTRODUCTION

We describe weighted reservoir sampling, a well-studied algorithm [2, 8]
largely unknown to the graphics community. It efficiently samples random
elements from a data stream. As real-time ray tracing becomes ubiquitous,
GPUs may shift from processing streams of rays or triangles toward
streaming random samples, paths, or other stochastic data. In that case,
weighted reservoir sampling becomes a vital tool.

After decades of research, reservoir sampling variants exist that optimize
different, sometimes conflicting, properties. Input elements can have uniform
or nonuniform weights. Outputs can be chosen with or without replacement
(i.e., potential duplicates). With various assumptions, we can fast-forward the
stream for sublinear running time, minimize the required random entropy,
choose elements with greater than 100% probability, or achieve the optimal
running time of O(K + K log(N/K)).

Complex variants are beyond the scope of this chapter, but realize that
reservoir sampling provides a flexible menu of options depending on your
required properties. This rich history exists because many domains process
streaming data. Consider managing modern internet traffic, where most
participants lack resources to store more than a tiny percent of the stream.
Or, for a more historical application, in the 1980s input data was often
streamed sequentially off reel-to-reel tape drives.
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Figure 22-1. Weighted reservoir sampling processes a stream of elements Ei and incrementally
selects a subset weighted proportional to a provided set of weights wi. Algorithmic variants can
sample with or without replacement (i.e., if we guarantee s ̸= t), can minimize the required
random entropy, and can even skip processing all N elements.

22.2 USAGE IN COMPUTER GRAPHICS

Reservoir sampling has been repeatedly rediscovered in real-time graphics.
For instance, it underlies single-pass variations of stochastic transparency [5,
10], which selects random subsets of fragments from a stream of translucent
triangles. Lin and Yuksel [6] use a simple variant to trace shadow rays with
their desired distribution. And Bitterli et al. [1] use reservoir sampling to
stream statistics for spatiotemporal importance resampling.

22.3 PROBLEM DESCRIPTION

Imagine a stream of elements Ei (for 1 ≤ i ≤ N), as in Figure 22-1. At a given
time, a streaming algorithm processes element i. Elements j < i were
previously considered and no longer reside in memory, unless copied to local
temporaries. Elements j > i have not yet reached the processor.

Weighted reservoir sampling incrementally builds a reservoirR. This is a
randomly chosen K-element subset of previously seen elements (i.e., E1 to
Ei–1). For each stream element, Ei is either discarded or inserted intoR,
potentially replacing existing entries. Replaced samples are forgotten, as if
they had never been in the reservoir.

Generally, if Ej has a selection weight wj, then (for j < i) the chance Ej ∈ R is
proportional to its relative weight wj/

∑
k<i wk. After finishing a stream with

total weight W =
∑

k≤N wk, the probability Ej ∈ R is proportional to wj/W. If
K = 1, the probability is exactly wj/W.

22.4 RESERVOIR SAMPLING WITH OR WITHOUT REPLACEMENT

For rendering, we generally want independent and identically distributed
(abbreviated i.i.d.) samples to ensure unbiasedness. In reservoir sampling,
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this means that the chance of selecting Et (in Figure 22-1) cannot vary based
on Es; if we enforce s 6= t, they may no longer be independent. In the reservoir
sampling terminology, sampling with replacement clearly gives
independence, as any input may occur multiple times in the reservoir.

Fortunately, reservoir sampling with replacement is easier. Delving into the
theory literature, most papers thus optimize reservoir sampling without
replacement. We leave exploring this literature to the interested reader.

When sampling with replacement, we first focus on understanding the
algorithm with reservoir size K = 1. Using replacement, samples are i.i.d., so
those given by running the algorithm three times with K = 1 are distributed
identically to those produced by running it once with K = 3.

22.5 SIMPLE ALGORITHM FOR SAMPLING WITH REPLACEMENT

For K = 1, the reservoir is a tupleR = {R,ws} containing the currently selected
element R and the sum of weights for all previously seen elements
ws =

∑
k<i wk. It gets initialized to {∅, 0} before processing the stream.

Then, for every stream element Ei with weight wi ≥ 0, the reservoir is updated
as follows, given a uniform random variate ξ:

update(Ei,wi)
ws ← ws + wi

ξ ←rand()∈ [0...1)
if (ξ < wi/ws)

R← Ei

When wi = 0, this should leave the reservoir unmodified. This happens
naturally, due to IEEE-754 NaN (not a number) behavior, but explicitly
checking may be needed to guarantee this behavior for w1 = 0 on
non-conformant hardware.

That this update algorithm selects Ei with probability wi/
∑

k≤N wk after
processing N elements can be easily shown by induction. If N = 1, we select E1
with probability w1/w1 = 1 (or with zero probability if w1 = 0).

Before processing element Ei at step i, assume that the reservoir contains
{Ej,

∑
k<i wk}, where Ej has been selected with probability wj/

∑
k<i wk. By

design, the update() function selects Ei with probability

wi
wi +

∑
k<i wk

=
wi∑
k≤i wk

. (22.1)
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Alternatively, it leaves the prior selection, Ej, in the reservoir with probability

1 –
wi

wi +
∑

k<i wk
=
(
∑

k≤i wk) – wi∑
k≤i wk

=
∑

k<i wk∑
k≤i wk

. (22.2)

As Ej was previously selected with probability wj/
∑

k<i wk, its final weighting is(
wj∑
k<i wk

)(∑
k<i wk∑
k≤i wk

)
=

wj∑
k≤i wk

. (22.3)

That leaves either sample Ei or Ej in the reservoir with the desired probability.

22.6 WEIGHTED RESERVOIR SAMPLING FOR K > 1

Extending the algorithm from the previous section for a reservoir with more
than one entry (with replacement) is very straightforward. Now the reservoir
is {{R1, . . . ,RK},ws} and gets initialized to {{∅, . . . , ∅}, 0}. The stream update
becomes:

update(Ei,wi)
ws ← ws + wi

for (k ∈ 1...K)
ξk ←rand()∈ [0...1)
if (ξk < wi/ws)

Rk ← Ei

22.7 AN INTERESTING PROPERTY

A key property of reservoir sampling is that one can combine multiple
independent reservoirs without reprocessing their input streams. This is vital
in some streaming contexts where it is impossible to replay the streams for a
second look.

To combine two reservoirs {R1,w1} and {R2,w2}, you get {R,w1 + w2}, where
R = R1 with probability w1/(w1 + w2); otherwise R = R2.

22.8 ADDITIONAL READING

The Wikipedia page for reservoir sampling [9] is a fine starting point for
further reading. The algorithm given here is a simplified “A-Chao” [2] from
Wikipedia. Other variants avoid storing the sum ws, but are less intuitive.
Because renderers often need sum-of-weights normalization, storing this
sum seems useful. However, the variants that exponentiate random variates
may prove useful for volumetric transport.

Much prior research on reservoir sampling has occurred in biostatistics (e.g.,
Chao [2]) leaving them unaccessible behind paywalls and containing
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domain-specific jargon. We found Tillé [7] to be a good statistics reference
covering reservoir sampling. We highly recommend the work of Efraimidis
and Spirakis, which includes several comparisons and surveys of reservoir
variants [3, 4] and is largely comprehensible to non-statisticians.
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CHAPTER 23

RENDERING MANY LIGHTS WITH
GRID-BASED RESERVOIRS
Jakub Boksansky, Paula Jukarainen, and Chris Wyman
NVIDIA

ABSTRACT

Efficient rendering of scenes with many lights is a longstanding problem in
graphics. Sampling a light to shade from the pool of all lights, e.g., using next
event estimation, is a nontrivial task. Sampling must be computationally
efficient, must select lights contributing significantly to the shaded point, and
must produce low noise while introducing little or no bias. Typically, the light
pool is preprocessed to create a data structure that accelerates sampling
queries; this may be complex to implement, build, and update.

This chapter builds a new sampling algorithm, ReGIR, based on a simple
uniform grid structure and the recent screen-space resampling algorithm
ReSTIR, which we extend to sample secondary rays in world space.

23.1 INTRODUCTION

Real-time ray tracing enables us to render more realistic images in games
than was possible before. Accurate shadows, indirect illumination, and
reflections have already been implemented in recent games. In combination
with suitable denoisers, we can use ray tracing to render scenes lit by many
more lights, without precomputing the static lighting, and with support for
dynamic worlds. This is an attractive goal that can differentiate ray traced
games from rasterized games in a significant way. Furthermore, we do not
have to rely only on analytic lights, as we can also use emissive geometry
for lighting.

This is possible by using shadow rays instead of shadow mapping to resolve
visibility, avoiding the performance cost of preparing a shadow map for every
light source, but also introducing the cost of a denoiser to filter the results.
Though shadow rays are a much more flexible approach than shadow
mapping, rendered images will be inherently noisy when lit by many
different lights.
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Figure 23-1. The Amazon Lumberyard Bistro [1], containing 65,535 emissive triangles, rendered
with our ReGIR method using Falcor’s [2] path tracer and denoised.

In this chapter, we focus on a problem of selecting the best light for shading in
a way to reduce noise and ensure consistent results.

23.2 PROBLEM STATEMENT

In virtual scenes, there are usually multiple lights simultaneously
illuminating each point. (See, for example, Figure 23-1). But when scenes
have hundreds or thousands of lights, identifying those actually contributing
is a difficult task. Without evaluating the bidirectional reflectance distribution
function (BRDF) and visibility of all lights, any one is a potential candidate.

An approach that simply selects a random light without considering visibility
gives noisy images, as occluded or distant lights are as likely to be sampled
as nearby, visible lights. Importance sampling improves the results (see the
pseudocode in Figure 23-2), as the light selection probability varies based on
its contribution, selecting lights with higher contribution more often.

Ideally, this probability varies based on the full BRDF and a visibility test; this
gives outstanding samples, but is expensive to evaluate (i.e., as expensive as
using all lights to shade). Good results are achievable by skipping the
expensive visibility test and only evaluating the geometry term (cosine term
and distance-based attenuation). This quickly discards backfacing lights and
those that are dim or distant. Artists can also design scenes with this in mind,
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function directLighting(Point p, Direction ωo)
result = 0;
for i ∈ {1 . . .SAMPLE_COUNT} do

light, pdfLight = SampleLight(p);
if ShadowRay(p, light) then

result += Brdf(light, p, ωo) / pdfLight;

return (result / SAMPLE_COUNT);

Figure 23-2. Importance sampling loop taking the selected number of light samples at point p,
observed from direction ωo, and averaging them. A basic implementation might select a light
randomly from the light pool and set pdfLight = 1/LIGHTS_COUNT.

using lights with limited emission profiles for quick culling, e.g., spotlights.
Because typical distance-based attenuation never reaches zero, modifying
attenuation functions to quickly reach zero helps limit light range and further
improves performance.

With importance sampling, we can reduce noise by selecting highly
contributing lights more often, but basic implementations must still evaluate
the probabilities of all the lights to determine which to sample.

23.2.1 RESAMPLED IMPORTANCE SAMPLING

To reduce this cost, we use resampled importance sampling (RIS) [5], a
powerful technique to numerically sample distributions that are difficult to
analytically sample. RIS is a two-step process. First, we select M candidates
from the pool of all N samples using a cheap-to-evaluate source probability
density function (PDF), e.g., uniformly. Then we resample from the M-element
subset according to a more expensive target PDF. The target PDF may be the
ideal distribution discussed previously, or it could include some mixture of
BRDF, visibility, geometry, and light contributions. Note that the target PDF is
only evaluated for M samples, which is significantly less than N. Resampling
can be efficiently implemented using weighted reservoir sampling (WRS),
described in Chapter 22, and is summarized in Figure 23-3.

Resampling is a key building block of the recently introduced ReSTIR
(reservoir spatiotemporal importance resampling) algorithm [3], designed to
render scenes with many lights without maintaining a complex data structure.
ReSTIR maintains a subset of light samples (called a reservoir) per pixel. The
algorithm starts by sampling lights in an inexpensive way, then uses
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Struct LightSample
uint lightID;

Struct Reservoir
LightSample sample;
uint M;
float totalWeight;
float sampleTargetPdf;

function sampleLightRIS(Point p)
Reservoir r;
for i ∈ {1 . . .M} do

candidate, sourcePdf = sampleFromSourcePool();
targetPdf = PartialBrdf(candidate, p);
risWeight = targetPdf / sourcePdf;
r.totalWeight += risWeight;
r.M++;
if rand() < (risWeight / r.wSum) then

r.sample = candidate;
r.sampleTargetPdf = targetPdf;

resultWeight = (r.totalWeight / M) / r.sampleTargetPdf;
return r.sample, resultWeight;

Figure 23-3. Basic RIS using weighted reservoir sampling to sample lights. This example calls
sampleFromSourcePool to draw samples using an inexpensive method and resamples according
to PartialBrdf for the shaded point p. The weight of the selected sample resultWeight is used as
the inverse PDF in importance sampling, during shading. The reservoir structure stores the
selected sample and metadata about its construction as explained in Section 23.2.2. The
LightSample structure simply references a sampled light by its index.

resampling to spatially and temporally reuse neighbor samples. ReSTIR
further improves samples by combining existing reservoirs into new ones, a
key component to continuously improve the reservoir in any pixel over
many frames.

23.2.2 RESERVOIR

A reservoir, as defined by Bitterli et al. [3], is a data structure that holds one
or more samples selected from a larger set (our implementation uses
reservoirs of one light sample). A reservoir also stores metadata about how it
was constructed, specifically the number of candidates evaluated during its
construction M, their total weight, and the target PDF of the selected sample
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(see the pseudocode in Figure 23-3). This data is needed for using the
reservoir to perform unbiased sampling.

There are multiple ways to construct a reservoir; the first that we will cover is
based on the RIS algorithm. Going back to our description of RIS, we can see
how they are related: a reservoir is a structure holding a subset of a larger
set, and RIS is the algorithm producing such a subset. The reservoir
metadata are a byproduct of the resampling process; i.e., the number of
candidates M, their total weight, and the target PDF of selected samples are
all used in the code in Figure 23-3 when running a RIS algorithm, and they
can be stored in the reservoir directly.

Another way to create a reservoir is by merging multiple reservoirs into one
using the procedure shown in Figure 23-4. As mentioned in the problem
statement of this section, this is a key component of ReSTIR and a powerful
tool enabling us to construct large numbers of independent reservoirs in
parallel using RIS and to merge them to obtain even higher quality
sample sets.

The original ReSTIR algorithm works in screen space, meaning it samples
lights for pixels on screen and hence only works for primary rays. Our method
adapts the ideas in ReSTIR to work in world space. Instead of maintaining a
reservoir per pixel, we create a coarse world-space grid and maintain a
number of independent reservoirs in each voxel.

function updateReservoir(Reservoir result, Reservoir input)
result.totalWeight += input.weight;
result.M++;
if rand() < (input.weight/result.totalWeight) then

result.sample = input.sample;
result.sampleTargetPdf = input.sampleTargetPdf;

return result;

functionmergeReservoirs(Reservoir r1, Reservoir r2)
Reservoir merged;
updateReservoir(merged, r1);
updateReservoir(merged, r2);
merged.M = r1.M + r2.M;
return merged;

Figure 23-4. A process that merges two reservoirs into one. Note that by calling
updateReservoirmultiple times, we can merge any number of reservoirs.
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23.3 GRID-BASED RESERVOIRS

Our main idea is to split light sampling into two steps. First, we create a pool
of samples likely to contribute to a certain area (i.e., the region in a grid cell).
In this step, we resample the initial samples according to the grid cell position
by estimating light intensity at its area. Here, we can also cull lights that have
no contribution to the grid cell. In the second step, we resample according to
the BRDF contribution at the shaded point. Both steps produce high-quality
samples using RIS to quickly draw samples using a cheap source PDF, but in
the second step we sample from the smaller pool. This chains resampling
steps, evaluating a more expensive target PDF in the second step but working
from the smaller sample count provided by the first step.

23.3.1 SELECTING LIGHT SAMPLES FOR THE GRID

The first step draws samples uniformly from the pool of all lights, a constant
time operation, and then resamples according to the target probability based
on the light intensity at the grid cell’s position (attenuated due to squared
distance). It is important to clamp the light distance to the cell borders,
otherwise lights inside the cell would be incorrectly prioritized. Note that any
method for drawing samples can be used to select initial candidates, e.g., the
efficient alias method discussed in Chapter 21. Our method works for any light
type, as we only evaluate the light intensity for the first step and the BRDF in
the second step.

23.3.2 SAMPLING THE LIGHT FOR SHADING

Now, the selected samples in each grid cell can be seen as a pool of
single-light reservoirs created by RIS, as shown in Figure 23-5. We can merge
these into a single reservoir for shading. Looping over all reservoirs

Grid

Cell with a Pool
of Reservoirs

Reservoirs• Light Sample
• Sampling Weight

Figure 23-5. A depiction of grid cells, each storing reservoirs of light samples.
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exhaustively, however, results in poor performance when the number of
reservoirs per grid cell is large (we use 512 as a default), and we still need to
resample these lights again to account for the BRDF.

To solve both issues, we use the resampling procedure from Figure 23-3 again
to merge reservoirs and resample according to the BRDF at the same time.
Here, the BRDF is also multiplied by light intensity at the shaded point when
calculating the target PDF for RIS. Reservoir merging selects one best light
from many reservoirs, whereas resampling implements this merging
efficiently, without the need to iterate over all input reservoirs. This time, the
resampling target probability is set to the partial BRDF for a given shaded
point. The source pool is the set of reservoirs we want to merge. The source
PDF is more complex and is described in Section 23.4.2.

Note that the first and second steps are decoupled and do not depend on the
screen resolution, world complexity, or number of lights. We can draw any
number of lights from the pool in the grid cell once it is built, and we can build
pools of lights corresponding to any area in the scene, as we will discuss in
Section 23.4.1.

This concludes the high-level description of our algorithm; we cover
important implementation details in the next section.

23.4 IMPLEMENTATION

23.4.1 CONSTRUCTION OF THE GRID

To construct our grid, we must first decide on the grid dimensions and how
many light samples to store per cell. There will be multiple reservoirs in each
grid cell, which we call light slots, each storing one light sample. Parameters
can be established by experimentation, potentially varying with scene light
count, scene extent, visibility range, and desired performance. Our default
allocates a grid with 163 cells, giving 4096 cells in total. We also default to 512
light slots per grid cell, but depending on the scene lighting complexity,
values from 64 to 1024 give good results. As virtual worlds are often flat,
allocating a grid with fewer cells along the vertical axis is often advisable.

Using these parameters, we can allocate a GPU buffer of the necessary size.
Each light is represented by the Reservoir structure, which can use 16-bit
precision numbers for all fields except totalWeight to reduce memory
requirements. As an optimization, we need not explicitly store the number of
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Figure 23-6. Left: our Burger Restaurant scene. Right: an illustration of the world-space grid
cell placement. Individual cells are highlighted by random colors.

seen candidates M in the reservoir, as it is only used to normalize
totalWeight, which can be precalculated. This also prevents M from growing
to infinity as the number of seen samples grows over time. With these
optimizations, the memory requirements for the default setting are
only 16 MB.

POSITIONING THE GRID

Deciding how to place our grid in the scene depends largely on the rendered
content. The simplest approach stretches the grid so that it spans all
geometry (see, e.g., the Figure 23-6). This works well for relatively small
scenes of known size, but many games feature open-ended worlds with
dynamically loaded content, where scene size constantly changes.

For these cases, we recommend one of two approaches. A scrolling clipmap
can be used, which ensures that individual grid cells seemingly stay in place
and their positions are given by the window into a clipmap centered around
the camera. In this case, the range of the grid (or size of the cell) has to be
determined, which prevents our light sampling from being used outside of
this range.

Another possible approach is to implement a sparse grid, where the positions
of individual cells are determined using a hash map. In this case, we map
each point in world space to a grid cell in the hypothetical infinite uniform
grid as:

1 return int3(worldCoords / gridCellSize);

Once we try to sample from a grid cell at given coordinates, we store these
coordinates into the map, at a position determined by the hash. Note that
conflicts must be resolved at this point. When we construct the grid, we first
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Cell

Center in WS

Figure 23-7. Construction of the grid. RIS selects a number of candidates and resamples them
according to the light intensity at the cell center.

read the map to determine which cells in the world space are used, map them
back to world space, and create reservoirs only for them.

BUILDING CELL RESERVOIRS

To fill the grid with light samples, we apply the RIS algorithm (see
Figure 23-3) for each entry (light slot) in a grid. Remember that each grid cell
contains multiple light slots, i.e., multiple light samples that were created by
running the RIS algorithm.

Because selecting a per-slot light sample is done independently of other
slots, even from the same cell, sampling can be parallelized, making grid
construction very fast. This procedure first maps thread ID to the
corresponding grid cell (see Figure 23-7), which is in turn used to map the cell
position to world space:

1 // Calculate the grid cell coordinates.
2 int gridCellLinearIndex = threadID / gGridLightsPerCell;
3 int3 cellCenterCoords = linearToCoords3D(gridCellLinearIndex);
4

5 // Calculate the grid cell center in world coordinates.
6 float3 gridCellCenter = mapGridToWorld(cellCenterCoords);
7

8 // Select a light to be stored in evaluated light slot.
9 Reservoir lightSlotReservoir = sampleLightRIS(gridCellCenter);

By default, the number of initial RIS candidates (M) we use is eight. Increasing
it quickly encounters the law of diminishing returns. As mentioned in
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Section 23.3.1, the target PDF in sampleLightUsingRIS only depends on the
intensity of the light at the grid center, as follows. Note the clamping that
ensures that lights inside the cell have the same probability:

1 float3 lightVector = candidate.position - gridCellCenter;
2 float lightDistanceSquared = max(gMinDistanceSquared , dot(lightVector,

lightVector));
3 float sourcePdf = <Source PDF as described, e.g., uniform sampling>;
4 float targetPdf = sample.intensity / lightDistanceSquared;

This code assumes a typical distance-based attenuation function for all lights,
i.e., attenuating intensity with the distance squared, but any type of light can
be supported. Most notably, directional lighting from the sun has the same
intensity everywhere in the scene.

To ensure that each reservoir’s running count M of the light candidates that it
incorporates does not grow to infinity, we normalize it before storing the
reservoir in the grid. This also enables removing M from the reservoir, as it is
always one at this point:

1 lightSlotReservoir.totalWeight = lightSlotReservoir.totalWeight /
lightSlotReservoir.M;

2 lightSlotReservoir.M = 1;

Note that using this process, a light can end up in any grid cell where it has a
nonzero probability of contribution. Thus, our grid is not a spatial subdivision
structure, but rather a data structure to store samples and their probabilities.

Finally, an important optimization is to only update grid cells that are used.
Cells covering empty space will never be used for shading, so we can skip
filling their light slots. We implement a cache where each cell stores a frame
number for when it was last accessed. This information is cached by the
sampling routine. During per-frame construction, we first check whether
each cell has been recently accessed (e.g., in the last eight frames) and only
update cells in active use.

TEMPORAL REUSE

The construction process just described is repeated each frame, rebuilding
the grid from scratch. However, we can use reservoirs of lights from previous
frames to continuously improve the grid in the most recent frame using the
reservoir merging process described in Section 23.3.2. This is an important
technique also used in the original ReSTIR implementation [3] that achieves
much more stable results.
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To handle temporal reuse, we also retain grids from previous frames (eight by
default). During grid construction, we compute each reservoir as previously
described, but before storing it into the grid, we merge this new reservoir (see
Figure 23-4) with the reservoirs from prior frames (corresponding to the
same light slot):

1 // Merge new reservoir with reservoirs from previous frames.
2 for (int i = 0; i < GRIDS_HISTORY_LENGTH; i++) {
3 lightSlotReservoir = mergeReservoirs(lightSlotReservoir,

gLightGridHistory[i][lightSlotIndex]);
4

5 // Divide wSum by M after each combining "round."
6 lightSlotReservoir.totalWeight /= lightSlotReservoir.M;
7 lightSlotReservoir.M = 1;
8 }

Because good light samples have higher weight, it is likely that we keep
reusing them until even better samples are found. This helps to continuously
improve our samples.

DYNAMIC LIGHTS

Our method supports dynamic lights out of the box. We have intentionally
used a light ID in the reservoir structure to reference sampled lights. This
requires indirection to access light properties, but also ensures that every
time we use a light, its current properties are used for shading. However, a
problem can occur with temporal reuse, which does not modify a light’s
weight even if it changes. This can introduce excessive noise if the lights
change significantly. As a workaround, we can prevent dynamic lights from
participating in temporal reuse, so they will be replaced by a new sample.
Alternatively, a more expensive reservoir merge can re-weigh dynamic lights
during grid construction.

23.4.2 SAMPLING FROM THE GRID

When sampling lights, we start by finding the grid cell corresponding to the
shaded point (see Figure 23-8). To reduce artifacts from nearest neighbor
lookups (i.e., visible cell boundaries), we first randomize the lookup with an
offset proportional to the cell size. This essentially performs stochastic
trilinear filtering, sampling neighboring cells proportionally to their distance
from the lookup:

1 // Jitter hit point position within the size of grid cell.
2 float3 gridLoadPosition = pointPosition+(float3(rand(), rand(), rand()) *

2.0f - 1.0f) * gHalfGridCellSize;
3
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Pixel

Selected cell

Figure 23-8. Sampling from the grid. First, a cell in the neighborhood of the pixel is selected,
then RIS is used to resample lights stored in the cell at the pixel. Light sources indicated in the
image are an example of lights stored in sampled grid cells.

4 // Figure out which grid cell to sample from (gridCellStartIndex) based on
the jittered hit position.

5 int3 gridCellCoords = mapWorldToGrid(gridLoadPosition);
6 uint gridCellIndex = coords3DToLinear(gridCellCoords);
7 uint gridCellStartIndex = gridCellIndex * gGridLightsPerCell;

This gives us gridCellStartIndex, a position in the grid buffer where the
grid cell’s pool of samples starts. Next, as discussed in Section 23.3.2, we
apply RIS again to merge reservoirs in the pool into a final light sample for
shading, and also we resample according to the target PDF (which is based on
the BRDF at the shaded point). Here, RIS draws source samples directly from
the reservoirs of the selected grid cell:

1 float sourcePdf = candidate.sampleTargetPdf / reservoirAverageWeight;
2 float targetPdf = PartialBrdf(candidate, shadedPoint);

We calculate the source probability as the target PDF of candidates from the
first RIS pass (during grid construction) divided by the average weight of all
reservoirs (light slots) in the grid cell. This is an iterative application of RIS,
similar to the approach described in the original ReSTIR article [3]. This
average may be used multiple times, so we precalculate it for each cell in a
separate pass. The function PartialBrdf depends on renderer-specific
BRDFs and light parameters and can be a full BRDF if the cost is reasonable.

Finally, a pixel can be shaded using the light sample and the RIS weight:

1 Reservoir risReservoir = sampleLightUsingRIS(shadedPoint);
2 float lightSampleWeight = (risReservoir.totalWeight / M) / risReservoir.

sampleTargetPdf;
3 LightSample light = loadLight(risReservoir.lightSample);
4 return light.intensity * Brdf(light, shadedPoint) * lightSampleWeight;
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Figure 23-9. A single frame rendered using naive uniform sampling (left) and ReGIR (center) and
the accumulated result (right) of the Burger Restaurant scene. Note the significantly better
sampling around the light source in top left corner using our method.

23.5 RESULTS

We implemented and evaluated ReGIR (our method) in the Falcor rendering
framework [2]. Compared to naive uniform sampling and basic RIS, we
achieved superior results (see Figures 23-9 and 23-10) with only a small
per-frame performance cost of about 1.5 ms using our default settings.
Performance was measured with a RTX 3090 GPU and 1920× 1080 resolution

Uniform 1 rpp RIS 1 rpp

ReGIR 1 rpp Reference, Accumulated

Figure 23-10. Comparison of naive uniform sampling (top left) to only using RIS with
16 candidates (top right), our ReGIR method (bottom left), and a ground truth (bottom right). We
use one ray per pixel (rpp).
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and is similar across most tested scenes. Of this cost, about 0.3 ms is spent
on constructing the grid. The remaining cost comes from selecting lights
from the grid for shading; this cost depends on the resolution and number of
secondary rays accessing the grid. Our performance depends mostly on how
many light samples we store in the grid and the number of nonempty cells
due to the scene complexity.

Visual quality depends on the number of light samples that we can afford to
store per grid cell, and on the size of the cells in world space. Using smaller
cells can improve visual quality, but can also limit the range of the grid.

We show results of our method applied to primary rays; however, its expected
use case is shading secondary rays and arbitrary points in the scene, whereas
screen-space ReSTIR typically gives better quality on primary hits.

The slight bias of our method can be attributed to the discrete nature of the
grid and the limited number of samples stored in each grid cell. Temporal
reuse can also contribute to the bias. In real-time applications, this should
not pose significant issues as we believe high performance is preferable, and
the presence of a denoiser should smooth out any remaining artifacts.

23.6 CONCLUSIONS

In this chapter, we presented our new ReGIR algorithm for many light
sampling, which can be used in real-time ray tracing for both primary and
secondary rays. Because it uses a simple data structure, it is relatively easy to
implement in game engines and provides high performance, although other,
more costly methods can give superior results in terms of lower noise.
However, when using a specialized denoiser, higher performance can be a
more important benefit, assuming input noise is low enough to produce sharp
and stable results after denoising.

Because our world-space method uses a larger granularity than
screen-space ReSTIR, it is not as well suited for shading primary ray hits,
except in scenes with only a few lights. However, it enables shading secondary
hits, and combining these two methods might be a preferred way of using
ReSTIR. ReGIR can also be combined with methods for calculating global
lighting such as dynamic diffuse global illumination (DDGI) [4] or with a path
tracer.

364



CHAPTER 23. RENDERING MANY LIGHTS WITH GRID-BASED RESERVOIRS

REFERENCES

[1] Amazon Lumberyard. Amazon Lumberyard Bistro. Open Research Content Archive
(ORCA), http://developer.nvidia.com/orca/amazon-lumberyard-bistro, 2017.

[2] Benty, N., Yao, K.-H., Clarberg, P., Chen, L., Kallweit, S., Foley, T., Oakes, M., Lavelle, C.,
and Wyman, C. The Falcor real-time rendering framework.
https://github.com/NVIDIAGameWorks/Falcor, 2020. Accessed August 2020.

[3] Bitterli, B., Wyman, C., Pharr, M., Shirley, P., Lefohn, A., and Jarosz, W. Spatiotemporal
reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM
Transactions on Graphics (Proceedings of SIGGRAPH), 39(4):148:1–148:17, July 2020. DOI:
10/gg8xc7.

[4] Majercik, Z., Guertin, J.-P., Nowrouzezahrai, D., and McGuire, M. Dynamic diffuse global
illumination with ray-traced irradiance fields. Journal of Computer Graphics Techniques
(JCGT), 8(2):1–30, 2019. http://jcgt.org/published/0008/02/01/.

[5] Talbot, J., Cline, D., and Egbert, P. Importance resampling for global illumination. In
Eurographics Symposium on Rendering (2005), pages 139–146, 2005. DOI:
10.2312/EGWR/EGSR05/139-146.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if you modified the licensed material. You do not have permission under this license to share
adapted material derived from this chapter or parts of it.
The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

365

http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10/gg8xc7
http://jcgt.org/published/0008/02/01/
https://doi.org/10.2312/EGWR/EGSR05/139-146
http://creativecommons.org/licenses/by-nc-nd/4.0/


CHAPTER 24

USING BLUE NOISE FOR RAY
TRACED SOFT SHADOWS
Alan Wolfe
NVIDIA

ABSTRACT

Ray tracing is nearly synonymous with noise. Importance sampling and
low-discrepancy sequences can help reduce noise by converging more
quickly, and denoisers can remove noise after the fact, but sometimes we still
cannot afford the number of rays needed to get the results we want. If using
more rays is not an option, the next best thing is to make the noise harder to
see and easier to remove. This chapter talks about using blue noise toward
those goals in the context of ray traced soft shadows, but the concepts
presented translate to nearly all ray tracing techniques.

24.1 INTRODUCTION

In these early days of hardware-accelerated ray tracing, our total ray budgets
are as low as they are ever going to be. Even as budgets increase, the rays are
going to be eaten up by newer techniques that push rendering even further.
Low sample count ray tracing is going to be a topical discussion for a
long time.

Though many techniques exist to make the most out of every ray—such as
importance sampling and low-discrepancy sequences—blue noise is unique
in that the goal is not to reduce noise, but to make it harder to see and easier
to remove.

Blue noise is a cousin to low-discrepancy sequences because they both aim to
spread sample points uniformly in the sampling domain. This is in contrast to
white noise, which has clumps and voids (Figure 24-1). Clumped samples give
redundant data, and voids are missing data. Blue noise avoid clumps and
voids by being roughly uniform in space.

Being blue noise or low discrepancy is not mutually exclusive, but this chapter
is going to focus on blue noise. For a more thorough understanding of
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Figure 24-1. Arrays of 1024 samples. Left to right: regular grid, white noise, blue noise, and the
Halton sequence. Clumps of samples are redundant; gaps are missing information. Patterns can
cause aliasing.

modern sampling techniques, low-discrepancy sequences should be
considered as well.

You may think that a regular grid would give good coverage over the sampling
domain, but the diagonal distances between points on a grid are about 40%
longer than non-diagonal distances, which makes it anisotropic, giving
different results based on the orientation of what is being sampled. If you
were to address that problem, you would get a hexagonal lattice, like a
honeycomb. Using that for sampling, you could still have aliasing problems,
though, and convergence may not be much better than a regular grid,
depending on what you are sampling.

Blue noise converges at about the same rate as white noise, but has lower
starting error. See Figure 24-2 for convergence rates. The power of blue noise
is not in removing error, but making the error harder to see and easier to
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Figure 24-2. Integrating two functions with 256 samples, with absolute error averaged over 1000
runs. Left: a crop of a Gaussian function. Right: a diagonal step function. Regular and hexagonal
grids are not progressive, so only the final error is graphed.
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remove, compared to other sequences. It does this by having low aliasing and
having randomization (noise) only in high frequencies.

24.2 OVERVIEW

We are going to go into more detail about blue noise samples in Section 24.3
and blue noise masks in Section 24.4. Then, we are going to look at blue noise
from a digital signal processing perspective in Section 24.6.

After that, we are going to explore how to use both blue noise sampling and
blue noise masks for ray traced soft shadows in Section 24.7. As a
comparison, we will show an alternate noise pattern called interleaved
gradient noise (IGN) presented by Jimenez [21], which is specifically designed
for use with temporal antialiasing (TAA) [23] in Section 24.8, and then look at
all of these things using the FLIP perceptual error metric in Section 24.9.

24.3 BLUE NOISE SAMPLES

Two-dimensional blue noise samples are points in a square that are
randomized but fill the square well, and are roughly uniform (often toroidally),
as we see in Figure 24-3.

Samples can be blue noise distributed in other domains, too. On a sphere,
blue noise would be points that covered the entire surface of the sphere and
were randomized, but also were roughly uniform. These points on a sphere
can also be viewed as blue noise distributed unit vectors. The similarity
metric between vectors would be the negative dot product between those
vectors instead of the distance between points on the surface of the sphere.
Both perspectives would give equivalent samples, but show how blue noise
conceptually can go beyond 2D points in a square.

Figure 24-3. For 1024 dots, blue noise samples (left) and discrete Fourier transform (DFT; middle
left) showing attenuated low frequencies, and white noise samples (middle right) and DFT (right)
showing all frequency content.

369



RAY TRACING GEMS II

samples = [];
for sampleIndex ∈ [0, NumSamples) do

bestScore = -∞;
bestCandidate = {};
for candidateIndex ∈ [0, sampleIndex + 1) do

score =∞;
candidate = GenerateRandomCandidate();
for testSample ∈ samples do

testScore = ToroidalDistance(candidate, testSample);
score = min(score, testScore);

if score > bestScore then
bestScore = score;
bestCandidate = candidate;

samples.add(bestCandidate);

Figure 24-4. Mitchell’s best-candidate algorithm. ToroidalDistance() is the similarity metric
being used.

Generally speaking, blue noise samples can be thought of as blue noise in the
form v = f(N), where N is an integer index into the samples and v could be a
scalar, a point, a vector, or anything else in any sampling domain for which
you could define a similarity metric.

Mitchell’s best-candidate algorithm [15] can generate high-quality blue noise
samples. The algorithm only requires that you are able to generate uniform
random samples and have a similarity metric for pairs of samples. See the
pseudocode in Figure 24-4. A more modern algorithm can be found in
de Goes et al. [5]

Generating blue noise sample points is often computationally expensive. For
this reason, blue noise sample points are usually generated in advance, and
used as constants at runtime. Because blue noise is about squeezing the
most quality out of visuals that you can, precalculating the samples lets you
spend more time making better samples in advance, and then having an
inexpensive runtime cost. A quicker dart throwing algorithm is compared to
Mitchell’s best-candidate blue in Figure 24-5, showing that the quicker
algorithm does not give equivalent results.

Mitchell’s best-candidate algorithm generates progressive blue noise, which
means that any length of samples starting at index 0 are blue noise.

370



CHAPTER 24. USING BLUE NOISE FOR RAY TRACED SOFT SHADOWS

Figure 24-5. For 1024 samples and 100 averaged DFTs, best-candidate samples (left) and dart
throwing samples (right). Dart throwing samples look comparable to best-candidate samples (left
half), but frequency analysis (right half) shows that they are significantly different.

The more modern algorithms usually make non-progressive samples, which
mean needing to use all samples before they are blue noise. You can make
non-progressive samples progressive after they are generated, though, and
the void and cluster algorithm [22] in the Section 24.5 does this as part of
its work.

Progressive samples are useful when you do not know how many samples you
want to take at runtime—e.g., if you want to take more samples where there is
more variance. With progressive blue noise samples, you can generate some
number of samples, then choose how many you want to use at runtime. You
do not need to generate blue noise samples for every amount you may
possibly want to sample, only the maximum amount.

An improved type of blue noise is found in Reinert et al. [19] called projective
blue noise. If you generate 2D blue noise and look at the x- or y-values by
themselves, they will look like white noise. If you were using your blue noise
to sample a shadow cast by a vertical wall, or nearly vertical wall, the y-values
of your samples would end up not mattering much to the result of your
sampling, so that only the x-values mattered. If your x-axis looks like white
noise, you are not going to do good sampling. Projective blue noise addresses
this by making it so that blue noise samples are also blue on all axis-aligned
subspace projections.

A nice property of blue noise is that it tends to keep its desirable properties
better than other sequences when undergoing transformations like
importance sampling [13]. That can be interesting when you have hybrid
sampling types, such as the Sobol sequence that has blue noise
projections [16].
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There has been other progress on combining the integration speed of
low-discrepancy sequences, while keeping the pleasing error pattern from
blue noise in “Low-Discrepancy Blue Noise Sampling” [1], “A
Low-Discrepancy Sampler That Distributes Monte Carlo Errors as a Blue
Noise in Screen Space“ [10], “Screen-Space Blue-Noise Diffusion of Monte
Carlo Sampling Error via Hierarchical Ordering of Pixels“ [2], “Orthogonal
Array Sampling for Monte Carlo Rendering“ [12], and “Progressive
Multi-jittered Sample Sequences“ [4].

24.4 BLUE NOISE MASKS

The other type of blue noise is blue noise masks, which are commonly
referred to as blue noise textures. Blue noise textures are images where
neighboring pixels are very different from each other. You can see a blue noise
mask in Figure 24-6.

The most common type of blue noise mask is a 2D image with a single value
stored at each pixel, but that is not the only way it can be done. You could have
a 3D volume texture that stores a unit vector at each pixel, for instance, or any
other sort of data on a grid you can imagine.

More generally, blue noise masks can be thought of as blue noise in the form
v = f(u), where u is some discrete value of any dimension, and v could be a
scalar, a point, a vector, or similar.

Generating blue noise of this form can be done using the void and cluster
algorithm [22], which is detailed in Section 24.5. You can also download a zip
file of textures made with the void and cluster method from the Internet [17].
How blue noise textures are usually used is that the textures are generated in
advance, shipped as regular texture assets, and read by shaders at runtime.
This is because, just like blue noise samples, blue noise textures are

Figure 24-6. Blue noise mask (left) and DFT (middle left) showing attenuated low frequencies.
White noise mask (middle right) and DFT (right) showing all frequency content.
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computationally expensive to generate and can be made higher-quality when
precomputed, giving high quality with low overhead at runtime.

There are other algorithms for generating blue noise masks. In Georgiev and
Fajardo [7], a texture is initialized to white noise and pixel values are swapped
if it reduces the energy function of the texture. Simulated annealing is used to
help reach a better local optimum. This algorithm allows for vector-valued
blue noise masks, unlike the void and cluster method, which is limited to
scalar values.

Another way to make a blue noise mask is to start with white noise and high
pass filter it. If you filter white noise, the histogram becomes uneven, though,
and if you fix the histogram, it damages the frequency content. A decent way
to get around this problem is to do several iterations of filtering the noise and
fixing the histogram.

Using these alternate techniques, you can end up with blue noise that looks
correct both as a texture and in frequency space, but they both lack an
important detail that the void and cluster algorithm has.

Void and cluster blue noise masks have the useful property that thresholding
the texture at 10% leaves 10% of the pixels remaining, and those pixels will be
in a blue noise sample pattern. That is true for any threshold level. This can
be useful if you want to use a blue noise texture for something like stochastic
transparency because it will make the pixels that survive the alpha test be in a
blue noise pattern.

To use a blue noise mask, the blue noise texture is tiled on the screen and
used as the source of per-pixel random numbers. Doing this, the random
numbers used by each pixel are going to be very different from neighboring
pixels, producing very different results from neighbors, which is blue noise.
Blue noise tiles well due to not having any low-frequency structure for your
eye to pick up.

An example use of blue noise masks is when quantizing data to lower bit
depths. If you add noise before quantization, it turns banding artifacts into
noise, which looks more correct. Using blue noise instead of white noise
means that the noise is harder to notice, and easier to remove. This can be
useful when bringing high dynamic range (HDR) values from rendering into
smaller bit depths for display. This can also be useful when quantizing data to
G-buffer fields including color data like albedo, as well as non-color data such
as normals.
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Kopf et al. [14] has a technique that allows you to zoom in or out of blue noise,
keeping the noise consistent hierarchically.

Some other details of blue noise masks and their usage are looked at in “The
Rendering of INSIDE: High Fidelity, Low Complexity“ [8], including triangular
distributed blue noise that makes error patterns be more independent of
signal, animating blue noise and dealing with blue noise dithering at the low
and high ends of values to avoid a problem at the clamping zones.

24.5 VOID AND CLUSTER ALGORITHM

The void and cluster algorithm generates blue noise masks with the additional
property that thresholding them causes the surviving pixels to be distributed
as blue noise sample points. The algorithm is made up of the following steps:

1. Initial binary pattern.

2. Phase I: Make pattern progressive.

3. Phase II: First half of pixels.

4. Phase III: Second half of pixels.

5. Finalize texture.

The algorithm requires storage for each pixel to remember whether a pixel
has been turned on or not, and an integer ordering value for that pixel. All
pixels are initialized to being turned off and having an invalid ordering value.

The concept of voids and clusters are used to find where to add or remove
points during the algorithm. Voids (gaps) are the low-energy areas in the
image, and clusters are the high-energy areas.

Every pixel p = (px, py) that is turned on gives energy to every point q in the
energy field using

E(p,q) = exp

(
–
‖p – q‖2

2σ2

)
, (24.1)

where p and q are the integer coordinates and distances are computed on
wrapped boundaries, i.e., toroidal wrapping. The σ is a tunable parameter that
controls energy falloff over distance, and thus frequency content.
Ulichney [22] recommends σ = 1.5. That equation may look familiar—it is just
a Gaussian blur!
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The algorithm can be sped up beyond a naive implementation by calculating
the energy field using multithreading—calculating the energy for all pixels is
an O(N4) operation where N is the side length of the output texture. It can be
further sped up by actually using a texture to store the energy field as a quick
lookup table, where updates are done to it iteratively as pixels are turned on
or turned off. Lastly, though technically all pixels should be able to gain
energy from all other pixels, in practice there is a radius at which the amount
of energy gained is so negligible that it can be ignored. This means that based
on the σ used in the Gaussian, you can calculate a pixel radius that contains
the desired proportion of the Gaussian’s energy. This lets you consider fewer
pixels when calculating energy in the energy field. See the following equation
for calculating the size (diameter) of the kernel for a given σ, where t is the
threshold and a t value of 0.005 means all but 0.5% of the energy is
accounted for: ⌊

1 + 2 ∗
√
–2σ2 ln t

⌋
. (24.2)

24.5.1 INITIAL BINARY PATTERN

The first step is to generate an initial binary pattern where not more than half
of the pixels are turned on. This can be done using white noise or nearly any
other pattern. These pixels need to be transformed into blue noise points
before continuing. That is done by repeatedly turning off the largest-valued
cluster pixel and turning on the lowest-valued void pixel. This process is
repeated until the same pixel is found for both operations. At that point, the
algorithm has converged and the initial binary pattern is blue noise
distributed.

The reason not more than half of the pixels should not be turned on in this
step is because there is different logic required when processing the second
half of the pixels compared to the first half. The logic for the first half of the
pixels works better for sparser points, whereas the logic for the second half
works better for denser points.

24.5.2 PHASE I: MAKE PATTERN PROGRESSIVE

The initial binary pattern is now blue noise distributed, but has no ordering
and must be made into a progressive blue noise sequence. This is done by
repeatedly removing the highest-energy pixel, i.e., the largest cluster, and
giving that pixel an ordering of how many pixels are on after it is turned off.
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When this is done, the pixels in the initial binary pattern are turned back on.
At this point, the initial binary pattern pixels have an ordering that makes
them an ordered (progressive) blue noise sampling sequence and we are
ready for phase II.

24.5.3 PHASE II: FIRST HALF OF PIXELS

Next, pixels are turned on, one at a time, until half of the pixels are turned on.
This is done by finding the lowest-energy pixel, i.e., the smallest void, and
turning that pixel on. The ordering given to that pixel is the number of pixels
that were on before it was turned on.

24.5.4 PHASE III: SECOND HALF OF PIXELS

At this point, the states of all the pixels are reversed. Pixels that are on are
turned off, and vice versa. This phase repeatedly finds the largest-valued
cluster and turns it off, giving it the ordering of the number of pixels that were
off before it was turned off. When there are no more pixels turned off, this
phase is finished and all pixels have an ordering.

24.5.5 FINALIZE TEXTURE

After all pixels are ordered, that ordering is turned into pixel values in the
output image. If the output image has a resolution of 256× 256 pixels, then
their ordering will go from 0 to 65,535. If the output is an 8-bit image, the
values will need to be remapped from 0 to 255. This will create non-unique
values in the output texture, but there will be an equal number of each pixel
value—256 of each.

You now have a high-quality blue noise mask texture ready for use!

24.6 BLUE NOISE FILTERING

When stopping before convergence in rendering, there is going to be error left
behind in the image. If using a randomized sampling pattern like white noise
or blue noise, the error will be left as a randomized noise pattern, and usually
you want to remove it as much as possible.

The most common way to remove noise is to blur the image. In digital signal
processing terms, a blur is a low pass filter, meaning it lets low frequencies
through the filter, while reducing or removing high-frequency details.

Blurring is most commonly done by convolving an image against a blur
kernel. This is mathematically the same as if we took the image and the blur
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Figure 24-7. Noise and DFT for noise samples and masks. Top: white noise. Bottom: blue noise.

kernel into frequency space, multiplied them together, and brought the result
out of frequency space again.

In Figure 24-7, you can see how white noise is present in all frequencies,
while blue noise is only present in higher frequencies. In Figure 24-8 you can
see how various blur kernels look in frequency space. When blurring noise,
these are the things getting multiplied together in frequency space.

Figure 24-8. DFT of various blur or low pass filter kernels. Clockwise from upper left: box, a
trous, disk, circular sinc, sinc, and Gaussian.
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You can see how multiplying the white noise by any of the kernels is going to
leave something that looks like white noise but is in the shape of the filter
used, which is going to leave noise of those frequencies behind in the image.
The only way you would be able to get rid of white noise completely is by
removing all frequencies, which would leave nothing of your render.

Alternatively, you can see how if you were to multiply blue noise in frequency
space by the Gaussian kernel or a sinc kernel, the result will be noiseless
because the place where the blur kernel is white, the blue noise is black.
There is no overlap, so the blue noise will have gone away.

Noisy renders are a mix of data and noise, so when you do a low pass filter to
remove the blue noise from the result, it will also remove or reduce any data
that is also in the frequency ranges that the blue noise occupies, but this is a
big improvement over white noise, which is present in all frequencies.

From a digital signal processing perspective, the ideal isotropic low pass filter
in 2D is the circular sinc filter, but from the blue noise filtering perspective,
the ideal kernel will look like the missing part of the blue noise frequencies,
so would be bright in the center where the low frequencies are and then fade
out circularly to the edge of where the blue noise has full amplitude. Looking
at these kernels, it seems that a Gaussian blur is the best choice.

If using the other blurs, you may keep frequencies that you did not intend to
keep, or you may remove frequencies that you did not need to remove from
the render. When doing a Gaussian blur, you want to choose σ such that the
filter in frequency space is roughly the same size as the frequency hole in
your blue noise. If it is too small, it will leave some blue noise residue, which
will look like blobs, and if it is too large, it will remove more of the details than
is needed. You can also choose to leave some blue noise residue behind if that
preserves sharper details that you care about.

24.7 BLUE NOISE FOR SOFT SHADOWS

Now it is finally time to put all this together into a rendering technique!

24.7.1 LIGHTS AND SHADOWS

When ray tracing shadows, you use ray tracing to answer the question of
whether a specific point on a surface can see a specific point on a light. If it
can, you add the lighting contribution to the surface.
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Figure 24-9. Left: discrete light shadows are noiseless but hard at one ray per pixel. Right: area
lights are soft but noisy in the penumbra at 16 white noise samples per pixel.

Classically, the most common type of light in real-time graphics has been
discrete lights, which are infinitely small and come in the usual flavors of
positional lights, directional lights, and spotlights. When checking to see if a
point on a surface can see a light, there is only one single ray direction toward
which to shoot a ray and get a Boolean answer of yes or no. For this reason,
when you ray trace shadows for discrete lights, they are completely noiseless
at one sample per pixel, but they have hard shadow edges as you can see in
Figure 24-9, left.

In more recent times, real-time graphics has moved away from discrete lights
toward area lights, which have area and volume. These lights also come in
the usual flavors of positional lights, directional lights, and spotlights, but
also have others such as capsule lights, line lights, mesh lights, and even
texture-based lights, to give variety and added realism to lighting conditions.
Because these lights have volume, handling shadows is not as
straightforward. The answer is no longer a Boolean visibility value but is more
complex because you need to integrate every visible part of the light with the
surface’s BRDF. Not only will the surface react to the light differently at
different angles, the light may shine different colors and intensities in
different locations on the light, or in different directions from the light.

The correct way to handle this is discussed by Heitz et al. [11], but we are
going to simplify the problem and use ray tracing to tell us the percentage of
the light that can be seen by a point on a surface, then use that as a shadow
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Figure 24-10. Geometry of shadows. Dark gray is full shadow (umbra), and light gray is partial
shadow (penumbra).

multiplier for the light’s contribution to shading. To do this, we will just shoot
rays from the surface that we are shading to random points on the light
source and calculate the percentage of rays that hit the light. We are also
going to limit our examples to spherical positional lights, spherical spotlights,
and circular directional lights, but the techniques apply to other light shapes
and light types.

When we shoot multiple rays toward different places on a light source, we
start to get noise at the edges of the shadow. We get noise in the penumbra,
which is Latin for “almost a shadow“ (Figure 24-9, right). The penumbra is the
only place where there is noise because all other places are either completely
in light or completely in shadow (umbra) and all rays will agree on visibility of
the light. The size of the penumbra is based on the size and distance of the
light source, as well as the size and distance of the shadow caster.
Figure 24-10 shows the geometric relationships.

24.7.2 SPHERICAL DIRECTIONAL LIGHTS

The sun is a good example of a spherical directional light—a glowing ball that
is so far away that no matter where you move, it will always be at the same
point, angle, and direction in the sky.
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We see the ball as a circle, though, so to do ray traced shadows, we are going
to shoot rays at points on that circle and see what percentage were blocked
for our shadowing term.

Doing this ends up being easy. We need to define the direction to the light and
the solid angle radius of the circle in the sky, then we can use this GLSL code
to get a direction in which to shoot a ray for a single visibility test:

1 // rect.x and rect.y are between 0 and 1.
2 vec2 MapRectToCircle(in vec2 rect)
3 {
4 float radius = sqrt(rect.x);
5 float angle = rect.y * 2.0 * 3.14159265359;
6 return vec2(
7 radius * cos(angle),
8 radius * sin(angle)
9 );
10 }
11

12 // rect.x and rect.y are between 0 and 1. direction is normalized direction
to light. radius could be ~0.1.

13 vec3 SphericalDirectionalLightRayDirection(in vec2 rect, in vec3 direction,
in float radius)

14 {
15 vec2 point = MapRectToCircle(rect) * radius;
16 vec3 tangent = normalize(cross(direction, vec3(0.0, 1.0, 0.0)));
17 vec3 bitangent = normalize(cross(tangent, direction));
18 return normalize(direction + point.x * tangent + point.y * bitangent);
19 }

To shoot eight shadow rays for a pixel, you would generate eight random
vec2s, put them through SphericalDirectionalLightRayDirection() to get
eight ray directions for that light, and multiply the percentage of hits by the
lighting from this light. That gives you ray traced soft shadows from area
lights.

As we know from previous sections though, not all random numbers are
created equal!

The first thing we are going to do is use blue noise samples in a square,
instead of white noise. If we use the same samples per pixel, we get the
strange patterns you see in Figure 24-11.

The typical way to address all pixels using the same sampling pattern is to
use Cranley–Patterson rotation: you use a per-pixel random number to
modify the samples in some way to make them different. Instead of using
regular random numbers, we can instead read a screen-space tiled blue
noise mask texture as our source of per-pixel random numbers. We need two
blue noise values, so we will read at (x, y) and will also read at an offset
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Figure 24-11. The same 16 samples for each pixel. Left: blue noise. Right: white noise.

(x + 13, y + 41) to get two values between 0 and 1. The two values read from the
texture are an (x, y) offset that we will add to each 2D blue noise sample, and
we use fract to keep them between 0 and 1. When we do that, we get what
we see in the leftmost column of Figure 24-12.

The offset of (13, 41) is somewhat arbitrary, but it was chosen to be not very
close on the blue noise texture to where we read previously. Blue noise
textures have correlation between pixels over small distances, so if you want
uncorrelated values, you don’t want to read too closely to the previous read
location.

What we have looks good for still images, but in real-time graphics we also
have the time dimension. For algorithms that temporally integrate rendering,
such as temporal antialiasing (TAA) or deep learning super sampling (DLSS),
using the same blue noise every frame is not giving them any new
information, which leaves image quality unrealized. Even without temporal
integration algorithms, better temporal sampling may look better to our eyes,
or be implicitly integrated by the display. Individual screenshots will not look
as nice if they aren’t filtered over time, however.

The most straightforward way to animate these soft shadows would be to
have something like eight different blue noise textures instead of one and to
use the texture frameNumber % 8 for a specific frame. This would animate
the blue noise ray traced soft shadows, and every single frame would be good
quality, but the problem is that looking at an individual pixel, it would become
white noise over time. This is because each blue noise texture was made

382



CHAPTER 24. USING BLUE NOISE FOR RAY TRACED SOFT SHADOWS

Figure 24-12. Example of spherical directional light. Top: blue noise. Bottom: white noise. Left to
right: raw, depth-aware Gaussian blur, and temporal antialiasing. Notice how the Gaussian
blurred penumbra of the white noise looks much lumpier than the blue noise. This is because blue
noise does not have frequencies low enough to survive the low pass filter, but white noise does.

independently of the others. We know that white noise sampling is among the
worst you can do usually, so we should be able to do better.

Another way would be to offset the texture reads by some amount every
frame, essentially having a global texel offset for the pixels to add to their
read location into the blue noise. This is what was done in INSIDE [8] using a
Halton sequence to get the offset. Blue noise has correlation over small
distances, but not over large distances, so doing this with a low discrepancy
sequence results in white noise over time. This gives similar results to
flipping through multiple textures, but has the benefit of only being a single
texture, and you can have a flip cycle up to as long as the number of pixels in
your texture.

Another way to animate blue noise is to read a blue noise texture, add the
frame number multiplied by the golden ratio to it, then use modulus to keep it
between 0 and 1. What this does is make each pixel use the golden ratio
additive recurrence low-discrepancy sequence on the time axis, which is a
high-quality 1D sampling sequence, making the time axis well-sampled.
Unfortunately, this comes at the cost of modifying frequency content, so it
damages the quality over space a little bit. Overall, it is a net win, though, and
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this is the method that we are going to use. You can see this animated noise
under TAA compared to white noise in the right most column of Figure 24-12.

1 float AnimateBlueNoise(in float blueNoise, in int frameIndex)
2 {
3 return fract(blueNoise + float(frameIndex % 32) * 0.61803399);
4 }

You might think that the correct way to animate a 2D blue noise mask would
be to make a 3D volumetric blue noise texture, but surprisingly, it is not, and
2D slices of 3D blue noise are not good blue noise at all [18]. You might also
think that you could scroll a blue noise texture over time because neighboring
pixels are blue noise in relation to each other, so that should make samples
blue over time. This ends up not working well because 1D slices of 2D blue
noise are also not good 1D blue noise, so you do not get good sampling over
time; also, there will be a correlation between your samples along the
scrolling direction.

Besides temporal integration and good noise patterns over time, you can also
look at denoising a single frame in isolation. In the middle column of
Figure 24-12, we use a depth-aware Gaussian blur on the lighting
contributions before multiplying by albedo to get the final render.

At this point, we have spherical directional lights that have decent noise
characteristics over both space and time.

24.7.3 SPHERICAL POSITIONAL LIGHTS

Spherical positional lights are glowing balls in the world. As you move
around, the direction to them changes, and so does their brightness through
distance attenuation. You can see one rendered in Figure 24-13.

Starting with the spherical directional light shader code, we only need to
make two changes:

1. Light direction is no longer constant but is whatever the direction from
the surface to the center of the light is.

2. The radius of the light circle is no longer constant either but changes as
you get closer or farther from the light. Though being the correct thing
to do, this also handles distance attenuation implicitly.

Here is the spherical directional light code modified to calculate the direction
and radius as the first two lines, instead of taking them as parameters to the
function. The rest works the same as before.
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Figure 24-13. Example of spherical positional light. Top: blue noise. Bottom: white noise. Left to
right: raw, depth-aware Gaussian blur, and TAA.

1 // rect.x and rect.y are between 0 and 1. surfacePos and lightPos are in
world space. worldRadius is in world units and could be ~5.

2 vec3 SphericalPositionalLightRayDirection(in vec2 rect, in vec3 surfacePos,
in vec3 lightPos, in float worldRadius)

3 {
4 vec3 direction = normalize(lightPos - surfacePos);
5 float radius = worldRadius / length(lightPos - surfacePos);
6

7 vec2 point = MapRectToCircle(rect) * radius;
8 vec3 tangent = normalize(cross(direction, vec3(0.0, 1.0, 0.0)));
9 vec3 bitangent = normalize(cross(tangent, direction));
10 return normalize(direction + point.x * tangent + point.y * bitangent);
11 }

24.7.4 SPHERICAL SPOTLIGHTS

Last comes spherical spotlights, which are just like spherical positional lights
except that they do not emit light from all angles. You can see one rendered in
Figure 24-14.

To account for this, we are going to modify the spherical positional light code
to take a spotlight direction as a parameter to control where the light is
shining, and a cosine inner and cosine outer parameter to control how
focused it is in that direction.
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Figure 24-14. Example of spherical spotlight. Top: blue noise. Bottom: white noise. Left to right:
raw, depth-aware Gaussian blur, and TAA.

We are going to dot product the direction from the light to the surface, by the
direction in which the light shines. If it is less than the cosine inner value, it is
fully bright. If it is greater than the cosine outer value, it is fully dark. If it is in
between, we will use smoothstep (a cubic spline) to interpolate between fully
bright and fully dark. This brightness value will be returned to the caller,
which can be multiplied by the shadow sample result (0 or 1) before being
averaged into the final result.

1 // rect.x and rect.y are between 0 and 1. surfacePos and lightPos are in
world space. worldRadius is in world units and could be ~5. angleAtten
will be between 0 and 1.

2 vec3 SphericalSpotLightRayDirection(in vec2 rect, in vec3 surfacePos, in
vec3 lightPos, in float worldRadius, in vec3 shineDir, in float
cosThetaInner, in float cosThetaOuter, out float angleAtten)

3 {
4 vec3 direction = normalize(lightPos - surfacePos);
5 float radius = worldRadius / length(lightPos - surfacePos);
6

7 angleAtten = dot(direction, -shineDir);
8 angleAtten = smoothstep(cosThetaOuter, cosThetaInner, angleAtten);
9

10 vec2 point = MapRectToCircle(rect) * radius;
11 vec3 tangent = normalize(cross(direction, vec3(0.0, 1.0, 0.0)));
12 vec3 bitangent = normalize(cross(tangent, direction));
13 return normalize(direction + point.x * tangent + point.y * bitangent);
14 }
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24.7.5 REDUCING RAY COUNT

One way to reduce the number of rays used for shadow rays is to shoot a few
rays to start and, if they all agree on visibility, return the result as the answer.
This makes an educated guess about the surface being either fully lit or fully
shadowed. The more rays used, the more often this is correct, but the more
expensive it is. If those few rays do not all agree, you know that you are in the
penumbra and so should shoot more rays for better results.

You can also use a hybrid approach where you have a shadow map, but you
only use it to tell if you are in the penumbra or not. You would do this by
reading a shadow map value and, if you get a full 0 or 1 back as a result, use
that without shooting any rays; otherwise, you would shoot your rays to get
the penumbra shadowed value. Regular shadow maps are made from
discrete light sources though, so for best results you probably would want to
use something like percentage-closer soft shadows (PCSS) [6].

You can reduce the ray count all the way to one sample per pixel (spp) and still
get somewhat decent results, as shown in Figure 24-15. You can take it below
1 spp by doing a ray trace for shadows smaller than full resolution, then
filtering or interpolating the results for each individual pixel.

24.7.6 REDUCING NOISE

Noise is more apparent where there is higher contrast between the shadowed
and unshadowed areas. In real life, shadows are almost never completely
black, but instead have indirect global illumination bounce lighting of some
amount in them. In this way, global illumination, ambient lighting, or similar
can help reduce the appearance of noise without reducing the noise, but just
reducing contrast.

Sample count also affects the contrast of your noise. If you only take one
sample per pixel, you can only have 0 or 1 as a result, which means that the
pixel is fully bright or fully in shadow, so your noise will all be either fully
bright or fully in shadow. If you take two samples per pixel, you now have
three values: fully in shadow, half in shadow, and fully in light. The noise in
your shadows will then also have those three values and will have less
contrast. The more samples you add, the more shades you have, with the
shade count being the number of rays plus one.

Though we’ve been talking about shooting a ray toward a uniform random
point on a light source, there are ways to sample area light sources that result
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Figure 24-15. One spp shadows. Top: raw. Bottom: depth-aware Gaussian blurred with σ = 2.
Left: blue noise. Right: white noise.

in less noise, to which you can then apply blue noise. You can read about
some by Hart et al. [9] and Schutte [20].

When denoising ray traced shadows, it is best to keep your albedo, diffuse
lighting, and specular lighting in separate buffers so that you can denoise
your diffuse and specular lighting separately, before multiplying by albedo to
get the final render. If you denoise the final render directly with a simpler
denoising technique such as a depth-aware Gaussian blur, you will also end
up blurring details in your albedo that come from textures, despite them not
being noisy in the first place.

This chapter has focused on combining blue noise samples with blue noise
masks, but you can use either of these things independently. For instance,
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you might find that you get better convergence rates by using another
sampling sequence per pixel, but still using a blue noise mask to vary the
sampling sequence per pixel, making the resulting error pattern be blue
noise in screen space.

Noise appears only in penumbras, and smaller light sources make smaller
penumbras, so you can try shrinking your lights if you have too much noise.
Glancing angles of lighting also make for longer penumbras, and larger areas
of noise, like the sun being low in the sky, making long shadows. If you can
shrink your penumbra, you will shrink the area where noise can be.

24.8 COMPARISON WITH INTERLEAVED GRADIENT NOISE

Interleaved gradient noise was presented by Jimenez [21] and is tailored
toward temporal antialiasing. IGN is fast to generate from an x and y pixel
coordinate, so there is no precomputed texture or a texture read. In this way,
IGN is a competitor to blue noise in that it is used for the same things, is fast,
and gives situationally desirable properties.

1 float IGN(int x, int y) // x and y are in pixels.
2 {
3 return fract(52.9829189f * fract(0.06711056f*float(x)
4 + 0.00583715f*float(y)));
5 }

In most modern TAA implementations, a pixel will sample its 3× 3
neighborhood to get a minimum and maximum color cube, possibly in
another color space such as YCoCg. The previous frame’s pixel color is then
constrained to this color cube before interpolating toward the current frame’s
pixel color, possibly using a reversible tone mapping operation [23]. This
constraint is used to effectively keep or reject history based on how different
the history is from the local neighborhood of this frame.

If you wanted to do something like stochastic transparency for an object that
has 1/9th transparency, during the G-buffer fill, you could use a per-pixel
random value (white noise) and discard the pixel write if that random value
was greater than the transparency value. This makes 1/9 of the pixels survive.

For the neighborhood color constraint, what you would hope for is that out of
every 3× 3 group of pixels under stochastic alpha, exactly one of them should
survive the alpha test to most accurately represent the color cube. The
problem is that white noise has clumps and voids, so there will be many 3× 3
groups of pixels that have no surviving pixels, and others that have more than
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one. When there are no pixels, the history is erroneously rejected and the
semitransparent pixel does not contribute to the final pixel color. When there
is more than one pixel, that color is over-represented, and it will look more
opaque than it is.

If you use blue noise for this instead of white noise, the pixels that survive the
alpha test will be roughly uniform; So, often one pixel will survive in every
3× 3 block of pixels, but this is not guaranteed. Sometimes you will have
more or less.

Interleaved gradient noise does guarantee this, however. This is because
every 3× 3 block of pixels in IGN has all values approximately
0/9, 1/9, 2/9, . . . 8/9. This is a generalized Sudoku that is impossible to solve
because there are too many constraints. IGN gets around this by having small
numerical drift, which also makes IGN values fully continuous, unlike blue
noise, which often comes from a U8 texture and so only has 256 different
possible values.

The same situation seen in stochastic transparency comes up when you
ray-trace shadows (or doing other techniques). Using IGN as a per-pixel
random value means that in every 3× 3 group of pixels, you’ll have a
histogram of results that more closely matches the actual possible histogram
of results, compared to white noise. That leads to more accurate history
acceptance and rejection.

So, if you are using TAA with neighborhood sampling for history rejection, you
may want to try using IGN instead of a blue noise mask, as a per-pixel random
number. Figure 24-16 shows a comparison.

Figure 24-16. Sixteen spp shadows under TAA. Inset images have +1 fstop exposure to make
differences more visible. Left to right: white noise, blue noise samples with blue noise mask, and
blue noise samples with IGN mask.
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Figure 24-17. Directional light scene FLIP means (inset number) and heat maps (right images).
Truth is ten thousand white noise samples.

24.9 PERCEPTUAL ERROR EVALUATION

As we’ve seen, different arrangements of error can affect how an image looks
even if it has the same amount of error. Because of this, perceptual error
metrics are an active area of research.

Results of comparisons using the FLIP perceptual error metric [3] are shown
in Figure 24-17. The heat map of perceptual error is shown, as well as the
mean. Lower mean values are better.

FLIP tells us that blue noise is best in all situations, IGN is a little bit worse,
and white noise is significantly worse. It’s a little surprising that IGN didn’t get
a better score than blue noise under TAA since it seems to have less noisy
pixels, but the scores are very close. Similarly, TAA in general seems to get a
better score than Gaussian blurred results, despite looking a little noisier.

See also Chapter 19 about the FLIP metric.
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24.10 CONCLUSION

Offline rendering has a wealth of knowledge to give real-time rendering in the
way of importance sampling and low-discrepancy sequences, but real-time
rendering has much lower rendering computation budgets.

Because of this, we need to think more about what to do with four samples
per pixel, one sample per pixel, or fewer than one sample per pixel, which is
not as big of a topic in offline rendering.

Sampling well over both space and time are important, as are considerations
to the frequency content of the noise for filtering and perceptual qualities.
Blue noise can be a great choice, but it is not the only tool for the job as we
saw with IGN’s effectiveness under TAA. If you ever find yourself using white
noise, though, chances are that you are leaving money on the table.

I believe that in the future this topic will continue to bloom, allowing us to
squeeze every last drop of image quality out of our rendering capabilities,
with the same number of rays.
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PART IV

SHADING AND EFFECTS

Ray tracing excels with its ability to aid shading and various rendering effects.
Ray traversal can be used in a traditional way to explore light paths, or it can
be employed as a general-purpose tool for querying scene information. The
techniques presented in this part cover a wide range of topics related to
efficiently gathering information needed for shading, primary/secondary
effects, and adaptations of common rasterization rendering methods for a
ray tracing framework.

Temporal filtering is an essential tool to minimize the number of rays needed
for properly resolving secondary effects with high performance on today’s
GPUs. In dynamic scenes, this requires motion vectors for accessing the
relevant information at the previous frame. Chapter 25, Temporally Reliable
Motion Vectors for Better Use of Temporal Information, presents specialized
motion vectors for moving shadows, glossy reflections, and occlusions.

Chapter 26, Ray Traced Level of Detail Cross-Fades Made Easy, describes
simple and efficient methods for supporting level of detail techniques that are
commonplace with rasterization. This is particularly important for hybrid
renderers that combine ray tracing and rasterization.

Chapter 27, Ray Tracing Decals, explains how decals, which are commonly
used in 3D games, can be incorporated into ray tracing, so that they can
appear in secondary effects computed using ray tracing, such as reflections.

Using impostors to represent complex objects that are expensive to render is
another common technique with rasterization-based rendering. Chapter 28,
Billboard Ray Tracing for Impostors and Volumetric Effects, shows how
impostors can be handled with ray tracing for replacing objects with high
geometric complexity or volumetric media.

Correctly handling refractions requires ray tracing, though image-space
refractions can provide a fast approximation of up to two refraction events.
Chapter 29, Hybrid Ray Traced and Image-Space Refractions, describes
different ways of combining these two approaches to reduce the number of
rays needed to account for more than two refraction events, which is
important when rendering typical refractive models such as water and glass.
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Highly specular objects focus reflected and refracted light, forming caustics,
which can be expensive to compute. Chapter 30, Real-Time Ray Traced
Caustics, provides an efficient photon-based solution for rendering caustics
that uses temporal information to improve the sample density for the next
frame in a real-time renderer.

One of the advantages of ray tracing over rasterization is its ability to handle
complex camera models. Chapter 31, Tilt-Shift Rendering Using a Thin Lens
Model, describes methods for simulating a camera with a tilt-shift lens for
achieving views with the desired perspective distortion or an arbitrary focal
plane that is not necessarily aligned with the view direction.

Cem Yuksel
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CHAPTER 25

TEMPORALLY RELIABLE MOTION
VECTORS FOR BETTER USE OF
TEMPORAL INFORMATION
Zheng Zeng,1 Shiqiu Liu,2 Jinglei Yang,3 Lu Wang,1 and Ling-Qi Yan3
1Shandong University
2NVIDIA
3University of California, Santa Barbara

ABSTRACT

We present temporally reliable motion vectors that aim at deeper exploration
of temporal coherence, especially for the generally believed difficult
applications on shadows, glossy reflections, and occlusions. We show that our
temporally reliable motion vectors produce significantly more robust
temporal results than current traditional motion vectors while introducing
negligible overhead.

25.1 INTRODUCTION

The state-of-the-art reconstruction methods [2, 9, 7, 10] all rely on temporal
filtering. Though it is demonstrated to be powerful, robust temporal reuse
has been very challenging due to the fact that motion vectors are sometimes
not valid. For example, a static location in the background may be blocked by
a moving object in the previous frame. In this case, the motion vector does not
exist at the current location. Also, the motion vectors may be wrong for
effects like shadows and reflections. For example, a static shadow receiver
will always have a zero-length motion vector, but the shadows casted onto it
may move arbitrarily along with the light source. In any of these cases, when
correct motion vectors are not available but temporal filtering is applied
anyway, ghosting artifacts (unreasonable leak or lag of shading over time)
will emerge.

Although the temporal failures can be detected with smart heuristics [10], the
temporal information in these cases will be simply rejected nonetheless. But
we believe that the information can be better utilized. In this chapter, we
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present different types of motion vectors for different effects, to make the
seemingly unusable temporal information available again. Specifically, we
introduce the following:

> A shadow motion vector for moving shadows.

> A stochastic glossy reflection motion vector for glossy reflections.

> A dual motion vector for occlusions.

25.2 BACKGROUND

In this section, we briefly go over the calculation of traditional motion vectors,
and explain how they are used in temporal filtering.

When two consecutive frames i – 1 (previous) and i (current) are given, the
idea of back-projection is to find for each pixel Xi intersected by the primary
ray, where its world-space shading point Si was in the previous frame at Xi–1.
Because we know the entire rendering process, the back-projection process
can be accurately computed: first, project the pixel Xi back to its world
coordinate in the ith frame, then transform it back to the (i – 1)-th frame
according to the movement of the geometry, and finally project the
transformed world coordinate in the (i – 1)-th frame back to the image space
to get Xi–1. Denote P = MvMmvp as the viewport Mv times the
model-view-projection transformation Mmvp per frame and T as the geometry
transformation between frames; then, the back-projection process can be
formally written as

Xi–1 = Pi–1T
–1P–1i Xi, (25.1)

where the subscripts represent different frames. According to Equation 25.1,
the motion vectorm(Xi) = Xi–1 – Xi is defined as the difference between the
back-projected pixel and the current pixel in the image space. The following
pseudocode shows how this traditional motion vector is calculated:

1 calcTradMotionVector(uint2 pixelIndex, float4 hitPos, uint hitMeshID){
2 // For each pixel X_i (in image space) ...
3 float2 X = pixelIndex + float2(0.5f, 0.5f);
4 // ... find its world-space shading point S_i.
5 float4 S = hitPos;
6 // Then, transform S_i back to the previous frame to get S_(i-1).
7 // The custom function getT(...) returns the geometry transformation for

a given mesh, and inverse(...) inverts a 4x4 matrix.
8 float4x4 invT = inverse(getT(hitMeshID));
9 float4 prevS = mul(S, invT)
10 // Finally, project it to screen space to get X_(i-1).
11 // The custom function toScreen(...) projects a given world-space point

to screen space to get corresponding the image-space pixel.
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12 float2 prevX = toScreen(prevS);
13 // Return traditional motion vector.
14 return prevX - X;
15 }

The motion vector for each pixel Xi is computed together with the rendering
process and can be acquired almost without any performance overhead. With
the motion vectors, temporal filtering becomes straightforward. In practice, it
is a simple linear blending between the current and previous pixel values:

c̄i(Xi) = α · c̃i(Xi) + (1 – α) · c̄i–1(Xi–1), (25.2)

where c is the pixel value, first filtered spatially per frame resulting in c̃, then
blended with the pixel value of its previous correspondence c̄i–1. The α is a
factor between 0 and 1 that determines how much temporal information is
trusted and used, usually set to 0.1 to 0.2 in practice, indicating heavy
temporal dependence on previous frames. The temporal filtering process
continues as more and more frames are rendered, accumulating to a cleaner
result. Thus, we use the ¯ and ˜ symbols to indicate less and more noise,
respectively.

From Equation 25.2, we can see that one frame’s contribution over time is an
exponential falloff. Thus, if the motion vectors cannot accurately represent
correspondence between adjacent frames, ghosting artifacts will appear.
Various methods are designed to alleviate the temporal failure. Salvi [8]
proposed to clamp the previous pixel value c̄i–1(Xi–1) to the neighborhood of
the current pixel value, in order to suppress the ghosting artifacts and provide
a faster rate of convergence to the current frame. The spatiotemporal
variance-guided filtering (SVGF) method [9] focuses on a better spatial
filtering scheme to acquire c̃i(Xi) by considering spatial and temporal
variances together. And the adaptive SVGF (A-SVGF) method [10] detects
rapid temporal changes to adjust the blending factor α to rely more or less on
spatial filtering, trading ghosting artifacts for noise.

25.3 TEMPORALLY RELIABLE MOTION VECTORS

In this section, we describe our temporally reliable motion vectors.
Specifically, we will focus on the three commonly encountered temporal
failure cases: shadows, glossy reflections, and occlusions. In contrast to the
previous methods, we intend to better utilize the previous information, i.e., we
would like to find a more reliable c̄i–1(Xi–1) so that minimal special treatment
is further needed. Our insight is that for shadows and glossy reflections, it is
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Figure 25-1. (a) Computation of our shadow motion vectors. (b) The nonplanar shadow
receiver issue.

not the geometry in a pixel that we want to track in the previous frame, but
the position of the shadow and the reflected virtual image. For occlusions, it
is easier for the previously occluded regions in the background to find
correspondences also in the background rather than on the occluder. After
introducing the corresponding motion vectors, we then compare them with
the state-of-the-art methods and report the computation cost.

25.3.1 SHADOWS

Inspired by percentage closer soft shadows (PCSS) [4], which estimate the
shadow size based on the average blocker depth and light size, we propose to
track the movement of shadows by following the blocker and light positions
over time.

Figure 25-1a illustrates our scheme focusing on two consecutive frames (i – 1)
and i. We shoot one shadow ray per pixel toward a randomly chosen position
on the light. For a pixel Xi (in image space) in shadow, we know exactly its
shading point Si, the blocker position Bi, and the light sample position Li (all in
world space). Because the blocker and the light sample positions are
associated with certain objects, we immediately know their transformation
matrices between these two frames, so we are able to find their world-space
positions Bi–1 and Li–1, respectively, in the (i – 1)-th frame. If the geometry
around the shadow receiver Si is a locally flat plane, we can find the
intersection Si–1 between this plane and the line connecting Li–1 and Bi–1 in
the previous frame. Finally, we project this intersection to the screen space.
In this way, this projected pixel XVi–1 is our tracked shadow position from Xi:

XVi–1 = Pi–1 intersect[T
–1Li → T–1Bi;T

–1plane(Si)], (25.3)
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where the transformations T between frames can be different for the light
sample, blocker, and shading point.

Equation 25.3 implies that our shadow motion vector ismV(Xi) = XVi–1 – Xi. The
pseudocode for calculating the shadow motion vector looks as follows:

1 calcShadowMotionVector(uint2 pixelIndex, float4 hitPos, float4 hitNormal,
uint hitMeshID, float4 blockerPos, uint blockerMeshID, float4 lightPos,
uint lightMeshID){

2 // For each pixel X_i in shadow (in image space) ...
3 float2 X = pixelIndex + float2(0.5f, 0.5f);
4 // ... find its shading point S_i, blocker point B_i, and light sample

point L_i (all in world space).
5 float4 S = hitPos;
6 float4 B = blockerPos;
7 float4 L = lightPos;
8 // Then, transform B_(i-1) and L(i-1) back to the previous frame.
9 // The custom function getT(...) returns the geometry transformation for

a given mesh, and inverse(...) inverts a 4x4 matrix.
10 float4 prevB = mul(B, inverse(getT(blockerMeshID)));
11 float4 prevL = mul(L, inverse(getT(lightMeshID)));
12 // Next, find the intersection of the virtual plane (defined by S_i and

its normal in the previous frame) and the ray (from L_(i-1) to B_(i
-1)).

13 float4 origin = prevL;
14 float4 direction = prevB - prevL;
15 float4x4 invT = inverse(getT(hitMeshID));
16 float4 prevNormal = mul(hitNormal, invT);
17 float4 prevS = mul(S, invT);
18 // The custom function rayPlaneIntersect(...) finds the intersection

between a ray (defined by origin and direction) and a plane (
defined by point and normal).

19 float4 intersection = rayPlaneIntersect(origin, direction, prevS,
prevNormal);

20 // Finally, project it to screen space to find X^(V)_(i-1).
21 // The custom function toScreen(...) projects a given world-space point

to screen space to get corresponding the image-space pixel.
22 float2 prevX = toScreen(intersection);
23 // Return the shadow motion vector.
24 return prevX - X;
25 }

To use our shadow motion vectors, we slightly modify the temporal filtering
Equation 25.2 by adding a lightweight clean-up filtering pass (at most 9× 9)
after temporal blending. This is because the motion vectorsmV(Xi) can be
noisy due to random sampling on the light, so the fetched V̄i–1(Xi–1) can be
noisy as well, despite the smoothness of V̄i–1 itself in the previous frame. The
same clean-up filter will be used for glossy reflections and occlusions.

To perform spatial filtering of the noisy shadows in the current frame i, we
refer to Liu et al. [6], which accurately calculates the filter size. However, we
notice that based on the previous computation, only those pixels in shadows in
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the current frame are associated with our shadow motion vectors. To deal
with this problem, and to achieve both efficient filtering performance and
clean shadow boundaries, we conceptually interpret the filtering of shadows
as the splatting of each in-shadow pixel’s visibility, along with other
associated properties.

DISCUSSION: NONPLANAR SHADOW RECEIVER The only assumption we
make is that the geometry is locally flat for each shading point during the
computation of our shadow motion vectors. However, as Figure 25-1b shows,
after the back-projection in the (i – 1)-th frame, it is possible that SVi–1, the
shading point of pixel XVi–1, is not on the virtual receiver plane defined by Si and
its normal n(Si) (inverse transformed if the shadow receiver moves over time,
omitted here for simplicity). These two shading points may not have the same
normals and could even be on different objects. In this case, it seems that our
shadow motion vector could no longer be used.

To deal with the problem introduced because of nonplanar shadow receivers,
we introduce a simple but effective falloff heuristic. That is, we measure the
extent of the “nonplanarity.” Figure 25-1b illustrates our idea. Once XVi–1 is
calculated, we measure the angle θ between the normal of the virtual receiver
plane n(Si) and the direction Si → SVi–1. Our key observation is that, only when
θ is close to 90◦, we can fully depend on our shadow motion vector. Otherwise,
we should trust more on the spatially filtered result. So, we use θ to adjust the
α, replacing it with a specific αV in Equation 25.2 as

αV = 1 – G
(
θ –

π

2
; 0, 0.1

)
· (1 – α), (25.4)

where G(x;µ,σ) is a Gaussian function with its peak value normalized to 1,
centered at µ, and with a standard deviation of σ. Finally, we achieve
high-quality, non-lagging shadows. This process looks as follows:

1 // Once X^(V)_(i-1) is calculated ...
2 float2 prevX = X + shadowMotionVector;
3 // ... measure the angle theta between the normal of S_i (in the previous

frame) and the direction S_i->S^V_(i-1).
4 float4 S = hitPos;
5 // The custom function getPrevHitPos(...) returns the world-space shading

point for a given pixel in the previous frame.
6 float4 prevSV = getPrevHitPos(prevX);
7 float3 direction = normalize(float3(prevSV - S));
8 // The custom function getT(...) returns the geometry transformation for a

given mesh, and inverse(...) inverts a 4x4 matrix.
9 float3 prevNormal = float3(hitNormal, inverse(getT(hitMeshID))));
10 float theta = acosf(dot(direction, prevNormal))
11 // Use theta to adjust the alpha^V.

406



CHAPTER 25. TEMPORALLY RELIABLE MOTION VECTORS FOR BETTER USE OF TEMPORAL INFORMATION

12 // The custom function gaussian(...) returns a value between 0 to 1
according to theta.

13 float alphaV = 1.0f - gaussian(theta - PI / 2, 0.f, 0.1f) * (1.0f - alpha);

We compare our results with the ones generated using traditional motion
vectors, with and without the neighborhood clamping approach used in
temporal antialiasing (TAA) [8]. The clamping methods represent the line of
ideas that force the use of temporal information. We also compare our
method with the SVGF and A-SVGF methods as representatives that balance
the use of temporal and spatial information. Neither kind of these methods
aims at better utilizing the temporal information.

Figure 25-2 shows the fence scene with a rapidly moving fence in front and an
area light behind it. In this example, we demonstrate that our shadow motion
vectors are able to produce shadows that are closely attached to the fence.

In comparison, traditional motion vectors produce significant ghosting
artifacts. This is expected because they will always be zero in this case. With
clamping, the results are less lagging but much more noisy. However, the
noise is aggressively filtered by SVGF, resulting in overblur. The A-SVGF
method discards temporal information, resulting in color blocks similar to the
typical “smearing” artifact in bilateral image filtering and leaving behind
low-frequency noise that can be easily observed in a video sequence.

OursGT

Ours

Trad. (No Clamp) Trad. (Clamp)

SVGF A-SVGF

Figure 25-2. The fence scene with a rapidly moving fence in front and an area light behind it. Our
shadow motion vectors are able to produce shadows that are closely attached to the fence.
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25.3.2 GLOSSY REFLECTIONS

Similar to tracking the shadows, we can also track the movement of glossy
reflections.

Our insight is that no matter whether we are using the specular or sampled
direction, what we need to do is still find the corresponding pixel in the
previous frame of the secondary hit point Hi. However, because glossy BRDFs
model a non-delta distribution, multiple pixels may reflect to the same hit
point, forming a finite area in the screen space. This indicates that there will
be multiple pixels from the previous frame that correspond to Xi in the current
frame. Our stochastic glossy motion vector aims at finding one at a time.

Given that the center of a glossy BRDF lobe is usually the strongest, we
always have a valid choice with which to start. That is, we first assume that
the glossy BRDF degenerates to pure specular, then we can immediately find
the corresponding point SCi–1 similar to Zimmer et al. [12]. Then, our insight is
that, as the glossy lobe gradually emerges, a region will appear around SCi–1 in
which all the points are able to reflect to the same hit point Hi–1. This region
can be approximated by tracing a glossy lobe (with the same roughness at
SCi–1) from the virtual image of Hi–1 toward SCi–1.

Figure 25-3 illustrates the way that we find one corresponding pixel XRi–1 in the
previous frame. We start from the importance-sampled secondary ray at the
shading point Si and the secondary hit point Hi in the world space. We
transform Hi to the previous frame (i – 1) in the world space, find its
mirror-reflected image, then project it to the screen space to retrieve SCi–1 in
the world space again.

Then, similar to the shadow case, we assume a locally flat virtual plane
around SCi–1 and find the intersected region between this plane and the glossy
lobe traced from the image of Hi–1 toward SCi–1. In practice, there is no need to
trace any cones, and we simply assume that the glossy lobe is a Gaussian in
directions and that the intersected region is a Gaussian in positions as well as
in the image space, which can be efficiently approximated by tracking the
endpoints of major and minor axes. In this region, our stochastic motion
vector for glossy reflection randomly finds Xi’s correspondence at

XRi–1 = sample
(
Pi–1 mirror[T–1Hi,T

–1plane(Si)],Σ
)
, (25.5)

where sample(µ,Σ) importance-samples a Gaussian function with center µ
and covariance Σ, and T still represents different transformations at different
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R

Figure 25-3. The computation of our stochastic glossy reflection motion vectors. For an
importance-sampled secondary ray, we back-project the virtual image of its hit point in the
previous frame.

places. The pseudocode for calculating our stochastic glossy motion vector
looks as follows:

1 calcGlossyMotionVector(uint2 pixelIndex, float4 hitPos, float4 hitNormal,
uint hitMeshID, float4 secondaryHitPos, uint secondaryHitMeshID){

2 // For each pixel X_i, find the secondary hit point H_i.
3 float2 X = pixelIndex + float2(0.5f, 0.5f);
4 float4 H = secondaryHitPos;
5 // Transform H_i back to the previous frame.
6 // The custom function getT(...) returns the geometry transformation for

a given mesh, and inverse(...) inverts a 4x4 matrix.
7 float4 prevH = mul(H, inverse(getT(secondaryHitMeshID)));
8 // Then, find its mirror-reflected image using the plane defined by S_i

and its normal in the previous frame.
9 float4 S = hitPos;
10 float4x4 invT = inverse(getT(hitMeshID));
11 float4 prevNormal = mul(hitNormal, invT);
12 float4 prevS = mul(S, invT);
13 // The custom function mirror(...) finds the mirror-reflected image

behind a given plane for a given point.
14 float4 mirroredPrevH = mirror(prevH, prevS, prevNormal);
15 // Next, project it to screen space to find the "center."
16 // The custom function toScreen(...) projects a given world-space point

to screen space to get the corresponding image-space pixel.
17 float2 center = toScreen(mirroredPrevH);
18 // Finally, sample one position in image space around this center.
19 // The key idea here is to simply approximate a 2D anisotropic Gaussian

on the plane, then project it to screen space.
20 // Assume that the glossy lobe is a Gaussian in directions with variance

sigma (using custom function GaussianDist(...)); then, we can
immediately find a 2D Gaussian on the plane according to the
distance from the lobe to the plane (using custom function toPlane
(...)).

21 float2x2 covariance = toPlane(gaussianDist(sigma), prevS, prevNormal)
22 // Then, project it to screen space to get the covariance of this 2D

anisotropic Gaussian on screen.
23 covariance = toScreen(covariance);
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24 // The custom function sampleGaussian2D(...) samples a 2D point in image
space according to the Gaussian function with given center and

covariance.
25 float2 prevX = sampleGaussian2D(center, covariance);
26 // Return the glossy motion vector.
27 return prevX - X;
28 }

The usage of our stochastic glossy reflection motion vectors is similar to the
shadow motion vectors. Also, the “natural hierarchy” still exists, i.e., when
the roughness is high, the glossy reflection motion vectors will be more noisy,
but the temporally filtered result will be then spatially cleaned up in a more
aggressive manner.

We show the sun temple scene in Figure 25-4, which contains glossy
reflections of various objects. We compare our method with four approaches:
(1) using the traditional reflectors’ motion vectors but without clamping of
previous pixel values, (2) using traditional motion vectors with clamping,
(3) using traditional motion vectors with the temporal component of A-SVGF
(the temporal gradient method), and (4) using specular reflected rays’ hit
points’ motion vectors, also with clamping. For all the comparisons, we use
the spatial filter discussed in [6] as the spatial component of our denoising
pipeline.

The comparison indicates that our glossy reflection motion vectors do not
introduce ghosting artifacts. However, with traditional motion vectors, naive
filtering produces significant ghosting. Clamping relieves the lagging but
introduces severe discontinuous artifacts. With specular motion vectors, the
results look plausible in most regions, but discontinuous artifacts can still be
found around the edges of the reflected objects. The A-SVGF will always
result in noisy results because the temporal gradient changes so fast that it

Ours Temporal
Grad.

Spec. Ref.
mvec

Ours GTTrad. 
(No Clamp)

Trad. 
(Clamp)

Figure 25-4. The sun temple scene with a rapidly moving camera. Our stochastic glossy
reflection motion vector is able to produce accurate reflections, whereas the traditional motion
vectors result in significant ghosting artifacts.
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mostly uses only the noisy current frame. Our method produces the closest
result to the ground truth (ray traced without firefly removal, thus always
looks brighter).

25.3.3 OCCLUSIONS

Different from the previous cases on shadows and glossy reflection, when
occlusion happens, in theory there are no temporal correspondences XOi–1 of
the pixels Xi appearing from the previously occluded regions. The
back-projected motion vectors of these pixels will always land on the
occluders, thus the previous pixel values cannot easily be used.

To alleviate this issue, we start from the clamping technique by Salvi [8] in TAA
methods. Our insight is that if the color value at XOi–1 is closer to the value at
Xi, the issues produced by the clamping method can be better resolved. Also,
close color values often appear on the same object. Inspired by Bowles et
al. [1], we propose a new motion vector for the just-appeared region to find a
similar correspondence in the previous frame. To do that, we refer to the
relative motion.

As Figure 25-5a shows, the traditional motion vector gives the Xi → Y
correspondence, but, unfortunately, cannot be easily used. Our method
continues to track the movement of Y→ Z from the previous frame to the
current, using the motion of the occluder. Then, based on the relative
positions of Xi and Z, we are able to find the location XOi–1 in the previous

Frame (i – 1)Frame (i)

X i X i – 1
O YZ

Ours mvecTrad. mvec

2

1

Frame (i)

Frame (i)

(a) (b)(a)

Frame (i – 1)Frame (i)

X i X i – 1
O YZ

Ours mvecTrad. mvec

2

1

Frame (i)

Frame (i)

(a) (b)(b)

Figure 25-5. (a) The computation of our dual motion vectors for occlusions, and comparison with
traditional motion vectors. (b) How the repetitive pattern is produced when simply reusing colors
with our dual motion vectors.
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frame. This process can be simply represented as

XOi–1 = Y + (Xi – Z), (25.6)

where Y = Pi–1T–1(Xi)P–1i Xi and Z = PiT(Y)P–1i–1Y.

Equation 25.6 indicates that we have applied a back-projection followed by a
forward-projection, essentially using two motion vectors. Thus, we name our
approach dual motion vectors for occlusions. In this way, we are able to find a
correspondence XOi–1 with a much closer color value to Xi. Note that because
we use P of two frames to track Xi, we are able to support the movement of
the camera and objects simultaneously. The pseudocode for calculating our
occlusion motion vector looks as follows:

1 calcOcclusionMotionVector(uint2 pixelIndex, float4 hitPos, uint hitMeshID,
uint occluderMeshID){

2 // For each pixel X_i that previously occluded ...
3 float2 X = pixelIndex + float2(0.5f, 0.5f);
4 // ... find Y on the occluder in the previous frame.
5 float4 S = hitPos;
6 // The custom function getT(...) returns the geometry transformation for

a given mesh, and inverse(...) inverts a 4x4 matrix.
7 float4 prevS = mul(S, inverse(getT(hitMeshID)));
8 // The custom function toPrevScreen(...) projects a given world-space

point to screen space to get the corresponding image-space pixel
for the previous frame.

9 float2 Y = toPrevScreen(prevS);
10 // Then, find Z on occluder in the current frame.
11 // The custom function getPrevHitPos(...) returns the world-space

shading point for a given pixel in the previous frame.
12 float4 SY = getPrevHitPos(Y);
13 float4 curSY = mul(SY, getT(occluderMeshID));
14 // The custom function toScreen(...) projects a given world-space point

to screen space to get the corresponding image-space pixel.
15 float2 Z = toScreen(curSY);
16 // Return the occlusion motion vector.
17 return Y + X - Z;
18 }

Note that because we deal with different effects separately for shadows and
glossy reflection, and the shading part can already be reasonably
approximated in a noise-free way (e.g., using the Linear Transformed Cosines
(LTC) method [5]), we only have to apply our dual motion vectors to indirect
illumination. Moreover, as glossy indirect illumination has been elegantly
addressed using our glossy reflection motion vectors, we can now focus only
on diffuse materials.

DISCUSSION: REUSING COLOR VERSUS INCIDENT RADIANCE As
Figure 25-5b indicates, simply applying the color values as in Bowles et al. [1],
using the dual motion vector will result in a clear repetitive pattern because it
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Figure 25-6. (a) Our partial temporal reuse scheme. Only the same directions in the overlapped
solid angle will share temporally coherent radiance. (b) We use six slightly overlapping cones on a
hemisphere to store incident radiance approximately.

is essentially copying and pasting image contents. This is especially
problematic when the normals at Si and SOi–1 are different. Removing the
textures from colors (i.e., demodulation) does not help because when the
normals differ, the intensity of the shading result can differ significantly.

To address this issue, we propose to temporally reuse the incident radiance
instead of the shading result. Specifically, for the application of diffuse
indirect illumination, we record the 2D indirect incident radiance per pixel.

Figure 25-6a shows an example. Suppose that we have recorded the incident
radiance of Si and SOi–1, each on a hemisphere; then, we immediately know
that all the directions in the overlapped regions of these two hemispheres
(marked as green) could be temporally reused, while the non-overlapping part
(marked as yellow) should remain using only the spatial content from frame i.
Then, the radiance from both parts will be used to re-illuminate the shading
point Xi, leading to an accurate temporally accumulated shading result.

For storing and blending the incident radiance, we refer to the representation
in the voxel cone tracing approach [3]. We subdivide a hemisphere into six
slightly overlapping cones with equal solid angles π/3 pointing in different
directions, and we assume that the radiance remains constant within each
cone. During spatial or temporal filtering, instead of averaging the shading
result, we filter for each cone individually, using the overlapping solid angles
between each pair of cones as the filtering weight. Figure 25-6b illustrates
our idea. Finally, we are able to achieve a much cleaner result for diffuse
indirect illumination.
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OursGT

Ours

Trad. (No Clamp) Trad. (Clamp)

SVGF A-SVGF

10×

Figure 25-7. A view of the PICA scene with objects moving from left to right.

We demonstrate the effectiveness of our occlusion motion vectors in the PICA
scene with moving objects in Figure 25-7. Only indirect illumination is shown,
and its intensity is scaled ten times for better visibility. New unoccluded
regions will appear around the boundaries of foreground objects. In these
regions, the temporal information will simply be rejected with traditional
motion vectors. Therefore, in this case the SVGF still results in a significant
amount of overblur, whereas A-SVGF again appears to be smeared spatially
and loses temporal stability. The clamping approach tries to use pixel values
from the occluders; however, because the pixel values on the foreground and
background usually differ drastically in the occlusion case, this will still
introduce ghosting artifacts.

25.4 PERFORMANCE

Figure 25-8 shows the average computation cost of each step of denoising
individual effects using our motion vectors. The average cost of an individual
step was estimated from 500 frames rendered at 1920× 1080 on an NVIDIA
TITAN RTX. Compared with SVGF (traditional motion vectors), it can denoise
different effects with a similar cost, around 3.11 ms per frame.

As one would expect from the simple computation in Section 25.3, in practice
we observed only a negligible performance cost by replacing with our motion
vectors, which is always less than 0.23 ms. Besides, we have also noticed that
our implementation of denoising shadows and glossy reflections is already
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Figure 25-8. Runtime breakdown of our methods.

much faster than SVGF, as we use much simpler spatial filters and fewer
levels or passes. Finally, when denoising indirect illumination, it is worth
mentioning the additional cost when we introduce the cones for storing and
filtering the incident radiance. For this, compared with reusing colors, we
found that the typical cost of denoising each frame increased around 1.5 ms.

25.5 CONCLUSION

In this chapter, we have proposed multiple types of motion vectors for better
utilization of temporal information in real-time ray tracing. With our motion
vectors, we are able to track the movement of shadows and glossy reflections
and to find similar regions to blend with previously occluded regions. We
showed that our motion vectors are temporally more reliable than traditional
motion vectors and presented cleaner results compared to the
state-of-the-art methods with negligible performance overhead.

For more information about implementation details, comparisons, and
limitations, we refer readers to our paper [11] and the accompanying video.
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CHAPTER 26

RAY TRACED LEVEL OF DETAIL
CROSS-FADES MADE EASY
Holger Gruen
Intel Corporation

ABSTRACT

Ray tracing techniques in today’s game engines need to coexist with
rasterization techniques in hybrid rendering pipelines. In the same throw,
level of detail (LOD) techniques that are used to bring down the cost of
rasterization need to be matched by ray traced effects to prevent rendering
artifacts. This chapter revisits solutions to some problems that can arise from
combining ray tracing and rasterization but also touches on methods for more
generalized ray traced LOD transitions.

26.1 INTRODUCTION

The DirectX Raytracing (DXR) API [7] has incited a new wave of high-quality
effects that replace rasterization-based effects. As of the writing of this text,
fully ray traced AAA games are the exception. Even high-end GPUs struggle
with ray tracing the massive amounts of dynamic geometry that some AAA
games require. As a result, hybrid rendering pipelines that mix and match ray
tracing and rasterization are commonplace.

Games engines employ a variety of techniques (see [6]) to reduce the
geometric complexity of scene elements to bring down rendering cost. In
order to avoid the complexity and limitations of continuous geometry
decimation through vertex animation and the resulting edge collapse (also
known as geomorphing, see [3]), many game engines instead cross-fade or
cross-dither between two discrete geometry LODs (see, e.g., [2]), e.g.,
between LOD0 and LOD1. Here, LOD0 denotes a geometry that is comprised
of fewer vertices and triangles than LOD1.

Typically, a transition factor f in the interval [0.0, 1.0] is used to control
cross-faded LOD transitions (see, e.g., the ray traced transition example in
Figure 26-1). During rasterized transitions, game engines need to draw both
LOD0 and LOD1. When drawing LOD0, the pixel shader then uses a uniform
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Figure 26-1. Three stages of a ray traced LOD cross-fade. The highest LOD is shown on the left, a
half-way transition is shown in the middle, and the lowest LOD is shown on the right.

pseudo-random number r (from the interval [0.0, 1.0]) and discards the
current pixel if r < f. The pixel shader that draws LOD1 uses the same
pseudo-random number r and discards the current pixel if r > f.

This implies either that r is computed using the 2D position of a pixel as a
seed or that a screen-space aligned texture containing random numbers is
used. Low-discrepancy pseudo-random number sequences (see, e.g., [1]) or
precomputed textures that store such sequences help to make the transition
less noticeable.

Cross-faded LOD transitions are also a good choice for ray tracing
applications as they prevent bounding volume hierarchy (BVH) refitting or
rebuild operations for geomorphing geometries. Instead, bottom-level
acceleration structures (BLASs) for discrete LODs can be instanced in the
top-level acceleration (TLAS) structure as needed. So, similar to the fact that
rasterization needs to render two LODs during transitions, it is necessary to
put the geometry of two or more LODs in the BVH in order to enable ray
traced transitions (see also [5]).
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At this point in time, DXR doesn’t provide obvious direct API support for letting
potential traversal hardware handle high-quality LOD transitions, though.

The DirectX specification (see [7]) mentions traversal shaders (see [4]) as a
potential future feature, but it is unclear if and when they will become a
reality. In a hybrid ray traced technique, where the ray origin is usually
derived from the world-space position of a given pixel, a traversal shader
would allow LOD-based cross-fading using the same logic that the pixel
shaders described previously use. Instead of discarding pixels, the ray would
just be forwarded into the BLAS of the selected LOD according to the per pixel
uniform random number r.

NVIDIA’s developer blog (see [5]) describes a technique that uses the
per-instance mask of a BLAS instance along with an appropriate ray mask to
implement LOD cross-dithering that is accelerated by the traversal hardware.
In this technique, the transition factor f is mapped to two different instance
masks, e.g.,mask0 for LOD0 andmask1 for LOD1. If, e.g., f = 1.0, all bits in the
instance mask for LOD1 are set to 1 and no bits are set in the instance mask
for LOD0. A transition factor of f = 0.6 means thatmask1 has the first
uint(0.6 ∗ 8) bits of the instance mask for LOD1 set to 1. The instancemask0 for
LOD0 is then set to ∼ mask1&0xFF. This approach ensures that a per-pixel
ray mask can be computed by randomly setting only one of its eight bits.

As Lloyd et al. [5] describe, their use of the 8-bit masks limits the number of
levels for stochastic LOD transitions. Also, employing a transition technique
that utilizes instance masks blocks these instance masks from being used for
other purposes. If the limited number of LOD transitions turns out to be a
quality issue for your application or if the mask bits are needed otherwise, it is
possible to move the transition logic to the any-hit shader stage. The any-hit
shader can evaluate stochastic transition without the limits described in [5]. It
can store r in the ray payload. The any-hit shader can then ignore hits if r < f
and a triangle in the BLAS for LOD0 is hit. In the same manner, it can ignore
hits for the BLAS for LOD1 if r > f.

However, using the any-hit shader stage for LOD cross-fades has a much
higher performance impact than using the technique from [5] as it delays the
decision to ignore a hit to a programmable shader stage that needs to run on
a per-hit/triangle basis. Shader calls interrupt hardware traversal and can
have a significant performance impact. Please note that a potential traversal
shader implementation would also need to interrupt hardware traversal,
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though not at the frequency of triangle hits but at the much lower frequency of
hitting traversal bounding boxes.

In general, in situations where more than two LODs of an object are part of
the BVH and the programmer wants to pick and chose between a number of
LODs (e.g., purely based on the distance from the ray origin), any-hit or
traversal shaders are the only tools of choice, as instance masks don’t allow
for this degree of flexibility.

26.2 PROBLEM STATEMENT

As outlined in the prevoius section and adding more details to the description
in [5], in hybrid rendering pipelines ray traced techniques need to be able to
manage the fact that rasterized G-buffers may represent different LODs of the
same cross-faded object in neighboring pixels.

Adding, e.g., hard ray traced shadows to an engine that uses rasterization to
lay down a G-buffer can be done like this:

1. Reconstruct the world-space position WSPos for the current pixel from
the value in the depth buffer.

2. Compute the starting point of the shadow ray by offsetting WSPos along
the unit-length per-pixel normal N that has been scaled by a factor s:
ray.Origin = WSPos + s ∗ N.

3. Trace the ray from the origin toward the light source.

The normal scaling factor s is chosen in a way that prevents self-shadowing
(Lloyd et al. [5] call these self-shadowing artifacts spurious shadows if they
result from mismatching LODs) but also prevents the localized loss of
shadows from small local details. Assuming that the current G-buffer pixels
contain some LOD cross-faded object, as depicted in Figure 26-2, then
neighboring pixels may well belong to different LODs.

It is possible, depending on how the simplified LODs are built, that the
geometry of LOD1 locally is farther out when compared to the geometry of
LOD0 or vice versa, as shown in Figure 26-3.

As game engines currently place either the geometry of LOD0 or the
geometry of LOD1 in the BVH, this can create problems. Assume that LOD1 is
outside of the geometry of LOD0 and that only the geometry of LOD1 has been
placed in the BVH. Under this scenario, a shadow ray that emanates from the
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Figure 26-2. A 3× 3 portion of a G-buffer that contains pixels that have been rasterized from
geometry of LOD0 and LOD1.
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Figure 26-3. A 3× 3 portion of a G-buffer with pixels of LOD0 and LOD1 and a depiction of the
underlying geometry of LOD0 in yellow and LOD1 in red.

central G-buffer pixel (see Figure 26-2) and that belongs to LOD0 may well hit
the geometry LOD1. The result is that this pixel is falsely assumed to be in
shadow, as shown in Figure 26-4. Please note that which LOD is outside may
well change across a model, so it isn’t possible to pick the most suitable LOD
from an engine point of view to prevent this.

It is, of course, possible to work around this by increasing the normal scaling
factor s to a point that prevents this problem for all scene elements. But, as
described previously, this may well lead to the loss of local details, in ambient
occlusions or shadows. Also, increasing s raises the probability of moving the
ray origin into some close-by geometry. Similar problems exist with almost all
other ray traced techniques that need to work from a LOD-dithered G-buffer.

26.3 SOLUTION

The following steps help to work around the problems described above by
making sure that rasterization and ray tracing use the same random number
to implement LOD cross-fading based on an individual per-object transition
factor f:
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Figure 26-4. Choosing the wrong LOD (e.g., LOD1) can lead to self-shadowing artifacts.

1. During rasterization, pick a uniform pseudo-random number r from the
interval [0.0, 1.0] that purely depends on the 2D position of the current
pixel, or that depends on a combination of the 2D position and the
instance ID or object ID of the current object.

> If you intend to use any-hit or traversal shader–based ray traced
transitions, then do the following:

– When drawing LOD0, the pixel shader discards the current pixel
if r < f.

– The pixel shader that draws LOD1 discards the current pixel if
r > f.

> If you intend to use instance mask–based transitions (see [5]), then
do the following:

– Compute a binarymask1 that has the first uint(f ∗ 8) bits set to
one to be used by the pixel shader for LOD1:
mask1 = (1 << uint((8 + 1) ∗ f)) – 1.

– Computemask0 to be used by the pixel shader for LOD0:
mask0 = ( ∼ mask1)&0xFF.

– Multiply r by 7 to arrive at the bit index to compute rmask to be
used by the pixel shader for LOD1: rmask = 1 << uint(r ∗ 7).

– When drawing LOD0, the pixel shader discards the current pixel
if (rmask&mask1) == 0.

– The pixel shader that draws LOD1 discards the current pixel if
(rmask&mask0) == 0.

Please note that an instance mask–based transition may limit the
quality of a rasterized cross-fade in the same way as it may limit ray
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traced LOD transitions. If quality is a concern for you, you may need
to resort to any-hit shader–based transitions as outlined in
Section 26.1.

2. Put BLAS instances for LOD0 and LOD1 of all objects into the TLAS that
are currently undergoing a LOD transition.

3. Use the same uniform random number r that was used during rasterized
cross-fading in your ray traced cross-fading setup for the current pixel.

> For an any-hit (or a future traversal) shader–based transition, put r
into the ray payload and ignore hits if r < f and a triangle in the BLAS
for LOD0 is hit. In the same vein, ignore hits for the BLAS for LOD1 if
r > f. Local root signature constants in the shader binding table for
the hit entries for LOD0 and LOD1 can be used to detect if a triangle
from LOD0 or LOD1 has been hit.

> For the case of instance mask–based transitions, as described in [5],
do the following:

– Compute a binarymask1 that has the first uint(f ∗ 8) bits set to
one to be used by the pixel shader for LOD1:
mask1 = (1 << uint((8 + 1) ∗ f)) – 1.

– Computemask0 to be used as the instance for LOD0:
mask0 = ( ∼ mask1)&0xFF.

– When tracing a ray, use uint(f ∗ 7) to set one random bit in the ray
mask rmask: rmask = 1 << uint(r ∗ 7).

Using the approach outlined here, the rays cast from the reconstructed
world-space positions of a pixel always only return hits with the same
LOD that was used when rendering the pixel.

26.4 FUTURE WORK

Animating a LOD cross-fade shows that there is a clear difference in the
fluidity of the transition between a mask–based fade and a comparison
value–based fade using an any-hit shader. It would be beneficial to extend
future ray traversal hardware to include a per-BLAS instance comparison
value and a flag indicating either a less than or a greater than comparison
value, which then gets stored in the BVH. The TraceRay intrinsic could be
extended to add an additional 8-bit comparison value parameter as well.

The traversal hardware could then, on top of the binary AND operation on the
mask, perform the comparison operator on the values of the instance and the
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Figure 26-5. Three stages of a ray traced LOD cross-fade at f = 0.904 (left), f = 075 (middle), and
f = 0.647 (right). Top: images produced using a mask-based transition. Bottom: Using an
emulated comparison value–based transition.

value of the ray. Ray traversal into an instance could only continue if the
comparison operations returns true.

This new functionality would enable hardware-assisted LOD cross-fades that
are comparable in quality to what any-hit shader–based cross-fades produce
today.

Figure 26-5 shows three images from a LOD transition using a mask-based
and an emulation of a comparison value–based transition. While the full
difference in quality and fluidity can only be shown in a video, please note that
the comparison-based method produces transitions with many more
intermediate steps than the mask-based transition.

26.5 CONCLUSION

This chapter expands on existing solutions that make sure that there are no
mismatches between rasterized LOD and ray traced LOD. The method
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described can make use of fully accelerated hardware traversal, if the quality
of instance mask–based transitions is good enough to meet your quality
requirements. If this is not the case, you will need to pick the slower path that
involves calls to any-hit shaders for objects that are currently undergoing a
LOD transition. Future traversal hardware that features comparison
value–based conditional traversal can deliver high-quality and fluid LOD
transitions at full speed without the use of any-hit shaders.
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CHAPTER 27

RAY TRACING DECALS
Wessam Bahnassi
NVIDIA

ABSTRACT

This chapter discusses several different approaches to implementing decals
in ray tracing. These approaches vary between the use of triangle meshes
versus procedural geometry and support for single versus multiple decals per
surface point. Additional features are also discussed for using decals in
production, as well as a number of possible optimizations. The discussion is
supported by performance measurements to give the reader an idea of the
cost of the different ray tracing techniques, in hope that this inspires selection
of the best technique whether for decals or other applicable ray tracing
effects.

27.1 INTRODUCTION

Decals are a common element in 3D game scenes. They are mainly used to
add detail over an existing scene in a similar effect to real-world decals: an
image imprinted on top of an existing surface (see Figure 27-1). In a game,
this can be detail over a rather repetitive wall pattern or holes resulting from
bullets hitting an object. The texture from the decal replaces the underlying
surface’s texture prior to lighting. This effect has been employed for a long
time and was achieved via different approaches for both forward (e.g., [1]) and
deferred shading (e.g., [2]) renderers. In this chapter, the application of decals

Figure 27-1. A decal applied on a sphere in a ray traced scene, replacing both albedo and
normals of the underlying surface.
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Figure 27-2. A decal can be described by a box and a direction of projection. The box determines
the coverage and size of the projected texture in the scene.

in a DirectX Raytracing (DXR) rendering engine is discussed, with topics
covering formulation, scene setup, shaders, and optimizations.

27.2 DECAL FORMULATION

Decals have been most commonly described by a texture and a directed box
that specifies the location and orientation of the decal’s projection. Any
surfaces intersecting that box are expected to receive that decal. (See
Figure 27-2.) Depending on the decal’s purpose and properties, formulations
other than the one described above might be preferable (as shown in
Section 27.5.3). The goal is to transfer the decal’s texture onto the target
surface at the right time in the rendering pipeline. One possible way to
achieve this is to render an overlay of the affected surface’s triangles but
using the decal texture instead of the base surface texture. This requires
computing the intersection between the decal’s box and the target geometry
to generate a set of clipped triangles with texture coordinates that map the
decal texture correctly. However, this is an old approach that suffers from
performance and precision problems.

An alternative way that appeared with deferred shading renderers is to
rasterize decal boxes after the G-buffer pass but prior to lighting. Pixels
covered by the rasterized decal boxes execute a pixel shader that checks if the
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world position actually falls within the decal box. If yes, then the shader
computes the decal texture coordinates and samples the decal. The sampled
values overwrite the G-buffer values, and the lighting pass is then carried out
as usual. With this approach, it is easy to have decals modify G-buffer
channels other than just albedo. For example, it is possible to have the decal
overwrite normals and specular, thus allowing for more interesting effects
than just color replacement, like material aging and dents.

This approach is valid also for hybrid deferred ray tracing renderers because
in such renderers the G-buffer pass is still maintained from standard deferred
shading, and the G-buffer is used to avoid tracing primary rays. However, ray
traced reflections and surfaces need to use a different approach to apply
decals to the ray tracing results. This is the focus of the rest of this chapter,
now that the historic information is covered.

27.3 RAY TRACING DECALS

DXR divides the scene into primitives or meshes described by bottom-level
acceleration structures (BLASs), and those primitives are instanced at one or
more locations in the scene. The top-level acceleration structure (TLAS)
stores the information for those instances. In addition to triangle meshes, the
BLAS is also able to describe procedural primitives as simple axis-aligned
bounding boxes (AABBs) that encompass procedurally evaluated shapes
using an intersection shader during ray tracing.

The DXR representation can also carry a few flags that specify additional
properties of the object. Of particular interest is the OPAQUE flag, which can be
specified on both DXR scene levels (BLAS and TLAS).

Under DXR 1.0 (i.e., DispatchRays()), when a primitive is hit by a ray, it is
possible to use local root signatures to drive DXR to bind primitive-specific
resources automatically during the execution of the closest-hit or any-hit
shaders. However, such facility is not available with DXR 1.1’s
TraceRayInline() style of ray tracing, so resource access is usually done
manually via global resources and resource arrays.

In this chapter, we chose to store the information about each decal in a
structure, and all decals are made available to our shaders by grouping them
in a StructuredBuffer. Decals can be identified by their index in this
StructuredBuffer, and their properties can be fetched when needed.
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The following code shows an example of a decal structure that supports
replacing albedo and normal textures of a surface:

1 struct Decal
2 {
3 // World space to "unit box" space
4 float4x3 world2DecalUnit;
5

6 // Index in array of textures (-1 means unused)
7 int albedo, normal;
8 };
9 StructuredBuffer<Decal> scene_decals : register(t0);

Following the decal formulation described earlier, an affine transformation
matrix can be built such that it transforms a unit box
(–0.5, –0.5, –0.5) – (0.5, 0.5, 0.5) to a world-space box of certain dimensions,
orientation, and placement. This world-space box represents the decal’s
projection box in the scene. The inverse of the aforementioned matrix is what
is stored in the world2DecalUnitmember in the code listing. To sample a
decal, the receiving surface point (in world space) must be transformed using
the world2DecalUnitmatrix. If the point was indeed inside the decal box,
then its transformed XYZ coordinates must fall within the range [–0.5, 0.5].

To generate [0, 1] UV coordinates for sampling the decal texture at the surface
point, we add 0.5 to the transformed x and y coordinates and pass the values
as UV coordinates for texture sampling. This additional step can be merged
into the world2DecalUnitmatrix too, but the point-in-decal check must be
adjusted accordingly as well because the valid range for x and y coordinates
becomes [0, 1].

The next section focuses on finding which decals project onto which points in
the scene.

27.3.1 TRACING ONE DECAL

Given a point on a surface in the scene, the question is to know whether there
is a decal box covering that point. This is in fact a point-in-volume question,
which neither the DXR 1.0 nor DXR 1.1 API natively support. The following
sections discuss approaches to answer the point-in-volume question.

POINT-IN-VOLUME BY INTERSECTING AGAINST DECAL BOX FACES

One way is to cast a ray from the surface point and check if it hits the inner
face of any decal box. To achieve this, the scene must be set up as follows.
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A decal mesh is built as an axis-oriented unit box (edge length is 1) made of
12 triangles. The triangles winding order must be consistent such that it is
possible to identify the inner side versus the outer side of the box. For
example, let us use clockwise winding order and make the triangle faces point
outside the box. Assume the Z+ axis of this unit box to be the direction of
projection of the decal.

A BLAS is built for this mesh. To instantiate decals in the scene, the same
decal BLAS is always referenced for each added TLAS instance entry. Each
decal instance uses a transformation matrix that scales, rotates, and
positions the decal unit box mesh to match the required placement.

The decal instances must carry a user-defined mask value to allow tracing
against them without hitting other entities in the DXR scene (the
InstanceMaskmember of D3D12_RAYTRACING_INSTANCE_DESC). The
InstanceID field should be mappable to an index in the decal
StructuredBuffer such that decal information can be accessed once it is
returned by ray tracing.

To answer the point-in-decal question, a DXR ray query is defined to originate
from the surface point in question and go in some direction, say (0, 0, 1). The
ray length can be set to the diagonal of the largest decal in the scene. The
query ignores frontfaces and uses an instance mask to only trace against the
decals in the scene instead of tracing all scene entities. The closest-hit
shader will be invoked for the decal encompassing the point (if any), where
the decal index can be reported back through the ray payload.

Unfortunately, relying directly on the result returned from this setup can lead
to false positives, as the ray query can hit the inside of a decal box even if that
box does not encompass the point in question (see Figure 27-3 for such a
case). Thus, the returned payload result must be validated by checking if the
surface point falls within the reported decal box. If not, the ray must be
continued until its length is exhausted. It is possible to rely on an any-hit
shader to do the same validation, which means that the closest-hit shader’s
result will always be valid. The any-hit shader will be called for each inner
decal box face the ray hits, and the any-hit shader will only report a hit if the
decal box is validated to contain the surface point. It is important to note that
the decals must avoid using the D3D12_RAYTRACING_GEOMETRY_FLAG_OPAQUE
and D3D12_RAYTRACING_INSTANCE_FLAG_FORCE_OPAQUE flags in the BLAS and
the TLAS, otherwise the any-hit shader will not be invoked.
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Figure 27-3. A decal wrongly identified as encompassing a surface because the ray from the
surface point hit the inside face of the decal box. This test alone is not enough to give the correct
containment answer.

POINT-IN-VOLUME BY INTERSECTION SHADERS

A different way to answer the point-in-volume query is to use a DXR
intersection shader. As described earlier, intersection shaders are needed for
procedural (AABB) DXR primitives. The key is that DXR will have to execute
the intersection shader for any AABB that intersects or contains the ray in
the query.

For this to work, two key changes must be made to the previous setup.

First, the scene TLAS must switch to use a procedural BLAS instead of the
triangle mesh BLAS described earlier. The procedural BLAS AABB is simply
set to have the extents of [–0.5, –0.5, –0.5] – [0.5, 0.5, 0.5]. This time, the
procedural BLAS can use D3D12_RAYTRACING_GEOMETRY_FLAG_OPAQUE. The
InstanceMask and InstanceID in the TLAS are filled the same way as in the
previous section.

The second key change is the hit group given to the decal instance entries in
the TLAS. The hit group must reference a ProceduralPrimitiveHitGroup
that uses both a closest-hit shader and an intersection shader.

The intersection shader does not actually have to do any calculations, as our
decal box matches exactly the procedural BLAS AABB. Thus, if the
intersection shader was invoked, then the decal box must have been
accurately hit by the ray indeed. Thus, all what the intersection code will do is
simply ReportHit(RayTCurrent(), 0, attr);.
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The closest-hit shader will receive the reported hit and directly fill the payload
with the hit decal ID (using the InstanceID() intrinsic).

Because the intersection shader will be called even if the ray is fully included
inside the procedural primitive’s AABB, the ray query can now be set to use a
very short ray, originating from the surface point. For example, the RayDesc’s
Directionmember can be set to (0, 0, 1), TMin set to 0, and TMax set to a tiny
value (e.g., 0.00001). It is also possible to use the
RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH flag as we are looking for one
decal at most.

This approach is more elegant and performs much faster than the previous
one because the answer (either negative or positive) will be definitive from
one ray query without the need for shader-side loops. Thus, this approach is
recommended if the rendering engine is fine with supporting a single decal on
a surface at any time. If multiple decals are expected to overlap, not only will
this approach fail to properly compose the correct results, but also the results
could be unpredictable, leading to flickering and noise as the ray query
returns any of the decals surrounding the same point.

To support multiple decals, more work is needed, and this is what the next
section will explain.

27.3.2 TRACING AND BLENDING MULTIPLE DECALS

When a single decal on a surface point is not enough for artistic reasons, it is
possible to extend support for blending multiple decals over the same point.
This added complexity will come with a cost, obviously, which is why support
for a single decal was described in detail previously. The added cost might not
be worth it, and a single decal would have to make due.

A big challenge in supporting multiple decals is the order of processing the
decals. The standard “replace” blending formula is not commutative, thus
decals must be blended with the underlying surface color in the correct order.

Next, two methods are discussed to support multiple decals with correct
blending order.

LIMITED SORTED DECALS

It is possible to extend the procedural AABBs technique described in
Section 27.3.1 to support more than a single decal while hopefully benefiting
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from the technique’s performance advantage over other methods. The only
catch is that a maximum number of decals per point must be established, and
the reason for this limitation will become apparent later in the discussion.

The first change is on the geometry flags:

> Avoid using the D3D12_RAYTRACING_GEOMETRY_FLAG_OPAQUE and
D3D12_RAYTRACING_INSTANCE_FLAG_FORCE_OPAQUE flags in the BLAS
and the TLAS.

> Specify D3D12_RAYTRACING_GEOMETRY_FLAG_NO_DUPLICATE_ANYHIT_
INVOCATION on the procedural BLAS.

The second change is in the hit group setup. The procedural hit group must
now use an any-hit shader instead of a closest-hit shader, and the ray query
can use the RAY_FLAG_SKIP_CLOSEST_HIT_SHADER because it is not needed.
Otherwise, the ray query remains the same tiny ray setup as before.
Interestingly, even the RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH flag
can still be used.

The any-hit shader will now be invoked for every decal box that contains the
ray, where it has to properly collect the results and report them back to the
ray query. To allow more invocations of the any-hit shader to occur, the
shader must keep calling IgnoreHit() until the maximum allowed number of
decals have been exhausted, then it should call AcceptHitAndEndSearch().

If invocations to the any-hit shader were guaranteed to follow a particular
order, then the any-hit shader can immediately sample the decal during its
invocation and blend it with the payload. However, the calling order of the
any-hit shaders is unpredictable under DXR, which forces us to have to collect
the hits and sort them in able to respect the proper blending order.

If we limit the number of decals supported to a small maximum n (e.g., 2 or
3), then it is possible to fit an array of n decal IDs in the payload, which the
any-hit shader can fill one by one in every invocation.

The benefits of keeping the maximum number small is that it also allows the
returned results to be sorted in a fast manner even with simple O(n2) sorting
algorithms.

Upon return of the ray query, the payload should now be filled with a number
of decal IDs that are sorted, sampled, and blended in the correct order.

434



CHAPTER 27. RAY TRACING DECALS

UNLIMITED SORTED DECALS

Another way to support multiple decals without maintaining sorted lists is to
find a mechanism in DXR that already supports the ordering we need. It is
possible to capitalize on closest-hit ray queries to guarantee ordered results.

We revert to the triangle mesh decal BLAS setup from Section 27.3.1, but
some further changes are needed.

First, the decal mesh BLAS should specify the
D3D12_RAYTRACING_GEOMETRY_FLAG_OPAQUE flag.

Second, the ray query is modified to cull backfaces of the mesh (use the
RAY_FLAG_CULL_BACK_FACING_TRIANGLES flag), and the ray’s origin and
endpoints are swapped. The ray now points toward the surface point rather
than away from it and originates from the farthest location away from the
surface point.

To blend the decals, the ray query is executed in a loop that exhausts the ray’s
length. For each closest hit returned, the decal is sampled and blended with
the surface. Then, the ray is continued from the last hit. Once the ray length is
exhausted or no further hits are found, all applicable decals will have been
accumulated and blended in the correct order.

Even though this method is generic and can handle an unlimited number of
overlapping decals correctly, it is much slower compared to the limited
number of decals method due to the high overhead of casting rays repeatedly
in a loop.

27.4 DECAL SAMPLING

Depending on the artistic requirements, a decal system may settle with
simple texture blending (e.g., using the decal texture’s alpha channel) or offer
a more sophisticated material graph evaluation option. For the latter case,
DXR supports callable shaders. Each decal can be associated with a callable
shader that is called to evaluate the decal’s channels (e.g., albedo and
normal) and their blending values at the specified UV address computed from
the projection of the decal over the surface point.

27.5 OPTIMIZATIONS

In this section, a few notes and ideas are provided to control performance for
the different approaches mentioned in this chapter.
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27.5.1 RAY LENGTH

For methods relying on a triangle mesh BLAS, it was suggested to use a ray
length equal to the longest diagonal of any decal box in the scene. This value
takes into account the worst case of a decal box’s corner slightly touching the
surface. The downside of this strategy is twofold: First, the CPU must keep
track of decal box diagonal lengths and update the maximal length
accordingly across the entire scene. Second, this maximal value might be
driven by an outlier decal that is uniquely large across the rest of the decals in
the scene, thus causing an increased ray length for all decal tracing even
though most decals are way smaller than the outlier value. If this becomes a
problem, the engine must find a better way to drive the decal ray lengths. For
example, it might track decals that intersect each mesh and store the
maximal decal diagonal length of those decals in the mesh’s information.
This way, the shader can use this value when casting decal rays from that
mesh’s surface, and meshes that are detected to have no decals on them can
skip decal ray casts entirely.

27.5.2 SEPARATING THE TLAS

The decal queries are all supposed to ignore other entity types in the DXR
scene. So far, the suggested way was to use instance masks to limit the ray
query to decals only. However, another way is to place all decals in a separate
DXR scene than the main scene. This is possible by building a TLAS that
includes the decals only and binding it to a
RayTracingAccelerationStructure variable in HLSL separate from the
main scene’s RayTracingAccelerationStructure variable. The decal ray
queries use the decal TLAS instead of the main scene TLAS. The benefits of
this separation are twofold: First, TLAS updates can be done separately from
the main scene, allowing for parallelization on both CPU-side population and
GPU-side building. Second, the rays iterating the decal TLAS do not have to
go through a hierarchy imposed by unrelated scene elements (i.e., world
meshes). This gives more decal ray casts a better chance to exit early,
potentially even without touching any bounding volume hierarchy nodes.

The idea of moving decals to a separate TLAS also opens the door for more
advanced use cases mentioned later.

However, there could be situations where this technique might actually hurt
performance instead of improving it, and this is mainly due to cache thrashing
caused by switching between two different TLAS data sets during ray tracing.
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Thus, it is advisable to first experiment with this optimization with
representative scenes and measure the gains before settling on it.

27.5.3 TIGHTER BLAS

Another potential optimization that affects all triangle mesh BLAS methods is
to use tighter-fitting geometry for the decal contents. For example, if the
decal texture’s effective texels are mostly bound by a round shape (e.g., a
round scorch mark), then a cylinder mesh BLAS is a better fit than a box
mesh BLAS. Tighter shapes reduce processing of unnecessary texels and
might outweigh the cost of a more complex BLAS for large area decals.

27.5.4 EVALUATION ORDER

Lastly, the way decals are described as being applied on top of surfaces might
imply that they should be evaluated after evaluating the base surface’s
material. However, the evaluation order could be reversed. Decals can be
evaluated before the underlying surface’s material evaluation. This way, if the
decal completely overrides a particular channel (e.g., albedo), then there is no
use evaluating that channel for the underlying surface point’s material. This
optimization can hopefully balance the costs of decal evaluation in the scene.
The only expensive parts of the decal left are those that partially blend with
the surface, as both the decal and the surface material channels must be
evaluated and blended.

27.6 ADVANCED FEATURES

During production, decal placement can sometimes become difficult due to
scene density. The designer tries to adjust the decal box to only affect a
certain mesh, but it ends up also touching other meshes in the same area. Or,
consider a situation where a decal box placed in a certain location to decorate
the scene is crossed by a moving object in the game. The moving object thus
gets covered by the decal as well. Those cases often lead to an important
feature in production decal systems, which is called inclusion lists. This is a
list specified for each mesh in the scene, and it contains references to the only
decals that are allowed to project on the mesh. Other decals must be ignored
if they are not part of the mesh’s decal inclusion list.

To support this feature in ray traced decals, it is possible to rely on the
instance mask of the decal’s ray query. However, the number of bits in this
mask is quite limited and cannot scale to any scene made of even just a
hundred objects. We mentioned before that it is possible to put decals in a
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TLAS separate from the main scene TLAS. Now we take this idea and push it
even further. The scalable solution for inclusion lists is to use a separate
TLAS for each mesh’s inclusion list. The decal TLASs for all meshes in the
scene can be bound to the shader as an array of
RayTracingAccelerationStructures.

For example, the first TLAS entry in the array contains all decals in the world,
and subsequent TLASs in the array are specific to meshes with inclusion lists.
Thus, it is enough for the mesh to carry its corresponding decal TLAS index in
the shader and use that index for decal ray casting in that specific TLAS. The
following code listing shows pseudocode illustrating this idea:

1 struct Mesh
2 {
3 float4x3 object2World;
4 ...
5 // 0 if this mesh doesn't use an inclusion list
6 uint decalSceneIndex;
7 };
8 RayTracingAccelerationStructure decalScenes[] : register(t10);
9

10 // ... During shading code of the mesh, trace decals that
11 // are applicable to this mesh only.
12 TraceRay(decalScenes[mesh.decalSceneIndex], ...);

27.7 ADDITIONAL NOTES

This chapter might have assumed DXR 1.0 shader table–style ray tracing for
implementing decals. However, DXR 1.1 inline ray tracing can achieve the
same functionality with some adjustments to the way rays are cast and to the
processing of their results. DXR 1.1 inline ray tracing of decals is left as an
exercise for the reader, but it is important to mention it now because it opens
the door for the next note.

Deferred decals have been one of the major benefits of deferred shading
renderers. With ray traced decals, forward shading renderers can also be
extended to support decals conveniently and with the same scalability as
deferred decals without relying on clustered approaches. The renderer simply
casts a decal ray during the shading code of forward rasterization (using
inline ray tracing), and that decal’s evaluation overrides the input channels to
the forward shader’s lighting/material formula. Thus, it is possible to draw a
mesh with decals and fully light it in one draw call.

27.8 PERFORMANCE

The different methods outlined in this chapter have been tested in a DXR
scene to show the performance characteristics of each method. The scene is
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Combined TLAS Dedicated TLAS
No decals 0.71 ms 0.71 ms
Single/Mesh/CHS 12.40 ms 12.73 ms
Single/Mesh/Any-hit 1.31 ms 1.28 ms
Single/AABB 0.81 ms 0.77 ms
Multi/Mesh/CHS 12.08 ms 11.05 ms
Multi (max 3)/AABB 0.84 ms 0.80 ms

Table 27-1. Performance results collected on an NVIDIA RTX 3080 graphics card.

the famous Sponza scene, which is made of triangle meshes comprising a
total of 261,978 triangles. The test application spawns an excessive number of
36,582 decals and randomly scatters them over different surfaces of Sponza
meshes. The intention behind this large number of decals is to highlight the
cost of decals such that comparisons between the different decal tracing
methods are easier to compare.

The sample application is available on the book’s source code GitHub
repository for experimentation.

Table 27-1 shows the performance numbers collected from stable runs on an
NVIDIA RTX 3080 graphics card. The “No decals” entry represents the base
scene without ray tracing decals, and the scene TLAS is only populated with
Sponza meshes. The “Combined TLAS” column refers to timings collected
using a single TLAS that contains instances for all meshes and decals
together, where the instance mask is used to specify whether to trace meshes
or decals in the scene. The “Dedicated TLAS” column represents timings
collected by ray-tracing the scene using two different TLASs: one dedicated
for scene meshes and another containing only decal instances as described in
Section 27.5.2.

The row titles indicate which ray tracing method was used for decals. “Single”
versus “Multi” refers to a how many decals per surface point are supported.
“Mesh” versus “AABB” refers to the use of a triangle mesh BLAS for decal
boxes versus a procedural box described by an AABB. “CHS” refers to
methods using a loop around TraceRay where the result of a closest-hit
shader is used. “Any-hit” indicates the method where the loop was replaced
by the use of the any-hit shader.

The table shows a huge overhead associated with the two methods where the
shader manually loops over TraceRay to collect decals. Those methods
should be simply avoided. The AABB methods provide the best performance
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and only add a small overhead on top of the base ray tracing scene cost. In
less-exaggerated decal scenes, decal ray tracing performance should be
barely noticeable.

Finally, the table shows interesting benefits when using a dedicated TLAS for
decals. It is highly recommended to try this technique or extended versions of
it as described in Section 27.6.

27.9 CONCLUSION

In this chapter, we have described decals and their formulation, and we have
discussed several methods for supporting decals in ray traced scenes with
different approaches like tracing box meshes and procedural primitives using
intersection shaders. Depending on the rendering engine’s needs, support for
tracing and blending multiple decals was also presented. One of the common
production features with decals is inclusion lists. This chapter discussed
support for this feature while keeping efficiency and scalability as a target.
Finally, the performance of the outlined techniques was measured in a
sample application, and the results were shown for comparison,
demonstrating the performance advantages of certain methods over others.

Hopefully, this chapter has provided enough information to guide you when
adding decal support to your ray tracing rendering engine, as well as a few
cool ideas that can be applied even outside the use of decals, but for real-time
ray tracing in general.
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CHAPTER 28

BILLBOARD RAY TRACING
FOR IMPOSTORS AND
VOLUMETRIC EFFECTS
Felix Brüll, Robin Fynn Diedrichs, and Thorsten Grosch
Clausthal University of Technology

ABSTRACT

In rasterization, impostors and volumetric effects are often represented by
billboards because they can be drawn faster than their 3D counterparts. This
chapter explains how to render plausible reflections and refractions of
billboards and presents two methods for rendering volumetric effects with
DirectX Raytracing hardware.

28.1 INTRODUCTION

Traditional billboards are camera-oriented quadrilaterals defined by a
position, width, height, and texture. Due to their simple shape, they can be
drawn very fast and are easy to manage for animations. In rasterization,
billboards always face the camera. However, this behavior is no longer correct
after reflections and refractions.

We therefore describe how billboards can be used correctly in the context of
ray tracing. In Section 28.2 we first explain how to implement impostor
billboards for ray tracing. We also discuss how to determine the orientation of
billboards dynamically after reflections and refractions. In Section 28.3 we
then modify the billboards to act as smooth volumetric effects. Additionally,
we present an alternative interpretation for volumetric billboards. Finally, we
compare the performance of the presented techniques in Section 28.4.

28.2 IMPOSTORS

Impostors imitate important visual characteristics of other objects, but are
faster to draw than their original [7]. Tree impostors are often represented by
a single textured billboard. Even though more sophisticated impostor
strategies such as billboard clouds [3] and octahedral impostors [13] exist,
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Figure 28-1. Important properties and relations of the billboard, where O is the ray origin, d̂ its
direction, C is the center of the billboard with width w and height h, and P is the ray/billboard
intersection point. The purple numbers represent the texture coordinates.

this representation is often preferred if possible due to the very low
rendering cost.

28.2.1 IMPLEMENTATION

We define an impostor billboard with its center C, its width w, its height h, and
an optional axis alignment. For a ray with origin O and direction d̂,1 the
billboard tangent space (see Figure 28-1a) can be computed with

n = O – C, t = û× n, b = n× t, (28.1)

with up-vector û. If the billboard should be aligned to a specific axis, for
example the up-axis û = (0, 1, 0)⊺, the normal calculation needs to be adjusted:

n =
(
Ox – Cx, 0,Oz – Cz

)
.⊺ (28.2)

After obtaining the tangent space, the ray/plane intersection point Pp can be
calculated after transforming the ray origin and direction into local billboard
coordinates (see Figure 28-1b):

Op =
[̂
t b̂ n̂

]⊺
· (O – C), d̂p =

[̂
t b̂ n̂

]⊺
· d̂, (28.3)

Pp = Op + sd̂p, s ∈ R. (28.4)

As Pp is a point on the plane in plane coordinates, we can calculate s with

Ppz = 0 = Opz + sdpz ⇐⇒ s =
–Opz
dpz

. (28.5)

1The hat symbol indicates normalized vectors.

442



CHAPTER 28. BILLBOARD RAY TRACING FOR IMPOSTORS AND VOLUMETRIC EFFECTS

Finally, we need to compute the texture coordinates (ut, vt):

ut =
–Ppx
w

+ 0.5, vt =
–Ppy
h

+ 0.5. (28.6)

For texture filtering, we need the partial derivatives of the texture coordinates,
which can be computed easily when using ray differentials [5]. From the
change in position ∂P/∂x, we get

∂ut
∂x

=
1
w

(
∂P
∂x
· t̂
)
,

∂vt
∂x

=
1
h

(
∂P
∂x
· b̂
)
. (28.7)

In order to use billboards with ray tracing, we need to put their bounding
boxes into a ray tracing acceleration structure and write a custom
intersection shader:

1 [shader("intersection")] void main() {
2 Billboard b = billboards[InstanceID()][PrimitiveIndex()];
3 float3x3 tbn = GetTangentSpace(WorldRayOrigin(), b); // Eq. 28.1
4 // Transform ray to billboard coordinate space Eq. 28.3
5 float3 d_p = mul(tbn, WorldRayDirection());
6 float3 O_p = mul(tbn, WorldRayOrigin() - b.C);
7 float s = -O_p.z / d_p.z; // Eq. 28.5
8 if (s <= RayTMin()) return; // No intersection
9 float2 P_p = O_p.xy + s * d_p.xy; // Eq. 28.4
10 if(abs(P_p.x) > b.w * 0.5 || abs(P_p.y) > b.h * 0.5) return;
11 BillboardIntersectionAttributes attr; // Struct with dummy
12 ReportHit(s, 0, attr);
13 }

We observed that it was fastest to leave the intersection attributes empty and
simply recompute the important variables in the any-hit or closest-hit shader.

28.2.2 REFLECTION AND REFRACTION ARTIFACTS

After hitting a reflective surface, a ray tracer will cast a new reflected ray from
the intersection point. If we use the equations from the previous section to
compute the billboard plane, we get different billboard planes for each
reflected ray, because the ray origin is different for each ray (see Figure 28-2,
left). Thus, the reflected billboard appears curved, as shown in Figure 28-3a.

To fix this problem, we need to choose the reflected ray origin as the common
origin (Figure 28-2, right). Note that the intersection shader has access to
only the ray description but not the ray payload. Therefore, the reflected ray
should be cast from the common reflection origin and Ray.TMin has to be
adjusted accordingly, as in Listing 28-1.
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Figure 28-2. Billboard planes after a reflection, using the reflected ray origin (left) and the
corrected ray origin (right), where C is the billboard center.

Reflection Refraction

(a) Naive origin (b) Corrected origin (c) Naive origin (d) Corrected origin

Figure 28-3. Tree billboards without and with origin correction. The billboard is reflected in a
mirror in the left pair of images and placed behind a glass pane in the right pair.

Listing 28-1. Corrected ray origin (reflections).

1 float3 ipt = ray.Origin + ray.Direction * t;
2 newRay.Direction = reflect(ray.Direction, normal);
3 newRay.Origin = ipt - newRay.Direction * t;
4 newRay.TMin = t;

With this correction, we get a more plausible reflection, as shown in
Figure 28-3b. Instead of computing the intersection point ipt as in
Listing 28-1, we recommend using the technique presented by Wächter et
al. [15] to avoid self-intersections due to floating-point issues. They describe
a more precise computation for the new ray origin and also shift the origin in
the direction of the surface normal.
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Figure 28-4. Billboard behavior after a refraction. (a) What happens to the billboard plane when
new rays are cast from the new ray origins. (b) Refracted rays do not share a common origin
anymore; this visualizes the origin correction technique.

Unfortunately, a similar problem exists for refractions and transmissions.
Transmissions without an index of refraction can be handled easily by keeping
the same ray origin as before and only updating the Ray.TMin value instead of
casting a new ray from the intersection point, as depicted in Figure 28-4a.

The situation becomes more complex for refractions. As shown in
Figure 28-4b, the refracted rays do not share a common origin. We propose to
project the individual ray origins onto the ray that is perpendicular to the
intersection plane (light green ray). This way, all origins will be somewhat
similar for refractions on planar surfaces. To project the origin of a refracted
ray onto the perpendicular ray, we need to determine how far we need to
move this origin in the negative refraction direction. This amount is depicted
as t′ for the first refraction and t′′ for the second refraction. Both values can
be derived with simple trigonometry and Snell’s law (here, sinβ = sinα

n ):

t′ =
h1

sinβ
=
t1 sinα
sinβ

=
t1n sinα
sinα

= t1n,

t′′ =
h1 + h2
sinα

=
t1 sinα + t2 sinβ

sinα
=
t1 sinα + t2 sinα

n
sinα

= t1 +
t2
n
. (28.8)

The origin correction for refractions can then be expressed as in Listing 28-2.

We found that this approximation behaves well enough in practice to produce
plausible-looking impostors after a refraction (see Figure 28-3d).
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Listing 28-2. Corrected ray origin (refractions).

1 float eta = n1 / n2; // Ratio of refraction indices
2 float3 ipt = ray.Origin + ray.Direction * t;
3 newRay.Direction = refract(ray.Direction, normal, eta);
4 newRay.Origin = ipt - newRay.Direction * (t / eta);
5 newRay.TMin = t / eta;

Figure 28-5. Tree billboards reflected on ice and covered by an alpha-blended wired fence. The
right image contains the origin correction for all trees. The blue boxes mark areas of interest for
ray transmissions and the red boxes for ray reflections. Because the trees are aligned to the
y-axis, they show no noticeable artifacts for reflections on the xz-plane.

Note that impostors are only used if the object in question is far away.
Figure 28-5 shows the impostors in a more realistic scenario. The artifacts
can still be seen when looking closely at the highlighted areas, but they are
not as noticeable as before. The ray origin correction is easy to implement
and the only concern are potential precision problems for rays that travel long
distances. We, however, did not encounter any precision related problems yet.

28.3 VOLUMETRIC EFFECTS

Volumetric effects are often simulated with a particle system [12]. However,
instead of using thousands of particles to simulate realistic-looking
volumetric effects, only a few dozens of the particles are simulated in a
real-time context. Textured billboards are usually used to make up for the
missing particles. The billboard textures generally occupy a spherical region
of the billboard quad.

28.3.1 BILLBOARD PARTICLES

The particle billboards can be implemented similarly to the billboards from
Section 28.2 but with a fixed radius r = w

2 = h
2 . Because the texture only

occupies a spherical region, we can add another early-out condition to the
intersection shader:
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(a) Naive origin (b) Corrected origin (c) Soft particles (d) Spherical part

Figure 28-6. Smoke rendered close to a glass pane (top) and a broken window (bottom). (The 3D
model was created by [9].)

1 if(P.x * P.x + P.y * P.y >= b.r * b.r) return;

Problems appear when particle billboards intersect other geometry:
Figure 28-6a shows a naive implementation without the ray origin correction.
The curved artifacts behind the glass pane can be fixed with the ray origin
correction (Figure 28-6b). However, there are still some artifacts where the
billboard cuts the glass pane or any opaque object like the ground plane or
the wooden wall.

Soft particles [6] introduce an easy technique to mitigate those artifacts.
When the position on the billboard plane is close to another (non-billboard)
object, the opacity gets smoothly faded out. The original method uses a depth
prepass to determine the distance to the opaque background per pixel.
Unfortunately, this approach is not necessarily applicable in a ray tracing
context. One way to implement it here is to trace a ray that determines the
depth interval first:

1 // Determine depth range.
2 TraceRay(RAY_FLAG_SKIP_PROCEDURAL_PRIMITIVES , ray, payload);
3 ray.TMax = payload.rayTCurrent; // Set max range for particles.
4 const float rayTMin = ray.TMin; // Remember this value.
5 do { // Trace all particles.
6 TraceRay(RAY_FLAG_SKIP_TRIANGLES , ray, particlePayload);
7 alpha = CalcBillboardAlpha(particlePayload, rayTMin,ray.TMax);
8 color += transmit*alpha * CalcBillboardColor(particlePayload);
9 transmit *= (1.0 - alpha);
10 ray.TMin = particlePayload.rayTCurrent; // Prepare for next particle.
11 } while(particlePayload.isValid);
12 color += transmit * CalcTriangleColor(payload);
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Note that you can use the instance mask of TraceRay() as well to mask out
the particle geometry. CalcBillboardColor() computes the color of the
particle based on the texel color and light sources. CalcBillboardAlpha()
determines the opacity based on the texel alpha and the current distance to
rayTMin and rayTMax. It uses the contrast(x) function to smoothly fade out
the opacity when being close to other scene geometry:

1 float contrast(float x) { // Smooth gradient for x in [0, 1].
2 if(x <= 0.5) return 0.5 * pow(2.0 * x, 2.0);
3 return 1.0 - 0.5 * pow(2.0 * (1.0 - x), 2.0);
4 }
5

6 float CalcBillboardAlpha(Payload p, float rayTMin, float rayTMax) {
7 float scale = 4 / p.r; // Scaling factor (r = billboard radius)
8 float outFade = contrast(saturate((rayTMax-p.rayTCurrent)*scale));
9 float inFade = contrast(saturate((p.rayTCurrent-rayTMin)*scale));
10 return p.alpha * min(outFade, inFade); // Adjust particle opacity.
11 }

The final result is shown in Figure 28-6c. Unfortunately, there are still some
artifacts where the billboards cuts the glass pane, but they are not as
noticeable as before.

28.3.2 SPHERICAL PARTICLES

When cutting translucent objects, the artifacts can be solved completely if
another interpretation of the billboards is used. Spherical billboards [14]
interpret each billboard as a sphere with radius r instead of a viewer-oriented
quadrilateral.

Here, the opacity α gets faded out based on the distance that the ray travels
through the sphere∆s and the shortest distance to the sphere center l
(Figure 28-7):

α′ = 1 – (1 – α)
∆s
2r

(
1– l

r

)
.

(28.9)

The important variables can be calculated as follows:

t = d̂ · (C – O),

l = |O – C + td̂|,

w =
√

r2 – l2,

∆s = min(Zfar, t + w) – max(Znear, t – w). (28.10)

Next is the normal and texture coordinate calculation. Instead of projecting
the intersection onto a 2D plane to obtain texture coordinates, we took this
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Figure 28-7. A spherical billboard, where Zfar describes the distance to the first opaque object.
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(c) Ray tracing spheres

Figure 28-8. Particle textures and possible self-intersections.

opportunity to get rid of the last major artifact of traditional billboards.
Because normal billboards are viewer-oriented quads, they rotate when the
viewer moves. This means that the textures on top of the billboards rotate as
well (Figure 28-8a). To avoid this artifact, we decided to use the polar
coordinates (θ,ϕ) of the sphere in combination with a latitude-longitude
texture (see Figure 28-8b):

n̂ =
O + (t – w)d̂ – C

r
,

θ = arctan(nz, nx), ϕ = arccos(ny),

ut =
θ

2π
+ ξi, vt =

ϕ

π
. (28.11)

Note that we use only the fractional part of ut in which we added a random
offset ξi that gives each billboard a different texture rotation. The texture
derivatives are more complicated to compute for the spherical billboards. The
book Physically Based Rendering [10] explains how to evaluate ray differentials
for any given surface. In order to apply that procedure, we have to calculate
the change in surface coordinates P when moving in UV space. For our
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spheres, these derivatives evaluate to

∂P
∂ut

= 2πr

– sinϕ sin θ
0

sinϕ cos θ

 ,
∂P
∂vt

= πr

cosϕ cos θ
– sinϕ

cosϕsinθ

 . (28.12)

As these derivatives span the tangent plane of the surface at the point P, there
will be a linear combination that results in ∂P/∂x. The coefficients for this
combination are the change in the texture coordinates. The previously
described derivatives have three components, but we only want to solve for
two coefficients. Therefore, we omit the component that has the highest
contribution to the normal, which usually guarantees that the resulting 2× 2
system is uniquely solvable. We therefore define the helper function

τ :

x
y
z

 7→

(y, z)⊺ if |nx| = argmax‖n‖ ,

(x, z)⊺ if |ny| = argmax‖n‖ ,

(x, y)⊺ if |nz| = argmax‖n‖ ,

(28.13)

which is used for the following 2× 2 system:

τ

(
∂P
∂x

)
=

[
τ

(
∂P
∂ut

)
τ

(
∂P
∂vt

)](∂ut
∂x
∂vt
∂x

)
, (28.14)

which can be solved for ∂ut/∂x and ∂vt/∂x.

The intersection shader reports the foremost intersection with the sphere:

1 [shader("intersection")] void main() {
2 Billboard b = billboards[InstanceID()][PrimitiveIndex()];
3 float t = dot(WorldRayDirection(), b.C - WorldRayOrigin());
4 float l = length(WorldRayOrigin()-b.C+t*WorldRayDirection());
5 if(l >= r) return; // Ray misses the sphere.
6 float w = sqrt(b.r * b.r - l * l);
7 float rayTIn = max(RayTMin(), t - w);
8 float ds = min(RayTCurrent() /*TMax*/, t + w) - rayTIn;
9 if(ds <= 0.0) return; // Invalid depth range
10

11 BillboardIntersectionAttributes attribs;
12 ReportHit(rayTIn, 0, attribs);
13 }

The ray tracing kernel is similar to that in Section 28.3.1 because we need to
know the depth interval as well. However, as we no longer report hits on a 2D
plane but inside a sphere, we need to handle special cases to avoid potential
self-intersections.

Take a look at Figure 28-8c. After obtaining the foremost intersection from
Ray 1 with sphere S1, tracing a ray from that intersection point would result in
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a self-intersection with S1 based on our intersection shader (RayTCurrent =
RayTMin). If we ignore intersections from rays that start inside a sphere, we
would get the intersection S2 next. However, this approach would result in no
intersections for the second ray (Ray 2). Furthermore, we noticed that a
sorted composition with the OVER operator [11] is wrong when working with
deep (volumetric) samples. Duff [4] describes how to blend deep samples. A
list with all deep samples needs to be maintained to obtain the correct
solution. This, however, is too expensive in a real-time context, especially if
the maximum number of samples is unknown.

We propose a workaround for real-time applications. One way to query all
intersections in a ray interval is to use any-hit ray tracing instead of
closest-hit ray tracing. The downside of this approach is that the any-hit
shaders are not necessarily invoked in front-to-back order. However, we do
not have to worry that intersections are reported multiple times if we specify
the GEOMETRY_FLAG_NO_DUPLICATE_ANYHIT_INVOCATION when initializing the
geometry. Thus, we could use an order-independent transparency (OIT)
technique in the any-hit shader to determine the color and transmittance.

We decided to use weighted-blended OIT [8] because we are working with
many particles of similar color and transmittance. In weighted-blended OIT,
the particles are combined with the following (commutative) formula:

cf =
∑n

i=1 ciw(zi,αi)∑n
i=1 αiw(zi,αi)

(
1 – tf

)
, tf =

n∏
i=1

(1 – αi), (28.15)

w(z,α) = α clamp
(
(10(1 – 0.99znonlinear)

3), 0.01, 3000
)
, (28.16)

where ci and αi are the pre-multiplied color and opacity of each particle, cf is
the color of all particles combined, and tf is the remaining transmittance.
Note that znonlinear refers to the nonlinear transformation of z (see [8,
Equation 11]). The shader implementation for spherical billboard ray
tracing is:

1 void trace(inout float color, inout float transmit, RayDesc ray){
2 BillboardPayload p;
3 p.rayTMax = ray.TMax; // Cannot be accessed via intrinsics
4 p.colorSum = p.alphaSum = 0.0;
5 p.transmit = 1.0;
6 TraceRay(RAY_FLAG_SKIP_TRIANGLES | RAY_FLAG_SKIP_CLOSEST_HIT_SHADER , ray,

p);
7

8 if(p.transmit < 1.0) // Eq. 28.15
9 color += transmit * (p.colorSum / p.alphaSum)
10 * (1.0 - p.transmit);
11 transmit *= p.transmit;
12 }
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13 [shader("anyhit")]
14 void anyHit(BillboardPayload p, BillboardIntersectionAttributes){
15 float4 c = GetBillboardColor(p.rayTMax);
16 // Do color accumulation as in weighted-blended OIT.
17 float weight = w(RayTCurrent(), c.a); // Eq. 28.16
18 p.colorSum += c.rgb * weight;
19 p.alphaSum += c.a * weight;
20 p.transmit *= (1.0 - c.a);
21 IgnoreHit(); // Keep any-hit traversal going.
22 }

Notice how the trace() function only traces a single ray to capture all
fragments in the specified ray interval. The final result can be seen in
Figure 28-6d. Finally, no more artifacts are visible when intersecting other
scene geometry.

28.4 EVALUATION

28.4.1 PERFORMANCE

Billboards implemented with procedural primitives (axis-aligned bounding
boxes) are significantly slower than their baked triangle representation. This
is mainly because the built-in triangle intersection test is faster than a
custom intersection shader call. We measured that procedural billboards
result in up to 40% longer rendering times [2, p. 43]. We recommend creating
an additional ray tracing acceleration structure that contains the
camera-oriented billboards in their triangle representation. This additional
acceleration structure should be used for primary rays, or rays that were
affected by little refraction and no reflection.

Table 28-1 shows that our spherical particles are faster than our soft
particles. This is due to any-hit ray tracing being used for spherical particles
instead of closest-hit ray tracing. For a fair comparison, we included times for
a soft particles variant that uses weighted-blended OIT with any-hit ray
tracing. Here, the spherical particles are slower because they are more
complex to compute. Note that our soft particles become faster when the
opacity of each particle increases, which allows termination of the ray early in
closest-hit ray tracing.

28.4.2 LIMITATIONS

For planar surfaces, our ray origin correction produces correct billboards
after reflections and also gives a good approximation for refractions.
However, it does not always produce the expected results for curved surfaces
(see Figure 28-9). Here, the billboard refraction can be corrected by using the
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Particle Soft Particles Soft Particles Spherical
Count OIT Particles

No Shad. Shadow No Shad. Shadow No Shad. Shadow
0 0.6 ms 0.6 ms 0.8 ms 0.8 ms 0.8 ms 0.8 ms

100 3.0 ms 9.2 ms 1.4 ms 7.0 ms 1.4 ms 7.6 ms
1000 8.7 ms 22.4 ms 2.4 ms 16.7 ms 2.8 ms 18.6 ms

10,000 26.6 ms 55.2 ms 5.9 ms 46.2 ms 7.2 ms 50.7 ms

Table 28-1. Smoke cloud rendered with ray traced soft particles, soft particles using
weighted-blended OIT, and spherical particles. The table lists the rendering times for 0 to 10,000
particles without and with ray traced shadows (top figures are made with 100 particles, bottom
figures with 10,000 particles). All times are in milliseconds and recorded on an NVIDIA RTX 2080 TI
graphics card.

ray origin of the primary ray for the billboard-normal computation. However,
because the primary ray origin is not necessarily a point on the refracted ray
(as shown in Figure 28-4b), this information cannot be encoded in the ray
itself. As the ray payload is inaccessible from the intersection shader, the only
place to store such information is a potentially slow global memory buffer.
However, because the artifacts in Figure 28-9 are only noticeable because
large billboards are placed very close to a reflective or refractive object, a
more precise correction does not appear to be necessary in typical situations.

28.5 CONCLUSION

We presented an easy way to adapt different kinds of billboards for ray tracing
and mitigated possible artifacts.

The origin correction presented in Section 28.2 handles artifacts that occur
when billboards are placed close to a reflective or translucent object.
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Figure 28-9. (a) The scene setup for the current row. (b) The scene rendered for a billboard with a
naive ray origin. (c) Our origin correction. (d) Rendering with the reference quad.
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Although this correction can be negligible for impostors, as they are usually
drawn at a very small size, the origin correction is of high significance when
rendering billboard particles behind translucent objects (see the circular
artifacts in Figure 28-6a).

The soft particles technique prevents hard cuts with other scene geometry.
However, due to the contrast function, there are still some artifacts when a
particle intersects with translucent objects (see Figure 28-6c).

Finally, we presented the adaptation of spherical billboards for ray tracing.
Even though we had to improvise to blend multiple particles, the final result
looks fine and does not contain artifacts when billboards cut through
translucent objects (see Figure 28-6d). In the future, we would like to replace
weighted-blended OIT with another technique that can handle a broader
range of materials.

The prototype was written with Falcor [1]. Code samples are available at the
book’s source code website and the full project with all scenes can be found at
https://github.com/kopaka1822/Falcor/tree/billboards.
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CHAPTER 29

HYBRID RAY TRACED AND
IMAGE-SPACE REFRACTIONS
Daniel Parhizgar and Marcus Svensson
Avalanche Studios

ABSTRACT

With the recent release of inline ray tracing, it is possible to traverse and
register ray hits inside a pixel shader. This allows for convenient
implementation of ray tracing into past rasterization algorithms and possibly
improve on their limitations. One such rasterization algorithm is image-space
refractions, which are used for approximating refractions in real time.
Image-space refractions are limited in that they can be highly inaccurate
when refracting through concave objects containing more than two surface
layers. This chapter combines image-space refractions with inline ray tracing
into a hybrid method that overcomes such limitations and generates more
realistic refractions. The results are closer to fully ray traced images, but
using fewer rays. By replacing some rays with image-space refractions, our
hybrid method improves rendering speed as compared to pure ray traced
refractions.

29.1 INTRODUCTION

The use of image-space methods to simulate refractions through two
surfaces in real time was first presented by Wyman [6]. This approach of
computing refractions in a rasterizer could produce results close to ray
tracing, but was limited to closed surfaces containing two depth layers. Since
then, Wyman [7] proposed a method to achieve proper ray intersections with
geometries located in the background, and Davis and Wyman [2] presented a
solution for the total internal reflection phenomenon.

Krüger et al. [4] suggested using depth peeling [3] to extract multiple layers
into depth buffers. This allowed handling refractions through more than two
depth layers. However, this approach was not extensively evaluated in the
context of image-space refractions. Also, their work includes an optimization
for computing a ray intersection using a lookup in the next depth layer to
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reduce the number of texture accesses. Unfortunately, when using depth
peeling for refraction, this simplification does not work properly on certain
concave objects such as a donut [1].

With the introduction of inline ray tracing to DirectX Raytracing (DXR) Tier 1.1,
it is possible to start the ray tracing process for small tasks inside the pixel
shader. This allows implementing ray tracing into any existing
rasterization-based algorithms, such as image-space refractions, and
potentially eliminates some of their limitations.

This chapter presents a hybrid refraction method that combines image-space
refractions with inline ray tracing for fast and realistic refraction computation
through a refractive object. This hybrid method provides a solution for
refractions through more than two depth layers, a feature not supported by
pure image-space refractions. The refractions are computed inside a pixel
shader along with inline ray tracing. In comparison to pure ray traced
refractions, our hybrid method achieves faster rendering with visually close
results by reducing the number of rays required for resolving the refractions
(Figure 29-1).

29.2 IMAGE-SPACE REFRACTIONS

The original image-space refraction method [6] uses a prepass for rendering
backfacing surface depth and normals into textures. This is accomplished by
simply reversing the depth test. These textures are then sampled during
rendering to retrieve information about the refractive object’s backfacing
surface layer and perform refractions there.

In a pixel shader, one has access to the fragment position P1, the surface
normal n1, and the incoming view direction v. With these vectors and the ratio
of the refractive indices η, the refraction direction t1 for the first refraction
event can be calculated using the HLSL function refract(). This refraction
direction is then used for approximating the hit point P2 on the backfacing
surface using

P2 ≈ P1 + d̃ t1, (29.1)

where d̃ is the approximated distance to the backfacing surface. Here, d̃ can
be taken as the difference between the current depth at position P1 and the
depth value in the backfacing depth texture at the same pixel. Though d̃ is an
inaccurate travel distance for a refraction ray inside the object, it provides a
measure of the object’s thickness. Therefore, it can be an acceptable
approximation for the travel distance.
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0.67 ms
(a) Ray tracing: one ray

1.27 ms
(b) Ray tracing: two rays

1.58 ms
(c) Ray tracing: three rays

0.07 ms
(d) Image-space reference

0.92 ms
(e) Hybrid: two post-rays

1.30 ms
(f) Hybrid: two pre-rays

Figure 29-1. Comparison of (a–c) ray traced refractions, (d) image-space refractions, and
(e–f) our hybrid refractions with post- and pre-rays. Using ray traced refractions, three rays are
needed in this case to resolve the refractions of the glass. Our hybrid method with two pre-rays
produces visually similar results to ray tracing with three rays.

After P2 is approximated, it is projected onto the backfacing normal texture,
where a normal n2 is sampled. Using the refract() function again, this time
with values n2 and t1, produces the second refraction direction t2 at the
backfacing surface layer of the object. Then, t2 is used for sampling an
environment texture, and the final color value is retrieved. This way, refraction
through the two depth layers of an object is approximated without tracing rays
(see Figure 29-2).

29.3 HYBRID REFRACTIONS

The idea with hybrid refractions is to add ray tracing to image-space
refractions. There are two options here: the first is to perform ray tracing
before the image-space refractions, and the second is to perform ray tracing
after the image-space refractions. We refer to these two options as pre-rays
and post-rays, respectively. There are benefits as well as disadvantages with
both options.
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n1

n2

t2

t1

vP1

P2

Figure 29-2. In a pixel shader, the incident vector v, the normal n1 and the position P1 are already
known for each pixel. Using these, the transmitted or refracted vector t1 can be computed. The
unknown variables, position P2 and normal n2, are retrieved by projecting t1 onto the backfacing
surface textures. Once these are calculated, a second refraction can be performed [6].

29.3.1 HYBRID REFRACTIONS WITH PRE-RAYS

With the pre-rays option, ray traced refractions are added to the image-space
method after the first refraction direction t1 has been calculated using the
HLSL function refract(v1,n1, η). Then, we begin computing a user-defined
fixed number of refraction events using ray tracing. After the ray tracing part
is done, the final refraction event is performed using the image-space
approach. The final ray hit position Pi is projected onto the backfacing depth
texture. The last refraction distance d is approximated as the difference
between the depth value at Pi and the backfacing depth texture value that
corresponds to the pixel position of Pi.

The image-space refraction at the end accounts for a single refraction event.
However, this final refraction takes place at the backfacing surface of the
object, skipping any remaining intermediate levels. Therefore, the resulting
refractions include the backfacing surface detail, even when the number of
refraction events we handle would not be sufficient to reach the backfacing
surface with pure ray tracing.

29.3.2 HYBRID REFRACTIONS WITH POST-RAYS

The idea of the post-rays method is to perform the image-space refractions
first and do the ray tracing later. In this case, the image-space approach is
used for computing the refractions through the second surface layer of the
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object, instead of the last layer (i.e., the backfacing surface of the object) used
by the pre-rays option. Therefore, the normal and depth textures store the
second surface layer, instead of the backfacing surface (i.e., the last) layer. In
order to render the second layer’s depths and normals into the textures, we
simply use frontface culling (instead of reversing the depth test, which is done
with pre-rays).

29.3.3 PRE-RAYS VS. POST-RAYS

With the post-rays option, any inaccuracies in image-space refractions occur
earlier. Therefore, such errors are more likely to lead to visual artifacts in the
final image. Because the second layer depth and normals are stored in
textures, the backfacing surface detail could be missing in the resulting
refractions, if the ray traced refractions cannot reach the backfacing surface.
This happens when too few post-rays are used. Another potential artifact with
the post-rays option can occur when the image-space projection is supposed
to have ended on the backfacing surface, but at that position the second layer
normal texture is sampled from, which causes a faulty refraction. The
significance of these inaccuracies depends on the object shape and the
view angle.

Both options in our hybrid refractions can handle up to a fixed number of
refraction events per pixel. If certain pixels require fewer refraction events,
the pre-rays option ends up skipping the image-space refraction computation
and the post-rays option skips computing some rays. Therefore, the post-rays
option can provide additional reductions in ray traversal computation for
some pixels, thereby achieving faster render times.

The saving in speed can make the post-rays option favorable in certain
situations. When computing refractions in most graphics applications, as long
as there is some form of plausible refractive distortion, it can be sufficient to
produce believable results. Therefore, the inaccuracies of the post-rays
option may not be an important problem, as it is difficult to guess how
physically accurate refractions are supposed to look in many cases. Also, it
can still handle refractions through multiple surfaces, providing improved
fidelity over pure image-space refractions.

29.4 IMPLEMENTATION

The hybrid refractions method starts by performing the first refraction event,
which is always handled without ray tracing:
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1 float3 HybridRefractPreRays() {
2 float3 V = FragmentWorldPos - CameraPos;
3 float3 P1 = FragmentWorldPos;
4 float3 N1 = SurfaceNormal;
5 // Ratio between indices of refraction
6 float refr_ratio = index_air/index_glass;
7 float3 T1 = refract(normalize(V), normalize(N1), refr_ratio);

After the first refraction, using the pre-rays option, ray traced refractions with
a fixed recursion depth begin. This is where inline ray tracing is used.
Documentation and code examples for inline ray tracing can be found on the
DXR Functional Spec GitHub page [5].

8 RayQuery<RAY_FLAG_CULL_NON_OPAQUE |
9 RAY_FLAG_SKIP_PROCEDURAL_PRIMITIVES > rq;
10

11 RayDesc ray;
12 ray.Origin = P1;
13 ray.Direction = T1;
14 ray.TMin = 0.001;
15 ray.TMax = 100;
16

17 for (int i = 0; i <= max_depth; ++i)
18 {
19 rq.TraceRayInline(AccelerationStructure , 0, ~0, ray);
20 rq.Proceed();
21

22 if (rq.CommittedStatus() == COMMITTED_TRIANGLE_HIT)
23 {
24 RayInfo ray_info =
25 RayInstancesBuffer[rq.CommittedInstanceID()];
26

27 if (Refractive surface was hit)
28 {
29 float3 normal = CalculateSurfaceNormal(
30 ray_info,
31 rq.CommittedTriangleBarycentrics(),
32 rq.CommittedPrimitiveIndex(),
33 rq.CommittedObjectToWorld3x4()
34 );
35

36 float3 hit_position = ray.Origin + normalize(ray.Direction)*rq.
CommittedRayT();

37 if(Final backfacing surface was hit)
38 {
39 float3 dir = refract(normalize(ray.Direction), normalize(-normal),

index_glass/index_air);
40 dir = CheckForTotalInternalReflection();
41 float3 color = ProjectToColorTexture(hit_position + dir);
42 return color;
43 }
44

45 if (dot(normalize(normal), normalize(ray.Direction)) < 0)
46 {
47 refr_ratio = index_air/index_glass;
48 }
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49 else
50 {
51 // A backfacing surface has been hit;
52 // normal and refr_ratio have to adjust.
53 normal *= -1;
54 refr_ratio = index_glass/index_air;
55 }
56

57

58 RayDesc newRay;
59 newRay.Direction = refract(normalize(ray.Direction), normalize(

normal), refr_ratio);
60 // Check for total internal reflection.
61 if (abs(newRay.Direction) < 1e-6)
62 {
63 newRay.Direction = reflect(normalize(ray.Direction), normal);
64 }
65

66 newRay.Origin = hit_position;
67 newRay.TMin = 0.001;
68 newRay.TMax = 100;
69

70 ray = newRay;
71 continue;
72 }
73 else
74 {
75 // A non-refractive surface has been hit.
76 // Sample the resulting color from the environment map.
77 float3 hit_position = ray.Origin + ray.Direction*rq.CommittedRayT();
78 return ProjectToColorTexture(hit_position);
79 }
80 }
81 else if (rq.CommittedStatus() == COMMITTED_NOTHING)
82 {
83 // Miss shader
84 return ProjectToColorTexture(ray.Origin);
85 }
86 }

After the ray tracing part is done, the distance d̃ is computed and the current
ray position is projected onto the backfacing normal texture, so that the final
refraction can be computed. On line 93 in the following code, an if-statement
tests whether the last ray ended on the backfacing surface of the object. This
is performed by simply comparing the magnitude of the distance d̃ to zero (or
a small epsilon). When the last ray is on the backfacing surface, it means that
pre-rays have completely resolved the refraction and there is no need for an
image-space refraction step.

87 float uv = ConvertToUV(ray.Origin);
88 float3 back_pos = BackFacingPosTexture.Sample(uv);
89 float d = distance(back_pos, ray.Origin); // Compute distance d.
90 float3 T2 = ray.Direction;
91 float3 P2 = ray.Origin;
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92

93 if(abs(d) > 1e-6)
94 {
95 P2 = ray.Origin + d * ray.Direction;
96 // Project and sample N2.
97 float3 N2 = ProjectToBackFacingNormalTexture(P2);
98

99 refr_ratio = index_glass/index_air; // Swap indices of refraction.
100 T2 = refract(normalize(ray.Direction), normalize(-N2), refr_ratio);
101

102 // Check for total internal reflection.
103 if (abs(T2) < 1e-6)
104 {
105 T2 = reflect(normalize(ray.Direction), normalize(-N2));
106 }
107 }
108

109 float3 P3 = P2 + T2;
110 float color = ProjectToColorTexture(P3);
111 return color;
112 }

The implementation of the post-rays option is similar. The main difference is
that it starts with image-space refraction, instead of ray tracing. Also, there is
no way to check if the image-space refraction ends up on the backfacing
surface, so at least one ray is always computed with the post-rays option.

1 void HybridRefractPostRays()
2 {
3 // Perform image-space refraction first.
4 // Store resulting position and direction in a structure.
5 RayDesc ray = ImageSpaceRefract();
6 // Use that structure as the starting point for ray traced refractions.
7 RayTraceRefract(ray);
8 }

29.5 RESULTS

We present comparisons of different refraction computation methods with
two different models in Figures 29-1 and 29-3. All timings are computed on a
computer with an Intel i7-8700K CPU with 3.7 GHz, 32.0 GB RAM, and an
NVIDIA GeForce RTX 2070 SUPER graphics card. The reported timings are the
mean values of the five executions, and they include the precomputation time
for image-space refractions. The screen resolution was set to 1920× 1080
pixels.

As can be seen in Figure 29-1, ray tracing can compute proper refractions, but
it requires a certain number of rays per pixel to fully resolve them. Using only
one or two rays per pixel, refractions through the backside of the glass are
missing (Figures 29-1a and 29-1b). Fixing the refractions through the
backfacing side requires at least three rays (Figure 29-1c).
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2.18 ms

(a) Ray tracing: three rays

2.77 ms

(b) Ray tracing: four rays

2.85 ms

(c) Ray tracing: five rays

0.06 ms

(d) Image-space reference

1.47 ms

(e) Hybrid: two post-rays

1.58 ms

(f) Hybrid: two pre-rays

ms

(g) Refraction rays

1.95 ms

(h) Hybrid: three post-rays

2.21 ms

(i) Hybrid: three pre-rays

Figure 29-3. Comparison of (a–c) ray traced refractions, (d) image-space refractions, and
(e,f,h,i) our hybrid refractions with post- and pre-rays, along with (g) a visualization of the number
of rays needed to fully resolve the refractions of each pixel with ray tracing.

Our hybrid refractions with two pre-rays (Figure 29-1f) produces visually
indistinguishable results from ray tracing with three rays per pixel
(Figure 29-1c), but with a reduction in render time. Our hybrid refractions
with two post-rays reduces the render time even further (Figure 29-1e), but
there are small visual differences near the edges of the glass.
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Refractions through a modified Utah teapot model with a thin surface and
hollow interior are presented in Figure 29-3. Again, the results show faster
render times using hybrid refractions with the post-rays option, as compared
to the pre-rays option. The post-rays option, however, has missing details or
significant deviations from the pure ray traced refractions on parts of the
teapot: on the lid, near the silhouettes, and where the spout joins the body
(Figures 29-3e and 29-3h). Hybrid refractions with pre-rays always includes
refraction details due to the backfacing surface, even when too few rays are
used, such as the part of the handle that joins the body visible in Figure 29-3f.
As expected, using more rays (Figure 29-3i) produces closer results to pure
ray tracing.

Though both hybrid options were always faster than pure ray traced
refractions, the speed improvement with the pre-rays option is reduced as the
fixed pre-ray count is increased. This is because, as the pre-ray count
increases, fewer pixels perform image-space refraction, as the refractions
are resolved prior to the image-space refraction step. The post-rays option,
however, always performs image-space refractions, regardless of the fixed
post-ray count. Therefore, it maintains its speed improvement with increasing
post-ray count.

The image-space refractions method requires only a fraction of the render
time, as compared to all other methods, because it does not use any ray
tracing. However, it cannot handle refractions through multiple layers
correctly (Figures 29-1d and 29-3d). The refractions on the glass and teapot
are completely different than the ones produced by all other methods.

29.6 CONCLUSION

In this chapter, we presented how inline ray traced refractions can be
integrated with image-space refractions in order to create two variations of a
hybrid method. Our hybrid refractions method uses ray tracing either after
(post-rays) or before (pre-rays) the image-space refractions. Both variations
have their uses: the post-rays option is faster, whereas the pre-rays option is
more realistic. The visual results of the pre-rays option come close to
refractions computed with pure ray tracing using more rays per pixel. Also,
our hybrid method addresses an important limitation of the image-space
refractions approach by properly handling multi-layer refractive objects.
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CHAPTER 30

REAL-TIME RAY TRACED
CAUSTICS
Xueqing Yang and Yaobin Ouyang
NVIDIA

ABSTRACT

We present two real-time ray tracing techniques for rendering caustic effects.
One focuses on the caustics around metallic and transparent surfaces after
multiple ray bounces, which is built upon an adaptive photon scattering
approach and can depict accurate details in the caustic patterns. The other is
specialized for the caustics cast by water surfaces after one-bounce
reflection or refraction, which is an enhancement of the algorithm of caustics
mapping, highly fluidic in sync with the water ripples, and able to cover large
scene areas. Both techniques are low cost for high frame rate usages, fully
interactive with dynamic surroundings, and ready-to-use with no data
formating or preprocessing requirements.

30.1 INTRODUCTION

Caustics are commonly seen phenomenon in scenes containing water,
metallic, or transparent surfaces. However, in most of today’s real-time
renderers, they are either ignored or roughly handled using tricks like decal
textures. Although objects casting caustics may only occupy a small portion
of the screen in most cases, the delicate optical patterns are very challenging
to simulate with a limited time budget. Fortunately, the arrival of GPU ray
tracing brings out the possibility of performing photon mapping [6]—the most
efficient technique for simulating caustics so far—in real time to accurately
rendering these effects.

Noticeably, in the book Ray Tracing Gems, Hyuk Kim [7] proposed a simple
scheme to execute photon mapping in real time: tracing photons through the
scene, blending them directly onto a screen-space buffer, and then applying a
spatial denoiser to obtain the final patterns. Albeit easy to implement, the
method uses a fixed resolution for photon emission with uniform distribution,
which limits its application for large-scale scenes, and the blend-denoise
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Figure 30-1. Screenshots of real-time ray traced caustics. Top: the classic “POV-Ray glasses”
(courtesy of Gilles Tran). The caustics and glass meshes are ray-traced up to 12-bounce refraction
and reflection. Bottom: the undersea water caustic effect from the game JX3 HD Remake
developed by Kingsoft Seasun Studio.

process is prone to exhibit either blurry or noisy results. In the same book,
Holger Gruen [4] showed an improved caustics mapping algorithm for
underwater caustics, which traced photons from a rasterized water mesh and
reconstructed the lighting in screen space. Although being able to eliminate
most artifacts in some earlier attempts of rendering underwater caustics, the
algorithm still cannot produce sharp but noise-free caustic patterns.

To simulate high-quality caustics in real time by utilizing GPU ray tracing (see
Figure 30-1), we present two techniques in this chapter:

1. Adaptive Anisotropic Photon Scattering (AAPS): The AAPS technique
presented in Section 30.2 is for generating caustics around
high-polished metallic and transparent objects. It facilitates traditional
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forward photon tracing with photon differentials [5, 10], an anisotropic
approach to obtain finer scattering quality and higher efficiency. In
addition, inspired by [1, 3, 11], the technique handles photon emission
adaptively to generate highly detailed caustic patterns in local regions
and to maintain temporal stability. A soft caustic algorithm for area light
sources is also provided.

2. Ray-Guided Water Caustics (RGWC): The RGWC technique presented in
Section 30.3 is for creating caustics above and under water surfaces. It
is a continuation of Gruen’s work [4] and improves it over several
aspects: intensifying the optical details in water caustic by applying
photon difference or procedural meshes; supporting most light types
and their relevant properties, including textured area lights; being able
to cover vast scene regions through cascaded caustics maps; and being
flexible on performance-quality trade-off with user-controlled
bias-variance preference.

30.2 ADAPTIVE ANISOTROPIC PHOTON SCATTERING

The AAPS method simulates caustics by revamping some techniques from
photon splatting, a category of light propagation methods that is a variation of
classic photon mapping. In the previous GPU-based method [8], photons are
shot and drawn as isotropic particles. AAPS modifies these particles to
project elliptical footprints by evaluating photon differentials during
hit-bounce time, and then invoking the rasterization pipeline to draw them
against the scene depth with additive blending. Such an anisotropic setup can
significantly save the bandwidth and bring superior details.

Besides the anisotropic photon setup, our algorithm has two additional
novelties:

> A negative feedback loop to distribute photons adaptively into the
important areas, i.e., regions close to the camera or parts of the screen
where the outcome exhibits temporal instability.

> “Soft caustics” cast by area light sources, which is done by modifying
photon differential information at the emission stage.

The algorithm maintains the following buffers:

> Task buffers: A set of buffers for guiding the photon emission in the
current frame, including the quadtree buffer and the light ID buffer
(Section 30.2.1).
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> Photon buffer: A structured buffer recording photon data, including hit
position, photon footprint, and intensity.

> Feedback buffers: A couple sets of textures in the light space for tracking
feedback information, including the average screen-space area of
photon footprints, caustics variance, and ray density (Section 30.2.3).

> Caustics buffer: A render target for splatting photons in the screen space.

The workflow is executed in four steps (see Figure 30-2):

1. Emit photons according to the task buffers and trace them through the
scene. For any photon hitting an opaque surface, create a record in the
photon buffer and add its footprint area to the feedback buffers.

2. Perform photon scattering (splatting) on the caustics buffer: each
photon in the photon buffer is drawn as an elliptical footprint against the
scene depth. The shape and intensity of the footprint are calculated from
photon differentials and the surface normal, respectively.

3. Apply the caustics buffer to the scene, which is usually done by
accessing the scene attributes in the G-buffer and performing a deferred
lighting pass.

4. Combine the feedback buffers of the previous frame and the current
frame to generate the task buffers for the next frame.

1

2

Caustics Buffer

Back Buffer

Camera

3

Photons Photon Buffer

Task Buffer

Feedback Buffers
4

Figure 30-2. The AAPS workflow. The numbered circles relate to the numbered list in the text.

472



CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

In the rest of this section, we first elaborate these four steps in detail
(Sections 30.2.1–30.2.3) and describe two approximating methods for
simulating dispersion (Section 30.2.4) and soft caustics (Section 30.2.5),
respectively. Then, we show our results and the performance tests in typical
applications and give some guidance on optimizing performance
(Section 30.2.6). Finally, we discuss the algorithm’s limitations
(Section 30.2.7) and present extended usages (Section 30.2.8).

30.2.1 PHOTON TRACING

To implement adaptive photon emission, we maintain a 2D texture called the
ray density texture to guide photon distribution, in which all light sources’
light-space views are tiled together to track the per-pixel ray count that
should be traced (Figure 30-3). The texture is then expanded into a sequence
of global ray IDs for photon emission that are placed in a 1D buffer called the
quadtree buffer, in which a quadtree is constructed for accelerating queries
and is updated every frame. An additional 2D texture called the light ID buffer
is also created for light source lookup.

During photon tracing, each ray generation shader thread is dispatched to
trace one ray from one of the light sources. The light source ID and the ray’s
location in the ray density texture are obtained by querying the quadtree
buffer, and the ray’s origin or direction is determined by the location mapped
to one of the light spaces. Figure 30-4 shows an example of this searching
process: First, the shader thread searches for the ray’s location, starting from
the top of the tree and traversing down to the leaf node whose ID range

10 9 5

4 3 17

1 5 12

Ray Density Ray Footprints

Figure 30-3. The ray density texture in light space. Left: the per-pixel ray count in the ray density
texture. Middle: visualized ray distribution and initial photon footprint size derived from ray
density. For each pixel, we set the ray count to the nearest square number less than the number
of rays. Right: shooting rays according to the samples’ locations in the texture.
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3 13

20 41

4 8

12 13

Task ID = 11

3 13 20 41 4 8 12 13

Quadtree Buffer

Ray Footprint

L0 L1

L2
L3 L4

Light ID Buffer

Figure 30-4. An example of the ray query process: In the quadtree buffer, each quadtree node’s
ID equals the highest ray ID inside its subtrees, and the ray count in the subtree equals its ID
subtracted by its previous sibling’s. For a thread with task ID 11, the ray generation shader starts
searching from four subtrees 3, 13, 20, and 41 containing 4, 10, 7, and 21 rays, respectively; then,
it traverses into subtree 13, which contains four subtrees 4, 8, 12, and 13; finally, it traverses into
subtree 12 to find the matching ray ID 11. The 2D location of ray ID 11 is then used for retrieving
the light source data from the light ID buffer and generating the UV parameters to sample the
light source.

contains the thread ID. Then, it uses the location to look in the light ID buffer
and find out which light source to sample, and it calculates the UV parameters
and transforms the location into the light space. Finally, the thread computes
the initial size of the photon footprint from the ray density at that position and
then sets up a ray to trace the photon. The quadtree query code looks as
follows:

1 // taskId is calculated from thread ID.
2 // sampleIdx is the task offset inside current quadtree node.
3 uint2 pixelPos = 0;
4 uint sampleIdx = taskId;
5 uint4 value = RayCountQuadTree[0];
6

7 // Discard threads that don't have a task.
8 if (taskId >= value.w)
9 return;
10

11 // Traverse quadtree.
12 for (int mip = 1; mip <= MipmapDepth; mip++)
13 {
14 pixelPos <<= 1;
15 if (sampleIdx >= value.b)
16 {
17 pixelPos += int2(1, 1);
18 sampleIdx -= value.b;
19 }
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20 else if (sampleIdx >= value.g)
21 {
22 pixelPos += int2(0, 1);
23 sampleIdx -= value.g;
24 }
25 else if (sampleIdx >= value.r)
26 {
27 pixelPos += int2(1, 0);
28 sampleIdx -= value.r;
29 }
30 // Calculate linear index based on mipmap level and pixel position.
31 int nodeOffset = GetTextureOffset(pixelPos, mip);
32 value = RayCountQuadTree[nodeOffset];
33 }
34

35 // lightInfo = {light ID, range, anchor point X, anchor point Y}
36 uint4 lightInfo = LightIDBuffer.Load(int3(pixelPos, 0));
37 // Get pixel size from ray density texture.
38 float2 pixelSize; uint2 lightAtlasCoord;
39 GetRaySample(pixelPos, sampleIdx, lightAtlasCoord, pixelSize);
40 // Calculate light UV for ray configuration and delta UV for footprint.
41 float2 lightUV = (lightAtlasCoord - lightInfo.zw) / lightInfo.y;
42 float2 deltaUV = pixelSize / lightInfo.y;

Tracking the photon footprints during the ray tracing is done by estimating
photon differentials [10]. Supposing a ray shot from a light has two positional
parameters p = p(u, v) in the case of a directional light source, or two
directional parameters d = d(u, v) in the case of a point light, the photon’s hit
position p′ after the ray tracing is determined by all parameters p′ = p′(u, v).
The algorithm generates two small perturbations for each ray, updates them
using the chain rule when the photon hits a surface, and uses the
perturbations of photon position∆p′ to determine the new size of the photon
footprint:

∆p′ =
∂p′

∂u
∆u +

∂p′

∂v
∆v. (30.1)

The photon differentials are evaluated in closest-hit shaders. Once reaching a
visible, opaque, and rough surface, the photon’s attributes are recorded in the
photon buffer, including the hit position, intensity, incident direction, and final
footprint, which is determined by the partial derivatives ∂p′/∂u and ∂p′/∂v at
the last hit point.

30.2.2 PHOTON SCATTERING

In the photon scattering step, we construct the photon footprints as
quadrilaterals based on their differentials and then draw them into the
caustics buffer using additive blending. During the rendering, each footprint’s
lighting result is computed by the photon’s intensity, incident angle, and
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Figure 30-5. Mesh caustics cast on a glossy surface. A GGX shading pass is performed for each
photon footprint.

surface attributes at the hit point retrieved from the G-buffer. Figure 30-5
shows an example in which the caustics are cast on a glossy surface, where
the incident angle and intensity from the photon, the local geometry, and the
material information from the G-buffer are collected to perform a GGX
shading pass.

After photon scattering, a compute shader back-projects the current screen
pixels to the previous frame to calculate the caustics variance between the
two frames, and it stores the result in the alpha channel of caustics buffer.
The variance values are used for ray density calculation, which is a part of the
feedback mechanism (described in the next section).

30.2.3 FEEDBACK BUFFERS

The AAPS technique features a mechanism of a negative feedback loop to
determine the photon distribution adaptively. At its core, a couple of textures,
together called feedback buffers, are placed in the light spaces and updated in
each frame to evaluate the spatiotemporal importance of the traced photons
(Figure 30-6).

The projected area texture contains the average screen-space area of the
photon footprints. At the end of photon tracing, each photon’s final footprint is
calculated and its area in the screen space is added to the light-space location
in this texture where the photon was emitted.
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Photon
Buffer

Caustics
Buffer

Screen Space

Projected Area

Caustics Variance

Ray Density

Feedback Buffers (Light Space)

Figure 30-6. The mechanism of feedback buffers. Top left: at the end of the photon tracing stage,
each photon footprint’s screen-space area is calculated and added to the projected area texture in
light space. Bottom left: the caustics variance between the current and previous frames is stored
in the caustics buffer. At the end of the photon tracing stage, each photon samples variance from
the caustics buffer and accumulates it into the caustics variance texture in light space. Right: the
projected area and caustics variance are combined to generate the ray density.

The caustics variance texture contains the average color variance of the
screen-space pixels covered by the photons. At the end of photon scattering,
each photon collects the variance value from the caustics buffer’s alpha
channel at its footprint’s center and writes the value into the pixel of this
texture where the photon was emitted. This looks as follows:

1 // At the end of photon tracing, calculate screen-space coordinates and
footprint area.

2 float3 screenCoord;
3 float pixelArea = GetPhotonScreenArea(photon.position, photon.dPdx, photon.

dPdy, screenCoord);
4 // Read variance value from caustics buffer.
5 float variance = GetVariance(screenCoord);
6 // Write feedback buffers; lightAtlasCoord is the 2D coordinate in light

space.
7 uint dummy;
8 InterlockedAdd(ProjectedArea[lightAtlasCoord], uint(pixelArea), dummy);
9 InterlockedAdd(Variance[lightAtlasCoord], uint(variance), dummy);
10 InterlockedAdd(PhotonCount[lightAtlasCoord], 1, dummy);

The ray density texture is computed for the next frame by combining the two
previous textures to compute a suggested ray density, which is used as a
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Figure 30-7. Comparison of target projected area of photon footprint set to 20 (upper left) and 80
(upper right). The second row shows the point visualization of the photons. Detailed caustics
patterns are well captured without apparent noise.

guide for the per-pixel ray count:

d′ = d
a
at

+ vg, (30.2)

where d′ is the suggested ray density, d is the previous ray density, a is the
average screen-space projected area, at is the target projected area, v is the
caustics variance, and g is the variance gain. In order to create sharper
details, we can set at to a smaller value to restrict photon size (Figure 30-7
shows a comparison between two at values); and to suppress temporal
flickering, we can set g to a higher value.

Applying d′ directly for subsequent usage may cause the small local features
to be unstable if the change is too steep. To avoid this, we filter d′ by blending
with the neighboring pixels’ current ray density:

dfinal = wtd′ + (1 – wt)
∑

i widi∑
i wi

, (30.3)

where dfinal is the final ray density, d′ is the suggested ray density, the di are
the current ray densities of the pixel and its neighbors, and wt and wi are
temporal and spatial weights, respectively, which should be set between 0
and 1. A higher value of wt enables faster updates but less stable results.
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Figure 30-8. Light dispersion though prisms.

30.2.4 DISPERSION

Accurately simulating light dispersion (as shown in Figure 30-8) requires
computing spectral ray differentials, as done by Elek et al. [2], plus the
emission spectrum of light sources and the absorption spectrum of
materials. To avoid such complicated input data and huge computational cost,
we employ a perturbation-based approach instead.

First, at each refraction point, an index of refraction (IOR) perturbation is
calculated based on the thread ID:

∆i = 2
tmod sd
sd – 1

– 1, (30.4)

where∆i is the IOR perturbation in the range [–1, 1], t is the thread ID, and sd
is the number of separated monochromatic colors. In Figure 30-9a, sd is set
to 7, thus the white light is split into seven monochromatic colors. Then,∆i is
applied to modify the IOR and generate the refraction ray.

Next, at the end of the photon tracing stage,∆i is used for calculating the
modulation color. The RGB triplet of modulation weights can be computed by

Cf = saturate
(
–∆i,wg(1 – |∆i|),∆i

)
, (30.5)

where Cf is the modulation color in RGB channels and wg is the weight factor
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(a) Seven color bands (b) Jittered IOR perturbation

Figure 30-9. Monochromatic color separation: (a) The white light is split into seven color bands.
(b) Continuous color separation with jittering is applied.

for the green channel, which ensures that all modulation colors can be
combined into grayscale colors:

wg =
sd + 1
2sd – 2

. (30.6)

Finally, each photon’s color is multiplied by its modulation color Cf. The
dispersion effect now looks like a series of colorful bands. To make the color
distribution smoother over the spectrum, the IOR perturbation∆i can be
jittered. Figure 30-9b shows the results with jittering.

30.2.5 SOFT CAUSTICS

AAPS can simulate soft caustics cast by area light sources. Unlike directional
or point light source, an area light source can emit photons with independently
varied position and direction. Thus, we need to formulate a proper method on
estimating photon differentials based on the four perturbations.

Suppose that a photon emitted from an area light has two positional
parameters p = p(u, v) and two directional parameters d = d(p, q). The final hit
point of the photon p′ is determined by all parameters p′ = p′(u, v, p, q). Adding
either a positional or a directional perturbation to the ray’s origin will raise a
shift to the hit point (Figure 30-10). Our solution for area light sources is to
treat all four perturbations∆u,∆v,∆p,∆q as independent random variables
obeying standard normal distribution and the photon footprint as the
significant area of resulting probability distribution. The perturbations of the

480



CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS
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Figure 30-10. Adding a positional perturbation∆p on the ray’s origin will raise a positional
perturbation∆p′ on the hit point.

photon position are∆p′ = ∆p′p +∆p′d, in which

∆p′p =
∂p′

∂u
∆u +

∂p′

∂v
∆v, (30.7)

∆p′d =
∂p′

∂p
∆p +

∂p′

∂q
∆q. (30.8)

Here,∆p′p and∆p′d are 2D photon perturbation vectors in the local
xy-coordinate frame of the photon, raised by positional and directional
perturbations, respectively. Because all perturbation inputs are normally
distributed, both∆p′p and∆p′d obey normal distribution: ∆p′p ∼ N(0,Cp)
∆p′d ∼ N(0,Cd) in which

Cp =
(
∂p′
∂u

∂p′
∂v

)(
∂p′
∂u

∂p′
∂v

)T
, (30.9)

Cd =
(
∂p′
∂p

∂p′
∂q

)(
∂p′
∂p

∂p′
∂q

)T
. (30.10)

Because∆p′p and∆p′d are independent, the probability distribution of∆p′ is
the convolution of the probability distributions of∆p′p and∆p′d. Note that the
convolution of two normal distributions is still a normal distribution, with the
mean value and the covariance matrix being the sum of the two respectively:

∆p′ ∼ N(0,C), (30.11)

where C = Cp + Cd. To calculate photon differentials from C, we can find two
vectors∆p1 and∆p2 satisfying

C =
(
∆p1 ∆p2

)(
∆p1 ∆p2

)T
. (30.12)

But, such a parameterization is not unique. We just assume that∆p1 is along
the x-axis of the local coordinate frame and solve for∆p2 accordingly.
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Δd'
Δd

Δx Δx'

Figure 30-11. Our soft caustic algorithm tracks photon differentials for both ray position and
direction, combines them using convolution and generates a two-dimensional photon footprint.

(a) Soft caustics disabled (b) Soft caustics enabled

Figure 30-12. Use soft caustics to simulate soft transparent shadows. (a) The colorful shadow is
produced by caustics with softness set to 0. (b) With softness set to 0.15, the shadow is softened.
Notice that the caustics generated by a metallic cylinder on the right side are also softened.

SUMMARY First, our soft caustics implementation estimates photon
differentials for both positional and directional perturbations. Then, it
constructs the covariance matrices Cp and Cd from the differentials and adds
both matrices to get the covariance matrix C for the composite footprint.
Finally, it calculates the combined photon differentials∆p1 and∆p2 from C
and applies them to the photon. Figure 30-11 shows the process, and
Figure 30-12 shows a scene with and without soft caustics.

30.2.6 RESULTS

The AAPS technique can easily achieve high frame rates for real-time usages
while producing accurate, noise-free images. By efficiently applying adaptive
photon distribution and anisotropic footprints, the total photons emitted can
be kept at a much lower level than traditional offline renderers with similar
image quality. Figures 30-13 and 30-14 show two scenes running in real time
in which the number of photons is around 50,000 to 100,000.

We picked two scenes for a performance test. The first scene is the classic
POV-ray glasses scene shown in Figure 30-1, in which all transparent objects
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Figure 30-13. Two views of the POV-ray glasses scene. Left: accurate refractive caustic patterns.
Right: reflective caustic patterns cast by normal mapping on the planar metal surface.

Figure 30-14. AAPS in real-world applications: a cutscene from the game Bright Memory:
Infinite featuring the mesh caustics cast by a shattered glass bottle.

have both reflected and refracted caustics enabled, and the number of ray
bounces is up to 12. The second scene is from the game Bright Memory:
Infinite and contains a shattered glass bottle (Figure 30-14), where the caustic
photons bounce up to eight times before hitting the ground. Beside mesh
caustics, both scenes contain large amounts of ray traced refractions and
reflections. The tests were performed against 1920× 1080 and 2560× 1440
resolutions on selected GPUs. All caustics are rendered at full resolutions
without any upscaling technique involved. The frame time breakdowns are
listed in Figure 30-15.

Based on the performance chart, we can expect that in a usual setup where
caustic effects cover a large portion of the view, the cost of rendering caustics
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Figure 30-15. Rendering time breakdown for the POV-ray glasses (Figure 30-1) and Bright
Memory (Figure 30-14) scenes at resolutions 1920× 1080 and 2560× 1440.

is on the level of 3–4 ms on a performance GPU (RTX 2060) and 1–2 ms on an
enthusiast GPU (RTX 3090). These data also show that the cost of caustics is
fractional in comparison to other ray tracing regimes. For example, the
multi-bounce reflection and refraction on the glass objects take more than
60% of the frame time but are essential for visual quality in a caustic-rich
scene. That said, for better performance, the user may have to put more
effort toward finding the acceptable appearance of translucent materials
other than tweaking caustic parameters.

Further investigation based on profiling tools shows that the AAPS process
has two main computational hot spots:
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> Photon tracing: In the POV-ray glasses scene, the photon tracing stage
takes roughly 60% of the caustic rendering time, in which photons
bounce up to 12 times before reaching their final hit points. To keep this
part of cost under control, the key is to reduce the unnecessary photons,
such as excluding materials that can only cast obscure caustics, finding
out the maximum acceptable target photon footprint area, culling out
photons whose energy falls under a certain threshold, and so on.

> Photon scattering: The scattering takes about 20% of the caustic
rendering time, which blends all photon footprints into the caustics
buffer. To reduce the overhead of blending, the resolution of the caustics
buffer can be downscaled to quarter screen size; or consider using an
upscaling technique, for example, Deep Learning Super Sampling
(DLSS) to boost the frame rate.

30.2.7 LIMITATIONS

In our implementation, the photon tracing step does not use the roughness
value in a physically accurate way, thus caustics are still sharp for rough
surfaces. We assume that a surface has zero roughness value when
calculating photon differentials. This drawback can be relieved by modifying
the differentials according to the roughness term. The main challenge is to
construct a good approximation to capture reflection and refraction lobes well.

Reflected and refracted caustics are generated in separated threads, which
means that having both types of caustics for one object will nearly double the
cost of photon tracing.

The calculation of dispersion is not based on continuous spectrum data, thus
it is not physically accurate.

Caustic effects seen through reflection and refraction are limited to screen
space. For example, if a mirror is placed near a surface that receives
caustics, we can only observe the caustics that fall in the current main
viewport through the mirror.

The support for area light sources is not optically accurate. For performance
consideration, the “soft caustics” cast by area light sources are done by
modifying the photon differentials on both ray origins and directions, which
means it may not produce the correct contact hardening look in the way of ray
traced soft shadows.
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Figure 30-16. Extended usage of AAPS: simulating transparent shadows. The colorful shadows
through the stained-glass windows are one-bounce refractive caustics.

30.2.8 EXTENDED USAGES

For extended usages other than regular caustic effects cast by glass or metal
surfaces, the mesh caustics integration also works for rendering transparent
shadows and light spots through textured windows. Figure 30-16 shows a
scene with stained glass. The light cast through the windows can be
efficiently simulated as a one-bounce refractive caustic. The cost is minimal
even if the effect covers a large portion of the screen.

30.3 RAY-GUIDED WATER CAUSTICS

Water caustics have the characteristics of being highly dynamic and
interactive, usually covering large areas, and only requiring one-bounce light
reflection or refraction, all of which lead us to research in specialized
rendering methods. Before describing our latest algorithm improvements, we
will give a brief recap to Gruen’s method [4]. The method involves mainly two
sets of buffers: the caustics map stores rasterized water geometry
information (positions and normals) from the view of the light source, which
may consist of two textures in practice, and the caustics buffer accumulates
photon footprints in screen space. The workflow consists of four steps:

1. Render water surfaces into the caustics map from the light view,
recording the positions and normals of the water surface (Figure 30-17).
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Caustics Map

Figure 30-17. Rendering water geometries into the caustics map from the light view. (From [4].)

2. Generate rays from positions recorded in the caustics map, and trace
them along the reflected or refracted directions calculated from the
surface normals. Once the rays hit the scene, record the information of
the hit points.

3. Render caustics into the caustics buffer, which is placed in screen space,
using the data of the hit points obtained in step 2.

4. Perform denoising on the caustics buffer, and composite the result with
the scene.

Our improvements focus on the surface caustics in step 2 and step 3. In
step 2, instead of only outputting the intensity of the ray hit point, we count the
number of valid hit points and record more data, including position and
direction. In step 3, we developed two independent approaches for generating
better caustic patterns: Photon Difference Scattering (notice that this is not
photon differentials), which treats each ray hit point as a photon and renders
it as a decal against the scene depth, and Procedural Caustic Mesh, which
reconstructs the caustic network as a triangular mesh, and then blends it
with the scene. As both approaches have pros and cons, users can switch
between the two options based on their preference of better performance or
higher quality. Besides these overhauls, we also introduce cascaded caustic
maps, an analog to cascaded shadow maps, to cover mass water bodies by
multi-scale rendering.
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Figure 30-18. Photon Difference Scattering. Left: creation of quadrilateral photon footprints at
ray hit points. Middle: photon footprints visualized as being rendered with equal size; notice the
mosaic artifacts. Right: water caustics rendered using PDS with no denoising applied.

30.3.1 PHOTON DIFFERENCE SCATTERING

The Photon Difference Scattering (PDS) technique, similar to photon
differentials, uses the finite difference of nearby rays’ data to compute photon
coverage, which can give more accurate results than using local
perturbations as in photon differentials. Unlike photon differentials, PDS does
not need to access the geometry data of the caustics receivers, so it is easier
to implement in game engines. With PDS, we can achieve the same quality of
the original caustics mapping method by casting much sparser rays, thus
greatly improving the ray tracing performance. The brightness adjustment by
footprint coverage ensures the correct intensity distribution from all incident
angles, while some slope angles may raise artifacts in Gruen’s method.

With the PDS approach, we treat ray hit points as photon footprints and
render them as decal sprites against the scene depth. Figure 30-18 (middle)
shows the photon footprints being rendered at a fixed size, which forms
correct caustic envelopes but leaves gaps in between. To fill the scene
surface with compact quads, we need to find a proper size for each footprint.

Fortunately, for water caustics each ray is cast from one single reflection or
refraction, which means that we can easily backtrace to the ray’s origin in the
caustics map and access its adjacent rays’ origins and directions. The right
size of the footprint is then estimated using these ray data around the hit
point (Figure 30-19).

The initial size of the footprint is determined by the resolution of the caustics
map and the desired precision set by the user, then its scaling factor is
derived from the current hit point and the estimated hit points:

Scale =
TriangleArea(hit0, hit1, hit2)

TriangleArea(pos0, pos1, pos2)
, (30.13)

where hit0 is the position of the current hit point, hit1 and hit2 are the
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Hit T of Current Ray 

Neighboring Rays

Current Ray

Estimated 
Neighboring 
Hit Points

Current Hit Point

Figure 30-19. Calculating the size of a photon footprint by combining the ray’s origin, direction,
and hit point data with the adjacent ray’s origins and directions. The hit points of adjacent rays
(red) are estimated from the current ray’s hit T (green).

estimated positions of neighboring hit points, and pos0, pos1, and pos2 are the
corresponding original positions in the caustics map.

Before finally rendering the photon footprint onto the caustics buffer, the
intensity, size, and orientation of the quad sprite are also adjusted by the
photon direction and the surface normal: the quad is placed perpendicular to
the ray direction and then projected to the opaque surface (Figure 30-20).
Because the quad is smeared over the receiving surface, its intensity is cosine
weighted by the incident angle. The lighting result is calculated using the
scene materials during the scattering.

Choosing a proper shape for footprints can significantly improve the quality.
Figure 30-21 shows that the elliptic footprints provide better result than the
rectangular ones. In Figure 30-18 (right), after PDS was applied, the
footprints formed into continuous patterns without any denoising involved.

Surface Normal
Photon Direction

Projected Photon Direction on the Surface

Figure 30-20. The intensity, size, and orientation of the quad sprite are also adjusted by the
photon direction and the surface normal.
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(a) Rectangular footprints (b) Elliptic footprints

Figure 30-21. Comparison of caustics footprints: (b) elliptic footprints provide sharper and
clearer caustics than (a) rectangular footprints.

Figure 30-22. The results of using different caustics map resolutions with photon difference
scattering. Left: resolution 2048× 2048 covering a 30m× 30m area. Right: resolution
512× 512 covering the same area.

On the pro side, PDS can render high-quality water caustics with low cost and
can easily extend the supports for many types of light sources, including area
light. On the con side, it is sensitive to the caustics map resolution related to
the covering range—applying a low-resolution caustics map to a large scene
area may result in very blurry caustic patterns (Figure 30-22).

30.3.2 PROCEDURAL CAUSTIC MESH

The other approach for reconstructing caustic patterns is Procedural Caustic
Mesh (PCM), which converts hit points into an intermediate mesh: each hit
point is mapped to a vertex in the mesh whose topology is a triangle list that
maps to the regular grids in the caustics map. After the ray tracing pass, a
compute shader fetches the hit point data, evaluates the contribution and
intensity of each primitive according to its world-space area, discards invalid
primitives, and generates the index buffer. The mesh is then rendered onto
the caustics buffer in a rasterization pass (Figure 30-23). In practice, we build
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Figure 30-23. Procedural Caustic Mesh. Left: the refracted caustic mesh; notice that the shadow
area is culled from the mesh. Right: the rendered mesh modulated by scene materials.

Figure 30-24. The results of using different caustics map resolutions with PCM. Left: resolution
2048× 2048 covering a 30m× 30m area; Right: resolution 512× 512 covering the same area.
Notice that the qualities of the two are almost the same.

two procedural caustic meshes for every water object, one for reflection and
the other for refraction.

The advantage of this approach is that it always produces sharp caustic
patterns even if the caustics map resolution is very low (Figure 30-24).
However, it also raises the “black edge” artifact at object corners where the
mesh triangles span over the culling region (Figure 30-25). For the best
result, users can choose between PDS and PCM for better quality. In general,
PDS is more flexible and well suited for water areas in a confined space like
swimming pools, whereas PCM is more efficient when coupling with large
water bodies, such as lakes and oceans.

30.3.3 CASCADED CAUSTICS MAPS

To generate caustics for large water bodies like ocean surfaces, we have
implemented cascaded caustics maps (CCM) that work in the same way as
cascaded shadow maps (CSM). Figure 30-26 shows a configuration of four
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Figure 30-25. Left: artifact raised by PCM along the discontinuous edge of the scene geometry
due to inaccurate culling of mesh primitives. Right: in comparison, PDS has no such artifact.

Figure 30-26. Left: a CCM configuration of four cascades. Right: an aerial view of the ocean
surface with reflective and refractive caustics rendered by CCM.

cascades, where each cascade contains a caustics map at a user-selected
resolution. CCM can be coupled with PDS to mitigate blurry results when
rendering with limited photon budget but higher details are desired at near
sight, as it allows us to distribute more photons at the innermost cascade to
lift the quality and less photons at the outer cascades to keep the cost down.

Unlike CSM, to implement cascaded maps in a ray tracing pipeline, we need
to determine the number of shader threads for dispatching rays and the
scheme of assigning data to the threads. The following formula gives the
threads needed for the CCM:

Nthread = W× H×

[
1 +
(
1 –

1

Scale2

)
×
(
Nlevel – 1

)]
, (30.14)

where W and H are the width and height of the caustics map, Scale is the
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Level 0

Level 1

Level 2

Level 3

Figure 30-27. Assigning CCM data to ray generation shader threads: A setup with four cascades,
each cascade at 4× 4 resolution, with size scaling 2 between the cascades, where the gray areas
are overlapped. The cascaded setup only dispatches 52 threads in total, while a uniform setup
requires 1024 threads.

length ratio between two adjacent cascade levels, and Nlevel is the number of
cascades. Figure 30-27 demonstrates an example on the mapping between
the CCM and the shader threads.

30.3.4 SOFT WATER CAUSTICS BY AREA LIGHTS

We have extended the PDS method to simulate soft water caustics cast by
area light sources. Currently, only textured rectangular lights are supported,
but the technique can be easily expanded to accommodate more complicated
area lights. Applying a 2D texture to a rectangular light to define the surface
intensity and to emit photons accordingly allows us to simulate any planar
luminaries. Unlike with other light types, the photons leaving an area light are
going in all directions (Figure 30-28). Thus, water caustics exhibit “softness”
in the way of soft shadows.

Directional Light Point or Spot Light Area Light

Figure 30-28. Only one ray hits each point on the water surface with directional, point, and spot
lights. But with an area light, each point on the water surface may be hit by many rays.
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To simulate this soft effect in real time, we developed a temporal method to
reuse the caustic patterns over multiple frames. It consists of two steps:

1. For each valid point in the caustics map in the current frame, we select
an incident ray from a random sampling point on the rectangular light,
and we trace it through the water surface.

2. We accumulate the caustics over several frames with a temporal filter to
output the soft caustics.

Performance-wise, we can produce acceptable soft water caustics by any
rectangular lights at merely the same cost as other light types.

30.3.5 RESULTS

The RGWC technique rasterizes the water mesh into a caustics map, avoiding
ray tracing between light sources and water surfaces, which greatly helps the
rendering efficiency. Meanwhile, the two caustic reconstruction methods,
PDS and PCM, allow the creation of high-quality patterns while covering large
water bodies. In addition, CCM and soft water caustics greatly expand the
usability of RGWC.

The performance of RGWC is affected by many factors, such as the resolution
of the caustics map and the caustics buffer, the water coverage in the view,
and the number of light sources that affect the caustics. We performed some
testing using the two scenes shown in Figure 30-29.

Figure 30-29. Two scenes selected for RGWC performance tests. Left: swimming pool lit by one
directional light source. Right: seaside town lit by one directional light and having a four-cascade
CCM configuration. Both scenes have above and under water caustics enabled. The resolution of
the caustics buffer is set to full screen size. The caustics map is set to 1024× 1024.
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Figure 30-30. Water caustics rendering time breakdown for the scenes Swimming Pool (top) and
Seaside Town (bottom) at screen resolutions 1920× 1080 and 2560× 1440.

Figure 30-30 (top) compares the performance of PDS and PCM on selected
GPUs using the test scene Swimming Pool (Figure 30-29, left). In general,
PCM is faster than PDS. Further investigations using profiling tools reveal
that part of the overhead of PCM comes from the workload that reconstructs
the new index buffer, which is dependent on the vertex number (same as the
size of the caustics map) but less dependent to the size of the caustics buffer.
And rendering the mesh avoids rendering overlapping sprites in PDS. This
explains why PCM is more efficient than PDS and less impacted by the screen
resolutions.

Figure 30-30 (bottom) lists the cost of CCM using the test scene Seaside Town
(Figure 30-29, right). The scene has four cascades of a 1024× 1024× 4
caustics map to cover the sea surface of 240× 240 m2. Because CCM does
not work with PCM, only PDS numbers are shown here. The usage of CCM
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significantly increases the cost of RGWC because all four caustics maps are
ray traced. However, the aerial view of the sea caustics cannot be easily
handled by PCM. Thus, CCM is the only option here to produce high-quality
caustic patterns for large scene coverage.

30.3.6 LIMITATIONS

In our implementation, we only render the reflected and refracted caustics
generated by the first bounce of photons. Photons bouncing multiple times
among the water ripples are not captured.

CCM only works for directional lights and does not support PCM.

Water caustics cannot be seen within ray traced reflections. For example,
when underwater, the total internal reflection on the water surface does not
show the underwater caustics.

30.4 CONCLUSION

In this chapter, we introduced two techniques to render caustics effect for
translucent or metallic objects and water surface. Adaptive Anisotropic
Photon Scattering can produce high-quality caustics effects with a reasonable
number of rays each frame, which insures the high performance required by
many games. As a bonus effect, this technique can also be used to produce
shadows cast by translucent objects, such as colored glass windows. Ray
Guided Water Caustics is a highly specialized technique to simulate
one-bounce water caustics, being very efficient and versatile to handle all
sorts of water bodies. Also, it does not need to track light propagation with
photon differentials that require additional hit shader code in all materials,
which makes it easy to integrate into commercial products.

We have integrated both techniques into NVIDIA’s customized Unreal Engine 4
branch. The source code can be obtained at the repository [9].
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CHAPTER 31

TILT-SHIFT RENDERING USING A
THIN LENS MODEL
Andrew Kensler
Amazon, formerly Pixar Animation Studios

ABSTRACT

A tilt-shift lens is a lens whose longitudinal axis can be moved out of
alignment with the center of the film or image sensor—either by rotation for
tilt or translation for shift. In this chapter, we will review the classic thin lens
camera model in ray tracing, which sits at the sweet spot between the simple
pinhole model and the complex lens systems. Then we will show how to
extend it to model a tilt-shift lens. We will also show how to solve for the
placement of the lens to achieve an arbitrary plane of focus.

31.1 INTRODUCTION

Tilted lenses frequently have shallow apparent depths of field, which make
them popular for creating a miniaturized look (e.g., Figure 31-1a). Though it is
common to fake this look with Gaussian blurs masked along a gradient, the
real effect can be subtle and much more interesting. See
https://www.reddit.com/r/tiltshift/ for many examples, both real and faked.

(a) Tilted lens (b) Tilted and shifted lens

Figure 31-1. An example scene. (a) Miniaturized appearance with tilted lens. (b) Combining lens
tilt and shift. Lens shift is used so that the center of perspective is in the upper left, and lens tilt
has been applied so that the plane of focus is perpendicular to the camera and aligned to
emphasize the building fronts on the right. Unlike with a standard lens, all of the fronts are in
sharp focus regardless of distance down the street.
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On the other hand, lenses that can be shifted off-center can be used to correct
for perspective distortion (also known as the keystoning effect), and to switch
between one-, two-, and three-point perspective.

Commonly, these abilities are combined in a tilt-shift lens (e.g., Figure 31-1b).
Early examples of these could be found in the view camera where the lens and
the film are held in place at opposite ends of a flexible bellows. For details,
see Merklinger [2]. For an overview of photography, refer back to Chapter 1.

In this chapter, Section 31.2 will go over the traditional thin lens model in
rendering, first introduced to computer graphics by Potmesil and
Chakravarty [3] and to ray tracing by Cook et al. [1]. Then, Section 31.3 will
cover how to add lens shift to it, while Section 31.4 will address how to modify
it for tilted lenses. Since direct control is surprisingly finicky, Section 31.5 will
address how to solve for the correct lens and sensor positions to achieve an
arbitrary plane of focus. Finally, Section 31.6 will show some more examples
of tilted lens rendering and some interesting consequences.

31.2 THIN LENS MODEL

For this chapter, we will assume that everything is in camera space, with +ẑ
pointing down the view direction and the lens centered on the origin. The
sample code is written for a left-handed Y-up camera coordinate system.
Some distance ahead of the lens is an object at a point P that we would like to
image to a point P′ on the sensor behind the lens. There is an aperture that
restricts the size of the cone of light passing through the lens. See
Figure 31-2.

The focal length of the lens, f, and the perpendicular distances between
points on the lens, object, and image planes are all related by Gauss’s thin
lens equation, where p is the distance from the lens to the object and p′ is the
distance from the lens to the image plane:

1
f
=
1
p
+
1
p′
. (31.1)

We can also reformulate the thin lens equation to compute one distance if we
know the other. In this case, we can determine how far back from the lens a
given point will focus to. The sensor must be placed here in order for the point
to be in focus:

p′ =
pf
p – f

. (31.2)
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Figure 31-2. The geometry of the thin lens model.

Note that we must be very careful with signs here: for a lens projecting the
object to a real image such as this, the focal length and two distances are
positive, while the z-coordinates of points are negative when they are behind
the lens.

If an object point is off of the focal plane, then it will focus to a point off of the
image plane. With a circular aperture, this creates an image of the aperture
on the sensor called the circle of confusion. The size of the acceptable circle of
confusion determines the near and far limits around the focal plane for what
is considered in-focus. The distance between these two limits defines the
depth of field. See Figure 31-3. These near and far limits also form planes.
Note that with a standard lens setup, the image plane, lens plane, focal plane,
and near and far focal planes are all parallel.

One further assumption of the thin lens model is that light between an object
and its image passes through the center of a thin lens undeflected.
Consequently, the coordinates of the two points in camera space are related
by a simple scaling factor.

To render with this, we first choose a desired focal distance for where we want
the focal plane to be and use it as p in Equation 31.2. Define the distance
between the lens center and the image plane with the sensor as the result of
that equation, s = p′. Then for each pixel in an image, we simply take the
location of the pixel on our sensor, P′ (where P′z = –s), and map it to the point
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Figure 31-3. Defocus and the circle of confusion. The object projects to a point behind the sensor
and so a small circle of light from it impinges on the sensor.

on the focal plane, P, that focuses there (note that the scaling factor relating
them is constant):

P = P′
f

f – s
. (31.3)

Then we aim a ray toward that point, in direction d̂ from a randomly sampled
point O within the lens aperture (Figure 31-4).

The following GLSL ES (WebGL) sample code puts this all together. It takes as
input a screen coordinate and a pair of random numbers. The screen
coordinate is the pixel position normalized so that the short edge lies in the
range [–1, 1]. The sensor size is then the size of this short edge. This makes
the field of view angle implicit on the sensor size, the focal distance, and the
focal length. Though we could specify a desired field of view and then derive
the sensor size to use instead, physical cameras have constant sensor sizes
and so adjusting the focal distance changes the field of view angle. This is
sometimes called focus breathing and is modeled here.

The random numbers given should be uniformly distributed within the [0, 1]2

square. Ideally, these would be generated using quasi-Monte Carlo for
quicker convergence. Note that in the sample code here we use them to
uniformly sample a circular disk for the lens position, which yields perfectly
flat, circular bokeh blurs. Alternately, we could use them to sample a polygon,
sample with an uneven distribution, or even sample a density image with
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Figure 31-4. Sampling the lens with a ray. The ray is traced from a random position on the lens to
where the pixel on the sensor projects onto the focal plane.

rounded iris blades, dust, and scratches. The choice of distributions will
directly determine the appearance of the bokeh.

1 void thin_lens(vec2 screen, vec2 random,
2 out vec3 ray_origin, out vec3 ray_direction)
3 {
4 // f : focal_length p : focal_distance
5 // n : f_stop P : focused
6 // s : image_plane O : ray_origin
7 // P' : sensor d : ray_direction
8

9 // Lens values (precomputable)
10 float aperture = focal_length / f_stop;
11 // Image plane values (precomputable)
12 float image_plane = focal_distance * focal_length /
13 (focal_distance - focal_length);
14

15 // Image plane values (render-time)
16 vec3 sensor = vec3(screen * 0.5 * sensor_size, -image_plane);
17 // Lens values (render-time)
18 float theta = 6.28318531 * random.x;
19 float r = aperture * sqrt(random.y);
20 vec3 lens = vec3(cos(theta) * r, sin(theta) * r, 0.0);
21 // Focal plane values (render-time)
22 vec3 focused = sensor * focal_length /
23 (focal_length - image_plane);
24

25 ray_origin = lens;
26 ray_direction = normalize(focused - lens);
27 }
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Figure 31-5. Translating the sensor for lens shift. The point M that is shifted to appear in the
image center does not need to be on the focal plane.

31.3 LENS SHIFT

Now consider adding lens shift to this model. Since this means that the
center of the sensor is no longer in alignment with the center of the lens, we
could model this as a translation of the lens within the lens plane. However, it
is easier to keep the lens centered at the origin in camera space and instead
translate the sensor within the image plane (Figure 31-5). This corresponds
to a simple addition to the x- and y-coordinates (but not the z-coordinate) of P′

for a pixel on the sensor before we map it to P on the focal plane and project a
ray through it as before.

If there is a point M that we would like to shift to be centered in the middle of
the image, then we can project it through the center of the lens and onto the
image plane at M′. Then (M′

x,M′
y, 0) gives the translation needed:

M′ = M
–s
Mz

. (31.4)

Commonly, this effect is used for architectural photography. As an example,
suppose that we have a picture near street level and we would like to look at
things a little higher up. When looking straight ahead level (Figure 31-6a), the
upright lines on the vertical elements are parallel. However, if we just swivel
or turn the camera upward, this creates a foreshortening and causes the lines
on the upright elements to converge rather than remain parallel as before
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(a) Looking straight ahead (b) Camera turned upward

(c) Larger image with wider angle (d) Lens shift

Figure 31-6. Looking upward. (a) The original image, looking straight ahead. (b) Vertical lines are
no longer parallel if the camera is turned to look upward. (c) Shifting as an off-center crop of a
larger image; compare the solid and dashed green rectangles. (d) Shifting allows a higher view
while keeping vertical lines parallel.

(Figure 31-6b). This is a form of perspective distortion and is frequently called
the keystone effect.

Instead, we can keep the view direction level as before and shift the sensor
down relative to the lens. Alternatively, we can think of this as rendering to a
larger image with an equivalently wider field of view (or zoomed out) and then
cropping back to the original image size but off-center (Figure 31-6c).

This still allows us to see things higher up as with turning the camera, but
now the lines on upright elements in our scene remain vertical (Figure 31-6d).
With this, the keystoning or perspective distortion has been corrected.

Of course, we can also do the same thing horizontally. Here we have an
example with the camera over the center of the street but turned to the right
to avoid cutting off the billboard (Figure 31-7a). Instead, we can keep the
camera pointed straight down the street and shift the sensor to the left so
that we can capture more of the scene on the right side while keeping the
horizontal lines parallel (Figure 31-7b).
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(a) Camera turned toward the right (b) Shifting toward the right

Figure 31-7. Looking to the side. (a) Turning toward the right. (b) Shifting toward the right.

One other thing that this does is to simplify the two-point perspective of the
first view down to a classic single-point perspective in the second. All of the
converging lines now converge to a single point, which can be off-center.
Careful use of shifting can also reduce a three-point perspective down to
two-point while keeping the subject of a scene framed.

In view camera terms, a vertical shift is a “rise” or “fall,” while a horizontal
shift may be a “shift” or “cross.”

31.4 LENS TILT

Next consider the case of a tilted lens. In view camera terms, this will be
“swing” when horizontal and “tilt” when vertical. Of course, the two may be
combined, and here the mathematics gets a little more complicated.

To model this, we will keep the lens centered at the origin in camera space,
but the lens plane is now aligned with the unit normal vector t̂. See
Figure 31-8.

Recall that the thin lens formula relates distances between the lens plane and
the object and image points. These are perpendicular distances, so we need
to use the scalar projections of the points onto vector t̂ (with appropriate sign
corrections) to compute these distances.

Consequently, the mapping between a pixel position on the sensor, P′, and the
corresponding point on the focal plane, P, is still done through a scale factor
(as in Equation 31.3), but now it is no longer constant:

P = P′
f

f + P′ · t̂
. (31.5)
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Figure 31-8. The geometry of a tilted lens.

Sampling the points on the lens to find the ray origin O is now slightly more
complex and requires that we build an orthonormal basis in camera space
around the tilt direction t̂.

Finding the ray direction remains mostly as before. However, because the
distances between the planes are now varying when the lens is tilted, the
focal plane and lens plane can now intersect. As a result, some points on the
sensor may map to points that are behind the lens plane. When t̂ · P < 0, we
have a virtual image. In this case, the rays diverge outward from the point
behind the lens, and we must flip d̂ so that the ray goes forward into the scene.

The optics of the tilted lens has some interesting implications. The
Scheimpflug principle states that when the image, lens, and focal planes are
not parallel, then they all form a sheaf of planes that intersect along a
common line, typically called the Scheimpflug line (Figure 31-9). Furthermore,
the depth of field becomes a wedge, emanating from a second line,
sometimes called the hinge line. As the sensor moves closer to or farther
from the lens, the focal plane will pivot around this hinge line, forming a
secondary sheaf of planes.

31.5 DIRECTING THE TILT

Because of all this, we have the flexibility to place the plane of focus nearly
anywhere. But actually doing this through direct control of the lens tilt can be
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Figure 31-9. The Scheimpflug principle and hinge line. The image, lens, and focal planes all
intersect at a common line, which is shown here perpendicular to the page. The hinge line is also
perpendicular to the page.

tricky. Photographers tend to resort to tedious trial and error. In the digital
world we can do better.

Suppose that we have three points, A, B, and C, defining the plane that we
would like to have in focus (Figure 31-10). This plane has the unit normal
vector n̂. How can we solve for the lens tilt t̂ and the distance s from the lens
center to the image plane?

We know that points A and Bmust focus to points at the same z-coordinate
behind the lens, which from the Equation 31.5 gives us s:

s = Az
f

A · t̂ – f
= Bz

f

B · t̂ – f
. (31.6)

Taking the right-hand sides, cross multiplying, expanding, and collecting gives

(AzBx – AxBz)tx + (AzBy – AyBz)ty = (Az – Bz)f. (31.7)

We also know from the Scheimpflug principle that the image plane, focal
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Figure 31-10. Directing the lens tilt. Points A, B, and C are used to define the desired focal plane
and appear collinear in a 2D projection such as this when the Scheimpflug line is drawn
perpendicular to the page.

plane, and lens plane must intersect at a line in common, which we can
express as

ẑ · (n̂× t̂) = 0. (31.8)

Expanding this allows us to compute ty in terms of tx:

ty = txny/nx. (31.9)

Taking Equation 31.9 and substituting it into Equation 31.7 allows us to solve
for the x-component of the tilt, and from there we can compute the rest.
Because our premises assumed that t̂ was scaled to unit length, the
z-component must complete the unit vector. The full solution to the tilt of the
lens and the placement of the sensor is thus:

tx =
(Az – Bz)f

AzBx – BzAx + (AzBy – BzAy)ny/nx
, (31.10)

ty = txny/nx, (31.11)

tz =
√
1 – t2x – t2y , (31.12)

s = Az
f

A · t̂ – f
. (31.13)

In some cases, depending on the desired plane of focus, |nx| may become
quite small or even be zero. To avoid division by zero or other numeric
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precision problems, the x- and y-components can be exchanged by symmetry
if nx is closer to zero than ny. However, if both nx and ny are zero, then the
plane of focus is parallel to the image and lens planes and there is no lens tilt.
In this case, setting tx and ty to zero before computing tz and s produces the
correct results, and the tilted lens model reduces to the standard thin lens
model.

Combining both the shift and tilt extensions to the thin lens camera model,
together with the solutions to find the tilt and the shift positions, yields the
following implementation of the full tilt-shift model:

1 void tilt_shift(vec2 screen, vec2 random,
2 out vec3 ray_origin, out vec3 ray_direction)
3 {
4 // n : normal A : focus_a
5 // t : tilt B : focus_b
6 // M : middle C : focus_c
7 // M' : shift
8

9 // Focal plane values (precomputable)
10 vec3 normal = normalize(cross(focus_b - focus_a,
11 focus_c - focus_a));
12 // Lens values (precomputable)
13 vec3 tilt = vec3(0.0);
14 if (abs(normal.x) > abs(normal.y))
15 {
16 tilt.x = (focus_a.z - focus_b.z) * focal_length /
17 (focus_a.z * focus_b.x - focus_b.z * focus_a.x +
18 (focus_a.z * focus_b.y - focus_b.z * focus_a.y) *
19 normal.y / normal.x);
20 tilt.y = tilt.x * normal.y / normal.x;
21 }
22 else if (abs(normal.y) > 0.0)
23 {
24 tilt.y = (focus_a.z - focus_b.z) * focal_length /
25 (focus_a.z * focus_b.y - focus_b.z * focus_a.y +
26 (focus_a.z * focus_b.x - focus_b.z * focus_a.x) *
27 normal.x / normal.y);
28 tilt.x = tilt.y * normal.x / normal.y;
29 }
30 tilt.z = sqrt(1.0 - tilt.x * tilt.x - tilt.y * tilt.y);
31 vec3 basis_u = normalize(cross(tilt,
32 abs(tilt.x) > abs(tilt.y) ? vec3(0.0, 1.0, 0.0)
33 : vec3(1.0, 0.0, 0.0)));
34 vec3 basis_v = cross(tilt, basis_u);
35 float aperture = focal_length / f_stop;
36 // Image plane values (precomputable)
37 float image_plane = focus_a.z * focal_length /
38 (dot(focus_a, tilt) - focal_length);
39 vec2 shift = middle.xy / middle.z * -image_plane;
40

41 // Image plane values (render-time)
42 vec3 sensor = vec3(screen * 0.5 * sensor_size + shift,
43 -image_plane);
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44 // Lens values (render-time)
45 float theta = 6.28318531 * random.x;
46 float r = 0.5 * aperture * sqrt(random.y);
47 vec3 lens = (cos(theta) * basis_u +
48 sin(theta) * basis_v) * r;
49 // Focal plane values (render-time)
50 vec3 focused = sensor * focal_length /
51 (focal_length + dot(sensor, tilt));
52 float flip = sign(dot(tilt, focused));
53

54 ray_origin = lens;
55 ray_direction = flip * normalize(focused - lens);
56 }

31.6 RESULTS

Figure 31-11 shows a test scene with the tilted lens in action and where the
lens orientation and sensor distance has been solved for using the centers of
the three spheres as our three points. All three points, despite being at
different distances from the camera, are in perfect focus. Moreover, the focal
plane intersects the box and produces a sharp appearance along diagonals in
the grid texture. Although this is a relatively simple scene, already the defocus
is much more visually complex than a simple blur masked along a gradient.

With the computer solving the tilt for us on each frame, we can easily animate
it. For example, we can keep any three subjects in focus as they move about
while the rest of the scene is de-emphasized and out of focus. Alternatively,
we could hold the focal plane fixed in world space while moving the camera
around. There are many possibilities for rendering with tilt-shift effects.

(a) Three points defining the focus (b) Focal plane highlighted in yellow

Figure 31-11. Focus aligned to the plane through the spheres. (a) Without the plane of focus
shown. (b) With the plane of focus highlighted in yellow.
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(a) Standard lens (b) Tilted lens

Figure 31-12. Bokeh. (a) Circular bokeh with a standard thin lens focused on the blue sphere.
(b) Elliptical bokeh with a tilted lens focused on all three spheres.

Another interesting effect predicted by our tilt-shift model pertains to bokeh.
Figure 31-12a shows a scene similar to the previous one except with the grid
texture of the box replaced with very small, bright points and rendered with
the non-tilted lens of the standard thin lens camera model focused on the
blue sphere at middle distance. In this case, the small bright points of the
surrounding box are circular bokeh, as usual.

However, if we return to the lens tilt from before with the plane of focus
passing through the center of the three spheres, then some of the bokeh
elongate into ellipses (Figure 31-12b). This should make some intuitive
sense: from the perspective of the light cones from each bright point passing
through the lens, the image sensor now cuts through at an oblique angle. In
other words, the bokeh form conic sections.

The tilt-shift model presented in this chapter is incorporated in the production
camera projection plugin included with Pixar’s RenderMan. Though all of the
rendered figures shown in this chapter were rendered with RenderMan, a
complete self-contained demonstration that incorporates the sample code
listings for the thin_lens() and tilt_shift() functions and recreates the
scenes from Figure 31-11a and Figure 31-12 can be found online on
Shadertoy at https://www.shadertoy.com/view/tlcBzN and at the book’s
source code website.
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PART V

INTERSECTION

The idea of tracing ideal rays to determine object placement on a projection
plane is famously credited to the sixteenth-century painter Albrecht Dürer,
preceding by a few hundreds of years the ideation of computing machines.
Even in the realm of three-dimensional computer graphics, ray tracing
appeared early, with Arthur Appel’s paper on the visual simulation of
three-dimensional objects dating back to 1968. Needles to say, the
mathematics of ray/object intersection is, by now, well researched.

Yet, the ever-increasing processing power at our disposal and the advent of
practical, hardware-accelerated real-time ray tracing provide a novel context
that invites us to revisit existing algorithms and allows the invention of new
ones that push the complexity of our simulated three-dimensional worlds
further. This part has contributions that address both cases.

Chapter 32, Fast and Robust Ray/OBB Intersection Using the Lorentz
Transformation, and Chapter 33, Real-Time Rendering of Complex Fractals, are
tutorials explaining the theory and practice of two important categories of
ray/object intersections.

Chapter 34, Improving Numerical Precision in Intersection Programs, describes
a widely applicable technique for improving numerical stability in
ray/primitive intersection tests. The technique is not new, but it is not well
described in any literature and thus not known to many practitioners.

Chapter 35, Ray Tracing of Blobbies, presents a novel way to intersect a widely
used class of implicit surfaces, leveraging their local support to derive
intervals that can be used to efficiently cull the intersection computations.

Chapter 36, Curved Ray Traversal, provides both an introduction to the ideas of
gradient field tomography and a practical algorithm to trace rays traversing
volumes with spatially varying refractive indices. This can be used both for
visualization purposes and to perform reconstruction of compressible flows
from acquired data.
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Chapter 37, Ray-Tracing Small Voxel Scenes, compares the memory and
performance requirements of different ways to implement voxel traversal on
GPUs that provide hardware-accelerated ray tracing.

Angelo Pesce
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CHAPTER 32

FAST AND ROBUST RAY/OBB
INTERSECTION USING THE
LORENTZ TRANSFORMATION
Rodolfo Sabino, Creto Augusto Vidal, Joaquim Bento Cavalcante-Neto, and
José Gilvan Rodrigues Maia
Universidade Federal do Ceará (UFC)

ABSTRACT

We provide a numerical approach to compute oriented bounding boxes (OBBs)
and a robust method to perform ray/OBB intersection based on the Lorentz
transform. We also show how to compute additional intersection information
(normal, face ID, and UV coordinates). Adopting OBBs instead of AABBs
in a bounding volume hierarchy results in a significant reduction of
traversal steps.

32.1 INTRODUCTION

Axis-aligned bounding boxes (AABBs) are the standard for bounding volume
(BV) representation. They come from a history of research and
industry-proven solutions and are backed by efficient, hardware-accelerated
ray intersection algorithms. But try as one might, AABBs may not be
tight-fitting BVs in the general case. By playing some simple tricks with ray
transformation, we can literally spin them around and make AABBs better, at
arguably negligible cost.

The tighter-fitting oriented bounding box (OBB) is encoded by a transformation
matrix, which is applied to a ray before computing the intersection. This
encoding can hold a wide variety of linear operations. The matrix can also be
incorporated to modern ray tracing pipelines with little to no changes to
underlying algorithms. Moreover, this solution can be performed in a parallel,
branchless intersection test.

This methodology can be useful for many purposes. Here, we suggest
exploring the properties of ray transformations for its use in OBB bounding
volume hierarchies (BVHs; see Figure 32-1). For this purpose, this chapter
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Figure 32-1. Breakfast Room (left) rendered using a OBB BVH built on top of the proposed
method. OBBs offer a better alternative to AABBs, as the former can offer a tighter fitting around
objects (bottom right) and can reduce BVH traversal costs.

provides the basic recipe to get the core of this idea working, namely how to
build the BVs of the BVH: we suggest Principal Component Analysis (PCA) and
BVH traversal, for which we go through the transformed ray/OBB intersection.

32.2 DEFINITIONS

A ray [7] is a line in 3D space that starts off from one point O and goes
indefinitely toward one direction d. Testing ray/object intersection amounts to
plugging the ray parametric equation P(t) into the object’s description and
solving for t. Ray tracing is about using data from these intersection tests to
feed shading algorithms. Listing 32-1 contains the typical ray payload data
that we will compute in this chapter.

Bounding boxes are widely adopted in acceleration structures for rapid scene
traversal and primitive culling. Bounding boxes are used as an inexpensive

Listing 32-1. Intersection data return structure: Intersection point parameterized by t, normal n,
face f, and texture coordinates uv; sNone denotes a miss.

1 struct SurfaceHit
2 {
3 float t;
4 vec3 n;
5 int f;
6 vec2 uv;
7 };
8 const SurfaceHit sNone = SurfaceHit(-1.0,vec3(0.0),0,vec2(0.0));
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way of potentially discarding an intersection query before having to resort to
costly object intersections: the smaller the box can be while still containing
the object, the better. AABBs can’t rotate, whereas OBBs can assume
arbitrary orientation in 3D space. Consequently, OBBs usually outperform
AABBs in terms of culling efficiency. On the other hand, building the AABB for
an object is exact, simple, and fast: we just need to find the maximal and
minimal coordinates belonging to the object’s surface. Computing the optimal
OBB takes O(n3). Algorithms that use PCA run in linear time and provide a
decent approximation.

Transformations are applied to meshes’ geometry, instancing them in different
spatial configurations. Given a 3D input in homogeneous coordinates, 4× 4
matrices can encode multiple types of linear transformations, such as
scaling, rotation, reflection, shear, and translation. Multiple transformations
can be efficiently represented by the result of matrix multiplications. Points
and direction vectors operate differently in homogeneous coordinates. A point
receives an additional w = 1 coordinate so the fourth columns of the matrices
affect these positions, whereas directions have w = 0 so they are affected only
by the 3× 3 matrix core.

The Lorentz transformation is a term coined in physics literature and deals
with linear transformations between coordinate frames. It is usually applied
to positions and velocities, which are points and vectors, respectively. We use
this mathematical background to represent rays in a coordinate frame–
agnostic manner. This is similar to the way graphics pipelines process
geometry when we use model-to-world matrices to instantiate geometry
in a scene.

By carefully crafting an OBB transformation matrix, a ray from model space is
converted into a reference, normalized AABB space (see Figure 32-2). All
boxes in AABB space share precisely the same format, so specialized
intersection tests can be developed. Moreover, the computed results are
still valid in model and world space.

32.3 RAY/AABB INTERSECTION

For a more comprehensive view of the algorithm, see Chapter 2. An AABB can
be seen as the intersection of six axis-aligned hyperplanes. The intersection
between a ray and a plane given by a point P and normal n is

t =
(P – O) · n
d · n

. (32.1)
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Figure 32-2. Ray transformation between coordinate frames (blue and purple colored arrows).
Rays in model space are mapped by the OBB inverse matrixM–1

OBB into AABB space where the
actual intersection test takes place.

Half of the planes share each Pmin and Pmax points, and normal vectors are
aligned with the ±X, ±Y, and ±Z axes. Therefore, the dot product operates
only on the nonzero coordinate axis of the normal in Equation 32.1. For
example,

(Pmin – O) · [1, 0, 0]
d · [1, 0, 0]

=
(Pmin – O.x)

d.x
, for n = +X. (32.2)

Thus, the intersection of all six planes can be vectored in the form

tmin =
Pmin – O

d
, tmax =

Pmax – O
d

. (32.3)

SIMD hardware capabilities are suitable to accelerate the slabs algorithm [1, 9]
used for ray/AABB intersection.

Given tmin and tmax, the t’s relative to each pair of parallel planes are ordered
into two sets. One set sc has planes that are closer to the ray, and the other
set sf has planes that are farther. Finally, sc and sf are checked for any
overlapping.

An intersection exists when there is no overlapping between the closest and
farthest set of t’s, in other words, t0 < t1. The algorithm can be outlined as
follows:

sc = min(tmin, tmax),

sf = max(tmin, tmax),

t0 = max(max(sc.x, sc.y), sc.z),

t1 = min(min(sf.x, sf.y), sf.z),

(32.4)
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Listing 32-2. Ray/AABB intersection function based on the slabs algorithm [1, 9].

1 SurfaceHit intersectRayAABB(vec3 ro,vec3 rd,vec3 pmin,vec3 pmax)
2 {
3 // Basic ray/AABB intersection (see Section 32.3)
4 vec3 tmin = (pmin-ro)/rd;
5 vec3 tmax = (pmax-ro)/rd;
6 vec3 sc = min(tmin,tmax);
7 vec3 sf = max(tmin,tmax);
8 float t0 = max(max(sc.x,sc.y),sc.z);
9 float t1 = min(min(sf.x,sf.y),sf.z);
10 if(!(t0 <= t1 && t1 > 0.0)) return sNone;
11

12 // Computing additional intersection data (see Section 32.5)
13 // Normals
14 vec3 n = -sign(rd)*step(sc.yzx,sc.xyz)*step(sc.zxy,sc.xyz);
15

16 // Face ID
17 int f = int(dot(abs(n),vec3(1,2,4)));
18 f ^= int(any(greaterThan(n,vec3(0))));
19

20 // Texture coordinates
21 vec3 uv3 = ro+t0*rd;
22 vec2 uv2 = 0.5+mix(uv3.xy,uv3.zz,abs(n.xy));
23 uv2 = mix(uv2,vec2(1.0-uv2.x,uv2.y),max(n.x,max(n.y,-n.z)));
24

25 return SurfaceHit(t0,n,f,uv2);
26 }

where t0 gives the signed distance between the ray origin and the point of
intersection in the AABB, if an intersection does occur (Listing 32-2).

Notice that this algorithm relies on standard floating-point behavior. The
result of the division by zero gives the appropriate signed infinity. On the other
hand, only very specific cases produce NaN (not a number) due to the
computation of tmin, tmax = 0/0. This typically occurs when the ray is tangent
to the box’s surface. As NaN propagates through min() and max(), such rays
are properly discarded by checking consistent t0 and t1 values (see line 10 in
Listing 32-2).

32.4 RAY/OBB INTERSECTION

Depending on how one handles the problem of ray/OBB intersection, the
algorithm can become quite complex. Luckily, we can use the properties of
ray transformations to simplify our intersection. The key idea is to imagine
the OBB as an instance of a standard, “unit” AABB by means of a matrix MOBB
(see Figure 32-2).
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We use M–1
OBB to transform the ray into AABB space. We define this standard

AABB space as a unit cube centered at the origin:

Pmin = [–0.5, –0.5, –0.5],Pmax = [0.5, 0.5, 0.5]. (32.5)

You need to generate an invertible matrix representing this transformation
from the unit AABB into your model’s OBB. Preferably, you also should adopt
a robust algorithm that can efficiently compute the inverse [3].

We give an example of computing this matrix using a PCA-based technique
over a triangular mesh, but our technique is easily adaptable to other
analytical solutions that are suitable for the model representation you have at
hand. The code for this technique as described in the Equation 32.6 below is
available on Shadertoy [5].

For its use as a bounding box, this matrix can be precomputed offline for a
mesh’s vertex set P. We derive the matrix MOBB = TRS as the combination of
the scale S, rotation R, and translation T parts extracted from the mesh by
PCA. The rotational part R is derived from the eigenvectors of the covariance
matrix for P. Scaling can be obtained by computing the minimal and maximal
coordinates from the mesh points after being transformed by the inverse of
the rotation matrix. Finally, translation is computed taking into consideration
the sample mean P computed by the covariance matrix and the centroid
V′center of the transformed mesh, as follows:

P′ =
n⋃
i=1

R⊤(Pi – P),

V′min = min(P′),

V′max = max(P′),

V′center = (V′min + V
′
max)× 0.5,

S = scale(V′max – V
′
min),

T = P + RV′center,

MOBB = TRS.

(32.6)

This method rotates the vertices by the eigenvectors basis, then computes an
AABB for the vertices in this reference frame. We can be sure to compute a
tight-fitting OBB by this method, but it may not yield the smallest box
configuration [2]. Being a statistical method, PCA relies on spatial patterns of
the geometry to figure out the axis of the OBB. The eigenvector basis follows
the density of vertices aligned with the eigenvectors. If you have a significant
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portion of approximately aligned vertices in your mesh, when creating the
OBB the rotational part will use this diagonal on its basis. This problem can
be mitigated by ignoring vertices outside the convex hull.

The matrix MOBB encodes the transformation of the unit AABB into the
mesh’s local OBB. So, M–1

OBB transforms a ray in model space into that mesh’s
unit AABB space (see Figure 32-2). Further transformations can also be
encoded on this matrix. Given the model’s instance matrix Minst, we can
transform the ray from world space into that model’s unit AABB space by
using MAABB = M–1

OBBM
–1
inst:

O′′ = MAABBO,

d′′ = MAABBd.
(32.7)

Finally, we plug the new ray P′′(t) = O′′ + td′′ into the ray/AABB intersection
algorithm as follows:

intersectRayAABB
(
O′′,d′′, [–0.5, –0.5, –0.5], [0.5, 0.5, 0.5]

)
(32.8)

The resulting t from this intersection is valid in world space, but normals may
need to be transformed by (M–1

AABB)
T to be in world space as well.

32.5 COMPUTING ADDITIONAL INTERSECTION DATA

The ray/OBB intersection algorithm can be used both for BV queries and for
intersecting box primitives. In the first use case, we are only interested in
whether an intersection happens or not, as then only the intersection
conditionals are necessary (see line 10 in Listing 32-2). For the sake of
completeness, we created this section that covers the second use case. Here,
we show how to compute additional surface hit data that can be used for
shading the primitive.

The ray/AABB intersection algorithm inherently computes the intersection t’s
for all six faces. These values are used to compute intersection data (see
Listing 32-1).

Normals of an AABB have a component set to ±1 in exactly one axis and zero
in the other axes. The signs of the visible normals are computed using the
sign from –d because our unit AABB is centered at the origin. The signed unit
component goes to the respective axis of the face where the smallest t
belongs (see line 14 of Listing 32-2). These normals are in AABB space, so
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Listing 32-3. Ray/OBB intersection function based on the Lorentz transformation.

1 SurfaceHit intersectRayOBB(vec3 ro,vec3 rd,mat4 m)
2 {
3 // invm can be precomputed.
4 mat4 invm = inverse(m);
5

6 // normal matrix used to transform AABB normals into OBB coordinates
7 mat4 nm = transpose(invm);
8

9 // ray transformation; rd does not need to be normalized.
10 vec3 roPrime = (invm*vec4(ro,1)).xyz;
11 vec3 rdPrime = (invm*vec4(rd,0)).xyz;
12

13 SurfaceHit s = intersectRayAABB(roPrime,rdPrime,vec3(-0.5),vec3(0.5));
14 if(s.t < 0.0) return s;
15

16 s.n = normalize((nm*vec4(s.n,0)).xyz);
17 return s;
18 }

they need to be transformed by the normal matrix N = (M′–1
OBB)

T to be placed in
model space (see line 16 of Listing 32-3).

Having the normal, determining the face ID is straightforward: we use a 3-bit
integer to store the face ID. The first, second, and third bits are turned on for
X, Y, and Z aligned normals, respectively. We xor +1 when the nonzero
coordinate is positive and 0 otherwise (see line 18 of Listing 32-2).

The UV coordinates are encoded on the intersection point because the AABB is
a unit cube centered at the origin. We determine which coordinate to drop
based on the normal and then translate the remaining coordinates so the
result lies in the [0, 1] range. Finally, we flip the UV coordinates on opposite
planes from each axis so that all of them have the same orientation from an
outside view (see line 23 of Listing 32-2).

32.6 CONCLUSION

We present a convenient method for ray/OBB intersection based on ray
transformation. It is built over the ray/AABB algorithm already available in ray
tracing hardware and only adds the cost of two matrix/vector multiplications.

This method fits nicely on instance-based interactive graphics pipelines: it is
robust and fast and has the potential to further optimize BVHs (see
Figure 32-3). Wald et al. [8] provide a creative implementation for
GPU-accelerated OBB traversal using a very similar approach. However,
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Bunny
SAH OBBB/AABB ratio 0.9108

Dragon
SAH OBBB/AABB ratio 0.9492

Ray/Box
interseation queires

> 256

< 128

Figure 32-3. Heatmap illustrating the ray BVH traversal cost for different models using AABBs
(left) and OBBs (right). The gradient represents the number of intersection queries between a ray
and BVs required during ray casting until the ray hits the geometry at the bottom of the tree. The
Surface Area Heuristic (SAH) ratio between both types of BVHs can be used to argue that BVHs of
smaller SAH lead to reduced traversal costs.

Majercik et al. [4] provide the current state-of-the-art implementation of
similar methods. Both methods are a step ahead for future hardware OBB
BVH builders.

Furthermore, this method does not hinder the inventive use of matrices in the
next generation of graphics technology, as it supports a wide variety of
transformations, such as shear, mirroring, and nonuniform scaling, and use
of the homogeneous coordinate for scaling (see Figure 32-4).

We provide an implementation code for building the OBB from a mesh based
on the method we described in Equation 32.6 at Shadertoy [5]. We also
provide an implementation for ray/AABB intersection (Listing 32-2), ray/OBB
intersection (Listing 32-3), and the intersection data structure
(Listing 32-1) [6].

Figure 32-4. Our implementation supports shearing, nonuniform scaling, and mirroring.
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CHAPTER 33

REAL-TIME RENDERING OF
COMPLEX FRACTALS
Vinícius da Silva,1 Tiago Novello,2 Hélio Lopes,1 and Luiz Velho2
1Pontifical Catholic University of Rio de Janeiro
2National Institute for Pure and Applied Mathematics

ABSTRACT

This chapter describes how to use intersection and closest-hit shaders to
implement real-time visualizations of complex fractals using distance
functions. The Mandelbulb and Julia sets are used as examples.

33.1 OVERVIEW

Complex dynamics fractals have interesting patterns that can be used to
create special effects or moods in 3D scenes. Walt Disney Animation Studios
used a Mandelbulb in Big Hero 6 [12] to design the inside of a wormhole.
Marvel Studios also used Mandelbulbs to produce the magical mystery tour
scene in Doctor Strange [20] and other 3D fractals in Guardians of the Galaxy
Vol. 2 [6]. Lucy [13] and Annihilation [7] have other examples of fractal-based
effects. Most of them do not intersect the fractal directly, but convert it to
point clouds or VDB volumes [14]. Using DirectX Raytracing (DXR) via custom
intersection shaders allows the integration of fractals with triangle-based
scenes and path tracing automatically, with hardware acceleration.

We are interested in rendering 3D complex fractals associated with
polynomials of the form f(Z) = Zk + C. For this, we must consider a domain for f
that allows multiplication, so Zk can be evaluated. The complex numbers and
quaternions do so, producing 2D and 4D fractals. However, by the Frobenius
theorem [1], there is no similar operation for 3D points, so there are no
natural 3D complex fractals. To overcome this, we can work with quaternions
and take 3D slices of the resulting 4D fractals, or we can consider an informal
multiplication of 3D points.

Julia sets and the Mandelbrot set [5] are popular examples of complex
fractals. As such, they can be rendered in 3D using both approaches just
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described. For the informal multiplication in 3D space, these fractals are
called Juliabulb and Mandelbulb, respectively [16]. To cover both approaches,
this chapter focuses on the rendering of Julia sets using 3D slices of the 4D
fractal and the Mandelbulb.

33.1.1 JULIA SETS

Examples of Julia sets arise from the exploration of the convergence of the
sequence given by the iterations of the quadratic function f(Z) = Z2 + C.
Specifically, a (filled-in) Julia set consists of the set of points Z in the
complexes/quaternions, where the sequence fn(Z) has a finite limit. The
expression fn means that f is composed n times. Changing the constant C
produces different Julia sets.

Using the complex plane as the domain of the quadratic function f results in
the traditional images of 2D Julia sets. Norton [15] extended this class of
fractals to 4D considering that the quaternions Q are the domain of f. We
denote such fractals as 4D Julia sets or quaternion Julia sets interchangeably.
Three-dimensional slices of a quaternion Julia set can be rendered by letting
its real part be equal to 0, i.e., by restricting the fractal to
{ai + bj + ck + d ∈ Q| d = 0}.

To visualize a 2D Julia set, we check whether a point on the complex plane
diverges. Thus, it suffices to compute the sequence fn(Z) and see how quickly
its magnitude increases. This test can be applied to points (pixels) in an
image, resulting in an illustration of a 2D Julia set. Figure 33-1 shows the 2D
Julia set in the orange region, where the iterations of its points by f(Z) = Z2 + C
have finite limit. The circle points illustrate the iterations (also called orbits)
of the square points. As expected, the blue sequence diverges and the green
one converges.

This approach is inefficient to render 3D slices of a quaternion Julia set.
However, as we are interested in the fractal “surface,” ray tracing is an
appropriate technique. Ray tracing fractals dates back to the work of Hart et
al. [11], which uses a distance estimator (described in [15]) to speed up the
ray tracing process. Recently, Quilez [17] presented real-time visualizations of
those 3D slices using pixel shaders, applying techniques similar to those
defined in [11].

Inspired by the work of Quilez, we use DXR shaders to render 3D slices of
quaternion Julia sets. Figure 33-2 shows one such slice, cut by a plane in 3D.
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Figure 33-1. The 2D Julia set (orange) associated with the map f(Z) = Z2 + C, with
C = 0.28 – i · 0.49. The green (blue) sequence of dots represents fn(Z), where Z is the green (blue)
square. The green (blue) sequence converges (diverges) because the green (blue) square is inside
(outside) of the Julia set. (Image generated using a modified version of Iñigo Quilez’s Complex
Dynamics shader in Shadertoy [18].)

Figure 33-2. A 3D slice of a quaternion Julia set, cut by a plane in 3D. The image restricted to the
plane looks like a 2D Julia set. (Rendered using the shaders in this chapter.)

33.1.2 MANDELBULB

The Mandelbrot set associated with a polynomial f(Z) = Zk + C is the set of
points C such that the sequence fn(0) (the orbit of the zero element) has finite
limit. Therefore, it serves as an interface for the constants C used in the Julia
set definition. That is, each point in the Mandelbrot set corresponds to a
Julia set.
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Figure 33-3. Two frames of an animated Mandelbulb rendered using the shaders described in
this chapter, considering f(P) = P8 + C. The animation is created by varying the number of steps in
the ray marching over time.

The Mandelbulb is a fractal commonly used to represent the Mandelbrot set in
three dimensions. It was constructed by White [21] and Nylander [16]. They
defined an informal kth power operation for 3D points to evaluate f(P) = Pk + C
in the 3D space. This is based on informally extending the multiplication
(related to 2D rotations) of complex numbers to 3D space. In this context,
each Julia set associated with a point C in the Mandelbulb is a Juliabulb.

The formula for the kth power of a point P ∈ R3 is

Pk := rk
(
sin(kθ) cos(kϕ), sin(kθ) sin(kϕ), cos(kθ)

)
, (33.1)

where r = |P| is the norm of P and θ = arctan(Py/Px) and ϕ = |(Px,Py)|/Pz are
the spherical coordinates of P/|P|. We give the motivation of this formula. Let
Z = r(cos θ + i sin θ) = r eiθ be a complex number represented by Euler’s
formula. Then, the kth power of Z is Zk = rkei(kθ) = rk(cos(kθ) + i sin(kθ)).

Figure 33-3 shows the Mandelbulb associated with f(P) = P8 + C, using
Equation 33.1.

33.2 DISTANCE FUNCTIONS

In this section, we present an approximation of distance functions to complex
fractals. We follow the definition and notations of Quilez [19], presenting a
non-rigorous but intuitive discussion about it.

A distance function d can be used to render objects defined by its zero level
set {P ∈ R3| d(P) = 0}. A well-known technique for this task is sphere
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Figure 33-4. Sphere tracing with different approximations for the distance function: a very close
approximation (left), a function smaller than the distance (center), and a function greater than the
distance (right). The center and right options are problematic because of performance and
correctness, respectively.

tracing [10, 11], which works as follows. Let P0 and v be the ray origin and ray
direction, respectively. The intersection between the ray P0 + tv and the zero
level set of d is approximated by iterating Pn+1 = Pn + vmax{d(Pn), ϵ}.
Figure 33-4 illustrates the algorithm using several approximations for d with
the same zero level set. The original algorithm has been improved by recent
works [2, 8].

Let f(Z) = Zk + C be a polynomial map. Our objective is to define a distance
from the set of points Z, where the sequence fn(Z) has a limit. Remember that
fn means that f is composed n times, i.e., fn(Z) = (fn–1(Z))k + C. The Böttcher
map ϕC(Z) = limn→∞(fn(Z))k

–n
is used to derive the distance function. This map

is a deformation of the underlying space.

We provide an informal discussion about the importance of the Böttcher
map. Let Z be an element such that the sequence fn(Z) diverges, i.e.,
limn→∞ |fn(Z)| =∞. Thus, for an n big enough, fn(Z) is far away from the
fractal. In this case, the term fn(Z) will dominate over C. Then, we can forget
about C in the expression f(Z) = Zk + C to obtain fn+1(Z) ≈ (fn(Z))k. In this case,
the expression of f turns out to be f0(Z) = Zk, so we can undo the interactions
by considering (fn0(Z))

k–n = Z. Therefore, ϕ0(Z) = Z when fn(Z) diverges.

According to the aforementioned property of ϕ0(Z), the Böttcher map
approximates to the identity limZ→∞ ϕC(Z) = Z as we move away from the
fractal. For example, Figure 33-5 shows this situation for the Julia set
associated with f(Z) = Z2 + C. The regions distant from the Julia set (blue
square) receive less deformation, while the regions near it (green square)
deform more.
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Figure 33-5. Böttcher map of the Julia set. The blue square shows an area with small
deformations, where ϕC(Z) ≈ Z. The green square shows an area near the Julia set, where
deformations are stronger. The colored points can be mostly ignored for our purposes (the gray
point is C, and the other ones are fixed points of the dynamical system). (Image generated using
Iñigo Quilez’s Complex Dynamics shader in Shadertoy [18].)

Based on the Böttcher map, we now search for a function that approximates
the distance to the fractal. For this, we define

G(Z) = log |ϕC(Z)| = lim
n→∞

log |fn(Z)|
kn

. (33.2)

It is easy to see that this function is smooth and is 0 at the fractal because
fn(Z) converges and kn grows exponentially. In addition, as we move away from
the fractal, G(Z) tends to log |Z| because limZ→∞ ϕC(Z) = Z. Finally, because of
its continuity, the function G gets close to zero as we get close to the set. Even
though G has a few properties of the distance function (it has the same zero
level set), it is not a good approximation as it tends to be log |Z| far away from
the fractal. In other words, it tends to have the performance problems shown
in Figure 33-4 (center).

To find a better approximation of the distance, we use the first-order Taylor
expansion of G. The result is an upper bound estimation d(Z) = |G(Z)|/|∇G(Z)|,
which also uses the gradient of G. Next, we explain this estimator in detail.

Let Z be a point and v be a vector such that Z + v is the closest point in the
fractal from Z, i.e., |v| is the desired distance. Then, we have that G(Z + v) = 0,
so using the Taylor expansion of G, we obtain 0 = G(Z) +∇G(Z) · v + O(|v|2). Let’s
assume that the quadratic term is negligible, i.e., 0 = |G(Z) +∇G(Z) · v|. Then,
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Figure 33-6. Rendering the sphere tracing iterations based on the distance function
approximation: Equation 33.3 (left) and Equation 33.2 (right). The color ranges from black (less
iterations) to white (more iterations). As expected, Equation 33.3 performs better.

using the inequalities |G(Z) +∇G(Z) · v| > |G(Z)| – |∇G(Z) · v| and
|∇G(Z) · v| < |∇G(Z)||v|, we get an upper bound to the distance
|v| > |G(Z)|/|∇G(Z)|. We derive the first inequality from the triangle inequality
and the second comes from the Cauchy–Schwarz inequality.

Using the definition of G(Z) (Equation 33.2) and its derivatives
∇G(Z) = |(fn)′(Z)|/kn|fn(Z)|, the distance function d(Z) = |G(Z)|/|∇G(Z)| can be
expressed as

d(Z) = lim
n→∞

|fn(Z)| log |fn(Z)|
|(fn)′(Z)|

. (33.3)

Figure 33-6 shows the sphere tracing performance using the distance
approximations given by Equations 33.2 and 33.3. Performance is better using
Equation 33.3.

From Equation 33.3, we have to compute both fn and its derivative during the
iteration loop. We compute the sequences using

fn+1 = (fn)k + C, (33.4)

(fn+1)′ = k · (fn)k–1 · (fn)′. (33.5)

Equation 33.4 is the recursion corresponding to the iteration of f, and its
derivative is presented in Equation 33.5 with the initial condition (f0)′ = 1,
because f′(Z) = k · Zk–1. Iterating these equations results in an algorithm (see
Listing 33-4) to compute the distance function in Equation 33.3.
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Figure 33-7. Gradient approximation (green arrow) at the point P (green dot). The gray dots are
the tetrahedron vertices P + hvi and the dashed blue vectors are vi, whose weighted average
approximates∇f(P). The weight for each vertex is f(P + hvi).

To do the shading of the point Z of the fractal, we need an approximation of its
normal vector. As the function d(Z) = G(Z)/|∇G(Z)| is an approximation of the
distance function from the fractal, its gradient provides the desired normal.
We could compute the gradient analytically using

∇d =
∇G|∇G| – G∇|∇G|

|∇G|2
, (33.6)

which comes from the quotient rule of the gradient. When restricted to the
fractal, the expression turns out to be∇d = ∇G/|∇G| because the function G
is 0 at the set. Instead, we consider a simple numerical approach for
convenience.

We use an efficient procedure to numerically compute the gradient∇f of a
function f : R3 → R. Let v0 = (1, –1, –1), v1 = (–1, –1, 1), v2 = (–1, 1, –1), and
v3 = (1, 1, 1) be the vertices of a tetrahedron; vi is a subset of the vertices of
the cube [–1, 1]3, where [–1, 1] is an interval. The gradient∇f(P) can be
approximated by

∇f(P) ≈ 1
4h

∑
i

vif(P + hvi). (33.7)

Figure 33-7 gives a geometrical intuition of Equation 33.7. To derive that
expression, we definem :=

∑
i vif(P + hvi) and rewrite it using

∑
i vi = (0, 0, 0) to

obtainm =
∑

i vi(f(P + hvi) – f(P)). Using (f(P + hvi) – f(P))/h as an approximation
for the derivative ∂

∂vi
f(P) of f in the direction vi, we getm ≈

∑
i vih

∂
∂vi

f(P). From
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calculus, we have ∂
∂vi

f(P) = vi · ∇f(P), thereforem ≈
∑

i vihvi · ∇f(P). We look at
the component x ofm; the computations are analogous formy andmz:

mx

h
≈
∑
i

(vi)xvi · ∇f(P) =
∑
i

(vi)xvi · ∇f(P) = (4, 0, 0) · ∇f(P) (33.8)

We used the linearity of the dot product in the second equality. It is easy to
verify that

∑
i(vi)xvi = (4, 0, 0), which explains the last equality. As a result, we

have m
4h ≈ ∇f(P), as stated in Equation 33.7.

33.3 IMPLEMENTATION

We assume several procedural objects in the scene, each one with a matrix
transforming world space into the local space of the axis-aligned bounding
box (AABB). The shaders were implemented in HLSL, using the Proceduray
engine [3]. The host setup is beyond the scope of this chapter, but we refer
to [3] as an in-depth guide to do so.

33.3.1 JULIA SETS

Listing 33-1 shows the code for the intersection shader of a 3D slice of a
quaternion Julia set. The function GetRayInLocalSpace(), in line 4,
computes the origin and direction in the local coordinates of the underlying
AABB. The corresponding ray is passed to IntersectionJuliaTest()
(Listing 33-2), in line 8, which determines the ray parameter corresponding to
the intersection between the ray and the Julia set and the normal at the hit
point. Note that thit is a float2 because it also contains the number of
iterations in the distance function. Those values are used in the closest-hit
shader (Listing 33-6) to compute the shading of the object.

Listing 33-1. Intersection shader.

1 [shader("intersection")]
2 void IntersectionJulia()
3 {
4 Ray ray = GetRayInLocalSpace();
5 float2 thit;
6 ProceduralPrimitiveAttributes attr;
7 float3 pos;
8 bool test=IntersectionJuliaTest(ray.ori,ray.dir,attr.normal,thit);
9 if (test && thit.x < RayTCurrent())
10 {
11 attr.normal = mul(attr.normal, (float3x3) WorldToObject3x4());
12 attr.color = float4(thit, 0.f, 0.f);
13 ReportHit(thit.x, /*hitKind*/ 0, attr);
14 }
15 }
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IntersectionJuliaTest() (Listing 33-2) returns a boolean indicating if there
is an intersection and outputs resT and normal. It calls functions for finding
the distance using sphere tracing (Listing 33-3) in line 5 and to calculate the
normals at the intersection point (Listing 33-5) in line 10.

Listing 33-2. IntersectionJuliaTest.

1 bool IntersectionJuliaTest(in float3 ro, in float3 rd,
2 inout float3 normal, inout float2 resT)
3 {
4 resT = 1e20;
5 float2 tn = JuliaSphereTracing(ro, rd);
6 bool cond = (tn.x >= 0.0);
7 if (cond)
8 {
9 float3 pos = (ro + (tn.x * rd));
10 normal = CalcNormal(pos);
11 resT = tn;
12 }
13 return cond;
14 }

JuliaSphereTracing() (Listing 33-3) computes an approximation of the first
intersection. The algorithm delimits an intersection search interval at lines 3
and 4. In line 5, it updates that interval based on a bounding sphere and two
clipping planes (to cut the Julia set, as in Figure 33-2). The sphere tracing
loop (lines 11–19) uses function Dist() (Listing 33-4), in line 13, to calculate
the distance.

Listing 33-3. Julia set sphere tracing.

1 float2 JuliaSphereTracing(in float3 ro, in float3 rd)
2 {
3 float tmin = kPrecis; // kPrecis = 0.00025f
4 float tmax = 7000.f;
5 if (!CheckBoundaries(ro, rd, tmin, tmax))
6 return float2(-2.0, 0.0);
7 float2 res = { -1.0, -1.0 };
8 float t = tmin;
9 float lt = { 0.0 };
10 float lh = { 0.0 };
11 for (int i = 0; i < 1024; i++)
12 {
13 res = Dist(ro + (rd * t));
14 if (res.x < kPrecis) break;
15 lt = t;
16 lh = res.x;
17 t += min(res.x, 0.2);
18 if (t > tmax) break;
19 }
20 res.x = (t < tmax) ? t : -1.0f;
21 return res;
22 }
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Dist() (Listing 33-4) implements Equations 33.4 and 33.5, used to
approximate the distance function given in Equation 33.3. The variable z,
defined in line 3, is a float4 representing a quaternion that is the initial
condition of the recursion in Equation 33.4. The 3D slicing is done by letting
the last coordinate of z be 0. Line 4 defines the initial condition of the
recursion in Equation 33.5. The loop (lines 7–14) does the iterations of the
system (Equations 33.4 and 33.5). There is a break, in line 12, to stop the loop
when the sequence given by the iterations of z (line 10) diverges. Finally,
line 15 computes an approximation of the distance function using
Equation 33.3. This implementation is particular for the Julia set associated
with f(Z) = Z3 + C, where C = (–2i + 6j + 15k – 6)/22 ∈ Q. Other Julia sets can be
rendered by varying C and the exponent of Z.

Listing 33-4. Julia set distance.

1 float2 Dist(in float3 p)
2 {
3 float4 z = float4(p, 0.0); // 3D slicing
4 float dz2 = 1.0;
5 float m2 = 0.0;
6 float n = 0.0;
7 for (int i = 0; i < 200; i++)
8 {
9 dz2 *= 9.0 * QuatLength2(QSquare(z));
10 z = QuatCube(z) + kc; // f(z)=z^3+c
11 m2 = QuatLength2(z);
12 if (m2 > 256.0) break;
13 n += 1.0;
14 }
15 float d = 0.25 * log(m2) * sqrt(m2 / dz2);
16 return float2(d, n);
17 }

CalcNormal() (Listing 33-5) implements Equation 33.7 to approximate the
gradient∇d of the distance function d (Equation 33.3);∇d(P) aligns with the
normal at P of the isosurface with a regular value d(P).

Listing 33-5. Normal calculation.

1 float3 CalcNormal(in float3 p)
2 {
3 float h = 0.5773f * kPrecis; // kPrecis = 0.00025f
4 const float2 v = float2(1.0f, -1.0f) * h;
5 return normalize(
6 v.xyy * Dist(p + v.xyy).x + v.yyx * Dist(p + v.yyx).x +
7 v.yxy * Dist(p + v.yxy).x + v.xxx * Dist(p + v.xxx).x );
8 }
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Listing 33-6 shows the closest-hit shader for the Julia set. It uses a
traditional approach, defining an albedo for the Phong model, combining it
with a reflection color, and accumulating it with previous reflections.

Listing 33-6. Closest-hit shader.

1 [shader("closesthit")]
2 void ClosestHitJulia(inout RayPayload rayPayload,
3 in ProceduralPrimitiveAttributes attr)
4 {
5 // Albedo
6 float3 hitPosition = HitWorldPosition();
7 float3 pos = ObjectRayPosition();
8 float3 dir = WorldRayDirection();
9 float4 albedo = float4(3.5 * ColorSurface(pos, attr.color.xy), 1);
10 if (rayPayload.recursionDepth == MAX_RAY_RECURSION_DEPTH - 1)
11 albedo += 1.65 * step(0.0, abs(pos.y));
12

13 // Reflection
14 float4 reflectedColor = float4(0, 0, 0, 0);
15 float reflecCoef = 0.1;
16 Ray reflectionRay = { hitPosition,
17 reflect(WorldRayDirection(), attr.normal)};
18 float4 reflectionColor = TraceRadianceRay(reflectionRay,
19 rayPayload.recursionDepth);
20 float3 fresnelR = FresnelReflectanceSchlick(WorldRayDirection(),
21 attr.normal, albedo.xyz);
22 reflectedColor= reflecCoef * float4(fresnelR ,1) * reflectionColor;
23

24 // Final color
25 float4 phongColor = CalculatePhongLighting(albedo, attr.normal);
26 float4 color = phongColor + reflectedColor;
27 color += rayPayload.color;
28 rayPayload.color = color;
29 }

33.3.2 MANDELBULB

In Section 33.1.2, we defined the Mandelbulb fractal of the polynomial
function f(P) = Pk + C. Remember that a point C ∈ R3 belongs to the
Mandelbulb if the recurrence fn(0) = (fn–1(0))k + C does not diverge. The most
popular choice in the fractal community for rendering is k = 8.

The implementations of the Mandelbulb and Julia set (Section 33.3.1) are very
similar. The major difference is in the function Dist(), which computes the
iterations using Equation 33.1 to estimate the distance function. Listing 33-7
shows the code.

Given the point C, the loop (lines 7–17) iterates (0, 0, 0) using the formula
f(P) = P8 + C. The eighth power of P is computed in lines 10–13 using the
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Listing 33-7. Mandelbulb distance.

1 float Dist( in float3 c, out float4 resColor )
2 {
3 float3 w = c;
4 float m = dot(w,w);
5 float4 colorParams = float4(abs(w),m);
6 float dz = 1.;
7 for( int i=0; i<4; i++ )
8 {
9 dz = 8.0*pow(sqrt(m),7.0)*dz + 1.0;
10 float r = length(w);
11 float b = 8.0*acos( w.y/r);
12 float a = 8.0*atan2( w.x, w.z );
13 w = pow(r,8) * float3(sin(b)*sin(a),cos(b),sin(b)*cos(a)) + c;
14 colorParams = min( colorParams, float4(abs(w),m) );
15 m = dot(w,w);
16 if(m > 256.0) break;
17 }
18 resColor = float4(m,colorParams.yzw);
19 return 0.25*log(m)*sqrt(m)/dz;
20 }

formula given in Equation 33.1. The iterations are accumulated in line 13. If
the new point diverges, we stop the loop in line 16. The distance is computed
in line 19 using the formula in Equation 33.3 because its derivation can be
applied to the Mandelbulb. The parameters used to define the colors for
different parts of the fractal in the closest-hit shader, later on, are also
computed in lines 5 and 14.

Listing 33-5 can also be used to approximate the normal vectors of the
Mandelbulb surface. We just have to change the distance function by the one
in Listing 33-7.

The Mandelbulb’s closest-hit shader uses the color parameters computed by
the distance function and the normal. Because the code derives from several
empiric tweaks of parameter weights, we avoid listing it here. Details can be
found in the full shader implementation (see the link in Section 33.4).

We can create procedural scenes containing both the Julia set and the
Mandelbulb. To render such a scene, we consider that each fractal is inside
an AABB. Figure 33-8 presents an example containing a Julia set, a
Mandelbulb, a parallelepiped, and two CSG Pac-men.
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Figure 33-8. Example scene: a triangle parallelepiped mesh and several procedural objects (two
Pac-men, a 3D slice of a quaternion Julia set, and a Mandelbulb).

33.4 CONCLUSION

This chapter described how to use DXR shaders to implement real-time
renderings of complex fractals. Using custom intersection shaders enables
scenes containing both fractals and triangle-based objects, which can be
path-traced automatically using hardware acceleration. This work also
compiled the associated mathematical tools in a brief but intuitive way.

Other complex fractals can be visualized in 3D with approaches similar to the
ones in this chapter. They include the Juliabulb and the 3D slices of the
quaternion Mandelbrot set. Additionally, exploring ways to visualize octonion
fractals [9] in 3D could be an interesting path. Finally, developing level of
detail approaches for those fractals could be interesting
performance-wise [4].

The full code for shaders, including ray generation and miss, is available at
github.com/dsilvavinicius/realtime_rendering_of_complex_fractals. For host
code setup, please refer to Proceduray [3].
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CHAPTER 34

IMPROVING NUMERICAL
PRECISION IN INTERSECTION
PROGRAMS
Ingo Wald
NVIDIA

ABSTRACT

This chapter describes a useful and widely applicable technique for improving
numerical stability in ray/primitive intersection tests. The described
technique is all but novel, but is not well described in any literature, and thus
not known to many practitioners—something this chapter aims to remedy.

34.1 THE PROBLEM

Scientific codes generally rely on double-precision floating-point calculations,
but for performance reasons in graphics we typically use single-precision
floats. Single precision is good enough for most things including primitive
coordinates, ray origins and directions, barycentrics, colors, etc. However, in
ray tracing one area where single precision frequently leads to issues is user
intersection programs, in particular in situations where the primitive to be
intersected is, relative to its size, far away from the ray origin. Such situations
often lead to numerical precision errors in computing the intersection
outcome and/or hit distance, often leading to artifacts that appear like
concentric rings around the image center (such concentric rings are usually a
dead giveaway for this kind of issue).

This problem of numerical stability in intersection tests has been previous
addressed by two Ray Tracing Gems chapters—one by Wächter and Binder [2],
and one by Haines et al. [1]. These two chapters cover triangles and spheres,
respectively, and work well for those—but do not necessarily generalize. This
chapter describes a completely orthogonal method to address this problem; it
is easy to apply and is applicable to practically any intersection program.
Though not at all novel (this author is aware of multiple prior uses by different
practitioners), this method seems to not be as widely known as this generality
would suggest it should be.
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34.2 THE METHOD

To fully understand why (and how) the eventual method will work, it helps to
first properly understand the root cause of why such intersection tests for
faraway primitives are problematic in the first place. To do this, we need to
briefly look at floating-point numbers: Each floating point is represented by a
mantissa and an exponent, and when two floating-point values get added (or
subtracted, compared, etc.), the floating-point unit first needs to bring both
terms to the same exponent. This is done by shifting the mantissa bits of the
smaller value until the exponent matches that of the larger value—but
shifting the mantissa means that some of the smaller value’s mantissa lower
bits get lost: a process called vanishing or extinction of the lower-value bits.
How many bits get lost depends on how big the difference of the two
exponents is: the greater that difference, the more bits of the lower value get
lost (in extreme cases, the lower value may get lost completely).

In ray/primitive intersection computations this typically happens as soon as
the primitive is far away from the ray origin: no matter the type of primitive,
some of the terms computed in the intersection program will almost surely
only involve values of the primitive itself (e.g., the radius of a sphere, the
distance between two vertices or control points, etc.), while others will involve
both ray origin and some primitive value (e.g, the ray origin’s distance to the
sphere center, or to a vertex, etc.). If the object is far away relative to its size,
these two types of terms will then have very different magnitudes, and any
operation between them will lead to extinction. Generally speaking, the
farther away and/or the smaller the object, the worse the problem; and if the
computations use the square (or any other power) of such values, it only
gets worse.

Once we understand this root cause, we an simply address it by temporarily
moving the ray origin closer to the object: for any ray r(t) = o + td, any other
origin o′ on that same ray should actually yield the same intersection, except
for an obviously different hit distance; yet, if that temporarily shifted origin is
much closer to the object, the origin-primitive terms should get significantly
smaller, reducing the previously described extinction effects.

This trick is trivial to apply: First, we compute any approximate distance
tapprox to the primitive; this value does not have to be exact, just something
that produces an origin anywhere reasonably close to the primitive. Second,
we compute a new, temporary ray r′(t) = o′ + td with same ray direction d but
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with origin o′ = o + tapproxd and with similarly adjusted ray interval
[t′min, t

′
max] = [tmin – tapprox, tmax – tapprox]. We then perform the intersection

computations with this “shifted” ray—but because the origin-primitive terms
should now be on the same scale as primitive-only terms, extinction will be
significantly less. Finally, if r′ did find a valid intersection at t′hit, we know that
the original ray r should have hit at thit = t′hit + tapprox, so all we have to do is
adjust the returned hit distance and report this (barycentrics, normal, etc. are
not affected by this method).

34.2.1 IMPLEMENTATION NOTES

Implementing this technique is trivial, too: given an existing intersection
program intersect_naive(ray,prim), all we need to do is supplement this
program with a second intersection program that temporarily shifts the ray
origin, then calls the original one, and re-adjusts the hit distance:

1 bool intersect_naive(Prim prim, Ray ray, Hit hit)
2 { ... /* arbitrary intersection program */ ... }
3

4 bool intersect_improved(Sphere sphere, Ray ray, Hit hit)
5 {
6 // Compute _any_ approximate distance.
7 float tApprox = /* any approximate distance to prim */...;
8 // ``Temporarily'' shift the ray origin closer to the object.
9 float3 shiftedOrigin = ray.direction + tApprox*ray.direction;
10 Ray shiftedRay(shiftedOrigin, ray.direction,
11 ray.tMin - tApprox, ray.tMax - tApprox);
12 // Call naive test with the shifted ray.
13 if (!sphereTest_naive(sphere,shiftedRay,hit))
14 return false;
15 // Shift the computed hit point back.
16 // In OptiX: optixReportIntersection(hit.t+tApprox)
17 hit.t += tApprox;
18 return true;
19 }

To demonstrate the effectiveness of this trick, Figure 34-1 (taken from [3])
shows an example of it being applied to ray/curve intersections. Without
shifting the origin, the accuracy of the curve intersection diminishes very
quickly, because terms with the curve radius vanish relative to the
origin-curve distance terms—leading to some curves being missed while
others report false positives, with very inaccurate intersection distances that
lead to wrong secondary rays.1

1These pictures also exhibit the telltale circular artifacts around the image center that we mentioned in Sec-
tion 34.1.
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Figure 34-1. Impact of the technique described in this chapter on a ray/curve intersector in [3].
Left: intersection test with the original ray, leading to very inaccurate intersection tests. Right:
with this chapter’s technique and otherwise unchanged intersection test.

34.2.2 WHICH DISTANCE TO CHOOSE?

So far, we have not said much about what distance tapprox one should use. In
fact, it does not actually matter much, as long as it reduces the magnitude of
the origin-to-object distance term(s); for example, for a sphere, cylinder,
torus, etc., an obvious candidate is the distance to the object’s center; for any
object with control points, the distance to any control point should do; for code
that involves any sort of bounding box computation and test, the distance to
that bounding box should be a good candidate; etc.

Even more generally, if one does have access to the bounding volume
hierarchy traverser’s distance to the leaf node that contained the primitive (or
if one used any sort of early-out bounding box test), then the distance to this
bounding volume is an excellent choice. In OptiX or DirectX Raytracing this
distance to the bounding box is not yet exposed to the intersection program;
but if it ever will be, it would be a good candidate.

34.2.3 LIMITATIONS AND PITFALLS

Though the main strength of this technique is its wide applicability, it is not a
panacea: it cannot solve all numerical precision issues and should not be an
excuse to not (also) use better numerical techniques if and where available
(see, e.g., the aforementioned chapters by Haines et al. [1] and Wächter and
Binder [2]).
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One possible pitfall is that in cases where primitives are far away from the ray
origin, these primitives will almost surely also be far away from the origin of
the coordinate system—in which case extinction can still happen between
terms that combine large absolute primitive coordinates with much smaller
primitive values like edge lengths, radii, etc. Interestingly, the trick just
described often still works, as long as the intersection test first shifts the
primitive into a coordinate system centered around the ray origin. Many
primitive tests already do that for performance reasons (a ray origin at (0, 0, 0)
simplifies many terms, leading to cheaper intersection tests), but those that
do not may need to address those issues separately.

34.2.4 SUMMARY

We have discussed a simple trick for reducing floating-point extinction effects
in arbitrary ray intersection tests. The trick is trivially easy to apply, virtually
free in terms of computations, and has, in this author’s own experience,
proven itself to work well for spheres, cylinders, tubes, curves, and others.
Though it cannot solve all problems, it is a trick that this author believes every
ray tracing practitioner should at least be aware of.
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CHAPTER 35

RAY TRACING OF BLOBBIES
Manuele Sabbadin and Marc Droske
Weta Digital

ABSTRACT

Particles are widely used in movie production rendering for various different
effects. Blobbies (aka metaballs) are a very useful primitive to bridge the
intermediate regime between the bulk of a fluid and fast-moving spray
particles as well as providing geometric variation to droplets. The use of
anisotropy allows one to represent thin line structures better than classic
isotropic shapes. Tessellation of such fine geometric structures is prone to
geometric artifacts, especially under strong motion blur, which may heavily
distort the surface during the shutter or because topology changes can’t be
represented well. Intersecting rays with the isosurface analytically has
robustness and precision advantages. Operating on the original
representation provides highly accurate spatial and temporal derivatives that
are useful for filtering specular highlights. In this chapter we describe some
algorithmic tools to robustly and efficiently intersect blobby surfaces
supporting anisotropy and higher-order motion blur.

35.1 MOTIVATION

High-quality rendering of special effects elements (see Figure 35-1) requires
robust and accurate representation of geometric details at various different
scales. Elements such as fine spray can be represented by volumes and
particles, whereas for the bulk of a fluid, morphological surfacing techniques
can successfully be applied [8]. High-frequency details of implicit surfaces,
especially under motion, pose challenges for tessellation-based techniques
due to distortions and topology changes, which might require a large amount
of motion steps to mask and special care to avoid artifacts due to potential
self-intersections. Furthermore, high curvature and temporal variation of the
normal cause specular highlights to be challenging to resolve. Here,
spatial [6, 11] and temporal [10] antialiasing techniques yield very good
results. These rely on surface derivatives to estimate the normal variation to
translate into Beckmann roughness and to compute ray differentials. In
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Figure 35-1. Blobbies are largely used in visual effects to represent splashes of water. Anisotropy
of the particles allows one to preserve the correct shape of the thin walls and lines of water. In this
image 1,221,370 blobbies represent an exploding bowl of water.

particular, we rely on computing up to second higher-order and mixed
derivatives to be computed reliably, which can be a challenge on its own.

Blobby surfaces, as first introduced by Blinn [1], offer an analytic definition of
an isosurface based on the combination of kernel functions around given
particles (see Figure 35-2). The resulting surfaces are smooth and are nicely
and compactly represented by points with some parameters. Motion can be
expressed in a very natural way in a Lagrangian formulation. However, in their
basic form the resulting surfaces are more suitable for molecular
visualization than for fluids. Their wobbly appearance makes it difficult to
represent thin structures. The definition of blobbies extends, however, easily
to anisotropic surfacing [12], which overcomes these issues and makes them
a compelling modeling representation for various forms of splashes and fluid
droplets.

Because the surface is implicitly defined by particles that interact with each
other, finding the intersections both robustly and efficiently requires some
extra care. We describe some ingredients for using ray traced blobbies in
practice:

> Revisit anisotropic blobby particles.

> Bounding volume hierarchy (BVH) traversal tailored to interval
refinement methods [9].

> Computing tight bounds of individual blobby functions.
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Figure 35-2. Blobby field from three anisotropic particles with corresponding isosurface (green).
With each particle we associate an inner sphere (orange) and a bounding sphere (blue), the
smallest sphere that contains the support region.

35.2 ANISOTROPIC BLOBBIES

A blobby particle Bi is represented by an implicit field ψi : [t0, t1]× Rd → R
defined on time in [t0, t1] and space. A set of blobbies defines an implicit field
ϕ(t, x) in the following way:

ϕ(t, x) =
∑
i

ψi(t, x) – T, (35.1)

where T is a threshold parameter that influences the blending of the different
blobbies (see Figure 35-2). To visualize ϕ(t, x), we are interested in the
isosurface defined byM(t) = {ϕ(t, ·) = 0}.

We focus on the classic blobby variant

ψi(t, x) =


(
1 – R–2i ‖x – xi(t)‖

2
)3

‖x – xi‖ < Ri,

0 otherwise,
(35.2)

where xi(t) defines the center of the particle at time t and Ri is the radius of
the influence region. We denote with Ri the bounding radius of the blobby Bi.

This can easily be generalized to anisotropic particles by writing it in the form

ψi(t, x) = k
(
g
(
x – xi(t), x – xi(t)

))
, where k(y) = (1 – y)3 (35.3)

and g is a scalar product gA(u, v) = 〈Au,Av〉 that encodes the anisotropy and
size. In particular, for a unit basis b0,b1,b2 and radii R0,R1,R2, we can set
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Ai = diag( 1R0
, 1
R1
, 1
R2
) · [b0 b1 b2]T. The values Ri can be easily chosen depending

on T such that the isosurface of an isolated blobby describes an ellipsoid with
the prescribed lengths r1, r2, r3 of the axes. In the case of anisotropic
particles, the bounding radius is defined as the maximum of {R0,R1,R2}. We
also define ri, the inner radius of the blobby Bi, as the radius of the largest
sphere that is contained in the isosurface, if Bi is not influenced by any other
blobby. It is equal to the minimum value of {r1, r2, r3}.

Expressions like the shape operator S, the temporal derivative of the normal,
or the derivative of the intersection distance (see [10]) are easily obtained
through basic derivatives of the level set function such as ∂tϕ,∇x ϕ, Hessϕ,
and ∂t∇x ϕ. In particular, the shape operator corresponds to the matrix
representation of the Weingarten map:

S =
1

‖∇xϕ‖
P[∇xϕ] HessϕP[∇xϕ], where P[v] = (id – v⊗ v), (35.4)

which is useful to compute normal derivative in direction v as DvN = S v.

Setting gi(t, x) = 〈Ai(x – xi(t)),Ai(x – xi(t))〉, we have, for example,

∂t∇xψi(t, x) = k′′(gi(t, x)) ∂tgi(t, x)∇xgi(t, x) + k
′(gi(t, x)) ∂t∇xgi(t, x), (35.5)

where

∂tgi(t, x) = –2
〈
A(x – xi(t)),A ∂xi(t)

〉
,

∇xgi(t, x) = 2ATA(x – xi(t)),

∂t∇xgi(t, x) = –2ATA ∂txi(t).

(35.6)

Motion blur is expressed simply as a parametric form of the center xi(t)
depending on t. The equations can easily be extended to support a
time-dependent metric A(t) to represent, for example, oscillations and spin.

35.3 BVH AND HIGHER-ORDER MOTION BLUR

We use a classic BVH to store blobbies and to identify particles whose
supports overlap with a ray segment. Each blobby is represented as a sphere
inside the BVH (even for the anisotropic case, as we will discuss in
Section 35.4). For a generic blobby Bi, we store its bounding radius Ri and the
inner radius ri. To tackle the motion of each blobby, we also store its velocity vi
and acceleration ai at time t0. This will allow us to represent higher-order
motion blur, instead of just a linear motion. During the construction of a BVH,
it is important to create bounding boxes as tight as possible to the actual
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B1

B2

B3

B12 (t)
B23 (t)

B(t)

Figure 35-3. Higher-order motion bounds: Given the bounds B1, B2, and B3 that contain the
control points of the input curve, B12(t) = (1 – t)B1 + tB2 and B23(t) = (1 – t)B2 + tB3 are bounds of
the two control points of the first iteration of the de Castlejau interpolation. Eventually,
B(t) = (1 – t)B12(t) + tB23(t) contains the curve evaluated at time t.

geometry. When objects are moving, this task becomes trickier. The simplest
solution, using a bounding box that contains the entire trajectory of the object,
will become inefficient under fast motion as bounds for a specific ray time
become loose. A better option is to exploit velocity and acceleration to
interpolate bounds in time on leaf nodes and to propagate this motion higher
up the tree.

Linear motion blur can easily be handled by linearly interpolating the
bounding boxes during traversal according to the ray time [3], which yields
much tighter bounds than growing the bounding boxes to contain the entire
motion path. Because de Casteljau’s algorithm is an iterated version of linear
interpolation, this can easily be extended to higher-order Bézier interpolation:
the control points can be used to define control bounding boxes that are
Bézier-interpolated during the traversal (see Figure 35-3).

Therefore, we only need to convert the incoming parabola given by velocity v
and acceleration a defined on [0, 1] as

xi(t) = pi(0) + tvi +
1
2
t2ai (35.7)

into Bézier form:

Bi(t) = (1 – t)2Pi,0 + 2(1 – t)tPi,1 + t
2Pi,2. (35.8)

The change of basis is given by Pi,0 = xi(0) = pi, Pi,1 = 1
2vi + Pi,0 and

Pi,2 = 1
2ai + vi + pi = xi(1). From these the bounds of the control points for each
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leaf node are obtained, which defines three Bézier control bounding boxes.
Again analogously to the linear interpolation case, the control bounding boxes
are aggregated up toward the root.

35.4 INTERSECTION METHODS

We define r = (o,d) as the ray with origin o, direction d, and limits [smin, smax],
parameterized as r(s) = o + sd.1 We want to determine an intersection
distance sint > 0 that is the minimum s ∈ [smin, smax] such that ϕ(t, r(sint)) = 0.
We indicate the hit point with h. For an interval I (along the ray) in which
ϕ(t, r(s)) assumes both positive and negative values and is monotone, we can
apply any root-finding method to find h within that interval. We can consider
the bounding box enclosing the entire set of blobbies and intersect it with the
ray r, finding a first guess for such an interval. Then, bisection can be applied
iteratively until it satisfies the above-mentioned conditions. This approach
works in theory, but it is not feasible in practice, as the amount of blobbies
that define the implicit field ϕ can be very large. This means that every time
we want to evaluate ϕ(t, x), we need to sum up the contribution from all the
blobbies. Any root-finding algorithm would require ϕ(t, x) to be computed
more than once, at different points along the ray. Given the finite support of
the kernel function, only a few of them will contribute to the value ϕ(t, x).
Naturally, we can restrict the number of blobbies we use to those whose
bounding boxes intersect r. Even so, we are potentially considering a large
amount of blobbies that are too far away from h to contribute to its
computation. Our aim is to find the set of blobbies A required by the
root-finding algorithm (i.e., it contains all the blobbies Bi for which ψi(t,h) 6= 0)
while discarding as many as possible.

The main steps of our algorithm are the following:

1. Determine A and I0 ⊆ [smin, smax], which is our first guess for the
interval I.

2. Refine the interval I0 iteratively, proceeding in front-to-back order, until
we obtain an interval In that contains exactly one root.

3. Find the root inside the interval In.

We will focus on the first two steps, as the third consists of using a standard
iterative root-finding algorithm.

1We use s to parameterize the ray to avoid conflict with the time denoted by t.
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35.4.1 DETERMINE THE ACTIVE BLOBBIES

As we have previously seen, given a blobby Bi, we can define two different
radii on it: The first one is the bounding radius Ri, which refers to the region of
influence of Bi (i.e., ψi(x) = 0 when ‖x – xi‖ > Ri). The second radius is the
inner radius ri, which represents the radius of the largest sphere that is
contained in the isosurface of Bi if not influenced by any other blobby. We
associate a sphere to each of them: respectively, the bounding sphere Sbound,i
and the inner sphere Sinner,i. Each time we intersect the ray r with Bi, we
obtain four values: Si[min], Si[max], si[min], and si[max]. The first two
quantities are the values of s that lead to the two intersections on the
bounding sphere Sbound,i, while the latter two refer to the intersections on the
inner sphere Sinner,i. It is worth noting that we check for intersections against
spheres even for the anisotropic case because the intersection test is
computationally faster compared to a ray-ellipse test. As we need to be
conservative in our criteria to discard a node, we set Ri to be the major radius
of the bounding ellipse and ri to be the minor radius of the inner ellipse.

To determine which blobbies we should consider and determine the interval
I0, we have to distinguish two different cases: if the ray is pointing inside
(such as interior reflection or transmitting inward) or outside the surface. For
both cases, we avoid adding a blobby Bi to the set A if the ray r does not
intersect Sbound,i. Moreover, we traverse our BVH in a way that prioritizes the
nodes closer to the ray origin, as shown in the following listing:

1 void VisitChildren(Stack& S, Ray r, Node n) {
2 float t0 = r.GetNearHitpointBounding(n.Child[0]);
3 float t1 = r.GetNearHitpointBounding(n.Child[1]);
4

5 int furthest = 0;
6 if (t1 > t0) furthest = 1;
7

8 if (r.IntersectBounding(n.Child[0]) && r.IntersectBounding(n.Child[1]))
{

9 S.Push(n.Child[furthest]);
10 S.Push(n.Child[1 - furthest]);
11 return;
12 }
13 if (r.IntersectBounding(n.Child[0]))
14 S.Push(n.Child[0]);
15 if (r.IntersectBounding(n.Child[1]))
16 S.Push(n.Child[1]);
17 }

TRACING TOWARD FRONTFACE

When we hit the isosurface from the outside, we can state that if we hit the
inner sphere Sinner,i of the blobby Bi, we don’t need to add to A any node Bj
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that is farther from the origin of r and whose bounding sphere Sbound,j does
not intersect Sinner,i. This is simply motivated by the fact that the blobby Bj

cannot influence in any way the implicit field around the hit point (and cannot
cover it because it is farther). This can be achieved by a simple check: we can
discard Bj if Sj[min] > si[min]. The following listing shows a simple
implementation of the method to find the closest hit if the ray origin lies
outside the isosurface; we use a stack to keep track of the traversal’s state:

1 // The BVH B stores all the blobbies.
2 void IntersectFromOutside(Ray r, Set A) {
3 Stack S;
4 S.Push(B.root);
5 float tmax = FLT_MAX;
6

7 while (!S.IsEmpty()) {
8 Node n = S.Pop();
9 // If the bounding box is farther than the hit point, it cannot

influence it.
10 if (r.GetNearHitpointBounding(n) > tmax)
11 continue;
12

13 if (n.IsLeaf()) {
14 if (r.IntersectInner(n)) {
15 // t defines the intersection along the ray.
16 float t = r.GetNearHitpointInner(n);
17 tmax = min(tmax, t);
18 }
19 if (r.IntersectBounding(n))
20 A.Insert(n);
21 }
22 else
23 VisitChildren(S, r, n);
24 }
25 }

TRACING TOWARD BACKFACE

When we hit the isosurface from the inside, we cannot use the same
argument we used in the previous case. In this case, when we hit the inner
sphere Sinner,i, there is no guarantee that nodes that satisfy the condition
Sj[min] > si[min] won’t contribute to determining the hit point h. Let’s
imagine, for example, a chain of intersecting blobbies. If we start the ray r
from one side of the chain, we have to traverse all the blobbies to detect the
exit point (see Figure 35-9). In this scenario, we can use a weaker condition
that allows us to discard part of the blobbies along the ray: Let Bi be the node
in A with the largest Si[max]. If all the nodes Bj that we still have to visit
satisfy Sj[min] > Si[max], we can stop collecting nodes, because we must have
exited in between. There is a crucial difference to the previous case, in which
we could discard the single blobby and continue the visit the other nodes on
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the stack. However, in this case we can only ascertain when the entire visit
can be terminated, but it can’t be determined whether a specific particle can
be discarded. This is due to the fact that the entries in our stack are not
ordered by S[min]. Hence, a node that we will visit later during the traversal
could make the current node active, even if it is actually too far away to
contribute to the hit (see Figure 35-9). We tested this approach on the data set
in Figure 35-13 and compared to a version of the algorithm where we collect
all the blobbies along the ray. The proposed technique gives a speedup of 24%
for the render time.

One could argue that we should use a heap data structure instead of a stack
to support the visit, to allow the algorithm to consider the closest entry at
each iteration and to be able to stop the visit earlier. It is indeed an option that
would allow for some optimizations, but the trade-off of the added cost of
updating the heap might not be worth it.

The following listing shows a simple implementation of the method to find the
closest hit if the ray origin is located inside the isosurface. Note that, to check
if we can terminate the traversal, each entry of the stack now saves the
minimum distance from the ray origin at the moment of its insertion.

1 // The BVH B stores all the blobbies.
2 void IntersectFromInside(Ray r, Set A) {
3 Stack S;
4 S.Push(B.root);
5 float tmax = FLT_MAX;
6 bool hasToInitTmax = true;
7

8 while (!S.IsEmpty()) {
9 if (S.Top().MinDistanceFromOrigin > tmax)
10 return;
11

12 Node n = S.Pop();
13

14 if (n.IsLeaf()) {
15 if (r.IntersectBounding(n)) {
16 if (hasToInitTmax) {
17 tmax = r.GetFarHitpointBounding(n);
18 hasToInitTmax = false;
19 }
20 else
21 tmax = max(r.GetFarHitpointBounding(n), tmax);
22 A.Insert(n);
23 }
24 }
25 else
26 VisitChildren(S, r, n);
27 }
28 }
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B1 B2

B3 B4

N1

N2

N

B1 B2 B3 B4

N1

N

N2

Figure 35-4. Left: to better explain the different cases that we have to consider when creating the
setA, we will use a data set made by four blobbies, whose bounding spheres Sbound,i intersect in
pairs. In green we represent the isosurface. For each blobby, we used an opaque color to
represent the inner sphere and a semitransparent one to represent the bounding sphere. Right:
The BVH stores the nodes in a way that B1 and B2 share the same parent node N1, while B3 and B4

share the same parent node N2.

We have to update the method VisitChildren() to push the value
MinDistanceFromOrigin onto the stack, with each new entry. The value to
push is the minimum between the old minimum distance
(MinDistanceFromOrigin of the current top of the stack) and the distance to
the node that we are going to push. For a generic node n, it works in the
following way:

1 float minValue = S.Top().MinDistanceFromOrigin;
2 S.Push(n, min(minValue, r.GetNearHitpointBounding(n)));

EXAMPLES

In the following we provide a graphical representation to illustrate how the
algorithm works. We will use the blobbies configuration in Figure 35-4 and
change the ray origin and direction to present the most common situations.
Figures 35-5 to 35-7 consider a ray hitting from outside the isosurface,
whereas Figures 35-8 to 35-10 show a ray whose origin is inside it. In all the
figures we will represent with a dotted contour the blobbies that are not part
of the set A at the end of the traversal (for example, node B4 in Figure 35-6).

35.4.2 INTERVAL REFINEMENT

From the set A we can easily find the interval I0 = [min0,max0]: we simply
have to intersect r against all the blobbies in the set and compute the
boundaries of the interval in the following way:

min0 = Min(Si[min]) ∀Bi ∈ A,

max0 = Max(Si[max]) ∀Bi ∈ A.
(35.9)
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B1 B2

B3 B4

N1

N2

r h

Figure 35-5. The simplest case happens when the ray intersects an inner sphere Sinner,i and no
other sphere Sbound,j intersects both the ray and Sinner,i. In the example, r does not intersect N1,
which is discarded immediately, with all its children. It first intersects Sinner,3 and adds the blobby
to the setA. When r intersects Sbound,4, the test S4[min] > s3[min] succeeds, so we can discard
it. The only active node is B3.

B1 B2

B3 B4

N1

N2

r h

Figure 35-6. When we intersect B1, we don’t intersect its inner sphere. In this case we cannot set
an upper bound for the future intersections, as we don’t know if B1 will contribute to determining
the hit point or not. Because we are visiting N1, the next blobby we process is B2, for which the
same argument holds. When the algorithm processes N2 and hits the inner sphere of B3, it will
set s3[min] as an upper bound and discard B4 at the next iteration, as S4[min] > s3[min]. The set
of active nodes contains B1, B2, and B3, even if B2 won’t contribute to computing the hit point.

To guarantee that an interval Ii contains a single root, it is sufficient for ϕ to be
monotone and the two extremes of the range BI to have different sign.
Therefore, to isolate the roots, one can use the well-known interval
refinement approach as described, for example, in [7, 4]: we successively
refine the ray segment until an interval is reached in which s 7→ ϕ(t, r(s)) is not
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B1 B2

B3 B4

N1

N2

r

h

Figure 35-7. The most unfortunate case, if we hit from outside, is when the ray r intersects many
bounding spheres, but no inner spheres. In this example, we add toA both of the nodes B2 and B3

(which are required to compute the hit point). Because we are not able to set an upper bound, if r
intersects any other blobby along is trajectory, it will be added toA, no matter its distance from
the origin. This cannot be avoided: there are cases where two bounding spheres intersects, but
not enough to define the isosurface between them. In this case, the ray can pass in between the
two blobbies and intersect something that is farther away.

B1 B2

B3 B4

N1

N2

r h

Figure 35-8. When hitting the isosurface from inside, we can stop the process only if all the
entries on the visiting stack are farther than the current upper bound. In this case, because r
doesn’t intersect N2, this node doesn’t appear on the stack. When we hit B1, the only entry to
compare with will be B2 whose bounding sphere is not touching B1. The traversal can stop
immediately.

bounded away from zero and is monotone (can’t contain multiple roots), i.e.,
the derivative with respect to s is guaranteed not to be zero. The interval
refinement can be done by bisection or an Interval Newton method [2], which
uses the bounds of the derivatives in the refinement process.
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B1 B2

B3 B4

N1

N2

r h

Figure 35-9. In this example, we can see why the criteria used for an outside ray would not work
for an inside ray. When we hit the inner sphere of B1, we set S1[max] as the upper bound. As B2

does not intersect it, if hitting from outside, we would discard the node and keep going with the
blobbies in N2, ignoring the fact that the hit point is on its area of influence. This happens because
we cannot know, beforehand, that there will be a node in N2 acting as a bridge between B1 and B2

(B3). Hence, the test for an inside ray checks all the entries on the stack.

B1 B2

B3 B4

N1

N2

r
h

Figure 35-10. An unfortunate case for the inside ray scenario is when we hit the isosurface soon,
but we have a long chain of connected blobbies. The algorithm cannot know, a priori, that B2 and
B4 are not needed to detect the hit point, so it will add them to the setA, in the same fashion as
Figure 35-9.

Therefore, for a given ray r(s) = o + sd, the intersection distance interval relies
on computing the bounds of f(s) = ϕ(t, r(s)) and its derivative f′(s) in an
arbitrary subrange [smin, smax]. Of course, the efficiency of the refinement
process depends on how tight the bounds are.
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xi

s0 –ξ ξ–ζ ζ0 s1
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Figure 35-11. Calculating bounds of ψ along the ray by identifying monotone intervals.

Although interval arithmetic [4] could be applied for the computation of these
bounds, this approach tends to produce too loose bounds. Instead, we
proceed by computing tight bounds for the individual ψi (see Figure 35-11) and
aggregate them through additive composition. Furthermore, we exploit the
fact that ψi > 0 for early termination of the check for whether the bounds
contain a root at all.

To compute tight bounds for ψi, one can simply exploit the well-known fact
that the bounds of a monotone function are given by the values at the
endpoints. We assume for simplicity that o is at the projection (with respect to
gA) of the center xi(t) to the ray

gA(xi(t) – o,d) = 0, (35.10)

by computing the projection and shifting [smin, smax] accordingly.

Defining α = gA(o – xi, o – xi) and β = gA(d,d), we would then like to find the
bounds of f(s) = k(α + s2β) = (1 – α – s2β)3.

It can easily be seen that due to Equation 35.10 the support of f is [–ξ, ξ] with
ξ =
√
(1 – α)/β. It is monotonely increasing in [–ξ, 0] and decreasing in [0, ξ]

and furthermore has inflection points at –ζ, 0, and ζ with ζ =
√

1
5ξ (see

Figure 35-11, right).

Therefore, computing the bounds on f in I = [smin, smax] amounts to evaluating
at the endpoints of the subintervals [–ξ, 0] ∩ I and [0, ξ] ∩ I. Similarly, the
bounds of f′ are obtained by evaluating f′ at the values –ξ, –ζ, 0, ζ, ξ clipped to I.
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NOTES

It is worth mentioning that some optimization could be done here, storing the
active blobbies in an interval tree to accelerate the query of all candidates in
every iteration of the interval refinement. However, due to the strategies
described previously to limit the growth of A, we have not confirmed in the
implementation that the interval tree amortizes in practice.

Furthermore, when aggregating the bounds of ψi to determine whether
ϕ(t, r(·)) may contain a root, we can discard the interval based on the fact that
all ψi are nonnegative: if the lower bound of the partial sum is larger than –T,
it will not recover from being bounded away from zero and therefore will not
contain a root.

For a GPU implementation, the described approach of collecting the active set
A per ray is not feasible because the number of elements is unbounded.
However, the interval refinement approach can also be implemented by
accumulating interval bounds on the fly in an anyhit program (see also [9]),
adjusting smax as described in Section 35.4.1. The strategy for rays inside the
surface as described in Section 35.4.1 is possible in principle but requires
some modifications to the stack to keep track of the minimum distance of all
its elements.

35.5 RESULTS

We apply the ray tracing algorithm on two different data sets. The first scene
is composed of 500 blobbies. They have been generated by randomizing their
position within a unit radius sphere. Each particle comes with an initial
velocity and acceleration. In Figure 35-12 we show how the BVH can be used
to render higher-order motion blur in an efficient way and the benefit of
having continuous derivatives all along the surface. We use the derivatives to
apply the temporal antialiasing technique described by Tessari et al. [10]. The
second asset is composed of 1,221,370 particles. It has been produced by
simulating the explosion of a water bowl and surfacing the final result with an
approach similar to that of Yu and Turk [12]. In Figure 35-13 we show how the
anisotropy improves the shape of the thin lines of water produced by the
explosion. We used Manuka [5] to run all our tests on a machine with 24 CPUs
at a resolution of 1920× 1080. In the first scene we had an average of
1.3 million rays per second, while for the second asset, where particles tend
to overlap more to each other, we averaged 236,000 rays per second.
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Figure 35-12. Top: a static frame of our data set, composed of 500 anisotropic particles. Bottom:
the details of one particle, after applying higher-order motion blur to it. On the right side, we
exploited the derivatives to apply temporal antialiasing [10]. We limited the number of samples per
pixel to 64, to show how the temporal antialiasing helps the convergence of the rendering.

Figure 35-13. In the case of a water bowl explosion, we have patterns of water representing thin
walls and lines. Anisotropy helps in preserving the correct shape of these structures. In the top
image, we can see how anisotropy compares to the isotropic case. The other images show the
details of a thin line of water, with its derivatives on the right side.
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CHAPTER 36

CURVED RAY TRAVERSAL
Christiaan Gribble
SURVICE Engineering

ABSTRACT

We present an implementation of curved ray traversal through volumes of
spatially varying refractive indices. Our work is motivated by problems in
gradient field tomography, including simulation, reconstruction, and
visualization of unknown compressible flows. Reconstruction, in particular,
requires computing, storing, and later retrieving sample points along each
ray, which in turn necessitates a multi-pass traversal algorithm to overcome
potentially burdensome memory requirements. The data structures and
functions implementing this algorithm also enable direct visualization,
including rendering of objects with varying refractive indices. We highlight a
GPU implementation in OWL, the OptiX 7 Wrapper Library, and demonstrate
sampling for reconstruction and interactive rendering of refractive objects.
We also provide source code, distributed under a permissive open source
license, to enable readers to explore, modify, or enhance our curved ray
traversal implementation.

36.1 INTRODUCTION

Geometric optics, or sometimes ray optics, models light propagation as
independent rays traveling through and interacting with different optical
media according to a set of geometric principles. Here, a ray is simply a line
or curve perpendicular to the propagation wavefront.

Geometric optics makes several assumptions about these rays to provide a
straightforward but practical model of the underlying physics. In particular:

> Rays follow straight paths in a homogeneous medium.

> Rays follow curved paths in a medium with varying refractive indices.

> Rays bend (and, in some circumstances, split) at the interface between
two different media.

> Rays can be scattered or absorbed by a medium as they propagate.
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Figure 36-1. Curved ray traversal. We present a multi-pass algorithm for curved ray traversal
through volumes of spatially varying refractive indices, which we use for simulation,
reconstruction, and visualization of unknown compressible flows (left images), as well as for
interactive rendering of refractive objects (right images).

Many computer graphics algorithms employ geometric optics to capture
common illumination effects including image formation, reflection, and
refraction. Here, we leverage geometric optics to implement curved ray
traversal through volumes of spatially varying refractive indices. We apply this
implementation to problems in gradient field tomography and interactive
rendering.

We are exploring these areas to support near real-time decision-making in
industrial imaging applications—including simulation, reconstruction, and
visualization of unknown compressible flows. Reconstruction, in particular,
requires computing, storing, and later retrieving sample points along each
ray, which in turn necessitates a multi-pass traversal algorithm to overcome
potentially burdensome memory requirements. The data structures and
functions implementing this multi-pass algorithm also enable direct
visualization, including interactive rendering of objects with varying refractive
indices. Figure 36-1 depicts several images rendered by our implementation.

In the remainder of this chapter, we briefly review the physical basis of curved
ray traversal to provide context for our algorithm and we highlight its utility in
sampling for reconstruction and interactive rendering of refractive objects.
We then review a GPU implementation of our multi-pass variant in OWL [24],
the OptiX 7 Wrapper Library. We also provide the full source code [5],
distributed under a permissive open source license, permitting readers to
explore, modify, or enhance our foundational curved ray traversal
implementation.
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36.2 BACKGROUND

We leverage curved ray traversal to solve problems in gradient field
tomography and interactive rendering. Importantly, our ability to interactively
render high-fidelity images originates from the same physical principles
governing gradient field tomography: the propagation of light as it travels
through and interacts with different optical media.

36.2.1 REFRACTION

Refraction in optical media is governed by Fermat’s principle [3], which
provides a link between geometric optics and wave optics. Loosely, Fermat’s
principle states that light traveling between two points follows the path of
least time.

To illustrate, consider two media of different but homogeneous refractive
indices, as in Figure 36-2a. Given a point A in the first medium and a point B in
the second, the point P at which refraction occurs is the one that minimizes
the time required for light to travel the path

−→
AB. This phenomenon is

expressed by the law of refraction, or Snell’s law:

sin θ2
sin θ1

=
v2
v1

=
n1
n2

, (36.1)

where each θi is the angle measured from the boundary normal, vi is the
velocity of light in each medium, and ni is the refractive index of each medium,
respectively.

A

B

P
θ
1

θ
2

n2

n1

(a) Refraction at an interface

A

B n2

n1

(b) Continuous refraction

Figure 36-2. Schematic illustration of Fermat’s principle and the law of refraction. Fermat’s
principle states that light traveling between two points, A and B, follows the path of least time.
(a) Given points A and B in two media of different but homogeneous refractive indices, point P is
the point that minimizes the time taken by light to travel the path

−→
AB. The law of refraction, or

Snell’s law, relates the angles θ1 and θ2 to the velocities v1 and v2 or, equivalently, to the refractive
indices n1 and n2. (b) The path

−→
AB follows a curve in a medium for which the refractive index

varies spatially, as in a compressible flow field.
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Figure 36-3. The PowerFlow3D pipeline. PowerFlow3D is a prototype system for acquiring,
processing, and visualizing 3D structure in experimental flows. PowerFlow3D combines modern
high-performance computing with existing methods for acquisition, reconstruction, and
visualization of 3D flow features to help reveal critical information about the underlying structure
of unknown flows.

However, for a medium in which the refractive index varies spatially, the path
−→
AB itself changes continuously, as illustrated in Figure 36-2b. For such a
medium, then, refracted light follows a curved path. In our context, this
behavior manifests as light traverses a compressible flow field, where the
refractive index at any point varies according to fluid density.

36.2.2 GRADIENT FIELD TOMOGRAPHY

Our multi-pass curved ray traversal algorithm supports PowerFlow3D [6], an
end-to-end prototype system for acquiring, reconstructing, and visualizing
the underlying structure of unknown flows. PowerFlow3D is based on work by
Atcheson et al. [1], which describes both an apparatus for measuring
refractive indices of compressible flows using an array of video cameras (i.e.,
2D deflection sensing) and a methodology for computing 3D refractive index
gradient fields (i.e., 3D tomographic reconstruction). The PowerFlow3D pipeline
is illustrated in Figure 36-3.

Both 2D deflection sensing and 3D tomographic reconstruction are based on
the image formation process for background-oriented schlieren (BOS)
methods [20], which are governed by continuous refraction for optically
inhomogeneous media. In particular, the propagation of light in such media is
described by the ray equation of geometric optics:

d
ds

(
n
dx
ds

)
= ∇n, (36.2)
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where n is the refractive index field, x is the position of a photon traversing the
ray, and ds is the differential path length along the ray. Several works in the
computer graphics literature—for example, those authored by
Stam and Langénou [22], Gutierrez et al. [8], and Ihrke et al. [11]—leverage
the ray equation reformulated as a system of coupled first-order ordinary
differential equations to describe curved ray paths:

n
dx
ds

= d,
dd
ds

= ∇n. (36.3)

In this formulation, d describes the local ray direction scaled by the local
refractive index. Integrating this equation relates the refractive index gradient
to 3D ray deflections in tomographic reconstruction:

dout =
∫
c
∇n ds + din, (36.4)

where c is the curved ray path and din and dout denote the incoming and
outgoing ray directions with respect to the medium.

Importantly, the ray equation naturally incorporates straight and curved ray
paths to simulate phenomena like reflection and refraction—phenomena with
significant impact on correctness in gradient field tomography and on visual
fidelity in rendering.

For tomographic reconstruction, the unknown vector-valued function∇n is
discretized by a set of normalized basis functions Φi with unknown coefficient
vectors ni:

∇̂n =


∑

i n
x
i Φi∑

i n
y
iΦi∑

i n
z
iΦi

 =
∑
i

niΦi. (36.5)

This formulation relates 3D ray deflections to 3D refractive index gradients as∫
c
∇n ds =

∫
c

∑
i

niΦi ds =
∑
i

ni

∫
c
Φi ds = d

out
(x,y,z) – d

in
(x,y,z), (36.6)

where ni = (nxi , n
y
i , n

z
i ) is a three-component coefficient vector independently

parameterizing the three gradient components in each dimension. The
discretization results in a system of linear equations over curved ray paths c,
one for each gradient component:

Sn(x,y,z) = d
out
(x,y,z) – d

in
(x,y,z). (36.7)

Solving these systems for the coefficient vectors ni recovers the refractive
index gradient field ∇̂n.
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1 Compute deflection vectors dout(x,y,z) – d
in
(x,y,z);

2 Set initial estimate ∇̂n = 0;
repeat

3 Compute curved ray paths c;
4 Construct matrix S;
5 Solve linear system Sn(x,y,z) = d

out
(x,y,z) – d

in
(x,y,z);

until convergence;
6 Integrate ∇̂n to recover n;

Figure 36-4. Gradient field tomography: reconstruction.

Typically, these steps are repeated in an iterative manner until some
termination condition is met. Finally, integrating the gradient field ∇̂n yields
the refractive index field n. This process is analogous to computing a surface
from normal vectors using a discretized form of the Laplacian operator,

∆n = ∇ · ∇̂n. (36.8)

Here, the left-hand side is discretized, whereas the right-hand side is
computed using the recovered ∇̂n, and the resulting Poisson equation is
solved for n.

The reconstruction algorithm is outlined in Figure 36-4. High-performance
and memory-efficient curved ray traversal (Figure 36-4, step 3) is a critical
component of the overall reconstruction process.

We use Eigen [7, 12] to implement numerical processing within the
PowerFlow3D pipeline—the linear system solution and Poisson integration
processes supporting tomographic reconstruction, specifically. Eigen is a
library of C++ template headers for linear algebra, matrix and (mathematical)
vector operations, and numerical solvers. Eigen exploits vector processing
with SIMD operation on modern CPUs, avoids dynamic memory allocation,
unrolls loops when possible, and pays special attention to cache-friendliness
for large matrices. Together, these characteristics make Eigen an ideal
library for prototyping the numerical processing required by PowerFlow3D.

Tractability of reconstruction relies on a sparse formulation of matrix S. In
particular, the entries of matrix S consist of line integrals over basis
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functions Φi:

S =


∫
c1
Φ1 ds

∫
c1
Φ2 ds · · ·

∫
c1
ΦNb

ds∫
c2
Φ1 ds

∫
c2
Φ2 ds · · ·

∫
c2
ΦNb

ds
...

...
. . .

...∫
cNm

Φ1 ds
∫
cNm

Φ2 ds · · ·
∫
cNm

ΦNb
ds

 , (36.9)

where Nm is the number of deflection measurements across all views
simultaneously and Nb is the number of basis functions. The matrix S is thus
quite large: Nm ×Nb entries, with Nm = width× height×Nv for width× height
images and Nv views, and Nb = Nx × Ny × Nz voxels in the reconstruction
volume.

Assuming a dense, 64-bit double-precision floating-point format, our fidelity
goals dictate that matrix S alone would consume several petabytes of
memory, thereby overwhelming even typical distributed-memory
supercomputing platforms. Following Atcheson et al. [1], we thus use basis
functions with finite support to impose sparsity on matrix S.

In particular, we use radially symmetric linear basis functions
Φi = max(0, 1 – r) for radius r. These functions preserve sparseness while
allowing interpolation in the 3D solution space. Basis functions are aligned to
a regular grid, excluding those with support completely outside a conservative
visual hull. This so-called visual hull restricted tomography was introduced for
flame reconstruction [10] and is necessary to reconstruct refractive index
gradients from a sparse set of input views with reasonable resource
requirements.

Given basis functions Φi, we then carefully and efficiently construct and solve
the resulting sparse linear system (Figure 36-4, steps 4–5) using Eigen’s
sparse least-squares conjugate gradient (LSCG) numerical solver. Although
Eigen exploits only SIMD operation within any particular invocation of the
LSCG solver, we leverage multithreaded processing in step 5 by executing
three solver instances—one for each gradient component in (x, y, z)—across
multiple CPUs simultaneously.

Likewise, we integrate the reconstructed gradient field ∇̂n to compute the
refractive index field n by solving a Poisson equation (Figure 36-4, step 6)
using Eigen’s supernodal lower-upper (LU) factorization solver. Here, too,
Eigen exploits SIMD operation within the solver, but unlike the linear system
solution in step 5, Poisson integration does not afford opportunities to
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leverage even explicit multithreaded operation. Nevertheless, the overall
runtime of our current PowerFlow3D prototype is limited by the linear system
solution in step 5, rather than curved ray traversal in step 3, matrix
construction in step 4, or even Poisson integration in step 6. Interested
readers are referred to the work by Gribble et al. [6] for additional details
regarding PowerFlow3D.

36.2.3 INTERACTIVE RENDERING

Our multi-pass curved ray traversal algorithm supports not only tomographic
reconstruction but also direct visualization of 3D refractive index gradient
fields.

Within PowerFlow3D, we exploit this functionality for both interactive
visualization and high-fidelity simulated data capture. In the former, we use
direct visualization to reveal the underlying structure of complex flows, as in
Figure 36-5a. In the latter, we use the data capture simulator both to generate
ground-truth data for reconstruction-related research and development tasks
and to qualitatively assess discrepancies between our physical data
acquisition apparatus and its ideal virtual counterpart, as in Figure 36-5b.

At the same time, interactive rendering of objects with complex optical
properties remains a central theme of realistic image synthesis. As noted by

(a) Interactive visualization (b) Simulated data capture

Figure 36-5. Direct visualization of 3D refractive index gradient fields. In addition to tomographic
reconstruction, we leverage curved ray traversal for both interactive visualization and high-fidelity
simulated data capture in PowerFlow3D. (a) Direct visualization reveals the underlying structure of
complex flow fields, for example, using pseudo-color mappings of gradient magnitude, as shown
here. (b) Direct visualization also supports high-fidelity simulated data capture, which is used to
generate ground-truth data for development, debugging, and validation tasks; here, comparing an
actual capture image (left) to the corresponding image generated by our simulator (right) enables
qualitative assessment of potential alignment discrepancies in the physical apparatus.
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Figure 36-6. Interactive rendering of refractive objects. Our ability to simulate the visual qualities
of objects with complex optical properties originates from the same physical principles governing
gradient field tomography: the propagation of light as it travels through and interacts with
different optical media. Here, we use the same application supporting direct visualization in
PowerFlow3D to interactively render refractive objects with full path tracing.

Ihrke et al. [11], the interaction of light with different optical media induces
the striking visual beauty of our environment:

[This beauty] has its physical origin in the interplay of the involved
light/matter interaction processes that take place while light
passes material boundaries, while it travels through the interior
of an object, and even while it interacts with the object’s
surroundings.

As illustrated in Figure 36-6, the same application used for direct
visualization in PowerFlow3D enables interactive rendering of refractive
objects, in this case using path tracing [13]. Although only primary visibility is
required for tomographic reconstruction, our algorithm supports path tracing
and thus integrates with typical ray-based renderers. As discussed in
Section 36.3, we represent the volume extent as a scene object using a cube
as the bounding (or proxy) geometry. The cube itself comprises 12 triangle
primitives, which exploits hardware acceleration for initial ray/volume
intersection queries on RTX-enabled GPUs [16].

Curved ray traversal—and the multi-pass algorithm that we describe in the
next section—captures the complex interactions of light with different optical
media and thus plays a critical role in both gradient field tomography and
interactive rendering.
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36.3 IMPLEMENTATION

We implement our multi-pass curved ray traversal algorithm using OWL [24],
the OptiX 7 Wrapper Library. Recently, many high-performance graphics
application programming interfaces (APIs), including NVIDIA’s OptiX, have
shifted toward providing lower-level control of graphics resources [14]. This
shift allows experienced developers to retain full control while still leveraging
the benefits of highly optimized APIs—albeit at the cost of additional
application-level complexity.

In contrast, OWL wraps the new CUDA-centric OptiX 7 API in a higher-level
interface to provide the convenience of the classic OptiX API. OWL makes
porting existing OptiX applications easier and aids developers in getting new
OptiX 7 applications running quickly to enable easy experimentation.

We use OWL as the basis for our curved ray traversal implementation.
Though OWL is required to build our example application from source, the
supporting device-side data structures and ray tracing programs themselves
can be adapted to other GPU- or CPU-based frameworks that provide similar
ray tracing abstractions. We highlight our implementation components in the
remainder of this section.

36.3.1 OVERVIEW

As noted, tomographic reconstruction requires computing, storing, and
retrieving sample points along curved ray paths. The number of samples
along any one ray is not known a priori, particularly because the paths
become increasingly accurate from one iteration of the reconstruction
algorithm to the next. To avoid dynamic memory allocation on the device
(which is potentially expensive), and to avoid intentionally overprovisioning
memory resources (which is potentially wasteful and does not necessarily
cover all use cases), we instead employ a preallocated fixed-size buffer for
each ray when collecting sample points and implement a multi-pass
algorithm, as outlined in Figure 36-7.

In particular, we allocate memory based on a user-controlled runtime
parameter specifying the maximum per-ray sample count for a single pass. If
any ray requires more samples to complete traversal, we execute another
pass—there is no sharing of unused buffer entries across rays within a pass.
Although only unfinished rays actually execute subsequent passes, this
straightforward but practical approach does incur the overheads associated
with pass setup/teardown, whether there are many or few such
unfinished rays.
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Host-Side Processing
1 Initialize samples, done buffers;
2 pass← 0;
3 Launch device-render(pass, . . .);
4 Copy samples buffer;
5 ncomplete ← sum-reduce(done);
6 while ncomplete < ntotal do
7 pass← pass + 1;
8 Launch device-render(pass, . . .);
9 Copy samples buffer;
10 ncomplete ← sum-reduce(done);

Device-Side Processing
1 if pass = 0 then
2 Initialize curved ray paths c;
3 donec ← trace-path(c, . . .);

4 else
5 if donec then
6 return;

7 Load curved ray paths c;
8 donec ← resume-path(c, . . .);

Figure 36-7. Multi-pass curved ray traversal.

This approach is not intended to balance samples across rays, but to ensure
that traversal always completes while respecting memory constraints.
Though more sophisticated memory-management schemes could be used,
sampling is not the current bottleneck in PowerFlow3D, and whether or not
the complexities of such schemes eliminate enough of the subsequent passes
to outperform our current approach remains unclear. These and similar
questions make for an interesting performance study, but this avenue of
exploration remains as future work.

Critical to our multi-pass variant is the ability to postpone (and later resume)
a ray mid-flight—in particular, when its sample buffer is full. We first
highlight the core data structures supporting our multi-pass algorithm in
Section 36.3.2, and then we highlight the OptiX 7 ray tracing programs and
helper functions that leverage these data structures to implement the
device-side processing in Section 36.3.3.

In contrast to reconstruction sampling, curved ray traversal for interactive
rendering does not require multiple passes—sample points are not stored for
later processing, so efficiency concerns related to memory management are
less acute in this context. However, the data structures and ray tracing
programs we describe in the remainder of this section also enable interactive
rendering, and thus provide a high-performance, memory-efficient
foundation for applications requiring both sampling and direct visualization,
including our PowerFlow3D prototype.
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In practice, we use a combination of static and dynamic polymorphism to
invoke the necessary variant of our curved ray traversal algorithm: types and
behaviors are specialized for sampling, where necessary.1 These differences
are most clearly evident in the ray tracing programs discussed in
Section 36.3.3, though some data structures include elements that support
only reconstruction sampling and are not used for interactive rendering. A
more highly optimized version of curved ray traversal is, in theory, possible
with an implementation supporting only interactive rendering. Our multi-pass
implementation provides a basis for this possibility, but we focus on the
elements that support sampling for reconstruction in the discussion that
follows. Even so, our implementation achieves over 12 million samples per
second (or nearly 7 frames per second) with volumes up to 224× 224× 224
voxels and framebuffers up to 768× 768 pixels in resolution using a single
NVIDIA Quadro RTX 8000 GPU. Additional optimizations targeting
interactive-rendering-only use cases are left as an exercise to the reader.

36.3.2 CORE DATA STRUCTURES

We now outline the core data structures used to implement the multi-pass
algorithm in Figure 36-7; the OptiX 7 ray tracing programs implementing
device-side processing are highlighted in Section 36.3.3.

In the code listings that follow, we include only the most relevant data
members; some data members (and all member function declarations) are
omitted for brevity. The full source code for these and other implementation
elements is available online.

VOLUMEGEOMDATA STRUCTURE

We encode refractive index gradients in a 3D rectilinear grid of (x, y, z) triples,
VolumeGeomData. This structure also encodes auxiliary information used
throughout traversal. The VolumeGeomData structure definition is shown in
Listing 36-1.

We represent the volume extent as a scene object using a cube as the proxy
geometry; the cube itself comprises 12 triangle primitives. This
triangle-based representation not only exploits hardware acceleration on

1In fact, our source code distribution supports a third color-mapping variant that uses multiple passes to first
gather data about volume sampling and then map particular elements from this data to pixel colors. Like
reconstruction sampling, this color-mapping multi-pass algorithm variant is implemented using both static
and dynamic polymorphism, but we ignore these details in this discussion for clarity.
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Listing 36-1. VolumeGeomData structure.

1 struct VolumeGeomData {
2 box3f bounds;
3 vec3i dims;
4

5 vec3f* vertex;
6 vec3i* index;
7

8 vec3f* gradient;
9 int* ior_mask;
10 };

RTX-enabled GPUs, but also allows for extensions to our current
implementation with arbitrary bounding geometries [22, 11, 23], which can
give tighter ray/volume traversal bounds for interactive rendering. An OptiX 7
closest-hit program translates ray/triangle intersection information to a
volume entry point and initiates volume traversal, as described in
Section 36.3.3.

TRAVERSALDATA STRUCTURE

To postpone and later resume path traversal, we must store and later load the
traversal-related state for incomplete ray paths between each pass of our
algorithm. This state is encoded in the per-path TraversalData structure
shown in Listing 36-2. The TraversalData structure includes both the
general traversal state and elements specific to volume traversal. These
device-side components are initialized or loaded at the beginning of each
pass and updated throughout traversal, as described in Section 36.3.3.

Listing 36-2. TraversalData structure.

1 struct TraversalData {
2 Random random;
3

4 int pidx;
5 int depth;
6

7 Interaction::Event event;
8

9 vec3f org;
10 vec3f dir;
11 vec3f atten;
12

13 const VolumeGeomData* vptr;
14

15 float eta;
16 int ndata;
17 float distance;
18 };
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PERRAYDATA STRUCTURE

Additional per-ray data, such as path attenuation and traversal outputs, is
stored in the PerRayData structure shown in Listing 36-3. This structure also
holds references to the corresponding TraversalData and random number
generator for convenience. Unlike TraversalData, which persists from one
pass to the next, a new device-side PerRayData object is initialized with each
pass of our algorithm.

Listing 36-3. PerRayData structure.

1 struct PerRayData {
2 TraversalData& tdata;
3 Random& random;
4

5 vec3f atten;
6

7 struct {
8 Path::Status status;
9 vec3f org;
10 vec3f dir;
11 vec3f atten;
12 } out;
13 };

SAMPLEDATA STRUCTURE

The samples buffer in Figure 36-7 stores SampleData elements; this structure
is defined in Listing 36-4. As can be seen, each SampleData entry comprises a
3D sample position and, in our current implementation, a count of the
refractive index gradient elements encountered during volume traversal
(which is used in direct visualization). Though simple, this data structure can
be extended to store additional per-sample data, if necessary; we found this
abstraction to be useful during initial debugging, for example, as it enabled
collection of an additional sample-related state with only local source code
modifications.

Listing 36-4. SampleData structure.

1 struct SampleData {
2 vec3f pt;
3 int ndata;
4 };

For each pass and for each ray path, at most Ns < MaxSampleCount samples
are stored, where MaxSampleCount is the user-controlled maximum per-ray
sample count in each pass. For the duration of a width× height frame, the
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samples buffer comprises width× height× MaxSampleCount entries to avoid
device-side dynamic allocation. Though overprovisioning may still occur
(MaxSampleCountmay still exceed the actual number of samples required by
any ray path), users retain full runtime control over MaxSampleCount—and,
thus, over the memory requirements necessary to support any particular
invocation of curved ray traversal. Runtime control not only permits
adjustments throughout the application lifetime, but also allows users to
trade processing time for memory and vice versa.

Any ray path requiring Ns > MaxSampleCount samples is postponed when its
entry in the samples buffer is full—that is, when for path c,
Ns = MaxSampleCount in the current pass—and thus induces an additional
pass. These details are described more fully in Section 36.3.3.

OTHER ELEMENTS

The samples buffer in Figure 36-7 communicates device-side results to the
host for additional processing, if required. For example, in the case of
sampling for reconstruction, per-pass samples populate host-side data
structures that are later passed to downstream processing. In our current
implementation, we store complete ray paths—not just the within-volume
sample points but also the initial origin and all ray/primitive intersection
points along the path—throughout traversal. The host-side processing
discards non-volume samples as it populates host-side data structures for
downstream reconstruction operations, as required.

The done buffer, also shown in Figure 36-7, plays a critical role: this buffer
communicates path traversal progress from device to host. In particular, the
done buffer stores int elements, each of which acts as a flag indicating
whether or not the corresponding ray path c has been traced to completion.
Though more compact representations of these flags could be used—for
example, just a single bit per path—we opt for int values as a straightforward
way to encode these flags on the device. Each path flag, donec, is initialized or
loaded in the complete state (donec ← 1), and the flag is set to the incomplete
state (donec ← 0) only if the corresponding path is postponed mid-flight, as
discussed in Section 36.3.3. Sum-reduction over the done buffer computes
the number of paths completed thus far and serves as the termination
condition for our multi-pass algorithm. Sum-reduction is currently
implemented host-side using OpenMP [4, 18], though device-side
implementation—for example, using CUDA directly or using Thrust, the
CUDA C++ template library [2, 17]—is also possible.
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The example application demonstrating curved ray traversal leverages
several other data structures, including elements supporting direct
visualization and results validation, as well as elements typical of any modern
ray tracing application (framebuffers, accumulation buffers, windowing
components, and so forth). We omit discussion of these data structures for
brevity; for additional information, the interested reader is instead referred to
the many available resources describing modern ray tracing generally [21, 9,
19] and ray tracing with OWL and OptiX 7 specifically [24, 14, 15], as well as to
the application source code itself.

36.3.3 RAY TRACING PROGRAMS

The OptiX 7 API gives a client application full control over many operations
that were managed by the OptiX library in previous versions of the API. OWL,
the OptiX 7 Wrapper Library, hides some of these low-level OptiX 7 operations
behind a clean and easy-to-use higher-level interface reminiscent of the
classic OptiX API. We use OWL as the basis of our curved ray traversal
implementation.

With OptiX, device code is organized into several ray tracing programs, which
together with the internal OptiX scheduling algorithms and bounding volume
hierarchy (BVH) traversal programs, comprise a full ray tracing kernel. We
highlight the ray tracing programs and critical device-side helper functions
supporting our implementation in this section. We assume a working
knowledge of the OptiX 7 programming model in this discussion, but
Morley [14] provides an in-depth review of the OptiX 7 ray tracing pipeline for
interested readers.

We implement our multi-pass algorithm within a brute-force path tracing
kernel that supports progressive rendering to accumulate pixel samples over
successive frames. The path tracer currently supports Lambertian surfaces
and spatially varying refractive volumes with Beer’s Law attenuation, but can
be extend with support for additional material models in a straightforward
manner. Buffers and parameters supporting or controlling runtime behavior,
including the framebuffer; accumulation buffer; the samples, done, and
TraversalData data buffers; and the current render mode and pass are
communicated through a LaunchParams structure named
optixLaunchParams, referenced throughout the code snippets in this section.
Please refer to the source code distribution for details of these and other
elements, as required.
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RAY GENERATION PROGRAM

The ray generation program provides an entry point to device-side OptiX 7 ray
tracing kernels; in our context, ray generation is invoked by launching the
device-render kernel in Figure 36-7.

As can be seen in Listing 36-5, the actual ray generation program simply
dispatches rayGenFcn::run, a member function of a class templated over an
enumerated type corresponding to the current render mode. We provide two
rayGenFcn variants: one for interactive rendering and one for reconstruction
sampling. For interactive rendering, the function simply maps its launch index
to a random sample within the corresponding pixel, traces a ray from the
camera through that sample, and accumulates the resulting path attenuation.

Listing 36-5. OptiX 7 Ray generation program.

1 OPTIX_RAYGEN_PROGRAM(rayGen)() {
2 switch (optixLaunchParams.rmode) {
3 case Render::Mode::Normal:
4 rayGenFcn<Render::Mode::Normal>::run();
5 break;
6

7 case Render::Mode::Sample:
8 rayGenFcn<Render::Mode::Sample>::run();
9 break;
10 }
11 }

The latter variant, shown in Listing 36-6, implements the device-side
processing in Figure 36-7: for each pass, we initialize or load ray paths and
then trace or resume path traversal, as appropriate. The helper functions
tracePath and resumePath implement these operations, as discussed next.

Listing 36-6. rayGenFcn<Render::Mode::Sample> class template specialization.

1 class rayGenFcn<Render::Mode::Sample> {
2 public:
3

4 static __device__ void run() {
5 const RayGenData& self = owl::getProgramData<RayGenData >();
6 const vec2i pixelID = owl::getLaunchIndex();
7

8 const vec2i& fbSize = optixLaunchParams.fbSize;
9 const int pidx = pixelID.y*fbSize.x + pixelID.x;
10

11 const int& pass = optixLaunchParams.pass;
12 if (pass == 0) {
13 int& nsamples = optixLaunchParams.nsamplesBuffer[pidx];
14 int& done = optixLaunchParams.doneBuffer [pidx];
15 TraversalData& tdata = optixLaunchParams.tdataBuffer [pidx];
16 PerRayData prd(tdata);
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17

18 // Clear values and ...
19 tdata = TraversalData(pidx);
20 tdata.random.init(pixelID.x, pixelID.y);
21

22 nsamples = 0;
23 done = 1;
24

25 // ... trace ray.
26 const vec2f screen = (vec2f(pixelID) +
27 vec2f(0.5f, 0.5f))/vec2f(fbSize);
28

29 const vec3f org = self.camera.origin;
30 const vec3f dir
31 = self.camera.lower_left_corner
32 + screen.u*self.camera.horizontal
33 + screen.v*self.camera.vertical
34 - self.camera.origin;
35

36 Ray ray(org, normalize(dir), T_MIN, T_MAX);
37 tracePath<Render::Mode::Sample>(self, ray, prd);
38 }
39 else {
40 int& done = optixLaunchParams.doneBuffer [pidx];
41 int& nsamples = optixLaunchParams.nsamplesBuffer[pidx];
42 if (done) {
43 nsamples = 0;
44 return;
45 }
46

47 // Load traversal data.
48 TraversalData& tdata = optixLaunchParams.tdataBuffer[pidx];
49

50 Ray ray(tdata.org, tdata.dir, T_MIN, T_MAX);
51 PerRayData prd(tdata);
52

53 // Clear values and ...
54 nsamples = 0;
55 done = 1;
56

57 // ... resume tracing.
58 resumePath(self, ray, prd);
59 }
60 }
61 };

TRACEPATH HELPER FUNCTION

The tracePath helper function in Listing 36-7 implements the iterative path
tracing loop in step 3 of Figure 36-7: for each new ray, the corresponding
TraversalData and PerRayData elements are updated and the sample point
is stored. If the samples buffer is full, the ray is postponed and the function
returns. If the sample is stored successfully, however, we invoke the
owl::traceRay function to execute the OptiX 7 ray tracing pipeline, including
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acceleration structure traversal, scene geometry intersection, and closest-hit
processing.

Listing 36-7. tracePath helper function.

1 template<Render::Mode Mode>
2 inline __device__
3 vec3f tracePath(const RayGenData& rgd, Ray& ray, PerRayData& prd) {
4 TraversalData& tdata = prd.tdata;
5 tdata.org = ray.origin;
6 tdata.dir = ray.direction;
7

8 vec3f& atten = prd.atten;
9 int& depth = tdata.depth;
10

11 int MaxDepth = MAX_DEPTH;
12

13 while (depth < MaxDepth) {
14 if (Mode == Render::Mode::Sample) {
15 if (!storeSample(prd))
16 return vec3f(0.f);
17 }
18

19 owl::traceRay(rgd.world, ray, prd);
20

21 if (prd.out.status == Path::Status::Cancelled ||
22 prd.out.status == Path::Status::Postponed)
23 return vec3f(0.f);
24 else if (prd.out.status == Path::Status::Missed) {
25 atten *= missColor(ray);
26 return atten;
27 }
28 else if (prd.out.status == Path::Status::Bounced)
29 atten *= prd.out.atten;
30

31 // Trace another ray.
32 const vec3f& org = prd.out.org;
33 const vec3f dir = normalize(prd.out.dir);
34

35 ray = Ray(org, dir, T_MIN, T_MAX);
36

37 tdata.org = org;
38 tdata.dir = dir;
39

40 prd.out.status = Path::Status::Invalid;
41

42 ++depth;
43 }
44

45 return atten;
46 }

Once complete, these downstream OptiX pipeline operations return control to
tracePath, which determines the next appropriate action based on the path
traversal outputs:
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> Path::Status::Cancelled indicates that the path has been cancelled;
in our current implementation, only non-primary rays interacting with
the volume geometry are cancelled, which simulates fully opaque
shadowing for volume proxy geometries. However, when extended to
support other material models, rays could also be cancelled as a result
of BRDF sampling.

> Path::Status::Postponed indicates that the path requires
Ns > MaxSampleCount sample points; in this case, storing the
(MaxSampleCount + 1)-th sample fails, so path traversal is postponed and
induces an additional pass.

> Path::Status::Missed indicates that the path has escaped to the
environment; in this case, the corresponding path attenuation is updated
and returned to the caller.

> Path::Status::Bounced indicates that the ray has intersected valid
scene geometry and should continue propagation. In this case, the
corresponding closest-hit processing has recorded data about the
interaction event—and in the case of our volume geometry, completed
curved ray traversal—so the path attenuation is updated and control
falls through to trace another ray segment for this path.

This process continues until either the current path segment undergoes an
event that returns control to the caller (cancelled, postponed, or missed) or
the maximum path tracing depth, MAX_DEPTH, is reached. In the latter case,
the path is terminated and the corresponding path throughput is returned to
the caller.

RESUMEPATH HELPER FUNCTION

The resumePath helper function in Listing 36-8 implements functionality to
resume a postponed ray path in step 8 of Figure 36-7: each such path’s state
is restored from the TraversalData state stored in the previous pass, and
path tracing continues based on that state.

The appropriate subsequent actions are determined by the path interaction
event tracked and stored in the previous pass:

> Interaction::Event::Exit indicates that the path was postponed just
after completing volume traversal; in this case, control simply falls
through to the tracePath function to continue propagation.
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Listing 36-8. resumePath helper function.

1 inline __device__
2 void resumePath(const RayGenData& rgd,
3 Ray& ray,
4 PerRayData& prd) {
5 if (prd.tdata.event == Interaction::Event::Exit) {
6 // Postponed from previous traverse(...) call but after exiting
7 // volume, so just fall through to continue tracing.
8 }
9 else if (prd.tdata.event == Interaction::Event::Miss) {
10 // Postponed when attempting to store path end point, so store
11 // endpoint and return.
12 storeSample(prd);
13 return;
14 }
15 else if (prd.tdata.event == Interaction::Event::Traverse) {
16 // Postponed mid-traversal from previous traverse(...) call, so
17 // resume traversal.
18 const VolumeGeomData& volume = *(prd.tdata.vptr);
19 traverse<Render::Mode::Sample>(volume, prd);
20

21 if (prd.out.status == Path::Status::Postponed) {
22 // Did not finish traversing volume, so return to caller
23 // (through rayGen()) for another pass.
24 return;
25 }
26

27 // Finished traversing volume, so initialize next ray, increment
28 // depth, and ...
29 ray = Ray(prd.tdata.org, prd.tdata.dir, T_MIN, T_MAX);
30 prd.out.status = Path::Status::Invalid;
31 ++prd.tdata.depth;
32

33 // ... fall though to continue tracing.
34 }
35

36 // Continue propagation.
37 tracePath<Render::Mode::Sample>(rgd, ray, prd);
38 }

> Interaction::Event::Miss indicates that the path was postponed
when attempting to store the path endpoint after a miss event in the
tracePath function; in this case, we simply store the path endpoint and
return control to the caller—the corresponding path is complete.

> Interaction::Event::Traverse indicates that the path was postponed
during volume traversal; in this case, the VolumeGeomData-specific
elements of TraversalData are valid and encode the state of the path
within the corresponding volume object. As a result, we invoke the
volume traverse helper function directly to continue traversal. Once
this function returns, we check the path traversal status, as the path may
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have been postponed once again; if so, the path state has been updated
appropriately and we simply return to the caller. If, however, volume
traversal completed successfully, we initialize the next ray segment and
controls falls through to the tracePath function to continue propagation.

Together, the tracePath and resumePath implement the core path tracing
loop within the context of Figure 36-7. Whether we initiate path traversal via
primary rays or resume traversal from a previous pass, we eventually invoke
the tracePath helper function, which in turn calls the owl::traceRay
function to execute the OptiX 7 ray tracing pipeline.

In this pipeline, acceleration structure traversal and triangle-based scene
geometry intersection are encapsulated within the OptiX 7 runtime, and the
pipeline includes hardware acceleration on RTX-enabled GPUs.

In contrast, closest-hit processing is exposed to the user; we leverage a
closest-hit program specific to our volume scene geometry to implement the
propagation of light through the volume according to the ray equation of
geometric optics, as described in Section 36.2. This program and the
supporting helper functions are described next.

CLOSEST-HIT PROGRAM

After ray traversal and geometry intersection, the closest-hit program
executes for the nearest intersection point along each ray, if any. Closest-hit
programs typically calculate values derived from ray/primitive intersection
data, perform shading operations (where applicable), and pass results back to
the ray generation program.

In our context, the closest-hit program for our volume object simply
dispatches intersect, a function templated over the current render mode,
much like the ray generation program. Unlike ray generation, however, this
program does not require specialization—it simply translates ray/triangle
intersection data to a volume entry point, initializes the appropriate members
of the corresponding TraversalData structure, and invokes volume traversal.
The volume closest-hit program and intersect function template are shown
in Listing 36-9.

TRAVERSE HELPER FUNCTION

Recall that curved ray traversal within volumes of spatially varying refractive
indices is governed by the ray equation of geometric optics, as discussed in
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Listing 36-9. OptiX 7 closest-hit program.

1 OPTIX_CLOSEST_HIT_PROGRAM(Volume)() {
2 PerRayData& prd = owl::getPRD<PerRayData >();
3

4 switch (optixLaunchParams.rmode) {
5 case Render::Mode::Normal:
6 intersect<Render::Mode::Normal>(prd);
7 break;
8

9 case Render::Mode::Sample:
10 intersect<Render::Mode::Sample>(prd);
11 break;
12 }
13 }
14

15 template<Render::Mode Mode>
16 inline __device__
17 void intersect(PerRayData& prd) {
18 // Compute hit point.
19 const vec3f org = optixGetWorldRayOrigin();
20 const vec3f dir = optixGetWorldRayDirection();
21 const float thit = optixGetRayTmax();
22 const vec3f hitP = org + thit*dir;
23

24 // Prepare traversal data.
25 const VolumeGeomData& self = owl::getProgramData<VolumeGeomData >();
26 TraversalData& tdata = prd.tdata;
27

28 tdata.org = hitP + (1e-6f)*dir;
29 tdata.dir = dir;
30 tdata.vptr = &self;
31 tdata.eta = self.eta0;
32

33 // Traverse volume.
34 traverse<Mode>(self, prd);
35 }

Section 36.2. The traverse helper function shown in Listing 36-10
implements the discretized, first-order differential equations characterizing
the propagation of light through an optically inhomogeneous medium—that
is, through our volume object.

Fundamentally, traverse computes and updates TraversalData values while
sample points along the ray path are within the volume bounds. For each
such point, refractive index gradient values are trilinearly interpolated before
stepping to the next sample along the path. For reconstruction sampling, we
store sample points corresponding to nonzero gradients, postponing rays
when the samples buffer is full; postponed ray paths are resumed in the next
pass of our algorithm.
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Listing 36-10. traverse helper function.

1 template<Render::Mode Mode>
2 inline __device__
3 void traverse(const VolumeGeomData& self, PerRayData& prd) {
4 const vec3i& dims = self.dims;
5 const float ds = 2.f*self.step;
6

7 // Begin volume traversal event.
8 TraversalData& tdata = prd.tdata;
9 tdata.event = Interaction::Event::Traverse;
10

11 vec3f& org = tdata.org;
12 vec3f& dir = tdata.dir;
13

14 while (self.bounds.contains(org)) {
15 // Fetch gradient.
16 const vec3i cell = getCell(self, org);
17 const vec3f weight = org - vec3f(cell);
18 const vec3f grad = fetchGradient(self.gradient, cell, dims, weight);
19

20 // Store sample (if necessary).
21 if (Mode == Render::Mode::Sample) {
22 if (length(grad) > 0.f) {
23 if (!storeSample(prd))
24 return;
25 }
26 }
27

28 // Step to next sample.
29 const vec3f porg = org;
30

31 float& eta = tdata.eta;
32 vec3f& atten = tdata.atten;
33 int& ndata = tdata.ndata;
34 float& distance = tdata.distance;
35

36 org += (ds/eta)*dir;
37 dir += ds*grad;
38 eta += dot(grad, org - porg);
39

40 const float len = length(org - porg);
41 distance += len;
42

43 if (self.ior_mask == nullptr || getMaskValue(self, cell)) {
44 atten *= attenuate(self.absorb, len);
45 ++ndata;
46 }
47 }
48

49 // End volume traversal event.
50 tdata.event = Interaction::Event::Exit;
51

52 prd.out.status = Path::Status::Bounced;
53 prd.out.org = org;
54 prd.out.dir = normalize(dir);
55 prd.out.atten = self.albedo*tdata.atten;
56 }
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Ray paths are also attenuated (and samples counted, to support
color-mapping in direct visualization), either always or according to an
optional data mask. Once the ray path exits the volumes bounds,
TraversalData values are updated accordingly, and the per-ray traversal
outputs are stored to support shading operations in the outer path-tracing
loop.

STORESAMPLE HELPER FUNCTION

As described in Section 36.3.1, the ability to postpone a ray mid-flight is
critical to our multi-pass traversal algorithm. The storeSample helper
function, shown in Listing 36-11, implements this behavior.

Listing 36-11. storeSample helper function.

1 inline __device__
2 bool storeSample(PerRayData& prd) {
3 const int& MaxSampleDepth = optixLaunchParams.msd;
4

5 const int& pidx = prd.tdata.pidx;
6 int& nsamples = optixLaunchParams.nsamplesBuffer[pidx];
7 if (nsamples >= MaxSampleDepth) {
8 prd.out.status = Path::Status::Postponed;
9 optixLaunchParams.doneBuffer[pidx] = 0;
10

11 return false;
12 }
13

14 // Store sample point.
15 const vec2i& fbSize = optixLaunchParams.fbSize;
16 const int sidx = nsamples*fbSize.y*fbSize.x + pidx;
17 SampleData& sample = optixLaunchParams.sdataBuffer[sidx];
18

19 sample = SampleData(prd.tdata);
20 ++nsamples;
21

22 return true;
23 }

Recall that, for each pass and for each ray path, at most Ns < MaxSampleCount
samples are stored, where MaxSampleCount is the user-controlled maximum
sample count. For a path with open entries in the samples buffer, the sample
point is stored, the corresponding sample count is incremented, and the
function returns true to indicate a successful operation.

However, for any path acquiring Ns > MaxSampleCount samples in the current
pass, the path must be postponed. Here, the path traversal status is set to
postponed, the done flag is set to incomplete, and the function returns false to
indicate that the operation failed.
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In either case, control returns to the caller and processing continues
accordingly.

MISS PROGRAM

If no intersection is found during ray traversal, themiss program executes; in
our context, the miss program sets the path traversal status and updates the
corresponding TraversalData, as required. These operations are shown in
Listing 36-12.

Listing 36-12. OptiX 7 miss program.

1 OPTIX_MISS_PROGRAM(miss)() {
2 PerRayData& prd = owl::getPRD<PerRayData >();
3 prd.out.status = Path::Status::Missed;
4

5 // Store path endpoint (if necessary).
6 if (optixLaunchParams.rmode == Render::Mode::Sample) {
7 const vec3f org = optixGetWorldRayOrigin();
8 vec3f dir = optixGetWorldRayDirection();
9

10 dir = normalize(dir);
11

12 prd.tdata.org = org + dir;
13 prd.tdata.dir = dir;
14 prd.tdata.event = Interaction::Event::Miss;
15

16 storeSample(prd);
17 }
18 }

OTHER ELEMENTS

The example application demonstrating curved ray traversal leverages
several other processing elements—including the driver program and
supporting infrastructure, test scripts for results validation, utility programs,
and so forth. We omit discussion of these elements and instead refer the
interested reader to the application source code for more information.

Using these components, then, our multi-pass curved ray traversal
implementation provides a flexible, extensible, and efficient application
framework supporting both gradient field tomography and interactive
rendering.

36.4 CONCLUSIONS

We have presented a multi-pass implementation of curved ray traversal
through volumes of spatially varying refractive indices using OWL, the OptiX 7
Wrapper Library.
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Curved ray traversal is governed by continuous refraction for optically
inhomogeneous media, which models the propagation of light in such media
according to the ray equation of geometric optics. The ray equation naturally
incorporates straight and curved ray paths to simulate phenomena like
reflection and refraction. We demonstrate the utility of our curved ray
traversal implementation using two applications: sampling for reconstruction
and interactive rendering of objects with varying refractive indices.

Our multi-pass variant is motivated by problems in gradient field tomography,
wherein sampling for reconstruction requires computing, storing, and later
retrieving sample points along each ray. We leverage multiple sampling
passes to avoid (potentially expensive) dynamic memory allocation on the
device, as well as (likely wasteful and potentially insufficient) overprovisioning
of device-side memory resources. The data structures, ray tracing programs,
and helper functions implementing our multi-pass algorithm enable not only
simulation, reconstruction, and visualization of unknown compressible flows
in gradient field tomography, but also direct visualization, including
interactive rendering of refractive objects.

The full source code of our application framework, distributed under a
permissive open source license, enables readers to explore, modify, or
enhance our curved ray traversal implementation. This foundational, flexible,
and efficient implementation permits several possible extensions to enhance
both visual fidelity and performance, including more sophisticated volume
proxy geometries, hand-optimized interactive-rendering-only code paths,
more sophisticated memory-management schemes, and advanced rendering
features such as additional materials models and support for multiple volume
geometries.

REFERENCES

[1] Atcheson, B., Ihrke, I., Heidrich, W., Tevs, A., Bradley, D., Magnor, M., and Seidel, H.-P.
Time-resolved 3D capture of non-stationary gas flows. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia), 27(5):132:1–132:9, 2008. DOI: 10.1145/1457515.1409085.

[2] Bell, N. and Hoberock, J. Thrust: A productivity-oriented library for CUDA. In W.-M. Hwu,
editor, GPU Computing Gems, pages 359–371. Morgan Kaufmann, 2012.

[3] Born, M. and Wolf, E. Principles of Optics. Cambridge University Press, 2019.

[4] Dagum, L. and Menon, R. OpenMP: An industry standard API for shared-memory
programming. IEEE Computational Science and Engineering, 5(1):46–55, 1998. DOI:
10.1109/99.660313.

595

https://doi.org/10.1145/1457515.1409085
https://doi.org/10.1109/99.660313


RAY TRACING GEMS II

[5] Gribble, C. Curved ray traversal—Source code.
http://www.rtvtk.org/~cgribble/research/crt-rtg2/. Last accessed April 5, 2021.

[6] Gribble, C., Eijkhout, V., and Navratil, P. Implementing a prototype system for 3D
reconstruction of compressible flow. In Practice and Experience in Advanced Research
Computing, pages 198–206, 2020.

[7] Guennebaud, G. Eigen: A C++ linear algebra library. Presentaion at First Plafrim
Scientific Day, Bordeaux, France, May 31, 2011. Slides available at
http://downloads.tuxfamily.org/eigen/eigen_plafrim_may_2011.pdf.

[8] Gutierrez, D., J.Seron, F., Munoz, A., and Anson, O. Simulation of atmospheric
phenomena. Computers & Graphics, 30(6):994–1010, 2006. DOI:
10.1016/j.cag.2006.05.002.

[9] E. Haines and T. Akenine-Möller, editors. Ray Tracing Gems: High-Quality and Real-Time
Rendering with DXR and Other APIs. Apress, 2019.

[10] Ihrke, I. and Magnor, M. Image-based tomographic reconstruction of flames. In
Proceedings of Eurographics/ACM SIGGRAPH Symposium on Computer Animation,
pages 365–373, 2004.

[11] Ihrke, I., Ziegler, G., Tevs, A., Theobalt, C., Magnor, M., and Seidel, H.-P. Eikonal
rendering: Efficient light transport in refractive objects. ACM Transactions on Graphics,
26(3):59:1–59:10, 2007. DOI: 10.1145/1276377.1276451.

[12] Jacob, B. and Guennebaud, G. Eigen.
https://eigen.tuxfamily.org/index.php?title=Main_Page. Last accessed April 5, 2021.

[13] Kajiya, J. T. The rendering equation. In SIGGRAPH ’86: Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive Techniques, pages 143–150, 1986.

[14] Morley, K. How to get started with OptiX 7.
https://developer.nvidia.com/blog/how-to-get-started-with-optix-7/, November 20,
2019. Last accessed April 5, 2021.

[15] NVIDIA. NVIDIA OptiX 7.2—Programming guide.
https://raytracing-docs.nvidia.com/optix7/guide/index.html. Last accessed April 5, 2021.

[16] NVIDIA. NVIDIA RTX platform. http://developer.nvidia.com/rtx. Last accessed April 5,
2021.

[17] NVIDIA. Thrust. https://developer.nvidia.com/thrust. Last accessed April 5, 2021.

[18] OpenMP Architecture Review Board. OpenMP application program interface.
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf, 2015. Last accessed
April 5, 2021.

[19] Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to
Implementation. Morgan Kaufmann, 3rd edition, 2017.

[20] Raffel, M. Background-oriented schlieren (BOS) techniques. Experiments in Fluids,
56:60:1–60:17, 2015. DOI: 10.1007/s00348-015-1927-5.

[21] Shirley, P. Ray Tracing in One Weekend. 2016. https://raytracing.github.io. Last accessed
April 5, 2021.

596

http://www.rtvtk.org/~cgribble/research/crt-rtg2/
http://downloads.tuxfamily.org/eigen/eigen_plafrim_may_2011.pdf
https://doi.org/10.1016/j.cag.2006.05.002
https://doi.org/10.1145/1276377.1276451
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://developer.nvidia.com/blog/how-to-get-started-with-optix-7/
https://raytracing-docs.nvidia.com/optix7/guide/index.html
http://developer.nvidia.com/rtx
https://developer.nvidia.com/thrust
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://doi.org/10.1007/s00348-015-1927-5
https://raytracing.github.io


CHAPTER 36. CURVED RAY TRAVERSAL

[22] Stam, J. and Langénou, E. Ray tracing in non-constant media. In Eurographics Workshop
on Rendering Techniques, pages 225–234, 1996.

[23] Sun, X., Zhou, K., Stollnitz, E., Shi, J., and Guo, B. Interactive relighting of dynamic
refractive objects. ACM Transactions on Graphics, 27:35:1–35:9, 2008. DOI:
10.1145/1399504.1360634.

[24] Wald, I. OWL—The OptiX 7 wrapper library. https://owl-project.github.io. Last accessed
April 5, 2021.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if you modified the licensed material. You do not have permission under this license to share
adapted material derived from this chapter or parts of it.
The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

597

https://doi.org/10.1145/1399504.1360634
https://owl-project.github.io
http://creativecommons.org/licenses/by-nc-nd/4.0/


CHAPTER 37

RAY-TRACING SMALL
VOXEL SCENES
Dylan Lacewell
NVIDIA

ABSTRACT

We build acceleration structures for voxel/brick scenes using NVIDIA OptiX
and render them in a non-photorealistic style with outlines and one bounce of
indirect lighting; this method runs at interactive rates on recent RTX hardware
and is implemented entirely in OptiX shaders with no post-processing.

37.1 INTRODUCTION

In this chapter we present a method for rendering voxel art: minimalist 3D
scenes constructed entirely of uniformly sized, axis-aligned bricks with an

Figure 37-1. A scene from Mini Mike’s Metro Minis [6] ray-traced with NVIDIA OptiX 7 and the
OptiX Wrapper Library. The outline effect is also ray-traced in the same kernel.
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8-bit color palette evocative of early video games. These scenes are built
using MagicaVoxel [3], or converted from Minecraft files or meshes, as a
starting point. Artists typically do final renders with path tracing, either using
the built-in renderer in MagicaVoxel (which we assume intersects bricks
directly) or by exporting a triangle mesh to an external renderer.

There is a long history in graphics of tracing voxels as volume elements, but
not necessarily as bricks. The closest work to ours is the paper from Majercik
et al. [7], which sped up primary visibility tests for dynamic bricks in a hybrid
renderer, but did not focus on acceleration structures or shading as we do.

Our descriptions are geared toward the NVIDIA OptiX API and the OptiX
Wrapper Library (OWL) [10], but readers familiar with DirectX Raytracing or
Vulkan Ray Tracing should be fine.

37.2 ASSETS

The first obstacle is finding nice (and free) input scenes, preferably in the
MagicaVoxel file format, VOX, which is relatively simple compared to Minecraft
files. Though there are many renders of amazing MagicaVoxel scenes online,
there are few downloadable VOX files. One notable exception is the Mini Mike’s
Metro Minis collection [6], more than 400 scenes licensed under Creative
Commons and available in a public repository. These scenes show characters
in an urban setting doing various mundane (and sometimes disturbing) things.

37.3 GEOMETRY AND ACCELERATION STRUCTURES

Each VOX scene (a single file) is a collection of instanced models with
transforms and a small global palette of 8-bit RGB values. Models are
axis-aligned grids of 1-byte indices into the color palette. Some models have
extra material parameters such as roughness values, which we currently
ignore.

We read VOX files using an open source library [5] and then extract the
nonempty voxels into a linear array of bricks per model, to be used as
primitive inputs for OptiX—each brick is an (xi, yi, zi, ci) index tuple. We could
optionally remove hidden bricks here, but do not do so by default, to allow for
clipping planes and other dynamic changes (Figure 37-2).

There are several ways to build an OptiX scene from these primitives, as
shown in Figure 37-3, and the trade-offs between these was not initially clear.
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Figure 37-2. We preserve all bricks in the input model, which allows for clipping planes.

Figure 37-3. Different ways to build a scene for a VOX model. Left: flat triangle mesh.
Center: bricks as custom primitives. Right: instanced triangle brick.

37.3.1 FLAT TRIANGLE MESH

A traditional approach is to triangulate each brick and concatenate all
triangles into a single mesh, then build a Geometry Acceleration Structure
(GAS) over the mesh. This takes full advantage of ray tracing hardware for
both acceleration traversal and ray/triangle intersection. However, bricks are
volumetric and brick models have a lot of surface area per volume;
representing each brick as 12 triangles uses significant device memory, with
even more needed for modeled bricks with bevels or studs.
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Static meshes could be more aggressively optimized, at least with simple
six-sided bricks, e.g., by merging coplanar faces from adjacent bricks [1].
However, these changes are destructive and would rule out any edits to bricks,
or changes in transparency later. In our implementation we share vertices
between bricks where possible, but do not otherwise optimize the mesh.

37.3.2 CUSTOM INTERSECTION PROGRAM

A brick can also be represented as a custom primitive in OptiX with its own
intersection and bounds programs. This moves ray/brick intersection into
software, although rays still traverse the acceleration structure in hardware.
For this option we implemented the fast ray/brick intersection algorithm from
Majercik et al. [7] in CUDA/OptiX with some simplifying assumptions: each
brick is axis aligned and has unit dimensions in object space, and rays are
assumed to start outside bricks (a ray that starts slightly inside a brick due to
biasing will miss the brick).

The upside is that custom primitives have far less memory usage than a flat
mesh. The intersection program only needs access to the array of 4-byte
(xi, yi, zi, ci) voxel indices, the color palette, and the model dimensions in
world space.

Voxels can also be grouped into small blocks, e.g., 8× 8× 8 voxels as a
custom primitive, and traversed in software using a grid digital differential
analyzer (DDA) algorithm [9, 4]. Blocks use less memory than single bricks
because they have fewer (xi, yi, zi) indices and fewer leaf nodes in the RTX
acceleration structure, but on the other hand, this approach does not utilize
RTX hardware as much at the leaf level.

37.3.3 INSTANCED TRIANGLE BRICK

A third option is to represent a single brick as triangles in a small GAS and to
instance the brick over the model with an instance acceleration structure
(IAS) rather than a flat mesh. OptiX exposes a visibility mask per instance (but
not per primitive), which we found useful for some shading effects described
later. The memory cost of 12 floats per affine transform is in between the
memory usage of the flat mesh and custom primitive options. Instancing is an
efficient way to support more heavyweight bricks like the beveled bricks
shown in Figure 37-4.
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Figure 37-4. Beveled bricks, cheap to instance but expensive to triangulate. The bricks shown
here have 44 triangles each.

37.4 SHADING

Our basic path tracing loop is similar to other OptiX/OWL samples, and we
won’t dwell on it (iterative path tracer in the ray generation shader, shadow
rays in the closest-hit shader). We focus on the more unusual feature of our
sample renderer, the cartoon-style outlines that are shown in most figures.

Previous methods for drawing outlines in a ray tracer operate mostly in image
space, either detecting depth edges with extra stencil rays [2] or analyzing
arbitrary output variables (AOVs) at nearby samples [8]. These image-space
methods provide artistic control over line properties, although they do not
easily handle defocus effects like motion blur or depth of field.

Alternatively, some real-time games use a multi-pass method for outlines,
sometimes called the inverted hull method. In a first pass geometry is drawn
normally, then in a second pass all triangles are inflated slightly along their
normals and then rendered with frontface culling and a constant color; this
creates an outline because the hull geometry as constructed only appears
where there is a change in depth between pixels. This method does not
provide as much artistic control but is arguably easier to implement in a
rasterizer, and is compatible with motion blur and depth of field.
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Figure 37-5. Constructing outlines. Top left: original bricks. Top right: scaled and inverted hull
geometry (with shading for visualization). Bottom left: outlines with a depth bias of 0. Bottom
right: outlines with a depth bias of five bricks.

As an experiment, we adapted this multi-pass rasterization method to ray
tracing as follows; also see Figure 37-5:

1. Build a second acceleration structure containing the hull geometry, with
each brick scaled up slightly about its center (we scale by 1.2 in all
figures). This does not necessarily need to be a separate acceleration
structure in practice, as long as it can be distinguished from the original
geometry during traversal.
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2. At each subpixel sample, trace a primary camera ray into the regular
scene to find the closest hit, and return its distance in per-ray data.

3. After the primary ray, immediately shoot a special shadow ray using the
same origin and direction, but traced against the hull acceleration
structure and using the distance from the primary ray as a t-max value
(a tiny depth buffer, essentially). Set the OptiX ray flags to cull frontfaces.
This step returns a visibility value V of 0 if the ray hits the hull geometry
and 1 otherwise.

4. Independently, finish the path for the primary ray, tracing any bounces
and shadow rays and returning a radiance R.

5. Return V× R as the final path radiance—black for an outline.

It is tempting to check the value of V before finishing the bounces in step 4, but
this introduces a dependency and is slightly slower with simple Lambertian
shading (but might still be a good idea for more expensive shading).

The amount of extra memory used by the hull geometry depends on how
primitives are represented in the original scene. For the flat triangle mesh
approach, it is hard to avoid a second copy of the entire scene in memory.
Note that we cannot simply insert a single new scaled instance of the scene;
each brick needs to be scaled locally.

For custom primitives with one brick per primitive, we can represent the hull
geometry in the same acceleration structure with no increase in memory if we
scale the user-defined boxes slightly (a displacement bound, basically). We
assign a different intersection program to each ray type: radiance rays
intersect a unit box, and shadow-hull rays intersect a scaled box and don’t
need to compute normals.

The effect is harder to implement if custom primitives contain multiple bricks
in grids, because of the scaling; bricks would need to be inserted in neighbor
cells, and this would complicate the DDA traversal. We did not implement this.

For the instanced bricks approach, we need a second copy of each transform
for the locally scaled brick. We store both the original and new transforms in
the same acceleration structure, using OptiX visibility flags to hide the hull
geometry from radiance rays, and vice versa. This is approximately a double
memory increase however—not cheap.

Here are a few more details on traversal: As with the original
rasterization-based algorithm, a depth bias parameter for the hull shadow
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ray can be used to control whether outlines appear around every brick or at a
larger scale. Also note that we avoid issues with sharp edges, which are
typically a problem in the original algorithm, because we scale bricks about
their centroids rather than inflating vertices along normals.

As an object-space method, the resulting outlines are not necessarily uniform
in screen space, depending on the field of view. This may or may not be
desirable. However, brick models are often rendered using a camera with a
small field of view for aesthetic reasons anyway.

37.5 PERFORMANCE TESTS

Though a deep analysis of performance is out of the scope of this chapter, we
measured GPU memory and kernel time for two scenes: first, the small scene
from Figure 37-1, which has 63,481 bricks; then, a larger merged scene
shown in Figure 37-6, which has 4.94 million bricks. The memory reported is
for buffers and acceleration structures, and we did not cull hidden bricks.

We used NVIDIA Nsight Systems to measure average kernel times. Each
kernel launch traces one path per pixel, and a path has at most four rays
(primary, shadow, bounce, and shadow), plus one extra ray when outlines are
enabled. As a side note, we found that accumulating samples was always

Figure 37-6. Multiple scenes merged together for a performance test (4.94 million bricks).
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Device Mem (MB) Kernel Time (ms)
Small Scene w/outlines w/outlines
Triangle mesh 50.19 -- 1.48 --
Custom-1 3.37 3.37 1.54 2.53
Custom-8 0.22 -- 2.90 --
Instanced brick 25.64 51.21 1.38 1.84
Merged Scene
Triangle mesh 3903.56 -- 2.75 --
Custom-1 261.71 261.71 2.45 3.63
Custom-8 12.76 -- 4.29 --
Instanced brick 1244.31 2443.67 2.34 3.15

Table 37-1. Scene memory (geometry and acceleration structures) and average kernel time over
4800 launches, for two scenes (1200× 800 images, NVIDIA RTX 3060 Ti).

Primary Bounce Shadow Outline Total
Small Scene 960,000 957,978 811,733 960,000 3,689,711
Merged Scene 960,000 960,000 1,051,624 960,000 3,931,624

Table 37-2. Ray counts per launch for the two scenes in Table 37-1.

faster using separate launches versus doing two, four, etc. samples per pixel
in each launch.

Results are shown in Table 37-1 for the different acceleration layouts
discussed earlier, and the related ray counts are shown in Table 37-2. For
custom primitives we tried both a single brick per prim (Custom-1) and an
8× 8× 8 grid per prim (Custom-8). Please note however that DDA traversal
for the 8× 8× 8 grid is not a trivial intersection shader, and there is possibly
more room for optimization there. We also show results with the outline
effect for the Custom-1 and Instanced approaches, where outlines were
easiest to implement.

Custom primitives use far less memory than other options, especially when
grouped into 8× 8× 8 blocks. Kernel times are surprisingly fast for Custom-1,
compared to full hardware acceleration; bricks might be an especially good
case for custom primitives because they fill their axis-aligned bounding boxes
perfectly, but a difficult case for triangles without optimizing for static bricks.

The outline effect increases the total kernel time by about 60% for custom
primitives because of the padded bounding boxes, but only about 30% for
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instanced bricks, which roughly matches the increase in total ray count of
35% due to the extra outline rays.

37.6 DISCUSSION

From the performance measurements above, we conclude that very large
voxel/brick scenes are probably best represented as custom primitives;
however, for smaller scenes, instancing is faster and gives more flexibility in
how each brick is modeled. To further reduce memory, small blocks of bricks
could be instanced instead of single bricks. For example, representing every
2× 2× 1 block as an instance should reduce memory, as there are only five
unique patterns up to rotation, and the rotation can be baked into the instance
transform.

It would also be interesting to look more at dynamic changes to the scene,
e.g., adding or removing bricks on the fly and refitting the acceleration
structures as an editing package would need to do.

Complete sample code for this chapter is available in the OWL repository. We
have only scratched the surface of brick rendering, and we encourage readers
to download the set of VOX models shown here and to experiment with other
types of shading and lighting.
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PART VI

PERFORMANCE

Though the film industry may hope to render a frame in sixty seconds, in video
games and other interactive applications, we would hope to render sixty
frames or more in a single second, leaving scant milliseconds for each image
to be produced. This part contains chapters that focus on a variety of topics
that explore the optimization space of ray tracing performance, proposing
both algorithmic and heuristic improvements to aid in the relentless search
for both faster runtime speed as well as smaller memory utilization.

Chapter 38, CPU Performance in DXR, discusses several practical methods for
improving the performance of DirectX Raytracing—based applications in
order to address memory and compute requirements. These include attention
to state object collections, incremental compilation, careful shader table
structure, and amortized acceleration structure rebuilds.

Chapter 39, Inverse Transform Sampling Using Ray Tracing Hardware, describes
how ray tracing hardware can be used to perform inverse transform
sampling, mapping an image texture to geometry for hardware-accelerated
ray testing. This chapter uses emissive textures such as environment maps
as a motivating example.

Chapter 40, Accelerating Boolean Visibility Operations using RTX Visibility Masks,
details how to improve on the performance of rendering clipped geometry for
inspecting detailed scenes. The authors show how to transform costly
evaluations of any-hit shaders into efficient, hardware-accelerated visibility
masks representing a disjunction over Boolean-valued visibility functions.

Chapter 41, Practical Spatial Hash Map Updates, extends the previous spatial
hashing technique and generalizes the mechanism to support the update of
arbitrary data types. This is accomplished via the use of novel change lists,
which are later resolved and committed. Practical applications in ambient
occlusion and environment lighting are discussed.

Chapter 42, Efficient Spectral Rendering on the GPU for Predictive Rendering,
makes the case for spectral rendering in contrast to traditional three-color
rendering. Given this base assumption, the chapter then explores approaches
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to optimize intermediate buffers, wavelength selection, and spectral asset
management. Though real-time fully converged results are left for future
work, the authors show denoised low-sample results up to around 30 images
per second.

Chapter 43, Efficient Unbiased Volume Path Tracing on the GPU, presents
several optimizations to improve the performance of volumetric path tracing.
These approaches improve not only runtime performance but also memory
consumption, reducing it by a factor of 6.5. The use of a multi-level digital
differential analyzer and indirection texture improve execution time by two to
three times.

Chapter 44, Path Tracing RBF Particle Volumes, discusses the use of a radial
basis function (RBF) model for volume rendering. An example
implementation is demonstrated using OSPRay and the Open Volume Kernel
Library, and the chapter includes pseudocode of the open source
implementation. The authors evaluate performance on a 51 million particle
volume on a 28 core Intel Xeon processor.

Chapter 45, Fast Volumetric Gradient Shading Approximations for Scientific Ray
Tracing, details a volume rendering optimization by evaluating illumination at
a single point along the visibility ray. This one simple trick increases
performance of the ParaView rendering by 5–50×.

We hope this part will provide valuable insight for achieving previously
unthinkable levels of performance through ray tracing.

Josef Spjut and Michael Vance
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CPU PERFORMANCE IN DXR
Peter Morley
NVIDIA

ABSTRACT

DirectX Raytracing (DXR) performance guides have mainly focused on
accelerating ray tracing on the graphics processing unit (GPU). This chapter
will focus on avoiding stalls and bottlenecks caused by DXR on the central
processing unit (CPU) side.

38.1 INTRODUCTION

Most game engines must deal with streaming assets in and out of memory as
the player moves throughout the built environment. Typically, the game world
space is partitioned into discrete tiles or volumes, with only the elements
close to the player being resident in memory, and optionally placeholders or
reduced level of detail (LOD) geometry standing in for more distant items.

Implementing DXR ray tracing into a renderer adds several significant
memory and compute overheads. This chapter presents techniques to
optimize the management of acceleration structures and shader tables.

Methods to reduce DXR CPU overhead include the following:

> Use generic hit group shaders and use precompiled collections for a
state object.

> Use incremental state object compilation.

> Reduce shader table complexity for the local root signature.

> Limit acceleration structure (AS) builds and refits.

38.2 THE RAY TRACING PIPELINE STATE OBJECT

The ray tracing pipeline state object (RTPSO) contains a network of shaders
defining how various materials will be processed in a ray traced scene. The
following techniques that will help reduce the amount of CPU overhead
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Figure 38-1. The nine hit group shaders can be consolidated into a single generic surface hit
group by unifying how common materials are shaded. Engines will separate hit groups into
categories such as transparent, decals, generic, and subsurface materials, to name a few.

associated with the RTPSO include reducing hit group shaders, as well as
incremental changes to the RTPSO and state object collection multi-threaded
compilation.

One way to mitigate heavy shader permutations is to break down the shader
tables into generic hit group shaders that handle a collection of geometry
types in order to make the number of hit groups in the RTPSO manageable.
Figure 38-1 shows a state object configuration in which unique hit group
shaders can be unified by functionality. Having a predefined set of hit group
shaders in a state object is important because it not only reduces shader
execution divergence but also reduces CPU delay from recompiling the state
object every time new hit group shaders are needed.

38.2.1 INCREMENTAL STATE OBJECT MODIFICATIONS

Ray tracing pipeline state object compilation can be computationally
expensive due to the driver compiling multiple shaders. AddToStateObject
was introduced to prevent recompiling the entire RTPSO and only requires
compilation of new hit group shaders as they are added. AddToStateObject is
a very lightweight operation because the Direct3D 12 runtime does not need
to validate the entire state object and the driver only needs to perform a trivial
linking step after the new shaders are compiled. If complex state objects can’t
be avoided, then it is best practice to compile the most common hit group
shaders into a state object once and incrementally add new hit group shaders
with AddToStateObject during gameplay. The full documentation for
AddToStateObject is available [2].
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Figure 38-2. Precompiled DXIL binaries are compiled into state object collections at startup then
finally compiled into a ray tracing pipeline state object.

38.2.2 STATE OBJECT COLLECTIONS

Another useful strategy to reduce the amount of compilation time for ray
tracing pipeline state objects is to use state object collections. Collections
containing ray tracing shader DirectX Intermediate Language (DXIL) libraries
can be compiled separately and in parallel on the CPU. (See Figure 38-2.)
RTPSOs can then reference these precompiled collections and in turn reduce
the amount of time it takes to prepare a ray tracing pipeline. Using multiple
CPU cores to compile collections can give a significant speedup compared to
compiling the RTPSO with raw DXIL libraries on a single CPU core. RTPSO
compilation should be lightweight due to multi-threaded collection
compilations. New hit groups can be streamed in by asynchronously
compiling new collections and using AddToStateObject to perform a trivial
linking step, assuming the collection state objects were compiled by the
driver.

38.3 THE SHADER TABLE

Generating complex shader tables is often a costly process on the CPU. A
shader table contains an array of shader records that define the resource
bindings of each top-level instance’s local root signature in the top-level
acceleration structure (TLAS).

38.3.1 BUILDING THE LOCAL ROOT SIGNATURE ON THE GPU

A local root signature (LRS) can use up to 4 KB, according to the DXR
functional spec [3], in memory for descriptors and other resource data. One
special advantage of the LRS is that the underlying memory can be allocated
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in GPU memory for low latency during traversal shading. If the LRS uses
constant buffers or root constant buffers, it can be very costly to constantly
update those memory resources on the CPU side for a large amount of shader
records. Instead, shader tables can be generated using a compute shader to
write out shader table resource data by reading CPU system memory buffers
containing the scene’s resource information. Another advantage of building
the shader table on the GPU and using GPU visible only memory is that this
will avoid Peripheral Component Interconnect Express (PCIe) traffic reads
(GPU to CPU memory) when accessing constant buffers and all the other
resource descriptors.

> LRS pros:

– Root signature memory size is 4 KB.

– CPU overhead to update shader records.

> LRS Cons:

– Root signature memory is configurable.

38.3.2 GLOBAL ROOT SIGNATURE

One limitation of the global root signature (GRS) is that if the resources
required for state object shading exceed the memory capacity of a GRS, then
resource management will require special attention. Another limitation is
that a GRS is limited to 64 DWORDS (256 B) and only one can be bound. More
information on limitations are defined by White and Satran [6].

For example, if root constants are needed to manage resource indexing, then
the root constants would be accumulated into a single structured buffer and
accessed with a shader resource view (SRV).

> GRS pros:

– Unified root signature management.

– No shader table management if LRS isn’t used.

> GRS cons:

– Root signature memory size is 256 B.

– Root signature memory is required to be in system memory.

– Requires alternative management of large root data sets.
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38.3.3 GRS VERSUS LRS

A GRS is limited to 256 B and only one can be bound, while a LRS allows up to
4 KB and can be instanced. The LRS gives each instance in the TLAS access
to 4 KB of resource memory rather than being limited to 256 B with a GRS.
Using a LRS is a convenient way to get around some of the limitations of a
GRS, but at the cost of CPU performance and more memory consumption.

38.3.4 SHARING RESOURCES WITH THE RASTERIZER

If the shader table construction can’t be performed on the GPU, then
techniques must be used to reduce CPU overhead of managing the resource
views (constant buffer view, shader resource view, or unordered access view).
This can involve extracting resources required for ray tracing from the already
established rasterization engine’s resources. Resource view management for
the LRS typically involves heavy use of CopyDescriptors or
CopyDescriptorsSimple to pull from a repository of views stored in a single
large descriptor heap. Typically, these copies are required for hybrid
(rasterization and ray tracing) renderers. The same resource sharing applies
when the rasterizer consumes new vertex and index buffers needed to be
rendered, which then must be passed along to the AS builder to include it
during ray traversal.

38.3.5 BINDLESS RESOURCE ARRAYS

The preferred solution, if possible, is to avoid building the shader table
altogether by dynamically indexing into bindless resources. Bindless
resources are implemented using a descriptor table that contains an array of
resource views. Large descriptor tables are stored in the GRS and can be
accessed based on the instance and geometry index of the intersected
primitive. (See also Chapter 17.)

38.4 THE ACCELERATION STRUCTURE

38.4.1 OVERVIEW

Processing millions of triangles into the ray tracing AS can become
prohibitively expensive on both the GPU and the CPU. The first challenge is
managing the transient geometry in the AS that enters and exits the player’s
rendering volume. For each frame, new bottom-level acceleration structures
(BLAS) need to be built for new geometry that entered this volume, and
conversely, existing acceleration structures need to be deallocated if they are
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Figure 38-3. A large collection of asteroids each stored in a unique BLAS structure. Frustum
culling techniques are used to reduce the BLAS memory footprint and TLAS size.

no longer in view. If the AS is being used for reflections or shadows, then all
geometry within a certain radius of the player is required, not just the
geometry in the view frustum. The movement of geometry in and out of the
AS causes multiple trips to the operating system memory manager. These
memory requests can introduce CPU overhead.

Figure 38-3 shows an asteroid field in which top-level asteroid instances are
culled from the AS if not in the radius of inclusion. The TLAS will instance into
each visible asteroid BLAS, while asteroids outside of the radius of inclusion
will not be included in the TLAS and those BLAS can be deallocated.

One tool for avoiding such CPU-side memory allocation stalls involves
sub-allocating the AS buffer memory. Infrequently requesting large memory
pools from the operating system (OS) reduces CPU overhead because the
common case would be to sub-allocate from an existing memory block.
Compaction also helps in reducing the memory required for an AS by
trimming the conservative memory allocation that was required for the initial
build. An AS that uses compaction significantly decreases the memory
footprint and, in turn, reduces CPU overhead as an added benefit. Less
memory for the AS means less requests to grab sub-allocator memory blocks
from the OS.
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38.4.2 SHARING RESOURCES WITH THE RASTERIZER

The vertex and index buffer resources used to build the AS can hopefully be
reused from the rasterization resources if the buffers are in one of the
acceptable build formats. Most engines compress their vertex buffers and are
forced to decompress and duplicate resources when getting ready to build the
AS. The RT Cores can only interpret triangles in the form of 16- or 32-bit
precision vertices. More information about RT Cores can be found in the
Ampere white paper [4]. If the engine must duplicate the vertex buffers to
build the AS, then be aware that deallocating those duplicated resources after
building is recommended to reduce memory consumption.

38.4.3 DEFORMABLE, ANIMATED, AND STATIC AS BUILDS

There are three main categories of geometry types in the AS. These types can
be described as static, animated, and deformable geometry. Static geometry
can be defined as a triangle mesh that is uniformly transformed, such as
buildings, roads, and signs. Animated geometry comprises a triangle mesh
that has a grouping of triangles within the mesh that are transformed but
adhere to the original topology, such as character animations. Deformable
geometry is characterized by a triangle mesh in which all triangles can be
transformed arbitrarily without maintaining the original topology, such as
particle effects.

Static geometry has a major benefit in which it only requires a single full
build. Animated geometry requires an upfront build as well but requires fast
build updates every key frame, which are much less impactful on GPU
performance than full builds. This requires a mesh skinning compute pass
and a fast build per frame to update the AS bounding boxes for the deformed
triangles. One method to reduce build processing times is to have a higher
ratio of static objects compared to dynamic objects in the TLAS. Static objects
only require a one-time build, whereas dynamic objects can require an update
build or complete rebuild per frame. Both animated and static geometry can
be compacted but require extra memory in which both the original build and
the compacted build memory are resident.

Static topologies with extreme animation (running animations) or objects that
change topology altogether (breakables or particles) require a full build
during each of the deformable geometry’s updates to maintain optimal
traversal performance. AS traversal performance will degrade as triangles
move farther away from their original build location and thus hurts
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performance as time progresses. The trade-off is to do a full build of the
deformable geometry every N frames and do refit builds between the N
frames. This maintains acceptable build and traversal performance but
requires tweaking for each individual engine. Putting a limit on the number of
AS builds and updates per frame can also be a good way to maintain stable
GPU/CPU performance with build workloads. One trade-off is that sometimes
objects may appear in the AS a frame or two after they would have been
traced against and show up as popping geometry. The RTX best practices blog
post [5] details best practices for managing acceleration structures.

38.4.4 IMPROVING LOD PERFORMANCE

If the engine employs a LOD system, then the AS build workloads increase
due to extra builds for the LODs and the management of the LODs included in
the TLAS. For example, if the LOD system contains four levels of detail, then it
is possible that certain assets transitioning through the LODs have the
potential need to be built and compacted four separate times.

Instead, having only one LOD resident in memory prevents LOD transition
popping, which is another problem set described in a stochastic LOD blog
post [1]. The method described in the blog post implements smooth
transitions between LODs in the acceleration structure by randomly masking
out one of the LODs in the TLAS for each ray. This facilitates a gradual
transition of geometry between the two LODs but at the cost of having to
maintain more geometry in the AS.

One precaution with LOD selection is the potential to introduce position data
bugs between rasterization and ray tracing. LOD mismatch can result in
self-shadowing corruption if the acceleration structure is only using a single
BLAS for each model. A technique used to mitigate self-shadowing in ray
tracing is to add a bias to the ray origin. Figure 38-4 shows the self-shadowing
bug when mismatching LODs for primary rays and rasterization.

The benefit to avoiding an LOD system for ray tracing prevents not only a
reduction in BLAS memory but also a reduction in AS builds. The trade-off
here is that geometry that is far away and highly tessellated will potentially
hurt traversal performance. The TLAS is designed to prevent wasted traversal
time in these highly tessellated regions, so the performance trade-off might
not be as bad as expected.
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Figure 38-4. The BLAS and rasterization vertex buffer data is different due to LOD mismatch, and
the result is self-shadowing artifacts [1, Figure 3].

38.5 CONCLUSION

The intention of this chapter is to help better understand the pros and cons
associated with certain DXR design choices and how they affect CPU
performance. In conclusion, the recommended approach is to simplify the
RTPSO as much as possible and asynchronously compile state collections for
inclusion in the RTPSO. Allocate shader tables in GPU memory and build
them on the GPU to reduce CPU overhead and improve traversal shading
performance. Limit the number of AS builds per frame, as to reduce memory
requests to the OS and reduce the amount of AS build times on the GPU.
Implementing LOD algorithms for DXR introduces a significant amount of
extra memory and additional AS builds but succeeds in preventing LOD
mismatch between the rasterizer and the ray tracer.

REFERENCES

[1] Lloyd, B., Klehm, O., and Stich, M. Implementing stochastic levels of detail with Microsoft
DirectX Raytracing. NVIDIA Developer Blog,
https://developer.nvidia.com/blog/implementing-stochastic-lod-with-microsoft-dxr/,
June 15, 2020.

[2] Microsoft. ID3D12Device7::AddToStateObject method (d3d12.h). Windows Developer,
https://docs.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12device7-
addtostateobject, September 15, 2020.

[3] Microsoft. Local root signatures vs global root signatures. DirectX Raytracing (DXR)
Functional Spec, https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html#local-
root-signatures-vs-global-root-signatures, 2021.

623

Light

Spurious Shadow

Eye
LOD1

LOD0

https://developer.nvidia.com/blog/implementing-stochastic-lod-with-microsoft-dxr/
https://docs.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12device7-addtostateobject
https://docs.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12device7-addtostateobject
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html#local-root-signatures-vs-global-root-signatures
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html#local-root-signatures-vs-global-root-signatures


RAY TRACING GEMS II

[4] NVIDIA. Ampere GA102 GPU architecture: Second-generation RTX. White paper,
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-
whitepaper-v2.pdf, 2021.

[5] Sjoholm, J. Best practices: Using NVIDIA RTX ray tracing. NVIDIA Developer Blog,
https://developer.nvidia.com/blog/best-practices-using-nvidia-rtx-ray-tracing/, August
10, 2020.

[6] White, S. and Satran, M. Root signature limits. Windows Developer,
https://docs.microsoft.com/en-us/windows/win32/direct3d12/root-signature-limits,
May 31, 2018.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if you modified the licensed material. You do not have permission under this license to share
adapted material derived from this chapter or parts of it.
The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

624

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://developer.nvidia.com/blog/best-practices-using-nvidia-rtx-ray-tracing/
https://docs.microsoft.com/en-us/windows/win32/direct3d12/root-signature-limits
http://creativecommons.org/licenses/by-nc-nd/4.0/


CHAPTER 39

INVERSE TRANSFORM SAMPLING
USING RAY TRACING HARDWARE
Nate Morrical1 and Stefan Zellmann2
1NVIDIA
2University of Cologne

ABSTRACT

Accurate radiance estimates of high dynamic range textures require
importance sampling to direct rays toward influential regions. However,
traditional inverse transform sampling involves several expensive searches to
locate these highly influential pixels. We propose a reformulation of inverse
transform sampling that replaces these texture space searches with a single
hardware-accelerated ray traversal search using cumulative probability
geometry. We evaluate the performance and scalability of our approach on a
set of emissive dome light textures and demonstrate significant
improvements over traditional solutions.

39.1 INTRODUCTION

Whether working within real-time constraints or striving for maximum
quality, ray tracing is a balancing act between improving performance and
reducing variance. For real-time ray tracers, performance is of utmost
importance. Variance reduction strategies must stay within a particular
performance budget, even if that means choosing a cheaper, less effective
noise reduction strategy over a more effective, but also expensive, method. In
offline settings, variance reduction is usually a higher priority, and so some
sacrifices might be made to interactivity as long as overall convergence times
improve. In either case, there is a high demand for techniques that improve
performance while simultaneously reducing noise.

In this chapter, we focus our attention toward improving the state of the art in
large emissive texture importance sampling. Emissive textures are a great

Both authors contributed equally to this work.
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(a) Autoshop (b) Industrial (c) Night (d) Park (e) Room

(f) Shanghai (g) Station (h) Studio (i) Sun (j)Workshop

Figure 39-1. A collection of emissive textures used for testing importance sampling. Many of
these textures contain many low-influence texels and a small set of highly influential texels.

way to increase the detail and overall realism of a scene, and they are
frequently used to create quick, yet effective, environmental lighting.
Unfortunately, if sampled naively, these emissive textures are also a common
source of noise. With many emissive textures, the majority of the incoming
radiance originates from a small fraction of the texture’s texels, and if all
texels are randomly sampled with equal probability, these small, influential
texels will rarely be hit. To reduce this noise, it is crucial to
importance-sample these textures.

One such approach to importance-sampling large emissive textures is to use
inverse transform sampling. Though it is possible for traditional inverse
transform sampling to perform quite well, we have found this sampling
performance to be unreliable due to the unpredictable nature of binary
search. On the set of high dynamic range images (HDRIs) in Figure 39-1, we
found performance of traditional inverse transform sampling to vary
dramatically from image to image, by about 10×. Moreover, traditional
inverse transform sampling does not allow developers to control whether to
prioritize variance reduction over performance or vice versa.
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Figure 39-2. This chapter demonstrates how traditional inverse transform sampling (left) can be
reinterpreted as a ray tracing problem through simplified probability geometry (middle) to
importance-sample HDRI textures (right). These rays can then be accelerated in hardware,
improving performance.

Our work explores a reformulation of inverse transform sampling that
replaces the traditional binary searches performed in texture space with a
single hardware-accelerated ray traversal search over cumulative probability
geometry. (See Figure 39-2.) By leveraging ray tracing hardware, we are able
to improve performance of raw 8K HDRI importance sampling by 1.2–11.2×.
Using this new sampling strategy, we show that these importance sampling
performance improvements translate to improved rendering performance, by
up to 70% on the HDRIs we tested, all while achieving a similar reduction in
variance to traditional inverse transform sampling. Moreover, the intersected
cumulative probability geometry can be simplified more or less to enable
prioritizing performance over variance reduction.

39.2 TRADITIONAL 2D TEXTURE IMPORTANCE SAMPLING

When integrating a function f, the core idea behind importance sampling is to
use a modified form of the Monte Carlo estimator, where sampled values f(xi)
are divided by their corresponding probabilities of being sampled:

FN =
1
N

N∑
i=1

f(xi)
p(xi)

. (39.1)

This modified estimator enables us to redirect samples toward more
influential regions, where p(xi) effectively serves as a correction factor for that
redirection.

To use this modified estimator for texture importance sampling, we first need
to rank how influential each texel in our image is, which we do by converting
the image from linear RGB to grayscale luminance L. This gives us a single
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scalar value per texel that we can use to estimate how much light a particular
texel will emit. Next, we consider texels with high luminance to be more
important (and vice versa) by computing a joint probability distribution p(x, y)
from these luminance values (joint here meaning we use both x- and
y-coordinates to look up the probability of a texel):

p(x, y) =
L(x, y)∑
i,j L(i, j)

. (39.2)

Once we have this joint probability distribution, the next step is to further
break down our probabilities into marginal and conditional probabilities that
we can use to importance-sample a row and a column, respectively.

In order to importance-sample a row of interest, we need to compute the
marginal probability p(y) for each row. This marginal probability describes the
overall probability of a row and allows us to sample the rows separately from
the columns (typically stored in themargins of a joint probability table):

p(y) =
∑
x

p(x, y). (39.3)

Then, to importance-sample the column within our previously sampled row,
we need to compute the conditional probability p(x|y) for each texel within that
row. The conditional terminology here refers to this probability being
conditional on another event happening. In our case, we want to compute the
probability of sampling an x given that we already picked a y:

p(x|y) =
p(x, y)
p(y)

. (39.4)

At this point, we need to come up with a way to perform our sample
redirection. We want to randomly pick from a probability distribution such
that the probability of choosing a sample matches that sample’s earlier
assigned probability. This importance sampling process also needs to be
efficient, as we will be taking many of these samples in our ray tracer. This is
commonly done through a process called inverse transform sampling [5],
which “transforms” our probability distributions to enable an efficient
sampling algorithm.

More specifically, we will transform the previous probability distribution
functions (PDFs) into cumulative distribution functions (CDFs). A cumulative
distribution function evaluated at some location x returns the probability that
a sample will occur whose probability is less than or equal to x. We denote
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P(x) = p(x)
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Figure 39-3. From left to right: by transforming our PDF into a CDF, we can invert this CDF to
redirect uniform samples toward highly influential regions. When the CDF cannot be inverted
analytically, a binary search can be used to search for the inverted value. Our ray traversal
approach leverages the geometric interpretation of inversion to do a similar search in hardware.

PDFs using a lowercase p and CDFs using an uppercase P:

P(x) =
∫ x

0
p(x) dx. (39.5)

Because a CDF is just a running sum of positive probability values, these
functions only go up in value, and never go down. As a result, a CDF can be
inverted. (See Figure 39-3.)

This ability to invert our CDFs is exactly what we need for importance
sampling, as this inversion process essentially maps a uniform distribution
into a distribution where highly influential samples are more likely to be
sampled and low influence samples are less likely to be sampled. In practice,
we will need to do this inversion numerically, because our PDFs are actually
discrete arrays derived from luminance and do not come from an analytical,
invertible equation. Fortunately, this numerical inversion can be done using a
fast O(log(n)) binary search:

P(y) =
∫ y

0
p(y) dy, P(x|y) =

∫ x

0
p(x|y) dx. (39.6)

In practice, we compute and store a single marginal CDF P(y) as well as a
conditional CDF P(x|y) for each row, and we discard the original marginal,
conditional, and joint PDFs to safe memory. Then, during sampling, we
generate our two uniformly random numbers ξ1 and ξ2. From here we employ
a binary search to find the first y-coordinate from the marginal CDF where
P(y) ≥ ξ1. Using that y-coordinate, we pick the conditional CDF for that y and
again perform a binary search to find the x-coordinate, where P(x|y) ≥ ξ2.

We still need to compute our probability of taking this sample, because we
need that probability to serve as our correction factor in Equation 39.1. As our
CDFs are just a running sum of our original PDFs, we can compute the
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original probability densities in x and y by doing a simple subtraction:
p(x|y) = P(x|y) – P(x – 1|y) and p(y) = P(y) – P(y – 1). From there, the joint PDF
p(x, y) can be computed as p(x, y) = p(x|y)p(y).

39.3 RELATED WORKS

In this chapter, our goal is to optimize this inverse transform sampling
process using ray tracing hardware. Our work takes inspiration from two
related works: that by Lawrence et al. [4] and by Cline et al. [3]. Lawrence et
al. describe a method that improves on the memory efficiency of large
one-dimensional CDFs. To do so, the authors propose using a sparse,
piecewise linear approximation of the CDF as a substitute to the previously
described dense array of probabilities. The work by Cline et al. goes in a
different direction, instead sacrificing memory efficiency for faster sampling
performance. Their work identifies the binary search described in
Section 39.2 to be a bottleneck and proposes several alternatives to this
search that improve performance. (See also Chapter 21.)

39.4 RAY TRACED INVERSE TRANSFORM SAMPLING

The inverse transform sampling method described in Section 39.2 has a near
optimal runtime complexity of O(log(N) + log(M)), where N and M represent our
texture dimensions. Still, there are several ways that we can further optimize
this strategy to enable more samples to be taken at the same performance
budget, while also improving on memory efficiency.

More specifically, the implementation constants associated with inverse
transform sampling are still relatively high, especially for real-time and
interactive applications. Binary search employs memory access patterns that
prevent prefetching of data that is likely to be accessed in the next iteration.
The row and column accesses also depend on random numbers, making
these accesses incoherent.

To further improve performance and memory efficiency, our technique
reduces the size of these implementation constants by simplifying the CDFs
similar to Lawrence et al. [4], while also using a representation compatible
with ray tracing hardware to improve search performance like Cline et al. [3].

Within a CDF, many neighboring probabilities are similar in value. For
example, if a texture contains a smooth gradient for the sky, luminance
between neighboring pixels will be similar, and as a result, neighboring
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probabilities will also be similar. We can rank neighboring pixels’ similarity
based on how close their corresponding probabilities are. Using that
similarity measure, we can prioritize merging highly similar pixels first and
avoid merging neighboring pixels with very different probabilities.
Structurally, this simplification measure presents us with a trade-off between
importance sampling accuracy on one hand and data locality on the other.

In practice, this merging is easier said than done. By merging neighboring
values together, our CDFs go from being structured to unstructured, and we
therefore need to devise a strategy to efficiently search through this
unstructured data. For this strategy, we further note that the CDFs can be
interpreted geometrically as height fields. For each address in the CDF array,
the associated probabilities can be interpreted as “heights” ranging from 0
to 1. (See Figure 39-2, middle.) From this, we can construct an actual
geometric mesh to represent the height field using linear ribbon segments.

With this unstructured, geometric reformulation, we can implement the
search required by inverse transform sampling by tracing a ray. To sample
the CDF geometry, we again generate a uniform random number ξ ∈ [0, 1),
but rather than searching for that random number using binary search, we
instead use that random number to control the height of the ray. That ray is
traced toward the CDF height field, where traversal is used to facilitate the
search:

r = o + dt, o = (0, ξ, 0), d = (1, 0, 0). (39.7)

By randomizing the y offset of the origin and aiming the ray toward the x-axis,
the ray is traced toward the positive incline of the height field such that the
intersection distance t represents our inverted x-coordinate.

To compute the corresponding sample probability correction factor required by
our Monte Carlo estimator (Equation 39.1), we need to compute the derivative
of the CDF at our sample location, because the derivative of the CDF is our
PDF that we want to sample (see Equation 39.5). Fortunately, as our height
field geometry consists of linear segments, this derivative can be found by
computing the slope of the hit linear segment.

Up until this point, we would need to trace a ray to facilitate the first search
over the marginal CDF P(y), followed by a second ray to search over the
conditional CDF P(x|y). However, with a few modifications, we can search over
both CDFs simultaneously using just one ray.
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Conditional Probability Distributions
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Figure 39-4. Left: marginal and conditional CDFs and two binary searches are used to
importance-sample a row, then a column. Right: we construct geometry that encodes the CDFs
on the left (ribbon width and ribbon ID encode the inverse marginal CDF; ribbon height and depth
encode the conditional CDFs). Rays can then be traced against this geometry to sample a row and
a column, where wider ribbons and taller ribbon segments are more likely to be hit.

Instead of representing each CDF geometry as separate ribbon geometry, we
can leverage the third dimension available to us and the hit group records
associated with our ribbons to simultaneously search over the marginal and
conditional distributions. Like before, each conditional CDF is represented
using simplified ribbon geometry, where the height of the ribbon (y in our
case) is used to encode the probability for a given row’s column (x in our case).
But now, we can encode the inverse of the marginal CDF by altering the
thickness and placement of those ribbons along the third dimension (z in our
case), storing the corresponding “projected” row ID and row probability in the
ribbon hit group record that we can look up in a closest-hit program.

By representing the marginal probabilities using ribbon widths and placing
these ribbons side by side, we “project” our marginal CDF heights onto the
z-axis, effectively encoding the inverse of the marginal CDF. To recover the
“projected” address for each marginal CDF segment, we look up the hit
geometry’s corresponding hit record data. Rows that have amarginal
probability of 0 (meaning that this row’s luminance is zero) would obtain zero
thickness and thus cannot be hit by rays at all. Conversely, rows that have a
high marginal probability have very wide thickness, making those ribbons
more likely to be hit. (See Figure 39-4.)

When tracing rays against this combined geometry, we keep the direction of
the ray oriented toward the CDF’s positive incline, d = (1, 0, 0), but we now set
the origin of the ray o = (0, ξ1, ξ2), where ξ2 is the random number that we use
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Listing 39-1. Intermediate CDF geometry control point representation.

1 struct ControlPoint {
2 // Column and row index
3 int x, y;
4 // The CDF value at the above coordinates
5 float f;
6 // First-order forward partial derivative in x
7 float dfdx;
8 // Second-order forward partial derivative in x
9 float d2fdx;
10 };

to sample the marginal distribution and ξ1 is the random number to sample
the conditional CDF. From this ray, we obtain the sampled y-coordinate from
the marginal distribution through the row ID associated with the ribbon we
hit, and then the x-coordinate like before through the returned hit distance t.

39.5 IMPLEMENTATION DETAILS

At this point, we have a set of observations that we can use to implement ray
traced inverse transform sampling. Still, some care must be taken when
simplifying the conditional and marginal CDFs to preserve variance reduction
while also reducing implementation constants. In our implementation, rather
than merging neighboring probabilities together at a local scale, we instead
collect a subset of texels at a global scale that we consider to be “important.”
We call these important texels control points, as we will use these control
points to generate the CDF geometry. Our control point structure looks like
the code in Listing 39-1.

As a first step, we construct a control point for each texel in our texture,
inserting those control points into a list. For each control point, we store the
value of the conditional CDF at that coordinate, as well as the first- and
second-order partial derivatives of the conditional CDF with respect to x (the
direction of our rows).

Next, we sort this array of control points in descending order by their
second-order derivatives. By sorting by the second-order derivative, highly
influential, “spiky” control points will appear earlier in the list. Control points
with smaller second-order derivative values will appear later in the list,
indicating that the neighboring texels of these control points are “similar” and
that these control points can be discarded to simplify the geometric
representation. We then truncate this sorted list, such that all but N control
points are discarded.
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These resulting control points represent row-wise CDFs, i.e., the lowest value
per CDF is 0 and the highest value is 1. By discarding control points globally,
however, we might end up with row CDFs that have no control points
associated with them at all. To handle this, we first increment the
x-coordinate of all control points by 1, making these control points
vertex-centered at the ends of the texel grid instead of cell-centered. Next,
we enforce that each row is represented by inserting control points at x = 0
with a probability of P(0|y) = 0 and inserting control points at x = n (if they
don’t already exist) with a function value of P(n|y) = 1.

After sorting and truncating our list of control points by their second-order
partial derivatives, we again sort these control points, first by their
x-coordinate and then by their y-coordinate, the latter sort being a stable sort
to retain the order in x. These operations effectively give us a list of
unstructured CDFs sorted by row, with each row being represented with at
least two control points.

1 OPTIX_CLOSEST_HIT_PROGRAM(CdfCH)()
2 {
3 auto &lp = optixLaunchParams;
4 PRD& prd = owl::getPRD<PRD>();
5 const auto &g = owl::getProgramData<CdfGeom>();
6 float2 b = optixGetTriangleBarycentrics();
7 int id = optixGetPrimitiveIndex();
8 // Use left (even id) or right (odd id) triangle edges.
9 float alpha = (id & 1) ? 1.f - (b.x + b.y) : (b.x + b.y);
10 prd.x = optixGetRayTmax() * lp.environmentMapWidth;
11 prd.y = g.rowStart * (1.f - alpha) + g.rowEnd * alpha;
12 prd.colPdf = g.triPdfs[id];
13 prd.rowPdf = g.geomPdf;
14 }

We now have simplified the CDFs to a point where we can turn the control
points into a geometric representation. Our ultimate goal is to trace rays
against this geometry, and to improve traversal performance, we use the
hardware-accelerated traversal made available with ray tracing cores. So, for
each unstructured CDF row, we generate the ribbon geometry described in
Section 39.4 such that consecutive CDF control points in a row are connected
by triangulated planar quads. And as mentioned earlier, from one row to the
next, we adjust the thickness and placement of these ribbons in the third
dimension using corresponding per-row marginal CDF values.

We provide a prototypical implementation of our ray inverse sampling
technique that is based on OptiX 7 and the Owl Wrapper Library (OWL) [6].
Open source code can be found at the book’s source code website and at
https://gitlab.com/szellmann/owlcdf.git
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Listing 39-2. An OptiX implementation of ray traced CDF inversion.

1 __device__ Sample sampleCDF_BVH(float rx, float ry)
2 {
3 auto &lp = optixLaunchParams;
4 vec3f org = {0.f, ry, rx};
5 vec3f dir = {1.f, 0.f, 0.f};
6 PRD prd{-1, -1, -1.f, -1.f};
7 Ray ray(org, dir, 0.f, 1.f);
8 owl::traceRay(lp.cdf, ray, prd,
9 OPTIX_RAY_FLAG_DISABLE_ANYHIT |
10 OPTIX_RAY_FLAG_TERMINATE_ON_FIRST_HIT);
11 return {prd.x * lp.width, prd.y * lp.height, prd.rowPdf, prd.colPdf};
12 }

As some final, but important optimizations, we normalize the dimensions of
the CDF geometry, as we have found this leads to more consistently sized
bounding boxes and greatly improved traversal performance, by 45–50% on
the data sets we tested. We then correct for this normalization scale after
sampling. Finally, if we detect neighboring rows that contain only two control
points each, we can further improve performance (by 20–30% for our data
sets) by merging these neighboring rows together. As a result, one ribbon can
span several rows. We upload the rows spanned by a ribbon through the hit
group record of the ribbon geometry, and we use triangle barycentrics to
determine which row within the ribbon that ray sampled.

When sampling, we use the code in Listing 39-2.

39.6 EVALUATION

To evaluate ray traced inverse transform sampling, we conducted a series of
experiments on an RTX 3090 using a set of ten different high dynamic range
environment textures taken from HDRI Haven [7] to illuminate the Amazon
Bistro data set [1] (see Figure 39-1). These emissive textures range from 2K
to 8K in resolution and contain a mix of homogeneous and heterogeneous
luminance (whether or not a small set of pixels contribute the majority of the
overall emitted radiance). These experiments compare how ray traced inverse
transform sampling performs against binary search–based inverse transform
sampling in terms of general performance improvements, scalability with
texture size, and increase in variance due to geometric CDF simplification.

To evaluate performance and scalability, for each texture resolution we
recorded two measurements. The first metric measures the theoretical
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maximum number of samples that can be inverted per second. This first
measure intentionally does not consider external factors involved when
rendering a scene, and instead focuses solely on raw sample inversion
performance. The second metric measures the total number of samples
rendered per second when directly lighting the bistro scene with the
environment textures. This second metric uses rays to compute primary
visibility information, then performs inverse transform sampling (either ray
based or binary search based) to sample from the dome light texture,
followed by a shadow ray to compute dome light visibility.

To evaluate the increase in variance that occurs during CDF simplification, we
first render a 4000-spp (samples per pixel) image with binary search–based
inverse transform sampling. This 4000-spp image serves as a ground-truth
representation of the scene being lit by the dome light. From there, we
measured the mean FLIP error [2] between 32-spp images against our ground
truth 4000-spp image. This FLIP metric was chosen as it is specially designed
to compute differences between rendered images and corresponding
ground-truth images. (See Chapter 19 for more about the FLIP metric.)

All of the these measurements were taken using both a baseline method
(binary search–based inverse transform sampling) and our ray traced inverse
transform sampling, the latter using a variety of different CDF geometry
simplification rates. We then compared relative performance improvements
as well as any increase in FLIP error incurred by our approach over the
reference method.

39.6.1 MERGING STRATEGY EFFECTIVENESS

To analyze how effective our merging strategy is, we can directly visualize the
resulting proxy geometry (see Figure 39-5) for the different textures in
Figure 39-1. For heterogeneous textures, we found it most effective to remove
99–99.99% of the original control points, as the proxy geometry only needs to
accurately capture a small number of inflection points from the original CDFs.
For homogeneous textures, a more aggressive decimation can be used.

In practice, we find our merging strategy to work well for some textures, but it
could likely be improved for others. We found the Sun HDRI to be one of the
cases where our CDF simplification works best, as the majority of the width of
the proxy geometry is allocated to the few influential rows containing the
bright sun in the sky. Because there is no other bright light in the same row
as the sun, the majority of the vertical height is represented using just a few
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(a) Autoshop (b) Industrial (c) Night (d) Park (e) Room

(f) Shanghai (g) Station (h) Studio (i) Sun (j)Workshop

Figure 39-5. Proxy geometry constructed from different HDRI CDFs, with a decimation rate of
99.9%. Ribbon widths and horizontal placement are used to encode the marginal CDF, and ribbon
height at a given depth encodes the conditional CDF for a given row. (For a single-pixel image, this
proxy geometry would appear as a fully flat diagonal plane.)

quads that represent the columns containing the sun. The Park HDRI also
works well, as a significant portion of the sky is equally bright, and as a result,
many rows are merged together.

However, other HDRIs could likely be simplified much more while still
preserving the overall detail (and therefore variance reduction) of the original
CDF arrays. At the moment, we currently only merge rows that have been
completely simplified. But with textures like the Studio HDRI, there are many
influential rows that are likely to be hit that cannot be simplified down to just
two control points at the ends because there are two or more influential
collections of pixels on the same row. As a result, we are unable to merge
these rows together, which will negatively affect ray traversal performance.
We would likely benefit from a more general row merging strategy that
combines rows with similar height profiles.

39.6.2 PERFORMANCE, SCALABILITY, AND VARIANCE

To determine how this CDF simplification translates to performance and
scalability, we first measure our raw performance improvements against the
reference method at 2K, 4K, and 8K HDRI resolutions, and at a variety of CDF
decimation amounts ranging from 90% to 100% decimation. Results are
illustrated in Figure 39-6.
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Figure 39-6. Evaluation of ray traced inversion versus binary search inversion. Dashed lines
represent binary search performance, and solid lines represent ray traced inversion performance
at various CDF geometry decimation amounts. Dark, medium, and light colors represent 8K, 4K,
and 2K HDRIs, respectively. The y-axis magnitude is common across all rows, and the samples
inverted, the samples rendered, and the FLIP error increase are 1× 1010, 1× 109, and 1,
respectively.

First, we found that the reference method does surprisingly well for some of
our HDRIs. For example, with the Studio texture, the reference method
inverts an impressive 5.4 billion samples per second on 8K HDRI. The Station,
Industrial, and Shanghai textures also do very well, with an average of 4.3
billion samples inverted per second. However, the other six
HDRIs—Workshop, Autoshop, Sun, Night, Room, and Park—achieve on
average only 0.97 billion samples inverted per second for the 8K
configurations. The reference also noticeably drops in performance when
increasing HDRI resolutions from 2K to 8K.

These raw importance sampling results roughly translate to real-world
performance, indicating that importance sampling performance is a
bottleneck. Five of the 8K HDRIs achieve a high average of 864 million
samples rendered per second, and the other five 8K HDRIs achieve a low
average of just 468 million samples rendered per second. An interesting
exception between synthetic and real-world performance is a rise in
performance with the Sun HDRI, perhaps due to more coherency over other
HDRIs with respect to the resulting visibility rays.
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Decimation Rate: 0% 99% 99.9% 99.99% 99.999% 100%

Su
n
8K

Error Increase: 0.0% 0.5% 0.8% 1.0% 2.2% 41.0%
Samples Inverted: 1.01× 3.41× 4.34× 4.68× 4.57× 4.58×
Samples Rendered: 1.03× 1.09× 1.18× 1.26× 1.27× 1.11×

In
du

st
ri
al

8K

Error Increase: 0.0% 0.0% 1.6% 13.6% 34.0% 51.4%
Samples Inverted: 0.52× 0.80× 1.48× 1.91× 1.03× 1.07×
Samples Rendered: 0.81× 0.87× 0.97×% 0.97× 0.97× 0.98×

Figure 39-7. The effect of CDF geometry decimation on noise in a case where we perform well
(Sun, top), and a competitive case where binary search performs well and is difficult to beat
without introducing variance (Industrial, bottom). A decimation rate of 0% effectively illustrates
binary search noise levels and of 100% illustrates naive random sampling noise levels.

With our ray traced inverse transform sampling, our raw sample inversion
benchmark shows that the more we simplify the CDF geometry, the more our
performance improves, where we either meet or significantly overcome the
number of inverted samples per second compared to the reference. Our
method is much more consistent in terms of inversion performance from one
HDRI to the next, and it appears to scale much better with respect to texture
resolution than the reference does.

As predicted, this performance is heavily dependent on how much the CDF
geometry can be decimated without introducing a significant increase in
variance. From our evaluations, we are able to decimate the CDF surface up
to 99.9% without a noticeable increase in noise for most heterogeneous
HDRIs. At 99.99% decimation, we start to see a noticeable increase in noise
levels, but still preserve shadows and other structures cast by strong
localized light sources while also further reducing importance sampling
overhead (see Figure 39-7). For more homogeneous HDRIs, we are able to
use a more aggressive decimation without a noticeable impact on variance,
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however these HDRIs are less likely to benefit from importance sampling in
the first place.

For the six HDRIs with which the reference method struggles, we see
significant performance improvements, especially as texture sizes grow
larger. For the other four HDRIs for which the reference method performed
well, we are slower for 2K textures, approximately equal in performance for
4K textures (albeit more noisy), and faster for 8K textures. Our findings show
that when binary search performs well, ray traced inversion also performs
well, but runs into performance limits imposed by the overhead of tracing a
ray (specifically, the cost of a context switch between the streaming
multiprocessor and the ray tracing cores).

We do observe diminishing returns as the CDF is simplified more and more,
especially with respect to variance reduction. At a 100% simplification rate,
our CDF geometry becomes a single quad, which effectively samples all pixels
with equal probability (dramatically increasing variance), but is also much
slower than naive random sampling (by about 30%), due to the introduced ray
tracing overhead. We have also found ray inverse transform sampling to
introduce a small stall for subsequent rays, which adds to this overhead.

For both methods, memory traffic dictates overall performance. For the cases
where the reference performs poorly, memory traffic is high, and vice versa.
This suggests that some HDRIs have high probability sections near even
divisions of the texture, and therefore binary searches are coherent and return
quickly, whereas other HDRIs have high probability sections at odd intervals
that require many binary search iterations to locate. For homogeneous
HDRIs, the reference slows down due to many equally likely pixels causing
high memory divergence and many binary search iterations. With ray traced
CDF inversion, this memory traffic comes from ray traversal. By simplifying
the CDF geometry, we reduce the memory traffic required for CDF inversion.

39.7 CONCLUSION AND FUTURE WORK

In this chapter, we presented a novel technique for inverse transform
sampling and its application to large HDRIs. The proposed geometric
reformulation of the original problem allows us to greatly simplify the data
structure used to store CDFs. This however comes at the cost of turning a
structured data representation into an unstructured one. Unstructured data
representations are usually more expensive to iterate over. In our case,
however, as we iterate through the unstructured data using
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hardware-accelerated tree traversal, the implementation constants are
relatively low, and in general, the benefits outweigh the potential overhead.

With the proposed implementation, we still see room for improvement. For
example, we believe that more careful mesh simplification of the CDF
geometry would allow us to reduce the number of triangle primitives even
more, further reducing bounding volume hierarchy traversal overhead. We
would also find it interesting to test if our approach is effective not just for 2D
CDF inversion, but also for more general 1D CDFs. Finally, we see a number
of different use cases to which our method could be applied or extended, for
example, emissive textures mapped on triangle meshes or emissive voxels in
a volume.
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CHAPTER 40

ACCELERATING BOOLEAN
VISIBILITY OPERATIONS USING
RTX VISIBILITY MASKS
Dirk Gerrit van Antwerpen and Oliver Klehm
NVIDIA

ABSTRACT

When inspecting or presenting detailed scenes, it is often necessary to clip
away parts of the geometry to get a better view of the internals of a model.
Although clipping can be performed directly on the geometry, this is a costly
and complex operation, often preventing interactive visualizations. In this
chapter we’ll discuss how to accelerate complex Boolean visibility operations
using the NVIDIA OptiX API. The method presented here does not require any
preprocessing of the geometry and supports arbitrary Boolean clipping
operations using arbitrary visibility shapes in real time. All ideas presented in
this chapter apply equally well to the DirectX Raytracing and Vulkan Ray
Tracing APIs.

40.1 BACKGROUND

NVIDIA OptiX allows applications to attach custom anyhit programs to
geometry. The anyhit program is invoked whenever a ray intersects the

Figure 40-1. Fishbowl scene with varying Boolean clipping operations applied to its geometry.
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geometry. The anyhit programs may choose to skip the intersection by
calling optixIgnoreIntersection. These programs can thus be used to
implement cutouts and partial visibility of geometry. Although flexible,
custom anyhit program invocations interrupt the fixed-function RTX ray
traversal, which comes with considerable overhead [1].

Orthogonally OptiX also provides access to a fixed-function
RTX-hardware-accelerated 8-bit visibility mask (see documentation [3, 2]). An
application is able to assign a custom visibility mask to each OptiX instance.
Similarly, the application assigns a custom ray visibility mask to each traced
ray by passing the mask as an argument to the optixTrace call. If for any
instance the visibility condition (ray.mask & instance.mask) != 0 is false,
the instance is culled during traversal.

The visibility mask can thus be used to specify which instances will be
intersected along a ray. The 8 bits in the masks can be used to encode eight
independent visibility groups. Each instance is assigned to any or all of the
groups using the instance visibility mask at acceleration build time. The
per-ray visibility mask passed to optixTrace specifies which groups are to be
visible to this ray. For a given optixTrace call, each instance is either fully
visible or fully invisible. Thus, it is not possible to express partial visibility, as
is required for clipping, using the masks directly.

40.2 OVERVIEW

In this chapter we will build on the hardware-accelerated visibility masks to
implement an efficient method for partial visibility of instances. We will
specify partial visibility of instances using arbitrary visibility shapes and
Boolean-valued visibility functions. Using these, we will implement a
higher-level trace operation to intersect a ray against partially visible
instances by combining multiple optixTrace calls and evaluating the
Boolean-valued visibility function inside an anyhit program. We will then
show how to accelerate the trace operation by eliminating anyhit program
invocations using hardware-accelerated instance and ray visibility masks. We
give a practical example showing how to accelerate arbitrary Boolean-valued
visibility functions by approximating them as disjunctions over eight arbitrary,
hardware-accelerated Boolean-valued visibility expressions. Finally, we
discuss how to resolve materials on the caps of nested, partially clipped solid
instances.
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S0 S0 S0 S0

R1 R3 R2

R0

S1

Figure 40-2. A shape partitions space into well-defined inside and outside regions. Multiple
shapes together partition the space into multiple regions. Left: simple shape. Center left:
complex shape, but inside and outside regions are well defined. Center right: invalid shape due to
ill-defined inside and outside regions. Right: two shapes partitioning space into four regions.

40.3 PARTIAL VISIBILITY

In this section we will show how to specify partial visibility of instances
throughout space. In its most general form we can define visibility for an
instance as any arbitrary Boolean-valued function that depends on the
position in space. In regions of space where the instance is visible, the
function evaluates to true, otherwise to false. In our method these regions
of constant visibility are specified directly by partitioning the 3D space using
up to N shapes. Each shape surface is defined by an instance (usually
different from the instance whose visibility is to be defined). The surface must
partition all space into well-defined inside and outside regions. That is, each
shape must be an orientable manifold without boundaries (see Figure 40-2).
Together the N shapes partition the 3D space into up to 2N regions. Each
region is exactly defined as the set of shapes of which the region is inside. In
other words, any subset of shapes implicitly defines a region. Because
visibility of an instance is constant within a region, the instance is visible
either everywhere in the region or nowhere. Given these regions of visibility,
we can express the visibility function as a Boolean-valued function over the
set of shapes of which a region is inside.

40.4 TRAVERSAL

In the last section we specified instance visibility using a set of shapes and a
Boolean-valued visibility function taking a subset of shapes as the argument.
We now show how to build a higher-level trace operation that respects
instance visibility. At first we use an anyhit program to evaluate the final
visibility of each instance. We will further accelerate this operation using
visibility masks and avoid the invocation of anyhit programs in the next
section.

645



RAY TRACING GEMS II

S0

S1

M0

M1

M2

Figure 40-3. A ray march through three regions before the nearest visible hit is found. The scene
has two shapes S0 and S1 and three objects M0, M1, and M2 with corresponding visibility functions
V0 = ¬S0, V1 = S1, and V2 = S1.

Our trace operation ray-marches through regions, from one shape surface to
the next until it hits visible geometry (see Figure 40-3). Hence, we repeatedly
ray-trace against the shape surfaces as well as scene instances. While
ray-marching through regions, our algorithm tracks the set of shapes S of
which the current region is inside. When the ray hits a shape surface as
closest intersection, we update the set S, adding or removing the
corresponding shape, before continuing traversal through the adjacent
region. For efficiency, we track S using a bit vector of size N, one bit per
shape. When the ith bit in the vector is set, shape Si is in S. This practically
limits the number of shapes to some fixed N, but it makes adding or removing
a shape to S as easy as flipping a bit in the vector (see Listing 40-1).

Listing 40-1. Ray marching loop through regions with constant visibility.

1 // March through regions.
2 while( true )
3 {
4 // Find the nearest shape surface (region boundary) or visible hit point.
5 {instance,t} = optixTrace( ... tmin, tmax, /*visibilityMask*/ 0xFF, ...,
6 /*payload*/ shapeSet );
7

8 if( miss )
9 return false; // Report miss.
10

11 if( instance.isSolid )
12 return true; // Report hit.
13

14 // We hit a shape surface; update the shape set.
15 shapeSet ^= (1u << instance.shapeIndex);
16 // Continue in adjacent region.
17 tmin = t;
18 }
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Listing 40-2. Visibility anyhit program.

1 __global__ void __anyhit__trace()
2 {
3 // Load current shape set from payload.
4 const unsigned int shapeSet = optixGetPayload_0();
5

6 // Perform arbitrary software visibility test for current instance using
shape set.

7 if( !instance.evalVisibilityFunction( shapeSet ) )
8 optixIgnoreIntersection(); // Skip invisible hit and return.
9

10 // ...
11 }

Finally, the visibility of an instance is determined inside an anyhit program by
evaluating the instance’s visibility function for the current shape set S (see
Listing 40-2). The shape set bit vector is passed to the anyhit program as
part of the data payload of the ray. As the shape set S is constant within each
region by construction, so too will the visibility of each instance be constant
within a region. Note that the visibility function of an instance can be altered
using the Shader Binding Table (SBT) either by indexing to a different anyhit
program for its geometry or by parameterization of the visibility function
using instance-specific data in the SBT record. Refer to Chapter 15 and the
OptiX documentation [3] for an in-depth discussion on how to set up the SBT.

40.5 VISIBILITY MASKS AS BOOLEAN VISIBILITY FUNCTIONS

So far, we have ignored the visibility masks altogether and instead opted to
evaluate instance visibility in anyhit programs. Although flexible, this can
quickly become very costly, as our method may invoke many such anyhit
calls when large parts of the scene geometry are invisible. To accelerate our
method, we want to cull invisible instances before their anyhit program is
even called by leveraging instance and ray visibility masks.

We can interpret the OptiX visibility mask test as the evaluation of a Boolean
visibility function V′i over eight Boolean variables b0, . . . , b7. An instance is
culled when its visibility function evaluates to false under the current
variable truth assignment. The ray’s visibility mask passed to optixTrace
encodes the truth assignment of these eight variables, one bit per variable.
The instance’s visibility mask encodes the instance’s Boolean visibility
function as a logical disjunction (logical OR of Boolean variables); variables
appear in the disjunction when their bit is set. For example, the instance
visibility mask 0b00010001 encodes the visibility function b0 ∨ b4.
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Listing 40-3. Use visibility mask to accelerate visibility tests.

1 // Re-evaluate the Boolean variables b0 . . . b7.
2 visibilityMask = B(shapeSet);
3

4 // Find region boundary or nearest visible hit point.
5 {instance,t} = optixTrace( ... tmin, tmax, visibilityMask, ...,
6 /*payload*/ shapeSet );

We can use this to accelerate the instance visibility function Vi for some
instance i by specifying a conservative accelerated visibility function V′i using
the visibility masks. The accelerated visibility function V′i is conservative with
respect to Vi if it never culls the instance when it should be visible; it may
however fail to cull invisible instances (false positive). That is, Vi(S)⇒ V′i(B(S)),
where B is some arbitrary mapping of the shape set S to the eight Boolean
variables b0, . . . , b7 making up the ray visibility mask (see Listing 40-3). Note
that although the visibility function Vi and the accelerated visibility function V′i
are specific to each instance, the mapping function B is not and instead is
globally defined. The choice of B determines how well the accelerated
visibility functions can approximate the instance visibility function. Any false
positives will incur the overhead of the anyhit program.

The simplest such mapping B is the identity mapping BI, where we just use
the current shape set directly as the visibility mask. That is, the Boolean
variable bi is true when the current region is inside shape Si. This allows for
partial visibility, however it limits the number of shapes to eight.
Furthermore, it limits visible regions to be unions of shapes. We can only
approximate intersections of shapes and cannot at all express negations of
shapes. See Table 40-1 for examples of instance visibility functions that
cannot be (exactly) accelerated under the identity mapping.

Visibility Function Accelerated under BI Accelerated under BE

V0 = ¬S0 None V′0 = E0
V1 = S0 ∧ S1 V′1 = S0 or V′1 = S1 V′1 = E1

V2 = S0 ∧
(
S1 ∨ S2

)
V′2 = S0 or V′2 = S1 ∨ S2 V′2 = E1 ∨ E2

V3 = ¬S0 ∨ S1 ∨ S2 None V′3 = E0 ∨ E1 ∨ E2

Table 40-1. Example visibility and corresponding accelerated visibility functions under BI and BE

using expressions E0 = ¬S0, E1 = S0 ∧ S1, and E2 = S0 ∧ S2. Under mapping BI functions V0 and
V3 cannot be accelerated, whereas functions V1 and V2 can only be approximated. Under mapping
BE all functions can be fully accelerated by carefully choosing the accelerated expressions Ei. See
Figure 40-4 for an example scene using these visibility functions.
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S1

V1

V2

V3

V0

S0

S2

M3

M1

M2
M0

M1

M2

M3

M0

Figure 40-4. Left: ray traversal through a scene with three shapes and four objects with visibility
functions using conjunctions and negations of shapes: V0 = ¬S0, V1 = S0 ∧ S1, V2 = S0 ∧ (S1 ∨ S2),
and V3 = ¬S0 ∨ S1 ∨ S2. Right: visualizations of the four objects and their visibility functions, with
the gray areas depicting where the visibility functions evaluate to true.

Instead, we propose a more flexible mapping BE, where each variable bi is
defined by an arbitrary logical expression Ei over the shapes. Each instance
visibility function Vi is a disjunction over a subset of these expressions. This
disjunction can be perfectly represented by the accelerated visibility function
V′i . Because the mapping B is only evaluated in software at shape surfaces,
these logical expressions are not limited in functionality by the hardware.
They can therefore also include conjunctions and negations of the shapes,
operations that are not natively supported by the OptiX API (see Figure 40-4).
In other words, visibility functions are fully hardware accelerated as long as
we can express them all as a disjunction of eight shared accelerated Boolean
expressions, where these eight expressions can be freely chosen. Note that if
some visibility functions can only be conservatively approximated as a
disjunction of these expressions, then those visibility functions are still
partially hardware accelerated but will rely on the anyhit program to perform
the exact visibility test. See Table 40-1 for an example of how expressions can
be used to express the visibility functions from Figure 40-4. Table 40-2 shows
the corresponding step-by-step evolution of the internal state of the
algorithm for the traversed ray from Figure 40-4 using the BE mapping.

40.6 ACCELERATED EXPRESSIONS

In the last section we introduced the accelerated Boolean expressions. Here,
we provide one efficient way of defining and evaluating these expressions for a
low shape count N. We take advantage of the bit vector encoding of the shape
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S shapeSet visibilityMask Expressions Objects{}
000 001 E0 M0{

S0
}

001 000 None None{
S0,S2

}
101 100 E2 M2, M3{

S0,S1,S2
}

111 110 E1, E2 M1, M2, M3{
S1,S2

}
110 001 E0 M0{

S2
}

100 001 E0 M0{}
000 001 E0 M0

Table 40-2. The evolution of the algorithm as the ray in Figure 40-4 marches through regions
until a hit is found. The scene uses the visibility functions and BE mapping from Table 40-1. For
each traversed region we show the shape set S, the variables shapeSet and visibilityMask
from Listing 40-3, the accelerated expressions evaluating to true, and the resulting set of visible
objects.

set S. The truth table for any arbitrary logical expression over N shapes has
size 2N. We use a 2N-bit vector to express the truth table of an instance
visibility function Vi. The bit vector encoding for S can be used easily to index
into the truth table and look up the visibility assignment for the current shape
set. This method is only practical for low N, but is very efficient to evaluate.
From here on, we use N = 5 so we can express a truth table using a single
32-bit word. Listing 40-4 shows the implementation of this visibility test in the
anyhit program. For larger N the set S and the expression truth tables would
be better tracked and defined in sparse formats, at the cost of more complex
evaluation. We still need to factor the instance visibility functions into a
disjunction of the given accelerated expressions Ej. We again use a 2N-bit

Listing 40-4. Fallback visibility anyhit program.

1 __global__ void __anyhit__trace()
2 {
3 // Load current shape set from payload.
4 const unsigned int shapeSet = optixGetPayload_0();
5

6 // Expand shape set to standard unit bit vector (i.e., exactly 1 bit set).
7 unsigned int shapeSetMask = 1 << (31 - shapeSet);
8

9 // Perform software visibility test.
10 if( ( instance.assignment & shapeSetMask ) == 0 )
11 optixIgnoreIntersection(); // Skip invisible hit and return.
12

13 // ...
14 }
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vector to express the truth table of each expression Ej. The visibility function
truth table is combined with the expression truth tables to factor the visibility
function (see Listing 40-5). Note that we added a tautology as expression E7.
This is needed to guarantee that any visibility function can at least be
conservatively approximated by that expression.

What’s left is the implementation of the mapping BE itself. We use a similar
approach of using the shape set to index into truth tables to map the shape
set to an OptiX visibility mask (see Listing 40-6).

We didn’t specify how to choose the optimal set of expressions to represent
all instance visibility functions present in the scene. This highly depends on
the application and the type of visibility functions used. In general, finding the
optimal set of expressions has NP time complexity. If the visibility functions
are unknown at compile time and the application needs to select the
expressions at runtime, a greedy approximation could be used to quickly find
a reasonable set of accelerated expressions. One such simple approximation
is to naively select the 7 most common visibility functions and one fallback
tautology as the 8 accelerated expressions. Another straightforward approach
selects the 3 shapes appearing most frequently as literals in the visibility
functions and use the 23 = 8 unique logical combinations of these literals as
accelerated expressions. All other shapes will trigger the anyhit software
fallback. More advanced approaches would try to identify and exploit common
logical relations between literals in the visibility functions.

40.7 SOLID CAPS

Using the shapes and visibility functions, we can efficiently skip intersections
with clipped instances. However, it may also be required to shade solid
instances that are only partially clipped away. Up to this point, the surfaces of
such instances would simply be partially visible and solid geometry would
appear to be hollow. That is, no cap will appear where a shape surface cuts
through partially visible solid instance geometry. Optionally, it is possible to
record hits on such a cap (see Figure 40-5). A cap is always part of a shape
surface. A hit point on a shape surface is part of a cap if the hit point lies
inside a solid instance that is visible on one side of the shape surface, but
invisible on the other side. In other words, the visibility of the solid instance
flips at the shape surface. We can check for any instance if its visibility
changes by evaluating the visibility function using the shape sets on either
side of the surface (see Listing 40-7).
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Listing 40-5. Setup of instance visibility masks for the objects in Figure 40-4.

1 // Generic 32-bit masks for 5 shapes (only 3 are used in this sample)
2 const unsigned int MASK_TRUE = 0b11111111111111111111111111111111u;
3 const unsigned int MASK_S0 = 0b01010101010101010101010101010101u;
4 const unsigned int MASK_S1 = 0b00110011001100110011001100110011u;
5 const unsigned int MASK_S2 = 0b00001111000011110000111100001111u;
6 const unsigned int MASK_S3 = 0b00000000111111110000000011111111u;
7 const unsigned int MASK_S4 = 0b00000000000000001111111111111111u;
8

9 // Array of truth tables of all accelerated expressions
10 const unsigned int masks[8] = {
11 ~MASK_S0, // E0 = ¬S0
12 MASK_S0 & MASK_S1, // E1 = S0 ∧ S1
13 MASK_S0 & MASK_S2, // E2 = S0 ∧ S2
14 // ...
15 // Add tautology to guarantee that all functions can be approximated.
16 MASK_TRUE // E7 = 1
17 };
18

19 // Map a truth table mask to a disjunction of RTX-accelerated expressions.
20 void setupInstance( Instance &instance, unsigned int assignment )
21 {
22 unsigned int visibilityMask = 0;
23 unsigned int joinedMask = 0;
24

25 // Enable all implying clauses.
26 for( unsigned int i = 0; i < 8; ++i )
27 {
28 // masks[i] -> assignment
29 if( ( ~assignment & masks[i] ) == 0 )
30 {
31 joinedMask |= masks[i];
32 visibilityMask |= ( 1 << i );
33 }
34 }
35

36 // Check for biconditional.
37 if( joinedMask != assignment )
38 {
39 // Instance visibility functions cannot be exactly expressed using

accelerated expressions. Set tautology expression and force
anyhit program for software fallback.

40 visibilityMask |= ( 1 << 7 );
41 instance.flags |= OPTIX_INSTANCE_FLAG_ENFORCE_ANYHIT;
42 }
43

44 instance.assignment = assignment;
45 instance.visibilityMask = visibilityMask;
46 }
47

48 // ...
49 // Try to express instance visibility functions as disjunction of RTX-

accelerated expressions.
50 setupInstance( M0, ~MASK_S0 ); // V0 = ¬S0
51 setupInstance( M1, MASK_S0 & MASK_S1 ); // V1 = S0 ∧ S1
52 setupInstance( M2, MASK_S0 & (MASK_S1 | MASK_S2) ); // V2 = S0 ∧

(
S1 ∨ S2

)
53 setupInstance( M3, ~MASK_S0 | MASK_S1 | MASK_S2 ); // V3 = ¬S0 ∨ S1 ∨ S2
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Listing 40-6. Mapping of shape set to visibility mask using arbitrary logic expressions.

1 // Map shape set encoding to RTX visibility mask
2 // using accelerated expressions.
3 unsigned int B_E( unsigned int shapeSet )
4 {
5 unsigned int visibilityMask = 0;
6

7 // Expand shape set to standard unit bit vector (i.e., exactly 1 bit set).
8 unsigned int shapeSetMask = 1 << (31 - shapeSet);
9

10 // Enable all conjunctions with matching visibility.
11 for( unsigned int i = 0; i < 8; ++i )
12 {
13 // If shape set implies expression, enable conjunction.
14 if( ( shapeSetMask & masks[i] ) != 0 )
15 {
16 visibilityMask |= ( 1 << i );
17 }
18 }
19

20 return visibilityMask;
21 }

S0 S1

M1
M2

M3

M0

Figure 40-5. Record the hit on the cap of a nested, partially visible object and resolve the cap
material. Ray segments in each region are retraced to update the material stack. The cap hit on
shape S0 resolves to material M2. The object visibility functions are V0 = S0 ∨ S1, V1 = ¬S0,
V2 = (¬S0 ∧ S1) ∨ (S0 ∧ ¬S1), and V3 = ¬S0 ∧ S1.

We can now check whether a surface hit point is a cap for an enclosing solid
instance, but we still need a list of all candidates enclosing invisible solids at
the current hit point. We track this using a material stack [5]. Whenever a ray
enters a solid instance, the instance is pushed onto the material stack.
Whenever a ray leaves a solid instance, the instance is removed from the
stack. Note that besides visible solids we also need to track any invisible
solids on this stack. Unfortunately all invisible solids have been culled during
traversal, so we don’t know if we entered or left any. To resolve this, we
retrace every ray segment through a region during the ray march (see
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Listing 40-7. Test if the intersection between a solid and a shape instance requires a cap.

1 bool isCap( Instance &solidInstance, Instance &shapeInstance, unsigned int
shapeSet )

2 {
3 unsigned int preShapeSet = shapeSet;
4 unsigned int postShapeSet = shapeSet ^ shapeInstance.shapeMask;
5

6 // Expand shape set to standard unit bit vector (i.e., exactly 1 bit set).
7 unsigned int preShapeSetMask = 1 << (31 - preShapeSet);
8 unsigned int postShapeSetMask = 1 << (31 - postShapeSet);
9

10 bool preVisible, postVisible;
11 preVisible = (solidInstance.assignment & preShapeSetMask) != 0;
12 postVisible = (solidInstance.assignment & postShapeSetMask) != 0;
13

14 return preVisible != postVisible;
15 }

Listing 40-8). During the retrace, all invisible geometry is forced visible. We
use another anyhit program to update the material stack at every hit point
along the retraced ray segment. Note that the ray segment by construction
only intersects invisible geometry. The OptiX API makes no guarantee about
the order in which anyhit programs will be called for intersections along a
ray. Therefore, simply pushing/popping the materials of invisible objects
on/off the material stack in the order the programs are called may lead to
incorrect nesting of solids. To resolve this, we also track the farthest recorded
hit distance along the ray for all solids on the material stack. This hit distance
is used to resolve the nesting of solids, so we can shade the cap with the
material of the last entered solid (see mesh M2 in Figure 40-5). Alternatively,
one could use user-assigned priorities to resolve the nesting of solids [4].

The resolution of the correct material on caps comes at a significant cost.
Every ray segment is retraced, which doubles the number of trace calls. The
anyhit calls for invisible solids further increase the cost of the retrace calls.
However, using anyhit programs is far more lightweight than the alternative
of ray marching through all invisible hits, which would add another trace call
for each crossed invisible surface. Note that it’s not feasible to easily merge
the trace and retrace calls into a single trace call. The material stack should
only be updated for invisible hits up to the next shape surface hit. However, as
said, the OptiX API makes no guarantee about the order in which anyhit
programs will be called, and so it may call the anyhit program for invisible
hits beyond the next shape surface hit, resulting in an invalid material stack at
the shape surface hit. Retracing the exact ray segment up to the shape
surface hit resolves this issue.
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Listing 40-8. Ray marching with cap detection.

1 // March through regions.
2 while( true )
3 {
4 // Re-evaluate the Boolean variables b0 . . . b7.
5 visibilityMask = B(shapeSet);
6

7 // Find region boundary or nearest visible hit point.
8 {instance,t} = optixTrace( ... tmin, tmax, visibilityMask | /*fallback*/ 0

x80, ..., /*payload*/ shapeSet );
9

10 if( !miss )
11 {
12 // Retrace ray segment to update material stack in anyhit program.
13 {instance,t} = optixTrace( ... tmin, t, /*forced visibility*/ 0xFF,

OPTIX_RAY_FLAG_ENFORCE_ANYHIT , ... );
14 }
15

16 if( miss )
17 return none; // Report miss.
18

19 if( instance.isSolid )
20 return instance.solid; // Report solid hit.
21

22 // We hit a shape surface.
23 lastT = 0;
24 capSolid = none;
25

26 // Search last entered cap solid on the material stack.
27 for( all solids on material stack )
28 {
29 // If the solid on the stack is a cap ...
30 if( isCap( solid.instance, instance, shapeSet )
31 {
32 // ... and is farthest along the ray,
33 if( solid.lastT > lastT )
34 {
35 // ... record the cap hit.
36 lastT = solid.lastT;
37 capSolid = solid;
38 }
39 }
40 }
41

42 if( capSolid is not none )
43 return capSolid; // Report solid cap hit.
44

45 // Update shape set.
46 shapeSet ^= (1u << instance.shapeIndex);
47 // Continue in adjacent region.
48 tmin = t;
49 }
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S0 S1

M1
M2

M0

M3

Figure 40-6. The material stack and shape set for primary rays originating from a camera inside
the scene are initialized by tracing a virtual ray from outside the scene to the origin of the ray.

40.8 CAMERA INITIALIZATION

So far, we have assumed that all ray origins are placed outside of the scene.
For such rays the shape set S and material stack can be initialized as empty.
In practice, however, rays may initiate from anywhere inside the scene,
possible even from within invisible geometry. Secondary outgoing rays
spawned from a shaded hit point can simply continue with the final material
stack and shape set S from the incoming ray (see Figure 40-6). However,
primary rays need special initialization. A robust approach to generate a valid
material stack and shape set is to traverse a setup ray from outside the scene
toward the camera origin. During traversal, the shape set and the material
stack are updated as usual, but all geometry is considered invisible. The final
result is the correct shape set and material stack for the camera origin (see
Figure 40-6). Note that the order in which shape surface hits are reported has
no effect on the final shape set S and we already know the exact endpoint of
the ray. Therefore, we don’t have to ray-march through the regions for the
setup ray, and instead we can update both the shape set and the material
stack using anyhit programs in a single optixTrace call.

Note that primary camera rays often start at (for pinhole cameras) or near
(for finite aperture cameras) a common camera origin. We can exploit this by
generating a single initial material stack and shape set for this camera origin
in a separate pass. We can share these for all primary rays starting from the
camera. For finite aperture cameras we still need to trace an extra virtual ray
from the common camera origin to the actual starting point of the primary ray
on the lens. However, this will generally be a short ray and thus a far cheaper
operation than generating the initial material stack and shape set afresh for
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each primary ray. Similarly, for an animated camera the initial material stack
and shape set for the camera origin can be updated cheaply between frames
by tracing a single virtual ray from the old to the new camera origin instead of
regenerating these from scratch for each frame.
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CHAPTER 41

PRACTICAL SPATIAL
HASH MAP UPDATES
Pascal Gautron
NVIDIA

ABSTRACT

Spatial hashing is a very efficient approach for storing sparse spatial data in a
way that easily allows merging information among areas with similar
properties. Though having a very simple core, this technique requires careful
implementation to achieve high efficiency. In this chapter we first consider
some key principles and implementation aspects. The original spatial
hashing is initially limited to storing simple data types, which can be updated
using atomic calls. The second part of this chapter adds support for arbitrary
data storage in the hash map, while still guaranteeing the atomicity of the
updates. We achieve this using on-the-fly generation of change lists for each
modified hash map entry.

LOD

Figure 41-1. Spatial hashing provides a simple means of storing and retrieving spatial
information in constant time, at arbitrary resolutions.
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41.1 INTRODUCTION

The spatial hashing approach [2] is very efficient to store and access sparse
spatial data in a massively parallel setting. This is particularly useful for
computing and storing lighting information independently from the scene
representation. Using variations on the hash function, a spatial hash map can
be extended to support multiresolution and dynamic scenes [4].

Despite its efficiency, spatial hashing suffers from a major limitation on the
data stored in the hash map. As many threads may simultaneously insert and
modify information in the map, each hash map entry has to be updated
atomically. Though this can be trivially achieved for simple data structures,
atomicity cannot be guaranteed on more complex data without introducing
prohibitive costs.

After introducing key aspects for implementing the spatial hashing scheme,
this chapter covers an efficient method for parallel updates of arbitrary data
structures within the hash map. Change requests are stored into a set of
per-entry linked lists, which are then processed in parallel.

41.2 SPATIAL HASHING

Many light transport algorithms store and interpolate lighting information
using a world-space representation such as kD-trees [6], octrees [10], or
surface subdivision [5]. However, such data structures usually involve
nontrivial representations and update algorithms, making them challenging
to use in massively multithreaded contexts. Screen-space methods [1, 3]
store information per-pixel for improved efficiency. However, they can only
represent a subset of the full 3D scene.

Spatial hashing [2] builds upon the idea of hash maps using a hash function
designed so that hashing neighboring world-space points results in the same
hash index. In other words, spatial hash entries represent sub-volumes of the
scene (Figure 41-1). The hash map can be seen as a sparse voxel
representation with trivial data structure and constant-time access.

41.2.1 ENTRY ALLOCATION

The spatial hash function H is based on successively applying a simple, 1D
integer hash function h on each coordinate of a 3D point P:

H(P) = h
(⌊

Pz/d
⌋
+ h
(⌊

Py/d
⌋
+ h(
⌊
Px/d

⌋
)
))

, (41.1)
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Figure 41-2. Using linear search, colliding entries mapping to the entry e are stored as en in the
neighboring entries, hence creating a dense block. Adding another entry in the same area results
in many search steps before finding a free slot (top). Using rehashing, the colliding entries are
scattered throughout the map, thus reducing the collision rate and preserving the hash map
uniformity (bottom).

where d is a discretization step (i.e., the voxel size). The choice of the integer
hash function h is arbitrary, such as the Wang hash [9]. An algorithm can then
store light transport data for the related volume at the index H(P) mod s,
where s is the number of entries in the hash map.

Collisions are detected by computing and storing a second hash index, or
checksum, using Equation 41.1 with another integer hash function such as a
XOR shift [7]. When adding a new entry into the hash map, we first compute
its hash index using the primary hash function. We then generate its
checksum and compare it to the checksum stored at the hash index. If the
entry is not empty and the checksums differ, a collision has been found. This
is conceptually equivalent to using 64-bit hash indices. Please note that
though undetected collisions (i.e., same hash and checksum indices) are
extremely unlikely, they remain theoretically possible. However, we were not
able to isolate such cases in real-world scenarios.

The simplest collision mitigation technique is a linear search scanning the
hash map for an empty entry. This technique is cache-friendly, but areas in
the hash map corresponding to collisions become very dense, hence
introducing further expensive collisions from unrelated areas (Figure 41-2).
Rehashing consists in re-applying a hash function to generate another,
noncontiguous index (Figure 41-3). While this impacts cache coherence, it
also preserves the distribution uniformity and results in overall increased
performance in our tests.

41.2.2 REFINING THE HASH FUNCTION

The spatial hash function just described subdivides the scene into equally
sized voxels. In a way similar to bilateral filtering [8], the hash function can be
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/* Entry allocation */
hashIndex = HWang(P) mod hashMapEntryCount;
checksum = HXORShift(P);
searchSteps = 0;
/* Allow a limited number of searches to avoid deadlocks */
while searchSteps < MAX_SEARCH_STEPS do

storedChecksum = atomicCAS(Headers[hashIndex], checksum,
EMPTY);
if storedChecksum == EMPTY OR storedChecksum == checksum then

/* The entry at that index was empty or already exists */
return hashIndex;

end
if storedChecksum != checksum then

/* Collision found, compute another index */
hashIndex = h(hashIndex) mod hashMapEntryCount;
searchSteps++;

end

end
return NOT_FOUND;

Figure 41-3. Procedure for allocating hash entries and mitigating collisions.

refined by including additional criteria, such as the surface normal:

HN(P,n) = h
(
bnz.dNc + h

(⌊
ny.dN

⌋
+ h
(
bnx.dNc + H(P)

)))
, (41.2)

where dN is a discretization constant for the components of the normal vector.
Multiple levels of detail (LOD) can also be stored within the hash map by
further including an LOD index to the hash function and adapting the spatial
discretization. As shown in Figure 41-4, adding those criteria involves
allocating additional hash entries to represent the points visible in the final
image. Because this also results in less coherent memory accesses, it is
crucial to consider the cost-to-benefits ratio of each added criterion.

41.2.3 STORING INFORMATION IN THE HASH MAP

Each hash map entry contains information, also referred to as its payload in
this chapter. For example, the payload may be a floating-point RGB irradiance
value and a counter representing the number of rays used in the irradiance
estimate. Because several threads may modify an entry at once (e.g., tracing
more rays), the payload is directly altered using atomic functions
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Figure 41-4. The computation of the hash index (shown in false color) is extended to include
normals, hence ensuring points within a hash entry lay on surfaces with similar orientations. The
world-space size of the entries are adapted to the viewing distance by adding an LOD index and a
discretization size to the hash function as well.

(Figure 41-5). Note that issuing numerous atomics targeting a single address
in global memory may result in a performance loss on graphics hardware.
This loss can be particularly significant when the hash map entries cover
many pixels in the image, and the payload becomes complex. For further
implementation details, we strongly encourage the reader to refer to Binder
et al. [2] and Gautron [4].

Headers

Payloads

Update Threads

Data

atomicAdd+

atomicAdd+

atomicAdd+

atomicAdd+

Figure 41-5. The original spatial hashing algorithm updates hash entries on the fly using atomic
functions, which can result in high atomic pressure and data structure restrictions.
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Headers
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Payloads

Change List

Update Threads
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Figure 41-6. The update step change requests are generated for each update thread, while the
hash headers keep track of the index of the last change request touching each entry. Each change
request updates that tracker and stores its previous value.

41.3 COMPLEX DATA STORAGE AND UPDATE

Besides the atomic pressure when using larger payloads, another issue with
the direct update is the limitation on the possible data types. For example,
though using 16-bit floating-point values would increase cache coherence,
neither GLSL for Vulkan nor HLSL provide the corresponding atomic
functions. A related issue arises with interdependent components, such as
the brightest radiance sample found so far and the index of that sample. A
costly mutual exclusion (mutex) would be required to safely update both
values.

Instead, we store the changes into a change list buffer, where each change is
labeled with the index of the hash entry to which it refers. In order to avoid
costly sorting operations, we build per-entry change lists on the fly. To this
end, we add another unsigned integer lastChange to the entry header. When
creating the change request n in the change list, the algorithm looks up the
value lastChange of the related entry and atomically exchanges it with the
index n. The former lastChange value is then stored in the previous field of
the change request. This way, each change request links to the previous
change request related to the same entry.

In the example of Figure 41-6, threads 2, 4, 6, and 10 update the same hash
entry.1 Initially we have lastChange == NO_PRECEDENT. When thread 2
creates a change request, it atomically exchanges its index with lastChange.
This sets lastChange← 2 and previous(2)← NO_PRECEDENT. Thread 4
performs the same operations, but fetches the updated value of

1For clarity we order the operations following the thread numbers. In practice this order is determined by the
hardware scheduler.
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Headers

prev0 prev1 prev2 prev3

lastChange

commit

Payloads

Change List

Commit Threads

Figure 41-7. The commit step starts by fetching the index of the last change request for a given
hash entry. We then follow the linked list using the indices stored in each of the change requests.
After combining the changes, the final update is committed into the hash map.

lastChange == 2. The change request creation yields lastChange← 4 and
previous(4)← 2. This is repeated for threads 6 (lastChange← 6,
previous(6)← 4) and 10 (lastChange← 10, previous(10)← 6).

At the end of the process, lastChange will be the starting point of the commit
step, in which the change requests of the modified entries are written into the
hash map payloads. This algorithm fetches the change request 10, which
links to the previous element in the change list (previous(10)== 6), and so
on (Figure 41-7). This simple algorithm provides the basis for fast parallel
updates of arbitrary hash map payloads. The next section will cover some
practical implementation details.

41.4 IMPLEMENTATION

41.4.1 DATA STRUCTURES

The header of each hash map entry contains two unsigned 32-bit integers: the
collision detection checksum, and lastChange to link change requests.
Because spatial hashing is mainly limited by memory latency, it is crucial to
optimize its memory access patterns. In particular, allocating a hash entry
potentially requires reading many checksum values to resolve collisions,
whereas lastChange is only reset once by the thread that allocated the entry.
Therefore, the headers are stored in a structure-of-arrays fashion so that all
checksums are contiguous. The payloads are stored separately for the same
reasons. Their layout, though, depends on their specific data structure and
access patterns.

In addition to the hash map, our algorithm uses a change list to store the
change requests before they are committed. The header of a change request
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is an unsigned integer linking to the previous change request for the same
entry. This buffer is as large as the largest possible set of simultaneous
changes, which is typically the number of pixels in the image. We also keep a
buffer representing the unique indices of the hash map entries that have been
modified by the change list.

Our algorithm addresses the general case where not all threads may
generate a change request, and not all hash entries may be touched at once.
We use counters for the change list and the list of touched entries, which are
atomically incremented.

41.4.2 HASH ENTRY ALLOCATION

The first step of spatial hashing consists in determining the hash entries
corresponding to each shaded point. Once an appropriate entry (i.e., empty or
with the same checksum) has been found, we reset the change tracker
lastChange← NO_PRECEDENT. The change request and touched hash entries
counters are also reset to 0.

41.4.3 REQUESTING CHANGES

After generating the information to be stored in the hash map (e.g.,
computing the incoming radiance value by ray tracing), we reserve an entry in
the change list by incrementing its counter. We then fetch the current value of
lastChange and atomically replace it with the index of the new change
request. If this change request is the first one issued for the hash entry
(lastChange == NO_PRECEDENT), the index of the hash entry is added to the
list of touched entries (Figure 41-8). As in the original spatial hashing

/* Change generation, typically included in the ray tracing
kernel */

foreach Change request r in parallel do
requestIndex = reserveChangeRequestSlot();
r.previous = atomicExch(Headers[r.hashEntry].lastChange,
requestIndex);
if r.previous == NO_PRECEDENT then

TouchedList.enqueue(r.hashEntry);
end
ChangeList[requestIndex] = r;

end

Figure 41-8. Generation of change requests.
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/* Commit the changes to the hash map */
foreach Entry index c in TouchedList in parallel do

clIndex = Headers[c].lastChange;
totalChange = emptyContribution();
while clIndex != NO_PRECEDENT do

totalChange = merge(totalChange, ChangeList[clIndex]);
clIndex = Headers[c].lastChange;

end
Payloads[c] = merge(Payloads[c], totalChange);
/* Propagate the combined change to the next coarser LOD */
if hasParentLOD(c) then

parentLODEntry = getParentLODEntryIndex(c);
parentChangeRequest = createChangeRequest(parentLODEntry,
totalChange);

Reapply algorithm with parentChangeRequest;

end

end

Figure 41-9. Final write of the change list in the hash map, with propagation to coarser LODs.

scheme, several threads may modify the value of lastChange in a given entry
simultaneously. However, our change list–based approach uses a single
atomic exchange call regardless of the payload size, making it scale better to
more complex data.

41.4.4 COMMITTING CHANGE REQUESTS

The header of each touched entry links to the last related change request,
which, in turn, indirectly links to all other change requests for that entry.
Ideally, the contributions of all the change requests can be merged into one,
which is then committed into the hash map. This reduces the global memory
traffic by keeping most of the working set in local memory (Figure 41-9).
Otherwise, the changes would have to be serially written into the hash map,
which introduces an additional cost.

41.4.5 PROPAGATING TO COARSER LODS

Spatial hashing can implicitly store multiresolution data (Figure 41-1) by
simply adding a level of detail index into the hash function [2]. Further
efficiency can be obtained by propagating information from finer LODs to
coarser LODs and by leveraging this approach to locally find a trade-off
between noise and spatial accuracy [4]. The payload at the coarser LODs is
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obtained as a byproduct of the sampling at the finer LOD: each time new
samples are traced, their contributions are also written into the coarser LODs.

Because using a coarse LOD means touching fewer entries that cover many
pixels, generating one change request per pixel results in only a few threads
processing very long change lists. This, in turn, results in poor utilization on
modern graphics hardware running thousands of threads in parallel.
However, in most cases change requests can be combined into one. As
indicated in the previous section, this merging ability is a key to the efficiency
of the update mechanism. Once a change list has been committed to its
finer-LOD entry, we create a single, combined change request for the same
location at a coarser LOD.

This technique requires allocating a second change list where those changes
are recorded. It also introduces two additional passes: a cleanup pass clears
the change trackers for all touched entries, and a propagation pass builds the
list of touched entries from the new change list. The committing pass can
then be applied to the newly generated change list. This process can then be
repeated to propagate to further, coarser LODs if necessary.

41.5 APPLICATIONS

We applied these techniques for real-time computation of ray traced
shadows, applied to ambient occlusion and environment lighting. Our
implementation uses the Vulkan API, running on a GeForce RTX 3090 to
generate images at resolution 1920× 1080.

41.5.1 AMBIENT OCCLUSION

Ambient occlusion (AO) is a very useful approximation of global illumination,
where the ambient term is modulated based on the proximity of occluding
geometry. In this case the payload of each hash entry contains the number of
samples traced so far and the number of actual occlusions
found (Figure 41-10).

struct Payload contains
uint16_t occlusions;
uint16_t sampleCount;

end

Figure 41-10. For ambient occlusion each hash entry fits 32 bits to store occlusion and sample
counters.
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AO IBL

Figure 41-11. The performance of our update scheme is on par with the atomics-based update
using simple data types such as for ambient occlusion (left). It also expands the storage
capabilities of the spatial hash map to support more complex payloads such as 16-bit
floating-point data (image-based lighting, right).

Due to its simplicity, this payload structure can be updated directly using a
single unsigned integer atomicAdd operation, provided the sample count does
not exceed 65,535. We compared the direct update with our approach in a CAD
scene comprising 304 million triangles (Figure 41-11). All other aspects of
the AO computation algorithm being equal, the overall render time per frame
for both techniques is equivalent: 7.04 ms for direct updates versus 7.01 ms
with our change list–based technique. Though the list management
introduces some overhead, this is compensated by the reduced atomic
pressure in the LOD propagation. Our algorithm has been integrated in the
real-time viewport of the industry-standard Dassault Systèmes
3DEXPERIENCE platform (Figure 41-12).

41.5.2 ENVIRONMENT LIGHTING

This application considers the computation of shadows cast by a spherical
environment. The payload of a hash map entry is the accumulated irradiance
value at the corresponding location. In order to reduce the memory footprint
of the hash map, the payload is defined on 64 bits (Figure 41-13).

Combined with a 64-bit header for each hash entry, and with the typical five
million entries in the hash map, the subsequent 128-bit entries result in a
memory occupancy of 80 MB. Atomic operations on f16vec3 types are not
supported in GLSL at this time, making our solution the only option for
efficient updates.
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Figure 41-12. Our algorithm (top) has been integrated within the Dassault Systèmes
3DEXPERIENCE platform as an alternative to SSAO (bottom). The rendered model contains
50 million triangles. (Model courtesy of Rimac Automobili.)

struct Payload contains
f16vec3 rgb;
uint16_t sampleCount;

end

Figure 41-13. Environment lighting requires accumulating floating-point values, stored on 16 bits
for performance.

41.6 CONCLUSION

Spatial hashing is a GPU-friendly method for representing sparse data in
world space. Despite its efficiency, it originally suffers from limited
representation capabilities due to the need of atomic functions to update the
contents of the hash map. Using a single temporary variable and a deferred
update mechanism, the update technique of this chapter enables dynamic
storage and updating of complex data by generating per-entry linked lists.
The resulting technique is applied to ray traced ambient occlusion and
image-based lighting in massive CAD scenes. This technology has been
integrated into the real-time viewport of Dassault Systèmes Catia.

As using hash maps to represent world-space data is relatively new, it carries
a strong inspirational value for future work. In particular, the optimization of
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the hash function for improved cache coherence holds vast potential for
performance optimization. Extensions for nearest-neighbor searches and
spatial filtering will also extend the domains in which spatial hashing can be
applied.
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CHAPTER 42

EFFICIENT SPECTRAL RENDERING
ON THE GPU FOR PREDICTIVE
RENDERING
David Murray,1 Alban Fichet,1 and Romain Pacanowski1,2
1Institut d’Optique Graduate School, CNRS
2INRIA

ABSTRACT

Current graphic processing units (GPU) in conjunction with specialized APIs
open the possibility of interactive path tracing. Spectral rendering is
necessary for accurate and predictive light transport simulation, especially to
render specific phenomena such as light dispersion. However, it requires
larger assets than traditional RGB rendering pipelines. Thanks to the
increase of available onboard memory on newer graphic cards, it becomes
possible to load larger assets onto the GPU, making spectral rendering
feasible. In this chapter, we describe the strengths of spectral rendering and
present our approach for implementing a spectral path tracer on the GPU. We
also propose solutions to limit the impact on memory when handling finely
sampled spectra or large scenes.

42.1 MOTIVATION

Nowadays, computer-generated images are common due to the video game
and movie industries’ continuous growth. Although the images produced by
the entertainment industry look more and more realistic, the process used to
render them, named here tristimulus rendering,1 is unsuitable for some
domains. For example, the architecture and automotive domains require
predictive rendering to assess the visual quality of their products before they
are put on the production line.

Predictive rendering requires a spectral simulation of light transport. This
permits the creation of complex wavelength-dependent effects, which can

1A tristimulus renderer computes light transport using only three color channels. The color space (e.g., RGB,
HSV, etc.) defining the colors is arbitrarily chosen.
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Figure 42-1. Only a spectral renderer can simulate accurately the richness of color from
wavelength-dependent effects, such as light dispersion.

produce striking colors, such as light dispersion (see Figure 42-1), light
polarization, iridescence, opalescence, and even fluorescence effects.

Compared to tristimulus rendering, the usual drawbacks for spectral
rendering are its slowness and the memory footprint needed by scene assets.
Indeed, assets must be described for each wavelength, which drastically
increases the total memory footprint of a scene.

Central processing unit (CPU)–based spectral rendering engines are present
in the academic sector (e.g., ART [25], PBRT v3 [23], and Mitsuba [11]) and
also in the industry (e.g., Manuka [8]) but are not the norm. On the other
hand, most renderers exploiting graphical processing unit (GPU) capabilities
are RGB-based (e.g., Iray [14] and Cycles [3]). However, an increasing number
of academic spectral renderers now exploit the GPU as well (e.g.,
Mitsuba 2 [18], PBRT v4 [22], and Malia [5]).

Historically, GPU compute capabilities have grown faster than those of CPUs
but are more limited in terms of available memory. However, the recent
release of specialized ray tracing hardware for the GPU (e.g., RTCore) and
specific APIs (e.g., OptiX [20], DirectX 12 Raytracing, and Vulkan Ray
Tracing [24]) provides an opportunity to achieve spectral rendering at
interactive frame rates. This opens the possibility to build new
pre-visualization tools (e.g., for designers) with spectral rendering
capabilities.

674



CHAPTER 42. EFFICIENT SPECTRAL RENDERING ON THE GPU FOR PREDICTIVE RENDERING

In this chapter, we present, through our open source solution Malia [5], how to
implement efficient spectral rendering on the GPU. Malia can be used to
generate spectral images in offline mode (but still using the power of the GPU)
or in pre-visualization mode by using progressive rendering and an OpenGL
framebuffer to display interactively the current spectral image. These
features permit us to showcase step-by-step guidelines for spectral
rendering on the GPU while providing appropriate figures to illustrate both its
usefulness and its performance.

In Section 42.2, we briefly summarize the theoretical limitations of tristimulus
rendering and illustrate why it cannot be used to generate predictive and
accurate images. In Sections 42.3 and 42.4, we explain and evaluate various
technical solutions implemented in Malia for spectral rendering on the GPU.
Then in Section 42.5, we present some results to illustrate what performance
can be achieved with these solutions and how to scale the approach with
larger assets as well as increased spatial and spectral resolutions of the
simulated image sensor. Section 42.6 concludes this chapter with a
discussion and outlines potential future work that could improve even further
either the accuracy or the efficiency of the proposed solution.

42.2 INTRODUCTION TO SPECTRAL RENDERING

In a tristimulus renderer, all reflectance and illuminance color values are
tristimulus. If these values derive from spectral data, then integrating spectra
values into tristimulus values is performed prior to the rendering process,
comprising its main limitation (see Section 42.2.1). In practice, these values
are directly provided in XYZ or RGB color space.

A spectral renderer operates on a per-wavelength basis (see Section 42.2.2),
covering the full visible spectrum. Reflectance and illuminance values are
directly used as spectral data, thus requiring no transformation. If needed,
the final spectrum can be converted to a specific color space using any
relevant sensor model (see Section 42.2.3).

42.2.1 LIMITATION OF TRISTIMULUS RENDERING

The integration process, prior to light transport, is the core limitation of a
tristimulus renderer. Equation 42.1 illustrates this approximation2:

2To simplify the notation, we represent only a single bounce. The reflectance spectra or tristimulus values
have to be multiplied by each other for each further bounce.
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Figure 42-2. Direct illumination comparisons between spectral and tristimulus renderings for
two classical illuminants: D65 (top) and HP1 (bottom). When using spectral rendering, we
transform the colors from spectra to RGB at the end. With tristimulus rendering, we transform
both reflectance and illuminance values into their tristimulus counterparts prior to the evaluation.
Then, we compute the final color by multiplying the illuminance and reflectance colors together.
This approximation leads to observable differences as shown by the∆E∗2000 metric.

∫
Λ
r(λ)Le(λ)c̄(λ)dλ︸ ︷︷ ︸

spectral rendering

≈

tristimulus reflectance︷ ︸︸ ︷(
1
Nm

∫
Λ
r(λ)Lme (λ)c̄(λ)dλ

)
·

tristimulus illuminance︷ ︸︸ ︷(
Nm

∫
Λ Le(λ)c̄(λ)dλ∫
Λ Lme (λ)c̄(λ)dλ

)
,︸ ︷︷ ︸

tristimulus rendering

(42.1)

where Nm =
∫
Λ Lme (λ)ȳ(λ)dλ is the illuminance normalization factor, r(λ) is the

spectral reflectance value, Le(λ) is the spectral power distribution (SPD) of the
rendering illuminant, Lme (λ) is the SPD of the illuminant used for measuring
reflectance, and c̄(λ) is one of the color matching functions (x̄(λ), ȳ(λ), z̄(λ)).

The presence of the normalization factor Nm in Equation 42.1 implies that the
tristimulus reflectance value will only be correct if Le = Lme , that is, only if the
exact same illuminant is used for both measuring and rendering. Otherwise,
discrepancies occur, as illustrated by Figure 42-2. This is very likely to happen
if several different illuminants are used in a scene.

Global illumination increases even more the discrepancies (see [7]) presented
earlier. As the tristimulus values are only approximated, sharp power
distribution (e.g., the “HP1” illuminant SPD shown in Figure 42-3a) will be
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Figure 42-3. Discrepancies induced by a tristimulus renderer are even more prevalent in a global
illumination context. This leads to important color and intensity differences, especially with
narrow spectra like the one used to light this Cornell box scene (HP1, high-pressure vapor lamp).

either under- or overestimated. At each new reflection bounce event, a
tristimulus renderer thus accumulates error by breaking energy
conservation, yielding incorrect results (see Figure 42-3).

42.2.2 BASIS OF SPECTRAL RENDERING

To implement a spectral renderer, fixed wavelength sampling is the simplest
scheme to use. A set of discrete wavelengths is determined at the beginning
of the rendering process, and the path tracer will exclusively and exactly use
these wavelengths. It offers simple asset management. However, this
sampling scheme produces, most of the time, severe visual color artifacts
(e.g., spectral aliasing). In particular when dealing with wavelength-
dependent paths (i.e., refracted rays), only a discrete set of the possible paths
is explored (see Figure 42-4a).

To avoid spectral aliasing, another dimension needs to be taken into account
in the Monte Carlo integration process: the spectral domain (see Evans and
McCool [6]). In this chapter, the spectral domain is fully covered by jittering
the processed wavelength within an interval of two fixed wavelengths (see
Figure 42-4b). We will refer to this interval as a spectral bin. To further reduce
aliasing, the resulting value can be distributed to the adjacent spectral bins
with any desired kernel for filtering (i.e., with a linear interpolation, see
Figure 42-4c).

42.2.3 OUTPUT OF A SPECTRAL RENDERER

A spectral renderer can output a spectral image, a color image, or both. The
choice mainly depends on the application. Color images require that the
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(a) Rendering with a discrete set of
wavelengths

(b) Sampling wavelength at each
new sample; accumulation in
nearest bins

(c) Sampling wavelength at each
new sample; accumulation
distributed in neighboring bins

Figure 42-4. This scene shows a prism made of a dispersive glass: it has a
wavelength-dependent index of refraction (later detailed in Section 42.4). (a) A discrete set of
wavelengths are used. This produces significant spectral banding artifacts because only a subset
of paths is explored. (b) We jitter the wavelength within each bin for each sample and then
accumulate the resulting radiance in the nearest bins. There is still some banding because the
transitions between sampled bins are visible in the sphere reflection. (c) We use a different kernel
to accumulate results in neighboring bins, thus further decreasing the hard transitions
between bins.

sample accumulation is performed in a specific color space (XYZ, RGB, CMYK,
etc.). Samples are thus converted prior to the accumulation. The main benefit
of generating directly a color image is that the result will be the most
accurate possible for this specific color space. However, the main downside of
this format is that it is hardly transposable to another color space.

On the other hand, a spectral image remains “color space agnostic.” As it
contains the spectral power distribution, it can be converted to any color
space (e.g., a display device or a printer). The downside of a spectral image is
the additional storage cost as it requires one image layer per spectral bin.
Note that an interactive renderer may generate, internally, a spectral image
while displaying a color image by performing on-the-fly conversion. An
important advantage of spectral images is that they store physical units,
which is especially desirable for predictive rendering. For this reason, they
also can be reused as the input to a spectral renderer.

One must be aware that there are two types of spectral images: emissive
(storing energy ∈ [0,∞)) and reflective (storing reflectance or attenuation
values ∈ [0, 1]) images. When converting a spectral image to a color space,
the process is not exactly the same depending on its type, as detailed in
Figure 42-5.
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Figure 42-5. Typical conversion pipeline for spectral images. Reflective spectral images have to
be multiplied by an illuminant SPD prior to the spectral to tristimulus conversion. This ensures
getting a preview of the reflectance given a specific illumination condition.

In our renderer, we use spectral outputs: we want to retain the full
radiometric quantities while having the ability to simulate the impact on
different sensors capturing the same scene after the rendering process (e.g.,
a sensor from Ximea [4]).

In summary, spectral rendering is necessary when the following occur:

> Targeting color-accurate results regardless of the illuminant used in the
scene.

> Using the resulting image on various and unknown display devices (i.e.,
need for “color space agnostic” images).

> Rendering specific visual effects implying wavelength considerations
(e.g., dispersion, polarization, etc.).

42.3 SPECTRAL RENDERING ON THE GPU

Limited memory is the main challenge when using GPUs for spectral
rendering: spectral assets are larger than their tristimulus counterparts.
Often, all assets cannot fit at their full spectral resolution on video RAM
(VRAM), and we must resort to frequent host-device asset transfers. A
balance between VRAM usage, host-device transfers, and computation time is
crucial for efficient rendering, all the more for predictive interactive
renderers, as discussed later on in Section 42.5. Our implementation choices
are guided by these current hardware limitations.

With these limitations in mind, we use a single wavelength approach (one
wavelength per ray) to introduce the different strategies that can be
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considered when implementing a spectral renderer. Then, using one of the
described strategies, we show howmultiplexing (multiple wavelengths per
ray) increases the efficiency of a spectral renderer on a GPU. In particular, we
present how we handle efficient wavelength sampling in this context, as this
can be a pitfall when converting a tristimulus renderer to a spectral one.

42.3.1 SPECTRAL SAMPLING ON GPU FOR SINGLE WAVELENGTH RENDERING

The main difficulty when going from a CPU-based to a GPU-based spectral
path tracer is sampling the spectral domain correctly. This process can no
longer be efficiently performed on a per-ray basis due to the necessary
dispatch on the GPU. It requires all assets at their full spectral resolution to
be resident in VRAM if the scene can fit; otherwise, for each new sampled
wavelength, all assets must be updated on GPU memory.

There are three main solutions for implementing single wavelength rendering
on the GPU:

1. Per-wavelength asset upload: A random wavelength is sampled on the
CPU, and all assets are uploaded to the GPU memory for this specific
wavelength. This solution is memory-friendly but induces costly
CPU-GPU exchanges (one per processed wavelength). Although being
inefficient due to the important CPU-GPU transfers, this method
provides the reference solution because it does not introduce any bias.

2. Fixed wavelength asset upload: A fixed set of spectral bins are processed
sequentially. This requires only a subset of the asset spectral data to be
uploaded in VRAM. Each bin is centered around one of the
user-requested wavelengths. Only this central wavelength is used (fixed
sampling). This solution may cause spectral aliasing, as illustrated in
Section 42.2.2 and Figure 42-4a.

3. Wavelength boundary asset upload: A set of spectral bins is processed
sequentially. Assets are uploaded on VRAM for the boundaries of each
bin (see Figure 42-7). Sampling a new wavelength is done on the GPU by
sampling an offset ξ ∈ [0, 1]. This offset is used to jitter the currently
processed wavelength within the bin’s boundaries. The assets’ values
are then linearly interpolated on the GPU using this offset.

This method allows continuous wavelength sampling while limiting the
number of CPU-GPU transfers. Note that there is a potential bias when
using tabulated data with a resolution greater than the number of bins.
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(a) Single wavelength:
1 wavelength per ray
64 rays per pixel
Time: 0.252 s

(b)Multiplexed:
32 wavelengths per ray
16 rays per pixel
Time: 0.217 s

(c)Multiplexed:
32 wavelengths per ray
64 rays per pixel
Time: 0.783 s

(d) Converged reference

Figure 42-6. Convergence comparisons between (a) single wavelength and (b,c) multiplexed
approaches. The convergence is faster with multiplexing—(c) for the same number of rays per
pixel and (b) for the same time—compared to the single wavelength rendering. The scene is
composed of only metallic materials (i.e., conductors). All rendered images (512× 512 pixels) are
generated with an NVIDIA RTX 3070 with 32 wavelengths evenly distributed between 380
and 750 nm.

In the following sections, we describe more extensively the boundary asset
management for multiplexed rendering. The reasoning remains the same for
single wavelength rendering, each bin being processed one at a time.

42.3.2 WAVELENGTH MULTIPLEXING

The efficiency of a spectral renderer can be greatly improved by using
multiplexing: processing a single ray that carries multiple wavelengths (i.e., a
spectrum) instead of a single wavelength. The benefits of this approach are
twofold. First, it reduces the number of costly ray-intersection computations,
and second, it also reduces the number of BRDF importance sampling and
evaluation events.

Implementation-wise, adding simple multiplexing support to a single
wavelength path tracer is straightforward. Instead of processing a single
wavelength, a ray carries multiple wavelengths at once.3 All computations
are vectorized to handle all wavelengths. When propagation is
wavelength-independent (e.g., no refractive materials), this approach
improves the convergence significantly, as illustrated in Figure 42-6, and also
reduces color noise.

This solution is GPU-friendly and can be interpreted as a binary version of the
Hero Wavelength Spectral Sampling (HWSS) proposed by Wilkie et al. [26].

3RGB rendering may be, in a way, considered as a special case of multiplexing.
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HWSS also computes and stores the probabilities that the current path is valid
for the wavelengths it conveys. This allows efficient handling of media with
wavelength-dependent scattering (e.g., participating media or fluorescent
elements).

42.3.3 ENFORCING CONTINUOUS SPECTRAL SAMPLING WITH MULTIPLEXING

Given the GPU-oriented approach, we have additional constraints regarding
asset management. To avoid costly CPU-GPU transfers, instead of uploading
the assets for the sampled wavelength, we upload the assets for wavelengths
at the upper and lower boundaries of each requested bin. Then, the random
wavelength sampling is done on the GPU within each bin, and the assets are
interpolated on the fly using the wavelength offset between the lower and
upper bounds (see Figure 42-7).
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Wavelengths

Bn∈ [0:N−1] λ −n , λ +
n

CPU to GPU Rendering on the GPU
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Figure 42-7. An overview of the proposed pipeline. First, we determine the boundary of each
spectral bin. Then, the assets are uploaded to the GPU for the bin boundaries. At each sample, a
random offset ξ allows jittering the wavelength in the interval [λ–,λ+]. Each tabulated asset is
evaluated using a linear interpolation between the two adjacent boundaries. Then, the result is
accumulated to a spectral buffer, representing the requested wavelengths, and filtered to mitigate
further spectral banding. Finally, the accumulation buffer is transferred to the CPU on request for
saving the spectral image.
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This may introduce a small bias for tabulated assets but permits efficient
rendering, by sparing a tremendous amount of data transfer. Note that such
an approach remains completely unbiased with analytical spectra, or when
the spectral resolution of the assets is lower than half the spectral resolution
of the final image (Nyquist–Shannon sampling theorem).

UPLOADING ASSETS ON THE GPU

For a given set of N continuous bins Bn∈[0:N–1] centered on the requested
wavelengths λBn , we upload the assets for the lower, λ–n, and upper, λ+n,
boundaries of each bin (see Figure 42-7). The uploaded asset values at λ–n and
λ+n take the form of an average value, Aλi , to ensure energy conservation:

Aλi =
1
∆
·
∫ λi+∆

2

λi–∆
2

A(λ) dλ , (42.2)

where λi is the wavelength at the boundary λi = λ–n or λi = λ+n, A(λ) is the value
of the asset at λ, and∆ is the spectral bandwidth of the bin (i.e.,∆ = λ+n – λ–n)

In the particular case of adjacent bins, we upload N + 1 spectral elements for
each asset because the upper bound λ+n–1 of Bn–1 matches the lower bound λ–n
of Bn:

λ+n = λ–n+1 = λBn –
λBn+1 – λBn

2
. (42.3)

At this point, we have access to N + 1 spectral values for each asset. However,
we still propagate N wavelengths with each ray for the whole rendering
process. For each of these wavelengths, we interpolate the asset value using
two values from the N + 1 values stored on the GPU.

Note that this does not hold when using nonconsecutive bins, as in
Section 42.5.3.

WAVELENGTH SELECTION

For each new ray, we sample an offset ξ ∈ [0, 1] between the lower, λ–n, and
upper, λ+n, boundaries of each spectral bin carried by this ray. Therefore, each
new ray explores a different subset of wavelengths.

For a given random offset ξ, the corresponding wavelength λξn for the bin Bn is
bounded between λ–n and λ+n and computed as follows:

λ
ξ
n = λ–n + ξ · (λ+n – λ–n) . (42.4)
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Figure 42-8. After rendering a sample, the energy is accumulated in neighboring bins. We use
triangular kernels to accumulate offset samples and attenuate potential spectral banding.

ACCUMULATION IN SPECTRAL BINS

Once the radiance values Le are computed for each wavelength λξn carried by
the ray, we accumulate the radiance into the final image. To mitigate potential
banding artifacts, we use a triangular kernel to distribute the ray energy in
neighboring bins (see Figure 42-8).

For the nth bin, the weights w are computed as follows:

wn–1 = max(0, 0.5 – ξ), wn = 1.0 –
∣∣0.5 – ξ∣∣ , wn+1 = max(0, –0.5 + ξ). (42.5)

Then, we can accumulate the resulting radiance Le(λ
ξ
n) in bins Bn–1, Bn,

and Bn+1:

Bn–1 = wn–1 · Le(λ
ξ
n), Bn = wn · Le(λξn), Bn+1 = wn+1 · Le(λ

ξ
n). (42.6)

42.3.4 SUMMARY

In this section, we first presented the different strategies for spectral
sampling with their strengths and weaknesses with respect to the quality and
GPU rendering constraints. We explained how to handle spectral multiplexing
to improve a spectral renderer’s performance by minimizing CPU to GPU
transfers. Finally, we showed how to reduce spectral banding artifacts by
using filtering during the accumulation step.

Our method can easily be extended to fully support HWSS with the addition of
a path probability for each computed wavelength, increasing computation and
memory usage. More complex filters can also be used to further reduce the
spectral banding artifacts.
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42.4 MULTIPLEXING WITH SEMITRANSPARENT MATERIALS

The main limitation of multiplexing appears when the scene contains
semitransparent materials. In fact, this limitation arises with any material or
medium where the geometrical path taken by the light depends on the
considered wavelength. As discussed by Wilkie et al. [26], it forces the
multiplexed renderer to operate in single wavelength mode.

In this section, we present a method to improve the efficiency of a multiplexed
renderer when a ray hits a semitransparent material as such materials are
the most common wavelength-dependent materials. First, we recall why
semitransparent materials are not straightforward to handle and illustrate
the limitation with multiplexing. Then, we present a solution to overcome
partially this limitation and improve the efficiency of multiplexed renderers.

42.4.1 LIMITATION WITH SEMITRANSPARENT MATERIALS

At the wavelength scale, each medium’s optical behavior can be characterized
by its index of refraction (IOR). The IOR is a dimensionless number that
represents, per wavelength, how fast the light speed is affected by the
medium. The IOR is a complex number defined by

n(λ) = η(λ) + jκ(λ) , (42.7)

where κ(λ) represents how much a medium absorbs the light. When κ� η,
the material is said to be a conductor (e.g., metals). Conductors mostly reflect
or absorb light and barely transmit it, whereas dielectrics (η � κ, e.g., glass)
reflect, absorb, and transmit light.4 When a light wave changes medium, its
geometrical path will be modified according to the Snell–Descartes law:

ni(λ) sin θi = nt(λ) sin θt ↔ sin θt =
ni(λ)
nt(λ)

sin θi , (42.8)

where θi is the incident angle and θt is the transmitted angle, which defines
the new direction of the wave. For a given θi, the resulting θt will depend
indirectly on the wavelength (through the IOR). This dependence implies that
only one couple (θi,θt) is valid for a specific wavelength. Because a
multiplexed approach is valid as long as the light path is valid for all the
wavelengths carried by the ray, it cannot be used directly when handling such
transmission events.

4Formore information on the IORdefinition and its various implications in light behavior, we refer the interested
reader to the book Optics by Eugene Hecht [10].
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(a) Single wavelength:
1 wavelength per ray
64 rays per pixel
Time: 0.317 s

(b)Multiplexed:
32 wavelengths per ray
16 rays per pixel
Time: 0.283 s

(c)Multiplexed:
32 wavelengths per ray
64 rays per pixel
Time: 1.022 s

(d) Reference (single
wavelength approach,
precision of 1 nm)

Figure 42-9. Convergence comparisons of a scene with three semitransparent materials, the
IORs of which are constant per wavelength. In this scene, the many decimation events necessary
with (b,c) the multiplexed approach introduce color noise. However, multiplexing still offers a gain
compared to (a) the single wavelength approach at equal rendering time. All images
(512× 512 pixels) are rendered on an NVIDIA RTX 3070 with 32 wavelengths evenly distributed
between 380 and 750 nm.

When crossing a transparent material, the rendering approach must fall back
into a single wavelength propagation (i.e., the incoming spectrum is
decimated to a single wavelength [6]). When the wavelength selection is done
randomly, color noise reappears for this material type, as illustrated in
Figure 42-9. It is important to note that this selection can be done on the fly,
so that a light path without any transmission remains multiplexed. This still
allows the multiplexed approach to perform well.

An option to overcome the remaining color noise problem could be to split the
multiplexed ray into several single wavelength rays (each of them with its own
geometrical direction [6]). However, this kind of branching is hardly
recommended with CPU-based path tracers due to potential exponential
workload. It may be even worse with a GPU-based engine where a compute
unit is more easily overloaded than a CPU core, thus significantly increasing
the rendering time.

42.4.2 IMPORTANCE SAMPLING FOR THE PROPAGATED WAVELENGTH

For (even slightly) colored dielectrics, a more GPU-friendly approach is to use
importance sampling when choosing the wavelength that we want to keep, to
make the best of this bad situation. Theoretically, the colored aspect of the
medium comes from the IOR (both the real and imaginary parts) as stated by
the Fresnel equations on the surface, but also by the type of particles (and
their concentration) composing the medium. The most common way to
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compute the spectral attenuation induced by the particles of the medium is to
apply the Bouguer–Beer–Lambert law5 TBBL(λ), which quantifies the
transmittance rate:

TBBL(λ, l) = e–σ(λ)l , (42.9)

where l is the distance (in meters) traveled by the light inside the medium and
σ(λ) is the absorption coefficient, related to the IOR by

σ(λ) =
4πκ(λ)
λ

. (42.10)

To select the transmitted wavelength, we propose to build a 1D cumulative
distribution function (CDF) for a fixed distance l, from the transmittance
function T(λ) defined as follows:

T(λ) = TBBL(λ, 1) · Tuser(λ) , (42.11)

where Tuser(λ) is an additional and ad hoc attenuation rate allowing the user
to choose to control which wavelengths are absorbed by the medium. The
main benefit of building a CDF from Equation 42.11 is that it only depends on
the wavelength and remains small in terms of memory footprint.

The complete importance sampling procedure is the following:

1. Build a CDF from T(λ) for each material.6 This is done on the CPU as a
preprocess.

2. When a ray encounters a transparent material, sample a wavelength by
inverting on the fly (on the GPU) the previously computed CDF:
λ = CDF–1(x ∈ [0, 1]).

3. Apply the corresponding probability density function, pdf(λ) = T(λ)/
∫
T(λ).

4. Propagate the transmitted ray using only the sampled λ.

Note that for a GPU-based path tracer, only the first operation is performed
on the CPU while loading the scene. The remaining operations are part of the
path tracer execution on the GPU, hence they do not induce any extra
CPU-GPU exchanges.

When the transmittance does not present any significant variation, one would
still prefer to directly use uniform sampling because, in that case, importance
sampling will be close to uniform sampling.

5We neglect the case of thin layers, which produces interference. In that case, the Bouguer–Beer–Lambert
law is no longer valid (see Mayerhöfer et al. [16]).

6In our implementation, we use a 1 nm resolution for λ to compute the CDF and an arbitrary constant distance.
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(a) Single wavelength:
1 wavelength per ray
64 rays per pixel
Time: 0.308 s

ISUniform

(b)Multiplexed:
32 wavelengths per ray
16 rays per pixel
Time: 0.281/0.280 s

ISUniform

(c)Multiplexed:
32 wavelengths per ray
64 rays per pixel
Time: 1.03/1.02 s

(d) Reference (single
wavelength approach,
precision of 1 nm).

Figure 42-10. Comparison of the different wavelength importance sampling (IS) procedures for a
scene with different semitransparent colored materials. For this scene, the convergence rate is
faster when using importance sampling (b,c, right side) rather than uniform sampling (b,c, left
side) to select the propagated wavelength. Note that uniform sampling is still better than using
(a) a single wavelength approach thanks to multiplexed reflections. All images (512× 512 pixels)
are rendered on an NVIDIA RTX 3070 with 32 wavelengths evenly distributed between 380
and 750 nm.

Figure 42-10 illustrates how our importance sampling approach is useful with
another difficult scene containing mostly colored dielectrics. At equal time,
using importance sampling for the propagated wavelength greatly reduces
the variance. Once again, the multiplexed approach is still better than the
single wavelength approach.

As stated previously, the most accurate approach for wavelength importance
sampling should also consider the incoming ray direction, the distance to the
exit point, and the Fresnel transmission term. However, this aspect will be the
subject of further study to assert if the gain in performance is worth the
additional computational cost and memory usage.

42.4.3 SUMMARY

In this section, we have shown how multiplexed rendering can increase
performance, even when dealing with strictly path-dependent materials such
as dielectrics. We proposed a method to reduce the impact of the dielectric on
multiplexed performance by using an importance sampling procedure to
select the appropriate wavelength. This drastically reduces color noise and
improves even more the efficiency. This technique is also well suited for GPU
renderers with minimal CPU-GPU exchanges. Only a simple precomputation
is performed, per transparent material, and only once at the scene
loading stage.
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This technique can also be used in conjunction with HWSS. Instead of
selecting the Hero wavelength at the initial ray launching step, it may be done
at the first scattering event. If this event is a dielectric intersection, this would
improve HWSS efficiency where the renderer has to operate in single
wavelength mode.

42.5 A STEP TOWARD REAL-TIME PERFORMANCE

Real-time rendering with Monte Carlo path tracing7 is currently hardly
possible on a home desktop computer with a tristimulus approach. If we
focus on predictive and accurate rendering of complex materials, where
spectral rendering is almost mandatory, it is even more difficult to achieve
such frame rates, due to memory limitation and heavier workload.
Furthermore, there is an additional, on-the-fly, spectral-to-RGB conversion to
display the image, yet another post-process treatment.

However, we demonstrate in this section that with a limited number of
wavelengths and a fully multiplexed approach, one can hope to reach
interactive frame rates with a spectrally accurate enough result. We also
illustrate how some simple yet useful tools can be implemented to improve
performance when one has limited compute capabilities or limited memory.

42.5.1 INTERACTIVE SPECTRAL RENDERING WITH MULTIPLEXING

Multiplexing is a key feature when one wants efficient progressive rendering
for an interactive purpose, or to aim at real-time spectral path tracing. To
support this claim, we provide some results obtained with our solution
Malia [5] in which all the aforementioned features are implemented. It is an
academic-oriented path tracer (currently OptiX-based [20]), designed to offer
predictive and accurate rendering with full support of measured and
tabulated materials (e.g., coming from a BRDF acquisition process). As such,
our solution is probably not optimized as well as a production one. We still
wish to provide hints on the performance that can be achieved with our
approach. All results are presented with respect to their RGB equivalent
(using the same pipeline except for the asset management) to appreciate the
relative performance.

Figure 42-11 illustrates that 16 wavelengths may be sufficient with many
“everyday real-world” materials and even some complex ones (some spectra
are highlighted in Figure 42-13). Sixteen wavelengths will be more than

7At 30 to 60 converged frames per second, with path length up to 10 bounces.
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(a) Reference image with 64 bins

(b) Rendering with 8 bins,
125.3 rays/pixel/second

(c) Rendering with 16 bins,
87.7 rays/pixel/second

(d) Rendering with 32 bins,
49.7 rays/pixel/second

(e)∆E∗
2000(a,b),

scale from 0 to 10
(f)∆E∗

2000(a,c),
scale from 0 to 10

(g)∆E∗
2000(a,d),

scale from 0 to 10

Figure 42-11. Comparisons (using CIE∆E∗2000) of the impact of the number of processed spectral
bins, with converged rendering. Common materials (e.g., the MacBeth chart and the table) are
depicted in a satisfying way with as few as 16 bins, and nearly perfectly depicted with 32. However,
for complex materials (e.g., Lucy, see Figure 42-13 for a peak at the material), 16 bins may not be
sufficient. In all cases, only eight wavelengths is not enough for such a scene. For reference, the
same scene in RGB requires 6 ms to shoot one ray for each pixel (960× 540 pixels), that is, 167.63
rays per pixel per second. We can see that the rendering time is nearly linear with the number of
processed wavelengths. Performance data are given as the number of rays per pixel per second,
the higher the better. All rendered images are generated with an NVIDIA RTX 3070 with
wavelengths evenly distributed between 380 and 750 nm.
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enough for most applications that do not use specific and complex spectral
materials (e.g., fluorescent materials and interferential materials, such as
diffraction gratings or photonic crystals, see Joannopoulos et al. [13]). Note
that in this claim, we are merely considering that the image is observed by a
human eye. It may not stand in the case of a digital sensor with a fine spectral
resolution.

With this in mind, Figure 42-11 also gives some rendering times as rays per
pixel per second. We can see that, with our approach, simple scenes like the
table (and the probe, see Figure 42-6) are fast to render with up to 32 rays per
pixel, producing an image that is converged enough to be efficiently denoised.
Targeting approximately ten true frames per second may be realistic as long
as a denoising post-process is applied and is performant enough (see
Section 42.6).

42.5.2 INTERACTIVITY: SPATIAL SUBDIVISION

If the aforementioned techniques are not sufficient to achieve interactivity,
focusing the workload on a subset of pixels is a common approach for
real-time RGB renderers. Spectral rendering is no different in this case.

Within Malia [5], as an example, this process is done in two steps. First, we
define small square tiles inside the OptiX buffer (typically of four or nine
pixels). Then, instead of processing one ray per pixel, we process one ray per
tile. The ray spatial origin is jittered inside the tile, and its final value is stored
in the corresponding pixel. Finally, when synchronizing the OptiX buffer with
an OpenGL framebuffer for display, the framebuffer is filled by splatting the
tiles with a simple weighted average (see Figure 42-12), where the weights
are the radiance values integrated over the spectrum (that is, the Y channel of
the XYZ intermediate value). Note that the content of the OptiX buffer (which
may be saved) is still filled using its full original spatial resolution thanks to
the jittering within the tiles.

Using square tiles with an adaptive size and splatting the intermediate result
on the whole tile is an easy way to reduce the workload per frame. However,
more advanced and efficient approaches can easily be used in a spectral
context as long as they only operate on the spatial distribution of primary rays
(e.g., path guiding by Guo et al. [9] reduces the workload by focusing on
important pixels, whereas load balancing by Antwerpen et al. [1] operates in
the context of multiple GPUs).
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OpenGL Interactive Preview

OptiX Buffer

Splatting

Figure 42-12. Splatting process. To increase the interactivity, we degrade the spatial resolution
by alternatively rendering one of the pixels within a given tile. The OptiX buffer remains at the full
resolution to allow exporting the requested resolution.

Although spatial subdivision is useful to reduce the per-frame workload, and
therefore to increase the interactivity, the overall efficiency is significantly
reduced due to the additional host calls and to the per-frame post-processing.

42.5.3 LIMITED MEMORY: MULTIPLE SPECTRAL PASSES

Memory can limit the amount of spectral bins that can be handled at once.
Moreover, the size of a spectral bin impacts interactivity: a single frame takes
longer to render when a higher number of spectral samples is requested. To
leverage these issues, two options are possible:
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1. Continuous bin rendering: The bins are rendered in order. We use
multiple rendering passes to cover the whole spectral domain. This
method has a minimal memory footprint: the upper bound of a bin and
the lower bound of the next one share the same value. So, for Nbins
rendered at once, we have to upload Nbins + 1 assets, as shown in
Section 42.3. On the other hand, this method is not optimal for getting a
fast preview: color previewing is only possible when all the passes
are done.

2. Interleaved progressive bin rendering: To improve interactivity, one may
want improved color rendering even with the first spectral passes. With
an interleaved progressive bin rendering, the rendered bins are equally
distributed over the whole spectral domain. So, color accuracy is
increased at each pass. However, in this case, two bins do not share a
common boundary anymore. So, for Nbins rendered at once, we have to
upload 2× Nbins assets.

The first choice, continuous bin rendering, is the best candidate for maximum
raw performance, so is the privileged method for offline rendering. The
second choice is interesting for interactive rendering when color accuracy is
preferred over raw performance to get a fast preview.

42.6 DISCUSSION

In this section we discuss open problems and aspects of spectral rendering
and propose some solutions that could be tested and implemented in a
production environment.

42.6.1 EFFICIENT SPECTRAL ASSET MANAGEMENT

As we discussed several times in this chapter, GPU memory may be the main
constraint when considering spectral rendering. In particular, with scenes
containing many textured materials, environment maps, or even tabulated
spectral BSDF data, the memory management may be tricky. Uploading back
and forth many textures (or buffers) has a significant impact (up to several
seconds for big assets). It is always possible to reduce the number of
processed wavelengths or to use a subsampling approach, as presented in
Section 42.5, to circumvent memory constraint at the cost of rendering
efficiency. Another straightforward solution, at least for reflective textures, is
to use a better asset representation, namely an analytical one.
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At the moment, in Malia, spectral textures are multi-layered images to store
the values for all its wavelengths. This brute-force approach ensures that any
material with sharp spectral distribution remains accurately depicted.
However, many “everyday” materials do not exhibit sharp spectra. In those
cases, projecting the spectrum into an appropriate basis (e.g., Jakob and
Hanika [12] or Otsu et al. [19] using RGB uplifting, or Peters et al. [21] using
bounded reflectance spectra) and reconstructing it on the fly may be sufficient
to save memory at the cost of preprocessing the assets. Doing so permits
sparing some GPUmemory that can be used for assets with sharp distribution
(for which uplifting is hardly possible) to their full spectral resolution. Note
that for really smooth assets it may also be worth considering plain
downsampling when one prefers performance over accuracy.

More extensive studies should be conducted to determine a good trade-off
between spectral accuracy (to ensure that all sharp spectral features are
depicted) and per-material memory management (full resolution,
downsampled representation, RGB uplifting, etc.) with respect to the
application considered.

Figure 42-13 illustrates part of this discussion: glasses have an absorption
spectrum sharp enough to introduce significant differences when compared
to plain RGB rendering, but they can be described analytically by a simple
Gaussian, being more memory-friendly. However, the Lucy statue has a
dielectric material with a handmade IOR (probably nonexistent but offering
artistic features), which has no straightforward lightweight representation
due to its sharp spectral distribution. The dragon also exhibits two handmade
conductors with sharp spectral distribution. Note that, as illustrated by
Figure 42-11, these spectral features are not well depicted in RGB.

42.6.2 DENOISING

Denoising is currently the most popular choice when it comes to real-time
Monte Carlo path tracing. Even with an efficient RGB renderer and a high-end
desktop computer, it is hard to provide at least 30 converged images per
second. However, if a low-sample image (noisy) can be denoised efficiently,
this goal can be attained.

The idea also applies to a spectral renderer. One may attempt to denoise a
RGB image obtained from a spectral renderer with a real-time-capable RGB
denoiser. Though such an approach is beyond the scope of this chapter, we
must point out that one must be sure that a RGB algorithm can correctly
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Figure 42-13. The scene from Figure 42-11, illustrating examples of strong spectral dependency
for the dragon, the Lucy statue, and the probe. These sharp distributions may require
preprocessing to be stored more efficiently on the GPU, especially if they are set to vary spatially,
such as in a texture.

handle wavelength-dependent features and the potential color noise induced
by the spectral rendering process. Further research may be necessary to
assess this compatibility, to extend the RGB denoiser to the spectral domain,
or to propose a fast and efficient spectral denoiser.

Note that our current concerns with the denoising of spectral images only
apply in the context of rendering for predictive purposes. For entertainment
purposes, if spectral features are required, one may look at some
non-predictive-friendly denoising approaches. Some approaches (e.g., Liu et
al. [15]) efficiently denoise a rendering with only one or two rays per pixel but
introduce a potential mathematical bias by tweaking light transport integrals
for built-in denoising. This kind of approach may be spectral-friendly, as it is
incorporated in the light transport itself, but will not be predictive due to the
potential bias.
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42.7 CONCLUSION AND OUTLOOK

In this chapter, we have introduced spectral rendering and motivated its
usage when color accuracy is desired or when specific physical effects need
to be handled (e.g., dispersion, polarization, and fluorescence). We have
illustrated the limitation of the tristimulus approach for light transport.
Furthermore, we have introduced a pipeline for efficient spectral rendering on
the GPU that limits memory usage and data exchanges between the device
and the host. Finally, we have also introduced some optimizations to improve
interactivity while retaining the predictive nature of the renderer.

Due to its still early adoption, spectral rendering is still a niche in the
entertainment industry, but has become increasingly popular in recent years
thanks to increased computational power and memory. We believe that
spectral rendering will also generate more interest for GPU rendering despite
the challenges it brings in terms of memory and bandwidth. GPU rendering
offers an efficient way for providing both spectral and interactivity features in
the context of predictive rendering. Recent academic-oriented spectral
renderers have already opened this lead.
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CHAPTER 43

EFFICIENT UNBIASED VOLUME
PATH TRACING ON THE GPU
Nikolai Hofmann and Alex Evans
NVIDIA

ABSTRACT

We present a set of optimizations that improve the performance of
high-quality volumetric path tracing. We build upon unbiased volume
sampling techniques, i.e., null-collision trackers [16, 8, 15], with voxel data
stored in an OpenVDB [14, 13] tree. The presented optimizations achieve an
overall 2× to 3× speedup when implemented on a modern GPU, with an
approximately 6.5× reduction in memory footprint. The improvements
primarily stem from a multi-level digital differential analyzer (DDA) [1, 11, 6]
to step through a grid of precomputed bounds; a replacement of the top levels
of the OpenVDB tree with a dense indirection texture, similar to virtual
textures [3, 4, 17], while preserving some sparsity; and quantization of the
voxel data, encoded using GPU-supported block compression. Finally, we
examine the isolated effect of our optimizations, covering stochastic filtering,
the use of dense indirection textures, compressed voxel data, and single-
versus multi-level DDAs.

Figure 43-1. The Disney Moana cloud [18] (left) and an explosion cloud with emission [7] (right)
with three bounces of multiple scattering, rendered in 3.9 ms and 4.1 ms per sample, respectively,
using our approach at 1920× 1080 resolution on an NVIDIA RTX 3090. Our optimizations and
lossy compression scheme provide a 2.5× to 3.0× speedup and a ca. 6.5× reduced memory
footprint over the baseline implementation, without noticeable loss in quality (PSNR > 50 dB).
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Transmittance Estimates

Distance Samples

Figure 43-2. An example path is traced through a volume: We use distance sampling to find the
collision vertices along the main path. At each vertex, transmittance estimation computes the
fraction of photons arriving from the light source, sampled along shadow rays.

43.1 BACKGROUND

Rendering volumetric data, e.g., as in Figure 43-1, is a memory- and
compute-intensive task. We refer the reader to the state of the art report by
Novák et al. [15] for an extensive overview. The cloud in the left image is
represented by a 1000× 680× 1224 grid of density values. Storing a 32-bit
floating-point value for every voxel in the grid would require 3.3 GB of storage.
OpenVDB [14] uses a tree structure to compactly encode constant regions of
the volume, requiring only 585.2 MB to encode the cloud. By quantizing the
data carefully, we build on the serialized OpenVDB representation
(NanoVDB [12]) and re-encode it into three textures whose combined size is
86.7 MB, at the cost of some quantization error. The error is small enough to
not be visible in the rendered results, which will be discussed in
Section 43.5.3, while the performance of random volume lookups is improved.

The two fundamental queries that our data structure must efficiently support
are distance sampling and transmittance estimation. The former is used to
determine the length of each path segment between scattering events in the
volume, whereas the latter computes the probability of a ray segment passing
through the volume without interacting with it. The transmittance value is
used to estimate the fractional visibility along shadow rays. See Figure 43-2
for an illustration applied to path tracing.

In homogeneous media with constant density µc, an unbiased distance
sampler is straightforward: we importance-sample the free-flight distance t
according to transmittance with a cumulative distribution function (the
Beer–Lambert law [9]):

F(t) = 1 – e–µct. (43.1)
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Global Majorant Coarse Local Majorant Fine Local Majorant

 Fictitious Medium Real Medium

Figure 43-3. Local versus global upper bounds: Null-collision methods homogenize regions of
the volume by introducing a fictitious medium to bulk out the density to be piecewise constant in
each region. The more finely we subdivide, the tighter these majorants become, and the less
fictitious matter is added.

Thus, we can sample free paths with uniform random numbers ξ ∈ [0, 1), such
that

t = –
ln(1 – ξ)
µc

. (43.2)

For spatially varying (heterogeneous) volumes, we must extend this sampling
scheme because the previous approach is only valid for constant density. We
rely on delta tracking [19] for free path sampling and ratio tracking [16] for
transmittance estimation. The main idea behind both approaches is to
homogenize the medium by introducing additional fictitious matter, which has
no impact on light transport. In other words, we “fill” all gaps in the medium
between the maximum (majorant) µmax and real density µr with null-collision
density: µn(x) = µmax – µr(x). This allows us to analytically sample the
free-flight distances as before, as if the volume were homogeneous.

In order to return to the correct distribution, each collision must now be
stochastically categorized as null or real, in proportion to the ratio of null to
real matter:

pnull =
µn(x)

µr(x) + µn(x)
. (43.3)

We wish to minimize pnull, as such collisions are “wasted effort” and have no
effect on light transport. This corresponds to minimizing µmax: instead of
using a single global maximum, we subdivide space into smaller regions and
precompute a local µmax for each region, which more closely follows µr(x).
See Figure 43-3 for an illustration. Though this leads to fewer rejected null
collisions, the ray must be split at each region boundary, so as not to leave the
region for which each upper bound was computed. This splitting introduces
runtime overhead that offsets the benefit of the tighter bounds.

To render a single path-traced frame at typical resolutions and sample
counts, these algorithms require hundreds of millions of volume density
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evaluations. To make these as efficient as possible, in both execution time
and memory bandwidth use, we next present a GPU-friendly data structure
for efficiently storing and querying the volume data.

43.2 COMPRESSED DATA STRUCTURE

We use three textures to sparsely store the volume data: an atlas texture,
indirection texture, and min/max range texture. Similar to Crassin et. al. [4],
and following the leaf size in NanoVDB [12], we refer to a group of 8× 8× 8
voxels containing data, e.g., density values, as a brick. We pack the bricks into
the atlas texture. Offsets into the atlas are stored in a dense indirection
texture, which serves to link a position in space with a brick of data in the
atlas, similar to a page table. This scheme is applied to address sparsity and
is also known as virtual textures [17, 10]. We precompute and store in the
range texture the minimum and maximum value of each brick’s voxels
(referred to asminorant andmajorant, respectively), using these ranges to
scale the values in the atlas texture to lie in [0, 1]. This makes it
straightforward to encode high dynamic range values in the atlas at reduced
bit depths, such as 16 or 8 bits in UNORM format, or 4 bits via hardware-
supported block compression (BC4). In regions of constant density (minorant =
majorant), including empty space, the brick’s range will be zero and we can
therefore omit storing any unique data in the atlas for that brick. The
indirection texture simply points such bricks at address 0, whose contents will
be ignored due to the empty range. A visual overview of our data structure is
given in Figure 43-4. Note that all code is presented in voxel index space,
where one unit along any axis corresponds to the distance between adjacent
voxels. A volume lookup thus translates to the lines of HLSL code in
Listing 43-1.
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Figure 43-4. We illustrate our data structure with a 2D example. The dense volume (left) is
divided into 83 (82 in the figure) bricks packed into an atlas texture (right). A range texture encodes
the range of values in each brick. In this example, three bricks have empty ranges and are thus
omitted from the atlas. An indirection texture encodes the position of each brick in the atlas.
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Listing 43-1. Sparse volume lookup routine (HLSL).

1 float lookup(int3 index) {
2 int3 brick = index >> 3;
3 float2 range = rangetex[brick]; // (minorant, majorant)
4 uint3 ptr = indirecttex[brick].xyz;
5 float value_unorm = atlastex[(ptr.xyz << 3) + (index & 7)].x;
6 return value_unorm * (range.y - range.x) + range.x;
7 }

We encode the indirection texture as RGBA8Uint, the range texture as
RGFloat16, and the atlas texture via BC4 hardware compression. Therefore,
the total memory cost of our encoding scheme is W×H×D

64 + (N× 256) bytes,
where N is the number of spatially varying bricks within the volume. Because
we lossily quantize the voxel data, our format is less suitable for storage or
simulation. However, for rendering of density fields, the brick-level rescaling
ensures that the visual impact is minimal, which will be evaluated later in
Section 43.5.3. Although the leaf data is 8×more compact than the equivalent
data stored as float32 values in a NanoVDB tree, the latter’s tree structure is
more compact than our dense indirection and range texture scheme. Thus,
the overall memory saving amounts to ca. 6.5×. If the volume is very sparse,
a second level of indirection, further mirroring the NanoVDB tree structure,
could reduce the storage requirements further, at the cost of complicating the
lookup routine.

43.3 FILTERING AND RANGE DILATION

A common approach to smoothly interpolate the discrete density grid is
trilinear or tricubic interpolation. Performing this operation in software has
significant cost, but the GPU texture unit only supports trilinear filtering for
directly addressable, i.e., dense, textures. We could work around that
limitation by redundantly storing voxels that lie on the border of each brick [4].
However, that would impose either a 83

73 ≈ 1.49×memory overhead due to
duplicated borders or a performance penalty from falling back to software
filtering at those locations. We instead stochastically jitter the lookup point by
±0.5 voxels before point sampling. This is equivalent to importance sampling
linear interpolation, where the probability density function and the
interpolation factor cancel out. At high sample counts, this “stochastic
filtering” scheme yields identical results to trilinear filtering at a fraction of
the cost. Refer to Section 43.5.2 for an evaluation of the noise introduced.
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Whatever the chosen filtering scheme, values from neighboring bricks may
“leak” into each other due to the width of the filter kernel, causing filtered
values to lie outside the central brick’s precomputed range. Ratio tracking
requires the per-brick majorants to be strict upper bounds [16]. Even
applying the computationally more expensive weighted ratio tracker [8], which
relaxes that requirement, may exhibit increased variance if the majorant is
not conservative. To address this, we precompute the brick majorants over a
103 volume, encompassing the one-ring of voxels around the brick’s original
83 footprint. For a trilinear or stochastic trilinear filter, which only have a
kernel radius of half a voxel, this allows the center of the jittered sample to lie
an extra half voxel outside the brick. We exploit this slight “over-dilation” to
take larger steps in the digital differential analyzer (DDA) than would
otherwise be possible, which we will describe next.

43.4 DDA TRAVERSAL

Both the distance sampling and transmittance estimation schemes require us
to trace rays through the volume to find collisions. We start by sampling a
target optical thickness: τtarget = – ln(1 – ξ). We then employ a DDA [1] to visit
all bricks that intersect the ray and accumulate their (tentative) optical
thicknesses τbrick = µbrick_max × dt, where dt is the length of the ray segment
that intersects the brick. Should the accumulated optical thickness exceed
the sampled target thickness, we step backward along the ray until they
match exactly. This is illustrated in Figure 43-5a. At this point, we have found
a tentative collision. Next, we perform a filtered density lookup and compare
it to the local majorant, stochastically deciding whether to accept the collision
as real. When sampling distances, we return the distance to the first real
collision along the ray. When estimating transmittance, we adjust the current
estimate using the ratio of real to fictitious matter. In the event of a rejected
null collision, we restart the traversal by sampling a new target optical
thickness value. The algorithm continues until we have sampled a distance,
the transmittance estimate is aborted by Russian roulette, or we have left
the volume.

The key to achieving optimal traversal performance is the balance between
large step sizes and tight upper bounds. A small brick size yields accurate
upper bounds and thus less wasted samples, but causes more work, splitting
the ray due to the DDA’s small steps. On the other hand, large bricks enable
the DDA to move quickly, but cause a higher sample rejection rate. See
Figure 43-3. A rejected sample is costly because it corresponds to multiple
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t1
t2

t3
t4

Start

(a) Regular DDA

Start

(b) Brick-dilated DDA

Figure 43-5. Left: the DDA traverses along the ray in steps (t1, t2, t3) such that each segment
falls entirely inside a brick. The majorants τbrick of each brick are accumulated,
τsum = τ1 + τ2 + τ3, until their sum exceeds τtarget. Finally, a backward step (t4) is taken to the
point where τsum matches τtarget exactly. Right: during traversal, a regular DDA would require five
steps, as highlighted by the black intersection points. Because we intersect against dilated brick
boundaries instead, 0.5 voxels outside in the direction of travel, our DDA manages in only three
steps, as shown by the green intersection points. This also improves numerical stability, as we do
not land exactly on brick boundaries.

texture lookups and requires us to restart the traversal after reverting to the
point of collision, which voids some of the benefits of larger DDA steps.

Therefore, we additionally compute three min-max mip levels of the range
texture. This enables us to search for tentative collisions at four different
scales, with minorant and majorant information available for dilated bricks
computed over a domain of 8× 2mip + 2 voxels, with mip ∈ [0, 3]. As we step
backward to the exact point of collision in a brick, the chosen mip level only
affects how quickly collisions are found, without introducing bias or affecting
image quality.

The chosen mip level has a large impact on performance and varies strongly
between scenes. It would be possible to implement each level of the DDA as a
separate loop in a shader, for example, starting with a coarse mip level loop
and then falling down to finer levels in separate loops. However, on a wide
single-instruction-multiple-threads (SIMT) device like a GPU, this would lead to
significant execution divergence between rays at different levels of the
hierarchy. We therefore chose to reformulate the DDA to be able to
independently select a mip level at every step without branching, a concept
previously applied to screen-space reflections [6]. We empirically chose a very
straightforward heuristic for selecting the per-step mip level: We initialize to
the coarsest level (mip = 3.0), add 0.33 for each iteration, and subtract 2.0
when a tentative collision was found. The DDA then takes a step according to
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(a) Global majorant (9.3 ms) (b) DDA mip 0 (5.9 ms) (c) DDA mip 1 (4.5 ms)

(d) DDA mip 2 (4.3 ms) (e) DDA mip 3 (5.3 ms) (f) DDA mip 0–3 (3.9 ms)

Figure 43-6. Average number of volume and majorant lookups per path on the same viewpoint as
Figure 43-1, mapped from [0, 150]. The number of required volume lookups can be reduced
significantly, especially for empty space regions, when stepping over a larger grid of upper bounds
[(a) versus (d)]. However, when choosing the mip level too large, and thus causing frequent
backtracking, the number of lookups increases (e). Our multi-level DDA addresses this issue by
adapting the step size locally and manages with the least amount of lookups overall (f). Note that
in (a) all lookups are full volume lookups, while for the DDA-based variants most are solely
majorant lookups, which only require one instead of three texture taps.

the nearest integer mip level: bmipe. Figure 43-6 illustrates how the number
of volume lookups is affected by the DDA mip level. The multi-level traversal
scheme achieves the best performance, making the least number of lookups
overall, and automatically adapts to the underlying scene.

As previously mentioned in Section 43.3, filtering requires us to use dilated
majorants, which we “over-dilate” by half a voxel. This has the additional
benefit of allowing us to perform ray intersections against bricks that have
been enlarged by half a voxel, reducing the number of steps taken while still
leaving room for the filter’s footprint. Because the DDA oversteps into each
brick by half a voxel, we eliminate the usual numerical problems associated
with intersections falling exactly on brick boundaries. We illustrate this in
Figure 43-5b and provide HLSL code snippets for the core parts of our
algorithm in Listings 43-2 and 43-3.

Listing 43-2. DDA stepping routine using bricks enlarged by half a voxel (HLSL).

1 float stepDDA(float3 ro, float3 ri, float3 pos, int mip) {
2 const float dim = 8 << mip;
3 const float3 ofs = ri * (((ri >= 0.f) ? dim + 0.5f : -0.5f ) - ro);
4 const float3 tmax = floor(pos * (1.f / dim)) * dim * ri + ofs;
5 return min(tmax.x, min(tmax.y, tmax.z));
6 }
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Listing 43-3. DDA-based volume sampling routine (HLSL). The two red lines are all that is
required to dynamically select a mip level at each step.

1 float tauToGo = -log(1.f - random());
2 float mip = 3;
3 float3 invRayDir = 1.0 / rayDir;
4 while (/* Inside volume */) {
5 float3 pos = rayOrigin + t * rayDir;
6 float majorant = lookupMajorant(pos, round(mip));
7 float nextt = stepDDA(rayOrigin, invRayDir, pos, round(mip));
8 mip = min(3.f, mip + 0.33);
9 float dt = nextt - t;
10 float dtau = majorant * dt;
11 t = nextt;
12 tauToGo -= dtau;
13 if (tauToGo > 0) continue; // No collision, skip ahead
14 mip = max(0.f, mip - 2);
15 t += dt * tauToGo / dtau; // Step back to collision
16 float density = lookup(rayOrigin + t * rayDir);
17 if (random() * majorant < density) { /* Handle real collision */ }
18 tauToGo = -log(1.f - random()); // Null collision, continue
19 }

43.5 RESULTS

In the following, we evaluate our approach against a baseline implementation
and examine the achieved speedups and compression rates versus the
magnitude of numerical error introduced into the image. We summarize our
results in Table 43-1.

43.5.1 BASELINE

As a baseline, we employ an unbiased path tracer using NanoVDB to lookup
float32 density values, delta tracking for distance sampling, and ratio
tracking for transmittance estimation, all with global majorants. We trace up
to three bounces of multiple scattering, while shooting a shadow ray at each
path vertex, importance sampling the scene’s light sources, and weighting
accidental and sampled light source hits from next event estimation with
multiple importance sampling. We implement anisotropic scattering via the
Henyey–Greenstein [5] phase function, although we used g = 0 in our
evaluation, i.e., isotropic scattering. As a quality baseline, we rely on a
software implementation of trilinear filtering to smooth the discrete, regular
grids. For the performance baseline, we chose stochastic filtering over
trilinear, due to its substantial effect on performance. Any errors introduced
into the image are evaluated using the FLIP [2] perceptual metric (see also
Chapter 19) and the peak signal-to-noise ratio (PSNR), by comparing
converged images with 32,000 samples per pixel.
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Moana Cloud (Figure 43-1, left)
Variant Time MB ÷ Time ×MB FLIP PSNR
BaselineQ (trilinear) 38.9 585.2 0.29 1.00 0.00000 +inf
BaselineP (stochastic) 11.1 585.2 1.00 1.00 0.00501 56.23 dB
Texture (16 bit) 9.2 292.3 1.21 0.50 0.00501 56.23 dB
Texture (8 bit) 9.1 153.9 1.22 0.26 0.00589 55.89 dB
Texture (BC4) 9.2 86.7 1.21 0.15 0.00738 54.34 dB
BC4, DDA mip 0 5.9 86.7 1.88 0.15 0.00811 51.99 dB
BC4, DDA mip 1 4.5 86.7 2.47 0.15 0.00806 52.08 dB
BC4, DDA mip 2 4.3 86.7 2.58 0.15 0.00805 52.12 dB
BC4, DDA mip 3 5.3 86.7 2.09 0.15 0.00804 52.16 dB
BC4, DDA adaptive 3.9 86.7 2.85 0.15 0.00809 52.07 dB

Table 43-1. Timings in milliseconds are taken on an NVIDIA RTX 3090 GPU and refer to rendering
one sample per pixel at 1920× 1080 resolution, with three bounces of multiple (isotropic)
scattering. We use the Moana cloud [18] at 1000× 680× 1224 voxel resolution. As a baseline, we
employ NanoVDB in float32 encoding with trilinear filtering (BaselineQ) for quality and stochastic
filtering (BaselineP) for performance. We compare performance and memory consumption
between the baseline and several variations of our approach with different levels of quantization
and DDA traversal strategies. FLIP [2] and PSNR are computed from converged images with
32,000 samples.

43.5.2 STOCHASTIC SAMPLING

Switching from eight weighted volume lookups (trilinear interpolation) to a
single stochastically jittered sample gives the single largest speedup of our
optimizations, roughly 3.5×. It introduces no bias in the converged image and
thus provides a virtually indistinguishable result (PSNR 56.23 dB). Even at low
sample counts, the difference is negligible. When comparing both
software-trilinear and stochastic-trilinear filtering at 32 samples per pixel to
a converged result, we only found a less than 0.1 dB PSNR difference between
the two approaches, as outlined in Figure 43-7.

43.5.3 QUANTIZED TEXTURE REPRESENTATION

We re-encode the NanoVDB float32 data into textures as previously
described in Section 43.2. We examine the error due to quantization for
16 bits per texel (UNORM16), 8 bits per texel (UNORM8), and 4 bits per texel (BC4)
in an isolated environment in Figure 43-8. The most compressed form (BC4) is
selected for all subsequent steps, as it yields the most compact
representation (6.5× compression) without notable quality or performance
impacts. The high quality regardless of texture compression is a valuable
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(a) FLIP error map, software-trilinear,
FLIP: 0.13909, PSNR: 23.05 dB

(b) FLIP error map, stochastic-trilinear,
FLIP: 0.13937, PSNR: 22.97 dB

Figure 43-7. Virtually indistinguishable results from (b) our stochastic filtering scheme,
compared to (a) the trilinear baseline implementation at 32 samples per pixel. We compute
FLIP [2] and PSNR against a converged reference rendering with 32,000 samples. Note that the

version with stochastic filtering rendered roughly 3.5× as fast.

(a) Error× 10 for 16 bit,
FLIP: 0.00048, PSNR: 75.10dB

(b) Error× 10 for 8 bit,
FLIP: 0.00437, PSNR: 60.72dB

(c) Error× 10 for BC4,
FLIP: 0.00682, PSNR: 56.15dB

Figure 43-8. Isolated numerical error introduced by our lossy compression, evaluated against
uncompressed 32-bit encoding, using global majorants and stochastic filtering. We evaluated
FLIP [2] and PSNR on converged images with 32,000 samples. For visibility, we show a grayscale
FLIP error map of the cloud in Figure 43-1 scaled by 10×, because the error would otherwise be

imperceptible.

result, as memory is often a limiting factor in volume rendering, particularly
when rendering volumetric animations with many frames resident in memory.

43.5.4 SINGLE- AND MULTI-LEVEL DDA WITH LOCAL MAJORANTS

As demonstrated in Figure 43-6, the resolution of the local majorants are
inherently tied to rendering performance. A coarser grid enables taking
larger steps, but also reduces the tightness of the bounds and may lead to
backtracking. We measure timings for different mip levels of the range
texture, yielding local majorants computed over 8× 2level + 2 texel bricks for
level ∈ [0, 3]. We found the optimal level to be highly scene dependent, which
turned out to be level = 2 for the Moana cloud data set (Figure 43-6d). By
dynamically choosing a mip level per step, as we described in Section 43.4, we
manage to achieve the largest speedup and automatically accommodate
different scene sizes as well.
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43.6 CONCLUSION

In summary, we showed how to optimize existing unbiased volumetric path
tracing techniques for use on modern GPUs and managed to achieve a 2× to
3× speedup at a roughly 6.5× reduced memory footprint compared to a
baseline implementation. We demonstrated that the error introduced by our
lossy compression scheme is virtually imperceptible and thus enables
high-quality renderings of volumetric assets at a fraction of the cost.
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CHAPTER 44

PATH TRACING RBF
PARTICLE VOLUMES
Aaron Knoll, Gregory P. Johnson, and Johannes Meng
Intel Corporation

ABSTRACT

Particle volume data are common in scientific computing applications such as
cosmology and molecular dynamics, and increasingly in smoke and fluid
animations. Path tracing particle data directly has historically proven
challenging; most existing approaches rely on conversion to structured
volumes, proxy geometry such as slicing or splatting, or special techniques
optimized for ray casting but not path tracing. However, it remains desirable
to render particles without simplification and with full control over the volume
reconstruction filter, in a manner consistent with increasingly ubiquitous ray
tracing APIs. In this chapter, we detail a method for quickly traversing,
sampling, and path tracing particle volumes using a radial basis function
(RBF) model, implemented using the Intel® Open Volume Kernel Library
(VKL) and OSPRay rendering framework but suited for general ray tracing
hardware and software APIs.

Figure 44-1. Five million particle HACC [4] cosmology particle data set, path traced with Intel
Open VKL at 1.8 FPS on an Intel Xeon 8180M, 28 cores, 2.5 GHz.
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44.1 INTRODUCTION

Particle rendering has diverse origins, applications, and needs. For effects in
games, the most popular approach remains to resample onto axis-aligned
texture slices (e.g., [3]). In film, it is typical to compute and render the
boundary mesh from large particle fluid simulations using marching
cubes [12] or more sophisticated techniques. In scientific visualization,
different techniques may be appropriate depending on the goal. For example,
computational fluid dynamics data are most frequently converted to
structured volumes, then isosurfaced or direct volume rendered. Large
molecular data are frequently represented as explicit spherical glyphs or
isosurfaces and either ray traced or rasterized. Volume splatting [18] projects
particles into 2D billboards with an elliptical footprint. It scales as well as the
underlying rendering technique—traditionally rasterization.

In many cases, it is desirable to render particle data as actual particles, or to
model them as a volume composed of overlapping radial basis functions
(RBFs). Modern gravitational N-body cosmology simulations employ millions
to trillions of particles, and large molecular dynamics simulations consist of
millions to billions of atoms. It is helpful to visually resolve these simulations
down to their individual computational elements, without simplification. In
the previous Ray Tracing Gems book, Knoll et al. [10] showed how to leverage a
ray tracing framework to more effectively render large, sparse particle
volume data using splatting. This allowed for hundreds of millions of
individual particles to be splatted interactively at 4000 resolution, with no
simplification, proxy geometry, or filtering of the original data. This approach
could be limiting; closely spaced “overlapping” particles resulted in both
visual clutter and pathological performance with bounding volume hierarchy
(BVH)–based ray tracing methods. Grouping and sorting a subset of particles
by depth dramatically improved performance but limited the rendering to
primary ray casting as opposed to path tracing.

Volume rendering with a radial basis function model solves the overlap issue
by treating the whole volume as one scalar field composed of additive
weighted kernels. This method is frequently referred to as a smoothed particle
hydrodynamics (SPH) approach due to its use in visualizing SPH fluid dynamics
codes. With RBF volume rendering, in contrast to splatting, one can adjust
the radius and weight of the kernels to achieve a smoothing or sharpening
filter over particles as desired. Previous implementations (e.g., [14, 11])
employed optimizations that restricted them to ray casting. In this chapter, we
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show how to efficiently path-trace RBF volumes. Our renderer is similar to
the Woodcock-tracking volume path tracer of Raab [16], except we implement
RBF reconstruction within a volume sampling kernel API (Intel® Open Volume
Kernel Library [7]), leverage interval iterators for space skipping, and allow
for abstraction of the rendering method (ray casting, ray casting with ambient
occlusion, and path tracing) in the Intel® OSPRay [17, 8] rendering
framework. However, our method would be applicable to other ray tracing
software architectures, including NVIDIA OptiX [13].

44.2 OVERVIEW

44.2.1 RBF AND SPH FIELDS

A radial basis function is a continuous, real-valued function ϕ of distance from
a center of a particle. A RBF scalar field Φ is defined by summing the kernels
for all particles i contributing to a point x in space:

di(x) = ||x – xi||, Φ(x) =
∑
i

ϕi
(
di(x)

)
. (44.1)

Smoothed particle hydrodynamics are an extension of RBFs that apply a
partition of unity rule.

In choosing ϕ, one can opt for kernels with either infinite support or compact
support such as a polynomial. In our implementation, we use Gaussians:

ϕi(x) = wi e
– 1
2 (di(x)/ri)

2
, (44.2)

where wi is the weight and ri is the radius of the Gaussian. In practice, we
truncate at a support radius of σri (defaulting to σ = 3); this behavior can
change based on the chosen transfer function and performance needs of
the user.

44.2.2 VOLUME RENDERING AND DELTA TRACKING

The Radiative Transfer Equation (RTE) [1, 9] describes how emission,
extinction, and in-scattering change radiance along a ray x(t) = o – t ·ω inside a
participating medium.

It relies on three coefficients to model these effects: the scattering coefficient
σs(t), the absorption coefficient σa(t), and the emission coefficient σe(t). Because
extinction can be due to both absorption and out-scattering, the combined
extinction coefficient σt(t) = σa(t) + σs(t) is often used. The phase function is a
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probability density function φ(ωi → ω) that models which part of the incident
radiance from direction ωi is scattered into the ray.

With transmittance T(0, t) = exp(–
∫ t
0 σt(s)ds), the solution to the RTE can be

derived as the recursive formulation:

L(0,ω) =
∫ ∞

0
T(0, t) ·

[
σe(t)Le(t,ω) + σs

∫
4π
φ(ωi → ω)L(t,ωi)dωi

]
dt. (44.3)

In scientific visualization, the RTE is often simplified by assuming that the
medium does not scatter (σs = 0), instead relying purely on emission and
absorption.

Equation 44.3 simplifies accordingly:

L(0,ω) =
∫ ∞

0
T(0, t) · σe(t)Le(t,ω)dt. (44.4)

Additionally, a transfer function is often used to modify Le and T based on the
underlying scalar field Φ, a color color map C, and an opacity map α:

Le(t, –ω) = Le
(
C(Φ(t)), –ω

)
, T(t, –ω) = T

(
α(Φ(t)), –ω

)
. (44.5)

Numerical integration of Equation 44.3 involves a choice of where and how
frequently to sample this medium. The most straightforward approach picks a
fixed distance between samples and approximates the value of the integral
using quadrature. This approach is appropriate for deterministic volume
rendering (i.e., ray marching), though it can lead to undersampling artifacts.

In Monte Carlo rendering (i.e., path tracing), uniform sampling invariably
introduces bias. Instead, random distances to volume events are generated,
usually by sampling the transmittance function. In homogeneous
participating media, this can be done analytically.

A popular solution in the presence of spatially varying participating media is
to use the method of Woodcock et al. [19]. The key insight of the method is
that one may fill the medium with “virtual” particles such that it is essentially
homogeneous, and apply the usual analytic sampling method using the new
effective extinction coefficient σt,max:

t = –
ln(1 – ξ)
σt,max

, (44.6)

where ξ ∈ [0, 1) is a uniformly distributed random number. Upon sampling an
event, one must then reject interactions with “virtual” particles with
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probability

P[virtual] = 1 –
σt

σt,max
. (44.7)

This results in a path tracing algorithm that is both adaptive and unbiased. For
a more comprehensive comparison of delta tracking, we refer readers to [15].

44.3 IMPLEMENTATION

Our implementation in Intel OSPRay [8] and Open Volume Kernel Library
(VKL) [7] allows for use in a wide range of rendering applications: ray casting,
ray tracing with ambient occlusion rays, implicit isosurface rendering,
distributed rendering with a Message Passing Interface (MPI), and path
tracing. We use ISPC [6] as our kernel language; semantically, it is similar to
CUDA or HLSL except that uniform variables are assumed to be constant
across SIMD lanes or compute threads. All code is open source under the
Apache 2.0 license and maintained in OSPRay and Open VKL.

44.3.1 PREPROCESS AND MAXIMUM VALUE ESTIMATION

The preprocess pipeline for a particle volume consists of building a bounding
volume hierarchy around individual particles. A radiusSupportFactor
parameter is given by the user as a multiple of the base particle radius
(defaulting to 3). This determines the BVH bounds’ tightness; smaller values
improve performance at the cost of potential artifacts due to RBF truncation.
We then build the BVH using Embree [5] builders.

For delta tracking, it is crucial to know an accurate maximum density value to
determine σt,max in Equation 44.6. Moreover, by knowing local value ranges of
the RBF field over the BVH nodes a priori, we can determine base sampling
rates when stepping through the volume, using either ray casting or delta
tracking. By mapping these values into a transfer function, we also know
whether to skip whole regions of a volume. Estimating this value over the
entire RBF field is a global optimization problem. To find these minima and
maxima, we have implemented a heuristic that estimates the value ranges for
all BVH leaf nodes. Our algorithm iterates over the set of leaf nodes of the
BVH; currently, each leaf is built over one particle. Within each leaf node, we
evaluate the RBF field Φ over a small grid (e.g., 103 points) and determine the
local minimum and maximum value of those samples. Samples are computed
using the same kernel used in rendering, given in the pseudocode in
Listing 44-1. We then update the value ranges of interior nodes and store the
global minimum and maximum values.
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Listing 44-1. Intersect and sample.

1 bool intersectAndSampleParticle(VKLParticleVolume *uniform self,
2 uniform uint64 id, float &result, vec3f samplePos)
3 {
4 float value = 0.f;
5 uniform vec3f particleCenter = get_vec3f(self->positions, id);
6 uniform float radius = get_float(self->radii, id);
7 uniform float w = get_float(self->weights, id);
8 delta = samplePos - particleCenter;
9

10 if (length(delta) < radius * self->radiusSupportFactor) {
11 value = w * expf(-0.5f * dot(delta, delta) / (radius * radius));
12 }
13 result += value;
14

15 if (self->clampMaxCumulativeValue > 0.f) {
16 result = min(result, self->clampMaxCumulativeValue);
17 // Early termination of RBF evaluation
18 return all(result == self->clampMaxCumulativeValue);
19 }
20 return false;
21 }
22

23 inline float VKLParticleVolume_sample(const Sampler *uniform sampler,
24 const vec3f &samplePos)
25 {
26 const VKLParticleVolume *uniform self =
27 (const VKLParticleVolume *uniform)sampler->volume;
28

29 float sampleResult = 0.f;
30 traverseBVH(bvhRoot,
31 sampler->volume,
32 intersectAndSampleParticle ,
33 sampleResult,
34 samplePos);
35 return sampleResult;
36 }

Value estimation has a worst-case complexity of O(N3) and can be costly. It is
sensible for small data sets with unpredictable behavior, i.e., if there is
significant overlap of differently weighted particles, or if the user cannot
accurately guess a cumulative maximum value. In many other cases, for
example, the large cosmology data sets, it suffices for the user to manually
specify clampMaxCumulativeValue and opt to avoid this preprocess step.

44.3.2 RBF VOLUME SAMPLING IN OPEN VKL

The core of our implementation in Open VKL is traversal of a BVH built around
the particle data, with a custom intersection routine in which we evaluate a
RBF at the sample position samplePos and accumulate the result value. To
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do this, we call traverseBVH() (the equivalent of rtTrace() in OptiX).
Currently, we use a software implementation of BVH traversal in Open VKL,
but in principle this could equally leverage hardware traversal. Pseudocode is
given in Listing 44-1.

Two optimizations are worth noting. The radiusSupportFactor is used within
the kernel to explicitly clamp the value to zero outside of that chosen support
radius. A smaller support radius leads to better performance but can
introduce artifacts. The other parameter, clampMaxCumulativeValue, allows
us to end evaluation of the RBF field when the accumulated result has
already exceeded the value. This is particularly helpful in regions of
significant overlap, where the user cares more about the contours of the
volume data than the dynamic range.

A final advantage of Gaussian radial basis functions is that their derivatives
can be computed analytically and used in shading (e.g., with a Lambertian
model). This is implemented and exposed through the Open VKL API; we refer
interested readers directly to that source code [7].

44.3.3 RENDERING IN OSPRAY

Given this mechanism for sampling a RBF volume, we can pair it with any
volume rendering technique. For this, we use the volume rendering code
abstracted to any VKL volume type, implemented in OSPRay [8] and also
written in ISPC. The pseudocode in Listing 44-2 illustrates delta tracking as
used to step through the volume.

Interval iterators are a standard feature of Open VKL and an optimization of
note. Each node of the BVH contains a value range that can be queried at
traversal time; if the data range falls outside the range of interest specified by
the transfer function, we do not need to compute samples at all within that
interval. The effectiveness of space-skipping in Open VKL depends on the
sparsity of the particle data and the accuracy of the maximum value
estimation described in Section 44.3.1.

We refer interested readers to the OSPRay source code [8] for volume ray
casting and implicit isosurface renderers.

44.4 RESULTS AND CONCLUSION

Evaluating RBF path tracing performance is challenging because of the lack
of reference points, particularly for our CPU-only implementation. For the
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Listing 44-2. Delta tracking.

1 float delta_tracking(VolumetricModel *uniform vModel,
2 range1f rInterval,
3 vec3f &o,
4 vec3f &w,
5 float &sigma_t, // Extinction coefficient
6 vec3f &albedo)
7 {
8 VKLIntervalIterator intervalIterator = vklInitIntervalIteratorV(
9 vModel, o, w, rInterval, intervalIteratorBuffer);
10

11 float t = 0.f;
12 VKLInterval interval;
13 while (vklIterateIntervalV(intervalIterator, &interval)) {
14 t = interval.tRange.lower;
15

16 const float maxOpacity =
17 vModel->transferFunction->getMaxOpacity(interval.valueRange));
18

19 // Estimate sigma_max based on the interval value.
20 const float sigma_max = vModel->densityScale * maxOpacity;
21 if (sigma_max <= 0.f)
22 continue;
23

24 while (true) {
25 // Delta tracking
26 float xi = RandomSampler_getFloat(randomSampler);
27

28 const float dt = -log(1.f - xi) / sigma_max;
29 t += dt;
30 if (t > interval.tRange.upper)
31 break;
32

33 xi = RandomSampler_getFloat(randomSampler);
34 const vec3f p = o + t * w;
35

36 const float sample = vklComputeSampleV(
37 vModel->volume->vklSampler,
38 (const varying vkl_vec3f *uniform) & p);
39 if (isnan(sample))
40 continue;
41

42 const vec4f color =
43 vModel->transferFunction->get(vModel->transferFunction, sample);
44 sigma_t = vModel->densityScale * color.w;
45

46 // Rejection sampling
47 if (xi < sigma_t / sigma_max) {
48 albedo = make_vec3f(color);
49 return t;
50 }
51 }
52 }
53 return inf;
54 }
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Modality Particle Volume Structured Volume Sphere Glyphs
Path tracing (MR/s) 1.44 2.85 5.0
Ray casting (MR/s) 6.0 11.4 16.0
Memory usage (GB) 9.6 10.6 5.6

Table 44-1. Performance in megarays per second (MR/s) for reference data sets (reference
images shown with ray cast rendering).

purposes of this chapter, we compared performance of ray casting and path
tracing particle volumes to structured volumes, as well as rendering opaque
spherical glyphs, shown in Table 44-1. The data set in question is a 51 million
particle N-body cosmology code (HACC [4]).

We used a 20483 structured volume for comparison. Both particle and
structured volume renderings required a high sampling rate of eight samples
per particle radius (equivalent to four samples per voxel at 20483) to resolve
features. Even then, striation artifacts from undersampling are clearly visible
upon zooming into structured volumes. For context, we compared with
opaque sphere rendering performance in Embree. We used a 2048× 2048
framebuffer and one sample per particle in all cases, and reported numbers
in megarays per second, running on 28 cores of an Intel Xeon 8180M at
2.5 GHz. In all, performance with both path tracing and ray casting is
interactive, though not in real time.

Some room for improvement remains. GPU implementations, including ones
that leverage GPU ray tracing hardware, would be of interest and should be a
straightforward extension. Improving memory efficiency is also important.
We currently build the BVH around individual particles as opposed to
clustering, resulting in a roughly 5× overhead relative to original (float)
particle data. To handle larger particle visualizations, we could pursue
compression or clustering methods as explored in [2].

In conclusion, the advantage of RBF volumes lies in quality: we can inspect
individual particle elements from the simulation if needed and know that
nothing is omitted or simplified. Delta tracking, used in conjunction with
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interval iteration based on local value ranges, allows for efficient and
unbiased path tracing. Although specialized ray casting approaches
(e.g., [10]) would likely deliver superior performance, the versatility of being
able to path-trace and operate within an abstracted volume sampling
interface (Open VKL) is useful.
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CHAPTER 45

FAST VOLUMETRIC GRADIENT
SHADING APPROXIMATIONS FOR
SCIENTIFIC RAY TRACING
Carson Brownlee and David DeMarle
Intel Corporation

ABSTRACT

In scientific visualization, direct volume rendering requirements range from
fast approximations for interactive data exploration to photorealism with
physically based shading for renderings destined for the general public.
Gradient shaded lighting is a common non-physically based shading method
used in scientific volume visualization that increases the level of realism and
helps distinguish features in the data over simple forward ray marching.
Gradient shading comes at a significant runtime cost over simple ray casting,
especially as secondary rays are calculated at each sample point for lighting
effects such as shadows and ambient occlusion. In this chapter we examine
the simple optimization of shading at the single point of highest contribution.
In practice this method gives most of the benefits of full gradient shading that
help in feature detection and realism, with an order of magnitude
performance improvement.

45.1 INTRODUCTION

Direct volume rendering has been a staple of scientific visualization of
three-dimensional scalar fields since the 1980s [2]. Advances in rendering
algorithms and hardware acceleration have enabled an offline process to be
computed interactively, and then in real time, even for large-scale volumes [4].
Direct volume rendering computes a piecewise-linear approximation of the
volume rendering integral, calculating color attenuation and opacity based on
extinction coefficients along a viewing ray x(λ) at distance λ:

I =
∫ D

0
c
(
s(x(λ))

)
e–

∫ λ
0 α(s(x(λ′)))dλ′dλ. (45.1)

The color c is calculated based on a transfer function at the scalar value s,
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Figure 45-1. A scan of a human head rendered with simple volume ray casting (right) and with
shadows and ambient occlusion (left). Reducing the number of shading samples enables this
common scientific rendering method to be done at interactive to real-time rates.

c(s(x(λ))). Similarly, the opacity α is calculated based on a transfer function
based on the scalar value, α(s(x(λ))).

To show surface illumination at each point, c can be modified to use lighting
information for shading based on the gradient of the scalar field at point x,
∇s(x). Figure 45-1 shows direct volume rendering with simple line of sight ray
marching on the right and the same image but with shading, ambient
occlusion, and shadows on the left. The piecewise-linear approximation of the
integral is shown in illustrated form in Figure 45-2. Figure 45-1 shows images
produced from the integration shown in Figure 45-2a for ray casting and
Figure 45-2b for ray tracing with secondary rays. For ray casting, this is an

(a) (b)

Figure 45-2. (a) Direct volume rendering using line of sight ray marching. (b) Ray casting shadow
rays calculated at every sample point along the eye ray.
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O(n) computation per viewing ray, for n volume samples. Gradient shading
adds multiple additional volume lookups at each point to compute∇s(x),
while adding a single shadow ray or ambient occlusion sample at each point
makes it an O(n2) computation for each viewing ray. We refer to the full
gradient shading method as FG and a faster approximation using a single
shading point as single shot gradient shading, SSG.

These approaches are used in the Visualization Toolkit (VTK) [7]. VTK is the
backbone of many of the most commonly used open source visualization
programs such as ParaView [8] and VisIt [1]. VTK has two primary ray traced
rendering options in Intel OSPRay [9] and NVIDIA OptiX [6], and all of VTK’s
volume renderers support gradient shading. ParaView has supported built-in
ray tracing of volumes via OSPRay 1.x since version 5.2, including support for
SSG shading up through 5.8. Note that in ParaView 5.9, with the introduction
of major OSPRay 2.x features including path traced volume rendering,
ParaView temporarily lost SSG rendering because it was not part of OSPRay
2’s initial feature set due to a number of feature regressions with the SciVis
renderer. This feature is being reintroduced in OSPRay 2.6 and should
reappear in ParaView 5.10. ParaView 5.9 with a OSPRay 2.6 pre-release is
used here for all results and images.

45.2 APPROACH

The approach utilized is very simple in form and implementation: calculate an
average of all gradients weighted by alpha contribution, then calculate
shading and secondary rays from the single point of highest contribution,
Pmax, using the averaged gradient. Alternatively, the highest contributing
gradient could be used, but averaging minimizes view-dependent changes in
the resulting gradient. Pseudocode for both full gradient shading and using a
single shading point, determined with the useSingleShadeHeuristic
variable, is as follows:

1 void TraceVolumeRay()
2 {
3 float4 finalColor = {0,0,0,0};
4 while(!steppingDone) {
5 // Compute color and opacity at current sample point.
6 sample = Volume_getValue(distance);
7 color = mapThroughLookupTable(sample);
8 alpha = (1.f - finalAlpha) *
9 (1.f - exp(-color.a * dt * densityScale));
10

11 // Compute gradient shading lighting.
12 float4 ns = Volume_getGradient(distance);
13 if (useSingleShadeHeuristic) {
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14 // Remember point of highest density for deferred shading.
15 if (highestContribution < alpha) {
16 highestContribution = alpha;
17 highestContributionDistance = distance;
18 }
19 // Accumulate alpha and gradient.
20 finalAlpha += alpha;
21 gradient += ns * alpha;
22 } else {
23 // At every point, cast rays for contributions to integrate.
24 shading = computeShading(distance, ns);
25 color = lerp(gradientShadingScale , color, shading);
26 }
27 finalColor.blend(color, alpha);
28 steppingDone = increase(&distance);
29 }
30

31 if (useSingleShadeHeuristic) {
32 // At a single, point cast rays for contribution.
33 float3 ns = normalize(gradient);
34 shading = computeShading(highestContribtionDistance , ns);
35 singleShading = shading * finalAlpha;
36 finalColor = lerp(gradientShadingScale , finalColor, singleShading);
37 }
38 }

Alternate methods for reducing the number of samples required include
using isosurfaces (meshes or implicit) or utilizing methods such as delta
tracking progressively over many passes. Isosurfaces at peaks of the transfer
function minimize shading operations, however the transfer function
corresponding to a set of isosurfaces consists of a set of impulses in opacity.
The more a user-defined transfer function deviates from this form, the less
the resulting image would match the base gradient shaded image. With
regards to delta tracking, OSPRay’s path tracing algorithm utilizes Woodcock
style delta tracking [5], which reduces bias in sampling volumes compared to
fixed-step ray marching. ParaView’s OSPRay-based path tracing thus uses
the same implementation. The images and performance numbers shown in
Section 45.3.2 demonstrate the core problem we solve, that too many passes
are still needed to achieve a noise free image. Denoising reduces the number
of samples needed, but introduces its own overhead and unacceptable levels
of feature blurring at lower sample counts.

45.3 RESULTS

All runs are performed on a dual socket Intel Xeon Gold 5220, with 36 total
cores, 256 GB of RAM, and a GeForce RTX 2060. The GPU is used only for
display in these results as OSPRay is currently CPU-only. An unmodified
version of ParaView 5.9.0 is used with a pre-release version of OSPRay 2.6
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Figure 45-3. Brain (left) and cloud (right) data sets with respective transfer functions.

that supports single shading. The data sets used are an example scan of a
human head with a tumor from the 3D Slicer [3] project and the Disney
cloud [10], shown in Figure 45-3. The color and opacity transfer functions are
shown below their respective renderings, with opacity relating to the height of
the control points over the transfer function range. For the following
comparisons, we will relate three different rendering methods:

> Full gradient (FG): Gradient shading where each eye ray sample point
computes a gradient and secondary rays at each sample point.

> Single shot gradient (SSG): Gradient shading where only a single
sampling point along the ray is used for gradient shading operations.

> Path traced (PT): Path tracing using Woodcock-style delta tracking. We
include this as a another physically based method of shading based on
volume gradients increasingly used in scientific visualization and now
standard in studio rendering.

45.3.1 IMAGE QUALITY COMPARISON

Figures 45-4 and 45-5 show path traced images of the cloud and brain data
sets. The first image with a single sample per pixel (spp) is very noisy. At
4 spp the denoiser is enabled, which reduces noise, but the image becomes
very blurry. Though the image starts to look significantly better, we feel that
the blurred-over features of the data are likely unacceptable for scientific
visualization applications until higher sample counts are used at around
32 spp. PT with 32 spp is faster than 32 ambient occlusion (AO) samples with
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Figure 45-4. Cloud path traced. From left to right: 1 spp, 4 spp (denoised), and 32 spp (denoised).

Figure 45-5. Brain path traced. From left to right: 1 spp, 4 spp (denoised), and 32 spp (denoised).

Figure 45-6. Cloud ray traced with gradient shading using FG. From left to right: ray casting,
shadows, and shadows and AO.

Figure 45-7. Cloud ray traced with SSG. From left to right: ray casting, shadows, and shadows
and AO. SSG produces lighter highlights and darker shadows.

FG due to the increased number of samples for the AO rays using the FG
method compared to the stochastic sampling of secondary rays using delta
tracking with PT.

Figures 45-6 and 45-7 show renderings of the cloud data sets with FG and
SSG shading, respectively. SSG shading exhibits higher contrast in shadows
and highlights as the shaded color is not averaged over multiple samples.

730



CHAPTER 45. FAST VOLUMETRIC GRADIENT SHADING APPROXIMATIONS FOR SCIENTIFIC RAY TRACING

Figure 45-8. Brain ray traced with gradient shading with FG. From left to right: ray casting,
shadows, and shadows and AO.

Figure 45-9. Brain ray traced with SSG. From left to right: ray casting, shadows, and shadows
and AO.

This becomes even more apparent as shadow and ambient occlusion rays are
added, where the highest contributing point tends to be deeper inside the
volume. Pixel parity with FG shading is not paramount in a scientific
visualization context as the primary aim is enhanced identification of areas of
curvature and proximity, though FG is not a physically based rendering
algorithm to begin with. SSG also has a drawback of view-dependent shading
points as the point of greatest contribution changes based on viewing angle;
however, in practice no users have reported differences between the two and
have been happy with the added fidelity of shadows and ambient occlusions
introduced in ParaView. Figures 45-8 and 45-9 show the same comparisons
using the brain data set. Here, the most striking difference is when ambient
occlusion is added. SSG in this instance significantly intensifies occlusion
inside the skull surface, enhancing the bone surface.

45.3.2 PERFORMANCE COMPARISON

Table 45-1 shows recorded performance numbers for various methods
rendered at 1080p resolution inside of ParaView. Performance increases for
single shading varies between ca. 5× to ca. 50× for a single shadow ray to a
shadow ray and 32 ambient occlusion samples. Though dramatically different
methods, the single shade method is significantly faster than delta tracking
with a single sample per pixel. The 1 spp delta tracking method does not use
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Ray Tracing (s)

Model Ray Cast Shadows Shadows & 1 AO Shadows & 32 AO
Brain FG 0.102 0.486 1.25 24.3
Brain SSG 0.091 0.097 0.142 0.454
Cloud FG 0.329 1.07 3.62 73.9
Cloud SSG 0.180 0.207 0.265 1.95

Path Tracing (s)

Model 1 spp 4 spp (denoised) 32 spp (denoised)
Cloud PT 0.643 2.44 19.0
Brain PT 0.401 1.49 11.7

Table 45-1. Performance numbers for the brain and cloud models using FG, SSG, and PT. Ray
casting computes only direct illumination, shadows adds a single shadow ray, shadows and 1 AO
adds one shadow and one ambient occlusion ray, and shadows and 32 AO adds a single shadow
ray and 32 ambient occlusion rays.

a denoiser, while the denoiser is used for 4 spp and 32 spp. In the current use,
we feel that the path traced image is not sufficiently crisp until at least 32 spp,
with lower sample counts making features in the data difficult to discern.

45.4 CONCLUSION

Single shot gradient shading provides an order of magnitude faster
approximation for scientific visualization that, in practice, is a ready stand-in
for full gradient shading. Interactive rates are maintained for high sample
counts without the need for many passes and denoising. The method
introduces error compared to the full gradient shading baseline, but given the
non-physically based nature of gradient shading, this does not seem to be a
significant issue in practice. This simple method was vital to adding
secondary rays to basic scientific direct volume rendering in VTK.

REFERENCES

[1] Childs, H. et al. VisIt: An end-user tool for visualizing and analyzing very large data.
https://escholarship.org/uc/item/69r5m58v, 2012.

[2] Engel, K., Kraus, M., and Ertl, T. High-quality pre-integrated volume rendering using
hardware-accelerated pixel shading. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, pages 9–16, 2001. DOI:
10.1145/383507.383515.

732

https://escholarship.org/uc/item/69r5m58v
https://doi.org/10.1145/383507.383515


CHAPTER 45. FAST VOLUMETRIC GRADIENT SHADING APPROXIMATIONS FOR SCIENTIFIC RAY TRACING

[3] Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S.,
Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J. V.,
Pieper, S., and Kikinis, R. 3D slicer as an image computing platform for the Quantitative
Imaging Network. Magnetic Resonance Imaging, 30(9):1323–1341, 2012. DOI:
10.1016/j.mri.2012.05.001.

[4] Meißner, M., Hoffmann, U., and Straßer, W. Enabling classification and shading for 3D
texture mapping based volume rendering using OpenGL and extensions. In Proceedings
of the Conference on Visualization ’99: Celebrating Ten Years, pages 207–214, 1999.

[5] Morgan, L. and Kotlyar, D. Weighted-delta-tracking for Monte Carlo particle transport.
Annals of Nuclear Energy, 85:1184–1188, 2015. DOI: 10.1016/j.anucene.2015.07.038.

[6] NVIDIA. NVIDIA OptiX ray tracing engine. https://developer.nvidia.com/optix, 2021.
Accessed February 8, 2021.

[7] Schroeder, W. J., Martin, K. M., and Lorensen, W. E. The design and implementation of an
object-oriented toolkit for 3D graphics and visualization. In Proceedings of Seventh Annual
IEEE Visualization ’96, pages 93–100, 1996. DOI: 10.1109/VISUAL.1996.567752.

[8] Squillacote, A. H., Ahrens, J., Law, C., Geveci, B., Moreland, K., and King, B. The ParaView
Guide. Kitware, 2007.

[9] Wald, I., Johnson, G., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Günther, J., and
Navratil, P. OSPRay—A CPU ray tracing framework for scientific visualization. IEEE
Transactions on Visualization and Computer Graphics, 23(1):931–940, 2017. DOI:
10.1109/TVCG.2016.2599041.

[10] Walt Disney Animation Studios. Data sets: Clouds.
https://www.disneyanimation.com/data-sets/?drawer=/resources/clouds/, 2020.
Accessed February 8, 2021.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if you modified the licensed material. You do not have permission under this license to share
adapted material derived from this chapter or parts of it.
The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

733

https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1016/j.anucene.2015.07.038
https://developer.nvidia.com/optix
https://doi.org/10.1109/VISUAL.1996.567752
https://doi.org/10.1109/TVCG.2016.2599041
https://www.disneyanimation.com/data-sets/?drawer=/resources/clouds/
http://creativecommons.org/licenses/by-nc-nd/4.0/




PART IV
CHAPTER NAME

PART VII
RAY TRACING 
IN THE WILD





PART VII

RAY TRACING IN THE WILD

With modern GPUs, ray traced effects are now feasible in real-time graphics
pipelines. This provides an opportunity for higher visual quality, as ray tracing
can more easily capture realistic illumination, including reflections,
refractions, shadows, and global illumination. However, there is no free
lunch. Game engines have been optimized for rasterization-based graphics
pipelines over many years, and integrating ray tracing requires careful design
considerations. Furthermore, high-quality ray traced images use thousands
of rays per pixel at high resolutions, which is not yet feasible in real time. This
implies that ray tracing with a limited ray budget must be coupled with
denoising techniques, in order to meet both the performance and
quality targets.

Despite these challenges, there has been tremendous progress in ray tracing
adoption in games. Ray tracing is now readily available in some of the most
popular game titles and sets a new bar for visual fidelity in interactive
applications. This part presents examples of how this has been accomplished.

Control was one of the first games with ray tracing. Chapter 46, Ray Tracing in
Control, describes the game’s implementation of ray traced reflections,
contact shadows, indirect diffuse illumination, and corresponding denoisers.
The visual results, generated in real time, are stunning.

The version of Quake 2 enhanced by ray tracing (the Quake 2 RTX project,
Q2VKPT) is a nice showcase of applying path tracing to a classic game title.
Chapter 47, Light Sampling in Quake 2 Using Subset Importance Sampling,
addresses a highly active research topic: how to efficiently ray-trace scenes
with a large number of light sources. Random selection of subsets of lights
per pixel is combined with multiple importance sampling within each subset.

At the time of writing, Fortnite is the most popular game in the world.
Chapter 48, Ray Tracing in Fortnite, explains the integration of ray tracing
techniques, including shadows, reflections, and global illumination, into
Fortnite Season 15. By combining carefully tuned ray traced effects with
modern denoising techniques and NVIDIA’s Deep Learning Super Sampling
(DLSS), the team was able to substantially increase visual quality while also
meeting the game’s strict performance target.
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Chapter 49, ReBLUR: A Hierarchical Recurrent Denoiser, describes a novel
denoiser designed for real-time ray tracing applications. It has been deployed
in recent titles, including Cyberpunk 2077 and Watch Dogs: Legion. By
aggressively reusing information both spatially and temporally, the denoiser
produces practically useful results from only a few samples per pixel.

Chapter 50, Practical Solutions for Ray Tracing Content Compatibility in Unreal
Engine 4, addresses challenges and solutions when working with ray tracing
in scenarios where applications must also support legacy hardware. Two
techniques are covered: hybrid translucency and animated foliage, both of
which have been successfully used in shipping games.

These chapters present multiple examples of successful applications of ray
tracing in recent game titles. Alongside beautiful visual results, the
challenges and techniques to make them possible are carefully discussed. I
hope these chapters serve as inspiration for future ray traced interactive
applications.

Jacob Munkberg
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CHAPTER 46

RAY TRACING IN CONTROL
Juha Sjöholm,1 Paula Jukarainen,1 and Tatu Aalto2
1NVIDIA
2Remedy Entertainment

ABSTRACT

In this chapter, we describe how ray tracing was used in Control. We explain
how all ray tracing–based effects, including opaque and transparent
reflections, near field indirect diffuse illumination, and contact shadows, were
implemented. Furthermore, we describe the denoisers tailored for these
effects. These effects resulted in exceptional visual quality in the game, while
maintaining real-time frame rates.

46.1 INTRODUCTION

Control, launched in 2019, was one of the very first games with ray tracing.
Here, ray tracing was utilized in multiple ways to achieve higher visual quality.
Control uses a hybrid rendering approach, combining rasterization and ray

Figure 46-1. Control uses ray traced effects, such as reflections and near field indirect diffuse
illumination, to add to its unique artistic style. (Image courtesy of DeadEndThrills.)
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Figure 46-2. A simplified breakdown of a frame in Control with ray tracing effects enabled
showing how both rasterization and ray tracing are used for different purposes.

tracing. Ray tracing is used in opaque and transparent reflections, near field
indirect diffuse illumination, and contact shadows. These effects combined
demonstrate that ray tracing can achieve a new level of realism in real-time
gaming. A simplified breakdown of a frame can be seen in Figure 46-2.

This introduction section explains common features of the game engine
utilized by the different ray tracing effects. The rest of the chapter goes into
the details of how each effect, including denoising, was implemented in
Control. We describe how each effect was optimized to maintain real-time
frame rates. We highlight two recurring strategies that were the keys to
meeting the performance and quality targets:

> Reducing incoherence by shortening rays when possible.

> Shading incoherent rays at the right level of accuracy, which both
reduces noise and improves performance.

46.1.1 NORTHLIGHT ENGINE

Control was developed using the Northlight engine, an in-house game engine
developed by Remedy Entertainment. The Northlight engine uses deferred
lighting with a bindless material system, which simplifies the implementation
and optimization of ray tracing effects, e.g., effects that trace and shade
secondary rays (discussed in Sections 46.2, 46.3, and 46.4). It also allows
tracing shadow rays for selected light sources for each pixel (discussed in
Section 46.5). Additionally, the engine supports an approximative unified
parameterization and shading model for all materials, which is used in
shading of the ray hits. That works especially well with incoherent rays, as
described in Section 46.2.2.

46.1.2 PRECOMPUTED GLOBAL ILLUMINATION

The Northlight engine supports precomputed voxel-based global illumination
(see Aalto [1] for details), which had a key role in optimizing the ray traced
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reflections and indirect diffuse illumination (as described in Section 46.2.3
and 46.4). The precomputation is performed by a path tracer and is based on
static objects and selected light sources. The game levels have the global
illumination (GI) data stored in sparse volume textures. The resolution of the
available data at a given location is fundamentally artist authored. The data
can be sampled with a world-space position and a direction vector. The
sampling result is the irradiance over the hemisphere facing the given
direction in the given position.

46.1.3 ACCELERATION DATA STRUCTURE BUILDING

All ray tracing passes in the game use the same acceleration data structure.
An important principle in the construction of the acceleration data structure is
to use the same geometry levels of detail (LODs) as are used in rasterization.
This helps with avoiding self-intersections while providing as much detail as
possible for ray tracing. A design goal for the ray tracing effects was to
provide more accurate details than what is possible with screen space–based
techniques executed after rasterizing the scene.

For selecting the objects to be included in the ray tracing acceleration
structure, an expanded camera frustum–based culling is applied to the scene
objects in order to gather the objects that potentially contribute to some
effect. All opaque and most alpha tested objects are included. Some alpha
tested vegetation assets are left out as including them would give only minor
visual benefits compared to the increased ray tracing costs they incur.
Particles that are rendered as opaque meshes are also included in the
acceleration data structure. Blended objects and particles are excluded, but
that doesn’t lead to significant visual issues. However, to support discovering
transparent surfaces for rendering reflections on them, blended objects are
inserted into the structure with a special cull mask. This is discussed in more
detail in Section 46.3.1.

To reduce the memory and cache traffic during ray tracing, the compaction
operation available in the DirectX Raytracing (DXR) API is performed on all
static acceleration data structures. Skinned meshes are represented as
triangle geometries by outputting the skinned vertices to buffers with a
compute shader pass. The acceleration structure rebuilds and updates are
modulated to achieve better overall performance, but the rasterized and ray
traced meshes match on every frame. All acceleration structure building work
is executed on the asynchronous compute queue, as shown in Figure 46-2.

741



RAY TRACING GEMS II

46.1.4 LIGHT CLUSTERING

To shade specular reflections or indirect diffuse hits, we require knowledge
about which lights affect a given hit location. Evaluating illumination from all
scene lights would not be possible simply because of the evaluation cost. The
game levels may contain several thousand dynamic lights. For rasterization,
effective screen tile–based light culling implementation already existed, but
that was not directly suitable for shading ray hits. For ray tracing effects, an
additional light clustering pass is executed. It culls the scene lights against
cells of an axis-aligned 3D grid in view space. The grid has a limited size that
matches the range of the ray tracing effects. The clustering pass stores
indices of the lights affecting each grid cell to a texture. When shading the ray
hits, the list of lights affecting the grid cell matching the hit position is
processed.

46.2 REFLECTIONS

The implementation of ray traced specular reflections in Control is
straightforward. The reflection rays are generated for each pixel based on the
view direction and the surface properties stored in the rasterized G-buffer.
Self-intersections are avoided by matching the geometry LODs in ray tracing
and rasterization. Additionally, due to the inaccuracy of reconstructing
world-space position from the rasterized depth buffer, a bias value scaled by
pixel depth toward the camera position and along the surface normal is added
to the ray origin. One ray is traced for each pixel excluding only the sky pixels.
The game uses the GGX specular bidirectional reflectance distribution
function (BRDF) and has surfaces with spatially varying roughness levels. An
important design goal was to make the reflections work consistently across
all game content. Figure 46-3 shows the reflections on different surfaces.

The following sections describe the techniques that are used to find a good
balance between the desired visual quality and performance. Setting the ray
length, the fallback solution for missed rays, and shading quality of hits
proved to be essential issues. Figure 46-4 illustrates the general workflow.

46.2.1 TRACING REFLECTION RAYS WITH VARYING RAY LENGTH

The ray direction for each pixel is importance-sampled from the GGX
distribution. Higher surface roughness means that the ray directions on
neighboring pixels are more incoherent, which leads to more noise in the
rendered image and higher computation cost. To avoid generating noise that
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Figure 46-3. Left: screen-space reflections. Right: ray traced reflections, which show more
accurate details. The denoising process explained in Section 46.6 is applied to the image.

G-buffer Shade Hits
and Misses Apply to SurfaceDenoiseTrace Reflection Rays

Figure 46-4. A general overview of the ray traced reflections rendering.

would need to be removed from the final image anyway in the denoising
passes and also to reduce the cost of the evaluation, the length of the
reflection ray is limited based on the surface roughness, as illustrated in
Figure 46-5. On surfaces with the maximum roughness value 1.0, the ray
length is only about 3 meters. It increases exponentially to about 200 meters
as roughness decreases to the minimum value 0.0. These limits were chosen
by experimentation to make the result visually plausible. To make reflected
objects appear smoothly into the image as they move closer to the reflecting
surface, a pixel index–based random variation is also applied to the ray
length. This hides visual artifacts from the switch from ray misses to ray hits.

46.2.2 UNIFIED HIT SHADING

For shading the G-buffer, Control has a number of material variations with
special shading models for, e.g., character skin, eyes, and hair. However, for
shading the ray hits in ray tracing effects, a unified variant based on simple
parameterization of physically based shading is used for all materials, as
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Figure 46-5. How the reflection ray length varies based on surface roughness. Left: longer
reflection rays are generated when the roughness is low and ray direction distribution is coherent.
Right: shorter rays are used when the roughness is high and the direction distribution is
incoherent.

Listing 46-1. Pseudocode overview of the single any-hit shader used to perform alpha testing.

1 uint material = GetHitMaterialID();
2 uint3 vertexIndices = GetHitVertexIndices();
3 float2 uv = InterpolateHitUV(barycentrics, vertexIndices);
4 float alpha = SampleMaterialAlpha(material, uv);
5

6 if (alpha < 0.5f)
7 IgnoreHit();

mentioned in Section 46.1.1; i.e., the single parameterization and shading
model is used for all materials. This allows Control to use only one any-hit
shader and only one closest-hit shader in the DXR API. Overview of the unified
any-hit shader can be seen in Listing 46-1. The unified path is only an
approximation, but it provides a visually plausible result in practice. It makes
ray tracing development easier in general and helps to achieve satisfying
performance especially with incoherent rays and alpha testing. With the
incoherent rays, it also reduces noise in the output. The result of the hit
shading is the radiance arriving at the G-buffer surface. This is denoised, as
described in Section 46.6, before applying it to the receiving surface.

46.2.3 PRECOMPUTED GLOBAL ILLUMINATION FOR RAY MISSES

When the specular reflection rays miss, the precomputed GI data
(Section 46.4) is used to approximate the radiance coming from the direction
of the ray. The data is sampled at the end of the missed ray. As illustrated in
Figure 46-6, the irradiance over the hemisphere provided as the sampling
result is converted to average radiance before using it as an approximation.
Obviously, this is not accurate for multiple reasons. The result is based only
on static geometry and lights, the data resolution is limited, and converting
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Figure 46-6. How the precomputed GI data is used for missed rays. Left: the reflection ray hits
an object and the hit is shaded. Right: the reflection ray misses the object that is too far away, and
the GI data is sampled at the end of the ray as an approximation for the incoming radiance.
Sampling the GI data gives irradiance over hemisphere. That is converted into average radiance.

irradiance to average radiance can cause light leaks. But despite the
limitations, this method provides a visually plausible result in practice.

46.2.4 UNIFIED GLOBAL ILLUMINATION SAMPLING FOR HITS AND MISSES

To further unify the shading process, the handling of hits and misses uses
partially the same code path. This is possible as the GI data is used to
approximate the second ray bounce for hits and the first bounce for misses.
For hits, the GI data is sampled directly at the hit location for the second
bounce approximation. This means that the hit and miss handling are not
done inside hit or miss shaders. In Control, the shading happens in a separate
compute pass dispatched after the actual ray tracing pass is completed. The
separate pass reduces cache pressure especially when the rays are
incoherent. It’s implemented by resolving the hit geometry normal and
texture coordinates in the hit shader and storing them to textures for the
shading pass in addition to the hit position and material identifier. The hit
position is stored in view space to make half-precision floating-point values
sufficient for holding it. The ray misses are marked with a special material
identifier. An overview of the compute shader with the unified GI sampling for
hits and misses can be seen in Listing 46-2.

46.3 TRANSPARENT REFLECTIONS

Many levels in the game contain a fair amount glass windows, interior walls,
and other items with glass surfaces, e.g., wall clocks or poster frames.
Having ray traced reflections on those felt like a good addition to the
reflections on opaque surfaces. The reflections in different situations are
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Listing 46-2. Pseudocode overview of the shading pass performing the GI sampling for both hits
and misses.

1 float originDepth = DecodeGBufferDepth();
2 float3 position = DecodeHitOrMissPosition();
3 uint material = DecodeHitMaterialID();
4 float3 normal = DecodeHitNormal();
5 float2 uv = DecodeHitUV();
6 bool isHit = isMaterialHit(material);
7

8 float3 rayDirection = ReconstructRayDirection(originDepth, position);
9 float3 irradiance = SampleGI(isHit, position, normal, rayDirection);
10 float3 radiance;
11

12 if (isHit) {
13 radiance = ShadeHit(position, normal, rayDirection, material, uv,

irradiance);
14 }
15 else {
16 radiance = ConvertToAverageRadiance(irradiance);
17 }
18

19 WriteOutput(radiance);

shown in Figure 46-7. The following sections describe how the transparent
surfaces that receive ray traced reflections are identified, how the reflection
rays are generated, and how the results are applied to the receiving surface.
Figure 46-8 illustrates the general workflow.

Figure 46-7. Left: environment map–based reflections on transparent surfaces. Right: ray
traced reflections, which show significantly more accurate details.
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G-buffer depth Shade hits.
Store depth and radiance.

Rasterize
transparents.

Trace primary rays against transparents
If hit is found, trace recursive reflection ray.

Figure 46-8. A general overview of the ray traced transparent reflections rendering.

46.3.1 DISCOVERING TRANSPARENT SURFACES

Control uses ray tracing to find transparent surfaces. Primary rays are traced
against only the transparent objects. The length of the rays is limited based
on the rasterized opaque depth buffer to discover only the visible surfaces, as
illustrated in Figure 46-9. If a primary ray hits a transparent surface, a
reflection ray is generated based on the surface properties. Otherwise, the
pixel is marked as not having a transparent surface.

An alternative to the primary rays approach could have been rasterizing a
transparent G-buffer and tracing secondary rays based on that. However,
performance of the ray tracing approach proved to be competitive. The
directions of the primary rays are naturally coherent, and the processing
applied to them is uniform and quite simple in this case.

Transparent objects are inserted into the same acceleration structure as
everything else but marked with a different cull mask. Storing them in a
separate structure was also tried, but because there isn’t a significant overall
performance difference between the two approaches in this case, using a
common acceleration structure was chosen for simplicity. The overall
performance is a combination of the acceleration structure build cost and the
ray tracing cost.

N

Figure 46-9. First, discover the transparent surface by tracing a primary ray against transparent
objects, and then trace a recursive reflection ray for the closest found surface. The length of the
primary ray is limited based on the rasterized opaque depth.
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After discovering a transparent surface, it would be possible to continue the
primary ray in order to discover the next transparent surface. However, due to
performance reasons, the transparent reflections are limited only to the
nearest surface. The cost of the additional reflection rays would grow too high
to support more layers in some scenarios.

46.3.2 TRACING TRANSPARENT REFLECTION RAYS

Reflection rays are generated based on what the primary ray hits. One ray per
pixel is used as with opaque reflections. The surface normal is evaluated, and
the normal map is also applied. However, the possible surface roughness
value is ignored, and the reflection ray direction is always evaluated as a
perfect mirror reflection without any randomization. This allows avoiding
another denoising pass. Most transparent surfaces in the game are actually
mirror reflectors, so visually this works without disturbing issues.

As automatic texture LOD level selection is not available in ray tracing,
evaluating an approximation for the LOD for sampling the normal map is
required. Otherwise, the normal mapped reflection ray directions would be
very noisy in some situations. A simple LOD evaluation based on the pixel size
in world space proved to be sufficient in this case.

The length of the reflection ray is limited to 60 meters. The limit is not often
reached in the game, which contains mostly indoor locations, but it is still
applied to keep the performance stable under all scenarios. After the
distance limit, the reflections are based on the same environment cube maps
that are used when the ray traced reflections are disabled. Near the distance
limit, the result is faded from the ray traced result to the cube map–based
result to avoid sudden flips between different visual looks.

The shading of the reflection hits is done in the same way as for reflections on
opaque surfaces. A separate compute shader pass is executed that applies
the simplified and unified shading to the hit surface using the dynamic lights
culled by the view-space clustering pass. Even though rough reflections are
not supported on transparent surfaces, rich normal map details occasionally
lead to very incoherent reflection ray directions, which caused lots of
incoherent memory accesses and cache pressure. A specific challenging case
is shattered glass, which is fairly common in a shooting game.
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46.3.3 ADDING REFLECTIONS TO RASTERIZED TRANSPARENT SURFACES

The evaluated incoming radiance toward a transparent surface from the
direction of the reflection ray is not immediately applied to the surface. The
actual shading of transparent surfaces happens in a separate rasterization
pass. The incoming radiance is stored in a texture along with the depth of the
transparent surface. When rasterizing and shading transparent objects, the
depth of the shaded surface is compared to the depth value stored in the
texture. When they match, the stored radiance is used instead of the
environment cube map–based reflection. This approach decouples the
shading of the reflection from the shading of the reflecting surface and allows
using the same forward shading rasterization approach to render transparent
surfaces as is used when ray tracing is disabled.

46.4 NEAR FIELD INDIRECT DIFFUSE ILLUMINATION

The implementation of ray traced indirect diffuse illumination in Control
resembles the implementation of specular reflections in many ways.
However, as using the ray traced indirect illumination also replaces
modulating the precomputed global illumination with screen-space
occlusion, it has two aspects. It works as ray traced ambient occlusion in
addition to actually evaluating dynamic indirect diffuse lighting. The results
are shown in Figure 46-10.

Figure 46-10. Left: precomputed GI is applied on the opaque surface modulated by screen-space
occlusion. Right: ray traced dynamic indirect diffuse illumination is applied on the surface in
addition to the precomputed GI modulated by ray traced occlusion.
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Figure 46-11. Generated indirect diffuse illumination rays based on the G-buffer. The ray length
is limited. When the ray misses, the precomputed GI is applied to the surface instead of the
radiance coming from the hit surface. This makes the effect work both as ray traced ambient
occlusion and as dynamic indirect diffuse illumination.

The ray generation happens based on the rasterized G-buffer using cosine
distribution for the ray directions as defined by the diffuse Lambert BRDF
model. The ray length is limited to one meter. The short rays work well for
resolving occlusion as they need to mostly cover only the occlusion from
dynamic occluders. The occlusion caused by static large objects at larger
distances is already precomputed to the GI data, which is applied to the
surface when the ray misses, as illustrated in Figure 46-11. When the ray
hits, radiance from the hit surface is applied instead. When evaluating the
radiance, the specular BRDF is ignored in order to eliminate noise. The
direction-dependent specular highlights could add a considerable amount of
noise when the diffuse integral over hemisphere is approximated with only
one ray per pixel.

The precomputed GI is used to approximate the second bounce for hits.
Similar to the shading of specular reflections, this allows partially unified
handling of hits and misses. The GI sampling code is executed regardless of
whether the ray hits or misses. And similar to the specular reflections, the
shading is executed in a separate compute pass using the simplified, unified
material parameterization and shading model and the results of the
view-space light clustering pass.

46.5 CONTACT SHADOWS

Traditional shadow maps may suffer from shadow acne due to insufficient
resolution or shadow map bias. Though there are ways of mitigating these
issues, ray tracing is a low-effort way to not have these problems in the
first place.
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Figure 46-12. General overview of contact shadow rendering.

Though ray traced shadows accurately solve visibility, they might not be a
feasible solution for hundreds of lights due to performance reasons,
especially if long rays are needed for capturing visibility in a large scene.
Because shadow maps are a good and fast solution on a large scale and ray
traced shadows excel with short rays, why not use both? Combining the
techniques gives great image quality with high performance. Shadow maps
handle most cases and ray traced shadows fills in the details. Ray tracing
shadows using only very short rays makes them fast and gives the accuracy
that we might be missing from shadow maps.

In Control, we take the following approach, shown in Figure 46-12: Regular
shadow maps are rendered for all shadow casting lights. A few lights are
selected for contact shadows and then (non-translucent) visibility is traced for
them. The visibility buffer is denoised before it is used in lighting (discussed
in Section 46.6.2). Finally, shading is done using both shadow maps and
denoised contact shadows.

46.5.1 LIGHT SELECTION

In Control, lights are culled using a frustum volume and lighting is deferred.
During the main lighting pass, the maximum intensity point lights or
spotlights are recorded per pixel. However, not all pixels will be covered by
any point lights or spotlights. In that case a pixel is left blank. These lights
are ignored in the main lighting, but later added with visibility from both ray
traced contact shadows and shadow maps.

Contact shadows are traced for lights, if any, in the maximum intensity buffer.
Figure 46-13 shows an example of the maximum intensity light buffer. Black
areas indicate that these regions do not have any lighting from point lights or
spotlights.

46.5.2 TRACING CONTACT SHADOWS

Tracing shadows is a simple task: trace a ray from the current pixel position
in world space toward a selected light. To get soft shadows, the ray direction
needs to be jittered with an offset that is within the light’s radius.
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Figure 46-13. Spotlight index is stored in the red channel and point light index in the green
channel. These lights don’t always cover the whole screen, and usually there are only a few
different lights that dominate.

Both spotlights and point lights are treated as spherical lights. This will create
soft penumbras, but with a cost of noise, which eventually needs denoising
before it can be used in lighting. Alternatively, more rays could be traced, but
one ray per pixel with a well-designed denoiser and short ray distance gives
good results. Denoising of contact shadows is discussed in Section 46.6.2.

The ray direction offset is calculated by first sampling a blue noise texture.
This texture gives a random seed that is used to sample a concentric disk.
The sample from the disk is multiplied with the light’s radius and used to
jitter the ray direction using the orthonormal basis of the light.

Contact shadows are only traced for opaque surfaces within the camera
frustum. Hit and miss shaders return binary visibility and hit distance (hitT),
which are both stored. Visibility from both spotlights and point lights are
written to the same buffer in separate channels. Compare the results in
Figure 46-14.

In Control, ray traced shadows are computed only for the two most significant
lights, using a limited ray length and a single ray per pixel. This works very
well in terms of performance and visual impact.
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Figure 46-14. Left: basic shadow map usage. Right: contact shadows add details on contacts
between the floor and other objects.

46.6 DENOISING

Denoising is an essential part of ray tracing effects. Many ray traced effects
are based on Monte Carlo integration, which inherently produce noisy results.
Usually, we trade performance for quality, but with a good denoiser we can
have both.

Our denoising passes start by implementing a ray generation shader for each
ray traced effect. For example, the style of random noise use for jittering the
ray direction can affect how the resulting noisy image will look. A poorly
chosen noise generator can leave a visible, recognizable pattern in the
final image.

Also, the ability to discard sources of noise already while shading the rays can
simplify the denoising task. For example, avoiding incoherent rays on rough
surfaces and using smooth, precalculated data instead of sparsely sampled
rays can result in a cleaner image, which is easier to denoise. However, not all
sources of noise are avoidable and different effects may need different filters.
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In Control, separate denoisers are implemented for reflections, indirect
diffuse illumination, and contact shadows.1 The input data for each of these
effects is slightly different and can benefit from different filtering approaches.
The filtering approaches used in Control were inspired by spatiotemporal
variance-guided filtering (SVGF) [5].

46.6.1 DENOISER FOR REFLECTIONS AND INDIRECT DIFFUSE ILLUMINATION

To reduce the sources of noise in the input for reflections, we use shorter rays
on rough surfaces, sample precomputed GI data on ray misses, and treat
transparent reflections as mirror reflections. The ray direction is jittered with
a world-space position–based random noise to diminish screen-space
correlations.

Similarly, the ray generation shader for indirect diffuse illumination uses
precomputed GI data to minimize noise and the aforementioned scheme for
perturbing the ray direction.

The reflection and indirect diffuse illumination denoisers are the most similar
and share most of the same code, but are still executed as separate passes.
As a first step, they both have a firefly filter (embedded into the temporal
pass), which will clamp spiky, high intensities. Firefly clamping is done by
sampling the source texture intensity and clamping it with an average
luminance from a lower mip level. We use different mip levels and clamping
constants for reflections and indirect diffuse illumination.

After intensity clamping, regular temporal accumulation is performed with
the previous frame’s spatial filtering result, as shown in Listing 46-3. For the
reflection denoiser, we apply variance clipping [4].

The temporal filter is followed by a spatial filter. The number of spatial
filtering passes depends on the effect. For reflections, the spatial filter is
executed twice per direction (horizontally and vertically) and three times for
indirect diffuse illumination. The spatial filter samples the current pixel color
and takes four samples with an offset (see extendOffset in Listing 46-4) that
is extended in each pass [5, 6]. Each sample has a weight applied to it, which
varies depending on which effect we denoise.

After the weight calculations, all samples are weighted and the final denoised
color is resolved. On the last spatial filter iteration, we will temporally

1Technically, the reflection and indirect diffuse denoisers could be combined for better performance.

754



CHAPTER 46. RAY TRACING IN CONTROL

Listing 46-3. Temporal filter.

1 void TemporalFilter(...) {
2 // Read source: reflections or indirect diffuse illumination.
3 float3 finalColor = sourceTexture.Load(uint3(position, 0));
4 // Filter high frequencies using lower mip levels of sourceTexture.
5 finalColor = clampIntensity(finalColor);
6 float2 previousUv = reprojectToPreviousFrame(position);
7 float3 previousColor = historyColor.SampleLevel(sampler, previousUv, 0.0

f);
8 float temporalWeight = <user-defined-maximum>;
9 temporalWeight *= isDepthValid(currentDepth, previousDepth);
10 temporalWeight *= getVelocityWeight(currentUv, previousUv);
11 #if RELECTIONS
12 previousColor = doVarianceClip(previousColor);
13 #endif
14 finalColor = lerp(finalColor, previousColor, temporalWeight);
15 targetTexture[position] = finalColor;
16 }

accumulate once more with the result from the first temporal
accumulation pass.

After the spatial pass, we add a Fresnel component to the denoised
signal—for both reflections and indirect diffuse illumination. Demodulating
the Fresnel component gives us a cleaner signal to denoise.

WEIGHTING OPTIONS

Our spatial filter pass uses multiple approaches to weight samples. In
addition to temporal accumulation, we use a set of filters depending on the
effect. We have tuned these weights for our application. We are mostly
validating or weighting input data against various surface attributes and
hand-picked constants.

In the reflection denoiser, we use bilateral weights (see Section 46.6.1), filter
weights [5], a weight based on hit distance, variance clipping, and a weight
based on smoothness. As we are handling rough reflections mostly using
precomputed GI data, which reduces input noise, we can bilaterally filter
reflections with surface attributes, e.g., depth, normals, and roughness.

The indirect diffuse signal is much noisier than the reflection signal. Thus, we
need to take a more relaxed approach in filtering. We mostly want to limit how
far we can accept data and not strictly discard it based on surface attributes.
The indirect diffuse denoiser uses bilateral weights, filter weights, and a
weight based on hit info.
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Listing 46-4. Spatial filter.

1 void SpatialFilter(...) {
2

3 // Initialize pixel position, pixel UV, previous position, etc.
4 ...
5 float currentWeight = 1.0f;
6 float sampleWeights[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
7 float3 currentColor = sourceTexture.Load(position);
8

9 currentWeight *= getWeightsUsingBilateralFilter(...);
10 currentWeight *= getWeightsUsingFilterWeights(...);
11

12 for (int i = 0; i < 4; ++i) { // Samples from neighborhood
13 sampleColor[i] = sourceTexture.Load(position + extentOffset(i + 1));
14 // Apply a number of filters depending on
15 // which effect we are denoising.
16 sampleWeights[i] *= getWeightsUsingFilterA(...);
17 sampleWeights[i] *= getWeightsUsingFilterB(...);
18 sampleWeights[i] *= getWeightsUsingFilterC(...);
19 ...
20 }
21

22 // Resolve samples.
23 currentColor *= currentWeight;
24 for (int i = 1; i < 4; ++i) {
25 sampleColor[i] *= sampleWeights[i];
26 }
27

28 float3 finalColor = currentColor;
29 for (int i = 1; i < 4; ++i) {
30 finalColor += sampleColor[i];
31 }
32

33 // Normalize with total weight from this pass.
34 finalColor *= inv(currentWeight + length(sampleWeights));
35

36 // Do one more temporal pass.
37 if (isLastIteration) {
38 // Same logic as before
39 ...
40 finalColor = lerp(finalColor, previousColor, temporalWeight);
41 }
42 targetTexture[position] = finalColor;
43 }

We show denoised results for reflections and indirect diffuse illumination in
Figures 46-15 and 46-16, respectively.

BILATERAL WEIGHTS

The bilateral weights are calculated by taking four samples with an offset
from depth, normal, smoothness, and material ID buffers. Then, we calculate
a weight from each sample set and finally combine these weights into one,
which is returned, as shown in Listing 46-5.
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Figure 46-15. Noisy (left) and denoised (right) reflection buffers compared.

Figure 46-16. Noisy (left) and denoised (right) indirect diffuse illumination buffers compared.

46.6.2 CONTACT SHADOW DENOISER

The contact shadow ray generation shader does two things as a preparation
for denoising: it uses blue noise as a random seed for the ray direction offset,
and it writes out hitT along with the visibility. A random seed is used for
sampling a concentric disk. The random sample from the disk is multiplied by
the light radius and is used for offsetting the ray direction. The value hitT is
later used in denoising.
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Listing 46-5. Bilateral weight.

1 void getBilateralWeight(...) {
2 float depth0 = depthBuffer.Load(position);
3 float depth1 = depthBuffer.Load(position + offset1);
4 float depth2 = depthBuffer.Load(position + offset2);
5 ...
6 // Repeat for other buffers.
7 float4 weightDepth = abs(depth0 - float4(depth1, depth2, depth3, depth4)

);
8 ...
9 // Repeat for other sample sets.
10 float4 finalWeight = 1.0f;
11 finalWeight *= max(<user-defined-min>, saturate(1.0f - weightDepth * <

user-defined-multiplier >));
12 ...
13 // Repeat for other weights.
14 return finalWeight;
15 }

The shadow denoiser (shown in Listing 46-6) is built similarly to the denoisers
for reflections and indirect diffuse illumination. A temporal filter is executed
first, which accumulates the previous frame’s visibility data with the current
frame’s visibility if reprojection succeeds. The temporal filter is followed by a
spatial filter, which is tailored for shadows: we know which light hit which
pixel and can access the information related to that light. That information
can be used to denoise shadows efficiently.

Listing 46-6. Shadow filter.

1 LightData centerLight; // Fill LightData struct.
2 ...
3 centerLight.sigma = GetRadiusInWorld(worldPos, centerLight.worldPosition,

lightRadius, centerLight.hitT) * 0.6666f;
4

5 for (int i = 1; i < filterSize; i += filterStepSize) {
6 samplePosition = position + int2(-i,-i) * filterDirection;
7 DenoisePixel(denoisedVisibility, sumOfWeights, centerLight,

samplePosition, currentDepth, positionInWorld);
8 samplePosition = position + int2(i, i) * filterDirection;
9 DenoisePixel(denoisedVisibility, sumOfWeights, centerLight,

samplePosition, currentDepth, positionInWorld);
10 }
11

12 denoisedVisibility /= sumOfWeights;
13 denoisedVisibility = saturate(denoisedVisibility);
14

15 // Write out denoisedVisibility.

The spatial filter used in Control was heavily inspired by the Gameworks
spatial shadow filter by Story and Liu [2]. The filter is separable, executed
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Figure 46-17. The light radius can be projected onto the shadowed surface using hitT.

once per direction. The idea of the spatial filter is to check per pixel which
light potentially created the shadow, approximately project the light radius on
the shadowed surface, and use that information to weigh neighboring
samples. For sample weighting we used Gaussian weights with sigma
calculated from the light radius in world space [3].

First, a filter kernel is initialized retrieving light data for the current pixel,
which we refer to as the center. We prepare the kernel with the light position
in world space, radius, index, visibility, hitT, and Gaussian deviation:

1 struct LightData {
2 float3 lightPositionInWorld;
3 float hitT;
4 float lightRadius;
5 float sigma;
6 float visibility;
7 uint lightIndex;
8 };

The Gaussian deviation is calculated from the projected light radius (see
Figure 46-17). The projected light radius can be calculated using the surface
position, light position, and hitT. Please refer to Listing 46-7.

Listing 46-7. Projected light radius.

1 float GetRadiusInWorld(float3 surfacePosition, float3 lightPosition, float
lightRadius, float hitT) {

2 float3 surfaceToLight = lightPosition - surfacePosition;
3 float3 hitPosition = surfacePosition + hitT * normalize(surfaceToLight);
4 float hitDistance = length(lightPosition - hitPosition);
5 float lightHalfFov = asin(lightRadius / hitDistance);
6 return tan(lightHalfFov) * hitT;
7 }
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After we’ve initialized our filter kernel, we can start sampling. We use a
kernel radius of eight pixels and take two pixel-wide steps. On each step we
call DenoisePixel, which samples visibility at the pixel and validates it
against the depth and light indices. (See Listing 46-8.) If the visibility data is
from the same light as our kernel center, we can potentially use it.

Listing 46-8. DenoisePixel.

1 void DenoisePixel(inout float denoisedVisibility, inout float sumOfWeights,
LightData centerLight, LightData centerPoint, uint2 sampePosition,
float centerDepth, float3 positionInWorld) {

2

3 // Check point light and spotlight indices at sample pixel.
4 uint sampleLightIndex = GetLightIndex(sampePosition);
5 float sampleDepth = GetDepth(sampePosition);
6

7 // Sample raw contact shadow buffer.
8 float sampleVisibility = GetVisibility(sampePosition);
9

10 // Check sample validity in depth.
11 uint isValid = IsValid(sampleDepth, centerDepth) ? 1 : 0;
12

13 float sampleWeight = 0.0f;
14 float distanceSampleToCenter = length(positionInWorld -

samplePositionInWorld);
15

16 // We can use this sample if it's visibility data is
17 // from the same light as the center.
18 if (sampleLightIndex == centerLight.index && isValid) {
19 // Calculate Gaussian weight in world space.
20 sampleWeight = GetWeightInWorld(distanceSampleToCenter , centerLight)

;
21 }
22

23 denoisedVisibility += sampleVisibility * sampleWeight;
24 sumOfWeights += sampleWeight;
25 }

We can only use a sample’s information if it originates from the same light as
the center pixel’s sample. In theory, when the maximum intensity light buffer
is created, each pixel could get contributions from a different light if there
were numerous lights in the scene. In this case, we would not be able to
denoise, because all visibility information in each pixel would originate from
different lights. Luckily, that was not a common lighting setup for Control.

For each valid sample we calculate the sample distance from the kernel
center in world space and use it to calculate a Gaussian weight:

1 float GetWeightInWorld(float length, float sigma) {
2 if (sigma == 0.0f)
3 return (length == 0.0f) ? 1.0f : 0.0f;
4 return exp(-(length * length) * rcp(2.0f * sigma * sigma));
5 }
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Figure 46-18. Left: noisy. Right: denoised. Top: spotlight shadow. Middle: shadows from a few
point lights. Bottom: combined shadow buffers.

When all filter steps are done, we write out the denoised visibility and use it in
the lighting. Compare the results shown in Figure 46-18.

46.7 PERFORMANCE

Ray tracing performance varies from frame to frame depending on how much
of the screen is covered by transparent surfaces and how much of the screen
is covered by lights selected for contact shadows. We captured two
representative frames at a resolution of 2560× 1440 pixels on NVIDIA RTX
3090 to give an example of ray tracing performance. In our example cases,
shown in the Figure 46-19, all ray tracing effects take around 8.9 ms of the
19 ms total frame time and 7.1 ms of the 16 ms total. This time is divided into
tracing rays, shading the hit results, and denoising. That is a significant
fraction of the frame time, but bear in mind that tracing rays enables effects
that would not be otherwise possible and adds a lot to the realism of
the scene.
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Figure 46-19. Two frames captured at a resolution of 2560× 1440 pixels on NVIDIA RTX 3090 for
performance measurements.

Table 46-1 shows the timing for the individual passes of the ray tracing
effects. As we can see, denoising usually takes almost as long as if not even
longer than tracing rays. Tracing performance is largely dependent on the ray
count and the geometric content of the frame, and denoising only depends on
the rendering resolution. Spending an equal amount of time in denoising as in
ray tracing might sound a lot, but in practice it offers a good balance between
performance and image quality. If we increased the ray count, performance
would be impacted significantly. Going from one to two rays per pixel often
doubles the time spent in tracing, but likely only has a modest impact on
image quality. We argue that a fairly low ray count combined with
domain-specific denoisers is the current sweet spot between image quality
and performance.

Frame 1 Frame 2
Pass Time (ms) Time (ms)
Acceleration structure building (async.) 0.6 1.0
Reflection ray tracing 1.0 1.4
Reflection shading 1.4 1.1
Reflection denoising 0.8 0.8
Transparent reflection ray tracing 0.8 0.3
Transparent reflection shading 0.7 0.1
Indirect diffuse ray tracing 0.8 0.7
Indirect diffuse shading 0.8 0.6
Indirect diffuse denoising 1.1 1.0
Contact shadow ray tracing 0.8 0.4
Contact shadow denoising 0.7 0.7
Total Cost: 8.9 7.1

Table 46-1. Frame time spent on different ray tracing effects at a resolution of 2560× 1440
pixels on NVIDIA RTX 3090. The acceleration structure build time is not included in the total cost
because it performed asynchronously.
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46.8 CONCLUSIONS

In this chapter, we have shown how ray traced reflections, near field indirect
diffuse illumination, and contact shadows can be implemented in a hybrid
renderer. By carefully tuning the input signal and designing domain-specific
denoisers, we have succeeded in adapting these effect to a visual quality and
performance level suitable for a shipped game title. We are very happy with
the first launch of the game Control. We show that ray tracing can be used to
enhance an existing rendering pipeline that is deployed also on platforms
without hardware-accelerated ray tracing. Without too much hassle, we were
able to bring out visual details and accuracy not possible with traditional
rasterization techniques. The effects and their implementation fit comfortably
to the game. We look forward to how ray tracing can be utilized in future
projects.
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CHAPTER 47

LIGHT SAMPLING IN QUAKE 2
USING SUBSET IMPORTANCE
SAMPLING
Tobias Zirr
Karlsruhe Institute of Technology

ABSTRACT

In the context of path tracing, to compute high-quality lighting fast, good
stochastic light sampling is just as important as light culling is in the context
of raster graphics. In order to enable path tracing in Quake 2, multiple
solutions were evaluated. Here, we describe the light sampling solution that
ended up in the public release. We also discuss its relation to more recent
approaches like ReSTIR [4], real-time path guiding [11], and stochastic
lightcuts [19]. Finally, we leverage the power of variance reduction techniques
known from offline rendering, by providing an extension of our stochastic light
sampling technique that allows use ofmultiple importance sampling (MIS). The
resulting algorithm can be seen as a variant of stochastic MIS, which was
recently proposed in the framework of continuous MIS [34]. To this end, we
derive additional theory to introduce pseudo-marginal MIS, allowing for
effective variance reduction by marginalization with respect to only parts of
the sampling process.

47.1 INTRODUCTION

The Q2VKPT project—leveraging ray tracing to bring unified solutions for the
simulation and filtering of all types of light transport into a playable
game—was created by Christoph Schied [25] to build an understanding of
what is already feasible, and what remains to be done for future ray traced
game graphics. The release of GPUs with ray tracing capabilities has opened
up new possibilities, yet making good use of ray tracing remains nontrivial:
ray tracing alone does not automatically produce realistic images. Light
transport algorithms like path tracing can be used for that, realistically
simulating the complex ways that light travels and scatters in virtual scenes.
However, though elegant and powerful, naive path tracing is also very costly
and takes a long time to produce stable images. Even when using smart
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Figure 47-1. Path tracing in Q2VKPT at one sample per pixel, with and without denoising (using
Adaptive Spatiotemporal Variance-Guided Filtering, ASVGF [27]). Sampling all lights in the scene
uniformly leads to poor shading and shadow quality, both with and without denoising (left). For the
public release of Q2VKPT, we implemented stratified resampled importance sampling (RIS) [30, 5],
performing approximate product importance sampling of light and material contributions within
stochastic subsets of all lights (middle).

adaptive filters [26, 7, 27] that reuse as much information as possible across
many frames and pixels—similarly to temporal antialiasing (TAA)—care has to
be taken to keep variance manageable in order to efficiently produce clean
and stable images.

Monte Carlo (MC) techniques like path tracing work by tracing random light
paths that connect the camera and light sources via scattering surfaces in the
scene. Ray tracing is used to resolve visibility: for each scattering interaction,
it finds the next visible surface in a given direction. For the resulting shading
estimates to be robust (i.e., for them to efficiently converge to the correct
result with few path samples), the random paths need to represent the actual
illumination in the scene well. However, such good importance sampling (IS),
ensuring that the path density closely matches the distribution of light
transport in the scene, is hard: perfect importance sampling would require
predicting the distribution of (indirect) light via arbitrary scattering
interactions in advance.

In Q2VKPT, following common practice in (offline) movie rendering [13, 6, 14,
9], path tracing is used with additional light sampling (next event
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estimation (NEE)) in order to reliably find the relevant lights for each surface
in a scene: At each visible surface point, two rays are traced. One is a shadow
ray traced toward a random point on a random light source. This point on the
emitter is sampled in a way that makes it representative for the entire
illumination in the scene (i.e., the probability of sampling specific emitters is
proportional to their shading contribution; this is crucial and the concern of
this chapter). To recursively accumulate multi-bounce illumination, another
ray points in a random direction sampled proportionally to the scattering of
the shaded material. The next visible surface in this direction is then shaded
in the same way.

Similarly to light culling in real-time rendering, picking the right lights for
each surface point is crucial for image quality: in the MC path tracing
framework, picking the wrong lights too often results in highly unreliable
shading estimates, which then force reconstruction filters to suppress the
resulting outliers, removing all the details that the path tracer was supposed
to produce in the first place.

47.2 OVERVIEW

In this chapter, we present the constant-time light sampling algorithm
implemented in Q2VKPT. The algorithm uses stratified sampling to obtain
random subsets with constant size for every frame and pixel, sampled from a
potentially long list of relevant light sources. Thus, it quickly hits all light
sources over time, while the stratified sampling, with the right locality in light
lists, keeps subsets representative of the full illumination in the scene. Within
a stochastic subset, importance sampling according to the precisely
estimated influence of each light source can be done in a controlled
time budget.

In contrast to more recent approaches like ReSTIR [4], our approach is more
primitive and thus less optimal, but independent of spatiotemporal data
structures (see also Section 47.3)—how to best adapt ReSTIR to multiple
bounces in this regard is a question for future research. During development,
Q2VKPT was also tested with advanced hierarchical light sampling
approaches [10, 20, 19] inspired by movie production: by clustering lights
hierarchically, the influence of many lights can be estimated at once, allowing
for quick exclusion of far away, dim lights and of lights pointing the wrong
way. However, in our experience, such estimates are hard to get precise (see
also Section 47.3).
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For this chapter, an additional challenge we address is the implementation of
multiple importance sampling (MIS) with our subset sampling technique. MIS is
crucial to limit variance in some common cases, e.g., for specular highlights
of nearby reflected emitters and for emitters in close proximity to lit surfaces.
Without MIS, these cases require aggressive clamping, potentially hampering
the physically based appearance that is expected from a path tracing–based
renderer. To integrate MIS with our technique, we build on the framework of
stochastic MIS (recently introduced in the context of continuous MIS), and we
propose pseudo-marginal MIS to allow effective variance reduction using only
the readily available information of a stochastic subset of lights, i.e., without
requiring expensive full marginalization of probability densities.

47.3 BACKGROUND

Scenes in games and movie productions can contain large amounts of light
sources, and as such, sampling of light sources has been a long-standing
topic of research both in academia and production rendering. Our goal is to
sum the contribution of all light sources Ll for l = 0, . . . ,K – 1, emitting
light Ll(x, y) from points y ∈ Ll to each shading point x,1 given its normal n, its
material as defined by the bidirectional scattering distribution function
(BSDF) fr, and a view direction o:

Lo :=
K–1∑
l=0

∫
Ll

fr
(
o, x, i

)
nTi V(x, y) Ll(x, y) dy, where i =

y – x
‖y – x‖

, (47.1)

and the visibility V(x, y) of y from x is determined via ray tracing to obtain
accurate shadowing. Computing accurate shading for all shading points and a
large number of light sources would be prohibitively expensive. Instead,
Monte Carlo integration evaluates a random variable F that computes the
shading integrand for only one random point on only one randomly chosen
light source for each shading point, in a way such that the expected value of F
happens to coincide with the accurate shading by all light sources:

F :=
fr
(
o, x, i

)
nTi V(x, y) Ll(x, y)

p(y|Ll)P(Ll)
, Ep(y|Ll)P(Ll)[F] = Lo. (47.2)

As long as the chance of sampling is nonzero for all the points on the light
sources that contribute nonzero shading to the point x, we are free to choose

1For an area light, Ll(x, y) = (|nTl i| Ll(y, –i))/∥y – x∥
2, where nl is the normal of the emitting surface and Ll(y, –i)

is its radiance at y toward x. For a point light, Ll(x, y) = (δ(y – yl) Il(–i))/∥y – x∥2, where yl is its position and Il(–i)
is its intensity toward x. For a directional light, Ll(x, y) = δ(y – yl(x)) El(x), where El(x) is its irradiance toward x
and yl(x) projects x onto its orthogonal plane.
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any sampling strategy: In F, divide by the probability P(Ll) of randomly
choosing the light source Ll, and divide by the probability density p(y|Ll) of
randomly choosing the point y on Ll, then compensate for how often each of
the samples occurs. Both divisions are canceled out in the expected value.

In order to obtain good shading estimates fast, we want to limit the potential
deviation of F from the accurate shading Lo (typically quantified by the
variance V[F]). This is achieved when the light source Ll and y ∈ Ll are
sampled often where their contribution to the shading point x is high: ideally,
we want the probability density p(y|Ll)P(Ll) of light sampling to cancel out the
shading integrand [29], such that F always equals the correct result for any
random samples Ll, y ∈ Ll.

47.3.1 LIGHT RESAMPLING

To achieve such importance sampling in real-time path tracing, Bikker [2] uses
resampled importance sampling (RIS) [30, 5], where first a set of candidate
points on light sources is sampled, then their contribution is estimated to
sample one final point, using a distribution function proportional to their
contribution relative to the other candidate points. For direct illumination,
Bitterli et al. [4] propose the ReSTIR algorithm, which optimizes and refines
this approach in many ways: Based on the framework of reservoir
sampling [8], they avoid storing any candidate points, resampling candidates
such that at any time only one tentative final point, surviving the sampling
process, needs to be stored. Furthermore, they observe that resampling
results can be reused across pixels and even multiple frames, applying
resampling hierarchically. By this parallel distribution of sampling efforts
over space and time, ReSTIR quickly achieves importance sampling with
respect to very large numbers of light sources and candidate emitter points,
leading to high-quality, low-variance shading results with little computational
overhead.

In the public release of Q2VKPT, our stochastic light subset sampling without
MIS bears similarities to Bikker’s approach, but adds a stratified sampling
scheme that leads to better screen-space error distribution, uses fewer
random variables, and avoids creating many candidate points on light sources
(see Section 47.4.3). Internally, we also tested reservoir sampling to avoid
explicit storage of candidate contributions (see Section 47.4.4), but because it
reduced the benefits of using blue noise pseudo-random numbers, we
decided against it in the public release. As we show in this chapter, our
approach can be extended to allow MIS [31], which efficiently reduces
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variance and thus potential energy loss due to clamping, especially for
reflective materials. In comparison to ReSTIR, our algorithm is more
primitive and less optimal, but in contrast, our approach also handles indirect
illumination easily, requiring no changes.

47.3.2 HIERARCHICAL LIGHT SAMPLING

Shirley et al. [29] describe sampling strategies for different light source
shapes. To reduce the amount of light sources they need to consider, they
precompute importance stored in an octree. It has since become a common
approach in offline rendering to organize light sources into a tree data
structure, which is then typically stochastically traversed [13, 18] for efficient
importance sampling among many lights. Depending on performance
trade-offs, lights are clustered hierarchically by either higher-quality
bounding volume hierarchies (BVHs), mixed-quality two-level BVHs [21], or
faster-to-construct linear-time BVHs (LBVHs) [19].

A difficulty of such hierarchical importance sampling schemes is estimating
the contribution of many lights from purely aggregate information in coarser
levels during traversal: when a shading point is close to a cluster of lights, or
even contained therein, the contribution of each contained light may depend
strongly on the location and orientation of the shading point. To this end,
Estevez and Kulla [10] complement contribution estimation heuristics with
reliability heuristics during traversal, collecting lights from all subtrees
whenever an aggregate contribution estimate is deemed unreliable. Similarly,
stochastic light cuts [19] combine the ideas of light cuts [33] (representing the
emissions of many lights approximately by fewer aggregate lights, clustering
hierarchically and refining adaptively during rendering) and of light sampling
hierarchies (replacing any selected aggregate lights in the light cut by
hierarchically sampling leaf lights to recover unbiasedness).

Variations of these hierarchical algorithms vary in their aggregate reliability
heuristics, the number of lights selected, and the data structures used. We
refer to Moreau and Clarberg [20] and Estevez and Kulla [10] for a broader
overview. As common in real-time rendering, to further improve sampling
and performance at the cost of introducing bias, the number of light sources
considered at each point can be reduced by restricting the emission
range [28, 3, 14].

In Q2VKPT, we experimented with light hierarchies following Moreau and
Clarberg [20], adapting the heuristics of Estevez and Kulla [10] to real-time
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rendering. However, lacking the adaptive splitting heuristic [10] (which would
require costly traversal of all subtrees when encountering unreliable
contribution estimates), the algorithm was hard to get robust. We often saw
aggregate contribution heuristics failing and leading to visible noise artifacts
in the resulting image. With the right tuning, a two-phase parallel approach of
first splitting then stochastic traversal as in stochastic light cuts [19] might
work for certain GPU applications. However, in either form, stochastic tree
traversals cause incoherent memory access patterns. Finally, in animations,
tree updates can cause drastic changes of split quality metrics and thus tree
topology, making the sampling quality temporally inconsistent. Our simpler
light subset selection algorithm avoids these caveats.

47.3.3 SAMPLE REUSE AND GUIDING

Similarly to how ReSTIR [4] distributes importance sampling over multiple
pixels and frames, caching and reusing information for improved importance
sampling has been done in more general settings, e.g., as importance
caching [15] of light importance distributions on a sparse set of surface points,
distributed in the scene before rendering. Caching has found its way into
production for both direct [6] and indirect [32, 22] illumination. Dittebrandt et
al. [11] come up with data structures and compression schemes to support
online learning of light sampling distributions in real time, which also works
for indirect bounces. Their paper shows results for Quake 2 RTX. Typical
challenges of guiding, learning, caching, and reusing algorithms are the
detection of similarity, applicability, and expiration of cached or shared
information, which we avoid by the simple approaches in this chapter.

47.4 STOCHASTIC LIGHT SUBSET SAMPLING

Because tracing rays for shadow tests is still a costly operation, we follow
common path tracing practice and select only one light source per shading
point. It may seem like we can skip shading computations for many light
sources altogether, however this would not lead to high-quality shading but to
a lot of noise: We still need to approximate shading contributions of all lights
that we choose from. Only then, we can choose each light with the right
probability proportional to its contribution [29], ensuring MC sample values
that are close to the correct result.

The challenge we address in this section is to reduce the number of light
sources for which we approximate shading contributions, while keeping the
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probability of sampling each light approximately proportional to its
contribution relative to all light sources. In Q2VKPT, for each shading point we
have a (possibly long) light list of emitters that are potentially relevant for
shading that point. We build these lists from the potentially visible set (PVS) for
each cluster of level geometry (binary space partitioning (BSP) node) at load
time. Nearby dynamic lights are appended at runtime. Building lists of
relevant lights for level geometry is a known problem to game developers with
various solutions (parallel grid/cluster culling based on proximity heuristics,
potentially visible sets, etc.).

To achieve our goal of cutting down on the long lists of relevant light indices J
at a shading point x, let us split the contribution of all K relevant light sources
into S parts, iterating through K/S light indices Js in each part:

Lo =
S–1∑
s=0

∑
l∈Js

∫
Ll

fr
(
o, x, i

)
nTi V(x, y) Ll(x, y) dy. (47.3)

This allows us to construct a corresponding Monte Carlo estimator Fs that
computes Lo by first randomly selecting a subset of lights Js and then
sampling a light index l from the subset only:

FS :=
fr
(
o, x, i

)
nTi V(x, y) Ll(x, y)

p(y|Ll)P(l|Js)P(s)
, Ep(y|Ll)P(l|Js)P(s)[FS] = Lo. (47.4)

As we want to avoid computations for more than one subset Js, we choose
one s uniformly at random (P(s) = 1/S). In order to still obtain high-quality,
low-variance results, each subset Js should be representative of all relevant
light indices J; that is, we would like to achieve approximately the same
probabilities sampling from Js as sampling from the full distribution:

P(l|Js)P(s) ≈ P(l|J), where J =
S–1⋃
s=0

Js and Js ∩ Js′ = ∅. (47.5)

Within the shorter lists Js, it becomes feasible to perform product importance
sampling for sampling l ∈ Js, i.e., to sample each contained light proportional
to its predicted shading contribution (neglecting visibility). If the subset Js is
indeed representative of J, the procedure will not produce much more noise
than sampling from the full light list J.

47.4.1 PRACTICAL STRIDED SUBSETS

In Q2VKPT, we use constant-size subsets of (maximum) length R, splitting the
list J of K relevant light indices for a shading point into S = dK/Re subsets Js. If
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Stride

Subsets:
Represented Emitters

Figure 47-2. Our light sampling performs approximate product importance sampling by
importance sampling from strided “representative” subsets of the full light list for each
shading point.

the full list J of lights is small, there will be only one subset and the light
sampling is optimal. For subsets of long lists J to stay representative, we
choose a strided subset selection strategy as illustrated in Figure 47-2; we
pick every Sth light from J with varying initial offsets s:

Js := J
[
s + iS|i ∈ N0

]
. (47.6)

The reasoning behind this strategy is based on the way our light lists are
constructed in Q2VKPT: Due to our light geometry being sourced from the
game level’s hierarchical space partitions, spatially colocated emitters are
often colocated in memory. Thus, a strided subset of light sources often still
gives a good idea of their spatial distribution in the scene.

An important advantage of choosing the subset by one offset s is that we can
benefit from low-discrepancy random variables: We use the same random
variable to first select one subset out of S subsets, then rescale the interval
that maps to offset s such that the random values contained by it can be
reused to sample the light within the selected subset. If we map exactly one
random variable interval to every light source (proportional to its
contribution), then the resulting noise will show the pleasant dither pattern of
low-discrepancy points (they are optimized to sample intervals well).

47.4.2 WORST-CASE VARIANCE ANALYSIS

The values of FS can be bounded relative to the values of an idealized
estimator F∗, which would perform importance sampling with respect to all
relevant lights, sampling with the probability distribution function (PDF)
p(Y|Ll)P(l|J):
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F∗ =
fr
(
o, x, i

)
nTi V(x, y) Ll(x, y)

p(y|Ll)P(l|J)
, (47.7)

FS = F∗
P(l|J)

P(l|Js)P(s)
= F∗S

∑
i∈Js C(Li)∑
i∈J C(Li)

< dK/ReF∗, (47.8)

for estimated contributions C(Ll) of lights Ll to the shading point, such that
P(l|J) = C(Ll)/

∑
i∈J C(Li). It follows from P(s) = 1/S in our sampling procedure

that, in the worst case, our subset sampling causes at most S = dK/Re times
higher error than ideal importance sampling, while guaranteeing constant
runtime. In Q2VKPT, we choose R = 8 representatives and thus our subset
count S is small. In practice, the variance is even lower: when each subset is
representative of the full illumination, it is close to optimal (then FS ≊ F∗).

47.4.3 TWO-SWEEP ALGORITHM

Listing 47-1 provides pseudocode for the direct implementation of our light
sampling algorithm, illustrated in Figure 47-2. Our light lists are
concatenated in one long array light_pointers. Given a shading point x, the
enclosing potentially visible set cluster provides an index range
[light_list_begin, light_list_end) for the relevant lights. The
contribution of contained light sources is predicted by the function
light_contrib, as detailed in Section 47.4.5.

First, we split the potentially long list of K relevant lights into S representative
parts of length R = MAX_SUBSET_LENGTH. We do this using the number of parts
as a stride, such that all subset_stride-th lights in the list become part of
the same subset. We then randomly select one of these subsets by sampling
a start offset subset_offset relative to the beginning of the light list.

In a first loop over all lights in the selected (strided) subset, we compute a
conservative estimate for the contribution of each subset light, which we store
in a fixed-length importance sampling array is_weights and sum up to obtain
a normalization constant for random sampling. Afterward, we determine a
random threshold for sampling one of the subset lights with a probability
proportional to its contribution weight. We do this in a second loop, reiterating
the stored contribution weights until the prefix weight mass reaches the
random threshold.

Finally, we compute the probability of sampling the chosen light. This
probability is a coefficient that can afterward be multiplied to the PDF of
sampling one point on the chosen emitter, to obtain the final light
sampling PDF.
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Listing 47-1. Sampling a light source from a strided stochastic subset in two sweeps, using one
random variable ξ1.

1 S =
⌈

light_list_end–light_list_begin
MAX_SUBSET_LEN

⌉
2 subset_stride = S
3 subset_offset = ⌊ξ1 * S⌋
4 ξ1 = ξ1 * S - ⌊ξ1 * S⌋
5

6 total_weights = 0
7 float is_weights[MAX_SUBSET_LEN]
8

9 light_idx = light_list_begin + subset_offset
10 for (i = 0; i < MAX_SUBSET_LEN; ++i) {
11 if (light_idx >= light_list_end) {
12 break
13 }
14 w = light_contrib(v, p, n, light_pointers[light_idx])
15 is_weights[i] = w
16 total_weights += w
17

18 light_idx += subset_stride
19 }
20

21 ξ1 *= total_weights
22 mass = 0
23

24 light_idx = light_list_begin + subset_offset
25 for (i = 0; i < MAX_SUBSET_LEN; ++i) {
26 if (light_idx >= light_list_end) {
27 break
28 }
29 mass = is_weights[i]
30

31 ξ1 -= mass
32 if not (ξ1 > 0) {
33 break
34 }
35 light_idx += subset_stride
36 }
37

38 probability = mass / (total_weights * S)
39 return (light_pointers[light_idx], probability)

47.4.4 ONE-SWEEP ALGORITHM

The requirement of intermediately storing contribution weights can increase
register and/or memory pressure, depending on the compiler and
architecture. We can avoid this storage and iterating over the light subset
twice (at the cost of potentially less stratified sampling, e.g., if blue noise is
used for random variables).
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Listing 47-2. Sampling a light source from a strided stochastic subset in one sweep, using one
random variable ξ1.

1 S =
⌈

light_list_end–light_list_begin
MAX_SUBSET_LEN

⌉
2 subset_stride = S
3 subset_offset = ⌊ξ1 * S⌋
4 ξ1 = ξ1 * S - ⌊ξ1 * S⌋
5

6 selected = (light_idx: -1, mass: 0)
7 total_weights = 0
8

9 light_idx = light_list_begin + subset_offset
10 for (i = 0; i < MAX_SUBSET_LEN; ++i) {
11 if (light_idx >= light_list_end) {
12 break
13 }
14 w = light_contrib(v, p, n, light_pointers[light_idx])
15 if (w > 0) {
16 τ = total_weights

total_weights+w

17 total_weights += w
18

19 if (ξ1 < τ) {
20 ξ1 /= τ

21 } else {
22 selected = (light_pointers[light_idx], w)
23 ξ1 = ξ1–τ

1–τ
24 }
25 ξ1 = clamp(ξ1, 0, MAX_BELOW_ONE) // Avoid numerical problems.
26 }
27

28 light_idx += subset_stride
29 }
30

31 probability = selected.mass / (total_weights * S)
32 return (selected.light, probability)

For this, we use an incremental sampling scheme (reservoir sampling [8])
that retains the same probabilities of sampling each light, but redistributes
the value range of the random variable ξ1 differently: for each iterated light, a
decision is made whether to keep the previously selected light or to switch to
the current light as the next candidate for the final sampled emitter.

Listing 47-2 provides the altered pseudocode for the one-sweep, incremental
sampling implementation of our light sampling algorithm. The threshold τ
computed in line 16 ensures that the final probability of keeping the light
source stored in selected as the final sampled emitter is still exactly
proportional to its contribution weight: given the probability Ps(Li) = 1 – τ of
selecting emitter Li in step i, we find the final probability P(Li) of selecting and
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keeping Li to be

Ps(Li) = 1 – τ =
wi∑i
j=0 wj

(47.9)

⇒ P(Li) = Ps(Li)
∏
j=i+1

(
1 – Ps(Lj)

)
=

wi∑#Js–1
j=0 wj

. (47.10)

Besides this, Listing 47-2 closely follows what we saw in Listing 47-1.

47.4.5 PREDICTING THE CONTRIBUTION OF LIGHT SOURCES

Making a good prediction for the contribution of a single light source Ll to a
given shading point x (i.e., evaluating Equation 47.1 with only one fixed l) can
be a challenge in itself, depending on the involved materials, the visibility, and
the shape of Ll. As it is unpredictable, we neglect visibility (note that more
recent approaches like ReSTIR [4] and real-time path guiding [11] improve on
this). For predicting the unshadowed contribution, we use a rather simplistic
heuristic: First, we evaluate the BRDF of the shading point for the center of
the light source, clipping the resulting light direction to the horizon of the
shaded surface. In order to prevent misguiding by the peaks of highly
reflective materials, we limit the material roughness in this context. All our
lights are triangles. To account for their extent, we compute the solid angle
covered by the light source, projecting its triangle onto the sphere around x. A
precise formula is given by Arvo [1]. To conservatively bound the cosine, we
compute the dot product of the normal n at x and the direction toward the
highest light vertex above the shading horizon.

47.4.6 PRACTICAL IMPROVEMENTS

For more precise predictions of shading contributions with arbitrary BRDFs,
there is a body of recent research to draw on, such as accurate analytic
estimation of the unshadowed shading via linearly transformed cosines (LTCs)
for area lights [16] and linear lights [17]. Optimal light sampling strategies on
the level of individual light sources are a topic of ongoing research (and with
it, analytic integration to obtain corresponding PDFs), with notable recent
advancements for area lights [23] and sphere lights [24].

47.5 REDUCING VARIANCE WITH PSEUDO-MARGINAL MIS

A typical issue of light sampling algorithms is that, with highly reflective
materials, predicting the shading contribution of lights is difficult to
impossible (depending on visibility): the shading contribution
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f(y) = fr
(
o, x, i

)
nTi V(x, y) Ll(x, y) (see Equation 47.1) for such BSDFs fr may be

very different even for individual points y on the same light Ll, making its
shading

∫
Ll

f(y) dy dependent on the precise shape of the light source and its
visibility. In production rendering, such shading is often left to other sampling
techniques than light sampling, such as finding lights by simple ray tracing
instead: rays into relevant directions are sampled proportionally to the
scattering profile of the material. In this section, we adapt this strategy into
the context of real-time light sampling in Q2VKPT.

47.5.1 MULTIPLE IMPORTANCE SAMPLING

The decision where which sampling technique works best and should
therefore be trusted most can be made by the heuristics of multiple
importance sampling [31]. The key observation of MIS is that in MC
estimation, for each sampled point y that contributes light f(y), we can decide
individually what fraction w1(y) of its contribution should be estimated by one
technique such as light sampling and what fraction w2(y) by another technique
like tracing with BSDF scattering rays. The two sampling techniques will
generate the same points y with different probability distributions, e.g., p1(y)
for light sampling and p2(y) for BSDF sampling, while the weighted sum of
their samples will still converge to the shading we want to compute:

E p2(y2)
·p1(y1)

 2∑
i=1

wi(yi)
f(yi)
pi(yi)

=∫
L

∫
L

2∑
i=1

wi(yi)f(yi)
2∏
j ̸=i

pj(yj) dyj︸ ︷︷ ︸∫
L pj(yj|U) dyj=1

dyi (47.11)

=
2∑
i=1

∫
L
wi(yi)f(yi) dyi =

∫
L

( 2∑
i=1

wi(y)︸ ︷︷ ︸
=1

)
f(y) dy. (47.12)

A simple weighting heuristic that retains the good parts of light sampling
with p1(y) and BSDF sampling with p2(y) is the balance heuristic [31] with
weights wi(y) = pi(y)/

∑
j pj(y), conveniently resulting in the same MC

estimates regardless of the sampling strategy used to generate y:

wi(y)
f(y)
pi(y)

=
f(y)∑
j pj(y)

. (47.13)

Note that the resulting denominator in fact corresponds to the marginal
probability distribution of using both sampling techniques in parallel.
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47.5.2 STOCHASTIC MULTIPLE IMPORTANCE SAMPLING

In the following, we adapt MIS to add BSDF sampling along with the light
sampling in Q2VKPT. This significantly reduces noise and denoiser artifacts
for glossy materials in some hard cases (see Figure 47-5 in Section 47.7).
However, an interesting challenge arises when we want to apply MIS to our
stochastic subset sampling strategy: in order to compute the denominator
p1(y) + p2(y) for our MIS-weighted shading estimates, we would need to know
the marginal probability density of sampling from all subsets Js (see
Section 47.4) rather than from one subset only. For our previous strided
subset selection scheme, if we found a light by ray tracing with PDF p2(y), for
computing p1(y) we would at least have to look at all the lights in the subset of
that light source, also.

To avoid this overhead, we construct a generalized stochastic variant of MIS
that allows us to circumvent marginalizing with respect to all possible ways of
sampling y. Such generalizations were recently discussed as approximations
of continuous MIS [34] and as generalized (discrete) MIS [12]. As a generalized
form of generating stochastic subsets of all relevant lights J, let IU denote
subsets that are constructed using any number of uniform random variables
U = (u1, u2, ..., uR) ∈ U , U = [0, 1]R. The balance heuristic can be applied to only
the sampling technique resulting from the stochastic subset:

E p2(y2|U) p1(y1|U) p(U)

 2∑
i=1

f(yi)
p1(yi|U) + p2(yi)


=
∫
U

∫
L

∫
L

2∑
i=1

f(yi)
p1(yi|U) + p2(yi)

pi(yi|U) p(U)︸︷︷︸
=1

2∏
j ̸=i

pj(yj|U) dyj︸ ︷︷ ︸∫
L pj(yj|U) dyj=1

dyi dU (47.14)

=
∫
U

2∑
i=1

∫
L

f(yi)
p1(yi|U) + p2(yi)

pi(yi|U)︸ ︷︷ ︸
note:

p2(y|U)=p2(y)

dyi dU=
∫
L

(∫
U
dU︸ ︷︷ ︸

=1

)
f(y) dy. (47.15)

However, it is important to note that such naive randomization of MIS may
render its weighting ineffective for variance reduction: whenever BSDF
sampling hits a light source that is not contained by the current stochastic
subset IU, the PDF p1(y|U) becomes zero and MIS is effectively inactive.

47.5.3 PSEUDO-MARGINAL MIS

For good variance reduction performance, we need to ensure that any
stochastic subset we select also helps with variance reduction for any lights
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hit by BSDF samples. Our key insight is that we do not have to choose
between full marginalization or full randomization of MIS weights. In
particular, it is also possible to marginalize with respect to one random
variable only. For example, if in the subset IU each selected light source was
chosen with one random variable uj, then we can marginalize with respect
to u1, while reusing all the information of light sources chosen with the other
random variables uj̸=1:

E p2(y2|U) p1(y1|U) p(U)

 2∑
i=1

f(yi)∫
[0,1] p1(yi|U) du1 + p2(yi)


=
∫
U

2∑
i=1

∫
L

f(yi)∫
[0,1] p1(yi|U) du1 + p2(yi)︸ ︷︷ ︸
note: does not depend on u1

pi(yi|U) dyi dU (47.16)

(see Equations 47.14 and 47.15)

=
∫
[0,1]R–1

2∑
i=1

∫
L

f(yi)∫
[0,1] p1(yi|U) du1 + p2(yi)

(∫
[0,1]
pi(yi|U) du1︸ ︷︷ ︸

note:∫
[0,1] p2(y|U) du1=p2(y)

)
dyi d(u2, ...) (47.17)

=
∫
L

(∫
[0,1]R–1

d(u2, ...)︸ ︷︷ ︸
=1

)
f(y) dy. (47.18)

The marginalization of p1(y|U) with respect to u1 is simple, as the resulting
PDF only depends on whether or not u1 adds l to IU for the respective Ll 3 y.
The probability of the respective events is multiplied by the respective values
of p1(y|U). With this, we can ensure that the marginal density

∫
[0,1] p1(y|U) du1

is nonzero for any y ∈ Ll found by BSDF sampling, as long as we ensure that
any l can be selected with u1.

47.5.4 STRATIFIED PSEUDO-MARGINAL MIS

Sampling light sources in the stochastic subsets IU completely independently
has disadvantages, because the same light source may unnecessarily be
chosen twice. We can simplify computing the marginalization of p(y|U) by
stratification, and even increase the resulting probability density reliably: We
define a stratified stochastic subset JU, based on a list of random variables
U = (u1, ..., uR), each random variable ui independent and uniform, as

JU := J
[
iS + buiSc|i ∈ N0

]
, (47.19)
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Light Sampling Subset

Replacement Subset for MIS

(Hit Emitter Replaces Sampled Light in Its Stride)

Figure 47-3. To enable MIS, stochastic light subsets are randomized independently within each
stride. This allows us to compute additional sampling weights for emitters hit by BSDF rays: We
can replace any light selected in the corresponding subset stride by the hit emitter, and thus obtain
another representative stochastic subset for that emitter with minimal additional information.

that is, each random variable ui selects an index from the list of all relevant
lights J within a stride of S light indices. This is illustrated in Figure 47-3. For
a given y, we marginalize with respect to the random variable uj that is
responsible for selecting Ll, where y ∈ Lk. The only case in which p1(y|U) is
nonzero is when JU contains within the respective stride [jS, (j + 1)S) in the
list J: ∫

[0,1]
p1(yi|U) duj =

1
S
p1(yi|U setting uj such that l ∈ JU). (47.20)

Note that with this we effectively perform different marginalizations for
different y ∈ L, but the derivation in Equation 47.18 still works after the
integral over L is split into respective regions, each cancelling out a different
marginalized PDF.

47.6 STOCHASTIC LIGHT SUBSET MIS

To implement the idea of pseudo-marginal MIS, we need to change our way of
stochastically sampling subsets, such that for each subset selected in light
sampling, it becomes easy to construct a similar, equally probable subset that
is guaranteed to contain a specific emitter hit by ray tracing. This can be
achieved by independently randomizing the subset selection process in each
stride of the light list (see Equation 47.19), such that for every subset, there
exists another equally probable subset that replaces one light by the hit
emitter, within the respective light list stride (see Figure 47-3). In Listing 47-3,
we identify this stride during the light sampling process and additionally keep
track of the total weight of all lights in the subset except for the one in the
stride of the hit emitter.
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Listing 47-3. Light sampling with information for MIS weighting of BSDF-ray light hits, using one
random variable ξ1.

1 S =
⌈

light_list_end–light_list_begin
MAX_SUBSET_LEN

⌉
2 subset_stride = S
3

4 selected = (light_idx: -1, mass: 0)
5 total_weights = 0
6

7 // Additional information and randomization for MIS
8 hit_caught = not hit_emitter
9 other_weights = 0 // Weights excluding hit_emitter stride
10 pending_weight = 0
11 FastRng small_rnd(seed: ξ1, mod: S)
12

13 light_offset = light_list_begin
14 for (i = 0; i < MAX_SUBSET_LEN; ++i) {
15 light_idx = light_offset + small_rnd()
16 if (light_idx >= light_list_end) {
17 // Detect if hit_emitter is in current stride.
18 hit_caught ||= light_offset < light_list_end
19 && light_pointers[light_offset] <= hit_emitter
20 break
21 }
22 w = light_contrib(v, p, n, light_pointers[light_idx])
23 // Accumulate all weights outside hit_emitter's stride.
24 wo = w
25 if (not hit_caught && hit_emitter <= light_pointers[light_idx]) {
26 // Is the emitter in this or the last stride?
27 if (light_pointers[light_offset] <= hit_emitter)
28 wo = 0 // This stride
29 else
30 pending_weight = 0 // Last stride
31 hit_caught = true // Found hit_emitter
32 }
33 other_weights += pending_weight
34 pending_weight = wo
35

36 if (w > 0) {
37 τ = total_weights

total_weights+w ; total_weights += w
38 if (ξ1 < τ) { ξ1 /= τ }
39 else { selected = (light_pointers[light_idx], w); ξ1 = ξ1–τ

1–τ }
40 ξ1 = clamp(ξ1, 0, MAX_BELOW_ONE)
41 }
42 light_offset += subset_stride
43 }
44 // Compute pseudo-marginal probability of sampling hit_emitter.
45 if (hit_caught)
46 other_weights += pending_weight
47 hit_w = light_contrib(v, p, n, hit_emitter)
48 hit_probability = hit_w / ((other_weights + hit_w) * S)
49

50 probability = selected.mass / (total_weights * S)
51 return (selected.light, probability, hit_probability)
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47.6.1 INDEPENDENTLY SELECTING LIGHTS PER STRIDE

In order to independently sample one light per light list stride, we use a fast
linear congruential generator (FastRng in Listing 47-3) to generate integers
in [0,S – 1] in each iteration of the loop (line 15). Note that simply using one
floating-point random number, as in the incremental sampling scheme of the
previous section, is not generally feasible because the number of random bits
may be exceeded even for lower stride widths and counts.

47.6.2 IDENTIFYING THE STRIDE OF HIT EMITTERS

Once a ray hits an emitter by chance, e.g., by BSDF sampling, we need be able
to identify its subset stride in the light sampling process and replace the
corresponding importance sampling weight therein by that of the hit emitter.
It is nontrivial to keep track of the offsets of the emitters in all light lists of the
scene because, as in any real-world application, there are likely many light
lists adapted to capture the relevant illumination for different shading points.

We tackle this problem by enforcing an order for emitters in light lists, i.e., we
introduce an (arbitrary) order defined by the memory location of each emitter.
Once all light lists are sorted in ascending order, we can infer the strides that
potentially contain a given hit emitter hit_emitter during light sampling by
simple pointer comparisons with other lights in the subset (Listing 47-3,
lines 18 and 23). This allows us to obtain the weight sum other_weights that
only contains the weights of lights in the current subset that do not overlap
with the stride of the hit emitter.

Finally, we are able to compute the pseudo-marginal probability required
for MIS at the hit emitter (line 48), knowing the total weight
hit_w + other_weights of the corresponding alternative subset
(compare to Figure 47-3).

47.7 RESULTS AND DISCUSSION

All variants of our method run in real time on an NVIDIA GeForce RTX 2070, at
a resolution of 1920× 1080 at 11–17 ms of frame time (including denoising).
We implemented our method in the open source Q2VKPT project [25], which is
based on Vulkan using the hardware-accelerated ray tracing extension. We
show unfiltered one-sample-per-pixel path tracer outputs with one indirect
light bounce and outputs that were filtered using a variant of spatiotemporal
filtering [27].
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Figure 47-4. Light importance sampling with various stochastic subset sizes, at one sample per
pixel, unfiltered (top) and denoised with ASVGF [27] (bottom). The quality of light sampling
increases with the size of the stochastic subsets, balancing more samples with respect to other
lights. With uniform sampling, even clamped path tracing produces high variance, as lights are
randomly far away or nearby, in or out of the focus of specular highlights. This leads to unstable
results, even after temporal filtering, causing flickering in motion. Importance sampling in
stochastic subsets is effective in reducing variance, bringing results closer to a converged result
even at one sample per pixel.

47.7.1 RUNTIMES

The path tracer runs at 7–9 ms per frame with one indirect bounce and a
stochastic light subset size of 8. Randomizing the subset by choosing
individual offsets per stride as in Section 47.6 adds about 0.1 ms compared to
the randomization with regular intervals as in Section 47.4. Enabling MIS
adds another 1–1.5 ms, as it requires computing and tracking a few additional
quantities and additional emitter texture accesses for the hit points of
BSDF-sampled rays.

47.7.2 SUBSET SIZES

As shown in Figure 47-4, subset sizes affect the quality of results,
demonstrating how good importance sampling improves the performance of a
Monte Carlo path tracer. Especially for smaller subset sizes, the resulting
noise is reduced significantly with every additional light in the subset. For
Q2VKPT, we chose a subset size of 8 as a trade-off between sampling quality
and performance because it gave decent results that looked stable after
denoising. In our (unprofiled, not thoroughly optimized) implementation,
going from a subset size of 8 to 16 adds 1 ms, going to 32 another 1.5 ms, and
up to 64 another 3 ms.
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Figure 47-5. Our light sampling with and without MIS-weighted BSDF samples, at one sample
per pixel, unfiltered (top) and denoised (bottom). As expected, the RMSE numbers (top row)
decrease with our pseudo-marginal MIS. Top inset row: MIS makes up for cases where our light
sampling alone underestimates contributions and samples the floor lights too rarely. Without MIS,
we would need to clamp these samples to obtain robust denoising results under motion. Bottom
inset row: unfortunately, the additional randomization, required for our pseudo-marginal MIS,
destroys the stratification of pixel error in screen space. Under motion, this results in slightly less
stable denoising results.

47.7.3 MULTIPLE IMPORTANCE SAMPLING

The impact of MIS (with emitters selected by light sampling and emitters hit
by BSDF sampling) on our results is shown in Figures 47-5 and 47-6. There
are two noticeable cases where MIS with BSDF sampling makes up for typical
shortcomings of light sampling approaches. In the first case, around the
center of a specular highlight, when the corresponding emitter is nearby,
different points on the emitter can have very different contributions to the
shaded point. Here, our approximate product importance sampling fails to
predict the exact contribution of the emitter as a whole, and thus assigns
misleading importance weights to it. The other typical failure case affects
points in direct proximity of emitters, where the inverse squared distance law
of light falloff results in individual emitter points contributing unbounded
sample values for light sampling. In both cases, MIS identifies BSDF sampling
as the better sampling technique, because its probability density covers both
specular peaks and nearby points well. As a result, light samples are
downweighted and BSDF samples upweighted in these locations, making up
for the shortcomings of light sampling and ensuring stable shading estimates.
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Figure 47-6. Our light sampling with and without MIS-weighted BSDF samples, at one sample
per pixel, unfiltered (top) and denoised (bottom). Root mean square error numbers (RMSE) are
inset. See Figure 47-5 for discussion.

47.7.4 STRATIFICATION

Our stratified subset sampling strategy without MIS (Section 47.4) works well
with stratified random variables (in our case blue noise points), as is visible in
Figure 47-7 (left). Unfortunately, this is no longer the case when we add
pseudo-marginal MIS (Section 47.6). The required additional randomization
destroys the correspondence between convex random variable intervals and
light sources, destroying the positive effect of stratification. In Figure 47-7
(middle) we can see the noticeable clumping of white noise that we would
expect from independent random variables. Regrettably, the resulting higher
variance in the denoised output in most cases cancels out any benefits we
received from implementing our MIS. Therefore, it is likely a better idea to use
the variant without MIS and instead improve on the product importance
estimation in the future. To verify that the additional randomization is the
problem, Figure 47-7 (right) shows a biased variant of MIS that fixes the
stratification problems, at the cost of an unpredictable systematic error in the
rendered output.

47.8 CONCLUSIONS

Variance reduction techniques like importance sampling and MIS are crucial
tools not only in offline rendering, but even more so in upcoming real-time
path tracing applications with low sample counts. For Q2VKPT, we found that
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Light Sampling MIS (Unbiased) MIS (Biased) Converged

Figure 47-7. Left: our stratified subset sampling works well with blue noise points, and the error
is nicely diffused in screen space. Middle: unfortunately, our unbiased pseudo-marginal MIS
cannot profit from stratified random variables. In the noise, we can see the typical clumping of
white noise, which we would expect from independent random variables. Using pure light
sampling and developing more accurate product importance sampling strategies is therefore
likely a more promising avenue for future work. Right column: we can verify that the additional
randomization required by pseudo-marginal MIS is the culprit. Disabling it leads to a biased
result, but recovers the stratification effects in screen space. Note that this will only look similar
as long as the lights contained in each stratified subset are sufficiently representative of the full
illumination. In practice, the unpredictable bias is likely undesirable.

even a simplistic resampling method, working with small stochastic subsets
of the full scene illumination, can bring tremendous quality improvements.
The feasibility of real-time Monte Carlo rendering with denoising depends on
such strategies of variance control, as they directly affect the amount of
reliable information in the framebuffer that can be used to reconstruct correct
and stable results. More recent developments than our approaches like
ReSTIR [4] and real-time path guiding [11] make good steps toward even
more robust techniques, which in some cases barely require denoising at all.
We are hopeful that these techniques can be combined in their robustness
and generality, leading to even more reliable and versatile rendering
algorithms in the future.

Finally, in this chapter we explored the benefits and challenges of adding MIS
to the light sampling technique that was released with Q2VKPT. We proposed
pseudo-marginal stochastic MIS to improve some difficult corner cases where
our approximate product importance sampling fails. In our use case, we found
its usefulness to be limited due to the resulting loss of stratification benefits.
It will likely be made obsolete by more sophisticated real-time light sampling
strategies and future product importance sampling techniques. Nevertheless,
we hope that our look into pseudo-marginal stochastic MIS may serve as an
inspiration for the design of variance reduction techniques in other use cases
where time for the exhaustive evaluation of alternative PDFs is limited.
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CHAPTER 48

RAY TRACING IN FORTNITE
Patrick Kelly,1 Yuriy O’Donnell,1 Kenzo ter Elst,1 Juan Cañada,1 and Evan Hart2
1Epic Games
2NVIDIA

ABSTRACT

In this chapter we describe implementation details of some of the Unreal
Engine 4 ray tracing effects that shipped in Fortnite Season 15. In particular,
we dive deeply into ray traced reflections and global illumination. This
includes goals, practical considerations, challenges, and optimization
techniques.

48.1 INTRODUCTION

DirectX Raytracing (DXR) in Unreal Engine 4 (UE4) was showcased for the first
time at Game Developers Conference 2018 in Reflections, a Lucasfilm Star
Wars short movie made in collaboration with ILMxLAB and NVIDIA. A year
after that, the first implementation of ray tracing in UE4 was released in

Figure 48-1. Fortnite rendered with ray tracing effects.
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UE 4.22. Initially, the focus of the engineering team was set on feature
completion and stability rather than on performance for real-time graphics
applications. For this reason, during the first year and a half, ray tracing
adoption was significantly higher in enterprise applications for architecture,
automotive, or film rather than in games. A detailed description of how ray
tracing was implemented in UE4 can be found in the chapter “Cinematic
Rendering in UE4 with Real-Time Ray Tracing and Denoising” in the first
volume of Ray Tracing Gems [10].

The feasibility of ray tracing for games increased quickly due to the vast
improvements happening both in hardware and software since 2018. UE4
licensees started to include some ray tracing effects in games and other
applications that demand high frame rates. Early in 2020, Unreal Engine ray
tracing was transitioning from beta stage to production, and the engineering
team decided it was the right time to battle-test it under challenging
conditions. Fortnite was perfect for this task, not only due to its massive scale
but also because it possessed many other characteristics that make it difficult
to implement in-game ray tracing. Namely, the content creation pipeline is
very well defined and changing it to embrace ray tracing was not an option.
Moreover, content updates happen very often so it is not possible to adjust
parameters to make specific versions look good, but any modification should
be relatively permanent and behave correctly in future updates.

This chapter explains how the ray tracing team at Epic Games implemented
ray tracing techniques in Fortnite Season 15. We describe the challenges, the
trade-offs, and the solutions found.

48.2 GOALS

The main goal of the project was to ship ray tracing in Fortnite, both to
improve the game’s visuals and to battle-proof the UE4 ray tracing
technology. From the technical perspective, the initial objective was to run the
game on a system with an 8-core CPU (i7-7000 series or equivalent) and an
NVIDIA 2080 Ti graphics card with the following requirements:

> Frame rate: 60 FPS.

> Resolution: 1080p.

> Ray tracing effects: shadows, ambient occlusion, and reflections.

As described in the following sections, improvements that happened during
the project helped to achieve more ambitious goals. Novel developments in
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ray traced reflections, global illumination, and denoising, plus the integration
of NVIDIA’s Deep Learning Super Sampling (DLSS), made it possible to target
higher resolutions and more sophisticated lighting effects such as ray traced
global illumination (RTGI).

From the art and content creation point of view, the team was not aiming for a
dramatic change in the look, but the goal was to achieve specific
improvements on key lighting effects that could make the visuals more
pleasant by removing some artifacts introduced by screen-space effects.
Fortnite is a non-photorealistic game, and the intention was to avoid an
experience where ray tracing and rasterization looked too different.

48.3 CHALLENGES

From the performance side, initial tests showed both the CPU and GPU were
far away from the initial performance goals when ray tracing was enabled.
When running on the target hardware, CPU time was around 24 ms per frame
on average, with some peaks of more than 30 ms. GPU performance was also
far from the goal. While some scenarios were fast enough, others with more
complex lighting were in the 30–40 ms per frame range. Some pathological
cases with many dynamic geometries (such as trees) were extremely
slow—on the order of 100 ms per frame.

Besides performance, there were other areas that presented interesting
challenges. A remarkable one was the content creation pipeline. Fortnite
manages an extraordinarily large amount of assets that are updated at very
high frequency. Changing assets to look better in ray tracing was not possible
because the overload on the content team would be unacceptable. For
example, to improve the performance of ray traced reflections, the team
considered adding a flag to set if an object was casting reflection rays or not.
However, after further evaluation it was clear that such a solution would not
scale. Any improvement had to work reasonably well automatically for all the
existing and future content.

The look and feel of the game also presented a challenge. Fortnite does not
have a photorealistic visual style. Most of the surfaces are highly diffuse.
Reflections do not play an important role, except when water is present. Many
talented artists and engineers have worked hard for years adjusting content
and creating technology to make the game look good and to avoid artifacts
that screen-space rasterized techniques produce. Making ray tracing shine

793



RAY TRACING GEMS II

under these circumstances—without being able to change content—was a
difficult task.

Another challenge worth mentioning was that the rendering API (known in
Unreal Engine as the Render Hardware Interface (RHI)) used with ray tracing
was not the default one. The default RHI in Fortnite is DirectX 11, but DXR
runs on DirectX 12. This means that when enabling ray tracing, the game was
exercising code paths that have been tested significantly less than the default
ones. As expected, this revealed stability and performance issues that were
not ray tracing specific but were critical to fix to make the game shippable.
Improving the DirectX 12 RHI has been one of the most positive side effects of
this initiative.

Lastly, another challenge came from a self-imposed limitation. All the
technology developed for this project had to be included in the UE4 code base
without any modification. Neither Fortnite, nor any other project developed at
Epic Games, is allowed to customize the engine code. Though this can
represent a problem in some cases, the long-term benefit of maintaining only
one game engine overcomes any difficulties.

48.4 TECHNOLOGIES

This section describes the most important technologies that were improved
or entirely developed during the project.

48.4.1 REFLECTIONS

Ray traced reflections have been a part of Unreal Engine for some time and
were primarily used for cinematic rendering [10]; however, the Fortnite
Season 15 release was the first time this effect was used in a game at Epic.
Though our previous use cases required real-time performance, the goals
were quite different from a game. A typical cinematic demo ran at 24 hertz at
1080p resolution and could require a high-end GPU. The Fortnite ray tracing
target was at least 60 hertz at 1080p (4K with DLSS) on an NVIDIA 2080 Ti.
Some optimizations and sacrifices had to be made to reach this goal. We
made an experimental ray traced reflection implementation targeted
specifically at games. It shared the main ideas from our original reflection
shader, but shed most of the high-end rendering features such as
multi-bounce reflections, translucent materials in reflections, physically
based clear coat, and more. Figure 48-2 shows a comparison of the new ray
traced reflections mode with screen-space reflections and with no reflections.
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(a) Reflections off (b) Screen-space reflections (c) Ray traced reflections

Figure 48-2. A comparison of reflection rendering modes.

ALGORITHM OVERVIEW

The Unreal Engine reflection pipeline uses a sorted-deferred material
evaluation scheme (Figure 48-3). First, reflection rays are generated based
on G-buffer data and then traced to find the closest surfaces and their
associated material IDs. The hit points are then sorted by material ID /
shader. Finally, sorted hit points are used to dispatch another ray tracing pass
that performs material evaluation and lighting using the full ray tracing
pipeline state object (RTPSO).

The goal of this sorted pipeline is to improve material shader execution
coherence (SIMD efficiency). Because reflection rays are randomized, pixels
that are close in screen space will often generate rays that hit surfaces that
are far apart—increasing the probability that they use different materials. If

Trace Rays → Sort Hits by Material → Evaluate Materials → Lighting

Figure 48-3. The reflection pipeline using sorted-deferred material evaluation.

795



RAY TRACING GEMS II

(a) Final reflections at the epic preset (b) Roughness threshold visualization

Figure 48-4. A visualization of different roughness threshold levels and corresponding GPU
performance. Green: medium reflection quality preset, roughness < 0.35, 0.7 ms. Yellow: high
preset, roughness < 0.55, 1.28 ms. Red: epic preset, roughness < 0.75, 1.72 ms. Magenta: culled
surfaces with roughness > 0.75, 2.09 ms. Timings given for NVIDIA RTX 3090 at 1920× 1080
resolution.

hit points with different materials end up in the same GPU wave,1 the
performance will drop roughly proportionally to the number of unique
materials. Though theoretically a high-level ray tracing API such as DirectX
Raytracing allows for automatic sorting to avoid this performance issue, in
practice none of the drivers or hardware available at the time implemented
this optimization. Implementing explicit sorting at the application level
significantly improved performance [1], as described later.

RAY GENERATION

Reflection rays are generated using GGX distribution sampling based on
G-buffer data [7]. To save GPU time, a roughness threshold is used to decide
if a simple reflection environment map lookup can be used instead of tracing
rays. The threshold value is mapped to the reflection quality parameter in
Fortnite graphics options. We chose values 0.35, 0.55, and 0.75 formedium,
high, and epic quality presets, respectively. All surfaces with roughness over
0.75 are culled, as performance cost is too high compared to the visual
improvement. A special low preset also exists, disabling ray traced reflections
on everything except water. Figure 48-4 shows a visualization of these quality
presets and their GPU performance.

Because Fortnite content was not designed with ray traced reflection
technology in mind, most of the assets were mastered for screen-space

1HLSL terminology is used in this chapter. Wave refers to a set of GPU threads executed simultaneously in a
SIMD fashion. Similar concepts include Subgroup (Vulkan), Warp (NVIDIA), Wavefront (AMD).
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Listing 48-1. HLSL source code of the reflection roughness remapping function.

1 float ApplySmoothBias(float Roughness, float SmoothBias)
2 {
3 // SmoothStep-like function for Roughness values
4 // lower than SmoothBias, original Roughness otherwise.
5 float X = saturate(Roughness / SmoothBias);
6 return Roughness * X * X * (3.0 - 2.0 * X);
7 }

reflections, which use pure mirror-like rays and therefore look quite sharp. A
simple roughness threshold is used to cull screen-space reflections from
most surfaces that are meant to appear rough/diffuse. Unfortunately, this
means that physically based ray traced reflections appeared quite dull most
of the time. Tweaking all materials manually was not an option due to the
sheer amount of content in the game. Shown in Listing 48-1, an automatic
solution was implemented that biases surface roughness during GGX
sampling, making surfaces slightly shinier.

Shown in Figure 48-5, this remapping function pushes roughness values
below some threshold closer to zero, but leaves higher values intact. This
particular function was designed to preserve material roughness map

SmoothBias = 0.5
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Figure 48-5. A graph of the roughness remapping function for
ApplySmoothBias(Roughness, 0.5). This makes surfaces that are already smooth even
smoother, while leaving rougher ones unchanged.
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(a) Screen space (b) SmoothBias = 0.0 (c) SmoothBias = 0.5 (d) SmoothBias = 1.0

Figure 48-6. The visual effect of varying the smoothness bias.

contributions without clipping, while remaining smooth over the full
roughness range. A bias value of 0.5 was used in Fortnite, as it is a good
compromise between the desired look and physical accuracy. As a small
bonus, GPU performance was slightly improved in some scenes because
mirror-like reflection rays are naturally more coherent (making them faster
to trace). Figure 48-6 compares the visual results produced by varying the
smoothness bias value.

MATERIAL ID GATHERING

Unreal Engine uses a specialized lightweight pipeline state object for the
initial reflection ray tracing. It consists of a single ray generation shader, a
trivial miss shader, and a common tiny closest-hit shader for all geometry in
the scene. Shown in Listing 48-2, this shader aims to find the closest
intersections without incurring any shading overhead.

Listing 48-2. The material ID gathering closest-hit shader.

1 struct FDeferredMaterialPayload
2 {
3 float HitT; // Ray hit depth or -1 on miss
4 uint SortKey; // Material ID
5 uint PixelCoord; // X in low 16 bits, Y in high 16 bits
6 };
7

8 [shader("closesthit")]
9 DeferredMaterialCHS(
10 FDeferredMaterialPayload Payload,
11 FDefaultAttributes Attributes)
12 {
13 Payload.SortKey = GetHitGroupUserData(); // Material ID
14 Payload.HitT = RayTCurrent();
15 }
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Results of the material ID gather pass are written to a deferred material
payload buffer in 64× 64 tile order for subsequent sorting.

RAY SORTING

Reflection ray hit points are sorted by material ID using a compute shader.
Sorting is performed in blocks of 64× 64 pixel screen-space tiles (4,096 total
pixels). Rather than performing a full sort, rays are binned into buckets per
tile. The number of buckets is the number of total pixels in a tile divided by an
expected thread group size, e.g., 4,096 pixels / 32 threads = 128 buckets.
There may be many more different materials in the full scene (there are
approximately 500 materials in an average Fortnite RTPSO), but it is unlikely
that a given tile will contain all of them. If there are more than 128 different
materials in a tile, it is not possible to sort them into perfectly coherent
groups anyway. Increasing the number of bins does not improve much beyond
reducing the chance of collisions in the material ID→ bucket ID mapping. In
practice, we did not see any efficiency improvement from increasing the
number of buckets.

The binning is done as a single compute shader pass with one thread group
per tile, using groupsharedmemory to store intermediate results. A
straightforward binning algorithm is used here: (1) load elements from the
deferred material buffer, (2) count the number of elements per sorting bucket
using atomics, (3) build a prefix sum over the counts to compute the sorted
index, and (4) write the elements back into the same deferred material buffer
for material evaluation. Note that the original ray dispatch index must be
preserved throughout the full pipeline and is read by hit shaders from the ray
payload structure (the DispatchRaysIndex() intrinsic may not be used
outside of the original (unsorted) ray generation shader).

As demonstrated by Figures 48-7 and 48-8, the sorting scheme reduces
shader execution divergence quite effectively. Most waves in a typical Fortnite
frame contain a single material shader when sorting is used. Although this is
effective, note that the GPU performance impact is very scene dependent. For
cases where most rays naturally hit the same material or the sky, there may
be no performance improvement or even a small slowdown due to the sorting
overhead. However, for complex scenes with many high-roughness surfaces,
the speedup may be as high as 3×. The average performance improvement in
Fortnite is around 1.6×. Sorting is used for reflections on everything except
water. Reflection rays from water are highly coherent and typically hit the sky,
so there is little benefit from sorting.
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(a)Material sorting disabled (b)Material sorting enabled

Figure 48-7. A visualization of the SIMD execution efficiency improvement from ray sorting. Dark
blue areas belong to waves that did not require material shaders at all (rays that hit the sky or
were culled by the roughness threshold). Brighter colors show waves that contained between 1
(light blue) and 8+ (dark red) different shaders.

(a) Raw reflection output

Sorting Disabled 4.17 ms
Tracing 0.62 ms
Shading 3.55 ms

Sorting Enabled 2.12 ms
Tracing 0.62 ms
Sorting 0.15 ms
Shading 1.35 ms

(b) GPU time measurements

Figure 48-8. Sorting performance comparison on the NVIDIA RTX 3090 at 1920× 1080 resolution.

MATERIAL EVALUATION

The material evaluation step loads ray parameters from a buffer that was
written during the initial ray generation phase, but shortens rays to cover only
a small segment around the triangle that was previously hit. Full material
shaders are then invoked using TraceRay. We have found that despite the
extra cost of tracing a second ray, this approach is significantly faster than
naive TraceRay in a monolithic reflection pipeline.

Unreal Engine uses platform-specific APIs to launch closest-hit shaders
directly, without incurring the traversal cost where possible. A viable
alternative path on PC could be to use DXR callable shaders for all closest-hit
shading, while using any-hit shaders for alpha mask evaluation. This comes
with its own set of trade-offs, such as the need for all ray generation shaders
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to explicitly pass hit parameters to callable shaders via the payload.
Ultimately, the shortened ray approach was a good compromise between
performance and simplicity at the time.

Avoiding any-hit shader processing as much as possible is an important
performance optimization when ray tracing. Unfortunately, typical game
scenes do contain alpha-masked materials that must look correct in
reflections. We found that the vast majority of reflection rays in practice tend
to hit either entirely opaque materials or opaque parts of alpha-masked
materials, such as the solid part of a tree leaf mask texture. This makes it
possible to evaluate opacity in the closest-hit shader and write the opacity
status into the ray payload. All initial ray tracing can then use
RAY_FLAG_FORCE_OPAQUE, and the ray generation shader gains the ability to
decide if a “full-fat” ray needs to be traced without the FORCE_OPAQUE flag.
This is shown in Listing 48-3.

Listing 48-3. Pseudocode for alpha-masked material ray culling in the ray generation shader.

1 TraceRay(TLAS, RAY_FLAG_FORCE_OPAQUE , ..., Payload);
2 if (GBuffer.Roughness <= Threshold && Payload.IsTransparent())
3 {
4 TraceRay(TLAS, RAY_FLAG_NONE, ..., Payload);
5 }

Fortnite uses an aggressive any-hit roughness threshold of 0.1, meaning that
alpha-masked materials, such as vegetation, are rendered fully opaque in
reflections on rough surfaces. Only near-perfect mirrors show the proper
alpha cutouts, as shown in Figure 48-9. Though this is a quality concession, it
works fairly well for Fortnite in practice. Performance improvement from this
optimization depends on the scene, but we measured approximately 1.2×
speedup on average in Fortnite, with some scenes approaching 2×. We found
that the benefit of FORCE_OPAQUE easily pays for the cost of retracing some
rays in our typical frame.

LIGHTING

Direct lighting evaluation in Unreal Engine’s ray traced effects is mostly split
between ray generation and miss shaders. Only emissive and indirect lighting
comes from closest-hit shaders, as it may involve reading from textures or
light maps. The ray generation shader contains a light loop with grid-based
culling and light shape sampling. Shadows for lights in reflections are always
calculated using ray tracing (instead of shadow mapping). Light irradiance is
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(a) Final image with reflections (b) Ray category visualization

Figure 48-9. A visualization of any-hit material evaluation. Green areas show reflection rays that
hit opaque geometries or opaque parts of alpha-masked materials (as reported by the closest-hit
shader). Yellow areas show where non-opaque ray tracing was skipped due to the roughness
threshold. Red areas show where non-opaque rays were traced. Performance on NVIDIA RTX
3090 at 1920× 1080 resolution was 1.8 ms with opaque ray optimization and 2.4 ms without.

computed in a miss shader. If a light does not use shadows, it still goes
through the common TraceRay path with a forced miss by setting
TMin = TMax and InstanceInclusionMask = 0. This is similar to launching a
callable shader, but avoids an extra transition in and out of the ray generation
shader. Using miss shaders in this way slims down the ray generation shader
code and results in better occupancy, leading to a performance increase on all
of our target platforms.

This design also improves SIMD efficiency during lighting, as rays within one
wave may hit different materials. Execution diverges during material
evaluation, but re-converges for lighting. Material sorting does not fully solve
the divergence problem as it’s not possible to always perfectly fill waves,
leaving some waves only partially utilized.

Keeping all lighting calculations in the ray generation shaders allows for
smaller closest-hit shaders. This is beneficial in many ways, from iteration
speed to code modularity and game patch sizes. Unreal Engine uses a single
common set of material hit shaders for all ray tracing effects and a single
main material ray payload structure, shown in Listing 48-4. There is a
trade-off akin to forward versus deferred shading in raster graphics pipelines,
where the G-buffer provides an opaque interface between different rendering
stages and allows decoupled/hot-swappable algorithms. However, this comes
at the cost of a large G-buffer memory footprint or a larger ray payload
structure.
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Listing 48-4. The standard UE4 ray tracing material ray payload.

1 struct FPackedMaterialClosestHitPayload
2 {
3 float HitT // 4 bytes
4 uint PackedRayCone; // 4 bytes
5 float MipBias; // 4 bytes
6 uint RadianceAndNormal[3]; // 12 bytes
7 uint BaseColorAndOpacity[2]; // 8 bytes
8 uint MetallicAndSpecularAndRoughness; // 4 bytes
9 uint IorAndShadingModelIDAndBlendingModeAndFlags; // 4 bytes
10 uint PackedIndirectIrradiance[2]; // 8 bytes
11 uint PackedCustomData; // 4 bytes
12 uint WorldTangentAndAnisotropy[2]; // 8 bytes
13 uint PackedPixelCoord; // 4 bytes
14 }; // 64 bytes total

LIGHT SOURCE CULLING

In addition to optimizing the material evaluation costs, we needed to balance
the cost of illuminating reflected surfaces. Fortnite’s expansive world creates
scenarios where a large number of lights may potentially impact a surface. As
surfaces often come close to being affected by up to 256 lights (the maximum
supported in reflections), we required a strategy to select only the lights that
meaningfully affect a surface. Our chosen approach uses a world-aligned,
camera-centered 3D grid to perform light culling.

Fortnite’s large world requires a trade-off with cell sizes: large cells hurt the
efficiency of culling, but small cells are not practical due to the required
coverage area. A compromise was made with cells increasing in size
exponentially based on the distance to the camera. To allow the cells to fit
together in a grid, scaling is applied independently for each axis. This
produces modest 8 meter3 (2× 2× 2) cells near the camera, while still having
discrete cells 100 meters from the camera. A further tweak, which simplifies
the mathematics, keeps the first two layers of cells the same size.
Figure 48-10 shows the layout of the grid in two dimensions, and Listing 48-5
shows the HLSL shader code used to compute a cell address for an arbitrary
position in world space.

Shown in Figure 48-11, the final representation of the light culling data is
implemented as a three-level structure on the GPU. The grid is the topmost
structure, with 128 bits stored per grid cell that encodes either a list of up to
11 indices of 10 bits each or a count and offset into an auxiliary buffer. This
auxiliary buffer holds indices for cells that contain too many lights for the
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Figure 48-10. A 2D slice of the light grid showing the four closest rings of cells.

Listing 48-5. HLSL code for light grid cell addressing.

1 int3 ComputeCell(float3 WorldPosition)
2 {
3 float3 Position = WorldPos - View.WorldViewOrigin;
4 Position /= CellScale;
5

6 // Use symmetry about the viewer.
7 float3 Region = sign(Position);
8 Position = abs(Position);
9

10 // Logarithmic steps with the closest cells being 2x2x2 scale units
11 Position = max(Position, 2.0f);
12 Position = min(log2(Position) - 1.0f, (CellCount/2 - 1));
13

14 Position = floor(Position);
15 Position += 0.5f; // Move the edge to the center.
16 Position *= Region; // Map it back to quadrants.
17

18 // Remap [-CellCount/2, CellCount/2] to [0, CellCount].
19 Position += (CellCount / 2.0f);
20

21 // Clamp to within the volume.
22 Position = min(Position, (CellCount - 0.5f));
23 Position = max(Position, 0.0f);
24

25 return int3(Position);
26 }
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Light Culling Grid Complex Cell Light Indices

Light Data Buffer

Figure 48-11. Grid cells either address the light buffer directly or offset into an array of light
indices for complex cells.

compact format. The lowest level is a structured buffer of light data
parameters to which the indices refer. Listing 48-6 shows how indices are
retrieved for a grid cell. Both the grid structure and the auxiliary buffer are
generated each frame by a compute shader culling lights against the grid.

48.4.2 GLOBAL ILLUMINATION

Global illumination was not an initial requirement for ray tracing in Fortnite.
Originally released as an experimental algorithm in Unreal Engine 4.22,
brute-force global illumination was not practical for uses that demanded
real-time performance. Instead, the brute-force algorithm was only viable for
interactive and cinematic frame rates. The original algorithm was
reformulated into the “final gather” algorithm in Unreal Engine 4.24. Ongoing
development, strict lighting constraints, and substantial qualitative
improvements from denoising and upscaling led to adoption of the final
gather approach as a potential real-time global illumination solution for
Fortnite. In this section, we outline the two algorithms and discuss the
technological improvements and optimizations that led to achieving real-time
performance. Figure 48-12 shows the visual result achieved in-game.
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Listing 48-6. HLSL code to retrieve a light index for a grid cell.

1 int GetLightIndex(int3 Cell, int LightNum)
2 {
3 int LightIndex = -1; // Initialized to invalid
4 const uint4 LightCellData = LightCullingVolume[Cell];
5

6 // Whether the light data is inlined in the cell
7 const bool bPacked = (LightCellData.x & (1 << 31)) > 0;
8

9 const uint LightCount = bPacked ? (LightCellData.w >> 20) & 0x3ff
10 : LightCellData.x;
11

12 if (bPacked)
13 {
14 // Packed lights store 3 lights per 32-bit quantity.
15 uint Shift = (LightNum % 3) * 10;
16 uint PackedLightIndices = LightCellData[LightNum / 3];
17 uint UnpackedLightIndex = (PackedLightIndices >> Shift) & 0x3ff;
18

19 if (LightNum < LightCount)
20 {
21 LightIndex = UnpackedLightIndex;
22 }
23 }
24 else
25 {
26 // Non-packed lights use an external buffer
27 // with the offset in the cell data.
28 if (LightNum < LightCount)
29 {
30 LightIndex = LightIndices[LightCellData.y + LightNum];
31 }
32 }
33 return LightIndex;
34 }

BRUTE FORCE

The experimental brute-force algorithm uses Monte Carlo integration to solve
the diffuse interreflection component of the rendering equation [8]. As with
other ray tracing passes, the global illumination pass begins at the G-buffer,
where diffuse rays are generated in accordance to the world-space normal of
the rasterized depth-buffer’s position. In this manner, the brute-force
algorithm behaves very similarly to that of an ambient occlusion algorithm.
However, instead of casting visibility rays to tabulate sky occlusion, the global
illumination algorithm casts more expensive rays, evaluating secondary
surface material information by invoking the closest-hit shader.
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Figure 48-12. Fortnite’s Risky Reels, before and after applying ray traced global illumination.
Note the bounce lighting from the grass to the grill.

Along with expensive evaluation of the closest-hit shader, the algorithm must
also apply direct lighting to secondary surfaces. Instead of applying the
traditional light loop, the global illumination algorithm uses next event
estimation. Next event estimation (NEE) is a stochastic process that chooses a
candidate light with some probability. The first process, known as light
selection, decides which light to sample, according to some selection
probability. The second process, similar to traditional light sampling, samples
an outgoing direction to the light source. The NEE process constructs a
shadow ray to test the visibility of the shading point in relation to the selected
light. If the visibility ray successfully connects to the light source, diffuse
lighting evaluation is recorded.

NEE generates a smaller per-ray cost than the traditional lighting loop, as it
only evaluates a subset of the total number of candidate lights. Though the
NEE is typically considered to select one light source per invocation, another
secondary stochastic process may be invoked to draw multiple NEE samples.
Drawing multiple samples has the effect of lowering per-ray variance while
also amortizing the cost of casting an expensive material evaluation ray. We
find that drawing two NEE samples per material evaluation ray works well in
practice. See Listing 48-7 for an abbreviated code example.
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Listing 48-7. Next event estimation.

1 float3 CalcNextEventEstimation(
2 float3 ShadingPoint,
3 inout FPayload Payload,
4 inout FRandomSampleGenerator RNG,
5 uint SampleCount
6 )
7 {
8 float3 ExitantRadiance = 0;
9 for (uint NeeSample = 0; NeeSample < SampleCount; ++NeeSample)
10 {
11 uint LightIndex;
12 float SelectionPdf;
13 SelectLight(RNG, LightIndex, SelectionPdf);
14

15 float3 Direction;
16 float Distance;
17 float SamplePdf;
18 SampleLight(LightIndex, RNG, Direction, Distance, SamplePdf);
19

20 RayDesc Ray = CreateRay(ShadingPoint, Direction, Distance);
21 bool bIsHit = TraceVisibilityRay(TLAS, Ray);
22 if ( !bIsHit )
23 {
24 float3 Radiance = CalcDiffuseLighting(LightIndex, Ray, Payload);
25 float3 Pdf = SelectionPdf * SamplePdf;
26 ExitantRadiance += Radiance / Pdf;
27 }
28 }
29 ExitantRadiance /= SampleCount;
30

31 return ExitantRadiance;
32 }

Depending on the maximum number of bounces allowed by the artist, the
brute-force algorithm may fire another diffuse ray from the secondary surface
and repeat the process to extend the path chain. Subsequent bounces are
susceptible to early termination and are governed by a Russian roulette
process. Our cinematics department prefers to use two bounces of global
illumination as their default configuration.

Global illumination computed in this manner matches closely with our path
tracing integrator. However, also like our path tracing integrator, this process
requires a high number of samples to converge. A strong denoising kernel
helps to generate a smooth final result, but we find that between 16 and
64 samples per pixel are still necessary for sufficient quality, depending on
the lighting conditions and overall environment. This is problematic, because
casting multiple material evaluation rays per frame quickly pushes the
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Figure 48-13. The brute-force global illumination technique in our development test
environment, rendered with two samples per pixel at ScreenResolution = 50. Note the yellow
color bleeding from the nearby wall onto the bush.

algorithm beyond interactive rates and is only applicable for cinematic
burnouts. Figure 48-13 shows the application of the brute-force global
illumination to our Fortnite development level.

FINAL GATHER

In an effort to keep the nice properties of the brute-force integrator, the
algorithm was amended in September 2019 to render diffuse interreflection
for our Archviz Interior Rendering sample [4] at a cinematic frame rate
of 24 Hz.

The key insight to accelerate the brute-force algorithm involves transforming
the costly material evaluation rays into relatively inexpensive visibility rays. To
achieve this, we time-slice the material evaluation rays over consecutive
frames. We invoke the brute-force integrator, but only at one sample per
pixel, and use previous frame simulation data to accumulate as though we
actually fired the desired number of samples per pixel. Accumulating
previous frame data requires sample reprojection and may cause severe
ghosting artifacts, especially when the previous frames’ simulation data is no
longer valid. To help reconcile discrepancies associated with accumulating
previous frame data, we choose to employ primary path reconnection [6] to
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reuse previously traced paths. Previous path data is cached in an
intermediary structure that we call gather points. Each gather point encodes
the position of the secondary surface, along with the recorded irradiance and
path creation probability density function (PDF). The world position of the
pixel is also cached and is used to test against reprojection criteria for reuse
in subsequent frames. The gather point buffer is interpreted as a circular
buffer, where the buffer length is governed by the number of samples per
pixel of the algorithm. In a manner similar to Bekaert et al. [2], we fire
secondary visibility rays to test for successful path reconnection. Doing so
correctly requires carrying both the exitant radiance and the probability
density of the gather point creation from the active shading point in the
previous simulation. Like next event estimation, a successful path
reconnection event records the diffuse lighting at the gather point.

A wave of diffuse rays is dispatched as an individual pass each frame. This
pass has similar execution flow to the brute-force algorithm, but records
lighting data to a secondary gather point buffer. The gather point buffer
records the secondary surface position and diffuse exitant radiance from
stochastic light evaluation, as well as the probability density of generating the
gather point from the simulation. The original creation point is also supplied
so that we can reject gather points that do not meet sufficient criteria for
reuse in the current frame. From this data, we can cast path reconnection
events to these points and incorporate the cached lighting evaluation. The
gather points pass is accelerated using the same sorted-deferred material
evaluation pipeline used with ray traced reflections. (See Listing 48-8.)

Once the gather points are created, the final gather pass is executed. The
final gather pass loops through all gather points associated with the current
pixel and reprojects them to the active frame. Gather points that successfully
reproject are candidates for path reconnection. A visibility ray is fired to
potentially connect the world position of the shading point to the world
position of the gather point. If a path reconnection attempt is successful, the
shading point records diffuse lighting from the gather point. We found that we
still needed approximately 16 path reconnection events to have good
qualitative results. Figure 48-14 and Table 48-1 present visual and runtime
comparisons, respectively, of the two global illumination methods.
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Listing 48-8. Individual gather samples are cached in a structured buffer of gather points where
the dimensions are governed by the pass resolution and the samples per pixel. To conserve space,
the irradiance field of a gather point encapsulates both the irradiance and creation PDF of the
gather sample.

1 struct FGatherSample
2 {
3 float3 CreationPoint;
4 float3 Position;
5 float3 Irradiance;
6 float Pdf;
7 };
8

9 struct FGatherPoint
10 {
11 float3 CreationPoint;
12 float3 Position;
13 uint2 Irradiance;
14 };
15

16 uint2 PackIrradiance(FGatherSample GatherSample)
17 {
18 float3 Irradiance = ClampToHalfFloatRange(GatherSample.Irradiance);
19 float Pdf = GatherSample.Pdf;
20

21 uint2 Packed = (uint2)0;
22 Packed.x = f32tof16(Irradiance.x) | (f32tof16(Irradiance.y) << 16);
23 Packed.y = f32tof16(Irradiance.z) | (f32tof16(Pdf) << 16);
24 return Packed;
25 }
26

27 FGatherPoint CreateGatherPoint(FGatherSample GatherSample)
28 {
29 FGatherPoint GatherPoint;
30 GatherPoint.CreationPoint = GatherSample.CreationPoint;
31 GatherPoint.Position = GatherSample.Position;
32 GatherPoint.Irradiance = PackIrradiance(GatherSample);
33 return GatherPoint;
34 }

The final gather algorithm is limited to one bounce of diffuse interreflection.
The technique could be extended to multiple bounces, by allowing stochastic
gather point creation at a given event, but for simplicity we opted for one
bounce. Because artificially limiting the bounce count has the impact of both
lower runtime cost and lower variance, we felt this was an appropriate
compromise given the general expense of the technique. Unfortunately,
reprojection and path reconnection failures can result in slower convergence
compared to the brute-force method. This is possible when experiencing
significant camera or object motion.
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Figure 48-14. Results from the two global illumination algorithms. Top: the brute-force method.
Bottom: the final gather method. Each result is rendered at ScreenPercentage = 100 for clarity
and shown at one sample per pixel (left) and 16 samples per pixel (right). The images have been
brightened for visualization purposes.

SPP Brute Force (ms) Final Gather (ms)

1 19.78 11.63
2 46.95 13.39
4 121.33 13.49
8 259.48 15.86
16 556.31 20.15

Table 48-1. GPU times for the global illumination passes presented in Figure 48-14 at
ScreenPercentage = 50 using an NVIDIA RTX 2080 Ti.

FEASIBILITY FOR FORTNITE

Ray traced global illumination development was suspended shortly after our
UE 4.24 release. With Unreal Engine 5 technology entering full development,
it no longer made sense to extend an algorithm that would ultimately
compete against newer initiatives.

Technologies such as NVIDIA Deep Learning Super Sampling (DLSS) [11, 3, 9]
started new discussions, however. Early experiments with our test Fortnite
level revealed that, with DLSS in performance mode, we could run our entire
suite of ray tracing shaders at roughly 50 frames per second! Ray traced

812



CHAPTER 48. RAY TRACING IN FORTNITE

shadow, ambient occlusion, reflection, sky light, and global illumination
algorithms ran close to our intended budget for release. This proved to be
very exciting initially, but the production map was still much more complex.
For global illumination, in particular, the primitive stochastic light selection
method could not cope with Fortnite’s large active light count. Even with
necessary improvements to light selection, significant sample noise (mostly
with interior lighting) made the final gather algorithm a difficult prospect for
adoption.

As happens in production, other feature targets changed over the course of
development, too. One of the most notable decisions was the omission of ray
traced shadows for all lights except the sun (directional light). We concluded
that if ray traced shadows were only included for the sun, we could apply
similar exclusionary rules for global illumination as well. Of course, this also
restricted bounce lighting to exterior environments, but if we limited global
illumination to the sun, we could eliminate our algorithmic inefficiency with
regard to light selection. Other potential sampling issues, such as
illumination from large area lights, also went away. By adjusting the next
event estimation samples to one, we avoided the cost of firing a second
shadow ray and gained additional savings. With the feature set significantly
culled, employing ray traced global illumination actually seemed feasible.

IMPROVEMENTS

Despite culling a large swath of algorithmic requirements, deploying the final
gather algorithm for Fortnite was still challenging, due to remaining
performance and sampling issues.

It became clear that we needed to operate at a coarser resolution to remain in
budget. We expected that operation at half resolution or smaller would be
required for the project. Unfortunately, we found that operating at smaller
resolutions typically required more reconnection events to help mitigate
noise. Doing so was not compatible with our temporal strategy; however, the
likelihood of successful reconnection events diminished as our temporal lag
increased. Overall dependence on temporal history proved difficult for a
fast-moving game like Fortnite.

We started experimenting with extended strategies for gather point
reprojection and path reconnection. Our simple, world-based reprojection of
gather point data was improved with time-varying camera projection to
improve stability for fast-moving camera motion. Though the first
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implementation of the final gather algorithm exploits temporal path
reprojection of gather points, we expected that both spatial and temporal
reuse would be necessary to increase our effective samples per pixel.
Previous experiments in this area had failed, and we discovered, as was also
previously presented by Bekaert et al. [2], that using a regular neighborhood
reconstruction kernel exhibited strongly objectionable structured noise,
despite the observed error reduction in the final result.

Further experimentation in this area was halted as we also had to address our
general denoising problem. Our previous global illumination denoiser
operates well at full resolution, but quickly degrades when rendering at lower
resolutions. Thankfully, NVIDIA presented us with an implementation of
spatiotemporal variance-guided filtering (SVGF) [13]. SVGF proved to be a
game-changer for the global illumination algorithm. We found that SVGF
tolerated downsampled, noisy images with better results than our integrated
denoiser. SVGF readily accepted the structured noise present with the newer
spatial path reconnection strategy and generated very pleasing results while
increasing the overall effective samples per pixel. Unfortunately, our
implementation of SVGF exhibited bleeding artifacts with high-albedo
surfaces when attempting to upscale to the required resolution (Figure 48-15).
Though the occurrence was not frequent, it was prevalent in the Sweaty Sands

Figure 48-15. Fortnite’s Misty Meadows, before and after applying ray traced global illumination.
Note the red color bleeding from the rooftops onto the buildings.

814



CHAPTER 48. RAY TRACING IN FORTNITE

(a) No spatial gather point reconnection (b) Spatial gather point reconnection

Figure 48-16. Fortnite’s Sweaty Sands, before and after applying ray traced global illumination.
Sharing neighborhood samples creates strong structured artifacts, but SVGF is still able to
reconstruct a smooth result while also dampening temporal artifacts.

point of interest (see Figure 48-16) and needed to be addressed. Facing tough
deadlines, we opted to implement an upsampling prepass so that G-buffer
associations would not confuse the filter. We intend to address this exorbitant
cost in the future, should we employ SVGF on another project.

We present a final breakdown of iterative improvements to the final gather
algorithm in Table 48-2 and a final cost breakdown per pass in Table 48-3.
Limiting global illumination to the directional light shows a significant cost
savings when avoiding light selection. DLSS allows the method to work at a
fractional scale, applying another significant speedup. A moderate speed gain
is achieved by limiting lighting to one next event estimation sample. Costs are
reintroduced to maintain temporal stability, when applying our spatial
reconnection strategy with SVGF. SVGF offers pleasing results at both half and
quarter resolution dimensions, which drives our high and low quality settings.

48.4.3 CPU OPTIMIZATIONS

GPU BUFFER MANAGEMENT

While profiling the CPU cost when ray tracing is enabled, we quickly noticed
that our D3D12 data buffer management code needed to be improved. A lot of
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Improvement Time (ms)

Final gather baseline 10.25
Directional light only 6.14

1 NEE sample 5.59
DLSS mode: Performance 2.52

Spatial reconnection 2.78
SVGF denoiser 4.42

Screen percentage 25% 3.22

Table 48-2. Incremental improvements applied to Figure 48-15. The last two entries correspond
to the current global illumination user settings, high and low, respectively. GPU times reported at
1080p resolution on an NVIDIA RTX 2080 Ti

Pass Low Quality (ms) High Quality (ms)

Gather point tracing 0.18 0.23
Gather point sorting 0.02 0.03
Gather point shading 0.49 0.92
Final gather tracing 0.49 1.18

SVGF 2.03 2.03

Table 48-3. Per-pass execution costs associated with rendering Figure 48-15. SVGF costs are
constant due to our need to run an upsampling prepass to the required DLSS resolution. GPU
times reported at 1080p resolution on an NVIDIA RTX 2080 Ti.

time in Fortnite was spent creating and destroying acceleration structure data
buffers during gameplay due to mesh data streaming.

An easy optimization was to sub-allocate all these resources from dedicated
heaps instead of using individual committed or placed resources. This is
possible because acceleration structure buffers must be kept in the D3D12
RAYTRACING_ACCELERATION_STRUCTURE state, while scratch buffers are kept
in the UNORDERED_ACCESS state. This means that there are no state transitions
and no per-buffer state tracking required. This adjustment also saves a lot of
memory due to smaller alignment overhead (placed resources in D3D12
require a 64K alignment, but most buffers are a lot smaller).

We had to make sure that committed resources are never created during
gameplay, as this can introduce huge CPU spikes (sometimes 100+ ms, in our
measurements). The buffer pooling scheme in UE4’s D3D12 backend was
adjusted to support the large allocations needed for top- and bottom-level
acceleration structure data (the maximum allocation size was increased).

816



CHAPTER 48. RAY TRACING IN FORTNITE

Readback buffers, used to get the information for compaction, are pooled and
sub-allocated as placed resources from a dedicated heap.

Another problem is that almost all static bottom-level acceleration structure
(BLAS) buffers were temporarily created at full size and then compacted.
Compaction requires readback of the final BLAS size and a copy into the new
compacted acceleration structure buffer. This can cause a lot of
fragmentation and memory waste. We did not implement pool
defragmentation for Fortnite due to time constraints, but this was done later
for Unreal Engine 5.

DYNAMIC RAY TRACING GEOMETRIES

Another substantial CPU bottleneck we faced was in collecting and updating
all the dynamic meshes in the scene before BLAS data is updated. A compute
shader is run for each mesh to generate the dynamic vertex data for that
frame. This temporary vertex data is then used to update/refit the BLAS.
Potentially hundreds of dispatches and build operations can be kicked off in a
single frame. Each dispatch might use a different compute shader and output
vertex buffer, causing a lot of CPU overhead when generating the command
lists. This performance overhead comes from switching the shaders/state
and from binding different shader parameters.

We first optimized this process by sorting all dynamic geometry update
requests by shader, but it was not quite enough. Additional overhead comes
from switching the buffers for each mesh and performing the internal
resource state transitions. Most dynamic meshes, such as characters or
deformable objects, need to be updated every frame so the updated vertex
data does not have to be persistently stored. This allowed us to use transient
per-frame buffers with simple linear sub-allocation within them per mesh,
minimizing the cost for state tracking. Each compute shader dispatch writes
to a different part of the buffer; therefore, unordered access view (UAV)
barriers are not necessary between dispatches. Finally, we parallelized the
generation of the dynamic geometry update command list with the BLAS
update command list to hide the surprisingly high
BuildRaytracingAccelerationStructure CPU costs.

BUILDING THE SHADER BINDING TABLES

The largest CPU cost (by far) is building the ray tracing shader binding table
(SBT) for each scene and ray tracing pipeline state object. The Unreal Engine
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does not use persistent shader resource descriptor tables, so all resource
bindings have to be manually collected and copied into a single shared
descriptor heap every frame.

To reduce the cost of copying all the descriptors for all the meshes, we
introduced several levels of caching. The biggest win came from
deduplicating SBT entries with the same shader and resources, such as the
same material being applied to different meshes or multiple instances of the
same mesh. Unreal Engine groups shader resource bindings into high-level
tables (“Uniform Buffers”), and a typical shader references three or four of
them (view, vertex factory, material, etc.). Each uniform buffer in turn may
contain references to textures, buffers, samplers, etc. We can cache SBT
records by simply looking at the high-level uniform buffers without inspecting
their contents.

A lower-level cache was added to deduplicate the actual resource descriptor
data in descriptor heaps. This was mostly needed to deduplicate the sampler
descriptors, as a single D3D12 sampler heap can only have 2048 entries, and
only one sampler heap can be bound at a time. We found that the cost of the
D3D12 CopyDescriptors call is roughly the same as (or larger than) the cost
of descriptor hashing and hash table lookup/insert.

Finally, we parallelized the SBT record building, but found that improvements
from adding worker threads diminished very quickly. As we still wanted to use
descriptor deduplication, each worker thread needed to use its own local
descriptor cache to avoid synchronization overheads. Global descriptor heap
space is then allocated by each worker in chunks, using atomics. This
reduces the cache efficiency and increases the total number of used
descriptor heap slots. We found that four or five worker threads is the sweet
spot for parallel SBT generation.

GEOMETRY CULLING

A simple but effective technique used to speed up both CPU and GPU render
times was to skip instances entirely if they were not relevant to the current
frame. When ray tracing, every object in the scene can affect what is seen by
the camera. However, in real life the contribution of many objects can be
negligible. Initially, we experimented with culling geometries behind the
camera that were placed further than a certain distance threshold. However,
this solution was discarded because it was producing popping artifacts when
objects with large coverage where rejected in a frame and accepted in the
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next one. The solution was to change the culling criteria to also take into
account the projected area of the bounding sphere for the instance, and to
discard it only if it was small enough. This simple change removed the
popping while greatly improving speed. On average, we observed gains of
2–3 ms per frame after making this change.

DLSS

The integration of NVIDIA’s DLSS technology was instrumental in improving
performance. DLSS made it possible to enable ray traced global illumination
and run the game with ray tracing enabled at higher resolutions. The engine
changes made to integrate DLSS are available now in the public UE4
codebase [5] and the DLSS plugin for UE4 is now available on the Unreal
Engine Marketplace [12].

48.5 FORTNITE CINEMATICS

Though it took some time until ray tracing was used in the game, the Fortnite
team adopted ray tracing from the very early days for other purposes such as
cinematic trailers and marketing content. Moving to a ray tracing pipeline
allowed artists to reduce iteration times and increase the overall quality
achieved. It also helped lighting artists with a background in offline rendering
to speed up their initial learning of Unreal Engine because they were already
familiar with similar rendering tools. An interesting aspect of this work is
that, though the use cases are different and the quality requirements are
higher than in the game, these cinematographic pieces are made using the
same technology and assets used in the game.

48.6 CONCLUSION

Ray Tracing was shipped in Fortnite Season 15 (September 2020) and achieved
more ambitious goals than what we initially set out to accomplish. Though the
project was challenging on many levels, it ended up being a success. Not only
does the game look better when ray tracing is enabled, but all the
improvements are now part of the UE4 public codebase [5].

This initiative is not yet finished. There are many open problems in real-time
ray tracing that need more work, including scenarios with a high number of
dynamic geometries that must be updated every frame, complex light
transport that requires multi-bounce scattering, and scenes with large
amounts of dynamic lights. These problems are difficult and will require
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multi-year efforts from the computer graphics community. The engineering
team at Epic Games will continue improving the technologies developed for
this project, as well as additional novel methods that we have on our road
map, with the goal of making ray tracing a feasible solution for any kind of
game or real-time graphics application.
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CHAPTER 49

REBLUR: A HIERARCHICAL
RECURRENT DENOISER
Dmitry Zhdan
NVIDIA

ABSTRACT

This chapter presents ReBLUR: a hierarchical recurrent denoiser, currently
deployed in recent RTX game titles, including Cyberpunk 2077 and Watch Dogs:
Legion. By aggressively reusing information both spatially and temporally, the
denoiser produces noise-free images from only a few samples per pixel. In
this chapter, we describe the internal structure of the denoiser in detail, and
we hope that the basic blocks of this architecture can be useful to improve
future denoisers.

49.1 INTRODUCTION

Ray tracing is increasingly popular in real-time rendering applications. To
keep frame rate high, a low number of rays per pixel (rpp) is used. For
example, with one ray per pixel in checkerboard mode, this means just
0.5 rpp. With a low number of ray counts per pixel, the generated image often
contains significant noise. To remove this noise, a denoiser pass is commonly
applied, which reconstructs a high-quality final image from the noisy signal,
often with help of G-buffer feature guides. In a real-time ray tracing setting, a
denoiser must support a signal with low rpp, produce minimal (or acceptable)
temporal lag, run in a few milliseconds even at large resolutions, and
converge to something very close to the ground truth.

To meet these goals, temporal accumulation is an essential component,
combined with accurate specular reprojection (specular motion does not
follow surface motion). Furthermore, to avoid over-blurring or
under-blurring, the spatial filter weights must be carefully selected. Care
must also be taken to design a fallback if history gets rejected (the input
signal needs to be heavily processed to avoid falling back to the pure 1 rpp
noisy input). Due to the temporal component of the denoiser, temporal lag is
introduced, which can be visible when a scene rapidly changes (e.g., a change
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Figure 49-1. Cyberpunk 2077 with ray tracing. Left: diffuse (1 rpp) and specular (0.5 rpp) noisy
inputs. Right: denoised result from ReBLUR.

in lighting or in scene geometry). To combat temporal lag, an anti-lag solution
is needed, which can explicitly control the amount of accumulated frames and
adjust accumulation speed if such changes are detected.

NVIDIA has developed two spatiotemporal denoising algorithms solving these
problems: ReBLUR and ReLAX. ReBLUR is based on recurrent blurring,
which applies cross-bilateral spatial filtering to the same texture recursively.
ReLAX is an advanced version of spatiotemporal variance guided filtering
(SVGF), its main feature is clamping to the fast history. It has been designed to
work with signal generated by the NVIDIA RTX Direct Illumination algorithm
(RTXDI). These two denoising solutions are different, but serve the same goal:
delivering the best denoising in games. Both solutions are part of the NVIDIA
Real-Time Denoisers library (NRD) [3].
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This chapter is about ReBLUR. In Figure 49-1, we show ReBLUR in Cyberpunk
2077. In the following sections, we will outline the main principles of the
approach.

49.2 DEFINITIONS AND ACRONYMS

uv Screen-space coordinates, normalized to the range [0, 1].

n Surface normal vector in world space.

roughness Linear roughness.

X World-space position in camera relative space.

Xprev World-space position in the previous frame.

Xv View-space position.

v View vector pointing out from the surface.

r Reflection vector = reflect(–v,n).

viewZ Linearized view depth.

A Number of accumulated frames.

n · v Dot product between normal and view vectors, NoV.

dGGX Specular dominant direction.

49.3 THE PRINCIPLE

ReBLUR is based on recurrent spatiotemporal filtering [8], where the
denoised result from the previous frame is used as the history buffer in the
current frame. It means that the result of spatial passes goes back into the
temporal feedback loop to be accumulated with the input signal on the next
iteration. This approach allows us to redistribute spatial filtering in time and
use a lower number of samples per spatial pass. ReBLUR is a hierarchical
denoiser, i.e., it starts with very blurry results and rapidly converges over
time. The spatial filters are applied in world space, using stochastically
rotated Poisson disk sampling. The spatial filters adapt to the number of
accumulated frames and become less aggressive over time, until a
disocclusion is found or the internal anti-lag invalidates the history. In
Figure 49-2 we show ReBLUR applied to a highly reflective version of the
Lumberyard Bistro scene.
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Figure 49-2. Lumberyard Bistro with ray traced cobalt material. Left: noisy input (0.5 rpp).
Right: denoised result with ReBLUR.

49.4 INPUTS

ReBLUR has been designed to be used in modern games and requires the
following inputs for each pixel (see Listing 49-1):

n World-space surface normal.

viewZ Linearized view depth (to reconstruct primary hit position).

roughness Linear roughness.

motion vector World-space surface motion: Xprev = X + motion vector.

cdiffuse Noisy diffuse signal.

cspecular Noisy specular signal.

hitT Hit distance, which controls the filter radius in spatial
passes and for specular reprojection.

It’s worth noting that world-space position reconstruction in ReBLUR is not
compatible with the Primary Surface Replacement method, used for
rendering perfect reflections and refractions in path traced games [4],
because in this case the real first primary hit is replaced with a potentially
unlimited number of bounces through true mirrors, which can’t be
reconstructed using a viewZ texture. Explicit per-pixel world-space position
is needed to solve this issue.
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Listing 49-1. View-space position reconstruction from linearized view depth.

1 float3 ReconstructViewPosition( float2 uv, float4 cameraFrustum, float viewZ
, float isOrtho = 0.0 )

2 {
3 float3 p;
4 p.xy = uv * cameraFrustum.zw + cameraFrustum.xy;
5 //isOrtho = { 0 - perspective, -1 - right handed ortho, 1 - left handed

ortho }
6 p.xy *= viewZ * ( 1.0 - abs( isOrtho ) ) + isOrtho;
7 p.z = viewZ;
8

9 return p;
10 }

49.5 PIPELINE OVERVIEW

Diffuse and specular denoisers share the same pipeline, which is the
sequence of the passes shown in Figure 49-3.

49.5.1 PRE-BLUR

All blur passes are similar, but the main idea of the pre-blur pass is to blur out
outliers. ReBLUR doesn’t suppress them, but tries to redistribute energy
across neighboring pixels if spatial weights allow.

Pre-blur

Blur

Post-blur

Temporal
Stabilization

Mip Generation
and History Fix 

Temporal
Accumulation

Uses constant radius, pass is needed to fix outliers

Linear weights, up to 64 frames can be accumulated
(input parameter)

Adaptive radius (depends on number of 
accumulated frames)

Adaptive radius (depends on number of 
accumulated frames) + dynamic radius increase if
intensity delta between the reprojected history and
the final value is high

Temporal stabilization (no additional lag, logically close
to TAA but uses wider variance clamping if possible)

Efficient single pass generation of first 3 mip levels
in shared memory (averaging) + history reconstruction
in descarded regions

Figure 49-3. Pipeline overview.
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Additionally, this pass handles checkerboarded half-resolution input. If the
pixel center gets into a black cell (without valid data), the data gets
reconstructed by applying bilateral filter to two candidates: left and right
pixels. If this happens for a spatial sample, the algorithm shifts the sample to
the left or to the right in a consecutive order.

49.5.2 TEMPORAL ACCUMULATION

The temporal accumulation pass increments the number of accumulated
frames (A) per pixel, or sets it to 0 if a disocclusion is detected. Less noisy
input after the pre-blur pass gets accumulated with the reprojected history
buffer based on the number of accumulated frames using the formula:

Output = lerp
(
History, Input,

1
1 + A

)
, (49.1)

where Input represents the noisy input and History is the reprojected
history.

It’s used “as is” for diffuse signals that perfectly follow surface motion.
Specular tracking is complicated; it implies computing two history candidates
based on two types of reprojection (Section 49.8), but the same formula is
used to mix them with the current input.

49.5.3 MIP GENERATION

For the accumulated diffuse, specular, and viewZ textures, ReBLUR
generates the first four mip levels, which are used in the following history fix
pass (Section 49.5.4) for hierarchical history reconstruction in regions with
discarded history.

49.5.4 HISTORY FIX

In discarded regions in the history buffer, we have only a raw 1 rpp signal.
Hence, we need to do something to avoid leaving noise in the final image.
Using a very wide spatial filter is a good option, but it is expensive. Mip levels
can be used to emulate a high rpp input in exchange for resolution:

Mip Level Rays per Pixel Data Tile
0 (base) 1 (real) 1 pixel
1 4 (virtual) 2× 2 pixels
2 16 (virtual) 4× 4 pixels
3 64 (virtual) 8× 8 pixels
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Figure 49-4. History fix operation on an example of ambient occlusion. Top: first four mip levels
of the input signal (the leftmost image is the input), upsampled using simple bilinear upsampling
(a color bleeding effect is clearly visible). Bottom: the same four levels bilaterally upsampled
(color bleeding free upsampling).

History reconstruction starts with a coarse level (it depends on the roughness
of the specular signals) and rapidly converges back to the base level. To avoid
color bleeding, a hierarchical reconstruction filter is used. It applies a 3× 3
cross-bilateral filter, starting from the coarsest mip level for the pixel
roughness (Figure 49-4). For each sample in the footprint, its weight is
computed by comparing real viewZ (from the base level) with the interpolated
viewZmip (from the current mip level). If the sum of the weights is close to
zero, the algorithm switches to the next finer level because the data on the
current level is heavily averaged and doesn’t match viewZ for the current
pixel. This process repeats until the sum of weights is less than a
threshold value.

The history fix pass doesn’t use other weights (like normal and roughness) for
performance reasons. Full reconstruction only happens for 1–3 frames
(depending on roughness) and only in newly appeared regions; following after
the history fix pass, the blur passes (Section 49.5.5) redistribute energy based
on material properties. Even on the next frame after a history reset,
previously blurred signals will be mixed with the current input in the temporal
accumulation pass (Section 49.5.2), and the history fix pass will switch to a
finer level.
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Additionally, this pass performs variance-based color clamping, to faster
tracked the history (with fewer accumulated frames) to increase overall
response time, and anti-firefly filtering, which is based on the Rank
Conditioned Rank Selection filter [1].

49.5.5 BLUR

The blur pass is the only spatial filter that uses a per-pixel stochastically
rotated Poisson disk. The other filter passes use a statically defined Poisson
disk, which is lined into the shader assembly by the compiler. This pass uses
the same Poisson distribution, but applies a random rotation in each pixel.
The rotation can be at a random angle, but ReBLUR uses animated in-time
4× 4 Bayer dithering. To avoid introducing potentially dependent texture
loads, per-pixel rotation is implemented using arithmetic logic unit (ALU)
instructions only.

All blur passes look very similar. Each spatial filtering pass computes the blur
radius depending on the number of accumulated frames, material roughness,
and hit distance (the maximum blur radius is a user-controllable parameter).
Additionally, blur passes set up the geometry basis (Section 49.9), because
sampling is done in world space, and the parameters for geometry, normal,
roughness, and hit distance weights to be used during sampling. At the end,
cross-bilateral filtering is applied using a Poisson disk with eight samples
(this low sample count has been selected to provide a good balance between
image quality and performance).

49.5.6 POST-BLUR

The previous pass is not enough for spatial filtering, so a post-blur pass has
been designed to perform cleanup after the blur pass. It does exactly the
same thing but with one big difference: the blur radius is scaled proportional
to the difference between the output of the blur pass (Section 49.5.5) and of
the temporal accumulation pass (Section 49.5.2). The result of the post-blur
pass will be used as the history buffer in the next frame. This dynamic
adaptation of the filter radius allows us to minimize color divergence due to
recurrent blurring.

49.5.7 TEMPORAL STABILIZATION

ReBLUR uses only one temporal accumulation pass. The temporal
stabilization pass is different. It’s main purpose is to stabilize the denoiser
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output. It has its own history, which never goes to the temporal feedback loop.
Logically, it’s very close to temporal supersampling with variance color
clamping [5]. Temporal stabilization of the specular signal requires accurate
reprojection, which can’t be achieved using surface motion only. Like in the
temporal accumulation pass, two types of reprojection are used to get history
candidates (Section 49.8), and the interpolation factor between the two is
known and comes from the temporal accumulation pass (Section 49.5.2).

Another very important task for this pass is anti-lag handling. ReBLUR has
been designed to do accurate reprojection of diffuse and specular signals
from the previous frame to the current frame even with slow accumulation
factors, but there should be something reacting on rapid changes in the
environment not related to the camera movement, like handling dynamic
objects or dynamic lights.

49.6 DISOCCLUSION HANDLING

Regardless of the signal type, the number of accumulated frames will be set
to 0 in the temporal accumulation pass if a disocclusion is detected. A
disocclusion is a new portion of a scene in a pixel, which was occluded in the
previous frame, i.e., it doesn’t exist in the history buffer. It makes the latter
invalid for this pixel. Disocclusion can be detected by measuring the plane
distance between the plane {Xprev,n} and another previous position,
reconstructed from the previous frame. The resulting plane distance is
normalized by the distance between the camera and the point and is
compared with some small threshold value (around 0.5–1.5%). For a 2× 2
bilinear footprint, disocclusion values can be computed as shown in
Listing 49-2.

It’s worth noting that n and nprev can be averaged inside corresponding 2× 2
bilinear footprints. It was discovered that this worked better for silhouettes,
especially if a pixel on it had a normal coplanar to the screen normal. Using
geometric normals instead of per-pixel normals can slightly improve image
quality, but it becomes less relevant if averaged normals are used. The
presented method is suited well for subpixel jittered inputs.

49.7 DIFFUSE ACCUMULATION

Diffuse accumulation is done by reprojecting accumulated history back to the
current frame using a bicubic Catmull–Rom filter to avoid blurring under slow
pixel motion. This filter has a higher degree and requires disocclusion
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Listing 49-2. Disocclusion handling.

1 // N = surface normal for the current frame
2 // Nprev = surface normal for the previous frame
3 // prevViewZ = viewZ in the 2x2 footprint for the previous frame
4 float4 ComputeDisocclusion2x2( float threshold, float isInScreen, float4x4

mWorldToViewPrev, float3 Xprev, float3 N, float3 Nprev, float
invDistToPoint, float4 prevViewZ )

5 {
6 // Out-of-screen = occlusion
7 threshold = lerp(-1.0, threshold, isInScreen);
8

9 float NoXprev1 = abs( dot( Xprev, N ) );
10 float NoXprev2 = abs( dot( Xprev, Nprev ) );
11 float NoXprev = max( NoXprev1, NoXprev2 ) * invDistToPoint;
12 float Zprev = mul( mWorldToViewPrev, float4( Xprev, 1.0 ) ).z;
13 float NoVprev = NoXprev / abs( Zprev );
14 float4 relativePlaneDist = abs(NoVprev * abs(prevViewZ) - NoXprev);
15

16 return step( relativePlaneDist, threshold );
17 }

detection in a 4× 4 region. Bicubic filtering is used only if the entire footprint
is valid; otherwise, we revert to a 2× 2 bilinear footprint. Bilinear filtering
uses custom weights to avoid using rejected samples, e.g., samples found
during disocclusion handling or samples with backfacing normals (the plane
distance is close to 0, but the normal is oriented in the opposite direction). If
at least one sample in the footprint is valid for the current frame, the number
of accumulated frames gets increased by 1, i.e., A += 1. Additionally, a final
checkerboard resolve takes place at this stage.

49.8 SPECULAR ACCUMULATION

Specular accumulation does the same steps as in diffuse accumulation:
disocclusion tracking, advancing the number of accumulated frames, and
checkerboard resolve. But because specular reprojection can’t be tracked
using surface motion in a general case, specular reprojection from the
previous frame is a combination of surface and virtual motion–based
reprojections in ReBLUR.

49.8.1 SURFACE MOTION–BASED SPECULAR REPROJECTION

In this case regular surface motion vectors are used to reproject specular
history from the previous to the current frame. If the accumulation factor is a
predefined constant, it won’t work for low/moderate roughness, glancing
viewing angles, and highparallax. Parallax is the ratio between the camera

832



CHAPTER 49. REBLUR: A HIERARCHICAL RECURRENT DENOISER

Object

Camera

V V

C

C

Vprev

Vprev

Camera (Previous)

Screen Plane
Camera

Parallax =
tan(acos(v • vprev))

Figure 49-5. Parallax between the current and previous positions of a point between two frames.

movement vector projection and the distance to the point. In other words,
parallax shows how far the new viewing direction is from the previous viewing
direction (Figure 49-5).

One important property of parallax is that it’s 0 for the entire frame if the
camera is not moving and only rotating. In this case we can reproject the
previous frame (if the world is static) without any artifacts, because simple
reprojection can handle this mapping, preserving the viewing vector.

Parallax can be computed using the method in Listing 49-3. It can be used to
estimate the confidence of surface-based specular motion (regular MVs) in
two ways:

> Adjust the accumulation speed (larger parallax implies faster
accumulation).

> Clamp the reprojected history based on parallax (larger parallax implies
more clamping).

Listing 49-3. Compute parallax.

1 float ComputeParallax( float3 X, float3 Xprev, float3 cameraDelta )
2 {
3 float3 V = normalize(X);
4 float3 Vprev = normalize(Xprev - cameraDelta);
5 float cosa = saturate( dot(V, Vprev) );
6 float parallax = sqrt( 1.0 - cosa * cosa ) / max(cosa, 1e-6);
7 parallax *= 60; // Optionally normalized to 60 FPS
8

9 return parallax;
10 }
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Listing 49-4. Estimate specular accumulation.

1 // MAX_ACCUM_FRAME_NUM = 32-64
2 // SPEC_ACCUM_BASE_POWER = 0.5-1.0 (greater values lead to less aggressive

accumulation)
3 // SPEC_ACCUM_CURVE = 1.0 (aggressiveness of history rejection depending on

viewing angle: 1 = low, 0.66 = medium, 0.5 = high)
4 float GetSpecAccumSpeed(float Amax, float roughness, float NoV, float

parallax)
5 {
6 float acos01sq = 1.0 - NoV; // Approximation of acos^2 in normalized
7 // form
8 float a = pow(saturate(acos01sq), IsReference() ? 0.5 : SPEC_ACCUM_CURVE

);
9 float b = 1.1 + roughness * roughness;
10 float parallaxSensitivity = (b + a) / (b - a);
11 float powerScale = 1.0 + parallax * parallaxSensitivity;
12 float f = 1.0 - exp2(-200.0 * roughness * roughness);
13 f *= pow(saturate(roughness), SPEC_ACCUM_BASE_POWER * powerScale);
14 float A = MAX_ACCUM_FRAME_NUM * f;
15

16 return min(A, Amax);
17 }

The latter is not used in ReBLUR because the pre-blur spatial filtering pass is
not enough to guarantee sufficient noise reduction of the output signal. High
local variance prevents us from using wide variance color clamping in the
temporal accumulation pass (but it’s still a good option if the input signal is
relatively clean).

Now we can define a function A = f(A,n · v, parallax) that estimates the
maximum number of allowed accumulated frames without increasing
temporal lag. The function f should have the following properties:

> f is smaller for low roughness.

> f is smaller for small absolute values of n · v (the Fresnel effect does not
follow surface motion).

> f is smaller for high parallax, i.e., when the viewing angle changes
significantly between two frames.

We found empirically that the method in Listing 49-4 works well in practice.

Finally, we can combine all the parts into a method for reprojecting and
combining history with the current signal using surface motion only:
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Figure 49-6. Reflection virtual position.

1. parallax = ComputeParallax( X, Xprev, cameraDelta )
(Listing 49-3).

2. Estimate allowed maximum number of accumulated frames:
Asurf = GetSpecAccumSpeed( A, roughness, NoV, parallax )
(Listing 49-4).

3. Reproject specular history using surface motion.

4. current = lerp( history, input, 1 / ( 1 + Asurf )).

49.8.2 VIRTUAL MOTION–BASED SPECULAR REPROJECTION

Virtual motion–based reprojection is a trick that works for mirror reflections.
It’s based on the fact that the reflected world has its own motion, based on the
motion of the reflection virtual position (Figure 49-6).

In the shader code, projection to the previous frame based on virtual motion
can be computed as (assuming that v points out of the surface):

1 float3 Xvirtual = X - V * hitDist;
2 float2 pixelUvVirtualPrev = GetScreenUv( gWorldToClipPrev, Xvirtual );

The resulting texture coordinates are used to retrieve the reprojected history.

If used “as is,” this method doesn’t work for anything except pure mirrors
(roughness = 0), because in a general case the specular lobe can be
“flattened,” making reflections “visually” much closer to the surface.
Logically, virtual motion should resolve to surface motion for roughness = 1
(Figure 49-7). Mathematically, a good approximation of this process can be
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Figure 49-7. Roughness and specular reflections.

Listing 49-5. Specular dominant factor.

1 float GetSpecularDominantFactor(float NoV, float roughness)
2 {
3 float a = 0.298475 * log(39.4115 - 39.0029 * roughness);
4 float f = pow(saturate(1.0 - NoV), 10.8649)*(1.0 - a) + a;
5

6 return saturate(f);
7 }

calculations based on the specular dominant direction, which define how
close the specular dominant direction dGGX is to the normal vector n or the
reflection vector r (Listing 49-5). See Lagarde and de Rousiers [2, page 69] for
more details about the implementation of the function
GetSpecularDominantFactor.

Now we can adjust the virtual position calculation as shown in Listing 49-6.
As you can see, in contrast to the previous “vanilla” method, we have
introduced a scaling factor (f), which says how close the virtual position
should be to the surface position based on the current roughness, normal,
and view vector. The virtual position gets resolved to the surface position if the
factor is close to 0 (i.e., dGGX is close to n and roughness is high). But even
after this addition, virtual motion still leaves a lot of artifacts and ghosting

Listing 49-6. Virtual position in the reflected world.

1 float3 GetXvirtual(float3 X, float3 V, float NoV, float roughness, float
hitDist)

2 {
3 float f = GetSpecularDominantFactor(NoV, roughness);
4 return X - V * hitDist * f;
5 }
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Listing 49-7. Virtual motion confidence.

1 // Out of screen
2 float isInScreenVirtual = float(all(saturate(pixelUvVirtualPrev) ==

pixelUvVirtualPrev));
3 float virtualHistoryConfidence = isInScreenVirtual;
4

5 // Normal
6 virtualHistoryConfidence *= GetNormalWeight(roughness, N,

prevNormalVirtual);
7

8 // Roughness
9 virtualHistoryConfidence *= GetRoughnessWeight(roughness,

prevRoughnessVirtual);
10

11 // Hit distance
12 float hitDistMax = max(hitDistVirtual, hitDist);
13 float hitDistDelta = abs(hitDistVirtual - hitDist) / (hitDistMax + viewZ

);
14 float thresholdMin = 0.02 * smoothstep(0.2, 0.01, parallax);
15 float thresholdMax = lerp(0.01, 0.25, roughness * roughness) +

thresholdMin;
16 virtualHistoryConfidence *= smoothstep(thresholdMax, thresholdMin,

hitDistDelta);

because we should account for various types of disocclusion happening in the
reflected world or other factors leading to such a disocclusion. There are
several, and all of them are multiplied into a single aggregative parameter
called virtual motion confidence (Listing 49-7).

This confidence is used in two ways: it affects how heavily the reprojected
history will be clamped to the input signal using variance color clamping, and
additionally it accelerates history accumulation if confidence is low.

Hit distance–based confidence correction requires relatively clean hit
distances; this is why ReBLUR denoises them as well. Input hit distances can
be too noisy to be used “as is.” Instead, the algorithm mixes input hit distance
with surface-based parallax-corrected reprojection (fast accumulated) to
reduce the noise level.

The specular dominant factor is used to mix surface motion–based and virtual
motion–based reprojections. That’s the second ingredient, which can be
called the amount of virtual motion.

Becuase virtual motion is correct only for flat surfaces, local curvature can be
used to solve the lens equation and adjust the virtual point position and/or
amount of virtual motion.
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49.8.3 COMBINED SOLUTION

Now we can assemble all parts into a combined solution of reprojecting the
specular history texture from the previous frame (Listing 49-8). An example of
the method applied in Cyberpunk 2077 can be seen in Figure 49-8.

Listing 49-8. Combined solution for specular accumulation.

1 // Reproject history using surface motion.
2 float2 uvPrev = GetScreenUv(gWorldToClipPrev, Xprev);
3 float4 historySurf = ApplyBilinearFilterWithCustomWeights(historyTexture,

uvPrev, occlusion2x2); // (Listing 49-2)
4

5 // Find surface motion-based accumulation speed (Listing 49-4).
6 float Asurf = GetSpecAccumSpeed(A, roughness, NoV, parallax);
7

8 // Combine surface motion-based reprojected
9 // history with the noisy input.
10 float Ahitdist = min(Asurf, maxHitDistAccumulatedFrameNum);
11 float4 currentSurf;
12 currentSurf.xyz = lerp(historySurf.xyz, input.xyz, 1/(1 + Asurf));
13 currentSurf.w = lerp(historySurf.w, input.w, 1/(1 + Ahitdist));
14

15 // Find Xvirtual (Listing 49-6).
16 float3 Xvirt = GetXvirtual(X, V, NoV, roughness, currentSurf.w);
17

18 // Reproject history using virtual motion.
19 float2 uvPrevVirt = GetScreenUv(gWorldToClipPrev, Xvirt);
20 float4 historyVirt = ApplyBilinearFilter(historyTexture, uvPrevVirt);
21

22 // Estimate virtual motion confidence (Listing 49-7).
23 float confidence = isInScreenVirtual;
24 confidence *= GetNormalWeight(...);
25 confidence *= GetRoughnessWeight(...);
26 confidence *= GetHitDistanceWeight(...);
27

28 // Compute amount of virtual motion.
29 float amount = GetSpecularDominantFactor(NoV, roughness);
30 amount *= isInScreenVirtual;
31 amount *= GetNormalWeight(...); // optional
32

33 // Apply optional wide variance clamping to the virtually
34 // reprojected history if confidence is low.
35 float4 historyVirtClamped = ApplyVarianceClamping(historyVirt);
36 float f = lerp(confidence, 1, roughness * roughness);
37 historyVirt = lerp(historyVirtClamped, historyVirt, f);
38

39 // Find virtual motion-based accumulation speed.
40 float Avirt = GetSpecAccumSpeed(A, roughness, NoV, 0);
41

42 // Adjust virtual motion-based accumulation speed for low confidence.
43 float Amin = min(Avirt, MIP_NUM * sqrt( roughness )); // MIP_NUM = 3-4
44 float a = lerp( 1/(1 + Amin), 1/(1 + Avirt), confidence );
45 Avirt = 1.0 / a - 1.0;
46
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47 // Combine virtual motion-based reprojected history
48 // with the noisy input.
49 float Ahitdist = min(Avirt, maxHitDistAccumulatedFrameNum);
50 float4 currentVirt;
51 currentVirt.xyz = lerp(historyVirt.xyz, input.xyz, 1/(1 + Avirt));
52 currentVirt.w = lerp(historyVirt.w, input.w, 1/(1 + Ahitdist));
53

54 // Mix surface and virtual motion-based combined specular
55 // signals into the final result.
56 float4 currentResult = lerp(currentSurf, currentVirt, amount);
57

58 // Mix surface and virtual motoin-based numbers of accumulated
59 // frames into a single value for the next frame.
60 float a = lerp( 1/(1 + Asurf), 1/(1 + Avirt), amount );
61 float Acurr = 1.0 / a - 1.0;

Figure 49-8. Cyberpunk 2077 with ray tracing. Left: before denoising. Right: after denoising.

49.9 SAMPLING SPACE

ReBLUR gathers image samples based on a world-space kernel. For diffuse
signals the sampling basis is constructed around the pixel normal. For
specular signals the basis is constructed around the reflected dGGX
(Figure 49-9). The tangent vector is perpendicular to the pixel normal, which
allows us to scale it based on the viewing angle to achieve realistic specular
elongation. The code snippet in Listing 49-9 computes the plane at which the
Poisson disk samples are distributed.
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Listing 49-9. Get kernel basis.

1 float2x3 GetKernelBasis( float3 V, float3 N, float roughness = 1.0 )
2 {
3 float3x3 basis = ConstructBasis( N );
4 float3 T = basis[ 0 ];
5 float3 B = basis[ 1 ];
6

7 float NoV = abs( dot( N, V ) );
8 float f = GetSpecularDominantFactor( NoV, roughness );
9 float3 R = reflect( -V, N );
10 float3 D = normalize( lerp( N, R, f ) );
11 float NoD = abs( dot( N, D ) );
12

13 if( NoD < 0.999 && roughness != 1.0 )
14 {
15 float3 Dreflected = reflect( -D, N );
16 T = normalize( cross( N, Dreflected ) );
17 B = cross( Dreflected, T );
18

19 float NoV = abs( dot( N, V ) );
20 float acos01sq = saturate( 1.0 - NoV );
21 float skewFactor = lerp( 1.0, roughness, sqrt( acos01sq ) );
22 T *= skewFactor;
23 }
24

25 return float2x3( T, B );
26 }

49.10 SPATIAL FILTERING

Our spatial filters use Poisson disk stochastic sampling with eight taps. The
final sample weight wsample in our spatial filtering is a product of several
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weights:

wsample = wgeometry · wnormal · wroughness · whitDist, (49.2)

where

> wgeometry is how close the current sample position is to the plane {X,n}
at the kernel center [7].

> wnormal is the cutoff parameters based on the average specular lobe
angle.

> wroughness allows us to choose lobes with similar spread angles (for
specular only).

> whitDist allows us to avoid over-blurring in regions with contrast hit
distances (contact and far reflections).

Any weight w is computed using the following formula:

w = smoothstep(0, 1, saturate(1 – |ax + b|)), (49.3)

where x is the value for which we compute a weight (e.g., for the normal
vector, x is a dot product with the normal at the center and the normal at the
current tap: x = ntap · ncenter). The scalars a and b represent the
parameterization parameters: a controls the normalization and b controls the
horizontal shift of the curve.

Most of the parameterization parameters depend on the number of
accumulated frames and become more strict over time. It’s worth noting that
normal weight normalization depends on the specular lobe angle, which is
computed using the following formula:

1 float GetSpecularLobeHalfAngle( float linearRoughness, float percentOfVolume
= 0.75 )

2 {
3 float m = linearRoughness * linearRoughness;
4 return atan( m * percentOfVolume / ( 1.0 - percentOfVolume ) );
5 }

See Lagarde and de Rousiers [2, page 72] for more details about the
GetSpecularLobeHalfAngle implementation.

49.11 ANTI-LAG

The temporal stabilization pass has its own history. It’s slower than the
history in the temporal accumulation pass before it gets clamped to the
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current frame. Anti-lag is based on a relative delta between slow (temporal
accumulation) and even slower (temporal stabilization) histories. There are
two types of anti-lag calculations: hit distance–based and intensity-based. If
the delta is high, the number of accumulated frames will be reduced, and on
the next frame accumulation will continue from this new value.

49.12 LIMITATIONS

ReBLUR works with pure radiance coming from a particular direction. Spatial
filtering can redistribute this energy across neighboring pixels. This means
that if irradiance is passed instead (i.e., material information is included),
then, as the result, ReBLUR can blur out many details. To overcome this
problem, BRDF materials should be applied after denoising.

ReBLUR spatial filtering is based on the specular dominant direction. It
makes, for example, diffuse denoising be a special case of specular denoising
for roughness = 1. It implies that ReBLUR is less accurate for materials such
as non-Lambertian diffuse materials, specular materials with retroreflection,
anisotropic specular materials (but it’s not difficult to extend the algorithm to
support it), multi-lobe specular materials, or multi-layered materials. It’s
worth noting that multi-layered (or multi-lobe) materials can be denoised per
layer (per lobe) in the current implementation.

49.13 PERFORMANCE

There are three variants of the denoiser: diffuse only, specular only, and
combined diffuse-specular. The following table shows per-pass performance
of the combined version at 2560× 1440 native resolution measured on
RTX 3090:

Pass Runtime (ms)
Pre-blur 0.48
Temporal accumulation 0.59
Mip generation 0.10
History fix 0.30
Blur 0.40
Post-blur 0.44
Temporal stabilization 0.41
Total: 2.72
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49.14 FUTURE WORK

For future work, we would like to add support for anisotropic roughness and to
look into alternative ways of deriving virtual motion vectors, which are needed
for specular reflections. We also want to compare the Poisson disk sampling
used in ReBLUR against Á-Trous, e.g., the hierarchical spatial filter used in
ReLAX and SVGF [6], and to look into ways of combining the two approaches.
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CHAPTER 50

PRACTICAL SOLUTIONS FOR RAY
TRACING CONTENT COMPATIBILITY
IN UNREAL ENGINE 4
Evan Hart
NVIDIA

ABSTRACT

Though modern graphics hardware offers features and performance for
real-time ray tracing, consumer applications like games must target legacy
hardware to serve a large install base. This chapter addresses some
challenges and solutions for working with ray tracing in this legacy content. In
particular, it demonstrates a solution for mixing raster and ray traced
translucency, as well as a set of solutions for animated foliage.

Figure 50-1. A forest scene rendered with ray tracing in Unreal Engine 4 (UE4) using animated
foliage. The scene uses ray tracing for shadows and reflections. The scene was authored by
Richard Cowgill using the Forest - Environment Set by Nature Manufacture available through the
UE4 Marketplace [4].
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50.1 INTRODUCTION

Ray tracing opens up an impressive array of graphical effects that were
previously challenging or impractical for real-time applications such as
games. However, all consumer-focused applications like games have a heavy
burden of legacy support. The effects and art must be authored to work well
on the platforms that represent the vast majority of the install base when they
release. This constraint demands that the primary focus of the development
effort be on content tuned to work well for rasterization. These current
market needs to prioritize rasterization during development limit the cycles
available to tune specifically for ray tracing.

Due to the practical limitations of revising many man-years of asset
development, the current path to enabling ray tracing effects in real-time
games is to adapt the ray tracing effects to the raster-centric content already
required. This chapter presents techniques for resolving challenges in two
common rendering regimes: translucency and foliage. These techniques
have been successfully used to enable ray tracing effects in shipping games.

Though the algorithms here were implemented in the context of the Unreal
Engine, they are broadly applicable. NVIDIA’s custom NvRTX branch of Unreal
Engine 4 (available to anyone registered for Unreal Engine access through
GitHub at https://github.com/NvRTX/UnrealEngine) demonstrates the
implementation of these techniques and several more.

50.2 HYBRID TRANSLUCENCY

Translucency in games typically means anything that is not opaque. For
rasterization, this implies alpha blending over other geometry. This category
covers common objects like glass and water, but it also includes particle
effects such as smoke and fire. Importantly, translucent objects bring special
shading and composition challenges to raster graphics due to their many
overlapping surfaces.

50.2.1 MOTIVATION

The standard implementation of ray traced translucency in Unreal Engine 4
(UE4) handles all translucent effects in a single pass. Primary rays are traced
from the viewer to just in front of the closest opaque surface. The depth buffer
provides this max ray distance. Rays shade the closest hit, including a
reflection bounce and any necessary shadow rays, then fire a continuation ray.
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(a) Ray traced translucency (b) Rasterized translucency

Figure 50-2. Ray traced translucency offers an impressive upgrade in shading. However, artists
typically author the content with rasterization in mind. This scene is a variant of the Amazon
Lumberyard Bistro [1].

Depending on the settings and material type, the continuation ray potentially
refracts. With the right settings and content, this algorithm produces a
high-quality result. Translucent interactions are perfectly sorted, shading is
substantially improved over shading used for raster translucency
(Figure 50-2), and refraction effects are supported natively. Importantly,
achieving this result requires that the content be configured appropriately.
Without proper tuning, performance challenges and graphical artifacts
commonly occur.

The most direct performance challenge with fully ray traced translucency
comes from particle effects authored for rasterization. Particle systems often
create volumetric effects with several sprites overlapping a single pixel.
Capturing each layer with full ray traced translucency requires tracing an
additional ray and one additional shading invocation. Though this may
produce high-quality volumetric effects, the performance scales quite
differently than originally intended by the artist. For example, even eight
layers of ray tracing interactions are too few to render a simple fire and
smoke particle system without clear hole artifacts where the rays terminate
too early. More importantly, ray tracing a particle system at that level of
overlap costs roughly 10 times the cost of rasterizing it. Although particle
systems are the most common example to encounter this performance
concern, the performance challenges are not limited to them alone. Artists
may place dozens of small glasses inside a restaurant that they never
intended to have a dramatic impact on the scene visuals. Due to the
order-dependent nature of compositing, one cannot mix and match the

847



RAY TRACING GEMS II

methods of rendering translucency. As fully ray traced translucency is an
all-or-nothing affair, the only choices are to pay that cost for everything or to
forgo the enhancements entirely.

Quality challenges with fully ray traced translucency are more varied than
those of performance issues. Particles again show up at the top of the list of
concerns. In UE4, first among the particle challenges is that much legacy
content relies on a particle system referred to as Cascade, as opposed to a
newer system named Niagara. The older Cascade system completely lacks
ray tracing support, so enabling full ray traced translucency causes all
particles from Cascade to completely disappear. This forces a developer using
the legacy particle system to choose between re-authoring those systems or
foregoing ray traced translucency. Even when all particle systems are
supported, the authoring process of treating them as screen-aligned
billboards may or may not hold up well under the different rendering
methodology.

The next challenge for fully ray traced translucency comes from refraction
and distortion. Raster translucency generally only offers distortion as a
special effect carefully placed in the scene. Ray traced translucency
accomplishes this distortion naturally through refraction. This requires that
either refraction is disabled or all materials are configured properly with their
index of refraction. The result is a choice between no distortion/refraction or
editing potentially hundreds of materials as well as geometry to ensure that
refraction properties have all been properly configured. Misconfigured
refraction parameters are quite common in content that has been developed
without the intention of supporting ray tracing from the start. A simple
example is that of a window. Games will generally use a two-sided
quadrilateral for the window. Even if the index of refraction is correct to drive
the physically based rendering used by the engine, the lack of a second
quadrilateral representing the backside of the glass will result in distortion.
The ray will continue in the refracted direction as if looking into a solid block
of glass. Finally, the best performance-tuning parameter for fully ray traced
translucency presents its own image artifact challenges. Ray traced
translucency requires that users place a limit on the number of layers traced.
Though this greatly helps performance in cases of high depth complexity, the
translucent surfaces beyond the limit are simply not rendered. Although the
front one or two layers will have the most important impact on the image,
having objects completely disappear is unfortunate (Figure 50-3).
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(a)Multi-layer ray traced translucency (b) Single-layer ray traced translucency

Figure 50-3. With only a single layer of translucency, overlapping glasses result in the glasses
farther from the viewer disappearing in the overlapping sections.

50.2.2 OUR HYBRID APPROACH

The hybrid translucency solution described here bridges the gap between ray
traced translucency and raster translucency. Effects best suited for
rasterization can use rasterization, while ray traced shading is applied to
more important surfaces like window panes. Hybrid translucency fixes the
ordering problem described previously by having the ray tracing pass place its
results in an offscreen cache. The cache captures the radiance for translucent
layers independently, rather than compositing them. This allows the
rasterization phase of translucency to look up the shading result in the cache
and substitute it for the shading value produced via rasterization. Importantly,
all translucent primitives that wish to receive ray tracing effects are rendered
twice (once via ray tracing and once via rasterization). As rasterization is used
to composite everything, hybrid translucency is unable to provide the
order-independent translucency benefit of fully ray traced translucency.
However, hybrid translucency is intended to work with legacy content, which
has already had to deal with this challenge. Further, hybrid translucency uses
the same refraction and distortion methods as rasterization. Although those
effects will not look any better than they did under rasterization, they will now
function identically without the need for an artist to tune the effect specially
for ray tracing. The result is a technique that functions and performs in a
manner consistent with the rasterization systems for which the content has
already been tuned, while offering greatly improved shading on surfaces like
windows at little cost to the asset pipeline (Figure 50-4).

Hybrid translucency’s ray traced shading cache functions by storing samples
in a screen-space texture array. Each pixel in the framebuffer contains up to
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(a) Fully ray traced translucency (b) Hybrid translucency with two layers

Figure 50-4. Hybrid translucency replicates the most important visual enhancements of full ray
tracing while continuing to support rasterized elements.

N layers of shaded translucent surfaces (or events). Each event stores the
reflected irradiance as well as the distance from the viewpoint. Importantly, it
does not composite any transmission through the surface. The transmission
is applied by the blending operations during compositing. Creating the cache
is accomplished by a simple modification to the standard algorithm for
handling ray traced transparency. Each pixel traces a ray from the eye into the
scene with the maximum distance limited by the opaque geometry already
written to the framebuffer. The closest hit is shaded and written to the first
layer of the cache, then the ray is stepped forward and traced again to record
additional events if necessary. The pseudocode in Listing 50-1 demonstrates
the basic algorithm for the ray generation shader.

Once the shading cache is created, the ray traced results must be composited
into the scene with the raster transparency. Compositing is performed in the
standard rasterization order. The shader for translucent materials is
enhanced with code to check the shading cache. The check first examines
layer 0 to see if any ray traced data was written for the pixel. If so, it compares
the distance from the viewpoint against what was stored in the cache. If the
distance matches within a threshold, the shading data from the cache is used.
To prevent paying the cost of searching with every translucent pixel, objects
not supporting ray tracing skip the search by using a uniform branch.
Listing 50-2 contains code for applying the data from the cache.

Importantly, the compositing pass for hybrid translucency maintains the
shading functionality that would have otherwise applied. This allows for the
production of reasonable results, no matter how many layers of translucency
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Listing 50-1. Ray generation pseudocode.

1 GBufferData OpaqueData = ReadGBufferForPixel();
2

3 FarPosition = ReconstructionPosition(OpaqueData);
4

5 RayDescription Ray;
6 Ray.Origin = ViewerPosition;
7 Ray.Direction = normalize(FarPosition - ViewerPosition);
8 Ray.MinT = 0.0;
9 Ray.MaxT = length(FarPosition - ViewerPosition) - Epsilon;
10

11 for(int Event = 0; Event < MaxEvents; Event++)
12 {
13 Payload HitData = Trace(Ray);
14 if(!HitData.IsHit)
15 {
16 Break;
17 }
18 else
19 {
20 Color = ShadeHit(HitData);
21 Distance = HitData.Distance;
22 RecordLayer(Event, Color, Distance);
23 }
24

25 // Step forward for next search.
26 Ray.MinT += HitData.Distance + Epsilon;
27 }

Listing 50-2. Translucent cache search pseudocode.

1 Color = ComputeShadingForTranslucentPixel();
2

3 if (SupportRayTracing)
4 {
5 // Check if any layers were captured.
6 if (Layers[pixel][0].Distance > 0)
7 {
8 Distance = Length(WorldPosition - ViewPosition);
9

10 for(Layer = 0 : NumLayers - 1)
11 {
12 LayerDist = Layers[Pixel][Layer].Distance;
13 Delta = abs(Distance - LayerDistance);
14

15 if (Delta/Distance < Threshold)
16 {
17 // Surface matches the cached data.
18 Color = Layers[pixel][Layer].Color;
19 break; // Exit the loop.
20 }
21 }
22 }
23 }
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(a) Two-layer hybrid translucency (b) Single-layer hybrid translucency

Figure 50-5. Hybrid translucency gracefully falls back to the raster effect, on which the content
already needs to rely for most systems.

are present. The top N layers will receive ray traced shading, while the deeper
layers will simply fall back to the effect as it would have been with
rasterization (Figure 50-5). As the topmost layer will provide the most
significant contribution to the image, ray tracing only a single layer of
translucency is typically enough.

50.2.3 RELATIONSHIP TO ORDER-INDEPENDENT TRANSPARENCY

The hybrid translucency approach described in this chapter explicitly avoids
solving the problem of the order of translucent surfaces, but it does share
some similarities. Depth peeling [3] converts translucency into layers to allow
compositing in depth order, and A-buffers [2] produce sorted per-pixel lists of
transparent surfaces. These concepts relate to the ordered sample cache
used by this hybrid translucency algorithm. In contrast to these
order-independent transparency (OIT) algorithms, the structure only serves
to ensure that the closest events were captured and to optimize cache
lookups. Importantly, this hybrid algorithm does not preclude the use of OIT
approaches during the compositing pass. It relies on whichever one is in use
for compositing standard raster transparency, with the key requirement that a
single method be used to order both the raster and the ray traced
components.

50.2.4 PERFORMANCE

As with all advanced visual effects, managing and scaling performance is
important with hybrid translucency. As discussed previously, hybrid
translucency can cut the amount of shading both by reducing the objects
considered for translucent ray tracing and by restricting the number of layers
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(a) Ray traced translucency with two refraction events:
16.2 ms

(b) Half-resolution hybrid translucency with only the
top layer traced: 4 ms + 1.5 ms

Figure 50-6. Hybrid translucency produces overall better image quality at one third of the cost in
this scene. Notice that much of the glassware is not completely visible in the purely ray traced
version due to exhausting its refraction event count. All timings were taken on an RTX 3090 at
1920× 1080

captured. The ability to degrade more gracefully is the soul of the hybrid
translucency’s performance advantage over standard ray traced translucency.
The tracing pass for hybrid translucency is effectively identical in cost when
comparing equal numbers of events shaded. Shading two layers of refraction
rays in a complex test scene shows a cost of 16.1 milliseconds (ms) for pure
ray tracing and 16.2 ms for hybrid ray tracing (Figure 50-6a). The hybrid
method also requires an additional 1.5 ms to rasterize the translucency. (All
tests performed at 1920× 1080 resolution on an RTX 3090.) However, the ray
traced scene suffers from translucent objects disappearing even with two
layers of events. The hybrid scene has no objects disappearing, and it can
reduce the cost to a single layer with hardly any visual impact, reducing its
cost to 7.9 ms. Additionally, the shading cache layers of hybrid translucency
can be rendered at half the resolution in a checkerboard or interleaved style
while upsampling at compositing time. As expected, halving the number of
samples halves the cost of ray tracing, reducing the cost to 4 ms for this test
case (Figure 50-6b).

Finally, all ray traced translucency can benefit from using rasterization to
compute a mask of potentially transparent pixels on the screen. Rasterizing
the few translucent objects that participate in ray tracing against the depth
buffer very quickly marks which pixels can ever produce a translucency hit.
This allows the ray generation shader to terminate without firing a ray for
regions with no coverage. For most scenes, this saves hundreds of thousands
of rays cast for what is often under one tenth of a millisecond in cost.
However, the benefit depends on the amount of translucency in the scene, so
the utility of this technique will vary.
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50.3 FOLIAGE

Foliage is an integral part of outdoor environments in nearly all games. The
term foliage in the context of games covers everything from large trees to
grass. In UE4, as in most games, the majority of foliage is handled through
somewhat specialized systems to allow the high density typically desired.
This system replicates dozens to hundreds of identical copies, commonly
called instances, of the meshes with different transformations to produce a
rich environment. On top of the varied static transforms, foliage systems
typically utilize some form of vertex shader animation. Though it may be as
simple as a sine wave to sway the grass back and forth, this ambient motion
brings life to a scene.

50.3.1 REPRESENTING ANIMATED FOLIAGE

Data management is the key issue with supporting foliage in a ray tracing
context for games. Exploiting the instanced nature of foliage is the first step
in managing the costs. Placing foliage as instances into the top-level
acceleration structure (TLAS) with shared entries in the shader binding table
provides the solution to manage the costs associated with thousands of
objects. A modest forest scene in UE4 spends over 6 ms of CPU time setting
up ray tracing instances that are setup independently, as opposed to 0.6 ms
for using shared setup. Importantly, it may even be worthwhile to forego
multiple levels of detail, as the costs associated with managing the multiple
levels of detail may outweigh the gains. One aspect to managing the instances
is efficiently culling to ensure that only the relevant instances are processed.
In general, ray tracing makes the culling problem more difficult, as reflection
rays are harder to account for. A good solution is to cull by projecting the
bounding sphere to a solid angle from the viewpoint. A culling angle of
1–2 degrees ensures that the screen area impacted by the object is respected
across all but the most extreme regimes. Tall trees will accurately cast their
long shadows and be prominent in reflections, while the impact of the
thousands of small tufts of grass will be minimized.

The ambient motion of foliage substantially magnifies the data management
issue while also introducing costs of its own. Bottom-level acceleration
structures (BLASs) must be created uniquely for each different deformation.
This means that the simple vertex shaders used to add ambient motion to all
the foliage in a scene are producing thousands of unique meshes each from
the perspective of ray tracing. The naive solution requires running a compute
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shader over each instance to update the vertices, then refitting or rebuilding
the BLAS each frame. A test of a simple forest scene in UE4 shows that even
capping this processing at 256 instances per type costs over 50 ms of GPU
processing on an NVIDIA RTX 3090. Such a solution is untenable in a
real-time application. A more practical fallback is to simply skip the ambient
motion and leave all instances in their neutral poses. Placing just the static
objects instanced into the TLAS produces a very reasonable representation for
many gaming scenarios. It ensures that the foliage is accurately represented
in size and approximate location. Importantly, the ray tracing representation
is only observed as part of secondary effects. Reflections will show correctly
placed and lit foliage. Without close inspection, the lack of motion will
frequently be missed, as large near-perfect mirror reflections are
uncommon. Though occlusion effects like shadows and ambient occlusion
may often get by with a lack of motion especially when casting on moving
objects, the degree to which it is acceptable will vary based on the content.
The appearance of stationary leaf shadows on static objects will sometimes
stand out as objectionable, especially when the shadows created via shadow
maps move. Importantly, fully accurate motion, which would require the
50 ms cost mentioned previously, is not typically necessary. As long as
shadows have motion generally consistent with the behavior of the foliage as
seen by the viewer, a convincing effect is possible.

Reusing animations across multiple instances allows the shadows to have
behavior consistent with the motion prescribed for the foliage, while not
paying the cost for matching the animations exactly. Sharing the animations
between instances is a simple extension to the simulations used for
stand-alone deformed meshes. The only additional effort required is that the
result must keep the same neutral coordinate frame as the original mesh.
The translations, rotations, and scales for the instances still apply to produce
a convincing animated instance in the world. Minimizing the number of
simulated instances is important, as each additional simulated instance is
work and limits reuse. Often, convincing results are achievable with only a
single simulated instance for each distinct foliage mesh in a forest. Again, the
user never views the ray traced results directly.

50.3.2 INEXACT OCCLUSION

Though purely static foliage or replicated animations do a reasonably good job
on reflections and shadow casting from foliage onto other objects,
self-occlusion effects of foliage require a bit more care. Because the vertex
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(a) Raster and ray tracing geometry out of sync while
using an exact shadow test

(b) Raster and ray tracing geometry out of sync while
using an inexact shadow test

Figure 50-7. The exact shadow test shows substantial hard shadow artifacts where the geometry
used to cast shadow rays does not match the geometry used to test the shadow rays. Applying a
stochastic bias to only the pixels known to have this challenge hides the artifact while preserving
the overall appearance.

shader animation fails to exactly match the animation used by the foliage
instances in the bounding volume hierarchy (BVH), incorrect self-occlusion is
likely to occur. This is easiest to observe with unanimated foliage in the BVH
testing against animated foliage in the raster scene. The result is streaky
shadows that slice through the foliage as it moves in and out of intersecting
with the static representation (Figure 50-7a).

Like most of the other challenges with foliage, a good solution involves
leaning into the approximations already occurring. Foliage rendering uses
several billboards and leaf cards to represent the volume of leaves on a
typical plant. Because the space being rendered can be thought of as a
volume, the occlusion testing can be as well. Statistical sampling can
approximate shadow results within the volume (Figure 50-7b). This sampling
can be accomplished by applying random offsets to the minimum hit distance
(TMin) for the shadow rays (Figure 50-8). The result is as if a cloud of samples
was evaluated above the foliage in the direction of the light source. Clearly,
the randomization will result in a noisy shadow result. However, the shadows
already rely on denoising and temporal antialiasing passes to produce soft
antialiased results. Importantly, placing the bias on TMin rather than on the
origin for the shadow ray increases the reported distance for the rays that still
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(a)Mismatched geometry (b) Inexact shadow rays

Figure 50-8. The purple and blue surfaces are logically the same, but different ray traced (purple)
and raster (blue) representations. Due to the mismatch, the blue surface is in shadow with rays
traced directly from the surface. Applying a stochastic offset to the rays allows several samples to
avoid the self-occlusion.

return a shadow result. This aides the denoising process, as the sharpness of
denoising is tied to the reported hit distance. See Listing 50-3 for the setup of
this inexact shadow test.

Listing 50-3. Inexact shadow ray setup.

1 RayDesc Ray = GenerateOcclusionRay(
2 LightParameters,
3 WorldPosition, WorldNormal,
4 RandSample);
5

6 // Apply standard bias to avoid depth fighting artifacts.
7 ApplyCameraRelativeDepthBias(Ray, PixelCoord, DeviceZ, WorldNormal,

NormalBias);
8

9 // If using inexact occlusion tests, apply bias to TMin.
10 if (NeedsInexactOcclusion())
11 {
12 Ray.TMin += GetRandomOffset() * MaxBiasForInexactGeometry;
13 }

Finally, the inexact shadow testing is only desirable on objects and materials
that require the inexact test. Two different solutions have been deployed to
solve this. First, as foliage is the primary use case, attributes from the
G-buffer such as the shading model are useful to identify geometry wishing to
receive the effect. Simply applying it to the TWO_SIDED_FOLIAGE shading
model in UE4 will cover the most common cases. The downside is that
objects like tree branches will not participate. A more exact solution comes
from marking the target geometry explicitly. This can be done by an extra bit
in the G-buffer when there is room. For the more general case, simply
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running an extra stencil-only pass offers a good solution. Because the
geometry already exists in the depth buffer, the pass can skip running a pixel
shader to produce alpha blending and can rely on setting the depth function to
equal for handling pixels cut out by alpha testing.

50.4 SUMMARY

The hybrid translucency and the foliage techniques described in this chapter
are insufficient on their own to handle all challenges when adding ray tracing
to content authored for rasterization. However, they stand as part of the
toolbox of methods to accomplish the task, and when combined with other
tools in an engine like UE4, impressive results are possible.
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