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Series Preface

Applications and modelling and their learning and teaching in school and university
have become a prominent topic for many decades now in view of the growing world-
wide relevance of the usage of mathematics in science, technology and everyday
life. There is consensus that modelling should play an important role in mathe-
matics education, and the situation in schools and university is slowly changing to
include real-world aspects, frequently with modelling as real world problem solving,
in several educational jurisdictions. Given the worldwide continuing shortage of
students who are interested in mathematics and science, it is essential to discuss
changes of mathematics education in school and tertiary education towards the inclu-
sion of real world examples and the competencies to use mathematics to solve real
world problems.

This innovative book series established by Springer International Perspectives on
the Teaching and Learning of Mathematical Modelling, aims at promoting academic
discussion on the teaching and learning of mathematical modelling at various educa-
tional levels all over the world. The series will publish books from different theoretical
perspectives from around the world dealing with Teaching and Learning of Math-
ematical Modelling in Schooling and at Tertiary level. This series will also enable
the International Community of Teachers of Mathematical Modelling and Applica-
tions (ICTMA), an International Commission on Mathematical Instruction affiliated
Study Group, to publish books arising from its biennial conference series. ICTMA is a
unique worldwide educational research group where not only mathematics educators
dealing with education at school level are included but also applied mathematicians
interested in teaching and learning modelling at tertiary level are represented as well.
Six of these books published by Springer have already appeared.

The planned books display the worldwide state-of-the-art in this field, most recent
educational research results and new theoretical developments and will be of interest
for a wide audience. Themes dealt with in the books focus on the teaching and learning
of mathematical modelling in schooling from the early years and at tertiary level
including the usage of technology in modelling, psychological, social, historical and
cultural aspects of modelling and its teaching, learning and assessment, modelling
competencies, curricular aspects, teacher education and teacher education courses.



vi Series Preface

The book series aims to support the discussion on mathematical modelling and its
teaching internationally and will promote the teaching and learning of mathematical
modelling and research of this field all over the world in schools and universities.

The series is supported by an editorial board of internationally well-known
scholars, who bring in their long experience in the field as well as their expertise
to this series. The members of the editorial board are: Maria Salett Biembengut
(Brazil), Werner Blum (Germany), Helen Doerr (USA), Peter Galbraith (Australia),
Toshikazu Ikeda (Japan), Mogens Niss (Denmark), and Jinxing Xie (China).

We hope this book series will inspire readers in the present and the future to
promote the teaching and learning of mathematical modelling all over the world.

Series Editors
Hamburg, Germany Gabriele Kaiser
Ballarat, Australia Gloria Ann Stillman



Introduction

From a mathematics education perspective, initiating and evaluating modelling
processes offers a great potential for the acquisition of competences by students.
Through the choice of appropriate tasks and interventions, allow, inter alia, a close
connection to reality as well as a high degree of independence and openness, thus
allowing individual access to mathematics and multiple solution approaches at
different levels (Schukajlow and Krug, 2013). At the same time, the great potential of
these mathematical modelling processes poses a challenge for (pre-service) teachers
(Kuntze, Siller and Vogel, 2013). For this reason, a close examination of possible
support measures to develop professional competence for teaching mathematical
modelling in the sense of quality development in teacher education is necessary
(Blum, 2015).

In this context, the operationalisation of modelling-specific professional compe-
tence is an important and relatively new field of research (Borromeo Ferri, 2019)
to which we wish to contribute with this book. In doing so, we understand compe-
tences as context-specific, cognitive dispositions for achievement that are function-
ally related to specific situations and requirements (Klieme, Hartig and Rauch, 2008),
so that not only declarative but also procedural, situation-related knowledge facets
are focused.

Models describing the requirements for pre-service teachers are needed to measure
the above competences. A structural model of professional competence to teach
mathematical modelling was developed as part of a cooperation' between several
German universities and was empirically confirmed to a great extent (Klock, Wess,
Greefrath and Siller, 2019; Wess, Klock, Greefrath and Siller, 2021). Among other
things, this model forms the basis for the conceptualisation and operationalisation of
specific didactic knowledge facets as well as other affective-motivational components
of modelling-specific teacher professionalism.

IThis project is part of the “Qualititsoffensive Lehrerbildung”, a joint initiative of the Federal
Government and the Lénder which aims to improve the quality of teacher training. The programme
is funded by the Federal Ministry of Education and Research. The authors are responsible for the
content of this publication.

vii



viii Introduction

In order to present this structure and the related test instrument in a comprehensive
manner, the first part of the book gives an overview of selected concepts and theo-
retical backgrounds of mathematical modelling. This is followed by explanations
on the concept of competence used here and of different competence models before
specific competence dimensions for teaching mathematical modelling are consid-
ered. Finally, these are used to interpret a structural model of modelling-specific
professional competence and serve as a basis for test construction.

The second part presents operationalisation and the test instrument as the product
of this process. In this context, the primary focus is on the analysis of the quality with
which the quantitative test instrument measures the aspects of modelling-specific
professional competence.

In the final part, the possibilities of use, but also limitations of the instrument,
are discussed and further implications for research and practical applications are
highlighted.



Contents

PartI Theoretical Background

1 Mathematical Modelling ...................................

1.1

1.2
1.3

1.4
1.5

Terms and Definitions Used in Mathematical Modelling .. ...
1.1.1 Mathematical Modelling and Mathematical Model . ..
1.1.2  Modelling Processes and Modelling Cycles .........
1.1.3 Modelling Competencies . ................c.o.uuuu..
Aims and Perspectives of Mathematical Modelling .........
Modelling Tasks ... ..ot
1.3.1 General Categories of Tasks ......................
1.3.2  Task Categories for Realistic Tasks ................
1.3.3 Selected Criteria for Modelling Tasks ..............
Difficulties in the Modelling Process .....................
Interventions in the Modelling Process ...................

2 Professional Competence for Teaching Mathematical Modelling .. ..

2.1
2.2

23

24

The Concept of COmMpPetence . ................eeeuunnnnn.
Professional Competence of Teachers ....................
2.2.1 Professional Competence ........................
2.2.2  Conceptualisations of Professional Competence

of Mathematics Teachers .........................
Competence Dimensions for Teaching Mathematical
Modelling .. ........uu
A Competence Model for Teaching Mathematical Modelling
2.4.1 Modelling-Specific Pedagogical Content Knowledge .
2.4.2 Beliefs Regarding Mathematical Modelling .........
2.4.3 Self-Efficacy Expectations for Mathematical

Modelling . ...t
2.4.4 Empirical Validation of the Structural Model ........

24

26
28
30
31

33
34



X Contents

Part I Assessment of Professional Competence for Teaching
Mathematical Modelling

3 TestInstrument ............. ... ... i 39
3.1 TestDevelopment . .............uuuiuuieuunnneenninnnnnn 39
3.2 Operationalisation of Test Items: First Test Part ................. 41

3.2.1 Self-reported Previous Experiences in Mathematical
Modelling . ......oouun 41
3.2.2 Beliefs in Mathematical Modelling ..................... 42
3.2.3 Self-efficacy Expectations for Mathematical
Modelling . ...ttt 43
3.3 Operationalisation of Test Items: Second Test Part ............... 44
3.3.1 Knowledge about Modelling Tasks ..................... 45
3.3.2 Knowledge about Concepts, Aims and Perspectives ....... 46
3.3.3 Knowledge about Modelling Processes
and Knowledge about Interventions ..................... 47
3.4 Information for Conducting the Test ........................... 52
35 TestBook .......oi 52

4 TestQuality ........... ... i 77
4.1 ObJECHIVILY . veett e 77
4.2 Reliability ... 78
43 Validity ... 80
4.4 Secondary Quality Criteria ............couuiiiiiiiinneeeenn.. 83

Part III Discussion and Outlook

5 DISCUSSION . ... e 87
6 Outlook . ........... . . . . 91
Test Book—Correct ANSWerS . ............c..uiuiiniiniiaanann. 95

References . ........... . 121



Part I
Theoretical Background



Chapter 1 ®)
Mathematical Modelling oo

The integration of applications and mathematical modelling into mathematics educa-
tion plays an important role in many national curricula (Kaiser, 2020; Niss, Blum and
Galbraith, 2007), and thus an increasing role in teacher training. Theoretical contribu-
tions from mathematics education form the basis of practical-related teacher educa-
tion. In the following, selected concepts and theoretical backgrounds for modelling
are presented and modelling tasks are examined regarding types, categories and
criteria. Then, aspects of teaching mathematical modelling are discussed from a
theoretical perspective and exemplary results of empirical studies are presented.

1.1 Terms and Definitions Used in Mathematical Modelling

Applications and modelling are indisputably regarded in the international discus-
sion as a relevant part of mathematics education. For example, the International
Conference on the Teaching and Learning of Mathematical Modelling and Applica-
tions (ICTMA) presents the current state of the international debate every two years.
Applications and modelling are all aspects of relationships between mathematics
and reality, including nature, culture, society and everyday life. In applications, the
focus is on the transition from mathematics to reality and primarily on products,
while modelling is more about the complementary transition from reality to mathe-
matics and the processes (Niss et al., 2007). Only the term modelling is mentioned
hereinafter, but it is always applicable for the transitions in both directions, namely
mathematics to reality and from reality to mathematics.

© The Author(s) 2021 3
R. Wess et al., Measuring Professional Competence for the Teaching of Mathematical

Modelling, International Perspectives on the Teaching and Learning of Mathematical

Modelling, https://doi.org/10.1007/978-3-030-78071-5_1
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1.1.1 Mathematical Modelling and Mathematical Model

Over the past few years, the discussion in mathematics education of reality-based
teaching has given rise to numerous conceptions about mathematical modelling
and the associated translation processes. In preparation for the ICME-3 confer-
ence, Werner Blum conducted intensive research of the literature on mathematical
modelling. This work later resulted in two-volume documentation of selected liter-
ature on application-oriented mathematics education (Kaiser, 2020). This distin-
guishes between two directions: the so-called scientifically humanistic stream,
with representatives such as Freudenthal (1973), focuses more on the mathematics
processes, while the pragmatic stream, with representatives such as Pollak (1968),
is characterised more by a utilitarian aim.

In the context of the modelling debate in German, Blum’s position (1985) is
central, which regards the entire modelling process and the related distinction
between mathematics and reality as fundamental to the notion of modelling. For
a more in-depth look at the modelling discussion in German, refer to the book by
Greefrath and Vorholter (2016).

The construction of a mathematical model is a characteristic step for modelling.
Niss et al. (2007) define the mathematical model term as a mapping: From a realm
D of reality, translation processes are made into a subset of the mathematical world
M. If the matching mapping rule is called f, a mathematical model can be described
by the triple (D, M, f) (Blum & Niss, 1991). Thus, a mathematical model generally
consists of defined objects (points, vectors, functions, etc.) that correspond to the
elements essential for the initial situation in the real model and certain relationships
between these objects that represent the real-world relationships of these elements
with each other.

The reason for constructing and using a mathematical model is to understand or
process problems from the part of reality. The term “problem” is used here in a broader
sense. Thus, the focus is not only on pragmatic application-related problems but also
on problems of a more intellectual nature, which are partly aimed at describing,
understanding, explaining or even designing parts of the world with their questions
(also of a scientific nature) (Niss et al., 2007).

However, the treatment of these problems has natural limits due to the usually inad-
equate mapping of complex reality with a mathematical model. Since the main focus
in the construction of mathematical models is precisely on the possibility of a reduced
form of representation in its complexity and a mathematical processing of real data,
this incomplete representation is usually quite desirable. Only a certain amount of
reality is translated into the mathematical world. Stachowiak (1973) summarised
these aspects of the general model concept in three features:

e The mapping feature specifies that a model is a representation of a natural or
artificial original.

e The shortening feature is that a model describes only the relevant features of the
original, so the model is a reduction.
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Fig. 1.1 Classification of
models by Greefrath and
Vorholter (2016, p. 9)

e The pragmatic feature is that a model always has a specific purpose for certain
subjects for a certain period.

Since such simplifications and formalisations are possible in different ways, the
corresponding mathematical models also differ (see Fig. 1.1).

For example, prescriptive models are also called normative models. An example of
this is tax models that set a payroll tax rate at a given gross annual wage. In addition,
models can be used as images. These are called descriptive models (Freudenthal,
1978). Explicative models also provide an explanation for the data or facts and
are therefore more meaningful. For example, a model that relates measurements of
two variables to one another using linear regression can provide information about
the strength of the relationship. Probabilistic models, on the other hand, make a
prediction. As an example, the Rasch model provides the probability of solving an
item with a given personal capability. If the model can determine a future event not
only by a probability but by a clear prediction, it is known as a deterministic model.

Niss et al. (2007) emphasise that a distinction between mathematical models
and the modelling process is particularly important since one or more mathematical
models can be constructed during the modelling process. They are therefore integral
parts of a larger whole, which is explained in more detail in the following section.

1.1.2 Modelling Processes and Modelling Cycles

The entire process of mathematical modelling can be ideally presented as a cycle,
which in turn is formed as a model of the modelling process (Greefrath & Vorholter,
2016). Until now, a variety of modelling cycles have existed that focus on different
aspects (Borromeo Ferri, 2006). The different models are suitable for specific
purposes. For example, some are used to illustrate modelling or help learners to work
on modelling tasks. Through their extensive theoretical foundations, they represent
their own learning content (Greefrath et al., 2013) and serve as a basis for empirical
research. An idealised modelling process is described below. The designs are based
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1 Understanding
Constructing

2 Simplifying
Structuring

3 Mathematising

4 Working
mathematically

5 Interpreting

6 Validating

7 Exposing

real model
& problem

mathematical

real situation b 4 situation
& problem | S model
&

real D

results

(] mathematical
results

the

world mathematics

Fig. 1.2 7-Step modelling cycle as per Blum and Leiss (2007, p. 225)

on the 7-step modelling cycle according to Blum and Leiss (2007; see Fig. 1.2),
which serves as a basis for the further theoretical considerations in this work.

The starting point for modelling processes is therefore a real-world situation,
which involves an authentic problem situation that is processed with mathematical
aids. This situation is transferred to a cognitive model according to the knowledge,
aims and interests of the modellers. Simplification, structuring and clarification of
the resulting mental representation lead to a real model and/or specification of the
problem; assumptions must be made and central correlations must be derived. A
mathematisation process translates the relevant objects, relationships and assump-
tions from the real model into mathematics, resulting in a mathematical model that can
be used to solve the identified problem (Blum, 2015). Now mathematical methods
are used to solve the mathematical problem within the framework of the model
created and to obtain a result. The mathematical results thus obtained must then be
interpreted in relation to the original real problem context (Greefrath & Vorhdolter,
2016). The entire process is then validated. If the solution or the chosen procedure
is considered unsatisfactory, individual steps or the entire process must be repeated
using a modified or completely different model. Finally, the solution to the original
problem of the real world will be outlined and, if necessary, passed on to others
(Blum, 2015).

Other idealisations of the modelling process are also conceivable. For example,
data acquisition could be considered separately or intermediate steps in the design of
the mathematical model could be avoided. Thus, the above cycle is just one of many
existing representations of the modelling process. The manifold idealisations of this
process can be divided into three groups, which can be characterised by a different
number of mathematical steps (Borromeo Ferri, 2006; Greefrath & Vorhoélter, 2016).
For example, cycles that require only one step from the situation to the mathematical
model are assigned to the “direct mathematisation” category. On the other hand, the
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group of “two-step mathematisation” includes cycles that consider the simplifications
in reality, the so-called real model, as an intermediate step from the real situation to
the mathematical model.

Since a new perspective that emphasises cognitive analysis, Blum and colleagues
developed the modelling cycle shown in Fig. 1.2, which is used to describe the
modelling processes of learners as accurately as possible (Blum, 2011). This includes
an additional third phase in mathematisation, an individual situation model that is
formed from the understanding of the situation by the modellers (Blum & Leiss,
2007).

Real modelling processes of students rarely present the idealised processing
steps in linear form. Rather, there are “mini-cycles” or frequent changes between
the different stages of the modelling cycle, so-called “individual modelling routes”
(Borromeo Ferri, 2018; Galbraith & Stillman, 2006).

All these idealisations have their specific strengths and weaknesses depending
on their purpose (Blum, 2015). For cognitive analysis and as a diagnostic tool for
(pre-service) teachers, the 7-step modelling cycle depicted seems to be particularly
suitable and serves as a basis for further theoretical considerations in the context of
the present work (Borromeo Ferri, 2018).

Adequate execution of the modelling processes presented requires certain skills
and abilities of the modellers. These modelling competencies are examined in more
detail in the following section.

1.1.3 Modelling Competencies

Students should be able to translate between reality and mathematics in both direc-
tions and work in the mathematical model. Niss et al. (2007) define modelling
competence as follows:

mathematical modelling competency means the ability to identify relevant questions, vari-
ables, relations or assumptions in a given real world situation, to translate these into math-
ematics and to interpret and validate the solution of the resulting mathematical problem in
relation to the given situation, as well as the ability to analyse or compare given models by
investigating the assumptions being made, checking properties and scope of a given model
etc. (Niss et al., 2007, p. 12)

Promoting the ability to process real-world problems using mathematical aids is
thus a central goal of modelling in school.

The above definition describes a so-called global modelling competence in which
certain partial processes can be identified by means of an atomistic perspective.
Thus, Blum (2015) understands modelling competence as the ability to construct,
use or adapt mathematical models by performing the process steps adequately and
problem-appropriately, as well as analysing or comparing given models. Modelling
competence is therefore not a one-dimensional construct but can be interpreted as a
combination of different sub-competencies.
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Table 1.1 Sub-competencies of modelling (Greefrath & Vorholter, 2016, p. 19)

Sub-competency Description

Understanding The students construct their own mental model for a given problem
situation and thus understand the question

Simplifying The students separate important and unimportant information about
a real situation

Mathematising The students translate suitably simplified real situations into
mathematical models (e.g. term, equation, figure, diagram, function)

Working Mathematically | Students apply heuristic strategies and mathematical knowledge to
solve the mathematical problem

Interpreting The students refer the results obtained in the model to the real
situation and thus achieve real results

Validating The students check the real results in the situation model for
adequacy

Exposing The students refer the answers found in the situation model to the

real situation and thus answer the question

The examination of modelling cycles shows a different accentuation of these
process steps. In doing so, the ability to execute such sub-processes can be considered
as a sub-competency of modelling (Kaiser, 2007; Maal}, 2006; Niss, 2003). These
sub-competencies can be characterised in accordance with the 7-step modelling cycle
in Fig. 1.2, as shown in Table 1.1.

In addition, metacognitive competences are required for an adequate execution
of modelling processes (Stillman, 2011). The absence of metacognition, such as the
control of the solution process (Kaiser, 2007) or the reflexion of the adequacy of
the solution process (Blomhgj & Hgjgaard, 2003), can lead to problems during the
modelling process.

The question of how modelling processes can be shaped is closely linked to
the perspectives on mathematical modelling as well as to the aims pursued with
the integration of mathematical modelling into mathematics education. These are
considered in more detail in the subsequent section.

1.2 Aims and Perspectives of Mathematical Modelling

The modelling debate showed that different perspectives are taken up—essentially
the scientifically humanistic as well as the pragmatic mainstream (see Sect. 1.1.1).
Although these directions have been recognised as the most important currents
of debate, the perspectives for mathematical modelling can be more differentiated
(Kaiser & Sriraman, 2006), so that great diversity in terms of their understanding of
the goal in the field of applications and modelling becomes apparent.

Niss (1996) noted the need to address a discussion of mathematical education
and the ways and means of improving its quality, primarily on the basis of a precise
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and comprehensive formulation of the valid aims and purposes of such education.
Only on this basis can the problems of selecting and organising material, teaching
methods and qualifications and training of teachers be adequately addressed. Thus,
mathematics is

e a powerful tool to understand and master current or future real situations;
e atool to train general mathematical competences;
e an important part of culture and society as well as the world itself.

Greefrath and Vorholter (2016) design these general characteristics of mathe-
matics as modelling-specific aims by differentiating between

e content aims which take into account the ability of students to recognise and
understand real world phenomena;

® process-oriented aims that focus on the training of problem solving skills and a
general mathematics interest;

e general aims that are aimed at building a balanced image of mathematics as a
science, responsible participation in society and critical assessment of everyday
models, as well as the development of social competences.

Based on comparable considerations, Blum (2015) examines the following justi-
fications for the integration of mathematical modelling into teaching, which he also
describes as the aims of teaching and learning applications and modelling:

1. Pragmatic justification: Understanding and mastering real-world situations
require an explicit engagement with the appropriate application and modelling
examples. In these cases, an adequate transfer from intra-mathematical activities
cannot be expected.

2. Formal justification: General mathematical competences can also be trained
through modelling activities. This way, for example mathematical reasoning is
further developed by plausibility checks. However, modelling competence can
only be acquired by examining the suitable application and modelling examples.

3. Cultural justification: Treating real-world phenomena with the aid of mathe-
matics is essential for building a balanced picture of mathematics as a science
in a comprehensive sense.

4. Psychological justification: Addressing examples from the rest of the world can
help to stimulate students’ interest in mathematics, demonstrate the relevance
of mathematical content, and structure it in a way that promotes understanding.

These justifications or aims of teaching and learning applications and modelling
require specific types of appropriate modelling examples. Kaiser and Sriraman
(2006) distinguish in research different perspectives on mathematical modelling.
The starting point of this identification of different theoretical directions in the
current modelling discussion was an analysis of historical and current developments
in applications and modelling in mathematics education:

® Realistic or applied modelling focuses on solving real problems and promoting
modelling competence. Theoretically, this direction is based on pragmatic
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approaches to modelling and thus pursues utilitarian goals, in other words, a
better understanding of the rest of the world through the application of mathe-
matics (Kaiser & Sriraman, 2006). It focuses on ostensibly authentic, insignif-
icantly simplified problems, for which holistic approaches are usually chosen,
which leads to a comprehensive examination of these problems (Greefrath &
Vorholter, 2016).

e Educational modelling is a tradition of the so-called integrated approach and thus
emphasizes not only content-related but also process-related aims. It is possible
to distinguish more precisely between didactic and conceptual modelling (Kaiser
et al., 2015). On the one hand, the didactic approach is to promote, on the other
hand, to structure the learning processes in modelling. The conceptual approach
focuses on the understanding and development of concepts. Both are focused on
teaching didactic and learning-theoretical meta-knowledge (Kaiser & Sriraman,
2006).

e Contextual modelling is largely shaped by the “Model-Eliciting Activities”
(MEA) approach developed by Lesh and Doerr (2003) in the USA. This stim-
ulates mathematical activities through challenging real-life situations to stimulate
modelling activities (Kaiser et al., 2015). The focused subjective and psycholog-
ical goals are usually pursued by solving text problems (Kaiser and Sriraman,
2006).

e [Epistemological or theoretical modelling is based on the previously described
scientific-humanistic approach and thus focuses on theory-oriented aims. In other
words, the application of mathematics, in reality, should contribute to the further
development of the same (Kaiser & Sriraman, 2006). Thus, the focus is not so
much on translation processes between mathematics and the rest of the world, but
on real-life situations as intermediaries are used to address inner-mathematical
issues and thus to achieve a science-oriented knowledge gain (Kaiser et al., 2015).

® Socio-critical or socio-cultural modelling pursues educational goals, such as a
critical understanding of the surrounding world (Kaiser and Sriraman, 2006).
In this perspective, the role of mathematical models or mathematics in society,
in general, is emphasised and critically analysed (Kaiser et al., 2015). Thus,
neither the modelling process itself nor the corresponding visualisations are in
the foreground (Greefrath & Vorholter, 2016).

e (Cognitive modelling can be described as a kind of meta-perspective (Kaiser
& Sriraman, 2006). It emphasizes the analysis and understanding of cognitive
processes during modelling (Greefrath & Vorholter, 2016). The development of
mathematical thought processes through the use of models as mental or even
physical images and the emphasis on modelling as a mental process also plays a
role (Kaiser & Sriraman, 2006).

Blum (2015) shows that all the goals of learning theoretical considerations for
mathematical modelling can be achieved only through high-quality teaching. Appli-
cations and modelling are central to the acquisition of mathematical competences,
and a major effort must be made to make mathematical modelling accessible to
students. However, it turns out that not only learning, but also teaching mathematical
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modelling in the classroom is cognitively demanding (Burkhardt, 2004; Freudenthal,
1973; Pollak, 1968). Thus, teachers need different skills, mathematical and non-
mathematical knowledge, ideas for tasks and for teaching, and appropriate attitudes
and beliefs to teach modelling adequately. In addition, overall teaching becomes more
open and evaluation more complex. In view of the explained aims and perspectives of
mathematical modelling, various task characteristics can be identified, which are used
to stimulate the planned modelling processes in the classroom. There is a wide range
of more artificial, less realistic tasks, some of which address only a sub-competency of
modelling, to comprehensive, authentic modelling projects with a holistic approach.
A detailed discussion of the modelling-specific task types, categories and criteria is
contained in the following section.

1.3 Modelling Tasks

What is meant by a modelling task can vary greatly depending on the school or
research context. To define other types of tasks and to describe the modelling tasks
used in this book, criteria and category systems must be formulated to allow the
classification of these tasks. However, the types, categories and criteria presented
here are not all assignments that can be clearly defined. This allows classifying
the tasks into multiple categories or identifying them as mixed forms. Furthermore,
the type of processing in the specific teaching situation, as well as the individual
requirements of the students, can influence the type of task. In addition, there are
different names and different classification systems in the relevant discussion for the
analysis of tasks based on criteria. Therefore, the following section is initially limited
to selected, more general categories of mathematical tasks that can be considered
relevant for the classification of modelling tasks.

1.3.1 General Categories of Tasks

There are several categories that focus on didactic principles or cognitive processes
to examine the properties of tasks of designing the learning processes in mathe-
matics teaching in detail. Among other things, a classification scheme, whose cate-
gories primarily cover the potential of tasks for cognitive activation of students, was
developed (Neubrand et al., 2013). The dimensions are differentiated between

® mathematical material areas as a content framework (contents of geometry,
arithmetic, algebra and stochastics; level in the curriculum),

e fypes of mathematical work as a cognitive framework (technical, computational,
conceptual task);



12 1 Mathematical Modelling

® cognitive elements of the modelling cycle (non-mathematical modelling, internal
mathematical work, basic concepts, mathematical text handling, mathematical
thinking, mathematical presentation handling and mathematical reasoning); and
e Solution room (direction of processing; multiple solutions)

Moreover, the degree of openness is a feature of mathematics task. Open tasks
are those that allow multiple approaches (at different levels) or solutions. In this
way, considering tasks with different degrees of openness not only allows students
to have their own access to the problems (Greefrath e al., 2017), it also supports
students in the development of competences and thus leads to a better understanding
of and flexibility in the handling of mathematical content (Borromeo Ferri, 2018).
There are several categories of open tasks (see, e.g. Bruder, 2003; Maaf3, 2010).
In this work, the focus is on the classification of openness according to the initial
state, transformation, and target state. For example, a task in which the initial state
and transformation are unclear, but the target state is clear, can be called a reversal
problem (Maal3, 2010).

While the classifications that have been considered so far are of a very general
nature, the following focuses on categories that are primarily tailored to reality-
related tasks.

1.3.2 Task Categories for Realistic Tasks

When dealing with the properties of modelling tasks, you can formulate a variety of
special features that they should fulfil. Such criteria can support both the development
and the selection of tasks, and teachers with appropriate classification schemes can
gain an overview of modelling tasks. For example, Burkhardt (1989) distinguishes
between illustrations of mathematical content and reality-related situations, as well
as the latter, whether it can be used to process these standard models or whether
new models need to be developed. On the other hand, Galbraith (1995) classifies
according to the degree of structuring of the application problem at hand as well as
the help provided to solve the problem. A segmentation that is widely used in the
German-speaking discussion was developed by Kaiser (1995). In its extensive clas-
sification scheme, Maalf} (2010) considers, in particular, the nature of the relationship
with reality and the didactic intentions of modelling activity as specific criteria for
modelling tasks.

Regarding the reality of tasks—in addition to a classification within the frame-
work of the classical task types—a more precise characterisation can be made by
the categories of authenticity, relevance to life, closeness to life and relevance to
students. The concept of authenticity as well as its contribution to the development
of modelling competence is an important area of studies, including the creation of
a unified and meaningful meaning for the term “authenticity” itself. This challenge
has implications on teaching as well as research (Niss et al., 2007). Greefrath et al.
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(2017) therefore focus their attention on the prerequisites for problems to be consid-
ered authentic. After this, authenticity in the field of mathematical modelling refers
to the non-mathematical context as well as the use of mathematics in the corre-
sponding situation. The non-mathematical context must be real and must not have
been specifically designed for the mathematics task. However, Vos (2015) points out
that authenticity in this sense does not necessarily mean that a situation exists in the
original, but authentic tasks can also represent a good replica of a real situation. The
use of mathematics in this situation must also be sensible and realistic, and should
not be confined to mathematics education. Authentic modelling tasks are therefore
problems that belong exactly to an existing field or problem area and are accepted as
such by people working there (Niss, 1992). However, the authenticity of tasks does
not yet mean that these tasks are relevant to the present or future lives of students.

Blum (1996) focuses on the context of modelling tasks, like classical task types
and considers a task-relevant for mathematics education when certain didactic goals
canbe achieved. In contrast, Burkhardt (1989) classifies tasks according to the interest
that students can have in the context. It also distinguishes between problems arising
from students’ daily lives, those that may be relevant for students in the future, and
those that are only close to the students’ lives and whose core focus is on mathematics.
The question of whether learners actually consider a context to be interesting, closely
linked to, or relevant to their daily lives—as mentioned in the introduction—depends
not only on the task itself but also on the specific teaching situation and the individual
requirements of the learners. For this reason, PISA (OECD, 2003) distinguishes
between tasks relating to the area from which their context comes:

the situation is the part of the students’ world in which the tasks are placed. It is located at
a certain distance from the students. For OECD/PISA the closest situation is the student’s
personal life; next school life, work life and leisure, followed by the local community and
society as encountered in daily life. Furthest away are scientific situations. Four situation-
types will be defined and used for problems to be solved: personal, educational/occupational,
public, and scientific. (OECD, 2003, p. 32)

Regarding the focus of the didactic intention pursued with the modelling activity,
the modelling process can always be used to analyse real problems. Blomhgj and
Hgjgaard (2003) distinguish between a holistic and an atomistic approach. According
to the first approach, all phases of the modelling cycle will be followed in the
modelling process. In an atomistic approach, the modelling task addresses individual
phases of the modelling process (e.g. mathematisation). Since students can encounter
difficulties in many parts of the solution process when performing modelling tasks,
increasing the complexity and the level of demands of the processing, a reduction of
the task in the atomistic sense can be useful, and can help to specifically promote or
accurately diagnose the partial competencies of modelling. Therefore, the sub-stages
of the modelling cycle are often also examined and used to categorize modelling tasks
corresponding to the sub-competencies shown in Table 1.1 as was done by (Czocher,
2017).

Based on the previous general categories of tasks as well as the literature of
frequently mentioned key properties for tasks with a life relevance, a catalogue of
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criteria for modelling tasks is compiled below, which serves as a basis for further
conceptual considerations of this book.

1.3.3 Selected Criteria for Modelling Tasks

Looking back at the modelling-specific task categories, it can be seen together with
Maal (2010) that the nature of the relationship with reality—more precisely the
context of the situation, the authenticity and the relevance for students—seems to
be very important for an adequate analysis of reality-related tasks. At the interface
of the special and general task criteria, the dimension of the cognitive elements of
the modelling cycle—in particular the partial steps of modelling—is highlighted as
a characteristic examination feature. Further information can be found in Bruder
(2003), MaaB} (2010) and Greefrath et al. (2017) clear evidence that the openness
of a task, in the sense of multiple approaches and solutions (Schukajlow & Krug,
2013), is an essential feature of modelling tasks. Criteria for the development and
analysis of modelling tasks are summarised and specified in Table 1.2.

In particular, it can be noted that through their authenticity and close connection
to reality, modelling tasks enable students to access mathematics individually and
affectively, and through their openness, with different solution approaches at different
levels.

In addition to the selection and development of modelling tasks, appropriate
support for modelling processes plays an important role in providing an appropriate
learning environment. The task of teachers is primarily to diagnose difficulties and
to eventually intervene if needed. The following sections provide more detailed
insights into selected theoretical aspects of mathematical modelling regarding these
two requirements.

Table 1.2 Catalogue of criteria for modelling tasks (Siller & Greefrath, 2020; Wess & Greefrath,
2019)

Criterion Specification
Reality relation The problem definition has a non-mathematical factual reference
Relevance The problem definition is considered by students to be

interesting, closely linked to or relevant to their daily lives

Authenticity The problem definition is authentic with regard to the
non-mathematical aspect

The problem definition is authentic with regard to the use of
mathematics in concrete situation

Openness The problem definition allows different solutions
The problem definition allows approaches at different levels

Promoting sub-competencies | The problem definition promotes cognitive elements in the form
of partial competencies of mathematical modelling
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1.4 Difficulties in the Modelling Process

In modelling, it is advisable to make it possible to work independently in cooperative
learning environments (Maaf3, 2005). Further, working in small groups is an appro-
priate social form for modelling tasks (Clohessy & Johnson, 2017; Ikeda & Stephens,
2001). However, modelling activities are generally cognitively demanding. In partic-
ular, studies have shown that the difficulty of modelling tasks can be explained
mainly by the inherent complexity of these tasks, measured by the necessary sub-
competencies. Thus, every step in the modelling process of students represents a
potential cognitive barrier (Galbraith & Stillman, 2006; Stillman, 2011). Taking
these sub-steps into account (see Table 1.1), some typical examples of difficulties
and errors encountered by students in the processing of modelling tasks are given
below:

e Many students already have problems reading and understanding the task. This
is not only due to a lack of reading skills (Plath & Leiss, 2018), but students have
learnt that they can also work on contextual tasks without carefully reading them
and understanding the context (Blum, 2015).

e The simplifying/structuring and the associated setting of a real model can be
identified as a common source of error (Blum, 2015). Not only do students find it
difficult when they meet their own assumptions, but also, in part, from a misun-
derstanding of the question, errors in the structural contexts implied by them
(Schukajlow et al., 2012) are shown.

e In particular, the distinction between real and mathematical models is difficult
when mathematising. This is not always clear, because the processes of devel-
oping a real model and a mathematical model are intertwined. In addition, the
change from the real world to the mathematical world is a barrier for the learners,
especially since this requires mathematical background knowledge (Galbraith &
Stillman, 2006).

e Despite a suitable mathematical result, difficulties can arise in interpreting, the
translation process from mathematics to the rest of the world. Thus, learners often
forget what their calculations actually mean and thus have problems identifying
the mathematical results with their real counterparts (Galbraith & Stillman, 2006).

e [t seems that it is particularly difficult for students to validate (Galbraith &
Stillman, 2006). For example, some learners believe that validation is the same
for each modelling task, or feel that validation is a depreciation of the result. In
addition, interpreting and validating terms often cannot be separated from each
other in terms of content. However, students do not usually validate their solutions
(Blum, 2015).

e The main difficulties encountered in communicating are when students try to
reconcile unexpected results with the real situation. These unexpected results are
often the result of a previous error, which is easily visible by comparing results
with others. They are therefore usually no barrier for attentive learners, although
this may be the case for less attentive students (Galbraith & Stillman, 2006).
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There are a large number of studies on errors, blockages or difficulties in modelling
processes (Galbraith & Stillman, 2006; Galbraith et al., 2007; Stillman et al., 2013;
MaalB, 2005; Schaap et al., 2011). An overview of potential difficulties in each
modelling phase is given in Table 1.3.

Table 1.3 Difficulties in the modelling process (Klock & Siller, 2020)

Categories (modelling steps)

Subcategories (modelling sub-processes)

1. Forming a real-world model

1.1 Fail to understand the context® 9

1.2 Fail to understand the task® 4

1.3 Fail to search for missing information® 9

1.4 Fail to identify relevant variables® ®

1.5 Fail to make meaningful and simplifying
assumptions®

1.6 Fail to understand a foreign language®

1.7 Calculating without including the contextd

2. Forming a mathematical model

2.1 Fail to define variables?

2.2 Fail to realise dependencies between variables®

2.3 Fail to use adequate mathematical methods to
mathematise?®

2.4 Fail to use technologies?

2.5 Fail to understand the situation/mathematics
conceptually?

2.6 Fail to understand mathematical contents®

3. Working mathematically

3.1 Fail to use adequate formulae®

3.2 Falil to use adequate solution strategies and
algorithms® 4

3.3 Fail to use technologies®

3.4 Fail to understand the situation/mathematics
conceptually®

3.5 Fail to solve the model due to an excessive complexity!

3.6 Fail to convert unitsd

4. Interpreting

4.1 Fail to identify the correct meaning of aspects of the
mathematical results/model® 9

4.2 Fail to answer the question with the help of the
mathematical resultsd

5. Validating

5.1 Fail to reconcile (interim-)results with the real
situation®

5.2 Fail to identify the influence of constraints/real world
aspects on the mathematical results®

5.3 Fail to find opportunities to improve the model?

5.4 Fail to validate including all relevant aspectsd

(continued)
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Table 1.3 (continued)

Categories (modelling steps) Subcategories (modelling sub-processes)

5.5 Fail to improve the model, so it fits to the real-world
situationd

4Galbraith and Stillman (2006)
bSchaap et al. (2011)
¢Stillman et al. (2013)

dMaaB (2005)

¢ Added by the authors

In addition to difficulties encountered during the modelling phases, the modelling
process also involves metacognitive, affective, social or organizational difficulties,
for example: the loss of an overview of your own work, a lack of mathematical self-
confidence, a disturbed communication in the working group or an unclear formulated
modelling task. Teachers need the knowledge about typical difficulties in modelling
processes to be able to react quickly and adequately to them in modelling processes.
How adequate intervention in modelling processes looks remains an integral part of
current research. The following section deals with this aspect.

1.5 Interventions in the Modelling Process

Within mathematics education, there is an intensive discussion of which teaching
behaviour is suitable for the most effective teaching of modelling among students
(see, e.g. Tropper et al., 2015). Burkhardt (2006) emphasises that, unlike traditional
treatment of the rest of the curriculum, the development of modelling competence
entails a change in the role of teachers and related new requirements for teachers.
Among other things, discussions must be conducted in a non-direct but supportive
manner, students must be given sufficient time and confidence to thoroughly explore
individual problems and, if necessary, strategic assistance without detailed proposals.
Doerr (2007) also points to a changing role for teachers. In this context, she empha-
sises that teachers must have a broad and deep understanding of the diversity of
approaches that students could pursue in the process of modelling. In addition, the
teacher’s task is to enable students to interpret, explain, justify and evaluate their
models. Teacher intervention is an important element of learning process control
in mathematical modelling processes, because modelling tasks often have a high
degree of openness. One study suggests that an “operational-strategic” teaching that
focuses students’ independent work in groups could significantly increase students’
modelling competence relative to a “direct” or instructional approach (Schukajlow
et al., 2012).

De Jong and Lazonder (2014) classify the help they provide to support research-
discovering learning processes according to their specificity. This specificity
increases with increasing numbering:
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1. Process constraints: The complexity of the learning process that is being discov-
ered is reduced by reducing the number of possible options that students must
include. An example is the division of tasks into manageable sub-tasks.

2. Performance Dashboard: The help gives students an overview of their own work
process and its quality. The topics will focus on what has been done and how
this contributes to the solution of the task. This aid requires the ability of the
learner to continue working with this information.

3. Prompts: There are time-appropriate hints that remind students to perform a
particular action. They tell us what to do, but not how to do it. This aid requires
that students be able to perform the action.

4. Heuristics: Compared to Prompts, both the indication that an action is to be
performed and how it is to be performed is given. This help is used when
students do not know when and how to apply an action in the process.

5. Scaffolds: Scaffolds structure the solution process by providing all the compo-
nents necessary to solve the task. This kind of help is used when the learners
cannot manage the solution process independently or it is too complicated for
the learners.

6. Direct Presentation of Information: The assistance consists of a direct instruc-
tion on the content. It makes sense to help learners who have a lack of knowledge
or are unable to obtain information themselves.

The range of assistance is consistently oriented towards the competences of the
learners. If students are able to control their own learning process, less specificity can
be provided. Taxonomy should provide orientation on the selection of suitable aids.
Lazonder and Harmsen (2016) showed in a meta-study that none of the categories
of help described above promises greater learning success. However, providing help
has had a median impact on learning success compared to no help (Lazonder and
Harmsen, 2016). This research suggests that not so much the nature of assistance as
their individual adaptation to the difficulty of the learner is crucial to greater learning
success. Leiss (2007, 2010) also describes this aspect in his work.

Leiss (2007) has developed a general model for teacher interventions (see Fig. 1.3)
in which he differentiates between three aspects: the basic knowledge, the area and the
characteristics of an intervention (Tropper et al., 2015). A diagnosis of the situation
(trigger of the intervention, previous interventions, knowledge required to solve the
task, students’ competence level, time available) and a diagnosis of difficulties (type

e 9 Basic Knowledge Teacher 2

23 Area g8z
= et = S E
gl = Knowledge about : ﬁ;}’f’::&immal | 8 £S
£a problem situation i } Characteristics £ 8 §
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et e e e e e 2

Not intervene deliberately

Fig. 1.3 Process model for general teacher interventions (Leiss, 2007; translation by authors)
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of difficulty, area and cause of the difficulty, assignment in a theoretical model—
here: the modelling cycle) is necessary to create a basic knowledge which is crucial
for the selection of an adequate intervention.

The area of intervention describes to which aspect the intervention refers.
Compared to the classification system according to De Jong and Lazonder (2014),
these types of intervention have no hierarchy. Organizational interventions concern
the design of the learning environment (“Watch the time!”). Affective interventions
influence students’ emotional aspects extrinsically (“You can do this!”). Strategic
interventions are helpful on a meta-level (“What is still missing?” (Blum and
Borromeo Ferri, 2010, p. 52)). Content-related interventions are related to the
concrete contents of the task (“A car consumes 7 L per kilometre.”). The area is the
central feature of an intervention (Leiss, 2007). In particular, strategic interventions
are considered to have a high potential to support students to overcome difficulties
in the modelling process (Stender and Kaiser, 2015).

Interventions can be classified by different characteristics like the intention of
the intervention (statement, question, request), its duration and the addressee (single
student, group, whole class) (Leiss, 2007). The aspects of basic knowledge, area and
characteristics of an intervention describe a general and idealized intervention. Based
on that, Tropper et al. (2015) defined the notion of adaptive teacher interventions
which

are based on a diagnosis of the situation and can be described as an independence-preserving
form of support, adapted in form and content to students’ learning process, in order to
enable them to overcome a (potential) barrier in the process and to continue the process as
independently as possible. (Tropper et al., 2015, p. 1226)

Five essential characteristics of adaptive interventions can be identified from this
and further definitions (Leiss, 2007; Stender & Kaiser, 2015). In our work adaptive
interventions (Klock & Siller, 2019) ...

are based on a diagnosis,

are adapted in form and content to students’ learning process,

provide minimal help,

preserve independence,

have a positive effect on the learning process by overcoming a difficulty.

These aspects are crucial for supporting students in mathematical modelling
processes. They are the basis for assessing interventions in terms of adaptivity in
our work. Adaptive intervention criteria show that good diagnosis is the basis for
adaptive intervention. This is also emphasised in the scaffolding discussion. Van de
Pol et al. (2014) distinguish in their process model between a diagnostic part and
an intervention part, much like Leiss (2007). As with Leiss, the diagnostic part is
preceded by the intervention part (see Fig. 1.4).
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Fig. 1.4 Model of contingent teaching (Van de Pol et al., 2014)

In principle, the examination of the preceding sections shows that teachers play
an important role in the development of students’ competences and have a decisive
influence on the progress of learning (Blum, 2015). To do this, they need different
skills, knowledge facets and ideas for tasks and for teaching, as well as appropriate
attitudes and beliefs.
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Chapter 2 )
Professional Competence for Teaching oo
Mathematical Modelling

Professional competence is a widely discussed topic (see, e.g. Cochran-Smith &
Fries, 2001; Darling-Hammond & Bransford, 2005) and was measured globally in
various large-scale studies (see, e.g. Blomeke et al., 2014; Kunter et al., 2013). The
dimensions for the subject of mathematics range from knowledge to mathematical
content to pedagogical and didactic knowledge of teachers with the aim of bringing
them together. In the context of the professionalisation of mathematics teaching
education students, the question of the existence and structure of specific profes-
sional competence is also raised in order to verify skills gains in specific areas.
Due to the numerous requirements in the care of cooperative modelling processes
and “the strong implantation of real-world problem solving [...] into the curricula”
(Schwarz et al., 2008, p. 788), it makes sense to differentiate professional compe-
tence in the field of mathematical modelling (Borromeo Ferri, 2018; Borromeo Ferri
& Blum, 2010). A structural model describing and relating professional competence
for teaching mathematical modelling was developed and empirically confirmed in
cooperation between several German universities within the framework of the “Qual-
itdtsoffensive Lehrerbildung” (Klock et al., 2019; Wess et al., 2021)—funded by the
Federal Ministry of Education and Research (FKZ 01JA1605, FKZ 01JA1621). The
conceptualisation of the model and empirical results for the structure are described
in this section.

The first part of the section deals with the general concept of competence and
the concept of professional competence of teachers. For this purpose, a clarification
of the concept of profession and professional competence will first be made. Two
conceptualised models of the professional competence of teachers are presented.
With the help of a catalogue of didactic skills for teaching mathematical modelling
(Borromeo Ferri & Blum, 2010), an interpretation of the COACTIV model (Baumert
& Kunter, 2013) is made to conceptualise a structural model of professional compe-
tence for teaching mathematical modelling that can be verified empirically. Results
for the empirical structure of the construct are reported in conclusion.
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2.1 The Concept of Competence

The basic theoretical reference point of output orientation is the conceptualisation
of the concept of competence. This is central to empirical studies that address the
quality development and productivity of the education system (Klieme et al., 2008).
While qualitative studies often use generative models of competence that distinguish
between the actual competence and the performance, in the context of quantitative
considerations, the functional pragmatic concept of competence, which “conceives
of competencies as context-specific dispositions for achievement that can be acquired
through learning. Furthermore, they functionally relate to situations and demands in
specific domains” (Klieme et al., 2008, p. 8).

This concept is not explicitly interested in the generative, cognitive, situation-
independent system, detached from normative educational goals, but focuses on
a person’s ability to cope with challenges in certain situations. This work, there-
fore, relates—especially against the background of context dependence—to the
extended concept of competence of Weinert (2001), which is frequently used in
German-speaking countries, which defines competences as “intellectual abilities,
content-specific knowledge, cognitive skills, domain-specific strategies, routines
and subroutines, motivational tendencies, volitional control systems, personal value
orientations, and social behaviors.” (Weinert 2001, p. 51).

In this sense, competence is perceived as a complex construct that addresses key
aspects of the professional debate. Among other things, skills are assumed to be
employable, as they are based on declarative and procedural knowledge. Weinert
(2001) also names motivational, volitional, and social readiness; broadening the
definition as context-specific cognitive performance management (Klieme et al.,
2008). However, he points out that the motivational aspects must be considered as a
separate construct in addition to the cognitive aspects, otherwise a lack of motivation
is tantamount to a lack of competence. The concept of competence presented is
used beyond the German-speaking countries. For example, Blomhgj and Hgjgaard
(2003, p. 126) describe competence as “someone’s insightful readiness to act in a
way that meets the challenges of a given situation.” This is in line with the Danish
KOM project. A person is described as competent when he or she is able to master
essential aspects of this field effectively, succinctly and accurately (Niss & Hgjgaard,
2011).

2.2 Professional Competence of Teachers

The professional competence of a teacher in his or her profession is to be under-
stood as the aforementioned concept of competence based on different occupational
requirements since motivational, volitional and social aspects play a role in addition
to cognitive dispositions for achievement (Weinert, 2001). In order to clarify the
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second part of the concept, the conditions under which competence can be described
as “professional” are first specified.

2.2.1 Professional Competence

The concept of professional competence is used to describe the skills of teachers
needed to meet their professional requirements. Shulman (1998) assigns six attributes
to the concept of a profession:

The obligations of service to others, as in a “calling”

Understanding of a scholarly or theoretical kind

A domain of skilled performance or practice

The exercise of judgment under conditions of unavoidable uncertainty
The need for learning from experience as theory and practice interact
A professional community to monitor quality and aggregate knowledge

(Shulman, 1998, p. 516).

In a course, a pre-service teacher acquires basic scientific knowledge in his/her
subjects. He/She serves society in the relevant field of education by carrying out
his/her activities, and in doing so, through his/her evaluations, has a significant
influence on the individuals to be formed. He/She sees himself/herself as a life-
long learner and works professionally with colleagues to ensure the quality of school
education. According to these characteristics, the profession of the teacher can be
clearly described as a profession and professional competence can be regarded as a
combination of the following factors with regard to the above concept of competence:

e “Specific declarative and procedural knowledge (competence in the narrow sense:
knowledge and skills)

e Professional values, beliefs, and goals

e Motivational orientations

e Professional self-regulation skills”

(Baumert & Kunter, 2013, p. 28).

The specific competences of the above-mentioned aspects have been described
differently in different conceptualisations. These conceptualisations are addressed
in the following section.
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2.2.2 Conceptualisations of Professional Competence
of Mathematics Teachers

Shulman (1986, 1987) initiated an international discussion with his proposals to
conceptualise the teacher knowledge. He developed and distinguished the following
categories of professional knowledge as components of professional competence:

e Content Knowledge. This is pure expertise in the respective field. This includes
knowledge about the systematic of the subject to organise the material according
to the abilities of students. In this context, contents must be selected with regard
to their importance for the subject.

® Pedagogical Content Knowledge. It contains content with regard to teaching.
These include useful forms of representation of teaching content, analogies, exam-
ples and explanations. The teacher must have different approaches and forms of
representation and be able to choose between them. The focus is on the knowledge
about how students can learn content. For this purpose, the teacher must be aware
of the difficulties of certain subjects and involve foresight, prior experience and
misconceptions in the learning process.

e Curricular Knowledge. Knowledge about the educational plan that contains and
arranges the topics in the different class levels is found in this knowledge dimen-
sion. It also includes the knowledge and understanding of various methods and
materials for teaching instruction. A lateral curricular knowledge characterised
by knowledge about current topics in other subjects and a vertical curriculum
containing knowledge about topics and content that have been dealt with in the
past and will be dealt with in the future can be distinguished.

® Pedagogical Knowledge. This is no subject-specific knowledge of a teacher, such
as knowledge about effective class management and dealing with disciplinary
problems. Shulman (1986, 1987) did not further differentiate this dimension since
the focus is on content knowledge.

The teacher’s perspectives, however, are not assigned to professional knowledge
in the currently discussed conceptualisations, but to a specific construct, beliefs,
attitudes or values (Baumert & Kunter, 2013).

There are different concepts of professional competence of mathematics teachers.
In particular, the pedagogical content knowledge for mathematics teachers is
conceived in a variety of ways, including in part content knowledge and pedagogical
knowledge (Depaepe et al., 2013). Following the work of Shulman (1986, 1987),
the professional competence of teachers was also examined in the German-speaking
region using appropriate competence models. The studies “Mathematics Teaching
in the 21st Century” (MT21; Schmidt et al., 2011; Tatto, Schwille, Senk, Ingvarson,
Peck and Rowley, 2008) and their follow-up studies “Teacher Education and Devel-
opment Study—Mathematics” (TEDS-M; Blomeke et al., 2014) and TEDS—Follow
Up (TEDS-FU; Kaiser et al., 2015). Other studies include “Cognitive Activation in
the Mathematics Classroom and Professional Competence of Teachers” (COACTIV)
and its follow-up studies “COACTIV Internship” (COACTIV-R) and “COACTIV
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Table 2.1 Conceptualisations of professional competence of (pre-service) teachers

MT21 (Tatto et al., 2008) COACTIV (Kunter et al., 2013)

Professional knowledge Professional knowledge

Content knowledge Content knowledge

Pedagogical content knowledge Pedagogical content knowledge
Teaching-related requirements (curricular and | Explanatory knowledge

planning-related knowledge) Knowledge about the mathematical thinking of
Learning-related requirements students

(interaction-related knowledge) Knowledge about mathematical tasks
General pedagogical knowledge Pedagogical psychological knowledge
General didactic knowledge Knowledge about effective class management
Pedagogical psychological knowledge Knowledge about teaching methods
Educational sociological knowledge Knowledge about performance assessment

Knowledge about individual learning processes
Knowledge about individual peculiarities of

students

Advisory knowledge

Organisational knowledge
Other aspects of professional competence Other aspects of professional competence
Beliefs Beliefs, values, aims
Epistemological beliefs Epistemological beliefs
Educational beliefs Beliefs about teaching and learning
Professional beliefs mathematics

Motivational orientations
Career selection motivation
Enthusiasm

Self-efficacy
Self-regulation

University Study” (Kunter et al., 2013). Table 2.1 compares the conceptualised
components of professional competence in studies MT21 (Tatto et al., 2008) and
COACTIV (Kunter et al., 2013).

The core of the MT21 study is a standardised test of the declarative and procedural
knowledge as well as of the interdisciplinary, pedagogical knowledge of pre-service
teachers, which were analysed in a multi-level model against the background of an
effectiveness evaluation of mathematics education in international comparison. For
this purpose, representative samples were drawn in 17 participating countries, taking
into account two target populations of incoming mathematics teachers, namely those
from primary (up to grade 4) and secondary (up to grade 8) (Tatto et al., 2008). It was
shown that Germany belongs to a group of countries where both the content knowl-
edge (CK) and the pedagogical content knowledge (PCK) of the secondary school
pre-service teachers are significantly above the international average (Blomeke &
Kaiser, 2014).

The COACTIV study was technically and conceptually linked to the second PISA
test in Germany. Secondary school mathematics teachers whose students were part of
the sample for the PISA 2003 survey of mathematical competence were interviewed.
The study design used by COACTIV and PISA provided for the inclusion of complete
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school classes. Beyond the survey date of 2003 which PISA set at the end of the 9th
grade, teachers and students were surveyed again at the end of the 10th grade in order
to generate a true longitudinal section of combined teacher-student data. Grammar
school teachers performed much better in both their content knowledge (CK) and in
their pedagogical content knowledge (PCK) than teachers in other forms of school.
Teachers with a high level of pedagogical content knowledge use tasks with a high
potential for cognitive activation and provide good support for individual learning
of students (Krauss et al., 2008; Kunter & Baumert, 2013).

The concepts of professional competence developed in the COACTIV and MT21
and TEDS-M studies show great similarities. These include, among other things, the
use of research findings on teacher expertise and the associated assumptions on the
knowledge and skills of teachers (Draughtsman & Conklin, 2005) as well as the use
of a concept of competence (Weinert, 2001) from empirical education research and an
overarching model of professional competence of teachers (Depaepe & Konig, 2018).
In particular, both concepts of professional competence look at professional knowl-
edge, which is composed of different areas of knowledge. These are content knowl-
edge (CK), pedagogical content knowledge (PCK) and pedagogical-psychological
knowledge (PK). In addition, professional competence encompasses aspects of affec-
tive and value-oriented aspects in addition to the cognitively oriented knowledge
dimensions mentioned above.

However, there are differences within the areas of knowledge. For example, the
concept of Blomeke and Kaiser (2014) looks at teaching and learning process-related
requirements within the field of pedagogical content knowledge, while Baumert and
Kunter (2013) distinguish explanatory knowledge, knowledge about the mathemat-
ical thinking of students and knowledge about mathematical tasks. The concept of
COACTIV (Baumert & Kunter, 2013) also uses the categories consulting knowledge,
organizational knowledge, motivational orientations and self-regulation.

2.3 Competence Dimensions for Teaching Mathematical
Modelling

In order to be able to interpret the COACTIV model for the field of mathemat-
ical modelling, it is necessary to identify requirements for teachers that arise in the
preparation and implementation of mathematical modelling processes. Borromeo
Ferri and Blum (2010) describe skills they consider necessary for teaching mathe-
matical modelling (see Table 2.2). Each of these dimensions is concretely specified
by three facets of knowledge and/or ability. These include, in addition to declara-
tive and procedural knowledge (e.g. recognition of phases in the modelling process)
also action skills (e.g. conduct reality-related mathematics lessons) by (pre-service)
teachers.

The theoretical dimension provides a background necessary and important for
practical work, which is based on theoretical conceptualisations and empirical studies
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Table 2.2 Competence

. . . Dimension Facets
dimensions for teaching
mathematical modelling (cf. Theoretical dimension Modelling cycles
Borromeo Ferri, 2018) Aims/Perspectives of

mathematical modelling
Criteria/Types of modelling
tasks

Task-related dimension Processing of modelling tasks
Cognitive analysis of modelling
tasks

Development of modelling
tasks

Teaching-related dimension | Planning of reality-related
mathematics lessons

Conduct reality-related
mathematics lessons
Interventions during modelling
processes

Diagnostic dimension Identifying phases in the
processing process
Identifying difficulties in the
processing process
Evaluation of modelling tasks

of the current modelling discussion (Borromeo Ferri, 2018). It includes knowledge
about modelling cycles and their suitability for various purposes (see Sect. 1.1.2).
The educational aims associated with mathematical modelling (see Sect. 1.2) as well
as knowledge about the different criteria of modelling tasks (see Sect. 1.3) form the
basis of any teaching.

In particular, the last facet has strong constrictions on the task-related dimension.
This includes the knowledge and ability to handle modelling tasks in various ways.
This allows the teacher to identify different approaches for the task and thus gain an
idea of the variety of solutions. Besides the cognitive analysis of the modelling task
difficulties are anticipated (see Sect. 1.4.2). If modelling tasks are to be used in the
classroom in a targeted manner, the development of tasks is necessary. This allows
the development of individual partial competencies or modelling competence in a
broad sense (see Sect. 1.1.3) depending on the requirement.

The teaching dimension includes knowledge and ability aspects for theory-guided
planning and subsequent implementation of reality-related mathematics lessons
(Borromeo Ferri & Blum, 2010). As described in Sect. 1.4, this is characterised
by the choice of an appropriate learning environment. While teaching, attention
should be paid to the observance of the characteristics of self-directed and coopera-
tive learning. In the case of difficulties in the modelling process, the teacher supports
by adaptive intervention (see Sect. 1.4.1).

The diagnostic dimension focuses on the classification of students’ modelling
activities in the different phases of the modelling cycle and on the identification of
any cognitive hurdles in the processing process (see Sect. 1.4.2). For this purpose,
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teachers need knowledge and skill aspects from the field of pedagogical diagnostics as
well as concrete access to the recognition and documentation of progress, difficulties
and errors in the modelling process of students (Borromeo Ferri, 2018). Therefore,
knowledge about the different phases of the modelling cycle is essential for the
effective and results-oriented execution of these activities. Finally, developing and
evaluating a performance test with modelling tasks is another facet of the diagnostic
dimension.

2.4 A Competence Model for Teaching Mathematical
Modelling

The competence dimensions shown in Table 2.2 are used in the interpretation of the
COACTIV model (see Table 2.1), in particular the professional knowledge, to derive
a structural model of professional competence for teaching mathematical modelling.
In order to distinguish between interdisciplinary professional competences of math-
ematical teachers, the structural model must be as specific as possible to the field of
mathematical modelling. Certain aspects and areas of the professional competence of
teachers, therefore, seem more important in the context of mathematical modelling
(see Fig. 2.1).

In this way, the aspects of beliefs can be interpreted as part of beliefs/values/aims
and self-efficacy expectations as part of the motivational orientations through
modelling-specific aspects. On the other hand, the aspect of self-regulation refers
to the personality characteristics of the teacher and is therefore independent of any
specific concretisation. In terms of professional knowledge, the area-specific inter-
pretation of pedagogical content knowledge can be focused, since it is assumed that
the pedagogical content knowledge is the central factor in determining the cognitive
activation potential of teaching (Baumert & Kunter, 2013).

The conceptualisations of the three competence aspects and areas, the beliefs and
self-efficacy expectations for mathematical modelling and the modelling-specific
pedagogical content knowledge are presented in the following sub-sections. Based on
the COACTIV study, the pedagogical content knowledge is understood as declarative
and procedural knowledge (knowledge and skills) (Baumert & Kunter, 2013), which
is measurable in its competence facets about competencies in the narrow sense. The
constructs were examined for empirical testing using a structural equation model
(Klock et al., 2019; Wess et al., 2021).
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2.4.1 Modelling-Specific Pedagogical Content Knowledge

The COACTIV model breaks down the pedagogical content knowledge into explana-
tory knowledge, knowledge about the mathematical thinking of students and knowl-
edge about mathematical tasks (see Table 2.1). These three competence facets
were based on the competence dimensions for teaching mathematical modelling
(Borromeo Ferri, 2018; Borromeo Ferri & Blum, 2010) and further broadens the
knowledge about concepts, aims and perspectives (see Fig. 2.1).

The explanatory knowledge facet is interpreted as knowledge about interventions
using the skills “Performing reality-related mathematics education” and “Interven-
tions during modelling processes” in Table 2.2. This facet of competence includes
knowledge about the characteristics of adaptive interventions and the effect of
different interventions on the learner’s solution process. Capabilities to assess inter-
ventions in terms of adaptability and to perform interventions adequately are typical
requirements for teachers in the management of mathematical modelling processes.
In the field of mathematical modelling, it is specific that the interventions are char-
acterized by a high degree of independence orientation (Smit et al., 2013; Van de Pol
et al., 2010) and minimal intervention in the solution process, so that only in a few
cases a direct explanation of the teacher is appropriate in the sense of explanatory
knowledge. The competence facet “planning reality-related mathematics teaching”
includes, among other things, the selection of appropriate social forms and methods,
which is part of the scope of pedagogical-psychological knowledge. Therefore, this
facet is not included in the conceptualisation.

The facet involving the knowledge about students’ mathematical thinking is inter-
preted as a knowledge about modelling processes by means of the competencies
“Identification of modelling phases” and “Identification of difficulties and errors” in
Table 2.2. This competence facet includes the skills to diagnose modelling phases
and difficulties in the modelling process and to set support goals for interventions
based on these. This requires specific knowledge about the modelling process and
influencing factors as well as of typical difficulties. This diagnostic component is
central to the modelling-specific pedagogical content knowledge. On the one hand,
diagnostic skills in the modelling process are a prerequisite for intervention-related
competencies as described in the Knowledge about interventions facet. On the other
hand, they are necessary for the diagnosis of demands and thus for the selection and
development of cognitively activating tasks, which also have links to task-related
knowledge.

The Knowledge about mathematical tasks facet is interpreted as knowledge about
modelling tasks based on the aspects “Characteristics of modelling tasks,” “Pro-
cessing of modelling tasks,” “Cognitive analysis of modelling tasks” and “Devel-
opment of modelling tasks” in Table 2.2. This competence facet includes knowl-
edge about different types and criteria of modelling tasks. It also includes skills
for the criteria-driven development of modelling tasks, as well as their analysis and
processing with regard to multiple solutions. These become even more solid when the
(pre-service) teachers are given the opportunity to develop their own modelling tasks
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(Borromeo Ferri & Blum, 2010). The development of mathematical tasks for certain
topics and content fields is a demanding, complex and time-consuming activity.
Furthermore, due to the many requirements that teachers must fulfil every day in
school, there is little room for students to do modelling tasks. The comprehensive
classification scheme for the categorisation and analysis of modelling tasks in accor-
dance with Maal} (2010) in conjunction with the explanations for the task design
in Czocher (2017) provide a theoretical basis for the facets mentioned here. There-
fore, there is a great need for good and high-quality teaching materials, including
mathematics, and in particular modelling problems (Borromeo Ferri, 2018).

The remaining competencies of the theoretical dimension “Modelling cycles” and
“Goals/perspectives of modelling” in Table 2.2 are interpreted as knowledge about
concepts, aims and perspectives in another competence facet. It consists of selected
aspects of theoretical background knowledge. On the one hand, knowledge about
modelling cycles and their suitability for various purposes is described, for example as
a metacognitive strategy for learners or as a diagnostic tool for teachers. On the other
hand, various perspectives of mathematical modelling research are presented (Kaiser
& Sriraman, 2006), for example modelling as a means of learning mathematics and
fulfilling other curriculum needs (Julie & Mudaly, 2007). In addition, teachers should
be aware of the relevant aims of mathematical modelling in the classroom and of the
different relevance of reality references for students.

In addition to specialised knowledge specific to modelling, beliefs and self-
efficacy in mathematical modelling processes are also part of the professional
competence to teach mathematical modelling.

2.4.2 Beliefs Regarding Mathematical Modelling

In German literature, the concepts of convictions, beliefs, ideas, notions, subjec-
tive theories, world-views and attitudes are often used in parallel without any clear
distinction being made (Voss et al., 2013). In English literature, a similar blur is
found, but the term “beliefs” is used predominantly (Leather et al., 2002): “The
term “belief” is often used loosely and synonymously with terms such as attitude,
disposition, opinion, perception, philosophy, and value” (Leder & Forgasz, 2002,
p. 96).

Since the conceptual definitions overlap, uniform concrete specification is difficult
(Leder & Forgasz, 2002). In this work, the concept of beliefs is therefore preferred,
following the COACTTIV study. These include “psychologically held understandings
and assumptions about phenomena or objects of the world that are felt to be true,
have both implicit and explicit aspects, and influence people’s interactions with the
world” (Voss et al., 2013, p. 249).

They are relatively stable cognitive structures (Voss et al., 2013) since their
filtering function strengthens the perception of content that corresponds to one’s own
beliefs and reduces the perception of inconsistent content (Torner, 2002). According
to Patrick and Pintrich (2001), change requires an intensive examination of one’s
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beliefs and other perspectives. It is also possible to specify beliefs for specific content
areas (Voss et al., 2013). Torner (2002) structures beliefs in the following three
hierarchical aspects:

® Global Beliefs. General beliefs include beliefs about teaching and learning
mathematics, the nature of mathematics, and the development of mathematical
knowledge.

® Domain-specific Beliefs. Domain-specific beliefs include beliefs about specific
mathematical sub-fields, such as analysis, stochastics or geometry. These may
differ, for example, in their beliefs about the accuracy of mathematics in each
field.

e Subject-matter Beliefs. Subject-matter beliefs are beliefs that refer to a concrete
mathematical term (e.g. derivative), a mathematical object (e.g. function) or a
mathematical procedure (e.g. bisection).

The first aspect is particularly attractive if beliefs for mathematical modelling are
to be conceptualised, since it has a relatively high degree of generality. Woolfolk
Hoy et al. (2006) distinguish epistemological beliefs and beliefs about teaching and
learning mathematics with respect to the teaching—learning processes. Epistemo-
logical beliefs refer to the structure and genesis of knowledge (Buehl & Alexander,
2001). Rosken and Torner (2010) capture them via the mathematical world views
that represent beliefs with respect to components of mathematics. They distinguish
between the formalism aspect, the application aspect, the process aspect and the
schema aspect. In terms of mathematical modelling, the application aspect is of
particular interest, which relates to the meaning and utility of mathematics in the
real world. Rosken and Torner (2010) summarise under this mathematical world
view beliefs about the benefits of mathematics and its everyday and social signif-
icance. Due to the application orientation and the realism of modelling tasks, this
aspect is suitable for the conceptualisation of epistemological beliefs for mathe-
matical modelling. Thus, statements that convey a practical benefit to mathematical
modelling in the world are understood as epistemological beliefs about mathematical
modelling (Klock et al., 2019; Wess et al., 2021).

Beliefs about teaching and learning mathematics include beliefs about educational
goals, teaching methodological preferences and classroom management. According
to Kuhs and Ball (1986), three approaches can be distinguished: a learner-focused
approach, a content-focused approach with a core focus on conceptual understanding,
and a content-focused approach with a core focus on performance. Teachers with
learner-focused beliefs see mathematical learning as an active process of knowledge
construction (Voss et al., 2013). The content-oriented beliefs differ depending on
whether the focus of the teacher is on promoting a conceptual understanding of the
content treated or on developing the ability of the students to apply mathematical
rules and procedures. This also involves differentiating the cognitive learning aims in
terms of routine construction, problem solving and modelling, arguing and reasoning,
and evidence. Beliefs about modelling in mathematics education and its goal can thus
be assigned to beliefs about teaching and learning.
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Both areas of beliefs about the teaching—learning processes can be viewed at
a meta-level from the perspective of behaviourist and constructivist learning theo-
ries. This means that both epistemological beliefs and beliefs about teaching and
learning mathematics can be understood from a more transmissive or constructivist
perspective (Voss et al., 2013). Such correlations between beliefs about learning and
beliefs for modelling could also be demonstrated empirically (Kuntze & Zottl, 2008;
Schwarz et al., 2008). Therefore, both positively correlated constructivist beliefs and
negatively correlated transmissive beliefs contribute to the description of beliefs in
mathematical modelling.

2.4.3 Self-Efficacy Expectations for Mathematical Modelling

Self-efficacy expectations are an empirically founded feature of professional compe-
tence (Kunter, 2013). The notion of the self-efficacy expectation is understood as
an assessment of one’s own effectiveness in certain situations. “A teacher’s effi-
cacy was a judgement of his or her capabilities to bring about desired outcomes of
student engagement and learning, even among those students who may be difficult
or unmotivated.” (Tschannen-Moran & Woolfolk-Hoy, 2001, p. 783).

They are important for teaching and influence the performance, beliefs and moti-
vation of students (Philippou & Pantziara, 2015). They go hand in hand with a higher
quality of teaching, the use of more innovative and effective methods in teaching and
a higher level of commitment of the teacher (Kunter, 2013).

Self-efficacy can be specified and concretised in relation to teacher’s ideas about
their own effectiveness in mathematical modelling processes. The content of the
activities is determined by the facets of the modelling-specific pedagogical content
knowledge. One of the main activities of the teacher during cooperative modelling
processes is the diagnostics of the processing procedure. Since the diagnostic compo-
nent is related to both the intervention and task-related knowledge facets (see
Sect. 2.3), the self-efficacy expectations regarding the assessment of one’s ability
to diagnose the performance potential of students in the modelling process are
operationalised.

The modelling process of the students is characterised by different activities and
cognitive processes in different phases. Different diagnostic processes are necessary
for the different modelling phases in which the students are currently working. This
justifies the assumption that the self-efficacy of the teacher also differs according
to the modelling phase. Regarding the activities of the students and the associated
diagnostics, it is particularly possible to identify phases that are not specific to the
modelling process and in which the activities can be traced by written materials
(mathematical work), phases that are specific to the modelling process (simplifica-
tion/structuring; mathematisation; interpreting; validation). The self-efficacy expec-
tations for mathematical modelling are therefore conceptualised for the diagnosis of
performance potentials for the activities of mathematical working and modelling.
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2.4.4 Empirical Validation of the Structural Model

The preceding sections present the underlying structural model of professional
competence for teaching mathematical modelling, which results from a specific
design of the COACTIV model (see Table 2.1), taking into account theoretical and
empirical insights of the current research on mathematical modelling. This naturally
exploits the different research traditions that form the basis of the COACTIV model:
thus, the emphasis on knowledge and skills—here in the form of modelling-specific
pedagogical content knowledge—as a core of professionalism finds its connection
in the highlighted work on expert research and regarding structural elements in the
dimensions of Borromeo Ferri and Blum (2010). The beliefs, values and aims are also
based on the statements of Rosken and Torner (2010), which were supplemented by
perspectives on teaching and learning mathematics (Kuhs & Ball, 1986). Likewise,
this specific interpretation shows the clear alignment of cognitive characteristics of
teachers, which justify a conceptual summary of both aspects as “modelling-specific
expertise.” In this context too, the notion of competences as cognitive abilities and
skills that can be learnt in principle is emphasised (Cochran-Smith & Draughtsman,
2005; Darling-Hammond & Bransford, 2005). Extending it to include motivational
orientations—in the form of self-efficacy expectations—the present structural model
follows the example of the COACTIV study and goes beyond the understanding of
expertise presented by reinterpreting these aspects with regard to selected facets of
teaching mathematical modelling (see Baumert & Kunter, 2013).

For the empirical review of the conceptualised structure (see Fig. 2.1), a structural
equation analysis was carried out based on a data set of 156 pre-service teachers from
several German universities (for a deeper consideration, see Klock et al., 2019). The
fit indices CFI, RMSEA and SRMR as well as the non-significant Chi? test point
to a global fit of the model, relying on the Hu and Bentler guide values (1998).
The local fit is impaired by a minor and insignificant charge of the transmissive
beliefs (A = —0.09) and a low variance elucidation (R*> = 0.01). A negative load is
fully in line with expectations, as constructivist and transmissive beliefs correlate
negatively due to the different theoretical perspectives of learning (Voss et al., 2013).
All other scales load significantly with a medium to high significance on the respective
constructs. The structure of the model can therefore be confirmed by the analysis.
In addition, a significant but only weak latent connection between the beliefs about
mathematical modelling and the modelling-specific pedagogical content knowledge
can be demonstrated empirically (» = 0.38). Both these two constructs also do not
correlate significantly and with little significance with the self-efficacy expectations
for mathematical modelling.

Based on the inclusion of beliefs, self-efficacy and cognitive dispositions for
achievement, competences are measured in a broad sense (see Sect. 2.1). The results
must be compared before a relatively small and non-representative sample for the
evaluation methodology. Therefore, a review of the structural model on the basis of
further data was necessary in order to demonstrate any significant interaction with
the expectations of self-efficacy. A sample of 349 pre-service teachers from several
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Fig. 2.2 Structural equation analysis (N = 349) with two belief scales (Wess et al., 2021)

German universities was used. On the one hand, the associated results demonstrate
the above-mentioned interactions with self-efficacy expectations and on the other,
eliminate the deficiencies in the local fit. The Chi? test, on the other hand, becomes
significant, which can be considered problematic for the global fit (Hu & Bentler,
1998; in detail in Chap. 3). However, in view of the explanations of the beliefs on
mathematical modelling (see Sect. 2.4.2), another theoretically sound model structure
can be examined (see Fig. 2.2; for a deeper consideration, see Wess et al., 2021),
which, instead of four belief scales, only looks at two scales located at a meta-level:
a constructivist-oriented scale and a transmissive-oriented scale.

In view of the fit indices, the model specified in this manner shows a very good
global fit to the current data set (Hu & Bentler, 1998). In addition, correlations
of medium practical relevance between self-efficacy expectations and beliefs about
mathematical modelling (r = 0.57) and between these and high scores can be demon-
strated in the modelling-specific pedagogical content knowledge (r = 0.53). A signif-
icant correlation of medium to high practical significance between beliefs and specific
pedagogical content knowledge can also be identified (» = 0.78). In addition, all
scales have significant loads of high significance.

Overall, the above results show that the professional competence to teach math-
ematical modelling can be structurally validated in the three areas of competence.
The significant latent correlations between beliefs and self-efficacy expectations for
mathematical modelling, as well as between these and the modelling-specific peda-
gogical content knowledge, point to interdependencies between constructs, which
points to an affiliation with an overarching construct—the professional competence
to teach mathematical modelling.
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In the context of quality development in teacher education, the theoretical funda-
mentals outlined serve to operationalise professional competence for teaching math-
ematical modelling. The development of the associated test, which also served as a
survey tool for the above analyses, forms the centre of this book and is discussed in
detail in the following chapter.
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Chapter 3 ®)
Test Instrument G

Key didactic aspects of mathematical modelling (see Sects. 1.1, 1.2 and 1.3), in
particular the possibilities of characterising and acquiring modelling competence (see
Sects. 1.1.3 and 1.4), were explained in previous sections. Against this background,
the important role that the teacher plays in the development of competences among
students was highlighted and the necessary professional competence was demon-
strated (see Sect. 2.2). In this context, different perspectives and conceptualisations
were considered, taking into account two large scale national and international studies
on empirical teacher competences (see Sect. 2.2.2). The subsequent presentations
focused on the competence model of the COACTIV study, which together with the
competence dimensions according to Borromeo Ferri and Blum (2010; see Sect. 2.3)
formed the basis for the interpretation of a structural model of modelling-specific
professional competence (Klock et al., 2019; Wess et al., 2021; see Sect. 2.4).

This theory of underlying forms of knowledge and structures is the prerequisite
for the acquisition of specific knowledge and ability and corresponding affective-
motivational aspects of teachers. However, until then there had hardly been any
preliminary work for a theory-based approach to the collection of modelling-specific
competence of teachers in which an instrument was developed with the help of
theory (Borromeo Ferri & Blum, 2010; Maall & Gurlitt, 2011). In parallel to the
structural model of professional competence for teaching mathematical modelling,
as described in Sect. 2.4, a related test instrument (see Sect. 3.5) was developed,
whose construction is described below.

3.1 Test Development

The operationalisation of the structural model was based on the principle of rational
and effective test construction (Biihner, 2011; Burisch, 1984; Downing and Haladyna,
2011). In this process, an instrument—in German (Klock and Wess, 2018)—was
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developed to capture aspects of professional competence for teaching mathematical
modelling. The content of the item construction was based on the individual compo-
nents of the structure model (see Sect. 2.4). For the first version of the instrument, four
scales were designed for self-reported previous experiences (15 items), four scales
for beliefs (32 items), two scales for self-efficacy expectations (24 items) and four
scales for modelling-specific pedagogical content knowledge (103 items). Two of the
latter scales are recorded using task examples with case-based text vignettes to query
the underlying facets in different non-mathematical contexts and learning situations.
All items used in the test are formulated in a closed form, whereby combined true-
false, multiple-choice, and mapping tasks to capture modelling-specific pedagogical
content knowledge are used in addition to Likert scales to capture the self-reported
prior experiences, beliefs, and self-efficacy expectations.

The items in this first test version were checked in a small sample (N = 8) as
part of a qualitative pre-pilot with a subsequent discussion. The aim was to revise
incomprehensible or inaccurate items. Subsequently, the test was first checked and
quantitatively evaluated with a small sample size (N = 66), where critical items were
excluded using statistical key parameters and didactic considerations. As a result,
the number of items in the various scales decreased to 15 items for the self-reported
previous experiences, 16 items for beliefs, 24 items for self-efficacy expectations
and 71 items for modelling-specific pedagogical content knowledge.

Finally, the instrument was comprehensively piloted using a random sample of
pre-service teachers from several German universities (N = 156) in various events
(Klock and Wess, 2018). Excerpts of the related confirmatory factor analysis of the
underlying competence model as well as a larger sample replication study (N = 349)
confirming the design of the model in the forms were presented in Sect. 2.4.4. For
a deeper consideration, please refer to the contributions of Klock et al. (2019) and
Wess et al. (2021). In addition, a classification of the results of the replication study
in relation to general standards in the form of quality criteria for quantitative test
instruments can be found in Part 4 of this book.

The executed test duration including instructions is approximately 70 min, while
the maximum processing time of the test is 60 min. It is conducted as a single test
in groups. The test books are filled in anonymously. A personal code is generated at
the beginning of each test book to link different test sheets of individual participants
in the course of studies with multiple measurement points.

In order to provide an insight into the test book for the collection of professional
competence for teaching mathematical modelling, the test items are described below
and explained in detail using individual examples. All the contents of the instrument
have been designed with reference to item formulation guidelines (Biihner, 2011;
Impara & Foster, 2011). The complete instrument with all tasks can be found in the
attached test book (see Sect. 3.5). The corresponding solutions can be found in the
Appendix.
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3.2 Operationalisation of Test Items: First Test Part

The test begins with the generation of the personal code for the anonymised assign-
ment of the subjects (e.g. as part of pre-post examinations) and some brief ques-
tions on general information (gender, age, school-leaving examination grade, last
mathematics grade, second subject and semester). This is followed by the items for
self-reported previous experiences, beliefs and self-efficacy expectations for mathe-
matical modelling in a first part of the test, before the focus is placed on the individual
facets of the modelling-specific pedagogical content knowledge (see Sect. 3.3). The
former is recorded using a five-point Likert scale with the expressions “strongly
disagree” (rated at 1), “disagree” (rated at 2), “neutral” (rated at 3), “agree” (rated
at 4), and “strongly agree” (rated at 5). Five points were chosen to provide partici-
pants with a medium expression and not to force them to choose a position on the
statement. Five points also make it possible to express one’s own degree of approval
in a differentiated manner by means of a verbal gradation (Biihner, 2011; Reckase,
2000).

3.2.1 Self-reported Previous Experiences in Mathematical
Modelling

Short scales were used to control the self-reported previous experiences in mathe-
matical modelling, wherein three or six items are used to capture self-assessments of
different areas of experience. For this purpose, an item pool was developed and it led
to the formation of four scales after exploratory factor analysis. Items 2.2, 2.4, 2.6,
2.8, 2.10 and 2.13 form the “Teaching and preparing for mathematical modelling”
scale, items 2.1, 2.5 and 2.11 form the “Treatment of mathematical modelling” scale,
items 2.7, 2.12 and 2.15 form the “Modelling tasks” scale and items 2.3, 2.9 and 2.14
form the “Modelling in the classroom” scale. All items are positively formulated, so
there is no need to reposition. Sample items are specified in Table 3.1.

The first scale, “Treatment of mathematical modelling,” measures the extent to
which mathematical modelling has generally played arole in the pre-service teachers’
secondary school courses. No focus is placed on certain aspects, so that both scientific
and didactic events are included in the assessment.

The second scale, “Teaching and preparing for mathematical modelling,”
measures the degree to which the pre-service teachers have been, and feel prepared,
for teaching mathematical modelling. This scale includes both items to assess the
extent to which the development of modelling competence among students has played
a role in the courses that have been completed so far and items to assess their own
competence in this area.

The “Modelling tasks” scale records whether modelling tasks have already been
processed in another event. It gives an impression of how students have gained
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Table 3.1 Sample items for self-reported previous experience in mathematical modelling

Scale Number | Item example

Treatment of mathematical modelling 3 “Mathematical modelling has already
played a role in a course I attended”

Teaching and preparing for mathematical 6 “I feel well prepared to teach

modelling mathematical modelling through my

previous training”

Modelling tasks 3 “I have been working on modelling
examples myself during my teacher
education studies”

Modelling in the classroom 3 “I have already done mathematical
modelling with students”

experience with modelling tasks and acquired modelling competence. In this scale,
both scientific and didactic events can contribute to the value of a scale.

A final scale, “Modelling in the classroom,” records whether students already have
experience of modelling. The focus is not only on school education and practical
experience in the context of internships, but also extracurricular activities, such as
experience in tutoring, are recorded by the scale.

3.2.2 Beliefs in Mathematical Modelling

In conceptualising the beliefs for mathematical modelling, as described in Sect. 2.4.2,
epistemological beliefs and beliefs about teaching and learning mathematics are
distinguished (Woolfolk Hoy et al., 2006). In addition, beliefs about learning (Voss
et al., 2013), that is constructivist and transmissive beliefs, contributes to the opera-
tionalisation of mathematical modelling beliefs. Therefore, the beliefs about math-
ematical modelling are operationalised with the help of two scales, a constructivist
and a transmissive scale, whereby the scale of constructivist-oriented beliefs can
consist of three theoretical sub-scales.

Epistemological beliefs generally refer to the structure and genesis of knowledge
(Buehl & Alexander, 2001) and have been operationalised in terms of mathematics
teaching on the formalism aspect, the application aspect, the process aspect and the
schema aspect (see Sect. 2.4.2). Items of the application aspect are suitable for the
operationalisation of epistemological beliefs regarding mathematical modelling due
to their application reference. The items record the extent to which mathematical
modelling is considered an everyday or social benefit (see Table 3.2). This eventu-
ally led to the scale “Beliefs for the application of mathematical modelling,” which
consists of items 3.2, 3.5, 3.12 and 3.15. Item 3.5 is negatively worded and must be
reverse-scored for scaling.

Beliefs for teaching and learning mathematics are operationalised in terms of
mathematical modelling regarding educational aims of teachers (see Sect. 2.4.2). It
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Table 3.2 Sample items on beliefs about mathematical modelling

Scale Number | Item example
Constructivist-oriented | Beliefs on the use of 4 “Many aspects of
beliefs mathematical modelling mathematical modelling

have a practical use or a
direct application

reference”
Beliefs about mathematical |4 “Mathematical modelling
modelling in the classroom should be a part of

mathematics education”

Constructivist beliefs 4 “Students learn
mathematics best by
discovering ways to solve
problems themselves”

Transmissive-oriented Transmissive beliefs 4 “Effective teachers
beliefs demonstrate the right way
and methods to solve an
application problem”

records the participants’ agreement to statements that grant mathematical modelling
a legitimate place in mathematics education and consider it important to promote
modelling competence (see Table 3.2). Items 3.1, 3.3, 3.9 and 3.13 form the
“Mathematical modelling in the classroom” scale.

Existing items from Staub und Stern (2002) were used to record the beliefs about
learning in their constructivist and transmissive forms, as they were also used in
the COACTIV study (Voss et al., 2013). Items on constructivist beliefs represent
perspectives that students should discover their own ways of solving tasks, work
independently and discuss their ideas for solutions (see Table 3.2). Items for trans-
missive beliefs represent the view that teachers should teach detailed procedures
and provide schematics even for application tasks. These kinds of beliefs have
been included, as constructivist views have a connection with positive beliefs about
modelling and transmissive views tend to be accompanied by negative beliefs about
modelling (Kuntze & Zo6ttl, 2008; Schwarz et al., 2008). Both types of beliefs cannot
be understood as two opposing poles. Rather, they are adjoining negatively correlated
constructs, such as those empirically proven by Voss et al. (2013). For this reason,
two scales were formed. The “Constructivist beliefs” scale is based on items 3.3, 3.8,
3.11 and 3.14, whereas the “Transmissive beliefs” scale is based on items 3.6, 3.7,
3.10 and 3.16.

3.2.3 Self-efficacy Expectations for Mathematical Modelling

The self-efficacy expectations for mathematical modelling are conceptualised in
Sect. 2.4.3 on the basis of ideas about the own effectiveness in the diagnosis of



44 3 Test Instrument

Table 3.3 Sample items for self-efficacy expectations for mathematical modelling

Scale Number | Item example

Self-efficacy expectations for 13 “It is easy for me to recognise the different

mathematical modelling abilities of the students using their
translation of mathematical results into
reality”

Self-efficacy expectations for working | 8 “It is easy for me to recognise the different

mathematically abilities of the students using the
mathematical formulae and symbols they
used in the modelling process”

performance potentials in mathematical modelling processes. For operationalisa-
tion, items were developed that require self-assessment of one’s own effectiveness
and recognising the skills of students in the phases of the modelling process (see
Sect. 1.1.2) using written results. Positive and negatively worded items have been
created for each phase.

In factor analysis, two one-dimensional scales emerged. Sample items are shown
in Table 3.3. Items 4.1,4.4,4.9,4.10,4.13,4.14,4.15,4.16,4.17,4.18,4.21,4.22 and
4.23 for the modelling phases such as simplifying/structuring, mathematising, inter-
preting and validating form the scale of “Self-efficacy expectations for mathematical
modelling,” since these are specific phases with specific diagnostic requirements for
the modelling process (see Sect. 2.4.3). Items 4.5, 4.7, 4.8, 4.11, 4.12, 4.19, 4.20
and 4.24 for diagnosing written results or mathematical work form the “Self-efficacy
expectations for mathematical work™ scale, since they are empirically distinct from
the items for the other phases of the modelling process. Items 4.13 to 4.24 must be
reverse-scored before scaling due to their negative formulation. Not all items in the
test book were included in the scale. Items 4.2, 4.3 and 4.6 could not be assigned by
factor analysis.

3.3 Operationalisation of Test Items: Second Test Part

In the second part of the test, the facets of the modelling-specific pedagogical content
knowledge are collected using combined-true-false, multiple-choice, and mapping
tasks (see Sect. 2.4.1). This approach serves as an economic and adequate test of the
above facets by reducing the processing, evaluation and solution time and at the same
time reducing the probability of guess (Biihner, 2011; Ebel & Frisbie, 1991; Impara
& Foster, 2011). Alternatively, the probability of the guess could be considered as an
additional parameter in the evaluation using a 3PL model. Due to the lack of model
validation tests and the lack of specific objectivity of the 3PL model, this approach
was abandoned.
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Compared to closed answer formats, open or semi-open response formats would
have required encoding of each individual answer, which would have led to low eval-
uation objectivity. Another test instrument under development to assess competences
for teaching mathematical modelling also uses closed item formats. In this context,
Borromeo Ferri (2019) also describes the above-mentioned problems that open item
formats pose. The difficulty of the dichotomous evaluation was met in all knowledge
scales by a normative composition based on a multi-stage expert survey as well as a
theoretical foundation based on current results of didactic research on mathematical
modelling.

3.3.1 Knowledge about Modelling Tasks

Combined-true-false items are used to record the sub-facet characteristics, develop-
ment, and processing of modelling tasks, among other things, to gather knowledge
about modelling tasks. For this purpose, three items are combined and evaluated
together. The task is rated as correct if all three items have been answered correctly.
The corresponding scales consist of items 5.1.[1-4], 5.2.[1-4] and 5.3.[1-4].

The example shown (see Fig. 3.1) is about the basic characteristics of modelling
tasks. Modelling tasks can thus be overdetermined as well as underdetermined. An
example of a specific task is the Fire-brigade Task (Blum, 2011), which requires
only some of the information specified to be used for the solution. Likewise, the
reverse is possible, where the task does not contain all the information needed to
resolve it. An example of such an underdetermined task is the Lighthouse Task
(Borromeo Ferri, 2010), where the missing information (such as the Earth’s radius)
must be determined using everyday knowledge, estimates or research. The first two
statements would therefore be “true,” while the last statement is considered to be
“false,” since the openness of a task is an essential feature of (good) modelling tasks
(see Sect. 1.3).

Another subfacet of knowledge about modelling tasks, the analysis and classi-
fication of modelling tasks regarding an appropriate catalogue of criteria, can be
measured only in conjunction with specific requirement situations which allow the

5.1 Characteristics of modelling tasks

5.1.1. | Modelling tasks... True False
... can be underdetermined. O O
... can be overdetermined. O O
... are as closed as possible. O O

Fig. 3.1 Combined multiple-choice sample item regarding knowledge about modelling tasks
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Please place the tasks "Container" (1), "Filling Up" (2), "Safe Victory" (3) and "Milk Carton" (4) in the
order with regard to the following criteria for modelling tasks. Note the numbers corresponding to the

tasks in the table.

8.1 Low openness High openness

Fig.3.2 Sample item for assigning and/or reorganising regarding knowledge about modelling tasks

classification of reality-related tasks. This is achieved by assigning or reorganising
tasks that relate to the modelling tasks used to gather knowledge about modelling
processes and knowledge about interventions (see Sect. 3.3.3). This item format
is used for an economic review of knowledge structures, cause-effect relationships
or abstraction skills, with a low probability of guess (Biihner, 2011). Specifically,
items 8.1, 8.2, 8.3, 8.4 and 8.5 set out the task of analysing four of the aforemen-
tioned modelling tasks with regard to theoretically sound criteria for modelling tasks
(see Sect. 1.3.3) and ranking them accordingly. Thus, the assignment is considered
correct if one of the two options set out based on the multi-level expert survey has
been implemented. The example (see Fig. 3.2) deals with the criterion of openness,
in which the modelling tasks presented are to be entered into the columns of the table
with increasing intensity from left to right. The ranking sequences “(3)(2)(4)(1)” and
“(3)(2)(1)(4)” are rated as correct and are therefore coded as 1, while the remaining
22 options are rated as incorrect and coded as 0.

3.3.2 Knowledge about Concepts, Aims and Perspectives

Knowledge about concepts, aims and perspectives of mathematical modelling is gath-
ered only using multiple-choice items. These measure selected aspects of theoretical
background knowledge such as knowledge about modelling cycles and their suit-
ability for different purposes or different perspectives of research on mathematical
modelling (Kaiser & Sriraman, 2006).

The example in Fig. 3.3 covers the sub-facet of modelling cycles. The task is
considered as correct when the first alternative answer has been ticked, which explic-
itly aims at the designs of Leiss et al. (2010) for the modelling cycle from a cognitive
psychological perspective. Since the fourth statement takes a contrary position and
the situation model, contrary to the third answer option, is cognitively formed by
the individual (Kaiser et al., 2015), these, as well as the second statement, which
is realised, for example in Schupp’s cycle (1989), represent distractors of the item
under consideration.
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Cognitive modelling distinguishes between the situation model and the real
model.

A direct transition from the real situation to the mathematical model is not possible
in modelling cycles.

The situation model is formed independently of the individual.

A distinction between the situation model and the real model is not conceivable in
modelling cycles.

Oo|lo|jgo|o

Fig. 3.3 Sample item for knowledge about concepts, aims and perspectives

3.3.3 Knowledge about Modelling Processes and Knowledge
about Interventions

Knowledge about modelling processes and knowledge about interventions can only
be measured in conjunction with presented requirements that allow diagnosis and
evaluation of intervention in a situational context. There are two main ways to provide
such a situational context: (1) The situation is illustrated by a video vignette or (2)
The situation is described by text vignettes. Since the analysis of video vignettes
is perceived as more burdensome and the more cognitively demanding medium
because of the parallelism of the actions they represent (Syring et al., 2015), the
cognitively less burdensome text vignettes are used here to illustrate the require-
ments. In this context, an upstream general scenario (see Fig. 3.4) creates a teaching
context that provides general information on the social form, on the experience of
students with modelling tasks and their level of performance, on the processing time
and on previous interventions, in addition to the specific requirements.

The requirements are presented by modelling tasks and related text vignettes,
so-called task vignettes, which illustrate a discussion of students in a small group
when they are working on the task. There are six task vignettes in total. Five of the
six contexts of the modelling tasks were taken from the literature. The tasks are as
follows:

e Traffic Jam (Maal} and Gurlitt, 2011),
e Safe Victory (Blum et al., 2010),
e Milk Carton (Boer, 2018),

You are a teacher at a secondary school and your students at the specified grade level work on
the tasks in a small project in groups of 3. The students have already gained experience with
modelling tasks in advance. The situations presented arise in the first half of the processing
time. The students in consideration have an average level of performance for the respective
grade level. You observe the students during extracts of the conversations. You have not yet
interfered in the learning process.

Fig. 3.4 General scenario for the requirement situations
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e Filling Up (Blum, 2011),
e (Container (Greefrath & Vorholter, 2016).

All tasks were slightly modified by replacing or explaining unclear terms, to
use them in test situations. However, the heart of the tasks remained the same. The
modelling tasks can be assigned to different class levels, which are specified with
the task at hand. The test instrument includes tasks for the sixth, eighth, ninth, tenth,
and twelfth class. The modelling tasks used in the test instrument have a rather low
complexity. The use of more complex modelling tasks would lead to the test score
not primarily determined by knowledge about modelling processes and knowledge
about interventions, but also essentially the modelling competence of participants.
Therefore, participants must be able to easily penetrate the modelling tasks.

The Traffic Jam Task (Maal} & Gurlitt, 2011) is used below to illustrate the test
items (see Fig. 3.5). For each modelling task, a student discussion was formulated
that describes a typical difficulty in the modelling process.

Knowledge about modelling processes

Knowledge about modelling processes is characterised, inter alia, by the identifica-
tion of the modelling phase and the identification of the difficulty (see Sect. 2.4.1).
As a consequence of identifying a difficulty, the teacher should reach a judgement in
order to meet the requirement of adequate diagnostics (Heinrichs & Kaiser, 2018).
This judgement is operationalised through the formulation of a support goal. As these
three steps provide a diagnostic basis, they also operationalize important facets of
teacher modelling-specific diagnostic competence of teachers (cf. Borromeo Ferri
and Blum, 2010).

7.1 Traffic Jam (9th class)
Traffic jams often occur at the beginning of summer holidays.

Christina is stuck in a 20 km traffic jam for 6 hours. It is very
warm and she is extremely thirsty. There is a rumour that a
small truck is supposed to supply the people with water, but she
has not yet received anything. How long will it take for the truck

to supply all people with water?

STUDENT 1:  We really need to know how many vehicles are stuck in the traffic jam.
STUDENT 2:  Huh? Right!

STUDENT 1:  How do we calculate how long it takes? A lot of things are missing from the
task!

STUDENT 3:  Yeah, we don't know how long it takes for every vehicle.

STUDENT 2: It is a dumb task.

STUDENT 1: ~ We can divide the 20 km by the 6 hours, then we know how fast it would take.
STUDENT 3:  Exactly! We do not have any more information.

Fig. 3.5 Task vignette for traffic jam (cf. MaaBl & Gurlitt, 2011)
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To which phase of the solution process can the group of students mainly be assigned to?

711 Please check one box.

Understanding

Simplifying

Mathematising

Oo|lojo|o

Interpreting

Fig. 3.6 Sample item to identify the modelling phase

The facets shown are recorded using three items per task vignette. Since six
task vignettes are included in the test instrument, the “Knowledge about modelling
processes” scale consists of 18 items. It consists of items 7.[1-6].1, 7.[1-6].2 and
7.[1-6].7. The scale consists of multiple-choice items with four answer options.

The first item type (see Fig. 3.6) asks for the identification of the modelling phase
in which the learners in the shown conversation (see Fig. 3.5) are actually located.
This is because students do not necessarily have to be in the same modelling phase
when working together on modelling tasks. Students can simultaneously address
several aspects that can be assigned to different modelling phases.

In the sample task vignette (see Fig. 3.5), statements can be clearly associated
with the Simplify/Structure phase. By saying, “We really need to know how many
vehicles are in the traffic jam,” and “Yes, we don’t know how long it takes for every
vehicle,” it becomes clear that the students identify relevant and irrelevant aspects
and thus make structuring. The two statements, "How are we going to calculate how
long it takes?” and “We can divide the 20 km by the 6 hours, then we know how fast
it would take.” also point to approaches of mathematisation. Since the statements
on the previous phase predominate and even student 2 reacts to the impulses of his
classmates, the Simplify/Structure phase can be primarily assigned for the work in a
small group. At this point, the answer option “Mathematise” is a distractor that leads
to high item difficulty.

After the identification of the modelling phase, participants must diagnose a poten-
tial difficulty (see Fig. 3.7). Since the Simplify/Structure modelling phase has been
identified, typical difficulties in the formation of a real model can be considered. The
only difficulty that can be attributed here is “problems in making assumptions” (see
Sect. 1.4.2). The statement "We do not have any more information" shows that the
students are not used to making assumptions. Instead, they compute based on the
given data, which is an inappropriate approach to solving the problem.
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7.1.2. | Diagnose students’ difficulty working on the task in this situation. Please check one box.

The students...

... have problems in making assumptions.

... draw a false conclusion from their mathematical result.

... have problems in understanding the context.

o|o|jo|o

... use an inappropriate mathematical model.

Fig. 3.7 Sample item to identify the difficulty

Please indicate which support goal you would like set for the group after this situation.

7.17. Please check one box.

Independent acquisition and evaluation of information.

Critical questioning of results in the modelling process.

Independent construction of mental models for given problem situations.

o|go|jo|o

Secure translation of simplified real situations into mathematical models.

Fig. 3.8 Sample item to determine the support goal

A final step is to set a support goal for the small group (see Fig. 3.8). The lack of
ability or willingness of students to make assumptions suggests the support goal of
“Independent acquisition and evaluation of information.” To avoid sequential effects,
the support goal items were placed after the intervention items. This should avoid
simply ticking the matching support goal item after answering the diagnosis item.
This approach was described by students in the framework of the qualitative pre-pilot
(see Sect. 3.1). The chosen placement requires that the participants first go through
and then answer the intervention items. After that, they think again about the support
goal item, so that premature answering of the items is avoided.

Knowledge about interventions

Knowledge about interventions is operationalised using four items per task vignette
(see Fig. 3.9). Since six task vignettes are included in the test instrument, the scale
consists of 24 items. It consists of items 7.[1-6].3, 7.[1-6].4, 7.[1-6].5 and 7.[1-6].6
respectively. The items consist of statements that represent potential interventions in
the situation illustrated by the task vignette. Participants are encouraged to identify
potentially appropriate interventions for the independence-oriented development of
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2

o

Please check which of the following interventions are suitable for independ- % ) E

ence-oriented development of modelling skills in this situation. Please placea | & 5 2

marker for each intervention. 2 & =
each g S

7.1.3 | "First, estimate how long a car is." o0 O

714 First, con§1der only part Of, Vthe problem, e.g. how many cars are actu- 0 0 0

ally stuck in the traffic jam.
7.1.5 | "Right, now calculate that value." O Oa O
7.1.6 | "Think about how you can determine the missing data." [

Fig. 3.9 Sample item for knowledge about interventions

modelling competence. The scale consists of true-false items with the two answer
options “suitable” and “unsuitable,” one of which is rated as correct.

Since the probability of guess is 50% for two response options, the additional “do
not know” response option was given. If students do not know the solution, they will
be given an alternative answer and the number of correct solutions through guessing
is reduced.

A decision as to whether an intervention is appropriate or unsuitable will be taken
based on the criteria of adaptive intervention (see Sect. 1.4.1). The first statement,
“First, estimate how long a car is” is considered as not adaptive. Although it has a
content-methodical fit to the difficulty of the learner (make assumptions), it is not
minimal because it strongly interferes with the content of the solution process. It is
also not independence-oriented since the intervention is highly specific.

The second intervention, “First consider only part of the problem, e.g. how many
cars are actually struck in traffic” can be evaluated as potentially adaptive. It is
adapted in terms of content and methodology, since it addresses the difficulty of
the students. It is minimal because it does not add any additional information to the
solution process, and it is independence-oriented since it is less directive. Although
the request makes a proposal for further work, it does not specify how the number
of vehicles needs to be determined. For example, the proposal to divide the problem
into sub-problems is an example of a potentially adaptive strategic intervention. The
other two statements are evaluated using the same methodology.
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After the operationalisation of the test, instrument has been presented, Sect. 3.5
shows the entire test book before describing the fully tested quality of the test
instrument on the basis of various main and secondary criteria in Sect. 3.4. First,
information on how to conduct the test is described in Sect. 3.5.

3.4 Information for Conducting the Test

The test can be conducted as a single test. It is used by pre-service teachers for
secondary schools (general school, high school) with the subject of mathematics. The
test includes a total of 126 items. Of these, 15 items are self-reported previous expe-
riences, 16 items are beliefs, 24 items are self-efficacy expectations, and 71 items are
professional knowledge about teaching mathematical modelling. The executed test
duration including instructions is approximately 70 min. The maximum processing
time is 60 min. Each test person requires a test book and a pen. No aids are allowed.
The test begins with the instructions by the test instructor. It must be ensured that all
participants have a pen and the test book in front of them, so that the processing can
start after the instructions. These are provided on the first page of the test book. No
questions are answered during the processing time.

3.5 Test Book
Create your personal code according to the following schema

First letter of your mother’s first name. (For example: Anna — A)
First letter of your father’s first name. (For example: Tom — T)

Last letter of your father’s first name. (For example: Tom — M)

First letter of your birthplace. (For example: Berlin — B)

Last character of the day of your birthday. (For example: 07 May — 7)

First letter of your mother’s maiden name. (For example: Myers — M)

A

Last letter of your first name. (For example: Jon — N)




3.5 Test Book

1. General Information

1.1 Gender:
O Female
O Male
O

1.2 Age:

1.3 School-leaving examination grade:

1.4 Last grade in mathematics:

1.5 Second subject:

1.6 Course semester:

53
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2. Previous Experiences

(]
[
To what extent do you agree with the following statements? éb %
Please check one box in each line. S <
= 8| = 2
o = = o
A
2|05 8| 2| %
21 Mathematica} modc?lling was previously dealt with in a Ololololno
lecture/exercise/seminar.
2.2 | I was prepared for teaching modelling. o(o|o|o|o
2.3 | I have already done mathematical modelling with students. 0 A O A
24 lfee! well p{e;‘)ared to teach mathematical modelling through my Ololololno
previous training.
25 Mathematical modelling has already been addressed in my oOlololol o
courses.
26 1 have' already been imparted with the knowledge to teach Ololololo
modelling.
27 I have resolved modelling tasks myself during my teacher Ololololno

education studies.
As part of my previous teacher education studies, I have been
2.8 | able to build solid foundations for teaching mathematical

O
O
O
O
O

modelling.

29 Mathematical modelling played a role in my internships at Ololololno
school.

210 In my f:ducatlon, I have already acquired knowledge to teach oOlolololo
modelling.

211 Mathematical modelling has already played a role in a course I Ololololo
attended.

212 In my previous educat_lon, I also had to do mathematical Ololololno
modelling in the processing of tasks.

213 If T have to design lessons for “mathematical modelling”, T can ololololo
draw from what I have learnt.

214 1 have. already gained teaching experience in mathematical Ololololno
modelling.

215 I have been working on modelling examples myself during my oOlolololo

teacher education studies.
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3. Beliefs
3
. . ) o
To what extent do you agree with the following statements? 3 gb
Please check one box in each line. 'i o :
— 5] —_— —_—
2|05 | 2| | 38
31 Mathematlcal modelling should be a part of mathematics Ololololno
education.
32 Results of mathematlcal modelling have a general, fundamental Ololololno
benefit for society.
33 Studen?s should be given the opportunity to do mathematical Ololololno
modelling in mathematics education.
34 Students learn mathematics best by discovering ways to solve Ololololno
problems themselves.
35 Ma_thema?lcal modelling is a futile game, an engagement with Olololol o
objects with no concrete relation to reality.
36 Effective teaghe?s demonstrate the right way and methods to Ololololo
solve an application problem.
37 Students shopld usually be required to solve tasks in the way they oOlolololo
were taught in class.
You should allow students to come up with their own ways of
3.8 | solving application problems before the teacher shows how to | O | OO | O | OO | O
solve them.
39 Among other competences, the competence for mathematical Ololololno
modelling should be taught in the classroom.
310 Student's should oftt_en have the opportunity to follow their Ololololo
teacher's model solutions.
311 Mathematics _should be taug_ht at scho_ol in such a way that Olololol o
students can discover connections on their own.
312 Ma_ny aspects of mathematical modelling have a practical use or oOlolololo
a direct application reference.
313 Mathemat'lcal modgllmg should be a specific component in ololololo
mathematics education.
314 It hejlps studer}ts to unders.tanq mathematics when they are asked ololololo
to discuss their own solution ideas.
315 In mathematical modelling, you work on tasks that have practical Ololololo
value.
316 Teagher§ should provide detailed procedures for solving Ololololo
application problems.
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4. Self-efficacy
g
. . gh o
To what extent do you agree with the following statements? g gﬂ
Please check one box in each line. 'i © i
S| 8| 8| & 8
gls5] 8| @] 8
It is easy for me to recognise the different abilities of the students using ...
4.1 | ... their translation of mathematical results into reality. o|jo|o,\ oo
4.2 | ... their written solutions when modelling. Oo|jo|yo0o|o|d
4.3 | ... the recording of the plausibility test of their solution. Oo|jo|o,| oo
44 . the adeqqate assessment o_f the relationship between the ololololo
mathematical result and reality that they produce.
4.5 | ... the recording of the solutions they create for modelling tasks. | 0 | OO | OO | OO | O
4.6 | ... the mathematical models they chose when modelling. I I I A O
47 .. the recording of their mathematical results in the modelling Oololololo
process.
438 .. the maf[hematlcal formulae and symbols they used in the ololololo
modelling process.
49 .. the determination of‘ their improvement of the established oOlolololo
models presented during modelling.
4.10 | ... the assumptions they made when modelling. I I I A O
4.11 | ... the students’ solutions when modelling. o|jo|o,| oo
412 | thelr handllmg of the mathematical symbols and operators used ololololo
in modelling.
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8
&b o
To what extent do you agree with the following statements? 3 iﬁn
Please check one box in each line. i © s
— o —_— —_—
215 | 2| &| %
It is difficult for me to recognise the different abilities of the students using ...
4.13 | ... their translation of mathematical results into reality. Oo|jo|o,| oo
4.14 | ... the assumptions they have made in the modelling process. o|jo|/o,\ oo
4.15 | ... the plausibility checks of their solution. I Y I O R
416 | the recordlpg of thg real-world restructuring they have ololololo
undertaken in modelling.
4.17 | ... the mathematical models they chose when modelling. Oo|jo|o,| oo
.. the recording of the relationship between mathematical result
4.18 and reality that they produce when modelling. oyojopopo
419 | = tl:lCll’ handl.mg of the mathematical formulae and symbols used ololololo
in modelling.
4.20 | ... their written solution when modelling. I Y I I A
401 | their evaluation of the established models in the modelling ololololo
process.
422 | the 51mp11ﬁcat10ns and structures they have undertaken in the ololololo
modelling process.
4.23 | ... their mathematisations of a real situation. o|/o|o,\ oo
4.24 | ... the recording of their mathematical results in modelling. I Y I I A
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5. Knowledge about Modelling Tasks

5.1 Characteristics of modelling tasks

5.1.1. | Modelling tasks... True | False
... can be underdetermined. O O
... can be overdetermined. O O
... are as closed as possible. O O
5.1.2. | Modelling tasks... True | False
... can also be Fermi tasks. O (Il
... are always also “dressed-up” word problems. O O
... can also be context-related word problems. O O
5.1.3. | Modelling tasks... True | False
... are as close to real life as possible. O O
... are as authentic as possible. O (]
... are as relevant as possible to the students. [l O
5.1.4. | Modelling tasks... True | False
... have clear solutions. O O
... are self-differentiating. O O
... may contain irrelevant information. O (|
5.2 Development of modelling tasks

5.2.1. | Good modelling tasks... True | False
... require metacognitive processes of the students. O O
... require the translation of mathematics into reality. O O
... require the translation of reality into mathematics. O O
5.2.2. | Good modelling tasks... True | False
... are always developed from inner-mathematical content. O O
... Tequire non-mathematical knowledge. O O
... are problem-based. O O
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5.2.3 | Good modelling tasks... True | False
... enable independent work. O O
... are suitable for individual work. O O
... always require cooperative learning forms. O O
5.2.4 | Good modelling tasks... True | False
... can be built on the basis of real problem situations. O O
... always require many sub-competencies of mathematical Modelling. O O
... illustrate the mathematical rigour. O O
5.3 | Processing of modelling tasks

5.3.1 | Modelling tasks... True | False
... are particularly suitable for use in heterogeneous learning groups. O O
... are not suitable for every grade level at secondary level. O O
... are suitable for individual development of high-performing students. O O
5.3.2 | Modelling tasks... True | False
... should encourage the practice of solution schemes. O O
... are used to record real world phenomena. O O
... can develop sub-competencies individually. O O
5.3.3 | Modelling tasks... True | False
... are only suitable for project teaching. O O
... are only suitable for regular education. O O
... are only suitable as a complement to the curriculum content. O O
5.3.4 | Modelling tasks... True | False
... are always cognitively more demanding than inner-mathematical problems. O O
... become less difficult with their degree of openness. O O
... always require passing through the complete modelling cycle. O O
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6. Knowledge about Concepts, Aims and Perspectives

Please check the appropriate box (only one per task).

‘ 6.1 ‘ Modelling cycles

‘ 6.1.1. | Cognitive modelling distinguishes between the situation model and the real model.

A direct transition from the real situation to the mathematical model is not possible in
modelling cycles.

The situation model is formed independently of the individual.

A distinction between the situation model and the real model is not conceivable in
modelling cycles.

Oo|oo|o

6.1.2 | Students solve modelling tasks circularly following the modelling cycle.

Circular schemas cannot illustrate modelling processes.

Models of modelling describe the actual solution approaches of students when working on
modelling tasks.

Olojgo|o

Cyclical representations of modelling distinguish between different stages or phases.

6.1.3 | Working mathematically is not a sub-competency of mathematical modelling.

Mathematisation is not characterised by introducing mathematically idealised objects.

Validation includes a real-world verification of models.

oojgo|a

The use of everyday knowledge does not characterise a step in modelling.

6.1.4 | Mathematisation refers to all the translation processes between reality and mathematics.

In modelling, interpreting is the process of checking the solutions obtained.

The separation of important and unimportant information is not a description of the sub-
competency"Simplifying".
The mental representation of the problem situation is not a description of the sub-
competency "Simplifying".

Ooo|jg|a
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‘ 6.2 ‘ Aims and perspectives of modelling

‘ 6.2.1

Inner-mathematical applications do not develop modelling competence.

Modelling competence cannot be developed by addressing metacognitive handling
strategies.

Modelling competence must be developed in selected school levels.

Modelling competence can be developed with real problem solving tasks.

olgo|lo|d

6.2.2

Mathematical modelling focuses on the process of solving real world problems.

Mathematical modelling does not focus on the study of relationships between mathematics
and reality.

Modelling focuses on the translation process of the mathematical language into the real-
world language.

Modelling cannot be considered as the processing of non-mathematical questions by
embedding them in inner-mathematical contexts.

Oo|lo|jgo|d

623

Structuring and development of learning processes is not a subject of pedagogical
modelling.

Contextual modelling does not involve mental abstraction.

The solution of real and authentic problems is not the main focus of pedagogical modelling.

Applied modelling focuses on developing mathematical thought processes by using models
as mental images.

Oo|gojg|o

6.2.4

Using models as mental images is not a perspective of cognitive modelling.

Modelling pursues goals such as theory development on a theoretical level.

The socio-critical level of modelling does not focus on the critical understanding of the
environment.

Contextual modelling historically refers to pragmatic approaches to modelling.

Oologo

‘ 6.3

Range of references to reality

‘ 6.3.1

Proximity to life means that a task of students is already considered as significant.

Student relevance means that a task is related to the future life of the students.

Life relevance means that a task will become relevant for students only in future situations.

Proximity to life, life relevance and student relevance can be used synonymously.

O|gog|o
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6.3.2 | Open tasks have a strong correlation to reality. O
Open tasks can be classified by initial states, transformations, and target states. O
The authenticity of tasks is always to be seen in context and in isolation from the 0
mathematics used.
The authenticity of tasks always requires that there is a real situation in the original. O

6.3.3 | Word problems have no real reality reference. O
“Dressed-up” word problem are characterised by a real reality reference. a
Word problems only aim at practicing the computing skills. O
“Dressed-up” word problem focus on environmental development using mathematics. O

6.3.4 | Context-related word problems have a mathematical focus. O
Tasks that are dressed-up in (complex) situations are called context-related word problems. | [J
Context-related word problems are used for environmental development with the help of 0
mathematics.
Context-related word problem s have no real reality reference. a

7. Knowledge about Modelling Processes and Interventions

Tasks and associated text vignettes that describe student conversations while
performing modelling tasks are illustrated below. The tasks and text vignettes are
used to diagnose, define support goals and derive appropriate interventions in these
situations. The situations are characterised by the following framework conditions:

You are a teacher at a secondary school and your students at the specified grade
level work on the tasks in a small project in groups of 3. The students have already
gained experience with modelling tasks in advance. The situations presented arise in
the first half of the processing time. The students in consideration have an average
level of performance for the respective grade level. You observe the students during
extracts of the conversations. You have notyet interfered in the learning process.
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7.1 Traffic Jam (9th Grade)

Traffic jams often occur at the beginning of the summer holidays. Christina is stuck
in a 20 km traffic jam for 6 hours. It is very warm and she is extremely thirsty. There
is a rumour that a small truck is supposed to supply the people with water, but she
has not yet received anything. How long will it take for the truck to supply all people
with water?

STUDENT 1: We really need to know how many vehicles are stuck in the traffic

jam.

STUDENT 2: Huh? Right!
STUDENT 1: How do we calculate how long it takes? A lot of things are missing

from the task!

STUDENT 3:  Yeah, we don’t know how long it takes for every vehicle.
STUDENT 2: Itis a dumb task.
STUDENT 1: We can divide the 20 km by the 6 hours, then we know how fast it

would take.

STUDENT 3: Exactly! We do not have any more information.

7.1.1.

To which phase of the solution process can the group of students mainly be assigned to?
Please check one box.

Understanding O
Simplifying O
Mathematising O
Interpreting O
7.1.2. | Diagnose students’ difficulty working on the task in this situation. Please check one box.

The students...

... have problems in making assumptions.

... draw a false conclusion from their mathematical result.

... have problems in understanding the context.

... use an inappropriate mathematical model.

Ooojgo|g
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o ‘ o ‘ . 2| £
Please indicate which of the following interventions are suitable for an _;g 2 £
independence preserving support of modelling competence in this situation. | & g 2
Please check one box in each line. 7 § =
]
7.1.3 | "First, estimate how long a car is." o|o|g
714 First, c0n51de.r only part pf t{le problem, e.g. how many cars are Olol o
actually stuck in the traffic jam.
7.1.5 | "Right, now calculate that value." oo d
7.1.6 | "Think about how you can determine the missing data.” Oo|o|g
717 Please indicate which support goal you would like set for the group after this situation.

Please check one box.

Independent acquisition and evaluation of information.

Critical questioning of results in the modelling process.

Independent construction of mental models for given problem situations.

Secure translation of simplified real situations into mathematical models.

o|lo|jojd
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7.2 Stockpile Material (6th Grade)

From both sides of the national road L1081, a route is being constructed to bring the
illustrated cone dumps to the open-cast mine that is 5.5 km away. The 8.2 million
m? of stockpile material will be transported across the L1081. The entire fleet of
transporters will then transport the stockpile material 16 h a day. 12 months are
planned for this transport work. To ensure transport performance, the fleet will be
expanded by 10 dump trucks, each with a payload of 96 tons.

Develop a model calculation for the transport of stockpile material if 1 m® of
the waste has a mass of approximately 2 tons and the transport has to be completed
within one year.

STUDENT 1: We need to know how many dump trucks they need.

STUDENT 2: And we have to estimate how long they take to drive there.

STUDENT 1:  And how long to unload.... and load.

STUDENT 3: But, if there are multiple trucks, they cannot always be loaded
directly.

STUDENT 2:  Yeah, lots of things to consider. They do not work for 16 hours
either, they have breaks, smoking breaks and such.

STUDENT 3: How do we get all this into one formula?

STUDENT 1: Boah, [leans back] no idea. It is way too hard.

To which phase of the solution process can the group of students mainly be assigned to?

7.2.1 Please check one box.

Understanding

Simplifying

Mathematising

Oojg|o

Validating
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7.2.2 | Diagnose students’ difficulty working on the task in this situation. Please check one box.
The students...

.. have problems in making assumptions. O
.. draw a false conclusion from their mathematical result. O
.. have problems in understanding the context. O
.. use an inappropriate mathematical model. O
v | 2
Please indicate which of the following interventions are suitable for an % = £
independence preserving support of modelling competence in this situation. | & g 2
Please check one box in each line. 2 é’ g
<
7.2.3 | “How can you deal with the missing information?” Oo|o|o
7.2.4 | “Now assign variables to the quantities you have identified.” Oo|o)|0o
7.2.5 | “Divide the problem first and do not try to solve everything at once.” Oo|o|0
7.2.6 | “First of all, identify the most important information.” Oo|o)|0O
797 Please indicate which support goal you would like set for the group after this situation.

Please check one box.

Reduce the complexity of real situations independently.

Secure translation of simplified real situations into mathematical models.

Correct execution of mathematical operations and algorithms.

Secure reference of mathematical results to a given problem situation.

o|lo|jo|d
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7.3 Safe Victory (12th Grade)

These four dice are described by their nets.

67

Two players choose a dice one after the other. After that, everybody throws the
dice once. Whoever has the higher score wins. Develop a strategy with which the
winning probability of the second player is the highest.

[Student 1 previously calculated the expected values for each cube.

E(A) =2 EB)=3,EC)=4% ED)=3]

A B C D
2 s | [o] [3]
222H111H404‘ 33
6 5 4 | 3
6| s | |4 | I3 |

Yeah, if I take C, you have to take A, because it is the highest.
And if I take A, you can choose between B and D, because they are

STUDENT 1: Is this possible?
STUDENT 2:
STUDENT 3:
the same. Makes sense, right?
STUDENT 1: Exactly.

To which phase of the solution process can the group of students mainly be assigned to?

7.3.1 Please check one box.

Mathematising

Working Mathematically

Interpreting

Validating

Og|jo|ad

7.3.2 | Diagnose students’ difficulty working on the task in this situation. Please check one box.

The students...

... use an inappropriate mathematical model.

... have problems in understanding the context.

... have problems in making assumptions.

... perform the calculation incorrectly.

o|lo|ojd
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o . o . . o | 2

Please indicate which of the following interventions are suitable for an _%’ 2 £

independence preserving support of modelling competence in this situation. | & = 2

Please check one box in each line. % g g

S

7.3.3 | “Check your strategy with another example.” Oo|o)|o

7.3.4 | “Here you have to calculate the probabilities, not the expected values.” | O | OO | O

735 You have to approacl}’the problem differently, the expected value will Olol o
not get you anywhere.

7.3.6 | “Consider whether your result now delivers a correct strategy.” Oo|o|o

7.3.7

Please indicate which support goal you would like set for the group after this situation.
Please check one box.

Reduce the complexity of real situations independently.

Secure translation of simplified real situations into mathematical models.

Correct execution of mathematical operations and algorithms.

Critical questioning of results in the modelling process.

o|lojojd
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7.4 Filling Up (10th Grade)

Mr. Stein lives in Trier, 20 km from the Luxembourg border. He drives his VW Golf
to refuel in Luxembourg, where there is a fuel station just across the border. One litre
of petrol costs only €1.05 here as compared to €1.20 in Trier.

Is the ride worth it for Mr. Stein?

STUDENT 1:

STUDENT 2:

STUDENT 3:
STUDENT 1:
STUDENT 3:

[Has previously carried out the following calculation:

81
100 km

x~0.15$:2-20km~ -1.05$=>x%22.41]
Strange, do you only have to fill up so little to make it worthwhile?
But that is a very little. I would not have thought so. My father still
takes canisters with him when he goes refuelling.

How much fuel goes into a car?

50 litres, maybe?

Yes, that would be realistic. Then he would not even need to take
even one canister.
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741 To which phase of the solution process can the group of students mainly be assigned to?
""" | Please check one box.
Understanding O
Working Mathematically O
Interpreting O
Validating Il
7.4.2 | Diagnose students’ difficulty working on the task in this situation. Please check one box.

The students...

... do not adequately verify their solution for plausibility. O
... draw a false conclusion from their mathematical result. O
... have problems in understanding the context. O
... perform the calculation incorrectly. O
o | 2

Please indicate which of the following interventions are suitable for an _%’ ) £
independence preserving support of modelling competence in this situation. | & = 2
Please check one box in each line. 7 é g
S

7.4.3 | “Check whether you have taken everything into account.” Oo|o)|od
7.4.4 | “What about the wear and tear on the car?” Oo|o|o
7.4.5 | "How accurate is your model now?" O|o|o
746 Yqur calnculatlon is still too inaccurate, you have to include several Olol o

variables.

7.4.7

Please indicate which support goal you would like set for the group after this situation.
Please check one box.

Correct execution of mathematical operations and algorithms.

Secure translation of simplified real situations into mathematical models.

Critical questioning of results in the modelling process.

Secure reference of mathematical results to a given problem situation.

g|lo|jo|d
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7.5 Milk Carton (12th Grade)

Not only for financial reasons, but also from an environmental point of view, it makes
sense to consider what packaging should look like, so that least possible material
is used. The picture shows a commercial milk carton. What should the milk carton
look like so that the least possible material is used?

[The students have prepared the following calculation in advance:

STUDENT 1:
STUDENT 2:
STUDENT 1:
STUDENT 3:
STUDENT 1:

11
V=1l=a-b-csa=—
b-c

21 21
0:2ab+2bc+2ac:—+2bc+7].
c

That is not possible now.

Why not, just derivate and then set zero.

Yeah, of what, b or c?

Mh, just go after b.

[calculates: O' = 2¢ — % = O] And now? I still have the b and
the c.
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75.1 To which phase of the solution process can the group of students mainly be assigned to?
""" | Please check one box.
Understanding O
Mathematising O
Working Mathematically O
Interpreting U
7.5.2 | Diagnose students’ difficulty working on the task in this situation. Please check one box.

The students...

... have problems in making assumptions. O
... draw a false conclusion from their mathematical result. O
... use a completely inappropriate mathematical model. O
... make a computation error. O
v | 2

Please indicate which of the following interventions are suitable for an % ) £
independence preserving support of modelling competence in this situation. | & = 2
Please check one box in each line. 2 é’ g
<

7.5.3 | “First, consider a special case for the real problem.” Oo|o)|0o
7.5.4 | "Yeah, now just solve up to b." Oo|o|0
7.5.5 | “Set a value for two variables first and then calculate the third side.” Oo|o)|od
7.5.6 | “Where do you see a problem solving this equation?” Oo|o)|od

7.5.7

Please indicate which support goal you would like set for the group after this situation.
Please check one box.

Reduce the complexity of real situations independently.

Critical questioning of results in the modelling process.

Secure translation of simplified real situations into mathematical models.

Correct execution of mathematical operations and algorithms.

Ooyojg|g
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7.6 Container (8th Grade)

Containers are used on many construction sites to store construction goods or to
collect construction waste. These containers have a special shape, which is intended
to simplify loading and unloading. How much sand is in the container shown?

STUDENT 1: There is exactly 7,160,000 cubic metres of sand in there. Is that

true?

STUDENT 2: I guess you were right, you calculated that with calculator.
STUDENT 1: Clearly. Then that is fine.
STUDENT 3: It is certainly right. I can present that.

7.6.1

To which phase of the solution process can the group of students mainly be assigned to?
Please check one box.

Mathematising

Working Mathematically

Interpreting

Validating

Oooo|o

7.6.2

Diagnose students’ difficulty working on the task in this situation. Please check one box.

The students...

... have problems in making assumptions.

... do not adequately verify their solution for plausibility.

... draw a false conclusion from their mathematical result.

... use an inappropriate mathematical model.

Ooojgo|g
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. . o . . o | 3

Please indicate which of the following interventions are suitable for an % 2 £
independence preserving support of modelling competence in this situation. | & = 2
Please check one box in each line. 2 é’ g
<

7.6.3 | "You probably made a mistake with the units somewhere." Oo|o|o
7.6.4 | “Show me how big a cubic metre is.” Oo|o|o
7.6.5 | “Check the magnitude of your result.” Oo|o|o
7.6.6 | “How can you check the result of the calculator?” Oo|o)|o

7.6.7

Please indicate which support goal you would like set for the group after this situation.
Please check one box.

Secure translation of simplified real situations into mathematical models.

Independent construction of mental models for given problem situations.

Critical questioning of results in the modelling process.

Correct execution of mathematical operations and algorithms.

oyojgo|g
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8. Knowledge about Modelling Tasks

Please place the tasks “Container” (1), “Filling Up” (2), “Safe Victory” (3) and “Milk
Carton” (4) in order with regard to the following criteria for modelling tasks. Note
the numbers corresponding to the tasks in the table on the next page.

(1) Container

Containers are used on many construction sites to store construction goods or to
collect construction waste. These containers have a special shape, which is intended
to simplify loading and unloading. How much sand is in the container shown?

(2) Filling Up

Mr. Stein lives in Trier, 20 km from the Luxembourg border. He drives his VW Golf
to refuel in Luxembourg, where there is a fuel station just across the border. One litre
of petrol costs only €1.05 here as compared to €1.20 in Trier.

Is the ride worth it for Mr. Stein?

(3) Safe Victory

C

[o]
222||111.||-1(]d||3

a4

|4 |

|u||.u w |.u|D
w

[ 5
[ 5

These four dice are described by their nets.

Two players choose a dice one after the other. After that, everybody throws the
dice once. Whoever has the higher score wins. Develop a strategy with which the
winning probability of the second player is the highest.



76 3 Test Instrument

(4)  Milk Carton

Every day tons of packaging waste is generated in Germany. Not only for financial
reasons, but also from an environmental point of view, it makes sense to consider
what packaging should look like, so that least possible material is used. The picture
shows a commercial milk carton. What should the milk carton look like so that least
possible material is used?

8.1 Low openness High openness
32 Low relevance for High relevance for
’ students students
8.3 Low High
’ reality relation reality relation
8.4 Low High
’ authenticity authenticity
Few Many
8.5 modelling sub- modelling sub-
competencies competencies
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
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Chapter 4 ®)
Test Quality oo

General standards in the form of quality criteria can be used in order to assess the
quality of an instrument and/or to construct a high-quality test. Three main indicators,
the so-called “core quality criteria,” have emerged: objectivity, reliability and validity
(e.g. Biihner, 2011; Ebel & Frisbie, 1991; Linn, 2011; Miller, Linn & Grolund, 2009;
Rost, 2004). These criteria must not be considered separately, but there is a logical
relationship between them: objectivity is a prerequisite for reliable measurement
and reliable measurement is a prerequisite for the validity of the instrument. These
primary and selected secondary quality criteria (fairness and usability) are exam-
ined in more detail in the following using a data set of 349 pre-service teachers for
secondary education at several German universities.

4.1 Objectivity

Objectivity is understood, in a narrower sense, as the degree of independence of the
test results from the test instructor (Miller et al., 2009), while, in a broader sense,
it is the degree of independence of the test results from any influences outside the
participants is meant (Rost, 2004). Furthermore, in the context of the current phase of
testing, a distinction is made between implementation objectivity, evaluation objec-
tivity and interpretation objectivity (Biihner, 2011). In order to ensure the objectivity
of implementation, the conditions under which the test is performed and the instruc-
tions provided must be as standardised as possible; in other words, the performance
of a test must not vary between different examinations. One way to do this is to
minimise the interaction of the test instructor with the participants. Implementation
objectivity was ensured in this study by examining all participants under compa-
rable conditions and using a pre-established standardised written introduction and
printed instructions. The sole test processing was ensured by supervision and no
further aid was given or additional aids were allowed. In addition, sampling checks
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78 4 Test Quality

on the implementation of the instructions did not reveal any deviations from the
requirements.

In the context of the analysis of the test results, which are usually supported
by software, the term evaluation objectivity refers to the independence of the test
evaluation from the person (Good, 1973) and/or the program used for this purpose.
It turns out that closed task formats, where participants have to choose between
predefined answer alternatives, are the least prone to interference, although they
cannot be completely excluded. On the other hand, when open task formats are used,
the participant can respond with his or her own free formulation, the analysis of which
depends—to a certain extent—on the subjective impressions of the coders (Miller
et al., 2009). The evaluation objectivity was ensured by an automated evaluation of
the tests, which was made after the encoding of the answers. The manual was created
on the basis of six expert ratings from the German-speaking modelling community. In
the process, critical items were discussed until consensus for evaluation was reached.
In addition, part of the test logs were double-coded and checked for input errors.

Interpretation objectivity means the independence of the interpretation of the test
results from the analysing person (VandenBos, 2015) and is ensured in this study by
the fact that each participant can be assigned numerical values for their respective
skill expressions on a fixed scale as part of the test. In addition, the effects can be
interpreted on the basis of internationally accepted standards (Cohen, 1988).

4.2 Reliability

Reliability is the measurement accuracy or reliability of a test. For example, a
measurement is reliable precisely when it accurately captures the personality or
behavioural trait that is being measured, that is without error in measurement (Miller
et al., 2009). Mathematically, the degree of reliability is determined by a so-called
reliability coefficient, which describes the ratio of the variance of the true measured
values to the variance of the observed and thus error-prone measured values (Biihner,
2011). In analogy to objectivity, in practice, there are also different ways of describing
the reliability of a measurement and the specified variance ratio (Ebel & Frisbie,
1991). Since the variance of true values is unknown, it follows that the reliability of
a test can be only estimated from the responses of the participants. This is done by
means of methods that estimate reliability under certain conditions by means of a
correlation between two comparisons, whereby the split-half reliability, the parallel
forms reliability and the test—retest reliability are the most common methods for
estimating the reliability of measurement (Biihner, 2011). For this purpose, in the
first case, the tests are divided into two equivalent test halves, the results are deter-
mined separately for each test part and participant, and then both sub-test results are
correlated. In the second case, the results of two strictly comparable tests that collect
the same construct are correlated, whereas in the third case the results of the test
(assuming that the characteristic to be captured has not changed itself) are correlated
with a repeat measurement (Ebel & Frisbie, 1991). Another method for estimating



4.2 Reliability 79

reliability is internal consistency, which is essentially a generalisation of split-half
reliability, where each item is considered as a separate test part (Biihner, 2011). The
standard for the numerical realisation of this method is the Cronbach coefficient o
(1951) developed and named after Cronbach, which sets the sum of the variances
of the individual items in relation to the total variance of the test. Accordingly: the
greater the number of items and the stronger the positive correlation between the
items, the higher is the internal consistency (Biihner, 2011).

The concept of reliability described has been defined in the framework of classical
test theory and is applied there by default (Miller et al., 2009). In contrast, reliability
in the probabilistic test theory or the item response theory (for a deeper look, see, e.g.
van der Linden & Hambleton, 1997), which is the basis for the analysis of the facets
of the modelling-specific pedagogical content knowledge, is rarely observed, despite
the extremely favourable calculation conditions. The required variance percentages
in the Rasch model can be directly estimated: The variance of latent variables (i.e.
the true measurement value) is estimated as a model parameter in the course of
the Marginal Maximum Likelihood Estimation (MMLE), while the variance of the
observed values corresponds to the variance of the estimated personal parameters
and the error variance of the measured values can also be calculated from the stan-
dard estimation errors of the ability expressions. However, the latter two variances
are based on the choice of the estimation procedure according to which, in addition
to the Unconditional Maximum Likelihood Estimation (UMLE; often also called
Joint Maximum Likelihood Estimation—JMLE) resulting and due to their overesti-
mated variance inappropriate personal parameters also calculate the more suitable
Expected a Posteriori (EAP) and Weighted Likelihood Estimation (WLE) estimator.
The resulting reliability (EAP or WLE reliability), of which the EAP reliability
is comparable to the reliability measure from classical test theory as specified by
Cronbachs o (Rust, 2004), therefore represents adequate options to determine the
measurement accuracy of a test within the scope of the item response theory. In view
of the facets of the modelling-specific pedagogical content knowledge, reliability
values are determined which tell exactly how the corresponding personal parameters
(EAP or WLE estimators) can be measured in the second test part. The corresponding
dichotomic items were scaled using simple Rasch models and the scales were thus
checked for their sufficiency. Using the eRm package (Mair & Hatzinger, 2007)
of Software R, the item difficulty parameters were estimated based on the solution
rates of items and personal skill parameters based on the performance of the people
interviewed. Various scale parameters have been calculated to evaluate scalability
(see Table 4.1). In the course of the model validity review, items 6.1.3 and 6.2.3 for
knowledge about concepts, aims and perspectives as well as items 7.1.4,7.2.5,7.2.6,
7.6.4 and 7.6.5 for knowledge about interventions were excluded due to insufficient
discrimination and therefore not included in the scale.

In general, the reliability coefficients between 0.50 and 0.70 can be considered
adequate for group comparisons (Ebel & Frisbie, 1991) as well as coefficients that
are not less than 0.70 as the characteristic values of good test instruments (Biihner,
2011). All EAP reliability values are above 0.70 and are therefore acceptable. All
the Andersen tests to assess the model fit are insignificant and therefore indicate a fit
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Table 4.1 Dichotomous Rasch models for knowledge scales

Facet Number | EAP reliability | Andersen test | Pt.-Bis.-Corr.
Modelling tasks 17 0.81 0.086 >0.30
Concepts, aims and perspectives | 10 0.70 0.058 >0.30
Interventions 19 0.71 0.061 >0.30
Modelling processes 18 0.74 0.072 >0.30

Table 4.2 Reliabilities for the (sub-)scales of self-reported prior experiences, beliefs and self-
efficacy expectations for mathematical modelling

Scale Sub-scale o
Self-reported previous experiences for | Handling of mathematical modelling 0.89
mathematical modelling Teaching and preparation for mathematical | 0.88
modelling
Modelling tasks 0.87
Modelling in the classroom 0.82
Beliefs in mathematical modelling Constructivist-oriented beliefs 0.83
Transmissive-oriented beliefs 0.65
Self-efficacy expectations for Self-efficacy expectations for mathematical | 0.88
mathematical modelling modelling

Self-efficacy expectations for mathematical | 0.84
work

of the one-dimensional Rasch models. Furthermore, all point-biseral correlations of
the remaining items are greater than 0.30 and therefore also of acceptable quality.
In addition, for the scale of self-reported prior experience, beliefs and self-efficacy
expectations for mathematical modelling, the first part of the test calculated relics
according to the classical approach (see Table 4.2).
Except for those of transmissive oriented beliefs (0.65), all the reliability values
of the scales considered are above 0.80 and must therefore be described as good.

4.3 Validity

While the reliability describes the trustworthiness or measurement accuracy of the
test, validity describes the extent to which the test measures what it should measure
(Miller et al., 2009). A test is considered to be completely valid if its results allow
accurate and immediate conclusions to be drawn about the individual characteristics
of the participants’ abilities or behaviour to be captured (Ebel and Frisbie, 1991).
There are also three concepts as far as validity is concerned: the content validity,
criterion validity and construct validity which is explained below (Biihner, 2011).
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For content validity, it is fundamental whether the test instrument as a whole, but
also whether each of its individual items represents the characteristic to be captured
sufficiently well. This is not checked by numerical parameters, but rather by didactic
and logical considerations (Ebel & Frisbie, 1991). Accordingly, the content validity
in the present study was ensured by a rational and effective design of the test tasks
(see Sect. 3.1), by a theory-based operationalisation that was closely aligned with
the definitions of the aspects, areas and facets of professional competence to teach
mathematical modelling. In addition, the tasks developed in this way were discussed
extensively with several experts from the German-speaking modelling community
to determine whether the constructs considered were adequately covered.

The criterion validity refers to the validation of a test based on the association
with an external manifest criterion that should correlate with the characteristic to be
recorded (Biihner, 2011). Depending on the time at which this criterion is available
(before, simultaneously, later), there is a distinction between retrospective validity,
consistency validity and predictive validity. In the first case, therefore, the relationship
of the test result to a criterion of interest that was already known, in the second case,
the relation of the measured values with a criterion that was collected simultaneously
and in the third case the prediction of a future characteristic is in the foreground. These
correlations can therefore be used to provide a numerical variable to represent the
criterion validity (Kane, 2011). In order to consider the criterion validity in the field
of professional competence for teaching mathematical modelling, the annex of the
study makes it possible to rely primarily on retrospective validity. However, as there is
almost no knowledge about which criteria generally correlate with modelling-specific
professional competence, the main focus is on the links between the modelling-
specific pedagogical content knowledge facets and the school-leaving examination
grade, following the results of the COACTIV study (Krauss et al., 2008) (see Table
4.3) whereas other aspects are considered in the subsequent explanations of construct
validity.

It turns out that the school-leaving examination grade is not indicative of the
facets of modelling-specific pedagogical content knowledge considered, with nega-
tive correlations indicating a positive correlation due to the German grade scale. These
results replicate the correlations with the pedagogical content knowledge found by
Krauss et al. (2008).

In the context of construct validity, the question is examined whether the instru-
ment also captures the theoretical construct that needs to be captured. In this respect,
many authors increasingly summarise the construct validity as a general concept

Table 4.3 Correlations between facets of pedagogical content knowledge and school-leaving
examination grade

Modelling tasks | Concepts, aims and | Interventions | Modelling
perspectives processes

School-leaving —0.101* —0.106* —0.065 —0.095%*
examination grade

*The correlation is significant at the level of 0.05 (2-sided).
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encompassing all aspects of validity, while, in a narrower sense, only the convergent,
discriminatory and factorial validities are included in the aspects of construct validity
(Btihner, 2011). Instead of naming individual external manifests, as with criterion
validity, one formulates diverse hypotheses about the structure and contexts of the
construct and the related relationships to manifest, but also latent variables. These
hypotheses can therefore relate, on the one hand, to which other construct-related
variables the test to be validated is closely related (convergent validity) and, on the
other hand, to which non-structural variables it is not or only very little related (diver-
gent validity) (Ebel & Frisbie, 1991). In addition, factorial validity often involves
checking the established test model before the test construction (or even structural
model) with the help of confirmatory factor analyses and other model matching
procedures, which on the one hand examines the defined mapping of individual test
pieces to specific design areas and facets and on the other hand tests the assumption of
uncorrelated measurement errors (Biihner, 2011). The possibility of verifying conver-
gent validity is limited, since inaccessible comparative tests have not allowed the use
of instruments other than those described in Sect. 3. Thus, correlations between the
aspects of professional competence to teach mathematical modelling considered are
calculated, also based on the results of the COACTIV study (Krauss et al., 2013),
which may give indications of convergent validity (see Tables 4.4 and 4.5).

Table 4.4 Correlations of facets of modelling-specific pedagogical content knowledge

MSPCK | Modelling tasks | Concepts, aims | Interventions | Modelling
and perspectives processes
MSPCK
Modelling tasks | 0.67**
Concepts, aims 0.60%* 0.60%**
and perspectives
Interventions 0.72%* 0.55%* 0.56%%*
Modelling 0.69%* | 0.41%* 0.48%* 0.53**
processes

**The correlation is significant at the level of 0.01 (2-sided)

Table 4.5 Correlations of

) . Beliefs and self-efficacy MSPCK
aspects of modelling-specific
professiona] competence Constructivist-oriented beliefs 0.25%%*
Transmissive-oriented beliefs —0.22%%*
Self-efficacy expectations for mathematical 0.19%%*
modelling
Self-efficacy expectations for mathematical 0.12*
work

*The correlation is significant at the level of 0.05 (2-sided)
**The correlation is significant at the level of 0.01 (2-sided).
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Significant correlations are consistently shown, which, in almost all cases, are
comparable with the COACTIV results in terms of their significance and thus support
the validity of the test designed.

In view of the discriminatory validity, it would have been desirable to use
additional tests which only measure similar constructs to ensure that they are not
measured, in other words, that the correlation between the present and the other test
results is minimised. But this was not possible for economic reasons. Instead, compre-
hensive efforts have been made to verify the factorial validity of the constructs under
consideration. As described in Sect. 2.4.4, the model of professional competence
for teaching mathematical modelling was largely confirmed by structural equation
and/or confirmatory factor analyses (see Klock et al., 2019; Wess et al., 2021). In
the context of structural analyses, various Rasch models for professional knowledge
have also been and will be determined to teach mathematical modelling and tested
using modelling tests as well as compared with each other to ensure factorial validity
(for a deeper look, see Greefrath, Siller, Klock and Wess, submitted).

In addition to the main quality criteria discussed, scalability is sometimes
mentioned as another criterion. This is considered to be fulfilled if the test value
formation follows a valid clearing rule, that is there is a sufficient statistic (Biihner,
2011), which is ensured by the use of fitting Rasch models (see Sects. 2.4.4 and 4.2).
In addition, other so-called secondary quality criteria such as fairness and usability
can be listed (e.g. Bithner, 2011; Ebel & Frisbie, 1991; Miller et al., 2009), which
are briefly explained below.

4.4 Secondary Quality Criteria

One of the most well-known secondary commodity criteria is the fairness of atest. The
quality criterion of fairness is met precisely when the results of a test do not systemat-
ically discriminate against groups of participants on the basis of external characteris-
tics (e.g. ethnic, socio-cultural or gender-specific) (Zieky, 2011). For example, when
designing test tasks, care was taken to ensure that the formulations were made in a
language that was appropriate for the gender. In addition, the tests used to record the
professional competence to teach mathematical modelling were checked for differ-
ential item functioning in the course of two dissertation projects in order to check
whether certain sample groups are significantly disadvantaged by individual items,
that is a systematic item bias (see Klock, 2020; Wess, 2020).

The usability criterion is met by a test when it uses relatively little financial and
time resources (Miller et al., 2009) in terms of the diagnostic knowledge gained. For
this purpose, it is important to keep the implementation time as short as possible and
to minimise the material requirements as well as to make the test instrument easy
to handle and to realise it as a group test as far as possible (Biihner, 2011). This
means that the instrument used can be described as economically viable, since it
has a relatively short implementation time (approximately 60 min), consumes little
material, is easy to use and can be implemented as a group test.
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In addition to the associated quality criteria presented, various authors cite further
criteria for the test quality. This includes, among other things, acceptability, useful-
ness and tamper-proof characteristics. For more detailed explanations, please refer to
the relevant literature (e.g. Biihner, 2011; Downing & Haladyna, 2011; Miller et al.,
2009).
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The results presented in the preceding sections were primarily aimed at devel-
oping a test on professional competence of pre-service teachers specifically for
teaching mathematical modelling. In a first step, the theoretical foundations were
laid and, based on this, the structure of professional competence used for teaching
mathematical modelling was explained. Subsequently, the relevant constructs were
operationalised and empirically checked.

The results of the analyses presented regarding the test quality are summarised
below and are classified in the current state of research to discuss possible expla-
nations for the observed results on this basis. In order to further define the scope
of the results, key limits of the test instrument in relation to the present study will
be addressed. The book concludes with an outlook, in which possible implications
are derived from this study for didactic research as well as for university teacher
education.

The chosen approach to operationalise and empirically describe the structures of
professional competence for teaching mathematical modelling addresses the ques-
tion formulated by Blum (1995) about appropriate structural conceptualisations
and empirical underpinnings for essential skills for teaching in application-related
contexts. For example, central constructs, in particular the area-specific compe-
tence, were first defined and then measured using a test instrument and recorded
in sufficient quality. On this basis, a model validity check showed that the data
in the field of modelling-specific pedagogical content knowledge can be described
by one-dimensional Rasch models—after excluding some critical test tasks (see
Sect. 4.2).

The fact that aspects of professional competence and in particular pedagogical
content knowledge can be empirically captured as a facet of professional knowl-
edge was already demonstrated in the COACTIV (Kunter et al., 2013) and TEDS-M
(Blomeke et al., 2014) studies. The present study now uses a different, focused
perspective, for example, because no facets of pedagogical or psychological knowl-
edge have been measured. For example, the explanatory notes on the individual
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modelling-specific pedagogical content knowledge facets reveal additional constric-
tions that have not been taken into account in the models in question (see also
Sect. 2.4).

Nevertheless, the results of the present work conclude on the results of the struc-
tural analysis of Klock et al. (2019) and Wess et al. (2021), which showed that the
dimensioning envisaged by Borromeo Ferri and Blum (2010), despite the theoret-
ical constraints presented, is empirically distinct and can therefore be assumed from
one-dimensional knowledge facets. The one-dimensionality of the constructs under
consideration is therefore in line with the theoretical, conceptual and substantive
dimensions of the skills and abilities necessary to promote modelling competence
among students and, in addition, with the reported homogeneity of subject-related
knowledge facets from the aforementioned large-scale studies (Blomeke et al., 2014;
Krauss et al., 2013).

Furthermore, beliefs/values/aims and motivational orientations in the form of self-
efficacy expectations for mathematical modelling could be adequately captured and
significant interactions between these constructs could be demonstrated. In this sense,
the professional competence to teach mathematical modelling can be considered a
complex construct (see Sect. 2.1). In the modelling-specific design, beliefs can also
be understood from a stronger transmissive or stronger constructivist perspective (cf.
Voss et al., 2013). The established correlations are therefore in line with the findings
of Schwarz et al. (2008) and Kuntze and Zo6ttl (2008): both positively correlated
constructivist beliefs and negatively correlated transmissive beliefs contribute to the
description of beliefs in mathematical modelling.

Before identifying further uses of the test presented here for didactic research and
for university teacher training, some limitations of this study will be addressed in
order to define the scope of the results presented. While the objectivity of the test
can be considered very good due to the type of item used and the reliability on the
basis of the studies can be considered acceptable to good, the review of the criterion
validity in the field of professional competence for teaching mathematical modelling
was primarily based on retrospective validity. Based on the results of the COACTIV
study (Krauss et al., 2008), the focus was primarily on the school-leaving examination
grade as a criterion that was not indicative of the specific knowledge facets (see
Sect. 4.3). These results replicate the correlations found by Krauss et al. (2008) and
thus support the criterion validity of the instrument used. In addition, the possibility
of verifying the convergent validity in the present work is limited, since inaccessible
comparative tests have not allowed the use of instruments other than those described
in Sect. 3.5. Correlations between the competencies considered and with the beliefs
and self-efficacy expectations for mathematical modelling were thus calculated, also
in line with the results of the COACTIV study (Krauss et al., 2013) (see Sect. 4.3).
Significant correlations between the examined aspects were shown, which, in almost
all cases, are comparable with the COACTIV results in terms of their expression and
significance and thus contribute towards the convergent validity of the test designed.
Only the strengths of constructivist beliefs were slightly lower than in the reference
study. However, it can be assumed that no stronger correlations could develop due
to ceiling effects in this area. These ceiling effects also suggest that the degree of
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differentiation between beliefs (and, where appropriate, self-efficacy expectations)
and mathematical modelling should be adapted for the following studies, for example
by using a seven-step Likert scale instead of a five-step one. In addition to the
convergent, factorial validity is another form of construct validity. In order to ensure
this, various models of professional competence for teaching mathematical modelling
were identified in the framework of the structural analyses carried out and were
examined in replication studies (see Sect. 2.4.4).

The use of valid Rasch models also ensured the existence of a sufficient statistic
(Btihner, 2011), which provides the basis for a valid transfer rule for test value
formation and thus fulfils the quality criterion of the scaling. In the course of the
application review, however, both in the facet of knowledge about concepts, aims
and perspectives as well as in the facet of knowledge about interventions, some
critical items emerged, which must be discussed further.

In the light of the model structures confirmed by the modelling tests and item
characteristics, it was also possible to determine the reliability values that indicate
exactly how the personal parameters (EAP or WLE estimators) could be measured
(see Sect. 4.2). In this respect, it should be noted that, in all aspects of professional
competence in teaching mathematical modelling, values have been achieved that is
sufficient for group comparisons and, in some cases, as indicators of a good measuring
instrument (Biihner, 2011; Ebel & Frisbie, 1991).

In view of the evaluation methodology, the probabilistic test theory used to scale
the raw data can be considered to be of decisive importance. The chosen methodolog-
ical approach is certainly not the easiest way to calculate the measurement accuracy
and to verify the dimensionality of tests. However, it offers decisive advantages while
at the same time reducing certain deficits in relation to the dependency on items (cf.
van der Linden & Hambleton, 1997). Various methods for estimating the ability
parameters were also discussed, ultimately looking at Weighted Likelihood Estima-
tion. Although it leads to measurable error-related measurements, these are the best
point estimates of the person’s abilities (Rost, 2004). These provided the basis for
the analyses aimed at answering the question of the quality of the test instrument
under consideration.
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The presented test instrument opens up a wide range of approaches for further didactic
research and valuable implications for university teacher education; it may not be
considered in isolation from the findings of the above discussion or from the limits
set out.

Teaching mathematical modelling is a cognitively demanding activity for (pre-
service) teachers (Blum, 2015), which is why quality development in teacher educa-
tion requires a detailed examination of professional competence to teach mathe-
matical modelling. In order to analyse this competence, theoretical models (see
Sect. 2.4) are required, which describe the requirements for teachers in detail, as well
as measuring instruments (see Sect. 3.5) that are equally suitable for the purpose of
adequately measuring the skills and abilities required. As shown in the course of this
book, these could be used profitably for conceptualisation such as operationalisation
of specific professional competence.

The measuring instrument covers many substantial components of modelling-
specific professional competence and has been extensively examined—given the
recorded constructs—in order to meet established test quality criteria (see Sect. 4).
The recognition that the conceptualised domain-specific competence can be empir-
ically recorded and the corresponding knowledge facets can be described in a rapid
and homogeneous manner thus indicates an added value for further didactic research
on the teaching of mathematical modelling, since for example a wide range of univer-
sity courses and concepts can be evaluated in a more targeted manner and thus be
assessed in a more differentiated way. Competence developments can also be anal-
ysed in more detail in order to obtain an informed basis for modelling the possible
levels.

The extent to which there are correlations between individual aspects of profes-
sional competence for teaching mathematical modelling could be demonstrated with
regard to the cognitive-oriented as well as the affective-motivational components.
In subsequent research projects, it would be desirable to combine the aspects of
professional competence for teaching mathematical modelling with other specific
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competencies. For example, Klock (2020) focuses on the correlations between inter-
vention competency and diagnostic competency, while Wess (2020) looks at the links
between the task and diagnostic competency to teach mathematical modelling. On
the other hand, examinations of further correlations, for example between specific
task and intervention competency or between these and other constructs, are still
pending.

However, in the light of the above, it should also be noted that these relate on
the one hand to pre-service teachers and on the other to individual universities in
Germany. Accordingly, the results obtained primarily represent site-specific empir-
ical confirmations of the structures and correlations shown. Further work with the
aim of a possible adaptation of the conceptualised structural model as well as of
the test instrument used to fit and use practicing teachers on the one hand and in
international contexts on the other is therefore still to be done.

Finally, in the context of the COACTIV study, which serves as the basis for the
conceptual considerations of the structural model as defined in Sect. 2.4, it would be of
particular interest to gain insights into other facets of modelling-specific professional
knowledge. In this context, the combination of this instrument and that of the test
developed by Haines et al. (2001) to capture modelling-specific content knowledge
as a profitable way to conduct future analyses. However, such a combination requires
either the compilation of extensive test books or the conception of a balanced rotation
design. As both instruments ensure the rapid homogeneity of the designs considered,
the latter option, in particular, shows itself to be an economic way of recording a
broader competence structure.

In general, it is appropriate for the following research projects to use these prepara-
tory work as a starting point to further investigate the genesis, structure and relevance
of professional competence of (pre-service) teachers in the field of mathematical
modelling. For example, it would be particularly desirable to demonstrate to what
extent the modelling-specific content knowledge or the modelling-specific pedagog-
ical content knowledge as well as other affective-motivational components of profes-
sional competence to teach mathematical modelling of practitioners are predictively
valid for the quality of teaching and the learning progress of their students. To answer
amore global design of this question, COACTIV used the longitudinal cross-sectional
component of PISA in Germany (Bruckmaier et al., 2018). On the other hand, for
a local, modelling-specific design, it is advisable to use proven and valid modelling
competence tests, such as those developed by Zattl et al. (2010), Kaiser and Brand
(2015) or Hankeln et al. (2019).

Overall, the effectiveness of (more) developed elements, structures and teaching
formats in the context of teacher education must always be measured in terms of the
developed teacher competences. On the basis of the findings presented, it also seems
desirable to consider further process-related competences such as problem solving
or reasoning in the context of teaching—learning laboratories, thereby contributing
to a holistic, practice-related mathematics teacher education.
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Create your personal code according to the following schema

First letter of your mother’s first name. (For example: Anna — A)
First letter of your father’s first name. (For example: Tom — T)

Last letter of your father’s first name. (For example: Tom — M)

First letter of your birthplace. (For example: Berlin — B)

Last character of the day of your birthday. (For example: 07 May — 7)
First letter of your mother’s maiden name. (For example: Myers — M)

Last letter of your first name. (For example: Jon — N)

© The Editor(s) (if applicable) and The Author(s) 2021
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96 Test Book—Correct Answers

1. General Information

1.1 Gender:
O Female
O Male
O

1.2 Age:

1.3 School-leaving examination grade:

1.4 Last grade in mathematics:

1.5 Second subject:

1.6 Course semester:
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2. Previous Experiences

97

L
(o)
To what extent do you agree with the following statements? %D gé)
Please check one box in each line. S &
= 8 | = 2
25| E g ?
S| 813 & 8
z2 |8 | 8| 2|5
21 The mathemgtlcal r_nodelhng was previously dealt with in a Oololololo
lecture/exercise/seminar.
2.2 | I'was prepared for teaching modelling. ojo|o,|o,| o
2.3 | I have already done mathematical modelling with students. ojo|o,|o o
24 I feel W.ell prepa?ed to teach mathematical modelling through ololololo
my previous training.
25 Mathematical modelling has already been addressed in my ololololo
courses.
26 1 haveA already been imparted with the knowledge to teach Oololololo
modelling.
27 I havg resolvgd modelling tasks myself during my teacher ololololo
education studies.
As part of my previous teacher education studies, I have been
2.8 |able to build solid foundations for teaching mathematical | O | OO | OO | O | O
modelling.
29 Mathematical modelling played a role in my internships at ololololo
school.
210 In my _educatlon, I have already acquired knowledge to teach ololololo
modelling.
211 Mathematical modelling has already played a role in a course I Oololololo
attended.
212 In my previous educat_lon, I also had to do mathematical ololololo
modelling in the processing of tasks.
213 If T have to design lessons for “mathematical modelling”, I can ololololo
draw from what I have learnt.
214 I have' already gained teaching experience in mathematical ololololo
modelling.
215 I have been Wprkmg on modelling examples myself during my ololololo
teacher education studies.
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3. Beliefs

[0
5]
=
Q
To what extent do you agree with the following statements? %ﬁ go
Please check one box in each line. 'i ° :
e 2 = ® 20
= D b= 3 =]
S| 2| 8| m| &
@ B =1 < @
31 Mathematlcal modelling should be a part of mathematics Ololololo
education.
32 Results of mathematlcal modelling have a general, fundamental Ololololo
benefit for society.
33 Studen?s should be given the opportumty to do mathematical Ololololo
modelling in mathematics education.
34 Students learn mathematics best by discovering ways to solve Ololololo
problems themselves.
35 Ma}thema'?lcal modelling is a futile game, an engagement with Oololololo
objects with no concrete relation to reality.
36 Effective tea.chelh's demonstrate the right way and methods to Oololololo
solve an application problem.
37 Students should usually be required to solve tasks in the way Oololololo

they were taught in class.

You should allow students to come up with their own ways of
3.8 | solving application problems before the teacher shows how to

O
O
O
O
O

solve them.

39 Among other competences, the competence for mathematical Ololololo

’ modelling should be taught in the classroom.

3.10 Student's should oft‘en have the opportunity to follow their Oololololo
teacher's model solutions.

311 Mathematics §hould be taught at schogl in such a way that ololololo
students can discover connections on their own.

312 Ma'ny aspect's of mathematical modelling have a practical use or ololololo
a direct application reference.

313 Mathemat}cal mode_:llmg should be a specific component in Ololololo
mathematics education.

314 It helps s_tudents to understagd njathemaﬂcs when they are Ololololo
asked to discuss their own solution ideas.

315 In m_athematlcal modelling, you work on tasks that have ololololo
practical value.

316 Teachers should provide detailed procedures for solving Ololololo

application problems.
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4. Self-efficacy
8
o0 (5]
To what extent do you agree with the following statements? 3 gﬂ
Please check one box in each line. o N
= 8 | = 2
g &l £E|g| 2
S 2|8 5|8
@ S a < v
It is easy for me to recognise the different abilities of the students using ...
4.1 | ... their translation of mathematical results into reality. oo |o|o|a
4.2 | ... their written solutions when modelling. Oo|jo|o|o|o
4.3 | ... the recording of the plausibility test of their solution. o|/o|o|o|ad
. the adequate assessment of the relationship between the
4.4 mathematical result and reality that they produce. oyttt
4.5 | ... the recording of the solutions they create for modelling tasks. | (I | OO | O | O | O
4.6 | ... the mathematical models they chose when modelling. o|/o|o,|o|a
47 .. the recording of their mathematical results in the modelling Ololololo
process.
43 .. the ma‘thematlcal formulae and symbols they used in the Ololololo
modelling process.
49 .. the determination of i their improvement of the established Ololololo
models presented during modelling.
4.10 | ... the assumptions they made when modelling. o|/o|o,|o|ad
4.11 | ... the students’ solutions when modelling. 0 1 B O R A
412 | their handling of the mathematical symbols and operators oOlolololo

used in modelling.
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(5]
: . & 2
To what extent do you agree with the following statements? 3 ;f-’n
Please check one box in each line. N s
W 5| T o | ®
= o B 3 5
g1 2| 3| & £
\Z o < < Iz
It is difficult for me to recognise the different abilities of the students using ...
4.13 | ... their translation of mathematical results into reality. o|o|o|o|a
4.14 | ... the assumptions they have made in the modelling process. oo |o|o|a
4.15 | ... the plausibility checks of their solution. o|/o|o|o|aga
416 | the recordlpg of th_e real-world restructuring they have Oololololo
undertaken in modelling.
4.17 | ... the mathematical models they chose when modelling. o|o|o|o|a
.. the recording of the relationship between mathematical result
4.18 and reality that they produce when modelling. ooyt
419 | their Ahandlmg _of the mathematical formulae and symbols Ololololo
used in modelling.
4.20 | ... their written solution when modelling. o|/o|o,|o|a
401 | their evaluation of the established models in the modelling Ololololo
process.
400 | the 51mpllﬁcat10ns and structures they have undertaken in the Ololololo
modelling process.
4.23 | ... their mathematisations of a real situation. o|/o|o,|o|agd
4.24 | ... the recording of their mathematical results in modelling. o|/o|o,|o|a
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5. Knowledge about Modelling Tasks
5.1 Characteristics of modelling tasks
5.1.1. | Modelling tasks... True | False
... can be underdetermined. O
.. can be overdetermined. O
.. are as closed as possible. O
5.1.2. | Modelling tasks... True | False
.. can also be Fermi tasks. O
.. are always also “dressed-up” word problems. O
.. can also be context-related word problems. O
5.1.3. | Modelling tasks... True | False
.. are as close to real life as possible. O
.. are as authentic as possible. O
.. are as relevant as possible to the students. O
5.1.4. | Modelling tasks... True | False
... have clear solutions. Il
.. are self-differentiating. O
... may contain irrelevant information. O
5.2 Development of modelling tasks
5.2.1. | Good modelling tasks... True | False
... require metacognitive processes of the students. O
... require the translation of mathematics into reality. O
... require the translation of reality into mathematics. O
5.2.2. | Good modelling tasks... True | False
.. are always developed from inner-mathematical content. O
... require non-mathematical knowledge. O
.. are problem-based. O
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5.2.3 | Good modelling tasks... True | False
... enable independent work. O
... are suitable for individual work. O
... always require cooperative learning forms. O
5.2.4 | Good modelling tasks... True | False
... can be built on the basis of real problem situations. O
... always require many sub-competencies of mathematical Modelling. O
... illustrate the mathematical rigour. O

5.3 Processing of modelling tasks

5.3.1 | Modelling tasks... True | False
... are particularly suitable for use in heterogeneous learning groups. O
.. are not suitable for every grade level at secondary level. O
... are suitable for individual development of high-performing students. O
5.3.2 | Modelling tasks... True | False
... should encourage the practice of solution schemes. Il
.. are used to record real world phenomena. O
... can develop sub-competencies individually. O
5.3.3 | Modelling tasks... True | False
... are only suitable for project teaching, O
.. are only suitable for regular education. O
... are only suitable as a complement to the curriculum content. Il
5.3.4 | Modelling tasks... True | False
... are always cognitively more demanding than inner-mathematical problems. Il
... become less difficult with their degree of openness. O
... always require passing through the complete modelling cycle. O
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6. Knowledge about Concepts, Aims and Perspectives
Please check the appropriate box (only one per task).
’ 6.1 ‘ Modelling cycles
’ 6.1.1. | Cognitive modelling distinguishes between the situation model and the real model.
A direct transition from the real situation to the mathematical model is not possible in O
modelling cycles.
The situation model is formed independently of the individual. O
A distinction between the situation model and the real model is not conceivable in O
modelling cycles.
6.1.2 | Students solve modelling tasks circularly after the modelling cycle. O
Circular schemas cannot illustrate modelling processes. O
Models of modelling describe the actual solution approaches of students when working 0
on modelling tasks.
Cyclical representations of modelling distinguish between different stages or phases.
6.1.3 | Working mathematically is not a sub-competency of mathematical modelling. O
Mathematisation is not characterised by introducing mathematically idealised objects. O
Validation includes a real-world verification of models.
The use of everyday knowledge does not characterise a step in modelling. O
6.1.4 | Mathematisation refers to all the translation processes between reality and mathematics. O
In modelling, interpreting is the process of checking the solutions obtained. O
The separation of important and unimportant information is not a description of the sub- 0
competency"Simplifying".
The mental representation of the problem situation is not a description of the sub-
competency "Simplifying".
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Iz

Aims and perspectives of modelling

’ 6.2.1 | Inner-mathematical applications do not develop modelling competence.

Modelling competence cannot be developed by addressing metacognitive handling
strategies.

o|o|g

Modelling competence must be developed in selected school levels.

X

Modelling competence can be developed with real problem solving tasks.

X

6.2.2 | Mathematical modelling focuses on the process of solving real world problems.

Mathematical modelling does not focus on the study of relationships between
mathematics and reality.

Modelling focuses on the translation process of the mathematical language into the real-
world language.

Modelling cannot be considered as the processing of non-mathematical questions by
embedding them in inner-mathematical contexts.

Oo|g|d

Structuring and development of learning processes is not a subject of pedagogical
modelling.

o|a

Contextual modelling does not involve mental abstraction.

The solution of real and authentic problems is not the main focus of pedagogical
modelling.

Applied modelling focuses on developing mathematical thought processes by using
models as mental images.

X

a

|

6.2.4 | Using models as mental images is not a perspective of cognitive modelling.

X

Modelling pursues goals such as theory development on a theoretical level.

The socio-critical level of modelling does not focus on the critical understanding of the
environment.

oo

Contextual modelling historically refers to pragmatic approaches to modelling.

Range of references to reality

’ 6.3

‘ 6.3.1 | Proximity to life means that a task of students is already considered as significant.

oo

Student relevance means that a task is related to the future life of the students.

Life relevance means that a task will become relevant for students only in future
situations.

X

|

Proximity to life, life relevance and student relevance can be used synonymously.
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6.3.2 | Open tasks have a strong correlation to reality. O
Open tasks can be classified by initial states, transformations, and target states.
The authenticity of tasks is always to be seen in context and in isolation from the O
mathematics used.
The authenticity of tasks always requires that there is a real situation in the original. O
6.3.3 | Word problems have no real reality reference.
“Dressed-up” word problem are characterised by a real reality reference. O
Word problems only aim at practicing the computing skills. O
“Dressed-up” word problem focus on environmental development using mathematics. O
6.3.4 | Context-related word problems have a mathematical focus. O
Tasks that are dressed-up in (complex) situations are called context-related word 0
problems.
Context-related word problems are used for environmental development with the help of
mathematics.
Context-related word problems have no real reality reference. O

7. Knowledge about Modelling Processes and Interventions

Tasks and associated text vignettes that describe student conversations while
performing modelling tasks are illustrated below. The tasks and text vignettes are
used to diagnose, define support goals and derive appropriate interventions in these
situations. The situations are characterised by the following framework conditions:

You are a teacher at a secondary school and your students at the specified grade
level work on the tasks in a small project in groups of 3. The students have already
gained experience with modelling tasks in advance. The situations presented arise in
the first half of the processing time. The students in consideration have an average
level of performance for the respective grade level. You observe the students during
extracts of the conversations. You have not yet interfered in the learning process.
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7.1 Traffic Jam (9th Grade)

Traffic jams often occur at the beginning of summer holidays. Christina is stuck in
a 20 km traffic jam for 6 h. It is very warm and she is extremely thirsty. There is a
rumour that a small truck is supposed to supply the people with water, but she has
not yet received anything. How long will it take for the truck to supply all people

with water?

STUDENT 1:

STUDENT 2:
STUDENT 1:

STUDENT 3:
STUDENT 2:
STUDENT 1:

STUDENT 3:

We really need to know how many vehicles are stuck in the traffic
jam.

Huh? Right!

How do we calculate how long it takes? A lot of things are missing
from the task!

Yeah, we don’t know how long it takes for every vehicle.
It is a dumb task.

We can divide the 20 km by the 6 h, then we know how fast it would
take.

Exactly! We do not have any more information.



Test Book—Correct Answers 107

To which phase of the solution process can the group of students mainly be assigned to?

711 Please check one box.

Understanding O
Simplifying
Mathematising O
Interpreting (|
712, Diagnose students’ difficulty working on the task in this situation. Please check one

box.

The students...

... have problems in making assumptions.
.. draw a false conclusion from their mathematical result. O
... have problems in understanding the context. O
.. use an inappropriate mathematical model. O

Please indicate which of the following interventions are suitable for an
independence preserving support of modelling competence in this situation.
Please check one box in each line.

suitable
unsuitable

O
X
O] O] O] O |donotknow

7.1.3 | "First, estimate how long a car is."
714 First, con51d§r only part pf t%‘le problem, e.g. how many cars are 0
actually stuck in the traffic jam.

7.1.5 | "Right, now calculate that value." O

7.1.6 | "Think about how you can determine the missing data." O

717 Please indicate which support goal you would like set for the group after this situation.
""" | Please check one box.

Independent acquisition and evaluation of information.

Critical questioning of results in the modelling process. O

Independent construction of mental models for given problem situations. O

Secure translation of simplified real situations into mathematical models. O




108 Test Book—Correct Answers

7.2 Stockpile Material (6th Grade)

From both sides of the national road L1081, a route is being constructed to bring the
illustrated cone dumps to the open-cast mine that is 5.5 km away. The 8.2 million
m? of stockpile material will be transported across the L1081. The entire fleet of
transporters will then transport the stockpile material 16 h a day. 12 months are
planned for this transport work. To ensure transport performance, the fleet will be
expanded by 10 dump trucks, each with a payload of 96 tons.

Develop a model calculation for the transport of stockpile material if 1 m® of
the waste has a mass of approximately 2 tons and the transport has to be completed
within one year.

STUDENT 1: We need to know how many dump trucks they need.
STUDENT 2: And we have to estimate how long they take to drive there.
STUDENT 1: And how long to unload.... and load.

STUDENT 3: But, if there are multiple trucks, they cannot always be loaded
directly.

STUDENT 2: Yeah, lots of things to consider. They do not work for 16 hours
either, they have breaks, smoking breaks and such.

STUDENT 3: How do we get all this into one formula?
STUDENT 1: Boah, [leans back] no idea. It is way too hard.
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To which phase of the solution process can the group of students mainly be assigned to?

7.2.1 Please check one box.

Understanding O
Simplifying
Mathematising O
Validating (|
722 Diagnose students’ difficulty working on the task in_this situation. Please check one

box.

The students...

... have problems in making assumptions.
.. draw a false conclusion from their mathematical result. O
... have problems in understanding the context. O
... use an inappropriate mathematical model. O
o | £
Please indicate which of the following interventions are suitable for an _% % £
independence preserving support of modelling competence in this situation. | & 5 =
Please check one box in each line. 7 § =
]
7.2.3 | “How can you deal with the missing information?” O
7.2.4 | “Now assign variables to the quantities you have identified.” O O
7.2.5 | “Divide the problem first and do not try to solve everything at once.” OO
7.2.6 | “First of all, identify the most important information.” OO
727 Please indicate which support goal you would like set for the group after this situation.
" | Please check one box.
Reduce the complexity of real situations independently.
Secure translation of simplified real situations into mathematical models. O
Correct execution of mathematical operations and algorithms. O
Secure reference of mathematical results to a given problem situation. O
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7.3 Safe Victory (12th Grade)

These four dice are described by their nets.

Two players choose a dice one after the other. After that, everybody throws the
dice once. Whoever has the higher score wins. Develop a strategy with which the
winning probability of the second player is the highest.

[Student 1 previously calculated the expected values for each cube.
E(A) =% EB)=3,EC) =34 ED)=3]

STUDENT 1: Is this possible?
STUDENT 2: Yeabh, if I take C, you have to take A, because it is the highest.

STUDENT 3: AndifItake A, you can choose between B and D, because they are
the same. Makes sense, right?

STUDENT 1: Exactly.
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To which phase of the solution process can the group of students mainly be assigned to?

731 Please check one box.

Mathematising O
Working Mathematically (Il
Interpreting
Validating (|
732 Diagnose students’ difficulty working on the task in_this situation. Please check one

box.

The students...

... use an inappropriate mathematical model.
... have problems in understanding the context. O
... have problems in making assumptions. O
... perform the calculation incorrectly. O
o . o . . 2| 3
Please indicate which of the following interventions are suitable for an _%’ 2 £
independence preserving support of modelling competence in this situation. | & 5 =
Please check one box in each line. 7 § =
]
7.3.3 | “Check your strategy with another example.” O
734 Here ’?/ou have to calculate the probabilities, not the expected 0O m
values.
735 You have to approach tl’l’e problem differently, the expected value O m
will not get you anywhere.
7.3.6 | “Consider whether your result now delivers a correct strategy.” OO
737 Please indicate which support goal you would like set for the group after this situation.
" | Please check one box.
Reduce the complexity of real situations independently. O
Secure translation of simplified real situations into mathematical models.
Correct execution of mathematical operations and algorithms. O
Critical questioning of results in the modelling process. O
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7.4 Filling up (10th Grade)

Mr. Stein lives in Trier, 20 km from the Luxembourg border. He drives his VW Golf
to refuel in Luxembourg, where there is a fuel station just across the border. One litre
of petrol costs only €1.05 here as compared to €1.20 in Trier.

Is the ride worth it for Mr. Stein?

STUDENT 1:

STUDENT 2:

STUDENT 3:
STUDENT 1:
STUDENT 3:

[Has previously carried out the following calculation:

€ 81 € ~
x-0.15€ =2.20km - 3 - 1.05€ = x ~ 22.41]

Strange, do you only have to fill up so little to make it worthwhile?
But that is a very little. I would not have thought so. My father still
takes canisters with him when he goes refuelling.

How much fuel goes into a car?
50 L, maybe?

Yes, that would be realistic. Then he would not even need to take
even one canister.
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To which phase of the solution process can the group of students mainly be assigned to?

741 Please check one box.

Understanding O
Working Mathematically (Il
Interpreting O
Validating

7.4.2

Diagnose students’ difficulty working on the task in_this situation. Please check one
box.

The students...

.. do not adequately verify their solution for plausibility.
.. draw a false conclusion from their mathematical result. O
... have problems in understanding the context. O
.. perform the calculation incorrectly. O

o | &
Please indicate which of the following interventions are suitable for an _;g % £
independence preserving support of modelling competence in this situation. | & | 5 =
Please check one box in each line. Z & g

s
7.4.3 | “Check whether you have taken everything into account.” OO
7.4.4 | “What about the wear and tear on the car?” O O
7.4.5 | "How accurate is your model now?" OO

" Y - :

746 V\a(r?:l;lzsl‘?ulatlon is still too inaccurate, you have to include several O O

747 Please indicate which support goal you would like set for the group after this situation.
Please check one box.

Correct execution of mathematical operations and algorithms. O

Secure translation of simplified real situations into mathematical models. O

Critical questioning of results in the modelling process.

Secure reference of mathematical results to a given problem situation. O
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7.5 Milk Carton (12th Grade)

Not only for financial reasons, but also from an environmental point of view, it makes
sense to consider what packaging should look like, so that the least possible material
is used. The picture shows a commercial milk carton. What should the milk carton
look like so that the least possible material is used?

[The students have prepared the following calculation in advance:

STUDENT 1:
STUDENT 2:
STUDENT 1:
STUDENT 3:
STUDENT 1:

11
V=1l=a-b-csa=—
b-c
21 21
O:2ab+2bc+2ac:—+2bc+7].
c

That is not possible now.

Why not, just derivate and then set zero.
Yeah, of what, b or c?

Mh, just go after b.

[calculates: O’ = 2¢ — i—zl =0] And now? I still have the b and
the c.
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To which phase of the solution process can the group of students mainly be assigned to?

731 Please check one box.

Understanding O
Mathematising O
Working Mathematically
Interpreting (|
752 Diagnose students’ difficulty working on the task in_this situation. Please check one

box.

The students...

... have problems in making assumptions.
... draw a false conclusion from their mathematical result. O
... use a completely inappropriate mathematical model. O
... make a computation error. O
o | &
Please indicate which of the following interventions are suitable for an _% % £
independence preserving support of modelling competence in this situation. | & 5 =
Please check one box in each line. 7 § =
S
7.5.3 | “First, consider a special case for the real problem.” O
7.5.4 | "Yeah, now just solve up to b." O O
7.5.5 | “Set a value for two variables first and then calculate the third side.” O O
7.5.6 | “Where do you see a problem solving this equation?” OO
757 Please indicate which support goal you would like set for the group after this situation.
""" | Please check one box.
Reduce the complexity of real situations independently.
Critical questioning of results in the modelling process. O
Secure translation of simplified real situations into mathematical models. O
Correct execution of mathematical operations and algorithms. O
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7.6 Container (8th Grade)

Containers are used on many construction sites to store construction goods or to
collect construction waste. These containers have a special shape, which is intended
to simplify loading and unloading. How much sand is in the container shown?

STUDENT 1: There are exactly 7,160,000 cubic metres of sand in there. Is that

true?

STUDENT 2: I guess you were right, you calculated that with calculator.

STUDENT 1: Clearly. Then that is fine.

STUDENT 3: It is certainly right. I can present that.

To which phase of the solution process can the group of students mainly be assigned to?

761 Please check one box.

Mathematising O
Working Mathematically O
Interpreting O
Validating

7.6.2

Diagnose students’ difficulty working on the task in_this situation. Please check one
box.

The students...

... have problems in making assumptions. O
... do not adequately verify their solution for plausibility.
... draw a false conclusion from their mathematical result. O
... use an inappropriate mathematical model. O
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Please indicate which of the following interventions are suitable for an
independence preserving support of modelling competence in this situation.
Please check one box in each line.

suitable
unsuitable

7.6.3 | "You probably made a mistake with the units somewhere."

O
X
O O O [ |do not know

7.6.4 | “Show me how big a cubic metre is.” O
7.6.5 | “Check the magnitude of your result.” O
7.6.6 | “How can you check the result of the calculator?” O

Please indicate which support goal you would like set for the group after this situation.

767 Please check one box.

Secure translation of simplified real situations into mathematical models. O
Independent construction of mental models for given problem situations. O
Critical questioning of results in the modelling process.
Correct execution of mathematical operations and algorithms. O
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8. Knowledge about Modelling Tasks

Please place the tasks “Container” (1), “Filling Up” (2), “Safe Victory” (3) and “Milk
Carton” (4) in order with regard to the following criteria for modelling tasks. Note
the numbers corresponding to the tasks in the table on the next page.

(1) Container
Containers are used on many construction sites to store construction goods or to

collect construction waste. These containers have a special shape, which is intended
to simplify loading and unloading. How much sand is in the container shown?

(2) Filling Up

Mr. Stein lives in Trier, 20 km from the Luxembourg border. He drives his VW Golf
to refuel in Luxembourg, where there is a fuel station just across the border. One litre
of petrol costs only €1.05 here as compared to €1.20 in Trier.

Is the ride worth it for Mr. Stein?

(3) Safe Victory

These four dice are described by their nets.

Two players choose a dice one after the other. After that, everybody throws the
dice once. Whoever has the higher score wins. Develop a strategy with which the
winning probability of the second player is the highest.
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A
2
2

2| |1

D
3
3

2

6
6

5
5

3
3

Milk Carton

Every day tons of packaging waste is generated in Germany. Not only for financial
reasons, but also from an environmental point of view, it makes sense to consider
what packaging should look like, so that least possible material is used. The picture
shows a commercial milk carton. What should the milk carton look like so that least
possible material is used?

3 2 1
8.1 Low openness High openness
3 2 4
8.2 Low relevance for ! 3 2 High relevance for
’ students 1 4 D) students
Low 3 4 2 High
8.3 . . . .
reality relation 3 1 D) reality relation
34 Low 3 1 2 High
’ authenticity 3 1 4 authenticity
Few 3 4 2 Many
8.5 modelling sub- modelling sub-
competencies 3 1 2 competencies
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