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Preface

Accelerator science research and development has been very active for more than 100
years. High energy particle accelerators have provided many scientific discoveries in
the 20th century, and will continue to pave the scientific discoveries in the 21st century.
The confirmation of the God particle or the Higgs boson discovery on July 4, 2012
is a clear example. These discoveries led to international efforts for the design and
construction of Higgs-factories and a very large hadron collider (VLHC). Accelerator
research and development will continue to power innovations in the 21st century.

The success of high brilliance ultrafast femtosecond X-ray laser from the linac-
coherent-light-source (LCLS) project drives the construction of the LCLS-II and the
X-FEL based on the superconducting linac technology. This also provides incentive
for diffraction limited light sources, such as energy recovery linacs, and upgrade of
storage ring based light sources.

High power hadron beams have been used in the production of neutron, meson,
muon, neutrino beams, that find applications in condensed matter physics, high en-
ergy and nuclear physics, and possibly the nuclear transmutation of the nuclear wastes
or the “energy amplifiers.” Recent efforts on the Fixed-Field Alternating-Gradient ac-
celerators are of great interests to future high power accelerators.

There are more than 5000 X-ray radiation therapy accelerators in the world. Hun-
dred years of radiation biology research paves the efforts of recent particle (hadron)
beam radiotherapy. As of 2017, there are 79 hadron medical centers for particle
radiotherapy. There are more than 45 hadron medical centers in the planing stage.

This fourth edition keeps the structure of the previous editions. The design con-
cepts of recent diffraction limited electron storage ring are discussed in Chapter 4.3.
I expand the coverage of the non-linear beam dynamics in Chapter 2. I revise some
homework problems, and correct mis-prints in earlier Editions. However, for begin-
ners in accelerator physics, one should study Secs. II-IV in Chapter 2, and Secs. I-II
in Chapter 3. Your comments and criticisms to this revised edition are appreciated.

S.Y. Lee
Bloomington, Indiana, U.S.A.
June 10, 2018
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Preface to Third Edition

Accelerator science took off in the 20th century. Accelerator scientists invent many in-
novative technologies to produce and manipulate high energy and high quality beams
that are instrumental to progresses in natural sciences. Many kinds of accelerators
serve the need of research in natural and biomedical sciences, and the demand of
applications in industry.

In the 21st century, accelerators will become even more important in applications
that include industrial processing and imaging, biomedical research, nuclear medicine,
medical imaging, cancer therapy, energy research, etc. Accelerator research aims
to produce beams in high power, high energy, and high brilliance frontiers. These
beams addresses the needs of fundamental science research in particle and nuclear
physics, condensed matter and biomedical sciences. High power beams may ignite
many applications in industrial processing, energy production, and national security.

Accelerator Physics studies the interaction between the charged particles and elec-
tromagnetic field. Research topics in accelerator science include generation of elec-
tromagnetic fields, material science, plasma, ion source, secondary beam production,
nonlinear dynamics, collective instabilities, beam cooling, beam instrumentation, de-
tection and analysis, beam manipulation, etc.

The textbook is intended for graduate students who have completed their graduate
core-courses including classical mechanics, electrodynamics, quantum mechanics, and
statistical mechanics. I have tried to emphasize the fundamental physics behind
each innovative idea with least amount of mathematical complication. The textbook
may also be used by advanced undergraduate seniors who have completed courses on
classical mechanics and electromagnetism. For beginners in accelerator physics, one
begins with Secs. 2.I–2.IV in Chapter 2, and follows by Secs. 3.I–3.II in Chapter 3
for the basic betatron and synchrotron motion. The study continues onto Secs. 2.V,
2.VIII, and 3.VII for chromatic aberration and collective beam instabilities. After
these basic topics, the rf technology and basic physics of linac are covered in Secs. 3.V,
3.VI, 3.VIII in Chapter 3. The basic accelerator physics course ends with physics of
electron storage rings in Chapter 4, and some advanced topics of free electron laser
and beam-beam interaction in Chapter 5.

For beginners, one should pay great attention to the Floquet transformation of
Sec. 2.II that can be used to solve Hill’s equation with perturbations. Similarly, some
scaling properties of bunch longitudinal distribution in Sec. 3.II are handy for beam
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x PREFACE TO THIRD EDITION

manipulation, data analysis, and machine design. The Hamiltonian formalism and
canonical transformation, often used to solve particle motion in this book, can provide
a better physics picture in beam dynamics.

In this revised edition, I include some recently published information on beam ma-
nipulation and detection methods, advanced data analysis. I revise some homework
problems, and correct mis-prints in the second edition. The homework is designed to
solve a particular problem by providing step-by-step procedures to minimize frustra-
tion. The answer is usually listed at the end of each homework problem so that the
result can be used in practical design of accelerator systems. I take this opportunity
to enhance the content of Sec. 2.VII. Your comments and criticisms on this revised
edition are appreciated.

S.Y. Lee, Bloomington, Indiana, U.S.A.
June 10, 2011



Preface to Second Edition

Since the appearance of the first edition in 1999, this book has been used as a text-
book or reference for graduate-level “Accelerator Physics” courses. I have benefited
from questions, criticism and suggestions from colleagues and students. As a re-
sponse to these suggestions, the revised edition is intended to provide easier learning
explanations and illustrations.

Accelerator Physics studies the interaction between the charged particles and elec-
tromagnetic field. The applications of accelerators include all branches of sciences and
technologies, medical treatment, and industrial processing. Accelerator scientists in-
vent many innovative technologies to produce beams with qualities required for each
application.

This textbook is intended for graduate students who have completed their gradu-
ate core-courses including classical mechanics, electrodynamics, quantum mechanics,
and statistical mechanics. I have tried to emphasize the fundamental physics behind
each innovative idea with least amount of mathematical complication. The textbook
may also be used by undergraduate seniors who have completed courses on classical
mechanics and electromagnetism. For beginners in accelerator physics, one begins
with Secs. 2.1–2.4 in Chapter 2, and follows by Secs. 3.1–3.2 for the basic beta-
tron and synchrotron motion. The study continues onto Secs. 2.5, 2.8, and 3.7 for
chromatic aberration and collective beam instabilities. After these basic topics, the
rf technology and basic physics of linac are covered in Secs. 3.5, 3.6, 3.8 in Chapter
3. The basic accelerator physics course ends with physics of electron storage rings in
Chapter 4.

I have chosen the Frenet-Serret coordinate-system of (x̂, ŝ, ẑ) for the transverse
radially-outward, longitudinally-forward, and vertical unit base-vectors with the right-
hand rule: ẑ = x̂ × ŝ. I have also chosen positive-charge to derive the equations of
betatron motion for all sections of the Chapter 2, except a discussion of ±-signs in
Eq. (2.22). The sign of some terms in Hill’s equation should be reversed if you solve
the equation of motion for electrons in accelerators.

The convention of the rf-phase differs in linac and synchrotron communities by
φlinac = φsynchrotron − (π/2). To be consistent with the synchrotron motion in Chapter
3, I have chosen the rf-phase convention of the synchrotron community to describe
the synchrotron equation of motion for linac in Sec. 3.8.
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xii PREFACE TO SECOND EDITION

In this revised edition, I include two special topics: free electron laser (FEL)
and beam-beam interaction in Chapter 5. In 2000, several self-amplified spontaneous
emission (SASE) FEL experiments have been successfully demonstrated. Many light
source laboratories are proposing the fourth generation light source using high gain
FEL based on the concept of SASE and high-gain harmonic generation (HGHG).
Similarly, the success of high luminosity B-factories indicates that beam-beam in-
teraction remains very important to the basic accelerator physics. These activities
justify the addition of two introductory topics to the accelerator physics text.

Finally, the homework is designed to solve a particular problem by providing
step-by-step procedures to minimize frustrations. The answer is usually listed at the
end of each homework problem so that the result can be used in practical design of
accelerator systems. I would appreciate very much to receive comments and criticism
to this revised edition.

S.Y. Lee, Bloomington, Indiana, U.S.A.
November, 2004



Preface to First Edition

The development of high energy accelerators began in 1911 when Rutherford discov-
ered the atomic nuclei inside the atom. Since then, high voltage DC and rf acceler-
ators have been developed, high-field magnets with excellent field quality have been
achieved, transverse and longitudinal beam focusing principles have been discovered,
high power rf sources have been invented, high vacuum technology has been improved,
high brightness (polarized/unpolarized) electron/ion sources have been attained, and
beam dynamics and beam manipulation schemes such as beam injection, accumula-
tion, slow and fast extraction, beam damping and beam cooling, instability feedback,
etc. have been advanced. The impacts of the accelerator development are evidenced
by many ground-breaking discoveries in particle and nuclear physics, atomic and
molecular physics, condensed-matter physics, biomedical physics, medicine, biology,
and industrial processing.

Accelerator physics and technology is an evolving branch of science. As the tech-
nology progresses, research in the physics of beams propels advancement in accelerator
performance. The advancement in type II superconducting material led to the devel-
opment of high-field magnets. The invention of the collider concept initiated research
and development in single and multi-particle beam dynamics. Accelerator develop-
ment has been impressive. High energy was measured in MeV’s in the 1930’s, GeV’s
in the 1950’s, and multi-TeV’s in the 1990’s. In the coming decades, the center of
mass energy will reach 10-100 TeV. High intensity was 109 particles per pulse in the
1950’s. Now, the AGS has achieved 6 × 1013 protons per pulse. We are looking for
1014 protons per bunch for many applications. The brilliance of synchrotron radiation
was about 1012 [photons/s mm2 mrad2 0.1% (Δλ/λ)] from the first-generation light
sources in the 1970’s. Now, it reaches 1021, and efforts are being made to reach a
brilliance of 1029 − 1034 in many FEL research projects.

This textbook deals with basic accelerator physics. It is based on my lecture notes
for the accelerator physics graduate course at Indiana University and two courses
in the U.S. Particle Accelerator School. It has been used as preparatory course
material for graduate accelerator physics students doing thesis research at Indiana
University. The book has four chapters. The first describes historical accelerator
development. The second deals with transverse betatron motion. The third chapter
concerns synchrotron motion and provides an introduction to linear accelerators. The
fourth deals with synchrotron radiation phenomena and the basic design principles

xiii



xiv PREFACE TO FIRST EDITION

of low-emittance electron storage rings. Since this is a textbook on basic accelerator
physics, topics such as nonlinear beam dynamics, collective beam instabilities, etc.,
are mentioned only briefly, in Chapters 2 and 3.

Attention is paid to deriving the action-angle variables of the phase space coor-
dinates because the transformation is basic and the concept is important in under-
standing the phenomena of collective instability and nonlinear beam dynamics. In
the design of synchrotrons, the dispersion function plays an important role in par-
ticle stability, beam performance, and beam transport. An extensive section on the
dispersion function is provided in Chapter 2. This function is also important in the
design of low-emittance electron storage ring lattices.

The SI units are used throughout this book. I have also chosen the engineer’s
convention of j = −i for the imaginary number. The exercises in each section are
designed to have the student apply a specific technique in solving an accelerator
physics problem. By following the steps provided in the homework, each exercise can
be easily solved.

The field of accelerator physics and technology is multi-disciplinary. Many related
subjects are not extensively discussed in this book: linear accelerators, induction
linacs, high brightness beams, collective instabilities, nonlinear dynamics, beam cool-
ing physics and technology, linear collider physics, free-electron lasers, electron and
ion sources, neutron spallation sources, muon colliders, high intensity beams, vacuum
technology, superconductivity, magnet technology, instrumentation, etc. Neverthe-
less, the book should provide the understanding of basic accelerator physics that is
indispensable in accelerator physics and technology research.

S.Y. Lee, Bloomington, Indiana, U.S.A.
January, 1998
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Symbols and Notations

• α, phase space damping rate

• αad, the adiabaticity coefficient of synchrotron motion

• αb(φs), running bucket phase space area reduction factor

• αc, momentum compaction factor

• αx = −β �
x/2, αz = −β �

z/2

• αxx = ∂Qx/∂Jx nonlinear betatron detuning parameter

• αxz = ∂Qx/∂Jz nonlinear betatron detuning parameter

• αzz = ∂Qz/∂Jz nonlinear betatron detuning parameter

• a, b, the horizontal and the vertical envelope radii in KV equation

• Ax = βx/σs, Az = βz/σs, hour-glass scaling factors for luminosity

• �A, vector potential

• A, longitudinal phase space area of one bunch

• Ã, longitudinal phase space area of all bunches in the ring

• AB, longitudinal bucket area

• B or nb, the number of bunches in a storage ring

• B, betatron amplitude matrix

• B1 = ∂Bz/∂x, gradient function of a quadrupole magnet

• Bn = ∂nBz/∂x
n, 2(n+ 1)th multipole of a magnet

• bn, an, multipole expansion coefficients of magnetic fields

• Bρ = p0/e, momentum rigidity of the beam

• Bc = m2c2/(e�) ≈ 4.4× 109 T, Schwinger critical field

• βx, βz, betatron amplitude functions, or called the Courant-Synder parameter,

or the Twiss parameter

• γx = (1 + α2
x)/βx, γz = (1 + α2

z)/βz

• γ, β, Lorentz’s relativistic factors

• γ
T
, transition energy γ

T
mc2

• C, circumference of the machine

• Cγ = 4πre/3(mc2)3 =

⎧
⎨
⎩

8.846× 10−5 m/(GeV)3 for electrons
4.840× 10−14 m/(GeV)3 for muons
7.783× 10−18 m/(GeV)3 for protons

• Cq = 55�/32
√
3mc = 3.83× 10−13 m quantum fluctuation coefficient (electron)

• Cx = ∂Qx/∂δ, Cz = ∂Qz/∂δ, chromaticities

• Cy stands for either Cx or Cz

• c = 299792458 m/s, speed of light

• D or Dx, horizontal dispersion function

• Dz, vertical dispersion function

• D, damping re-partition number

xxix
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• D = σs/fbb, beam-beam disruption parameter

• δ = Δp/p0, fractional momentum deviation

• δ̂, the maximum fractional momentum spread of a beam

• δ or δ1, the resonance proximity parameter

• δskin =
√

2/μσcω, skin depth of conductors

• �0, permittivity of the vacuum

• �x, �z, �⊥, transverse emittances

• �n,x = βγ�x, �n,z = βγ�z, normalized emittances

• E electric field across a cavity gap

• E0 the amplitude of the electric field across a cavity gap

• F , the emittance dependent factor for electron storage rings, i.e. �x = FCqγ
2θ3

• FB = 2πR0/
√
2πσs, bunching factor

• f0 revolution frequency

• f = Bρ/B1� focal length of a quadrupole

• fbb, focal length of beam-beam interaction

• (φ, δ), synchrotron phase space coordinates with δ = Δp/p0
• (φ,ΔE/ω0), synchrotron phase space coordinates

• (R
h
φ,−δ), synchrotron phase space coordinates

• (φ,P), normalized synchrotron phase space coordinates with P = −(h|η|/νs)δ
• Φ,Φx,Φz,Φ⊥, transverse phase advance per cell or per period

• g = 1 + 2 ln(b/a), geometric factor of electromagnetic wave in a wave guide

• h, harmonic number of the rf frequency, frf = hf0
• H , Hamiltonian

• H = γxD
2 + 2αxDD� + βxD

�2, dispersion H-function

• Id or Jd, the dispersion action

• Ix, Iz or Jx, Jz, horizontal and vertical betatron actions

• Is or Js, the longitudinal action

• Jx,JE,Jz, damping partition numbers

• Ii’s (i = 1, 2, 3 . . .), radiation integrals
I1 =

∫
(D/ρ)ds; I2 =

∫
(1/ρ2)ds

I3 =
∫
(1/|ρ|3)ds; I3a =

∫
(1/ρ3)ds

I4 =
∫
(D/ρ)[(1/ρ2) + 2K]ds; I5 =

∫
(H/|ρ|3)ds

• k = ω/c, wave number

• K(s) = B1/Bρ, gradient function of a magnet

• Kx(s) = 1/ρ2 −K(s), horizontal focusing function

• Kz(s) = K(s), vertical focusing function

• Ksc = 2Nr0/β
2γ3, space charge perveance

• κ = KscL/2�⊥Φ⊥, effective space charge perveance parameter

• Kw = eBwλw/2πmc, wiggler or undulator parameter
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• Kw,rms = Kw, for helical wiggler or undulator Kw,rms = Kw/
√
2, for planar

wiggler or undulator

• L, length of a periodic cell or superperiod

• λC = h/(mec) = 2.426× 10−12 m, Compton wavelength

• λw, the wiggler period

• L, luminosity

• μ0 = 4π × 10−7 Tm/A, permeability of the vacuum

• μc, permeability of a conducting medium

• μ, permeability of a medium

• �μ, magnetic dipole moment

• M(s2|s1), (2×2, 3×3, or 4×4) transfer matrix for linear betatron motion

• M(s), betatron transfer matrix of a periodic beam transport section

• νx,z, betatron tunes

• νs, synchrotron tune for φs = 0 at zero synchrotron amplitude

• Δνsc = KscL/4π�, Laslett space charge tune shift

• N , number of particle per unit length, for a Gaussian bunch: N̂ = NB/
√
2πσs

• NB, number of particles per bunch

• n, field gradient index, focusing index

• ω0, revolution angular frequency

• ωc, critical angular frequency

• ωβ, angular frequency of betatron motion

• ωr resonance frequency of an rf cavity

• ω, angular frequency of electromagnetic waves

• P , superperiod

• Pd, power dissipation in rf cavity

• P
ST

= −8/5
√
3, Sokolov-Ternov radiative polarization

• Qx,z, (nonlinear) betatron tunes

• Qs = νs
√| cosφs|, synchrotron tune

• Q̃s, the amplitude dependent synchrotron tune

• Q–factor, quality factor of rf cavity

• ρ, bending radius of a dipole magnet

• ρc = 1/σc, resistivity of a conductor

• ρfel = μ0n0e
2λ2

wK
2
w/(4π

2γ3
rm), FEL or Pierce parameter

• ρ(x, s, z), distribution function

• R(Ax, Az), hour-glass reduction factor for the luminosity

• R or R0, average radius of a synchrotron

• Rc = Zc =
√

L/C, characteristic impedance of a transmission line

• Rs = 1/σcδskin =
√

μ0ω/2σc surface resistance of a conductor

• Rij , Tijk, Uijkl, transport matrices
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• Rx, Rz, the horizontal and the vertical envelope radii

• Rsh, shunt impedance of an rf cavity

• rsh, shunt impedance of rf cavities per unit length

• RRR=ρ(273K, 0Tesla)/ρ(10K, 0Tesla), residual resistance of a conducting wire

• r0 = e2/4π�0mc2 classical radius of the particle with mass m

• �r0(s), a reference orbit in an accelerator or a transport line

• rc, bunch compression ratio

• σc = 1/ρc, conductivity

• σ–matrix

• σx, σz, rms bunch bunch widths

• σs or σ�, rms bunch bunch length

• τad adiabatic time

• τnl, nonlinear time

• (τ, δ), synchrotron phase space coordinates

• (τ, τ̇/ω0), normalized synchrotron phase space coordinates

• T0 and T , revolution periods for a reference particle and other particles

• Ts, period of synchrotron motion

• U0, energy loss per revolution due to synchrotron radiation in dipoles

• Uw, total synchrotron radiation-energy loss per revolution including wigglers

• V , V0, Vrf , rf voltage

• vp, phase velocity

• vg, group velocity

• Wst, stored energy in rf cavity

• wst, stored energy per unit length in rf cavity

• ξ, ξx, ξz, linear beam-beam tune shift parameter

• ξsc, ξx,sc, ξz,sc, linear space charge tune shift parameter

• (x̂, ŝ, ẑ), Frenet-Serret coordinate system defined by a reference orbit �r0(s)

• (x, x′), horizontal betatron phase space coordinates

• (x,Px), horizontal normalized phase space coordinates

• (y, y′), either x or z betatron phase space coordinates

• (y,Py) either x or z normalized phase space coordinates

• η, phase slip factor

• Υ beamstrahlung parameter

• (z, z′), vertical betatron phase space coordinates

• (z,Pz), vertical normalized phase space coordinates

• Zsh, shunt impedance

• Z0 = μ0c = 1/�0c ≈ 377Ω, vacuum impedance

• Zsc, space charge impedance

• ζ
N
(w) = sinNwπ/ sinwπ, the enhancement function
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Chapter 1

Introduction

The first accelerator dates back to prehistoric-historic times, when men built bows
and arrows for hunting. The race to build modern particle accelerators began in 1911

when Rutherford discovered the atomic nucleus by scattering α-particles off gold foil.
These activities produced a series of innovative ideas such as the voltage rectifier

(Cockcroft-Walton) and the Van de Graaff DC accelerators, the rf linac accelerators,
the classic cyclotrons, the betatrons, the separate sector cyclotrons, the synchrotrons,

and eventually storage rings and colliding beams.

The physics and technology of accelerators and storage rings involves many

branches of science, including electromagnetism, solid-state properties of materi-
als, atomic physics, superconductivity,nonlinear mechanics, spin dynamics, plasma

physics, quantum physics, radiofrequency, and vacuum technology. Accelerators have
found many applications: they are used in nuclear and particle physics research, in

industrial applications such as ion implantation and lithography, in biological and
medical research with synchrotron light sources, in material science and medical re-

search with spallation neutron sources, etc. Accelerators have also been used for
radiotherapy, food sterilization, waste treatment, etc.

A major application of particle accelerators is experimental nuclear and particle
physics research. Advances in technology have allowed remarkable increases in energy

and luminosity1 for fundamental physics research. High energy was measured in
MeV’s in the 1930’s, and is measured in TeV’s in the 1990s. The beam intensity

was about 109 particles per pulse (ppp) in the 1950’s, and is about 1014 ppp in the

1990s. Since 1970, high energy and high luminosity colliders have become basic tools
in nuclear and particle physics research. As physicists probe deeper into the inner

structure of matter, high energy provides new territory for potential discoveries, and
indeed new energy frontiers usually lead to new physics discoveries. The evolution of

1The luminosity L is defined as the rate of particle encountering per unit area in a collision
process (see Exercise 1.7). The commonly used dimension is [cm−2 s−1]. The counting rate in a
detector is Lσ, where σ is the cross-section of a reaction process.

1

2021 © The Author(s). This is an Open Access chapter published by World Scientific Publishing Company, 
licensed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
https://doi.org/10.1142/9789813274686_0001
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accelerator development can be summarized by the Livingston chart shown in Fig. 1.1,

where the equivalent proton kinetic energy for a fixed target experiment is plotted
as a function of time. The total center of mass energy for fixed target proton-proton

collision is
√

2mc2(KE + 2mc2), where m is the proton mass and KE is the kinetic
energy of the moving particle in the Laboratory frame (see Exercise 1.6).

Figure 1.1: The Livingston Chart: The
equivalent fixed target proton beam en-
ergy versus time in years. Note that in-
novative ideas provide substantial jump
in beam energy. The dashed line, drawn
to guide the trend, corresponds to beam
energy doubling in every two years. The
discovery of Higgs boson in 2014 at the
LHC at 125 GeV/c2 re-ignites efforts to
build a Higgs factory in the form of e+e−
circular collider besides the efforts of the
very large hadron collider (VLHC) and
the international linear collider (ILC).

Figure 1.2: The peak and
average Photon Brilliance, de-
fined as photons/(mm2mrad2s
(0.1%Δω/ω)), vs. photon beam
energy generated by high quality
electron beams in storage rings
and in linac FELs. Recent
progresses in linac light sources
push the brilliance to the level
of 1034 photons/(mm2mrad2s
(0.1%Δω/ω)). A new Generation
of storage ring light sources Can
achieve about the same brilliance.

In the 1940’s, scientists discovered that high energy electron beams in synchrotron
could generate high energy Photon beams. With its flexible photon energy and high

brilliance, photon sources produced by high-brightness electron beams have surpass
the conventional optical sources. Applications of high energy photon beams include

atomic physics, biology, chemistry, condensed matter physics and medicine. There are
tremendous progresses in building high energy and high brightness electron sources

and special insertion devices for photon production. Figure 1.2 shows the peak photon
brilliance, defined as the photon beam intensity divided by its phase-space volume or

in [number of photons/(mm2 mrad2 s (0.1% Δω/ω))] as a function of photon beam

energy from storage rings and linacs.
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High power proton beams can be used to produce high flux neutron beam for

fundamental material science research. The high power proton beams have also been
actively considered to incinerate nuclear waste and provide energy amplification for

future global energy needs. The secondary beams from high power hadron beams
provides neutrino beams for research in high energy nuclear physics, High intensity

heavy-ion beams had also been actively pursued for inertial fusion evaluation.

Frontiers in accelerator physics and technology research

Accelerator physics is a branch of applied science. Innovations in technology give

rise to new frontiers in beam physics research. Since higher energy leads to new

discoveries, and higher luminosity leads to higher precision in experimental results,
the frontiers of accelerator physics research are classified into the frontiers of high

energy and high brightness. Some of these topics in beam physics are as follows.

• High energy: For high energy hadron accelerators, research topics cover high
field superconducting magnets, the stability of high-brightness beams, emit-

tance preservation, and nonlinear dynamics, etc. For lepton colliders, research
topics include high acceleration gradient structures, wakefields and emittance

preservation, high power rf sources, linear collider technologies, etc.

• High luminosity: To provide a detailed understanding of CP violation and other

fundamental symmetry principles of interactions, dedicated meson (Φ, τ -charm,
B) factories were constructed in 1990s. Since the neutron flux from spallation

neutron sources is proportional to the proton beam power, physics and tech-
nology for high-intensity low-loss proton sources are important (See e.g., the

National Spallation Neutron Source Design Report (Oak Ridge, 1997)). Fur-
thermore, a high-intensity proton source can be used to drive secondary beams

such as kaons, pions, and muons. With high-intensity μ beams, μ+μ− collider

studies are also of current interest.

• High-brightness beams: Beam-cooling techniques have been extensively used in

attaining high-brightness hadron beams. Stochastic cooling has been success-
fully applied to accumulate anti-protons. This led to the discovery of W and

Z bosons, and b and t quarks. Electron cooling and laser cooling have been
applied to many low energy storage rings used in atomic and nuclear physics re-

search. Ionization cooling is needed for muon beams in μ+μ− colliders. Taking
advantage of radiation cooling, synchrotron light sources with high-brightness

electron beams are used in medical, biological, and condensed-matter physics
research. Sub-picosecond photon beams would be important to time-resolved

experiments. A high power tunable free-electron laser would be useful for chem-
ical and technical applications. The linac light source and very low emittance

storage ring projects will provide very high brilliance X-ray sources for scientific

applications.
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• Accelerator applications: The medical use of accelerators for radiation treat-

ment,2 isotope production, sterilization of medical tools, etc., requires safety,
reliability, and ease in operation. Higher beam power density with minimum

beam loss can optimize safety in industrial applications such as ion implanta-
tion, electron-beam welding, material testing, food sterilization, etc.

Research topics in accelerator physics include beam cooling, nonlinear beam dy-
namics, beam-beam interactions, collective beam instability, beam manipulation tech-

niques, ion sources, space-charge effects, beam instrumentation development, novel
acceleration techniques, etc. Accelerator technology research areas include supercon-

ducting materials, high power rf sources, high gradient accelerating structures, etc.
This book deals only with the fundamental aspects of accelerator physics. It serves as

an introduction to more advanced topics such as collective beam instabilities, nonlin-

ear beam dynamics, beam-cooling physics and technologies, rf physics and technology,
magnet technology, etc. First, the technical achievements in accelerator physics of

past decades will be described.

I Historical Developments

A charged particle with charge q and velocity �v in the electromagnetic fields (�E , �B)
is exerted by the Lorentz’s force �F :

�F = q(�E + �v × �B). (1.1)

The charge particle can only gain or lose its energy by its interaction with the electric
field �E . Since the magnetic force is perpendicular to both �v and �B, the charged

particle will move on a circular arc. In particular, when the magnetic flux density is
perpendicular to �v, the momentum and the momentum rigidity Bρ of the charged

particle are

p = mv = |q|Bρ,

Bρ [T−m] =
p

|q| =
A

Z
× 3.33564× p [GeV/c/u], (1.2)

where ρ is the bending radius m is the mass of the particle, Bρ is measured in Tesla-

meter, and the momentum is measured in GeV/c per amu, and A and Ze are the
atomic mass number and charge of the particle.

Accelerators are composed of ion sources, cavity and magnet components that can
generate and maintain electromagnetic fields for beam acceleration and manipulation,

devices to detect beam motion, high vacuum components for attaining excellent beam

2See e.g., P.L. Petti and A.J. Lennox, ARNS 44, 155 (1994).
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lifetime, undulators and wigglers to produce high brilliance photon beam, targets for

producing secondary beams, etc. Accelerators can be classified as linear or circular,
electrostatic or radio frequency, continuous (CW, DC or coasting beam) or bunched

and pulsed. They are designed to accelerate electrons (leptons) or hadrons, stable
or radioactive ions. Accelerators are classified as follows, in no specific chronological

order.

I.1 Natural Accelerators

Radioactive accelerators

In 1911, Rutherford, with Hans Geiger and Ernest Marsden, employed α particles
escaping the Coulomb barrier of Ra and Th nuclei to investigate the inner structure

of atoms.3 He demonstrated the existence of a positively charged nucleus with a
diameter less than 10−13 m. This led to the introduction of Bohr’s atomic model, and

the revolution of quantum mechanics in the early 20th century. In 1919, Rutherford

also used α particles to induce the first artificial nuclear reaction, α + 14N → 17O
+ H. This discovery created an era of search for high-voltage sources for particle

acceleration that can produce high-intensity high-energy particles for the study of
nuclear transmutation.

Cosmic rays

Cosmic rays arise from galactic source accelerators. Nuclei range from n and H to
Ni; heavy elements have been measured with energies up to 3 × 1020 eV.4 Muons

were discovered in cosmic-ray emulsion experiments in 1936 by C.D. Anderson, S.H.

Neddermeyer, and others. Pions were discovered in 1947 in emulsion experiments.
Interest in the relativistic heavy ion collider (RHIC) was amplified by the cosmic ray

emulsion experiments.

I.2 Electrostatic Accelerators

X-ray tubes

William David Coolidge in 1926 achieved 900-keV electron beam energy by using
three X-ray tubes in series. Such a cascade type structure is called the Coolidge tube.

3The kinetic energy of α particles that tunnel through the Coulomb barrier to escape the nuclear
force is typically about 6 MeV.

4See J.A. Simpson, Ann. Rev. Nucl. Sci. 33, 323 (1983) and R. Barnett et al., Phys. Rev.
(Particle Data Group) D54, 1 (1996). An event with energy 3× 1020 eV had been recorded in 1991
by the Fly’s Eye atmospheric-fluorescence detector in Utah (see Physics Today, p. 19, Feb. 1997;
p. 31, Jan. 1998).
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Cockcroft-Walton electrostatic accelerator

In 1930, John Douglas Cockcroft and Ernst Thomas Sinton Walton developed a high-
voltage source by using high-voltage rectifier units. In 1932, they reached 400-kV

terminal voltage to achieve the first man-made nuclear transmutation:5 p+Li→2He.
The maximum achievable voltage was limited to about 1 MV because of sparking in

air. Since then, Cockcroft-Walton accelerators have been widely used as the first-
stage ion-beam accelerator. Recently, they are being replaced by more compact,

economical, and reliable radio frequency quadrupole (RFQ) accelerators.

Van de Graaff and tandem accelerators

In 1931, R.J. Van de Graaff developed the electrostatic charging accelerator.6 In the

Van de Graaff accelerator, the rectifier units are replaced by an electrostatic charg-
ing belt, and the high-voltage terminal and the acceleration tube are placed in a

common tank with compressed gas for insulation, which increases the peak acceler-
ation voltage. Placement of the high-voltage terminal at the center of the tank, the

charge-exchange process on a negatively charged atomic beams can provide tandem

acceleration to the stripped positively-charged nuclei.7 Today the voltage attained in
tandem accelerators is about 25 MV. When the Van de Graaff accelerator is used for

electron acceleration, it has the brand name Pelletron.

I.3 Induction Accelerators

According to Faraday’s law of induction, when the magnetic flux changes, it induces

electric field along the path that encompasses the magnetic flux:

∮

C

E · d�s = Φ̇, Φ =

∫

S

�B · d�S. (1.3)

Here E is the induced electric field, Φ is the total magnetic flux, d�s is the differential of

the line integral that surrounds the surface area, d�S is the differential of the surface

integral, and �B is the “magnetic field”8 enclosed by the contour C. The induced
electric field can be used for beam acceleration.

5J.D. Cockcroft and E.T.S. Walton, Proc. Roy. Soc. A136, 619 (1932); A137, 229 (1932); A144,
704 (1934). Cockcroft and Walton shared 1951 Nobel Prize in physics. See also Brian Cathcart, The
Fly in the Cathedral, (Farrar, Straus and Giroux; NY, 2005)

6R.J. Van de Graaff, J.G. Trump, and W.W. Buechner, Rep. Prog. Phys. 11, 1 (1946).
7R.J. Van de Graaff, Nucl. Inst. Methods 8, 195 (1960).
8We will use “magnetic field” as a synonym for “magnetic flux density.”
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A: Induction linac

The induction linac was invented by N.C. Christofilos in the 50’s for the acceleration

of high-intensity beams.9 A linear induction accelerator (LIA) employs a ferrite core
arranged in a cylindrical symmetric configuration to produce an inductive load to a

voltage gap. Each LIA module can be viewed as a low-Q 1:1 pulse transformer. When
an external current source is discharged through the circuit, the electric field at the

voltage gap along the beam axis is used to accelerate the beam. A properly pulsed
stack of LIA modules can be used to accelerate high-intensity short-pulse beams with

a gradient of about 1 MV/m and a power efficiency of about 50%.10 Table 1.1 lists
the achievements of some LIA projects.

Table 1.1: Induction linac projects and achievements
Project Laboratory I (kA) E (MeV) Beam width Repetition

(ns) rate (Hz)
ETA II LLNL 3 70 50 1
ETA III LLNL 2 6 50 2000
ATA LLNL 10 50 50 1000

B: Betatron

Let ρ be the mean radius of the beam pipe in a basic magnet configuration of a
betatron. If the total magnetic flux enclosed by the beam circumference is ramped

up by a time-dependent magnetic flux density, the induced electric field along the
beam axis and the particle momentum are

∮
E · ds = 2πρE = πρ2Ḃav, E =

1

2
Ḃavρ, ṗ = eE =

1

2
eḂavρ,

p =
1

2
eBavρ = eBgρ, or Bg =

1

2
Bav, (1.4)

where E is the induced electric field, Bav is the average magnetic flux density inside
the circumference of the beam radius. We obtain the betatron principle: the guide

field Bg is equal to 1/2 of the average field Bav, first stated by R. Wiederöe in 1928.11

9See e.g., J.W. Beal, N.C. Christofilos and R.E. Hester, IEEE Trans. Nucl. Sci. NS 16, 294
(1958) and references therein; Simon Yu, Review of new developments in the field of induction
accelerators, in Proc. LINAC96 (1996).

10See e.g., R.B. Miller, in Proc. NATO ASI on High Brightness Transport in Linear Induction
Accelerators, A.K. Hyder, M.F. Rose, and A.H. Guenther, Eds. (Plenum Press, 1988); R.J. Briggs,
Phys. Rev. Lett. 54, 2588 (1985); D.S. Prono, IEEE Trans. Nucl. Sci. NS32, 3144 (1985); G.J.
Caporaso, et al., Phys. Rev. Lett. 57, 1591 (1986); R.B. Miller, IEEE Trans. Nucl. Sci. NS32,
3149 (1985); G.J. Caporaso, W.A. Barletta, and V.K. Neil, Part. Accel. 11, 71 (1980).

11In 1922, Joseph Slepian patented the principle of applying induction electric field for electron
beam acceleration in the U.S. patent 1645304.
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Figure 1.3 is a schematic drawing of a betatron, where particles circulate in the

vacuum chamber with a guide field Bg, which is equal to half of the average flux
density Bav enclosed by the orbiting particle.

Figure 1.3: Schematic
drawing of a betatron. The
guide field for beam parti-
cles Bg must equal to the
average flux density Bav en-
closed by the orbiting path.

It took many years to understand the stability of transverse motion. This problem

was solved in 1941 by D. Kerst and R. Serber.12 We design a magnet so that the
magnetic field is

Bz = B0

(
R

r

)n

, with n = − R

B0

(
dBz

dr

)

r=R

, (1.5)

where R is the orbit radius of a reference particle, r is a radius with small deviation

from R, and n is the focusing index. Let x = r−R and z be small radial and vertical
displacements from a reference orbit, then the equations of motion become

d2z

dt2
+ ω2nz = 0,

d2x

dt2
+ ω2(1− n)x = 0. (1.6)

The motion is stable and simple harmonic if 0 ≤ n ≤ 1 (see Exercise 1.14). The
resulting frequencies of harmonic oscillations are fx = f0

√
1− n and fz = f0

√
n,

where f0 = ω/2π = v/(2πR) is the revolution frequency, and v is the speed of the
particle.

In 1940 D. Kerst built and operated the first betatron achieving 2.3 MeV at
University of Illinois. In 1949 he constructed a 315-MeV betatron13 at the University

of Chicago with parameters ρ = 1.22 m, Bg = 9.2 kG, Einj = 80−135 keV, Iinj = 1−3
A. The magnet weighed about 275 tons and the repetition rate was about 6 Hz. The

limitations of the betatron principle are (1) synchrotron radiation loss (see Chapter
4) and (2) the transverse beam size limit due to its intrinsic weak-focusing force.

I.4 Radio-Frequency (RF) Accelerators

Since the high-voltage source can induce arcs and corona discharges, it is difficult to

attain very high voltage in a single acceleration gap. It would be more economical to

12D. Kerst and R. Serber, Phys. Rev. 60, 53 (1941). See also Exercise 1.14. Since then, the
transverse particle motion in all types of accelerators has been called betatron motion.

13D.W. Kerst et. al., Phys. Rev. 78, 297 (1950).
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make the charged particles pass through the acceleration gap many times. This con-

cept leads to many different rf accelerators,14 which can be classified as linear (RFQ,
linac) and cyclic (cyclotron, microtron, and synchrotron). An important milestone

in rf acceleration is the discovery of the phase-focusing principle by E. M. McMillan
and V. Veksler in 1945 (see Ref. [21] and Chap. 2, Sec. IV.3). Accelerators using an

rf field for particle acceleration are described in the following subsections.

A. LINAC

In 1925 G. Ising pointed out that particle acceleration can be achieved by using an
alternating radio-frequency field. In 1928 R. Wiederöe reported the first working rf

accelerator, using a 1-MHz, 25-kV oscillator to produce 50-kV potassium ions shown
in the top plot of Fig. 1.4. In 1931 D.H. Sloan and E.O. Lawrence built a linear

accelerator using a 10-MHz, 45 kV oscillator to produce 1.26 MV Hg+ ion.15

Figure 1.4: Top: schematic drawing of the
Wiederöe rf LINAC, where drift tubes shield
particles from the decelerating rf electric field.
Wideröe used a 1-MHz, 25-kV oscillator to pro-
duce 50-kV potassium ions. Bottom: enclos-
ing the drift tubes in a metallic cylinder, the
capacitance of the gap can be coupled to the
inductance for a resonance cavity to achieve a
higher efficiency in acceleration gradient. This
cavity invented by Alvarez is called Alvarez
linac or drift-tube linac (DTL).

Since the distance between adjacent drift tubes is βλ/2 = βc/(2frf), it would save
space by employing higher frequency rf sources. However, the problem associated

with a high frequency structure is that it radiates rf energy at a rate of P = ωrfCV 2
rf ,

where ωrf is the rf frequency, C is the gap capacitance, and Vrf is the rf voltage. The

rf radiation power loss increases with the rf frequency. To eliminate rf power loss, the
drift tube can be placed in a cavity so that the electromagnetic energy is stored in the

form of a magnetic field (inductive load). At the same time, the resonant frequency
of the cavity can be tuned to coincide with that of the accelerating field.16

In 1948 Louis Alvarez and W.K.H. Panofsky constructed the first 32-MV drift-
tube proton linac (DTL or Alvarez linac) shown schematically in the bottom plot of

Fig. 1.4. Drift-tube linacs have been used as injectors for high energy accelerators at

14The rf sources are classified into VHF, UHF, microwave, and millimeter waves bands. The
microwave bands are classified as follows: L band, 1.12-1.7 GHz; S band, 2.6-3.95 GHz; C band,
3.95-5.85 GHz; X band, 8.2-12.4 GHz; K band, 18.0-26.5 GHz; millimeter wave band, 30-300 GHz.
See also Exercise 1.2.

15D.H. Sloan and E.O. Lawrence, Phys. Rev. 38, 2021 (1931).
16L. Alvarez, Phys. Rev. 70, 799 (1946).
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BNL, KEK, Fermilab, SNS, and CERN. In the 1970’s Los Alamos constructed the

first side-coupled cavity linac (CCL), reaching 800 MeV. Fermilab upgraded part of
its linac with the CCL to reach 400 MeV kinetic energy in 1995.

After World War II, rf technology had advanced far enough to make magnetron

and klystron amplifiers that could provide MW rf power at 3 GHz (S band).17 Today,
the highest energy linac has achieved 50-GeV electron energy operating at S band

(around 2.856 GHz) at SLAC, and has achieved an acceleration gradient of about
20 MV/m, fed by klystrons with a peak power higher than 40 MW in a 1-μs pulse

length. To achieve 100 MV/m, about 25 times the rf power would be needed. The
peak power is further enhanced by pulse compression schemes.

Superconducting cavities have substantially advanced in recent years. At the
Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson

National Accelerator Laboratory (JLAB) in Virginia, about 160 m of superconduct-
ing cavity was installed for attaining a beam energy up to 6 GeV in 5 paths using

338 five-kW CW klystrons. During the LEP-II upgrade more than 300 m of super-
conducting rf cavity was installed for attaining more than 100-GeV beam energy.

Many accelerator laboratories, such as KEK in Japan, Cornell and Fermilab in the
U.S. and DESY in Germany, are collaborating in the effort to achieve a high-gradient

superconducting cavity for a linear collider design called the International Linear
Collider (ILC). Normally, a superconducting cavity operates at about 5–10 MV/m.

After extensive cavity wall conditioning, single-cell cavities have reached far beyond
25 MV/m.18

B: RFQ

In 1970, I.M. Kapchinskij and V.A. Teplyakov invented a low energy radio-frequency

quadrupole (RFQ) accelerator – a new type of low energy accelerator. Applying an
rf electric field to the four-vane quadrupole-like longitudinally modulated structure,

a longitudinal rf electric field for particle acceleration and a transverse quadrupole
field for focusing can be generated simultaneously. Thus the RFQs are especially

17The klystron, invented by Varian brothers in 1937, is a narrow-band high-gain rf amplifier. The
operation of a high power klystron is as follows. A beam of electrons is drawn by the induced
voltage across the cathode and anode by a modulator. The electrons are accelerated to about 400
kV with a current of about 500 A. As the beam enters the input cavity, a small amount of rf power
(< 1 kW) is applied to modulate the beam. The subsequent gain cavities resonantly excite and
induce micro-bunching of the electron beam. The subsequent drift region and penultimate cavity
are designed to produce highly bunched electrons. The rf energy is then extracted at the output
cavity, which is designed to decelerate the beam. The rf power is then transported by rf waveguides.
The wasted electrons are collected at a water-cooled collector. If the efficiency were 50%, a klystron
with the above parameters would produce 100 MW of rf power. See also E.L. Ginzton, “The $100
idea”, IEEE Spectrum, 12, 30 (1975).

18See e.g., J. Garber, Proc. PAC95, p. 1478 (IEEE, New York 1996). Single-cell cavities routinely
reach 30 MV/m and beyond.
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useful for accelerating high-current low-energy beams. Since then many laboratories,

particularly Los Alamos National Laboratory (LANL), Lawrence Berkeley National
Laboratory (LBNL), and CERN, have perfected the design and construction of RFQ’s,

which are replacing Cockcroft-Walton accelerators as injectors to linac and cyclic
accelerators.19

C: Cyclotron

The synchrotron frequency for a non-relativistic particle in a constant magnetic field

is nearly independent of the particle velocity, i.e.,

ωsyn =
eB0

γm

γ ≈ 1−−−−→ ωcyc =
eB0

m
, (1.7)

where B0 is the magnetic field, and m is the particle mass. In 1929 E.O. Lawrence

combined the idea of a nearly constant revolution frequency and Ising’s idea of the rf
accelerator (see Sec. I.4A of Wiederöe linac), he invented the cyclotron.20 Historical

remarks in E.O. Lawrence’s Nobel lecture are reproduced below:

One evening early in 1929 as I was glancing over current periodicals in the
University library, I came across an article in a German electrical engineering
journal by Wideröe on the multiple acceleration of positive ions. . . . This new
idea immediately impressed me as the real answer which I had been looking
for to the technical problem of accelerating positive ions, . . . Again a little
analysis of the problem showed that a uniform magnetic field had just the right
properties – that the angular velocity of the ion circulating in the field would
be independent of their energy so that they would circulate back and forth
between suitable hollow electrodes in resonance with an oscillating electric field
of a certain frequency which has come to be known as the cyclotron frequency.

If two D plates (dees) in a constant magnetic field are connected to an rf electric

voltage generator, particles can be accelerated by repeated passage through the rf

gap, provided that the rf frequency is an integer multiple of the cyclotron frequency,
ωrf = hω0. On January 2, 1931 M.S. Livingston demonstrated the cyclotron principle

by accelerating protons to 80 keV in a 4.5-inch cyclotron, where the rf potential
applied across the the accelerating gap was only 1000 V. In 1932 Lawrence’s 11-

inch cyclotron reached 1.25-MeV proton kinetic energy that was used to split atoms,
just a few months after this was accomplished by the Cockcroft-Walton electrostatic

19See e.g. A. Pisent, HIGH POWER RFQS, Proc. of PAC09, 75 (2009)
20E.O. Lawrence and N.E. Edlefsen, Science, 72, 376 (1930). See e.g. E.M. McMillan, Early

Days in the Lawrence Laboratory (1931-1940), in New directions in physics, eds. N. Metropolis,
D.M. Kerr, Gian-Carlo Rota, (Academic Press, Inc., New York, 1987). The cyclotron was coined by
Malcolm Henderson, popularized by newspaper reporters; see M.S. Livingston, Particle Accelerators:
A Brief History, (Harvard, 1969).
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accelerator. Since then, many cyclotrons were designed and built in Universities.21

Figure 1.5 shows a schematic drawing of a classical cyclotron.

Figure 1.5: Schematic drawing of a classical
cyclotron. Note that the radial distance be-
tween adjacent revolutions becomes smaller as
the turn number increases [see Eq. (1.9)]. A
septum is a device that can kick the beam into
an external beam transport line.

The momentum p and kinetic energy T of the extracted particle are p = mγβc

and T = mc2(γ − 1) = p2/[(γ + 1)m]. Using Eq. (1.2), we obtain the kinetic energy
per amu as

T

A
=

e2B2
0R

2
0

(γ + 1)mu

(
Z

A

)2

≡ K

(
Z

A

)2

, (1.8)

where B0R0 = Bρ is the magnetic rigidity, Z and A are the charge and atomic mass

numbers of the particle, mu is the atomic mass unit, and K is called the K-value or

bending limit of a cyclotron. In the non-relativistic limit, the K-value is equal to the
proton kinetic energy T in MeV, e.g. K200 cyclotron can deliver protons with 200

MeV kinetic energy.
The iron saturates at a field of about 1.8 T (depending slightly on the quality of

iron and magnet design). The total volume of iron-core is proportional to the cubic
power of the beam rigidity Bρ. Thus the weight of iron-core increases rapidly with

its K-value: Weight of iron = W ∼ (Bρ)3 ∼ K1.5, where Bρ is the beam rigidity.
Typically, the magnet for a K-100 cyclotron weighs about 160 tons. The weight

problem can be alleviated by using superconducting cyclotrons.22

Beam extraction systems in cyclotrons is challenging. Let V0 be the energy gain

per revolution. The kinetic energy at N revolutions is KN = eNV0 = e2B2r2/2m,
where e is the charge, m is the mass, B is the magnetic field, and r is the beam radius

at the N -th revolution. The radius r of the beam at the N -th revolution becomes

r =
1

B

(
2mV0

e

)1/2

N1/2, (1.9)

21M.S. Livingston, J. Appl. Phys, 15, 2 (1944); 15, 128 (1944); W.B. Mann, The Cyclotron,
(Wiley, 1953); M.E. Rose, Phys. Rev., 53, 392 (1938); R.R. Wilson, Phys. Rev., 53, 408 (1938);
Am. J. Phys., 11, 781 (1940); B.L. Cohen, Rev. Sci. Instr., 25, 562 (1954).

22See H. Blosser, in Proc. 9th Int. Conf. on Cyclotrons and Applications, p. 147 (1985).
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i.e. the orbiting radius increases with the square root of the revolution number N .

The beam orbit separation in successive revolutions may becomes small, and thus the
septum thickness becomes a challenging design problem.

Two key difficulties associated with classical cyclotrons are the orbit stability and
the relativistic mass effect. The orbit stability problem was partially solved in 1945 by

D. Kerst and R. Serber (see Exercise 1.14). The maximum kinetic energy was limited
by the kinetic mass effect. Because the relativistic mass effect can destroy particle

synchronism [see Eq. (1.7)], the upper limit of proton kinetic energy attainable in
a cyclotron is about 12 MeV (See Exercise 1.4).23 Two ideas proposed to solve the

dilemma are the isochronous cyclotron and the synchrocyclotron.

Isochronous cyclotron

The radius of an orbiting particle and the magnetic field that maintain isochronism

with a constant ω are

ρ =
p

eB
=

p

γmω
=

c

ω

(
1− E2

0

E2

)1/2

,

Bz =
γmω

e
=

ω

ec2
E(ρ) =

ωE0

ec2

[
1−

(ωρ
c

)2
]−1/2

. (1.10)

where E0 = mc2 is the rest energy, ω is the angular revolution frequency, and Bz or B

is the guide field. When the magnetic flux density is shaped according to Eq. (1.10),
the focusing index becomes n < 0, and the vertical motion is unstable.

In 1938 L.H. Thomas pointed out that, by using an azimuthal varying field, the
orbit stability can be retained while maintaining the isochronism. The isochronous

cyclotron is also called the azimuthal varying field (AVF) cyclotron. Orbit stability
can be restored by shaping the magnetic pole plates with hills and valleys.24 The

success of sector-focused cyclotron constructed by J.R. Richardson et al. led to the
proliferation of the separate sector cyclotron, or ring cyclotron in the 1960’s.25 It

gives stronger “edge” focusing for attaining vertical orbit stability. Ring cyclotrons

are composed of three, four, or many sectors. Many universities and laboratories built
ring cyclotrons in the 1960’s.

Synchrocyclotron

Alternatively, synchronization between cyclotron frequency and rf frequency can be

achieved by using rf frequency modulation (FM). FM cyclotrons can reach 1-GeV

23H. Bethe and M. Rose, Phys. Rev. 52, 1254 (1937).
24L.H. Thomas, Phys. Rev. 54, 580 (1938).
25H.A. Willax, Proc. Int. Cyclotron Conf. 386 (1963); Design and operation aspects of

a 1.3 MW high power proton ring cyclotron at the PSI by M. Seidel et. al. is available at
http://accelconf.web.cern.ch/AccelConf/IPAC10/papers/tuyra03.pdf
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proton kinetic energy.26 The synchrocyclotron uses the same magnet geometry as the

weak-focusing cyclotrons. Synchronism between the particle and the rf accelerating
voltage is achieved by ramping the rf frequency. Because the rf field is cycled, i.e.

the rf frequency synchronizes with the revolution frequency as the energy is varied,
synchrocyclotrons generate pulsed beam bunches. Thus the average intensity is low.

The synchrocyclotron is limited by the rf frequency detuning range, the strength of
the magnet flux density, etc. Currently two synchrocyclotrons are in operation, at

CERN and at LBL.

D: Microtron

The accelerating rf cavities are expensive, it would be economical to use the rf struc-
ture repetitively. The microtron, originally proposed by V. Veksler in 1944, is designed

to do this. Repetitive use requires synchronization between the orbiting and the rf
periods. For example, if the energy gain per turn is exactly equal to the rest mass

of the electron, the energy at the n − 1 passage is γm0c
2 = nm0c

2. the orbit period
is an integral multiple of the fundamental cyclotron period: T = n2πm

eB
. Thus, if the

rf frequency ωrf is an integral multiple of the fundamental cyclotron frequency, the
particle acceleration will be synchronized. Such a scheme or its variation was invented

by V. Veksler in 1945.
The synchronization concept can be generalized to include many variations of

magnet layout, e.g. the race track microtron (RTM), the bicyclotron, and the hexa-
tron. The resonance condition for the RTM with electrons traveling at the speed of

light is

nλrf = βcΔt = 2πβ
ΔE

ecB
, (1.11)

where ΔE is the energy gain per passage through the rf cavity, B is the bending dipole
field, λrf is the rf wavelength, and n is an integer. This resonance condition simply

states that the increase in path length is an integral multiple of the rf wavelength.
Some operational microtrons are the three-stage MAMI microtron at Mainz, Ger-

many,27 and the 175-MeV microtron at Moscow State University. Several commercial
models have been designed and built by DanFisik.The weight of the microtron also

increases with the cubic power of beam energy.

E: Synchrotrons, weak and strong focusing

After E.M. McMillan and V. Veksler discovered the phase focusing principle of the
rf acceleration field in 1945, a natural evolution of the cyclotron was to confine the

particle orbit in a well-defined path while tuning the rf system and magnetic field

26For a review, see R. Richardson, Proc. 10th Int. Conf. on Cyclotrons and Their Applications,
IEEE CH-1996-3, p. 617 (1984).

27See e.g., H. Herminghaus, in Proc. 1992 EPAC, p. 247 (Editions Frontières, 1992).
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to synchronize particle revolution frequency.28 The first weak-focusing proton syn-

chrotron, with focusing index 0 < n < 1, was the 3-GeV Cosmotron in 1952 at BNL.
A 6-GeV Bevatron constructed at LBNL in 1954, led to the discovery of antiprotons

in 1955.
An important breakthrough in the design of synchrotron came in 1952 with the

discovery of the strong-focusing or the alternating-gradient (AG) focusing principle
by E.D. Courant, H.S. Snyder and M.S. Livingston.29 Immediately, J. Blewett in-

vented the electric quadrupole and applied the alternating-gradient-focusing concept
to linac30 solving difficult beam focusing problems in early day rf linacs. Here is

“Some Recollection on the Early History of Strong Focusing” in the publication BNL
51377 (1980) by E.D. Courant:

Came the summer of 1952. We have succeeded in building the Cosmotron,
the world’s first accelerator above one billion volts. We heard that a group
of European countries were contemplating a new high-energy physics lab with
a Cosmotron-like accelerator (only bigger) as its centerpiece, and that some
physicists would come to visit us to learn more about the Cosmotron. . . .

Stan (Livingston) suggested one particular improvement: In the Cosmotron,
the magnets all faced outward. . . . Why not have some magnets face inward
so that positive secondaries could have a clear path to experimental apparatus
inside the ring?

. . . I did the calculation and found to my surprise that the focusing would be
strengthened simultaneously for both vertical and horizontal motion. . . . Soon
we tried to make the gradients stronger and saw that there was no theoretical
limit – provided the alterations were made more frequent as the gradient went
up. Thus it seemed that aperture could be made as small as one or two inches –
against 8×24 inches in the Cosmotron, 12×48 in the Bevatron, and even bigger
energy machines as we then imagined them. With these slimmer magnets, it
seemed one could now afford to string them out over a much bigger circles, and
thus go to 30 or even 100 billion volts.

The first strong-focusing 1.2 GeV electron accelerator was built by R. Wilson at
Cornell University. Two strong-focusing or alternating-gradient (AG) proton syn-

chrotrons, the 28-GeV CERN PS (CPS) and the 33-GeV BNL AGS, were com-
pleted in 1959 and 1960 respectively. The early strong-focusing accelerators used

combined-function magnets, i.e., the pole-tips of dipoles were shaped to attain a
strong quadrupole field. For example, the bending radius and quadrupole field gradi-

ents of AGS magnets are respectively ρ = 85.4 m, and B1 = (∂B/∂x) = ±4.75 T/m

28Frank Goward and D.E. Barnes converted a betatron at Telecommunication Research Labora-
tory into a synchrotron in August 1946. A few months earlier, J.R. Richardson, K. MacKenzie, B.
Peters, F. Schmidt, and B. Wright modified the fixed frequency 37-inch cyclotron at Berkeley to a
synchro-cyclotron for a proof of synchrotron principle. A research team at General Electric Co. at
Schenectady built a 70 MeV electron synchrotron to observe synchrotron radiation in October 1946.
See also E.J.N. Wilson, 50 years of synchrotrons, Proc. of the EPAC96 (1996).

29E.D. Courant, H.S. Snyder and M.S. Livingston, Phys. Rev. 88, 1188 (1952).
30J. Blewett, Phys. Rev. 88, 1197 (1952).
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at B = 1.15 T. This corresponds to a focusing index of n = ±352. The strengths of

a string of alternating focusing and defocusing lenses were adjusted to produce net
strong focusing effects in both planes.

The strong focusing idea was patented by a U.S. engineer, N.C. Christofilos,31

living in Athens, Greece. Since then, the alternating-gradient (AG or strong-focusing)
principle and a cascade of AG synchrotrons, proposed by M. Sands,32 has become a

standard design concept of high energy accelerators.

Since the saturation properties of quadrupole and dipole fields in a combined
function magnet are different, there is advantage in machine tuning with separate

quadrupole and dipole magnets. The Fermilab Main Ring was the first separate
function accelerator.33 Most present-day accelerators are separate-function machines.

For conventional magnets, the maximum dipole field strength is about 1.5 T and the
maximum field gradient is approximately 1/a [T/m] (see Exercise 1.12), where a is the

aperture of the quadrupole in meters. For superconducting magnets, the maximum

field and field gradient depends on superconducting coil geometry, superconducting
coil material, and magnet aperture.

I.5 Colliders and Storage Rings

The total center-of-mass energy obtainable by having a high energy particle smash

onto a stationary particle is limited by the kinematic transformation (see Exercise
1.6). To boost the available center-of-mass energy, two beams are accelerated to high

energy and made to collide at interaction points.34 Since the lifetime of a particle
beam depends on the vacuum pressure in the beam pipe, stability of the power supply,

intrabeam Coulomb scattering, Touschek scattering, quantum fluctuations, collective
instabilities, nonlinear resonances, etc., accelerator physics issues have to be evaluated

in the design, construction, and operation of colliders. Beam manipulation techniques
such as beam stacking, bunch rotation, invention of beam cooling including stochastic

beam cooling, invented by S. Van de Meer, and electron beam cooling, invented by
Budker in 1966, etc., are essential in making the collider a reality.35

31N.C. Christofilos, Focusing system for ions and electrons, U.S. Patent No. 2736799 (issued
1956). Reprinted in The Development of High Energy Accelerators, M.S. Livingston, ed. (Dover,
New York, 1966).

32M. Sands, A proton synchrotron for 300 GeV, MURA Report 465 (1959). MURA stands for
Mid-Western University Research Association.

33The Fermi National Accelerator Laboratory was established in 1967. The design team adopted
a cascade of accelerators including proton linac, rapid cycling booster synchrotron, and a separate
function Main Ring.

34A.M. Sessler, The Development of Colliders, LBNL-40116, (1997). The collider concept was
patented by R. Wiederöe in 1943. The first collider concept based on “storage rings” was proposed
by G.K. O’Neill in Phys. Rev. Lett. 102, 1418 (1956).

35S. Van de Meer, Stochastic Damping of Betatron Oscillations in the ISR, CERN internal report
CERN/ISR-PO/72-31 (1972); H. Poth, Phys. Rep. 196, 135 (1990) and references therein.
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The first proton-proton collider was the intersecting storage rings (ISR) at CERN

completed in 1969. ISR was the test bed for physics ideas such as stochastic beam
cooling, high vacuum, collective instabilities, beam stacking, phase displacement ac-

celeration, nonlinear beam-beam force, etc. It reached 57 A of single beam current
at 30 GeV. It stopped operation in 1981.

The first electron storage ring (200 MeV) was built by B. Touschek et al. in 1960
in Rome. It had only one beam line and an internal target to produce positrons,

and it was necessary to flip the entire ring by 180◦ to fill both beams. Since the
Laboratoire de l’Accelerateur Lineaire (LAL) in Orsay had a linac, the storage ring

was transported to Orsay in 1961 to become the first e+e− collider. The Stanford-
Princeton electron-electron storage ring was proposed in 1956 but completed only in

1966. An e−e− collider moved from Moscow to Novosibirsk in 1962 began its beam
collision in 1965.

Since the 1960’s, many e+e− colliders have been built. Experience in the operation
of high energy colliders has led to an understanding of beam dynamics problems such

as beam-beam interactions, nonlinear resonances, collective (coherent) beam instabil-
ity, wakefield and impedance, intrabeam scattering, etc. Many e+e− colliders such as

CESR at Cornell, SLC and PEP at SLAC, PETRA and DORIS at DESY, VEPP’s at
Novosibirsk, TRISTAN at KEK, and LEP at CERN led to major discoveries in par-

ticle physics. The drive to reach higher beam energy provided incentives for research
on high power klystrons, new acceleration methods, etc. High energy lepton colliders

such as NLC, JLC, and CLIC are expanding linear accelerator technology. On the
luminosity frontier, the Φ-factory at Frascati, J/Ψ-factories at the PEPC in Beijing,

B-factories such as PEP-II at SLAC and TRISTAN-II at KEK, and the SUPER-B at

Frascati aim to reach 1033−35 cm−2 s−1.

Proton-antiproton colliders such as the Tevatron at Fermilab and Spp̄S at CERN
had made many discoveries. The discovery of type-II superconductors36 led to the

successful development of superconducting magnets, which have been successfully
used in the Tevatron to attain 2-TeV c.m. energy, and in HERA to attain 820-GeV

proton beam energy. At present, the CERN LHC (14-TeV c.m. energy) and the BNL

RHIC (200-GeV/u heavy ion c.m. energy) are operational. The (40-TeV) SSC proton
collider in Texas was canceled in October 1993. Physicists are contemplating a very

large hadron collider with about 60–100 TeV beam energy and possible muon-muon
colliders.

36Type II superconductors allow partial magnetic flux penetration into the superconducting ma-
terial so that they have two critical fields Bc1(T ) and Bc2(T ) in the phase transition, where T is
the temperature. The high critical field makes them useful for technical applications. Most type II
superconductors are compounds or alloys of niobium; commonly used alloys are NbTi and Nb3Sn.
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I.6 Synchrotron Radiation Storage Rings

Since the discovery of synchrotron light from a then high energy (80-MeV) electron

synchrotron in 1947, the synchrotron light source has become an indispensable tool
in basic atomic and molecular physics, condensed-matter physics, material science,

biological, chemical, and medical research, and material processing. Worldwide, about

70 light sources are in operation or being designed or built.

Specially designed high-brightness synchrotron radiation storage rings are clas-
sified into generations. Those in the first generation operate in the parasitic mode

from existing high energy e+e− colliders. The second generation comprises dedicated
low-emittance light sources. Third-generation light sources produce high-brilliance

photon beams from insertion devices using dedicated high-brightness electron beams.
Many 3rd Generation light storage rings at 1-6 GeV have been operational since

1990. They serve scientific communities in the world. Efforts in research on the
fourth generation (coherent) light sources based on linac free electron laser from a

long undulator have been very successful. This leads to construction of linac light
sources in the US, Japan, Europe, and China. Similarly, the emittance of storage

ring light sources have been pushed to pico-meter level. These upgraded light source
will serve scientific communities.

The back-scattering of laser beam (λ ∼ 1 μm) by a high energy electron beam

(E ∼ 20 − 60 MeV) can produce tunable high brightness hard-X-ray. The small
foot-print of this device can be used in many university laboratories for biomedical

and material science research. This inverse Compton or Thompson X-ray (ICX, or

TX) source is also of great interest in accelerator physics research.

II Layout and Components of Accelerators

A high energy accelerator complex is composed of ion sources, buncher/debuncher,
chopper, pre-accelerators such as the high-voltage source or RFQ, drift-tube linac

(DTL), booster synchrotrons, storage rings, and colliders. Figure 1.6 shows the draw-
ing of a small accelerator complex, now decommissioned, at Indiana University Cy-

clotron Facility. Particle beams are produced from ion sources, where charged ions
are extracted by a high-voltage source to form a beam. The beam pulse is usually

prebunched and chopped into appropriate sizes, accelerated by a DC accelerator or
RFQ to attain the proper velocity needed for a drift-tube linac. The beams can be

injected into a chain of synchrotrons to reach high energy. Some basic accelerator

components are described in the following subsections.
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Figure 1.6: A small accelerator, the Cooler Injector Synchrotron (CIS) at the Indiana
University Cyclotron Facility. The source, RFQ, DTL, debuncher, chopper, the CIS syn-
chrotron with 4 dipoles, and a transfer line are shown to illustrate the basic structure of an
accelerator system. The circumference is 17.36 m.

II.1 Acceleration Cavities

The electric fields used for beam acceleration are of two types: the DC acceleration

column and the rf cavity.37 The DC acceleration column is usually used in low energy
accelerators such as the Cockcroft-Walton, Van de Graaff, etc.

The rf acceleration cavity provides high longitudinal electric field at an rf frequency

that ranges from a few hundred kHz to 10–30 GHz. For a particle with charge e, the
energy gain/loss per passage through a cavity gap is

ΔE = eΔV, (1.12)

where ΔV = V0 sin(ωrft + φ) is the effective gap voltage, ωrf is the rf frequency, V0

is the effective peak accelerating voltage, and φ is the phase angle. Low frequency rf

cavities are usually used to accelerate hadron beams, and high frequency rf cavities
to accelerate electron beams.

37In recent years, new acceleration schemes such as inverse free-electron laser acceleration, laser
plasma wakefield acceleration, etc., have been proposed for high-gradient accelerators. See e.g.,
Advanced Accelerator Concepts, AIP Conf. Proc. No. 398, S. Chattopadhyay, et al., Eds. (1996)
and reference therein.
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Acceleration of the bunch of charged particles to high energies requires synchro-

nization and phase focusing. The synchronization is achieved by matching the rf
frequency with particle velocity, and the phase focusing is achieved by choosing a

proper phase angle between the rf wave and the beam bunch.

II.2 Accelerator Magnets

Accelerator magnets requires a stringent field uniformity condition in order to mini-

mize un-controllable beam orbit distortion and beam loss. Accelerator magnets are
classified into field type of dipole magnets for beam orbit control, quadrupole magnets

for beam size control, sextupole and higher-order multipole magnets for the control

of chromatic and geometric aberrations.

Accelerator magnets are also classified into conventional iron magnets and su-
perconducting magnets. The conventional magnets employ iron or silicon-steel with

OFHC copper conductors. The superconducting magnets employ superconducting
coils to produce high field magnets.

Dipoles

Dipole magnets are used to guide charged particle beams along a desired orbit. From
the Lorentz force law, the bending angle θ in passing through a dipole, and the

integrated dipole field in a ring are

θ =
e

p0

∫ s2

s1

Bdl =
1

Bρ

∫ s2

s1

Bdl,

∮
Bdl = 2πp0/e = 2πBρ. (1.13)

where p0 is the momentum of the beam, and Bρ = p0/e is the momentum rigidity of

the beam, and the total bending angle for a circular accelerator is 2π.

The conventional dipole magnets are made of laminated silicon-steel plates for

the return magnetic flux to minimize eddy current and hysteresis loss. Solid block
of high permeability soft-iron can also be used for magnets in the transport line or

cyclotrons, that requires DC magnetic field. A gap between the iron yoke is used to
shape dipole field. The iron plate can be C-shaped for a C-dipole (see Exercise 1.10

and the left plot of Fig. 1.7), or H-shaped for H-dipole. Since iron saturates at about
1.7 T magnet flux, the maximum attainable field for iron magnet is about 1.8 T. To

attain a higher dipole field, superconducting coils can be used. These magnets are
called superconducting magnets.

Superconducting magnets that use iron to enhance the attainable magnetic field

is also called superferric magnets. For high field magnets, e.g. 5-12 T, blocks of
superconducting coils are used to simulate the cosine-theta current distribution (see

Exercise 1.9). The right plot of Fig. 1.7 shows the cross-section of the high field SSC

dipole magnets.
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Figure 1.7: The cross-sections of a C-shaped conventional dipole magnet (left, courtesy of
G. Berg at IUCF) and an SSC superconducting dipole magnet (right, courtesy of R. Gupta
at LBNL). For conventional magnets, the pole shape is designed to attain uniform field in
the gap. The rectangular blocks shown in the left plot are oxygen free high conductivity
(OFHC) copper coils. For superconducting magnets, the superconducting coils are arranged
to simulate the cosine-theta like distribution.

Quadrupoles

A stack of laminated iron plates with a hyperbolic profile can be used to produce
quadrupole magnet (see Exercise 1.12), where the magnetic field of an ideal quadrupole

is
�B = B1(zx̂+ xẑ), (1.14)

where B1 = ∂Bz/∂x evaluated at the center of the quadrupole, and x̂, ŝ, and ẑ are

the unit vectors in the horizontal, azimuthal, and vertical directions. For a charged

particle passing through the center of a quadrupole, the magnetic field and the Lorentz
force are zero. At a displacement (x, z) from the center, the Lorentz force for a particle

with charge e and velocity v along ŝ direction is

�F = evB1ŝ× (zx̂+ xẑ) = −evB1zẑ + evB1xx̂. (1.15)

The equations of motion become

1

v2
d2x

dt2
=

eB1

γmv
x,

1

v2
d2z

dt2
= − eB1

γmv
z. (1.16)

Thus a focusing quadrupole in the horizontal plane is also a defocusing quadrupole

in the vertical plane and vice versa. Defining the focusing index as

n = R2 eB1

γmv
=

R2

Bρ

∂Bz

∂x
, (1.17)
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we obtain
d2x

ds2
=

n

R2
x,

d2z

ds2
= − n

R2
z (1.18)

in a quadrupole, where s = vt is the longitudinal distance along the ŝ direction.

II.3 Other Important Components

Other important components in accelerators are ion sources;38 monitors for beam
position, beam current and beam loss; beam dump; emittance meters; vacuum ports

and pumps; beam orbit and stopband correctors; skew quadrupoles, sextupoles, oc-
tupoles, and other nonlinear magnets for nonlinear stopband correction; orbit bumps,

kickers, and septum; power supplies, etc. For high energy experiments, sophisticated
particle detectors are the essential sources of discovery. For synchrotron radiation

applications in electron storage rings, wigglers and undulators are used to enhance
the photon beam quality.

The timing and operation of all accelerator components (including experimental

devices) are controlled by computers. Computer control software retrieves beam sig-
nals, and sets proper operational conditions for accelerator components. The advance

in computer hardware and software provides advanced beam manipulation schemes
such as slow beam extraction, beam stacking accumulation, stochastic beam cooling,

etc.

III Accelerator Applications

III.1 High Energy and Nuclear Physics

To probe into the inner structure of the fundamental constituents of particles, high
energy accelerators are needed. Historical advancement in particle and nuclear physics

has always been linked to advancement in accelerators. High energy accelerators have
provided essential tools in the discovery of p̄, Ω, J/Ψ, Z0,W± · · ·, etc. Observation of

a parton-like structure inside a proton provided proof of the existence of elementary
constituents known as quarks. The IUCF cyclotron had been used to understand the

giant M1 resonances in nuclei. The Tevatron at Fermilab facilitated the discovery of
the top quark in 1995. Radioactive beams may provide nuclear reactions that will

provide information on nucleo-synthesis of elements in the early universe.

High energy colliders such as HERA (30-GeV electrons and 820-GeV protons),
Tevatron (1-TeV on 1-TeV proton-antiproton collider), SLC (50-GeV on 50-GeV e+e−

collider), LEP (50-100-GeV on 50-100-GeV e+e− collider) led the way in high energy
physics in the 1990s. High luminosity colliders, such as the B-factories at SLAC

38B. Wolf, ed., Handbook of Ion Sources (CRC Press, New York, 1995); R. Geller, Electron Cy-
clotron Resonance Ion Sources and ECR Plasma (Inst. of Phys. Pub., Bristol, 1996).



III. ACCELERATOR APPLICATIONS 23

and KEK and the Φ-factory at DAΦNE, provided dedicated experiments for under-

standing the symmetry of the fundamental interactions. The RHIC (100-GeV/u on
100-GeV/u heavy ion collider) provided important information on the phase transi-

tions of quark-gluon plasma. The JLAB 4-12-GeV continuous electron beams allow
high resolution (0.1 fm) studies of the electromagnetic properties of nuclei. The LHC

(7-TeV on 7-TeV proton-proton collider) at CERN will lead high energy physics re-
search at the beginning of the 21st century.

High power accelerators are also considered to be particle sources for mesons,

muons, neutrinos. The fixed-field alternating-gradient (FFA) accelerator, sprung out
of the discovery of the alternating-gradient (or strong focusing) principle, was pro-

posed by the Midwestern University Research Association (MURA) group in the
1950’s. Since the magnetic field in FFA is stationary, particle-beams can be acceler-

ated rapidly. There are renewed efforts in exploring the feasibility of achieving high

power beam, rapid acceleration of muon beams, etc.39 in recent years. High power
particle sources are also important in accelerator physics.

III.2 Solid-State and Condensed-Matter Physics

Ion implantation,40 synchrotron radiation sources, and neutron back-scattering have

provided important tools for solid-state and condensed-matter physics research. Neu-
tron sources have been important sources for research aimed at understanding the

properties of metals, semiconductors, and insulators. Free-electron lasers with short
pulses and high brightness in a wide spectrum of frequency ranges have been used

extensively in medical physics, solid-state physics, biology, and biochemistry.

III.3 Other Applications

Electron beams can be used to preserve and sterilize agricultural products. Beam
lithography is used in industrial processing. Radiation has been used in the manu-

facture of polymers, radiation hardening for material processing, etc. Particle beams
have been used to detect defects and metal fatigue of airplanes, ships, and strategic

equipment.

Since the discovery of X-ray in 1895, radiation has been used in medical imaging,
diagnosis, and radiation treatments. Radiation can be used to terminate unwanted

tumor growth with electron, proton, or ion beams. In particular, proton and heavy-

ion beams have become popular in cancer radiation therapy because these beam
particles deposit most of their energy near the end of their path. By controlling the

beam energy, most of the beam energy can be deposited in the cancerous tumor with

39See S. Machida, et. al., Nature Physics, 8, 243 (2012) and references therein.
40The ion implantation, invented by W. Shockley in 1954 (U.S. Patent 2787564), has become an

indispensable tool in the semiconductor industry.
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less damage to surrounding healthy cells. Beams have also been used in radiation

sterilization, isotope production for radionuclide therapy,41 etc.

Exercise 1: Basics

1. Show that the magnet rigidity Bρ is related to the particle momentum p by

Bρ [Tm] =
p

Ze
=

�
3.3357 p [GeV/c] for singly charged particles
3.3357

Z p [GeV/c] for particles with charge Ze
,

where B is the magnetic flux density, ρ is the bending radius, p is the beam momen-
tum, and Ze is the charge of the particle.

(a) (1) Calculate the magnetic rigidity of proton beams at the IUCF Cooler Ring (ki-
netic energy 500 MeV), RHIC (momentum 250 GeV/c), Tevatron (momentum
1 TeV/c) SSC (momentum 20 TeV/c). (2) Calculate the momentum rigidity of
19.7 TeV Au-ion beam in RHIC, and 287 TeV Pb-ion beam in LHC.

(b) If the maximum magnetic flux density for a conventional dipole is 1.7 Tesla, what
is the total length of dipole needed for each of these accelerators? What is the
total length of dipoles needed in each accelerator if superconducting magnets
are used with magnetic fields B = 3.5 T (RHIC), 5 T (Tevatron) and 6.6 T
(SSC)?

2. The resonance frequency of a LC circuit is fr = 1/2π
√
LC. Assuming that you can

build a capacitor with a minimum capacitance of C = 1 pF, what value of inductance
L is needed to attain 3 GHz resonance frequency? What is your conclusion from this
exercise? Can you use a conventional LC circuit for microwave tuning?42

3. Consider a uniform cylindrical beam with N particles per unit length in a beam of
radius a; show that a test charged particle traveling along at the same velocity as the
beam, v, experiences a repulsive space-charge force,

�F =

⎧
⎪⎪⎨
⎪⎪⎩

e2N

2π�0a2γ2
�r r ≤ a

e2N

2π�0r2γ2
�r r > a

where γ = 1/
�

1− β2 and e is the charge of the beam particle.

(a) Estimate the space-charge force for the SSC low energy booster at injection
with kinetic energy 800 MeV and NB = 1010 particles per bunch. We assume
a Gaussian distribution with rms bunch length σs = 2 m and beam diameter 4
mm. For a Gaussian beam, we use the maximum N given by NB/(

√
2πσs) at

the center of the bunch.

41See e.g. Bert M. Coursey and R. Nath, Phys. Today, p. 25, April 2000.
42See V.F.C. Veley, Modern Microwave Technology (Prentice Hall, Englewood Cliffs, NJ, 1987).

For an order of magnitude estimation, a 5-cm-radius single loop with wire 0.5 mm thick will yield
an inductance of about 3× 10−7 H.
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(b) What happens if the test charged particle travels in the opposite direction in the
head-on collision process? Estimate the space-charge force for the e+e− colliding
beam at SLC, where the beam parameters are E = 47 GeV and NB = 2× 1010,
the rms bunch length is σs = 0.6 mm, and the beam size is 3 μm. If this force
is exerted by a quadrupole, what is the equivalent field gradient?

4. In a cyclotron, the synchronous frequency is ω = eB/γm = ω0/γ, where ω0 = eB/m
is the cyclotron frequency, and γ is the relativistic energy factor. Use the following
steps, in the uniform acceleration approximation, to prove that, if a sinusoidal voltage
Vrf = V cosω0t is applied to the dees, the maximum attainable kinetic energy is√

2eV mc2/π, where e and m are the charge and mass of the particle.

(a) Let ψ be the rf phase of the particle. Show that the equation of motion in a
uniform acceleration approximation is dψ/dt = (γ−1−1)ω0, dγ2/dt = a cosψ,
where a = 2ω0eV/πmc2.

(b) Defining a variable q = a cosψ, show that the equation of motion becomes

(q/
√

a2 − q2)dq = (2γ − 2)ω0 dγ. Integrate this equation and show that the

maximum kinetic energy attainable is
√
2eV mc2/π.

5. The total power radiated by an accelerated charged particle is given by Larmor’s
formula:

P =
1

4π�0

2e2v̇2

3c3
=

1

4π�0

2e2

3m2c3
(
dpμ
dτ

· dpμ
dτ

)

where dτ = dt/γ is the proper time and pμ is the four-momentum.43

(a) In a linear accelerator, the motion is along a straight path. The power radiated
is

P =
1

4π�0

2e2

3m2c3
(
dp

dt
)2 =

1

4π�0

2e2

3m2c3
(
dE

dx
)2,

where dE/dx is the rate of energy change per unit distance. The ratio of radi-
ation power loss to power supply from an external accelerating source is

P

dE/dt
=

1

4π�0

2e2

3m2c3v
(
dE

dx
) ≈ 2

3

re
mc2

(
dE

dx
),

where re = 2.82 × 10−15 m is the classical radius of the electron. Assuming
that electrons gain energy from 1 GeV to 47 GeV in 3 km at SLC, what is the
ratio of power loss to power supply? In the Next Linear Collider (NLC), the
gradient of the accelerating cavities will increase by a factor of 10. What will
be the ratio of radiation power loss to power supply? What is your conclusion
from this exercise?

(b) In a circular accelerator, �p changes direction while the change in energy per
revolution is small, i.e.

d�p

dτ
= γω|�p| � 1

c

dE

dτ
,

43See J.D. Jackson, Classical Electrodynamics, 2nd ed., p. 468 (1975).
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where ω = βc/ρ, and ρ is the bending radius. The radiated power becomes

P =
2

3

r0
mc

γ2ω2|�p|2 = β4cCγ

2π

E4

ρ2
,

Cγ =
4πr0

3(mc2)3
=

{
8.85 × 10−5[m/(GeV)3] for electrons,
7.78 × 10−18[m/(GeV)3] for protons,

where r0 is the classical radius of the particle, m is the mass, and The radiative
energy loss per revolution of an isomagnetic storage ring becomes

U0 = β3CγE
4/ρ.

i. Calculate the energy dissipation per revolution for electrons at energy E =
50 GeV and 100 GeV in LEP, where ρ = 3096.175 m and the circumference
is 26658.853 m.

ii. Find the energy loss per turn for protons in SSC, where the magnetic field is
6.6 Tesla at 20 TeV, the circumference is 87120 m, and the bending radius
is 10187 m.

iii. Show that the power radiated per unit length in dipoles for a beam is

P (W/m) = 106 · U0[MeV]

2πρ [m]
I [A],

where U0 is the energy loss per revolution, I is the total beam current, and
ρ is the radius of curvature in the dipole. Find the synchrotron radiation
power loss per unit length in LEP and SSC, where the circulating beam
currents are respectively 3 mA and 70 mA.

6. The center of mass (c.m.) energy of two particles with mass m and energy γcmmc2

colliding head on has a total c.m. energy of 2γcmmc2. (1) Show that the total
c.m. energy for this collision is equivalent to a fixed target collision at the energy of
γFTmc2 with another particle with mass m at rest if γFT = 2γ2cm − 1. (2) What is
the equivalent center of mass energy for the collision of a cosmic ray proton at the
energy of 3 × 1020 eV with another proton? (3) In December 2010, LHC had Pb20882

on Pb20882 collision at 287 TeV per beam. If this were a fixed target experiment, what
energy of the lead ion should be in order to achieve the same center of mass energy?

7. The luminosity, L [cm−2 s−1], is a measure of the probability (rate) of particle en-
counters per unit area in a collision process. Thus the total counting rate of a physics
event is R = σphysL, where σphys is the cross-section of a physics process.

(a) In fixed target experiments, the luminosity is given by L = (dN
B
/dt)ntarget,

where dN
B
/dt is the number of beam particles per second on target, and ntarget

is the target thickness measuring the number of atoms per cm2. The average
luminosity is given by �L� = �dN

B
/dt�ntarget, where �dN

B
/dt� = N

B
f . Here N

B

is the number of particles per pulse (bunch) and f is the pulse repetition rate.
Consider a fixed target experiment, where the beam repetition rate is 0.4 Hz,
beam particle per pulse is 1013, the beam pulse length is 150 ns, and the target
thickness is 4 mg/cm2 Au foil. Find the instantaneous and average luminosities
of the fixed target experiment. What is the advantage of stretching the beam
pulse length to 1 s in this experiment?
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(b) When two beams collide head-on, the luminosity is

L = 2 f N1 N2

∫
ρ1(x, z, s1)ρ2(x, z, s2)dxdzdsd(βct),

where s1 = s+βct, s2 = s−βct, f is the encountering frequency, N1 and N2 are
the numbers of particles, and ρ1 and ρ2 are the normalized distribution functions
for these two bunches. Using a Gaussian bunch distribution,

ρ(x, z, s) =
1

(2π)3/2σxσzσs
exp

{
− x2

2σ2
x

− z2

2σ2
z

− s2

2σ2
s

}
,

where σx, σz, and σs are respectively the horizontal and vertical rms bunch
widths and the rms bunch length, show that the luminosity for two bunches
with identical distribution profiles is

L =
fN1N2

4πσxσz
.

Show that when two beams are offset by a horizontal distance b, the luminosity
is reduced by a factor exp{−b2/4σ2

x}.
8. Show that the magnetic field on the axis of a circular cylindrical winding of uniform

cross-section is

B‖(s) =
μ0J

2

{
(�− s) ln

b+ (b2 + [�− s]2)1/2

a+ (a2 + [�− s]2)1/2
+ s ln

b+ (b2 + s2)1/2

a+ (a2 + s2)1/2

}

where � is the length of the solenoid, J is the current density, a, b are the inner and
outer cylindrical radii respectively, and s is the distance from one end of the solenoid.
For an ideal solenoid, set s = �/2, b → a, show that the magnetic field and the
inductance are

B‖ = μ0nI,

L = μ0n
2�S = μ0n

2 × volume of the solenoid,

where n is the number of turns per unit length, I is the current in each turn, and
S is the cross-section area of the solenoid. Note that the total energy stored in the
magnet is given by the magnetic energy.

9. From elementary physics, the field at a distance r from a long straight wire carrying
current I is

B = μ0I/2πr

along a direction tangential to a circle with radius r around the wire.

(a) Show that the 2D magnetic field at location y = x+ jz for a long straight wire
is

Bz(x, z) + jBx(x, z) =
μ0I

2π(y − y0)
,

where j is an imaginary number, the current I is positive if it points out of
paper, and y0 = x0 + jz0 is the position of the current filament.44

44See R.A. Beth, J. Appl. Phys. 37, 2568 (1966); 38, 4689 (1967).
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(b) If the current per unit area of an infinitely long circular current sheet is

λ(r, φ) = (I1/2a) cos φ δ(r − a),

where I1 is the total dipole current and (r, φ) are the cylindrical coordinates
with x = r cosφ and z = r sinφ, show that the magnetic field inside the current
sheet is

Bz = −μ0I1/4a, Bx = 0.

This is the cosine-theta current distribution for a dipole. High-field supercon-
ducting dipoles are normally made of current blocks that simulate the cosine-
theta distribution.

(c) The Beth current sheet theorem states that the magnetic fields in the immediate
neighborhood of a two-dimensional current sheet are

B(y+)−B(y−) = jμ0(dI/dy),

where y+ and y− are the complex coordinates y = x + jz at an infinitesimal
distance from the current sheet, and dI/dy is the current per unit length. Apply
this theorem to show that the cosine-theta current distribution on a circular
cylinder gives rise to a pure dipole field inside the cylinder.

10. Show that the magnetic field at the coordinate y = x + jz, due to a thin current
wire located at coordinates y0 = x0 + jz0, between two sheets of parallel plates with
infinite permeability is45

Bz + jBx =
μ0I

4g

[
tanh

π(y − y∗0)
2g

+ coth
π(y − y0)

2g

]
,

where g is the gap between two parallel plates. The current flows in the x̂×ẑ direction.

11. Show that the dipole field and the inductance of a window-frame dipole with two
sheets of parallel plates having infinite permeability are

B = μ0NI/g = μ0nI,

L = μ0N
2�w/g = μ0n

2 × volume of the dipole,

where N is the number of turns, I is the current in each turn, g is the gap between
two iron plates, and n = N/g is the number of turns per unit gap length, � and w
are the length and width of the dipole. The total power dissipation is P = (NI)2R,
where R = ρ�/A is the resistance, A as the cross-sectional area of the conductor, and
ρ is the resistivity of the coil.

12. Following Maxwell’s equation, ∇ × �B = 0 in the current-free region, and the mag-
netic field can be derived from a magnetic potential, Φm, with �B = −∇Φm. For
a quadrupole field with Bz = Kx,Bx = Kz, show that the magnetic potential is

45S.Y. Lee, Nucl. Inst. Meth. A300, 151 (1991). Use the following identities:

tanh
πy

2
=

4y

π

∞∑
k=1

1

(2k − 1)2 + y2
, coth

πy

2
=

2

πy
+

4y

π

∞∑
k=1

1

(2k)2 + y2
.
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Φm = −Kxz. The equipotential curve is xz = constant. Thus the pole shapes of
quadrupoles are hyperbolic curves with xz = a2/2. The pole-tip field is Bpole tip =
Ka. To avoid the magnetic field saturation in iron, the pole-tip field in a quadrupole
is normally designed to be less than 0.9 Tesla. The achievable gradient is B1 =
Bpole tip/a. Show that the gradient field is

B1 = 2μ0NI/a2,

where NI is the number of ampere-turns per pole, and a is the half-aperture of the
quadrupole. The inductance in an ideal quadrupole is

L =
8μ0N

2�

a2
(x2c −

a4

12x2c
) ≈ 8μ0N

2�

a2
x2c ,

where xc is the distance of the conductor from the center of the quadrupole. In reality,
x2c should be replaced by x2c + xcwc, where wc is the width of the pole.

13. Consider a pair of conductors with cross-sections independent of the azimuthal coor-
dinate s, and surrounded by isotropic and homogeneous medium with permittivity �
and permeability μ. Maxwell’s equations are

∇ · (� �E) = 0, ∇× �E = −∂ �B
∂t , ∇ · �B = 0, ∇× �H =

∂� �E

∂t
,

where the external charge and current are zero. Let x̂, ẑ and ŝ form the basis of an
orthonormal coordinate system. For a transverse guided field propagating in the +ŝ
direction, we assume

�E(�r, t) = �E⊥(x, z)e−j(ks−ωt),

�H(�r, t) = �H⊥(x, z)e−j(ks−ωt), �B⊥ = μ �H⊥,

where fields are all transverse with phase velocity vp = ω/k.

(a) Show that the frequency ω and the wave number k of the electromagnetic wave
satisfy the dispersion relation ω = k/

√
�μ. Show that the transverse electromag-

netic fields satisfy the static electromagnetic field equation,
(

∂2

∂x2
+

∂2

∂z2

)
�E⊥(x, z) = 0,

(
∂2

∂x2
+

∂2

∂z2

)
�H⊥(x, z) = 0,

and the transverse plane wave obeys the relation �H = 1
Z ŝ × �E⊥, where Z =√

μ/� is the intrinsic impedance of the medium.

(b) Show that, because of the transverse nature of the electromagnetic field, the
electric field can be represented by

�E(x, z) = −∇⊥φ(x, z),

where φ is the electric potential, and ∇⊥ is the transverse gradient with respect
to the transverse coordinates. By definition, the capacitance per unit length is
C = λ/V, where V = φ1−φ2 is the potential difference between two conductors,
and λ is the charge per unit length on conductors. Using Ampere’s law, show
that ∮

�H · d�r = λ/�Z = λvp,

where I = λvp is the current per unit length, and d�r = dxx̂+ dzẑ.
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(c) Similarly, the inductance per unit length is

L =
1

I

dΦ

ds
=

μ

I

∫ c2

c1

�H · (ŝ× d�r),

where the integral is carried out between two conductors. Show that there is a
general relation:

C L = μ� = 1/v2p.

The characteristic impedance of the transmission line is given by Rc =
√

L/C =
V/I, where C and L are the capacitance and the inductance per unit length.

(d) Show that the capacitance and the inductance per unit length of a coaxial cable
with inner and outer radii r1 and r2 are

C =
2π�

ln(r2/r1)
, L =

μ

2π
ln

r2
r1

.

Fill out the following table for some commonly used coaxial cables.

Type Diameter Capacitance Inductance Rc Delay time
[cm] [pF/m] [μH/m] [Ω] [ns/m]

RG58/U 0.307 93.5 50
RG174/U 0.152 98.4 50
RG218/U 1.73 96.8 50

14. Derive the transverse equations of motion for electrons in a betatron46 by the following
procedures. In the cylindrical coordinate system, the equation of motion for electrons
is

dpr
dt

− γmrθ̇2 = −erθ̇Bz,
dpz
dt

= erθ̇Br,

where r̂, ẑ are respectively the radially outward and vertically upward directions,
Br, Bz are the radial and vertical components of the magnetic flux density, θ is the
azimuthal angle, and θ̇ = v/r is the angular velocity. If the vertical component of the
magnetic flux density is

Bz = B0

( r

R

)−n ≈ B0

(
1− n

r −R

R
+ · · ·

)
,

where n is the field index. Then the radial magnetic field with Br = 0 at z = 0 is

Br = z

(
∂Bz

∂r

)

r=R

= −nB0

R
z + · · · .

Show that the equations of motion become

ξ̈ + ω2
0(1− n)ξ = 0, ζ̈ + ω2

0nζ = 0,

where ξ = (r − R)/R, ζ = z/R, and ω0 = v/R = eB0/γm is the angular velocity of
the orbiting particle. Show that the stability of betatron motion requires 0 ≤ n ≤ 1.

46See D. Kerst and R. Serber, Phys. Rev. 60, 53 (1941). Because of this seminal work, the
transverse oscillations of charged particles in linear or circular accelerators are generally called
betatron oscillations.
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15. Ion sources are indispensable to all applications in accelerators. For electron beams,
there are thermionic sources, rf gun sources, laser-driven electron sources, etc. For
charged ion beams, there are many different configurations for generating plasma
sources for beam extraction.47 Charged ion beams are usually drawn from a space-
charge ion source at zero initial velocity. The flow of charged ions is assumed to be
laminar. In the space-charge dominated limit, the electric field between the anode and
the cathode is maximally shielded by the beam charge. The maximum beam current
occurs when the electric field becomes zero at the emitter. Assume a simplified geom-
etry of two infinite parallel plates so that the the motion of ions is one-dimensional.
Let s be the distance coordinate between the parallel plates with s = 0 at the emitter,
and s = a at the anode. The Poisson equation becomes

d2V

ds2
= − ρ

�0
,

where V is the electric potential, ρ is the ion density in the parallel plate, and �0 is
the permittivity.

(a) In the non-relativistic limit with laminar flow, show that the Poisson equation
becomes

d2V

ds2
=

J

�0

(m
2e

)1/2
V −1/2,

where J = ρv is the current density, e and m are the charge and mass of the
ion, and v is the velocity of the ion.

(b) For a space-charge dominated beam, the condition of maximum space-charge
shielding is equivalent to V = 0 and dV/ds = 0 at s = 0. Show that the
maximum current is

J = χ
V

3/2
0

a2
, χ =

4�0
9

(
2e

m

)1/2

,

where V0 is the extraction voltage at the anode, and χ is the perveance of the
ion source. The relation of the current to the extraction voltage is called Child’s
law.48

(c) Show that the space-charge perveance parameters for electron, proton, deuteron,
He+, N+, and Ar+ ion sources are given by the following table. Here the micro-
perveance is defined as 1 μP = 1× 10−6 A/V3/2.

e p D+ He+ N+ A+

χ (μP) 2.334 0.0545 0.0385 0.0272 0.0146 0.00861

16. The Paraxial Ray Equation: In the free space, the electric potential obeys the
Laplace equation ∇2V = 0. Using the basis vectors (r̂, φ̂, ŝ) for the cylindrical coordi-
nates in paraxial geometry, where r is the radial distance from the axis of symmetry,
φ is the azimuthal coordinate, and s is the longitudinal coordinate, we expand the

47See e.g. Proc. Int. Symp. on Electron Beam Ion Sources, AIP Conf. Proc. No. 188 (1988);
Production and Neutralization of Negative Ions and Beams, AIP Conf. Proc. No. 210 (1990).

48C.D. Child, Phys. Rev. 32, 492 (1911); I. Langmuir, Phys. Rev. 32, 450 (1913). See also A.T.
Forrester, Large Ion Beams (Wiley, New York, 1988).
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position vector as �R = rr̂+ sŝ. Let V0(s) be the electric potential on the axis of sym-

metry. Show that the electric potential V (r, s) and the electric field �E = Er r̂ + Esŝ
are

V (r, s) = V0(s)− V
(2)
0

4
r2 +

V
(4)
0

64
r4 + · · · ,

Er =
V

(2)
0

2
r − V

(4)
0

16
r3 + · · · ,

Es = −V
(1)
0 +

V
(3)
0

4
r2 − V

(5)
0

64
r4 + · · · ,

where V
(n)
0 correspond to nth-derivative of V0 with respect to s. The equation of

motion for a non-relativistic particle in the electric field is m�̈R = e �E, where the
overdot represents the time derivative. Show that the equation of motion for the
radial coordinate, known as the paraxial ray equation, becomes

V r�� +
1

2
V �r� +

1

4
V ��r = 0,

where V replaces V0 for simplicity and the prime is the derivative with respective to s.
The paraxial ray equation can be used to analyze the beam envelope in electrostatic
accelerators.49

17. Consider a line charge inside an infinitely long circular conducting cylinder with radius
b. The line-charge density per unit length is λ, and the coordinates of the line charge
are �a = (a cosφ, a sin φ), where a is the distance from the center of the cylinder, and
φ is the phase angle with respect to the x̂ axis. Show that the induced surface charge
density on the cylinder is50

σ(b, φw) = − λ

2πb

b2 − a2

b2 + a2 − 2ba cos(φw − φ)

= − λ

2πb

[
1 + 2

∞∑
i=1

(a
b

)n
cosn(φw − φ)

]
.

where φw is the angular coordinate of the cylindrical wall surface. This result is the
basis of beam position monitor design.

49V.K. Zworykin et al., Electron Optics and the Electron Microscope, (Wiley, 1945); J.R. Pierce,
Theory and Design of Electron Beams, (Van Nostrand, 1949); V.E. Cosslett, Introduction to Electron
Optics, (Oxford, 1950); F. Terman, Radio Engineers’ Handbook, (McGraw-Hill, 1943).

50Let the image charge be located at �c = (c cosφ, c sinφ), then the electric potential for infinite
line charges at �r is

Φ(r) =
λ

2π�0
ln |�r − �a|+ λi

2π�0
ln |�r − �c|.

The electric field is E = −∇Φ. Using the condition Eφ = 0 on the conducting wall surface in the
cylindrical coordinate, we obtain c = b2/a and λi = −λ. The induced surface charge density is
σ = �0Er. The multipole expansion can be obtained by using the identity cosnθ + j sinnθ = ejnθ.



Chapter 2

Transverse Motion

The transverse particle motion in an accelerator is divided into a closed orbit and

a small-amplitude betatron motion around the closed orbit, where the closed orbit
in a synchrotron is defined as a particle trajectory that closes onto itself after a

complete revolution, a closed orbit in a linac or cyclotron is the orbit with zero
betatron oscillation amplitude. Particle motion with a small deviation from the closed

orbit will oscillate around the closed orbit. The terminology of betatron motion is

derived from the seminal work of D. Kerst and R. Serber on the stability of transverse
particle motion in a betatron. It is now used for transverse motion in all types of

accelerators.

In synchrotrons, bending magnets are needed to provide complete revolution of
the particle beam. This defines a closed orbit. Betatron motion around the closed

orbit is determined by an arrangement of quadrupoles, called accelerator lattice. In
actual accelerators, magnetic field errors are unavoidable, the closed orbit and the

betatron motion will be perturbed. Lattice design has to take these field errors into
account. Since the bending angle of a dipole depends on the particle momentum,

the resulting closed orbit is a function of the particle momentum. In the first-order
approximation, the deviation of the closed orbit is proportional to the fractional off-

momentum deviation (p− p0)/p0, where p0 is the momentum of a reference particle.
The dispersion function, defined as the derivative of the closed orbit with respect to

the fractional off-momentum variable, and the chromatic aberration of the betatron
motion play a major role in the accelerator’s performance. Furthermore, careful cor-

rection of linear and nonlinear resonances and feedback of collective beam instabilities
are important for high-intensity and high-brightness beams.

Various aspects of transverse particle motion will be discussed in this chapter. In

principle, the method discussed in this chapter can also be applied to a linac or a
transport line, where the betatron motion is equivalent to an initial value problem.

In Sec. I, we derive the particle Hamiltonian in the Frenet-Serret coordinate sys-

tem. For accelerator practitioners, who are not familiar with Hamiltonian dynamics,
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can skip the formal formulation of Sec. I and jump right on to the Hill’s equations:

Eq. (2.22) of Sec. II, where we examine the properties of linear betatron motion.
We discuss the Floquet transformation to action-angle variables, beam distribution,

beam emittance, and properties of the envelope function. In Sec. III, we study the
effects of linear magnetic imperfections (dipole and quadrupole field errors) and their

roles in beam manipulation. Section IV deals with the off-momentum closed orbit
and its implications for longitudinal synchrotron motion, and also with the lattice

design strategies for variable γ
T
and minimum dispersion action. Section V describes

the chromatic aberration and its correction, and Section VI describes linear beta-

tron coupling. In Sec. VII, we examine the effects of low-order nonlinear resonances.
Section VIII introduces the basic concept of transverse collective instabilities and Lan-

dau damping. Section IX lays out a general framework for the synchrotron-betatron

coupling Hamiltonian.

I Hamiltonian for Particle Motion in Accelerators

The motion of a charged particle in electromagnetic field �E and �B is governed by the

Lorentz force,
d�p

dt
= �F = e(�E + �v × �B), (2.1)

where �p = γm�v is the mechanical momentum, �v = d�r/dt is the velocity, m is the mass,

e is the charge, and γ = 1/
√
1− v2/c2 is the relativistic Lorentz factor. The energy

and momentum of the particle are E = γmc2 = mc2dt/dτ and �p = mγ�v = md�r/dτ ,

where τ is the proper time with dt/dτ = γ. The electric and magnetic fields are
related to the vector potential �A and scalar potential Φ via �E = −∇Φ− ∂ �A/∂t, and
�B = ∇× �A. With the Lagrangian: L = −mc2

√
1− v2/c2−eΦ+e�v · �A, Equation (2.1)

can be derived from Lagrange’s equation

d

dt

(
∂L

∂�v

)
− ∂L

∂�r
= 0. (2.2)

The canonical momentum, the Hamiltonian, and Hamilton’s equations of motion are

�P =
∂L

∂�v
= �p+ e �A, (2.3)

H = �P · �v − L = c[m2c2 + (�P − e �A)2]1/2 + eΦ, (2.4)

ẋ =
∂H

∂Px
, Ṗx = −∂H

∂x
, etc., (2.5)

where the overdot is the derivative with respect to time t, and (x, Px), · · · pairs are

conjugate phase-space coordinates with respect to any reference point in space. Par-
ticle motion in accelerators is usually confined to small deviations from a well-defined

reference orbit. The phase space coordinate system around this reference orbit is

called the Frenet-Serret coordinate system shown in Fig. 2.1.
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Figure 2.1: Curvilinear coordinate system
for particle motion in synchrotrons. �r0(s) is
the reference orbit, x̂, ŝ and ẑ form the basis
of the curvilinear coordinate system. Any
point in the phase space can be expressed
by �r = �r0 + xx̂ + zẑ. Here x and z are
betatron coordinates.

I.1 Hamiltonian in Frenet-Serret Coordinate System

Let �r0(s) be the reference orbit (see Fig. 2.1), where s is the path length measured

along the reference orbit from an initial point. The tangent unit vector to the reference
orbit, the unit vector perpendicular to the tangent vector and on the tangential plane,1

and the unit vector orthogonal to the tangential plane are

ŝ(s) =
d�r0(s)

ds
, x̂(s) = −ρ(s)

dŝ(s)

ds
, ẑ(s) = x̂(s)× ŝ(s) , (2.6)

where ρ(s) defines the radius of curvature. The vectors (x̂, ŝ, ẑ) form the orthonormal
basis for the right-handed Frenet-Serret curvilinear coordinate system with

x̂′(s) =
1

ρ(s)
ŝ(s) + τ(s)ẑ(s), ẑ′(s) = −τ(s)x̂(s) , (2.7)

where the prime denotes differentiation with respect to s, and τ(s) is the torsion of
the curve. For simplicity, we discuss only planar geometry, where τ(s) = 0. The

particle trajectory around the reference orbit can be expressed as

�r(s) = �r0(s) + xx̂(s) + zẑ(s) . (2.8)

To express the equation of motion in terms of the reference orbit coordinate system

(x, s, z), we perform a canonical transformation by using the generating function

F3(�P ; x, s, z) = −�P · [�r0(s) + xx̂(s) + zẑ(s)] , (2.9)

where �P is the momentum in the Cartesian coordinate system. The conjugate mo-
menta for the coordinates (x, s, z) (see Appendix A) and the field momentum vector

in the curvilinear coordinate system As, Ax and Az are

ps = −∂F3

∂s
=

(
1 +

x

ρ

)
�P · ŝ, px = −∂F3

∂x
= �P · x̂, pz = −∂F3

∂z
= �P · ẑ.

As =

(
1 +

x

ρ

)
�A · ŝ, Ax = �A · x̂, Az = �A · ẑ .

1Using Eq. (2.6), we find acentripetal = |d2�r0/dt2| = (ds/dt)2|(d/ds)(d�r0/ds)| = v2|(dŝ/ds)|, where
v = ds/dt is the tangential velocity. The magnitude of the bending radius is ρ = v2/acentripetal =
|ds/dŝ|.
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The new Hamiltonian becomes

H = eΦ + c

{
m2c2 +

(ps − eAs)
2

(1 + x/ρ)2
+ (px − eAx)

2 + (pz − eAz)
2

}1/2

, (2.10)

Note that As and ps are not simply the projections of vectors �A and �P in the ŝ

direction. In the new coordinate system, Hamilton’s equation becomes

ṡ =
∂H

∂ps
, ṗs = −∂H

∂s
; ẋ =

∂H

∂px
, ṗx = −∂H

∂x
; ż =

∂H

∂pz
, ṗz = −∂H

∂z
. (2.11)

The next step is to use s as the independent variable instead of time t [20]. With

the relation dH = (∂H/∂px)dpx + (∂H/∂ps)dps = 0 or

x� =
dx

ds
=

ẋ

ṡ
=

(
∂H

∂px

)(
∂H

∂ps

)−1

=
∂(−ps)

∂px
, etc., (2.12)

where the prime denotes differentiation with respect to s, Hamilton’s equations of

motion become

t� =
∂ps
∂H

,H � = −∂ps
∂t

; x� = −∂ps
∂px

, p�x =
∂ps
∂x

; z� = −∂ps
∂pz

, p�z =
∂ps
∂z

. (2.13)

Here s as the independent variable, −ps is the new Hamiltonian, and the conjugate

phase-space coordinates are (x, px; z, pz; t,−H).

Since the scalar and vector potentials Φ and �A depend on position, the new
Hamiltonian is a function of the independent coordinate s. However, the repetitive

nature of the accelerator components, the dependence of the new Hamiltonian on s
is periodic. The periodic nature of the new Hamiltonian can be fruitfully exploited in

the analysis of linear and nonlinear betatron motion with the Floquet theorem. The
new Hamiltonian H̃ = −ps becomes

H̃ = −
(
1 +

x

ρ

)[
(H − eΦ)2

c2
−m2c2 − (px − eAx)

2 − (pz − eAz)
2

]1/2
− eAs, (2.14)

with (x, px, z, pz, t,−H) as the phase-space coordinates. The energy and momentum

of a particle are given by E = H − eΦ and p =
√
E2/c2 −m2c2. Since the transverse

momenta px and pz are much smaller than the total momentum p, we expand the

Hamiltonian up to second order in px and pz

H̃ ≈ −p

(
1 +

x

ρ

)
+

1 + x/ρ

2p

[
(px − eAx)

2 + (pz − eAz)
2
]− eAs. (2.15)
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I.2 Magnetic Field in Frenet-Serret Coordinate System

The scale factors for the Frenet-Serret coordinate system are hx = 1, hs = 1+ x
ρ
, hz =

1. The differential path length is d�2 = h2
xdx

2 + h2
sds

2 + h2
zdz

2, and the differential

operators are

∇Φ =
∂Φ

∂x
x̂+

1

hs

∂Φ

∂s
ŝ+

∂Φ

∂z
ẑ,

∇ · �A =
1

hs

[
∂(hsA1)

∂x
+

∂A2

∂s
+

∂(hsA3)

∂z

]
,

∇× �A =
1

hs

[
∂A3

∂s
− ∂(hsA2)

∂z

]
x̂+

[
∂A1

∂z
− ∂A3

∂x

]
ŝ+

1

hs

[
∂(hsA2)

∂x
− ∂A1

∂s

]
ẑ,

∇2Φ =
1

hs

[
∂

∂x
hs

∂Φ

∂x
+

∂

∂s

1

hs

∂Φ

∂s
+

∂

∂z
hs

∂Φ

∂z

]
,

where A1 = �A · x̂, A2 = �A · ŝ, and A3 = �A · ẑ. In particle accelerators, we consider

only the case with zero electric potential with Φ = 0, furthermore, for an accelerator
with transverse magnetic fields, we can assume Ax = Az = 0. The two-dimensional

magnetic field can be expressed as

�B = Bx(x, z)x̂+ Bz(x, z)ẑ,

Bx = − 1

hs

∂(hsA2)

∂z
= − 1

hs

∂As

∂z
, Bz =

1

hs

∂(hsA2)

∂x
=

1

hs

∂As

∂x
, (2.16)

with As = hsA2. Using Maxwell’s equation ∇× �B = 0, we have

∂

∂z

1

hs

∂As

∂z
+

∂

∂x

1

hs

∂As

∂x
= 0. (2.17)

General solutions of Bx, Bz and As can be obtained through power series expansion

(see Exercise 2.1.3).

In the rectangular coordinate system with hs = 1 or ρ = ∞, we have ∇2
⊥As = 0,

and As can be expanded in power series as

As = B0�
[ ∞∑
n=0

bn + jan
n+ 1

(x+ jz)n+1

]
, (2.18)

where j is the imaginary number, �[...] represents the real part, and Bz = ∂As

∂x
and

Bx = −∂As

∂z
. Normally the normalization constant B0 is chosen as the main dipole

field strength such that b0 = 1, i.e. B0b0 = −[Bρ]/ρ, where Bρ is the momentum

rigidity of the beam, ρ is the bending radius. The resulting magnetic flux density and
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the effective multipole field on the beam particles become2

Bz + jBx = B0

∞∑
n=0

(bn + jan)(x+ jz)n (2.19)

1

Bρ
(Bz + jBx) =

1

ρ

∞∑
n=0

(bn + jan)(x+ jz)n,

bn =
1

B0n!

∂nBz

∂xn

∣∣∣
x=z=0

, an =
1

B0n!

∂nBx

∂xn
|x=z=0,

where bn, an are called 2(n+ 1)th multipole coefficients with dipole b0, dipole roll a0,

quadrupole b1, skew quadrupole a1, sextupole b2, skew sextupole a2, etc.
3 Here after,

we use the notation: Bn = ∂nBz

∂xn

∣∣∣
x=z=0

. The complex 2D magnetic field representation

in Bz + jBx is called the Beth representation (see Exercise 1.10).
Since ∇× �B = 0 in the current free region, the magnetic field can also be derived

from a scalar magnetic potential Φm, i.e. �B = −∇Φm (see Exercise 2.1.3). The scalar
magnetic potential is

Φm = −B0�
[ ∞∑
n=0

bn + jan
n+ 1

(x+ jz)n+1

]
, (2.20)

where �[...] represents the imaginary part of the expression.

I.3 Equation of Betatron Motion

Disregarding the effect of synchrotron motion (see Sec. IX Chap. 2), Hamilton’s
equations of betatron motion are

x� =
∂H̃

∂px
, p�x = −∂H̃

∂x
, z� =

∂H̃

∂pz
, p�z = −∂H̃

∂z
. (2.21)

With the transverse magnetic fields of Eq. (2.16), the betatron equations of motion
become

x�� − ρ+ x

ρ2
= ±Bz

Bρ

p0
p

(
1 +

x

ρ

)2

, z�� = ∓Bx

Bρ

p0
p

(
1 +

x

ρ

)2

, (2.22)

2The multipole expansion of the magnetic field is usually re-scaled to obtain

Bz + jBx = B0

∞∑
n=0

(bn + jan)(
x+ jz

rb
)n,

where rb is a reference radius. The reference radius for the multipole expansion of superconducting
magnets is often chosen to be 1/2 or 2/3 of the inner coil radius, e.g. rb = 1 cm for the SSC and LHC,
and rb = 2.54 cm for RHIC and Tevatron. The resulting bn and an coefficients are dimensionless.

3Note that the multipole convention used in Europe differs from that in the U.S. In Europe,
physicists use b1, a1 for dipole and dipole roll, b2, a2 for quadrupole and skew quadrupole, etc.
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where we neglect higher-order terms, the upper and lower signs correspond to the

positive and negative charged particle respectively, p is the momentum of the particle,
p0 is the momentum of a reference particle, Bρ = p0/e is the magnetic rigidity, and

e is the charge of a particle. The sign convention is chosen such that Bρ is positive.
Alternatively, Eq. (2.22) can be derived through Newton’s law of acceleration (see

Exercise 2.1.2). The equations of motion are given by

r̈ − rθ̇2 =
evsBz

γm
= ±v2sBz

Bρ
, z̈ = ∓v2sBx

Bρ
,

which can be transformed into Eq. (2.22) by changing the time variable to the coor-
dinate of orbital distance s, i.e. x�� = r̈/v2s .

I.4 Particle Motion in Dipole and Quadrupole Magnets

We consider a on-momentum particle with p = p0, expand the magnetic field up to
first order in x and z, i.e.

Bz = ∓B0 +
∂Bz

∂x
x = ∓B0 + B1x, Bx =

∂Bz

∂x
z = B1z, (2.23)

where B0/Bρ = 1/ρ signifies the dipole field in defining a closed orbit, and the
quadrupole gradient function B1 = ∂Bz/∂x is evaluated at the closed orbit. The

betatron equations of motion, Eq. (2.22), become Hill’s equation:

x�� +Kx(s)x = 0, z�� +Kz(s)z = 0, (2.24)

Kx = 1/ρ2 +K1(s), Kz = −K1(s),

where K1(s) = ∓B1(s)/Bρ is the effective focusing function with dimension [m−2].
Here the upper and lower signs correspond respectively to the positive and negative

charged particles. The sign-convention is K1 > 0 for horizontal focusing, and thus
vertical defocusing. The focusing index is defined as n(s) = ±ρ2 K1(s), or Kx =
1
ρ2
(1 − n) and Kz = 1

ρ2
n. A weak focusing accelerator requires 0 ≤ n(s) ≤ 1,

while a strong-focusing accelerator, |n| � 1, e.g. n(s) ≈ ±350 for the AGS. Some
observations about the linearized betatron equations (2.24) are given below.

• In a quadrupole, where 1/ρ = 0, we have Kx = −Kz , i.e. a horizontally focusing
quadrupole is also a vertically defocusing quadrupole and vice versa.

• A horizontal bending dipole has a focusing function Kx = 1/ρ2, and Kz = 0. A

dipole with entrance and exit angles perpendicular to the edge of the dipole field
is called a sector dipole (see Fig. 2.2a). The entrance and exit angles of particle

trajectories in non-sector type dipoles are not perpendicular to the dipole edge.

There is an edge focusing/defocusing effect (see Exercise 2.2.2) on all dipoles.
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• The focusing functions Kx, Kz is periodic functions of the longitudinal coor-

dinate s in one revolution. One can design an accelerator lattice with many
identical focusing periods. The number of identical building blocks is called

the superperiod P . The solution of periodic Hill’s equation satisfies the Floquet
theorem.

Figure 2.2: Schematic drawing of the
particle trajectory in a sector dipole
and in a rectangular dipole. Note
that the particle orbit is perpendic-
ular to the pole-faces of the sector
dipole magnet, and makes an angle
θ/2 with the pole-faces in the rectan-
gular dipole.

Exercise 2.1

1. In the Frenet-Serret coordinate system (x̂, ŝ, ẑ), transverse magnetic fields are

Bx = − 1

1 + x/ρ

∂As

∂z
, Bz =

1

1 + x/ρ

∂As

∂x
.

Derive Eq. (2.22) from the Hamiltonian of Eq. (2.15).

2. Derive Eq. (2.22) through the following geometric argument. Let (x̂, ŝ, ẑ) be local
polar coordinates inside a dipole. The particle coordinate is

�r = (ρ+ x)x̂+ zẑ,

where ρ is the bending radius. The momentum of the particle is �p = γm�̇r, where γ
is constant in the static magnetic field, and the overdot corresponds to the derivative
with respect to time t. Similarly, d�p/dt = γm�̈r.

(a) Using Eq.(2.7), show that

�̇r = ẋx̂+ (ρ+ x)θ̇ŝ+ żẑ,

�̈r = [ẍ− (ρ+ x)θ̇2]x̂+ [2ẋθ̇ + (ρ+ x)θ̈]ŝ+ z̈ẑ,

where θ = s/ρ is the angle associated with the reference orbit, i.e. ds = ρdθ.

(b) Using d�p/dt = e�v × �B, with �B = Bxx̂+Bz ẑ, show that

ẍ− (ρ+ x)θ̇2 =
v2sBz

Bρ
, z̈ = −v2sBx

Bρ
,

whereBρ = γmvs/e is the momentum rigidity and vs is the longitudinal velocity.
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(c) Transform the time coordinate to the longitudinal distance s with ds = ρdθ,
where dθ = vsdt/(ρ+ x), and show that

x�� − ρ+ x

ρ2
=

Bz

Bρ
(1 +

x

ρ
)2, z�� = −Bx

Bρ
(1 +

x

ρ
)2,

where the prime is the derivative with respect to s.

3. Inside the vacuum chamber of an accelerator, we have ∇ × �B = 0 and ∇ × �E = 0.
Thus the electric field and magnetic field can be expanded by scalar potentials with
�B = −∇Φm, �E = −∇Φe, where both scalar potentials satisfy the Laplace equation
with ∇2Φ = 0, where Φ stands for either Φm or Φe. In the curvilinear coordinates
(x, s, z), we then have

∇2Φ =
1

1 + hx

∂

∂x
([1 + hx]

∂Φ

∂x
) +

∂2Φ

∂z2
+

1

1 + hx

∂

∂s
(

1

1 + hx

∂Φ

∂s
) = 0,

where h = 1/ρ, and ρ is the radius of curvature. Expressing the scalar potential in
power series of particle coordinates,

Φ =
∑
i,j>0

Aij
xi

i!

zj

j!
,

show that Aij satisfies the following iteration relation:

Ai,j+2 = −A��
i,j − ihA��

i−1,j + ih�A�
i−1,j −Ai+2,j − (3i+ 1)hAi+1,j

−3ihAi−1,j+2 − i(3i − 1)h2Ai,j − 3i(i− 1)h2Ai−2,j+2

−i(i− 1)2h3Ai−1,j − i(i− 1)(i − 2)h3Ai−3,j+2,

where the prime is the derivative with respect to s. Assuming A00 = 0, A10 = 0,
and A01 = −B00 in a rectangular coordinate system with h = h� = 0, show that the
magnetic potential, up to the fourth order with i+ j ≤ 4, is4

Φ = −B00z +
1

2
A20(x

2 − z2) +A11xz +
1

6
A30(x

3 − 3xz2) +
1

2
B��

00xz
2

+
1

2
A21x

2z +
1

6
(B��

00 −A21)z
3 +

1

24
A40(x

4 − 6x2z2 + z4)

+
1

12
A��

20(−3x2z2 + z4) +
1

6
A31(x

3z − xz3)− 1

6
A��

11xz
3.

4. The field components in the current-free region of an axial symmetric solenoid are

Bx = x

∞∑
k=0

b2k+1(x
2 + z2)k, Bz = z

∞∑
k=0

b2k+1(x
2 + z2)k, Bs =

∞∑
k=0

b2k(x
2 + z2)k.

4A word of caution: the magnetic potential obtained here can not be used as the potential in the
Hamiltonian of Eq. (2.14). In particular, the potential for a quadrupole is given by the A11 term
and the skew quadrupole arises from the A20 term, etc. However, this serves as a general method
for deriving the magnetic field map.
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(a) Show that the coefficients are

b2k+1 =
−1

2(k + 1)
b�2k, b2k+2 =

1

2(k + 1)
b�2k+1 ,

where the prime is the derivative with respect to s. Show that the vector
potential is

Ax = z
∞∑
k=0

b2k
2(k + 1)

(x2 + z2)k, Az = −x
∞∑
k=0

b2k
2(k + 1)

(x2 + z2)k, As = 0.

In a cylindrical coordinate system, where �r = xx̂ + zẑ, r =
√
x2 + z2, and

φ̂ = (−zx̂+ xẑ)/r, show that the vector potential can be expressed as

�A = −
[
1

2
r b0(s)− 1

16
r3 b��0(s) + · · ·

]
φ̂.

(b) The Hamiltonian of Eq. (2.15) for the particle motion in the solenoid is

H = −p+
1

2p
[(px − eAx)

2 + (pz − eAz)
2].

Show that the linearized equation of motion is (see also Exercise 2.6.2)

x�� + 2gz� + g�z = 0, z�� − 2gx� − g�x = 0,

where g = eb0/2p = eB�/2p is the strength of the solenoid. The linearized
equation can be solved analytically. Letting y = x+ jz, show that the coupled
equation of motion becomes

y�� − j2gy� − jg�y = 0.

Transforming the coordinates into the rotating frame, show that the system is
decoupled, i.e.

ȳ = ye−jθ(s), where θ =

∫ s

0
gds,

ȳ�� + g2ȳ = 0.

Thus the solenoidal field, in the rotating frame, provides both horizontal and
vertical focusing, independent of the direction of the solenoidal field. Note also
that the effects of the ends of a solenoid, included in the g� terms, have been
included to obtain this Hill’s equation in the rotating frame.

(c) Up to third order, show that the equation of motion is

x�� + 2gz� + g�z =
g��

2
z�(x2 + z2) +

g���

8
z(x2 + z2),

z�� − 2gx� − g�x = −g��

2
x�(x2 + z2)− g���

8
x(x2 + z2).
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5. Consider the transverse magnetic field in the Frenet-Serret coordinate system.5 For
normal multipoles with mid-plane symmetry with

Bz(z) = Bz(−z), Bx(z) = −Bx(−z), Bs(z) = −Bs(−z),

the most general form of expansion is

Bz =

∞∑
i,k=0

bi,kx
iz2k, Bx = z

∞∑
i,k=0

ai,kx
iz2k, Bs = z

∞∑
i,k=0

ci,kx
iz2k,

where a, b, c can be determined from Maxwell’s equations: ∇× �B = 0 and ∇ · �B = 0.
Show that Maxwell’s equations give the following relations:

ai,k =
i+ 1

2k + 1
bi+1,k, ci,k +

1

ρ
ci−1,k =

1

2k + 1
b�i,k,

c�i,k +
(i+ 1)2

ρ(2k + 1)
bi+1,k +

(i+ 1)(i + 2)

2k + 1
bi+2,k +

2(k + 1)

ρ
bi−1,k+1 + 2(k + 1)bi,k+1 = 0,

where the prime is the derivative with respect to s. Assuming that we can measure
the Bz at the mid-plane as a function of x, s, i.e.

Bz(z = 0) = B0,0 +B1,0x+B2,0x
2 +B3,0x

3 + · · · ,
where Bi,0 are functions of s, show that the field map is

Bz = B0,0 +B1,0x+B2,0x
2 − (B2,0 +

B��
0,0

2
+

B1,0

2ρ
)z2 +B3,0x

3

−{3B3,0 +
2B2,0

ρ
− 1

ρ
(B2,0 +

B1,0

2ρ
+

B��
0,0

2
) +

1

2
[B��

1,0 − (
B�

0,0

ρ
)�]}xz2 + · · · ,

Bx = B1,0z + 2B2,0xz + 3B3,0x
2z − 1

3
{3B3,0 +

2B2,0

ρ

−1

ρ
(B2,0 +

B1,0

2ρ
+

B��
0,0

2
) +

1

2
[B��

1,0 − (
B�

0,0

ρ
)�]}z3 + · · · ,

Bs = B�
0,0z + (B�

1,0 −
B�

0,0

ρ
)xz + (B�

2,0 −
B�

1,0

ρ
+

B�
0,0

ρ2
)x2z

−1

3
(B�

2,0 + (
B1,0

2ρ
)� +

B���
0,0

2
)z3 + · · · .

Show that in a pure multipole magnet, where ρ → ∞, the magnetic field can be
expanded as

Bz + jBx =
∑
n=0

Bn,0(x+ jz)n − B��
0,0

2
z2 +

B��
1,0

2
(x+ jz)z2 + · · · ,

where j is the complex number. Thus for a finite length quadrupole with B�
1,0 �= 0,

the end field has an octupole-like magnetic multipole field.

5See K. Steffen, CERN 85-19, p. 25 (1985).
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II Linear Betatron Motion

Transverse particle motion around a closed orbit is called betatron motion. Since the

amplitude of betatron motion is normally small, we study the linearized Hill’s equa-
tion: Eq. (2.24). The focusing functions are normally arranged to be periodic with

Kx,z(s+L) = Kx,z(s), where L is the length of a periodic structure in an accelerator.
For example, Fig. 2.3 shows a schematic drawing of the Fermilab booster lattice, where

four combined function magnets are arranged to form a basic focusing-defocusing pe-

riodic (FODO) cell. Exploiting the periodic nature, we apply the Floquet theorem
(see Appendix A, Sec. I.5) to facilitate the design of an accelerator lattice, In this

section we study linear betatron motion. betatron tune, envelope equation. Floquet
transformation, the action and Courant–Snyder invariant, σ-matrix, beam distribu-

tion and emittance.

Figure 2.3: A schematic drawing of the Fermi-
lab booster lattice, made of 24 FODO cells with
cell-length 19.7588 m. Each period consists of four
combined-function magnets of length 2.8896 m and
focusing function KF = 0.02448 m−2 and KD =
−0.02082 m−2. A small trim focusing quadrupole is
used to change the betatron tune. The nominal be-
tatron tunes are νx = 6.7 and νz = 6.8.

II.1 Transfer Matrix and Stability of Betatron Motion

Because accelerator components usually have uniform or nearly uniform magnetic

fields, the focusing functions Kx,z(s) are essentially piecewise constant. Let y, y� rep-
resent either horizontal or vertical phase-space coordinates, then Eq. (2.24) becomes

y�� +Ky(s)y = 0, (2.25)

with the periodic condition Ky(s+ L) = Ky(s). The solution (y, y�) is continuous for
a finite Ky. We neglect the subscript y hereafter for simplify our notation. With a

constant K, the solution is

y(s) =

⎧⎨
⎩

a cos(
√
Ks+ b), K > 0,

as+ b, K = 0,
a cosh(

√−Ks+ b), K < 0.

(2.26)

The integration constants a and b are determined by the initial values of y0 and y�0.
We define the betatron state-vector and obtain the betatron transfer matrix M(s|s0)
as

y(s) =

�
y(s)
y�(s)

�
; y(s) = M(s|s0)y(s0). (2.27)
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Here we use (x, x�) as the betatron state vector, but bear in mind that the conjugate

phase space coordinates are (x, px) of the Hamiltonian (2.14), and the phase space
evolution should be described by Hamilton’s equations (2.21). The transfer matrix

for a constant focusing function K is

M(s|s0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
cos

√
K� 1√

K
sin

√
K�

−√
K sin

√
K� cos

√
K�

�
K > 0: focusing quad.

�
1 �
0 1

�
K = 0: drift space

�
cosh

�|K|� 1√
|K|sinh

�|K|�
�|K|sinh�|K|� cosh

�|K|�

�
K < 0: defocusing quad.

where � = s − s0. In thin-lens approximation with � → 0, the transfer matrix for a

quadrupole reduces to

Mfocusing =

�
1 0

−1/f 1

�
, Mdefocusing =

�
1 0

1/f 1

�
, (2.28)

where f is the focal length given by6 f = lim�→0
1

|K|� . Similarly, the transfer matrix

for a pure sector dipole with Kx = 1/ρ2 is

Mx(s, s0) =

�
cos θ ρ sin θ

−1
ρ
sin θ cos θ

�
(θ�1)−−−−→

�
1 �
0 1

�
, (2.29)

where θ = �/ρ is the orbiting angle and ρ is the bending radius, and � is the length of

the dipole. In small-angle approximation, the transfer matrix of a dipole is equivalent
to that of a drift space.

The transfer matrix for any intervals made up of subintervals is just the product
of the transfer matrices of these subintervals, e.g. M(s2|s0) = M(s2|s1)M(s1|s0).
Using these matrices, particle motion can be tracked through accelerator elements.
Combining all segments, the solution of a second-order differential equation can be

expressed as

y(s) = C(s, s0)y0 + S(s, s0)y
�
0, y�(s) = C �(s, s0)y0 + S �(s, s0)y�0,

where C � and S � are the derivatives of C and S with respect to s, and y0 and y�0
are the initial phase-space coordinates at s0. The solutions C(s, s0) and S(s, s0) are
respectively called the cosine-like and sine-like solutions with boundary conditions

C(s0, s0) = 1, S(s0, s0) = 0, C �(s0, s0) = 0, S �(s0, s0) = 1.

6The convention for the transfer matrix of a thin-lens quadrupole is Mquad =

�
1 0

−1/f 1

�
,

where f > 0 for a focusing quadrupole and f < 0 for a defocusing quadrupole. In this case,
f = lim�→0 1/(K�).
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The solution of Eq. (2.24) can be expressed in terms of the transfer matrix as7

y(s) = M(s|s0)y(s0), M(s|s0) =
�

C(s, s0) S(s, s0)
C �(s, s0) S �(s, s0)

�
,

where (y0, y
�
0) and (y, y�) are the particle phase-space coordinates at the entrance and

exit of accelerator elements. For any two linearly independent solutions y1, y2 of Hill’s
equation, the Wronskian is independent of time, i.e.

W (y1, y2, s) ≡ y1y
�
2 − y�1y2,

dW

ds
= 0. (2.31)

The Wronskian obeys W (s) = [detM ]W (s0). Thus detM = 1, or detM(s|s0) =
W (C, S, s) = 1.

An accelerator is usually constructed with repetitive modules. Let L be the length
of a module with K(s + L) = K(s). The number of identical modules that form

a complete accelerator is called the superperiod P . For example, P = 24 for the

Fermilab booster shown in Fig. 2.3, P = 12 for the AGS at BNL, and P = 8 for
the bare lattice of LEP at CERN. The transfer matrix M of one repetitive period

composed of n elements is a periodic function of s with a period L, i.e.

M(s) ≡ M(s + L|s) = Mn · · ·M2M1,

where the Mi’s are the transfer matrices of the constituent elements. Using the

periodicity condition, we find

M(s2 + L|s1) = M(s2)M(s2|s1) = M(s2|s1)M(s1),

M(s2) = M(s2|s1)M(s1)[M(s2|s1)]−1. (2.32)

Since M(s2) and M(s1) are related by a similarity transformation, the periodic trans-

fer matrix has identical eigenvalues. The transfer matrix for passing through P super-
periods is M(s + PL|s) = [M(s)]P , and for passing through m revolutions becomes

[M(s)]mP .

The necessary and sufficient condition for stable orbital motion is that all matrix

elements of the matrix [M(s)]mP remain bounded as m increases. Let λ1, λ2 be the

eigenvalues and v1, v2 be the corresponding eigenvectors of the matrixM. SinceM has

7The transfer matrix for the uncoupled betatron motion can be expressed as

⎛
⎜⎝

x
x′

z
z′

⎞
⎟⎠

2

=

�
Mx(s2|s1) 0

0 Mz(s2|s1)
�
⎛
⎜⎝

x
x′

z
z′

⎞
⎟⎠

1

, (2.30)

where the M ’s are the 2×2 transfer matrices.
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a unit determinant, the eigenvalues are the reciprocals of each other, i.e. λ1 = 1/λ2,

and λ1 + λ2 = Trace(M). The eigenvalue satisfies the equation

λ2 − Trace(M)λ + 1 = 0.

Let Trace(M) = 2 cos(Φ). We find that Φ is real if Trace(M) ≤ 2, and Φ is complex if

Trace(M) > 2. The eigenvalues are λ1 = ejΦ and λ2 = e−jΦ, where Φ is the betatron
phase advance of a periodic cell.

Expressing the initial condition of beam coordinates (y0, y
�
0) as a linear superposi-

tion of the eigenvectors, i.e.

(
y0
y�0

)
= av1 + bv2, where v1 and v2 are the eigenvectors

associated with eigenvalues λ1 and λ2 respectively, we find that the particle coordinate
after the mth revolution becomes(

ym
y�m

)
= Mm

(
y0
y�0

)
= aλm

1 v1 + bλm
2 v2.

The stability of particle motion requires that λm
1 and λm

2 not grow with m. Thus a

necessary condition for orbit stability is to have a real betatron phase advance Φ, or

|Trace(M)| ≤ 2. (2.33)

II.2 Courant–Snyder Parametrization

The most general form for matrix M with unit modulus can be parametrized as

M =

(
cos Φ + α sin Φ β sinΦ

−γ sinΦ cosΦ− α sinΦ

)
= I cosΦ + J sinΦ, (2.34)

where α, β and γ are Courant–Snyder parameters,8 Φ is the phase advance, I is the

unit matrix, and

J =

(
α β
−γ −α

)
, with Trace(J) = 0, J2 = −I or βγ = 1 + α2. (2.35)

Similarity transformation of the matrix M can also be parametrized as that of
Eq. (2.34). The ambiguity in the sign of sinΦ can be resolved by requiring β to

be a positive definite number if |Trace(M)| ≤ 2, and by requiring Im(sinΦ)>0 if
|Trace(M)| > 2. The definition of the phase factor Φ is still ambiguous up to an

integral multiple of 2π. This ambiguity will be resolved when the matrix is tracked
along the accelerator elements. Using the property of matrix J, we obtain the De

Moivere’s theorem:

Mk = (I cosΦ + J sinΦ)k = I cos kΦ+ J sin kΦ,

M−1 = I cosΦ− J sinΦ.

8The α, β, and γ parameters have nothing to do with the relativistic Lorentz factor.
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With the similarity transformation of Eq. (2.32), the values of the Courant–Snyder

parameters α2, β2, γ2 at s2 are related to α1, β1, γ1 at s1 by (see Exercise 2.2.8)

⎛
⎝

β
α
γ

⎞
⎠

2

=

⎛
⎝

M2
11 −2M11M12 M2

12

−M11M21 M11M22 +M12M21 −M12M22

M2
21 −2M21M22 M2

22

⎞
⎠

⎛
⎝

β
α
γ

⎞
⎠

1

, (2.36)

where Mij are the matrix elements of M(s2|s1).

1. The evolution of the betatron amplitude function in a drift space is

β2 =
1

γ1
+ γ1

�
s− α1

γ1

�2

= β∗ +
(s− s∗)2

β∗ ,

α2 = α1 − γ1s = −(s− s∗)
β∗ , γ2 = γ1 =

1

β∗ .

Note that γ is constant in a drift space, and s∗ = α1/γ1 is the location for an
extremum of the betatron amplitude function with α(s∗) = 0.

2. Passing through a thin-lens quadrupole, the evolution of betatron function is

given by

β2 = β1, α2 = α1 +
β1

f
, γ2 = γ1 +

2α1

f
+

β1

f 2
,

where f is the focal length of the quadrupole. Thus a thin-lens quadrupole gives
rise to an angular kick to the betatron amplitude function without changing its

magnitude.

II.3 Floquet Transformation

Since the focusing function K(s) is a periodic function, Eq. (2.25) can be solved by

using the Floquet transformation:

y(s) = aw(s)ejψ(s), y∗(s) = aw(s)e−jψ(s), (2.37)

where a is a constant, and w and ψ are the amplitude and phase functions. Since
K(s) is real, the amplitude and phase functions satisfy

w�� +Kw − 1

w3
= 0, ψ� =

1

w2
. (2.38)

They are the betatron envelope and phase equations. The integration constant in

the phase equation is chosen to be 0 so that the w2 is exactly the Courant-Snyder

β-function in Eq. (2.40).
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Any solution of Eq. (2.25) is a linear superposition of the linearly independent

solutions y and y∗. The mapping matrix M(s2|s1) is

M(s2|s1)=
� w2

w1
cosψ − w2w

�
1 sinψ w1w2 sinψ

− (1+w1w′
1w2w′

2)

w1w2
sinψ − (

w′
1

w2
− w′

2

w1
) cosψ w1

w2
cosψ + w1w

�
2 sinψ

�
,

(2.39)
where w1 = w(s1), w2 = w(s2), ψ = ψ(s2)− ψ(s1), w

�
1 = w�(s1), w�

2 = w�(s2), and the

prime is the derivative with respect to s.
Let s2 − s1 = L be the length of a periodic beam line, i.e. the focusing function

K(s) satisfies K(s) = K(s+L). Using the Floquet theorem (see Appendix A, Sec I.5)
with the periodic boundary conditions to the amplitude and phase functions, and

equating the matrix M of a complete period in Eq. (2.39) to Eq. (2.34), we obtain

w1 = w2 = w, w�
1 = w�

2 = w�, ψ(s1 + L)− ψ(s1) = Φ.

w2 = β, α = −ww� = −β �/2. (2.40)

With the integration constant of Eq. (2.38), the amplitude of the betatron motion is

exactly equal to the square root of the Courant–Snyder parameter β(s), which will be
referred to as the betatron amplitude function. The Courant–Snyder parameter α is

related to the slope of the betatron amplitude function. The betatron phase advance
of one period is Φ =

� L

0
ds
β(s)

. In the smooth approximation, we have Φ = L/�β�, or
�β� = L/Φ. The betatron wavelength is λβ = 2π�β�. Substituting β = w2 back into

Eq. (2.38), we obtain

1

2
β �� +Kβ − 1

β

�
1 + (

β �

2
)2
�
= 0, or α� = Kβ − 1

β
(1 + α2). (2.41)

The transfer matrix of Eq. (2.39) from s1 to s2 in any beam transport line becomes

M(s2|s1) =

⎛
⎝

�
β2

β1
(cosψ + α1 sinψ)

√
β1β2 sinψ

−1+α1α2√
β1β2

sinψ + α1−α2√
β1β2

cosψ
�

β1

β2
(cosψ − α2 sinψ)

⎞
⎠

=

� √
β2 0

− α2√
β2

1√
β2

��
cosψ sinψ
− sinψ cosψ

�� 1√
β1

0
α1√
β1

√
β1

�

≡ B(s2)

�
cosψ sinψ
− sinψ cosψ

�
B−1(s1), (2.42)

where β1, α1, γ1, and β2, α2, γ2 are values of betatron amplitude functions at s1 and s2
respectively, ψ = ψ(s2)− ψ(s1), and we have defined the betatron amplitude matrix
B(s) and its inverse as

B(s) =

� �
β(s) 0

− α(s)√
β(s)

1√
β(s)

�
and B−1(s) =

⎛
⎝

1√
β(s)

0

α(s)√
β(s)

�
β(s)

⎞
⎠ . (2.43)
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We note, from Eq. (2.42), that the linear betatron motion becomes coordinate rotation

after the normalization of the phase-space coordinates with the B−1 matrix. Applying
Floquet theorem to a repetitive period, where s2 = s1 + L with K(s2) = K(s1), we

obtain β1 = β2, α1 = α2, and the transfer matrix of Eq. (2.42) reduces to the Courant–
Snyder parametrization of Eq. (2.34).

A. Betatron tune (number of betatron oscillations in one revolution):

We consider an accelerator of circumference C = PL with P identical superperiods.

The phase change per revolution is PΦ. The betatron tune νy, or Qy, defined as the
number of betatron oscillations in one revolution, is

Qy = νy =
PΦy

2π
=

1

2π

∫ s+C

s

ds

βy(s)
. (2.44)

The betatron oscillation frequency is νyf0, where f0 is the revolution frequency. The

general solution of Eq. (2.25) becomes

y(s) = a
√

βy(s) cos [ψy(s) + ξy] with ψy(s) =

∫ s

0

ds

βy(s)
, (2.45)

where a, ξy are constants to be determined from initial conditions. This is a pseudo-

harmonic oscillation with varying amplitude β
1/2
y (s). The local betatron wavelength

is λ = 2πβy(s).

Introducing the coordinate η(φy), and ”time” coordinate to φy, Hill’s equation

becomes

η =
y√
βy

, φy(s) =
1

νy

∫ s ds

βy(s)
,

d2η

dφ2
y

+ ν2
yη = 0. (2.46)

The phase function (“time variable”) φy increases by 2π in one revolution. The linear

betatron motion is simple harmonic.

Example 1: FODO cell in thin-lens approximation

A FODO cell (Fig. 2.4) is made of a pair of focusing and defocusing quadrupoles with

or without dipoles in between:
{
1

2
QF O QD O

1

2
QF

}

where O stands for either a dipole or a drift space: FODO cells are often used in

beam transport in arcs and transport lines.9

9The accelerator lattice is usually divided into arcs and insertions. Arcs are curved sections that
transport beams for a complete revolution. Insertions (or straight sections) are usually used for
physics experiments, rf cavities, injection and extraction systems, etc.
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Figure 2.4: A schematic plot of a FODO cell, where
the transfer matrices for dipoles (B) can be approx-
imated by drift spaces, and QF and QD are the fo-
cusing and defocusing quadrupoles.

The transfer matrix in the thin-lens approximation, is10

M =

(
1 0

− 1
2f

1

)(
1 L1

0 1

)(
1 0
1
f

1

)(
1 L1

0 1

)(
1 0

− 1
2f

1

)

=

(
1− L2

1

2f2 2L1(1 +
L1

2f
)

− L1

2f2 (1− L1

2f
) 1− L2

1

2f2

)

where the focusing and defocusing quadrupoles have focal lengths ±f respectively and
L1 is the drift length between quadrupoles. Because of the repetitive nature of FODO

cells, the transfer matrix can be identified with the Courant–Snyder parametrization
of Eq. (2.34):

cosΦ =
1

2
Trace(M) = 1− L2

1

2f 2
or sin

Φ

2
=

L1

2f
,

β
F
=

2L1 (1 + sin(Φ/2))

sinΦ
, α

F
= 0.

The parameter Φ is the phase advance per cell, and β
F
and α

F
are values of the

betatron amplitude functions at the center of the focusing quadrupole. The betatron
tune for a machine with N FODO cells is ν = NΦ/2π. The above procedure can

be performed at any position of the FODO cell, and the corresponding Courant–
Snyder parameters are values of the betatron amplitude functions at that position.

For example, we find

β
D
=

2L1 (1− sin(Φ/2))

sinΦ
, α

D
= 0,

βmid. point =
L1

sin Φ

(
2− sin2

Φ

2

)
, αmid. point = ± 1

cos(Φ/2)

at the center of the defocusing quadrupole, and at the midpoint between the QF and

the QD respectively. We can also use the transfer matrix of Eq. (2.42) to find the
betatron amplitude functions at other locations (see Exercise 2.2.8).

The solid and dashed lines in the upper plot of Fig. 2.5 show the betatron am-

plitude functions βx(s) and βz(s) for the AGS. The middle plot shows the dispersion

10The transfer matrices of dipoles are represented by those of drift spaces, where we neglect the
effect of 1/ρ2 focusing and edge focusing. The transfer matrix for vertical motion can be obtained
by reversing focusing and defocusing elements.
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Figure 2.5: The betatron amplitude func-
tions for one superperiod of the AGS lat-
tice, which made of 20 combined-function
magnets. The upper plot shows βx (solid
line) and βz (dashed line). The middle plot
shows the dispersion function Dx. The lower
plot shows schematically the placement of
combined-function magnets. Note that the
superperiod can be well approximated by five
regular FODO cells. The phase advance of
each FODO cell is about 52.8◦.

function D(s), to be discussed in Sec. IV. The AGS lattice has 12 superperiods, each
composed of 20 combined-function dipoles, shown schematically in the bottom plot of

Fig. 2.5. The AGS lattice can be well approximated by 60 FODO cells with a phase
advance of 52.8◦ for a betatron tune of 8.8, and a half-cell length of L1 = 6.726 m for

a complete circumference of 807.12 m.

Example 2: Doublet cells

The values of the horizontal and vertical betatron functions in FODO cells alternate

in magnitude, i.e.
βx

βz

≈ 1 + sin Φ/2

1− sin Φ/2
, and

1− sin Φ/2

1 + sin Φ/2
,

at the focusing and defocusing quadrupoles respectively. The beam size variation
increases with the phase advance of the FODO cell. In some applications, a paraxial

beam transport system provides a simpler geometrical beam matching solution. Some

examples of paraxial beam transport beam lines are the doublet, the triplet, and the
solenoidal transport systems. In the following example, we consider a doublet beam

line, shown schematically in Fig. 2.6.

Figure 2.6: A schematic plot of a doublet
transport line, where two quadrupoles are sepa-
rated by a distance L1, and the long drift space
L2 between two quadrupoles can be filled with
dipoles.

The phase advance of a doublet cell, in thin-lens approximation, and the maximum
and minimum values of the betatron amplitude function are (see Exercise 2.2.13)

sin
Φ

2
=

√
L1L2

2f
, βmax =

L1 + L2 + L1L2/f

sinΦ
, βmin =

f 2

L2
sinΦ.

where we have assumed equal focusing strength for the focusing and the defocusing

quadrupoles, f is the focal length of the quadrupoles, and L1 and L2 are the lengths
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of the drift spaces shown in Fig. 2.6. If L1 � L2, the horizontal and vertical betatron

amplitude functions are nearly identical along the transport line. Thus the doublet
can be considered as an example of the paraxial transport system. Other paraxial

transport systems are triplets and solenoidal focusing channels (see Exercise 2.2.12).

II.4 Action-Angle Variable and Floquet Transformation

The Hill equation, y′′ +K(s)y = 0, can be derived from a pseudo-Hamiltonian

H =
1

2
y′2 +

1

2
K(s)y2, (2.47)

where (y, y′) are conjugate phase-space coordinates. We want to transform (y, y′) to
the action-angle coordinates, where ψ in Eq. (2.45) serves as the angle-coordinate.
There are two possible generating functions: either F1(y, ψ) or F3(y

′, ψ) (see Exercise
2.21). Using Eq. (2.45) we find F1, and obtain the action-coordinate as:

y′ = − y

β
(tanψ − β ′

2
), ⇐⇒ F1(y, ψ) =

∫ y

0

y′dy = − y2

2β
(tanψ − β ′

2
), (2.48)

J = −∂F1

∂ψ
=

y2

2β
sec2 ψ =

1

2β
[y2 + (βy′ + αy)2].

where (ψ, J) are the angle (betatron phase) and action coordinates, and y′ = ∂F1/∂y

is verified easily from the generating function F1(y, ψ). With the canonical transfor-
mation, the new Hamiltonian becomes

H̃ = H +
∂F1

∂s
=

J

β
. (2.49)

Hamilton’s equation gives ψ′ = ∂H̃/∂J = 1/β(s), which recovers Eq. (2.38). Since the

new Hamiltonian is independent of the phase coordinate ψ, the action J is invariant,
i.e. dJ

ds
= −∂H̃

∂ψ
= 0. Using Eq. (2.48), we obtain

y =
√

2βJ cosψ, y′ = −
√

2J

β
[sinψ + α cosψ], (2.50)

where α = −β ′/2. The action J is the phase space area enclosed by the invariant
torus:

J =
1

2π

∫

torus

dy′dy =
1

2π

∮
y′dy. (2.51)

The Jacobian of the transformation from (y, y′) to (J, ψ) is equal to 1. A word

of convention: The area of the phase space ellipse is 2πJ , where we usually use (πJ)

as action in unit of [π-mm-mrad] or [πμm], or [πnm], or [πpm]. Thus sometimes



54 CHAPTER 2. TRANSVERSE MOTION

Figure 2.7: The betatron phase space ellipses of
a particle with actions J = 10π mm-mrad. The
betatron parameters are βy = 10m, and αy shown
by each curve. The scale for the ordinate y is mm,
and y′ in mrad. The betatron parameters for each
ellipse are marked on the graph. All ellipses has
the maximum y coordinate at

√
2βyJ . The max-

imum angular coordinate y′ is
√

2(1 + α2
y)J/βy .

All ellipses have the same phase space area of 2πJ .

Figure 2.8: The horizontal and vertical betatron
ellipses for a particle with actions Jx = Jz = 0.5π
mm-mrad at the end of the first dipole (left plots)
and the end of the fourth dipole of the AGS lattice
(see Fig. 2.5). The scale for the ordinate x or z is
in mm, and that for the coordinate x′ or z′ is in
mrad. Left plots: βx = 17.0 m, αx = 2.02, βz =
14.7 m, and αz = −1.84. Right plots: βx = 21.7
m, αx = −0.33, βz = 10.9 m, and αz = 0.29.

one writes Eq. (2.50) as y =
√

2βJ
π

cosψ, and similarly for y′. The factor π cancels

the unit of π in action. Figure 2.7 shows the phase ellipses with identical action of
J = 10π mm-mrad.

Figure 2.8 shows the phase-space ellipses (x, x′) and (z, z′) for a particle with
actions Jx = Jz = 0.5π mm-mrad at the ends of the first and the fourth dipoles of

the AGS lattice (see Fig. 2.5). Such a phase-space ellipse is also called the Poincaré

map, where the particle phase-space coordinates are plotted in each revolution. The
consecutive phase-space points can be obtained by multiplying the transfer matrices,

i.e. (
x
x′

)

n+1

= Mx

(
x
x′

)

n

,

(
z
z′

)

n+1

= Mz

(
z
z′

)

n

,

where Mx and Mz are the transfer matrices of one complete revolution. The Poincaré

map of betatron motion at a fixed azimuth s is also called the Poincaré surface of
section. If the betatron tune is not a rational number, the consecutive phase-space

points of the particle trajectory will trace out the entire ellipse. The areas enclosed
by the horizontal and vertical ellipses are equal to 2πJx and 2πJz respectively. As

the particle travels in an accelerator, the shape of the phase-space ellipse may vary

but the area enclosed by the ellipse is invariant.
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A. Normalized phase space coordinates

We define the normalized conjugate phase-space coordinate Py as

Py = βy� + αy = −
√

2βJ sinψ. (2.52)

A particle trajectory in the normalized phase-space coordinates (y,Py) moves clock-

wise on a circle with radius
√
2βJ as phase advance ψ increases. In terms of the

betatron amplitude matrix of Eq. (2.43), the normalized phase space coordinates are

expressed as
(

y
Py

)
=

√
β B−1

(
y
y�

)
and

(
y
y�

)
=

1√
β

B

(
y
Py

)
. (2.53)

B. Using the orbital angle θ as the independent variable

The Hamiltonian H̃ of Eq. (2.49) depends on the independent variable s. Because
β(s) is not a constant, the phase advance is modulated along the accelerator orbital

trajectory. Sometimes it is useful to use the orbiting angle as “time” coordinate in
order to obtain a global Fourier expansion of particle motion. We use the generating

function for coordinate transformation:

F2(ψ, J̄) =

(
ψ −

∫ s

0

ds

β
+ νθ

)
J̄ =⇒ ψ̄ = ψ −

∫ s

0

ds

β
+ νθ, J̄ = J,

Here θ = s/R is the orbiting angle of the reference orbit and R is the mean radius of an

accelerator. The transformation compensates the modulated phase-advance function

with conjugate coordinates (ψ̄, J̄) and new Hamiltonian H̃ = νJ̄/R. Scaling the
“time coordinate” from s to θ, the re-scaled new Hamiltonian and the corresponding

coordinate-transformation are

H̄ = RH̃ = νJ̄. (2.54)

y =
√
2βJ̄ cos (ψ̄ + χ(s)− νθ), (2.55)

Py = βy� + αy = −
√

2βJ̄ sin(ψ̄ + χ(s)− νθ),

where χ(s) =
∫ s

0
ds/β. The transformation is useful in expressing a general betatron

Hamiltonian in action-angle coordinates for obtaining a global Fourier expansion in
the nonlinear resonance analysis. Hereafter, the notation (ψ̄, J̄) is simplified to (ψ, J).

II.5 Courant–Snyder Invariant and Emittance

Using the general solution y(s) of Eq. (2.45), we obtain βy�+αy=−aβ1/2(s) sin(νφ(s)+
δ). The Courant–Snyder invariant defined by

C(y, y�) =
1

β

[
y2 + (αy + βy�)2

]
= γy2 + 2αyy� + βy�2 (2.56)
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is equal to twice the action. The trajectory of particle motion with initial condition

(y0, y
′
0) follows an ellipse described by C(y, y′) = �. The phase space enclosed by

(y, y′) of Eq. (2.56) is equal to π� (see Fig. 2.9). The quantity “π�” is identify as

emittance in the unit of [πmm-mrad] or [πμm] or [πnm] or simply [μ-meter] or [μm],
[nano-meter] or [nm], [pico-meter] or [pm], etc.. In each unit, the factor π is implied,

explicitly stated or not. The maximum betatron amplitude is
√
β�, where π is ignored

in the calculation, or sometimes explicitly expressed as
√

β�/π to cancel the π is the

unit of emittance.

Figure 2.9: The Courant-Snyder invari-
ant ellipse. The area enclosed by the el-
lipse is equal to π�, where � is twice the be-
tatron action; β is the betatron amplitude
functions, and α = −1

2β
′, γ = (1+α2)/β.

The maximum amplitude of betatron mo-
tion is

√
β�, and the maximum divergence

(angle) of the betatron motion is
√
γ� (see

the footnote in Eq. (2.50) for the conven-
tion of the emittance and action. The cen-
ter of the ellipse is the reference orbit or
closed orbit (c.o.)).

A. The emittance of a beam

A beam is composed of particles distributed in phase space. Depending on the initial
beam preparation, we approximate a realistic beam distribution function by some

simple analytic formula. Neglecting dissipation and diffusion processes, each particle

in the distribution function has its invariant Courant–Snyder ellipse.

Given a normalized distribution function ρ(y, y′) with
∫
ρ(y, y′)dydy′ = 1, the

moments of the beam distribution are

�y� =
∫

yρ(y, y′)dydy′, �y′� =
∫

y′ρ(y, y′)dydy′,

σ2
y =

∫
(y − �y�)2ρ(y, y′)dydy′, σ2

y′ =

∫
(y′ − �y′�)2ρ(y, y′)dydy′,

σyy′ =

∫
(y − �y�)(y′ − �y′�)ρ(y, y′)dydy′ = rσyσy′ ,

where σy and σy′ are the rms beam widths, σyy′ is the correlation, and r is the

correlation coefficient. The rms beam emittance is defined as

�rms ≡
√

σ2
yσ

2
y′ − σ2

yy′ = σyσy′
√
1− r2. (2.57)
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The rms emittance of a ring beam in phase space, i.e. particles uniformly dis-

tributed in phase coordinate ψ at a fixed action J of Eq. (2.50), is �rms = J . If the
accelerator is composed of linear elements such as dipoles and quadrupoles, the emit-

tance defined in Eq. (2.57) is invariant. The rms emittance is equal to the phase-space
area enclosed by the Courant–Snyder ellipse of the rms particle (see Exercise 2.2.14).

Although incorrect, the term “emittance” is often loosely used as twice the action
variable of betatron oscillations. The betatron oscillations of “a particle” with an

“emittance” � is
y(s) =

√
β� cos [νφ(s) + δ]. (2.58)

Figure 2.9 shows a Courant–Snyder invariant ellipse with phase space area π�,11 the
rms beam width is

√
β(s)�, and the beam rms divergence y� is

√
γ(s)�. Since γ =

(1 + α2)/β, the transverse beam divergence is smaller at a location with a large β(s)
value, i.e. all particles travel in parallel paths. In accelerator design, a proper β(s)

value is therefore important for achieving many desirable properties.

B. The σ-matrix

The σ-matrix of a beam distribution is defined as

σ =

(
σ11 σ12

σ12 σ22

)
=

(
σ2
y σyy′

σyy′ σ2
y′

)
= �(y− �y�)(y− �y�)†�,

σ(s2) = M(s2|s1)σ(s1)M(s2|s1)†. (2.59)

where y is the betatron state-vector of Eq. (2.27), y† = (y, y�) is the transpose of
y, and �y� is the first moment. The rms emittance defined by Eq. (2.57) is the

determinant of the σ-matrix, i.e. �rms =
√
det σ (see also Exercise 2.2.14). It is easy

to verify that y†σ−1y is invariant under linear betatron motion. An invariant beam
distribution is

ρ(y, y�) = ρ(y†σ−1y). (2.60)

C. Emittance measurement

The emittance can be obtained by measuring the σ-matrix. The beam profile of

protons and ions is usually measured by using wire scanners or ionization profile
monitors. Synchrotron light monitors are commonly used in electron storage rings.

More recently, laser light has been used to measure electron beam size in the sub-
micron range. Using the rms beam width and Courant–Snyder parameters, we can

11The accelerator scientists commonly use π-mm-mrad as the unit of emittance. However, the
factor π is also often omitted. In beam width calculation, we get σy =

√
π�yβy/π. The synchrotron

light source community also uses nano-meter (nm) as the unit for emittance. In fact, the factor π is
implied and omitted in the literature.
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deduce the emittance of the beam. Two methods commonly used to measure the rms

emittance are discussed below.

C1. Quadrupole tuning method

Using Eq. (2.59), we find

σ11(s2) = σ11(s1)

[
M11 +

σ12(s1)

σ11(s1)
M12

]2
+

�2rms

σ11(s1)
M2

12, (2.61)

where σij(s1)’s are elements of the σ matrix at the entrance of the quadrupole with
�2rms = σ11σ22 − σ2

12, and σ11(s2) is the 11-element of the σ-matrix at the profile

monitor location s2. For a setup of a quadrupole and a drift space, we find M12 =
(1/

√
K) sin(

√
K�q) + L cos(

√
K�q) and M11 = cos(

√
K�q)−

√
KL sin(

√
K�q), where

K = B1/Bρ is the focusing function, �q is the length of the quadrupole, and L is
the distance between the quadrupole and the beam profile monitor. In thin lens

approximation, we find M12 → (L+ �q
2
) M11 → 1− (L+ �q

2
)g, and

σ11(s2) ≈ σ11(s1)

(
1− (L+

�q
2
)g +

σ12(s1)

σ11(s1)
(L+

�q
2
)

)2

+
�2rms

σ11(s1)
(L+

�q
2
)2,

where g = Klq is the effective quadrupole strength.
The σ11(s2) data by varying quadrupole strength g can be used to fit a parabola.

The rms emittance �rms can be obtained from the fitted parameters. This method is
commonly used at the end of a transport line, where a fluorescence screen or a wire

detector (harp) is used to measure the rms beam size.

C2. Moving screen method

Using a movable fluorescence screen, the beam size at three spots can be used to
determine the emittance. Employing the transfer matrix of drift space, the rms beam

widths at the second and third positions are
{
R2

2 = σ11 + 2L1σ12 + L2
1σ22,

R2
3 = σ11 + 2(L1 + L2)σ12 + (L1 + L2)

2σ22,
(2.62)

where σ11 = R2
1, σ12 and σ22 are elements of the σ matrix at the first screen location,

and L1 and L2 are respectively drift distances between screens 1 and 2 and between
screens 2 and 3. The solution σ12 and σ22 of Eq. (2.62) can be used to obtain the rms

beam emittance: �rms =
√

σ11σ22 − σ2
12.

If screen 2 is located at the waist, i.e. dR2
2/dL1 = 0, then the emittance can be

determined from rms beam size measurements of screens 1 and 2 alone. The resulting
emittance is

�2 =
(
R2

1R
2
2 − R4

2

)
/L2

1.

This method is commonly used to measure the electron emittance in a transport line.
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D. The Gaussian distribution function

The equilibrium beam distribution in the linearized betatron phase space may be any

function of the invariant action. However, the Gaussian distribution function

ρ(y, y�) = N exp

( −1

2 detσ
(σ22y

2 − 2σ12yy
� + σ11y

�2)
)

(2.63)

is commonly used to evaluate the beam properties. Expressing the normalized Gaus-

sian distribution in the normalized phase space, we obtain

ρ(y,Py) =
1

2πσ2
y

e−(y2+P2
y )/2σ

2
y , (2.64)

where �y2� = �p2y� = σ2
y = βy�rms with an rms emittance �rms. Transforming (y,Py)

into the action-angle variables (J, ψ) with

y =
√

2βyJ cosψ, Py = −√
2βyJ sinψ.

The Jacobian of the transformation is ∂(y,Py)

∂(ψ,J)
= βy, and the distribution function

becomes

ρ(J) =
1

�rms

e−J/�rms, ρ(�) =
1

2�rms

e−�/2�rms, (2.65)

where � = 2J . The percentage of particles contained within � = n�rms is 1 − e−n/2,

shown in Table 2.1.

Table 2.1: Percentage of particles in the confined phase-space volume

�/�rms 2 4 6 8
Percentage in 1D [%] 63 86 95 98
Percentage in 2D [%] 40 74 90 96

The maximum phase-space area that particles can survive in an accelerator is
called the admittance, or the dynamic aperture. The admittance is determined by the

vacuum chamber size, the kicker aperture, and nonlinear magnetic fields. To achieve
good performance of an accelerator, the emittance should be kept much smaller than

the admittance. Note that some publications assume 95% emittance, i.e. the phase-
space area contains 95% of the beam particles, �95% ≈ 6 �rms for a Gaussian distribu-

tion. For superconducting accelerators, a dynamic aperture of 6σ or more is normally
assumed for magnet quench protection. For electron storage rings, quantum fluctu-

ations due to synchrotron radiation are important; the machine acceptance usually

requires about 10σ for good quantum lifetime.
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Accelerator scientists in Europe use � = 4�rms to define the beam emittance. This

convention arises from the fact that the rms beam emittance of a KV beam is equal to
1/4 of the full KV beam emittance [see Eq. (2.73)]. A uniform phase space distribution

in an ellipse y2/a2 + y′2/b2 = 1 has an rms emittance equal to πab/4.

E. Adiabatic damping and the normalized emittance: �n = βγ�

The Courant–Snyder invariant of Eq. (2.56), derived from the phase-space coordinate

y, y′, is not invariant when the energy is changed. To obtain the Liouville invariant
phase-space area, we should use the conjugate phase-space coordinates (y, py) of the

Hamiltonian in Eq. (2.14). Since py = py′ = mcβγy′, where m is the particle’s mass,
p is its momentum, and βγ is the Lorentz relativistic factor, the normalized emittance

defined by �n = βγ� is invariant. The beam emittance decreases with increasing beam
momentum, i.e. � = �n/βγ. This is called adiabatic damping. The adiabatic phase-

space damping of the beam can be visualized as follows. The transverse velocity of
a particle does not change during acceleration, while the transverse angle y′ = py/p

becomes smaller as the particle momentum increases, and thus the beam emittance
� = �n/βγ becomes smaller. The adiabatic damping also applies to beam emittance

in proton or electron linacs.

On the other hand, the beam emittance in electron storage rings increases with en-

ergy (∼ γ2) resulting from the quantum fluctuation (see Chap. 4). The corresponding
normalized emittance is proportional to γ3, where γ is the relativistic Lorentz factor.

II.6 Stability of Betatron Motion: A FODO Cell Example

In this section, we illustrate the stability of betatron motion using a FODO cell
example. We consider a FODO cell with quadrupole focal length f1 and −f2, where

the ± signs designates the focusing and defocusing quadrupoles respectively. The
transfer matrix of {1

2
QF1 O QD2 O 1

2
QF1} is

M =

(
1 0

− 1
2f1

1

)(
1 L1

0 1

)(
1 0
1
f2

1

)(
1 L1

0 1

)(
1 0

− 1
2f1

1

)

=

(
1 + L1

f2
− L1

f1
− L2

1

2f1f2
2L1(1 +

L1

2f2
)

1
f2

− 1
f1

− L1

f1f2
+ L1

2f2
1
+

L2
1

4f2
1 f2

) 1 + L1

f2
− L1

f1
− L2

1

2f1f2

)
,

where L1 is the drift length between quadrupoles. Identifying the transfer matrix
with the Courant–Snyder parametrization, we obtain

cosΦx = 1 +
L1

f2
− L1

f1
− L2

1

2f1f2
, cosΦz = 1− L1

f2
+

L1

f1
− L2

1

2f1f2
.
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The stability condition, Eq. (2.33), of the betatron motion is equivalent to the fol-

lowing conditions:

|1 + 2X2 − 2X1 − 2X1X2| ≤ 1 and |1− 2X2 + 2X1 − 2X1X2| ≤ 1, (2.66)

where X1 = L1/2f1 andX2 = L1/2f2. The solution of Eq. (2.66) is shown in Fig. 2.10,

which is usually called the necktie diagram. The lower and the upper boundaries of
the shaded area correspond to Φx,z = 0 or π respectively. Since the stable region is

limited by X1,2 ≤ 1, the focal length should be larger than one-fourth of the full cell
length.

Figure 2.10: The “necktie diagram” for the sta-
ble region of a FODO cell lattice shown in the
shaded area of focusing strengths X1 = L1/2f1 vs
X2 = L1/2f2. where L1 is the half cell length, f ’s
are focal lengths. The lower and upper boundaries
correspond to Φx,z = 0 or 180◦ respectively. When
X1 is at the lower part of stability boundary, the
phase advance of the FODO cell is Φx = 0. At
the boundary of the stability X1 = 1, the phase
advance Φx = π.

The phase advances Φx and Φz of repetitive FODO cells should be less than

π. The phase advances of a complex repetitive lattice-module with more than 2

quadrupoles can be larger than π. For example, the phase advance of a flexible
momentum compaction (FMC) module is about 3π/2 (see Sec. IV.8 and Exercise

2.4.17) and the phase advance of a minimum emittance double-bend achromat module
is about 2.4π (see Sec. III.1; Chap. 4). In general, the stability of betatron motion

is described by |cosΦx| ≤ 1 and |cos Φz| ≤ 1 for any type of accelerator lattice or
repetitive transport line.

II.7 Symplectic Condition

The 2×2 transfer matrix M with detM = 1 satisfies M̃JM = J , where M̃ is the

transpose of the matrix M , and J =

(
0 1
−1 0

)
. In general, the transfer matrix of a

Hamiltonian flow of n degrees of freedom satisfies

M̃JM = J, J =

(
0 I
−I 0

)
, (2.67)
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where M̃ is the transpose of the transfer matrixM , and J2 = −I, J̃ = −J, J−1 = −J

with I as the n× n unit matrix. A 2n× 2n matrix, M , is said to be Symplectic if it
satisfies Eq. (2.67).12 The matrices I and J are symplectic.

If the matrix M is symplectic, then M−1 is also symplectic and detM = 1. If

M and N are symplectic, then MN is also symplectic. Since the set of symplectic
matrices satisfies the properties that (1) the unit matrix I is symplectic, (2) if M is

symplectic then M−1 is symplectic, and (3) if M and N are symplectic, then MN is
also symplectic, the set of symplectic matrices form a group denoted by Sp(2n). The

properties of real symplectic matrices are described below.

• The eigenvalues of symplectic matrix M must be real or must occur in complex

conjugate pairs, i.e. λ and λ∗. The eigenvalues of a real matrix M or the roots
of the characteristic polynomial P (λ) = |M − λI| = 0 have real coefficients.

• Since |M | = 1, zero can not be an eigenvalue of a symplectic matrix.

• If λ is an eigenvalue of a real symplectic matrix M , then 1/λ must also be an

eigenvalue. They should occur at the same multiplicity. Thus eigenvalues of a
symplectic matrix are pairs of reciprocal numbers. For a symplectic matrix, we

have K−1(M̃ − λI)K = M−1 − λI = −λM−1(M − λ−1I) or P (λ) = λ2nP ( 1
λ
).

If we define Q(λ) = λ−nP (λ), then Q(λ) = Q( 1
λ
).

II.8 Effect of Space-Charge Force on Betatron Motion

The betatron amplitude function w =
√

βy of the Floquet transformation satisfies
Eq. (2.38). Defining the envelope radius of a beam as Ry =

√
βy�y, where �y is the

emittance, the envelope equation becomes

R��
y +KyRy −

�2y
R3

y

= 0, (2.68)

where the prime corresponds to the derivative with respect to s. Based on the Floquet

theorem, we can impose a periodic condition, Ry(s) = Ry(s + L) to the envelope
equation, if Ky is a periodic function of s, i.e. Ky(s) = Ky(s+L), with L as the length

of a repetitive period. The periodic envelope solution, aside from a multiplicative
constant, is equal to the betatron amplitude function. The envelope function of an

emittance dominated beam is Ry =
√
βy�y. When the self-induced space-charge force

is included in the betatron motion, what happens to the beam envelope?

12The transfer matrix M expressed in this form corresponds to the transfer matrix for phase
space coordinates (q1, q2, · · · , qn; p1, p2, · · · , pn). If we choose the phase space coordinates as
(q1, p1, q2, p2, · · ·, the J matrix will be defined slightly differently.
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A. The Kapchinskij-Vladimirskij distribution

It is known that the Coulomb mean-field from an arbitrary beam distribution is likely
to be nonlinear. For example, The Exercise 5.2.1 shows the Coulomb mean field of a

Gaussian beam distribution. In 1959, Kapchinskij and Vladimirskij (KV) discovered
an ellipsoid beam distribution that leads to a perfect linear space-charge force within

the beam radius. This distribution function is called the KV distribution.13

Particles, in the KV distribution, are uniformly distributed on a constant total
emittance surface of the 4-dimensional phase space, i.e.

ρ(x,Px, z,Pz) =
Ne

π2a2b2
δ

(
1

a2
(
x2 + P2

x

)
+

1

b2
(
z2 + P2

z

)− 1

)
, (2.69)

ρ(Jx, Jz) =
4Ne

�x�z
δ

(
2Jx

�x
+

2Jz

�z
− 1

)
. (2.70)

where N is the number of particles per unit length, e is the particle’s charge, a and

b are envelope radii of the beam, x and z are the transverse phase-space coordinates,
Px = R′

x, and Pz = R′
z are the corresponding normalized conjugate phase-space

coordinates, �x and �z are the horizontal and vertical emittances, and the envelope
radii are a =

√
βx�x and b =

√
βz�z. Thus beam particles are uniformly distributed

along an action line
Jx

�x
+

Jz

�z
=

1

2
, (2.71)

Some properties of the KV distribution are as follows.

1. Integrating the conjugate momenta, the distribution function becomes

ρ(x, z) =
Ne

πab
Θ

(
1− x2

a2
− z2

b2

)
(2.72)

where the Θ(ξ) function is equal to 1 if ξ ≥ 0, and 0 if ξ < 0. In fact, the
KV particles are uniformly distributed in any two-dimensional projection of the

four-dimensional phase space.

2. The rms emittances of the KV beam are

�x,rms =
�x2�
βx

=
�x
4
, �z,rms =

�z2�
βz

=
�z
4
. (2.73)

Thus the rms envelope radii are equal to half of the beam radii in the KV beam.

13I.M. Kapchinskij and V.V. Vladimirskij, Proc. Int. Conf. on High Energy Accelerators, p. 274
(CERN, Geneva, 1959).
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B. The Coulomb mean-field due to all beam particles

The next task is to calculate the effect of the average space-charge force. Neglecting

the longitudinal variations, beam particles can be viewed as a charge distribution in
an infinite long wire with a line-charge density given by Eq. (2.72). The electric field

at the spatial point (x, z) is

�E(x, z) =
Ne

2π�0 πab

∫ ∫
dx′dz′ Θ(1− x′2

a2
− z′2

b2
)
(x− x′)x̂+ (z − z′)ẑ
(x− x′)2 + (z − z′)2

=
2Ne

2π�0

(
x

a(a + b)
x̂+

z

b(a+ b)
ẑ

)
, (2.74)

where �0 is the vacuum permittivity. A noteworthy feature of the KV distribution
function is that the resulting mean-field inside the beam envelope radii is linear!

If the external focusing force is also linear, the KV distribution is a self-consistent

distribution function. Including the mean-magnetic-field, the force on the particle at
(x, z) is

�F (x, z) =
2Ne2

2π�0γ2

(
x

a(a + b)
x̂+

z

b(a + b)
ẑ

)
, (2.75)

where γ is the relativistic energy factor. Hill’s equations of KV beams of motion

become

x′′ +
(
Kx(s)− 2Ksc

a(a+ b)

)
x = 0, z′′ +

(
Kz(s)− 2Ksc

b(a + b)

)
z = 0, (2.76)

where the prime is a derivative with respect to the longitudinal coordinate s, and Ksc

is the “normalized” space-charge perveance parameter given by

Ksc =
2Nr0
β2γ3

, (2.77)

where r0 = e2/4π�0mc2 is the classical radius of the particle, and N is the number

of particles per unit length. Performing Floquet transformation of the linear KV-Hill
equation x = wxe

jψx and z = wze
jψz , we obtain

w′′
x +

(
Kx − 2Ksc

a(a+ b)

)
wx +

1

w3
x

= 0, ψ′′
x =

1

w2
x

, (2.78)

w′′
z +

(
Kz − 2Ksc

b(a + b)

)
wz +

1

w3
z

= 0, ψ′′
z =

1

w2
z

. (2.79)

Multiplying Eq. (2.78) by
√
�x and Eq. (2.79) by

√
�z, and identifying a = wx

√
�x and

b = wz
√
�z, we obtain the KV envelope equations, or simply the KV equations:

a′′ +Kxa− 2Ksc

a + b
− �2x

a3
= 0, b′′ +Kzb− 2Ksc

a + b
− �2x

b3
= 0. (2.80)
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Solving the KV envelope equation is equivalent to finding the betatron amplitude

function in the presence of the space-charge force. The usefulness of the KV equation
has been further extended to arbitrary ellipsoid distribution functions provided that

the envelope functions a and b are equal to twice the rms envelope radii, and the
emittances �x and �z are equal to four times the rms emittances.14

If the external force is periodic, i.e. Kx(s) = Kx(s+ L), the KV equation can be
solved by imposing the periodic boundary (closed orbit) condition (Floquet theorem)

a(s) = a(s+ L), b(s) = b(s + L). (2.81)

A numerical integrator or differential equation solvers can be used to find the envelope
function of the space-charge dominated beams. The matched beam envelope solution

can be obtained by a proper closed orbit condition of Eq. (2.81).
For beams with an initial mismatched envelope, the envelope equation can be

solved by using the initial value problem to find the behavior of the mismatched
beams. For space-charge dominated beams, the envelope solution can vary widely

depending on the external focusing function, the space-charge parameter, and the
beam emittance. To understand the physics of the mismatched envelope, it is ad-

vantageous to extend the envelope equation to Hamiltonian dynamics as discussed
below.

C. Hamiltonian formalism of the envelope equation

Introducing the pseudo-envelope momenta as pa = a′ and pb = b′, we can derive the
KV equations (2.80) from the envelope Hamiltonian:

Henv =
1

2

(
p2a + p2b

)
+ Venv(a, b)

Venv(a, b) =
1

2
(Kxa

2 +Kzb
2)− 2Ksc ln(a+ b) +

�2x
2a2

+
�2z
2b2

, (2.82)

where Venv(a, b) is the envelope potential. The matched beam envelope is the equi-
librium solution (the betatron amplitude function) of the envelope Hamiltonian. For

example, if we start from the condition with envelope momenta pa = pb = 0, the
matched envelope radii are located at the minimum potential energy location, i.e.

∂Venv

∂a
(am, bm) =

∂Venv

∂b
(am, bm) = 0,

where am and bm are the matched envelope radii. The envelope oscillations of a mis-
matched beam can be determined by the perturbation around the matched solution

Venv =
1

2

∂2Venv

∂a2
(a− am)

2 +
1

2

∂2Venv

∂b2
(b− bm)

2 + · · · .
14P.M. Lapostolle, IEEE Trans. Nucl. Sci. NS-18, 1101 (1971); F.J. Sacherer, ibid. 1105 (1971);

J.D. Lawson, P.M. Lapostolle, and R.L. Gluckstern, Part. Accel. 5, 61 (1973); E.P. Lee and R.K.
Cooper, ibid. 7, 83 (1976).
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Using the second-order derivatives, we can obtain the envelope tune, which is equal

to twice betatron tune at Ksc = 0.

D. An example of a uniform focusing paraxial system

First we consider a beam in a uniform paraxial focusing system, where the focusing

function is
Kx = (2π/L)2 .

Here L is the betatron wavelength, and the betatron amplitude function is βx0 =

L/2π. With a = b in Eq. (2.80), the envelope Hamiltonian is

Henv =
1

2
p2a + Venv(a); Venv(a) =

1

2

(
2π

L

)2

a2 −Ksc ln a+
�2x
2a2

.

When the space-charge force is negligible, we find that the matched envelope radius is
am0 =

√
�xL/2π =

√
�xβx, and the second-order derivative at the matched envelope

radius (
d2Venv

da2

)1/2

= 2(
2π

L
),

which is twice the betatron tune (see also Exercise 2.2.15) and is independent of the

envelope-oscillation amplitude.
Now, we consider the effect of space charge on the envelope function. The matched

envelope radius is obtained from the solution of dVenv/da = 0, i.e.

a2m = �xβx = �x

(
L

2π

)[
κ+

√
κ2 + 1

]
, κ =

KscL

2�x2π
=

KscLtot

2�xΦtot

(2.83)

where κ is the effective space-charge parameter, and Ltot and Φtot are the total length

and total phase advance of a transport system.15 Equation (2.83) indicates that the
betatron amplitude function increases by a factor κ+

√
κ2 + 1 due to the space-charge

force. The second-order derivative of the potential at the matched radius is

(
d2Venv

da2

)1/2

= 2
2π

L

(
1− κ

(κ+
√
κ2 + 1)

)1/2

,

which is the phase advance per unit length of small amplitude envelope oscillation in
the presence of the Coulomb potential. When the space-charge perveance parameter

is zero, the phase advance of the envelope oscillation is twice of that of the betatron
oscillation, and when the space-charge force is large, as κ → ∞, the phase advance of

the small-amplitude envelope oscillations can maximally be depressed to
√
2 (2π/L).

15The Laslett (linear) space-charge tune shift is related to the space-charge perveance parameter
by ξsc ≡ Δνsc = KscLtot/4π�x = κν, where ν is the tune.
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There is a large envelope detuning from 2μ to
√
2μ, where μ is the betatron phase

advance. A nonlinear envelope resonance can be excited when perturbation exists
and a resonance condition is satisfied.16

Figure 2.11: The phase advance of the enve-
lope oscillations divided by the original betatron
phase advance for a high space charge beam with
Ksc = 10, μ = 2.28175. The matched radius is
R0 = am

√
2π/(μ�xL) = 1.4199 in this example.

See Eq. (2.83) for the matched envelope radius.
When the envelope radius is mismatched from R0,
the envelope radius oscillates around R0 at an en-
velope tune depending on its maximum radius os-
cillation amplitude. The ordinate R is the normal-
ized maximum envelope radius of the beam.

Figure 2.11 shows the envelope tune of a space charge dominated beam with
Ksc = 10 and a phase advance of μ = 2.2817 radian (or ν = μ/2π for the un-

perturbed betatron tune) as a function of the maximum amplitude of the envelope
oscillation. At a large envelope amplitude, the envelope tune approaches twice the

unperturbed betatron tune. Near the matched envelope radius (or small amplitude
envelope oscillations), the envelope tune approaches

√
2 times the unperturbed beta-

tron tune.

The single particle betatron phase advance per unit length is obtained by sub-
stituting Eq. (2.83) into Eq. (2.76), i.e. Φx = 2π

L
(
√
κ2 + 1 − κ). When the space

charge parameter κ is small, the incoherent space-charge (Laslett) tune shift is equal
to Δνsc = ξsc = κ. When the space charge parameter κ is large, the betatron tune

can be depressed to zero.

E. Space-charge force for Gaussian distribution

Since the emittance growth rate is usually much faster than a synchrotron period,

this justifies the performance of only 2D simulation for a slice of the beam at the
longitudinal bunch center. For a beam with linear particle density N and bi-Gaussian

charge distribution

ρ(x, z) =
Ne

2πσxσz
e−x2/2σ2

x −z2/2σ2
z , (2.84)

16S.Y. Lee and A. Riabko, Phys. Rev. E 51, 1609 (1995); A. Riabko et al., Phys. Rev. E 51,
3529 (1995); C. Chen and R.C. Davidson, Phys. Rev. E49, 5679 (1994); Phys. Rev. Lett. 72, 2195
(1994). See also Ref. [8] for an exploration of the space-charge dynamics.
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with σx,z being the rms horizontal and vertical beam radii including contribution

coming from momentum dispersion, the transverse 2D space-charge potential is

Vsc(x, z) =
Ksc

2

� ∞

0

exp
�
− x2

2σ2
x+t

− z2

2σ2
z+t

�
− 1

�
(2σ2

x + t)(2σ2
z + t)

dt, (2.85)

whereKsc is the space-charge perveance of Eq. (2.77), r0 is the particle classical radius,

and β and γ are the relativistic parameters. In the simulation, we set the bunch
intensity with NB particles and an rms bunch-length σs to obtain N = NB/

√
2πσs.

The space-charge force on each particle is obtained by Hamilton’s equation. Thus
each beam particle passing through a length Δs experiences a space-charge kick

Δx�

Δs
= −∂Vsc

∂x
,

Δz�

Δs
= −∂Vsc

z
. (2.86)

We expand the space-charge potential in Taylor series in order to study the sys-
tematic space charge resonances:

Vsc(x, z) = −Ksc

2

��
x2

σx(σx + σz)
+

z2

σz(σx + σz)

�
− 1

4σ2
x(σx + σz)2

�
2 + r

3
x4+

+
2

r
x2z2 +

1 + 2r

3r3
z4
�
+

1

72σ3
x(σx + σz)3

�
8 + 9r + 3r2

5
x6+

+
3(3 + r)

r
x4z2 +

3(3r + 1)

r3
x2z4 ++

8r2 + 9r + 3

5r5
z6
�
+ · · ·

�
, (2.87)

with r = σz/σx. The first term inside the curly brackets represents the linear force,

which gives rise to linear space charge (Laslett) tune shift. The second and the third
terms drive the 4th and 6th order resonances.

The linear space charge tune shift parameters become

ξsc,x/z ≡ |Δνsc,x/z| =

⎧
⎪⎪⎨
⎪⎪⎩

Ksc

4π

�
1

σx(σx + σz)
βxds

Ksc

4π

�
1

σz(σx + σz)
βzds

roundbeam−−−−→ 2πRKsc

8π�rms

. (2.88)

Particles at the center of the beam has a betatron tune shift −ξsc,x/z, and large
betatron amplitude particles have small betatron tune shift. Since particles at dif-

ferent betatron amplitudes have different betatron tune shift, the space charge force
produces an incoherent tune spread ξsc. The space charge parameter of the KV dis-

tribution in Eq. (2.83) is

ξKV,sc =
2πRKsc

16π�rms

.

The space charge parameter of Gaussian distribution is a factor of 2 larger than that

of a beam with uniform distribution. The space charge tune shift of all particles in

the KV beam is identically ξKV,sc. It is still incoherent.
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Exercise 2.2

1. The focusing function K(s) for most accelerator magnets can be assumed to be piece-
wise constant. Show that

K(s) = 0, M(s2|s1) =
(
1 s
0 1

)
,

K(s) = K ≥ 0, M(s2|s1) =
(

cos
√
Ks 1√

K
sin

√
Ks

−√
K sin

√
Ks cos

√
Ks

)
,

K(s) = K < 0, M(s2|s1) =
(

cosh
√|K|s 1√

|K| sinh
√|K|s

√|K| sinh√|K|s cosh
√|K|s

)
,

with s = s2 − s1. Show that the mapping matrix M for a short quadrupole of length
�, in the thin-lens approximation, is

M =

(
1 0
− 1

f 1

)

where f = lim�→0(K�)−1, is the focal length of a quadrupole. For a focusing quad,
f > 0; and for a defocusing quad, f < 0.

2. When a particle enters a dipole at an angle δ with respect to the normal edge of a
dipole (see drawing below), there is a quadrupole effect. This phenomenon is usually
referred to as edge focusing. Using edge focusing, the zero-gradient synchrotron
(ZGS) was designed and constructed in the 1960’s at Argonne National Laboratory.
The ZGS was made of 8 dipoles with a circumference of 172 m attaining the energy
of 12.5 GeV. Its first proton beam was commissioned on Sept. 18, 1963. See L.
Greenbaum, A Special Interest (Univ. of Michigan Press, Ann Arbor, 1971). We
use the convention that δ > 0 if the particle trajectory is closer to the center of
the bending radius. Show that the transfer matrices for the horizontal and vertical
betatron motion due to the edge focusing are

Mx =

(
1 0

tan δ
ρ 1

)
Mz =

(
1 0

− tan δ
ρ 1

)

where δ is the entrance or the exit angle of the
particle with respect to the normal direction of the
dipole edge. Thus the edge effect with δ > 0 gives
rise to horizontal defocusing and vertical focusing.

3. The particle orbit enters and exits a sector dipole magnet perpendicular to the dipole
edges. Assuming that the gradient function of the dipole is zero, i.e. ∂Bz/∂x = 0,
show that the transfer matrix is

Mx =

(
cos θ ρ sin θ
− sin θ

ρ cos θ

)
, Mz =

(
1 �
0 1

)

where θ is the bending angle, ρ is the bending radius, and � is the length of the dipole.
Note that a sector magnet gives rise to horizontal focusing.

4. The entrance and exit edge angles of a rectangular dipole are δ1 = θ/2 and δ2 = θ/2,
where θ is the bending angle. Find the horizontal and vertical transfer matrices for
a rectangular dipole (Fig. 2.2b).
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5. For a weak-focusing accelerator, Kz(s) = n/ρ2 = constant and Kx = (1 − n)/ρ2,
where ρ is the radius of the accelerator. The focusing index n is

n(s) =
ρ(s)

Bz(s, 0, 0)

∂Bz(s, x, 0)

∂x

∣∣∣
x=0

,

where we have chosen the coordinate system shown in Fig. 2.1. Solve the following
problems by using the uniform focusing approximation with constant n.

(a) Show that the horizontal and vertical transfer matrices are

Mx =

(
cos(

√
1− n s/ρ) (ρ/

√
1− n) sin(

√
1− n s/ρ)

−(
√
1− n/ρ) sin(

√
1− n s/ρ) cos(

√
1− n s/ρ)

)
,

Mz =

(
cos(

√
n s/ρ) (ρ/

√
n) sin(

√
n s/ρ)

−(
√
n/ρ) sin(

√
1− n s/ρ) cos(

√
n s/ρ)

)
.

(b) Show that the betatron tunes are νx = (1−n)1/2 and νz = n1/2, and the stability
condition is 0 ≤ n ≤ 1.

(c) If N equally spaced straight sections, with Kx = Kz = 0, are introduced into
the accelerator lattice adjacent to each combined-function dipole, calculate the
mapping matrix for the basic period and discuss the stability condition.

6. The path length for a particle orbit in an accelerator is

C =

∮ √
[1 + (x/ρ)]2 + x′2 + z′2 ds.

Show that the average orbit length of the particle with a vertical betatron action Jz
is longer by

ΔC

C
=

1

2
�1 + α2

z

βz
�Jz ,

where αz and βz are betatron amplitude functions. In the smooth approximation,
the betatron amplitude function is approximated by �βz� = R/νz, and the betatron
oscillations can be expressed as

z = ẑ cos

(
s

�βz� + χz

)
,

where R, νz and ẑ are the average radius, the vertical betatron tune, and the ver-
tical betatron amplitude respectively, and χz is an arbitrary betatron phase angle
of the particle. Show that the average orbit length of a particle executing betatron
oscillations is longer by

ΔC

C
=

ν2z
4R2

ẑ2.

Thus the orbit length depends quadratically on the betatron amplitude.

7. In a strong-focusing synchrotron, the art (or science) of magnet arrangement is called
lattice design. The basic building blocks of a lattice are usually FODO cells. A
FODO cell is composed of QF OO QD OO, where QF is a focusing quadrupole,
OO represents either a drift space or bending dipoles of length L1, and QD is a
defocusing quadrupole. The length of a FODO cell is L = 2L1. Using the thin-lens
approximation,
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(a) Find the mapping matrix and the phase advance of the FODO cell and discuss
the stability condition.

(b) Find the parameters β, α at the quadrupoles and at the center of the drift space
as a function of L1 and Φ. Find the phase advance Φ that minimizes the betatron
amplitude function at the focusing quadrupole location.

8. Using Eq. (2.41), show that β��� + 4β�K + 2βK � = 0. Solve this equation for a drift
space and a quadrupole respectively, and show that the solution of this equation must
be one of the following forms:

⎧
⎨
⎩

β = a+ bs+ cs2, drift space
β = a cos 2

√
Ks+ b sin 2

√
Ks+ c, focusing quadrupole

β = a cosh 2
�|K|s+ b sinh 2

�|K|s+ c, defocusing quadrupole.

(a) In a drift space, where there are no quadrupoles, Show also that the betatron
amplitude function is given by

β(s) = β1 − 2α1s+ γ1s
2 = β∗ +

(s− s∗)2

β∗ ,

where the parameters α1, β1 and γ1 at betatron function values at the beginning
of the element, or s = 0; and β∗ is the betatron function at the symmetry point
s = s∗ with β� = 0. This means that s∗ = β1/(α1+1/α1), and β∗ = β1/(1+α2

1) =
1/γ∗ = 1/γ1. Note that γ1 = (1 + α2

1)/β1 = 1/β∗, i.e. γ1 is constant in a drift
space.

(b) Using the similarity transformation Eq. (2.32), show that the Courant–Snyder
parameters α2, β2, γ2 at s2 are related to α1, β1, γ1 at s1 by

⎛
⎝

β2
α2

γ2

⎞
⎠ =

⎛
⎝

M2
11 −2M11M12 M2

12

−M11M21 M11M22 +M12M21 −M12M22

M2
21 −2M21M22 M2

22

⎞
⎠

⎛
⎝

β1
α1

γ1

⎞
⎠ ,

where Mij are the matrix elements of M(s2|s1). Use these equations to verify
your solution to part (a). Similarly, the betatron function inside the focusing
and defocusing quadrupole are respectively given by

βfocusing(s) =
1

2
(β1 − γ1

K
) cos 2

√
Ks− α1√

K
sin 2

√
Ks+

1

2
(β1 +

γ1
K

),

βdefocusing(s) =
1

2
(β1 +

γ1
K

) cosh 2
√
Ks− α1√

K
sinh 2

√
Ks+

1

2
(β1 − γ1

K
),

9. Use the transfer matrix M(s2|s1) of Eq. (2.42) to show that, when a particle is kicked
at s1 by an angle θ, the displacement at a downstream location is

Δx2 = θ
�
β1β2 sinψ,

where β1 and β2 are values of betatron functions at s1 and s2 respectively, and
ψ = ψ(s2) − ψ(s1) is the betatron phase advance between s1 and s2. The quantity√
β1β2 sinψ is usually called the kicker arm. To minimize the kicker magnet strength

θ, the injection or extraction kickers are located at a high β locations with a 90◦
phase advance.
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10. Transforming the betatron phase-space coordinates onto the normalized coordinates
with

Y =
1√
β
y, P

Y
=

1√
β
(αy + βy�),

or

(
Y
P

Y

)
= B−1

(
y
y�

)
with B−1 =

(
1/
√
β 0

α/
√
β

√
β

)
and B =

( √
β 0

−α/
√
β

√
β

)
,

show that the betatron transfer matrix in normalized coordinates becomes

M̃(s2|s1) =
(

cosψ sinψ
− sinψ cosψ

)
,

i.e. the betatron transfer matrix becomes coordinate rotation with rotation angle
equal to the betatron phase advance. Show that the transfer matrix of Eq. (2.42)

becomesM(s2|s1) = B2M̃B−1
1 , whereB2 andB1 are the betatron amplitude matrices

at s = s2 and s1 respectively.

11. Show that the Floquet transformation of Eq. (2.55) transforms the Hamiltonian of
Eq. (2.47) into Eq. (2.54).

12. Often a solenoidal field has been used to provide both the horizontal and the verti-
cal beam focusing for the production of secondary beams from a target (see Exer-
cise 2.1.4). The focusing channel can be considered as a focusing-focusing (FOFO)
channel. We consider a FOFO focusing channel where the focusing elements are sep-
arated by a distance L. Use the thin-lens approximation to evaluate beam transport
properties of a periodic FOFO channel.

(a) Show that the phase advance of a FOFO cell is

sin
Φ

2
=

1

2

√
L

f
,

where f is the focal length given by f−1 = g2� = Θ2/�, � is the length of the
solenoid, g = B�/2Bρ is the effective solenoid strength, B� is the solenoid field,
and Θ = g� is the solenoid rotation angle.

(b) Show that the maximum and minimum values of the betatron amplitude func-
tion are

βmax = L/sinΦ, βmin = f sinΦ.

13. The doublet configuration consists of a pair focusing and defocusing quadrupoles with
equal focusing strength separated by a small distance L1 as a beam focusing unit.
The doublet pairs are repeated at intervals L2 � L1 for beam transport (Fig. 2.6).
These quadrupole doublets can be used to maintain round beam configuration during
beam transport. Using the thin-lens approximation with equal focal length for the
focusing and defocusing quadrupoles, describe the properties of betatron motion in a
doublet transport line.



EXERCISE 2.2 73

(a) Show that the betatron phase advance in a doublet cell is

ψ = ψx,z = 2arcsin
(√

L1L2/2f
)
,

where f is the focal length of the quadrupoles.

(b) Show that the maximum betatron amplitude function is approximately

βmax = (L1 + L2 + L1L2/f)/ sinψ.

(c) Show that the minimum betatron amplitude function is

β∗ =
√

L1 (4f2 − L1L2) /4L2.

(d) Sketch the betatron amplitude functions and compare your results with that of
the FODO cell transport line.

14. Statistical definition of beam emittance:17 We consider a statistical distribution of
N non-interacting particles in phase space (x, x�). Let ρ(x, x�) be the distribution
function with ∫

ρ(x, x�)dxdx� = 1.

The first and second moments of beam distribution are

�x� = 1

N

∑
xi =

∫
xρ(x, x�)dxdx�, �x�� = 1

N

∑
x�i =

∫
x�ρ(x, x�)dxdx�,

σ2
x =

1

N

∑
(xi − �x�)2, σ2

x′ =
1

N

∑
(x�i − �x��)2,

σxx′ =
1

N

∑
(xi − �x�)(x�i − �x��) = rσxσx′ .

Here σx and σx′ are rms beam widths, and r is the correlation coefficient. The rms
emittance is defined as

�rms = σxσx′
√

1− r2.

(a) Assuming that particles are uniformly distributed in an ellipse

x2/a2 + x�2/b2 = 1,

show that the total phase-space area is A = πab = 4π�rms. The factor 4 has
often been used in the definition of the full emittance, i.e. � = 4�rms, to ensure
that the phase-space area of such an ellipse is π�.

(b) Show that the rms emittance defined above is invariant under a coordinate
rotation

X = x cos θ + x� sin θ, X � = −x sin θ + x� cos θ,
and show that the correlation coefficient R = σ

XX′/σXσX′ is zero if we choose
the rotation angle to be

tan 2θ =
2σxσx′r

σ2
x − σ2

x′
.

Show that σ
X

and σ
X′ reach extrema at this rotation angle.

17See P. Lapostolle, IEEE Trans. Nucl. Sci. NS-18, 1101 (1971), and J. Buon, CERN 91-04, 30
(1991). The statistical definition of beam emittance is applicable to all phase space coordinates.
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(c) In accelerators, particles are distributed in the Courant-Snyder ellipse:

I(x, x�) = γx2 + 2αxx� + βx�2,

where α, β, γ are betatron amplitude functions. If the beam distribution function
is a function of I(x, x�), show that

�rms =
σ2
x

β
=

σ2
x′

γ
, r = − α√

βγ
, or

(
σ2
x σxx′

σxx′ σ2
x′

)
= �rms

(
β −α
−α γ

)
.

and

x†σ−1x =
1

�rms
(γx2 + 2αxx� + βx�2).

(d) Show that the σ matrix is transformed, in the linear betatron motion, according
to (

σ2
x σxx′

σxx′ σ2
x′

)

2

= M(s2|s1)
(

σ2
x σxx′

σxx′ σ2
x′

)

1

M(s2|s1)†,

where M † is the transpose of the matrix M . Use this result to show that
x†σ−1x of Eq. (2.60) is invariant under betatron motion and thus an invariant
beam distribution function is a function of x†σ−1x. The transport equation for
the σ-matrix can be used to measure the σ-matrix elements and derive the rms
beam emittance. For a thick quadrupole lens, show that Eq. (2.61) becomes

σ2
x(s2) = σ2

x(s1)

{
cos

√
K�q − L

√
K sin

√
K�q +

σxx′(s1)

σ2
x(s1)

(
1√
K

sin
√
K�q

+L cos
√
K�q

)}2
+

�2rms

σ2
x(s1)

[
1√
K

sin
√
K�q + L cos

√
K�q

]2
,

where K = B1/Bρ and �q and the focusing function and the length of the
quadrupole, and L is the length of the drift space between the quadrupole and
the profile monitor.

(e) Particle motion in synchrotrons obeys Hamiltonian dynamics with

x� =
dx

ds
,

dx�

ds
= −∂H

∂x
.

Show that

d�2

ds
= −2σ2

x(�x�
∂H

∂x
� − �x���∂H

∂x
�) + 2σxx′(�x∂H

∂x
� − �x��∂H

∂x
�).

For a linear Hamiltonian, we have ∂ H/∂ x = Kx, where K(s) is the focus-
ing function. Show that the rms emittance is conserved. What would your
conclusion be if the Hamiltonian were nonlinear?

15. Consider a beam of noninteracting particles in an accelerator with focusing function
Ky(s), where the particle betatron coordinate obeys Hill’s equation

y�� +Ky(s)y = 0.

Let Y be the envelope radius of the beam with emittance �, i.e. Y (s) =
√

β(s)�.
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(a) Show that the envelope equation of motion is

Y ′′ +Ky(s)Y − �2

Y 3
= 0.

(b) Show that the envelope equation can be derived from the envelope Hamiltonian18

Henv =
1

2
P 2 + Venv, Venv =

1

2
KyY

2 +
�2

2Y 3
,

where (P, Y ) are conjugate envelope phase-space coordinates with P = Y ′, and
Venv is the “potential energy”. In a smooth focusing approximation, Ky(s) =
(2π/L)2, where L is the wavelength of the betatron oscillations. Using the
smooth approximation, we have �Ky� = (2πQy/C)2 obtained from Floquet
transformation to Hill’s equation, where C is the circumference, and Qy is the
betatron tune. The corresponding average betatron wavelength is C/Qy, and
the average betatron amplitude function is �βy� = R/Qy, where R is the av-
erage radius. The equivalent betatron amplitude function is βy = L/2π. The

matched beam radius is given by dVenv/dY = 0, i.e. Ym =
√

L�/2π. Show that
the solution of the betatron motion and the solution of the envelope equation
are

y =

√
L�

2π
cos(

2πs

L
+ χβ),

Y 2 =

√
A2 +

(
L�

2π

)2

+A cos(2
2πs

L
+ χ),

where the parameters A and χ are determined by the initial beam conditions.
Thus the envelope of a mis-injected beam bunch will oscillate at twice the be-
tatron oscillation frequency (the quadrupole mode).

(c) Let us make Floquet transformation to the envelope equation in part (a) with

R =
Y√
β�

, φ =
1

ν

∫ s

0

ds

β(s)
,

where β is the betatron amplitude function, and ν is the betatron tune. Show
that the normalized envelope R satisfies the equation:

d2

dφ2
R+ ν2R− ν2

R3
= 0.

Using (R,PR = dR/dφ) as the conjugate phase space coordinates, we obtain the
envelope Hamiltonian as H = 1

2P
2
R
+ Venv(R), where the envelope potential is

Venv =
1

2
ν2R2 +

ν2

2R2
.

Show that the exact solution of the envelope equation is

R2 =
√

1 + a2 + a cos(2νφ+ χ),

18See S.Y. Lee and A. Riabko, Phys. Rev. E51, 1609 (1995); ibid. Phys. Rev. E51, 3529 (1995).
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where a is the envelope mismatch amplitude. Note: if the square of the rms
beam width is plotted as a function of revolution turns, the resulting oscillation
will be sinusoidal. The envelope Hamiltonian is, in fact, linear.

16. The Courant–Snyder phase-space ellipse of a synchrotron is γy2 + 2αyy� + βy�2 = �,
where α, β and γ are the Courant–Snyder parameters. If the injection optics is mis-
matched with γ1y

2+2α1yy
�+β1y

�2 = �, find the emittance growth factor (note that the
easiest way to estimate the emittance growth is to transform the injection ellipse into
the normalized coordinates of the ring optics. The deviation of the injection ellipse
from a circle in the normalized phase space corresponds to the emittance growth).

(a) Transform the injection ellipse into the normalized coordinates of the ring lattice,
and show that the injection ellipse becomes

(
β

β1
+

(α1β − β1α)
2

ββ1

)
Y 2 + 2

α1β − αβ1
β

Y P +
β1
β
P 2 = �,

Y =
1√
β
y, P =

1√
β
(αy + βy�).

(b) Transform the ellipse to the upright orientation, and show that the major and
minor axes of the ellipse are

F+ =
(
Xmm +

√
X2

mm − 1
)1/2

, F− =
(
Xmm −

√
X2

mm − 1
)1/2

,

where the mismatch factor Xmm is (see Exercise 2.2.14)

Xmm =
1

2
(γ1β + β1γ − 2α1α) =

1

2�rms
(βσ2

x′ + γσ2
x + 2ασxx′).

Note that the rms quantities σx, σx′ and σxx′ can be measured from the injected
beam. What happens to the beam if the beam is injected into a perfect linear
machine where there is no betatron tune spread? Show that the tune of the
envelope oscillations is twice the betatron tune (see Exercise 2.2.15).

(c) In general, nonlinear betatron detuning arises from space-charge forces, non-
linear magnetic fields, chromaticities, etc. Because the betatron tune depends
on the betatron amplitude, the phase-space area of the mis-injected beam will
decohere and grow. Show that the emittance growth factor is

F 2
+ =

(
Xmm +

√
X2

mm − 1
)
.

(d) Let the betatron amplitude function at the injection point be βx = 17.0 m and
αx = 2.02. The injection ellipse of a beam with emittance 5π mm-mrad is given
by x2/a2 + x�2/b2 = 1, where a = 5.00 mm and b = 1.00 mrad. Find the final
beam emittance after nonlinear decoherence.

17. At an interaction point (IP) of a collider, or at a symmetry point in a storage ring,
the lattice betatron functions are usually designed to an appropriate β∗

x,z value with
symmetry condition: α∗

x,z = 0. The resulting betatron amplitude functions in the

straight section become βx,z = β∗
x,z + s2/β∗

x,z (see Exercise 2.2.8). The luminosity, L,
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measuring the probability of particle encounters in a head on collision of two beams,
is

L = 2fN1N2

∫
ρ1(x, z, s1)ρ2(x, z, s2) dx dz ds d(βct),

where s1 = s+ βct and s2 = s− βct.

(a) Assuming Gaussian bunch distribution with

ρ(x, z, s) =
1

(2π)3/2σxσzσs
exp

{
− x2

2σ2
x

− z2

2σ2
z

− s2

2σ2
s

}
,

where σx =
√
βx�x, σz =

√
βz�z, σs are respectively the rms beam sizes in x, z, s

directions, show that the luminosity, in a short bunch condition with σs � β∗
x,z,

is

L = R(A)
fN1N2

4πσ∗
xσ

∗
z

,

where R is the reduction factor, and σ∗
x =

√
β∗
x�x and σ∗

z =
√

β∗
z �z are rms

beam size at the IP.

(b) Because of finite bunch-length σs, show that the luminosity reduction factor for
two identical Gaussian distributions is

R(Ax, Az) =
2√
π

∫
e−ζ2dζ√

(1 + (ζ2/A2
x))(1 + (ζ2/A2

z))

where Ax,z = β∗
x,z/σs is a measure of the betatron amplitude variation at the

interaction point. In a short bunch approximation with Ax � 1 and Az � 1,
we obtain R(Ax, Az) ≈ 1. Most colliders operate at a condition Ax,z ≈ 1. The
luminosity reduction due to finite bunch-length is called the hour-glass effect.

(c) For a round beam with A = Ax = Az, show that (see Section 7.1.3. in Ref. [30])

R(A) =
√
πAeA

2
erfc(A) ≈

√
πA(1 + 0.2836A + 0.07703A2)

(1 + 0.47047A)3
,

where the latter approximate identity is valid up to about A ≤ 2.5. Asymptot-
ically, we have R(A) → 1 for A → ∞. Plot R(A) as a function of A and show
that the actual luminosity is

L = R(A)L0 =
fN1N2

4π�⊥σs

√
πeA

2
erfc(A)

for a given σs, where �⊥ = �x = �z. Plot L as a function of A. Does the
luminosity decrease at A < 1?

(d) For a flat beam with β∗
x � σs, i.e. Ax � 1, show that the reduction factor

becomes

R =
2Az√
π

∫
e−A2

zζ
2
dζ√

1 + ζ2
=

Az√
π
e

A2
z
2 K0(

A2
z

2
),

where K0 is the modified Bessel function. Calculate the reduction factor as a
function of Az and show that the luminosity is (use 3.364.3 of Ref. [31])

L = R(Az)L0 =
fN1N2

4π
√
βx�x�zβz

1√
π

√
Aze

A2
z
2 K0(

A2
z

2
).
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18. Focusing of atomic beams:19 There are now two types of polarized ion sources:
the atomic-beam polarized ion source (ABS), and the optically pumped polarized
ion source (OPPIS) producing mainly hydrogen and deuterium ions. The ABS has
produced polarized H− ions with about 75% polarization at a peak current of 150 μA
with 100 μs duration and 5 Hz repetition rate. Similarly, OPPIS has been able to
produce a polarized H− ion source up to 400 μA with 80% polarization at a normalized
emittance near 1 π mm-mrad. The principle of the ABS is to form atomic beams in a
discharge tube called a dissociator. As the beam travels through the beam tube, the
spin states of the atoms are selected in a separation magnet, which is a quadrupole
or a sextupole.20 The non-uniform magnetic field preferentially selects one spin state
(Stern-Gerlach effect). This exercise illustrates the focusing effect due to a sextupole

field. Let �μ = g̃μ
B
�J be the magnetic moment of the atomic beam, where g̃ is the

Landé g-factor, μ
B
= 5.788 × 10−5eV/T is the Bohr magneton, and �J is the angular

momentum of the atom. The magnetic energy of the atomic beam in the magnetic

field �B and the force acting on the hydrogen atom are

W = −�μ · �B. �F = ∇(�μ · �B) = ±μa∇| �B|
for two quantized spin 1/2 states of the hydrogen atom, i.e. the electron spin is

quantized along the �B direction, and μa ≈ μ
B
for the hydrogen-like atom.

(a) Show that the sextupole field focuses the spin state of the atomic beam with
lower magnetic dipole energy; in other words, it defocuses the spin state with
higher magnetic dipole energy. The atoms not contained in the beam pipe will
be pumped away. It is worth pointing out that there is no preferred direction
of the spin projection inside the sextupole. The electron spin is quantized with
respect to the magnetic field. The selected atoms, which have a preferential
one-spin state, will pass through the transition region. Here the the magnetic
field is slowly changed to align all atomic polarization into the uniform field
ionizer region, where in the high-field regime the nuclear spin can be flipped by
rf field, the polarized ions are formed by the bombardment of electron beams,
and the polarized ions are drawn by the electric field to form a polarized ion
beam.

(b) When a quadrupole is used to replace the sextupole magnet, show that the
effective force on the atom is a dipole field.

(c) If the temperature of the dissociator is 60 K, what is the velocity spread of the
atomic beam? Discuss the effect of velocity spread of the atomic beam.

19. A paraxial focusing system (lithium lens): A strong paraxial focusing system
can greatly increase the yield of the secondary beams. To this end, the lithium lens
or a strong solenoid has been used. The Li lens was first used at Novosibirsk for
focusing the e+e− beams. It became the essential tool for anti-proton collection at
Fermilab.21 A cylindrical lithium rod carrying a uniform current pulse can create a
large magnetic field. The magnetic flux density is

Bθ(r) =
μIr

2πr20
,

19See e.g., W. Haberli, Ann. Rev. Nucl. Sci., 17, 373 (1967).
20H. Friedburg, and W. Paul, Naturwiss. 38, 159 (1951); H.G. Bennewitz and W. Paul, Z. Phys.

139, 489 (1954).
21B.F. Bayanov, et al., Nucl. Inst. Methods. 190, 9 (1981).
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where I is the current, r is the distance from the center of the rod, r0 is the radius of
the Li conductor, and μ ≈ μ0 = 4π × 10−7 Tm/A is the permeability.

(a) Find the focusing function for the 8-GeV kinetic energy antiprotons if I = 500
kA, r0 = 10 mm, and the length is 15 cm. What is the focal length?

(b) The total nuclear reaction cross-section between the antiprotons and the Li
nucleus is given by the geometric cross-section, i.e. σp,A = π(r2p + R2

A), where

rp = 0.8 fm, RA = 1.3×A1/3 fm, and A is the atomic mass number. The atomic
weight is 6.941 g, and the density is 0.5 g/cm3, show that the nuclear reaction
length is about 1 m. To minimize the beam loss, choose the length of the Li
lens to be less than 10% of the nuclear reaction length.

(c) Find the magnetic pressure P = B2/2μ0 that acts to compress the Li cylinder
in units of atmospheric pressure (1 atm = 1.013 × 105 N/m).

20. Low energy synchrotrons often rely on the bending radius Kx = 1/ρ2 for horizontal
focusing and edge angles in dipoles for vertical focusing. Find the lattice property of
the low energy synchrotron described by the following input data file (MAD). What
is the effects of changing the edge angle and dipole length? Discuss the stability limit
of the lattice.

TITLE,"CIS BOOSTER (1/5 Cooler), (90degDIP)"
! CIS =1/5 of Cooler circumference =86.82m / 5 =17.364m
! It accelerates protons from 7 MeV to 200 MeV in 1-5 Hz.
LCELL:=4.341 ! cell length 17.364m/4
L1:= 2.0 ! dipole length
L2:=LCELL-L1 ! straight section length
RHO:=1.27324
EANG:=12.*TWOPI/360 ! use rad. for edge angle
ANG := TWOPI/4
OO : DRIFT,L=L2
BD : SBEND,L=L1, ANGLE=ANG, E1=EANG,E2=EANG, K2=0.
SUP: LINE=(BD,OO) ! a superperiod
USE,SUP,SUPER=4
PRINT,#S/E
TWISS,DELTAP=0.0,TAPE
STOP

21. The action angle coordinate transformation of Eq. (2.48) can also be carried out by
using the generating function F3(y

�, ψ). Show that the generating function is

F3(y
�, ψ) =

βy�2

2
(
tanψ − β′

2

)

and show that the new Hamiltonian is also Eq. (2.49).
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III Effect of Linear Magnet Imperfections

In the presence of magnetic field errors, Hill’s equations (2.22) are

x�� +Kx(s)x =
ΔBz

Bρ
, z�� +Kz(s)z = −ΔBx

Bρ
, (2.89)

ΔBz + jΔBx = B0

∞∑
n=0

(bn + jan) (x+ jz)n.

where ΔBz and ΔBx are the perturbing fields, B0 is the main dipole field, b0 and
b1 are respectively the dipole and quadrupole field errors, b2 is the sextupole field

error, etc. The a’s are skew magnetic field errors. This section addresses the linear
betatron perturbation resulting from the dipole (b0) and quadrupole (b1) field errors,

and illustrates possible beam manipulation by using the perturbing fields.
Based on our study of the betatron motion in Sec. II, we will show that linear

magnet imperfections have two major effects: (1) closed-orbit distortion due to dipole

field error, and (2) betatron amplitude function perturbation due to quadrupole field
error. The effect of linear betatron coupling due to the skew quadrupole term, a1,

and the solenoid will be discussed in Sec. VI.

III.1 Closed-Orbit in the Presence of Dipole Field Error

Up to now, we have assumed perfect dipole magnets with an ideal reference closed
orbit that passes through the center of all quadrupoles. In reality, dipole field errors

may arise from errors in dipole length or power supply, dipole roll giving rise to a
horizontal dipole field, a closed orbit not centered in the quadrupoles, and feed-down

from higher-order multipoles.

A. The perturbed closed orbit and Green’s function

First, we consider a single thin dipole field error at a location s = s0 with a kick-

angle θ = ΔBdt/Bρ in an otherwise ideal accelerator, where ΔB is the dipole field
error, dt is the dipole thickness (length), ΔBdt is the integrated dipole field error and

Bρ = p0/e is the momentum rigidity of the beam. Let

y− =

(
y0

y�0 − θ

)
, y+ =

(
y0
y�0

)

be the phase-space closed-orbit state-vectors just before and just after the kick element

located at s0. The closed-orbit condition is

M

(
y0
y�0

)
=

(
y0

y�0 − θ

)
, (2.90)
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where M is the one-turn transfer matrix of Eq. (2.34) for an ideal accelerator. The

resulting closed orbit at s0 is

y0 =
β0θ

2 sin πν
cosπν, y′0 =

θ

2 sin πν
(sin πν − α0 cosπν),

where ν is the betatron tune and α0, β0 are the values of the betatron amplitude

functions at kick dipole location s0.

The closed orbit at other location s in the accelerator can be obtained from
the propagation of betatron oscillations Eq. (2.30). Using the transfer matrix of

Eq. (2.42), we obtain

(
y(s)
y′(s)

)

co

= M(s|s0)
(
y0
y′0

)
, =⇒ yco(s) = G(s, s0)θ(s0), (2.91)

G(s, s0) =

√
β(s)β(s0)

2 sin πν
cos(πν − |ψ(s)− ψ(s0)|),

where G(s, s0) is the Green function of Hill’s equation. The presence of sinπν in
the denominator of Green’s function shows that the closed orbit may not exist if the

betatron tune is an integer. The orbit response arising from a dipole field error is
given by the product of the Green function and the kick angle. The right plot of

Fig. 2.12 shows the closed-orbit perturbation in the AGS booster due to a dipole

field error of 6.82 mr. The left plot is a schematic drawing of the resulting closed
orbit around an ideal orbit. Since the betatron tune of the AGS booster is 4.82, the

closed-orbit perturbation is dominated by the n = 5 harmonic, showing 5 complete
oscillations in Fig. 2.12.

Figure 2.12: Left: schematic plot of
the closed-orbit of the AGS booster
resulting from a horizontal kicker
with kick-angle θ = 6.82 mr at the
location marked by a straight line.
Since the betatron tune of 4.82 is
close to the integer 5, the closed orbit
is dominated by the fifth error har-
monic. Right: the closed orbit as a
function of the longitudinal distance.

Equation (2.91) shows that the closed orbit becomes infinite when the condition

sin πν = 0 is encountered. The orbit kicks in every turn due to a dipole error co-
herently add up, making the closed orbit unstable. The left plot of Fig. 2.13 shows

schematically the evolution of a phase-space trajectory (y, y′) in the presence of a

dipole error when the betatron tune is an integer. Since the angular kick Δy′ = θ,
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where θ is the kick angle of the error dipole, is in the same direction in each revolu-

tion, the closed orbit does not exist. The betatron tunes are chosen to avoid integers.
In other words, if the betatron tune is near an integer, the closed orbit becomes very

sensitive to dipole field error.

Figure 2.13: Left, a schematic plot of the
closed-orbit perturbation due to an error dipole
kick when the betatron tune is an integer. Here
Δpy = βyΔy′ = βyθ, where θ is the dipole kick
angle and βy is the betatron amplitude function
value at the dipole. Right, a schematic plot of
the particle trajectory resulting from a dipole
kick when the betatron tune is a half-integer;
here the angular kicks from two consecutive or-
bital revolutions cancel each other.

If the betatron tune is a half-integer, the angular kicks of two consecutive revolu-
tions cancel each other (see right plot of Fig. 2.13). For the closed orbit, it is better

to choose a betatron tune closer to a half-integer. However, we will show later that
the quadrupole field error will produce betatron amplitude-function instability at a

half integer tune. Thus the betatron tunes should also avoid half-integers.

B. Distributed dipole field error

In reality, dipole field errors are distributed around the accelerator. Since Hill’s
equation with distributed dipole field errors Δθ(t) = (ΔB(t)/Bρ)dt is linear, the

closed orbit can be obtained by a linear superposition of dipole kicks, i.e.

yco(s) =

∫ s+C

s

G(s, t)
ΔB(t)

Bρ
dt =

√
β(s)

2 sin πν

∫ s+C

s

√
β(t)

ΔB(t)

Bρ
cos(πν + ψ(s)− ψ(t))dt

=
ν
√

β(s)

2 sinπν

∫ φ+2π

φ

[
β3/2(ϕ)

ΔB(ϕ)

Bρ

]
cos ν(π + φ− ϕ)dϕ, (2.92)

where φ(s) = (1/ν)
∫ s

0
dt/β(t), and ψ(s) = νφ(s). It is easy to verify that Eq. (2.92)

is the closed-orbit solution of the inhomogeneous Hill equation

d2y

ds2
+Ky(s)y =

ΔB

Bρ
, (2.93)

where ΔB = ±ΔBz for horizontal motion and ΔB = ∓ΔBx for vertical motion (the

upper sign for positive charge, and the lower sign for negative charge).
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C. The integer stopband integrals

Since square bracketed term in the integrand of Eq. (2.92) is a periodic function of

2π, it can be expressed in a Fourier series and obtain the closed orbit:

f(φ) ≡ νβ3/2(φ)
ΔB(φ)

Bρ
=

∞∑
k=−∞

fk ejkφ, (2.94)

fk =
1

2π

∮
νβ3/2 ΔB

Bρ
e−jkφ dφ =

1

2π

∮ √
β
ΔB

Bρ
e−jkφ ds (2.95)

yco(s) =
√

β(s)
∞∑

k=−∞

νfk
ν2 − k2

ejkφ ≈
√

β(s) |f[ν]| cos([ν]φ+ χ)

(ν − [ν])
, (2.96)

where the Fourier amplitude fk is called the integer stopband integral with f−k = f ∗
k .

The closed orbit has simple poles at integer harmonics. The simple pole structure
in Eq. (2.96) indicates that the closed orbit is most sensitive to the error harmonics

closest to the betatron tune. The resulting closed orbit is usually dominated by a few
harmonics near [ν], an integer nearest the betatron tune.

D. Statistical estimation of closed-orbit errors

In practice, the perturbing field error ΔB/Bρ, due mainly to random construction
errors in the dipole magnets and misalignment errors in the quadrupoles, is not known

a priori. During the design stage of an accelerator, a statistical argument is usually
used to estimate the rms closed orbit,

yco,rms ≈ βav

2
√
2| sinπν|

√
Nθrms, (2.97)

where βav, N, and θrms are respectively the average β-function, the number of dipoles

with field errors, and the rms angular kick angle.
Now we consider the dipole field error generated by quadrupole misalignment.

When quadrupole magnets are misaligned by a distance Δy, the effective angular
kick and the resulting closed orbit error are

θ =
B1�

Bρ
Δy =

Δy

f
,

yco,rms ≈
{

βav

2
√
2fav| sinπν|

√
Nq

}
Δyrms, (2.98)

where B1 = ∂Bz/∂x is the quadrupole gradient, f is the focal length, Nq is the
number of quadrupoles and fav is the average focal length. The coefficient in curly

brackets is called a sensitivity factor for quadrupole misalignment. For example, if
the sensitivity factor is 20, an rms quadrupole misalignment of 0.1 mm will result in

a rms closed-orbit distortion of 2 mm. The sensitivity factor increases with the size

of an accelerator.



84 CHAPTER 2. TRANSVERSE MOTION

E. Closed-orbit correction

Closed-orbit correction is an important task in accelerator commissioning. If the

closed orbit is large, the beam lifetime and dynamical aperture can be severely re-
duced. First, any major sources of dipole error should be corrected. The remaining

closed orbit can generally be corrected by either the stopband correction scheme, or
harmonic correction scheme, or χ2-minimization method.

With a few dipole correctors, the stopband near k = [ν] is

f[ν] =
1

2πν

∑
i

√
βi θi e

−j[ν]φi, (2.99)

where θi is the angular kick of the ith corrector. Placing these correctors at high-β

locations with a phase advance between correctors of [ν]φi ≈ π/2, one can adjust the
real and imaginary parts independently.

The harmonic closed-orbit correction method uses distributed dipole correctors
powered with a few harmonics nearest the betatron tune to minimize a set of stopband

integrals fk. For example, if Nc dipole correctors are powered with

θi =
1√
βi

(ak cos kφi + bk sin kφi), (i = 1, · · · , Nc),

where βi and φi are the betatron amplitude function and the betatron phase at

the ith kicker location, the kth stopband can be corrected by adjusting the ak and
bk coefficients. A few harmonics can be superimposed to eliminate all dangerous

stopbands.
Another orbit correction method is the χ2-minimization procedure. Let Nm be

the number of BPMs and Nc the number of correctors. Let yi,co and Δi be the closed-
orbit deviation and BPM resolution of the ith BPM.22 The aim is to minimize χ2 of

closed orbit error by varying θ1, θ2, . . . of Nc correctors, where

χ2 =

Nm∑
i=1

|yi,co|2
Δ2

i

.

All orbit correction schemes minimize only error-harmonics nearest the betatron

tune. Because the closed orbit is not sensitive to error-harmonics far from the betatron
tune, these harmonics can hardly be changed by closed-orbit correction schemes.

In many beam manipulation applications such as injection, extraction, manipula-
tion with an internal target, etc., local closed-orbit bumps are often used. Possible

schemes of local orbit bumps are the “four-bump method” discussed in Sec. III.3 and
the “three-bump method” (see Exercise 2.3.4).

22The BPM resolution depends on the stability of the machine and on the number of bits and
the effective width of the pickup electrode (PUE). For example, the BPM resolution for the data
acquisition system with a 12-bit ADC and a 40-mm effective width PUE is about 10 μm. If an 8-bit
ADC is used, the resolution is worsened by a factor of 16. The BPM resolution for proton storage
rings is about 10 to 100 μm.
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F. Effects of dipole field error on orbit length

The path length of a circulating particle in the Frenet-Serret coordinate system is

C =

∮ √
(1 + x/ρ)2 + x′2 + z′2 ds ≈ C0 +

∮
x

ρ
ds+ · · · , (2.100)

where C0 is the orbit length of the unperturbed orbit, and higher order terms asso-

ciated with betatron motion are neglected. Since a dipole field error gives rise to a
closed-orbit distortion, the circumference of the closed orbit may be changed as well.

We consider the closed-orbit change due to a single dipole kick at s = s0 with kick
angle θ0. Using Eq. (2.92), we find the change in circumference as

ΔC = C − C0 = θ0

∮
Gx(s, s0)

ρ
ds = D(s0) θ0, (2.101)

D(s0) =

∮
Gx(s, s0)

ρ
ds =

√
βx(s0)

2 sinπνx

∮ √
βx(s)

ρ
cos(πνx − |ψx(s)− ψ(s0)|)ds.

Here D(s0) is the value of the dispersion function at s0 (see Sec. IV). The change in
orbit length due to a dipole field error is equal to the dispersion function times the

orbital kick angle. When dipole field errors are distributed in a ring, the change in
the total path length becomes

ΔC =

∮
D(s)

ΔBz(s)

Bρ
ds. (2.102)

In many cases, the dipole field errors are generated by power supply ripple, ground
vibration, traffic and mechanical vibration, tidal action, etc., and thus the circumfer-

ence is modulated at some modulation frequencies. The modulation frequency from
ground vibration is typically less than 10 Hz. The power supply ripple can produce

modulation frequency at some harmonics of 50 or 60 Hz, and the frequency generated

by mechanical vibrations is usually of the order of kHz. Normally, particle motion
in an accelerator can tolerate small-amplitude modulation provided that modulation

frequencies do not induce betatron or synchrotron resonances. However, if a modu-
lation frequency is equal to the betatron or synchrotron frequency, particle motion

will be strongly perturbed. For example, an rf dipole field operating at a betatron
sideband23 can kick the beam out of the vacuum chamber; this is called rf knock-out.

This method can be used to measure the betatron tune.

23The FFT spectra of a transverse phase-space coordinate display rotational harmonics at integer
multiples of the revolution frequency and the betatron lines next to the rotation harmonics. These
betatron frequency lines are called the betatron sidebands. See Sec. III.7 for details.
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III.2 Extended Matrix Method for the Closed Orbit

The inhomogeneous differential equation (2.89) for the closed orbit of the betatron

oscillation can be solved by the extended 3×3 transfer matrix method. For example,
the equation of motion for a dipole field error in a combined function magnet is

x��+Kx = ΔBz

Bρ
. The betatron phase-space coordinates before and after the combined

function quadrupole is given by the extended transfer matrix

⎛
⎝

x
x�

1

⎞
⎠

2

=

⎛
⎝

cos
√
K� 1√

K
sin

√
K� ΔBz

BρK
(1− cos

√
K�)

−√
K sin

√
K� cos

√
K� ΔBz

Bρ
√
K
sin

√
K�

0 0 1

⎞
⎠

⎛
⎝

x
x�

1

⎞
⎠

1

, (2.103)

where � = s2 − s1. In thin lens approximation, the transfer matrix of Eq. (2.103)

becomes

M(s2|s1) =
⎛
⎝

1 0 0
−1/f 1 θ
0 0 1

⎞
⎠ ,

where θ = ΔBz�/Bρ and f = 1/K� are respectively the dipole kick angle and the focal
length of the perturbing element. Dipole field error can also arise from quadrupole

misalignment. Let Δyq be the quadrupole misalignment. The resulting extended
transfer matrix in the thin-lens approximation is

Mquad =

⎛
⎝

1 0 0
−1/f 1 −Δyq/f
0 0 1

⎞
⎠ .

The 3×3 extended transfer matrix can be used to obtain the closed orbit of beta-

tron motion. For example, the closed-orbit equation (2.90) is equivalent to
⎛
⎝

y0
y�0
1

⎞
⎠ =

⎛
⎝

1 0 0
0 1 θ
0 0 1

⎞
⎠

⎛
⎝

M11 M12 0
M21 M22 0
0 0 1

⎞
⎠

⎛
⎝

y0
y�0
1

⎞
⎠ , (2.104)

where M ’s are matrix elements of 2×2 one-turn transfer matrix for an ideal machine,
and θ is the dipole kick angle. Similarly, the 3×3 extended transfer matrix can be

used to analyze the sensitivity of the closed orbit to quadrupole misalignment by
multiplying the extended matrices along the transport line.24

III.3 Application of Dipole Field Error

Sometime, we create imperfections in an otherwise perfect accelerator for beam ma-

nipulation. Examples are the local-orbit bump, one-turn kicker for fast extraction, rf
knock-out, etc.

24S.Y. Lee, S. Tepikian, Proc. IEEE PAC Conf., p. 1639, (IEEE, Piscataway, N.J., 1991).
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A. Orbit bumps

To facilitate injection, extraction, or special-purpose beam manipulation,25 the orbit

of beams can be bumped to a desired transverse position at specified locations. In
this example, we discuss the four-bump method facilitated by four thin dipoles with

kick angles θi (i = 1, 2, 3, 4). Using Eq. (2.92), we obtain

yco(s) =

√
β(s)

2 sin πν

4∑
i=1

√
βi θi cos(πν − |ψ − ψi|),

where θi = (ΔBΔs)i/Bρ and (ΔBΔs)i are the kick-angle and the integrated dipole

field strength of the i-th kicker. The conditions that the closed orbit is zero outside
these four dipoles are yco(s4) = 0, y�co(s4) = 0, or

√
β1θ1 cos[πν−ψ41] +

√
β2θ2 cos[πν−ψ42] +

√
β3θ3 cos[πν−ψ43] +

√
β4θ4 cosπν = 0,√

β1θ1 sin[πν−ψ41] +
√
β2θ2 sin[πν−ψ42] +

√
β3θ3 sin[πν−ψ43] +

√
β4θ4 sin πν = 0,

where ψji = ψj−ψi is the phase advance from si to sj. Expressing θ3 and θ4 in terms
of θ1 and θ2, we obtain

{√
β3θ3 = −(

√
β1θ1 sinψ41 +

√
β2θ2 sinψ42)/ sinψ43,√

β4θ4 = (
√

β1θ1 sinψ31 +
√
β2θ2 sinψ32)/ sinψ43.

(2.105)

The orbit displacement inside the region of orbit bumps can be obtained by applying
the transfer matrix to the initial coordinates. Using four bumps, we can adjust the

orbit displacement and the orbit angle to facilitate ease of injection and extraction,
to avoid unwanted collisions, and to avoid limiting-aperture in accelerator.

The three-bump method (see Exercise 2.3.4) has also been used for local orbit

bumps. Although the slope of the bumped particle orbit can not be controlled in
the three-bump method, this method is usually used for the local orbit correction

because of its simplicity. Occasionally, two bumps can be used at favorable phase-
advance locations in accelerators. Figure 2.14 shows an example of a local orbit bump

using three dipoles. Since the two outer bumps happen to be nearly 180◦ apart in
the betatron phase advance, the middle bump dipole has negligible field strength.

B. Fast kick for beam extraction

To extract a beam bunch from accelerator, a fast kicker magnet is usually powered in
about 10–100 ns rise and fall times in order to bump beam bunches into the extraction

25Other examples are orbit bump at the aperture restricted area, internal target area, avoiding
unwanted collisions in colliders, etc. For example, the counter-circulating e+ and e− beams, or the
p̄ and p beams in a collider can be made to avoid crossing each other in a common vacuum chamber
with electrostatic separators.
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Figure 2.14: A simple orbit bump produced
by three dipole kickers marked with symbol X
in the AGS booster lattice. Since the first and
third kickers are nearly 180◦ apart in the betatron
phase advance, the local orbit bump is essentially
accomplished with these outer two kickers. In this
example, there are 3 focusing and 2 defocusing
quadrupoles between two outer bump dipoles.

channel, where a septum is located.26 With the transfer matrix of Eq. (2.42), the
transverse displacement of the beam is

Δxco(s) =
{√

βx(sk)βx(s) sin(Δφx(s))
}
θk, (2.106)

where θk =
∫
Bkds/Bρ is the kicker strength (angle), Bk is the kicker dipole field,

βx(sk) is the betatron amplitude function evaluated at the kicker location, βx(s) is
the amplitude function at location s, and Δφx(s) is the phase advance from sk of the

kicker to location s. The quantity in curly brackets in Eq. (2.106) is called the kicker
lever arm.

To achieve a minimum kicker angle, the septum is located about 90◦ phase advance
from the kicker, and the values of the betatron amplitude function at the septum and
kicker locations are also optimized to obtain the largest kicker lever arm. Similar

constraints apply to the kicker in the transverse feedback system, the kicker array for
stochastic cooling, etc.

Figure 2.15 shows a schematic drawing of the cross-section of a Lambertson septum
magnet. A beam is bumped from the center orbit xc to a bumped orbit xb. At the

time of fast extraction, a kicker kicks the beam from the bumped orbit to the the
extraction channel at xk, where the uniform dipole field bends the beam into the

extraction channel. The iron in the Lambertson magnet is shaped to minimize the
field leakage into the field-free region and the septum thickness, that is of the order

of 4-10 mm depending on the required magnetic field strength.

26The kicker is an electric or magnetic device that provides an angular deflection to charged
particle beam at a fast rise and fall times so that it can selectively deflect some beam bunches without
affecting others. The electric kicker applies the traveling wave to a stripline type waveguide. The
magnetic kicker employs ferrite material to minimize eddy-current effects. The rise and fall times
of the kickers range from 10 ns to 100’s ns. The septum is a device with an aperture divided
into a field-free region and a uniform-field region, where the former will not affect the circulating
beams, and the latter can direct the beam into an extraction or injection channels. Depending on
the application, one can choose among different types of septum, such as wire septum, current sheet
septum, Lambertson septum, etc.
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Figure 2.15: A schematic drawing of the central
orbit xc, bumped orbit xb, and kicked orbit xk in a
Lambertson septum magnet. The blocks marked
with X are conductor-coils, The ellipses marked
beam ellipses with closed orbits xc, xb, and xk.
The arrows indicated a possible magnetic field di-
rection for directing the kicked beams downward
or upward in the extraction channel.

C. Effects of rf dipole field, rf knock-out

In the presence of a localized rf dipole, Hill’s equation is

d2y

ds2
+K(s)y = θa sinωmt

∞∑
n=−∞

δ(s− nC), (2.107)

where θa = ΔB�/Bρ and ωm are respectively the kick angle and the angular frequency

of the rf dipole, C is the circumference, and t = s/βc is the time coordinate. The
periodic delta function reflects the fact that beam particles encounter the kicker field

only once per revolution.

With coordinate transformation: η = y/
√
β, φ = 1

ν

∫ s

0
ds/β, Eq. (2.107) becomes

d2η

dφ2
+ ν2η =

ν
√
β0θa
2π

∞∑
n=−∞

sin(n+ νm)φ,

where νm = ωm/ω0 is the modulation tune, β0 is the value of the betatron amplitude

function at the rf dipole location, ω0 is the orbital angular frequency, and we use
δ(s− nC) = 1

|ds/dφ|δ(φ − 2πn). The solution of the inhomogeneous Hill’s equation is

η = A cos νφ + B sin νφ + ηco, where A and B are the amplitude of betatron motion
determined by the initial conditions, and the particular solution ηco is the coherent

time dependent closed orbit,

ηco =

∞∑
n=−∞

ν
√
β0θa

2π[ν2 − (n+ νm)2]
sin(n+ νm)φ. (2.108)

The discrete nature of the localized kicker generates error harmonics n + νm for

all n ∈ (−∞,∞). For example, if the betatron tune is 8.8, large betatron oscillations
can be generated by an rf dipole at any of the following modulation tunes: νm =

0.2, 0.8, 1.2, 1.8, . . . . The coherent betatron motion of the beam in the presence of an

rf dipole at νm ≈ ν (modulo 1) with initial condition y = y� = 0 is

y(s) =

√
β(s)β0 θa
2π

∞∑
n=−∞

1

ν2 − (n+ νm)2
[ν sin(n + νm)φ− (n + νm) sin νφ]

≈ −
[√

β(s)β0 θa
4π

s

R

]
cos

νs

R
+ . . . , (2.109)
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where the last approximate identity is obtained by expanding the term in the sum

with n + νm ≈ ν, and retaining only the dominant term. Equation (2.109) indicates
that the beam is driven coherently by the rf dipole, and the amplitude of betatron

motion grows linearly with time.The coherent growth time of the betatron oscillation
is inversely proportional to |νm − ν| (mod 1). Beyond the coherent time, the beam

motion is out of phase with the external force and leads to damping. This process is
related to the Landau damping to be discussed in Sec. VIII.4.

Figure 2.16 shows the measured betatron coordinate (lower curve) at a beam

position monitor (BPM) after applying rf knock-out kicks to the beam in the IUCF
Cooler Ring, and the fractional part of the betatron tune (upper curve), that, in this

experiment, is equal to the knockout tune. The rf dipole was on from 1024 to 1536
revolutions starting from the triggering time. At revolution number 2048, the beam

was imparted a transverse kick. Note the linear growth of the betatron amplitude
during the rf dipole-on time. Had the rf dipole stayed on longer, the beam would

have been driven out of the vacuum chamber, called the “rf knock out.”

Figure 2.16: The lower curve shows the
measured vertical betatron oscillations at
one BPM in the IUCF Cooler resulting
from an rf dipole kicker at the betatron
frequency. The rf dipole was turned on
for 512 revolutions, and the beam was im-
parted by a one-turn kicker after another
512 revolutions. The betatron amplitude
grew linearly during the rf knockout-on
time. The upper curve shows the frac-
tional part of the betatron tune obtained
by counting the phase advance in the
phase-space map using data of two BPMs.

The fractional betatron tune, shown in the upper trace, is measured by averaging
the phase advance from the Poincaré map (see Sec. III.5), where data from two BPMs

are used. This two-kick method can be used to provide a more accurate measurement

of the dependence of the betatron tune on the betatron amplitude. The power supply
ripple at the IUCF cooler ring gives rise to a betatron tune modulation of the order

of 2 × 10−3 at 60 Hz and its harmonics. On the other hand, the dependence of the
betatron tune on the betatron action is typically 10−4 per 1π mm-mrad. To measure

this small effect in the environment of the existing power supply ripple, the two-kick
method was used to measure the instantaneous betatron tune change at the moment

of the second kick.27

27See M. Ellison et al., Phys. Rev. E 50, 4051 (1994).
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The rf dipole can be adiabatically turned on to induce coherent betatron oscil-

lations for betatron tune measurement without causing serious emittance dilution.28

Figure 2.17 shows the vertical beam profile measured at the AGS during the adia-

batic turn-on/off of an rf dipole. When the rf dipole was on, the beam profile became
larger because the beam was executing coherent betatron oscillations, and the profile

was obtained from the integration of many coherent betatron oscillations. As the rf
dipole is adiabatically turned off, the beam profile restored to its original shape.

time

2.54cm

Figure 2.17: The beam profile measured from
an ionization profile monitor (IPM) at the
AGS during the adiabatic turn-on/off of an rf
dipole. The beam profile appeared to be much
larger during the time that the rf dipole was
on because the profile was an integration of
many coherent synchrotron oscillations. After
the rf dipole was adiabatically turned off, the
beam profile restored back to its original shape
(Graph courtesy of M. Bai at BNL).

The induced coherent betatron motion can be used to overcome the intrinsic spin
resonances during polarized beam acceleration. Furthermore, the measurement of

the coherent betatron tune shift as a function of the beam current can be used to
measure the real and imaginary parts of the transverse impedance (see Sec. VIII).

This method is usually referred to as the beam transfer function (BTF).

D. Orbit response matrix and accelerator modeling

Equation (2.92) shows that the beam closed orbit in a synchrotron is equal to the

propagation of the dipole field error through Green’s function of Hill’s equation. If
the closed-orbit response to a small dipole field perturbation can be accurately mea-

sured, Green’s function of Hill’s equation can be modeled. The orbit response matrix

(ORM) method measures the closed-orbit response induced by a known dipole field
perturbation. The resulting response functions can be used to calibrate quadrupole

strengths, BPM gains, quadrupole misalignment, quadrupole roll, dipole field inte-
gral, sextupole field strength, etc. The ORM method has been successfully used to

model many electron storage rings.29

We consider a set of small dipole perturbation given by θj , j = 1, ..., Nb, where
Nb is the number of dipole kickers. The measured closed orbit yi at the ith beam

28M. Bai et al., Phys. Rev. E56, 6002 (1997); Phys. Rev. Lett. 80, 4673 (1998); Ph.D. Thesis,
Indiana University (1999); see also S.Y. Lee, PRSTAB 9, 074001 (2006).

29See J. Safranek and M.J. Lee, Proc. Orbit Correction and Analysis in Circular Accelerators,
AIP Conf. Proc. No. 315, 128 (1994); J. Safranek and M.J. Lee, Proc. 1994 European Part. Accel.
Conf. 1027 (1997). J. Safranek, Proc. 1995 IEEE Part. Accel. Conf., 2817 (1995).
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position monitors from a dipole perturbation is

yi = Rijθj , j = 1, ..., Nb i = 1, ..., Nm. (2.110)

(Nb can differs from Nm). The response matrix R is equal to the Green’s function
Gy of Eq. (2.91) and another term resulting from the orbit length change due to the

dipole kick to be discussed in Sec. IV.3.C.
Experimentally, we measure Rij (i = 1, · · · , Nm) vs the dipole kick at θj (j =

1, · · · , Nb). The full set of the measured response matrix R can be employed to
model the dipole and quadrupole field errors, the calibration of the BPM gain factor,

sextupole misalignment, etc. The outcome of response matrix modeling depends on
the BPM resolution, the number of BPMs and kickers, and the machine stability

during the experimental measurement.
The ORM method minimizes the difference between the measured and model

matrices Rexp and Rmodel. Let

Wk =
|Rmodel,ij −Rexp,ij|

σi
(2.111)

be the difference between the closed-orbit data measured and those derived from a

model, where σi is the rms error of ith measurements. Here the number of index
k is Nb × Nm, and the model response matrix can be calculated from MAD[23],

SYNCH[24], or COMFORT[26] programs. The measured response matrix needs cal-

ibration in the kicker angle and BPM gain, i.e.

Rexp,ij =
Rdata,ij

fjgi
,

where fj is the calibration factor of the jth kicker, and gi is the gain factor of the ith

BPM. The ORM accelerator modeling is to minimize the error of the vector W by
minimizing the χ-square (χ2) defined as

χ2 =
1

Nb ·Nm

∑
k

W2
k.

We consider sets of parameters wm’s that are relevant to accelerator model and or-

bit measurement. Some of these parameters are kicker angle calibration factor, the
BPM gain factor, the dipole angle and dipole roll, the quadrupole strength and roll,

sextupole strength, etc. The ORM modeling is to find a new set of wm-parameters
such that

||W(wm)|| = 0. (2.112)

First, we begin with parameters wm and evaluate W(wm). The idea is to find a

new set of parameters wm +Δwm that satisfies Eq. (2.112), i.e.

Wk(wm +Δwm) ≈ Wk(wm) +
dWk

dwm

Δwm = 0. (2.113)
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To evaluate Δwm, we invert matrix W ≡ dWk

dwm
, which has the dimension of is

(Nb · Nm) × Np. Here, Np is the number of parameters. In our application to accel-
erator physics, (Nb ·Nm) � Np. The singular value decomposition (SVD) algorithm

decomposes the matrix W into

W =
dWk

dwm
= UΛVT, (2.114)

where VT is a real orthonormal Np × Np matrix with VVT = VTV = 1, Λ is a
diagonal Np × Np matrix with elements Λ11 =

√
λ1 ≥ Λ22 =

√
λ2 · · · ≥ 0, and

U = AVΛ−1 is a (Nm · Nb) × Np matrix with UTU = 1.30 Here λ1, λ2, · · · are
eigenvalues of the matrix WTW, and V is composed of orthonormal eigenvectors of

WTW, i.e. WTW = VΛ2VT. The SVD-method sets all eigenvalues λi ≤ λc, (i > r)
to λi = 0, (i > r), where λc is called the tolerance level and r is called the rank of

the matrix W. Setting all λi = 0 (i > r) is equivalent setting Δwi = 0 for i > r.
This means that these dynamical parameters have no relevance to the measured data.

Once the SVD of matrix W is obtained, one finds Δwm as

Δwm = − (
VΛ−1UT

)
W(wm),

where Λ−1 is a diagonal matrix with Λ−1
11 = 1/

√
λ1, · · · ,Λ−1

rr = 1/
√
λr and 0 for

all remaining diagonal elements with i > r. The iterative procedure continues until
|Δwm| or the change of χ2 are small.

The response matrix modeling has been successfully implemented in many electron

storage rings, where the BPM resolution is about 1∼10 μm. The method has been
used to calibrate kicker angle, BPM gain, quadrupole strength and roll, sextupole mis-

alignment, dipole and quadrupole power supplies, etc. The method is also applicable
to proton synchrotrons, where the BPM resolution is usually of the order of 100 μm.

In accelerator modeling, the dimension of the matrix W, (Nm ·Nb)× Np, can be

large. The inversion of a very large matrix may become time consuming. It is advan-
tageous to model accelerator parameters in sequences, e.g., (1) kicker angle calibration

fj , (2) BPM gain gi, (3) quadrupole strength ΔKi, (4) dipole angle calibration, (5)
dipole roll, etc. These steps are sometimes essential in attaining a reliable set of

model parameters.

For high-power synchrotrons, beam particles are injected, accelerated and ex-
tracted in a short time duration. For example, the proton storage ring (PSR) at

Los Alamos National Laboratory accumulates protons for 3000 turns and the beam

bunch is extracted after accumulation for high-intensity short-pulse neutron produc-
tion. The closed orbit data can be obtained by averaging betatron oscillations in a

30The SVD decomposition of a m×nmatrixW in Eq. (2.114) can also be carried out in such a way
that U and V are respectively orthonormal real m×m and n× n matrices with UTU = UUT = 1
and VTV = VVT = 1, and Λ is a m× n diagonal matrix.
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Figure 2.18: Left, digitized betatron oscillation data of one BPM are used to derive betatron
amplitude, phase and tune, and closed orbit offset. Right, top and bottom plots show the
closed orbit data compared with Green’s function of Eq. (2.91) at a calibrated vertical
steerer angle before and after ORM modeling.

single turn injection. The betatron oscillations of each BPM can be used to obtain
the betatron amplitude, phase and tune, and the closed orbit (see the left plot of

Fig. 2.18). These information can be used in the ORM analysis for accelerator mod-
eling.31 The right plots of Fig. 2.18 shows an example of typical fit in ORM modeling.

The success of accelerator modeling depends critically on the orbit and tune stability,
the number of BPMs and orbit steerers, proper set of experimental data for attaining

relevant parameters.

E. Model Independent Analysis

Using turn-by-turn BPM data excited by resonant pinger discussed in Sec. III.3C, one
can also carry out response matrix analysis for accelerator modeling, called Model In-

dependent Analysis (MIA). This method has been successfully applied to SLC linac,
PEP-II and Advanced Photon Source.32 For the application of MIA in a storage

ring, one uses an rf dipole pinger to excite coherent betatron oscillation and measures

the response function with turn-by-turn BPM digitizing system (See Sec. III, in Ap-
pendix A, where we introduce the independent component analysis (ICA) for beam

measurements).

31X. Huang et al., Analysis of the Orbit Response Matrix Measurement for PSR, Technote: PSR-
03-001 (2003).

32J. Irwin, C.X. Wang, and Y.T. Yan, Phys. Rev. Lett. 82, 1684 (1999); C.X. Wang, Ph.D.
Thesis, Stanford University (1999); J. Irwin and Y.T. Yan, Proceedings of EPAC 2000, p. 151
(2000); C.X. Wang, Vadim Sajaev, and C.Y. Yao, Phys. Rev. ST Accel. Beams 6, 104001 (2003).
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III.4 Quadrupole Field (Gradient) Errors

The betatron amplitude function discussed in Sec. II depends on the distribution

of quadrupole strengths. What happens to the betatron motion if some quadrupole
strengths deviate from their ideal design values? We found in Sec. III.1 that the effect

of dipole field error on the closed orbit would be minimized if the betatron tune was
a half-integer. Why don’t we choose a half-integer betatron tune?

This section addresses effects of quadrupole field error that can arise from vari-
ation in the lengths of quadrupoles, errors in quadrupole power supply, horizontal

closed-orbit deviation in sextupoles,33 etc. These errors correspond to the b1 term in
Eq. (2.19).

A. Betatron tune shift

Including the gradient error, Hill’s equation for the perturbed betatron motion about
a closed orbit is

d2y

ds2
+ [K0(s) + k(s)] y = 0, (2.115)

where K0(s) is the focusing function of the ideal machine discussed in Sec. II, and k(s)

is a small perturbation. The perturbed focusing functionK(s) = K0(s)+k(s) satisfies
a weaker superperiod condition K(s+C) = K(s), where C is the circumference. Let

M0 be the one-turn transfer matrix of the ideal machine, i.e.

M0(s) = I cos Φ0 + J sin Φ0, I =

(
1 0
0 1

)
, J(s) =

(
α(s) β(s)
−γ(s) −α(s)

)
,

where Φ0 = 2πν0 is the unperturbed betatron phase advance in one revolution, ν0
is the unperturbed betatron tune, and α(s), β(s), and γ(s) are betatron amplitude

functions of the unperturbed machine.
The transfer matrix of an infinitesimal localized gradient perturbation with length

ds1 is

m(s1) =

(
1 0

−k(s1)ds1 1

)
. (2.116)

The one-turn transfer matrix becomes M(s1) = M0(s1)m(s1):

M(s1) =

(
cosΦ0 + α1 sin Φ0 − β1k(s1)ds1 sinΦ0 β1 sin Φ0

−γ1 sinΦ0 − [cosΦ0 + α1 sinΦ0]k(s1)ds1 cos Φ0 − α1 sin Φ0

)
,

33Substituting x = xco + xβ and z = zβ into the sextupole field of Eq. (2.19), we obtain

ΔBz =
1

2
B2(x

2
co + 2xcoxβ + x2

β − z2β), ΔBx = B2(xcozβ + xβzβ),

where B2 = ∂2Bz/∂x
2. Thus an off-center horizontal orbit in a sextupole generates a dipole field

1
2B2x

2
co, and a quadrupole field gradient B2xco. This process is called feed-down.
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where α1 = α(s1), β1 = β(s1), and γ1 = γ(s1). The phase advance of the perturbed

machine can be obtained from the trace of M, i.e.

cos Φ− cosΦ0 = −1

2
β(s1)k(s1)ds1 sin Φ0, or ΔΦ ≈ 1

2
β(s1)k(s1)ds1,

where ΔΦ ≡ Φ− Φ0, and the betatron tune shift is Δν = 1
4π
β(s1)k(s1)ds1. Here the

betatron tune shift depends on the product of the gradient error and the betatron

amplitude function at the error quadrupole; it is positive for a focusing quadrupole,
and negative for a defocusing quadrupole. For a distributed gradient error, the tune

shift is

Δν =
1

4π

∮
β(s1)k(s1)ds1 =

1

4π

∮
β(s1)

ΔB1(s1)

Bρ
ds1. (2.117)

The betatron tunes are particularly sensitive to gradient errors at high-β locations.
Thus the power supply for high-β quadrupoles should be properly regulated in high

energy colliders, and high-brightness storage rings.

B. Betatron amplitude function modulation (beta-beat)

To evaluate the effect of the gradient error on the betatron amplitude function, we

again consider an infinitesimal quadrupole kick at s1 of Eq. (2.116). The one-turn
transfer matrix at s2 and the change of the off-diagonal matrix element are

M(s2) = M(s2 + C|s1) m(s1) M(s1|s2),
Δ[M(s2)]12 = −k1ds1β1β2 sin[ν0(φ1 − φ2)] sin[ν0(2π + φ2 − φ1)],

where β1 = β(s1), β2 = β(s2) φ1 = ψ(s1)/ν0, and φ2 = ψ(s2)/ν0 are the values of the
unperturbed betatron functions. Since M12 = β̃2 sinΦ, where β̃2 = β̃(s2) and Φ are

the the perturbed betatron function and betatron phase advance, we find

(Δβ2) sinΦ0 = ΔM12 − β2 cosΦ0ΔΦ = −1

2
k1ds1β1β2 cos[2ν0(π − φ1 + φ2)],

where Δβ2 = β̃2 − β2 and ΔΦ = Φ − Φ0. Removing the subscript 2 and integrating

over the distributed gradient errors, we obtain

Δβ(s)

β(s)
= − 1

2 sinΦ0

∫ s+C

s

k(s1)β(s1) cos[2ν0(π + φ− φ1)] ds1

= − ν0
2 sinΦ0

∫ φ+2π

φ

k(φ1)β
2(φ1) cos[2ν0(π + φ− φ1)] dφ1, (2.118)

where φ = (1/ν0)
∫ s

0
ds/β. The factor sin 2πν0 in the denominator of Eq. (2.118)

implies that the betatron amplitude function diverges when ν0 is a half-integer. We
can also verify that Δβ/β satisfies (see Exercise 2.3.10)

d2

dφ2

[
Δβ(s)

β(s)

]
+ 4ν2

0

[
Δβ(s)

β(s)

]
= −2ν2

0β
2k(s). (2.119)
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C. The half-integer stopband integrals

In a manner similar to the closed-orbit analysis, we expand the gradient error function
ν0β

2k(s), which is a periodic function of s, in a Fourier series and obtain

ν0β
2k(s) =

∞∑
p=−∞

Jp ejpφ, Jp =
1

2π

∮
β k(s) e−jpφ ds. (2.120)

Δβ(s)

β(s)
= −ν0

2

∞∑
p=−∞

Jpe
jpφ

ν2
0 − (p/2)2

≈ −Jp0 cos(p0φ+ χ0)

(2ν0 − p0)
, (2.121)

where Jp is the pth harmonic half-integer stopband integral. The tune shift of
Eq. (2.117) is Δν = J0/2. The perturbation Δβ(s)/β(s) can usually be approxi-

mated by one or two leading harmonics, where p0 is the integer nearest 2ν0, and χ0

is the phase angle of Jp0. The betatron amplitude function is most sensitive to error

harmonics of β2k(s) nearest 2ν0. The amplitude function becomes infinite when 2ν0
approaches an integer; this is called a half-integer resonance. When the betatron tune

is a half-integer, a quadrupole error can generate coherent additive phase-space kicks

every revolution. The “closed orbit” of the betatron amplitude function will cease
to exist, as shown in the left plot of Fig. 2.19. The betatron tune should avoid all

half-integers.

Figure 2.19: Left, schematic plot of a particle trajec-
tory at a half-integer betatron tune resulting from an
error quadrupole kick Δpy = βyΔy� = −βyy/f , where
f is the focal length, y is the displacement from the
quadrupole center, and βy is the betatron amplitude
function at the quadrupole. The quadrupole kick is pro-
portional to the displacement y. At a half-integer beta-
tron tune, y changes sign in each consecutive revolution
and the kick angles coherently add in each revolution to
produce unstable particle motion. Right: cancellation
of two kicks by zero tune shift π-doublets, that produce
only local perturbation to betatron motion.

The evolution of phase-space coordinates resulting from a quadrupole kick is [using

Eq. (2.116)] Δy = 0 and Δy� = −k(s1)y ds1 = −y/f, where f = 1/(k1ds1) is the focal
length of the error quadrupole, and y is the displacement from the center of the closed

orbit. The change of the slope y� is proportional to the displacement y. The left plot
of Fig. 2.19 shows the behavior of a quadrupole kick at a half-integer tune, where

the quadrupole kicks are coherently additive. This will lead to an ever increasing
betatron amplitude. Thus the half-integer stopband gives rise to unstable betatron

motion. When the betatron tune is an integer, quadrupole kicks will resemble the

left plot in Fig. 2.13. Thus an integer betatron tune is also a half-integer resonance.
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The right plot shows the effect of zero tune shift π-doublets, which give rise only to

local betatron perturbation.
The stopband width is defined by δνp ≡ |Jp| such that |Δβ(s)/β(s)|max ≈ 1 at

ν0 ≈ p
2
± 1

2
δνp. This means that the betatron tune should differ from a half-integer

by at least the stopband width. When the betatron tunes are inside the stopband,

the beam size will increase by at least a factor of
√
2, and beam loss may occur.

D. Example of one quadrupole error in FODO cell lattice

We consider a simple accelerator lattice made of 18 FODO cells with half cell length

10-m, and dipole length 8 m bending angle 10◦. The betatron tunes are set at
νx = 4.79302 and νz = 4.78298 by quadrupoles. Now, consider an 1% decrease in

focusing quadrupole strength at the end of the 10th cell. The top 2 plots of Fig. 2.20
show Δβ/β, a pure sinusoidal function oscillating at twice betatron tune agreeing

with Eq. (2.118). The regular oscillation of Δβ/β gives a beating of the betatron
amplitude function, called beta-beat, dominated by the 9th and 10th harmonics. At

the error quadrupole location, the kick in Δβ/β is equal to −2ν2
0βkds. This particular

property can be used to model the accelerator and discover mis-behaved quadrupoles.

Figure 2.20: Perturbation of betatron amplitude
functions vs φ (either φx = 1

νx

∫ s
0 ds/βx or φz =

1
νz

∫ s
0 ds/βz) resulting from 1% decrease in gradi-

ent strength of the 10th focusing quadrupole. The
betatron amplitude function perturbation is dom-
inated by harmonics nearest [2νx] and [2νz ]. Since
βx/βz ∼ 6.37 at the focusing quadrupole location,
the resulting error Δβx/βx is about 6.37Δβz/βz .
A single kick at the error quadrupole location can
be identified in the top 2 plots. The bottom plot
shows the effect of quadrupole error on dispersion
function shown as ΔDx/

√
βx vs φ = φx. A single

kick at the error quadrupole location is visible to
the dispersion closed orbit.

E. Statistical estimation of stopband integrals

Again, in the design stage of an accelerator, if we do not know a priori the gradient

error, the stopband integral can be estimated by statistical argument as

Jp ≈ 1

4πfav
βav

√
Nq

(
ΔK

K

)

rms

,

where βav, fav, Nq, and (ΔK/K)rms are respectively the average β value, the average

focal length, the number of quadrupoles, and the rms relative gradient error.
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F. Effect of a zero tune shift π-doublet quadrupole pair

A zero tune shift π-doublet (or the zero tune shift half-wave doublet) is composed of
two quadrupoles separated by 180◦ in betatron phase advance with zero tune shift.

Using the zero tune shift condition, we obtain

β1ΔK1ΔL1 + β2ΔK2ΔL2 = 0, (2.122)

where β1,2 are betatron amplitude functions at quadrupole pair locations, and ΔKiΔLi

is the integrated field strength of the ith quadrupole. The zero tune shift condition
of Eq. (2.122) also produces a zero stopband integral at p = [2ν], i.e. J[2ν] = 0. Since

the stopband integral J[2ν] of a zero tune shift π-doublet is zero, the doublet has

little effect on the global betatron perturbation shown in the right plot of Fig. 2.19,
where the betatron perturbation due to the first quadrupole is canceled by the second

quadrupole. Zero tune shift π-doublets can be used to change the dispersion function
and the transition energy (to be discussed in Sec. IV.8). We find that the zero tune

shift π-doublet produces a zero stopband width. On the other hand, a zero tune shift
quarter-wave quadrupole pair produces a maximum contribution to the half-integer

stopband. Employing such modules, we can correct half-integer betatron stopbands.

III.5 Basic Beam Observation of Transverse Motion

Measurements of beam properties are important in improving the performance of a
synchrotron. In this section we discuss some basic beam diagnosis tools. Further

detailed discussions can be found in the literature.34

Figure 2.21: A schematic drawing of
electric beam position monitors. The
split-can type BPM has the advantage
of linear response; the strip-line type
has a larger transfer function.

A. Beam position monitor (BPM)

Transverse beam position monitors (BPMs) or pickup electrodes (PUEs) are usually
composed of two or four conductor plates or various button-like geometries. Fig-

ure 2.21 shows a sketch of some simple electric BPM geometries used mainly in

34R. Littauer, AIP Conf. Proc. 105, 869 (1983); R. Shafer, IEEE Trans. Nucl. Sci. NS32,
1933 (1985); J.L. Pellegrin, SLAC PUB-2522 (1980), and Proc. 11th Int. Conf. on High Energy
Accelerators, p. 459 (1980); H. Koziol, CERN 89-05, p. 63 (1989); M. Serio, CERN 91-04, p. 136
(1991); P. Strehl, CERN 87-10, p. 99 (1987); J. Boer, R. Jung, CERN 84-15, p. 385 (1984).
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proton synchrotrons. The button BPMs are used mainly in electron storage rings,

where the bunch length is small. As the beam passes by, the induced image electric
charges on the plates can be transmitted into a low impedance circuit, or the induced

voltage can be measured on a high impedance port such as the capacitance between
the electrode and the surrounding vacuum chamber.

The BPM can have an electrostatic, e.g. split electrodes and buttons, or a

magneto-static, e.g. small secondary loop winding, configurations. An electrostatic
monitor is equivalent to a current generator, where the image charge is detected by

the shunt capacitance of the electrode to ground. Similarly, a magnetic loop monitor
is equivalent to a voltage generator with a series inductor, which is the self-inductance

of the loop. The voltage is proportional to the rate of variation of the magnetic flux
associated with the beam current linked to the loop.

In general, the beam position is

y ≈ w

2

U+ − U−
U+ + U−

=
w

2

Δ

Σ
, (2.123)

where U+ and U− are either the current or the voltage signals from the right (up) and

left (down) plates, Δ = U+ − U− is called the difference signal or the Δ-signal, Σ =
U+ +U− is the sum signal, and w/2 is the effective width of the PUE. Depending on

the geometry of the PUE, the relation Eq. (2.123) may require nonlinear calibration.
Measurements of the normalized difference signal with proper calibration provide

information about the beam transverse coordinates. If we digitize beam centroid
positions turn by turn, we can measure the betatron motion. On the other hand,

sampling the position data at a slower rate, we can obtain the closed-orbit information
from the DC component.

B. Measurements of betatron tune and phase-space ellipse

If the betatron oscillations from the BPM systems can be digitized turn by turn, the

betatron tune can be determined from the FFT of the transverse oscillations (see
Appendix B). Figure 2.22 shows the data for the horizontal betatron oscillation of a

beam after a transverse kick at the IUCF cooler ring. The top plot shows the digitized

data at two BPM positions (x1 and x2). The lower plot shows the FFT spectrum of
the x1 data. From the FFT spectrum, we find that the horizontal and vertical tunes

of this experiment were νx = 3.758 and νz = 4.683 respectively.

The phase-space trajectory can be optimally derived from the measured betatron
coordinates at two locations with a phase advance of an odd multiple of 90◦. With

Eq. (2.39), we obtain x�
1 and the invariant phase-space ellipse;

x�
1 =

cscψ21√
β1β2

x2 − (cotψ21 + α1)

β1
x1,
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Figure 2.22: The measured betatron coordi-
nates at two horizontal BPMs, after the beam
is imparted a magnetic kick, vs the revolution
number. The solid line is drawn to guide the
eye. A total of 385 data points are used to ob-
tain the FFT spectrum showing the fractional
part of the horizontal betatron tune. The frac-
tional part of the horizontal betatron tune is
νx = 0.242±0.002. The observed vertical beta-
tron tune at νz = 0.317 may result from linear
coupling or from a tilted horizontal kicker.

x2
1 +

(√
β1

β2
cscψ21 x2 − cotψ21 x1

)2

= 2β1J, (2.124)

where ψ21 = ψ2 − ψ1 is the betatron phase advance between two BPMs, β1 and β2

are the values of betatron amplitude function at two BPMs, and α1 = −β �
1/2 at the

first BPM. The area enclosed by the (x2, x1) ellipse is 2π
√
β1β2 | sinψ21|J , and J is

the betatron action. Dots in the left plot of Fig. 2.23 shows the measured (x2, x1)
ellipse, where the solid line is obtained from Eq. (2.124) by fitting

√
β1/β2 and ψ21

parameters for the orientation, and β1J1 for the size of the ellipse. If the betatron
amplitude function β1 is independently measured, the action of the ellipse can be

determined.

Figure 2.23: Left, the phase-space ellipse
(x2, x1) of Fig. 2.22. The solid line shows

the ellipse of Eq. (2.124) with
√

β2/β1 = 1.4,
ψ21 = 80◦, and 2β1J = 8 × 10−6 m2. If β1
is independently measured, the action of the
betatron orbit can be obtained. Right, phase-
space ellipse of single digitized BPM data in
successive revolutions. Because the betatron
tune is nearly 3.75, the phase space is an up-
right circle.

Two BPMs separated by about 90◦ in phase advance are useful for obtaining a

nearly upright transverse phase-space ellipse. The turn by turn digitized data require
a high bandwidth digitizer and a large memory transient recorder. However, if avail-

able hardware is limited, the phase-space ellipse can be obtained by using digitized
data of successive turns of a single BPM. The right plot of Fig. 2.23 shows x1,n+1 vs

x1,n. Because the horizontal tune in this example is 3.758 (see Fig. 2.22), the phase-

space ellipse of (x1,n, x1,n+1) is nearly a circle. The area enclosed is 2πβ1| sin 2πνx|J .
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III.6 Application of Quadrupole Field Error

By using the quadrupole field error, the optical properties of the lattice can be altered,
measured, or manipulated. Examples of β-function measurement and the betatron

tune jump are described below. Other applications, such as π-doublets for dispersion
function manipulation, will be discussed in Sec. IV.8.

A. β-function measurement

Using Eq. (2.117), we can derive the betatron amplitude function by measuring the

betatron tune as a function of the quadrupole strength. The average betatron ampli-

tude function �βx,z� at a quadrupole becomes

�βx,z� = 4π
Δνx,z
ΔK�

,

where ΔK� is the change in the integrated quadrupole strength. Figure 2.24 shows

an example of the measured fractional part of the betatron tune vs the strength of a
quadrupole at the IUCF cooler ring. The “average” betatron amplitude function at

the quadrupole can be derived from the slopes of the betatron tunes. In this example,
the slope of the horizontal betatron tune is larger than that of the vertical, and thus

the horizontal betatron function is larger than the vertical one. Since the fractional
part of the horizontal tune increases with the defocusing quadrupole strength, the

actual horizontal tune is below an integer. For the IUCF cooler ring, we have νx =
4− qx and νz = 5− qz, where qx and qz are the fractional parts of betatron tunes.

Figure 2.24: The horizontal and vertical tunes,
determined by the FFT spectrum of the betatron
oscillations, vs quadrupole field strength. The
slope of the betatron tune vs quadrupole field
can be used to determine the average betatron
amplitude function at the quadrupole location.
Because the fractional parts of betatron tunes
were qx = 4− νx and qz = 5 − νz, the fractional
horizontal tune appeared to “increase” with the
strength of the horizontal defocusing quadrupole.

B. Tune jump

The vector polarization of a polarized beam is defined as the percent of particles
whose spins lie along a quantization axis, e.g. the polarization of a proton beam is

P = (N+ − N−)/(N+ + N−), where N± are the numbers of particles with their spin

projection lying along and against the quantization axis. For polarized beams in a
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planar accelerator, the quantization axis can be conveniently chosen to lie along the

vertical direction that coincides with the vertical guide field.

According to the Thomas-BMT equation, the polarization vector precesses about

the vertical axis at Gγ turns per revolution, where G = (g−2)/2 is the anomalous g-
factor and γ is the Lorentz relativistic factor.35 Thus Gγ is called the spin tune. Since

the spin tune increases with the beam energy, acceleration of a polarized beam may
encounter spin depolarization resonances [27], where the “imperfection resonance”

arises from the vertical closed-orbit error, and the “intrinsic resonance” is produced
by the vertical betatron motion. The imperfection resonance can be corrected by

vertical orbit correctors to achieve proper spin harmonic matching. The AGS had 96
closed-orbit correctors for imperfection resonance harmonics.36

The intrinsic resonance in low/medium energy synchrotrons can be overcome by

the tune jump method. When the Gγ value reaches an intrinsic spin resonance, the
betatron tune is suddenly changed to avoid the resonance. This betatron tune jump

can be achieved by using a set of ferrite quadrupoles with a very fast rise time. The
AGS had 10 fast ferrite quadrupoles to produce a tune jump of about 0.3 in about

2.5 μs.

The amount of tune change is given by Eq. (2.117), where ΔB1 is the quadrupole

gradient of tune jump quadrupoles. Because of the integer and half-integer stopbands,
the magnitude of tune jump is limited to about Δνz ≈ 0.3. With a large tune jump,

beam dynamics issues such as non-adiabatic betatron amplitude function mismatch,
linear betatron coupling, nonlinear resonances, non-adiabatic closed-orbit distortion,

etc., should be carefully evaluated. Since the betatron tune of AGS is about 8.8, the
important half-integer stopbands are located at p = 17 and 18. Placement of tune

jump quadrupoles to minimize the stopband integral can reduce non-adiabatic pertur-

bation to the betatron motion. Similarly, the non-adiabatic closed-orbit perturbation
due to the misalignment of tune jump quadrupoles can also be analyzed.37

III.7 Beam Spectra

A. Transverse spectra of a particle

A circulating particle passes through the pickup electrode (PUE) at fixed time inter-
vals T0, where T0 = 2πR/βc is the revolution period, R is the average radius, and βc

35G = 1.79284739 for protons, and 0.0011596522 for electrons.
36At AGS, a 5% partial snake has recently been used to overcome all imperfection resonances.

See, e.g., H. Huang et al., Phys. Rev. Lett. 73, 2982 (1994).
37An rf dipole has recently been used to overcome these intrinsic spin resonances. See, e.g., M.

Bai et al., Phys. Rev. Lett. 80, 4673 (1998). A 20 G-m rf dipole was used to replace 10 ferrite
quadrupoles with an integrated field strength of

∫
B1ds = 15 T.
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is the speed. The current of the orbiting charged particle observed at the PUE38 is

I(t) = e

∞∑
−∞

δ(t− nT0) =
e

T0

∞∑
n=−∞

ejnω0t =
e

T0
+ 2

e

T0

∞∑
n=1

cosnω0t, (2.125)

where e is the charge of the particle, δ(t) is the Dirac δ-function, j is the complex
number, and ω0 = βc/R = 2πf0 is the angular frequency. Note that the periodic

occurrence of current pulses is equivalent to equally spaced Fourier harmonics.
The top plot of Fig. 2.25 shows the periodic time domain current pulses. The

middle plot shows the frequency spectra of the particles occurring at all “rotation
harmonics.” Passing the signal into a spectrum analyzer for fast Fourier transform

(FFT), we observe a series of power spectra at integral multiples of the revolution
frequency nf0, shown in the bottom plot. The DC current is e/T0, and the rf current is

2e/T0. Because the negative frequency components are added to their corresponding
positive frequency components, the rf current is twice the DC current.

Figure 2.25: A schematic drawing of cur-
rent pulses in the time domain (upper plot),
in the frequency domain (middle plot), and
observed in a spectrum analyzer (bottom
plot). The rf current is twice the DC
current because negative frequency compo-
nents are added to their corresponding pos-
itive frequency components.

If we apply a transverse impulse (kick) to the beam bunch, the beam will be-

gin betatron oscillations about the closed orbit. The BPM measures the transverse
coordinates of the centroid of the beam charge distribution (dipole moment).

d(t) = I(t)y(t) = I(t) [y0 + ŷ cos(ωβt)] ,

�d(t)� = �I(t)�y0,

dβ =
eŷ

2T0

∞∑
n=−∞

(
ej(n+Qy)ω0t + ej(n−Qy)ω0t

)
=

eŷ

T0

∞∑
n=−∞

cos [(n+Qy)ω0t] .

where y0 is the offset due to the closed-orbit error or the BPM misalignment, ŷ is
the amplitude of the betatron oscillation, and ωβ = Qyω0 is the betatron angular

frequency with betatron tune Qy. The DC component �d(t)� of the dipole moment
can be obtained by applying a low-pass filter to the measured BPM signal. Employing

a band-pass filter, the betatron oscillation can be measured, that can be expanded
in Fourier harmonics. In the frequency domain, the BPM signals of the betatron

38We assume that the bandwidth of PUEs is much larger than the revolution frequency. In fact,
the bandwidth of PUEs is normally from 100’s MHz to a few GHz.
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oscillation contain sidebands at the revolution frequency lines, i.e. f = (n + Qy)f0
with integer n. Figure 2.26 shows a SPEAR3 spectrum around the rf frequency of
476.312 MHz. The harmonic number is 372, and thus the upper betatron sideband

corresponds to n = 367, and the lower betatron sideband corresponds to n = −377.
The vertical betatron tune is 6.18. The betatron sidebands are classified into fast

wave, backward wave, and slow wave to be discussed briefly in Sec. VIII.
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CF=476.312 MHz Figure 2.26: The spectrum around the rf fre-
quency of 476.312 MHz for the SPEAR3. The
upper betatron sideband corresponds to n = 366,
and the lower betatron sideband corresponds to
n = −378. The corresponding vertical betatron
tune is about 6.18. The betatron sidebands are
invisible during production runs. The sidebands
appear only when the vertical chromaticity is set
to 0. (Graph: courtesy of Xiaobiao Huang).

B. Fourier spectra of a single beam with finite time span

We note that a periodic δ-function current pulse in time gives rise to equally spaced
Fourier spectra at all revolution harmonics. We ask what happens if the beam distri-

bution has a finite time span with

I(t) = N
B
e

∞∑
n=−∞

ρ(t− nT0),

∫ T0/2

−T0/2

ρ(t− nT0)dt = 1, (2.126)

where the density distribution is normalized. There are many possible forms of beam

distribution. We discuss two simple examples as follows.

1. If the beam is confined by a barrier rf wave or a double rf system, the beam dis-

tribution, approximated by the rectangular distribution, and its Fourier trans-
form are

ρ(t− nT0) =
1

2Δ
Θ(Δ− |t− nT0|); (2.127)

I(ω) =
1

2π

∫ ∞

−∞
I(t)e−jωtdt =

N
B
eω0

2π

[
sinωΔ

ωΔ

] ∞∑
n=−∞

δ(ω − nω0).

where Δ =
√
3σt is the bunch width in time. If the beam is confined by

a sinusoidal rf cavity, the distribution can be a cosine-like function, parabolic

function, or other distributions. The Fourier spectrum form-factor of a parabolic
distribution ρ(t) = 2

√
τ̂ 2 − t2/πτ 2 with τ̂ = 2σt is J0(ωτ) + J2(ωτ), where J �s

are Bessel’s function. The form-factor of a triangular distribution function

ρ(t) = [(1− |t|/a)/a]Θ(a− |t|) with a =
√
6σt is 2(1− cos(ωa))/(ωa)2.
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2. The beam distribution for electrons in storage rings is usually described by a

Gaussian distribution due to the quantum fluctuation. The current pulse and
its Fourier transform are

ρ(t− nT0) =
1√
2πσt

e−(t−nT0)2/2σ2
t , (2.128)

I(ω) =
N

B
eω0

2π

[
e−ω2σ2

t /2
] ∞∑
n=−∞

δ(ω − nω0). (2.129)

Figure 2.27 shows the spectra form factor for Gaussian, rectangular and uniform
elliptical beam distributions with an rms bunch length of 1 ns. In the frequency

domain, the spectrum of the beam pulse is truncated by a form factor that depends
on the time domain distribution function. In general, the Fourier spectrum of a

beam with time width σt extends to about 1/σt, e.g. a 6 dB roll-off frequency is
froll off ∼ 0.187/σt for a Gaussian beam. The frequency spectra of a long bunch, e.g.

1 m bunch length (3.3 ns), will have coherent spectra limited by a few hundred MHz.
Since all particles in the bunch are assumed to have an identical revolution frequency,

the Fourier spectra of Eqs. (2.127) and (2.129) are δ-function pulses bounded by the

envelope factors. If there is a revolution frequency spread, the δ-function pulses are
replaced by pulses with finite frequency width.

Figure 2.27: The form factors for Fourier spec-
tra of a beam with Gaussian, rectangular, ellip-
tical uniform, and triangular distributions with
rms bunch length σt = 1 ns. The form factor
serves as the envelope of the revolution comb lines
shown in Fig. 2.25. All distributions with same
rms bunch length has the same 6dB roll-off fre-
quency, froll−off = 0.187/σt. The coherent signal
of a rectangular bunch can extend beyond the roll-
off frequency.

C. Fourier spectra of many particles and Schottky noise

We consider N charged particles evenly distributed in the ring. The beam current

observed at a PUE is

I(t) = e
∞∑

n=−∞
δ(t− n

T0

N
) =

Ne

T0

∞∑
n=−∞

ejn(Nω0)t. (2.130)

Note that the first Fourier harmonic is located at Nω0, and the spacing of Fourier

harmonics is also Nω0.
39 If the number of particles is large, e.g. N > 108, the

39The analysis of equally spaced short bunches in the ring has identical Fourier spectra, i.e. if
there are B bunches in the ring, the first coherent Fourier harmonic is Bω0.
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frequency spectrum is practically outside the bandwidth of PUEs, and the spectrum

is simply invisible. This means that the beam appears to have no rf signal. The beam
that fills the accelerator is called a “DC beam,” or a “coasting beam.”

Similarly, the frequency spectra of the transverse dipole moment of N equally
spaced particles give rise to a betatron sideband around the coherent orbital harmon-

ics Nω0 ± ωβ. When N is a very large number, e.g. N > 108, the coherent betatron
frequency becomes too high to be visible to PUEs.

It is important to realize that particles are not uniformly distributed in a circular
accelerator. The longitudinal signal of N particles in a PUE is

I(t) = e

N∑
i=1

∞∑
n=−∞

δ(t− ti − nTi) = 2πe

∞∑
n=−∞

N∑
i=1

ωie
jnωi(t−ti)

≈ Nef0 + 2ef0

∞∑
n=1

N∑
i=1

cos(nω0t+Δφi(t)). (2.131)

The beam signal arising from random phase in charged particle distribution is called

the Schottky noise. The power spectrum at each revolution harmonic from a low

noise PUE is proportional to the number of particles.
Similarly, the dipole moments of the ith particle and the beam are respectively

di(t) = eŷi cos(ωβit+χi)
∞∑

n=−∞
δ(t− nTi − t0i) =

eŷi
Ti

cos(ωβit+χi)
∞∑

n=−∞
ejnωi(t−t0i)

d(t) =

N∑
i=1

eŷi
Ti

cos(ωβit+ χi)

∞∑
n=−∞

ejnωi(t−t0i).

Normally, the coherent betatron sidebands of a nearly uniform distribution are beyond
the bandwidth of PUEs. However, the average power of the dipole moment can be

measured. This is called the Schottky noise signal. If the particles are randomly
distributed, the average power of the dipole moment is

Pav =
1

2T

∫ T

−T

|d2(t)|dt, (2.132)

where 2T is the sampling time. For practical consideration, T is of the order of min-

utes, this means that dipole moments of particles with frequencies within T−1 ≈ 10−2

Hz may interfere with one another. The resulting Schottky power can be contami-

nated by particle-to-particle correlation. Measurements with varying sampling times
can be used to minimize the effect of particle correlation.

Since the phases ωit0i and χi are random and uncorrelated, the Schottky power is
proportional to the number of particles, i.e.

Pav =
N∑
i=1

e2ŷ2i
4T 2

i

at ω = n�ω0� ± �ωβ�. (2.133)
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The power spectrum resembles the single-particle frequency spectra located at nω0±
ωβ, i.e. betatron sidebands around all rotation harmonics. The Schottky signal
can be used to monitor betatron and synchrotron tunes, frequency and phase space

distributions, etc. It is the essential tool used for stochastic beam cooling.

III.8 Beam Injection and Extraction

A. Beam injection and extraction

Electrons generated from a thermionic gun or photocathode are accelerated by a high

voltage gap to form a beam. The beam is captured in a linac or a microtron and

accelerated to a higher energy for injection into other machines. Similarly, ions are
produced from a source, e.g. a duoplasmatron, and extracted by a voltage gap to

form a beam. The beam is accelerated by a DC accelerator or an RFQ for injection
into a linac (DTL). The medium energy beam is then injected into various stage of

synchrotrons.

A1. The strip or charge-exchange injection scheme

There are many schemes for beam injection into a synchrotron. The charge exchange

injection involves H− or H+
2 ions, where a stripping foil with a thickness of a few

μg/cm2 to a few mg/cm2 is used to strip electrons. The injection procedure is as
follows. The closed orbit of the circulating beam is bumped onto the injection orbit

of the H− or H+
2 beam by a closed-orbit bump and a set of chicane magnets, as

shown in Fig. 2.28a.40 Since the injection orbit coincides with the closed orbit of the

circulating protons without violating Liouville’s theorem, the resulting phase-space
area will be minimized. The injected beam can be painted in phase space by changing

the closed orbit during the injection. The injection efficiency for this injection scheme
is high, except that we must take into account the effect of emittance blow-up through

multiple Coulomb scattering due to the stripping foil (see Exercise 2.3.12).

Although the intensity of the H− source is an order of magnitude lower than that
of the H+ source, a higher capture efficiency and a simpler injection scenario more

than compensate the loss in source intensity. Most modern booster synchrotrons and
some cyclotrons employ a H− source. However, since the last electron in H− has only

about 0.7 eV binding energy, it can easily be stripped by a strong magnetic field at
high energy.

40The chicane magnet may sometimes be replaced by punching a hole through the iron of a main
dipole magnet provided that the saturation effect at high field is properly compensated.
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Figure 2.28: Schematic drawings of (a) a chicane mag-
net that merges the H− and H+ orbits onto the stripper,
(b) the process of betatron phase-space painting. During
the injection, the closed orbit is bumped near the septum
(dashed ellipse) so that the injected beam marked (1) is
captured within the dynamical aperture. Because of the
betatron motion, the injected beam can avoid the sep-
tum in the succeeding revolutions marked (2) and (3).
As the bumped orbit collapses during the injection time,
the phase space is painted for beam accumulation.

A2. Betatron phase-space painting, cooling, radiation damping

The injection of protons or heavy ions into a synchrotron needs careful phase-space
manipulation. The procedure is to bump the closed orbit of the circulating beam near

the injection septum. The stable phase-space ellipse is shown as the dashed line in
Fig. 2.28b. If the betatron tune and the orbit bump amplitude are properly adjusted,

the particle distribution in betatron phase space can be optimized. This procedure is
called phase-space painting. The injection efficiency is usually lower. The efficiency

may be enhanced by employing betatron resonances.

Injection of the electron beam is similar to that of proton or ion beams except that
the injected electrons damp to the center of the phase space because of the synchrotron

radiation damping (see Chap. 4). At the time of injection pulse, the closed-orbit of
circulating beams is bumped (kicked) close to a septum magnet so that the injection

beam bunch is within the dynamical aperture of the synchrotron. At the completion

of the injection procedure, the bump is removed, and the injected beamlet will damp
and merge with the circulating beam bunch. The combination of phase-space painting

and damping accumulation can be used to provide high-brightness electron beams in
storage rings.

A3. Other injection methods

A method that has been successfully applied at the ISR is momentum phase-space

stacking. This requires an understanding of the momentum closed orbit or the dis-
persion function, and of rf phase displacement acceleration. The method will be

discussed in Chap. 3. This method is also commonly used in low energy cooler rings
for cooling, and stacking accumulation of proton or polarized proton beams.

B. Beam extraction

B1. Fast single turn extraction and box-car injection

When a beam bunch is ready for extraction, orbit bump is usually excited. A fast

kicker is fired to take the beam into the extraction channel of a septum magnet
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(see Sec. III.3). The extracted beam can be delivered to experimental areas, or be

transferred into a another synchrotrons, called the box-car injection scheme.

B2. Slow extraction

Slow (beam) extraction by peeling-off high intensity beams can provide a higher duty

factor41 for many applications such as high reaction rate nuclear and particle physics
experiments, medical treatment, etc. Slow extraction employs nonlinear magnets to

drive a small fraction of the beam particles onto a betatron resonance.

The slow extraction using the third order resonance will be discussed in Sec. VII.1.
Similarly, beam particles can be slowly extracted by employing the half integer reso-

nance (see Exercise 3.3.3). Large-amplitude particles moving along the separatrix are

intercepted by a thin (wire) septum that takes the particles to another septum on the
extraction channel. The efficiency depends on the thin-septum thickness, the value of

the betatron amplitude function at the septum location, betatron phase advance be-
tween the nonlinear magnet and the septum location, etc. More recently, efforts have

been made to improve the uniformity of the extracted beam by stochastic excitation
of the beam with noise; this is called stochastic slow extraction.

III.9 Mechanisms of Emittance Dilution and Diffusion

A. Emittance diffusion due to random scattering processes

In actual accelerators, noise may arise from various sources such as power supply
ripple, ground vibration, intrabeam scattering, residual gas scattering, etc. This

can induce emittance dilution and beam lifetime degradation. Our understanding of
betatron motion provides us with a tool to evaluate the effect of noise on emittance

dilution.

If the betatron angle y� is instantaneously changed by an angular kick θ, the
resulting change in the betatron action is

ΔI = I(y, y� + θ)− I(y, y�) = θ(αy + βy�) +
1

2
βθ2. (2.134)

If the angular kicks are uncorrelated, and the beam is composed of particles with many
different betatron phases, the increase in emittance due to the random scattering

processes is obtained by averaging betatron oscillations and kick angles, i.e.

Δ�rms = 2�ΔI� = �βθ2� ≈ �β⊥��θ2�. (2.135)

Random angular kicks to the beam particles arise from dipole field errors, non-

resonant and non-adiabatic ground vibration, injection and extraction kicker noises,

41The duty factor is defined as the ratio of beam usage time to cycle time.



III. EFFECT OF LINEAR MAGNET IMPERFECTIONS 111

intrabeam Coulomb scattering, and multiple Coulomb scattering from gas molecules.

Multiple scattering from gas molecules inside the vacuum chamber can cause beam
emittance dilution, particularly at high β⊥-function locations. This effect can also be

important in the strip-injection of the H− and H+
2 ion sources from the stripping foil.

The emittance growth rate can be obtained from the well-known multiple Coulomb

scattering. Exercise 2.3.12 gives an example of estimating the emittance growth rate.

Other effects are due to the angular kicks from synchrotron radiation, quantum
fluctuation resulting from energy loss, diffusion processes caused by rf noise, etc.;

these will be addressed in Chaps. 3 and 4.

A1. Beam Lifetime

The single beam lifetime is determined by nuclear scattering on residual gas in the

beam pipe, multiple scattering on the residual gas, ion or electron trapping due to
residual gas scattering, photo desorption, intrabeam Coulomb scattering, Touschek

effect (to be discussed in Chap.4 II.7), lifetime effect due to nonlinear resonances (see
Sec. VII), etc. In a collider, beam lifetime is further reduced by beam-beam effects,

particle loss due to beam-beam collisions, beam aperture limitation, etc.

B. Space charge effects

The repulsive Coulomb mean-field field of a beam can generate defocusing force to

reduce the effective external focusing. The space-charge effect is characterized by an
incoherent Laslett tune shift parameter ξsc = Δνsc (see Exercise 2.3.2). The tune

shift parameter for low energy linacs at the ion source can be large, i.e. the betatron
tune can be detuned to a value nearly 0 (see Sec. II.8). The incoherent space-charge

tune shift for low energy synchrotron has a typical value of 0.2 – 0.6, which is about
10% or less of the betatron tunes. Yet, almost all low energy synchrotrons suffer

space-charge induced emittance growth. We try to illustrate possible mechanisms.

B1. The coherent envelope oscillations due to space-charge force

We consider the effect of coherent envelope oscillations, pioneered by Sacherer,42 with

a simple KV model of 1D paraxial system (see Sec. II.8, where Hill’s and the envelope
equations are

⎧
⎪⎪⎨
⎪⎪⎩

y�� +
�
k(s)− Ksc

R2
b(s)

�
y = 0, |y| ≤ Rb(s)

y�� + k(s)y − Ksc

y
= 0, |y| > Rb(s)

(2.136)

42See F.J. Sacherer, Transverse Space-Charge Effects in Circular Accelerators, Ph.D. Thesis, UC
Berkeley [Report No. UCRL-18454, UC Berkeley, 1968].
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R��
b + k(s)Rb − �2

R3
b

− Ksc

Rb
= 0. (2.137)

Here y stands for either the particle’s horizontal or vertical betatron coordinate, k(s)

is the focusing function, Ksc is the space-charge perveance parameter, defined in

Eq. (2.77), � = 4�rms is the KV beam emittance, Rb =
√

β(s)� is the KV beam
envelope radius, and β(s) is the betatron amplitude function. For a KV beam, all

particles are within the envelope radius. Making Floquet transformation with

R =
Rb√
β(s)�

, η =
y√
β(s)

, φ =
1

ν

∫ s

0

ds

β(s)
, (2.138)

we transform Hill’s and envelope equations into

η̈ + ν2η − ν2β(s)Ksc

�R2
η = 0 (y ≤ Rb), (2.139)

R̈ + ν2R− ν2

R3
− ν2β(s)Ksc

�R
= 0, (2.140)

where ν is the betatron tune, and the over-dots are derivative with respect to the
independent variable (time-coordinate) φ.

For synchrotrons, the space-charge terms in Hill’s and envelope equations can be
considered as a small perturbation unless a resonance condition is encountered. We

expand the envelope radius around the unperturbed closed orbit with R = 1+ r+Δ,
where Δ is a φ-independent constant shift in the equilibrium radius and r is the

φ-dependent term depending on the dynamics of the machine. We expand the space-
charge factor:

νβ(s)Ksc

2�
= ξsc

(
1 +

∞∑
n=1

qn cos(nφ+ χn)

)
(2.141)

in Fourier series, where

ξsc =
1

2π

∮
νβ(s)Ksc

2�
dφ =

1

4π

∮
β(s)Ksc

[Rb(s)]2
ds, (2.142)

ξscqn =
1

π

∮
νβ(s)Ksc

2�
cos(nφ+ χn)dφ. (2.143)

The parameter ξsc is the Laslett (incoherent) linear space-charge tune shift param-

eter and ξscqn and χn are the Fourier amplitude and phase of the n-th harmonic.
Substituting Eq. (2.141) into Eq. (2.140), we obtain Δ = ξsc/2ν and

r̈ + (4ν2 − 4νξsc)r ≈ 2νξsc

∞∑
n=1

qn cos(nφ+ χn). (2.144)
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The space-charge force plays two roles in the envelope equation. It decreases the

envelope tune from νenv = 2ν to νenv = 2ν − ξsc, and it generates a perturbation
term, where the Fourier harmonic in the intrinsic betatron amplitude function serves

as a harmonic perturbation to the envelope equation. The envelope radius, or the
perturbed betatron amplitude function, is resonantly excited by the harmonic n ≈ νenv
with

r ≈ 2νξscqn
−n2 + (4ν2 − 4νξsc)

cos(nφ+ χn). (2.145)

Figure 2.29 shows the space-charge perturbed vertical betatron amplitude function
(solid line), the original betatron amplitude function (dashed line), and the normalized

envelope radius R (dotted line), obtained from a PIC simulation calculation for the

Proton Storage Ring (PSR) at Los Alamos National Laboratory.43 The PSR is a fixed
energy synchrotron with 90.26 m circumference, νx = 3.19 and νz = 2.19. It serves

as a compressor to compress 1.16 ms (3214 turns in PSR) of proton pulse from the
800 MeV Linac into a high intensity proton pulse of about 180 ns. Since the vertical

betatron tune of the PSR is about 2.19, the dominant perturbing harmonic in the
envelope equation is 4. The reduced envelope radius R shown in Fig. 2.29 clearly

shows 4 oscillations in one circumference.

Figure 2.29: The square root of the per-
turbed vertical betatron amplitude function
(solid line), for a beam with high intensity
(4.37×1013 particles) in the PSR at LANL,
is compared with the square root of the in-
trinsic betatron amplitude function (dashed
line). The ratio of these two betatron am-
plitude function, shown as dotted line, is
the reduced envelope radius R defined in
Eq. (2.138). Note that the average of R is
slightly larger than 1.

Substituting Eq. (2.141) into Hill’s equation (2.139), we obtain

η̈ + ν2η − 2νξsc
R2

(
1 +

∞∑
n=1

qn cos(nφ+ χn)

)
η = 0. (2.146)

The particle tune is νp ≈ ν− ξsc. Rightfully, ξsc is called the linear space-charge tune

shift parameter. One speculates that a large envelope oscillation shown in Eq. (2.145)
may cause a large particle oscillation at n = 2(ν − ξsc) for the Mathieu instability.

However, after a closer inspection by substituting R = 1 + Δ + r into Eq. (2.146),

43S. Cousineau, Ph.D. thesis, Indiana University, 2002.
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we find that the resonance strength is actually zero, i.e. the envelope oscillation of

a beam can not affect particle motion inside the envelope. If particle motion inside
the beam core is not affected by the envelope oscillation, what is the mechanism for

emittance dilution?

C. Emittance evolution measurements and modeling

Measurement and modeling of the emittance evolution at the Fermilab Booster pro-

vided a very interesting revelation of the essential emittance growth mechanism. Fer-
milab Booster is a rapid cycling accelerator at 15 Hz from 400 MeV to 8 GeV (see

Fig. 2.3). It can deliver 100 kW beam power. An Ionization Profile Monitor (IPM)
can be used to measure the beam profile by averaging 50 bunches turn-by turn! The

profile monitor is located at the center of a long straight section, where βz � βx.
The emittances can be derived from the profile data and accelerator modeling (See

Sec. III, in Appendix A).

Space-charge effects play an important role. Figure 2.30 shows the normalized

vertical rms emittance in the first 4000 revolutions for intensity varying from 8.4×1011

(2-turn injection) to 7.5 × 1012 particles per pulse. Note that the vertical emittance

grew rapidly and beam loss occurred in the first few hundreds of revolutions. On the
other hand, the horizontal normalized emittance was found to be nearly independent

of the beam intensity. The question is how the space charge affects the emittance
growth for the high intensity beams in the Fermilab Booster?
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Figure 2.30: The normalized vertical
rms emittance from 70-revolution to
4000-revolution for all data sets with
2-turn injection to 18-turn injection.
Note the RED curve is for 12-turn in-
jection which marks the border of two
kinds of emittance growth behavior.

Fermilab Booster is a rapid cycling synchrotron (RCS) with a ramp rate of 15

Hz. Possible emittance growth mechanisms include (1) horizontal betatron motion
excitation due to localized energy gain in 15 rf cavities distributed in half of the ring,

(2) injection closed orbit error, (3) half-integer stopband discussed in the previous
Section, (4) the Montague resonance at 2νz − 2νz = 0 driven by the space charge

potential, (5) effects of skew quadrupoles, and (6) effects of higher order multipoles

such as the sextupole or octupoles. We set up to model the turn-by-turn emittance
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data including all effects listed above. Our results showed that the sum and difference

resonances induced by random skew-quadrupoles were the main sources of emittance
growth at the Fermilab Booster.44 Our data analysis indicated that the effect of

the envelope instability and the half-integer stopband was negligible. Efforts in us-
ing trim-quadrupole families to correct stopband integrals were not able to reduce

beam emittance growth. However, it is possible that different machine operational
conditions can have different space-charge emittance-growth mechanisms. Detailed

experiments and modeling are essential in providing further insight on this important
topic.

A type of RCS is the fixed-field-alternating-gradient (FFA) accelerator invented in
the 1960s.45 With fixed field accelerator magnets, the beam ramp rate and the beam

power can be increased. The scaling FFA accelerators maintain constant betatron
tunes without crossing linear betatron resonances. On the other hand, the non-

scaling FFA accelerators that can reduce the aperture of accelerator magnets allow
betatron tunes to run through many integers as the energy is increased. Intrinsic

systematic resonances induced by the space charge force can become very important
(see Sec. VII.4).

Exercise 2.3

1. Particle motion in the presence of magnetic field errors is (Sect. II.2)

y′′ +K(s)y =
ΔB

Bρ
,

where y stands for either x or z, and ΔB = −ΔBx for z motion and ΔB = ΔBz

for x motion. Define a new coordinate η = y/
√
β with φ = (1/ν)

∫ s
0 ds/β as the

independent variable, the equation of motion becomes

η̈ + ν2η = ν2β3/2ΔB

Bρ
,

where the overdot is the derivative with respect to the independent variable φ.

(a) For the dipole field error, where ΔB/Bρ is only a function of the independent
variable s, show that Eq. (2.92) is a solution of the above equation. Show
that the Green function G(φ, φ1) = [cos ν(π − |φ − φ1|)]/2ν sinπν satisfies the
following equation:

(
d2

dφ2
+ ν2

)
G(φ, φ1) = δ(φ− φ1)

44X. Huang, S.Y. Lee, K.Y. Ng, and Y. Su, PRST Accelerators and Beams, 9, 014202 (2006);
For a Gaussian beam distribution, the space charge potential of Exercise 5.2.1 can be used in space
charge force calculation.

45F.T. Cole, “O Camelot! A MURA memoir”, in Proc. of Cyclotron Conference 2001
(http://www.jacow.org/); see also Mills F. E., Early FFA Development, ibid., p. 195 (2001).
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Use the Green function to verify the solution given by Eq. (2.92). Use Eq. (2.94)

for the Fourier expansion of the dipole field error β3/2ΔB/Bρ show that the
closed orbit arising from the dipole error is

yco(s) =
√

β(s)

∞∑
k=−∞

ν2fk
ν2 − k2

ejkφ,

where fk are integer stopband integrals. Using a single stopband approximation.
and limiting the closed-orbit deviation to less than 20% of the rms beam size,
show that the integer stopband width Γ[ν] is given by Γ[ν] ≈ 5ν|f[ν]|/√�rms,
where [ν] is the integer nearest the betatron tune.

(b) For the quadrupole field error, ΔB/Bρ = −k(s)y, where k(s) is the error gradi-
ent function, the Floquet-transformed equation becomes η̈+ν2η = −ν2β2k(s)η.
Using the harmonic expansion of Eq. (2.120), we find

η̈ + ν2η = −ν
(∑

Jpe
+jpφ

)
η.

The dynamics of particle motion is dominated by harmonics p ≈ 2ν, and thus
we can approximate the equation as

η̈ + (ν2 + 2νgp cos(pφ+ χp))η = 0,

where gp = |Jp|, and χp is the phase of Jp. Use Mathieu instability condition to
find the half integer stopband width.

The above equation can be derived from the Hamiltonian:

H =
1

2
η̇2 +

1

2

{
ν2 + νgp cos(pφ+ χp)

}
η2.

Let η =
√

2J/ν cosψ, where J and ψ are action and angle variables, show that
the Hamiltonian at ν ≈ p/2 becomes

H ≈ νJ +
1

2
Jgp cos(2ψ − pφ− χp).

Now, use the generating function F2 = (ψ − p
2φ − 1

2χp)I, show that the new
Hamiltonian becomes

H = δI +
1

2
Igp cos 2Ψ,

where I = J is the new action, Ψ = ψ − p
2φ − 1

2χp is the new angle variable,
and δ = ν− p

2 is the resonance proximity parameter. Show that the equation of
motion for the action is

Ï = g2pI + 2δgp cos 2ΨI.

Show that the action for a particle sitting on resonance, i.e. δ = 0, becomes

I = aegpφ + be−gpφ = ae2πgpn + be−2πgpn,

where n is the revolution number, i.e. the action the particle will exponentially
increase with the revolution number.
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2. Effect of space charge force on beam emittance growth is very complicated as shown
in Fig. 2.30 in Chapter 2, Sec. III.9. This homework is intended to derive a space-
charge tune-shift parameter used to characterize high intensity beams. From Exercise
1.3, we find that a particle at a distance r � a from a uniformly distributed paraxial
beam bunch experiences a space-charge defocusing force

�F =
2mc2Nr0

a2γ2
�r,

where γ is the relativistic Lorentz factor, a is the beam radius, r0 is the classical
radius of the particle, �r = xx̂+ zẑ. and N is the number of particles per unit length.
For a longitudinal Gaussian bunch distribution, N = NB/

√
2πσs, where NB is the

number of particles per bunch and σs is the bunch length.

(a) Using Eq. (2.76) for a round beam, show that the space-charge force is equivalent
to a defocusing quadrupole with strength

K(s) = − 2Nr0
a2β2γ3

= −Ksc

a2
,

where Ksc = 2Nr0/(β
2γ3) is the normalized space-charge perveance parameter

used frequently in the transport of space-charge-dominated beams in linacs, and
β and γ are Lorentz’s relativistic factors.

(b) The rms beam radius is a2 = βy�, where βy is the betatron amplitude function
and � = 4�rms is the KV-type emittance. Show that the betatron (Laslett) tune
shift of the particle r � a induced by the space-charge force is given by46

Δνsc =
2πRKsc

4π�
=

FBNBr0
2π�

N
βγ2

,

where FB = 2πR√
2πσ�

is the bunching factor and �
N
= βγ� is the normalized beam

emittance.

3. Using η = y/
√

βy and pη = dη/dφ with φ = (1/νy)
∫ s
0 ds/βy as conjugate phase-space

coordinates, and φ as time variable, show that Eq. (2.93) can be derived from the
Hamiltonian

H =
1

2
(p2η + ν2η2) + ΔH(η),

ΔH = −ν2
∫ η

0
β3/2g(η�)dη�, g(η) =

ΔB

Bρ
.

46This formula, derived based on the uniform round beam distribution. is called the Laslett
space-charge tune shift. For a KV type round beam, the tune shift is independent of the particle’s
transverse coordinate r. For other beam distribution functions, a smaller betatron-amplitude particle
may have a larger tune shift. Since the space-charge tune shift depends on the particle’s betatron
amplitude, the Laslett space-charge tune shift is also known as the incoherent space-charge tune
spread. The small amplitude space-charge tune shift parameter is usually used as one of the design
criteria in high power beam accelerators. Typical space charge tune-shift parameter is 0.25 to 0.5.
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(a) Letting η =
√
2J/ν cosψ and dψ/dφ = ν, show that the Hamiltonian becomes

H = νJ + �ΔH(J, ψ)�ψ + [ΔH − �ΔH(J, ψ)�ψ ],
where

�ΔH(J, ψ)�ψ = − ν2

2π

∫ 2π

0

[∫ η

0
β3/2g(η�)dη�

]
dψ.

Show that the betatron tune is shifted by the perturbation Δν = ∂�ΔH�ψ/∂J.
(b) We consider a cylindrical Gaussian bunch distribution

ρ(x, s, z) = NBρ(r)ρ(s),

ρ(r) =
1

2πσ2
r

e−(x2+z2)/2σ2
r , ρ(s) =

1√
2πσs

e−s2/2σ2
s ,

where NB is the number of particles in a bunch, ρ(r) and ρ(s) are respectively
the transverse and longitudinal Gaussian distributions with rms width σr and
σs. Assuming σs � σr, show that the Lorentz force for a particle at distance r
from the center of the bunch is

g(r, s) =
2NBr0
β2γ3r

(
1− e−r2/2σ2

r

)
ρ(s),

where r0 = e2/4π�0mc2 is the classical radius of the particle. Replacing r

by
√

2βJ/ν cosψ, evaluate the space-charge tune shift as a function of the
amplitude r.

4. The closed orbit can be locally corrected by using steering dipoles. A commonly used
algorithm is based on the “three-bumps” method, where three steering dipoles are
used to adjust local-orbit distortion. Let θ1, θ2, and θ3 be the three bump angles.
Show that these angles must be related by

θ2 = −θ1

√
β1
β2

sinψ31

sinψ32
, θ3 = θ1

√
β1
β3

sinψ21

sinψ32
,

where βi is the β-function at the ith steering magnet, ψji = ψj − ψi is the phase
advance from the ith to the jth steering dipoles, and the orbit distortion is localized
between the first and third steering magnets. Obviously, a local orbit bump can be
attained by two steering dipoles θ1 and θ3 if and only if ψ31 = nπ, where the phase
advance is an integer multiple of π.

5. The AGS is composed of 12 superperiods with 5 nearly identical FODO cells per
superperiod, i.e. it can be considered as a lattice made of 60 FODO cells with
betatron tunes νz = 8.8 and νx = 8.6. The circumference is 807.12 m.

(a) Estimate the closed orbit sensitivity factor of Eq. (2.98).

(b) Estimate the the rms half-integer stopband width of Eq. (2.121) for the AGS.

(c) During the polarized beam acceleration at AGS, a set of 10 ferrite quadrupoles
located at high-βz locations are powered to change the vertical tune by Δνz =
−0.25 in about 2.5 μs. This means that each quadrupole changes the betatron
tune by −0.025.
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i. What is the effect of these tune jump quadrupoles on the horizontal tune?

ii. What are the stopband integrals due to these tune jump quadrupoles?

iii. What are the favorable configurations for these quadrupoles from the beam
dynamics point of view?

iv. Are there advantages to installing 12 quadrupoles? What are they?

6. In the H− or H+
2 strip injection process, the closed orbit is bumped onto the stripper

location during the injection pulse. The injection beam and the circulating beam
merge at the same phase-space point. We assume that the values of the betatron
amplitude functions are βx = βz = 10 m, the emittances are �x = �z = 2.5π mm-
mrad for the injection beam, and �x = �z = 40π mm-mrad for the circulating beam.
Where should the stripper be located with respect to the center of the circulating
beam? What is the minimum width of the stripper? Sketch a possible injection
system scenario including local orbit bumps.

7. Multi-turn injection of heavy ion beams requires intricate phase-space painting tech-
niques. The injection beam arrives through the center of a septum while the cir-
culating beam closed orbit is bumped near the septum position. During the beam
accumulation process, the orbit bump is reduced to avoid beam loss through the sep-
tum. We assume that the 95% emittances are 50 π mm-mrad for the stored beam
and 2.5 π mm-mrad for the injection beam, the betatron amplitude functions are
βx = βz = 10 m, and the thickness of the wire septum is 1 mm. How far from the
closed orbit of the circulating beam should the septum be located? What effect, if
any, does the betatron tune have on the beam-accumulation efficiency?

8. At extraction, the 95% emittance of the beam is adiabatically damped to 5 π mm-
mrad at Bρ = 10 Tm. The extraction septum is located 40 mm from the center
of the closed orbit of the circulating beam. At the septum location, the betatron
functions are βx = 10 m, βz = 8 m. The septum (current sheet) thickness is 7 mm. A
ferrite one-turn kicker is located upstream with βx = 10 m and βz = 8 m. The phase
advance between the septum and the kicker is 60◦. Discuss a scenario for efficient
single-bunch extraction. What is the kicker angle required for single-turn extraction?
Assuming that the maximum magnetic flux density for a kicker is 0.1 T, what is the
minimum length of the kicker? What advantage, if any, does an orbit bump provide?

9. Particle motion in the presence of closed-orbit error is x = xco + xβ , where xco is the
closed orbit and xβ is the betatron displacement.

(a) Show that an off-center horizontal closed orbit in quadrupoles gives rise to ver-
tical dipole field error, and a vertical one to horizontal dipole field error.

(b) The magnetic field of a nonlinear sextupole is

ΔBz + jΔBx =
B2

2
(x2 − z2 + 2jxz),

where B2 = ∂2Bz/∂x
2
∣∣
x=0,z=0

. Show that a horizontal closed-orbit error in

a normal sextupole produces quadrupole field error. Show that the effective
quadrupole gradient is ∂Bz/∂x|eff = xcoB2.

10. In the presence of gradient error, the betatron amplitude functions and the betatron
tunes are modified. This exercise provides an alternative derivation of Eq. (2.119).47

47See also H. Zgngier, LAL report 77-35, 1977; B.W. Montague, CERN 87-03, 75-90 (1987).
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We define the betatron amplitude deviation functions A and B as

A =
α1β0 − α0β1√

β0β1
, B =

β1 − β0√
β0β1

,

where β0 and β1 are respectively the unperturbed and the perturbed betatron am-
plitude functions associated with the gradient functions K0 and K1, and α0 and α1

are related to the derivatives of the betatron amplitude functions. Thus β0 and β1
satisfy the Floquet equation:

β′
0 = −2α0, α′

0 = K0β0 − γ0, dψ0/ds = 1/β0,

β′
1 = −2α1, α′

1 = K1β1 − γ1, dψ1/ds = 1/β1,

where ψ0 and ψ1 are the unperturbed and the perturbed betatron phase functions.

(a) Show that

dB

ds
= −A

(
1

β0
+

1

β1

)
,

dA

ds
= +B

(
1

β0
+

1

β1

)
+

√
β0β1 ΔK,

where ΔK = K1 −K0.

(b) In a region with no gradient error, show that A2 + B2 = constant, i.e. the
phase-space trajectory of A vs B is a circle.

(c) Show that the change of A at a quadrupole with gradient error is

ΔA =

∫ √
β0β1 ΔK ds ≈ �β0�g

in thin-lens approximation, where g = +
∫
ΔK ds is the integrated gradient

strength of the error quadrupole, and �β0� is the averaged value of betatron
function in the quadrupole.

(d) In thin-lens approximation, show that the change of A in a sextupole is

ΔA ≈ β0geff ,

where geff = (B2Δs/Bρ)xco is the effective quadrupole strength, (B2Δs/Bρ) is
the integrated sextupole strength, and xco is the closed-orbit deviation from the
center of the sextupole.

(e) If we define the average betatron phase function as

φ̄ =
1

2ν̄

∫ s

s0

(
1

β0
+

1

β1

)
ds, with ν̄ =

1

4π

∫ s0+C

s0

(
1

β0
+

1

β1

)
ds,

show that the function B satisfies

d2B

dφ̄2
+ 4ν̄2B = −4ν̄2

(β0β1)
3/2

β0 + β1
ΔK.

Show that this equation reduces to Eq. (2.119) in the limit of small gradient
error.
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11. Show that the half-integer stopband integral Jp is approximately zero at p = [2ν]
for two quadrupole kickers separated by 180◦ in betatron phase advance with zero
betatron tune shift. Such a zero tune shift π-doublet can be used to change γ

T
with

minimum effects on betatron motion (see Sec. IV.8.A.3).

12. Multiple scattering from gas molecules inside the vacuum chamber can cause beam
emittance dilution, particularly at high-β locations. This effect can also be important
in the strip-injection process. This exercise estimates the emittance dilution rate
based on the multiple scattering formula (see the particle properties data) for the
rms scattering angle

θ2 = 2θ20 ≈ 2

(
13.6[MeV]zp

βcp

)2 x

X0
,

where p, βc and zp are momentum, velocity, and charge number of the beam particles,
X0 is the radiation length, and x is the target thickness. The radiation length is

X0 =
716.4A

Z(Z + 1) ln(287/
√
Z)

[g/cm2]

where Z and A are the atomic charge and the mass number of the medium.

(a) Using the ideal gas law, PV = nRT , where P is the pressure, V is the volume,
n is the number of moles, T is the temperature, and R = 8.314 [J ( ◦Kmol)−1],
show that the equivalent target thickness in [g/cm2/s] at room temperature is

x = 1.641 × 10−6βPg[ntorr]Ag [g/cm2/s],

where βc is the velocity of the beam, Pg is the equivalent partial pressure of a
gas at room temperature T = 293 ◦K, and Ag is the gram molecular weight of a
gas. Show that the emittance growth rate is

1

τ�
=

1

�

d�

dt
= 2.345

γ�β⊥� [m]

β�
N
[π mm mrad]

(
zp

pc [GeV]

)2 Pg [nTorr]Ag

X0g [g/cm2]
[h−1],

where �β⊥� is the average transverse betatron amplitude function in the accel-
erator, X0g is the radiation length of the gas, γ is the Lorentz relativistic factor,
zp is the charge of the projectile, and p is the momentum of the beam. Because
the emittance growth is proportional to the betatron function, better vacuum
at high-β⊥ location is useful in minimizing the multiple scattering effects.

(b) During the H− strip-injection process, the H− passes through a thin foil of
thickness tfoil [μg/cm

2]. Show that the emittance growth per passage is

Δ� = 117.8
β⊥,foil

β2(pc[MeV])2
tfoil[μg/cm

2]

X0[g/cm2]
[πmmmrad],

where β⊥,foil is the betatron amplitude function at the stripper location, p is
the momentum of the injected beam, βc is the velocity of the beam, and X0 is
the radiation length. Estimate the emittance growth rate per passage through
carbon foil with H− beams at an injection energy of 7 MeV if β⊥,foil = 2 m and
tfoil = 4 [μg/cm2].48

48If the stripping foil is too thin, the efficiency of charge exchange is small, and the proton yield is
little. If the foil is too thick, the beam emittance will increase because of multiple Coulomb scattering.
A compromise between various processes is needed in the design of accelerator components.
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IV Off-Momentum Orbit

In Sec. III, we discussed the closed orbit in the presence of dipole field errors and

quadrupole misalignment for a reference particle with momentum p0. Using closed-
orbit correctors, we can achieve an optimized closed orbit that essentially passes

through the center of all accelerator components, particularly quadrupoles and sex-
tupoles. This closed orbit is called the “golden orbit,” and a particle with momentum

p0 is called a synchronous particle.49

However, a beam is made of particles with momenta distributed around the syn-

chronous momentum p0. What happens to particles with momenta different from p0?
Here we study the effect of off-momentum on the closed orbit. Its effect on betatron

motion will be addressed in Sec V.

For a particle with momentum p, the momentum deviation is Δp = p−p0 and the

fractional momentum deviation is δ = Δp/p0. The fractional momentum deviation
δ = Δp/p is typically small, e.g. |δ| ≤ 10−4 for SSC, ≤ 5·10−3 for RHIC, ≤ 3·10−2 for

anti-proton accumulators, ≤ 10−4 for the IUCF Cooler Ring, and ≤ 2·10−2 for typical
electron storage rings. Since δ is small, we can study the motion of off-momentum

particles perturbatively. In Sec. IV.1, we will find that the off-momentum closed orbit

is proportional to δ in the first-order approximation, and the dispersion function is
defined as the derivative of the off-momentum closed orbit with respect to δ. We

will discuss the properties of the dispersion function; in particular, the integral repre-
sentation, the dispersion action, and the H-function will be introduced in Sec. IV.2.

The momentum compaction factor and transition energy are discussed in Sec. IV.3,
where we introduce the phase focusing principle of synchrotron motion. In Sec. IV.4,

we examine the method of dispersion suppression in a beam line. In Sec. IV.5 we
discuss the achromat transport system, and in Sec. IV.6 we introduce the standard

transport notation. In Sec. IV.7 we describe methods of dispersion measurements and
correction, and in Sec. IV.8 methods of transition energy manipulation. Minimum

�H� lattices are discussed in Sec. IV.9 and Sec. III in Chapter 4.

IV.1 Dispersion Function

Expanding Eq. (2.22) to first order in x, we obtain

x�� +
(

1− δ

ρ2(1 + δ)
− K(s)

(1 + δ)

)
x =

δ

ρ(1 + δ)
, (2.147)

49The revolution frequency of a synchronous particle is defined as the revolution frequency of
the beam. The frequency of the radio-frequency (rf) cavities has to be an integer multiple of the
revolution frequency of the beam, i.e. a synchronous particle synchronizes with the rf electric field.
The name “synchrotron” for circular accelerators is derived from the synchronism between the
orbiting particles and the rf field.
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where K(s) = B1/Bρ is the quadrupole gradient function with B1 = ∂Bz/∂x evalu-

ated at the closed orbit. Solutions of Eq. (2.147) for δ = 0 were discussed in Sec. II.
For an off-momentum particle with δ �= 0, the solution of the linearized inhomoge-

neous equation (2.147) can be expressed as a linear superposition of the particular
solution and the solution of the homogeneous equation: x = xβ(s) +D(s)δ,50 where

xβ(s) and D(s) satisfy the equations

x��
β + (Kx(s) + ΔKx)xβ = 0, (2.148)

D�� + (Kx(s) + ΔKx)D =
1

ρ
+O(δ), (2.149)

Kx =
1

ρ2
−K(s), ΔKx =

[
− 2

ρ2
+K(s)

]
δ +O(δ2).

In this section, we will neglect the chromatic perturbation term ΔKx(s). The solution

of the inhomogeneous equation is called the dispersion function, where D(s)δ is the
off-momentum closed orbit. Aside from the chromatic perturbation ΔKx, the solution

of the homogeneous equation xβ is the betatron motion around the off-momentum
closed orbit. To the lowest order in δ, the dispersion function obeys the inhomoge-

neous equation

D�� +Kx(s)D = 1/ρ . (2.150)

IfKx(s) and ρ(s) are periodic functions of s with period L, we can impose the periodic

closed-orbit condition on the dispersion function51

D(s+ L) = D(s), D�(s+ L) = D�(s). (2.151)

Since Kx(s) and ρ(s) are usually piecewise constant for accelerator components,

the inhomogeneous equation can easily be solved by the matrix method. The solution
of a linear inhomogeneous dispersion equation is a of the particular solution and the

solution of the homogeneous equation:
(

D(s2)
D�(s2)

)
= M(s2|s1)

(
D(s1)
D�(s1)

)
+

(
d
d�

)
, (2.152)

where the 2×2 matrix M(s2|s1) is the transfer matrix for the homogeneous equation,

and d and d� are the particular solution. Let d̄ be shorthand notation for the two-
component dispersion vector with transpose vector (d̄)† = (d, d�). The transfer matrix

50Including the dipole field error, the displacement x is x = xco(s) + xβ(s) +D(s)δ, where xco is
the closed-orbit error discussed in Sec. III. A beam is composed of particles with different momenta.
The normalized Gaussian distribution function of the beam is ρ(δ) = 1√

2πσδ
exp{−δ2/2σ2

δ}, where
σδ is the rms fractional off-momentum width.

51The closed-orbit condition for the dispersion function is strictly required only for one complete
revolution D(s) = D(s + C) and D�(s) = D�(s + C), where C is the circumference. The local
closed-orbit condition of Eq. (2.151) for repetitive cells is not a necessary condition. However, this
local periodic closed-orbit condition facilitates accelerator lattice design.
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in Eq. (2.152) can be expressed by the 3× 3 matrix

⎛
⎝

D(s2)
D�(s2)

1

⎞
⎠ =

�
M(s2|s1) d̄

0 1

�⎛
⎝

D(s1)
D�(s1)

1

⎞
⎠ . (2.153)

with

d̄ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
0
0

�
for drift space and quadrupole

� 1
ρKx

(1− cos
√
Kxs)

1
ρ
√
Kx

sin
√
Kxs

�
for dipole with Kx > 0,

� 1
ρ|Kx|(−1 + cosh

�|Kx|s)
1

ρ
√

|Kx|
sinh

�|Kx|s

�
for dipole with Kx < 0.

The transfer matrix for a pure sector dipole, where Kx = 1/ρ2 with ρ the bending

radius θ the bend angle and � = ρθ the length of the dipole, is

M =

⎛
⎝

cos θ ρ sin θ ρ(1− cos θ)
−(1/ρ) sin θ cos θ sin θ

0 0 1

⎞
⎠ θ�1

=⇒
⎛
⎝

1 � 1
2
�θ

0 1 θ
0 0 1

⎞
⎠ . (2.154)

A. Dispersion function of a FODO cell in thin-lens approximation

A FODO cell with dipole, as shown in Fig. 2.4, is represented by

C = {1
2
QF B QD B

1

2
QF},

where QF and QD are focusing and defocusing quadrupoles, and B represents bending
dipole(s). Using thin-lens approximation, we obtain

M=

⎛
⎝

1 0 0
− 1

2f
1 0

0 0 1

⎞
⎠
⎛
⎝

1 L1
1
2
L1θ

0 1 θ
0 0 1

⎞
⎠
⎛
⎝

1 0 0
1
f

1 0
0 0 1

⎞
⎠
⎛
⎝

1 L1
1
2
L1θ

0 1 θ
0 0 1

⎞
⎠
⎛
⎝

1 0 0
− 1

2f
1 0

0 0 1

⎞
⎠,

where L1 is the half cell length, θ is the bending angle of a half cell, and f is the focal
length of the quadrupoles. The closed-orbit condition of Eq. (2.151) becomes

⎛
⎝

D
D�

1

⎞
⎠

F

=

⎛
⎜⎝

1− L2
1

2f2 2L1(1 +
L1

2f
) 2L1θ(1 +

L1

4f
)

− L1

2f2 +
L2
1

4f3 1− L2
1

2f2 2θ(1− L1

4f
− L2

1

8f2 )
0 0 1

⎞
⎟⎠

⎛
⎝

D
D�

1

⎞
⎠

F

. (2.155)
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The DF and D�
F in Eq. (2.155) are values of the dispersion function and its derivative

at the focusing quadrupole location. Using the Courant-Snyder parametrization for
the 2×2 matrix, we obtain

sin
Φ

2
=

L1

2f
, β

F
=

2L1(1 + sin(Φ/2))

sin Φ
, α

F
= 0; D

F
=

L1θ(1 +
1
2
sin(Φ/2))

sin2(Φ/2)
, D�

F
= 0.

where Φ is the phase advance per cell. The dispersion function at other locations in

the accelerator can be obtained by the matrix propagation method, Eq. (2.153). The
dispersion function at the defocusing quadrupole location is

D
D
=

L1θ(1− 1
2
sin(Φ/2))

sin2(Φ/2)
, D�

D
= 0.

The middle plot of Fig. 2.5 shows the dispersion function of the AGS lattice, which can

be approximated by a lattice made of 60 FODO cells. Some characteristic properties
of the dispersion function of FODO cells are listed as follows:

• The dispersion function at the focusing quadrupole is larger than that at the

defocusing quadrupole by a factor (2+sin(Φ/2))/(2− sin(Φ/2)), which is about
2 at Φ ≈ 90◦.

• The dispersion function is proportional to L1θ, proportional to the product of

the cell length and the bending angle of a FODO cell. For given L1, θ, and
Φ, the dispersion function of a FODO cell is nearly independent of the dipole

length � = ρθ. When the phase advance is small, Φ < π
2
, the dispersion function

is D ∼ L1θ
sin2(Φ/2)

∼ 4L1θ
Φ2 .

• Missing dipole FODO (MD-FODO) cells are commonly used in accelerator de-
sign for its drift spaces for injection, extraction, and rf cavities. The dispersion

function at the center of the focusing quadrupole of the MD-FODO cell is equal
to that of the regular FODO cell at the same phase advance and total bending

angle per cell in thin lens approximation.

B. Dispersion function in terms of transfer matrix

In general, the transfer matrix of a periodic cell can be expressed as

M =

⎛
⎝

M11 M12 M13

M21 M22 M23

0 0 1

⎞
⎠ , (2.156)

whereM11,M12,M21 andM22 are given by Eq. (2.34). Using the closed-orbit condition
of Eq. (2.151), we obtain

D =
M13(1−M22) +M12M23

2−M11 −M22
=

M13(1− cosΦ + α sin Φ) +M23β sinΦ

2(1− cosΦ)
,

D� =
M13M21 + (1−M11)M23

2−M11 −M22
=

−M13γ sin Φ +M23(1− cosΦ− α sin Φ)

2(1− cos Φ)
,
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where Φ is the horizontal betatron phase advance of the periodic cell, α, β and

γ = (1+α2)/β are the Courant–Snyder parameters for the horizontal betatron motion
at a periodic-cell location s, and D and D′ are the value of the dispersion function

and its derivative at the same location. Solving M13 and M23 as functions of D and
D′, the 3×3 transfer matrix is

M=

⎛
⎝

cosΦ+α sinΦ β sin Φ (1−cosΦ−α sinΦ)D−βD′ sinΦ
−γ sinΦ cosΦ−α sin Φ γD sinΦ+(1−cosΦ+α sinΦ)D′

0 0 1

⎞
⎠ (2.157)

This representation of the transfer matrix is sometimes useful in studying the general

properties of repetitive accelerator sections.

C. Effect of dipole or quadrupole field error on dispersion function

In the presence of dipole and quadrupole field error, perturbation to the dispersion
function ΔD(s) = D(s)−D0(s) obeys

(ΔD)′′ + [K0(s) + k(s)]ΔD(s) =

�
1

ρ
− 1

ρ0

�
− k(s)D0(s), (2.158)

where D0(s) is the unperturbed dispersion function, K0(s) and ρ0(s) are the unper-
turbed dipole and focusing functions, and k(s) is the quadrupole field error. The inho-

mogeneous equation can be solved by employing Floquet transformation by neglecting
the higher order term k(s)ΔD(s). The bottom plot of Fig. 2.20 shows ΔD(s)/

√
βx

induced by the gradient error of a single focusing quadrupole with 1% increase in
strength. Outside the quadruple kick location, we find a pure sinusoidal betatron

oscillation. Quadrupoles in dispersive locations can be used to produce a local dis-
persion bump resembling that of closed orbit bump in Sec. III.3.

It appears that the factor 1
ρ
− 1

ρ0
in Equation (2.158) can be large if length of all

dipoles in a lattice is shortened or lengthened, e.g. ρ can be a factor of 2 larger or

smaller than ρ0 in if the dipole length is shortened or lengthened by a factor 2. Can

the change of dipole length causes a large perturbation to the dispersion function?
We have previously stated that the dispersion function of a FODO cell is essentially a

function of L1θ, nearly independent of the dipole length. Here L1 and θ are the length
and bending angle in each half cell. This paradox is resolved by the fact that 1

ρ
− 1

ρ0
has small stopband integrals at harmonics near the betatron tune νx. On the other
hand, if 1

ρ(s)
− 1

ρ0
has a large stopband near [νx], the perturbation to the dispersion

function will be substantial.

IV.2 H-Function, Action, and Integral Representation

The dispersion H-function is defined as

H(D,D′) = γxD
2 + 2αxDD′ + βxD

′2 =
1

βx
[D2 + (βxD

′ + αxD)2]. (2.159)
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Since the dispersion function satisfies the homogeneous betatron equation of motion in

regions with no dipole (1/ρ = 0), the H-function is invariant. In regions with dipoles,
the H-function is not invariant. For a FODO cell, the dispersion H-function at the

defocusing quadrupole is larger than that at the focusing quadrupole, i.e. H
F
≤ H

D
,

where

H
F
=

L1θ
2 sinΦ(1 + 1

2
sin Φ

2
)2

2(1 + sin Φ
2
) sin4 Φ

2

, H
D
=

L1θ
2 sin Φ(1− 1

2
sin Φ

2
)2

2(1− sin Φ
2
) sin4 Φ

2

, (2.160)

and the dispersion H-function is proportional to the inverse cubic power of the phase

advance.

Now we define the normalized dispersion phase-space coordinates as

⎧
⎪⎨
⎪⎩

Xd =
1√
βx

D =
�

2Jd cosΦd,

Pd =
�
βxD

′ +
αx√
βx

D = −
�

2Jd sinΦd,
(2.161)

where the dispersion action is Jd = 1
2
H(D,D′). In a straight section, Jd is invariant

and Φd, aside from a constant, is identical to the betatron phase advance. In a region
with dipoles, Jd is not constant. The change of the dispersion function across a

thin dipole is ΔD = 0 and ΔD′ = θ, i.e. ΔXd = 0, ΔPd =
√
βx ΔD′ =

√
βx θ,

where θ is the bending angle of the dipole. The change in dispersion action is ΔJd =

(βxD
′+αxD)θ. For FODO-cell lattice shown in Sec. IV.1.A the normalized dispersion

coordinate Xd is nearly constant, i.e. D ∼ √
βx, and Pd is small. Figure 2.31 shows

the normalized dispersion phase-space coordinates in one superperiod of AGS lattice
(see Fig. 2.5) that is approximately made of 5 FODO cells.

Figure 2.31: Left: Normalized dis-
persion phase-space coordinates Xd

and Pd are plotted in a superperiod
of the AGS lattice. Right: the coor-
dinates are shown in Xd vs Pd. The
scales for both Xd and Pd are m1/2.
Note that Xd is indeed nearly con-
stant, and (Pd,Xd) propagate in a
very small region of the dispersion
phase-space (see also Fig. 2.38).

In contrast, the normalized dispersion phase-space coordinates for a double-bend

achromat (DBA) lattice (see Sec. IV.5.A) shows different behavior. Figure 2.32 shows
the normalized dispersion coordinates for the IUCF Cooler Ring, which is composed

of 3 achromat straight-sections for electron cooling, rf cavities, etc., and 3 dispersive-

sections for injection, momentum stacking, etc. The achromat sections are described
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by a single point at origin: Xd = Pd = 0. Inside dipoles, the normalized dispersion

coordinates increase in magnitude. In dispersion matching sections, the normalized
dispersion coordinates are located on invariant circles, that are nearly half-circles as

shown in Fig. 2.32, i.e. the dispersion phase advance Φd is nearly π in the dispersion
matching section. Since the dispersion phase-advance is equal to the horizontal be-

tatron phase-advance in a straight section, the horizontal betatron phase-advance is
also nearly π.

Figure 2.32: Left: Normalized disper-
sion phase-space coordinates Xd and
Pd of the IUCF Cooler lattice are plot-
ted. Right: The coordinates are shown
in Xd vs Pd at the end of each lattice
elements. The accelerator is made of
six 60◦-bends forming a 3 double-bend
achromat modules, where the disper-
sion function is shown in Fig. 2.35. The
scales for both Xd and Pd are m1/2.

The lattice function and the dispersion phase-space coordinates of the IUCF

Cooler Ring differ substantially from the low emittance DBA lattice to be shown
in Figs. 2.41. For an ion storage ring, the minimization of �H� plays no important

role in beam dynamics. Instead, a minimum βz inside dipole will provide a criterion

for the magnet gap g. Since the power required in the operation of a storage ring
is proportional to g2, it is preferable to design a machine with a minimum βz inside

dipoles, and the corresponding βx will be large in dipole. The resulting dispersion
phase-space coordinates in dipoles are much larger than those of minimum emittance

DBA lattices shown in Fig. 2.41.
The dispersion function can also be derived from the dipole field error resulting

from the momentum deviation. The angular kick due to the off-momentum deviation
is θ = Δp

p0
1
ρ
ds, where ρ is the bending radius and ds is the differential length of the

dipole. The corresponding dipole field error is ΔB
Bρ

= Δp
p0

1
ρ
, Substituting the “dipole

field error” in Eq. (2.92), we obtain the dispersion function of Eq. (2.101). The
integral representation of the normalized dispersion functions is

⎧⎪⎪⎨
⎪⎪⎩

Xd(s) =
1

2 sin πνx

� s+C

s

�
βx(t)

ρ
cos(ψx(t)− ψx(s)− πνx)dt

Pd(s) =
−1

2 sin πνx

� s+C

s

�
βx(t)

ρ
sin(ψx(t)− ψx(s)− πνx)dt.

(2.162)

IV.3 Momentum Compaction Factor

Since the synchronization of particle motion in a synchrotron depends critically on

the total path length, it is important to evaluate the effect of the off-momentum
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closed orbit on path length. Since the change in path length due to betatron motion

is proportional to the square of the betatron amplitude [see Eq. (2.100)], the effect
is small. The orbit deviation from a reference orbit of an off-momentum particle is

linearly proportional to the product of the fractional off-momentum parameter δ and
the dispersion function D(s). The total path length will depend on the off-momentum

parameter. The path difference and the “momentum compaction factor” are

ΔC =

[∮
D(s)

ρ
ds

]
δ, αc ≡ 1

C

dΔC

dδ
=

1

C

∮
D(s)ds

ρ
(2.163)

where �D�i and θi are the average dispersion function and the bending angle of the ith
dipole, and the last approximate identity uses thin-lens approximation. Since D(s)

is normally positive, the total path length for a higher momentum particle is longer.
For example, the momentum compaction factor for a FODO lattice is

αc ≈ (D
F
+D

D
)θ

2L1
≈ θ2

sin2(Φ/2)
≈ 1

ν2
x

,

where L1 and θ are the length and the bending angle of one half-cell, Φ is the phase
advance of a FODO cell, and νx is the betatron tune (see Exercise 2.4.2).

A. Transition energy and the phase-slip factor

The importance of the momentum compaction factor will be fully realized when

we discuss synchrotron motion in Chap. 3. In the meantime, we discuss the phase
stability of synchrotron motion discovered by McMillan and Veksler [21].

Particles with different momenta travel along different paths in an accelerator.
Since the revolution period is T = 1/f = C/v, where C is the circumference, and v is

the speed of the circulating particle, the fractional difference of the revolution periods
between the off-momentum and on-momentum particles and the “phase-slip-factor”

are

Δf

f0
= −ΔT

T0
= −ΔC

C
+

Δv

v
= −

(
αc − 1

γ2

)
Δp

p0
= −ηδ, (2.164)

η = αc − 1

γ2
=

1

γ2
T

− 1

γ2
, (2.165)

where T0 = 1/f0 is the revolution period of a synchronous particle, δ = Δp/p0 is the

fractional momentum deviation, γ
T
≡ √

1/αc is called the transition-γ, and γ
T
mc2

or simply γ
T
is the transition energy. For FODO cell lattices, γ

T
≈ νx.

Below the transition energy, with γ < γ
T
and η < 0, a higher momentum particle

will have a revolution period shorter than that of the synchronous particle. Because

a high energy particle travels faster, its speed compensates its longer path length in

the accelerator, so that a higher energy particle will arrive at a fixed location earlier



130 CHAPTER 2. TRANSVERSE MOTION

than a synchronous particle. Above the transition energy, with γ > γ
T
, the converse

is true. Without a longitudinal electric field, the time slippage between a higher or
lower energy particle and a synchronous particle is T0ηδ per revolution.

At γ = γ
T
the revolution period is independent of the particle momentum. All

particles at different momenta travel rigidly around the accelerator with equal revo-

lution frequencies. This is the isochronous condition, which is the operating principle
of AVF isochronous cyclotrons.

B. Phase stability of the bunched beam acceleration

Let V (t) = V0 sin(hω0t+ φ) be the gap voltage of the rf cavity (see Fig. 2.33), where

V0 is the amplitude, φ is an arbitrary phase angle, h is an integer called the harmonic
number, ω0 = 2πf0 is the angular revolution frequency, and f0 is the revolution

frequency of a synchronous particle. A synchronous particle is defined as an ideal
particle that arrives at the rf cavity at a constant phase angle φ = φs, where φs is the

synchronous phase angle. The acceleration voltage at the rf gap and the acceleration

rate for a synchronous particle are respectively given by

Vs = V0 sinφs, Ė0 = f0eV0 sinφs, (2.166)

where e is the charge, E0 is the energy of the synchronous particle, and the overdot

indicates the derivative with respect to time t.

0 π/2 π 3π/2 2π
φ

V0

−V0

0
π/2φ s

η<0 η>0

Acceleration

Deceleration

φ s

Lower Energy

Synchronous Energy

Higher Energy

Figure 2.33: Schematic drawing of an rf wave, and
the rf phase angles for a synchronous, a higher, and
a lower energy particles (Graph courtesy of D. Li,
LBNL). For a stable synchrotron motion, the phase
focusing principle requires 0 < φs ≤ π/2 for η < 0,
and π/2 < φs ≤ π for η > 0. Below the transition
energy, with 0 ≤ φs < π/2, a higher energy particle
arrives at the rf gap earlier and receives less energy
from the cavity. Thus the energy of the particle
will becomes smaller than that of the synchronous
particle. On the other hand, a lower energy par-
ticle arrives later and gains more energy from the
cavity. This process gives rise to the phase stability
of synchrotron motion.

A non-synchronous particle arriving at the rf cavity gap has a phase angle φ with
respect to the rf field. The phase φ varies with time, and the acceleration rate is

Ė = feV0 sinφ, where f is the revolution frequency. Combining with Eq. (2.166), we
find the rate of change of the energy deviation is (see also Chap. 3, Sec. I)

d

dt

(
ΔE

ω0

)
=

1

2π
eV0(sinφ− sinφs), (2.167)
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where ΔE = E − E0 is the energy difference between the non-synchronous and

the synchronous particles. Similarly, the equation of motion for the rf phase angle
φ = −hθ, where θ is the actual angular position of the particle in a synchrotron, is

d

dt
(φ− φs) = −hΔω = hω0

ΔT

T0
= hηω0

Δp

p0
=

ηhω2
0

β2E0

ΔE

ω0
. (2.168)

Equations (2.167) and (2.168) form the basic synchrotron equation of motion for
conjugate phase-space coordinates φ and ΔE/ω0. This is the equation of motion

for a biased physical pendulum system, called synchrotron motion. The differential
equation for the small amplitude phase oscillation is

d2(φ− φs)

dt2
=

ηhω2
0eV0

2πβ2E0
(sinφ− sinφs) ≈ η cosφshω

2
0eV0

2πβ2E0
(φ− φs) = ω2

syn(φ− φs);

ωsyn = ω0

√
heV0|η cos φs|

2πβ2E0
.

{
0 ≤ φs ≤ π/2 if γ < γ

T
or η < 0,

π/2 ≤ φs ≤ π if γ > γ
T
or η > 0.

(2.169)

where ωsyn is the small-amplitude angular synchrotron frequency. The phase stability
condition is η cosφs < 0. Below the transition energy, with 0 ≤ φs < π/2, a higher

energy particle arrives at the rf gap earlier and receives less energy from the rf cavity
(see Fig. 2.33). Thus the energy of the particle will gradually becomes smaller than

that of the synchronous particle. On the other hand, a lower energy particle arrives
later and gains more energy from the cavity. This process gives rise to the phase

stability of synchrotron motion. Similarly, the synchronous phase angle should be
π/2 < φs ≤ π at γ > γ

T
.

Particles are accelerated through the transition energy in many medium energy

synchrotrons such as the AGS, the Fermilab booster and main injector, the CERN
PS, and the KEK PS. The synchronous angle has to be shifted from φs to π−φs across

the transition energy within 10 to 100 μs. Fortunately, synchrotron motion around
the transition energy region is very slow, i.e. ωsyn → 0 at γ ∼ γ

T
. A sudden change

in the synchronous phase angle of the rf wave will not cause much beam dilution.

However, when the beam is accelerated through the transition energy, beam loss
and serious beam phase-space dilution can result from space-charge-induced mis-

match, nonlinear synchrotron motion, microwave instability due to wakefields, etc.
An accelerator lattice with a negative momentum compaction factor, where the tran-

sition γ
T
is an imaginary number, offers an attractive solution to these problems.

Such a lattice is called an imaginary γ
T
lattice. Particle motion in an imaginary γ

T

lattice is always below transition energy, thus the transition energy problems can be
eliminated. Attaining an imaginary γ

T
lattice requires a negative horizontal disper-

sion in most dipoles, i.e.
∑

i�D�iθi < 0. Methods of achieving a negative compaction

lattice will be addressed in Sec. IV.8.
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C: Effect of the dispersion function on orbit response matrix (ORM)

A dipole-kick θj at position sj changes the closed orbit by G(s, sj)θj and the circum-
ference by ΔC = D(sj)θj . The response matrix of the ORM experiment depends on

the method of measurement:

1. Constant momentum: The change of the revolution period is ΔT = ΔC/βc =

D(sj)θj/βc at a constant velocity. Similarly the rf frequency must be adjusted
according to Δf/f = −ΔT/T in order to maintain a constant momentum, The

beam motion at this new rf frequency is on-momentum, i.e. δ = 0 and the
closed orbit is

xco(si) = G(si, sj)θj (2.170)

or the response matrix is Ri,j = G(si, sj) of Eq. (2.110). Sometimes, the rf
cavity is turned off during the ORM measurement in proton accelerators. The

beam, at a constant injection momentum, is “on-momentum” and the response
matrix is Ri,j = G(si, sj).

52

2. Constant path length: Some ORM experiments carry out at a constant rf fre-

quency, i.e. the path length is constant. To maintain a constant pathlength, the

beam has to orbit at an equivalent off-momentum “δ” = 1
αc

ΔC
C0

to compensate
path length change by the dipole bump. Thus the corresponding closed orbit is

xco(si) = G(si, sj)θj +D(si)δ =

{
G(si, sj) +

D(si)D(sj)

2πRαc

}
θj , (2.171)

where αc is the momentum compaction factor, D(s) is the dispersion function,

and R is the mean radius of the accelerator. The response matrix becomes
Ri,j = G(si, sj) +

D(si)D(sj)

2πRαc
.

IV.4 Dispersion Suppression and Dispersion Matching

Since bending dipoles are needed for beam transport in arc sections, the dispersion

function can not be zero there. If the arc is composed of modular cells, such as FODO
cells, etc., the dispersion function is usually constrained by the periodicity condition,

Eq. (2.151), which simplifies lattice design. In many applications, the dispersion
function should be properly matched in straight sections for optimal accelerator op-

eration.53 If the betatron and synchrotron motions are independent of each other,

52J. Kolski, Ph.D. Thesis (Indiana University, 2010) for ORM at PSR; Z. Liu, Ph.D. Thesis
(Indiana University, 2011) for ORM at SNS.

53The curved transport line is usually called the arc, and the straight section that connects arcs
is usually called the insertion, needed for injection, extraction, rf cavities, internal targets, insertion
devices, and interaction regions for colliders.
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the rms horizontal beam size is σ2
x(s) = βx(s)�x,rms +D2(s) �(Δp/p0)

2�, where �x,rms

is the rms emittance. Thus the beam size of a collider at the interaction point can be
minimized by designing a zero dispersion straight section. A zero dispersion function

in the rf cavity region can be important to minimize the effect of synchro-betatron
coupling resonances. We discuss here the general strategy for dispersion suppression.

First-order achromat theorem

The first-order achromat theorem states that a lattice of n repetitive cells is achro-

matic to first order if and only if Mn = I or each cell is achromatic.54 Here M is the
2× 2 transfer matrix of each cell, and I is a 2× 2 unit matrix. Let the 3×3 transfer

matrix of a basic cell be

R =

�
M d̄
0 1

�
, d̄ =

�
d
d�

�
, (2.172)

where M is the 2 × 2 transfer matrix for betatron motion, and d̄ is the dispersion
vector. The transfer matrix of n cells is

Rn =

�
Mn (Mn−1 +Mn−2 + ·+ 1)d̄
0 1

�
=

�
Mn w̄
0 1

�
, (2.173)

where w̄ = (Mn−I)(M−I)−1d̄. Thus the achromat condition w̄ = 0 can be attained

if and only if Mn = I or d̄ = 0. An achromat section matches any zero dispersion
function modules. A unit matrix achromat works like a transparent transport section

for any dispersion functions.

Dispersion suppression

Applying the first-order achromat theorem, a strategy for dispersion function sup-

pression can be derived. We consider a curved (dipole) achromatic section such that

Mn = I. We note that one half of this achromatic section can generally be expressed
as

R =

�−I d̄
0 1

�
, d̄ =

�
d
d�

�
. (2.174)

Using the closed-orbit condition, Eq. (2.151), the dispersion function of the repetitive

half achromat is D = d/2, D� = d�/2. If the dipole bending strength of the adjoining
−I section is halved, the transfer matrix and the dispersion function will be matched

to zero value in the straight section, i.e.

R1/2 =

�−I 1
2
d̄

0 1

�
−→

⎛
⎝

d/2
d�/2
1

⎞
⎠ =

�−I 1
2
d̄

0 1

�⎛
⎝

0
0
1

⎞
⎠ .

54See K. Brown and R Servranckx, p. 121 in Ref. [16].
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Thus the zero dispersion section is matched to the arc by the dispersion suppression

section.
When edge focusing is included, a small modification in the quadrupole strengths is

needed for dispersion suppression. This is usually called the missing dipole dispersion
suppressor (see Exercise 2.4.3c). The reduced bending strength scheme for dispersion

suppression is usually expensive because of the wasted space in the cells. A possible
variant uses −I sections with full bending angles for dispersion suppression by varying

the quadrupole strengths in the −I sections. With use of computer programs such
as MAD and SYNCH, the fitting procedure is straightforward.

Is the dispersion function unique?

A trivial corollary of the first-order achromat theorem is that a dispersion function

of arbitrary value can be transported through a unit achromat transfer matrix, i.e. a
3× 3 unit matrix.

Now we consider the case of an accelerator or transport line with many repetitive
modules, which however do not form a unit transfer matrix. Is the dispersion func-

tion obtained unique? This question is easily answered by the closed-orbit condition
Eq. (2.151) for the entire ring. The transport matrix of n identical modules is

Rn =

(
Mn (Mn − I)(M − I)−1d̄
0 1

)
, (2.175)

where M is the transfer matrix of the basic module with dispersion vector d̄. Using

the closed-orbit condition, Eq. (2.151), we easily find that the dispersion function of
the transport channel is uniquely determined by the basic module unless the transport

matrix is a unit matrix, i.e. Mn = I. In the case of unit transport, any arbitrary

value of dispersion function can be matched in the unit achromat. Since the machine
tune can not be an integer because of the integer stopbands, the dispersion function

of an accelerator lattice is uniquely determined.

IV.5 Achromat Transport Systems

If the dispersion function is not zero in a transport line, the beam closed orbit depends

on particle momentum. However, it is possible to design a transport system such that
the beam positions do not depend on beam momentum at both ends of the transport

line. Such a beam transport system is called an achromat. The achromat theorem of
Sec. IV.4 offers an example of an achromat.

A. The double-bend achromat

A double-bend achromat (DBA) or Chasman-Green lattice is a basic lattice cell fre-

quently used in the design of low emittance synchrotron radiation storage rings. A
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DBA cell consists of two dipoles and a dispersion-matching section such that the

dispersion function outside the DBA cell is zero. It is represented schematically by

[OO] B {O QF O} B [OO],

where [OO] is the zero dispersion straight section and {O QF O} is the dispersion

matching section. The top plot of Fig. 2.34 shows a basic DBA cell.

Figure 2.34: Schematic plots of DBA
cells. Upper plot: standard DBA cell,
where O and OO can contain doublets
or triplets for optical match. Lower plot:
triplet DBA, where the quadrupole triplet
is arranged to attain betatron and disper-
sion function match of the entire module.

We consider a simple DBA cell with a single quadrupole in the middle. In thin-lens
approximation, the dispersion matching condition is

⎛
⎝

Dc

0
1

⎞
⎠ =

⎛
⎝

1 0 0
−1/(2f) 1 0

0 0 1

⎞
⎠

⎛
⎝

1 L1 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝

1 L Lθ/2
0 1 θ
0 0 1

⎞
⎠

⎛
⎝

0
0
1

⎞
⎠ , (2.176)

where f is the focal length of the quadrupole, θ and L are the bending angle and
length of the dipole, and L1 is the distance from the end of the dipole to the center of

the quadrupole. The zero dispersion value at the entrance to the dipole is matched to
a symmetric condition D′

c = 0 at the center of the focusing quadrupole. The required

focal length and the resulting dispersion function become

f =
1

2

�
L1 +

1

2
L

�
, Dc =

�
L1 +

1

2
L

�
θ. (2.177)

Note that the focal length needed in the dispersion function matching condition is

independent of the dipole bending angle in thin-lens approximation, and it can easily
be obtained from the geometric argument. The dispersion function at the symmetry

point is proportional to the product of the effective length of the DBA cell and the
bending angle.

Although this simple example shows that a single focusing quadrupole can attain
dispersion matching, the betatron function depends on the magnet arrangement in

the [OO] section, and possible other quadrupoles in the dispersion matching section.
The dispersion matching condition of Eq. (2.177) renders a horizontal betatron phase

advance Φx larger than π in the dispersion matching section (from the beginning of

the dipole to the other end of the other dipole). The stability condition of betatron
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motion (see Sec. II.6) indicates that betatron function matching section [OO] can not

be made of a simple defocusing quadrupole. A quadrupole doublet, or a triplet, is
usually used in the [OO] section. Such DBA lattice modules have been widely applied

in the design of electron storage rings.

A simple DBA cell is the triplet DBA (lower plot of Fig. 2.34), where a quadrupole
triplet is located symmetrically inside two dipoles. This compact lattice was used for

the SOR ring in Tokyo. Some properties of the triplet DBA storage ring can be found
in Exercise 4.3.6.

B. Other achromat modules

The beam transport system in a synchrotron or a storage ring requires proper dis-
persion function matching. The design strategy is to use achromatic subsystems. An

example of achromatic subsystem is the unit matrix module (see Sec. IV.4 on the first
order achromat theorem). A unit matrix module can be made of FODO or other basic

cells such that the total phase advance of the entire module is equal to an integer
multiple of 2π. Achromatic modules can be optically matched with straight sections

to form an accelerator lattice.

The achromatic transport modules are also important in the transport beamlines

(see Exercises 2.4.12 to 2.4.15). The achromatic transport system find applications in
high energy and nuclear physics experiments, medical radiation treatment, and other

beam delivering systems.

IV.6 Transport Notation

In many applications, the particle coordinates in an accelerator can be characterized
by a state vector �W , where the transpose is

�W T = (W1, W2, W3, W4, W5, W6 ) = (x, x′, z, z′, βcΔt, δ ) ,

where βc is the speed of the particle, βcΔt is the path length difference with respect

to the reference orbit, and δ = Δp/p0 is the fractional momentum deviation of a
particle. The transport of the state vector in linear approximation is

Wi(s2) =
6∑

j=1

Rij(s2|s1) Wj(s1), (i, j = 1, · · · , 6). (2.178)

Note that the 2×2 diagonal matrices for the indices 1,2, and 3,4 are respectively the

horizontal and verticalM matrices. The R13, R23 R14, R24 elements describe the linear
betatron coupling. The R16, R26 elements are the dispersion vector �d of Eq. (2.172).

Without synchrotron motion, we have R55 = R66 = 1. All other elements of the R

matrix are zero.
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In general, the nonlinear dependence of the state vector can be expanded as

Wi(s2) =
6∑

j=1

RijWj(s1) +
6∑

j=1

6∑
k=1

TijkWj(s1)Wk(s1)

+
6∑

j=1

6∑
k=1

6∑
l=1

UijklWj(s1)Wk(s1)Wl(s1) + · · · . (2.179)

For example, particle transport through a thin quadrupole is

Δx′ = − x

f(1 + δ)
= −x

f
+

xδ

f
− xδ2

f
+ · · · ,

Δz′ =
z

f(1 + δ)
=

z

f
− zδ

f
+

zδ2

f
+ · · · ,

and we obtain

R21 = −1

f
, T216 = +

1

f
, U2166 = −1

f
, R43 = +

1

f
, T436 = −1

f
, U4366 = +

1

f
.

Similarly, particle transport through a thin sextupole gives

Δx′ = − S

2(1 + δ)
(x2 − z2), Δz′ =

S

1 + δ
xz,

T211 = −S

2
, T233 =

S

2
, T413 = S, · · · .

where S = −B2�/Bρ is the integrated sextupole strength. Here we used the con-

vention that S > 0 corresponds to a focusing sextupole. Tracing the transport in
one complete revolution, we get the momentum compaction factor as αc = R56. The

program TRANSPORT55 has often been used to calculate the transport coefficients
in transport lines.

IV.7 Experimental Measurements of Dispersion Function

Digitized BPM turn by turn data can be used to measure the betatron motion. On the
other hand, if the BPM signals are sampled at a longer time scale, the fast betatron

oscillations are averaged to zero. The DC output provides the closed orbit of the
beam. The dispersion function can be measured from the derivative of the closed

orbit with respect to the off-momentum of the beam, i.e.

D =
dxco

d(Δp/p0)
= −η f0

dxco

df0
, (2.180)
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Figure 2.35: The upper plot shows the closed or-
bit at a BPM vs the rf frequency for the IUCF
Cooler Ring. The slope of this measurement is
used to obtain the “measured” dispersion func-
tion. The lower plot compares the measured dis-
persion function (rectangles) with that obtained
from the MAD program (solid line).

where xco is the closed orbit, f0 is the revolution frequency, η is the phase-slip factor,

and the momentum of the beam is varied by changing the rf frequency.

The upper plot of Fig. 2.35 shows the closed orbit at a BPM location vs the rf
frequency at the IUCF Cooler Ring. Using Eq. (2.180), we can deduce the dispersion

function at the BPM location. In the lower plot of Fig. 2.35 the “measured” dispersion

functions of the IUCF Cooler Ring is compared with that obtained from the MAD
program [23].56 The accuracy of the dispersion function measurement depends on

the precision of the BPM system, and also on the effects of power supply ripple.
To improve the accuracy of the dispersion function measurement, we can induce

frequency modulation to the rf frequency shift. The resulting closed orbit will have the
characteristic modulation frequency. Fitting the resulting closed orbit with the known

modulation frequency, we can determine the dispersion function more accurately.

IV.8 Transition Energy Manipulation

Medium energy accelerators often encounter problems during transition energy cross-
ing, such as longitudinal microwave instability and nonlinear synchrotron motion.

These problems can be avoided by an accelerator having a negative momentum com-

paction factor. The revolution period deviation ΔT for an off-momentum particle
Δp = p − p0 is given by Eq. (2.164). The accelerator becomes isochronous at the

transition energy (γ = γ
T
).

There are many unfavorable effects on the particle motion near the transition
energy. For example, the momentum spread of a bunch around transition can become

so large that it exceeds the available momentum aperture, causing beam loss (see
Chap. 3, Sec. IV). Since the frequency spread of the beam Δω = −ηω(Δp/p0)

vanishes at the transition energy, there is little or no Landau damping of microwave

55K.L. Brown, D.C. Carey, Ch. Iselin and F. Rothacker, CERN 80-04 (1980); D.C. Carey, FNAL
Report TM-1046 (1981); D.C. Carey et al., SLAC-R-530, Fermilab-Pub-98-310 (1998).

56The IUCF Cooler Ring lattice belongs generally to the class of double-bend achromats (see
Exercise 2.4.12). A high dispersion straight section is used for momentum-stacking injection and
zero dispersion straight sections are used for rf and electron cooling.
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instability near transition (see Chap. 3, Sec. VII). As a result, the bunch area may

grow because of collective instabilities. Furthermore, particles with different momenta
may cross transition at different times, which leads to unstable longitudinal motion

resulting in serious beam loss.

To avoid all the above unfavorable effects, it is appealing to eliminate transition

crossing. The γ
T
jump schemes have been used successfully to ease beam dynam-

ics problems associated with the transition energy crossing; in these schemes some

quadrupoles are pulsed so that the transition energy is lowered or raised in order to
enhance the acceleration rate at the transition energy crossing. This has become a

routine operation at the CERN Proton Synchrotron (PS).

Alternatively, one can design an accelerator lattice such that the momentum com-
paction factor αc is negative, and thus the beam never encounters transition energy.

This is called the “negative momentum compaction” or the “imaginary γ
T
” lattice.

All modern medium energy synchrotrons can be designed this way to avoid transition
energy. We discuss below the methods of αc manipulation, the transition energy jump

scheme, and the design principle of the imaginary γ
T
lattices.

A. γ
T
jump schemes

In many existing low to medium energy synchrotrons, particle acceleration through
the transition energy is unavoidable. Finding a suitable γ

T
jump scheme can provide

beam acceleration through transition energy without much emittance dilution and
beam loss. Here we examine the strategy of γ

T
jump schemes pioneered by the

CERN PS group.57

In the presence of dipole field error, the closed orbit is given by Eq. (2.92).

Substituting the dipole field error resulting from the off-momentum of a particle
ΔBz/Bρ = 1

ρ
δ into Eq. (2.92), we obtain the horizontal off-momentum closed orbit

xco = D(s)δ. Thus the dispersion function is

D(s0) =

∫ C

0

Gx(s, s0)

ρ(s)
ds ≈

∑
i

Gx(si, s0)θi, (2.181)

where θk,i is the dipole angular kick in thin-lens approximation, ρ(s) is the bending

radius of dipoles, and the Green’s function Gx(s, s0) is given in Eq. (2.91).

A.1 The effect of quadrupole field errors on the closed orbit

Consider N quadrupoles for the γ
T
jump. We would like to evaluate the change of

orbit length for off-momentum particles due to the γ
T
jump quadrupoles. From Hill’s

57W. Hardt, Proc. 9th Int. Conf. on High Energy Accelerators (USAEC, Washington, DC, 1974).
See also T. Risselada, Proc. CERN Accelerator School, CERN-91-04, p. 161, 1991.
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equation, the angular kick resulting from the ith γ
T
jump quadrupole is

θi = −Ki [xco(si) +D∗
i δ] , (2.182)

whereKi = −B1�/Bρ is the strength of the ith γ
T
jump quadrupole, assumed positive

for a focusing quadrupole, and D∗
i is the perturbed dispersion function at s = si. Thus

the change of the orbit length for the off-momentum particle is

ΔC ≈
∑
i

Diθi ≈ −
(∑

i

KiD
∗
iDi

)
δ, (2.183)

where Di is the unperturbed dispersion function, and we neglect higher-order terms
in δ. Equation (2.183) indicates that quadrupoles at nonzero dispersion locations can

be used to adjust the momentum compaction factor.
If N γ

T
–jump quadrupoles are used to change the momentum compaction factor,

we obtain

C0Δαc = −
N∑
i=1

KiD
∗
iDi. (2.184)

The change in momentum compaction (called γ
T
jump) depends on the unperturbed

and perturbed dispersion functions at kick-quadrupole locations. An important con-

straint is that the betatron tunes should be maintained constant during the γ
T
jump

in order to avoid nonlinear betatron resonances, i.e.

ΔQx =
1

4π

N∑
i=1

βx,iKi = 0, ΔQz = − 1

4π

N∑
i=1

βz,iKi = 0. (2.185)

Thus we usually employ zero tune shift quadrupole pairs for the γ
T
jump.

A.2 The perturbed dispersion function

The change in the closed orbit resulting from the quadrupole kicks can be obtained
by substituting Eq. (2.182) into Eq. (2.181) to obtain the closed orbit solution:

[D∗(s)−D(s)] δ = −
∑
i

Gx(s, si)KiD
∗
i δ,

D∗
j = Dj +

∑
i

FjiD
∗
i , (2.186)

where Fji = −Gx(sj , si)Ki. The perturbed dispersion function at these quadrupole
locations and the resulting change in momentum compaction become

�D∗ = (1− F )−1 �D = (1 + F + F 2 + F 3 + ...) �D.

Δαc = − 1

C0

N∑
ij

Ki(1 + F + F 2 + ...)ijDjDi.
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A.3 γ
T
jump using zero tune shift π-doublets

When zero tune shift pairs of quadrupoles separated by π in the betatron phase

advance are used to produce a γ
T
jump, the matrix F satisfies

F n = 0 for n ≥ 2. (2.187)

This result can be easily proved by using the zero tune shift condition: βx,kKk +
βx,k+1Kk+1 = 0 and the π phase advance condition:

cos(πνx − |ψk − ψj |) = − cos(πνx − |ψk+1 − ψj |),
cos(πνx − |ψi − ψk|) = − cos(πνx − |ψi − ψk+1|).

Using the π-doublets, the perturbed dispersion function and the change in the mo-
mentum compaction factor become

D∗
i = (1 + F )ijDj, or ΔDi = D∗

i −Di = −Gx(si, sj)KjDj,

Δαc = − 1

C0

∑
i

KiD
2
i +

∑
ij

KiKjGx(si, sj)DiDj.

The change in the dispersion function is linear in K. The change in the momentum

compaction factor contains a linear and a quadratic term in K. If the γ
T
jump

quadrupole pairs are located in the arc, where the unperturbed dispersion function is

dominated by the zeroth harmonic in the Fourier decomposition, the term linear in

Ki vanishes because of the zero tune shift condition.58 The resulting change in the
momentum compaction factor is a quadratic function of Ki.

Since the stopband integral of Eq. (2.120) at p = [2νx] due to the tune jump
quadrupole pair is zero because of the zero tune shift condition, the π-doublet does

not produce a large perturbation in the betatron amplitude function.
Thus if all quadrupoles used for γ

T
jump are located in FODO cells, the amount

of tune jump is second order in the quadrupole strength. On the other hand, γ
T
jump

using quadrupoles in straight sections can be made linear in quadrupole strength.

B. Flexible momentum compaction (FMC) lattices

Alternatively, a lattice having a very small or even negative momentum compaction
factor can also be designed. Vladimirskij and Tarasov59 introduced reverse bends in

an accelerator lattice and succeeded in getting a negative orbit-length increase with
momentum, thus making a negative momentum compaction factor. Another method

58This statement can be expressed mathematically as follows. If the zeroth harmonic term domi-
nates, we have D2

i ∝ βi, and thus
∑

i KiD
2
i ∝ ∑

i Kiβi = 0 because of the zero tune shift condition.
59V.V. Vladimirski and E.K. Tarasov, Theoretical Problems of the Ring Accelerators (USSR

Academy of Sciences, Moscow, 1955).
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of designing an FMC lattice is called the harmonic approach.60 In this method a sys-

tematic closed-orbit stopband is created near the betatron tune to induce dispersion-
wave oscillations resulting in a high γ

T
or an imaginary γ

T
. However, the resulting

lattice is less tunable and the dispersion functions can be large. Thus the dynamical
aperture may be reduced accordingly.

In 1972, Teng proposed an innovative scheme using negative dispersion at dipole
locations, where the dispersion function can be matched by a straight section with

a phase advance of π to yield little or no contribution to positive orbit-length incre-

ment.61 This concept is the basis for flexible momentum compaction (FMC) lattices,
which require negative dispersion functions at some sections of dipoles.

Trbojevic et al.62 re-introduced amodular approach for the FMC lattice with a pre-
scribed dispersion function. The dispersion phase-space maps are carefully matched

to attain a lattice with a pre-assigned γ
T
value. The module forms the basic building

blocks for a ring with a negative momentum compaction factor or an imaginary γ
T
.

The module can be made very compact without much unwanted empty space and,
at the same time, the maximum value of the dispersion function can be optimized to

less than that of the FODO lattice.

For attaining proper dispersion function matching, the normalized dispersion co-
ordinates Xd and Pd of Eq. (2.161) are handy, i.e.

X =
1√
βx

D =
√
2Jd cosψd, P =

√
βxD

′ +
αx√
βx

D = −
√

2Jd sinψd.

In the thin-element approximation, Eq. (2.150) indicates that ΔD = 0 and ΔD′ = θ
in passing through a thin dipole with bending angle θ. Therefore, in normalized Pd-Xd

space, the normalized dispersion vector changes by ΔP =
√
βxθ and ΔX = 0. Outside

the dipole (ρ = ∞), the dispersion function satisfies the homogeneous equation, and

the dispersion action Jd is invariant, i.e. Pd and Xd lie on a circle P 2 + X2 = 2Jd.
The phase angle ψd of the normalized coordinates is equal to the betatron phase

advance. This dispersion phase-space plot can be helpful in the design of lattices and

beam-transfer lines. It has also been used to lower the dispersion excursion during a
fast γ

T
jump at RHIC.63

60R. Gupta and J.I.M. Botman, IEEE Trans. Nucl. Sci. NS-32, 2308 (1985); T. Collins, Beta
Theory, Technical Memo, Fermilab (1988); G. Guignard, Proc. 1989 IEEE PAC, p. 915 (1989);
E.D. Courant, A.A. Garren, and U. Wienands, Proc. 1991 IEEE PAC, p. 2829 (1991).

61L.C. Teng, Part. Accel. 4, 81 (1972).
62D. Trbojevic, D. Finley, R. Gerig, and S. Holmes, Proc. 1990 EPAC, p. 1536 (1990); K.Y. Ng,

D. Trbojevic, and S.Y. Lee, Proc. 1991 PAC, p. 159 (1991); S.Y. Lee, K.Y. Ng, and D. Trbojevic,
Phys. Rev. E48, 3040 (1993).

63D. Trbojevic, S. Peggs, and S. Tepikian, Proc. 1993 IEEE Part. Accel. Conf. p. 168 (1993).
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Figure 2.36: A schematic
drawing of a basic module
made of two FODO cells and
an optical matching section.

B.1 The basic module and design strategy

A basic FMC module has two parts: (1) the FODO or DOFO cell, where the negative

dispersion function in dipoles provides a negative momentum compaction factor, and
(2) a matching section that matches the optical functions. We also assume reflection

symmetry for all Courant-Snyder functions at symmetric points of the module. Al-
though not strictly necessary, reflection symmetry considerably simplifies the analysis

and optical matching procedure. For example, we consider a basic module composed
of two FODO cells and a dispersion matching section shown schematically in Fig. 2.36:

Ma

�
1

2
QFB QD B

1

2
QF

�
Mb {QF1 O1 QD2 O2} Mc + reflection symmetry ,

where Ma,b,c are marker locations, Q’s are quadrupoles, O’s are drift spaces, and B’s
stand for dipoles. The horizontal betatron transfer matrix of the FODO cell from the

marker Ma to the marker Mb is [see Eq. (2.157) and Exercise 2.4.3]

M
FODO

=

⎛
⎝

cosΦ βF sinΦ DF(1−cosΦ)
− 1

βF
sinΦ cos Φ DF

βF
sinΦ

0 0 1

⎞
⎠ , (2.188)

where, for simplicity, we have chosen Φx = Φz = Φ for the betatron phase advance
of the FODO cell, βF and DF are respectively the betatron amplitude and dispersion

functions at the center of the focusing quadrupole for the regular FODO cell, and a
symmetry condition β ′

F = 0 and D′
F = 0 is assumed to simplify our transfer matrix

in Eq. (2.188).
The procedure of optical function matching is (1) choose the desired value Da

of the dispersion function at the marker Ma; the dispersion function is propagated
through FODO cell to obtained a dispersion vector at the marker Mb; (2) the optical

functions are matched in the matching section. Figure 2.37 shows an example of the
betatron amplitude functions for a matched FMC basic module with an added dipole

in dispersion matching section in order to increase the packing factor. The J-PARC

Main Ring in Japan, the PS2 design in CERN and the the Jlab EIC ring design
employ various variations of the negative momentum compaction designs.64

64The packing factor and magnitude of the γT are optimized in the design process, see J-PARC
design report, JAERI-Tech-2003-44/KEK-Report-2OO2-13; Y. Papaphilippou, et al., PAC09, 3805
(2009), and https://yannis.web.cern.ch/yannis/talks/PS2opticsLIS.pdf; S.A. Bogacz, in Proceedings
of IPAC2017, 3350 (2017). Here, the packing factor is defined as the fraction of the circumference
of an accelerator that is occupied by dipole magnets.
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Figure 2.37: The lattice function of an
FMC basic module. In this example, a
dipole is added in the middle of disper-
sion matching section in order to increase
the machine packing factor. Although the
dipole in the matching section will con-
tribute a positive value to the momentum
compaction. The overall compaction fac-
tor can still be adjusted by a properly cho-
sen Da.

The dispersion function inside dipoles in FODO cells of an FMC module is mostly
negative, and the resulting momentum compaction factor can become negative. Ad-

justing the initial dispersion function value Da, the momentum compaction factor
of the accelerator can be varied. Figure 2.38 shows an example of dispersion func-

tion matching for an FMC module by plotting the normalized dispersion phase-space
coordinates Xd vs Pd. A negative-momentum-compaction module requires Xd < 0

in dipoles as demonstrated in the left plot of Fig. 2.38. The right plot shows a

similar plot in thin-lens approximation. Although they look slightly different, the
thin-element approximation can provide essential insight in the preliminary design

where dispersion matching is required. Since there is no dipole in this example shown
in Fig. 2.36, the dispersion phase-space coordinates are located on a circle as shown

in Fig. 2.38, where the normalized dispersion phase-space coordinates Xd = D/
√
βx

vs Pd = (αx/
√
βx)D +

√
βxD

′ are shown. If the lattice has a reflection symmetry at

the marker Mc, the matched dispersion phase-space coordinate is Pd = 0.

Figure 2.38: Left: An example of dis-
persion matching for a basic FMC mod-
ule. The normalized dispersion phase-
space coordinates for periodic FODO
cells are marked “FODO CELLS.” Right:
The FMC cell in thin-lens approxima-
tion. Each dipole is divided into 3 seg-
ments. Each dipole segment changes only
the coordinate P . There is no dipole in
the matching section, thus the normalized
phase-space torus is an arc of a circle.

B.2 Dispersion matching

The dispersion function at the beginning of the FODO cell is prescribed to have

a negative value of Da with D′
a = 0. As we shall see, the choice of Da essentially
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determines the dispersion excursion and the γ
T
value of the module. Using the transfer

matrix in Eq. (2.188), we find the dispersion function at marker Mb to be

Db = DF − (DF −Da) cosΦ, D�
b =

DF −Da

βb
sinΦ , (2.189)

where βb is the betatron amplitude function at marker Mb with βb = βF. Now we
assume that there is no dipole in the matching section, and the dispersion action is

invariant in this region, i.e.

Jd,c = Jd,b =
1

2

�
D2

b

βb
+ βbD

�2
b

�
= Jd,F[1− 2(1− ζ) cosΦ + (1− ζ)2] ,

where ζ = Da/DF is the ratio of the desired dispersion at marker Ma to the dispersion
function of the regular FODO cell, Jd,b, Jd,c are dispersion actions at markers Mb

and Mc, and Jd,F is the dispersion action of the regular FODO cell at the focusing

quadrupole location, given in thin-lens approximation by

Jd,F =
1

2

�
L1θ

2 cos Φ
2
(1 + 1

2
sin Φ

2
)2

sin3 Φ
2
(1 + sin Φ

2
)

�
. (2.190)

B3. Other similar FMC modules

The above analysis can be applied to a basic FMC module composed of two DOFO

cells and a dispersion matching section. Because the dispersion value at the defocusing
quadrupole location is smaller than that at the focusing quadrupole location, a slightly

smaller |ζ | can be used to minimize the magnitude of the dispersion function in the
module.

To design a lattice with a higher packing factor, defined as the ratio of the total
dipole length to the circumference, one may use a DOFODO in place of the FODO

cell, i.e. three FODO cells instead of two are placed inside a basic module. The
betatron transfer matrix in the DOFODO cell becomes

Ma→b =

⎛
⎜⎜⎝

�
β
F

β
D
cos 3

2
Φ

�
β

F
β

D
sin 3

2
Φ D

F
−D

D

�
β
F

β
D
cos 3

2
Φ

− 1√
β
F
β
D

sin 3
2
Φ

�
β
D

β
F
cos 3

2
Φ

D
D√

β
F
β
D

sin 3
2
Φ

0 0 1

⎞
⎟⎟⎠ , (2.191)

where Φ is the phase advance of a FODO cell, and β
F
, β

D
, D

F
, D

D
are the betatron

amplitudes and dispersion values at the focusing and defocusing quadrupoles of the

FODO cell. A similar analysis with a different number of FODO cells can be easily

done. In general, the result will be a larger total dispersion value.
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C. Reverse Bend and nsFFA accelerators

Consider a simple triplet cell made of combined function magnets, shown in the top

plot of Fig. 2.39. The bottom plot shows the maximum dispersion function and the
compaction vs the relative distribution of the bending angle for θD+θF = 18◦. When

(θD − θF )/(θD + θF ) = 0, both magnets have equal bending angle; if it is ±1, one of
the magnet is a pure quadrupole. When |(θD−θF )/(θD+θF )| > 1, one of the magnet

is reverse bend. In particular, if the reverse bend is a focusing quadrupole, where the

value of the dispersion function is maximum, the compaction factor can become 0.
The non-scaling-Fixed-Field-Alternating-gradient (nsFFA) accelerator employs this

property to achieve small enough phase slip factor for particles within a range of
beams momentum rigidity using a fixed-frequency rf system. Similar concept works

for the simple FODO cells.65

Figure 2.39: Top: An example of a triplet
basic cell made of combined function mag-
nets (cell length 5 m, combined function
magnets 1.5 m, at a total bending angle
θD + θF = 18◦). Bottom: Dispersion
function (solid line) and the compaction
factor (dashed line) vs the relative angu-
lar bend angle of the focusing and defo-
cusing dipoles at μx = 0.235. The com-
paction factor (dashed line) for μx = 0.175
is shown for comparison.

IV.9 Minimum �H� Modules

In electron storage rings, the natural (horizontal) emittance of the beam is deter-

mined by the average of the H-function in the dipoles (see Chap. 4). A double-bend
module (Fig. 2.34), also called Chasman-Green lattice, is made of two dipoles located

reflection-symmetrically with respect to the center of the basic module:

Ma

⎛
⎝

Triplet
or

Doublet

⎞
⎠ B {dispersion matching section} Mc + {reflection symmetry}.

A quadrupole triplet or doublet matching section on the outside of the dipole B
is the betatron amplitude matching section. If the achromat condition is imposed,

the module is called a double-bend achromat (DBA). The zero dispersion region is

65See e.g. J.S. Berg, Nucl. Instrum. Methods, A596, 276 (2008).
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usually used for insertion devices such as the undulator, the wiggler, and rf cavities.

The dispersion matching section on the right side of the dipole can be made of a
single quadrupole, a doublet, or a triplet. In this section, the strategy of minimizing

�H� inside dipoles will be discussed. To simplify our discussion, we will consider a
single dipole lattice unit where the dispersion and betatron amplitude functions can

be independently controlled.
The evolution of the H-function in a sector dipole is (see Exercise 2.4.11)

H = H0 + 2(α0D0 + β0D
�
0) sinφ− 2(γ0D0 + α0D

�
0)ρ(1− cosφ)

+β0 sin
2 φ+ γ0ρ

2(1− cosφ)2 − 2α0ρ sin φ(1− cosφ), (2.192)

where H0 = γ0D
2
0 +2α0D0D

�
0 + β0D

�2
0 ; α0, β0, γ0, D0 and D�

0 are the Courant-Snyder

parameters and dispersion functions at s = 0; and φ = s/ρ is the coordinate of the
bending angle inside the dipole. The average H-function in the dipole becomes

�H� = H0 + (α0D0 + β0D
�
0)θ

2E(θ)− 1

3
(γ0D0 + α0D

�
0)ρθ

2F (θ)

+
β0

3
θ2A(θ)− α0

4
ρθ3B(θ) +

γ0
20

ρ2θ4C(θ), (2.193)

E(θ) =
2(1− cos θ)

θ2
, F (θ) =

6(θ − sin θ)

θ3
, A(θ) =

6θ − 3sin 2θ

4θ3
,

B(θ) =
6− 8 cos θ + 2 cos 2θ

θ4
, C(θ) =

30θ − 40 sin θ + 5 sin 2θ

θ5
,

where θ is the bend angle of the dipole. In the small-angle limit, A → 1, B → 1, C →
1, E → 1, and F → 1. With the normalized scaling parameters d0 = D0

Lθ
, d�0 =

D′
0

θ
, β̃0 = β0

L
, γ̃0 = γ0L, α̃0 = α0, where L = ρθ is the length of the dipole, the

average H-function becomes

�H� = ρθ3
{
γ̃0d

2
0 + 2α̃0d0d

�
0 + β̃0d

�2
0 + (α̃0E − γ̃0

3
F )d0

+(β̃0E − α̃0

3
F )d�0 +

β̃0

3
A− α̃0

4
B +

γ̃0
20

C

}
.

A. Minimum �H�-function with achromat condition

In the special case with the achromat condition d0 = 0 and d�0 = 0, the average

H-function and its minimum value are

�H� = ρθ3

{
β̃0

3
A− α̃0

4
B +

γ̃0
20

C

}
=⇒ �H�min,A =

G

4
√
15

ρθ3, (2.194)

where we use the condition β̃0γ̃0 = (1 + α̃2
0) to obtain β̃0 =

√
12C√
5G

, α̃0 =
√
15B
G

, and

G =
√
16AC − 15B2. The G-function decreases slowly with the dipole bending angle



148 CHAPTER 2. TRANSVERSE MOTION

θ shown in Fig. 2.40. The evolution of the betatron amplitude function in the dipole

can be obtained from Eq. (2.36). In the small-angle approximation, the minimum
betatron amplitude and its location are respectively β∗

min,A = 3
4
√
60
L and s∗min,A = 3

8
L.

Figure 2.40: The minimum �H� factors G =√
16AC − 15B2 for the DBA (lower curve) and

G̃ =
√

16ÃC̃ − 15B̃2 for the ME (upper curve)
lattices are plotted as a function of the bending
angle θ. The ME lattice data are for minimum
�H� without the achromat constraint. Note that
�H� is slightly smaller in a long dipole because of
the 1/ρ2 focusing effect of the sector dipole.

It is difficult to design a lattice that can reach the theoretical minimum emittance.
The typical emittance attained is about 2-4 times of the minimum emittance. The

low-emittance DBA-lattice at the advanced photon source (APS) in Argonne National
Laboratory is shown in Fig. 2.41, where the left-plot shows the optical functions with

minimum βx inside dipoles in order to minimize �H�. The middle and right plots show
the normalized dispersion coordinates (Pd, Xd). The dispersion matching quadrupole

at the center is split into two in order to leave space for a sextupole. Since the lattice
is designed to minimize �H� inside dipole, the normalized dispersion coordinates are

small to be compared with those shown in Fig. 2.32. The entire achromat section of
the DBA lattice is located at the origin Xd = Pd = 0. In the dispersion matching

straight section, the normalized dispersion phase-space coordinates are located on a
circle with the center at the origin. Many third generation high-brilliance light sources

employ low emittance DBA-lattice for their storage ring. The details of emittance

minimization procedure will be addressed in Chapter 4, Sec. III.

Figure 2.41: Left: The low emittance lattice functions for a superperiod of APS. The APS
lattice has 40 superperiods so that the circumference is 1104 m. The tunes of this lattice
are Qx = 35.219, Qz = 14.298. The momentum compaction factor is αc = 2.28 × 10−4

in agreement with that of Eq. (2.197). Middle and Right: The normalized dispersion
coordinates for the low emittance APS lattice is shown in one superperiod.
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B. Minimum �H� without achromat constraint

Without the achromat constraint, minimization of the H-function can be achieved

through the following steps. The minimum of �H� is obtained by solving ∂�H�
∂d0

= 0

and ∂�H�
∂d′0

= 0 to obtain d0,min =
1
6
F and d�0,min = −1

2
E. The resulting �H� becomes

�H� = 1

12
ρθ3

(
β̃0Ã− α̃0B̃ +

4γ̃0
15

C̃

)
,

where Ã = 4A−3E2, B̃ = 3B−2EF, C̃ = 9
4
C− 5

4
F 2. Using the relation β̃0γ̃0 = 1+α̃2

0,

we obtain �H�min = G̃
12

√
15
ρθ3, where G̃ =

√
16ÃC̃ − 15B̃2 (see Fig. 2.40). Thus the

minimum �H� without achromatic constraint is a factor of 3 smaller than that with
the achromat condition. A lattice designed with the constraint of minimum �H�
is called a theoretical minimum emittance (TME) lattice. The betatron amplitude

function at the minimum �H� is β̃0 = 8√
15 G̃

C̃, α̃0 =
√
15
G̃

B̃, γ̃0 = 2
√
15

G̃
Ã.The waist

of the optimal betatron amplitude function for the minimum �H� is located at the

middle of the dipole, i.e. s∗ = L/2. The corresponding minimum betatron amplitude
function at the waist location is β∗

min = L/
√
60 in small-angle approximation with

θ � 1.
Even though the minimum �H� is one third of that with the achromat condition,

the required minimum betatron amplitude function is β∗
min = 4

3
β∗
min,A. The corre-

sponding maximum betatron amplitude function will be reduced accordingly. We
have discussed the minimum �H� only in sector dipoles. In actual machine design,

combined-function magnets with defocusing field may be used (see Chap. 4, Sec.III),
where we will find that �H�min is actually larger than for a separate function lattice.

C. Compaction factor in double-bend (DB) lattices

The dispersion function inside a sector dipole is

D(s) = ρ(1− cosφ) +D0 cosφ+ ρD�
0 sinφ, (2.195)

D�(s) = sinφ− D0

ρ
sin φ+D�

0 cosφ, (2.196)

where ρ is the bending radius of the dipole, φ = s/ρ is the bend angle, and D0 and

D�
0 are respectively the values of the dispersion function and its derivative at s = 0.

For a matched double-bend module, the momentum compaction is

αc =
ρ

Lm

[
θ − sin θ +

D0

ρ
sin θ +D�

0 (1− cos θ)

]
≈ ρθ3

Lm

(
1

6
+

D0

Lθ
+

D�
0

2θ

)
+ · · · ,

where Lm is the length of one half of the double-bend module, θ = L/ρ, and L is

the length of the dipole. The momentum compaction factor depends on the initial

dispersion function at the entrance of the dipole.
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In small-angle approximation, the condition for negative momentum compaction

is 6d0 + 3d�0 ≤ −1, where d0 = D0/Lθ, and d�0 = D�
0/θ. The dispersion function in

the rest of the module can be matched by quadrupole settings.

The momentum compaction in small dipole angle approximation for the isomag-

netic DBA module with D0 = 0 and D�
0 = 0 and for the TME condition are

αc,DBA ≈ ρθ2

6R
and αc,TME ≈ ρθ2

12R
, (2.197)

where R is the average radius of the storage ring and θ are the bending radius and
the bending angle of each dipole. The momentum compaction factor of a DBA

lattice is independent of the betatron tune. Finally, a reverse-bend dipole placed

at the high dispersion straight section can also be used to adjust the momentum
compaction factor of a DBA lattice. Such a lattice can provide a small-emittance

negative momentum compaction lattice for synchrotron radiation sources.

Exercise 2.4

1. The dispersion function in a dipole satisfies the equation D�� +KxD = 1/ρ. Let D0

and D�
0 be the dispersion function and its derivative at s = 0.

⎛
⎝

D(s)
D�(s)
1

⎞
⎠ = M

⎛
⎝

D0

D�
0

1

⎞
⎠ ,

where M is the transfer matrix.

(a) Show that the transfer matrix for Kx = K > 0, and K < 0 are respectively

M =

⎛
⎝

cos
√
Ks 1√

K
sin

√
Ks 1

ρK (1− cos
√
Ks)

−√
K sin

√
Ks cos

√
Ks 1

ρ
√
K
sin

√
Ks

0 0 1

⎞
⎠

M =

⎛
⎜⎝

cosh
�|K|s 1√

|K| sinh
�|K|s 1

ρ|K|(−1 + cosh
�|K|s)

�|K| sinh�|K|s cosh
�|K|s 1

ρ
√

|K| sinh
�|K|s

0 0 1

⎞
⎟⎠

(b) Show that the transfer matrix of a sector magnet is given by Eq. (2.154).

(c) For a rectangular magnet, show that the horizontal transfer matrix is (see Ex-
ercise 2.2.3)

Mrectangular dipole =

⎛
⎝

1 ρ sin θ ρ(1− cos θ)
0 1 2 tan(θ/2)
0 0 1

⎞
⎠ ,

where ρ and θ are the bending radius and the bending angle.
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(d) In thin-lens (small-angle) approximation, show that the transfer matrices M for
quadrupoles and dipoles become

Mquad =

⎛
⎝

1 0 0
−1/f 1 0
0 0 1

⎞
⎠ , Mdipole =

⎛
⎝

1 � �θ/2
0 1 θ
0 0 1

⎞
⎠ ,

where f is the focal length, and � and θ are the length and bending angle of the
dipole.

2. The bending arc of an accelerator lattice is usually composed of FODO cells. Each
FODO cell is [12QF B QD B 1

2QF], where QF and QD are the focusing and defocusing
quadrupoles with focal length f1 and −f2 respectively, and B is a dipole with bending
angle θ. Let L be the half cell length.

(a) Using thin-lens approximation, show that the dispersion function and the beta-
tron amplitude functions are

D
F
=

Lθ

sin2(Φx/2)
(1 +

1

4
T−), D

D
=

Lθ

sin2(Φx/2)
(1− 1

4
T+),

βx,F =
L

sin(Φx/2)

�
1 + T−
1− T+

, βx,D =
L

sin(Φx/2)

�
1− T+

1 + T−
,

where

S± = sin2
Φx

2
± sin2

Φz

2
, T± =

1

4

��
S2− + 8S+ ± S−

�
,

and Φx and Φz are the horizontal and vertical betatron phase advance per cell.

(b) Simplify your result in part (a) with Φx = Φz = Φ and calculate the dispersion
actions Jd(QF), Jd(QD) as a function of the phase advance per cell Φ. Plot
Jd(QF)/Jd(QD) as a function of Φ.

(c) Use the data in the table below to estimate the dispersion function of AGS,
RHIC and SSC lattices in thin-lens approximation. Estimate the momentum
beam size vs the betatron beam size in the arc.

AGS RHIC Tevatron SSC LHC

Lcell (m) 13.45 29.6 59.5 180 97.96
Φ (deg) 52.5 90 75 90 90
Energy (GeV) 25 250 1000 20000 8000
�
N
(πμm) 30 30 30 10 15

(Δp/p0)rms .005 0.003 0.001 0.0001 0.0001

(d) A collider lattice is usually made of arcs and insertions. The arc section is
composed of regular FODO cells with bends, and the straight insertion section
is composed of quadrupoles without dipoles. The dispersion suppressor matches
the dispersion function in the arc to a zero dispersion value in the straight
section. Show that the momentum compaction factor of such a lattice is

αc ≈ 1

ν2arc(1 + Ls/La)
,

where 2πνarc is the total accumulated phase advance in the arcs, and Ls and La

are the length of the straight section and the arc.
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3. Show that the 3×3 transfer matrix of a repetitive cell is generally given by Eq. (2.157).
Show that the transfer matrix of repetitive FODO cell is

M =

⎛
⎝

cos Φ β
F
sinΦ 2D

F
sin2(Φ/2)

−γF sinΦ cos Φ γFDF sinΦ
0 0 1

⎞
⎠ ,

where the symmetry conditions α
F
= 0 and D�

F
= 0 are used, Φ is the phase advance

per cell, β
F
and γ

F
are the Courant–Snyder parameters, and D

F
is the dispersion

function at the center of the quadrupole.

(a) Show that

M2
Φ=90◦ =

⎛
⎝

−1 0 2D
F

0 −1 0
0 0 1

⎞
⎠ , M4

Φ=90◦ =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ .

(b) Show that two FODO cells, each with 90◦ phase advance, match a zero dispersion
region to a final dispersion of D = 2DF and D� = 0.

(c) To match the dispersion function from a regular FODO cell in the arc to a
zero value at the straight section, we need a dispersion suppressor. Adjoining
the regular arc, the dispersion suppressor is composed of two reduced bending
FODO cells, with bending angle θ2 and θ1 for each dipole.66 Show that the
conditions for zero dispersion after the dispersion suppressor are

θ1
θ

=
1

2(1 − cos Φ)
, and θ1 + θ2 = θ,

where θ is the bending angle of each dipole in the regular cell, and Φ is the
phase advance of the FODO cell. At Φ = π/2, these two FODO cells form the
−I unit. The theorem of dispersion suppression of Section IV.4 is verified.

(d) This exercise shows the effect of dispersion mismatch. Assuming that the accel-
erator lattice is made of n FODO cells, where (n − 1) FODO cells are [12QF B

QD B 1
2QF] with dipoles, and the bending magnets in the last FODO cell are

replaced by drift spaces, show that the dispersion function at the entrance of
the first FODO cell with a dipole is

D1 =
1− cosnΦ+ cosΦ− cos(n− 1)Φ

2(1− cosnΦ)
DF ,

D�
1 = −sinΦ− sinnΦ+ sin(n− 1)Φ

2(1− cosnΦ)
γDF ,

where DF is the dispersion function of the regular FODO cell at the center of
the focusing quadrupole and Φ is the phase advance per cell. The resulting
mismatched dispersion function can be very large at nΦ ≈ 0 (mod 2π), which
is related to the integer stopband.

66A reduced bending cell can be represented by the following matrix with ξ1 = θ1/θ:
⎛
⎝

cosΦ βF sinΦ ξ1DF (1− cosΦ)
−γF sinΦ cosΦ ξ1γFDF sinΦ

0 0 1

⎞
⎠ .



EXERCISE 2.4 153

4. Using thin-lens approximation, show that the momentum compaction factor αc of an
accelerator made of N FODO cells is

αc =
1

2πR

∮
Dx

ρ
ds =

(
2π

2N sin Φ
2

)2

≈ 1

ν2x
,

where R is the average radius of the accelerator, Φ is the phase advance per cell, and
νx is the horizontal betatron tune.

5. Consider a weak-focusing synchrotron (Exercise 2.2.5) with a constant focusing index
0 < n < 1. Show that the lattice and dispersion functions are βx = ρ/

√
1− n,

βz = ρ/
√
n, D = ρ/(1− n), and the transition energy is γT =

√
1− n.

6. With the Floquet transformation, Eq. (2.150) can be transformed to

d2X̃

dφ2
+ ν2X̃ =

ν2β3/2

ρ
,

where X̃ = D/
√
β, and φ =

∫ s
0 ds/νβ. Show that the solution of the above equation

is

β3/2

ρ
=

∞∑
k=−∞

ake
ikφ, ak =

1

2π

∫ 2π

0

β3/2

ρ
e−ikφdφ,

D(s) = ν2
√

β(s)

∞∑
k=−∞

ake
ikφ(s)

ν2 − k2
.

αc =
ν3

R

∞∑
k=−∞

|ak|2
ν2 − k2

,

where R = C/2π is the mean radius. In most accelerator design, the a0 harmonic

dominates, the dispersion function D(s) is approximately a0
√

β(s). If ρ ≈ constant

along the circumference, we have a0 = 1
2πν

∮ β1/2

ρ ds ≈ �√β�
ν . Since ν =

∮
ds/2πβ ≈

R/�β�, we find αc ≈ 1/ν2.

7. Show that the integral representation of the dispersion function in Eq. (2.101) satisfies
Eq. (2.149). Substituting the betatron coordinate into Eq. (2.163), show that the
path-length change due to the betatron motion is

ΔL =

∫ s+C

s

x

ρ
ds

= [sin 2πνxXd − (1− cos 2πνx)Pd]Xβ + [(1− cos 2πνx)Xd + sin 2πνxPd]Pβ

where Xβ = x/
√
βx and Pβ = (αxx + βxx

�)/
√
βx are normalized betatron coordi-

nates, and Xd, Pd are the normalized dispersion function phase-space coordinates of
Eq. (2.162). Since the time average of the betatron motion is zero, �Xβ� = �Pβ� = 0,
the path length depends on the betatron amplitude quadratically.
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8. Show that orbit length change due to dipole field error is the product of the dipole
kick angle and the dispersion function at the kicker location, i.e. ΔC =

∑
i D(si)θi,

where D(si) is the dispersion function at the dipole error location, and θi is the dipole
field error.

9. The equation of motion for the vertical coordinate is

z�� +
Kz(s)

1 + δ
z = − ΔBx

Bρ(1 + δ)
;

ΔBx

Bρ
=

1

ρ
(a0 + b1z + a1x+ 2b2xz + · · ·),

where δ = (p−p0)/p0 is the fractional off-momentum deviation, Kz(s) is the focusing
function, Bρ is the momentum-rigidity of the on-momentum particle. Here a0 arises
essentially from the dipole roll, b1 is the gradient error, a1 is the skew quadrupole
field, and b2 is the sextupole field. Substituting x = xco +Dxδ + xβ, we obtain

z�� +
K̃z(s)

1 + δ
z = − 1

(1 + δ)ρ
[a0 + a1(xco + xβ +Dxδ) + 2b2(xβ +Dxδ)z],

where the effective focusing function is K̃z(s) = Kz(s) + b1/ρ+ 2b2xco.

(a) Expand the vertical coordinate in z = zco +Dzδ + zβ and show that

z��co + K̃z(s)zco = −a0
ρ

− a1
ρ
xco

zβ + K̃z(s)zβ = −a1 + 2b2zco
ρ

xβ − 2b2
ρ

xβzβ

D��
z + K̃z(s)Dz = hz(s)

hz(s) = +K̃z(s)zco +
a0 + a1xco

ρ
− a1 + 2b2zco

ρ
Dx(s).

Here, both the closed orbit and the betatron coordinates are expanded in power
series of the fractional off-momentum variable. Note that the horizontal and
vertical closed orbit, betatron functions, and dispersion functions are all coupled.

(b) When coupling is small and the horizontal betatron tune is sufficiently far away
from an integer, the vertical dispersion function is given by the solution of
the dispersion function equation in (a). Show that the normalized dispersion
functions are

Dz(s)√
βz(s)

=
1

2 sinπνz

∫ s+C

s

√
βz(t)hz(s) cos(πνz + ψz(s)− ψz(t))dt,

αz√
βz

Dz +
√
βzD

�
z =

−1

2 sinπνz

∫ s+C

s

√
βz(t)hz(s) sin(πνz + ψz(s)− ψz(t))dt,

where νz, βz, αz = −β�
z/2, ψz are the vertical betatron tune, the vertical beta-

tron functions, and the vertical betatron phase function respectively.

(c) Carry out Floquet transformation by changing the independent variable from s
to φ = 1

νz

∫ s
0

1
βz
ds, and define the Fourier harmonics fk of the perturbation as

fk =
1

2π

∫ 2π

0

√
βzhz(s)e

−ikφds,
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where k is an integer, show that

Dz(s) = νz
√

βz(s)

∞∑
k=−∞

fke
ikφ(s)

ν2z − k2
≈

√
βz(s)

|fn| cos(nφ(s) + ξn)

νz − n
,

where the second identity approximate the vertical dispersion function by a
simple pole at n = [νz], the integer nearest the vertical betatron tune, and ξn
is the phase of fn. Estimate relative importance of various terms in hz(s) for a
realistic accelerator.

10. In a straight section of an accelerator, M13 = 0 and M23 = 0. The values of the
dispersion function at two locations in the beam line are related by

D2 = M11D1 +M12D
�
1, D�

2 = M21D1 +M22D
�
1.

Show that H = γD2 + 2αDD� + βD�2 is invariant in the straight section.

11. In general, the dispersion function transfer matrix is given by Eq. (2.156). Show that
the evolution of the H-function is

H = H0 + 2(α0D0 + β0D
�
0)[M23M11 −M13M21]

+2(γ0D0 + α0D
�
0)[M13M22 −M23M12] + β0[M13M21 −M23M11]

2

+γ0[M13M22 −M23M12]
2 − 2α0[M13M21 −M23M11][M13M22 −M23M12]

where H0 = γ0D
2
0+2α0D0D

�
0+β0D

�2
0 ; Mij is a matrix element of the transfer matrix;

and α0, β0, and γ0 are Courant-Snyder parameters at the initial location.

(a) Using the Mij of Eq. (2.154), show that H in a sector dipole is given by
Eq. (2.192).

(b) Find H in a rectangular dipole (use the result of Exercise 2.4.1).

12. Double-Bend Achromat: Consider an achromatic bending system with two sector
magnets and a focusing quadrupole midway between two dipoles, i.e.

B[ρ, θ] O[l] QF[K, lq] O[l] B[ρ, θ].

Here K and lq represent the focusing strength function and the length of the
quadrupole. Show that the dispersion matching condition is

ρ tan
θ

2
+ l =

1√
K

cot

√
Klq
2

,

and that, in thin-lens approximation, the matching condition reduces to Eq. (2.177).
The dispersion matching condition for DBA cell with rectangular dipoles is

ρ sin θ
2 cos

θ
2 + l = 1√

K
cot

√
Klq
2 . This basic achromat is also called a Chasman-Green

lattice cell. The double-bend achromat (DBA) is commonly used in the design of low
emittance storage rings, where quadrupole configurations are arranged to minimize
�H� in the dipole. Other achromat modules are
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(a) the triple-bend achromat (TBA)

B[ρ, θo] O[l1] QF[K, lq] O[l2] B[ρ, θc] O[l2] QF[K, lq] O[l] B[ρ, θo]

which has been used in many synchrotron radiation light sources such as the
ALS (Berkeley), TLS (Taiwan), KLS (Korea), and BESSY (Berlin), and

(b) the reverse-bend DBA

B[ρ, θ] O[l1] QF[K, lq] O[l2] B[−ρ,−θr] O[l2] QF[K, lq] O[l] B[ρ, θ]

where the reverse bend angle θr � θ can be used to adjust the desired momen-
tum compaction factor.

13. Achromatic translating system: Show that the transport line with two sector
dipoles B[ρ, θ] O[l1] QF[K, lq] O[lc] QF[K, lq] O[l1] B[−ρ,−θ] is achromatic if the
following condition is satisfied:

ρ sin
θ

2
+ l1 =

lc cos
√
Klq +

2√
K
sin

√
Klq

lc
√
K sin

√
Klq − 2 cos

√
Klq

.

Show that, in thin-lens approximation, fq = [�c(�1 + �B)]/[�c + 2�1 + �B], where fq is
the focal length of the quadrupole and �B is the length of the dipole. Two quadrupoles
are needed to provide dispersion matching.

14. Show the three sector dipole system B[ρ, θ] O[l] B[ρ, θ] O[l] B[ρ, θ] is achromatic if
the following condition is satisfied:

l

ρ
=

2cos θ + 1

sin θ
.

15. A set of four rectangular dipoles with zero net bending angle

B[ρ, θ] O[l1] B[−ρ,−θ] O[l2] B[−ρ,−θ] O[l1] B[ρ, θ]

has many applications. It can be used as a beam translation (chicane) unit to facilitate
injection, extraction, internal target operation, etc. It can also be used as one unit
of the wiggler magnet for modifying electron beam characteristics or for producing
synchrotron radiation.

(a) Show that the rectangular magnet beam translation unit is achromatic to all
orders, and show that the R56 element of the transport matrix, in small angle
approximation, is

R56 = 2θ2(�1 +
2

3
ρθ).
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(b) A simplified compact geometry with l1 = l2 = 0 (shown in the figure above) is
often used as a unit of the wiggler magnet in electron storage rings. Assuming
that D0 = D′

0 = 0, show that the dispersion function created by the wiggler
magnet, including he edge focusing effect, is

D(s)

ρw
=

⎧
⎨
⎩

−(1− cosφ), 0 < s < Lw

(1− cos φ̄)− (1− cos θ) cos φ̄
−[sin θ + 2 tan θ(1− cos θ)] sin φ̄, Lw < s < 2Lw

where φ = s/ρw and φ̄ = (s − Lw)/ρw, and

D′(s) =

⎧
⎪⎪⎨
⎪⎪⎩

− sinφ, 0 < s < L
− sin θ − 2 tan θ(1− cos θ), s = Lw+

sin φ̄+ (1− cos θ) sin φ̄
−[sin θ + 2 tan θ(1− cos θ)] cos φ̄, Lw < s < 2Lw.

Show that

D(s = 2Lw) = 2ρw
1− cos θ

cos θ
, ′(s = 2Lw) = 0.

Since D′ = 0 at the symmetry point, the wiggler is an achromat. In small
bending-angle approximation, show that the dispersion function becomes

D(s) =

�−s2/2ρw, 0 < s < Lw

−(2L2
w − (2Lw − s)2)/2ρw, Lw < s < 2Lw,

D′(s) =
�−s/ρw, 0 < s < Lw

−(2Lw − s)/ρw, Lw < s < 2Lw.

16. An accelerator with circumference 240 m is made of 24 FODO cells. The betatron
tunes of the synchrotron are νx = 4.9 and νz = 4.8 respectively.

(a) What are the maximum values of the betatron amplitude function and dispersion
function? If one of the 48 dipoles has an error of 1estimate the maximum closed
orbit deviation from the designed orbit in mm.

(b) If one of the 24 focusing quadrupoles has 1answer the flowing questions using
thin lens and small angle approximation. Estimate the maximum change in
ΔDx in meters, and estimate the maximum change of Δβx/βx and Δβz/βz .
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V Chromatic Aberration

A particle with momentum p executes betatron oscillations around an off-momentum
closed orbit xco(s)+D(s)δ, where xco is the closed orbit for the on-momentum particle,

D is the dispersion function, and δ = (p−p0)/p0 is the fractional momentum deviation

from the on-momentum p0. Equation (2.148) is Hill’s equation of the horizontal
betatron motion. A higher energy particle with δ > 0 has a larger momentum rigidity

and thus a weaker effective focusing strength; a lower energy particle with δ < 0 has a
smaller momentum rigidity and a stronger effective focusing strength. This is reflected

in the gradient error ΔKx in Eq. (2.148). Similar gradient error exists in the vertical
betatron motion. The resulting gradient errors ΔKx and ΔKz are67

⎧
⎪⎨
⎪⎩

ΔKx =

�
− 2

ρ2
+K(s)

�
δ +O(δ2) ≈ −Kxδ,

ΔKz = −K(s)δ +O(δ2) ≈ −Kzδ,

(2.198)

where K = B1/Bρ and B1 = ∂Bz/∂x. The chromatic gradient error is essentially
equal to the product of the momentum deviation δ and the main focusing functions

−Kx and −Kz. The dependence of the focusing strength on the momentum of a circu-
lating particle is called “chromatic aberration,” which is proportional to the designed

focusing functions Kx and Kz, and thus it is called “systematic” error. Systematic

perturbations can alter the designed betatron amplitude functions and reduce the
dynamical aperture for off-momentum particles. The effects of chromatic aberration

include chromaticity, “beta-beat” associated with the half-integer stopbands, etc.

This section studies the effects of systematic chromatic aberration and its correc-

tion. In Sec. V.1 we define chromaticity and discuss its measurement and correction;
in Sec. V.2 we examine the nonlinear perturbation due to chromatic sextupoles; in

Sec. V.3 we study systematic half-integer stopbands and their effects on higher-order

chromaticity; and in Sec. V.4 we outline basic machine design strategy.

67Including the effect of off-momentum orbits, the chromatic gradient error should include the
effects of dispersion functions, fringe fields, etc. Some of these terms are included below:

ΔKx =

�
− 2

ρ2
+K + 2

D

ρ

�
1

ρ2
−K

�
−

�
1

ρ

�′
D′ +

γx
βxρ

D

�
�
δ − δ2 + · · ·�+ · · · ,

ΔKz =

�
−K +

K

ρ
D +

�
1

ρ

�′
D′ +

γx
βxρ

D

�
�
δ − δ2 + · · ·�+ · · · ,

where K = B1/Bρ is the gradient function of quadrupoles. Note that the higher-order gradient
error depends on the betatron amplitude and dispersion functions. We neglect all chromatic effects
arising from the dispersion function and fringe fields of magnets. For details see, e.g., K. Steffen,
High Energy Beam Optics (Wiley, New York, 1965); S. Guiducci, Proc. CERN Accelerator School,
CERN 91-04, p. 53, 1991.
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V.1 Chromaticity Measurement and Correction

The gradient error can induce betatron tune shift and betatron amplitude function

perturbation. The chromatic gradient error of Eq. (2.198) gives rise to betatron tune
shifts:

⎧
⎪⎪⎨
⎪⎪⎩

Δνx =
1

4π

�
βxΔKxds ≈

�−1

4π

�
βxKxds

�
δ,

Δνz =
1

4π

�
βzΔKzds ≈

�−1

4π

�
βzKzds

�
δ.

(2.199)

The chromaticity, Cx or Cz, is defined as the derivative of the betatron tunes vs

fractional momentum deviation, and the “natural chromaticity” arises solely from
lattice quadrupoles:

Cy ≡ d(Δνy)

dδ
, Cy,nat ≈ −1

4π

�
βyKyds, (2.200)

where the subscript y stands for either x or z. Because the focusing function is weaker
for higher energy particles, the betatron tune decreases with particle momentum, and

the natural chromaticity is negative.
The magnitude of the natural chromaticity Cy,nat depends on the lattice design.

The natural chromaticity of a FODO lattice is (see Exercise 2.5.3)

CFODO
y,nat ≈ − 1

4π
N

�
βmax

f
− βmin

f

�
= −tan(Φy/2)

Φy/2
νy ≈ −νy, (2.201)

where N is the number of cells, f is the focal length, Φy is the phase advance per cell,

and νy = NΦy/2π is the betatron tune of the machine. The “specific chromaticity,”
defined as ξy = Cy/νy, is nearly equal to −1 for FODO lattices. The specific natural

chromaticity of a high luminosity collider or a low-emittance electron storage ring can
be as large as −4.

A beam is composed of particles with different momenta. The momentum spread
of the beam is typically of the order of σδ ∼ 10−5−10−2 depending on the applications

and types of accelerator. Because of the chromaticity, the momentum spread gives
rise to tune spread in the beam. If the chromaticity and the momentum spread of

the beam become large enough that the betatron tunes overlap low-order nonlinear
resonances, particle loss may imminently occur. Furthermore, the growth rate of

transverse head-tail instabilities depends on the sign of the chromaticity (see Sec. VIII

and Ref. [5]).

A. Chromaticity measurement

Machine chromaticities can be derived from measurements of betatron tunes vs beam

momentum. Since beam momentum is related to rf frequency, the chromaticity can
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be obtained from measurements of betatron tune vs rf frequency, i.e.

Cy =
dνy
dδ

= −ηωrf
dνy
dωrf

, (2.202)

where η is the phase-slip factor, and ωrf is the angular frequency of the rf system (see

Exercise 2.5.8).

Figure 2.42 shows the “measured specific” chromaticities of the AGS.68 Note that
the vertical chromaticity becomes positive above about 22 GeV. Since the data obey
1
2
(ξx + ξz) ≈ − 2

Φ
tan Φ

2
(shown as the dashed line), where Φ ≈ 53.8◦ is the phase

advance of an AGS FODO cell, we have βx ≈ βz at these sextupole locations.

Figure 2.42: The measured chromaticities divided
by the betatron tunes vs the beam momentum for
the AGS. Deviation of the chromaticity from that of
FODO lattice arises from sextupoles. At high en-
ergy, saturation of dipole magnets produces defocus-
ing sextupole field. The solid curved line is obtained
by modeling the sextupole field in the dipoles, as dis-
cussed in subsection C.

B. Chromatic correction

The natural chromaticity of a high-luminosity collider with low-β∗ insertions is usually
large. For example, the natural chromaticity for the Superconducting Super Collider
(SSC) was expected to be about Cy,nat ≈ −250, which can lead to a natural tune

spread of about Δν ≈ 0.1 for a beam with an rms spread of δ = ±2×10−4. Similarly,
the natural chromaticity for the RHIC injection lattice is about Cy,nat ≈ −50, and

the resulting tune spread will be Δν ≈ 0.5 with a beam momentum spread of δ =
±5 × 10−3. A circulating beam with such a large tune spread can encounter many

nonlinear resonances, chromatic correction is needed to ensure good performance of a
storage ring. This requires a magnet whose focusing function increases linearly with

momentum in order to compensate the loss of focusing in quadrupoles.

First we examine the possibility of using sextupole magnets for chromaticity cor-

rection. The magnetic flux density of a sextupole magnet is

ΔBz

Bρ
=

B2

2Bρ
(x2 − z2),

ΔBx

Bρ
=

B2

Bρ
xz, (2.203)

68E. Bleser, AGS Tech Note No. 288 (1987); E. Auerbach, E. Bleser, R. Thern, AGS Tech Note
No. 276 (1987).
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where B2 = ∂2Bz/∂x
2|x=z=0. Substituting the transverse displacement of an off-

momentum particle, x = xβ(s) +D(s)δ, where xβ is the betatron displacement and
D(s)δ is the off-momentum closed orbit, into Eq. (2.203), we obtain

⎧
⎪⎪⎨
⎪⎪⎩

ΔBz

Bρ
= −[S(s)D(s)δ]xβ − S(s)

2
(x2

β − z2β)−
S(s)

2
D2(s)δ2,

ΔBx

Bρ
= −[S(s)D(s)δ]zβ − S(s)xβzβ ,

(2.204)

where S(s) = −B2/Bρ is the effective sextupole strength. Note that the first term of
Eq. (2.204) depends linearly on the transverse betatron displacement. The effective

quadrupole focusing functions ΔKx = S(s)D(s)δ and ΔKz = −S(s)D(s)δ depend
linearly on the off-momentum deviation, sextupoles can be used for chromaticity

correction. The second term of Eq. (2.204) can produce nonlinear perturbation in
betatron motion, called geometric aberration, to be discussed in Sec. VII. Placement

of sextupoles is important in minimizing nonlinear resonance strengths.

Including the contribution of sextupoles, the chromaticity becomes

Cx =
−1

4π

�
βx[Kx(s)− S(s)D(s)]ds,

Cz =
−1

4π

�
βz[Kz(s) + S(s)D(s)]ds.

Chromatic sextupoles located at nonzero dispersion function locations can be used
to correct chromaticity. Generally, two families of sextupoles are needed to correct

horizontal and vertical chromaticities.
For example, we consider a lattice of N repetitive FODO cells, where sextupoles

are located near the focusing and defocusing quadrupoles. Let SF = −B2(F)�sf/Bρ

and SD = −B2(D)�sd/Bρ be the integrated sextupole strengths at QF and QD re-
spectively, where �sf , �sd, and B2(F), B2(D) are the length and the sextupole field

strength at QF and QD. The sextupole strength needed to obtain zero chromaticity
is (see Exercise 2.5.3)

SF =
1

2f 2θ

sin Φ
2

(1 + 1
2
sin Φ

2
)
, SD = − 1

2f 2θ

sin Φ
2

(1− 1
2
sin Φ

2
)
,

where f is the focal length, Φ the phase advance per cell, and θ the bending angle
per half-cell.

For colliders or low-emittance storage rings, chromatic sextupoles are also arranged
in families, located in the arcs, which consist mainly of FODO cells or DBA/TBA

type cells. Since the low-β∗ values in these lattices give rise to a large chromaticity,
strong sextupoles are needed to correct it. If the intrinsic systematic half-integer

stopband widths are large, the simple chromatic correction scheme using two families

of sextupoles may not be sufficient to correct the higher-order chromatic effects.
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Figure 2.43: Variation of the betatron tune
vs Δp/p after chromatic correction with two
and four families of sextupoles in RHIC.
The chromatic gradient error can create a
large betatron amplitude function modula-
tion (betabeat), which in turn produces large
second-order chromaticity.

Figure 2.43 shows an example of chromatic correction with two and four families

of sextupoles in RHIC. Note that the second-order chromaticity Δνx,z ∼ C
(2)
x,z δ2

can cause substantial tune spread in a beam with a large momentum spread. In

Sec. V.3, we will show that the chromatic gradient error can also create a large
betatron amplitude function modulation (betabeat), which in turn induces a large

second-order chromaticity. The second-order chromaticity and the betabeat can be
simultaneously corrected by a proper chromatic stopband correction. Rules for their

placement are as follows.

• In order to minimize sextupole strength, the chromatic sextupoles should be
located near quadrupoles, where βxDx and βzDx are maximum.

• A large ratio of βx/βz for the focusing sextupole and a large ratio of βz/βx

for the defocusing sextupole are needed for optimal independent chromaticity

control.

• The families of sextupoles should be arranged to minimize the systematic half-
integer stopbands and the strength of third and higher order betatron reso-

nances.

C. Nonlinear modeling from chromaticity measurement

The measurements of chromaticities can be used to model nonlinear sextupole fields
in an accelerator. For example, we discuss the nonlinear sextupole modeling of the

AGS based on the measured chromaticities shown in Fig. 2.42. Since Cx,data < Cx,fodo,
Cz,data > Cz,fodo, and Cx,data + Cz,data = Cx,fodo + Cz,fodo, the horizontally defocusing

sextupoles must be located in dipoles, where βx ≈ βz. To model the AGS, we assume
that the sextupole fields arise from systematic error at both ends of each dipole, the

eddy current sextupole due to the vacuum chamber wall, and the iron saturation
sextupole at high field. The systematic error is independent of the beam momentum;

the eddy current sextupole field depends inversely on beam momentum; and the

saturation sextupole field that depends on a higher power of beam momentum. The
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solid lines in Fig. 2.42 represent theoretical calculations with the integrated sextupole

strengths

Sb = −5.2× 10−4 + 5.8× 10−2/p

−(3.6× 10−4p− 7.0× 10−5p2 + 2.8× 10−6p3) (m−2),

Se = −0.017 (m−2),

for the body and the ends of the short AGS bending magnets (2.0066 m) respectively.

Here p is the beam momentum in unit of (GeV/c), Sb is the integrated sextupole
field in each dipole distributed in the whole dipole, and Se is the integrated sextupole

field distributed only at the end of each dipole. Se and the first term in Sb may be
considered as the systematic error in dipoles, and they are momentum independent.

The second term in Sb is due to the eddy current on the vacuum chamber wall,
which is inversely proportional to the beam momentum, and proportional to Ḃ, where

Ḃ = 2 T/s in this experiment. The saturation term is nonlinear with respect to the
momentum p. For the long magnets (2.3876 m) in the AGS, the integrated sextupole

strength of the Sb term is assumed to be proportional to their length.
A chromaticity of about −3νx does not appear to cause difficulties in the AGS

operation, which has recently attained an intensity of 6 × 1013 protons per pulse.
Many low energy synchrotrons do not use chromatic correction sextupoles. However,

chromaticity correction is absolutely essential in high energy synchrotrons and storage
rings.

V.2 Nonlinear Effects of Chromatic Sextupoles

The Hamiltonian including sextupole nonlinearity is

H =
1

2

(
x�2
β +Kxx

2
β + z�2β +Kzz

2
β

)
+

S(s)

6
(x3

β − 3xβz
2
β).

This Hamiltonian can drive third-order and higher-order nonlinear resonances at

3νx = �, νx ± 2νz = �, . . ., where � is an integer. However, the nonlinear resonance
strength can be minimized by properly arranged sextupole families. In Sec. VII, we

will show that if chromatic sextupoles are separated by an odd multiple of 180◦ in the
betatron phase advance, their contributions to the third-order stopband width cancel

each other in the first-order perturbation theory. Thus, four families of sextupoles can
be arranged in a lattice with 90◦ phase advance per cell, and six families of sextupoles

can be used in a lattice with 60◦ phase advance per cell. Such arrangements can also
be used to correct the systematic half-integer stopband discussed in the next section.

V.3 Chromatic Aberration and Correction

The systematic chromatic gradient error can produce a large perturbation in the

betatron amplitude functions for all off-momentum particles. Defining the betatron
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amplitude difference functions A and B (see Exercise 2.3.10), we find

A =
α1β0 − α0β1√

β0β1

, B =
β1 − β0√

β0β1

,

dB

ds
= −A

(
1

β0
+

1

β1

)
,

dA

ds
= +B

(
1

β0
+

1

β1

)
+
√

β0β1 ΔK, (2.205)

where ΔK = K1 − K0 is the gradient error. The betatron amplitude functions β0

and β1 satisfy the Floquet equation

β �
0 = −2α0, α�

0 = K0β0 − γ0, dψ0/ds = 1/β0,

β �
1 = −2α1, α�

1 = K1β1 − γ1, dψ1/ds = 1/β1,

and ψ0 and ψ1 are the unperturbed and perturbed betatron phase functions.

From Eq. (2.205), we find that A2+B2 = constant in regions where ΔK = 0. We
consider the chromatic perturbation in quadrupoles and sextupoles with ΔK = −Kδ

and ΔK = K2(s)Dδ respectively. The changes of A are respectively

ΔA =

∫ √
β0β1 ΔK ds ≈ β0

f

Δp

p0
,

ΔA =

∫ √
β0β1 K2(s)D(s)dsδ ≈ −β0 geff

Δp

p0
,

where f is the focal length of quadrupole. geff = (−B2Δs/Bρ)D is the effective

chromatic gradient error due to feed down of the off momentum orbit, (B2Δs/Bρ) is
the integrated sextupole strength, and D is the dispersion function. Since the phase

of A or B propagates at twice the betatron phase advance (see Exercise 2.3.10),
two identical quadrupoles (sextupoles) separated by odd multiples of 90◦ in betatron

phase advance cancel each other. Similarly, two identical quadrupoles (sextupoles)

separated by an integer multiple of 180◦ in betatron phase advance will produce ad-
ditive coherent kicks. By using sextupole families, the global chromatic perturbation

function of the lattice can be minimized. The treatment is identical to the stopband
integral to be discussed next.

A. Systematic chromatic half-integer stopband width

We have found that the perturbation of betatron function is most sensitive to stop-
band integrals near p ≈ [2ν] harmonics (see Sec. III.4). The effect of systematic

chromatic gradient error on betatron amplitude modulation can be analyzed by using
the chromatic stopband integrals of Eq. (2.120):

Jp,x =
1

2π

∮
βxΔKxe

−jpφxds, Jp,z =
1

2π

∮
βzΔKze

−jpφzds. (2.206)



V. CHROMATIC ABERRATION 165

We consider a lattice made of P superperiods, where L is the length of a superperiod

with K(s + L) = K(s), β(s + L) = β(s). Let C = PL be the circumference of the
accelerator. The integral of Eq. (2.206) becomes

Jp,y = −
{

δ

2π

∫ L

0

βyKye
−jpφds

}[
1 + e−jp 2π

P + e−j2p 2π
P + e−j3p 2π

P + · · ·
]

= −
{

δ

2π

∫ L

0

βyKye
−jpφds

}
ζ
P
(
p

P
) e−jπpP−1

P , (2.207)

ζ
P
(u) =

sin(Puπ)

sin(uπ)
. (2.208)

where y stands for either x or z. The diffraction-function ζ
P
(u) → P as u → integer.

Thus the stopband integral Jp,y = 0 unless p = 0 (Mod P ). At p = 0 (Mod P ),

the half-integer stopband integral increases by a factor of P , i.e. each superperiod

contributes additive to the chromatic stopband integral.
Since the perturbation of betatron functions is most sensitive to the chromatic

stopbands near p ≈ [2νx] and [2νz], a basic design principle of strong-focusing syn-
chrotrons is to avoid important systematic chromatic stopbands. This can be achieved

by choosing the betatron tunes such that [2νx] and [2νz] are not divisible by the su-
perperiod P . For example, the AGS lattice has P = 12, and the betatron tune should

avoid a value of 6, 12, 18, etc. The actual betatron tunes at νx/z = 8.8 are indeed far
from systematic half-integer stopbands at p = 6 and 12, and the resulting chromatic

perturbation is small. In fact, the AGS lattice can be approximated by a lattice made
of 60 FODO cells. The important stopbands are located at p = 30, 60, 90 · · ·, which
are far from the betatron tunes. Similarly, the TEVATRON has a super-periodicity
of P = 6, and the betatron tune should avoid 18, 24, 30, etc.

Generally, it is beneficial to design an accelerator with high super-periodicity so
that the betatron tunes can be located far from the important chromatic stopbands.

Some examples of high superperiod machines are P = 12 for the ALS, P = 40 for

the APS, P = 36 for the ESRF, and P = 44 for the SPRING-8 at JSRF. However,
a high energy accelerator or storage ring with large super-periodicity is costly. Thus

the goal is to design an accelerator such that the chromatic stopband integral of each
module is zero, or stopband integrals of two modules cancel each other.

B. Chromatic stopband integrals of FODO cells

Now we examine the chromatic stopband integral of the arc, which is composed of N
FODO cells. The chromatic stopband integral in thin-lens approximation is

Jp = − δ

2π

(
βmax

f
− βmin

f
e−jp Φ

2ν

)[
1 + e−jpΦ

ν + e−j2pΦ
ν + e−j3pΦ

ν + · · ·
]

= − 2δ

π cos Φ
2

(
sin

Φ

2
cos

pΦ

4ν
+ j sin

pΦ

4ν

)
ζ
N
(
pΦ

2πν
) e−j

(2N−1)pπ
2N ,
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where Φ is the phase advance per cell, βmax and βmin are values of the betatron ampli-

tude function at the focusing and defocusing quadrupoles respectively, f is the focal
length of each quadrupole, and the diffracting function ζ

N
(u) is given by Eq. (2.208).

If pΦ/2πν = 0 (Mod N), the diffracting function is equal to N . This means that
each FODO cell contributes additive to the stopband integral. Fortunately, since

Φ/2π is normally about 1/4 (900 phase advance) so that pΦ/2πν ≈ p/4ν ≈ 1/2,
the chromatic stopband integral at p ≈ 2ν due to N FODO cells is small. If NΦ =

integer×π, the transfer matrix of the arc is a unit matrix I or a half-unit matrix −I
and the chromatic stopband of the arc adds up to zero at harmonics p ≈ 2ν.

C. The chromatic stopband integral of insertions

Because of its small β∗ value, the insertion may contribute a substantial amount to

the chromatic stopband integral. The high-β triplets or doublets on both sides of the
IP contribute additive to the systematic half-integer stopband near p ≈ 2νx/z. Since

it is difficult to design an insertion with zero chromatic half-integer stopband width,
cancellation of the chromatic stopband integrals between two adjacent insertions is

desirable.

Let Φins and J ins
p be respectively the phase advance and the chromatic stopband

integral of an insertion. The total contribution of two adjacent insertions becomes

Jp = J ins
p

[
1 + exp

(
j
pΦins

ν

)]
.

At the harmonic p ≈ [2ν], we obtain Jp = 0 if Φins = (2n + 1)π/2. The chro-

matic stopband integrals of two adjacent insertions cancel each other for two adjacent
quarter-wave modules. This cancellation principle remains valid when two insertions

are separated by a unit transfer matrix. Such a procedure was extensively used in
the design of RHIC and SSC lattice.69

D. Effect of the chromatic stopbands on chromaticity

The chromatic stopband integrals for large colliders, such as the SSC and RHIC, re-
main important even after careful manipulation of piecewise cancellation, particularly

when the beam momentum spread is large. They give rise to a large betatron ampli-

tude modulation, called betabeat, and second-order chromaticity for off-momentum
particles. The following example illustrates the effect of betatron amplitude function

modulation on chromaticity.

69S.Y. Lee, J. Claus, E.D. Courant, H. Hahn, G. Parzen, IEEE Trans. Nucl. Sci. NS-32, 1626
(1985); S.Y. Lee, G.F. Dell, H. Hahn, G. Parzen, Proc 1987 Part. Accel. Conf., p. 1328, (1987); A.
Garren, private communications; see also SSC reports.
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We consider a lattice dominated by a single p harmonic half-integer chromatic

stopband. The beta-beat of the lattice is

Δβ

β
≈ −|Jp| cos(pφ+ χ)

2(ν − p/2)
,

where the chromatic stopband integral Jp given by Eq. (2.206), is proportional to δ.

Substituting β = β0(1 + Δβ/β0) into Eq. (2.199), we obtain

Δνy = C(1)
y δ + C(2)

y δ2 + · · · ,
C(1)

y = − 1

4π

∮
βy(Ky − SyD)ds,

C(2)
y = −C(1)

y − |Jp,y|2/δ2
4(νy − p/2)

,

where y stands for either x or z, If the first-order chromaticity is corrected, then
C

(1)
y = 0. The remaining second-order tune shift C

(2)
y δ2 can arise from the chromatic

stopband integral. Figure 2.43 shows an example of the second-order chromatic tune
shift with δ. The stopband correction that minimizes the β-beat also minimizes the

second-order chromaticity.

E. Effect of sextupoles on the chromatic stopband integrals

The chromatic sextupoles also contribute to the systematic chromatic stopbands.
Here we present an example of chromatic correction for a collider lattice. First we

evaluate the stopband integral due to the chromatic sextupoles. Let SF and SD be
the integrated sextupole strength at QF and QD of FODO cells in the arc. The p-th

harmonic stopband integral from these chromatic sextupoles is

Jp,sext =
δ

2π
ζ
N
(
pΦ

2πν
)
[
βFSFDF + βDSDDDe

−jpΦ/2ν
]
e−j(N−1)pΦ/2ν , (2.209)

where N is the number of cells, and the diffraction function ζ
N
is given by Eq. (2.208).

As in Eq. (2.207), the stopband integral is zero or small if NΦ/π = integer, i.e.
the chromatic sextupole does not contribute significantly to the chromatic stopband

integral if the transfer matrix of the arc is I or −I.
To obtain a nonzero chromatic stopband integral, sextupoles are organized in

families. We consider an example of a four-family scheme with

{SF1 = SF +ΔF, SD1 = SD +ΔD, SF2 = SF −ΔF, SD2 = SD −ΔD},

that is commonly used in FODO cells with 90◦ phase advance. Here the parameters

SF and SD are determined from the first-order chromaticity correction, Since β(s)

and D(s) are periodic functions of s in the repetitive FODO cells, the parameters
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ΔF,ΔD will not affect the first-order chromaticity, which is proportional to the zeroth

harmonic of the stopband integral. However, the chromatic stopband integrals due
to the parameters ΔF and ΔD are

ΔJp,sext =
δ

2π
ζ
N
(
pΦ

2νπ
− 1

2
)
[
βFΔFDF + βDΔDDDe

−jpΦ/4ν
]
e−j(N−1)[(pΦ/2νπ)−(1/2)]π .

At p ≈ [2ν] and Φ/2π ≈ 1/4 (90◦ phase advance), we have ζ
N
→ N , i.e. every FODO

cell contributes additive to the chromatic stopband. The resulting stopband width is
proportional to ΔF and ΔD parameters. By adjusting ΔF and ΔD parameters, the

betabeat and the second-order chromaticity can be minimized. The scheme works best
for a nearly 90◦ phase advance per cell with NΦ = integer× π, where the third-order

resonance-driving term vanishes also for the four-family sextupole scheme. Fig. 2.43

shows an example of chromatic correction with four families of sextupoles in RHIC,
where the second-order chromaticity and the betatron amplitude modulation can be

simultaneously corrected.
Similarly, the six-family sextupole scheme works for 60◦ phase advance FODO

cells, where the six-family scheme: {SF1, SD1, SF2, SD2, SF3, SD3} has two additional
parameters.

V.4 Lattice Design Strategy

Based on the linear betatron motion of previous Sections, the lattice design of ac-
celerator can be summarized as follows. The lattice is generally classified into three

categories: low energy booster, collider lattice, and low-emittance lattice storage

rings.

• The betatron tunes should be chosen to avoid systematic integer and half-integer
stopbands and systematic low-order nonlinear resonances.

• The chromatic sextupoles should be located at high dispersion function loca-
tions. The focusing and defocusing sextupole families should be located in

regions where βx � βz, and βx � βz respectively in order to gain independent
control of the chromaticities.

• The chromatic aberration can be corrected by sextupole families via half-integer

stopband integrals. In colliders, chromatic sextupoles located at high luminosity

mini-β insertion region can provide effective chromatic-aberration correction.

• The betatron amplitude function and the betatron phase advance between the
kicker and the septum should be optimized to minimize the kicker angle and

maximize the injection or extraction efficiency. Local orbit bumps can be used
to alleviate the demand for a large kicker angle. Furthermore, the injection

line and the synchrotron optics should be properly “matched” or “mismatched”

to optimize the emittance control. To improve the slow extraction efficiency,
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the β value at the (wire) septum location should be optimized. The βx and βz

values at the injection area, particularly in the strip injection scheme, should be
adjusted to minimize emittance blow-up due to multiple Coulomb scattering.

The local vacuum pressure at the high-β value locations should be minimized
to minimize the effect of beam gas scattering.

• It is advisable to avoid the transition energy for low to medium energy syn-
chrotrons in order to minimize the beam dynamics problems during accelera-

tion.

• Experience with low energy synchrotrons indicates that the Laslett space-charge

tune shift should be limited to about 0.3 (see Exercise 2.3.2). This criterion
usually determines beam emittance and intensity.

Besides these design issues, problems regarding the dynamical aperture, nonlinear
betatron detuning, collective beam instabilities, rf system, vacuum requirement, beam

lifetime, etc., should be addressed. Some of these issues will be addressed in this
introductory textbook. The design of minimum emittance electron storage rings will

be discussed in Chap. 4, Sec. III.

Exercise 2.5

1. Show that the chromaticity of an accelerator consisting of N FODO cells in thin-lens
approximation is

CFODO
nat = −tan(Φ/2)

Φ/2
ν,

where Φ is the phase advance per cell and ν = NΦ/2π is the betatron tune.

2. A set of three quadrupoles ({QF1 QD2 QF3} or {QD1 QF2 QD3}), called a low-β
triplet, is commonly used in insertion regions to provide horizontal and vertical low-β
squeeze.

(a) Show that the low-beta triplets contribute about

− 2Δs

4πβ∗ ≈ − 1

2π

√
βmax

β∗

units of natural chromaticity, where Δs is the effective distance between the
triplet and the interaction point (IP), β∗ is the value of the betatron amplitude
function at IP, and βmax is the maximum betatron amplitude function at the
triplet.

(b) If βmax � β∗, show that the betatron phase advance between the triplet and IP
is π/2.

(c) Show that the triplets on both sides of IP contribute additive to the stopband
integral at p ≈ 2ν, where ν is the betatron tune.
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3. Show that the strengths of two sextupole families used to correct the chromaticities
of FODO cells are

SF =
1

2f2θ

sin(Φ/2)

(1 + 1
2 sin(Φ/2))

; SD = − 1

2f2θ

sin(Φ/2)

(1− 1
2 sin(Φ/2))

,

where f is the focal length of the quadrupole in the FODO cell, θ is the dipole bending
angle of a half FODO cell, and Φ is the phase advance of the FODO cell. Note that
the required sextupole strength is larger at the defocusing quadrupole.

4. Show that the chromatic stopband integrals for a lattice made of N FODO cells in
thin-lens approximation are

Jp,x = − δ

2π

(
βx(F)

f
F

− βx(D)

f
D

e−jpΦx/2νx

)
ζ
N
(
p

N
)e−jpπ(N−1)/N ,

Jp,z = − δ

2π

(
−βz(F)

fF

+
βz(D)

fD

e−jpΦz/2νz

)
ζ
N
(
p

N
)e−jpπ(N−1)/N ,

where Φx,Φz, and νx, νz are the phase advances per cell and the betatron tunes,
βx, βz are betatron amplitude functions, fF and fD are focal lengths for focusing and
defocusing quadrupoles, and the diffraction function ζ

N
(u) is given by Eq. (2.208).

Assuming f
F
= f

D
with Φx = Φz = Φ = 2πν/N , show that the chromatic stopband

integral is

Jp,x = − 2δ

π cos Φ
2

[
sin

Φ

2
cos

pπ

2N
+ j sin

pπ

2N

]
ζ
N
(p/N)e−jpπ(2N−1)/2N .

5. Verify Eq. (2.209).

6. The AGS is composed of 12 superperiods with 5 nearly identical FODO cells per
superperiod. The betatron tunes are νz = 8.8 and νx = 8.7. Calculate the systematic
stopband widths for harmonics 17 and 18 respectively. What region of betatron tunes
should be avoided to minimize the effect of systematic stopbands?

7. The Fermilab booster is a combined function synchrotron. The lattice is made of 24
cells, as shown below.

FNALBSTCELL : LINE = (BF S120 BF S050 BD S600 BD S050)

BF : SBEND L = 2.889612 K1 = 0.0542203 ANGLE = 0.070742407

BD : SBEND L = 2.889612 K1 = −0.0577073 ANGLE = 0.060157561

Sabc : DRIFT L = a.bc

Find the systematic stopband width and discuss the choice of the betatron tunes.

8. Use the experimental data below to calculate the chromaticity of the IUCF cooler
ring, where γT = 4.6 and C = 86.82 m, at 45 MeV proton kinetic energy.

Betatron tunes vs revolution frequencies of the cooler

Frequency [MHz] 1.032680 1.031680 1.030680

Qx 3.7156 3.7243 3.7364
Qz 4.6790 4.6913 4.7080
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VI Linear Coupling

We have discussed uncoupled linear betatron motion, but in reality betatron motions
are coupled through solenoidal and skew-quadrupole fields. The solenoidal field exists

in electron cooling storage rings, and in high-energy detectors at the interaction point

(IP). The skew-quadrupole field arises from quadrupole roll, vertical closed-orbit error
in sextupoles or horizontal closed-orbit error in skew sextupoles, fringe field of a

Lambertson septum, and feed-downs from higher-order multipoles.

Linear betatron coupling is both a nuisance and a benefit in the operation of

synchrotrons: the available dynamical aperture for particle motion may be reduced,
but the vertical emittance of electron beams in storage rings can be adjusted, and

the Touschek lifetime limitation can be alleviated by linear coupling.

This Section discusses beam dynamics associated with linear betatron coupling
arising from skew quadrupoles and solenoids. The effective linear coupling Hamilto-

nian and resonance strength will be derived based on perturbation approximation.
Here we find that the linear coupling can induce energy exchange between horizon-

tal and vertical betatron motions. Furthermore, we show, in Sec. IV, that a skew
quadrupole at a high horizontal dispersion location can produce vertical dispersion,

which can generate vertical emittance for electron beams and result in lower lumi-

nosity for colliders (see Exercise 2.4.10). Thus measurement and correction of linear
coupling are important.

VI.1 The Linear Coupling Hamiltonian

The vector potentials for skew quadrupoles and solenoids are given by

⎧⎪⎨
⎪⎩

Ax = Az = 0, As =
1

2
(
∂Bz

∂z
− ∂Bx

∂x
)xz, for skew quadrupoles,

Ax =
1

2
B‖(s)z, Az = −1

2
B‖(s)x, As = 0, for solenoids,

(2.210)

where B‖(s) and 1
2
(∂Bz

∂z
− ∂Bx

∂x
) are solenoid field strength and skew-quadrupole gra-

dient. Substituting the components of the vector potential into the Hamiltonian in
Eq. (2.15), we obtain the linearized equations of motion (see Exercise 2.6.3):

�
x′′ +Kx(s)x+ 2gz′ − (q − g′)z = 0,
z′′ +Kz(s)z + 2gx′ − (q + g′)x = 0,

(2.211)

where the primes are derivatives with respect to independent variable s, Kx and Kz

are quadrupole-like focusing functions, and

g(s) =
B‖(s)
2Bρ

, q(s) =
1

2Bρ

�
∂Bz

∂z
− ∂Bx

∂x

�
=

a1
ρ

(2.212)
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are effective solenoid and skew quadrupole strengths. The skew quadrupole can also

arise from “feed-down” of an off-centered vertical closed orbit in sextupoles. Let zco
be the closed orbit at a sextupole with sextupole strength B2 = ∂2Bz/∂x

2. The

effective skew quadrupole strength becomes q = B2zco/Bρ.
Let (x, px/p; z, pz/p) be the conjugate phase space coordinates. The betatron

motion of Eq. (2.211) can be derived from the linearized Hamiltonian: H̃ = H̃0+ Vlc,
where

H̃0 =
1

2

[(
px
p

)2

+
(
Kx(s) + g2(s)

)
x2 +

(
pz
p

)2

+
(
Kz(s) + g2(s)

)
z2

]

Vlc = −q(s)xz − g(s)

[
px
p
z − pz

p
x

]
. (2.213)

When the linear coupling potential Vlc is small, we carry out perturbation expansion

based on betatron motion of H̃0. Applying Floquet transformation of Eq. (2.55) to
the uncoupled Hamiltonian H̃0, we obtain the coupling-potential:

Vlc = (βxβzJxJz)
1/2

{[
−q + g

(
αx

βx

− αz

βz

)]
[cos(Φx + Φz) + cos(Φx − Φz)]

+g

(
1

βx
− 1

βz

)
sin(Φx + Φz) + g

(
1

βx
+

1

βz

)
sin(Φx − Φz)

}
, (2.214)

where Φx = φx + χx(s) − νxθ, χx =
∫ s

0
ds
βx
, Φz = φz + χz(s) − νzθ, χz =

∫ s

0
ds
βz
.The

conjugate-pair action-angle coordinates are (Jx, φx) and (Jz, φz) The Hamiltonian

produces two resonances with driving terms listed in Table 2.2.

Table 2.2: Linear coupling resonances and their driving terms
Resonance Driving phase Amplitude- Classification

dependent factor

νx + νz = � (Φx + Φz) J
1/2
x J

1/2
z sum resonance

νx − νz = � (Φx − Φz) J
1/2
x J

1/2
z difference resonance

Since Vlc(s) is a periodic function of the ”time coordinate” θ = s/R, it can be
expanded in Fourier harmonics as

Vlc(θ) =

√
JxJz

2R

∑
�

{
G1,−1,�e

j(φx−φz−�θ+χ1,−1,�) + c.c+G1,1,�e
j(φx+φz−�θ+χ1,1,�) + c.c

}
,

where R is the average radius of accelerator, � is the integer Fourier harmonic. The

Fourier coefficients of the difference and sum resonances, G1,∓1,�e
jχ1,∓1,� , are

G1,±1,� e
jχ1,±1,� =

1

2π

∮ √
βxβz Alc±(s) ej[χx±χz−(νx±νz−�)θ]ds (2.215)

Alc±(s) = −a1
ρ

+ g(s)(
αx

βx
− αz

βz
) + jg(s)(

1

βx
∓ 1

βz
),
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where νx, νz are the unperturbed betatron tunes, and Alc±(s) is the linear coupling ker-
nel of the linear coupling potential Eq. (2.214). Both skew quadrupoles and solenoids
can drive the sum and difference linear coupling resonances. We choose the resonance

phase χ± so that the Fourier amplitude (also called resonance strength) is G1,±1,� ≥ 0.

The linear coupling potential has been decomposed into terms of the difference
and sum resonances located respectively at νx − νz = � and νx + νz = ��, where � and

�� are integers. In general, the coupling betatron sum-resonances are dangerous to the
stable betatron motion. We will show, in Sec. VII, that the horizontal and vertical

betatron amplitudes can grow without bound near a betatron sum resonance. Thus
the betatron tunes are normally designed to avoid sum resonances.

If the linear coupling kernel Alc± satisfies a periodic condition similar to that in

a synchrotron with P superperiods, the resonance coupling coefficient G1,±1,� will
be zero unless � is an integer multiple of P . If � is an integer multiple of P , each

superperiod contributes additive to the linear coupling resonance strength. This
is called the systematic linear coupling resonance. For example, since the super-

periodicity of the LEP lattice is 8, the difference between the integer part of the
horizontal and vertical betatron tunes should not be 0, 8, 16, · · ·, to minimize the

effect of the systematic linear coupling resonance. The strength of the linear coupling
resonance due to random errors such as quadrupole roll and vertical closed orbit in

sextupoles is smaller. It occurs at all integer �.

Near a difference linear coupling resonance, the horizontal and vertical betatron
motions are coupled. The coupling resonance can cause beam size increase and de-

crease the beam lifetime. Thus the linear-coupling resonance-strength should be
minimized, and the resonance strength is usually small. Thus the effective Hamilto-

nian for betatron tunes near an isolated coupling resonance will be discussed in the
following sections.

VI.2 Effects of an Isolated Linear Coupling Resonance

Since the betatron tunes are normally near a linear coupling line and the resonance

strength G ≡ G1,−1,� is also normally small, the effects of the linear coupling reso-
nance on betatron motion can be studied in perturbation theory, by considering only

an isolated coupling resonance. Near an isolated coupling resonance νx − νz = �, the

Hamiltonian Eq. (2.213), in action-angle phase space coordinates, can be approxi-
mated by

H ≈ νxJx + νzJz +G
√

JxJz cos(φx − φz − �θ + χ), (2.216)

where, for simplicity, we use the Fourier amplitude G ≡ G1,−1,� ≥ 0 and the phase

factor χ ≡ χ1,−1,� of Eq. (2.215) hereafter in this chapter.
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A. Normal modes at a single linear coupling resonance

The Hamiltonian Eq. (2.216) corresponds to two coupled linear oscillators, which can
be expanded in terms of two normal modes with tunes (see Exercise 2.6.5)

ν1,± =
1

2
(νx + νz + �)± 1

2
λ, ν2,± =

1

2
(νx + νz − �)± 1

2
λ; (2.217)

λ =
√

(νx − νz − �)2 +G2. (2.218)

The betatron tunes are separated by λ, and the minimum separation between the

normal mode tunes is G. Figure 2.44 shows an example of measured betatron tunes

vs quadrupole strength at IUCF cooler ring. By varying the strength of a focusing
quadrupole, one changes the resonance proximity parameter δ = νx − νz + 1. The

normal mode tunes approach each other, reaching a minimum value of normal mode
tune-separation, G as demonstrated in Fig. 2.44. This method is commonly used to

measure the linear coupling strength and to correct linear coupling by minimizing
tune-split with skew quadrupoles.

Figure 2.44: The measured betatron normal
mode tunes vs the strength of an IUCF cooler
quadrupole, showing that the horizontal and ver-
tical motion are coupled. The minimum distance
between two normal modes is equal to the cou-
pling strength G. The vertical axis is the frac-
tional part of the betatron tunes, and the horizon-
tal axis is the digital to analog conversion (DAC)
unit of a COMBO power supply for a set of hori-
zontally focusing quadrupoles.

B. Resonance precessing frame and Poincaré surface of section

To study the linear coupling, we transform the Hamiltonian Eq. (2.216) into a “res-
onant precessing frame” by using the generating function:

F2(φx, φz, J1, J2) = (φx − φz − �θ + χ)J1 + φzJ2,

φ1 = φx − φz − �θ + χ, φ2 = φz, J1 = Jx, J2 = Jx + Jz.

The new Hamiltonian is

H = H1(J1, φ1, J2) +H2(J2), (2.219)

H1 = δ1J1 +G
√

J1(J2 − J1) cosφ1, H2(J2) = νzJ2,

where δ1 = νx − νz − � is the resonance proximity parameter.
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Hamilton’s equations of motion are
⎧
⎪⎪⎨
⎪⎪⎩

J̇1 = −∂H

∂φ1
= G

�
J1(J2 − J1) sinφ1,

φ̇1 =
∂H

∂J1

= δ1 +G
J2 − 2J1

2
�

J1(J2 − J1)
cosφ1,

⎧
⎪⎨
⎪⎩

J̇2 = −∂H

∂φ2

,

φ̇2 =
∂H

∂J2
.

(2.220)

Since J̇2 = −∂H/∂φ2 = 0, we find

Jx + Jz = J2 = constant. (2.221)

The horizontal and vertical betatron motions exchange their actions while the sum
of actions is conserved. The Hamiltonian H1(J1φ1) is autonomous, i.e. independent

of the time coordinate θ, the Hamiltonian is itself a constant of motion. For a given
J2, all tori can be described by a single parameter H1(J1, φ1, J2) = E1, which is

determined by the initial condition. The system is integrable with two invariants J2

and H1 = E1.

C. Initial horizontal orbit

We first consider a simple orbit with “energy” E1 = δ1J2, which corresponds to a beam
with an initial horizontal betatron kick. The particle trajectory obeys H1 = δ1J2, or

�
J2 − J1

�
δ1
�

J2 + J1 −G
�

J1 cosφ1

�
= 0 =⇒

�
P 2 +Q2 = 2J2,

Q2 +
δ21
λ2

P 2 = 2
δ21
λ2

J2,
(2.222)

where λ =
�

δ21 +G2, and (Q =
√
2J1 cosφ1, P = −√

2J1 sin φ1) are phase space coor-
dinates in the resonance rotating frame. The phase space portrait can be decomposed

into two ellipses: a Courant Synder circle and a coupling ellipse. Figure 2.45 shows

a schematic plot of the Courant-Snyder circle and the coupling ellipse of Eq (2.222).
The coupling line is equivalent to the coupling line in the betatron tune space.

Figure 2.45: Schematic drawing of the Courant-Snyder
circle (dashed-dots) of Eq. (2.222) and the coupling el-

lipse of (2.222) with |δ1| = λ/
√
2. Particle motion on the

coupling ellipse follows the path of solid line for δ1 < 0
and the dashed line for δ1 > 0. At δ1 = 0, the coupling
line is the vertical line at Q=0.

When the particle trajectory moves along the Courant-Snyder circle shown in

Eq. (2.222) with J1 = J2, the phase φ1 varies very rapidly. As the betatron oscil-

lation reaches (Q = 0, P =
√
2J2), particle trajectory follows the coupling ellipse
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of Eq. (2.222), which is inside the Courant-Snyder circle. The minimum horizontal

amplitude is

|Qmin| = |δ1|
λ

√
2J2. (2.223)

If |δ1| � G, then |Qmin| ≈
√
2J2 and the betatron coupling is negligible. If δ1 = 0, the

coupling ellipse becomes a straight line cutting through the origin Q = 0 and P = 0.
This means that the horizontal action can be fully converted to vertical action and

vice versa.

D. General linear coupling solution

The (stable) fixed points of the Hamiltonian are determined by the conditions J̇1 = 0
and φ̇1 = 0. They are located at φ1 = 0 or π with

δ1 ±G
J2 − 2J1

2
√
J1(J2 − J1)

= 0, or J1,sfp =

{
(1
2
+ δ1/2λ)J2, (φ1 = 0)

(1
2
− δ1/2λ)J2, (φ1 = π)

(2.224)

At SFPs, the horizontal and vertical betatron motions are correlated in phase without

exchange in betatron amplitudes. Figure 2.46 shows 6 Poincaré surfaces of section
in the resonance rotating frame with a given value of J2 = Jx + Jz. The results

are obtained from simple tracking calculations of particle motion in a synchrotron
with perfect linear decoupled betatron motion everywhere except a localized skew

quadrupole kick, where the betatron tunes are νx = 4.820, νz = 4.825, i.e. the

resonance proximity parameter is δ1 = −0.005. The integrated skew quadrupole
strength is a1Δs/ρ = 0.00628 m−1. Using the values of betatron amplitude functions

are βx = 10 m and βz = 10 m at the skew quadrupole location, we find the effective
resonance strength is about G = 0.010.

Figure 2.46: Normalized phase space ellipses of P
vs Q in the resonance rotating frame obtained from
numerical simulations of particle motion in a syn-
chrotron with linear betatron motion and a localized
skew quadrupole kick. The values of the betatron
amplitude functions at the skew quadrupole loca-
tion is βx = 10 m, and βz = 10 m; the betatron
tunes of the machine are νx = 4.820 and νz = 4.825,
i.e. δ1 = −0.005; the integrated skew quadrupole
strength is (a1Δs)/ρ = 0.00628 m−1. These ellipses
correspond to various initial J1 and φ1 values with
J2 = 90π mm-mrad. Note that the structure of the
phase space ellipses remains the same if J2 is varied.

With the coupling ellipse Eq. (2.222) rewritten as G
√
J1 cosφ1 = δ1

√
J2 − J1, the

Courant-Snyder ellipse Eq. (2.222) is divided into two halves (see Figs. 2.45 and 2.46).
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Using Hamilton’s equations [Eq. (2.220)], we obtain

J̈1 + λ2J1 = λ2J̄ , (2.225)

where J̄ = (2δ1E + G2J2)/2λ
2 and E = δ1J1 + G

√
J1(J2 − J1) cosφ1. The solution

of Eq. (2.225) is pure sinusoidal:

J1 =
√

J̄2 − (E/λ)2 cos[λθ + ϕ] + J̄ , (2.226)

where |E| ≤ λJ̄ , and ϕ is an initial phase factor. The SFPs of Eq. (2.224) correspond
to the orbit with E = ±λJ̄ = ±λJ±

1,sfp. The tune of the linear coupling motion is

independent of betatron amplitude.70

If particles in a given bunch distribution have identical betatron tunes, linear

coupling can cause bunch shape oscillations; the bunch will resume its original shape
after λ−1 revolutions. But, if particles have different betatron tunes, they will orbit

around different fixed points at different island tunes, and the motion will decohere
after some oscillation periods.

VI.3 Experimental Measurement of Linear Coupling

To measure the effect of linear coupling, the horizontal and vertical betatron tunes
are tuned to the linear coupling resonance line at νx − νz = �. In the following, we

discuss an experimental study of linear coupling at the IUCF cooler ring. The cooler
is a proton storage ring with electron cooling. The circumference is about 86.82 m,

and the betatron tunes for this experiment were chosen to be νx = 3.826, νz = 4.817
with νx − νz ≈ −1.

The experiment started with a single bunch of about 5× 108 protons with kinetic
energy of 45 MeV at the Indiana University Cyclotron Facility cooler ring. The cycle

time was 10 s, and the injected beam was electron-cooled for about 3 s before the
measurement, producing a full-width at half-maximum bunch length of about 9 m

(or 100 ns) depending on the rf voltage. The rf system used in the experiment was
operating at harmonic number h = 1 with frequency 1.0309 MHz. Since the emittance

of the beam in the cooler is small (0.05 π-mm-mrad), the motion of the beam can be
visualized as a macro-particle.

The coherent betatron oscillation of the beam was excited by a single-turn trans-

verse dipole kicker. For the IUCF cooler ring, we used a kicker with rise and fall

70The motion about SFPs of a nonlinear Hamiltonian resembles islands in the phase space and is
thus called island motion. Stable islands are separated by the separatrix orbit that passes through un-
stable fixed points (UFPs). However, there is no UFP for the linear coupling Hamiltonian Eq. (2.219).
The number of complete island motions in one revolution is called the “island tune.” Here we find
that the island tune of coupling motion around SFPs is equal to λ, which is independent of the
betatron amplitude.
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times at 100 ns and a 600 ns flat top. This is sufficient for a single bunch with a

bunch length less than 100 ns at 1.0309 MHz revolution frequency. The subsequent
bunch transverse oscillations from a BPM are detected and recorded. Figure 2.47

shows a typical example of the beating oscillations due to the linear betatron cou-
pling following a kick in the horizontal plane. The linear coupling in the IUCF cooler

ring arose mainly from the solenoid at the electron cooling section, and possibly also
from quadrupole roll and vertical closed-orbit deviations in sextupoles. The Lambert-

son septum magnet at the injection area also contributed a certain amount of skew
quadrupole field, which was locally corrected.

Figure 2.47: The measured coherent betatron oscilla-
tions excited by a horizontal kicker. The linear cou-
pling gives rise to beating between the horizontal and
vertical betatron oscillations. Note that the betatron
beating between the x and z betatron motion gives rise
to energy (action) exchange between the horizontal and
vertical betatron oscillations.

In the presence of linear coupling, the measured betatron tunes correspond to

normal modes of the betatron oscillations. The beat period were measured to be
about 120 revolutions, which corresponds to λ ≈ 0.0083, the tune separation between

these two normal modes of Eq. (2.217).

Determination of the linear coupling phase

To measure the linear coupling phase χ, we can transform the horizontal and the

vertical Poincaré maps into the resonant precessing frame discussed in Eq. (2.220).
Figure 2.48 shows the normalized phase space x,Px and (z,Pz) of the data shown in

Fig. 2.47. The amplitude modulation of betatron motion is translated into breathing
motion in the Poincaré map. The vertical map (z,Pz) is 180

◦ out of phase with that

of the horizontal map.
Transforming the phase space into a resonant precessing frame, we obtain a torus

of 2D Hamiltonian shown in the middle-right plot of Fig. 2.48, where particle motion
follows the Courant-Snyder invariant circle and a coupling ellipse (see also Fig. 2.45).

The resonance phase was fitted to obtain an upright torus with a coupling phase of
χ = 1.59 rad. The coupling ellipse shown in the Poincaré surface section (middle-

right plot of Fig. 2.48) has a small curvature, i.e. the proximity parameter δ1 in this
experiment is small.

The orientation of the resonant line was used to determine the coupling phase

χ = 1.59 rad, where the relative betatron phase advances at the locations of horizontal
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Figure 2.48: The betatron oscillations of Fig. 2.47 are transformed to the Poincaré map in
the normalized coordinates (x,Px) (left-most) and (z,Pz) (middle-left). Middle-right: The
Poincaré surface of section in the resonant precessing frame derived from (x, x�) and (z, z�),
where Q =

√
2J1βx cosφ1, P = −√

2J1βx sinφ1, and βx = 7.55 m. Right: the actions Jz vs
Jx showing the invariant of the linear coupling.

and vertical BPMs were included. Converting the phase space coordinates into action-
angle variables, the right plot of Fig. 2.48 shows an invariant of the linear coupling,

i.e. Jx + Jz = constant.
The Poincaré map derived from experimental data at a 2D linear coupling res-

onance shows invariant tori of the Hamiltonian flow by comparing the middle-right

plot in Fig. 2.48 to the solid line in Fig. 2.45. The particle appears to stay longer at
the coupling circle because any position Jx = J1 < J1,max is on the coupling circle.

The coupling circle is not the separatrix of the Hamiltonian! Using these invariant
tori and Hamilton’s equations of motion, we can determine the magnitude and the

phase of the linear betatron coupling.

Determination of coupling strength G1,−1,�

The measured action J1 as a function of time and its time derivative dJ1/dN = 2πJ̇1

are plotted in Fig. 2.49, where a five-point moving average of J1 is used to obtain

a better behaved time derivative of the action J1. The data of the time derivative
dJ1/dN are fitted with Eq. (2.220) to obtain G1,−1,� = 0.0078± 0.0006 and χ = 1.59

rad, shown as a solid line in Fig. 2.49.

Figure 2.49: The action J1 (left) in
[π-mm-mrad] and its time derivative,
dJ1/dN (right) in [π-mm-mrad/turn].
The solid line in the left plot shows a
five-point running average. The solid
line in the right plot shows a fit by us-
ing Eq. (2.220) to obtain the coupling
strength G1,−1,� = 0.0078.

The magnitude of the linear coupling obtained from the invariant tori agrees well

with that obtained by the traditional method of finding the minimum separation of



180 CHAPTER 2. TRANSVERSE MOTION

the betatron tunes with combos of quadrupole strengths. The unperturbed betatron

tune difference is δ1 = −
√

λ2 −G2
1,−1,� ≈ −0.0028, where the − sign arises from the

shape of the coupling ellipse. Since |δ1| is small, J1 can reach nearly 0 in the coupled

motion. In the above example, we show that a single digitized measurement can be
used to obtain the magnitude and phase of the linear coupling. The exchange of the

horizontal and vertical motion would be nearly 100% when |δ1| � G and the initial
condition is Jx0 = J2 and Jz0 = 0. We also note that the linear coupling motion

depends on the initial condition of the horizontal and the vertical motion as shown in
Fig. 2.46. It is possible to have no action exchange under the same coupling condition

as verified by experiments.71

Knowing the dynamics of the linear coupling of a single-particle motion may also

help unravel questions concerning the dynamical evolution of the bunch distribution
when the betatron tunes ramp through a coupling resonance. Such a problem is

important for polarized proton acceleration in a low to medium energy synchrotron,
where the vertical betatron tune jump method is used to overcome intrinsic depo-

larizing resonances. When the betatron tunes cross each other adiabatically after
the tune jump, the increase in vertical emittance due to linear coupling may cause

difficulty in later stages of polarized proton acceleration.

VI.4 Linear Coupling Correction with Skew Quadrupoles

The linear coupling resonance is usually corrected by maximizing the beat period

of the transverse betatron oscillations using a pair, or at least two families, of skew
quadrupoles. Figure 2.50 shows the output from a spectrum analyzer using the Δ-

signal of a horizontal beam position monitor (BPM) as the input. The difference signal
or a Δ-signal from BPMs carries the information of betatron oscillations around the

closed orbit. To measures the power of betatron motion, a spectrum analyzer was
tuned to a horizontal betatron sideband at zero span mode and was triggered 1.5

ms before the beam was coherently excited by a horizontal kicker. The beat period
shown in Fig. 2.47 corresponds to the time interval between the dips of Fig. 2.50. The

procedure for linear coupling correction is as follows

1. Maximize the peak to valley ratio in the spectrum by using quadrupole combos.
This is equivalent to setting δ1 = 0 for attaining 100% coupling.

2. Maximize the time interval between dips (or peaks) of the spectrum by using
families of skew quadrupoles. This reduces the coupling strength G1,−1,�.

Repeated iteration of the above steps can efficiently correct linear coupling provided

that skew quadrupole families have proper phase relations. This procedure is however
hindered by betatron decoherence and by the 60 Hz power supply ripple, which is

71See J. Liu et al., PRE 49, 2347 (1993).
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evident in Fig. 2.50. Other possible complications are closed-orbit changes due to off-

center orbits in the quadrupoles and skew quadrupoles. However, the most important
issue is that there is no guarantee a priori that the set of skew quadrupoles can

properly correct the magnitude and phase of the linear coupling. Thus measurement
of the coupling phase is also important.

Figure 2.50: The spectrum of the Δ-
signal from a horizontal BPM from a
spectrum analyzer tuned to a betatron
sideband frequency with resolution band-
width 30 kHz and video bandwidth 30 kHz
triggered 1.5 ms before a coherent hori-
zontal kick. Note that (1) the time in-
terval between these dips corresponded to
the beat period of Fig. 2.47, (2) the de-
cay of the power spectrum corresponded
to betatron decoherence, and (3) the char-
acteristic change in features at a 17 ms
interval corresponded to a strong 60 Hz
ripple, which altered betatron tunes.

VI.5 Linear Coupling Using Transfer Matrix Formalism

So far, our analysis of linear coupling has been based on single-resonance approx-

imation in perturbation approach. The transfer matrix method of Sec. II can be
expanded into 4×4 matrix by using transfer matrices for skew quadrupoles (Exercise

2.6.1) and solenoids (Exercise 2.6.2).

The 4×4 transfer matrix in one complete revolution can be diagonalized to obtain

normal-mode betatron amplitude functions, and the coupling angle at each position
in the ring.72 This procedure has been implemented in MAD [23] and SYNCH [24]

programs (see Exercise 2.6.6).

Exercise 2.6

1. This exercise derives the linear transfer matrix for a skew quadrupole, where the
magnetic field is

Bz = −B0a1z, Bx = B0a1x, Bs = 0; with B0a1 =
1

2

(
∂Bx

∂x
− ∂Bz

∂z

)

x=z=0

,

72D.A. Edwards and L.C. Teng, IEEE Trans. Nucl. Sci. NS20, 885 (1973); F. Willeke and
G. Ripken, p. 758 in Ref. [15] (1988); J.P. Gourber et al., Proc. 1990 EPAC, p. 1429 (1990); G.
Guignard, et al., ibid. p. 1432 (1990); L.C. Teng, PAC1997, p.1359 1361; D. Sagan and D. Rubin,
PRSTAB Vol. 2, 074001 (1999).
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where B0 is the main dipole field strength, and a1 is the skew quadrupole coefficient
in multipole expansion of Eq. (2.19). Apparently, the skew quadrupole field satisfies
Maxwell’s equation ∂Bz/∂z + ∂Bx/∂x = 0. The vector potential is

As = −B0a1xz, Ax = 0, Az = 0.

(a) Show that the equation of motion in a skew quadrupole is

x�� + qz = 0, z�� + qx = 0, where q = − 1

Bρ

∂Bz

∂z
=

a1
ρ
.

(b) Show that the transfer matrix of a skew quadrupole is

M =

⎛
⎜⎜⎝

C+ S+/
√
q C− S−/

√
q

−√
qS− C+ −√

qS+ C−
C− S−/

√
q C+ S+/

√
q

−√
qS+ C− −√

qS− C+

⎞
⎟⎟⎠

where

C+ =
cos θ + cosh θ

2
, C− =

cos θ − cosh θ

2
,

S+ =
sin θ + sinh θ

2
, S− =

sin θ − sinh θ

2
,

θ =
√
qL, and L is the length of the skew quadrupole.

(c) The coordinate rotation from (x, z) to (x̃, z̃) by an angle φ is

⎛
⎜⎜⎝

x̃
x̃�

z̃
z̃�

⎞
⎟⎟⎠ = R(φ)

⎛
⎜⎜⎝

x
x�

z
z�

⎞
⎟⎟⎠ , R(φ) =

⎛
⎜⎜⎝

cosφ 0 sinφ 0
0 cosφ 0 sinφ

− sinφ 0 cosφ 0
0 − sinφ 0 cosφ

⎞
⎟⎟⎠ .

Show that the transfer matrix of a skew quadrupole is

Mskew quad = R(−45◦)MquadR(45◦),

where Mquad is the transfer matrix of a quadrupole. This means that a skew
quadrupole is equivalent to a quadrupole rotated by 45◦.

(d) In the thin-lens limit, i.e. L → 0 and qL → 1/f , where f is the focal length,
show that the 4×4 coupling transfer matrix reduces to

M = 1+
−1

f
U, U =

�
0 U
U 0

�
, U =

�
0 0
1 0

�
.

2. Linear transfer Matrix of a Solenoid: The particle equation of motion in an ideal
solenoidal field is

x�� + 2gz� + g�z = 0, z�� − 2gx� − g�x = 0,

where the solenoidal field strength is g =
eB‖(s)

2p .
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(a) Show that the coupled equation of motion becomes

y�� − j2gy� − jg�y = 0,

where y = x+ jz, and j is the complex imaginary number.

(b) Transforming coordinates into rotating frame with

ȳ = ye−jθ(s), where θ =

� s

0
gds,

show that the system is decoupled, and the equation of motion becomes

ȳ�� + g2ȳ = 0.

Thus both horizontal and vertical planes are focused by the solenoid.

(c) Show that the transfer matrix in the rotating frame is

M̃ =

⎛
⎜⎜⎝

cos θ 1
g sin θ 0 0

−g sin θ cos θ 0 0
0 0 cos θ 1

g sin θ
0 0 −g sin θ cos θ

⎞
⎟⎟⎠ ,

where θ = gs.73

(d) Transforming the coordinate system back to the original frame, i.e. y = ejθȳ,
show that the transfer matrix for the solenoid becomes

M =

⎛
⎜⎜⎝

cos2 θ 1
g sin θ cos θ − sin θ cos θ −1

g sin
2 θ

−g sin θ cos θ cos2 θ g sin θ2 − sin θ cos θ
sin θ cos θ 1

g sin
2 θ cos2 θ 1

g sin θ cos θ

−g sin2 θ sin θ cos θ −g sin θ cos θ cos2 θ

⎞
⎟⎟⎠

3. Show that Hamilton’s equations of motion for the Hamiltonian (2.213) in the presence
of skew quadrupoles and solenoids are

x�� +Kx(s)x+ 2gz� − (q − g�)z = 0,

z�� +Kz(s)z + 2gx� − (q + g�)x = 0.

where g = B�(s)/2Bρ and q = −(∂Bz/∂z)/Bρ = a1/ρ.

(a) Show that the perturbation potential due to skew quadrupoles and solenoids is

Vlc = −a1
ρ
xz + g(s)

�
pz
p
x− px

p
z

�
.

(b) Expand the perturbation potential in Fourier series and show that the coupling
coefficient G1,−1,� for the �-th harmonic is given by Eq. (2.215).

73Note here that the solenoid, in the rotating frame, acts as a quadrupole in both planes. The
focusing function is equal to g2. In small rotating angle approximation, the corresponding focal
length is f−1 = g2L = Θ2/L, where L is the length of the solenoid, and Θ = gL is the rotating
angle of the solenoid.



184 CHAPTER 2. TRANSVERSE MOTION

(c) If the accelerator lattice has P superperiods, show that G1,−1,� = 0 unless � = 0
(Mod P ).

4. Using the generating function

F2(φx, φz, I1, I2) = (φx − φz − �θ + χ)I1 + φzI2,

show that the linear coupling equation of motion for the Hamiltonian (2.216) can be
transformed into the Hamiltonian (2.219) in resonance rotating frame.

(a) Show that the new conjugate phase-space variables are

I1 = Jx, I2 = Jx + Jz, φ1 = φx − φz − �θ + χ, φ2 = φz.

(b) Find the invariants of the Hamiltonian (2.216).

(c) Show that the equation of motion for I1 is

Ï1 + λ2I1 = E1δ1 + I2G
2
1,−1,�/2,

where the overdot corresponds to the derivative with respect to orbiting angle

θ, δ1 = νx − νz − � is the resonance proximity parameter, λ =
√

δ21 +G2
1,−1,�,

and E1 = δ1I1 +G1,−1,�

√
I1(I2 − I1) cosφ1 is a constant of motion.

(d) Discuss the solution in the resonance rotating frame.74

5. The Hamiltonian

H = νxJx + νzJz +G1,−1,�

√
JxJz cos(φx − φz + χ)

for a single linear coupling resonance can be transformed to the normalized phase-
space coordinates by

{
X =

√
2Jx cos(φx + χx), Px = −√

2Jx sin(φx + χx),
Z =

√
2Jz cos(φz + χz), Pz = −√

2Jz sin(φz + χz),

where χx−χz = χ is a constant linear coupling phase (Mod 2π) that depends on the
location in the ring.

(a) Show that the Hamiltonian in the new phase-space coordinates is

H =
1

2
νx(X

2 + P 2
x ) +

1

2
νz(Z

2 + P 2
z ) +

1

2
G1,−1,�(XZ + PxPz).

(b) Show that the eigen-frequency of the Hamiltonian is

ν± =
1

2
(νx + νz)± 1

2
λ, λ =

√
(νx − νz)2 + |G1,−1,�|2.

74For a general discussion on linear coupling with nonlinear detuning, see J.Y. Liu et al., Phys.
Rev. E 49, 2347 (1994).
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(c) Solve X and Z in terms of the normal modes, and show that

⎧⎪⎪⎨
⎪⎪⎩

X = A+ cos(ν+ϕ+ ξ+)− G1,−1,�

λ+ |δ|A− cos(ν−ϕ+ ξ−),

Z =
G1,−1,�

λ+ |δ|A+ cos(ν+ϕ+ ξ+) +A− cos(ν−ϕ+ ξ−),

where A±, ξ± are obtained from the initial conditions. Particularly, we note
that the “horizontal” and “vertical” betatron oscillations carry both normal-
mode frequencies.

6. Analyze the linear stability of the simple tracking model shown in Fig. 2.46, i.e. the
particle motion in a synchrotron with linear betatron motion and a localized skew
quadrupole kick. Show that the condition of linear stability for betatron motion is

√
βxβz
f

≤ Min

�
2

�
(1 + cos Φx)(1 + cosΦz)

| sinΦx sinΦz| , 2

�
(1− cos Φx)(1− cos Φz)

| sinΦx sinΦz|

�
,

where f is the focal length of the skew quadrupole, βx and βz are values of betatron
amplitude functions at the skew quadrupole location, and Φx and Φz are betatron
phase advances of the machine without the skew quadrupole. Based on your study
of this problem, can you find the stability limit of a linearly coupled machine with
superperiod P?

7. Consider the sum resonance driven by skew quadrupoles, where the coupling constant
G1,1,� is given by Eq. (2.215). The Hamiltonian in the action-angle variables is given
by

H = νxJx + νzJz + |G1,1,�|
�

Jx, Jz cos(φx + φz − �θ + χ+),

where χ+ is the phase of the coupling constant, θ is the independent variable serving
as the time coordinate, and � is an integer near νx + νz, i.e. |νx + νz − �| � 1.

(a) Show that the difference of the actions, Jx − Jz, is a constant of motion.

(b) Let g = |G1,1,�|. Show that

J̈x = (g2 − δ2)Jx + constant

J̈z = (g2 − δ2)Jx + constant

where overdots are derivative with respect to the independent variable θ, and
the resonance proximity parameter is δ = νx + νx − �. This means that if the
tunes of a particle is within the sum resonance stopband width, i.e. |δ| < g, the

actions of the particle will grow exponentially at a growth rate of
�

g2 − δ2.
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VII Nonlinear Resonances

Chromaticity correction discussed in Sec. V requires sextupoles. Thus sextupole

magnets are an integral part of accelerator lattice design. Furthermore, modern high
energy storage rings frequently use high field (superconducting) magnets that inher-

ently have systematic and random multipole fields. Normally, the nonlinearity is of
the order of 10−3−10−4 compared with that of the linear component. However, when

a resonance condition is encountered, the nonlinear magnetic field can give rise to
geometric aberration on beam ellipses and particle loss. Careful analysis of the non-

linear beam dynamics is instrumental in determining the dynamic aperture, which is
defined as the maximum amplitude of a stable particle motion. This section addresses

nonlinear geometric aberration due to sextupoles and higher order multipoles, and

provides an introduction to this important subject using the first-order perturbation
treatment.

VII.1 Nonlinear Resonances Driven by Sextupoles

Since sextupoles are indispensable for chromatic correction, we begin with their effects
on beam dynamics. The vector potential for a 2D sextupole magnet is Ax = Az = 0,

As =
B2

6
(x3 − 3xz2), where B2 = ∂2Bz/∂x

2|x=z=0 . The Hamiltonian in the presence
of sextupole field is

H =
1

2

[
x�2 +Kxx

2 + z�2 +Kzz
2
]
+ V3(x, z, s), (2.227)

V3(x, z, s) =
1

6
K2(s)(x

3 − 3xz2), K2(s) = ∓B2(s)

Bρ
,

where ∓ signs correspond to positive/negative charged particles. For a particle

with fractional off-momentum deviation Δp/p0, the sextupole strength is K2(s) =
− B2(s)

Bρ[1+δ]
≈ −B2(s)

Bρ
with δ = Δp/p0.

A. Tracking methods

In the presence of sextupole magnetic field, Hill’s equation becomes

x�� +Kx(s)x = −1

2
K2(s)(x

2 − z2), z�� +Kz(s)z = +K2(s)xz. (2.228)

The evolution of phase space coordinates of a particle can be obtained by tracking
the equation of motion, where thin lens (kick-map) approximation has often been

used because sextupole magnets used in accelerator are usually short. Let S =∫
K2(s)ds = K2�sextupole be the integrated sextupole strength. The changes of phase
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space coordinates at the sextupole magnet are75

Δx� = −1

2
S(x2 − z2), Δz� = Sxz. (2.229)

The propagation of phase space coordinates outside the sextupole magnet is trans-
formed by the transfer mapping matrix (2.42). Figure 2.51 shows the Poincaré maps

near a third order resonance at νx = 3.66 and νx = 3.672 respectively with one sex-
tupole in an otherwise perfectly linear accelerator. The betatron amplitude functions

at the thin lens sextupole location are βx = 20 m and αx = 0. The topology of
the phase space maps forms mirror reflection when the tune moves across the third

integer resonance. The region of stability decreases as the betatron tune approaches

the third order resonance.

Figure 2.51: The Poincaré
maps for betatron motion per-
turbed by a single sextupole
magnet at a tune below (left)
and above (right) a third order
resonance. The integrated sex-
tupole strength is S = 0.5 m−2

with lattice parameters βx =
20 m, and αx = 0. Arrows indi-
cate directions of motion near a
separatrix.

B. The leading order resonances driven by sextupoles

In order to analyze the third order resonance analytically, we carry out Floquet trans-

formation to the Hamiltonian (2.227). With Eq. (2.55) for coordinate transformation,

the nonlinear perturbing potential V3(x, z, s) becomes

V3 = −
√
2

4
J1/2
x Jzβ

1/2
x βzK2(s)[2 cosΦx + cos(Φx + 2Φz) + cos(Φx − 2Φz)]

+

√
2

12
J3/2
x β3/2

x K2(s)[cos 3Φx + 3 cosΦx], (2.230)

where

Φx = φx + χx(s)− νxθ, χx =

∫ s

0

ds

βx
; Φz = φz + χz(s)− νzθ, χz =

∫ s

0

ds

βz
.

75In this mapping equation for betatron motion, we disregard the effect of sextupoles on orbit
length. Using Eq. (2.100), we find ΔC = (xΔx′ + zΔz′).
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Here (Jx, φx) and (Jz, φz) are pairs of conjugate phase-space coordinates, θ = s/R is

the orbiting angle, and R is the mean radius of the accelerator. Since V3 is a periodic
function of s, it can be expanded in Fourier harmonics.76 The Hamiltonian (2.227)

expressed in action-angle variables with θ as “time coordinate” becomes

H = νxJx + νzJz +
∑
�

{
G3,0,�J

3/2
x cos(3φx − �θ + ξ3,0,�)

+ G1,2,�J
1/2
x Jz cos(φx + 2φz − �θ + ξ1,2,�)

+ G1,−2,�J
1/2
x Jz cos(φx − 2φz − �θ + ξ1,−2,�)

+ g1,0,3,0,�J
3/2
x cos(φx − �θ + η3,0,3,0,�)

+ g1,0,1,2,�J
1/2
x Jz cos(φx − �θ + η3,0,1,2,�)

}
(2.231)

where �’s are integers. Because the potential V3 is an odd function of the betatron
coordinates, sextupoles will not, in linear approximation, generate betatron detuning.

Table 2.3 lists nonlinear resonances that can be excited by sextupoles in first-order

perturbation theory.

Table 2.3: Resonances due to sextupoles and their driving terms
Resonance Driving term Lattice Amplitude Classification

νx + 2νz = � cos(Φx + 2Φz) β
1/2
x βz J

1/2
x Jz sum resonance

νx − 2νz = � cos(Φx − 2Φz) β
1/2
x βz J

1/2
x Jz difference resonance

νx = � cosΦx β
1/2
x βz; β

3/2
x J

1/2
x Jz, J

3/2
x parametric resonance

3νx = � cos 3Φx β
3/2
x J

3/2
x parametric resonance

The third order resonances occur at 3νx = �, νx + 2νz = � and νx − 2νz = � and

a peculiar integer resonance at νx = � (see Exercise 2.7.7) driven by the sextupole.
The resonance strengths are respectively

G3,0,� e
jξ3,0,� =

√
2

24π

∮
β3/2
x K2(s) e

j[3χx(s)−(3νx−�)θ]ds (2.232)

G1,±2,� e
jξ1,±2,� =

√
2

8π

∮
β1/2
x βz K2(s) e

j[χx(s)±2χz(s)−(νx±2νz−�)θ]ds, (2.233)

g1,0,3,0,� e
jη1,0,3,0,� =

√
2

8π

∮
β3/2
x K2(s) e

j[χx(s)−(νx−�)θ]ds

g1,0,1,2,� e
jη1,0,1,2,� =

√
2

4π

∮
β1/2
x βz K2(s) e

j[χx(s)−(νx−�)θ]ds.

All sextupolar resonance strengths: G3,0,�, G1,±2,�, g1,0,3,0,�, and g1,0,1,2,�, have the unit

(πm)−1/2, where the factor π arises from unit of the action J discussed in Eq. (2.50).

76G. Guignard, p. 822 in Ref. [14] (1988); G. Guignard, CERN 76-06, (1976).
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The subscripts of G3,0,3,0,� and G1,±2,1,2,� of dominant resonances have been shorten to

G3,0,� and G1,±2,� for simplicity. The resonance phases ξ�s in Eq. (2.232) depend on
the reference position in accelerator that we choose to calculate these integrals. We

can choose the amplitudes of resonance strengths G�s or g�s to be positive.

C. The third order resonance at 3νx = �

As demonstrated in Fig. 2.51, the Hamiltonian (2.231) near a third-order resonance
at 3νx = � can be well approximated by

H ≈ νxJx +G3,0,� J
3/2
x cos (3φx − �θ + ξ3,0,�), (2.234)

where G3,0,� and ξ3,0,� are given by Eq. (2.232), (Jx, φx) are conjugate phase-space
coordinates, θ is the orbiting angle serving as “time coordinate,” νx is the horizontal

betatron tune. The sextupole cause “geometric aberration” to the betatron motion.
The magnitude of the geometric aberration depends on the resonance strength G3,0,�

and the “resonance proximity” δ = νx − �
3
.

If an accelerator has a superperiod P and the sextupole field satisfies the same

periodic condition, the resonance strength G3,0,� is zero unless � is an integer multiple
of P (see Exercise 2.7.1). For example, if sextupoles are identical in each superpe-

riod of the AGS, the systematic third-order resonance strength will be zero except at

� = 12, 24, etc. Thus nonlinear resonances are classified into systematic and random
resonances. Systematic nonlinear resonances are located at � = P×integer. At a sys-

tematic resonance, each superperiod contributes coherently additive to the resonance
strength. Since chromatic sextupoles are usually arranged according to accelerator-

superperiod, one should pay great attention to systematic sextupolar nonlinear res-
onances by choosing the betatron tune to avoid systematic third order resonances.

Random sextupole fields induce nonlinear resonances at all integer �, and their res-
onance strengths are usually weak. Nevertheless, the betatron tunes should avoid

low-order nonlinear resonances.
Transform the phase space coordinate to a resonance rotating frame with a gen-

erating function to obtain new phase-space coordinates:

F2(φx, J) = (φx − �

3
θ +

ξ3,0,�
3

)J, =⇒ φ = φx − �

3
θ +

ξ3,0,�
3

, J = Jx. (2.235)

The Hamiltonian Eq. (2.234) and Hamilton’s equations of motion are

H = δJ +G3,0,�J
3/2 cos 3φ, (2.236)

φ̇ ≡ dφ

dθ
= δ +

3

2
G3,0,�J

1/2 cos 3φ, J̇ ≡ dJ

dθ
= 3G3,0,�J

3/2 sin 3φ.

where δ = νx − �/3 is the resonance proximity parameter. Since the Hamilto-
nian (2.236) is “autonomous” (meaning independent of the time (θ) coordinate), the

“Hamiltonian” is invariant. Particle motion in the phase space follows the contour of

a constant Hamiltonian.
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Stable and unstable fixed points

The fixed points (FPs) of the Hamiltonian Eq. (2.236) are determined by J̇ = 0 and

φ̇ = 0 (see Appendix A Sec. I.2). Without nonlinear detuning, there is no stable fixed
point for the third order resonance. The action at the UFP, equation of motion near

the UFP, and Hamiltonian value at the UFP are

J1/2
UFP

=

����
2δ

3G3,0,�

���� with

�
φFP = 0, ±2π/3 if δ/G3,0,� < 0
φFP = ±π/3, π if δ/G3,0,� > 0

, (2.237)

K̈ − 3δ2K − 6
δ2

J
UFP

K2 = 0, E
UFP

=
δ

3

�
2δ

3G3,0,�

�2

, (2.238)

where K = J−J
UFP

. The motion near the unstable fixed point is hyperbolic. Because
of the nonlinear term in Eq. (2.238), the amplitude grows faster than an exponential.

Particle motion near a separatrix is marked with arrows in Fig. 2.51.

Separatrix

The separatrix is a Hamiltonian torus that passes through the UFP, i.e. H = E
UFP

.

With Eq. (2.236), the separatrix orbit, for δ/G3,0,� > 0, is

[2X − 1]

�
P − 1√

3
(X + 1)

� �
P +

1√
3
(X + 1)

�
= 0, or

X = 1/2, P =
X + 1√

3
, P = −X + 1√

3
=⇒ (X,P )

UFP
=

⎧
⎨
⎩

(−1, 0),

(1
2
,
√
3
2
),

(1
2
,−

√
3
2
).

(2.239)

where X and P are X =
�

J/J
UFP

cos φ, P = −�
J/J

UFP
sin φ. Three straight lines

divide the phase space into stable and unstable regions. The unstable fixed points

(X,P )
UFP

are the intersections of these three lines (see Fig. 2.51, where the right plot
corresponds to the condition of Eq. (2.239). At δ > 0, particles near (x = 0, Px = 0)

moves clockwise in the resonance rotating frame and counter-clockwise at δ < 0 (see
Eq.(2.52) for the direction of betatron motion in phase space). At δ < 0, particle

motion lags behind the resonance rotating frame and the phase space motion appears
counter-clockwise.

The dynamic aperture is defined as the maximum phase-space area for stable
betatron motion. Near a third-order resonance, the stable phase-space area in (x, x�)
is the area of the triangle bounded by Eq. (2.239), i.e. 3

√
3

2
JUFP = 2√

3
(δ/G3,0,�)

2. Beam
loss may occur when particles wander beyond the separatrix. Without a nonlinear

detuning term, the third-order resonance appears at all values of δ. The stable motion
is bounded by the curve of J

1/2
UFP shown in Fig. 2.52. For a given aperture Jmax, we

can define the third-order betatron resonance width as |δ|width = 2× [31/4G3,0,�J
1/2
max].
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The third-order resonance can be applied to slow extraction of beam particles

from a synchrotron. The resonance phase ξ3,0,� depends on the position of sextupoles
relative to the extraction septum. The stable phase-space area is proportional to the

resonance proximity parameter δ2 (see Eq. (2.237)). If the betatron tune νx is ramped
slowly towards a third-order resonance, beam particles can be slowly squeezed out of

stable area and extracted to achieve high duty cycle in physics experiments and other
applications.

Effect of nonlinear detuning

Nonlinear magnetic multipoles also generate nonlinear betatron detuning, i.e. the
betatron tunes depend on the betatron amplitudes (actions):

Qx = νx + αxxJx + αxzJz + · · · , Qz = νz + αxzJx + αzzJz + · · · . (2.240)

The unit of the first order nonlinear detuning parameters α’s is (πm)−1. Typically

magnitude of the detuning parameters is 10 ∼ 104 (πm)−1. With the betatron de-
tuning, the third-order resonance Hamiltonian in the resonance rotating frame is

H = δJ +
1

2
αJ2 +GJ3/2 cos 3φ, (2.241)

where we use α = αxx and G = G3,0,� to simplify our notation. The fixed points of

the Hamiltonian for α > 0 and G > 0 are

αJ
1/2
FP

G
=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−3

4
+

3

4

�
1− 16αδ

9G2
, φ = 0,±2π/3 δ < 0 (UFP)

+
3

4
− 3

4

�
1− 16αδ

9G2
, φ = π,±π/3 0 ≤ δ ≤ 9G2

3,0,�

16α
(UFP)

+
3

4
+

3

4

�
1− 16αδ

9G2
, φ = π,±π/3 δ ≤ 9G2

16α
(SFP)

Figure 2.52 shows |α/G|×J1/2
UFP

vs αδ/G2. Stable fixed points appear in the presence of

nonlinear detuning. The bifurcation of third-order resonance occurs at 16αδ = 9G2.
Note that JSFP ≥ JUFP. A similar analysis can be carried out for α < 0. Resonance

exists only in tune space with 16αδ ≤ 9G2 for either α > 0 or α < 0. The dash-dot
line in Fig. 2.52 shows the scaled J

1/2
UFP/|G| vs the scaled proximity parameter δ/G2

for zero detuning case.

D. Experimental measurement of a 3νx = � resonance

Because beam particles may be unstable at a nonlinear resonance, experimental mea-

surements are generally difficult. It is easy to observe degradation of beam intensity
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Figure 2.52: The scaled fixed point action of the
third-order betatron resonance vs the scaled res-
onance proximity δ. The scaling parameters are
resonance strength G = G3,0�, and the nonlinear
detuning α = αxx. The dash-dots line is the UFP
in the zero detuning limit, where J1/2

UFP
= |2δ/3G|.

There is no SFP for α = 0. The solid and dashed
curves are |α/G|J1/2

SFP
and |α/G|J1/2

UFP
vs |α|δ/G2

for α < 0 (top plot) and α > 0 (bottom plot).
Note that JSFP ≥ JUFP. Bifurcation of the third-
order resonance occurs at 16αδ = 9G2 marked
by a rectangle. Resonance islands appear only in
tune space 16αδ ≤ 9G2 for either α > 0 or α < 0.

and lifetime near a resonance. Measurements of Poincaré maps near a third-order res-

onance have been successful at SPEAR, TEVATRON, Aladdin, and the IUCF cooler
ring. Figure 2.53 shows a Poincaré map obtained from a nonlinear beam dynamics

experiment at the IUCF cooler ring. Converting into action-angle variables, we can fit
these data by the Hamiltonian (2.241) to obtain parameters G3,0,� and ξ, and obtain

the parameter δ by measuring the betatron tune at a small betatron amplitude. Using
these measured nonlinear resonance parameters, one can model sextupole strengths

of the storage ring.77

Figure 2.53: Left: The
measured Poincaré map
of the normalized phase-
space coordinates (x, px)
of betatron motion near
a third-order resonance
3νx = 11 at the IUCF
cooler ring. Right: the
Poincaré map in action-
angle variables (J, φ).

Particles outside the separatrix survive only about 100 turns. Tori for particles
inside the separatrix are distorted by the third order resonance. The orientation of the

Poincaré map, determined by sextupoles, rotates at a rate of betatron phase advance
along the ring. The solid lines are Hamiltonian tori of Eq. (2.241) with δ = −0.0060,

|G3,0,11| = 2.2 (πm)−1/2, and αxx = 0, which gives JUFP = 3.3 πμm. Equally good fix
can be obtained by using the measured αxx ≈ 650 (πm)−1 to obtain JUFP = 3.1 πμm,

and JSFP ≈ 27.6 (πμm).

77D.D. Caussyn, et al., PRA 46, 7942 (1992).
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E. Other 3rd-order resonances driven by sextupoles

Besides the third-order resonance at 3νx = �, sextupoles contribute importantly to

the nonlinear coupling resonances at νx ± 2νz = � with integer �.78 The third-order
resonance strength can generally be obtained by taking the Fourier transform of

Eq. (2.230). The difference resonance at νx−2νz = � produces betatron coupling (see
Exercise 2.7.2). The invariant of this difference resonance is 2Jx + Jz = constant, i.e.

There is an exchange of the horizontal and vertical motion, but each plane is limited
by the invariant quantity. If the initial horizontal emittance is large, the difference

resonance can cause a large increase in the vertical emittance and thus can also cause
beam loss in the vertical plane.

Isochronous cyclotrons, discussed in Chapter 1, require the phase-slip-factor η = 0
of Eq. (2.165). This means that the transition energy γT ≈ νx = γ, where γ is the

Lorentz energy factor of the beam. Thus all isochronous cyclotrons are designed
to have νx ∼ γ during the acceleration. Since the vertical betatron tune of the

isochronous cyclotrons lies between 0.5 to 1. Passing the νx − 2νz = 0 resonance
is almost un-avoidable. This resonance in the cyclotron community is called the

Walkinshaw resonance (see Exercise 2.7.2).

The invariant of the sum resonance at νx + 2νz = � is 2Jx − Jz = constant (see
Exercise 2.7.3). This means that the actions of the horizontal and vertical planes can

increase simultaneously to a large value, and the particle can get lost at large ampli-
tudes. All sum resonance can cause beam emittance to blow-up in both horizontal

and vertical planes and leads to beam loss
Furthermore, Eq. (2.231) shows that sextupoles also drive nonlinear resonances

at νx = �. Exercise 2.7.7 illustrates the difference between the nonlinear νx = �
resonance and the linear betatron resonance discussed in Sec. III.1.

VII.2 Higher-Order Resonances

It appears, from the Hamiltonian in Eq. (2.231), that sextupoles will not produce
resonances higher than the third order ones listed in Table 2.3. However, strong sex-

tupoles are usually needed to correct chromatic aberration. Concatenation of strong
sextupoles can generate high-order resonances such as 4νx, 2νx±2νz , 4νz, 5νx, . . . , etc.

For example, carry out the second order canonical perturbation to the Hamiltonian in
Eq. (2.231), the resonances of 3νx = �3 and νx = �1 can be combined to produce a reso-

nance at 4νx = �1+�3, which is a 4th order resonance (see Exercise 2.7.8). Figure 2.54
shows the Poincaré maps of the single sextupole model of Fig. 2.51 at νx = 3.7496 and

νx = 3.795, produced by a single strong sextupole in the accelerator. Exercise 2.7.8

78See M. Ellison et al., PRE 50, 4051 (1994) for the νx − 2νz = � resonance, and J. Budnick et
al., Nucl. Inst. Methods A368, 572 (1996) for the νx + 2νz = � resonance at the IUCF cooler ring.
Experimental measurements of sum resonances are particularly difficult because of short lifetime
and small beam current.
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illustrates a canonical perturbation method to explain the tracking result. Similarly,

sextupolar resonances can drive higher order resonances at 2νx ± 2νz = �, etc.

Figure 2.54: The normalized
phase space maps for the same
sextupole model at νx = 3.7496
(left) and νx = 3.795 (right) are
shown in Fig. 2.51. Since res-
onance islands only exist with
νx < 3.75 or νx < 3.8, the effec-
tive nonlinear detuning must be
positive. The largest phase space
map marks the boundary of sta-
ble motion. See Exercise 2.7.8.

Accelerator magnets may have many nonlinear magnetic multipoles, which can
introduce nonlinear perturbation to betatron motion. Employing strong sextupoles,

nonlinear beam dynamics experiments at Fermilab TEVATRON were used to study
the concept of smear, nonlinear detuning, decoherence, and dynamic aperture.79 Sim-

ilarly, nonlinear beam dynamics studies at the IUCF cooler ring show the importance
of nonlinear resonances. Nonlinear beam dynamics is beyond the scope of this book.

Here we give an example of the fourth-order parametric resonance at 4νx = 15.80

The nonlinear perturbation plays an important role on the stability of particle beams

in accelerators. Experimental measurements of the effects on particle motion are
important.

Near a weak fourth-order 1D resonance 4νx ≈ �, the perturbation potential of
octupoles and the effective Hamiltonian can normally be approximated by

V (s) = · · ·+ 1

24
K3(s)(x

4 − 6x2z2 + z4) + · · ·

H = νxJx +
1

2
αxxJ

2
x +G4,0,�J

2
x cos(4ψx − �θ + ξ4,0,�), (2.242)

G4,0,� e
jξ4,0,� =

1

96π

∮
β2
x K3(s) e

j[4χx(s)−(4νx−�)θ]ds, (2.243)

whereK3(s) = ∓B3(s)/Bρ is the octupole field strength for positive/negative charged
particles respectively, G4,0,� and ξ4,0,� are the resonance strength and phase, and αxx

is the nonlinear detuning. The phase space ellipses of Fig. 2.54 driven by a single
sextupole can not be described by the Hamiltonian Eq. (2.242).

Figure 2.55 shows the measured Poincaré map near a fourth-order resonance 4νx =

15 at the IUCF cooler ring. The left plot shows the Poincaré map in the normalized

79A. Chao, et al., PRL 61, 2752 (1988); N. Merminga, et al., EPAC1988, 791 (1988); T. Satogata,
et al., PRL 68, 1838 (1992); T. Chen et al., PRL 68, 33 (1992).

80S.Y. Lee, et al., PRL 67, 3768 (1991); M. Ellison et al., AIP Conf. Proc. No. 292, p. 170 (1992).
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(x, Px ≡ αxx+βxx
�)) phase space. The phase space map is transformed to the action-

angle variables (J = Jx, φ = ψx) (see middle plot). The solid lines shows the fitted
Hamiltonian tori of Eq. (2.242).

Figure 2.55: The measured betatron Poincaré map (surface of section) in the normalized
phase space (left), and in action-angle variables (middle), and the fractional betatron tunes
of particles (right) near a fourth-order resonance at the IUCF cooler ring. Be aware that
action is not a constant motion near the resonance.

In this example, the fourth-order resonance islands are enclosed by stable invariant

tori. The phase-space ellipse is distorted into four island when the betatron tune sits
exactly on resonance. The solid lines are the Hamiltonian tori of Eq. (2.242) with

parameters αxx = 650 (πm)−1, G4,0,15 = 80 (πm)−1, and νx − 3.75 = −7.8 × 10−4.
Because |αxx| � 2|G4,0,15|, the resonance islands are bounded by stable tori, and

because α > 0, the resonance occurs at δ ≡ νx − 3.75 < 0, where δ = 0 is called
the bifurcation point (see Exercise 2.7.5 for the parametric dependence of the 4th

order resonances). The right plot of Fig. 2.55 shows the fractional betatron tune.
Note that particles are locked onto the resonance tune across the phase space within

the resonance islands. In the nonlinear physics, the constant tune step is called the
”devil’s staircase,” or resonance line shown in the ”frequency map.”81

The tunes of beam particles trapped inside the resonance islands are modulated
by the island tunes (see Exercise 2.7.6). Particles trapped inside the resonance islands

can be driven out by a transverse kicker at the island tune frequency.82

If we define the particle instantaneous tune as

qx(n) =
φx(n)− φx(n− 1)

2π
, qz(n) =

φz(n)− φz(n− 1)

2π
, (2.244)

the ”tune” will oscillate around the resonance. Figure 2.56 shows the normalized
Poincaré maps (left) and particle instantaneous tune (right) for a beam with 50

particles in the presence of a fourth order resonance with νx = 0.2494, α = 37.4
(m−1), G4,0,� = 10.6 (m−1). The resulting tune map differs from that deduced from

81J. Laskar, Physica D 67, 257 (1993); and J. Laskar and D. Robin, Part. Acc. 54, 183 (1996).
82See e.g. Wang, et al., PRE 49, 5697 (1994).
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the frequency map, which extracts only the major component of the particle motion

during the particle tracking. The solid line is the expected betatron tune vs amplitude.
Since the action is not an invariant near a betatron resonance, the particle tunes are

not given simply by Eq. (2.240). The dashed line is the tune of particles locked on the
resonance. The frequency map method will put those particles at the resonance tune.

However, their turn-by-turn particle tune of Eq. (2.244) varies as shown in Fig. 2.56.

Figure 2.56: Left: The Poincaré
maps normalized phase space map
of a beam of 50 particles near a
4th order resonance. Right: The
corresponding instantaneous par-
ticle tune map (see Eq. (2.244)).
For particles locked on the reso-
nance, their tune is 1/4 modulated
by their associated island tune.

VII.3 Nonlinear Detuning from Sextupoles and Octupoles

Octupoles and multipoles with even order in phase space coordinates can produce

nonlinear detuning. For example, the detuning parameters resulting from octupoles
with K3 = −B3(s)/(Bρ) are

αxx =
1

16π

∮
β2
xK3ds, αxz =

−1

8π

∮
βxβzK3ds, αzz =

1

16π

∮
β2
zK3ds. (2.245)

Concatenation of strong sextupoles in high energy collider and storage rings can

also induce substantial nonlinear betatron detuning. For sextupoles, the detuning
coefficients αxx, αxz, and αzz due to sextupoles are

αxx=
−1

16π

∑
i,j

SiSjβ
3/2
x,i β

3/2
x,j

[
cos 3(πνx − |ψx,ij|)

sin 3πνx
+ 3

cos(πνx − |ψx,ij|)
sin πνx

]
,

αxz=
−1

8π

{∑
i,j

SiSjβ
1/2
x,i β

1/2
x,j βz,iβz,j

[
cos[2(πνz − |ψz,ij|) + πνx − |ψx,ij|]

sin π(2νz + νx)

+
cos[2(πνz − |ψz,ij|)− πνx + |ψx,ij|]

sin π(2νz − νx)

]
− 2

∑
i,j

SiSjβ
3/2
x,i β

1/2
x,j βz,j

cos(πνx − |ψx,ij|)
sin πνx

}
,

αzz=
−1

16π

∑
i,j

SiSjβ
1/2
x,i β

1/2
x,j βz,iβz,j

[
cos[2(πνz − |ψz,ij|) + πνx − |ψx,ij|]

sin π(2νz + νx)

−cos[2(πνz − |ψz,ij|)− (πνx − |ψx,ij|)]
sin π(2νz − νx)

+4
cos(πνx − |ψx,i − ψx,j|)

sin πνx

]
,
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where ψx,ij = ψx,i − ψx,j and ψz,ij = ψz,i − ψz,j are betatron phase advances from

sj to si. Since the tune depends on the zeroth harmonic of a perturbed quadrupole
field, the nonlinear detuning parameter is proportional to the superperiod of the

accelerator. These coefficients can be evaluated from sextupole strengths distributed
in one superperiod.

VII.4 Betatron Tunes and Nonlinear Resonances

A beam is composed of many particles. The betatron tunes of each particle depend on
its off-momentum coordinate Δp/p0 due to chromaticity, and on its betatron-actions

due to magnetic multipoles, mean field of the space charge force, and beam-beam
interaction for colliding beams. The incoherent Laslett space-charge tune spread of

low energy high intensity accelerators can be as large as 0.5 (see Exercise 2.3.2). The
beam-beam parameter ξ of Eq. (5.52) is about 0.1 for high luminosity colliders. The

detuning parameters of Eq. (2.240) are usually minimized to optimize the dynamic
aperture.

The betatron tunes should avoid the linear betatron resonances at νx = m or
νz = n, where m,n are integers, and half-integer integer betatron resonances at

2νx = m or 2νz = n due to the linear imperfections. Similarly, the betatron tunes
should avoid linear coupling resonances at νx ± νz = � driven by skew quadrupoles

and solenoids discussed in Sec. VI.

Sextupoles are important to chromatic correction discussed in Sec. V. We have dis-

cussed several low order resonances driven by sextupoles in previous sections. Besides
the sextupole, magnetic multipoles do exist in accelerator magnets. The Coulomb

(space charge) force of the beam is also highly nonlinear. These nonlinear forces pro-
duce higher order resonances. Figure 2.57 shows the betatron resonances up to the

4th (left) and the 8th order (right), where the solid lines correspond to resonances

due to normal multipoles, while the dashed lines arise from skew multipoles. The
available resonance-free tune space becomes small. When the betatron tune spread

of the beam becomes large,83 resonance (stopband) correction becomes important for
attaining beam stability.

The lifetime of beams in many storage rings and colliders may suffer if the betatron

tunes sit near a betatron resonance. The beam-beam interaction can drive higher

order resonances observed at the SPP̄S colliders, proton-proton colliders, and many
e+e− colliders. For example, lifetime degradation has been observed near the 7th order

resonance at the SPP̄S driven by beam-beam interaction with linear beam-beam tune
shift parameter of ξbb = 3.3 × 10−3 per crossing (see Eq. (5.52) in Chap. 5).When

the beam-beam tune spread is large, the tune space that is free from high order

83The betatron tune spread of a beam may arise from the incoherent space charge (Laslett) tune
shift, chromaticity, beam-beam interaction, betatron amplitude detuning, etc.
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Figure 2.57: The resonance
lines: mxνx + mzνz = integer
with |mx|+ |mz| ≤ 4 (left) and
|mx| + |mz| ≤ 8 (Right). The
symbol qx and qz are the frac-
tional parts of betatron tunes
νx and νz. When higher or-
der resonances are important,
resonance-free tune space be-
comes small.

resonances becomes very small. Betatron tune stability has becomes an important

issue for successful operation of storage rings.

A. Emittance growth, beam loss and dynamic aperture

As illustrated in previous Sections, resonances can form resonance islands with phase

space area 16
√
g/α in the asymptotic region (see Exercise 2.7.6e), where g is the

effective resonance strength and α is the effective detuning parameter. A larger
betatron detuning has a smaller resonance perturbation. If these resonance islands

are bounded by invariant tori, the beam bunch is bounded, and the result is emittance
growth, or “emittance dilution.” However, when both the betatron detuning and beam

emittance are large, the betatron tune spread of the beam may cover many resonances
and result in particle loss and limited dynamic aperture.

When the betatron tunes of particles in a beam bunch sit on a resonance condition

mνx + nνz = �, the betatron motion is strongly perturbed by a resonance, some par-
ticles may be trapped in resonance islands, some may drift beyond dynamic aperture

and lost. We design and operate accelerators to avoid all low order betatron reso-
nances up to |m|+ |n| ≤ 4 (see Fig. 2.57). The left plot of Fig. 2.58 shows phase space

distribution of a Gaussian beam with rms emittance 4.64 πμm sitting on a third order
resonance at νx = 6.33 with G3,0,� = 0.1483 (πm)−1/2 and α = 391 (πm)−1. Beam

density is diluted by the existence of a nearby resonance. Accelerator magnets are

designed to minimize higher order multipoles, and thus higher order resonances are
normally weaker.

Similar experiments of beam loss and stability region in tune space have been car-

ried out in electron analog of the AGS accelerator and the FFA accelerators.84 These
experiments confirm the Kolmogorov Arnold Moser (KAM) theorem: the particle

motion in accelerator is stable and quasi-periodic if the betatron tunes can avoid low
order resonances.

84E.D. Courant, Proc. of the CERN Symposium on High Energy Accelerators and Pion Physics
Vol. 1, p. 257 (CERN, 1956); F. T. Cole, et al., Review of Scientific Instruments 28, 403 (1957).
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Figure 2.58: Left: The final phase
space distribution of a beam with
rms initial emittance 4.6 πμm sitting
at νx = 6.33 near a 3rd order res-
onance with G = 0.1483 (πm)−1/2

and α = 391 (πm)−1. Right: phase
space distribution of the same beam
crossing through the same third or-
der resonance with ramping rate
dνx/dn = 3× 10−5.

The betatron tunes of a rapid cycling accelerator, including cyclotrons, may ramp

through betatron resonances. Emittance of the beam can increase during the passage
of resonances, and particles can also be trapped by resonance islands as the betatron

tune moves away from the resonance. The right plot of Fig. 2.58 shows the phase
space distribution when the betatron tune passes through a third order resonance.

Experimental measurement of emittance growth and beam loss are useful in the
understanding of nonlinear beam dynamics in accelerators. The energy change rate

of FFA accelerators can be very fast because the magnetic field does not change.
Figure 2.59 shows the beam loss and betatron tunes vs time of the Kyoto University

Research Reactor Institute (KURRI) scaling FFA. Beam loss may occur when the
betatron tunes cross resonance lines. Since the orbit of the FFA accelerator moves

across the magnet aperture, the magnetic field multipoles may also change. It requires
detailed magnetic field map to analyze beam loss mechanisms. Note that in this

example the acceleration rate is not particularly fast. Further measurements of the
emittance growth and beam loss vs the beam acceleration rate would be very useful.

Figure 2.59: Movement of
betatron tunes during ramp
(Left) and fractional betatron
tunes and bunch charge vs time
(Right) during the ramp of the
KURRI scaling FFA (see Figs.
22 and 23 in S.L. Sheehy et.
al., Prog. Theor. Exp. Phys.
2016, 073G01 Figs. 22, 23).

B. Tune diffusion rate and dynamic aperture

An off-momentum particle executes synchrotron motion at synchrotron frequency

with Δp/p0 = ˆ(Δp/p0) cosωst, where ωs is the angular synchrotron frequency of

Eq. (2.169). Chromaticity can induce modulation to the betatron phase at the syn-
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chrotron frequency, i.e. ν = ν0+ ˆ(Δν) cosωst. If the chromaticity is large, the betatron
tunes may cross resonances causing emittance growth or particles being carried away

in resonance islands.

Tune modulation can also create overlapping resonances inducing chaos in regions

of phase space where resonances overlap. Particularly, this can occur around the
separatrix orbit. If the chaos is bounded by invariant tori, one may achieve emittance

dilution without beam loss. When betatron tune is modulated, particles trapped
in resonance islands can also be excited and driven out of resonance islands into

separatrix and to an ever increasing amplitude. Such mechanism of particle diffusion
causes emittance dilution and particle loss.85 In most cases, when chaos occur, beam

loss is inevitable and beam lifetime will be reduced.

The dynamic aperture (DA), defined as the maximum phase space boundary that

beam particles can survive within the usable time in accelerators, is normally carried
out by numerical simulations. There are a number of accelerator design and tracking

programs [23, 24, 25]. Particles revolve about 103 − 104 turns in rapid cycling syn-
chrotrons, and up to 1010 turns in storage rings. Normally, the DA numerical tracking

is carry out in 103 to 106 revolutions. Long term tracking is time consuming. Nu-
merical tricks, used in testing the stability vs chaoticity with shorter term tracking,

are Lyapunov exponent and tune diffusion rate.

The Lyapunov exponent measures the growth rate of the distance between two

phase space points, initially infinitesimally small, in a dynamical system, i.e. λ =
1
t
ln(|δY(t)|/|δY(0)|), where |δY(t)| and |δY(0)| are the distances between two adja-

cent particle phase space coordinates at time t and at time t = 0, and λ is called the

Lyapunov exponent. Chaotic phase space region exhibit positive Lyapunov exponent.
In the stable phase space region, the Lyapunov exponent is 0, i.e. the distance is a

linear or a sinusoidal function of time.

The tune diffusion rate is defined as the logarithm of betatron tune distance

between the first half and the second half of a particle tracking simulation, i.e. Dtune =
log10

√
(νx(2)− νx(1))2 + (νz(2)− νz(1))2, where (νx(2), νz(2)) and (νx(1), νz(1)) are

tunes obtained from the frequency map analysis from the second half and the first
half of the particle tracking turns respectively. The tune diffusion rate would be small

at the stable region, and become large near the chaotic or unstable region. Advance
in accelerator physics understanding, numerical simulations becomes a reliable tool

for the design of many accelerators.

85See e.g. A. Gerasimov and S.Y. Lee, PRE 49, 3881 (1994); Y. Wang, et al., PRE 49, 5697
(1994). For controlled emittance dilution see e.g. D. Jeon, et al., PRL 80, 2314 (1998); C.M. Chu
et al., PRE 60, 6051 (1999); S.Y. Lee, K.Y. Ng, Proc. of HB2010, p. 639 (2010).
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C. Space charge effects

The Coulomb force between charged particles in a beam can cause emittance growth

and beam loss. The intrabeam Coulomb scattering (IBS) can produce emittance
growth measured by the IBS parameter of the 6D phase space density. This is a

non-resonance effect, to be discussed in Chapter 4.

The mean field of the Coulomb force can interact with the vacuum chamber and

produce quadrupole field that can change the betatron tunes of the beam, called the
coherent space charge tune shift.86 The mean field of the Coulomb force can also

produce a defocusing force on each particle within the beam. The defocusing force
depends on the particle’s position relative to the beam center; particles at the center

of the beam bunch will experience the largest defocusing force; and particles farther
away from the beam center receive a smaller defocusing force. The effect causes an

“incoherent” space charge tune spread to the beam The strength is measured by the

Laslett tune spread parameter [see Eq. (2.88) and Exercise 2.3.2]. If the tune spread
is large, the betatron tunes will encounter resonances and emittance growth or beam

loss will occur. The space charge spread parameter becomes a key parameter in the
design of low energy synchrotrons. Some space charge resonance effects are listed

below:

Effect of betatron resonances on beam emittances: As shown in Fig. 2.30,

the vertical emittance grew rapidly in a rapid cycling Fermilab Booster synchrotron,
where the space charge tune shift can be larger than 0.5. Based on the envelope modes

of beam oscillation discussed in Sec. III.9, the resonance growth may arise from the
envelope instability at a half-integer tune. However, careful analysis of emittance

evolution data showed that the emittance growth of the Fermilab Booster was mainly
caused by skew quadrupole resonances at νx + νz = � and νx − νz = 0.

Systematic space charge resonances: Since the space charge potential for a
beam with symmetric distribution has terms proportional to x4, x2z2, z4, x6 . . . etc.,

higher order resonances can be important in causing emittance growth, particularly
near the systematic resonances. As an example, we consider a perturbation of x4 or

z4 term. the space charge kicks to particles from FODO cells with 90◦ phase advance
will add up coherently and trap particles in space charge induced resonance islands.
Experimental measurements at KEK PS observed the effect of the 4th order system-

atic resonance on beam distribution.87 Systematic 4th order systematic resonances
are located at 4νx = �, where � is divisible by the accelerator superperiod P .

In recent years, non-scaling FFA accelerators have been considered for high power
proton drivers in applications such as muon-collider, neutrino factory, nuclear waste

transmutation, etc. The betatron tunes of a non-scaling FFA will cross many integer
units, including systematic space charge resonances, such as 4νx = P , 4νz = P ,

86See e.g. M.A. Plum et al., Proc. of PAC 1997, p. 1611.
87S. Igarashi et al., Proc. of PAC2003, p. 2610 (IEEE, NY, 2003)
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6νx = P, · · ·, where P is the superperiod of the accelerator. Simulations have been

carried out to investigate their effects on beam distribution and emittance growth.
Figure 2.60 shows an example of multiparticle simulation demonstrating the emittance

growth and beam distribution in the phase space after passing through a systematic
4th order space charge resonance. More importantly, the emittance growth obeys a

simple scaling law:88 (dν/dn)c = 8.4(Δνsc)
2g exp(31g), where (dν/dn)c is the critical

tune ramp rate, Δνsc is the space charge tune spread of the beam (Exercise 2.3.2),

g is the systematic octupolar resonance strength due to the nonlinear space charge
force.

Figure 2.60: Left plots: The evolution
of the small amplitude betatron tunes
and the normalized emittances vs revo-
lution numbers for a beam with Δνsc =
0.109 while ramping the bare betatron
tunes through the fourth order system-
atic space-charge nonlinear resonance at
4νx = P . The emittance growth dur-
ing the down ramp is much more than
that of up ramp because the space charge
detuning make the tunes stay longer at
the resonance. The betatron tunes of
most accelerators decrease during accel-
eration. Right plots: the normalized
phase-space maps at the end of down
ramp, where the phase space islands de-
cohere into a ring in the phase space.

Simulations and experiments for Linac transport line showed that the 4νx = 1
systematic space charge resonance could produce sizable emittance growth while the

envelope instability is not important.89 These studies further confirmed that the
half-integer stopband and the envelope instability were less important, as discussed

in Sec. III.9.

Tune modulation induced by synchrotron motion: Because of synchrotron

motion, a nonzero off-momentum particle oscillates between the front and the end
of the beam. When the particle reaches the center of the beam, where the linear

current density is highest, the betatron tunes of the particle are highly depressed due
to space charge force. The space charge force can cause betatron tune modulation

with a maximum modulation amplitude of (Δν)sc. This tune modulation still exist
even when the chromaticity is corrected to zero. This tune modulation can also cause

emittance blow-up or drive particles into resonance islands.

88S.Y. Lee, PRL 97, 104801 (2006); S.Y. Lee, et al., New J. Phys. 8, 291 (2006); X. Pang et al.,
Proceedings of HB2008 (http://accelconf.web.cern.ch/AccelConf/HB2008/papers/wega21.pdf).

89D. Jeon et al., PRSTAB 12, 054204 (2009). L. Groening et al., PRL 102, 234801 (2009).
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Exercise 2.7

1. Show that the 3νx = � resonance strength is given by Eq. (2.232) in the first-order
perturbation approximation. Show that, for systematic resonances, G3,0,� = 0 if � �= 0
(Mod P ), where P is the superperiodicity of the machine. Show that the resonance
strength of the third-order resonance at 3νx = � due to two sextupoles at s1 and s2
is proportional to

[βx(s1)]
3/2 [K2(s1)Δs] + [βx(s2)]

3/2 [K2(s2)Δs] ej[3ψ21−(3νx−�)Δθ],

where ψ21 =
∫ s2
s1

ds/βx is the betatron phase advance, Δθ = (s2 − s1)/R0, and
R0 is the average radius of the accelerator. Show that, at the 3νx = � resonance,
the “geometric aberrations” of these two sextupoles cancel each other if ψ21 = π

and [βx(s1)]
3/2 [K2(s1)Δs] = [βx(s2)]

3/2 [K2(s2)Δs] . The geometric aberration of two
identical chromatic sextupoles located in the arc of FODO cells separated by 180◦ in
phase advance cancel each other.

2. Near a third-order coupling difference resonance at νx−2νz = �, where � is an integer,
the Hamiltonian can be approximated by

H = νxJx + νzJz + gJ1/2
x Jz cos(φx − 2φz − �θ + ξ),

i here νx, νz are the betatron tunes, g = G1,−2,� > 0 and ξ = ξ1,−2,� of Eq. (2.233) are
the effective resonance strength and phase, and (Jx, φx, Jz, φz) are the horizontal and
vertical action-angle coordinates.

(a) Using the generating function

F2(φx, φz, J1, J2) = (φx − 2φz − �θ + ξ)J1 + φzJ2,

transform the phase-space coordinates from (Jx, φx, Jz , φz) to (J1, φ1, J2, φ2) of
the resonance rotating frame, and show that the new Hamiltonian becomes

H̃ = H1 +H2,

H1(J1, φ1) = δ1J1 + gJ
1/2
1 (J2 − 2J1) cos φ1, H2(J2, φ2) = νzJ2,

where δ1 = νx− 2νz − � is the resonance proximity parameter. Since the Hamil-
tonian H̃ is independent of ”time” or θ, the Hamiltonian is a constant of motion.
In the resonance rotating frame, the equation of motion is given by

φ̇1 =
∂H

∂J1
, J̇1 = − ∂H

∂φ1
; φ̇2 =

∂H

∂J2
, J̇2 = − ∂H

∂φ2
.

Show that 2Jx + Jz is also a constant of motion.

(b) In passing through the resonance for a particle with an initial Jx0 and Jz0, the
particle has a constant J2 = 2Jx0+Jz0. The resonance can cause exchange of Jx
and Jz, while maintaining a constant J2 = 2Jx + Jz. Particle motion depends
essentially only on the Hamiltonian H1. Show that the unstable fixed points
(UFP) of the Hamiltonian H1 are located at

(
J1,ufp =

J2
2
, φ1,ufp = arccos (ξ)

)
, where ξ ≡ δ1

g
√
2J2

with |ξ| ≤ 1.
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Bifurcation occurs at |ξ| = 1. The UFPs do not exist at |ξ| > 1. The separa-
trix is the Hamiltonian flow passing through the UFP. Show that the UFP is√
2J1 cosφ1 = ξ · J2, which is a line cut through the phase space ellipse circle

of 2J1 = J2. At the UFP, J̇1 = 0 and φ̇1 = 0, particles take long time to move
away from it. The particle frequency map may appears to lock on the coupling
line in the tune space. However, the instantaneous tune can vary widely around
the resonance line.

(c) Show that the stable fixed points (SFP) of the Hamiltonian H1 are

√
J1,sfp =

1

6g

{
±δ1 +

√
δ21 + 6g2J2

}
, (φ1 = 0and π respectively).

We can express the SFP as:

√
2J1,sfp
J2

=
1

3

{
±η +

√
η2 + 3

}
, with η =

δ1

g
√
2J2

.

Two SFPs are inside the the Courant-Snyder (CS) circle at |η| ≤ 1 on each
side of the coupling line. At δ1 = 0, the SFP is located at a radius 1√

3
from

the the origin inside the Courant-Snyder circle. At |δ1| > g
√
2J2, we note

that its SFP is not zero, i.e. there is still Jx and Jz exchange such that J2 is
constant! An example of the Poincaré maps of 10 particles in a beam, plotted
in every 5 revolutions for 1500 revolutions in the resonance rotating frame:
X =

√
2βxJ1 cosφ1 and P = −√

2βxJ1 sinφ1 is shown in the Figure below. The
proximity parameters are δ = +0.001, 0, and −0.001 respectively. At δ =, the
resonance line cut through the middle of the beam phase space. The resonance
strength is g = 0.42 (m−1/2). When the resonance line cut through the beam,
particle phase space map changes. Since these particles have different Jx and
Jz , their Poincaré maps may appear to cross each other in 1-D projection, where
the resonance line and the SFPs depend on J2 is the particle.

(d) Since the beam in isochronous cyclotrons may encounter or cross the sextupo-
lar coupling resonance (called Walkinshaw resonance), we examine the effects
of crossing this resonance. The beam emittance obeys the conservation law:
2�x + �z = constant. The beam distribution function of a 2D-Gaussian beam is
ρ(Jx, Jz) =

1
�x�z

exp{Jx
�x

+ Jz
�z
}, which is a function of Jx

�x
+ Jx

�x
. Expressing the

distribution function in J1 and J2, show that ρ(J1, J2) is independent of J1 if
�z = 2�x. This means that there is no emittance exchange in passing through
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the resonance when the emittances obey �z = 2�x.
90 Any beam distribution

that depends on Jx
�x

+ Jx
�x
, e.g. KV beam distribution of Eq. (2.71), will have a

similar conclusion, i.e. when a beam with �z = 2�x passes through a Walkinshaw
resonance, there is no emittance exchange. A beam in the presence of quantum
fluctuation and dissipation will also reach this equilibrium emittance condition.

3. Near a sum resonance at νx + 2νz = �, the Hamiltonian can be approximated by

H = νxJx + νzJz + gJ1/2
x Jz cos(φx + 2φz − �θ + ξ),

where νx, νz are betatron tunes, g = G1,+2,� and ξ = ξ1,2,� are the effective resonance
strength and phase of Eq. (2.233), and (Jx, φx, Jz, φz) are horizontal and vertical
action-angle phase-space coordinates. Discuss the difference between the sum and
difference resonances.

4. In general, betatron motion in storage rings can encounter many nonlinear resonances.
Normally only low-order resonances are important. If the betatron tune of the ma-
chine is chosen such that mνx + nνz ≈ �, where m > 0, n, and � are integers, the
Hamiltonian can be approximated by

H = H0(Jx, Jz) + gJ |m|/2
x J |n|/2

z cos(mφx + nφz − �θ + ξ) + ΔH.

This is called a sum resonance if mn > 0, and a difference resonance if mn < 0.
Here g and ξ are the resonance strength and phase. Neglecting the perturbing term
ΔH that includes contributions from other resonances, derive the invariants of the
approximated Hamiltonian.

Transform the phase-space coordinates from (Jx, φx, Jz , φz) to (J1, φ1, J2, φ2) by using
the generating function

F2(φx, φz, J1, J2) = (mφx + nφz − �θ + ξ)J1 + φzJ2,

and find the new Hamiltonian. Show that the new Hamiltonian is a constant of
motions, and show that the action J2 is invariant, i.e. nJx−mJz = constant. Discuss
the difference between the sum and the difference resonances.

5. The Hamiltonian (2.242) can be transformed to a “time independent” or “resonance
rotating” form:

H = δJ +
1

2
αJ2 +GJ2 cos 4ψ,

where J = Jx, ψ = ψx − �
4θ+

ξ
4 , α = αxx, G = G4,0,� > 0, ξ = ξ4,0,� and δ = νx − �

4 is
the resonance proximity parameter.

(a) Show that the stable and unstable fixed points of the Hamiltonian are

α > 0 and δ < 0 :

⎧
⎪⎨
⎪⎩

JSFP = − δ

α− 2G
, ψSFP =

π

4
,
3π

4
,
5π

4
,
7π

4
for α > 2G

JUFP = − δ

α+ 2G
, ψUFP = 0,

π

2
, π,

3π

2

α < 0 and δ > 0 :

⎧⎪⎨
⎪⎩

JUFP = − δ

α− 2G
, ψUFP =

π

4
,
3π

4
,
5π

4
,
7π

4

JSFP = − δ

α+ 2G
,ψSFP = 0,

π

2
, π,

3π

2
for |α| > 2G

90S.Y. Lee, K.Y. Ng, H. Liu, and H.C. Chao, PRL 110, 094801 (2013).
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Note that stable 4th order resonance islands exists only if |α| > 2G. If the Stable
resonance islands exist, we have JSFP > JUFP. The actions of both fixed points
are proportional to the proximity parameter δ. To estimate the resonance width,
we set Jx,UFP = JUFP = 6�rms. The betatron tune width of unstable motion is
resonance width: Δν4,width = 6(|α| + 2|G|)�rms.

(b) The separatrix is obtained by setting H = H(ψUFP, JUFP):

δJ +
1

2
αJ2 +GJ2 cos 4ψ =

⎧
⎪⎪⎨
⎪⎪⎩

− δ2

2(α− 2G)
if α > 0 and δ < 0

− δ2

2(α+ 2G)
if α < 0 and δ > 0

for |α| > 2G > 0. Show that the area of 4th order resonance islands is

4

� π/4

−π/4
J(ψ)dψ =

8 | − δ|�
(α− 2G)(α + 2G)

tan−1

�
|4G|

α+ 2G
.

Furthermore, if we define the phase space coordinates: (X =
√
J cosψ, P =√

J sinψ), the separatrix can be decomposed into two ellipses:

A

�
(B +

�
B2 − 1)X2 + P 2 +

δ

A(B + 1−√
B2 − 1)

�
×

�
(B −

�
B2 − 1)X2 + P 2 +

δ

A(B + 1 +
√
B2 − 1)

�
= 0,

where A = 1
2α+G, B = (α− 6G)/2A. The UFPs are intersections of these two

ellipses.

6. The Hamiltonian in the action-angle variables near a single resonance (mν = �) can
be approximated by

H = νJ +
1

2
αJ2 +GJm/2 cos(mφ− �θ + ξ),

where J and φ are the conjugate action-angle variables for the betatron oscillations,
θ is the orbital angle serving for the time coordinate, ν is the betatron tune (either
horizontal or vertical), α is the nonlinear betatron detuning parameter arising from

higher order multipoles, G in unit of (πm)−(m−2)/2 and ξ are the resonance strength
and phase of the 1D resonance at mν = � with integer m and �.

(a) Using the generating function, F2 = (φ− �
mθ + ξ

m)I, show that the new Hamil-
tonian is

H̃ = δI +
1

2
αI2 +GI

m
2 cosmψ.

where the new action-angle coordinates are I = J and ψ = φ − �
mθ + ξ

m , and

δ = ν − �
m is the proximity of the betatron tune to the resonance line.

(b) Show that the fixed points (Ifp, ψfp) of the Hamiltonian are

sinmψfp = 0, and δ + αIfp ± m

2
GI

m
2
−1

fp = 0.
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(c) In particle accelerators, the betatron tunes may be time dependent due to
quadrupole current supply ripple. With a small tune modulation, the param-
eters α and G do not vary appreciably. Show that the equation for the phase
oscillations becomes,

ψ̈m + F sinψm = mδ̇,

where ψm = mψ signifies the island phase angle and F is the spring constant
for the phase oscillation given by

F =
m3

2
EGI

m
2
−2 +

m2

4
(m− 4)αGI

m
2 .

(d) Using Hamilton’s equation, show that the actual island tune ν̃island of a given
torus is

ν̃island = 2πm

[∮
dI

(G2Im − [E − δI − 1
2αI

2]2)1/2

]−1

.

The small amplitude island tune is
√
F=m

2

[
2mEsfpGI

m
2
−2

sfp +(m−4)αGI
m
2
sfp

]1/2
.

(e) When the resonance strength G is small, the resonance island is small. The reso-
nance Hamiltonian above can be approximated by H ≈ 1

2α(I−Ir)
2+g cos(mψ),

where Ir ≈ |δ/α| is the resonance action, g ≈ GI
m/2
r ≈ G(|δ/α|)m/2 is the effec-

tive resonance strength. The equations of motion of this Hamiltonian resemble
Eqs. (2.167) and (2.168) of the synchrotron motion. It has m resonance islands.
Show that the small amplitude island tune, the island width, and the total phase
space area of m islands, in the unit of (πm), are

νisland = m
√
αg, ΔI = 4

√
g/α,

A =
16

π

√
|g/α| ≈ 16

π
|G1/2δm/4α−(m+2)/4|.

7. Near an integer tune, the Hamiltonian Eq. (2.231) can be approximated by

H = νJ + gJ3/2 cos(φ− �θ + ξ),

where J and φ are the conjugate action-angle variables for the betatron oscillations,
θ is the orbital angle serving for the time coordinate, ν is the horizontal betatron
tune, g = |g1,0,3,0,�| and ξ are the resonance strength and phase given in Eq. (2.232).
Using the generating function, F2 = (φ − �θ + ξ)I, we find the new Hamiltonian in
the “resonance rotating frame” as

H̃ = δI + gI
3
2 cosψ.

where the new action-angle coordinates are I = J and ψ = φ− �θ + ξ, and δ = ν − �
is the proximity of the betatron tune to the resonance line.

(a) Show that the fixed point of the Hamiltonian is J
1/2
UFP =

∣∣2
3w

∣∣ and ψUFP = 0 for
δ < 0 and ψUFP = π for δ > 0. where w = δ/g.
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(b) Show that the separatrix is given by the Hamiltonian Torus

H̃ = δI + gI
3
2 cosψ = − 4

27
|δ|w2

If one define theX =
√
J cosψ and P = −√

J sinψ, the separatrix orbit becomes

P 2 =
1

w ± x

(
X2 ± wX2 +

4

27
w3

)
=

1

w ± x

(
X ∓ 1

3
w

)(
X − 2

3
w

)2

(c) Explain the difference between the nonlinear integer resonance above and the
linear integer resonance of Sec. III.1, where the Hamiltonian can be approxi-
mated by

H = νJ + gJ1/2 cos(φ− �θ + ξ).

Transform the coordinates to the resonance rotating frame, the new Hamiltonian
becomes H̃ = δI+gI1/2 cosψ, where I = J , ψ = φ−�θ+ξ, and δ = ν−�. Define
X =

√
I cosψ and P = −√

I sinψ, show that the betatron motion becomes

(X −Xco)
2 + P 2 = E/δ +X2

co

where the “closed orbit” is Xco = −g/[2δ] and E is the value of the Hamiltonian

H̃. Let g = νf�/
√
2, where f� is the stopband integral of Eq. (2.94), show that

Xco is equal to xco/
√
2βx of Eq. (2.96) in the single stopband approximation.

8. Canonical Perturbation method: The 1D resonance Hamiltonian of (2.231) due
to sextupoles can be approximated by

H = νxJx +G3J
3/2
x cos(3φx − �3θ) + g1J

3/2
x cos(φx − �1θ),

where G3 = G3,0,�1 and g1 = g1,0,3,0,�1 with phases ξ3,0,� = 0 and ξ1,0,3,0,�1 = 0.
Examples of these 1D resonances are shown in Fig. 2.51 for 3νx ∼ �3 = 11 and

νx ∼ �1 = 4 for the Exercise 2.7.7. Using Eq. (2.232), we find G3 =
√
2

24πβ
3/2
x (K2Δ�)

and g1 = 3G3, where K2Δ� is the integrated sextupole strength. The example shown
in Fig. 2.51 gives G = 0.8388 (πm)−1/2, and g1 = 3G3 for βx = 20 m and K2Δ� = 0.5
m−2. We would like use this example to illustrate the combination of 3νx = �3 and
νx = �1 resonances can produce a combined resonance 3νx + νx = �3 + �1 or 4νx = 15
resonance of shown in Fig. 2.54. Consider the canonical transformation:

F2(φx, J) = φxJ +B3(J) sin(3φx − �3θ) +B1(J) sin(φx − �1θ).

The coordinates are transformed according to:

φ = φx +B�
3(J) sin(3φx − �3θ) +B�

1(J) sin(φx − �1θ)

Jx = J + 3B3(J) cos(3φx − �3θ) +B1(J) cos(φx − �1θ).

or

Δφ = φx − φ ≈ −B�
3 sin(3φ− �3θ)−B�

1 sin(φ− �1θ)

−3B�
3 cos(3φ − �3θ)

[
B�

3 sin(3φ− �3θ) +B�
1 sin(φ− �1θ)

]

−B�
1 cos(φ− �1θ)

[
B�

3 sin(3φ− �3θ) +B�
1 sin(φ− �1θ)

]
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ΔJ = Jx − J ≈ +3B3 cos(3φ − �3θ) +B1 cos(φ− �1θ)

+9B3 sin(3φ − �3θ)
[
B′

3 sin(3φ − �3θ) +B′
1 sin(φ− �1θ)

]

+B1 sin(φ− �1θ)
[
B′

3 sin(3φ− �3θ) +B′
1 sin(φ− �1θ)

]
∂F2

∂θ
≈ −�3B3 cos(3φ− �3θ)− �1B1 cos(φ− �1θ)

+3�3B3 sin(3φ− �3θ)
[−B′

3 sin(3φ− �3θ)−B′
1 sin(φ− �1θ)

]

+�1B1 sin(φ− �1θ)
[−B′

3 sin(3φ− �3θ)−B′
1 sin(φ− �1θ)

]
.

Let C3 = cos(3φ − �3θ), S3 = sin(3φ − �3θ), C1 = cos(φ − �1θ), S1 = sin(φ − �1θ),
3δ3 = 3νx − �3, δ1 = νx − �1, the transformed Hamiltonian becomes

H̃ = νxJ + 3δ3B3C3 + δ1B1C1 + 9δ3B3S3

[
B′

3S3 +B′
1S1

]
+ δ1B1S1

[
B′

3S3 +B′
1S1

]

+G3J
3/2(1 +

3

2J
ΔJ)(C3 − 3S3Δφ) + g1J

3/2(1 +
3

2J
ΔJ)(C1 − S1Δφ)

Now, we choose B3 and B1 to cancel the first order terms:

B3 = −G3J
3/2

3δ3
, B1 = −g1J

3/2

δ1
, B′

3 = −3G3J
1/2

6δ3
, B′

1 = −3g1J
1/2

2δ1
.

Take the “time” average to obtain �C3C3� = 1
2 �S3S3� = 1

2 , �C1C1� = 1
2 , �S1S1� = 1

2 .
Finally collect terms that drive the 4νx = �1 + �3 resonance and obtain

H̃ ≈ νxJ +
1

2
αJ2 +

[
G4J

2 + g4,0,6,0J
3
]
cos[4νx − (�1 + �3)θ] + · · · .

Using δ1 ≈ −0.25, 3δ3 ≈ 0.25, g1 = 3G3, we find

α ≈ +36G2
3, G4 ≈ 18G2

3, g4,0,6,0 = −972G4
3.

For a single sextupole, the strengths of all resonances at different �3 or � − 1 are
identical. Including these �1 and �3 terms in the Hamiltonian, one can sum up all
terms to give α → π

4α and G4 → π
4G4, where

π
4 = 1 − 1

3 + 1
5 − 1

7 + · · ·. Our results
can be summarized as follows.

• The detuning parameter in the second order perturbation is positive, α > 0, the
resonance islands appears in νx < 3.75 for the 4th order resonance and νx < 3.8
for the 5th order resonance in Fig. 2.54.

• Since G4 = 1
2α, the stable fixed points should not exist as discussed in Exer-

cise 2.7.5. However, Fig. 2.54 shows clearly the existence of 4 resonance islands.
The term g4,0,6,0 reduces the effective resonance strength to guarantee the ex-
istence of resonance islands, and gives rise to non-symmetric islands. Because
α � 2G4, we find JSFP � JUFP.

The 5th order resonance in Fig. 2.54 arises from a higher order term in the above
canonical perturbation expansion as a combination of 3νx = �3, νx = �1, and νx = �1
resonances, i.e. a resonance at 5νx = �3 + �1 + �1.
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VIII Collective Instability and Landau Damping

So far we have discussed only single-particle motion in synchrotrons, where each
particle can be described by a simple harmonic oscillator. In reality, a circulating

charged particle beam resembles an electric circuit, where the impedance plays an

important role in determining the induced voltage on circulating current. Likewise,
the impedance of an accelerator is related to the voltage drop with respect to the

motion of charged particle beams. The impedance is more generally defined as the
Fourier transform of the electromagnetic waves induced by the passing charged par-

ticle beam, called wakefield. The induced electromagnetic field can, in turn, impart
a force on the motion of each individual particle. Thus, particle motion is governed

by the external focusing force and the wakefield generated by beams, and the beam
distribution is determined by the motion of all particles. A self-consistent distribution

function may be obtained by solving the Poisson-Vlasov equation.

Particle motion in an accelerator is classified into the transverse betatron motion
and the longitudinal synchrotron motion. Wakefields are also classified into trans-

verse or longitudinal modes. Likewise, the impedance is classified as longitudinal
or transverse respectively. The effect of longitudinal impedance will be discussed

in Chap. 3, Sec. VII. Here, we discuss some basic aspects of transverse collective
beam instabilities and Landau damping. For a complete treatment of the subject, see

Ref. [5, 6, 7]. In Sec. VIII.1, some properties of impedance are listed. In Sec VIII.2

we discuss transverse wave modes, where waves are classified as fast, backward, or
slow waves. In Sec. VIII.3, we will show that a slow wave can become unstable in a

simple impedance model. Landau damping and dispersion relation will be discussed
in Sec. VIII.4.

VIII.1 Impedance

The impedance that a charged-particle beam experiences inside a vacuum chamber

resembles impedance in a transmission wire. For beams, there are transverse and
longitudinal impedance. The longitudinal impedance has the dimension ohm, and by

definition, is equal to the voltage drop per revolution in a unit beam current. The
corresponding energy loss per revolution is equal to the voltage drop times the charge

of a particle. The transverse impedance is related to the transverse force on betatron
motion, and has a dimension of ohm/meter.

The transverse impedance arises from accelerator components such as the resistive

wall of vacuum chamber, space charge, image charge on vacuum chamber, broad-band
impedance due to bellows, vacuum ports, and BPMs, and narrow-band impedance

due to high-Q resonance modes in rf cavities, septum and kicker tanks, etc. Without

deriving them, we list these impedance as follows.
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A. Resistive wall impedance

The transverse resistive wall impedance for a cylindrical vacuum chamber with radius

b is related to the longitudinal resistive wall impedance via Panofsky-Wenzel theorem.
With Eq. (3.290) for a vacuum chamber circumference 2πR, the transverse resistive

wall impedance is91

Z⊥,rw(ω) =
2c

b2
Z�,rw
ω

= (1 + j sgn(ω))
2Rc

b3σcδskin

1

ω
, (2.246)

where c is the speed of light, δskin =
√

2/(σcμc|ω|) is the skin depth of electromagnetic

wave in metal, σc is the conductivity of the vacuum chamber materials, μc is the
permittivity in the vacuum chamber, ω is the wave frequency, and sgn(ω) is the sign

function of the frequency ω.

B. Space-charge impedance

Let a be the radius of a uniformly cylindrical distributed beam inside a cylinder
vacuum chamber of radius b. Let x0 be an infinitesimal displacement from the center

of the cylindrical vacuum chamber. The resulting beam current density is

i(r, φ) =
I0
πa2

Θ(a− r) +
I0x0 cosφ

πa2
δ(r − a), (2.247)

where Θ(x) = 1 if x ≥ 0 and 0 otherwise, δ(x) is the Dirac δ-function, and φ is the
angle measured from the x-axis. Here, the first term is unperturbed beam current,

and the second term arises from an infinitesimal horizontal beam displacement. The
perturbing current is a circular current sheet with cosine-theta current distribution.

Using the result of Exercise 1.9, we find the induced dipole field inside the beam
cross section to be ΔBz,b = μ0I0x0/2πa

2. Similarly the induced image current is (see

Exercise 1.16) Iw = −(I0x0 cos φw/πb
2)δ(r − b), and the induced dipole field due to

the image wall current is ΔBz,w = −μ0I0x0/2πb
2. The total induced vertical dipole

field due to the beam displacement is ΔBz =
μ0I0x0

2π

(
1
a2

− 1
b2

)
, and, by definition, the

resulting impedance per unit length become

Z⊥,mag = j
βcΔBz

βI0x0

= j
Z0

2π

(
1

a2
− 1

b2

)
,

where βc is the velocity of the beam, and Z0 = μ0c is the vacuum impedance. Sim-

ilarly, the impedance due to the electric field is Z⊥,elec = −j Z0

2πβ2

(
1
a2

− 1
b2

)
, and the

resulting total impedance in one revolution becomes

Z⊥,sc = −j
RZ0

β2γ2

(
1

a2
− 1

b2

)
, (2.248)

91The imaginary number j = −i in engineering convention is used throughout this textbook. Here,
the resistive wall impedance consists of a resistive and an inductive component.
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where a is the beam transverse radius, b is beam-pipe radius, R is the average radius

of accelerator, and γ is the Lorentz relativistic factor. Because of the β2γ2 factor in
the denominator, the space-charge impedance is important for low energy beams.

Note that the space charge impedance is capacitive because the beam radius a is
less than the vacuum chamber radius b. However, when the oscillatory amplitude x0

is large, the perturbation current of Eq. (2.247) is invalid, and the self space-charge
force term may disappear. The remaining space charge impedance is the image current

term, which is inductive.

C. Broad-band impedance

All vacuum chamber gaps and breaks, BPMs, bellows, etc., can be lumped into a
term called broad-band impedance, which is usually assumed to take the form of a

RLC circuit:

Z⊥,bb =
2c

b2
Z�,bb
ω

=
2c

b2ω

Rs

1 + jQ (ω/ωr − ωr/ω)
, (2.249)

where Q ≈ 1 is the quality factor, Rs is the shunt resistance, ωr ≈ (R/b)ω0 is the cut-
off frequency of vacuum chamber, R is the average radius of accelerator, and b is the

beam pipe radius. The space-charge impedance can be considered as a broad-band
impedance because it is independent of wave frequency.

D. Narrow-band impedance

Narrow-band impedance is usually represented by a sum of Eq. (2.249), where the
corresponding Q-factor is usually large. Narrow-band impedance may arise from

parasitic rf cavity modes, septum and kicker tanks, vacuum ports, etc.

E. Properties of the transverse impedance

When the beam centroid is displaced from the closed orbit, the motion can be ex-
pressed as a dipole current. The dipole current will set up a wakefield that acts on

the beam. The transverse impedance of a ring is

Z⊥(ω) ≡ j

eβI0�y�
∮

F⊥ds =
j

I1β

∮
( �E+�v× �B)⊥ds =

jC

β

∫
W⊥(τ) e−jωτ dτ, (2.250)

where I1 = I0�y� is the dipole current, �y� is the centroid of the beam in the betatron

motion, and C is the circumference of the accelerator. The imaginary number j
included in the definition of the impedance is needed to conform a real loss for a real

positive resistance. This occurs because the driving force is leading the dipole current
by a phase of π/2. The factor β in the denominator is included by convention. The

wake function is related to the impedance with the causality condition by

W⊥(t) = −jβ

2π

∫ ∞

−∞
Z⊥(ω)ejωtdω with W⊥(t) = 0 (t < 0). (2.251)
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Thus, the impedance can not have singularities in the lower half of the complex ω

plane; however, it may have poles in the upper half plane. For example, the impedance
of RLC resonator circuit in Eq. (2.249) has two poles located at

ω = ωr

[
±
√

1− (1/2Q)2 + j(1/2Q)
]
. (2.252)

The analytic properties of impedance provide us with the Kramer-Kronig relation,

i.e. the real and imaginary parts are related by a Hilbert transform

ReZ⊥(ω) = −1

π

∫

P.V.

dω� ImZ⊥(ω�)
ω� − ω

, (2.253)

ImZ⊥(ω) =
1

π

∫

P.V.

dω�ReZ⊥(ω�)
ω� − ω

, (2.254)

where P.V. means taking the principal value integral. Since the wake function is real,

the impedance at a negative frequency is related to that at a positive frequency by
Z⊥(−ω) = −Z∗

⊥(ω), or

ReZ⊥(−ω) = −ReZ⊥(ω), ImZ⊥(−ω) = +ImZ⊥(ω). (2.255)

Thus the real part of the transverse impedance is negative at negative frequency.
To summarize, various components of the transverse impedance Z⊥(ω) are schemat-

ically shown in Fig. 2.61, where the real part of the impedance is an odd function of
ω, and the imaginary part is an even function.

Figure 2.61: A schematic drawing of
the transverse broad-band and narrow-band
impedance. The real parts are shown as solid
lines and the imaginary parts as dashed lines.
A broad-band and a narrow-band impedance
are represented by peaks in the real parts.
The resistive wall impedance is important in
the low-frequency region, and the space-charge
impedance is independent of frequency.

VIII.2 Transverse Wave Modes

A coasting (DC) beam is defined as a beam made of particles continuously fill accel-
erator. The transverse coordinate at any instant of time is

y(t0, θ) =
∞∑

n=−∞
yne

−jnθ, (2.256)
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where θ is the orbiting angle, and n is the mode number. At a fixed azimuth angle

θ0, the betatron oscillation of the transverse motion is

y(t, θ0) =
∞�

n=−∞
yne

j(Qω0t−nθ0), (2.257)

where Q is the betatron tune, and ω0 is the angular revolution frequency. Since

θ = θ0 + ω0t, the nth mode of transverse motion and its angular phase velocity are

y(t, θ) = yne
j[ (n+Q)ω0t−nθ ],

θ̇n,w =

�
1 +

Q

n

�
ω0. (2.258)

There are three possible transverse wave modes: the fast wave, the backward wave,
and the slow wave. The corresponding angular phase velocity is

θ̇n,w =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�
1 +

Q

n

�
ω0, if n > 0 : fast wave

−
�

Q

|n| − 1

�
ω0, if n < 0 and |n| < Q : backward wave

�
1− Q

|n|
�
ω0, if n < 0 and |n| > Q : slow wave.

(2.259)

The phase velocity of a fast wave is higher than the particle velocity, that of a slow
wave is slower than the particle velocity, and a backward wave travels in the back-

ward direction. The signal picked up at a transverse beam position monitor (BPM)
is composed of frequencies located at |n + Q|ω0 (n integer), sidebands of rotation

harmonics nω0. Figure 2.62 shows a schematic drawing of a transverse beam spectra

for a betatron tune of 3.2.

Figure 2.62: Top: a schematic drawing
of transverse beam spectra for a beam
with betatron tune 3.2, showing all side-
bands (n + ν)ω0. The observed spectra
|(n+ ν)|ω is shown at the bottom plot.

VIII.3 Effect of Wakefield on Transverse Wave

In a global sense, the betatron motion is well approximated by simple harmonic

motion. Let yk be the horizontal or vertical transverse betatron displacement of the
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kth particle, and let Qkω0 be the corresponding angular frequency of betatron motion.

The equation of motion in the presence of a wakefield can be expressed as a force
oscillator equation:

ÿk + (Qkω0)
2yk =

F⊥(t)
γm

, F⊥(t) = −j
eβIZ⊥
2πR

�y�, (2.260)

where the overdot corresponds to the derivative with respect to time t, m is the mass,

γ is the Lorentz relativistic factor, and R is the mean radius of the accelerator. The
time-dependent transverse electromagnetic force F⊥ comes from Eq. (2.250) due to a

broad-band impedance, Z⊥.
If beam particles encounter collective instability of mode n, and execute collective

motion with a coherent frequency ω, we have

yk = Yk e
j(ωt−nθ), (2.261)

ẏk =
∂yk
∂t

+ θ̇
∂yk
∂θ

= j(ω − nω0)yk, ÿk = −(ω − nω0)
2yk,

where n is the mode number, and Yk is the amplitude of collective motion for the kth

particle. Substituting into Eq. (2.260), we obtain

�
(Qω0)

2 − (ω − nω0)
2
�
yk = −j

eβIZ⊥
2πRγm

�y�. or

(ω − ωn,w) yk = j
eβIZ⊥

4πRγmQω0
�y�, (2.262)

ωn,w = (n +Q)ω0, with

⎧
⎨
⎩

n > 0 fast wave,
n < 0, |n| < Q backward wave,
n < 0, |n| > Q slow wave.

where �y� =
�
ρ(ξ) yk dξ is the centroid of the beam, ρ(ξ) is the normalized beam

distribution function with
�
ρ(ξ)dξ = 1, ξ represents a set of parameters that de-

scribe the dependence of the betatron tune on its amplitude, ωn,w is the mode wave

frequency, and we have used the relation ω−nω0+Qω0 ≈ ωn,w−nω0+Qω0 = 2Qω0.
The real part of the slow wave frequency ωn,w is negative. Averaging over the beam

distribution, we obtain a dispersion relation for the collective frequency ω

1 = j(V + jU)

�
ρ(ξ)

ω − ωn,w(ξ)
dξ, V + jU =

eβIZ⊥
4πRγmQω0

, (2.263)

where U and V parameters are the scaled impedance with V is related to growth

rate, and U is related to collective frequency shift.
The set of parameters ξ represents any variables that ωn,w and the beam distri-

bution function depend on. Since betatron tunes depend on betatron amplitudes

due to space-charge force, sextupoles, and other higher-order magnetic multipoles,
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the betatron amplitude can serve as a ξ parameter. Since Q and ω0 depend on the

off-momentum parameter δ = Δp/p, δ can also be chosen as a possible ξ parameter.
We assign the fractional off-momentum coordinate as a ξ parameter. The depen-

dence of the coherent frequency on the off-momentum variable δ is

ωn,w = ωn,w0 + [Cy − nη]ω0 δ. (2.264)

where η is the phase-slip factor and Cy is the chromaticity, A beam is made of

particles with different off-momentum δ and thus a spread in the coherent frequencies.
However, the wave frequency spread vanishes at mode number

n0 =
Cy

η
. (2.265)

At this mode, the revolution frequency shift is canceled by the betatron frequency

shift for all particles with different off-momentum δ, i.e. no mode frequency spread.
Since ωn,w = ωn0,w0, the solution of the dispersion relation in Eq. (2.263) is ω =

ωn0,w0 − U + jV , where U , proportional to the imaginary part of the impedance,
produces frequency shift, and V , related to the real part of the impedance, can

generate collective beam instability if V < 0. For a slow wave with n0 = Cy/η < 0

and |n0| > Q, we find ωn0,w0 < 0, where Zreal
⊥ < 0. The beam may become unstable

against transverse collective instability. Here we discuss the modes of coasting beams.

The frequency n0ω0 in a bunched-beam is the betatron frequency shift from the bunch
head to tail (see Exercise 3.2.14).

A. Beam with zero frequency spread

For a beam with zero frequency spread, i.e. ρ(ξ) = δ(ξ − ξ0), we obtain

ω = ωn,w0 − U + jV. (2.266)

The imaginary part of impedance gives rise to a frequency shift, and the resistive part
generates an imaginary coherent frequency ω. If the imaginary part of the coherent

frequency is negative, the betatron amplitude grows exponentially with time, and the
beam encounters collective instability.

For fast and backward waves, ωn,w0 is positive. The real part of the impedance
Z⊥(ω) is positive (see Fig. 2.61), thus the imaginary part of the coherent frequency is

positive, and there is no growth of collective instability. On the other hand, the col-

lective frequency ωn,w0 of a slow wave is negative, where the real part of the transverse
impedance is negative. Since the imaginary part of collective frequency is negative, a

beam with zero frequency spread can suffer slow wave collective instability.

Re [ωcoll] = ωn,w0 − U, Im [ωcoll] = V.
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B. Beam with finite frequency spread

With parameters U and V , the dispersion relation for coherent dipole mode frequency

ω becomes

(−U + jV )−1 =

∫
ρ(ξ)

ω − ωn,w(ξ)
dξ. (2.267)

The solution of the dispersion relation corresponds to a coherent eigenmode of collec-
tive motion. If the imaginary part of the coherent frequency is negative, the amplitude

of the coherent motion grows with time. On the other hand, if the imaginary part of
each eigenmode is positive, coherent oscillation is damped. The threshold of collective

instability can be obtained by finding the solution with ω = ω − j|0+|, where 0+ is
an infinitesimal positive number. The remarkable thing is that there are solutions of

real ω even when −U + jV is complex.
In general, the growth rate can be solved from the dispersion integral with known

impedance and distribution function. Similarly, for a given growth rate, the disper-

sion relation provides a relation between U(ω) vs V (ω). If the distribution function
is symmetric in betatron frequency, the U vs V contour plot will have reflection sym-

metry with respect to the V axis. For any beam distribution ρ(ξ) that does not have
infinite tails, the threshold curve contains two straight vertical lines lying on the U

axis. This means that if the coherent frequency shift is beyond the distribution tails,
the beam can be, but may not necessarily be, unstable against collective instability,

and the growth rate is proportional to the real part of the impedance.

C. A model of collective motion

We consider a macro-particle model of a beam with �Y � = ∑
ρkYk, where ρk is the

distribution function with
∑

ρk = 1. In matrix form, Eq. (2.262) becomes

[ω − ωn,w(k)]Yk = W
∑
i

ρiYi, (2.268)

where W = −U + jV for a broad-band impedance. If ωn,w(k) = ωn,w0 is independent
of k, i.e. no frequency spread, the collective frequency is trivially given by92

ωcoll = ωn,w0 +W, (2.269)

which is identical to the solution of Eq. (2.266). The corresponding eigenvector for
collective mode is Yk,coll = ρkYk. Thus any amount of a negative real part of the

impedance can produce a negative imaginary collective frequency and lead to collec-
tive instability. The external force is coupled only to the collective mode. All other

incoherent solutions have random phase with eigenvalue ωn,w0, no frequency shift!

92The collective mode occurs frequently in almost all many-body systems. In nuclear physics,
the giant dipole resonance where protons oscillate coherently against neutrons presents a similar
physical picture.
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Now, if there is a frequency spread between different particles, we have to diag-

onalize the matrix of Eq. (2.268). This is equivalent to solve the collective mode
frequency from the dispersion relation of Eq. (2.267). In general, if the frequency

spread Δωn,w among beam particles is larger than the coherent frequency shift pa-
rameter W , the collective mode disappears, and there is no coherent motion. The

disappearance of the collective mode due to tune spread is called Landau damping.
The requirement of a large frequency spread for Landau damping is a necessary

condition but not a sufficient one. We consider a frequency spread model

ωn,w(k)Yk = ωn,w0Yk +ΔΩ(Yk − �Y �),
where ΔΩ is a constant frequency spread of the beam. In this model, the frequency
shift of a particle is proportional to local beam density. This model of tune spread

resembles space-charge tune shift. The resulting collective mode frequency is

ωcolla = ωn,w0 +W. (2.270)

This means that the frequency spread that is proportional to the distribution function
can not damp the collective motion. This is equivalent to the argument that the

space-charge tune shift can not damp the transverse collective instability. Since the
space-charge tune shift is a tune shift relative to the center of a bunch, and the

coherent motion is relative to the closed orbit of the machine, the space-charge tune
shift alone can not provide Landau damping against transverse collective instability.

VIII.4 Frequency Spread and Landau Damping

From Eq. (2.266), we see that a slow wave can suffer transverse collective instability
for a beam with zero frequency spread. What is the effect of frequency spread on

collective instabilities? The key is the Landau damping mechanism discussed below.
The examples illustrate the essential physics of Landau damping.

A. Landau damping

The equation of collective motion (2.260) can be represented by a forced oscillator:

ÿ + ω2
βy = F̂ sinωt, (2.271)

where ω is the collective frequency, and ωβ = Qω0 is the betatron frequency. The
solution is

y(t) = +
F̂

ω2
β − ω2

(
sinωt− ω

ωβ
sinωβt

)
+

{
y0 cosωβt +

ẏ0
ωβ

sinωβt

}

→ +
F̂

ω2
β − ω2

(
sinωt− ω

ωβ
sinωβt

)
. (2.272)
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We remove the solution of the homogeneous equation inside {...} by setting the initial

values y0 = 0 and ẏ0 = 0 at t = 0. We are interested in the response of the particle
under external force. The lower plot of Fig. 2.63 shows y(t) for three particles with

ωβ = 0.85 (dash-dots), ωβ = 0.8 (dashes), and ωβ = 0.76 (line) under the action of
an external force with ω = 0.75, F̂ = 0.01.

Figure 2.63: Top plot: the coherent func-
tion (sin2 ζ)/ζ2. Note that the function be-
comes smaller as the ζ variable increases.
This means that the external force can not
coherently act on a particle if (ωβ − ω)T
becomes large. Bottom plot: y(t) vs time t
due to an external sinusoidal driving force
F (t) = F̂ sinωt. Here the units of ω and t
are related: if ω is in rad/s, t is in s, and
if ω is in 106 rad/s, then t is in μs. The
frequency differences of these three parti-
cles are respectively Δω = 0.01, 0.05, and
0.1. The particle with a larger frequency
difference will fall out of coherence with the
external force earlier.

If ωβ differs substantially from the driving frequency ω, the external force can

not deliver energy to the system forever. The particle motion will be out of phase
with the external force sooner or later, and the energy will be transferred back to the

external force. A smaller ω − ωβ results in a longer in-phase time, as shown in the
lower plot of Fig. 2.63. As the time increases, the number of particles (oscillators)

that remain in phase with the external force becomes smaller and smaller. This is
the essence of Landau damping.

When an external force F (t) is applied to a Hamiltonian system, the equation
of motion is ÿ + dV/dy = F (t), where V is the potential energy. The total energy

imparted by the external force for a time T is ΔH =
∫ T

0
ẏF (t)dt, where H is the

Hamiltonian of the system. The average power delivered to our dynamic system

(2.271) is

�P (T )� = 1

T

∫ T

0

ẏ (F̂ sinωt) dt ≈
[

F̂ 2ω

4(ω + ωβ)

sin2 ζ

ζ2

]
T + · · · , (2.273)

where ζ = 1
2
(ω − ωβ)T . Here we retain only the leading term, proportional to time

T . The upper plot of Fig. 2.63 shows the coherent functions (sin2 ζ) / ζ2. As time T

increases, the coherent frequency window decreases, i.e.

|ω − ωβ| ∼ 1/T, (2.274)
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or equivalently, fewer and fewer oscillators will be affected by the external force.

When the external force can not pump energy into a beam with a finite frequency
spread, collective instability disappears, i.e. the system is Landau damped.

The power dissipation to the oscillator in Eq. (2.273) comes entirely from the
second term in parentheses in Eq. (2.272). The term y(t) that is in phase with

the force is a reactive term, which does not dissipate energy. The second term in
Eq. (2.272) that absorbs energy from the external force is a resistive term, which can

induce collective instability.

Now we consider the case that the external force arisen from a wakefield due to

the collective motion of the beam. Even if there were an initial collective motion to
produce an external field at the beginning, the collective motion of the beam could

not be sustained for a long time if there were a substantial frequency spread. The
collective instability is thus suppressed by Landau damping.

B. Solutions of dispersion integral with Gaussian distribution

We consider a beam with Gaussian distribution given by

ρ(δ) =
1√
2πσδ

e−δ2/2σ2
δ , (2.275)

where δ = Δp/p0 is the fractional off-momentum coordinate, and σδ is the rms mo-
mentum width of the beam. With ωn,w of Eq. (2.264), the dispersion relation of

Eq. (2.267) becomes

−u+ jv = j

[
w

(
ω − ωn,w0

σω

)]−1

, σω =
√
2 |Cy − nη| ω0σδ (2.276)

w(z) = e−z2erfc(−jz) =
j

π

∫ ∞

−∞

e−t2

z − t
dt, u =

√
π U

σω
, v =

√
π V

σω
.

where σw is the rms frequency spread of the beam for mode n, w(z) is the complex
error function, u and v are the reduced imaginary and real parts of the impedance

of Eq. (2.263). The curves u vs v for Gaussian distribution for Im(ω/σω) = 0 and
−0.5 are shown in Fig. 2.64, where the rectangular symbols in each curve represent

coherent frequency shifts at Re(ω − ωn,w0) = ±σω (inner ones) and ±2σω (outer ones).

From Fig. 2.64, we observe that if a coherent mode frequency falls within the

width of the spectrum, the threshold of the collective beam instability requires a
finite resistive impedance. This is because the coherent mode excites only a small

fraction of the particles in the beam, and most of the beam particles are off resonance.
Thus the collective beam motion is damped. Landau damping differs in essence from

phase-space damping due to beam cooling, or phase space decoherence due to tune

spread (see Exercise 2.8.5).
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Figure 2.64: The normalized u vs v for Gaus-
sian distribution is plotted with two different
growth rates with Im(ω) = 0 and −0.5σω.
The rectangular symbols represent the coher-
ent frequency shifts at Re(ω − ωn,w0) = ±σω
and ±2σω. The solid line with Im(ω)=0 shows
that a beam with frequency spread can tolerate
a finite amount of the real part of impedance
at the threshold of collective instability.

We note particularly that the frequency spread can vanish for mode number n0 of

Eq. (2.265). Because such modes have vanishing frequency spread, collective insta-
bilities may not be Landau damped. However, if chromaticity Cy is negative below

transition energy or if Cy is positive above transition energy, then mode n0 with van-

ishing frequency spread is a fast wave. Since the real part of a fast wave is positive,
the imaginary part of collective frequency is positive, and thus there is no collec-

tive instability. This has commonly been employed to overcome transverse collective
instabilities.93

Exercise 2.8

1. Verify the wave angular velocity of Eq. (2.258), and show that fast, slow, and back-
ward waves travel faster, slower, and backward relative to particle angular velocity,
respectively.

2. Show that the solution given by Eq.(2.266) for the dispersion relation at zero frequency
spread is identical to the collective frequency solution by matrix diagonalization of
Eq. (2.268), and show that the eigenvector of collective motion is Yk,coll = ρkYk.

3. Using the Gaussian distribution of Eq. (2.275) to show that the dispersion relation
becomes an algebraic equation, Eq. (2.276).

4. The solution of Eq. (2.271) with initial condition y0 = ẏ0 = 0 is

y =
F̂

ω2
β − ω2

(
sinωt− ω

ωβ
sinωβt

)
.

(a) Plot y(t) as a function of t for ω = 1, F̂ = 0.01 with three particles at ωβ = 0.8,
0.9, and 0.99.

(b) Let ωβ = ω + �, where |�| is a small frequency deviation. Show that

y(t) ≈ F̂

2ω

[
1− cos(�t)

�
sinωt− sin(�t)

�
cosωt

]
.

93For bunched beams, the head-tail instability has been observed in SPS and Fermilab Main Ring
above transition energy if the chromaticity is negative (see J. Gareyte, p. 134 in Ref. [18]). Treatment
of head-tail instability is beyond the scope of this book.
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Show that the first term in square brackets does not absorb energy from the
external force but the second term can. The first term corresponds to a reactive
coupling and the second term is related to a resistive coupling.

(c) If a beam has a distribution function given by ρ(ξ) with
∫
ρ(ξ)dξ = 1, discuss

the centroid of beam motion, i.e. �y(t)� = ∫
y(t)ρ(ξ)dξ. For example, we choose

ξ = � and ρ(�) = 1/2Δ, if |�| ≤ Δ; and 0, otherwise.

5. Consider a beam with uniform momentum distribution

ρ(δ) =
{
1/(2Δ) if |δ| ≤ Δ,
0 otherwise.

(a) Show that the dispersion relation Eq. (2.267) becomes

(−u+ jv)−1 = ln
ω − ωn,w0 + σw
ω − ωn,w0 − σw

,

where u = U/2σw, v = V/2σw, and σw = |Cy − nη|ω0Δ.

(b) Show that the imaginary part of the coherent frequency is

Im (ω) = σw
e−u sin[v/(u2 + v2)]

1 + e−2u/(u2+v2) − 2e−u/(u2+v2) cos[v/(u2 + v20]
.

Show that the condition that Imω = 0− is

u2 + (v +
1

2π
)2 =

1

4π2
.

Plot u vs v, and compare your result with that shown in Fig. 2.64.

6. A beam is usually composed of particles with different frequencies.94 Let ρ(ωβ) be
the frequency distribution of the beam with

∫
ρ(ωβ)dωβ = 1. If initially all particles

are located at y = ẏ = 0, and at time t = 0 all particles are kicked to an amplitude
A, i.e.

y(t) = A cosωβt,

and begin coherent betatron motion, find the centroid of beam motion as a function
of time with the following frequency distribution functions.

(a) If the frequency distribution of the beam is

ρ(ωβ) =
1√
2πσ

e−(ωβ−ω0)2/2σ2
,

where σ is the rms frequency spread, show that �y� = Ae−σ2t2/2 cosω0t.

94This exercise illustrates the difference between Landau damping and beam decoherence (or
filamentation). Note that coherent beam motion will decohere within a time range Δt ∼ 1/σ, where
σ is the rms frequency spread of the beam. As the coherent motion is damped, particles are not
damped to the center of phase space. See also Fig. 2.17 for coherent betatron oscillation induced by
an rf dipole kicker.
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(b) If the frequency distribution is a one-sided exponential

ρ(ωβ) =

{
(1/σ)e−(ωβ−ω0)/σ, if ωβ > ω0,
0 otherwise,

where σ is the rms frequency spread, and �ωβ� = ω0 + σ, show that

�y� = A

1 + σ2t2
[cosωt− σt sinωt] .

(c) If the frequency distribution is a Lorentzian

ρ(ωβ) =
Γ

π[(ωβ − ω0)2 + Γ2]
,

where Γ is the width, show that �y� = Ae−Γt cosωt.

(d) If the frequency distribution is uniform with

ρ(ωβ) =

{
1/(2Γ), if ω0 − Γ < ωβ < ω0 + Γ,
0, otherwise,

where Γ =
√
3σ and σ is the rms width, show that

�y� = A
sin Γt

Γt
cosω0t.

(e) If the frequency distribution is parabolic with

ρ(ωβ) =

{
(3/(4Γ))

[
1− ((ωβ − ω0)/Γ)

2
]
, if ω0 − Γ < ωβ < ω0 + Γ,

0, otherwise,

where Γ =
√
5σ and σ is the rms width, show that

�y� = 3A

(
sin Γt

(Γt)3
− cos Γt

(Γt)2

)
cosω0t.

(f) If the frequency distribution is quadratic with

ρ(ωβ) =

{
(2/πΓ)

√
1− ((ωβ − ω0)/Γ)

2, if ω0 − Γ < ωβ < ω0 + Γ,
0, otherwise,

where Γ = 2σ and σ is the rms width, show that

�y� = A [J0(Γt) + J2(Γt)] cosω0t,

where J0 and J2 are Bessel functions.
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IX Synchro-Betatron Hamiltonian

So far, we have discussed particle motion only in (x, px, z, pz) phase-space coordinates.

The remaining phase-space coordinates (t,−H) or (t,−E) have not been mentioned.
Here we will study the “synchrotron” equation of motion for phase-space coordinates

(t,−E). The terminology of synchrotron motion is derived from the synchronization
of particle motion with rf electric field. The name “synchrotron” has been broadly

used for all circular accelerators that employ rf electric field for beam acceleration.

This unified description has the advantage of treating synchrotron motion and
betatron motion on an equal footing. It is particularly useful in the study of synchro-

betatron coupling resonances.95

To simplify algebra, we disregard vertical betatron coordinates (z, pz) and consider

only a planar synchrotron. Neglecting vertical betatron phase-space coordinates, the
Hamiltonian is [see Eq. (2.14)]

H0 = −(1 +
x

ρ
)

[(
E − eΦ

c

)2

−m2c2 − p2x − p2z

]1/2

− eAs

≈ −(1 +
x

ρ
)

(
p− eΦ

βc

)
+ (1 +

x

ρ
)

(
p2x + p2z

2p

)
− eAs, (2.277)

where the orbital length s is used as an independent variable, p =
√
(E/c)2 − (mc)2

is the momentum of a particle, ρ is the bending radius of the Frenet-Serret coordi-
nate system, Φ is the scaler potential, As is the longitudinal vector potential, and

(x, px, z, pz, t,−E) are canonical phase-space coordinates.
The static transverse magnetic field is

Bz =
1

1 + (x/ρ)

∂As

∂x
, Bx = − 1

1 + (x/ρ)

∂As

∂z
,

and the longitudinal varying electric field can be obtained from

Es = −∂As

∂t
=

∑
k

Vkδp(s− sk) sin(ωrft+ φ0k), (2.278)

where δp(s−sk) =
∑

n δ(s−sk−2πnR) is a periodic delta function with period 2πR,

Vk is the rf voltage, ωrf is the angular frequency of the rf field, and φ0k is the initial
phase of the kth cavity. Thus the rf accelerating field can be represented by

As,rf =
1

ωrf

∑
k

Vkδp(s− sk) cos(ωrft+ φ0k). (2.279)

95See T. Suzuki, Part. Accel. 18, 115 (1985); see also S.Y. Lee and H. Okamoto, Phys. Rev. Lett.
80, 5133 (1998) for the effects of space charge dominated beams.
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The Hamiltonian is an implicit function of energy E. Let E = E0 + ΔE and

p = p0+Δp, where E0 and p0 are the energy and momentum of the reference particle.
We obtain then

Δp

p0
≈ ΔE

β2E0
− 1

2γ2
(
ΔE

β2E0
)2,

ΔE

β2E0
≈ Δp

p0
+

1

2γ2
(
Δp

p0
)2. (2.280)

Expanding the dipole field Bz in power series with Bz = B0 + B1x + · · ·, where
B1 = ∂Bz/∂x, we obtain

As = B0x+
B0

2ρ
x2 +

1

2
B1(x

2 − z2) + · · ·+ As,rf + As,sc, (2.281)

where As,rf given by Eq. (2.279) stands for the vector potential of rf cavities. The space

charge force of the beam particles gives rise to a mean field, that can be represented by
a scaler and vector potentials Φ = Vsc and As,sc with As,sc = β2Vsc/βc. Substituting

the scaler and vector potentials into the Hamiltonian, we obtain

H0 = −p0 − p0
ΔE

β2E0
+ p0

1

2γ2
(
ΔE

β2E0
)2 − p0

ΔE

β2E0

x

ρ

+
p2x + p2z
2p0

+
p0
2
(Kxx

2 +Kzz
2)− eAs,rf (2.282)

up to second order in phase-space coordinates, where Kx = 1/ρ2 − B1/Bρ is the

focusing function for the horizontal plane, and we used the identity condition B0 =
−p0/eρ, which signifies the expansion of x around the closed orbit at the reference

energy.
The next step is to transform the coordinate system onto the closed orbit for a

particle with off-energy ΔE. This procedure cancels the cross-term proportional to
(ΔE/β2E0) · x in the Hamiltonian. Using the generating function

F2(x, p̄x, t,−Δ̄E) = (x−D
Δ̄E

β2E0

)p̄x − (E + Δ̄E)t

+x
D′

βc
Δ̄E − 1

2
DD′p0(

ΔE

β2E0
)2,

where the new phase-space coordinates are

p̄x = px −D′ Δ̄E
βc

, x̄ = x−D
Δ̄E

β2E0

Δ̄E = E −E0, t̄ = t+ (
D

β2E0
p̄x − D′

βc
x̄),

and the dispersion function D satisfies D′′+KxD = 1
ρ
, we obtain a new Hamiltonian,

H1 = −p0
Δ̄E

β2E0
− 1

2
p0

(
D

ρ
− 1

γ2

)(
Δ̄E

β2E0

)2

+
p̄x

2

2p0
+

p0
2
Kxx̄

2

−dE0

ds

(
t̄− D

β2E0
p̄x +

D′

βc
x̄

)
− eAs,rf . (2.283)
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Note that x̄ is the betatron phase-space coordinate around the off-momentum closed

orbit, and the rf vector potential is

eAs,rf =
1

ωrf

∑
k

eVk δp(s− sk) cos

[
ωrf

(
t̄− D

β2E0
p̄x +

D�

βc
x̄

)
+ φ0k

]
. (2.284)

Now we expand the standing wave of the rf field into a traveling wave, i.e.

δp(s−sk) cos(ωrf t̄+φ0k) =
1

4πR

∞∑
n=−∞

[ej(nθ+ωrf t̄+φ0k−nθk)+ej(nθ−ωrf t̄−φ0k−nθk)], (2.285)

Keeping only terms that synchronize the beam arrival time with n = ±h, we obtain

δp(s− sk) cos(ωrf t̄+ φ0k) =
1

2πR
cos(ωrf t̄− hs

R
+ φ0k + hθk), (2.286)

where φ0k + hθk should be an integer multiple of 2π. Using the generating function
and coordinate transformation:

F2 = xp̄x + (ωrf t̄− hs

R
)W,

px = p̄x, x = x̄, W = −Δ̄E

ωrf
, φ = ωrf t̄− hs

R
,

we obtain the Hamiltonian

H2 = − ω2
rf

2β3cE0
(
D

ρ
− 1

γ2
)W 2 +

p2x
2p0

+
p0
2
Kxx

2

− 1

2πRωrf

∑
k

eVk cos(φ−D
ωrfpx
βcp0

+D�ωrfx

βc
)

− sin φs

2πRωrf

∑
k

eVk (φ−D
ωrfpx
βcp0

+D�ωrfx

βc
).

Making a scale change to canonical phase-space coordinates with

(x, px, φ,W ) → (x, x� =
px
p0

, φ,
W

p0
),

we obtain the Hamiltonian

H3 =
H2

p0
=

1

2
(x�2 +Kxx

2)− 1

2

(
D

ρ
− 1

γ2

)(
ωrfW

β2E0

)2

− 1

2πhβ2E0

∑
k

eVk cos

(
φ− h

R
Dx� +

h

R
D�x

)

− sinφs

2πhβ2E0

∑
k

eVk

(
φ− h

R
Dx� +

h

R
D�x

)
.
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Since φ and (x, x�) are coupled through dispersion function (D,D�) in rf cavities, syn-

chrotron and betatron motions are coupled. This is called synchro-betatron coupling
(SBC). If a resonance condition is encountered, it is called synchro-betatron resonance

(SBR).

In general, the SBC potential must satisfy the Panofsky-Wenzel theorem, which

relates the transverse kicks to the longitudinal energy gain. Consider a particle of
charge e and velocity �v = d�s/dt experiencing a kick from a component in an acceler-

ator. The total transverse momentum and energy changes are

Δ�p⊥ = e

∫ tb

ta

( �E + �v × �B)⊥dt, ΔE = e

∫ sb

sa

�E · d�s,

where �E and �B are electromagnetic fields, and tb− ta is the transit time of the kicker
component, sa, sb are the entrance and exit azimuthal coordinates of the kicker. Then

the Panofsky-Wenzel theorem yields a relation between the transverse kick and the
energy gain96

h

R

∂

∂φ

(
Δp⊥
p0

)
= ∇⊥

(
− ΔE

β2E0

)
, (2.287)

where Δp⊥/p0 is the transverse kick, Rφ/h is the longitudinal phase-space coordinate

of the particle, and ∇⊥ is the transverse gradient. Thus if the transverse kick de-

pends on the longitudinal coordinates, then the energy gain depends on the transverse
coordinates.

This synchro-betatron coupling potential, which satisfies the Panofsky-Wenzel
theorem Eq. (2.287), can generally be expressed as a function of 6D phase-space

coordinates. The synchrotron phase-space coordinates are chosen naturally to be
(Rφ/h,−Δp/p0), and the Hamiltonian in 6D phase-space coordinates becomes

H4 =
1

2
(x�2 +Kxx

2) +
1

2
(z�2 +Kzz

2)− 1

2
(
D

ρ
− 1

γ2
)(
Δp

p0
)2

− 1

2πhβ2E0

∑
k

eVk cos(φ− h

R
Dx� +

h

R
D�x)

− sinφs

2πβ2E0

∑
k

eVk(φ− h

R
Dx� +

h

R
D�x). (2.288)

It is worth noting that if RF cavities are located in a straight section, the phase factor

−Dx� +D�x will be the same for all cavities (see Exercise 2.9.1). The driving terms
for the synchro-betatron coupling in Eq. (2.288) coherently add up in all cavities

arranged in one straight section. Thus it is beneficial to put rf cavities in dispersion
free regions.

96D.A. Goldberg and G.L. Lambertson, AIP Conf. Proc. No. 249, p. 537 (1992).
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Neglecting synchro-betatron coupling, the Hamiltonian for canonical phase-space

variables (x, x�, z, z�, Rφ/h,−Δp/p0) is

H = H⊥(x, x�, z, z�) +Hs(
R

h
φ,

Δp

p0
) (2.289)

H⊥ =
1

2
(x�2 +Kxx

2 + z�2 +Kzz
2) + · · ·

Hs =
1

2
(
1

γ2
− D

ρ
)(
Δp

p0
)2 −

∑
k

eVk

hβ2E
[cosφ+ (φ− φs) sinφs]δ(θ − θk),

where rf cavities are assumed to be at dispersion free locations. Averaging over one

revolution around the ring, the Hamiltonian for synchrotron motion becomes

�Hs� = −1

2
η(

Δp

p0
)2 − eV

2πhβ2E0

[cosφ− cosφs + (φ− φs) sinφs]

= −1

2
η(

Δp

p0
)2 − ν2

s

h2|η| [cosφ− cosφs + (φ− φs) sinφs], (2.290)

where η is the phase slip factor, and νs =
√

h|η|eV
2πβ2E0

is the synchrotron tune of the

stationary bucket with φs = 0.
The action of the synchrotron oscillations and the linearized betatron oscillations

can be defined on an equal footing as

Is =
R

2πh

∮
Δp

p0
dφ, Ix =

1

2π

∮
x�dx, Iz =

1

2π

∮
z�dz. (2.291)

The synchrotron action Is (π-mm-mrad) is related to the commonly used phase

area A (eV-s) of the phase-space coordinates (φ,ΔE/hω0) by

Is =
Rω0

β2E0
A = 3.2× 105

A[eVs]

βγ
[πμm]. (2.292)

Since the typical longitudinal phase-space area is about 0.1 – 1.0 eV-s, the correspond-

ing longitudinal action is 100–1000 times as large as the transverse action. This result

has important implications for the synchro-betatron coupling (SBC) resonances.97

Exercise 2.9

1. Show that the function −Dx� +D�x in the Hamiltonian H4 is invariant in a straight
section, where D is the dispersion function, x is the horizontal betatron function, and
the primes are derivative with respect to the longitudinal coordinate s. Show that rf
cavities located in a straight section contribute coherently to SBC if the dispersion
function is not zero.

2. Show that if the SBC potential is an analytic function of 6D phase space coordinates
(x, x�, z, z�, Rφ/h,−Δp/p0), it satisfies the Panofsky-Wenzel theorem.

97See e.g. S.Y. Lee, Phys. Rev. E49, 5706 (1994).



Chapter 3

Synchrotron Motion

In general, particles gain energy from electric field in longitudinal direction.1 Since
the electric field strength of an electrostatic accelerator is limited by field breakdown

and by the length of the acceleration column, electrostatic accelerators have mainly
been used for low energy accelerators. Alternatively, a low-loss radio-frequency (rf)

cavity operating at a resonance condition can be used to provide accelerating voltage

with V sin(φs+ωrft), where V is the amplitude of the rf voltage, φs is a phase factor,
and ωrf is the angular frequency synchronized with the arrival time of beam particles.

In this chapter we study particle dynamics in the presence of rf accelerating voltage
waves.

Although we can derive a 6D Hamiltonian for both synchrotron and betatron
oscillations (see Chap. 2, Sec. IX), here, for simplicity, we will derive the synchrotron

Hamiltonian based only on the revolution frequency and energy gain relations. This

formalism lacks the essential connection between synchrotron and betatron motions,
but it simplifies the choice of synchrotron phase-space coordinates.

A particle synchronized with rf phase φ = φs at revolution period T0 and mo-
mentum p0 is called a synchronous particle. A synchronous particle will gain or lose

energy, eV sin φs, per passage through an rf cavity. Normally the magnetic field is
ideally arranged in such a way that the synchronous particle moves on a closed or-

bit that passes through the center of all magnets. Particles with different betatron

amplitudes execute betatron motion around this ideal closed orbit.

A beam bunch consists of particles with slightly different momenta. A particle

with momentum p has its own off-momentum closed orbit, Dδ, where D is the disper-
sion function and δ = (p−p0)/p0 is the fractional momentum deviation. Since energy

gain depends sensitively on the synchronization of rf field and particle arrival time,

what happens to a particle with a slightly different momentum when the synchronous
particle is accelerated?

1This statement also applies to charged particle acceleration in the betatron and the induction
linac, in which the induced electromotive force is given by the time derivative of the magnetic flux.
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The phase focusing principle of synchrotron motion was discovered by McMillan

and Veksler [21]: If the revolution frequency f is higher for a higher momentum
particle, i.e. df/dδ > 0, the higher energy particle will arrive at the rf gap earlier, i.e.

φ < φs. Therefore if the rf wave synchronous phase is chosen such that 0 < φs < π/2,
higher energy particles will receive less energy gain from the rf gap. Similarly, lower

energy particles will arrive at the same rf gap later and gain more energy than the
synchronous particle. This process provides the phase stability of synchrotron motion.

In the case of df/dδ < 0, phase stability requires π/2 < φs < π.

The discovery of phase stability paved the way for all modern high energy acceler-

ators, called “synchrotrons,” and after half a century of research and development, it
remains the cornerstone of modern accelerators. Particle acceleration without phase

stability is limited to low energy accelerators, e.g. Cockcroft-Walton, Van de Graaff,
betatron, etc. Furthermore, bunched beams can be shortened, elongated, combined,

or stacked to achieve many advanced applications by using rf manipulation schemes.
Phase-space gymnastics have become essential tools in the operation of high energy

storage rings.

In this chapter we study the dynamics of synchrotron motion. In Sec. I, we derive

the synchrotron equation of motion in various phase-space coordinates. Section II
deals with adiabatic synchrotron motion, where an invariant torus corresponds to a

constant Hamiltonian value. In Sec. III, we study the perturbation of synchrotron
motion resulting from rf phase and amplitude modulation, synchro-betatron coupling

through dipole field error, ground vibration, etc. In Sec. IV, we treat non-adiabatic
synchrotron motion near transition energy, where the Hamiltonian is not invariant. In

Sec. V, we study beam injection, extraction, stacking, bunch rotation, phase displace-
ment acceleration, beam manipulations with double rf systems and barrier rf systems,

etc. Section VI treats fundamental aspects of rf cavity design. In Sec. VII, we intro-
duce collective longitudinal instabilities. In Sec. VIII, we provide an introduction to

the linac.

I Longitudinal Equation of Motion

Let the longitudinal electric field at an rf gap be

E = E0 sin(φrf(t) + φs), φrf = hω0t, (3.1)

where ω0 = β0c/R0 is the angular revolution frequency of a reference (synchronous)
particle, E0 is the amplitude of the electric field, β0c and R0 are respectively the speed

and the average radius of the reference orbiting particle, h is an integer called the
harmonic number, and φs is the phase angle for a synchronous particle with respect

to the rf wave. We assume that the reference particle passes through the cavity gap

in time t ∈ nT0 + (−g/2βc, g/2βc) (n = integer), where g is the rf cavity gap width.
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The energy gain for the reference particle per passage is

ΔE = eE0βc
∫ g/2β0c

−g/2β0c

sin(hω0t + φs)dt = eE0gT sin φs, (3.2)

T =
sin(hg/2R0)

(hg/2R0)
. (3.3)

where e is the charge of the circulating particles, and T is the transit time factor.
The effective voltage seen by the orbiting particle is V = E0gT . The transit time

factor arises from the fact that a particle passes through the rf gap within a finite
time interval so that the energy gain is the time average of the electric field in the gap

during the transit time (see also Exercise 3.1). If the gap length is small, the transit
time factor is approximately equal to 1. However, a high electric field associated with

a small gap may cause sparking and electric field breakdown.
Since a synchronous particle synchronizes with the rf wave with a frequency of

ωrf = hω0, where ω0 = β0c/R0 is the revolution frequency and h is an integer, it
encounters the rf voltage at the same phase angle φs every revolution. The acceleration

rate for this synchronous particle is Ė0 = ω0

2π
eV sinφs, where the dot indicates the

derivative with respect to time t.
Now we consider a non-synchronous particle with small deviations of rf parameters

from the synchronous particle, i.e.

{
ω = ω0 +Δω, φ = φs +Δφ, θ = θs +Δθ,
p = p0 +Δp, E = E0 +ΔE.

Here φs, θs, ω0, p0, E0 are respectively the rf phase angle, azimuthal orbital angle,

angular revolution frequency, momentum, and energy of a synchronous particle, and
φ, θ, ω, p, E are the corresponding parameters for an off-momentum particle.

The phase coordinate is related to the orbital angle by Δφ = φ− φs = −hΔθ, or

Δω =
d

dt
Δθ = −1

h

d

dt
Δφ = −1

h

dφ

dt
. (3.4)

The energy gain per revolution for this non-synchronous particle is eV sinφ, where
φ is its rf phase angle, and the acceleration rate is Ė = ω

2π
eV sin φ. The equation of

motion for the energy-difference becomes2

d

dt

(
ΔE

ω0

)
=

1

2π
eV (sinφ− sinφs). (3.5)

2We use the relation

1

ω
Ė − 1

ω0
Ė0 =

1

ω0
Δ̇E − Ė

Δω

ω2
0

≈ 1

ω0
Δ̇E +

[
Ė
Δ(1/ω0)

ΔE

]
ΔE + · · · = d

dt

(
ΔE

ω0

)
.
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Using the fractional off-momentum variable, we obtain

δ =
Δp

p0
=

ω0

β2E

ΔE

ω0

, δ̇ =
ω0

2πβ2E
eV (sinφ− sin φs). (3.6)

The next task is to find the time evolution of the phase angle variable φ. Using

Eq. (3.4), we find
φ̇ = −h(ω − ω0) = −hΔω. (3.7)

Using the relation ωR/ω0R0 = β/β0 and the result in Chap. 2, Sec. IV, we obtain

Δω

ω0
=

βR0

β0R
− 1. (3.8)

R = R0(1 + α0δ + α1δ
2 + α2δ

3 + · · ·),
αc =

1

R0

dR

dδ
= α0 + 2α1δ + 3α2δ

2 + · · · ≡ 1

γ2
T

, (3.9)

where R is the mean radius of a circular accelerator and αc is the momentum com-
paction factor,3 γ

T
mc2, or simply γ

T
, is called the transition energy. Most accelerator

lattices have α0 > 0 and the closed-orbit length for a higher energy particle is longer
than the reference orbit length. Some specially designed synchrotrons can achieve

the condition α0 = 0, where the circumference, up to first order, is independent of
particle momentum. Recently, medium energy proton synchrotrons have been de-

signed to have an imaginary γ
T
or a negative momentum compaction (see Chap. 2,

Sec. IV.8). The orbit length in a negative compaction lattice is shorter for a higher

energy particle.
Let p = mcβγ = p0 + Δp be the momentum of a non-synchronous particle. The

fractional off-momentum coordinate δ is

δ =
Δp

p0
=

βγ

β0γ0
− 1. (3.10)

Expressing β and γ in terms of the off-momentum coordinate δ, we find

γ

γ0
=

√
1 + 2β2

0δ + β2
0δ

2,

β

β0

=
1 + δ√

1 + 2β2
0δ + β2

0δ
2
= 1 +

1

γ2
0

δ − 3β2
0

2γ2
0

δ2 +
β2
0(5β

2
0 − 1)

2γ2
0

δ3 + · · · .

Combining Eqs. (3.8) and (3.9), we obtain

Δω

ω0

= −η(δ)δ, (3.11)

3Typically, we have α1γ
2
T
≈ 1

νx
dνx
dδ ≈ 1 for accelerators without chromatic corrections. The α1

term depends on the sextupole field in the accelerator.
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where the phase slip factor is η(δ) = η0 + η1δ + η2δ
2 + · · · with

⎧⎪⎪⎨
⎪⎪⎩

η0 = (α0 − 1
γ2
0
),

η1 =
3β2

0

2γ2
0
+ α1 − α0η0,

η2 = −β2
0(5β

2
0−1)

2γ2
0

+ α2 − 2α0α1 +
α1

γ2
0
+ α2

0η0 − 3β2
0α0

2γ2
0
.

(3.12)

In linear approximation. we find Δω = −η0ω0δ = ( 1
γ2 − 1

γ2
T

)ω0δ Below the tran-

sition energy (γ < γ
T
) a higher energy particle with δ > 0 has a higher revolution

frequency. The speed of the higher energy particle more than compensates the dif-
ference in path length. At transition energy, the revolution frequency is independent

of particle momentum. The AVF cyclotron operates in this isochronous condition.

The nonlinear term in Eq. (3.11) becomes important near transition energy, to be
addressed in Sec. IV. Above transition energy (γ > γ

T
) a higher energy particle with

δ > 0 has a smaller revolution frequency, i.e. the particle appears to have a “negative
mass.” Combining Eqs. (3.7) and (3.11), we obtain the phase equation of motion:

φ̇ = hω0ηδ =
hω2

0η

β2E

�
ΔE

ω0

�
, (3.13)

where (φ, ΔE/ω0) or equivalently (φ, δ) are pairs of conjugate phase-space coordi-
nates. Equations (3.5) and (3.13) form the “synchrotron equation of motion.”

I.1 The Synchrotron Hamiltonian

The synchrotron equations of motion (3.5) and (3.13) can be derived from a “Hamil-
tonian”

H =
1

2

hηω2
0

β2E

�
ΔE

ω0

�2

+
eV

2π
[cosφ− cosφs + (φ− φs) sinφs]

=
1

2
hω0η0δ

2 +
ω0eV

2πβ2E
[cosφ− cosφs + (φ− φs) sinφs] (3.14)

with time t as an independent variable and for phase-space coordinates (φ,ΔE/ω0)

and (φ, δ) respectively. This Hamiltonian, although legitimate, is inconsistent with
the “Hamiltonian” for transverse betatron oscillations, where s is the independent

coordinate. To simplify our discussion, we will disregard the inconsistency and study
synchrotron motion of Eq. (3.14). A fully consistent treatment is needed when we

study synchro-betatron coupling resonances.4

With this simplified Hamiltonian, we now discuss the stability condition for small

amplitude oscillations, where the linearized equation of motion is

d2

dt2
(φ− φs) =

hω2
0eV η0 cosφs

2πβ2E
(φ− φs). (3.15)

4S.Y. Lee, Phys. Rev. E49, 5706 (1994).
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The stability condition for synchrotron oscillation is η0 cosφs < 0, discovered by

McMillan and Veksler [21]. Below the transition energy, with γ < γ
T
or η0 < 0, the

synchronous phase angle should be 0 < φs < π/2. Similarly the synchronous phase

angle should be shifted to π−φs above the transition energy. This can be accomplished
by a phase shift of π − 2φs to the rf wave. The angular synchrotron frequency and

synchrotron tune (the number of synchrotron oscillations per revolution) are

ωs = ω0

√
heV |η0 cos φs|

2πβ2E
=

c

R

√
heV |η cosφs|

2πE
, (3.16)

Qs =
ωs

ω0
=

√
heV |η0 cosφs|

2πβ2E
≡ νs

√
| cosφs|, with νs =

√
heV |η0|
2πβ2E

. (3.17)

where c is the speed of light and R is the average radius of synchrotron. The rf bucket
at the synchronous rf phase φs = 0 or π is called the stationary bucket because there

is no net change of beam energy. The synchrotron tune at the stationary bucket is
usually denoted by νs. The rf buckets with φs �= 0 or π are called running buckets.

Typically the synchrotron tune is of the order of ∼ 10−3 for proton synchrotrons
and 10−1 for electron storage rings. Figure 3.1 shows the measured synchrotron tune

of the Fermilab Booster in a ramping cycle from 400 MeV to 8 GeV. The inset shows
the rf voltage and the corresponding rf synchronous phase during the ramping cycle.

Figure 3.1: The synchrotron tune of a
ramping cycle for the Fermilab Booster,
which is a rapid cycling accelerator at 15
Hz. At t = 17 ms, the beam crosses transi-
tion energy. Rectangular symbols are re-
sults obtained by the ICA measurement
method (see Appendix Sec. III) and ×’s
are obtained from spectrum analyzer to
a difference signal. The synchrotron tune
for a rapid cycling synchrotron at low en-
ergy can be large (Courtesy of X. Huang).

The stability of particle motion in rf force potential can be understood from the
left plot of Fig. 3.2, where the rf potentials are shown in the left plots for φs =

0 and φs = π/6. The potential well near the synchronous phase angle provides
restoring force for quasi-harmonic oscillations. The horizontal dashed line shows the

maximum Hamiltonian value for a stable synchrotron orbit. The corresponding stable
phase-space (bucket) area is shown in the middle plots in the normalized phase space

coordinates (h|η|/νs)δsx vs φ. Particles inside the rf bucket execute stable synchrotron
motion, while particles fall outside the bucket will be lost.
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Figure 3.2: Left: schematic drawing of the rf potentials for φs = 0 and π/6. The dashed line
shows the maximum “energy” for stable synchrotron motion. Middle: the corresponding
separatrix orbits in (h|η|/νs)× δsx vs φ. The phase φu is the turning point of the separatrix
orbit. Right: an example of stable rf buckets, called fish diagram, in δ vs φ at φs = π/6.

For an accelerator with a harmonic number h, there are h buckets. Particles can
fill some of these stable buckets. The filling pattern can be arranged by injection

schemes. The right plot of Fig. 3.2 shows a fish diagram of rf buckets at φs = π/6.

I.2 The Synchrotron Mapping Equation

In Hamiltonian formalism, the rf electric field is considered to be uniformly distributed

in an accelerator. In reality, rf cavities are localized in a short section of a synchrotron,
the synchrotron motion is more realistically described by the symplectic mapping

equation:

{
δn+1 = δn +

eV

β2E
(sinφn − sin φs),

φn+1 = φn + 2πhη(δn+1)δn+1.
(3.18)

The physics of the mapping equation can be visualized as follows. First, the particle
gains or loses energy at its nth passage through the rf cavity, then the rf phase

φn+1 depends on the new off-momentum coordinate δn+1. Since the Jacobian of the

mapping from (φn, δn) to (φn+1, δn+1) is equal to 1, the mapping preserves phase-space
area.

Note that Eq. (3.18) treats the rf cavity as a single lumped element in an ac-
celerator. In reality, the rf cavities may be distributed non-uniformly. The rf phase

change between different cavities may not be uniform. Because synchrotron motion is
usually slow, Hamiltonian formalism and mapping equations are equivalent. Because

of the simplicity of the mapping equations, they are usually used in particle tracking

calculations.
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I.3 Evolution of Synchrotron Phase-Space Ellipses

The phase-space area enclosed by a trajectory (φ, δ) obtained from Eq. (3.18) is

independent of energy. Therefore, Eq. (3.18) can not be used in tracking simula-
tions of particle beam in acceleration. During acceleration, the phase-space area in

(φ,ΔE/ω0) is invariant. The phase-space mapping equation for phase-space coordi-
nates (φ,ΔE/ω0) should be used. The adiabatic damping of phase-space area can be

obtained by transforming phase-space coordinates (φ,ΔE/ω0) to (φ, δ).

The separatrix for the rf bucket shown in Fig. 3.2 is a closed curve. In a rapid
cycling synchrotron or electron linac where the acceleration gradient is high, the

separatrix is not a closed curve. The mapping equations for synchrotron phase-space
coordinates (φ,ΔE) are

ΔEn+1 = ΔEn + eV (sinφn − sinφs), (3.19)

φn+1 = φn +
2πhη

β2E
ΔEn+1. (3.20)

The quantity η/β2E in Eq. (3.20) depends on energy, which is obtained from Eq. (3.19),

i.e. E = E0,n+1 = E0,n+eV sinφs, γ = E/mc2, β =
√
1− 1/γ2, and η = αc−1/γ2. If

the acceleration rate is low, the factor hη/β2E is nearly constant, and the separatrix
orbit shown in Fig. 3.2 can be considered as a closed curve.

When the acceleration rate is high, tori of the synchrotron mapping equations are
not closed curves. Figure 3.3 shows two tori in phase-space coordinates (φ,ΔE/β2E)

with parameters V = 100 kV, h = 1, αc = 0.04340, φs = 30◦ at 45 MeV proton kinetic
energy. Note that the actual attainable rf voltage V is about 200-1000 V in a low

energy proton synchrotron. When the acceleration rate is high, the separatrix is not
a closed curve. The phase-space tori change from a fish-like to a golf-club-like shape.

This is equivalent to the adiabatic damping of phase-space area discussed in Chapter
2, Sec. II. Since the acceleration rate for proton (ion) beams is normally low, the

separatrix torus shown in Fig. 3.2 is a good approximation. When the acceleration

rate is high, e.g. in many electron accelerators, the tori near the separatrix may
resemble those in Fig. 3.3.

Figure 3.3: Two tori in phase-space coordi-
nates (φ,ΔE/β2E) obtained from mapping equa-
tions (3.19) and (3.20) with parameters V = 100
kV, h = 1, αc = 0.04340, and φs = 30◦ at 45 MeV
proton kinetic energy. IUCF Cooler Ring has typi-
cal rf voltage at about 1–2 kV. Note that the dashed
line become the separatrix orbit, while the solid line
is trapped into the bucket. This phenomenon is adi-
abatic damping of synchrotron motion.
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I.4 Some Practical Examples

A basic rf cavity requirement for beam acceleration rate is

Bρ =
p

e
, ṗ =

1

βc
Ė, f =

βc

2πR
, =⇒ V sinφs = 2πRρḂ. (3.21)

For example, proton acceleration in the IUCF cooler ring from 45 MeV to 500 MeV
in one second requires Ḃ = Δ[Bρ]

ρΔt
≈ 1.1 Tesla/sec, and V sinφs ≈ 240 Volts, where we

use ρ ≈ 2.4 m, R ≈ 14 m. The result is independent of the harmonic number used.

Similarly, acceleration of protons from 9 GeV to 120 GeV in 1 s at the Fermilab
Main Injector would require Ḃ ≈ 1.6 Tesla/s. The circumference is 3319.4 m with

ρ = 235 m. The voltage requirement becomes V sinφs = 1.2 MV.

I.5 Summary of Synchrotron Equations of Motion

A. Using t as independent variable

Using time t as an independent variable, the equations of motion and the Hamiltonian
are listed as follows.

• Using (φ,ΔE/ω0) as phase-space coordinates:

dφ

dt
=

hω2
0η

β2E

(
ΔE

ω0

)
,

d (ΔE/ω0)

dt
=

1

2π
eV (sinφ− sinφs), (3.22)

H =
1

2

hηω2
0

β2E

(
ΔE

ω0

)2

+
eV

2π
[cosφ− cosφs + (φ− φs) sinφs]. (3.23)

• Using (φ, δ) as phase-space coordinates:

dφ

dt
= hω0ηδ,

dδ

dt
=

ω0eV

2πβ2E
(sinφ− sinφs), (3.24)

H =
1

2
hω0ηδ

2 +
ω0eV

2πβ2E
[cosφ− cosφs + (φ− φs) sinφs]. (3.25)

• Using (φ,P = −(h|η|/νs)δ) as the normalized phase-space coordinates:

dφ

dt
= ω0νsP,

dP
dt

=
η

|η|ω0νs(sin φ− sinφs), (3.26)

H =
1

2
ω0νsP2 +

η

|η|ω0νs[cosφ− cosφs + (φ− φs) sinφs]. (3.27)
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• Using (τ = (φ− φs)/hω0, τ̇) as phase-space coordinates:

dτ

dt
= τ̇ ,

dτ̇

dt
= − ηω0eV

2πβ2E
[sin(φs − hω0τ)− sinφs], (3.28)

H =
1

2
τ̇ 2 +

ηeV

2πhβ2E
[cos(φs − hω0τ)− cosφs − hω0τ sin φs]. (3.29)

The corresponding normalized phase space is (τ, τ̇/ωs).

B. Using longitudinal distance s as independent variable

• Using (Rφ/h,−Δp/p0) as phase-space coordinates, the Hamiltonian is

H = −1

2
η

(
Δp

p0

)2

− ν2
s

h2|η| [cosφ− cosφs + (φ− φs) sinφs] , (3.30)

where νs =
√

h|η|eV /2πβ2E0 is the synchrotron tune at φs = 0. This syn-

chrotron Hamiltonian is on an equal footing with the transverse betatron mo-
tion. In particular, the negative sign in the first term corresponds to negative

mass above the transition energy, where η > 0.

Exercise 3.1

1. An rf cavity consists of an insulating gap g across which the rf voltage is applied. The
gap length is finite and the rf field changes with time during transit time Δt. The
total energy gain of a particle passing through the gap is the time average of the rf
voltage during the transit time, i.e.

ΔE =
e

Δt

∫ Δt/2

−Δt/2
V (t)dt, V (t) = Vg sin(φ+ hω0t)

where Vg is the peak gap voltage, and φ the rf phase of the particle. Show that the
effective voltage is

V = VgT, T =
sin (hg/2R)

(hg/2R)
,

where R is the mean radius of the accelerator. Thus the transit time factor T is the
same for all particles.

2. Show that the relation between the rf frequency of an accelerator and the magnetic
flux density B(t) during particle acceleration at a constant radius is given by

ωrf =
hc

R0

[
B2(t)

B2(t) + (mc2/ecρ)2

]1/2
,

where h is the harmonic number, ρ is the bending radius of the dipoles, R0 is the
mean radius of the accelerator, e and m are the charge and mass of the particle, and
c is the speed of light.
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3. Calculate synchrotron tunes for the proton synchrotrons listed in the following table
with φs = 0.

RF parameters of some proton synchrotrons

P-synchrotron AGS RHIC FNAL-MI FNAL-BST SSC Cooler

K.E. [GeV/u] 0.2 28 8 0.4 2000 0.045
Vrf [MV] 0.3 0.3 2 0.95 10 0.0001
h 12 342 588 84 17424 1
γT 8.5 24.5 21.8 5.446 140 4.6
C [m] 807.12 3833.84 3319.4 474.2 87120 86.8

νs

4. Electrons in storage rings emit synchrotron radiation. The energy loss per turn is
given by

U0 = Cγβ
3E4

0/ρ,

where E0 is the beam energy, βc is the beam velocity, ρ is the bending radius of
dipoles, and

Cγ = 8.85 × 10−5 m/(GeV)3.

The energy loss due to synchrotron radiation is compensated by the rf accelerating
field, i.e. U0 = eVrf sinφs. Calculate synchrotron tunes for the electron storage rings
listed in the following table.

RF parameters of some electron synchrotrons

LEP ALS APS NLC DR BEPC TRISTAN

C [m] 26658.9 196.8 1060 223 240.4 3018
Energy [GeV] 50 1.2 7.0 1.98 2.2 30.
ρ [m] 3096.2 4.01 38.96 4.35 10.35 246.5
Vrf [MV] 400 1.5 10 1.0 0.8 400
h 31320 328 1248 531 160 5120
γ
T

50.86 26.44 64.91 46.1 5.0 25.5
νx 76.2 14.28 35.22 23.81 6.18 36.8
νz 70.2 8.18 14.3 8.62 7.12 38.7

φs [deg]
Qs

5. The synchrotron tune of the Fermilab Booster during the ramping cycle is shown in
Fig. 3.1. We note that the rf voltage is ramped from a low value to a high value at
injection for adiabatic capture (see Sec. V.2 in Chap. 3).

(a) Compare the measured synchrotron tune at the injection energy with that ob-
tained from Exercise 5.1.3. Explain the difference.

(b) At time t = 17 ms, what happens to the the measured synchrotron tune? What
is the beam energy and what happens to the synchronous phase angle?

(c) Why the synchronous phase angle is moved to 180◦ at extraction?
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6. Compare and discuss the synchrotron mapping equations of Eq. (3.18) vs Eqs. (3.19)
and (3.20).

7. Verify Eq. (3.21) of rf voltage requirement during the beam energy ramping process.

8. Find the dimension of phase space area in various phase space coordinates discussed
in Sec. I.5

9. Write a computer program to track synchrotron motion near the separatrix, explore
the dependence of the separatrix on the acceleration rate, and verify the golf-club-like
tori in Fig. 3.3, where the torus of the solid line is captured into the bucket, while
the torus of dashed line is outside the bucket.

10. Redefine y ≡ h|η|δ/νs.
(a) Show that Eq. (3.18) of the symplectic mapping equation for a stationary bucket

synchrotron motion can be transformed into the standard map:

yn+1 = yn + 2πνs(sinφn − sinφs),

φn+1 = φn +
η

|η|2πνsyn+1,

where νs =
√

h|η|eV/2πβ2E is the synchrotron tune.

(b) Write a program to track the phase-space points (φ, y) such that φ ∈ [−π, π],
y ∈ [−2, 2]. Examine the symmetry of the tracking equation in (φ, y) space.

(c) Explore the phase-space evolution at νs = νs,c = 0.39324366, where νs,c is the
critical synchrotron tune for global chaos in the synchrotron phase space.
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II Adiabatic Synchrotron Motion

With time t as an independent variable, Hamilton’s equations of motion for the

synchrotron Hamiltonian for phase-space coordinates (φ, δ) shown in Eq. (3.14) are

φ̇ = hηω0δ, δ̇ =
ω0eV

2πβ2E
(sinφ− sinφs), (3.31)

where the over-dots indicate derivatives with respect to time t. For simplicity in
notation, hereafter, the subscript of the energy E0 of the beam has been neglected. If

|η| �= 0, the small amplitude synchrotron tune is given by Eq. (3.17). The synchrotron
period is Ts = T0/Qs, where T0 is the revolution period.

The typical synchrotron tune in proton synchrotrons is of the order of 10−3, i.e.
it takes about 1000 revolutions to complete one synchrotron oscillation. The typical

synchrotron tune in electron storage rings is of the order of 10−1. If the rf parameters
V and φs vary only slowly with time so that the gain in beam energy in each revolution

is small, and η differs substantially from 0, the Hamiltonian is time independent or

nearly time independent.
During beam acceleration, the Hamiltonian (3.14) generally depends on time.

However, if the acceleration rate is low, the Hamiltonian can be considered as quasi-
static. This corresponds to adiabatic synchrotron motion, where parameters in the

synchrotron Hamiltonian change slowly so that the particle orbit is a torus of constant
Hamiltonian value. The condition for adiabatic synchrotron motion is

αad =

∣∣∣∣
1

ω2
s

dωs

dt

∣∣∣∣ =
1

2π

∣∣∣∣
dTs

dt

∣∣∣∣ � 1, (3.32)

where ωs is the angular synchrotron frequency and αad is called the adiabaticity

coefficient. Typically, when αad ≤ 0.05, the time variation of synchrotron period is

small and the trajectories of particle motion can be approximately described by tori
of constant Hamiltonian values.

II.1 Fixed Points

The Hamiltonian for adiabatic synchrotron motion has two fixed points (φs, 0) and

(π − φs, 0), where φ̇ = 0 and δ̇ = 0. The phase-space point (φs, 0) is the stable fixed
point (SFP). Small amplitude phase-space trajectories around the stable fixed point

are ellipses. Therefore the SFP is also called an elliptical fixed point.
The phase-space trajectories near the unstable fixed point (UFP) (π − φs, 0) are

hyperbola. Thus the UFP is also called a hyperbolic fixed point. The torus that
passes through the UFP is called the separatrix; it separates phase space into regions

of bound and unbound oscillations. Figure 3.4 shows the separatrix orbit in the

normalized coordinates (h|η|/νs)δsx vs φ for η < 0 with φs = 0, π/6, π/3 and for η > 0
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with φs = 2π/3, 5π/6, π. The synchrotron phase space is divided into stable and

unstable regions, and only particles in the stable region can be accelerated to high
energy. Particles in synchrotrons are naturally bunched. A beam in which particles

are grouped together forming bunches is called a bunched beam.

Figure 3.4: Separatrix orbits of the normalized
phase space coordinates (h|η|/νs)δsx vs φ for η > 0
(above transition energy) with φs = 2π/3, 5π/6, π,
(top) and for η < 0 (below transition energy) with
φs = 0, π/6, π/3 (bottom). The UFP of each separa-
trix is π−φs. The phase space area enclosed by the
separatrix is called the bucket area. The maximum
off-momentum deviation of the rf bucket is called
bucket height. The acceleration rate is zero for a
stationary bucket at φs = 0 or π. When sinφs �= 0
or π, the bucket is called a running bucket. When
an rf system has a harmonic number h applied to an
accelerator, there are h identical buckets and a max-
imum of h bunches can be stored in the accelerator.

For a slowly time-varying Hamiltonian, particle motion adiabatically follows a
phase-space ellipse, called a “Hamiltonian torus” at a “constant” Hamiltonian value.

The phase-space area enclosed by a Hamiltonian torus is Ã =
∮
δ(φ)dφ. The phase-

space area enclosed by the separatrix orbit is called the bucket area. The maximum

momentum deviation of the separatrix orbit is called the bucket height. Particles
outside the rf bucket drift along the longitudinal direction, and particles inside the rf

bucket execute quasi-harmonic motion within the bucket.

II.2 Bucket Area

The separatrix passes through the unstable fixed point (π − φs, 0). Therefore the

Hamiltonian value of the separatrix and the phase-space trajectory of the separatrix,
where H = Hsx, are

Hsx =
ω0eV

2πβ2E
[−2 cosφs + (π − 2φs) sinφs]. (3.33)

δ2sx +
eV

πβ2Ehη
[cosφ+ cosφs − (π − φ− φs) sinφs] = 0.

The separatrix has two turning points, φu and π−φs with cos φu+φu sinφs = − cosφs+

(π − φs) sinφs. For φs = 0, the turning points are −π and π.

The phase-space area enclosed by the separatrix is called the bucket area, i.e.

ÃB =

∮
δsx(φ)dφ = 16

√
eV

2πβ2Eh|η| αb(φs) =
16Qs

h|η|√| cosφs|
αb(φs), (3.34)
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αb(φs) =
1

4
√
2

∫ π−φs

φu

[
−|η|

η
[cosφ+ cosφs − (π − φ− φs) sinφs]

]1/2
dφ, (3.35)

where the factor αb(φs) is the ratio of bucket areas of a running bucket (φs �= 0) to

a stationary bucket (φs = 0). Table 3.1 lists αb(φs) as a function of the synchronous
phase angle φs. Naturally αb(0) = 1, and αb(π/2) = 0, i.e. the bucket area vanishes

at 90◦ synchronous phase angle. We note that αb(φs) ≈ (1− sin φs)/(1 + sinφs).

Table 3.1: Turning point (φu

in degree), UFP (π − φs in
degree), Bucket length (π −
φs−φu), bucket height factor
Y (φs) and bucket area factor
α(φs).

sinφs φu π − φs Y (φs) αb(φs)
1−sinφs

1+sinφs

0.00 −180.00 180.00 1.0000 1.0000 1.0000
0.10 −118.90 174.26 0.9208 0.8041 0.8182
0.20 −93.71 168.46 0.8402 0.6611 0.6667
0.30 −73.59 162.54 0.7577 0.5388 0.5385
0.40 −55.66 156.42 0.6729 0.4305 0.4286
0.50 −38.69 150.00 0.5852 0.3333 0.3333
0.60 −21.88 143.13 0.4936 0.2460 0.2500
0.70 −4.48 135.57 0.3967 0.1679 0.1765
0.80 14.59 126.87 0.2919 0.0991 0.1111
0.90 37.77 115.84 0.1731 0.0408 0.0526
1.00 90.00 90.00 0. 0. 0.

The corresponding invariant bucket area in (φ,ΔE/ω0) phase-space variables,

AB,rms =
β2E

ω0
ÃB,rms = hπσΔtσΔE, (3.36)

is the phase-space area of h buckets in accelerator, where Δt is the bucket width in

time (s), ΔE is the bucket energy height (eV), and the resulting bucket phase-space
area is in eV-s. Table 3.2 lists relevant formulas for rf bucket properties.

Table 3.2: Formula for bucket area in conjugate phase space coordinates

(φ, ΔE
ω0

) (φ, δ) (φ, h|η|
νs

δ)

Bucket Area 16
(

β2EeV
2πω2

0h|η|

)1/2

αb(φs) 16
(

eV
2πβ2Eh|η|

)1/2

αb(φs) 16 αb(φs)

Bucket Height 2
(

β2EeV
2πω2

0h|η|

)1/2

Y (φs) 2
(

eV
2πβ2Eh|η|

)1/2

Y (φs) 2 Y (φs)

The bucket length is |(π − φs) − φu|, and the bucket height or the maximum
momentum width is

δB =

(
2eV

πβ2Eh|η|
)1/2

Y (φs) =
2Qs

h|η| Ỹ (φs). (3.37)
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Here bucket height factors Y (φs) and Ỹ (φs) are ratios of the maximum momentum

height to that of a stationary bucket, i.e.

Y (φs) =

∣∣∣∣cos φs − π − 2φs

2
sinφs

∣∣∣∣
1/2

, Ỹ (φs) =

∣∣∣∣1−
π − 2φs

2
tanφs

∣∣∣∣
1/2

. (3.38)

Table 3.1 also lists turning point and bucket height factor, Y (φs), of rf bucket.

II.3 Small-Amplitude Oscillations and Bunch Area

The linearized synchrotron Hamiltonian around the SFP is simple harmonic with

H =
1

2
hω0ηδ

2 − ω0eV cosφs

4πβ2E
ϕ2,

ϕ = φ̂ cos(ωst+ χ), δ = −Qs

hη
φ̂ sin(ωst + χ),

(
δ

δ̂

)2

+

(
ϕ

φ̂

)2

= 1,
δ̂

φ̂
=

(
eV | cosφs|
2πβ2Eh|η|

)1/2

=
Qs

h|η| , (3.39)

where ϕ = φ − φs, and the synchrotron frequency is given by Eq. (3.17) with ωs =
Qsω0, and δ̂ and φ̂ are maximum amplitudes of the phase-space ellipse. The phase-

space area of the ellipse is πδ̂φ̂.

A. Gaussian beam distribution

The equilibrium beam distribution is a function of the invariant ellipse of Eq. (3.39).
In many beam applications, we use the normalized Gaussian distribution given by

ρ(δ, φ) =
1

2πσδσφ
exp

{
−1

2

[
φ2

σφ
2
+

δ2

σδ
2

]}
, (3.40)

where σδ and σφ are rms momentum spread and bunch length respectively. The
corresponding rms phase-space area is Ãrms = πσδσφ. The phase-space area that

contains 95% of the particles in a Gaussian beam distribution is Ã95% = 6Ãrms,
where the factor 6 depends on the distribution function.

The synchrotron phase-space area (or emittance) A, usually measured in eV-s, is
defined as the area in the phase space (φ/h,ΔE/ω0) for one bunch,5 it is related to

5The energy of a heavy ion beam is usually expressed as [MeV/u] or [GeV/u], the E in the
denominator of Eq. (3.41) can be expressed as A × (E/A), where A is the atomic mass number or
the number of nucleons in a nucleus, E/A = γuc2, and u = 0.931494 GeV/c2 is the atomic mass
unit. Thus the phase-space area is commonly defined as phase-space area per amu expressed as
[eV-s/u] for heavy ion beams. The factors eV and E in this chapter should be modified by ZeV and
A× (E/A) for heavy ion beams, where Z is the ion’s charge number, A is the atomic mass number,
and E/A is the energy per nucleon.
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Ã by a factor hω0/β
2E. Using Eq. (3.39), we find the maximum momentum width

and bunch length of a bunch as

Ã = πδ̂φ̂ = hA
(

ω0

β2E

)
. (3.41)

δ̂ = A1/2

(
ω0

πβ2E

)1/2 (
heV | cosφs|
2πβ2E|η|

)1/4

=

(
A ω0Qs

πβ2E|η|
)1/2

,

θ̂ =
1

h
φ̂ = A1/2

(
ω0

πβ2E

)1/2(
2πβ2E|η|
heV | cosφs|

)1/4

=

(
A ω0|η|
πβ2EQs

)1/2

,

δ̂

θ̂
=

(
heV | cosφs|
2πβ2E|η|

)1/2

=
Qs

|η| . (3.42)

The invariant rms phase-space area for one bunch in eV-s is Arms = πσΔtσΔE . The

scaling properties of bunch length and bunch height of Eq. (3.42) become

δ̂ ∼ A1/2V 1/4h1/4|η|−1/4γ−3/4, θ̂ ∼ A1/2V −1/4h−1/4|η|1/4γ−1/4, (3.43)

where the adiabatic damping is also explicitly shown. As the energy approaches the
transition energy with η → 0, we expect that δ̂ → ∞, and θ̂ → 0. This is not true

because the synchrotron motion around the transition energy is non-adiabatic. It will

be discussed in Sec. IV.
Similarly, the invariant phase-space ellipse in (θ, δ) phase space is

(
δ2

δ̂

)2

+

(
θ

θ̂

)2

= 1,
δ̂

θ̂
=

Qs

|η| , (3.44)

where δ̂ and θ̂ are the maximum amplitudes of phase-space ellipse. The normalized
Gaussian distribution in (θ, δ) space becomes

ρ(δ, θ) =
1

2πσδσθ

exp

{
−1

2

[
θ2

σθ
2
+

δ2

σδ
2

]}
. (3.45)

Here σθ and σδ are respectively the rms bunch angular width and rms fractional
momentum spread. The bunch length is σs = Rσθ in meters, where R is the average

radius of the accelerator, or σt = σθ/ω0 in s.
Now we consider NB particles distributed in a bunch, where NB may vary from

108 to 1014 particles. The line distribution and the peak current (in Amperes) of the
bunch are

ρ(φ) =
NB√
2πσφ

e−φ2/2σ2
φ or ρ(θ) =

NB√
2πσθ

e−θ2/2σ2
θ , (3.46)

Î =
NB e√
2πσt

=
NB eω0√
2πσθ

=

(
2π√
2πσθ

)
NB e

T0
, (3.47)

where NBe/T0 is the average current, and 2π/(
√
2πσθ) is the bunching factor.
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B. Synchrotron motion in reference time coordinates

In collective beam instabilities, we use the particle arrival time τ and its time deriva-

tive τ̇ for synchrotron phase-space coordinates, i.e.

τ = −θ − θ0
ω0

, and τ̇ =
Δω

ω0

= +ηδ. (3.48)

The linearized synchrotron Hamiltonian becomes H = 1
2
[τ̇ 2 + ω2

s τ
2] , where ωs is the

angular synchrotron frequency shown in Eq. (3.16). The phase-space ellipse that
corresponds to a constant Hamiltonian and the solutions are

τ 2 +
τ̇ 2

ω2
s

= τ̂ 2; τ = τ̂ cosψ,
τ̇

ωs
= −τ̂ sinψ, ψ = ψ0 + ωst, (3.49)

where τ̂ and ψ are respectively the synchrotron amplitude and phase. See Eq. (3.273)

for its application.

C. Approximate action-angle variables

Expanding the phase coordinate around SFP with φ = φs + ϕ, the synchrotron
Hamiltonian becomes (see Exercise 3.2.11)

H =
1

2
hω0ηδ

2 +
1

2hη
ω0Q

2
s

[
ϕ2 − 1

3
tanφs ϕ

3 − 1

12
ϕ4 + · · ·

]
, (3.50)

where Qs =
√

heV |η cosφs|/2πβ2E = νs
√| cosφs| is the small amplitude synchrotron

tune. For simplicity, we assume η > 0 in this section.

We would like to transform the phase space coordinates (ϕ, δ) to action-angle
coordinates (ψ, J) by a generating function as:

F1(ϕ, ψ) = − Qs

2h|η|ϕ
2 tanψ =⇒ ϕ =

√
2hηJ

Qs
cosψ, δ = −

√
2QsJ

hη
sinψ. (3.51)

With the approximate action-angle variables, the Hamiltonian for synchrotron motion

becomes

H = ω0QsJ + ω0

√
2hηQs

12
tanφs J

3/2 [cos 3ψ + 3 cosψ]− ω0
hη

6
J2 cos4 ψ. (3.52)

If we apply the canonical perturbation method (see Exercise 3.2.11), the averaged
synchrotron Hamiltonian and the amplitude dependent synchrotron tune become

�H� = ω0QsJ − ω0hη

16

(
1 +

5

3
tan2 φs

)
J2 + · · ·

Q̃s(J) ≡ 1

ω0

∂�H�
∂J

≈ Qs

[
1− hη

8Qs

(
1 +

5

3
tan2 φs

)
J

]
. (3.53)
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II.4 Small-Amplitude Synchrotron Motion at the UFP

Small amplitude synchrotron motion around an unstable fixed point (UFP) is also

of interest in accelerator physics. Expanding the Hamiltonian around the UFP, i.e.
ϕ = φ− (π − φs), we obtain

δ̇ = −ω0eV cosφs

2πβ2E
ϕ, ϕ̇ = hηω0δ,

δ̈ = ω2
s δ, ϕ̈ = ω2

sϕ. (3.54)

The particle motion is hyperbolic around the UFP.

Now, we study the evolution of an elliptical torus of Eq. (3.39) at the UFP. We
would like to find the evolution of bunch shape when the center of the beam bunch is

instantaneously kicked6 onto the UFP at time t = 0. With normalized coordinates,
the solutions of Eq. (3.54) are

ϕ̃ =
ϕ

φ̂
, δ̃ =

δ

δ̂
, ϕ̃ = aeωst + be−ωst, δ̃ = aeωst − be−ωst, (3.55)

where a and b are determined from the initial condition. With the constants a and b

eliminated, the evolution of the bunch shape ellipse is

ϕ̃2 − 2

(
η

|η| tanh 2ωst

)
ϕ̃δ̃ + δ̃2 = (cosh 2ωst)

−1. (3.56)

Thus the upright phase-space ellipse will become a tilted phase-space ellipse encom-
passing the same phase-space area. The width and height of phase-space ellipse

increase or decrease at a rate e±ωst, where t is the length of time that the bunch stays
at UFP (see Exercise 3.2.5). This scheme of bunch deformation can be used for bunch

rotation or bunch compression. At ωst � 1, the ellipse becomes a line ϕ̃ ± δ̃ = 0.
However, the nonlinear part of synchrotron Hamiltonian will distort the ellipse.

II.5 Synchrotron Motion for Large-Amplitude Particles

The phase space trajectory of adiabatic synchrotron motion follows a Hamiltonian
torus H(φ, δ) = H0, where H(φ, δ) is the synchrotron Hamiltonian in Eq. (3.14) and

the constant Hamiltonian value H0 is

H0 =
1

2
hω0ηδ̂

2 =
ω0eV

2πβ2E
[cos φ̂− cosφs + (φ̂− φs) sinφs].

6In reality, the beam does not jump in the phase space; instead, the phase of the rf wave is being
shifted so that the UFP is located at the center of a bunch.
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Here φ̂ and δ̂ are respectively the maximum phase coordinate and fractional momen-

tum deviation of synchrotron motion. Using Hamilton’s equation φ̇ = hω0ηδ, we find
the synchrotron oscillation period as

T =

∮ (
2hω0η

[
H0 − ω0eV

2πβ2E
[cosφ− cos φs + (φ− φs) sinφs]

])−1/2

dφ, (3.57)

where H0 is the Hamiltonian value of a torus. The angular synchrotron frequency is
2π/T . The action of the torus is

J =
1

2π

∮ (
2

hω0η
[H0 − ω0eV

2πβ2E
(cosφ− cos φs + (φ− φs) sinφs)]

)1/2

dφ. (3.58)

The synchrotron period of Eq. (3.57) can also be derived by differentiating Eq. (3.58)

with respect to J , and using dH0/dJ = ω(J) to find the synchrotron frequency.

A. Stationary synchrotron motion

For simplicity, we consider the stationary synchrotron motion above the transition

energy with η > 0, or φs = π. The Hamiltonian value for a torus with a maximum
phase coordinate φ̂ (or maximum off-momentum coordinate δ̂) is

H0 =
1

2
hω0ηδ̂

2 =
ω0

hη
ν2
s (1− cos φ̂) =⇒ δ̂ =

2νs
hη

sin
φ̂

2
. (3.59)

The maximum off-momentum coordinate δ̂ is related to the maximum phase co-
ordinate φ̂ for a Hamiltonian torus, where the phase space trajectory is given by

(φ,±δ(φ)): δ(φ) = νs
hη

√
2(cosφ− cos φ̂). The phase space area A, or the action J

enclosed by the Hamiltonian torus is

A = 2πJ = 2

∫ φ̂

−φ̂

δ(φ)dφ = 16
νs
hη

[
E(k)− (1− k2)K(k)

]
,

K(k) =

∫ π/2

0

dw√
1− k2 sin2w

, E(k) =

∫ π/2

0

√
1− k2 sin2w dw, (3.60)

where K(k) and E(k) are the complete elliptic integrals of the first and second kinds,

and k = sin(φ̂/2) is the modulus of these integrals.

B. Synchrotron tune

The synchrotron tune of the Hamiltonian torus with maximum phase amplitude φ̂
becomes (see Exercise 3.2.8)

Q̃s(φ̂) =
πνs

2K(sin( φ̂
2
))

(3.61)
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Figure 3.5 compares the theoretical curve of Eq. (3.61) with a measured synchrotron

tune at the IUCF Cooler. When the value of the Hamiltonian H0 approaches that
of the separatrix Hsx of Eq. (3.33), the synchrotron tune becomes zero and the

synchrotron period becomes infinite. In the small angle approximation, we find
Q̃s(φ̂) ≈ (1− 1

16
φ̂2)νs, which is identical to Eq. (3.53) at φs = 0.

Figure 3.5: The measured syn-
chrotron tune obtained by taking the
FFT of the synchrotron phase coor-
dinate is plotted as a function of the
maximum phase amplitude of the
synchrotron oscillations. The solid
line shows the theoretical prediction
of Eq. (3.61). The inset shows an
example of the synchrotron phase-
space map measured at the IUCF
Cooler, and the corresponding FFT
spectrum. The zero amplitude syn-
chrotron tune was νs = 5.2 × 10−4.

Since the synchrotron tune is nonlinear, particles having different synchrotron am-
plitudes in a beam bunch can have different synchrotron tunes. If the bunch area is

a substantial fraction of the bucket area, the synchrotron tune spread may be large.
For a mismatched beam bunch, synchrotron tune spread can cause beam decoherence,

a filamentation process, where beam particles spread out in the synchrotron phase
space. Beam filamentation causes a mismatched beam bunch to evolve into spirals

bounded by a Hamiltonian torus. The final bunch area is determined by the initial
beam distribution and parameters of the rf system (see Fig. 3.20 in Sec. V). Filamen-

tation can dilute the phase-space density of the beam. When the beam encounters
longitudinal collective beam instability, or mis-injection in the rf bucket, or rf voltage

and phase modulations, etc., the mismatched phase-space distribution will decohere
and result in beam dilution. This process is important to rf capture in low energy

synchrotrons during injection. On the other hand, synchrotron tune spread is useful

in providing Landau damping for collective beam instabilities.

II.6 Experimental Tracking of Synchrotron Motion

Experimental measurements of synchrotron phase-space coordinates are important in

improving the performance of synchrotrons. For example, a phase detector is needed
in implementing a phase feedback loop to damp dipole or higher-order synchrotron

modes. In this section we discuss the methods of measuring the off-momentum and

rf phase coordinates of a beam.
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The fractional off-momentum coordinate of a beam can be derived by measuring

the closed orbit of transverse displacement Δxco at a high dispersion function location.
The off-momentum coordinate is

Δp

p
=

Δxco

D
, (3.62)

where D is the horizontal dispersion function. Since synchrotron oscillation is rela-
tively slow in proton synchrotrons, the signal-to-noise ratio can be enhanced by using

a low-pass filter at a frequency slightly higher than the synchrotron frequency.

The inset in Fig. 3.5 shows a synchrotron phase space ellipse measured at the

IUCF Cooler Ring. The phase coordinate is obtained by a phase detector, and the
fractional off-momentum coordinate is obtained from the displacement of the beam

centroid measured with a beam position monitor (BPM).

The BPM system had an rms position resolution of about 0.1 mm. By averaging

the position measurements the stability of the horizontal closed orbit was measured to
be within 0.02 mm. The momentum deviation is related to the off-momentum closed

orbit, Δxco, by Δxco = Dδ, where δ = Δp/p0 is the fractional momentum deviation,
and the horizontal dispersion function D is about 4.0 m at a high-dispersion location.

The position signals from the BPM were passed through a 3 kHz low-pass filter before
digitization to remove effects due to coherent betatron oscillations and high frequency

noise. Since the synchrotron frequency at the IUCF Cooler in this experiment was
less than 1 kHz for an rf system with h = 1, a 3 kHz low-pass filter could be used to

average out betatron oscillations of a few hundred kHz.

The synchrotron phase coordinate can be measured by comparing the bunch ar-

rival time with the rf cavity wave. First, we examine the characteristics of beam
current signal from a beam position monitor. We assume that the bunch length is

much shorter than the circumference of an accelerator. With the beam bunch ap-
proximated by an ideal δ-function pulse, the signal from a beam position monitor

(BPM) or a wall gap monitor (WGM)7 is

I(t, τ) = NBe
∞∑

�=−∞
δ(t+ τ − �T0) =

NBe

T0

∞∑
n=−∞

einω0(t+τ), (3.63)

whereNB is the number of particles in a bunch, T0 is the revolution period, ω0 = 2π/T0

is the angular revolution frequency, and τ = (θ − θs)/ω0 is the arrival time relative
to the synchronous particle. Equation (3.63) shows that the periodic delta-function

pulse, in time domain, is equivalent to sinusoidal waves at all integer harmonics of

the revolution frequency.

7A wall gap monitor consists of a break in the vacuum chamber. The wall current that flows
through a resistor, typically about 50 Ohms with a stray capacitance of about 30 pF, can then be
measured. The bandwidth is about 100 MHz.
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To measure the phase coordinate or equivalently the relative arrival time τ , we

first select a sinusoidal wave by using the band-pass filter, or we select the fundamen-
tal harmonic with a low-pass filter including only the fundamental harmonic. The

sinusoidal signal is compared with the rf wave; and the phase between the beam and
the reference rf wave can be obtained by using phase detectors.8 Normally, the BPM

sum signal or the WGM signal can be used to measure the relative phase of the beam.9

Since the rf frequency was 1.03 MHz for the 45 MeV protons in this measurement at

the IUCF Cooler, the BPM signal was passed through a 1.4 MHz low-pass filter to
eliminate high harmonics noise before it was compared with an rf signal in a phase

detector.

The phase-space map of synchrotron oscillations can be obtained by plotting
Δp/p0 vs φ in each revolution. Since the synchrotron tune of a proton synchrotron

is small, the synchrotron motion can be tracked at N revolution intervals, where
N � 1/νs. The top inset in Fig. 3.5 shows the Poincaré map of the longitudinal

phase space at 10 turn intervals; the bottom inset shows the FFT of the phase data.
The resulting synchrotron tune as a function of peak phase amplitude is compared

with the theoretical prediction in Fig. 3.5.

Exercise 3.2

1. Write a simple program to calculate αb(φ0).

2. This exercise concerns the acceleration of protons in the AGS booster. The injection
kinetic energy is 200 MeV from the linac. The circumference of the booster ring is
201.78 m, the transition energy is γ

T
= 4.5, the extraction energy is 1.5 GeV kinetic

energy, the acceleration time is 160 ms, and the harmonic number is h = 3.

(a) Find the rf voltage needed for acceleration of a proton bunch in the booster.

(b) The bunch area is determined by several factors, such as line charge density,
microwave instabilities, transition crossing in the AGS, etc. If we need a bunch
area of about 1 eV-s per bunch in (ΔE/ω0, φ/h) phase space, and the bucket
area is about 1.2 times as large as the bunch area, what is the minimum rf
voltage needed?

(c) What is the rf frequency swing needed to accelerate protons from 200 MeV to
1.5 GeV?

(d) How does the rf bucket area change during the acceleration process?

8See Roland E. Best, Phase Locked Loops, Theory, Design, and Applications, pp. 7-9 (McGraw-
Hill, New York, 1984). The type II phase detector utilizes XOR logic, and has a range of ±90◦; the
type III utilizes the edge triggered JK-master-slave flip-flop circuit, and has a range of ±180◦. The
type III has a phase error of about ±10◦ near 0◦, but can adequately measure the synchrotron tune.
For more accurate measurement of phase amplitude response, the type II can be used. To extend
the range of beam phase detection, a type IV phase detector with a range of ±360◦ can be used.

9M. Ellison et al., Phys. Rev. E 50, 4051 (1994).
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3. For a constant rf voltage and synchronous phase angle, show that the rf bucket area
in the (ΔE/ω0, φ/h) phase space has a minimum at γ =

√
3γT .

4. Particle acceleration at a constant bucket is a possible “rf program” in synchrotrons.
Find the relation between rf voltage and beam energy.

5. Verify Eq. (3.54). Rotate the phase-space ellipse of Eq. (3.56) into the upright posi-
tion, show that the width and height of the bunch change by a factor e±ωst, where t
is the time the bunch stays at the UFP, and estimate the time needed to double the
bunch height.

6. The anti-protons produced from the Main Injector (Main Ring) pulses have the follow-
ing characteristics: p0 = 8.9 GeV/c, σt = 0.15 ns, σ

E
= 180 MeV, or Δp/p0 = ±2%.

The antiprotons are captured in the Debuncher into the 53.1 MHz (h = 90) rf bucket
with V = 5 MV, φs = 180◦, γ

T
= 7.7, and circumference C = 505 m.10

(a) Find the bucket height, synchrotron tune, and synchrotron period of the De-
buncher ring with the rf system.

(b) At 1/4 of the synchrotron period after antiproton injection, the rf voltage is
lowered suddenly to match the bunch shape. Show that the final rf voltage V2

related to the initial voltage V1 and the final energy spread in this debunching
process are respectively

V2

V1
=

(
νs1
|η| (ω0σt1)

)2 ( σ
E1

β2E

)−2

, σ
E2

=

[
νs1
|η| (ω0σt1)

]
β2E.

Find the final matched rf voltage for the Debuncher and the final energy spread
of the antiproton beams.

7. Assuming stationary bucket, fill out the beam properties of the proton synchrotrons
in the table below.

P-synchrotron AGS RHIC FNAL-MI FNAL-BST Cooler

K.E. [GeV] 25 250 120 8 0.045
Vrf [MV] 0.3 0.3 2 0.95 0.0001
h 12 342 588 84 1
γ
T

8.5 24.5 21.8 5.446 4.6
C [m] 807.12 3833.84 3319.4 474.2 86.8
Arms [eV-s] 1.5 0.5 0.15 0.15 0.0001

σ
E
[MeV]

σt [ns]

8. Show that the synchrotron tune of a particle with phase amplitude φ̂ in a stationary
bucket is

Qs(φ̂) = πνs/2K(sin
φ̂

2
),

where K(x) is the complete elliptical integral of the first kind given in Eq. (3.60).

10See A.V. Tollestrup and G. Dugan, p. 954 in Ref. [17] (1983). Note that 5 MV is the maximum
voltage that the Debuncher rf system can deliver.
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9. Define pφ = hωηδ, and show that the synchrotron equations of motion become

φ̇ = pφ, ṗφ =
η

|η|ω
2
s (sinφ− sinφs),

where ωs = ω0

√
h|η|eV /2πβ2E, and the overdot indicates the derivative with respect

to time t. The Hamiltonian for a stationary rf system with φs becomes

H =
1

2
p2φ +

η

|η|ω
2
s (cos φ− 1).

(a) Using the generating function show that phase-space coordinates are

F1 = −ωs

2
φ2 tanψ =⇒ φ =

√
2J/ωs cosψ, pφ = −

√
2Jωs sinψ,

where J and ψ are action-angle coordinates. Show that the Hamiltonian below
the transition energy becomes

H = ωsJ + ω2
s

[
1− J

ωs
cos2 ψ − cos

(√
2J

ωs
cosψ

)]
.

(b) Using the phase averaging method, show that the synchrotron tune is approxi-
mately given by

Qs(J) = νs

[
1

2
+

J1(w)

w

]
, w =

√
2J

ωs
,

where J1(w) is the Bessel function.

(c) Compare the accuracy of the above approximated synchrotron tune to that of
the exact formula given by Exercise 3.2.8.

10. Let φ̂ be the maximum synchrotron phase amplitude. Show that the maximum off-
momentum deviation is

δ̂ =

√
2Qs

h|η|

[
−1 +

cos φ̂

cosφs
+ (φ̂− φs) tan φs

]
.

11. Expanding the phase coordinate around the SFP with φ = φs + ϕ, the synchrotron
Hamiltonian becomes

H =
1

2
hω0ηδ

2 +
1

2hη
ω0Q

2
s

[
ϕ2 − 1

3
tan φsϕ

3 − 1

12
ϕ4 + · · ·

]
,

Qs =

√
heV |η cosφs|

2πβ2E
= νs

√
| cos φs|.

For simplicity, we assume η > 0 in this exercise.
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(a) Using the generating function to transform (ϕ, δ) to angle-action (ψ, J) coordi-
nates, show that the coordinate transformation and the resulting Hamiltonian
in action-angle are

F1(φ,ψ) = − Qs

2hη
ϕ2 tanψ

ϕ =
√

2hηJ/Qs cosψ, δ = −
√

2QsJ/hη sinψ,

H = ω0QsJ − ω0
√
2hηQs

12
tanφs J

3/2 [cos 3ψ + 3cosψ]− ω0hη

6
J2 cos4 ψ.

(b) Using the generating function

F2(ψ, I) = ψI +G3(I) sin 3ψ +G1(I) sinψ,

show that terms proportional to J3/2 in the Hamiltonian can be canceled if G3

and G1 are chosen to be

G3 =

√
2hη

36
√
Qs

tanφs I
3/2, G1 =

√
2hη

4
√
Qs

tan φs I
3/2.

Finding new canonical variables to cancel low-order perturbation terms is called
the canonical perturbation technique.

(c) Show that the new Hamiltonian is

H = ω0QsI − ω0hη

6
I2 cos4 ψ

−ω0
√
2hηQs

8
tanφsI

1/2[cos 3ψ + 3cosψ][3G3 cos 3ψ +G1 cosψ].

Now the perturbation in the new action variable is proportional to I2.

(d) Show that the average Hamiltonian and thus the synchrotron tune for a particle
with a synchrotron amplitude are

�H� = ω0QsI − ω0hη

16

(
1 +

5

3
tan2 φs

)
I2 + · · · .

Q̃(ϕ̂) = Qs

[
1− 1

16

(
1 +

5

3
tan2 φs

)
ϕ̂2

]
,

where ϕ̂ is the maximum synchrotron amplitude in the quasi-harmonic approx-
imation. Compare your result with that of Eq. (3.61) for φs = 0.

12. The natural rms fractional momentum spread of electron beams in a storage ring
is σE/E =

√
Cqγ2/JEρ, where Cq = 3.83 × 10−13 m, ρ is the bending radius, and

JE ≈ 2 is the damping partition. In the NLC damping ring (DR) parameter list
shown in Exercise 3.1.3, the rms fractional momentum spread of the electron beam
is σδ = 0.000813. Find the bunch length and rms phase-space area in eV-s.
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13. The equilibrium distribution in linearized synchrotron phase space is a function of
the invariant ellipse given by Eq. (3.44), where θ̂ = |η|δ̂/νs. When a mismatched
Gaussian beam

ρ(δ, θ) =
NBe

2πσδσθ
exp

{
−1

2

[
θ2

σθ2
+

δ2

σδ2

]}

is injected into the synchrotron at time t = 0, what is the time evolution of the beam?
Here σθ and σδ are respectively the initial rms bunch angular width and fractional
momentum spread, and the mismatch condition for the linearized synchrotron motion
is given by σθ �= |η|σδ/νs.
(a) Show that the projection of the beam distribution function onto the θ axis is11

ρ(θ, t) =
NBe√
2πσ̃

e−θ2/2σ̃2
σ̃2 = σ2

θ cos
2 ωst+ (|η|σδ/νs)2 sin2 ωst.

Show that the peak current is Î(t) = NBeω0/
√
2πσ̃.

(b) For a weakly mismatched beam, show that

σ2
θ ≈ σ2

0(1−ΔV /2V ), (ησδ/νs)
2 ≈ σ2

0(1 + ΔV /2V ),

where
√
2σ0 =

√
σ2
θ + (ησδ/νs)2 is the matched rms beam width, ΔV is the

mismatched voltage, and V is the voltage for the matched beam profile. Show
that the peak current for the weakly mismatched beam is

Î(t) ≈ NBeω0√
2πσ2

0

(
1− ΔV

4V
cos 2ωst

)
.

Discuss your result. Because the bunch tumbles at twice the synchrotron fre-
quency, the resulting coherent beam motion is called the quadrupole synchrotron
mode. The nonlinear synchrotron tune will cause the mismatched injection to
filament and the resulting phase-space area will be larger.

14. An off momentum particle executes synchrotron motion with δ = δ̂ sinωst, where ωs

is the synchrotron tune, δ̂ is the amplitude of synchrotron motion. Show that the
accumulated betatron phase advance in a half-synchrotron period

ΔΦβ = 4π
Cδ̂

ωsT0
=

Cω0

η
2τ̂ ,

where C is the chromaticity, 2τ̂ = 2ηδ̂/ωs is the time width of synchrotron motion,
and η is the phase slip factor. Note that the accumulated betatron phase shift is
proportional to the synchrotron time-width. The quantity Cω0/η is the betatron
frequency shift from the head to tail for all particle. If C/η < 0, the frequency shift
is negative, and beam may sample impedance in the negative frequency and cause
transverse head-tail instability.

11Transform the (θ, δ) coordinate system into the normalized coordinate system (x = θ and
p = |η|δ/νs), where the matched beam profile is a circle. Make coordinate transformation into the
synchrotron rotating frame. The beam profile in the x plane is equal to ρ(x) =

∫
ρ(x, p)dp.
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III RF Phase and Voltage Modulations

Particle motion in accelerators experiences perturbations from rf phase and ampli-

tude noise, power supply ripple, wakefields, etc. These perturbation sources cause rf
phase or voltage modulations. In general, the frequency spectrum of rf noise may con-

tain high frequency arising from random thermal (white) noise, low frequency from
power supply ripple and ground motion, and medium frequency from mechanical vi-

bration etc. In this section, we study the effects of a single frequency sinusoidal rf

phase and voltage modulation on particle motion and beam distribution. Physics of
beam response to a single frequency modulation can be applied to more complicated

multi-frequency perturbations. In Sec. III.1, the longitudinal phase space coordinates
(φ,Δp/p) will be expanded in action-angle variables (J, ψ). With these results, the

perturbed Hamiltonian of phase and voltage modulation can easily be expressed in
action-angle variables (see Secs. III.2 and III.5). Once this is accomplished, effects of

rf phase and voltage modulation can be readily obtained.

III.1 Normalized Phase-Space Coordinates

Using normalized momentum deviation coordinate P = −(h|η|/νs)(Δp/p), the Hamil-
tonian for a stationary synchrotron motion is

H0 =
1

2
νsP2 + 2νs sin

2 φ

2
, (3.64)

where νs =
√

h|η|eV /2πβ2E is the synchrotron tune at | cosφs| = 1, the orbital

angle θ is the independent variable, and (φ,P) are normalized conjugate phase-space
coordinates. The Hamiltonian has fixed points at

(φ,P)
SFP

= (0, 0) and (φ,P)
UFP

= (π, 0).

The synchrotron Hamiltonian is autonomous (time independent), and thus the Hamil-

tonian value is a constant of motion.
Expressing the synchrotron coordinates in parameters k and w as

sin
φ

2
= k sinw,

P
2

= k cosw, (3.65)

we obtain H0 = 2νsk
2, where k = 0 corresponds to the SFP and k = 1 corresponds

to the separatrix orbit that passes through the UFP. The action is

J =
1

2π

∮
Pdφ =

8

π
[E(k)− (1− k2)K(k)], (3.66)

where the complete elliptical function integrals are [30]

E(k) =

∫ π/2

0

√
1− k2 sin2w dw, K(k) =

∫ π/2

0

1√
1− k2 sin2w

dw.
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In the normalized phase-space coordinates, the maximum action (k = 1) is Jmax =

8/π, and the maximum bucket area is A = 2πJmax = 16 (see Table 3.2).

For synchrotron motion with a small action, the power series expansions of ellip-

tical integrals are

K(k) =
π

2

[
1 + (

1

2
)2k2 + (

1 · 3
2 · 4)

2k4 + (
1 · 3 · 5
2 · 4 · 6)

2k6 + · · ·
]
,

E(k) =
π

2

[
1− (

1

2
)2
k2

1
− (

1 · 3
2 · 4)

2k
4

3
− (

1 · 3 · 5
2 · 4 · 6)

2k
6

5
− · · ·

]
.

The action is related to the parameter k by

J = 2k2(1 +
1

8
k2 +

3

64
k4 + · · ·), (3.67)

2k2 = J(1− 1

16
J − 1

256
J2 − · · ·). (3.68)

In terms of the action, the Hamiltonian is H0(J). The synchrotron tune becomes

Q̃s(J) =
∂H0

∂J
=

πνs
2K(k)

= νs(1− J

8
− 3J2

256
− · · ·), (3.69)

where we have used the identities

2k2dE(k)

dk2
= E(k)−K(k), 2k2dK(k)

dk2
=

1

1− k2
E(k)−K(k).

Using the generating function to transform from (φ, δ) to (ψ, J), i.e.

F2(φ, J) =

∫ φ

0

P(φ̃) dφ̃, =⇒ ψ =
∂F2

∂J
=

Q̃s(J)

νs

∫ φ

0

dφ̃

P(φ̃)
. (3.70)

The angle variable ψ, conjugate to the action J , can also be obtained by integrating

Hamilton’s equation Eq. (3.69):

ψ =
πνs
2K

θ + ψ0. (3.71)

The next task is to express the normalized off-momentum coordinate P, and
the synchrotron phase coordinate φ, in Fourier harmonics of the conjugate angle

parameter ψ. First, using Hamilton’s equation φ̇ = νsP, we can relate the orbital
angle θ to the w parameter of Eq. (3.65) as

νs(θ − θ0) =

∫ φ

φ0

dφ

P = u− u0,
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where

u =

∫ w

0

1√
1− k2 sin2w

dw, u0 =

∫ w0

0

1√
1− k2 sin2w

dw.

The Jacobian elliptical functions, cn and sn, are then defined as

sinw = sn(u|k), cosw = cn(u|k), (3.72)

and the synchrotron phase-space coordinates are related to the Jacobian elliptical
function by

P = 2k cn(u|k), sin
φ

2
= k sn(u|k). (3.73)

Thus the expansion of P and sin(φ/2) in Fourier harmonics of ψ is equivalent to the

expansion of cn(u|k) and sn(u|k) in ψ = πu/2K. This can be achieved by using

Eq. (16.23.2) in Ref. [30], i.e.

P = 2kcn(u|k) = 4π
√
k

K(k)

∞∑
0

qn+1/2

1 + q2n+1
cos(2n+ 1)ψ

≈ (2J)1/2 cosψ +
(2J)3/2

64
cos 3ψ +

(2J)5/2

4096
cos 5ψ + · · · , (3.74)

where ψ is the synchrotron phase with the q parameter given by

q = e−πK ′/K =
k2

16
+ 8(

k2

16
)2 + 84(

k2

16
)3 + 992(

k2

16
)4 + · · · ,

with K � = K(
√
1− k2). Similarly, using the identity k2sn2(u|k) = 1 − dn2(u|k), we

obtain

2 sin2 φ

2
=

∞∑
n=−∞

Gn(J)e
jnψ ≈ −J

2
cos 2ψ − J2

32
cos 4ψ + · · · , (3.75)

Gn(J) =
1

2π

∫ 2π

0

(1− cosφ)e−jnψdψ, (3.76)

where G−n = G∗
n. Because 1 − cosφ is an even function, Gn = 0 for odd n. The

expansion of normalized coordinates in action-angle variables is useful for evaluating
the effect of perturbation on synchrotron motion, discussed below.

Sum rule theorem

The solutions of many dynamical systems can be obtained by expanding the pertur-
bation potential in action angle variables. For the case of rf phase modulation, the

expansion of the normalized off-momentum coordinate is

P =
∞∑

n=−∞
fn(J)e

inψ, (3.77)
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where f−n = f ∗
n and, from Eq. (3.74), the strength functions fn are

f2m+1 =
2π

√
kqm+1/2

K(k)(1 + q2m+1)
, f2m = 0.

Because P is an odd function, only odd harmonics exist. Furthermore, the sum of all
strength functions is (see Exercise 3.3.2)

∞∑
n=−∞

|fn|2 = Q̃s(J)

νs
J. (3.78)

We observe that the strength functions are zero at the center of the rf bucket where
J = 0 and at the separatrix where Q̃s(Jsx) = 0.

III.2 RF Phase Modulation and Parametric Resonances

If the phase of the rf wave changes by an amount ϕ(θ), where θ = ω0t is the orbiting

angle serving as time coordinate, the synchrotron mapping equation is

φn+1 = φn + 2πhηδn +Δϕ(θ), (3.79)

δn+1 = δn +
eV

β2E
(sinφn+1 − sin φs), (3.80)

where Δϕ(θ) = ϕ(θn + 2π)− ϕ(θn) is the difference in rf phase error between succes-

sive turns in the accelerator. In this section, we consider only a sinusoidal rf phase
modulation with12

ϕ = a sin(νmθ + χ0),

where νm is the modulation tune, a is the modulation amplitude, and χ0 is an ar-

bitrary phase factor. The resulting rf phase difference in every revolution is Δϕ =

2πνma cos(νmθ + χ0).
For simplicity, we consider the case of a stationary bucket with φs = 0 for η < 0.

Using the normalized off-momentum coordinate P = −(h|η|/νs)δ, we obtain the
perturbed Hamiltonian

H = H0 +H1 =
1

2
νsP2 + 2νs sin

2 φ

2
+ νmaP cos(νmθ + χ0), (3.81)

where the perturbation potential of rf phase modulation is

H1 = νmaP cos(νmθ + χ0). (3.82)

12M. Ellison et al., Phys. Rev. Lett. 70, 591 (1993); M. Syphers et al., Phys. Rev. Lett. 71,
719 (1993); H. Huang et al., Phys. Rev. E 48, 4678 (1993); Y. Wang et al., Phys. Rev. E49, 1610
(1994).
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Expressing the phase-space coordinate P in action-angle coordinates with Eq. (3.74),

we can expand the perturbation in action-angle variables

H1 = νma
√

J/2 [cos(ψ + νmθ + χ0) + cos(ψ − νmθ − χ0)]

+νma
(2J)3/2

128
[cos(3ψ + νmθ + χ0) + cos(3ψ − νmθ − χ0)] + . . . , (3.83)

where J and ψ are conjugate action-angle variables. The rf phase error generates

only odd order parametric resonances because P is an odd function. However, two
nearby strong parametric resonances can drive secondary and tertiary resonances. For

example, the 1:1 and 3:1 parametric resonances driving by a strong phase modulation
can produce a secondary 4:2 resonance at νm ≈ 2νs. In the following, we discuss only

the primary parametric resonances, particularly the 1:1 dipole mode.

A. Effective Hamiltonian near a parametric resonance

When the modulation tune is near an odd multiple of synchrotron sideband, i.e.
νm = (2m+ 1)νs, stationary phase condition exists for a parametric resonance term.

We neglect all non-resonance terms in H1 to obtain an approximate synchrotron
Hamiltonian

H ≈ νsJ − 1

16
νsJ

2 + νmf2m+1J
m+1/2 cos ((2m+ 1)ψ − νmθ − χ0) , (3.84)

where f1 = a/
√
2, f3 = a/32

√
2, etc. The effect of rf phase modulation on phase-space

distortion can be solved by using the effective parametric resonance Hamiltonian, that
resembles the Hamiltonian for 1-D betatron resonances discussed in Sec. VII, Chap. 2.

This primary parametric resonance is called (2m+1):1 resonance. In this section, we

consider only the dominant dipole mode below.

B. Dipole mode

If the phase modulation amplitude is small, the dominant contribution arises from

the m = 0 sideband. Near the first-order synchrotron sideband with νm ≈ νs, the
Hamiltonian for the dipole mode is

H ≈ νsJ − 1

16
νsJ

2 +
νsa√
2
J1/2 cos(ψ − νmθ − χ0). (3.85)

The Hamiltonian can be transformed into the resonance rotating frame:

F2(ψ, I) = (ψ − νmθ − χ0 − π) I,

χ = ψ − νmθ − χ0 − π, I = J ;

H̃ = (νs − νm)I − 1

16
νsI

2 − νs
a√
2
I1/2 cosχ. (3.86)
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where (ψ, J) are transformed to the new phase-space coordinates (χ, I). Since the new

Hamiltonian H̃ is “time” independent in the resonance rotating frame, a torus of par-
ticle motion will follow a constant Hamiltonian contour, where Hamilton’s equations

of motion are

χ̇ = νs − νm − 1

8
νsI − νs

a

2
√
2I

cosχ, İ = −νs
a

2

√
2I sinχ. (3.87)

The fixed points of the Hamiltonian, which characterize the structure of resonant
islands, are given by the solution of İ = 0, χ̇ = 0. Using g =

√
2J cosχ, with χ = 0

or π, to represent the phase coordinate of a fixed point, we obtain the equation for g
as

g3 − 16

�
1− νm

νs

�
g + 8a = 0. (3.88)

When the modulation tune is below the bifurcation tune νbif given by13

νm ≤ νbif = νs

�
1− 3

16
(4a)2/3

�
, (3.89)

Eq. (3.88) has three solutions:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ga(x) = − 8√
3
x1/2 cos

ξ

3
, (ψ = π)

gb(x) =
8√
3
x1/2 sin(

π

6
− ξ

3
), (ψ = 0)

gc(x) =
8√
3
x1/2 sin(

π

6
+

ξ

3
), (ψ = 0)

(3.90)

where

x = 1− νm/νs, xbif = 1− νbif/νs, ξ = arctan

��
x

xbif

�3

− 1, xbif =
3

16
(4a)2/3.

Here ga and gb are respectively the outer and the inner stable fixed points (SFPs)
and gc is the unstable fixed point (UFP). The reason that ga and gb are SFPs and

gc is the UFP will be discussed shortly. Particle motion in the phase space can be
described by tori of constant Hamiltonian around SFPs. The lambda-shaped phase

amplitudes of the SFPs (|ga| and |gb|, solid lines) and UFP (|gc|, dashed line) shown
in the left plot of Fig. 3.6 vs the modulation frequency is a characteristic property of

the dipole mode excitation with nonlinear detuning. In the limit νm � νbif , we have
ξ → π/2, thus ga → −4x1/2, gc → 4x1/2, and gb → 0.

The Hamiltonian tori in phase space coordinates P=−√
2I sinχ vs X=

√
2I cosχ

are shown in the right plot of Fig. 3.6. The actual Hamiltonian tori rotate about the

13Find the root of the discriminant of the cubic equation (3.88).
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Figure 3.6: Left: fixed point am-
plitudes |ga|, |gb|, and |gc| (in unit

of (4a)1/3). Right: Poincaré sur-
faces of section for fm=245 Hz and
fs=262 Hz at a=0.02. The SFPs
are ga and gb, and the UFP is gc.

center of the phase space at the modulation tune νm, i.e. the phase space ellipses

return to this structure in 1/νm revolutions. The torus passing through the UFP is

the separatrix, which separates the phase space into two stable islands. The intercept
of the the separatrix with the phase axis is denoted by g1 and g2.

When the modulation frequency approaches the bifurcation frequency from below
(x/xbif > 1), the UFP and the outer SFP move in and the inner SFP moves out. At

the bifurcation frequency, where x = xbif and ξ = 0, the UFP collides with the inner
SFP with gb = gc = (4a)1/3; and they disappear together. Beyond the bifurcation

frequency, νm > νbif (x < xbif), there is only one real solution to Eq. (3.88):

ga(x) = −(4a)1/3

⎡
⎢⎣
⎛
⎝
�
1−

�
x

xbif

�3

+ 1

⎞
⎠

1/3

−
⎛
⎝
�

1−
�

x

xbif

�3

− 1

⎞
⎠

1/3
⎤
⎥⎦ . (3.91)

In particular, ga = −(8a)1/3 at x = 0 (νm = νs), and ga = −2(4a)1/3 at x = xbif .
The characteristics of bifurcation appear in all orders of resonances with nonlinear

detuning. As the modulation tune approaches the bifurcation tune, resonance islands
can be created or annihilated.

C. Island tune

Let y, py be the local coordinates about a fixed point of the Hamiltonian, i.e.

y =
√
2I cosχ− g, py = −

√
2I sinχ, (3.92)

where g is a fixed point of the Hamiltonian. With a local coordinate expansion, the

Hamiltonian (3.86) becomes

Hisland =
νsa

4g
(1− g3

4a
)y2 +

νsa

4g
p2y + · · · . (3.93)

Therefore the fixed point g is a stable fixed point if (1 − g3/4a) ≥ 0. Because

g3a/4a ≤ 0 and 0 ≤ g3b/4a ≤ 1, ga and gb are SFPs. Since g3c/4a ≥ 1, gc is the
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UFP. The equilibrium beam distribution (see Appendix A, Sec. II.3), which satisfies

the Fokker-Planck-Vlasov equation, is generally a function of the local Hamiltonian,
Eq. (3.93) can also provide information on the local distortion of the bunch profile.

The island tune for the small-amplitude oscillations is

νisland =

∣∣∣∣νs
(
1− g2

16

)
− νm

∣∣∣∣
(
1− g3

4a

)1/2

. (3.94)

The island tune around the inner SFP given by gb at νm � νbif is approximately given

by νisland ≈ |νs(1− 1
16
g2)−νm|. This means that the solution of the equations of motion

can be approximated by a linear combination of the solution of the homogeneous

equation with tune νs(1− 1
16
g2) and the particular solution with tune νm.

14 Thus the
island tune is the beat frequency between these two solutions. When the modulation

tune νm approaches νbif , with (1− g3b/4a)
1/2 → 0, the island tune for small-amplitude

oscillation about the inner SFP approaches 0 and the small-amplitude island tune

for the outer SFP at νm = νbif is νisland = 3|νs(1 − 1
16
g2) − νm|. In this region of the

modulation frequency, the linear superposition principle fails. When the modulation

frequency becomes larger than the bifurcation frequency so that [1− (g3/4a)]1/2 → 1,
we obtain again νisland = |νs(1 − 1

16
g2) − νm|, and the linear superposition principle

is again applicable. The island tune for large-amplitude motion about a SFP can be

obtained by integrating the equation of motion along the corresponding torus of the
Hamiltonian in Eq. (3.86).

D. Separatrix of resonant islands

The Hamiltonian torus that passes through the UFP is the separatrix. With the UFP

gc substitutes into the Hamiltonian (3.86), the separatrix torus is

H(J, ψ) = νs

[
1

2
xg2c −

1

64
g4c −

1

2
agc

]
, (3.95)

where x = 1 − νm/νs. The separatrix orbit intersects the phase axis at g1 and g2.

These intercepts, shown in Figs. 3.6 and 3.7, are useful in determining the maximum
phase amplitude of synchrotron motion with external phase modulation. With the

notation hi = gi/(4a)
1/3, the intercepts of the separatrix are

h1 = −hc − 2√
hc

, h2 = −hc +
2√
hc

.

The intercepts of the separatrix with the phase axis, h1 and h2, and the fixed points,

ha, hb and hc are shown in 3.7.

14M. Ellison et al., Phys. Rev. Lett. 70, 591 (1993).
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Figure 3.7: The fixed points in units of (4a)1/3

are plotted as a function of the modulation fre-
quency in x/xbif , where x = 1 − νm/νs and

xbif = 3
16(4a)

2/3 with a as the amplitude of
the phase modulation. The SFPs are ha =
ga/(4a)

1/3 and hb = gb/(4a)
1/3 and the UFP is

hc = gc/(4a)
1/3. The intercepts of the separatrix

with the phase axis are shown as h1 = g1/(4a)
1/3

and h2 = g2/(4a)
1/3.

III.3 Measurements of Synchrotron Phase Modulation

Here we discuss an example of experimental measurements of rf phase modulation at

the IUCF Cooler. The experimental procedure started with a single bunch of about
3 × 108 protons with kinetic energy 45 MeV. The corresponding revolution period

was 969 ns with an rf frequency of 1.03148 MHz. The cycle time was 10 s. The
injected beam was electron-cooled for about 3 s. The full width at half maximum

bunch length was about 5.4 m (or 60 ns). The low-frequency rf system of the IUCF
Cooler at h = 1 was used in this experiment.

For the longitudinal rf phase shift, the beam was kicked longitudinally by a phase

shifter and the data acquisition system was started 2000 turns before the phase kick.
The principle of the phase shifter used is as follows. The rf signal from an rf source

is split into a 90◦ phase shifted channel and a non-phase shifted channel. A separate
function generator produces two modulating voltages, each proportional to the sine

and cosine of the intended phase shift ϕmod. As a result of the amplitude modulation,
the two rf channels are multiplied by sinϕmod and cosϕmod respectively. These two

modulated signals were added, using an rf power combiner, resulting in an rf phase
shift ϕmod in the rf wave. The control voltage versus actual phase shift linearity was

experimentally calibrated. Both the phase error due to control nonlinearity and the
parasitic amplitude modulation of the IUCF Cooler rf systems were controlled to less

than 10%.

The phase lock feedback loop was switched off in our experiment. The response
time of the step phase shift was limited primarily by the inertia of the resonant cavity.

At 1 MHz, the quality factor Q of the rf cavity was about 40, resulting in a half-power
bandwidth of about 25 kHz. The corresponding response time for a step rf phase

shift was about 40∼50 revolutions. In this experiment, the synchrotron oscillation
frequency was chosen to be about 540 Hz, or about 1910 revolutions (turns) in the

accelerator. Measurements of subsequent beam-centroid displacements have been

discussed in Chap. 3, Sec. II.6.
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A. Sinusoidal rf phase modulation

When the bunch, initially at φi = 0, δi = 0, experiences the rf phase sinusoidal mod-

ulation with ϕmod = a sin νmθ, where νm is the modulation tune and a the modulation
amplitude with a � 1. The synchrotron motion, in terms of a differential equation,

is

φ̇ = hηδ + νma cos νmθ, δ̇ =
eV

2πβ2E
sinφ− λδ, (3.96)

where φ is the particle phase angle relative to the modulated rf phase, the overdot

indicates the derivative with respect to the variable θ, and λ is the damping decrement
due to electron cooling. Thus the synchrotron equation of motion becomes

φ̈+
2α

ω0
φ̇+ ν2

s sinφ = −aν2
m sin νmθ +

2α

ω0
νma cos νmθ. (3.97)

The measured damping coefficient α at the IUCF Cooler was α = ω0λ/4π ≈ 3 ± 1
s−1. Since the measurement time was typically within 150 ms after the phase kick or

the start of rf phase modulation, the effect of electron cooling was not important in
these measurements.

The subsequent beam centroid phase-space coordinates are tracked at 10 revolu-
tion intervals. The left plots of Fig. 3.8 show examples of measured φ and P = hη

νs

Δp
p

vs turn number at 10-turn intervals for an rf phase modulation amplitude of 1.45◦

after an initial phase kick of 42◦ at modulation frequencies of 490 Hz (upper) and 520
Hz (lower). The resulting response can be characterized by the beating amplitude and

period. The beating period is equal to T0/νisland, where T0 is the revolution period
and νisland is the island tune, and the beating amplitude is equal to the maximum

intercept of Poincaré surface of section with the phase axis.

B. Action angle derived from measurements

For small-amplitude synchrotron motion, Eq. (3.51) can be used to deduce the action

and angle variables, i.e.15

J =
1

2
(φ2 + P2), tanψ = −P

φ
(3.98)

in the (φ,P) phase space.

For large-amplitude synchrotron motion, we need to use the following procedure

to deduce the action-angle variables from the measured synchrotron phase-space co-
ordinates. This procedure can improve the accuracy of data analysis.

15Note that the action in the (φ, δ) phase space is related to the action in the (φ,P) space by a
constant factor h|η|/(νs

√| cosφs|).
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Figure 3.8: Left plots: normal-
ized off-momentum coordinate P
and the phase φ vs revolutions
at 10-turn intervals. Right plots:
the corresponding Poincaré sur-
faces of section. The upper and
lower plots correspond to fm =
490 and 520 Hz respectively. The
modulation amplitude was a =
1.45◦, and the initial phase kick
amplitude was 45◦. The solid
line shows the Hamiltonian torus
of Eq. (3.85).

1. The k value at the phase-space coordinates (φ,P) is

k2 =
P2

4
+ sin2 φ

2
. (3.99)

The action can be obtained from Eq. (3.66) or Eq. (3.67).

2. The synchrotron phase, ψ, can be obtained from the expansion

P
2 sin φ

2

=
π

2K
tan(

π

2
− ψ)− 2π

K

∞∑
n=1

q2n

1 + q2n
sin 2nψ. (3.100)

For synchrotron motion with relatively large k, a better approximation for data
analysis can be obtained through polynomial approximation of Eqs. (17.3.34) and

(17.3.36) of Ref. [30] to evaluate K(k), E(k) and q functions and obtain J and ψ.
For each data point (φ,P), Eq. (3.99) is used to calculate k, and finally, the action

J is obtained from Eq. (3.66). The corresponding angle variable ψ is obtained from
Eq. (3.100).

C. Poincaré surface of section

The Poincaré map in the resonance frame is formed by phase-space points in

(
√
2J cos(ψ − νmθ),−

√
2J sin(ψ − νmθ)).

The resulting invariant tori are shown in the right plots in Fig. 3.8. It becomes

clear that the measured response period corresponds to the period of island motion



III. RF PHASE AND VOLTAGE MODULATIONS 267

around a SFP, and the response amplitude is the intercept of the invariant torus with

the phase axis. The trajectory of a beam bunch in the presence of external rf phase
modulation traces out a torus determined by the initial phase-space coordinates of the

bunch. Since the torus, which passes through fixed initial phase-space coordinates,
depends on the rf phase modulation frequency, the measured tori depend on the

driven frequency. Figure 3.8 shows invariant tori deduced from experimental data.
The solid lines are invariant Hamiltonian tori of Eq. (3.86), where the synchrotron

frequency was fitted to be about 535±3 Hz.

III.4 Effects of Dipole Field Modulation

Ground motion of quadrupoles and power supply ripple in dipoles can cause dipole
field modulation. Equation (2.102) in Chap. 2, Sec. III, shows that the change of path

length of a reference orbit is ΔC = Dxθ, where θ is angular kick resulting from dipole
field errors andDx is the dispersion function. If the dipole field is modulated, the path

length and thus the arrival time at rf cavities of particles are also modulated. This
effect is equivalent to rf phase modulation, which gives rise to parametric resonances

in synchrotron motion. The effect is a special type of “synchro-betatron coupling”

that may limit the performance of high energy colliders.

Here we discuss experimental measurements of dipole field modulation at the
IUCF Cooler. For this experiment, the harmonic number was h = 1, the phase

slip factor was η ≈ −0.86, the stable phase angle was φ0 = 0, and the revolution
frequency was f0 = 1.03168 MHz at 45 MeV proton kinetic energy. The rf voltage

was chosen to be 41 V to obtain a synchrotron frequency of fs = ωs/2π = 262
Hz in order to avoid harmonics of the 60 Hz ripple. The synchrotron tune was

νs = ωs/ω0 = 2.54 × 10−4. We chose νx = 3.828, νz = 4.858 to avoid nonlinear
betatron resonances. The corresponding smallest horizontal and vertical betatron

sideband frequencies were 177 and 146 kHz respectively.

With horizontal dipole (vertical field) modulation at location s0, the horizontal
closed-orbit deviation is xco(s, s0, t) = G(s, s0)θ(t) (see Chap. 2, Sec. III), where

G(s, s0) is the Green’s function, θ(t) = θ̂ sin(ωmt + χ0), θ̂ = B̂m�/Bρ, and B̂m is
the peak modulation dipole field. Furthermore, if the dispersion function at the

modulating dipole location is not zero, the path length is also modulated. The change

in the circumference is

ΔC = Dxθ(t) = Dxθ̂ sin (ωmt+ χ0), (3.101)

where Dx is the dispersion function at the modulation dipole location. The corre-
sponding rf phase difference becomes Δφ = 2πh(ΔC/C), where C = 86.82 m is the

circumference of the IUCF Cooler. In our experiment, the maximum rf phase shift

per turn Δ̂φ was 0.78× 10−5B̂m radians, where the magnetic field B̂m is in Gauss.
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The longitudinal phase-space coordinates (φ,Δp/p0) at the nth and (n + 1)th

revolutions are transformed according to mapping equations:

φn+1 = φn + 2πhη

(
Δp

p

)

n

+Δφ, (3.102)

(
Δp

p

)

n+1

=

(
Δp

p

)

n

+
eV

β2E
sin φn+1 − λ

(
Δp

p

)

n

, (3.103)

where the fractional momentum deviation of particles (Δp/p0) is the conjugate co-
ordinate to synchrotron phase angle φ, and λ is the phase-space damping parameter

related to electron cooling. Thus the synchrotron equation of motion, in the presence
of transverse dipole field modulation, becomes

d2φ

dt2
+ 2α

dφ

dt
+ ω2

s sin φ = ω2
ma cosωmt+ 2αωsa sinωmt, (3.104)

where the damping coefficient is α = λω0/4π. With an electron current of 0.75 A,

the damping time for 45 MeV protons was measured to be about 0.33 ± 0.1 s or
α = 3± 1 s−1, which was indeed small compared with ωs = 1646 s−1.

Because the synchrotron frequency is much smaller than the revolution frequency
in proton storage rings, the phase errors of each turn accumulate. The equivalent

phase modulation amplitude is enhanced by a factor ω0/2πωm, i.e. the effective
phase modulation amplitude parameter a is

a =
hω0Dxθ̂

ωmC
=

ω0

2πωm
Δ̂φ. (3.105)

Although the cooling was weak, the transient solution of Eq. (3.104) was damped
out by the time of measurement. We therefore measured the steady state solution,

in contrast to the experiment discussed in the previous section, where we measured
the transient solutions. Let the steady state solution of the nonlinear parametric

dissipative resonant system, Eq. (3.104), be

φ ≈ g sin(ωmt− χ), (3.106)

where we used the approximation of a single harmonic. Expanding the term sin φ
in Eq. (3.104) up to the first harmonic, we obtain the equation for the modulation

amplitude g and the phase χ as
[−ω2

mg + 2ω2
sJ1(g)

]2
+ [2αωmg]

2 = [ωmωsa]
2 + [2αωsa]

2 (3.107)

χ = arctan

[
gωm(ω

2
m + 4α2)− 2ω2

sωmJ1(g)

4αω2
sJ1(g)

]
, (3.108)

where J1 is the Bessel function [30] of order 1. Steady state solutions of Eq. (3.107)

are called attractors for the dissipative system. The existence of a unique phase
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factor χ for solutions of the dissipative parametric resonant equation implies that the

attractor is a single phase-space point rotating at modulation frequency ωm.

When the modulation frequency is below the bifurcation frequency, ωbif , which is

given by
∂ωm

∂g

∣∣∣
ωm=ωbif

= 0,

Eq. (3.107) has three solutions. A stable solution with a large phase amplitude ga
and phase factor χa ≈ π/2 is the outer attractor. The stable solution at a smaller

phase amplitude gb with χb ≈ −π/2 is the inner attractor. The third solution gc with
χc ≈ −π/2 corresponds to the unstable (hyperbolic) solution, which is associated with

the UFP of the effective non-dissipative Hamiltonian. When the damping parameter
α is small, these two stable solutions are nearly equal to the SFPs of the effective

Hamiltonian, and are almost opposite to each other in the synchrotron phase space,
as shown in Fig. 3.6. They rotate about the origin at the modulation frequency

[see Eq. (3.106)]. When the damping parameter α is increased, the stable solution
(ga, χa) and the unstable solution (gc, χc) approach each other. At a large damping

parameter, they collide and disappear, i.e. the outer attractor solution disappears.
When the modulation frequency is larger than the bifurcation frequency, only the

outer attractor solution exists.

When the modulation frequency is far from the bifurcation frequency, the response
amplitude for the inner attractor at ωm � ωbif , or for the outer attractor at ωm � ωbif ,

can be approximated by solving the linearized equation (3.107), i.e.

g =

(
(ωmωs)

2 + (2αωs)
2

(ω2
s − ω2

m)
2 + (2αωm)2

)1/2

a. (3.109)

A. Chaotic nature of parametric resonances

In the presence of a weak damping force, fixed points of the time-averaged Hamiltonian
become attractors. A weak damping force does not destroy the resonance island

created by external rf phase modulation. Because of phase-space damping, these
fixed points of the Hamiltonian become attractors. Particles in the phase space are

damped incoherently toward these attractors, while the attractors rotate about the
center of the bucket at the modulation frequency. As the damping force becomes

larger, the outer SFP and the UFP may collide and disappear.

Numerical simulations based on Eq. (3.103) were done to demonstrate the coher-

ent and incoherent nature of the single particle dynamics of the parametric resonance
system. One of the results is shown in Fig. 3.9, where each black dot corresponds

to initial phase-space coordinates that converge toward the outer attractor. Comple-

mentary phase-space coordinates converge mostly to the inner attractor except for
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a small patch of phase-space coordinates located on the boundary of the separatrix,

which will converge toward two attractors located near the separatrix.

Figure 3.9: Initial normalized
phase-space coordinates, obtained
from a numerical simulation of
Eq. (3.103), which converge to
the outer attractor are shown for
B̂m = 4 Gauss and fm = 230 Hz.
The synchrotron frequency is 262
Hz. The number of phase-space
points that converge to the inner
or the outer attractors can be used
to determine the beamlet inten-
sity.

The basin of attraction for the inner and the outer attractors forms non-intersecting

intervolving spiral rings. To which attractor a particle will converge depends sen-

sitively on the initial phase-space coordinates, especially for particles outside the
bucket. The orientation of initial phase-space coordinates converging toward the in-

ner or the outer attractor depends on the initial driving phase χ0 of the dipole field in
Eq. (3.101). Numerical simulations indicate that all particles located initially inside

the rf bucket will converge either to the inner or to the outer attractor. However,
initial phase-space coordinates in a small patch located at the separatrix of the rf

bucket converge toward two attractors moving along the separatrix.

B. Observation of attractors

Since the injected beam from the IUCF K200 AVF cyclotron is uniformly distributed

in the synchrotron phase space within a momentum spread of about (Δp/p) ≈ ±3×
10−4, all attractors can be populated. The phase coordinates of these attractors could

be measured by observing the longitudinal beam profile from BPM sum signals on an
oscilloscope. Figure 3.10 shows the longitudinal beam profile accumulated through

many synchrotron periods with modulation field B̂m = 4 G for modulation frequencies

of 210, 220, 230, 240, 250, and 260 Hz; it also shows the rf waveform for reference.
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Figure 3.10: Modulation fre-
quencies of left panel: 210,
220, 230 Hz; of right panel:
240, 250, 260 Hz. Syn-
chrotron frequency is 262 Hz.
Oscilloscope traces of accu-
mulated BPM sum signals
showing the splitting of a
beam bunch into beamlets be-
low the bifurcation frequency.
The modulation amplitude
was B̂m = 4 G. The sine
waves are the rf waveform.
The relative populations of
the inner and outer attrac-
tors can be understood quali-
tatively from numerical simu-
lations of the attractor basin.

It was puzzling at first why the longitudinal profile exhibited gaps in time domain,

as if there were no synchrotron motion for the beam bunch located at a relatively large

phase amplitude. However, using a fast sampling digital oscilloscope (HP54510A) for
a single trace, we found that the beam profile was not made of particles distributed

in a ring of large synchrotron amplitude, but was composed of two beamlets. Both
beamlets rotated in the synchrotron phase space at the modulating frequency, as

measured from the fast Fourier transform (FFT) of the phase signal. If the equilibrium
distribution of the beamlet was elongated, then the sum signal, which measured

the peak current of the beam, would show a large signal at both extremes of its
phase coordinate, where the peak current was large. When the beamlet rotated to

the central position in the phase coordinate, the beam profile became flat with a
smaller peak current. Therefore the profile observed with the oscilloscope offered an

opportunity to study the equilibrium distribution of charges in these attractors.
If we assume an equilibrium elliptical beamlet profile with Gaussian distribution,

the current density distribution function becomes

ρ(φ, t) =
ρ1√
2πσ1

e−[φ−φ1(t)]2/2σ2
1 +

ρ2√
2πσ2

e−[φ−φ2(t)]2/2σ2
2 , (3.110)

where ρ1 and ρ2 represent the populations of the two beamlets with ρ1+ρ2 = 1. Since
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each particle in the two beamlets rotates in the phase space at modulating frequency

ωm, the parameters φ1,2 and σ1,2 are

φ1(t) = ga sin(ωmt− χa), φ2(t) = gb sin(ωmt− χb),

and

σ2
1 = σ2

10(1 + r1 sin
2 ωmt), σ2

2 = σ2
20(1 + r2 sin

2 ωmt).

Here ga,b and χa,b are the amplitudes and phases of the two beamlets, obtained by
solving Eqs. (3.107) and (3.108). Since the profile observed on the oscilloscope was

obtained by accumulation through many synchrotron periods, it did not depend on
the parameters χa,b, i.e. these profiles were not sensitive to the relative positions of

the two beamlets. The eccentricity parameters r1 and r2 signify the aspect ratio of the

two beamlets, and σ10 and σ20 represent the average rms bunch length. For example,
the aspect ratio, given by 1 : 1 + r1 of the outer beamlet at modulation frequency

220 Hz was found to be about 1:3 from the profile in Fig. 3.10. This means that the
peak current for the outer beamlet was reduced by a factor of 3 when this beamlet

rotated to the center of the phase coordinate. The relative populations of the two
beamlets was about 75% for the inner and 25% for the outer, obtained by fitting the

data. As the modulating frequency increased toward the synchrotron frequency, the
phase amplitude of the outer beamlet became smaller and its population increased.

When the modulating frequency was higher than the bifurcation frequency ωbif , the
center peak disappeared (see 260 Hz data of Fig. 3.10).

C. The hysteretic phenomena of attractors

The phase amplitudes of attractors shown in Fig. 3.11 also exhibited hysteresis phe-

nomena. When the modulation frequency, which was initially above the bifurcation
frequency, was ramped downward, the phase amplitude of the synchrotron oscilla-

tions increased along the outer attractor solution. When it reached a frequency far
below the bifurcation frequency, the phase amplitude jumped from the outer attrac-

tor to the inner attractor solution. On the other hand, if the modulation frequency,

originally far below the bifurcation frequency, was ramped up toward the bifurcation
frequency, the amplitude of the phase oscillations followed the inner attractor solu-

tion. At a modulation frequency near the bifurcation frequency, the amplitude of the
synchrotron oscillations jumped from the inner to the outer attractor solution.

The hysteresis depended on beam current and modulation amplitude a. Since a

large damping parameter could destroy the outer attractor, the hysteresis depended
also on the dissipative force. The observed phase amplitudes were found to agree well

with the solutions of Eq. (3.107). Similar hysteretic phenomena have been observed in

electron-positron colliders, related to beam-beam interactions, where the amplitudes
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of the coherent π-mode oscillations showed hysteretic phenomena.16 At a large beam-

beam tune shift, the vertical beam size exhibited a flip-flop effect with respect to the
relative horizontal displacement of two colliding beams.17

D. Systematic property of parametric resonances

The formalism discussed so far seems complicated by the transformation of phase-

space coordinates into action-angle variables. However, the essential physics is rather
simple. In this section, we will show that the global property of parametric resonances

can be understood simply from Hamiltonian dynamics.

The circles in Fig. 3.11 show a compilation of beamlet phase amplitude vs mod-
ulation frequency for four different experimental phase modulation amplitudes. The

solid lines show the synchrotron tune and its third harmonic. We note that the bifur-
cation of the 1:1 resonance islands follows the tune of the unperturbed Hamiltonian

system, and the measured third order 3:1 resonance islands fall on the curve of the
third harmonic of the synchrotron tune. The sideband around the first order syn-

chrotron tune corresponds to the 60 Hz power supply ripple. Because the rf phase

modulation does not excite 2:1 resonance, we did not find parametric resonances at
the second synchrotron harmonic.

Figure 3.11: The phase amplitudes of beamlets
excited by rf phase modulation, measured from
the oscilloscope trace, are compared with the the-
oretical synchrotron tune. The bifurcation of the
resonance islands follows the unperturbed tune of
the synchrotron Hamiltonian, shown as the lower
solid line (see also Fig. 3.6 on the bifurcation of
1:1 parametric resonance). The third order res-
onance island falls also on the third harmonic of
the synchrotron tune.

When an external time dependence perturbation is applied to a Hamiltonian
system, the perturbed Hamiltonian contains a perturbing term similar to that in

Eq. (3.83). On the basis of the Kolmogorov-Arnold-Moser (KAM) theorem, many
Hamiltonian tori are mildly perturbed and survived, while some tori encountering

resonance condition are destroyed. Thus the external perturbation excites only parti-
cles locally in the phase space where the amplitude dependent synchrotron tune falls

exactly at the modulation tune, where the particle motion can be described by the

16See T. Ieiri and K. Hirata, Proc. 1989 Part. Accel. Conf. p. 926 (IEEE, New York, 1989).
17See M.H.R. Donald and J.M. Paterson, IEEE Trans. Nucl. Sci. NS-26, 3580 (1979); G.P.

Jackson and R.H. Siemann, Proc. 1987 Part. Accel. Conf. p. 1011 (IEEE, New York, 1987).
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effective parametric resonance Hamiltonian (3.84).18 The size of a resonance island

depends on the slope of tune vs amplitude, strength function gn(J), and amplitude
of perturbation.

In fact, the external perturbation creates a local minimum in the potential energy

at the SFP locations. When a weak damping force is applied to the dynamical system,
the SFP becomes an attractor, and the local potential well becomes the basin for

stable particle motion. Thus a beam inside an rf bucket can split into beamlets.

When the modulation frequency is varied, SFPs (attractors) are formed along the

tune of the unperturbed Hamiltonian, i.e.

νm = nQ̃s(JSFP
). (3.111)

The measurement of attractor amplitude vs modulation tune is equivalent to the mea-

surement of synchrotron tune vs synchrotron amplitude, as clearly seen in Fig. 3.11.
Since the rf phase modulation does not excite even synchrotron harmonics, we do

not observe a 2:1 attractor in Fig. 3.11. If, however, a stronger phase modulation is
applied to the dynamical system, a 2:1-like (4:2) parametric resonance can be formed

by 1:1 and 3:1 resonances through second order perturbation.

An important implication of the above parametric excitation theorem is that chaos
at the separatrix orbit is induced by overlapping parametric resonances. This can be

understood as follows. Let Q(J) be the tune of a dynamical system, where the tune
is zero at the separatrix, i.e. Q(Jsx) = 0. Now a time dependent perturbation can

induce a series of parametric resonances in the perturbed Hamiltonian. These para-
metric resonances, located at nQ(J) with integer n, can be excited by time dependent

perturbation. Since nQ(Jsx) ≈ 0 for all n near the separatrix, a perturbation with low
frequency modulation can produce many overlapping parametric resonances near the

separatrix and lead to local chaos. This result can be applied to synchrotron motion
as well as to betatron motion, where higher order nonlinear resonances serve as the

source of time dependent modulation.

Now, we apply this result to evaluate the effect of low frequency modulations on
particle motion. If the amplitude of low frequency modulation is not large, it will

induce overlapping parametric resonances only near the separatrix. If the beam size
is relatively small, the stochasticity at the separatrix will do little harm to the beam

motion. However, when the modulation frequency approaches the tune of particles at
the center of the bucket, particle orbits near the center of the bucket will be strongly

perturbed, forming islands within the bucket.

In reality, the perturbation arising from wakefields, rf phase error, dipole field
error, ground vibration, etc., consists of a spectrum of frequency distributions. The

18The remaining terms play the role of time dependent perturbations to the effective Hamiltonian
of Eq. (3.84). Based on KAM theorem, many higher order resonance islands exist within each
parametric resonance island.
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mean field of the perturbation gives rise to the effect called potential well distor-

tion, which, solved self-consistently in the Vlasov equation, modifies the unperturbed
tune of the system. The remaining time dependent perturbation can generate further

bunch deformation, bunch splitting, hysteresis, etc., depending on its frequency spec-
trum. The complicated collective instability phenomenon is in fact closely related

to nonlinear beam dynamics. A series of beam transfer function measurements were
made at electron storage rings. Sweeping the rf phase modulation frequency and

measuring the response by measuring either the centroid of the beam, or the beam
profile from a synchrotron light monitor using a streak camera, the response of the

beam to external rf phase modulation can be obtained.19

III.5 RF Voltage Modulation

The beam lifetime limitation due to rf noise has been observed in many synchrotrons,

e.g., the super proton synchrotron (SPS) in CERN.20 There has been some interest
in employing rf voltage modulation to induce super slow extraction through a bent

crystal for very high energy beams,21 rf voltage modulation to stabilize collective beam
instabilities, rf voltage modulation for extracting beam with a short bunch length, etc.

Since the rf voltage modulation may be used for enhancing a desired beam quality,

we will study the physics of synchrotron motion with rf voltage modulation, that may
arise from rf noise, power supply ripple, wakefields, etc. Beam response to externally

applied rf voltage modulation has been measured at the IUCF Cooler.22

A. The equation of motion with rf voltage modulation

In the presence of rf voltage modulation, the synchrotron equations of motion are

φn+1 = φn − 2πνs
η

|η|Pn, (3.112)

Pn+1 = Pn − 2πνs[1 + b sin(νmθn+1 + χ)] sinφn+1 − 4πα

ω0
Pn, (3.113)

where P = −h|η|δ/νs is the normalized off-momentum coordinate conjugate to φ;

δ = Δp/p0 is the fractional momentum deviation from the synchronous particle;
η is the phase slip factor; νs =

√
h|η|eV /2πβ2E0 is the synchrotron tune at zero

19See e.g. M.H. Wang, et al., Proc. 1997 Part. Accel. Conf. (1997); J. Byrd, ibid. (1997); M.G.
Minty et al., ibid. (1997); D. Rice, private communications.

20D. Boussard, et al., IEEE Trans. Nucl. Sci. NS-26, 3484 (1979); D. Boussard, et al., Proc.
11th Int. Conf. on High Energy Accelerators, p. 620 (Birkhauser, Basel, 1980); G. Dôme, CERN
87-03, p. 370 (1987); S. Krinsky and J.M. Wang, Part. Accel. 12, 107 (1982).

21H.J. Shih and A.M. Taratin, SSCL-389 (1991); W. Gabella, J. Rosenzweig, R. Kick, and S.
Peggs, Part. Accel. 42, 235 (1993).

22D. Li et al., Phys. Rev. E 48, R1638 (1993); D.D. Caussyn et al., Proc. Part. Acc. Conf. p. 29
(IEEE, Piscataway, NJ, 1993); D. Li et al., Nucl. Instrum. Methods A364, 205 (1995).
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amplitude; E0 is the beam energy; b = ΔV/V is the fractional rf voltage modulation

strength (b > 0); νm is the rf voltage modulation tune; χ is a phase factor; θ is the
orbital angle used as time variable; ω0 = 2πf0 is the angular revolution frequency;

and α is the phase-space damping factor resulting from phase-space cooling.
At the IUCF Cooler, the phase-space damping rate was measured to be about

α ≈ 3.0± 1.0 s−1, which is much smaller than ω0νs, typically about 1500 s−1 for the
h = 1 harmonic system. Without loss of generality, we discuss the case for a particle

energy below the transition energy, i.e. η < 0.
Neglecting the damping term, i.e. α = 0, the equation of motion for phase variable

φ is
φ̈+ ν2

s [1 + b sin(νmθ + χ)] sinφ = 0, (3.114)

where the overdot indicates the time derivative with respect to θ. In linear approxima-

tion with sinφ ≈ φ, Eq. (3.114) reduces to Mathieu equation. By choosing χ = −π/2
and z = 1

2
νmθ, p = 4ν2

s /ν
2
m, and q = 2bν2

s /ν
2
m, we can linearize Eq. (3.114) into

Mathieu’s equation [30]
d2φ

dz2
+ (p− 2q cos 2z)φ = 0. (3.115)

In accelerator physics applications, p and q are real with q � 1. The stable

solutions of Mathieu’s equation are obtained with the condition that the parameter
p is bounded by the characteristic roots ar(q) and br+1(q), where r = 0, 1, 2, · · ·. In

other words, unstable solutions are in the region br(q) ≤ p ≤ ar(q), where r = 1, 2, · · ·.
The first order unstable region and the second order unstable region respectively

2νs(1− 1

4
b) ≤ νm ≤ 2νs(1 +

1

4
b). (3.116)

νs(1− 5

24
b2) ≤ νm ≤ νs(1 +

1

24
b2),

which can be obtained from the second order perturbation theory.23 The width of the

instability decreases rapidly with increasing order for small b. In our application, we
need to consider only the lowest order Mathieu instability. Since synchrotron motion

is nonlinear, the linear Mathieu instability analysis can be extended to nonlinear
synchrotron motion as follows.

B. The perturbed Hamiltonian

The synchrotron equation of motion with rf voltage modulation can be derived from

the Hamiltonian H = H0 +H1 with

H0 =
1

2
νsP2 + νs(1− cosφ), (3.117)

H1 = νsb sin(νmθ + χ) [1− cosφ], (3.118)

23L.D. Landau and E.M. Lifschitz, Mechanics, 3rd. ed. (Pergamon Press, Oxford, 1976).
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where H0 is the unperturbed Hamiltonian and H1 the perturbation. For a weakly

perturbed Hamiltonian system, we expand H1 in action-angle coordinates of the un-
perturbed Hamiltonian

H1 = νsb
∞∑

n=−∞
|Gn(J)| sin(νmθ − nψ − γn), (3.119)

where we choose χ = 0 for simplicity, and |Gn(J)| is the Fourier amplitude of the

factor (1− cosφ) with γn its phase, defined in Eq. (3.76).
Since (1 − cosφ) is an even function of ψ in [−π, π], the Fourier integral for Gn

from Eq. (3.76) is zero except for n even with G−n = G∗
n. Thus rf voltage modulation

generates only even-order synchrotron harmonics in H1. Expanding Gn(J) in power

series, we obtain

G0 ≈ 1

2
J +

1

2048
J3 + · · · =⇒ ΔQ̃s ≈ 1

2
νsb sin νmθ.

G2 ≈ −1

4
J +

1

128
J2 + · · · , G4 ≈ − 1

64
J2 +

1

2048
J3 + · · · , G6 ≈ 3

4096
J3 + · · · .

Note that the G0(J) term in the perturbation contributes to synchrotron tune mod-
ulation ΔQs.

C. Parametric resonances

When the modulation frequency is near an even harmonic of the synchrotron fre-

quency, i.e. νm ≈ nQs (n = even integers), particle motion can be coherently per-
turbed by the rf voltage modulation resulting from a resonance driving term (station-

ary phase condition). The resonances, induced by the external harmonic modulation

of the rf voltage, are called parametric resonances. Using the generating function

F2 = (ψ − νm
n
θ +

γn
n

+
π

2n
)J̃ ,

we obtain the Hamiltonian in a resonance rotating frame as

H̃ = E(J̃)− νm
n
J̃ + νsb|Gn(J̃)| cosnψ̃ +ΔH̃(J̃ , ψ̃, θ), (3.120)

where the remaining small time dependent perturbation term ΔH oscillates at fre-
quencies νm, 2νm, · · ·. In the time average, we have �ΔH̃� ≈ 0. Thus the time

averaged Hamiltonian �H̃� for the nth order parametric resonance becomes

�H̃� = E(J̃)− νm
n
J̃ + νsb|Gn(J̃)| cosnψ̃. (3.121)

The phase-space contour may be strongly perturbed by a parametric resonance. Since
|Gn+2/Gn| ∼ J for n > 0, the resonance strength is greatest at the lowest harmonic

for particles with small phase amplitude. The system is most sensitive to the rf

voltage modulation at the second synchrotron harmonic.
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D. Quadrupole mode

When the rf voltage modulation frequency is near the second harmonic of synchrotron

frequency, particle motion is governed by the n = 2 parametric resonance Hamiltonian

�H̃� = (νs − νm
2
)J̃ − νs

16
J̃2 +

νs
4
bJ̃ cos 2ψ̃ (3.122)

in the resonance rotating frame. Since the Hamiltonian (3.122) is autonomous, Hamil-

tonian is a constant of motion. For simplicity, we drop the tilde notations. Hamilton’s
equations are

J̇ =
νs
2
bJ sin 2ψ, (3.123)

ψ̇ = νs − νm
2

− νs
8
J +

νs
4
b cos 2ψ. (3.124)

The fixed points that determine the locations of islands and separatrix of the

Hamiltonian are obtained from J̇ = 0, ψ̇ = 0. The stable fixed points (SFPs) (ψ = 0
and π) and the unstable fixed points (UFPs) (ψ = π/2 and 3π/2) are

JSFP =

{
8(1− νm

2νs
) + 2b, if νm ≤ 2νs +

1
2
bνs

0, ifνm > 2νs +
1
2
bνs

(3.125)

JUFP =

{
8(1− νm

2νs
)− 2b, if νm ≤ 2νs − 1

2
bνs

0, if 2νs − 1
2
bνs ≤ νm ≤ 2νs +

1
2
bνs

(3.126)

Examples of Hamiltonian Tori around SFPs are shown in Fig. 3.12.

Figure 3.12: The separatrix and
tori of the Hamiltonian (3.122) in
the resonance rotating frame. The
synchrotron frequency is fs = 263
Hz, the voltage modulation ampli-
tude is b = 0.05, and the modula-
tion frequencies are fm = 526 Hz
(left plot) and fm = 490 Hz (right
plot).

We note that the second harmonic rf voltage modulation can induce an instability

at JUFP = 0 in the frequency domain 2νs − 1
2
bνs ≤ νm ≤ 2νs +

1
2
bνs. This is the first

order Mathieu resonance of Eq. (3.116). Nonlinear synchrotron motion extends the
instability to lower modulation frequency at larger synchrotron amplitude, according

to

νm = 2νs(1− JUFP

8
)− 1

2
νsb, (3.127)
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which is a nonlinear extension of Mathieu instability.

Modulation of rf voltage at the second harmonic of the synchrotron tune had
been found useful in damping the multi-bunch instabilities for the damping ring at

the Stanford linear collider (SLC), and stabilizing coupled bunch instabilities induced
by parasitic rf cavity modes with high brightness beams at the Taiwan Light Source.24

By adjusting the amplitude and phase of the rf voltage modulation, the collective in-
stability of high brightness electron beams in the SLC damping ring can be controlled.

The damping mechanism may be understood as follows. When the voltage modu-
lation at νm = 2νs is applied, the Mathieu resonance gives rise to an UFP at the

origin of the phase space and the SFP is displaced to JSFP = 2b. Since electrons are
damped incoherently into the SFP by the synchrotron radiation damping, the beam

distribution becomes dumbbell-shaped in phase space, rotating in the longitudinal

phase space at half the modulation frequency, i.e. the synchrotron frequency. The
size and orientation of the dumbbell can be controlled by parameter b and phase χ.

E. The separatrix

The separatrix torus, which passes through the UFPs, is given by

H(J, ψ) = H(JUFP, ψUFP). (3.128)

The separatrix intersects the phase axis at the actions J1 and J2 given by

J1 =

{
JSFP +

√
J2
SFP − J2

UFP if νm ≤ 2νs − 1
2
bνs

2JSFP if 2νs − 1
2
bνs ≤ νm ≤ 2νs +

1
2
bνs

(3.129)

and

J2 =

{
JSFP −√

J2
SFP − J2

UFP if νm ≤ 2νs − 1
2
bνs

0 if 2νs − 1
2
bνs ≤ νm ≤ 2νs +

1
2
bνs.

(3.130)

The intercepts can be used to determine the maximum synchrotron phase oscillation

due to rf voltage modulation. Figure 3.12 shows also the intercepts of separatrix with
phase axis. The island size Δφisland is

√
2J1 −

√
2J2.

F. The amplitude dependent island tune of 2:1 parametric resonance

For an autonomous dynamical system governed by the Hamiltonian (3.122), the
Hamiltonian is a constant of motion. The Hamiltonian value is Es = 1

16
νsJ

2
SFP at

SFP, and Eu = 1
16
νsJ

2
UFP at UFP. Using Hamilton’s equations of motion, we obtain

J̇ = f(J, E), where

f(J, E) = 2νs

√[
J2

16
+

E

νs
− (1− νm

2νs
− b

4
)J

] [
(1− νm

2νs
+

b

4
)J − E

νs
− J2

16

]
. (3.131)

24M.H. Wang, and S.Y. Lee, Journal of Applied Physics, 92, 555 (2002); J.D. Fox and P. Corre-
doura, Proc. European Part. Accel. Conf. p. 1079 (Springer-Verlag, Heidelberg, 1992).
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For a given Hamiltonian value E, the action J is limited by Jmin and Jmax given by

Jmin = (1−√
1− x)JSFP, Jmax = (1 +

√
1− x)JSFP,

where x = E/Es, with x ∈ [J2
UFP/J

2
SFP , 1]. Note that JSFP = 1

2
(Jmin + Jmax). The

island tune becomes

Qisland =
2π∮
dθ

= 2π

[∮
dJ

f(J, E)

]−1

=
πνs

√
2bJSFP

8K(k)
x1/4, (3.132)

k =
1√
2

√
1− xJSFP − JUFP√

x(JSFP − JUFP)
,

where K(k) is the complete elliptical integral of the first kind [30]. At x = 1, the

island tune becomes νs
√

bJSFP/8. At the separatrix with x = J2
UFP/J

2
SFP, the island

tune is zero.

III.6 Measurement of RF Voltage Modulation

We describe here an rf voltage modulation measurement at the IUCF Cooler. The
experiment started with a single bunch of about 5× 108 protons with kinetic energy

45 MeV. The cycle time was 10 s, with the injected beam electron-cooled for about
3 s, producing a full width at half maximum bunch length of about 9 m (or 100 ns)

depending on rf voltage. The low frequency rf system used in the experiment was
operating at harmonic number h = 1 with frequency 1.03168 MHz.

A. Voltage modulation control loop

The voltage control feedback of the IUCF Cooler rf system works as follows. The

cavity rf voltage is picked up and rectified into DC via synchronous detection. The
rectified DC signal is compared to a preset voltage. The error found goes through

a nearly ideal integrator that has very high DC gain. The integrated signal is then
used to control an attenuator regulating the level of rf signal being fed to rf amplifiers.

Because of the relatively low Q of the cavity at the IUCF Cooler, the effect of its
inertia can be ignored if the loop gain is rolled off to unity well before f0/2Q, where f0
is the resonant frequency of the rf cavity and Q ≈ 50 is the cavity Q value. Thus, no
proportional error feedback is needed to stabilize the loop. The overall loop response

exhibits the exponential behavior prescribed by a first order differential equation, i.e.
dV /dt = −V/τ , where V is the rf voltage and the characteristic relaxation time τ is

about 10− 200 μ s.
The amplitude modulation is summed with the reference and compared to the

cavity sample signal. The modulation causes a change in the error voltage sensed by

the control loop and results in modulation of the attenuator around a preset cavity
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voltage. The maximum modulation rate is limited by the loop response time of

about 10 kHz. The modulation rates in our experiments are well within this limit.
The modulation amplitude was measured and calibrated.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Time (usec)

-0.15

-0.10

-0.05

0.00

C
ha

nn
el

 (
V

)

Figure 3.13: The beam bunch was ob-
served to split into three beamlets in a
single rf bucket measured from a fast
sampling scope in (μs). The voltage
modulation amplitude is b = 0.05 at
modulation frequency fm = 480 Hz with
synchrotron tune fs = 263 Hz. Note that
the outer two beamlets rotated around
the center beamlet at a frequency equal
to half the modulation frequency.

B. Observations of the island structure

Knowing that the beam bunch will be split into beamlets, as shown in Sec. III.2, we
first measured the phase oscillation amplitude of the steady state solution by using

the oscilloscope. The beam was injected, the rf voltage was modulated, and the beam
was cooled with electron current 0.75 A. Then the steady state bunch distribution

was measured. Figure 3.13 shows that the sum signals from a beam position monitor
(BPM) on a fast oscilloscope triggered at the rf frequency exhibited two peaks around

a central peak. A fast 1 × 109 sample per second oscilloscope was used to measure

the profile of the beam in a single pass. The profile shown in Fig. 3.13 indicated
that there were three beamlets in the h = 1 rf bucket. The beam particles were

damped to attractors of the dissipative parametric resonant system. Thus the phase
amplitude of the outer peaks measured from the oscilloscope can be identified as the

phase amplitude of the SFP.
Since the attractors (or islands) rotate around the origin of the rf bucket with

half the modulation frequency, the observed beam profile in an oscilloscope is a time
average of the BPM sum signal. Because the equilibrium beamlet distribution in a

resonance island has a large aspect ratio in the local phase-space coordinates, the
resulting beam profile will exhibit two peaks at the maximum phase amplitude, re-

sembling that in Fig. 3.13. This implies that when a beamlet rotates to the upright
position in the phase coordinate, a larger peak current can be observed. On the other

hand, when a beamlet rotates to the flat position, where the SFPs are located on the
P axis, the aspect ratio becomes small and the line density is also small.

The measured action J of the outer beamlets as a function of modulation fre-

quency is shown in Fig. 3.14, where JSFP of the Hamiltonian (3.122) is also shown
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Figure 3.14: The measured action J of outer
beamlets as a function of modulation frequency.
Here J ≈ 1

2 φ̂
2 with φ̂ as the peak phase amplitude

of attractors. Different symbols correspond to mea-
surements at different times for an almost identical
rf voltage. The solid line for JSFP obtained from
Eq. (3.125) fits data with fs = 263 Hz. The ac-
tions of UFP JUFP and intercepts J1 and J2 of the
separatrix with the phase axis are also shown.

for comparison. Experimentally, we found that the action of the outer attractor var-
ied linearly with modulation frequency. Similarly, JSFP is also a linear function of

modulation frequency, where the slope depends sensitively on synchrotron frequency.
Using this sensitivity, the synchrotron frequency was determined more accurately to

be about 263±1 Hz for this run. Our experimental results agreed well with the the-
oretical prediction except in the region fm ∈ [510, 520] Hz, where we did not observe

beam splitting. A possible explanation is that the actual beam size was larger than
the separation of islands. In this case, the SFPs were about 100 ns from the center

of the bucket. Once fm reached 2fs − 1
2
bfs ≈ 520 Hz, where JUFP = 0, the beam

was observed to split into only two beamlets. It was also clearly observed that all

parametric resonance islands ceased to exist at fm = 2fs +
1
2
bfs ≈ 532 Hz.

Exercise 3.3

1. Prove the identity of the action integral in Eq. (3.66).

2. We consider a general Hamiltonian

H =
1

2
νsP2 + V (φ),

where (φ,P) are conjugate phase-space variables with orbiting angle θ as time vari-
able, νs is the small amplitude synchrotron tune, and V (φ) is the potential.25 The
action is J = (1/2π)

∮ Pdφ. Using the generating function

F2 =

∫ φ

0
Pdφ,

show that the coordinate transformation between phase variable ψ and coordinate φ
is

dψ =
Q(J)

νs
dφ,

25In linear approximation, the potential can be expressed as V (φ) = 1
2νsφ

2 + · · ·. However, small
amplitude behavior of the potential is not a necessary condition for the sum rule theorem stated in
this exercise.
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where ψ is the conjugate phase variable to the action J . Expanding P in action-angle
variables with

P =

∞∑
n=−∞

fne
inψ,

prove the sum rule theorem

∞∑
n=−∞

|fn|2 = Q(J)

νs
J.

3. From Exercise 2.4.8, we find that the change of orbit length due to a modulating
dipole kicker is given by

ΔC = D(s0) θ(t) = D(s0) θ̂ sin(ωmt+ χ0),

where D(s0) is the dispersion function at the dipole location, θ̂ is the maximum dipole
kick angle, ωm is the modulating angular frequency, and χ0 is an arbitrary initial
phase. The modulating tune is νm = ωm/ω0, where ω0 is the angular revolution
frequency.

(a) Show that the modulating dipole field produces an equivalent rf phase error

Δφ =
2πhD(s0)θ̂

C
sin(ωmt+ χ0) = Δ̂φ sin(ωmt+ χ0),

where C is the circumference of the synchrotron, and h is the harmonic number.

(b) Show that the amplitude of the equivalent rf wave phase error is

a = Δ̂φ/2πνm.

Give a physical argument that the amplitude of the equivalent rf wave phase
error a is amplified as the modulation tune νm becomes smaller.

(c) Evaluate the effective rf modulation amplitude a for the accelerators listed in
the table below, where C is the circumference, ΔB� is the integrated dipole
field error, fmod is the modulation frequency, D is the dispersion function at the
dipole, γ is the Lorentz relativistic factor, and h is the harmonic number.

IUCF Cooler RHIC MI Recycler

C (m) 86.8 3833.8 3319.4 3319.4
ΔB� (Gm) 1 1 1 1
fmod (Hz) 262 60 60 4
D (m) 4 1 1 1
γ 1.04796 24 21.8 9.5
h 1 342 588 1

a
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4. Using the conjugate phase space coordinates

Q =
√
2J cos(ψ − 1

2
νmθ), P = −

√
2J sin(ψ − 1

2
νmθ),

show that the Hamiltonian (3.122) for the quadrupole mode is

H =
1

2
(δ +

νsb

4
)Q2 +

1

2
(δ − νsb

4
)P 2 − νs

64
(Q2 + P 2)2,

where δ = νs − (νm/2) and, without loss of generality, we assume b > 0. Show that
the fixed points of the Hamiltonian are located at

PSFP = 0, QSFP = 0 (νm > 2νs + νsb/2)

PSFP = 0, QSFP =
√

16(1 − νm/2νs) + 4b (νm > 2νs + νsb/2)

QUFP = 0, PUFP = 0 (2νs − νsb/2 ≤ νm ≤ 2νs + νsb/2)

QUFP = 0, PUFP =
√

16(1 − νm/2νs)− 4b (νm ≤ 2νs − 1

2
νsb).

Compare this result with Eqs. (3.125) and (3.126). Show that the separatrix for
νm ≤ 2νs − νsb/2 is given by two circles

(Q−Qc)
2 + P 2 = r2, (Q+Qc)

2 + P 2 = r2

with
Qc =

√
4b, r =

√
16δ/νs.

The separatrix in the betatron phase space for slow beam extraction that employs
a half integer stopband is identical to that given in this exercise. Quadrupoles are
used to provide resonance driving term b, and octupoles are used to provide nonlinear
detuning αxx. The resulting effective Hamiltonian is

Heff = νxJx +
1

2
αxxJ

2
x + bJx cos(ψx − �

2
θ),

where αxx = (−1/16πBρ)
∮
β2
xB3ds is the detuning parameter, B3 is the octupole

strength, and b is the half integer stopband width.

5. Show that the equation of motion for rf dipole on betatron motion in Eq. (2.107) near
a betatron sideband can be cast into an effective Hamiltonian

Heff = νJ +
1

2
αJ2 + gJ1/2 cos(ψ − νmθ + χ),

where ν, (J, φ), α are the tune, the action-angle coordinates, and the detuning pa-
rameter of the betatron motion, g is proportional to the rf dipole field strength, and
νm is the rf dipole modulation tune. Find the fixed points of the Hamiltonian and
discuss the dependence of the fixed point on parameters νm − ν, and α.
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IV Nonadiabatic and Nonlinear Synchrotron

Motion

Transition energy has been both a nuisance in machine operation and a possible bless-
ing for attaining beam bunches with some desired properties, such as enhanced beam

separation for filtering ion beams having nearly equal charge to mass ratios, and beam
bunches with ultra-small beam width.26 However, the synchrotron frequency spread

vanishes at transition energy, and the circulating beams can suffer microwave insta-
bilities and other collective instabilities for lack of Landau damping, to be discussed

in Sec. VII.

Near the transition energy region, the adiabaticity condition (3.32) is not satisfied,

i.e. the Hamiltonian is time dependent and is not a constant of motion. This results
in non-adiabatic synchrotron motion, where the bucket area increases dramatically,

and the phase-space area occupied by the beam bunch is a small fraction of the bucket

area. The linearized rf potential is a good approximation. If the phase slip factor is
independent of the off-momentum variable, we will obtain analytic solutions for the

linearized synchrotron motion near transition energy in Sec. IV.1. The integral of the
linearized Hamiltonian is also an ellipse, and the action is a constant of motion. We

will discuss the scaling properties of the beam at the transition energy crossing.

However, when the phase slip factor η0 of Eq. (3.11) becomes small, the nonlinear

phase slip factor term η1 can be important. This again raises another nonlinear
problem in synchrotron motion, i.e. parts of a beam bunch can encounter a defocusing

force during transition energy crossing. In Sec. IV.2 we study nonlinear synchrotron
motion due to nonlinearity in phase slip factor. Although the action of a Hamiltonian

flow is invariant, the torus is highly distorted and particles in a beam may be driven
out of the rf bucket after crossing the transition energy. In Sec. IV.3 we examine

beam manipulation techniques for particle acceleration through transition energy. In

Sec. IV.4 we study the effects of nonlinear phase slip factor and examine the properties
of the so-called α-bucket, and in Sec. IV.5 we study problems associated with quasi-

isochronous (QI) storage rings, which may provide beam bunches with ultra-short
bunch length.

26Since the bunch width becomes very short and the momentum spread becomes large at transition
energy, transition energy may be used to generate short bunches. See e.g., R. Cappi, J.P. Delahye,
and K.H. Reich, IEEE Trans. Nucl. Sci. NS-28, 2389 (1981). Using the sensitivity of the closed
orbit to beam momentum at transition energy, one can filter beam momentum from nearly identical
Z/A (charge to mass ratio) ion beams. Oxygen and sulfur ions have been filtered at transition energy
in the CERN PS.
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IV.1 Linear Synchrotron Motion Near Transition Energy

Since the energy gain per revolution in rf cavities is small, we assume γ = γ
T
+ γ̇t,

where γ̇ = dγ/dt is the acceleration rate, and t is the time coordinate. The phase slip
factor becomes

η0 = α0 − γ−2 ≈ 2γ̇t

γ3
T

. (3.133)

Here we have neglected the dependence of the phase slip factor on the off-momentum
coordinate δ, and assume that all particles in a bunch pass through transition energy

at the same time. Substituting Eq. (3.133) into Eq. (3.17), we obtain

ω2
s =

|t|
τ 3ad

, τad =

(
πβ2mc2γ4

T

γ̇ω2
0heV | cosφs|

)1/3

. (3.134)

Here τad is the adiabatic time. At |t| � τad, the adiabaticity condition (3.32) is
satisfied. At |t| ≥ 4τad the adiabatic condition is approximately fulfilled because

αad = |d(ω−1
s )/dt| = 1

2
(τad/|t|)3/2 ≈ 0.06. Table 3.3 lists the adiabatic time for some

proton synchrotrons. Typically τad is about 1–10 ms. Note that the beam parameters

for RHIC correspond to those of a typical gold beam injected from the AGS with
charge number Z = 79, and atomic mass number A = 197. The injection energy for

proton beams in RHIC is above transition energy.

Table 3.3: The adiabatic and nonlinear times of some proton synchrotrons.

FNAL FNAL AGS RHIC KEKPS CPS
Booster MI

C (m) 474.2 3319.4 807.12 3833.8 339.29 628.32
V (kV) 950 4000 300 300 90 200
h 84 588 12 360 9 6-20
γ

T
5.4 20.4 8.5 22.5 6.76 6.5

γ̇ (s−1) 200 190 70 1.6 40 60
A (eVs/u) 0.04 0.04 1. 0.3 0.3 0.5

δ̂ (×10−3) 6.4 2.5 6.7 4.5 5.4 6.6
τad (ms) 0.2 2.0 2.5 36 1.8 1.5
τnl (ms) 0.13 0.19 0.61 63 0.7 0.5

In linear approximation, the synchrotron equations of motion near the transition
energy region become

δ̇ =
ω0eV

2πβ2E
cosφs(Δφ), ˙(Δφ) =

2hω0γ̇

γ3
T

t δ, (3.135)
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where the overdot indicates the derivative with respect to time t, and δ = Δp/p0 and

Δφ = φ − φs are the fractional off-momentum and phase coordinates of a particle.
Taking into account the synchronous phase change from φs to π−φs across transition

energy, we obtain
d

dt

(
τ 3ad
|t|

d

dt
Δφ

)
+Δφ = 0. (3.136)

Defining a new time variable y as

y =

∫ x

0

x1/2dx =
2

3
x3/2 with x =

|t|
τad

, (3.137)

Eq. (3.136) can be transformed into Bessel’s equation of order 2/3,

ϕ�� +
1

y
ϕ� + (1− (2/3)2

y2
)ϕ = 0, (3.138)

where ϕ = y−2/3Δφ, and the primes indicate derivatives with respect to time variable

y. The solution of Eq. (3.138) can be written readily as

Δφ = bx
[
cosχJ2/3(y) + sinχN2/3(y)

]
, (3.139)

where χ and b are constants to be determined from the initial condition. Here the

Neumann function isNν(z) = [Jν(z) cos πν−J−ν(z)]/ sin πν. It is also called the Bessel
function of the second kind. In Ref. [30], the notation is Yν(z). The off-momentum

coordinate δ can be obtained from Eq. (3.135), i.e.

Δ̇φ =
2hω0γ̇t

γ3
T

δ =
Δφ

τadx
+

bx2/3

τad

(
cosχ

[
2J2/3

3y
− J5/3

]
+ sinχ

[
2N2/3

3y
−N5/3

])
.

Combining this with Eq. (3.139), we obtain the constant of motion

αφφ(Δφ)2 + 2αφδΔφδ + αδδδ
2 = 1, (3.140)

where

αφφ =
π2

9b2x2

[(
3

2
yN5/3 − 2N2/3

)2

+

(
2J2/3 − 3

2
yJ5/3

)2
]
,

αφδ =
π2

9b2

(
2hγ̇ω0τ

2
ad

γ3
T

)[
N2/3

(
3

2
yN5/3 − 2N2/3

)
− J2/3

(
2J2/3 − 3

2
yJ5/3

)]
,

αδδ =
π2

9b2
x2

(
2hγ̇ω0τ

2
ad

γ3
T

)2

[J2
2/3 +N2

2/3].

There is no surprise that the constant of motion for a time dependent linear

Hamiltonian is an ellipse. In (φ, δ) phase-space coordinates, the shape of the ellipse
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changes with time. The phase-space area enclosed in the ellipse of Eq. (3.140) is a

constant of motion given by

Ã =
π√

αφφαδδ − α2
φδ

=
3b2γ3

T

2hγ̇ω0τ 2ad
= hA ω0

β2γ
T
mc2

, (3.141)

where A is the phase-space area of the bunch in eV-s. Thus the parameter b is

b =

(
2Ah2ω2

0 γ̇τ
2
ad

3mc2β2γ4
T

)1/2

. (3.142)

A. The asymptotic properties of the phase space ellipse

The phase-space ellipse is tilted in the transition energy region. Using a Taylor series

expansion around y = 0, we obtain

αφφ =
π2

9b2
4

31/3[Γ(2
3
)]2

, (3.143)

αφδ = − π2

9b2

(
2hγ̇ω0τ

2
ad

γ3
T

) √
3

π
, (3.144)

αδδ =
π2

9b2

(
2hγ̇ω0τ

2
ad

γ3
T

)2 34/3[Γ(2
3
)]2

π2
. (3.145)

The tilt angle, the maximum momentum spread, and the maximum bunch width of
the ellipse are

ψ =
1

2
tan−1 2αφδ

αφφ − αδδ
, (3.146)

δ̂
∣∣∣
γ=γ

T

=
γ

T

31/6βτadΓ(
2
3
)

(
2A

3mc2γ̇

)1/2

≈ 0.502
γ

T

βτad

( A
mc2γ̇

)1/2

, (3.147)

φ̂
∣∣∣
γ=γ

T

=

√
αδδ

αφφαδδ − α2
φδ

=
32/3Γ(2

3
)

π

(
2Ah2ω2

0 γ̇τ
2
ad

3mc2β2γ4
T

)1/2

. (3.148)

Note that δ̂ is finite at γ = γ
T
for a nonzero acceleration rate. At a higher acceler-

ation rate, the maximum momentum width of the beam will be smaller. Substituting
the adiabatic time τad of Eq. (3.134) into Eq. (3.147), we obtain the following scaling

property:

δ̂
∣∣∣
γ=γ

T

∼ h1/3V 1/3A1/2γ̇−1/6γ
T

−1/3. (3.149)

The scaling property is important in the choice of operational conditions.



IV. NONADIABATIC AND NONLINEAR SYNCHROTRON MOTION 289

In the adiabatic region where x � 1, we can use asymptotic expansion of Bessel

functions to obtain

αφφ → π2

3b2
x−1/2, αφδ → 0, αδδ → π2

3b2

(
2hγ̇ω0τ

2
ad

γ3
T

)2

x1/2.

The phase-space ellipse is restored to the upright position.

B. The Gaussian distribution function at transition energy

The distribution function that satisfies the Vlasov equation is a function of the in-

variant ellipse (3.140). Using the Gaussian distribution function model, we obtain

Ψ0(Δφ, δ) =
3NB(αφφαδδ − α2

φδ)
1/2

π
e−3[αφφ(Δφ)2+2αφδδ(Δφ)+αδδδ

2]

= NBG1(Δφ)G2(δ), (3.150)

where NB is the number of particles in the bunch, the factor 3 is chosen to ensure

that the phase-space area A of Eq. (3.141) corresponds to 95% of the beam particles,
and the normalized distribution functions G1(Δφ) and G2(δ) are

G1(Δφ) =

√
3(αφφαδδ − α2

φδ)

παδδ
exp{−3(αφφαδδ − α2

φδ)

αδδ
(Δφ)2}

G2(δ) =

√
3αδδ

π
exp{−3αδδ(δ +

αφδ

αδδ
Δφ)2}.

Note here that G1(Δφ) is the line charge density, and the peak current is still located

at Δφ = 0. Using the ellipse of Eq. (3.140), we can evaluate the evolution of the peak
current at the transition energy crossing.

IV.2 Nonlinear Synchrotron Motion at γ ≈ γ
T

In Sec. IV.1, all particles were assumed to cross transition energy at the same time.

This is not true, because the phase slip factor depends on the off-momentum coordi-

nate δ. Near the transition energy region, the nonlinear phase slip factor of Eq. (3.11)
becomes quite important. Expanding the phase slip factor up to first order in δ, the

synchrotron equations of motion become

Δ̇φ = hω0

(
2γ̇t

γ3
T

+ η1δ

)
δ, δ̇ =

ω0eV cosφs

2πβ2E
(Δφ), (3.151)

where the synchronous particle crosses transition energy at time t = 0, and, to a good

approximation, the phase slip factor has been truncated to second order in δ. At time
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Figure 3.15: Schematic plot of η vs δ near the
transition energy region for the Fermilab Booster,
where γ

T
= 5.446, γ2

T
α1 = 0.5, and a phase-space

area of 0.05 eV-s are used to calculate η(δ) for the
beam. A beam bunch is represented by a line of
η(δ) vs δ. The synchrotron motion corresponds
to particle motion along this line. At the beam
synchronous energy of E = 5.1 GeV, which is be-
low the transition energy of 5.11 GeV, particles at
δ > 0.0018 will experience unstable synchrotron
motion due to the nonlinear phase slip factor.

t = 0, the synchronous phase is also shifted from φs to π − φs in order to achieve
stable synchrotron motion.

Figure 3.15 shows the phase slip factor η vs the fractional off-momentum coor-
dinate δ near transition energy for a beam in the Fermilab Booster. A beam bunch

with momentum width ±δ̂ is represented by a short tilted line. At a given time (or

beam energy), particles are projected onto the off-momentum axis represented by this
line. Since the phase slip factor is nonlinear, the line is tilted. When the beam is

accelerated (or decelerated) toward transition energy, a portion of the beam particles
can cross transition energy and this leads to unstable synchrotron motion, as shown

in the example at 5.1 GeV beam energy in Fig. 3.15. Since the synchrotron motion
is slow, we hope that the unstable motion does not give rise to too much bunch

distortion before particles are recaptured into a stable bucket.

To characterize nonlinear synchrotron motion, we define the nonlinear time τnl as
the time when the phase slip factor changes sign for the particle at the maximum

momentum width δ̂ of the beam, i.e. η0 + η1δ̂ = −(2γ̇τnl/γ
3
T
) + η1δ̂ = 0, or

τnl = γ3
T

η1
2γ̇

δ̂ = γ
T

3
2
β2
0 + γ2

T
α1

2γ̇
δ̂, (3.152)

where δ̂ is the maximum fractional momentum spread of the beam, η1 is obtained
from Eq. (3.11), and the α1 term can be adjusted by sextupoles. For a lattice without

sextupole correction, we typically have γ2
T
α1 ≈ 1. Within the nonlinear time ±τnl,

some portions of the beam could experience unstable synchrotron motion. Note that

the nonlinear time depends on the off-momentum width of the beam. Table 3.3 lists
the nonlinear time of some accelerators, where α1 = 0 is assumed. Note that the

nonlinear time for RHIC is particularly long because superconducting magnets can
tolerate only a slow acceleration rate.

When the beam is accelerated toward transition energy to within the range

γ
T
− γ̇τnl ≤ γ ≤ γ

T
+ γ̇τnl,
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the phase equation begins to change sign for particles at higher momenta while the

phase angle φs has not yet been shifted. Therefore these particles experience defocus-
ing synchrotron motion. After the synchronous energy of the bunch reaches transition

energy and the synchronous phase has also been shifted from φs to π− φs, lower mo-
mentum portions of the bunch will experience defocusing synchrotron motion. The

problem is most severe for accelerators with a slow acceleration rate.
The relative importance of non-adiabatic and nonlinear synchrotron motions de-

pends on the adiabatic time of Eq. (3.134) that governs the adiabaticity of the syn-
chrotron motion, and the nonlinear time τnl, within which some portion of the beam

particles experiences unstable synchrotron motion. Using Eq. (3.151), we obtain

δ′′ = −xδ +
τnl
τad

δ2

δ̂
, (3.153)

where the primes indicate derivatives with respect to x = |t|/τad. Note that when the
nonlinear time τnl vanishes, the solution of Eq. (3.153) is an Airy function, discussed

in Sec. IV.1. Since the solution of the nonlinear equation is not available, we estimate
the growth of momentum width by integrating the unstable exponent. The growth

factor is

G = exp

{∫ τnl/τad

0

(
−x+

τnl
τad

)1/2

dx

}
= exp

{
2

3

(
τnl
τad

)3/2
}

(3.154)

for a particle with δ = δ̂. The maximum momentum height is increased by the
growth factor G, which depends exponentially on τnl/τad. Depending on the adiabatic

and nonlinear times, important beam dynamics problems are nonlinear synchrotron
motion and of microwave instability to be discussed in Sec. VII.

We have seen that the momentum width will increase due to the nonlinear phase
slip factor. However, we should bear in mind that the synchrotron motion can be

derived from a Hamiltonian

H =
1

2
hω0

[
η0 +

2

3
η1δ

]
δ2 − ω0eV

4π2β2E
cosφs(Δφ)2, (3.155)

where η0 = 2γ̇t/γ3
T
. Expressing Hamilton’s equation as a difference mapping equation,

we can easily prove that the Jacobian is 1. Therefore the area of the phase-space
ellipse of each particle is conserved, and the 1D dynamical system is integrable. The

action integral is a distorted curve in phase-space coordinates. When the bunch is
accelerated through transition energy, some portions of the phase-space torus may lie

outside the stable ellipse of the synchrotron Hamiltonian. They may be captured by
other empty buckets of the rf system, or may be lost because of the aperture limitation.

For a modern high intensity hadron facility, the loss would cause radiation problems;

therefore efforts to eliminate transition energy loss are important.
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IV.3 Beam Manipulation Near Transition Energy

Near the transition energy, the revolution frequencies of all particles are nearly iden-

tical, i.e. the beam is isochronous or quasi-isochronous. Since there is no frequency
spread for Landau damping, the beam can suffer microwave instability. The tolerance

of microwave instability near transition energy will be discussed in Sec. VII.
The nonlinear phase slip factor can cause defocusing synchrotron motion for

a portion of the bunch. The growth of the bunch area is approximately G2 =
exp{4

3
(τnl/τad)

3/2} shown in Eq. (3.154). The 5% beam loss at transition energy found

for proton synchrotrons built in the 60’s and 70’s may arise mainly from this nonlinear
effect. Bunched beam manipulation are usually needed to minimize beam loss and

uncontrollable emittance growth. Minimizing both τad and τnl provides cleaner beam
acceleration through the transition energy.

A. Transition energy jump

By applying a set of quadrupoles, transition energy can be changed suddenly in order
to attain fast transition energy crossing (see Chap. 2, Sec. IV.8). The effective γ

T

crossing rate is γ̇eff = γ̇ − γ̇
T
. For example, if γ

T
is changed by one unit in 1 ms,27

the effective transition energy crossing rate is 1000 s−1, which is much larger than the

beam acceleration rates listed in Table 3.3.
Transition γ

T
jump has been employed routinely in the CERN PS. The scheme

has also been studied in the Fermilab Booster and Main Injector, the KEK PS, and
the AGS. The minimum γ

T
jump width is

Δγ
T
= 2γ̇ ×Max(τad, τnl). (3.156)

B. Momentum aperture for faster beam acceleration

The synchronization of dipole field with synchronous energy is usually accomplished
by a “radial loop,” which provides a feedback loop for rf voltage and synchronous

phase angle. In most accelerators, the maximum Ḃ is usually limited, but the rf
voltage and synchronous phase angle can be adjusted to move the beam across the

momentum aperture. The radial loop can be programmed to keep the beam closed
orbit inside the nominal closed orbit below transition energy, and to attain faster

acceleration across transition energy so that the beam closed orbit is outside the
nominal closed orbit above transition energy. For an experienced machine operator

to minimize the beam loss with a radial loop, the essential trick is to attain a faster
transition energy crossing rate.

27The γ
T
jump time scale is non-adiabatic with respect to synchrotron motion. However, the time

scale can be considered as adiabatic in betatron motion so that particles adiabatically follow the
new betatron orbit.
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C. Flatten the rf wave near transition energy

Near transition energy, partial loss of focusing force in synchrotron motion can be

alleviated by flattening the rf wave. This can be done by choosing φs = π/2 or
employing a second or third harmonic cavity.28 In the flattened rf wave, all particles

gain an equal amount of energy each turn, and thus δ of each particle is approximately
constant in a small energy range. The solution of Eq. (3.151) with δ̇ = 0 is

Δφ = Δφ1 +
hω0γ̇δ

γ3
T

(t2 − t21) + η1hω0δ
2 (t− t1), (3.157)

where t1 is the rf flattening period, (Δφ1, δ1) are the initial phase-space coordinates
of the particle, and δ = δ1.

Figure 3.16 shows the evolution of the phase-space torus when the rf wave is

flattened across the transition energy region; the parameters used in this calculations

are γ
T
= 22.5, ω0 = 4.917 × 105 rad/s, γ̇ = 1.6 s−1, h = 360, t1 = −63 ms, and

γ2
T
η1 ≈ 2. Note that the ellipse evolves into a boomerang shaped distribution function

with an equal phase-space area. The rf flattening scheme is commonly employed in
isochronous cyclotrons.

Figure 3.16: The evolution of a phase-space
ellipse in the flattened rf wave near the tran-
sition energy region. Note that the off-
momentum coordinates of each particle are
unchanged, while the bunch length elongates
along the φ axis.

IV.4 Synchrotron Motion with Nonlinear Phase Slip Factor

In the production of secondary beams, very short proton bunches are needed for at-
taining small emittance. Very short electron bunches, e.g. sub-millimeter in bunch

length, have many applications such as time resolved experiments with synchrotron
light sources, coherent synchrotron radiation, and damping rings for the next linear

colliders. Since the ratio of bunch length to bunch height is proportional to
√|η|,

a possible method of producing short bunches is to operate the accelerator in an

28See e.g., C.M. Bhat et al., Phys. Rev. E 55, 1028 (1997). The AVF cyclotron has routinely
employed this method for beam acceleration. This concept was patented by G.B. Rossi, U.S. Patent
2778937 (1954).
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isochronous condition for proton synchrotrons, or to reduce the momentum com-

paction factor for electron storage rings. Because of its potential benefit of the low η
condition, we carefully study the physics of the QI dynamical system.29

Table 3.2 and Eq. (3.43) show that the synchrotron bucket height and momentum
spread become very large when |η| is small. This requires careful examination because

when the phase slip factor η is small, its dependence on the fractional momentum
deviation δ becomes important. The synchrotron Hamiltonian needs to take into

account the effects of nonlinear phase slip factor.
Expanding the phase slip factor as η = η0+ η1δ+ · · · and using the orbiting angle

θ as the independent variable, we obtain the Hamiltonian for synchrotron motion as

H =
1

2
h

(
η0 +

2

3
η1δ

)
δ2 +

eV

2πβ2E
[cosφ− cosφs + (φ− φs) sinφs], (3.158)

where we have truncated the phase slip factor to the second order in δ. The fixed
points of the nonlinear synchrotron Hamiltonian are

(φ, δ)SFP = (φs, 0), (π − φs, −η0/η1), (3.159)

(φ, δ)UFP = (π − φs, 0), (φs, −η0/η1). (3.160)

Note that the nonlinear phase slip factor introduces another set of fixed points in

the phase space. The fixed points with δFP = 0 are the nominal fixed points. The
fixed points with δFP = −η0/η1 arising from the nonlinear-phase-slip factor are called

nonlinear-phase-slip-factor (NPSF) fixed points. These fixed points play important
role in determining the dynamics of synchrotron motion.

We define νs =
√

h|η0|eV/2πβ2E for small amplitude synchrotron tune, and use
the normalized phase space coordinates φ and P = (hη0/νs)δ. The Hamiltonian of

synchrotron motion becomes

H =
1

2
νsP2 +

1

2y
νsP3 + νs[cosφ− cosφs + (φ− φs) sinφs]. (3.161)

The parameter
y = 3hη20/2η1νs (3.162)

signifies the relative importance of the linear and nonlinear parts of the phase slip
factor. If |y| � 1, the nonlinear phase slip factor is not important, and if |y| is small,

the phase space tori will be deformed.

29A. Riabko et al., Phys. Rev. E54, 815 (1996); D. Jeon et al., Phys. Rev. E54, 4192 (1996); M.
Bai et al., Phys. Rev. E55, 3493 (1997); C. Pellegrini and D. Robin, Nucl. Inst. Methods, A 301,
27 (1991); D. Robin, et. al., Phys. Rev. E48, 2149 (1993); H. Bruck et al., IEEE Trans. Nucl. Sci.
NS20, 822 (1973); L. Liu et al., Nucl. Instru. Methods, A329, 9 (1993); H. Hama, S. Takano and
B. Isoyama, Nucl. Instru. Methods, A329, 29 (1993); S. Takano, H. Hama and G. Isoyama, Japan
J. Appl. Phys. 32, 1285 (1993); A. Nadji et al., Proc. EPAC94 p. 128 (1994); D. Robin, H. Hama,
and A. Nadji, LBL-37758 (1995).
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Figure 3.17 shows the separatrix of the nonlinear Hamiltonian in normalized phase

space coordinates for φs = 150◦ and 180◦ respectively, where, without loss of gener-
ality, we have assumed η0 > 0 and η1 > 0. The separatrix that passes through the

nominal fixed points are nominal separatrix. When the nominal separatrix crosses
the unstable NPSF fixed point, the separatrix of two branches will become one (see

the middle plots of Fig. 3.17 and Exercise 3.4.6). This condition occurs at y = ycr,
given by

ycr =
√

27[(π/2− φs) sinφs − cosφs]. (3.163)

For y � ycr, the stable buckets of the upper and lower branches are separated by a

distance of ΔP = 2y/3. Particle motion can be well described by neglecting the P3

term in the Hamiltonian.

Figure 3.17: Left: Sep-
aratrix in the normalized
phase space (φ, P = P) for
the synchrotron Hamilto-
nian with parameters φs =
150◦ and y = 5 (top), y =
ycr = 3.0406 (middle) and
1 (bottom); Right: Separa-
trix with parameters φs =
180◦ and y = 8 (top), y =
ycr = 5.1962 (middle), and
3 (bottom). In this exam-
ple, we assume η0 > 0 and
η1 > 0. Note the depen-
dence of the Hamiltonian
tori on the parameter y.

For y < ycr, the separatrix (“fish”) is deformed into up-down shape (see lower
plots). They are called “α-bucket.” Since the α-bucket is limited in a small region

of the phase coordinate φ, small angle expansion is valid. The particle motion inside

such a quasi-isochronous (QI) dynamical system can be analytically solved as follows.

IV.5 The QI Dynamical Systems

The synchrotron equation of motion for the rf phase coordinate φ of a particle is

φ̇ = hηδ, η = η0 + η1δ + · · · , (3.164)

where h is the harmonic number, δ = Δp/p0 is the fractional momentum deviation

from a synchronous particle, the overdot indicates the derivative with respect to the
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orbiting angle θ = s/R0, and η is the phase slip factor, η0 and η1 are the first order

and second order phase slip factors. In many storage rings, truncation of the phase
slip factor at the η1 term is a good approximation. Similarly, the equation of motion

for the fractional off-momentum deviation is

δ̇ =
eV0

2πβ2E0
[sin(φ+ φs)− sinφs] ≈ eV0 cosφs

2πβ2E
φ, (3.165)

where V0 and φs are the rf voltage and synchronous phase angle, βc is the speed, and
E0 is the energy of the beam. Here, the linearized phase coordinate in Eq. (3.165)

is a good approximation because the (up-down) synchrotron bucket is limited in a
small range of the phase coordinate (see Fig. 3.17).

With t = νsθ as the time variable, where νs =
√

heV0|η0 cosφs|/2πβ2E0 is the small
amplitude synchrotron tune, and with (x, p) as conjugate phase-space coordinates,

where

x = −η1
η0

Δp

p0
, p =

νsη1
hη20

φ, (3.166)

the synchrotron Hamiltonian for particle motion in QI storage rings becomes

H0 =
1

2
p2 + V (x), V (x) =

1

2
x2 − 1

3
x3. (3.167)

This universal Hamiltonian is autonomous and the Hamiltonian value E is a constant

of motion with E ∈ [0, 1
6
] for particles inside the bucket.

The equation of motion for the QI Hamiltonian with H0 = E is the standard

Weierstrass equation,
(
d℘(u)

du

)2

= 4(℘− e1)(℘− e2)(℘− e3), (3.168)

where u = t/
√
6, ℘ = x, and the turning points are

e1 =
1

2
+ cos(ξ), e2 =

1

2
+ cos(ξ − 120◦), e3 =

1

2
+ cos(ξ + 120◦)

with ξ = 1
3
arccos (1− 12E). The ξ parameter for particles inside the bucket varies

from 0 to π/3. Figure 3.18 shows the separatrix of the QI bucket QI potential, and
the turning points, where e2 and e3 are turning points for stable particle motion.

The Weierstrass elliptic ℘-function is a single valued doubly periodic function of
a single complex variable. For particle motion inside the separatrix, the discriminant

Δ = 648E(1 − 6E) is positive, and the Weierstrass ℘ function can be expressed in
terms of the Jacobian elliptic function [30]

x(t) = e3 + (e2 − e3) sn
2

(√
e1 − e3

6
t|m

)
, (3.169)

k =
e2 − e3
e1 − e3

=
sin ξ

sin(ξ + 60◦)
. (3.170)
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Figure 3.18: Schematic plots of the
QI bucket (left) and the QI poten-
tial (right). The dotted lines are the
lower and upper limits of the ”en-
ergy” 0 and 1/6 respectively. The
turning points e1, e2, and e3 are also
shown for energy E = 0.1, associated
with the dashed-line beam bunch at
the left plot. The separatrix of the QI
bucket is one of the separatrix, plot-
ted side-way, shown in Fig. 3.17.

The separatrix orbit, which corresponds to k = 1, is

xsx(t) = 1− 3

cosh t+ 1
, psx(t) =

3 sinh t

(cosh t+ 1)2
. (3.171)

The tune of the QI Hamiltonian is

Q(E) =
π[
√
3 sin(ξ + 60◦)]1/2√

6K(k)
, (3.172)

where K(k) is the Jacobian Elliptical function. The normalized tune of the QI Hamil-

tonian is compared with that of the normal synchrotron Hamiltonian in Fig. 3.19.
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Figure 3.19: The synchrotron tune
of the QI dynamical system (up-
per curve) is compared with that
of the nominal rf potential (lower
curve); plotted in relative Hamil-
tonian value, or ”energy” E/Esep.
Note that the sharp drop of the QI
synchrotron tune at the separatrix
can cause chaotic motion for par-
ticles with large synchrotron ampli-
tudes under the influence of the low-
frequency time-dependent perturba-
tion.

Here, we note that the synchrotron tune decreases to zero very sharply near the
separatrix. Because of the sharp decrease in synchrotron tune, time dependent pertur-

bation will cause overlapping parametric resonances and chaos near the separatrix.30

30H. Huang, et al., Phys. Rev. E48, 4678 (1993); M. Ellison, et al., Phys. Rev. Lett. 70, 591
(1993); M. Syphers, et al., Phys. Rev. Lett. 71, 719 (1993); Y. Wang, et al., Phys. Rev. E49, 1610
(1994). D. Li, et al., Phys. Rev. E48, R1638 (1993); D. Li, et al., Nucl. Inst. Methods, A364, 205
(1995).
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The action of a torus is

J =
1

2π

∮
pdx =

1

8

√
2

3
(e2 − e3)

2(e1 − e3)
1/2F

(
3

2
,−1

2
; 3; k

)
, (3.173)

where F is the hypergeometric function [30]. The action of the separatrix orbit is
Jsx = 3/5π, or equivalently the bucket area is 6/5. Using the generating function

F2(x, J) =

∫ x

e3

p dx, (3.174)

the angle variable is ψ = ∂F2/∂J = Qt. The resulting Hamiltonian is

H0(J) ≈ J − 5

12
J2 + · · · .

Because of the synchrotron radiation damping, the equation of motion for QI

electron storage rings is x�� +Ax�+x−x2 = 0,where the effective damping coefficient
is

A =
λ

νs
=

U0JE

2πE0νs
. (3.175)

Here λ is the damping decrement, U0 is the energy loss per revolution, and JE is the

damping partition number. In QI storage rings, the effective damping coefficient is
enhanced by a corresponding decrease in synchrotron tune, i.e. A ∼ |η0|−1/2, where

the value of A can vary from 0 to 0.5.
Including the rf phase noise, the Hamiltonian in normalized phase-space coordi-

nates is

H =
p2

2
+

1

2
x2 − 1

3
x3 + ωmBx cosωmt, (3.176)

where

B =
η1a

η0νs
(3.177)

is the effective modulation amplitude, a is the rf phase modulation amplitude, ωm =

νm/νs is the normalized modulation tune, and νm is the modulation tune of the
original accelerator coordinate system. Note that the effective modulation amplitude

B is greatly enhanced for QI storage rings by the smallness of η0, i.e. B ∼ |η1|/|η0|3/2.
Including the damping force, the equation of motion becomes

x�� + Ax� + x− x2 = −ωmB cosωmt. (3.178)

The stochasticity of such a dynamical system has been extensively studied.31 Experi-

mental verification of the QI dynamical system has not been fully explored. Detailed
discussions of this topic is beyond this introductory textbook.

31A. Riabko et al., Phys. Rev. E54, 815 (1996); D. Jeon et al., Phys. Rev. E54, 4192 (1996); M.
Bai et al., Phys. Rev. E55, 3493 (1997).
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Exercise 3.4

1. Verify the adiabatic time, the nonlinear time, and the momentum spread of the beam
δ̂ at γ = γ

T
for the accelerators listed in Table 3.3.

2. Show that Eq. (3.135) can be reduced to

δ�� + xδ = 0

where the primes indicate derivatives with respect to the variable x = |t|/τad, where
τad is the adiabatic time of Eq. (3.134).

(a) Express the solution in terms of Airy functions and find the equation for the
invariant torus.

(b) Verify Eq. (3.140).

3. Show that τnl/τad ∝ γ̇−5/6γ−2/3
T

. Discuss the effects of high vs low γ
T
lattices on the

dynamics of synchrotron motion near the transition energy.

4. The Fermilab Main Injector accelerates protons from 8.9 GeV to 120 GeV in 1 s.
Assuming γ

T
= 20.4, calculate the characteristic time and the maximum momentum

spread for a phase space area of 0.04 eV-s.

5. Show that the phase space area enclosed by (Δφ, δ) of Eq. (3.157) is equal to the
phase space area enclosed by (Δφ1, δ1) of the initial ellipse.

6. Using the normalized phase space coordinates φ and P, show that the Hamiltonian
(3.158) with nonlinear phase slip factor depends only on a single parameter y =
3hη20/2νsη1. Show that the separatrices of the Hamiltonian are

νsP3 + yP2 + 2y[cos φ+ cosφs + (φ+ φs − π) sinφs] = 0,

νsP3 + yP2 + 2y[cos φ− cosφs + (φ− φs) sinφs]− 4

27
y3 = 0.

Show that when y = ycr of Eq. (3.163) the separatrix of the upper branch passes
through the UFP of the lower branch.

7. Show that the QI Hamiltonian can be reduced to Eq. (3.167) and that the solution
is given by the Weierstrass elliptical function.
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V BeamManipulation in Synchrotron Phase Space

A charged particle beam is usually produced by an intense ion source, pre-accelerated

by an electrostatic Cockcroft-Walton or an RFQ, prebunched and injected into a linac

to reach an injection energy for low energy synchrotrons, called booster synchrotrons
or boosters. The beam is accumulated, phase-space painted, stacked in a low energy

booster, and accelerated toward higher energies by a chain of synchrotrons of various
sizes. The reasons for this complicated scheme are economics and beam dynamics

issues. Since dipole and quadrupole magnets have low and high field operational
limits, the range of beam energy for a synchrotron is limited. The mean-field Coulomb

force can also have a large effect on the stability of low energy beams in boosters,
where the space-charge tune shift, proportional to circumference of the synchrotron,

is limited to about 0.3–0.4.

For the acceleration of ion beams, the fractional change of beam velocity in low

energy boosters can be large. The rf frequency for a low energy booster has to be tuned
in a wide range. The rf voltage requirement is determined by technical issues such as

rf cavity design, rf power source, and the requirements in the momentum aperture and
phase-space area. During beam acceleration, phase-space area is normally conserved.

The beam distribution function can thus be manipulated to some desirable properties
for experiments. Careful consideration is thus needed to optimize the operation and

construction costs of accelerators.

On the other hand, electrons are almost relativistic at energies above 10 MeV,

and the required range of rf frequency change is small. However, electrons emit syn-

chrotron radiation, which must be compensated by the longitudinal rf electric field
in a storage ring. Since synchrotron radiation power depends on particle energy, and

the mean energy loss of a beam is compensated by the rf field, particle motion in syn-
chrotron phase-space is damped. The synchrotron radiation emitted by a relativistic

electron is essentially concentrated in a cone with an angular divergence of 1/γ along
its path, and the energy compensation of the rf field is along the longitudinal direc-

tion; the betatron motion is also damped. Equilibrium is reached when the quantum
fluctuation due to the emission of photons and the synchrotron radiation damping

are balanced. The resulting momentum spread is independent of the rf voltage, and
the transverse emittance depends essentially on the lattice arrangement.

In this section we examine applications of the rf systems in the bunched beam
manipulations, including phase displacement acceleration, phase-space stacking, adi-

abatic capture, bucket to bucket transfer, bunch rotation, and debunching. We care-
fully study the double rf systems, that have often been applied in the space charge

dominated beams and high brilliance electron storage rings for providing a larger
tune spread for Landau damping. We also study the barrier rf systems that have

been proposed for low energy proton synchrotrons. In general, innovative bunched

beam manipulation schemes can enhance beam quality for experiments.
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V.1 RF Frequency Requirements

Particle acceleration in synchrotrons requires synchronism between rf frequency and
particle revolution frequency. Thus the rf frequency is an integer multiple of the

revolution frequency ωrf = hω0(B,R0), where h is the harmonic number, and the
angular revolution frequency ω0 is a function of the magnetic field B and the average

radius of the synchrotron R0. The momentum p0 of a particle is related to the
magnetic field by p0 = eρB, where ρ is the bending radius, and e is the particle’s

charge. Thus the rf frequency is

ωrf = h
βc

R0
=

heρB

R0γm
=

hc

R0

[
B2(t)

B2(t) + (mc2/ecρ)2

]1/2
, (3.179)

mc2

ecρ
=

{
3.1273/ρ [m] Tesla for protons,
0.001703/ρ [m] Tesla for electrons,

where m is the particle’s mass. The rf frequency is a function of the dipole magnetic

field, particularly particularly important for low energy proton or ion accelerators. In
low to medium energy synchrotrons, the rf system is usually limited by the range of

required frequency swing. Table 3.4 lists parameters of some proton synchrotrons.

Table 3.4: RF parameters of some proton synchrotrons

AGS BST AGS RHIC FNALBST FNALMI
Inj. K.E. [GeV/u] 0.001/0.2 0.2(1.5) 12 0.2(0.4) 8.0
Acc. Rate [GeV/s] 100 60 3.7 200 100
Max. K.E. [GeV] 1.5 30 250 8 500
frf [MHz] 0.18–4.1 2.4–4.6 26.68–26.74 30.0–52.8 52.8–53.1
Av. Radius [m] (1/4)Rags 128.457 (19/4)Rags 75.47 528.30
h 1–3 (2) 12 (8) 6×60 84 7×84
Vrf [kV] 90 300 300 950 4000

In some applications, the magnetic field can be ramped linearly as B = a+ bt, or
resonantly as B = (B̂/2)(1 − cosωt) = B̂ sin2(ωt/2), with ramping frequency ω/2π

varying from 1 Hz to 50 Hz; the rf frequency should follow the magnetic field ramp
according to Eq. (3.179), for which cavities with ferrite tuners are usually used. On

the other hand, electrons are nearly relativistic at all energies, and the rf frequency
swing is small. High frequency pill-box-like cavities are usually used. Normally the

frequency range can be in the 200, 350, 500, and 700 MHz regions, where rf power
sources are readily available. In recent years, wideband solid state rf power sources

and narrowband klystron power sources have been steadily improved. New methods

of beam manipulation can be employed.
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Requirements of rf systems depend on their applications. To achieve high beam

power in meson factories and proton drivers for spallation neutron sources, a fast
acceleration rate is important. For example, the ISIS at the Rutherford Appleton

Laboratory has a 50 Hz ramp rate, whereas the rf systems in the Spallation Neutron
Source (SNS) provide only beam capture. On the other hand, acceleration rate is less

important in storage rings used for internal target experiments.

A. The choice of harmonic number

The harmonic number determines the bunch spacing and the maximum number of

particles per bunch obtainable from a given source, which can be important for col-
liding beam facilities. The harmonic numbers are related by the mean radii of the

chain of accelerators needed to reach an efficient box-car injection scheme, which is
equivalent to bucket to bucket transfer from one accelerator to another. For exam-

ple, the average radius of the AGS Booster is 1/4 that of the AGS, and the ratio of
harmonic numbers is 4. Similar reasoning applies to the chain of accelerators.

Since the damping time of electron beams in electron storage rings (see Table 4.2,

Chap. 4, Sec. I.4) is short, the injection scheme of damping accumulation at full
energy is usually employed in high performance electron storage rings. The choice of

harmonic number for high energy electron storage rings is determined mainly by the
availability of the rf power source, efficient high quality cavity design, and the size of

the machine. Since rf power sources are available at 200, 350, 500, 700 MHz regions,

most of the rf cavities of electron storage rings are operating at these frequencies.
The harmonic number is then determined by the rf frequency and circumference of

the storage ring.

B. The choice of rf voltage

High intensity beams usually require a larger bunch area to control beam instabilities.

Since the rf bucket area and height are proportional to
√
Vrf , a minimum voltage is

needed to capture and accelerate charged particles efficiently.

In electron storage rings, the choice of rf voltage is important in determining the

beam lifetime because of quantum fluctuation and Touschek scattering, a large angle
Coulomb scattering process converting the horizontal momenta of two electrons into

longitudinal momenta.

In general, the rf voltage is limited by the rf power source and the Kilpatrick limit

of sparking at the rf gap. The total rf voltage of synchrotrons and storage rings is

usually limited by the available space for the installation of rf cavities.
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V.2 Capture and Acceleration of Proton and Ion Beams

At low energy, the intensity and brightness of an injected beam are usually limited
by space-charge forces, intrabeam scattering, microwave instability, etc.; phase-space

painting for beam distribution manipulation can be used to alleviate some of these
problems (see Chap. 2, Sec. III.8, for transverse phase-space painting).

Since the injected beam from a linac normally has a large energy spread, the rf

voltage requirement in booster synchrotrons needs enough bucket height for beam
injection. The peak voltage is usually limited by the power supply and electric field

breakdown at the rf cavity gap. A debuncher or a bunch rotator in the transfer
line can be used to lower the momentum width of injected beams. The resulting

captured beam brightness depends on the rf voltage manipulation. The following ex-
ample illustrates the difference between adiabatic capture and non-adiabatic capture

processes.

A. Adiabatic capture

During multi-turn injection (transverse or longitudinal phase-space painting or charge

exchange strip injection), very little beam loss in the synchrotron phase-space can
theoretically be achieved by adiabatically ramping the rf voltage with φs = 0. The

right plots, (e) to (h), of Fig. 3.20 show an example of adiabatic capture in the IUCF
cooler injector synchrotron (CIS). The proton beam was accelerated from 7 to 200

MeV at 1 Hz repetition rate, and the rf voltage Vrf(t) was increased from a small
value to 240 V adiabatically, plots (e) and (f), while the synchronous phase was kept

at zero. The adiabaticity coefficient of Eq. (3.21) becomes

αad =
Ts

4πVrf

dVrf

dt
=

Ts

2πAB

dAB

dt
, (3.180)

where Ts is the synchrotron period and AB is the bucket area. In order to satisfy the
adiabatic condition, the initial rf voltage should have a small finite initial voltage V0,

and the rf voltage is ramped to a final voltage smoothly (see also Exercise 3.5.1).

After beam capture, the synchronous phase was ramped adiabatically to attain

a desired acceleration rate. Good acceleration efficiency requires adiabatic ramping
of V and φs while providing enough bucket area during beam acceleration. In this

numerical example, we find that the capture efficiency is about 99.6%. In reality,
the momentum spread of the injected beam is about 0.5% instead of 0.1% shown

in this example. The maximum voltage is only barely able to hold the momentum
spread of the injected beam from linac. The actual capture efficiency is much lower.

A possible solution is to install a debuncher in the injection transfer line for lowering

the momentum spread of the injected beam.
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Figure 3.20: The left plots, (a) to (d), show non-adiabatic beam capture during injection
and acceleration. The right plots, (e) to (h), show adiabatic capture of the injected beam:
the rf voltage is ramped from 0 to 240 V adiabatically to capture the injected beam with
a momentum spread of 0.1%. The rf synchronous phase is then ramped adiabatically to
achieve the required acceleration rate. The actual momentum spread of the injected beam is
about ±0.5%, and thus the actual adiabatic capture efficiency is substantially lower. Space-
charge force and microwave instability are not included in the calculation. This calculation
was done by X. Kang (Ph.D. Thesis, Indiana University, 1998).
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B. Non-adiabatic capture

The left plots, (a) to (d), of Fig. 3.20 show an example of non-adiabatic capture

with nonzero initial rf voltage. When the rf voltage is set to 240 V to capture the
injected beam, the beam fills up the entire phase-space, as shown in plot (b). Beam

loss occurs during acceleration, the final phase-space area is larger, and the capture
efficiency is low. With microwave instability and space-charge effects included, the

capture efficiency may be even lower.
As seen in plots (b) and (f), the injected beam particles decohere and fill up the

entire bucket area because of synchrotron tune spread. The decoherence results in
emittance growth.

C. Chopped beam at the source

Many fast cycling synchrotrons require nonzero rf voltage and nonzero rf synchronous

phase φs > 0 to achieve the desired acceleration rate. In this case, capture efficiency
is reduced by the nonadiabatic capture process. To circumvent low efficiency, a beam

chopper consisting of mechanical or electromagnetic deflecting devices, located at the

source, can be used to paint the phase-space of the injected beam and eliminate beam
loss at high energy.

V.3 Bunch Compression and Rotation

When a bunch is accelerated to its final energy, it may be transferred to another

accelerator or used for research. When the beam is transferred from one accelerator
to another, the beam profile matching condition is

[
δ̂

Rθ̂

]

acc.1

=

[
δ̂

Rθ̂

]

acc.2

, or

[
1

R

√
hV

|η|

]

acc.1

=

[
1

R

√
hV

|η|

]

acc.2

. (3.181)

This matching condition may be higher than the limit of a low frequency rf system.
Similarly, the bunch length of a beam may need to be shortened in many applications.

A simple approach is to raise the voltage of the accelerator rf system. However, the

peak voltage of an rf system is limited by the breakdown of electric field at the
acceleration gap. According to the empirical Kilpatrick criterion, the rf frequency f

[MHz] is related to the peak electric field gradient EK [MV/m] by

f = 1.64 E2
K e−8.5/EK . (3.182)

Because of this limitation, we have to use different beam manipulation techniques
such as bunch compression by rf gymnastics, etc.

Bunched beam gymnastics are particularly important for shortening the proton

bunch before the protons hit their target in antiproton or secondary beam production.



306 CHAPTER 3. SYNCHROTRON MOTION

Generally, the emittance of secondary beams is equal to the product of the momentum

aperture of the secondary-beam capture channel and the bunch length of the primary
beam. When the bunch length of a primary proton beam is shortened, the longitudinal

emittance of the secondary antiproton beam becomes smaller. The antiproton beam
can be further debunched through phase-space rotation in a debuncher by converting

momentum spread to phase spread, and the final antiproton beam is transported to
an accumulator for cooling accumulation (see Exercise 3.5.3).

Beam bunch compression is also important in shortening the electron bunch in

order to minimize the beam breakup head-tail instabilities in a linac (see Sec. VIII).

A few techniques of bunch compression are described below.

A. Bunch compression by rf voltage manipulation

The first step it to lower the rf voltage adiabatically, e.g. V0 → V1, so that the

bucket area is about the same as the bunch area. Then the rf voltage is increased
non-adiabatically from V1 to V2. The unmatched beam bunch rotates in synchrotron

phase-space. At 1/4 or 3/4 of the synchrotron period, a second rf system at a higher
harmonic number is excited to capture the bunch, or a kicker is fired to extract beams

out of the synchrotron. Figure 3.21 shows schematic phase-space ellipses during the
bunch compression process. The lower-left plot shows the final phase-space ellipse in

an idealized linear synchrotron motion. In reality, the maximum attainable rf voltage
is limited, and the final phase-space ellipse is distorted by the nonlinear synchrotron

motion that causes emittance dilution.

Figure 3.21: Schematic drawings
(clockwise) of bunch compression
scheme using rf voltage manipula-
tion. The bunch area is initially
assumed to be about 1/5 of the
bucket area (top-left). The voltage
is adiabatically reduced by 16 times
so that the bunch is almost fill the
bucket area (top-right). As the
voltage is non-adiabatically raised
to four times the original rf voltage,
the mismatched bunch begins to
rotate. When the bunch length is
shortened (lower-left) at 1/4 of the
synchrotron period, a kicker can be
fired to extract the beam.

For a given bunch area, the rms bunch width and height are obtained from

Eq. (3.42) during the adiabatic rf voltage compression from V0 to V1. After the

rf voltage is jumped to V2, the bunch height will become bunch width according to
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Eq. (3.42). The maximum bunch compression ratio, defined as the ratio of the bunch

lengths at (V0 = V2) → V1 → V2, becomes

rc =
σφ,i

σφ,f
=

(
V2

V1

)1/4

=

(Abucket,max

Abunch

)1/2

=
2
√
2√

3πσφ

, (3.183)

where we have used the properties that the bunch area supposedly fills up the bucket

area at Vrf = V1, and the fact that the bucket area is 16 (see Table 3.2), and the
bunch area containing 95% of the beam is 6πσ2

φ in the normalized synchrotron phase

space coordinates.

B. Bunch compression using unstable fixed point

If the rf phase is shifted so that the unstable fixed point (UFP) is located at the
center of the bunch, the bunch will begin compressing in one direction and stretching

in the other direction along the separatrix orbit (see Sec. II.4 and Exercise 3.2.5).
In linear approximation, the bunch length and bunch height change according to

exp{±ωstufp} = exp{±2πtufp/Ts}, where ωs is the small amplitude synchrotron an-
gular frequency, Ts is the synchrotron period, and tufp is the time-duration that the

bunch stays at the UFP. The length of stay at the UFP can be adjusted to attain a
required aspect ratio of the beam ellipse.

When the SFP of the rf potential is shifted back to the center of the bunch. The

mis-matched bunch profile will begin to execute synchrotron motion. At 3/8 of the
synchrotron period, the bunch can be captured by a matched high frequency rf system

or kicked out of the accelerator by fast extraction.

We now derive the ultimate bunch compression ratio for the rf phase shift method
as follows. In the normalized phase-space coordinates, φ and P = −(h|η|/νs)(Δp/p),

the Hamiltonian for stationary synchrotron motion is given by Eq. (3.64).

Near the UFP, the separatrix of the Hamiltonian in Eq. (3.64) can be approxi-
mated by two straight lines crossing at 45◦ angles with the horizontal axis φ. When the

rf phase is shifted so that the beam sits on the UFP, the bunch width and height will
stretch and compress along the separatrix. The rate of growth is equal to exp(ωstufp).

The maximum rf phase coordinate φmax that a bunch width can increase and still stay

within the bucket after the rf phase is shifted back to SFP is given approximately by

1

2
φ2
max + 2 sin2(

φmax

2
) ≈ 2, (3.184)

where we assume linear approximation for particle motion near SFP. Thus we obtain

φmax ≈
√
2. Using Liouville’s theorem, conservation of phase-space area, we find

πσ2
φ,i = πσP,fσφ,f . (3.185)
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Assuming that 95% of the beam particles reach φmax =
√
2 so that σP,f =

√
2√
6
φmax =√

2/3, we find the compression ratio as

rpc,max =
σφ,i

σφ,f

=
σP,f

σφ,i

≈
√
2√

3σφ,i

, (3.186)

The time needed to reach this maximum compression ratio is

ωst̂ufp = ln
1

σφ,i
− 0.203. (3.187)

A difficulty associated with bunch compression using rf phase-shift is that the rf
voltage may remain at a relatively low value during the bunch rotation stage. The

effect of non-linear synchrotron motion will be more important because the ratio of
bucket-area to the bunch-area is small.

The difficulty of nonlinear synchrotron motion in the final stage of bunch rota-
tion can be solved by using the buncher in the transport line. After proper bunch

compression, the beam is kicked out of the synchrotron and the R56 transport matrix
element will compress bunch, i.e. lower energy particles travel shorter path, and the

higher energy particle travel a longer path. However, the resulting compression ratio
is reduced by a factor of 1/

√
2. Since there is no constraint that the final bunch size

should fit into the bucket, one can regain the factor of
√
2 in staying longer at the

UFP.

C. Bunch rotation using buncher/debuncher cavity

The principle of bunch rotation by using a buncher/debuncher cavity is based on the

correlation of the time and off-momentum coordinates (the transport element R56).
By employing a cavity to accelerate and decelerate parts of the beam bunch, the

bunch length and the momentum spread can be adjusted. This method is commonly
used in the beam transfer line. For example, a simple debuncher used to decrease the

energy spread of a non-relativistic beam out of a linac can function as follows. First,
let the beam drift a distance L so that higher energy particles are ahead of lower

energy particles. A cavity that decelerates leading particles and accelerates trailing
particles can effectively decrease the energy spread of the beam.

For relativistic particles, a drift space can not provide the correlation for the

transport element R56 because all particles travel at almost the same speed. It requires

bending magnets for generating local dispersion functions so that the path length is
correlated with the off-momentum coordinate.32 A buncher/debuncher cavity can

then be used to shorten or lengthen the bunch.

32See e.g., T. Raubenheimer, P. Emma, and S. Kheifets, Proc. 1993 PAC, p. 635 (1993).
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V.4 Debunching

When rf systems are non-adiabatically turned off, particles drift and fill up the en-
tire ring because the rotation frequency depends on the off-momentum variable. The

debunching rate is φ̇ = hω0ηδ. Neglecting synchrotron radiation loss, the momen-
tum spread will not change. The bunch shape will be distorted because particles of

higher and lower momenta drift in different directions. The debunching time can be
expressed as

Tdb = 2π/hω0ηδ̂, (3.188)

where δ̂ is the maximum momentum spread of a beam. Note that the momentum
spread of the entire beam remains the same in this non-adiabatic debunching process.

To reduce the momentum spread in the debunching process, we can adiabatically

lower the rf voltage. In this case, the resulting debunched beam has a smaller mo-
mentum spread. The phase-space area remains the same if we can avoid collective

beam instability.

V.5 Beam Stacking and Phase Displacement Acceleration

The concept of beam stacking is that groups of particles are accelerated to a desired
energy and left to circulate in a fixed magnetic field; and subsequent groups are

accelerated and deposited adjacent to each other. The accumulated beam will overlap
in physical space at special locations, e.g. small β and zero D(s) locations, which

increases the density and the collision rate. In a successful example of beam stacking
in the ISR pp collider, a single beam current of 57.5 A was attained. To accomplish

phase-space stacking, phase displacement acceleration is usually employed.33

In a Hamiltonian system, particles can not cross the separatrix, therefore particles

outside the bucket can not be captured during acceleration. Since the magnetic field
depends on rf frequency, only particles inside the stable rf bucket are accelerated

toward high energy. Particles outside the rf bucket are lost in the vacuum chamber
because of the finite magnet aperture.

What happens to the unbunched coasting beam outside the separatrix when an
empty moving bucket is accelerated through the beam? Since the beam is outside the

separatrix, it may not be captured into the bucket if the rf bucket acceleration is adia-
batic. Particles flow along lines of constant action, and their energies are lowered. The

change in energy is ΔE = ω0A/2π. Similarly, when a bucket is decelerated toward
lower energy, the beam energy will be displaced upward in phase-space, i.e. accel-

erated. Phase displacement acceleration has been used to accelerate coasting beams

33K.R. Symon and A.M. Sessler, Methods of radio-frequency acceleration in fixed field accelerators
with applications to high current and intersecting beam accelerators, p. 44, CERN Symp. 1956; L.W.
Jones, C.H. Pruett, K.R. Symon and K.M. Terwilliger, in Proc. of Int. Conf. on High-Energy
Accelerators and Instrumentation, p. 58 (CERN, 1959).
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in the Intersecting Storage Ring (ISR) at CERN34 and to compensate synchrotron

radiation loss in electron storage rings.

In a storage rings with electron cooling or stochastic cooling, a newly injected
beam accelerated by phase displacement can be moved toward the cooling stack to

achieve a high cooling rate. This method has been successfully used to accumulate
polarized protons at low energy cooling storage rings, and to accumulate antiprotons

at antiproton accumulators. For example, the cooling stacking method can enhance
polarized proton intensity by a factor of 1000 in the IUCF Cooler.35 Similarly, with

phase displacement acceleration, antiprotons can be moved to the cooling stack for

cooling accumulation.

V.6 Double rf Systems

Space charge has been an important limitation to beam intensity in many low energy

proton synchrotrons. Space charge induces potential well distortion and generates
coherent and incoherent betatron tune shifts, which may lower the thresholds for

transverse and longitudinal collective instabilities. Fast beam loss may occur during
accumulation and storage when the peak beam current exceeds a threshold value.

To increase the threshold beam intensity, a double rf system has often been used

to increase the synchrotron frequency spread, which enhances Landau damping in
collective beam instabilities. As early as 1971, an attempt was made to increase

Landau damping by installing a cavity operating at the third harmonic of the ac-
celerating frequency in the Cambridge Electron Accelerator (CEA).36 This technique

was also successfully applied to cure coupled bunch mode instabilities at ISR, where
an additional cavity was operated at the sixth harmonic of the primary rf frequency.37

Adding a higher harmonic rf voltage to the main rf voltage can flatten the potential
well. Since the equilibrium beam profile follows the shape of the potential well, a

double rf system can provide a smaller bunching factor, defined as the fraction of the
circumference occupied by a beam or the ratio of peak current to average current, than

that of a single rf system. Therefore, for a given DC beam current in a synchrotron,
the peak current and consequently the incoherent space-charge tune shift are reduced.

For example, a double rf system with harmonics 5 and 10 was successfully used in

34A high current stack at the ISR has a momentum spread of about 3%, that can be handled by a
low power rf system in the ISR. By employing the phase displacement acceleration, the circulating
beams in ISR were accelerated from 26 GeV to 31.4 GeV without loss of luminosity. The installation
of low-β superconducting quadrupoles in 1981 brought a record luminosity of 1.4 × 1032 cm2s−1.
The machine stopped operation in December 1983, giving its way to a fully operational SPP̄S, that
observed its first pp̄ collision at the center of mass energy of 540 GeV on July 10, 1981.

35A. Pei, Ph.D. Thesis, Indiana University (1993).
36R. Averill et al., Proc. 8th Int. Conf. on High Energy Accelerators, p. 301 (CERN 1971).
37P. Bramham et al., Proc. 9th Int. Conf. on High Energy Accel. (CERN, 1974); P. Bramham et

al., IEEE Trans. Nucl. Sci. NS-24, 1490 (1977).
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the Proton Synchrotron Booster (PSB) at CERN to increase the beam intensity by

25 − 30% when the coherent longitudinal sextupole and decapole mode instabilities
were suppressed by beam feedback systems.38 At the Indiana University Cyclotron

Facility (IUCF), a recent beam dynamics experiment showed that with optimized
electron cooling the beam intensity in the cooler ring was quadrupled when two rf

cavities were used.39

A. Synchrotron equation of motion in a double rf system

For a given particle at angular position θ relative to the synchronous angle θs, the
phase angle of the primary rf system can be expressed as

φ = φ1s − h1(θ − θs), (3.189)

where φ is the phase coordinate relative to the primary rf cavity, φ1s is the phase
angle for the synchronous particle, and h1 is the harmonic number for the primary rf

system. Similarly, the rf phase angle for the second rf system is

φ2 = φ2s − h2(θ − θs) = φ2s +
h2

h1
(φ− φ1s), (3.190)

where h2 is the harmonic number for the second rf system and φ2s is the corresponding
synchronous phase angle. The equation of motion becomes

δ̇ =
ω0eV1

2πβ2E

{
sinφ− sinφ1s +

V2

V1

(
sin

[
φ2s +

h2

h1
(φ− φ1s)

]
− sinφ2s

)}
, (3.191)

where the overdot is the derivative with respect to orbiting angle θ, and V1 and V2 are

the voltages of the rf cavities. Equations (3.13) and (3.191) are Hamilton’s equations
of motion for a double rf system.

Using the normalized momentum coordinate P = −(h1|η|/νs)(Δp/p0), the Hamil-
tonian is

H =
1

2
νsP2 + V (φ), (3.192)

V (φ) = νs{(cosφ1s − cosφ) + (φ1s − φ) sinφ1s

− r

h
[cosφ2s − cos (φ2s + h(φ− φ1s))− h(φ− φ1s) sinφ2s]}.

Here νs =
√

h1eV1|η|/2πβ2E0 is the synchrotron tune at zero amplitude for the

primary rf system, h = h2/h1, r = −V2/V1, and φ1s and φ2s are the corresponding rf

38See J.M. Baillod et al., IEEE Trans. Nucl. Sci. NS-30, 3499 (1983); G. Galato et al, Proc.
PAC, p. 1298 (1987).

39See S.Y. Lee et al., Phys. Rev. E49, 5717 (1994); J.Y. Liu et al., Phys. Rev. E50, R3349
(1994); J.Y. Liu et al., Part. Accel. 49, 221-251 (1995).
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phase angles of a synchronous particle. Here, the conditions r = 1/h and h sinφ2s =

sinφ1s are needed to obtain a flattened potential well. For r > 1/h, there are two
inner buckets on the φ axis. The effective acceleration rate for the beam is ΔE =

eV1(sinφ1s − r sinφ2s) per revolution.

Because the rf bucket is largest at the lowest harmonic ratio, we study the double

rf system with h = 2. To simplify our discussion, we study a stationary bucket with
φ1s = φ2s = 0◦. However, the method presented in this section can be extended to

more general cases with φ1s �= 0 and φ2s �= 0.

B. Action and synchrotron tune

When the synchrotron is operating at φ1s = φ2s = 0, the net acceleration is zero and

the Hamiltonian becomes

H =
νs
2
P2 + νs

[
(1− cos φ)− r

2
(1− cos 2φ)

]
. (3.193)

The fixed points (φFP,PFP) are listed in Table 3.5.

Table 3.5: SFP and UFP of a double rf system.

SFP UFP
0 ≤ r ≤ 1

2
(0,0) (π, 0)

1
2
< r (± arccos(1

2
), 0) (0, 0), (±π, 0)

Since the Hamiltonian is autonomous, the Hamiltonian value E is a constant of

motion with E/νs ∈ [0, 2]. The action is

J(E) =
1

π

∫ φ̂

−φ̂

P dφ, (3.194)

where φ̂ is the maximum phase angle for a given Hamiltonian torus. The value E is

related to φ̂ by E = 2νs(1− 2r cos2(φ̂/2)) sin2(φ̂/2); the phase-space area is 2πJ ; and
the synchrotron tune is Qs = (∂J/∂E)−1. The bucket area Ab is

Ab = 2πĴ = 8

[√
1 + 2r +

1√
2r

ln(
√
1 + 2r +

√
2r)

]
, (3.195)

which is a monotonic increasing function of the ratio r. The corresponding bucket

area for the single rf system is Ab(r → 0) = 16 (see Table 3.2).
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C. The r ≤ 0.5 case

Changing the variables with

t = tan
φ

2
, dφ =

2

1 + t2
dt, t0 = tan

φ̂

2
, τ =

t

t0
,

we obtain

∂J

∂E
=

2(1 + t20)

πνst0[1 + (1 + 2r)t20]
1/2

∫ 1

0

[
(1− τ 2)

(
1− 2r + t20

t20[1 + (1 + 2r)t20]
+ τ 2

)]−1/2

dτ. (3.196)

Thus the synchrotron tune becomes [31]

Qs

νs
=

π
√

(1− 2r) + 2t20 + (1 + 2r)t40
2(1 + t20)K(k1)

, (3.197)

where K(k1) is the complete elliptic integral of the first kind with modulus

k1 =
t0
√

1 + (1 + 2r)t20√
(1− 2r) + 2t20 + (1 + 2r)t40

. (3.198)

In fact, this formula is also valid for r > 0.5 and φ̂ > φb, where φb is the intercept of

the inner separatrix with the phase axis.

D. The r > 0.5 case

For r > 0.5, the origin of phase-space P = φ = 0 becomes a UFP of the unperturbed
Hamiltonian. Two SFPs are located at P = 0 and φ = ±φf , where cos(φf/2) = 1/2r.

The inner separatrix, which passes through the origin, intersects the phase axis at
±φb with cos(φb/2) = 1/

√
2r. Figure 3.22 shows φb and φf and some phase space

ellipses for r = 0.6.

Figure 3.22: RF bucket and phase space ellipses
for a double rf system with h2/h1 = 2 and r =
V2/V1 = 0.6. Two stable fixed points are located at
(±φf , 0), where φf = cos−1(1/2r). The maximum
phase amplitude of the inner separatrix is φb =
cos−1(1/

√
2r). For r � 1, the SFP φf → ±π

2 , and
the bucket is split into 2.

A given torus inside the inner bucket corresponds to a Hamiltonian flow of constant

Hamiltonian value. Let φl and φu be the lower and upper intercepts of a torus with the
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phase axis, where φu = φ̂ and sin(φl/2) =
√

sin2(φb/2)− sin2(φu/2). The derivative

of the action with respect to the energy for the torus becomes

∂J

∂E
=

√
(1 + t2u)(1 + t2l )

πνs
√
2r

∫ tu

tl

dt√
(t2u − t2)(t2 − t2l )

, (3.199)

where tu = tan(φu/2), tl = tan(φl/2), t = tan(φ/2), and dφ = 2dt/(1 + t2). Thus the

synchrotron tune is

Qs

νs
=

√
2rπtu√

(1 + t2u)(1 + t2l )

1

K(k2)
, (3.200)

where modulus k2 =
√
t2u − t2l /tu.

Figure 3.23 shows the synchrotron tune as a function of the amplitude of syn-
chrotron oscillation for various voltage ratios. At r = 0, the system reduces to a

single primary rf cavity, where the synchrotron tune is Qs/νs = 1 at zero amplitude.
As r increases, the derivative of synchrotron tune vs action becomes large near the

origin. Since large tune spread of the beam is essential for Landau damping of collec-
tive beam instabilities, an optimal rf voltage ratio is r = 0.5, where the synchrotron

tune spread of the beam is maximized for a given bunch area.
At r = 0.5, the synchrotron tune becomes

Qs

νs
=

πt0√
2(1 + t20)K(k)

=
π(E/2νs)

1/4

√
2K(k)

(3.201)

with modulus

k =

√
1

2

(
1 +

t20
1 + t20

)
=

√√√√1

2

(
1 +

√
E

2νs

)
,

where t0 = tan(φ̂/2). For small amplitude synchrotron motion, t0 = 0 and k0 = 1/
√
2.

In this case, the maximum synchrotron tune is Q̂s = 0.7786νs, located at φ̂ = 117◦

(or E = 1.057νs). Near this region, ∂Qs/∂φ̂ is very small or zero. When the voltage

ratio is r > 0.5, a dip in Qs(J) appears at the inner separatrix of inner buckets, and
two small potential wells are formed inside the inner separatrix.

E. Action-angle coordinates

Although analytic solutions for action-angle variables, presented in this section, are

valid only for the case with r = 0.5, the method can be extended to obtain similar
solutions for other voltage ratios. With the generating function, the angle coordinate

becomes

F2(φ, J) =

∫ φ

φ̂

P(φ�)dφ�, (3.202)
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Figure 3.23: Left: The normalized synchrotron tune as a function of the peak phase φ = φ̂
for various values of voltage ratio r. The rectangular and star symbols are data measured at
the IUCF Cooler Ring. Note that when r > 0.5, the center of the bucket becomes an UFP.
Two SFPs are located at the phase amplitude φ = arccos(1/2r), where the synchrotron tune
is maximum. Right: Beam profile of a proton beam bunch that was cooled by electron-
cooling system and damped to 2 beamlets at stable fixed points. The separation between
beamlets can be used to calibrate voltage ratio of 2 rf systems resulting r = 0.6 in this
experiment.

ψ =
∂F2

∂J
=

∂E

∂J

∫ φ

φ̂

∂P
∂E

dφ� =
Qs

νs

∫ φ

φ̂

dφ

P

=
Qs

νs

(1 + t20)

t0
√
1 + 2t20

∫ τ

1

(
(1− τ 2)(

1

1 + 2t20
+ τ 2)

)−1/2

dτ =
Qs√
2νs

√
1 + t20
t0

u,

where

u =

∫ cnu

1

dx√
(1− x2)(k�2 + k2x2)

, k =
√

(1 + 2t20)/[2(1 + t20)], k� =
√
1− k2,

and the Jacobian elliptical function cnu is

cnu =
tan(φ/2)

tan(φ̂/2)
=

2π

kK(k)

∞∑
n=0

qn+1/2

1 + q2n+1
cos[(2n+ 1)ψ], (3.203)

with q = e−πK ′/K , K � = K(
√
1− k2), and

ψ =
Qs

νs

√
1 + t20√
2t0

u =
πu

2K(k)
, (3.204)

From Eq. (3.203), we obtain

φ = 2 arctan

(
tan

φ̂

2
cnu

)
, or tan

φ

2
= tan

φ̂

2
cnu, (3.205)



316 CHAPTER 3. SYNCHROTRON MOTION

and from Hamilton’s equation of motion, we get

P = −2
√
2 sin

(
φ̂

2

)
tan

(
φ̂

2

)
snu dnu

1 + [tan (φ̂/2) cnu]2
. (3.206)

When the voltage ratio is not 0.5, Eqs. (3.204) to (3.206) remain valid provided that

the modulus is replaced by k1 of Eq. (3.198) or k2 of Eq. (3.200).
Thus the transformation of the phase-space coordinates (φ,P) to the action-angle

variables (J, ψ) can be accomplished by using Eqs. (3.205) and (3.206) or equivalently

sin
φ

2
=

ξ1/4 cnu√
1− ξ1/2 sn2u

,
P
2

= ±ξ1/2

√
1− cn4u

(1− ξ1/2 sn2u)2
, (3.207)

where ξ = E/2νs.

F. Small amplitude approximation

A tightly bunched beam occupies a small phase-space area. The formulas for small
amplitude approximation are summarized as follows:

J ≈ 8
√
2K

3π

(
E

2νs

)3/4

=
8
√
2K

3π
sin3 φ̂

2
, (3.208)

Qs

νs
≈ π√

2K
sin

φ̂

2
,

φ ≈ φ̂
2π

kK

∞∑
n=0

qn+1/2

1 + q2n+1
cos(2n+ 1)ψ,

P = −φ̂2 π2

√
2kK2

∞∑
n=0

(2n+ 1)qn+1/2

1 + q2n+1
sin(2n+ 1)ψ, (3.209)

where k ≈ 1/
√
2, K = K(k) ≈ 1.8541, and q ≈ e−π.

Let A be the rms phase-space area of the bunch, and σP and σφ the rms conjugate
phase-space coordinates. We then obtain

σφ =

(
3A

2
√
2K

)1/3

, σP =

(
3A
8K

)2/3

. (3.210)

The rms tune spread of the beam is then

ΔQ =
π√
2K

(
3A

16
√
2K

)1/3

νs. (3.211)
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G. Sum rule theorem and collective instabilities

The perturbing potential due to rf phase modulation is linearly proportional to P of

Eq. (3.206). Expanding P in action-angle coordinates as P =
∑

n fn(J)e
jnψ, we find

that the strength functions fn(J) satisfy the sum rule shown in Eq. (3.78). The sum

rule can be used to identify the region of phase-space that is sensitive to rf phase
modulation (see Exercise 3.3.1).

Since dQ/dJ = 0 occurs inside the bucket, it may be of concern that large ampli-

tude particles can become unstable against collective instabilities. When an rf phase
or voltage noise is applied to beams in a double rf system, particle motion near the

center of the bucket may become chaotic because of overlapping resonances. However,
the chaotic region is bounded by invariant tori, and the effect on beam dilution may

not be important. A most critical situation arises when the synchrotron amplitude of
the beam reaches the region where Qs is maximum or near the rf bucket boundary,

where the tune spread is small. The beam may be susceptible to collective instabili-
ties, and feedback systems may be needed for a high intensity beam that occupies a

sizable phase-space area.

V.7 The Barrier RF Bucket

Bunch beam gymnastics have been important in antiproton production, beam coales-

cence for attaining high bunch intensity, multi-turn injection, accumulation, phase-
space painting, etc. The demand for higher beam brightness in storage rings and

higher luminosity in high energy colliders requires intricate beam manipulations at
various stages of beam acceleration. In particular, a flattened rf wave form can be

employed to shape the bunch distribution in order to alleviate space-charge problems

in low energy proton synchrotrons and to increase the tune spread in electron storage
rings. The extreme of the flattened rf wave form is the barrier bucket.40

For achieving high luminosity in the Fermilab TeV collider Tevatron, a Recycler

has been built, which would recycle unused antiprotons from the Tevatron. The
recycled antiprotons can be cooled by stochastic cooling or electron cooling to attain

high phase-space density. At the same time, the Recycler would also accumulate
newly produced, cooled antiprotons from the antiproton Accumulator. To maintain

the antiproton bunch structure, a barrier rf wave form can be used to confine the
beam bunch and shape the bunch distribution waiting for the next collider refill. The

required bunch length and the momentum spread of the beam can be adjusted more
easily by gymnastics with barrier rf waves than with the usual rf cavities.

40See J. Griffin, C. Ankenbrandt, J.A. MacLachlan, and A. Moretti, IEEE Trans. Nucl Sci. NS-
30, 3502 (1983); V.K. Bharadwaj, J.E. Griffin, D.J. Harding, and J.A. MacLachlan, IEEE Trans.
Nucl. Sci. NS-34, 1025 (1987); S.Y. Lee and K.Y. Ng, Phys. Rev. E55, 5992 (1997); M. Fujieda
et al., PRSTAB 2, 122001 (1999).



318 CHAPTER 3. SYNCHROTRON MOTION

The barrier rf wave is normally generated by a solid state power amplifier, which

has intrinsic wide bandwidth characteristics. An arbitrary voltage wave form can be
generated across a wideband cavity gap. Figure 3.24 shows some possible barrier rf

waves with half sine, triangular, and square function forms. These wave forms are
characterized by voltage amplitude V (τ), pulse duration T1, pulse gap T2 between

positive and negative voltage pulses, and integrated pulse strength
∫
V (τ)dτ . For

example, the integrated pulse strength for a square wave form is V0T1. The rf wave

form is applied to a wideband cavity with frequency hf0, where h is an integer, and f0
is the revolution frequency of synchronous particles. The effect on the beam depends

mainly on the integrated voltage of the rf pulse. Acceleration or deceleration of the
beam can be achieved by employing a biased voltage wave in addition to the bunch-

confining positive and negative voltage pulses.

Figure 3.24: Possible wave forms for the barrier
bucket. The barrier rf wave is characterized by a
voltage height V (τ), a pulse width T1, and a pulse
gap T2.

Most of the time, orbiting particles see no cavity field in passing through the
cavity gap. When a particle travels in the time range where the rf voltage is not zero,

its energy can increase or decrease depending on the sign of the voltage it encounters.
In this way, the accelerator is divided into stable and unstable regions. Thus the wide

bandwidth rf wave can create a barrier bucket to confine orbiting particles.

A. Equation of motion in a barrier bucket

For a particle with energy deviation ΔE, the fractional change of the orbiting time

ΔT/T0 is
ΔT

T0
= η

ΔE

β2E0
, (3.212)

where η is the phase slip factor, βc and E0 are the speed and the energy of a syn-
chronous particle, and T0 is its revolution period. Without loss of generality, we

consider here synchrotron motion with η < 0. For η > 0, the wave form of the barrier
bucket is reversed.

The time coordinate for an off-momentum particle −τ is given by the difference

between the arrival time of this particle and that of a synchronous particle at the

center of the bucket. The equations of motion for the phase-space coordinate τ and
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particle energy deviation are

dτ

dt
= −η

ΔE

β2E0
,

d(ΔE)

dt
=

eV (τ)

T0
. (3.213)

The equations of particle motion in a barrier rf wave are governed by Eq. (3.213).

B. Synchrotron Hamiltonian for general rf wave form

From the equations of motion (3.213), we obtain the general synchrotron Hamiltonian

for an arbitrary barrier rf wave form:

H = − η

2β2E0

(ΔE)2 − 1

T0

∫ τ

0

eV (τ)dτ. (3.214)

Thus the maximum off-energy bucket height can be easily derived:

ΔEb =

(
2β2E0

|η|T0

∣∣∣∣∣
∫ T2/2+T1

T2/2

eV (τ)dτ

∣∣∣∣∣

)1/2

, (3.215)

where T1 is the width of the barrier rf wave form. Since the barrier rf Hamiltonian

is time independent, an invariant torus has a constant Hamiltonian value. We define

the W parameter for a torus from the equation below:

|η|
2β2E0

(Δ̂E)2 =
1

T0

∣∣∣∣∣
∫ T2/2+W

T2/2

eV (τ)dτ

∣∣∣∣∣. (3.216)

The synchrotron period of a Hamiltonian torus becomes

Ts = 2
T2

|η|

(
β2E0

|Δ̂E|

)
+ 4Tc , (3.217)

Tc =
β2E0

|η|
∫ W

0

[
(Δ̂E)2 − 2β2E0

|η|T0

∫ T2/2+τ

T2/2

eV (τ �)dτ �
]−1/2

dτ, (3.218)

where 4Tc is the time for a particle to be reflected in the potential well. Clearly, all

physical quantities depend essentially on the integral
∫
V (τ)dτ . Thus, the essential

physics is independent of the exact shape of the barrier rf wave.

C. Square wave barrier bucket

Since the effect of the barrier rf wave on particle motion depends essentially on the

integrated rf voltage wave, we consider only the square wave forms with voltage

heights ±V0 and pulse width T1 in time, separated by a gap of T2. When the particle
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passes through the cavity gap at voltage ±V0, it gains (loses) an equal amount of

energy eV0, i.e. d(ΔE)/dt = ±eV0/T0 every turn. The number of cavity passages
before the particle loses all its off-energy value Δ̂E is

N =
ˆ|ΔE|
eV0

. (3.219)

Thus the phase-space trajectory for a particle with maximum off-energy Δ̂E is

(ΔE)2 =

⎧
⎨
⎩

(Δ̂E)2 if |τ | ≤ T2/2

(Δ̂E)2 −
�
|τ | − T2

2

�
ω0β

2E0eV0

π|η| if T2/2 ≤ |τ | ≤ (T2/2) + T1,

(3.220)
where ω0 = 2πf0 is the angular revolution frequency of the beam. The phase-space

ellipse is composed of a straight line in the rf gap region and a parabola in the square
rf wave region. The phase-space area of the invariant phase-space ellipse is

A = 2T2Δ̂E +
8π|η|

3ω0β2E0eV0

(Δ̂E)3. (3.221)

The maximum energy deviation or the barrier height that a barrier rf wave can

provide is

ΔEb =

�
eV0T1

T0

2β2E0

|η|
�1/2

, (3.222)

where T1 is the pulse width of the rf voltage wave, and T0 is the revolution period
of the beam. The bucket height depends on V0T1, which is the integrated rf voltage

strength
�
V (τ)dτ . The synchrotron period is

Ts = 2
T2

|η|

�
β2E0

|Δ̂E|

�
+ 4

|Δ̂E|
eV0

T0 (3.223)

for particles inside the bucket. The mathematical minimum synchrotron period of
Eq. (3.223) and the corresponding maximum synchrotron tune are

Ts,min =

�
32T0T2β

2E0

|η|eV0

�1/2

, νs,max =

�
T0

T2

|η|eV0

32β2E0

�1/2

. (3.224)

Note here that πT0/(16T2) plays the role of harmonic number h of a regular rf system.

The synchrotron tune is a function of the off-energy parameter Δ̂E given by

νs = 4νs,max

�
T1

T2

Δ̂E

ΔEb

⎛
⎝1 + 4

�
Δ̂E

ΔEb

�2
T1

T2

⎞
⎠

−1

. (3.225)
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Note that when the rf pulse gap width decreases to T2/T1 < 4, the synchrotron tune

becomes peaked at an amplitude within the bucket height. This feature is similar
to that of a double rf system.Figure 3.25 shows νs vs ΔE with Fermilab Recycler

parameters E0 = 8.9 GeV, γ
T

= 20.7, f0 = 89.8 kHz, T1 = 0.5 μs, V0 = 2 kV,
and T2/T1 = 1, 2, 4, and 8. For example, νs,max = 3.7 × 10−5 for T2 = T1, i.e. the

synchrotron frequency is 3.3 Hz.

Figure 3.25: Synchrotron tune vs off-energy pa-
rameter ΔE. Parameters used are E0 = 8.9 GeV,
f0 = 89.8 kHz, V0 = 2 kV, γ

T
= 20.7, and

T1 = 0.5 μs. Note that if T2 > 4T1, the syn-
chrotron tune is a monotonic function of ΔE. On
the other hand, if T2 < 4T1, the synchrotron tune
is peaked at an off-energy ΔE smaller than the
bucket height ΔEb.

D. Hamiltonian formalism

The Hamiltonian for the phase-space coordinates (τ,ΔE) is

H0 =
η

2β2E0

(ΔE)2 +
ω0eV0T1

2π
f0(τ, T1, T2), (3.226)

where

f0(τ, T1, T2) = −1 +
1

T1

[
(τ + T1 +

T2

2
)θ(τ + T1 +

T2

2
)− (τ +

T2

2
)θ(τ +

T2

2
)

−(τ − T2

2
)θ(τ − T2

2
) + (τ − T1 − T2

2
)θ(τ − T1 − T2

2
)

]
. (3.227)

Here θ(x) is the standard step function with θ(x) = 1 for x > 0 and θ(x) = 0 for
x < 0.

For a constant T1, T2 and V0, the Hamiltonian H0 is a constant of motion. The
action of a Hamiltonian torus is

J =
1

2π

∮
ΔEdτ =

1

2π

√
ω0β2E0eV0

π|η|
∮ √

W + f0(τ, T1, T2)dτ. (3.228)

The parameter W with a dimension of time is related to the Hamiltonian value by

H0 = −ω0eV0

2π
W =

η

2β2E0

(
Δ̂E

)2

. (3.229)
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For a given Hamiltonian torus, W has the physical meaning that it is equal to the

maximum phase excursion |τ | in the rf wave region. Therefore W = 0 corresponds
to an on-momentum particle, and W = T1 is associated with particles on the bucket

boundary.

The action for a particle torus inside the bucket and the bucket area of the max-
imum action with W = T1 are

J =
1

2π

�
ω0β2E0eV0

π|η|
�
2T2

√
W +

8

3
W 3/2

�
=

1

2π

�
2T2 +

8

3
W

�
Δ̂E,

B = 2πĴ =

�
2T2 +

8

3
T1

�
ΔEb. (3.230)

The bucket area depends only on the integrated rf voltage strength
�
V (τ)dτ = V0T1.

E. Action-angle coordinates

Canonical transformation from the phase-space coordinates (τ,ΔE) to the action-

angle variable can be achieved by using the generating function:

F2(J, τ) =

� τ

−τ̂

ΔEdτ, ψ =
∂F2

∂J
=

π
√
W

T2 + 4W

� τ

−τ̂

dτ√
W + f0

. (3.231)

where τ̂ = W + (T2/2). The integral can be evaluated easily to obtain

ψ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π
√
W

T2 + 4W

�
W +

1

2
T2 + τ if −W − 1

2
T2 ≤ τ ≤ −1

2
T2, ΔE > 0

ψc +
π

T2 + 4W

�
τ +

1

2
T2

�
if −1

2
T2 ≤ τ ≤ 1

2
T2, ΔE > 0

2ψc + ψs − 2π
√
W

T2 + 4W

�
W +

1

2
T2 − τ if 1

2
T2 ≤ τ ≤ W + 1

2
T2, ΔE > 0

2ψc + ψs +
2π

√
W

T2 + 4W

�
W +

1

2
T2 − τ if 1

2
T2 ≤ τ ≤ W + 1

2
T2, ΔE < 0

3ψc + ψs +
π

T2 + 4W

�
1

2
T2 − τ

�
if −1

2
T2 ≤ τ ≤ 1

2
T2, ΔE < 0

4ψc + 2ψs − 2π
√
W

T2 + 4W

�
W +

1

2
T2 + τ if −W − 1

2
T2 ≤ τ ≤ −1

2
T2, ΔE < 0,

where

ψc =
2πW

T2 + 4W
, ψs =

πT2

T2 + 4W
(3.232)

are respectively the synchrotron phase advances for a half orbit in the rf wave region

and in the region between two rf pulses. Note that 2ψc + ψs = π for one half of
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the synchrotron orbit, and that the motion of a stable particle orbit in the barrier

bucket with η < 0 is clockwise. We choose the convention of ψ̇ > 0 corresponding to
a clockwise motion in synchrotron phase-space.

When a perturbation, such as rf noise, is applied to the barrier rf system, stable
bucket area may be reduced. The resonance strength functions and their associated

sum rules can be derived analytically. The resonance strength function decreases
slowly with mode number. The rf phase and voltage modulation can severely dilute

bunch area if the modulation frequency is near the top of the synchrotron tune and its
harmonics. The rf phase modulation due to orbit length modulation resulting from

ground vibration can be important. Because the solid state amplifier is a low power
device, it is important to avoid a large reduction of stable phase-space area. Active

compensation may be used to compensate the effect of rf phase modulation.41

V.8 Beam-stacking in Longitudinal Phase space

Beam intensity is limited by space-charge effects at low energies. Rapid cycling syn-
chrotrons (RCS) can be used to increase beam power. However, RCS is usually

limited by its achievable energy and a second-stage accelerator is required to increase
both energy and beam power. Slip-stacking injection may be used to double the

beam power. The idea of slip-stacking was first proposed by F.E. Mills, where he
studied the stability of particle motion under the influence of two rf systems at a

nearby frequency.42 During the slip stacking process, both systems are at the station-

ary phase condition. The Hamiltonian of the two-rf system in the normalized phase
space coordinates is (see Eq. (3.192))

H =
νsP2

2
+ νs{[1− cosφ] + [1− cos(φ− νslipθ)]}, (3.233)

where P and φ are the normalized phase-space coordinates, νs =
√

h|η|eVrf/2πβ2E
is the small-amplitude synchrotron tune, Vrf is the rf voltage, and βc and E are the

nominal speed and energy of the beam particles, νslip = fslip/f0 is the slip-tune, fslip
is the slip frequency, and f0 is the revolution frequency of the stacking-Ring. All

physical quantities represent parameters of the slip-stacking ring. The rf phase φ
and the normalized off-momentum P are conjugate canonical coordinates, while θ

represents the independent ‘time’ variable, which increases by 2π in each revolution
around the stacking-ring.

In order for slip-stacking to work, these two rf systems must generate buckets
which slip by exactly one train or one batch of rf buckets in consecutive injections

from the rapid-cycling booster synchrotron. This condition fixes the rf frequency
difference to fslip = hBfB, where fB is the repetition frequency of the RCS and hB is

41See S.Y. Lee and K.Y. Ng, Phys. Rev. E55, 5992 (1997).
42F.E. Mills, BNL 15936 (1971).
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its rf harmonics. For Fermilab, the RCS is the Booster with hB = 84 and fB = 15 Hz.

The Recycler ring serves as the stacking ring with the harmonic number hR = 588.

We assume that these two rf systems have the same total rf cavity voltage Vrf .
One of the beam bunches that synchronize the rf system (1 − cos φ), while the train

of buckets that synchronize with the rf system (1 − cos(φ − νslipθ)) is moving at a
different momentum. These to beams bunches slip against each other at the slip

tune of νslip. If the phase-slip factor is η < 0, the rf buckets generated by the rf
system corresponding to cos(φ−νslipθ) are at a slightly lower energy than the buckets

generated by the rf system of cosφ in the Hamiltonian, i.e. the lower-energy bucket
series slips forward at the rate of Δφ = νslipθ.

The fractional momentum that separates the upper and lower bucket series is

Δδsep ≡ ΔPsep

P0
=

νslip
h|η| =

hBfB
hR|η|f0 , (3.234)

where ΔPsep is the momentum difference of the two slip-stacking beams, P0 is the

nominal momentum of the beams, and η is the phase slip-factor of the slip-stacking
ring. Once the repetition rate of the RCS, the phase-slip factors, and the revolution

frequency of the slip-stacking ring are designed, the momentum separation of the two
bucket series, Δδsep, is fixed. In terms of the normalized off-momentum coordinate

P, the separation of the centers of the upper and lower buckets is

ΔPsep =
h|η|Δδsep

νs
=

νslip
νs

≡ αs, (3.235)

where αs is called the slip-stacking parameter. The unperturbed bucket height is

|P| ≤ 2 for stationary bucket (see Table 3.2 and the bucket of Fig. 3.12). The

unperturbed rf buckets of the two rf systems just touch each other at αs = 4. The
two unperturbed rf buckets are separated from each other when αs > 4, and they

overlap when αs < 4.

Slip-stacking had been tried in the CERN SPS to accumulate beams from the
CERN PS, successfully applied in the Fermilab Tevatron Run IIB to increase an-

tiproton production, and employed in the Fermilab Recycler Ring to increase the
proton beam power for neutrino production.43 Because of the presence of the two

rf systems, the two series of rf buckets, upper and lower, are mutually perturbing
each other. The stable bucket areas become smaller than those of the unperturbed rf

buckets. When the upper and lower series of buckets overlap, resonance islands can
be generated in-between the two series of rf buckets usually around p = 0 and φ = 0

and ±π. In addition, chaotic regions may be created, which can reduce the stable
region of the rf buckets significantly.

43D. Boussard and Y. Mizumachi, IEEE Trans. Nucl. Sci. NS-26, 3623 (1979); K. Seiya, et al.
PAC2005 347, (2005); I. Kourbanis, IPAC2014, 904, (2014).
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Overlapping resonances can be avoided if the upper and lower buckets are widely

separated or if αs � 4. Bigger αs, however, implies smaller rf voltage and therefore
smaller unperturbed bucket areas (in δ-φ coordinates), which may not be large enough

to accommodate the beam injected from the RCS. On the other hand, smaller αs

implies larger rf voltage. One may think that there would be bigger unperturbed

bucket areas to accept the beam injected from the RCS. When αs < 4, these two
bucket series can produce strong overlapping resonances and chaos so that the stable

parts of the buckets become smaller than the unperturbed buckets. Careful choice of
the rf parameters provide successful doubling of beam intensity.

Numerical simulations can be carried out to analyze the interaction of these two
rf buckets. Transforming the phase space into the Poincaré map, where the particles

in the slipping bucket are shifted backward in the time coordinate, we will observe
stationary resonance islands in the Poincaré map. Figure 3.26 shows the Poincaré

maps with parameter αs = 4.1 (left) and 6.0 (right) respectively.

Figure 3.26: Left: Phase-space structure with slip-stacking parameter αs = 4.1; Right:
phase-space structure with slip-stacking parameter αs = 6.0. Parametric resonances are
excited by the mutual interaction between these two rf systems.

Note that there is little perturbation at αs = 6 in comparison with that of αs = 4.1.
Furthermore, We note that there is a prominent 5th order resonance at αs = 4.1 and

the 7th order resonance at αs = 6.0. These parametric resonances are produced by
mutual interaction between these two rf systems discussed in Sec. III in Chapter 3.

For beam particles in one of the buckets, the other slip-stacking rf system produces

a time-dependent modulation at the tune of νslip = αsνs, which is a combination
of phase and voltage modulations. If the modulation tune is equal to an integer

multiple of the particle tune, the parametric resonance occurs. The synchrotron tune
of a particle in the bucket depends on its synchrotron amplitude, i.e., the synchrotron

tune is νs at small amplitude and decreases to zero at the separatrix of the synchrotron

phase space, as shown in Fig. 3.27. Resonances will occur at different phase-space
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Figure 3.27: The harmonics of the synchrotron
tune of a stationary rf system system versus
the rf phase amplitude φmax. The horizontal
dashed lines correspond to the modulation tunes
at slip-stacking parameters of αs = 4.1 and 6
of Fig. 3.26. When the slip-stacking modula-
tion tune cut through an nth harmonic of the
synchrotron tune, the nth-order resonance will
occur at that phase-space amplitude, evidently
seen in Fig. 3.26.

locations as the slip-tune αsνs changes.

If the modulation (slip-stacking) tune cuts through the nth harmonic of the syn-
chrotron tune, the nth-order resonance, called the n:1 parametric resonance, will

appear at the corresponding phase-space location. For example, the horizontal red

dashed line in Fig. 3.27 corresponding to αs = 4.1 cuts through the 5th harmonic of
the synchrotron tune to produce a 5th-order resonance at the maximum rf phase am-

plitude φmax ∼ 95◦. Similarly, the αs = 6 line cut through the 7 times the synchrotron
tune line will produce the 7th order parametric resonance at its phase amplitude.

Two strong resonances can also concatenate into a second-order resonance, for
example, the 4:1 and 5:1 resonances can interact to produce a 9:2 resonance at the

phase space in between these two first-order resonances, evidently shown at the Left
plot of Fig. 3.26. The size of the resonance islands depend on the resonance strength

and the slope of the n-harmonic synchrotron tune versus amplitude.
We also note that the phase space region between the upper and lower buckets

in Fig. 3.26 can cause overlapping resonances phase space region near the separatrix.
Using the second canonical perturbation method, one can find a cavity to compensate

the interaction between these two bucket at the overlapping region.44

Exercise 3.5

1. The Cooler Injector Synchrotron (CIS) accelerates protons from 7 MeV to 200 MeV
in 1.0 Hz. The circumference is 17.364 m. The rf system operates at h = 1 with
a maximum voltage 240 V. The momentum compaction factor is αc = 0.6191. The
momentum spread of the injection linac is about ±5.0× 10−3.

(a) Assuming that the rf voltage is ramped according to

Vrf(t) = V0 + (V1 − V0)

(
3
t2

T 2
1

− 2
t3

T 3
1

)
, t ∈ [0, T1],

44J. Eldred, Ph.D. Thesis, Department of Physics, Indiana University, Bloomington, IN, December
2015; FERMILAB-THESIS-2015-31; J. Eldred and R. Zwaska, Phys. Rev. ST Accel. Beams 19,
104001 (2016); S.Y. Lee and K.Y. Ng, PRAB, 20, 064202 (2017).
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where V0 and V1 = 240 V are the initial and the maximum final rf voltages, T1

is the voltage ramp time. Calculate the adiabaticity coefficient of Eq. (3.21),
and the rf bucket height during the rf voltage ramping as functions of time t
with V0 = 10 V and T1 = 10 ms. Change these parameters to see the variation
of the adiabaticity coefficient.

(b) If the magnetic field of a proton synchrotron is ramped according to

B(t) = B0 +

(
3
t2

t21
− 2

t3

t31

)
(B1 −B0), t ∈ [0, t1]

where B0 and B1 are magnetic field at the injection and at the flat top, and
t = 0 and t = t1 are the time at the beginning of ramp and at the flat top, find
the frequency ramping relation of the rf cavity, and find the maximum Ḃ.

2. In proton accelerators, the rf gymnastics for bunch rotation is performed by adiabat-
ically lowering the voltage from V1 to V2 and suddenly raising the voltage from V2 to
V1 (see also Exercise 3.2.6). Using Eq. (3.42) and conservation of phase-space area,
show that the bunch length in the final step is

θ̂final =

(
νs2
νs1

)1/2

θ̂initial,

where θ̂initial is the initial bunch length in orbital angle variable, and νs1 and νs2 are the
synchrotron tune at voltages V1 and V2. Apply the bunch rotation scheme to proton
beams at E = 120 GeV in the Fermilab Main Injector, where the circumference is
3319.4 m, the harmonic number is h = 588, the transition energy is γ

T
= 21.8, and the

phase-space area is A = 0.05 eV-s for 6×1010 protons. Find the voltage V2 such that
the final bunch length is 0.15 ns with an initial voltage V1 = 4 MV. The energy of the
secondary antiprotons is 8.9 GeV. If the acceptance of the antiproton beam is ±3%,
what is the phase-space area of the antiproton beams? If the antiproton production
efficiency is 10−5, what is the phase-space density of the antiproton beams?

3. Neglecting wakefield and other diffusion mechanisms, the momentum spread of an
electron beam in a storage ring is determined mainly by the equilibrium between
the quantum fluctuation of photon emission and the radiation damping. For an
isomagnetic ring, it is given by

(
σE
E

)2 = Cq
γ2

Jsρ
, Cq =

3Cu�
4mc

=
55

32
√
3

�
mc

= 3.83 × 10−13 m,

where Js is the damping partition number with Js ≈ 2 for separate function machines.
Using the electron storage ring parameters listed in Exercise 3.1.6, calculate the phase-
space area in eV-s.

4. Verify Eq. (3.191) and derive the Hamiltonian for the double rf system. For a flattened
potential well in the double rf system with φ1s = φ2s = 0, show that the Hamiltonian
for small amplitude synchrotron motion is

H ≈ 1

2
P2 + νsbφ

4,

where b = (h2 − 1)/24, h is the ratio of the harmonic numbers, and the independent
“time” variable is the orbital angle θ. We solve the synchrotron motion for the quartic
potential below.
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(a) Since the Hamiltonian is time independent, the Hamiltonian value E is a con-
stant of motion. Show that the action variable is related to the Hamiltonian
value by

J =
4K

3πb1/4

(
E

νs

)3/4

=
4K

3π
b1/2φ̂3,

where K = K(
√

1
2 ) = 1.85407468 is the complete elliptical integral with modu-

lus k = 1/
√
2, φ̂ is the amplitude of the phase oscillation.

(b) Show that the synchrotron tune is

Qs(J)

νs
=

π

K
b1/4

(
E

νs

)1/4

=
31/3π4/3b1/3

41/3K4/3
J1/3 =

π

K
b1/2φ̂.

(c) Define the generating function

F2(φ, J) =

∫ φ

0
Pdφ,

and show that the solution of the synchrotron motion is given by

φ = φ̂ cn

(
2K

π
ψ|1

2

)
,

P = −
√
2P̂ sn

(
2K

π
ψ|1

2

)
dn

(
2K

π
ψ|1

2

)
,

where cn, sn, and dn are elliptical functions with modulus k = 1/
√
2. Compare

your results with that of Eq. (3.209) for the h = 2 case.

5. Two strong resonances can interact to create a secondary resonance located in the
phase space between these two primary resonance as shown in Exercise 2.7.8, where
3:1 and 1:1 resonances produce a 4:2 resonance. The slip-stacking rf buckets of
Eq. (3.233 can also produce resonances at the phase space in the middle of the two
buckets, besides the parametric resonances shown in Fig. 3.26. These secondary
resonances can overlap with the primary parametric resonances so that the bucket
overlapping region becomes chaotic. One can use the canonical perturbation method
to understand these secondary resonance. This exercise explore the canonical pertur-
bation technique.

(a) To simplify the derivation, symmetrize the Hamiltonian to a frame with the
upper and lower buckets centered at p = +1

2αs, or with frames moving at

+1
2νslipθ. Using the generating function

F2(φ, p̃) =

(
φ− νslipθ

2

)(
p̃+

αs

2

)
,

show that the new Hamiltonian is

H =
νsp̃

2

2
+ νs

[
2− cos

(
φ̃+

νslipθ

2

)
− cos

(
φ̃− νslipθ

2

)]
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where p̃ and φ̃ are the conjugate canonical coordinates of the symmetrized slip-

stacking rf systems, and we ignore a constant term + νsα2
s

8 from the Hamiltonian.
This Hamiltonian represents the upper and lower buckets moving at Δφ =
∓νslipθ/2 respectively, while the structures in-between the two buckets centered
at p̃ = 0 is stationary.

(b) Resonances due to the interaction of these bucket occurs at the phase space
near p̃ = 0, Because we wish to study the phase space structure in-between the
upper and lower rf buckets, we perform a canonical transformation to cancel the
potential-energy part of the Hamiltonian using the generating function

F2(φ̃, p̄) = φp̄ + a(p̄) sin(φ̃+
νslip
2

θ) + b(p̄) sin(φ̃− νslip
2

θ),

where a(p̄) and b(p̄) are two functions of p̄ to be determined, show that the new
Hamiltonian is

H =
1

2
νsp̄

2 +
2

α2
s − 4p̄2

νs
(
1− cos(2φ̄)

)
+ ...

where the ... represents either constants or time dependent terms that are aver-
age to zero in the new Hamiltonian, and we have chosen

a(p̄) =
2

αs + 2p̄
and b(p̄) = − 2

αs − 2p̄
,

to cancel the primary rf bucket potentials. The combined effect of two rf systems
is a 2nd order bucket located at the phase space of these two rf buckets. The
strength of this bucket is 2/α2

s of that of the primary bucket. A cavity at the
frequency 2hf0 + fslip at the voltage of − 2

α2
s
V0 can be used to cancel the 2nd

order bucket induced by two primary cavities, and help to eliminate the chaos
near the separatrices of these two primary buckets.
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VI Fundamentals of RF Systems

The basic function of rf cavities is to provide a source of electric field for beam ma-

nipulations, including acceleration, deceleration, bunching and debunching, and de-
flection. The longitudinal electric field must be synchronized with the particle arrival

time. Resonance cavities, where only electromagnetic fields at resonance frequencies
can propagate, are a natural choice in rf cavity design.

Cavities are classified according to their operational frequencies. For cavities

operating at a few hundred MHz or higher, pillbox cavities with nose-cone or disk
loaded geometry can be used. At lower frequencies, coaxial geometry is commonly

employed. Some fundamental parameters of cavities are transit time factor, shunt
impedance, and quality factor.

The transit time factor of Eq. (3.3) reflects the finite passage time for a particle
to traverse the rf cavity, while the accelerating field varies with time. The transit

time factor reduces the effective voltage seen by passing particles. We may reduce
the accelerating voltage gap to increase the transit time factor, but a smaller gap can

cause electric field breakdown due to the Kilpatrick limit (see Sec. V.3).
The quality factor (Q-factor) depends on the resistance of the cavity wall and the

characteristic impedance of the rf cavity structure. It is defined as the ratio of the
rf power stored in the cavity to the power dissipated on the cavity wall. The shunt

impedance, defined as the ratio of the square of the rf voltage seen by the beam to the
dissipated power, is an important figure of merit in cavity design. Generally, the ratio

of shunt impedance to Q-factor depends only on the geometry of the cavity and the

characteristic impedance, i.e. a higher Q-factor cavity has a higher shunt impedance.
In this section we examine some basic principles in cavity design. Properties of

pillbox and coaxial-geometry cavities will be discussed. Some fundamental charac-
teristic parameters, the shunt impedance, the Q-factor, and the filling time, of a

resonance cavity will be defined and discussed. At a given resonance frequency, we
will show that a resonance cavity can be well approximated by an equivalent RLC

circuit. Beam loading and Robinson dipole-mode instability will be addressed. High
frequency cavities of linacs will be discussed in Sec. VIII.

VI.1 Pillbox Cavity

We first consider a cylindrically symmetric pillbox cavity [22] of radius b and length

� (left plot of Fig. 3.28). Maxwell’s equations (see Appendix B Sec. IV) for electro-
magnetic fields inside the cavity are

∇ · �B = 0, ∇× �B = μ�
∂ �E

∂t
, ∇ · �E = 0, ∇× �E = −∂ �B

∂t
, (3.236)

where � and μ are dielectric permittivity and permeability of the medium. The EM

waves in the cavity can conveniently be classified into transverse magnetic (TM)
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mode, for which the longitudinal magnetic field is zero, and transverse electric (TE)

mode, for which the longitudinal electric field is zero. The TM modes are of interest
for beam acceleration in the rf cavity, while the TE modes can be used for beam

deflection.

Figure 3.28: Schematic drawings of high fre-
quency cavities. Left: pill-box cavity with disk
load; right: nose-cone cavity. Although their
names and shapes are different, these high fre-
quency cavities have similar basic features.

An an ideal conducting surface with infinite conductivity, the electromagnetic
fields satisfy n̂ × �E = 0 and n̂ · �H = 0, where n̂ is the vector normal to the con-

ducting surface. There is no tangential component of electric field, and no normal

component of magnetic field. Assuming a time dependence factor ejωt for electric and
magnetic fields, the TM standing wave modes in cylindrical coordinates (r, φ, s) are

(see Appendix B Sec. IV)
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Es = Ak2
r Jm(krr) cosmφ cos ks

Er = −Akkr J
′
m(krr) cosmφ sin ks

Eφ = A (mk/r)Jm(krr) sinmφ sin ks
Bs = 0
Br = −jA (mω/c2r) Jm(krr) sinmφ cos ks
Bφ = −jA (ωkr/c

2) J ′
m(krr) cosmφ cos ks

(3.237)

where A is a constant, s = 0 and � correspond to the beginning and end of the pillbox
cavity, m is the azimuthal mode number, k, kr are wave numbers in the longitudinal

and radial modes, and ω/c =
�
k2 + k2

r . The standing wave can be decomposed into
traveling waves in the +ŝ and −ŝ directions. The solution is chosen so that Er = 0

and Eφ = 0 at s = 0.
The longitudinal wave number k is determined by the boundary condition that

Er = 0 and Eφ = 0 at s = 0 and �, and the radial wave number is determined by the

boundary condition with Es = 0 and Eφ = 0 at r = b, i.e.

ks,p =
pπ

�
, p = 0, 1, 2, · · · , kr,mn =

jmn

b
, (3.238)

where jmn, listed in Table B.1, are zeros of Bessel functions Jm(jmn) = 0. The

resonance wave number k for mode number (m,n, p) is

kmnp =
�

k2
r,mn + k2

s,p =

�
j2mn

b2
+

p2π2

�2
=

ωmnp

c
=

2π

λmnp
. (3.239)
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The lowest frequency mode is usually called the fundamental mode. Other res-

onance frequencies are called high order modes (HOM). A good cavity design is to
damp HOMs without affecting the fundamental mode. The EM field of the lowest

mode TM010 (ks,p = 0) is

Es = E0J0(kr), Bφ = j
E0

c
J1(kr), k010 =

2.405

b
, λ =

2πb

2.405
. (3.240)

For example, a 3 GHz structure corresponds to λ = 10 cm and b = 3.8 cm. Such
a structure is usually used for high frequency cavities. Since ks,p = 0 for the TM010

mode, the phase velocity ω/ks,p = ∞. Thus beam particles traveling at speed v ≤ c
can not synchronize with the electromagnetic wave and receive net acceleration.

To slow down the phase velocity, the cavity is loaded with one beam hole with an

array of cavity geometries and shapes. Figure 3.28 shows high frequency cavities with
disk and nose-cone loaded geometries. Many different geometric shapes are used in

the design of high frequency cavities, but their function and analysis are quite similar.
All cavities convert TEM wave energy into TM mode to attain a longitudinal electric

field. We will return to this subject in Sec. VIII.

VI.2 Low Frequency Coaxial Cavities

Lower frequency rf systems usually resemble coaxial wave guides, where the length is
much larger than the width. Figure 3.29 shows an example of a coaxial cavity. The

TEM wave in the coaxial wave guide section is converted to the TM mode at the
cavity gap through the capacitive load. When the cavity is operating in 50 to 200

MHz range, it requires a very small amount of ferrite for tuning.45 When the cavity
is operating at a few MHz range, ferrite rings in the cavity are needed to slow down

EM waves. The ferrite is biased with magnetic field bias frequency tuning.46

Figure 3.29: Schematic drawing of
a low frequency coaxial cavity. Note
that the TEM wave is matched to a
TM wave at the capacitive loaded gap
for the acceleration electric field.

Using the wave guide transmission line theory, characteristic properties of rf sys-
tems can be analyzed. Let r1 and r2 be the inner and outer radii of a wave guide.

45Ferrite is magnetic ceramic material that combines the property of high magnetic permeability
and high electric resistivity. The material is made of double oxide spinel Fe2O3MO, where M can
be Mn, Zn, Cr, Ni, etc. Ferrites are commonly used in frequency synthesis devices, Touch-Tone
telephone, low loss microwave devices, etc. Application in accelerator can be found in induction
linac, frequency tuning for rf cavities, kickers, etc.

46W.R. Smythe, IEEE Trans. Nucl. Sci., NS-30, 2173 (1983).
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The inductance L̃ and the capacitance C̃ per unit length of the concentric coaxial

wave guides are

L̃ =
μ

2π
ln

r2
r1

+
μcδskin
4π

(
1

r1
+

1

r2
), C̃ =

2π�

ln(r2/r1)
, (3.241)

where μc is the permeability of the conductor, δskin =
√

2/ωμcσ is the skin depth of

flux penetration. The inductance and capacitance of the coaxial cavity structure are
respectively L = L̃� and C = C̃�, where � the length of the structure. Neglecting the

flux penetration in the conductor, the resonating frequency and the cavity length for
the quarter-wave mode are

v =
ω

k
=

1√
L̃C̃

=
1√
�μ

, � =
λ

4
=

v

4f
=

75

f [MHz]

v

c
[m]. (3.242)

To shorten the length of the cavity �, we need to slow down the wave speed by the

ferrite materials. For a cavity operating beyond 20 MHz, ferrite can be used only for
tuning purposes. At frequencies below tens of MHz, the rf cavities must be ferrite

loaded in order to fit into the available free space in an accelerator. Typically the
permittivity and magnetic permeability of ferrite are about 10 �0 and 10 − 500 μ0.

When a biased field is applied to the ferrite core, the magnetic permeability can be
tuned to match the change of the particle revolution frequency.

To understand the capacitive loading that converts the TEM wave into the TM

wave at the cavity gap, we study the rf electromagnetic wave in the wave guide. The
characteristic impedance of a wave guide is

Zc = Rc =

√
L

C
≈ 1

2π

√
μ

�
ln

r2
r1
. (3.243)

Now, we consider an ideal lossless transmission line, where the electromagnetic field

has no longitudinal component. Assuming a time dependent factor ejωt, the current

and voltage across the rf structure are (see Exercise 3.6.3)

I(s, t) = I0 cos ks− j(V0/Rc) sin ks, V (s, t) = V0 cos ks− jI0Rc sin ks, (3.244)

where k = 2π
λ

= ω
v
is the wave number of the line, v = 1/

√
�μ is wave speed in the

medium, s is the distance from one end of the transmission line, V0 and I0 are the
voltage and current at the cavity gap.

For a standing wave, where the end of the transmission line is shorted, the bound-
ary condition at the shorted side is V = 0. we find V0 cos k� − jI0Rc sin k� = 0,

and the current at the shorted side is I� = I0/ cos(k�). The resulting rf current and
voltage become I(s, t) = I� cos[k(s− �)] and V (s, t) = −jI�Rc sin[k(s− �)]. The line

input impedance at the gap becomes

Zin =
V (0, t)

I(0, t)
= +jRc tan k�. (3.245)
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The line impedance is inductive if k� < π/2. The length of the line is chosen to match

the gap capacitance at a required resonance frequency, i.e.

Zin + Zgap = 0, or cot k�r = ωCgapRc ≡ g, (3.246)

where Zgap = −j/(ωCgap) is the gap impedance, Cgap is the capacitance of a half gap,
and g is the capacitive coupling factor of the cavity, For example, a total capacitance of

10 pF implies that Cgap = 20 pF. The length �r of one-half cavity, the gap capacitance,
the biased current, and the external loading capacitance can be designed to attain a

resonance condition for a given frequency range. A load capacitor may be shunted

to decrease the resonance frequency or minimize the cavity length. The effective
capacitance is Cgap + Cload.

In principle, for a given �r, Rc, and Cgap, there are many resonance frequencies
that satisfy Eq. (3.246). The lowest frequency is called the fundamental TEM mode.

If the loading capacitance is small, the resonance condition of Eq. (3.246) becomes
k�r = π/2, i.e. �r = λ/4: the length of the coaxial cavity is equal to 1/4 of the

wavelength of the TEM wave in the coaxial wave guide. Such a structure is also
called a quarter-wave cavity. The gap voltage of the coaxial cavity is

Vrf = +jI�Rc sin k�r = +j
I�Rc√
1 + g2

. (3.247)

A. Shunt impedance and Q-factor

The surface resistivity Rs of the conductor and the resistance R of a transmission line
are

Rs =

√
μcω

2σ
, R =

Rs�

2π
(
1

r1
+

1

r2
), (3.248)

where σ is the conductivity of the material, ω is the rf frequency, r1 and r2 are the
inner and outer radii of the transmission line, and � is the length. Thus the quality

factor becomes

Q =
Rc

R
=

ωL

R
≈ 2r1r2

(r1 + r2)δskin

μ

μc
ln

r2
r1
. (3.249)

Table 3.6 lists typical Q-factors for a copper cavity as a function of cavity frequency,
where we have used ln (r2/r1) ≈ 1 and r1 ≈ 0.05 m, and σCu ≈ 5.8 × 107 [Ωm]−1 at

room temperature.
An important quantity in the design and operation of rf cavities is the shunt

impedance. This is the resistance presented by the structure to the beam current at
the resonance condition. The total power of dissipation Pd of the transmission line

cavity and the shunt impedance become

Pd =
I2�R

2

∫ k�r

0

cos2 x dx =
I2�R

4(1 + g2)
[(1 + g2) cot−1 g + g], (3.250)
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Table 3.6: Some characteristic properties
of coaxial RF cavities made of copper.

f [MHz] 1 10 100
δskin [μm] 66. 21. 6.6
r1 0.05 0.05 0.05
Q 1100 3500 11000

Rsh =
|Vrf |2
2Pd

or
Rsh

Q
=

{
4

π

π/2

(1 + g2) cot−1 g + g

}
Rc (3.251)

The expression in brackets is a shunt-impedance geometry factor due to the equivalent
gap capacitance loading, i.e. Ceq = Cgap+Cload. Figure 3.30 shows the geometry factor

(solid) and the phase advance k�r vs the the capacitive coupling factor g.

Figure 3.30: The shunt-impedance geometric factor of
the bracket in Eq. (3.251) (solid) and the phase ad-
vance k�r = arctan(1/g) (dashed) vs the capacitive cou-
pling factor. As the gap capacitance increases, the shunt
impedance decreases.

From the transmission-line point of view, the cavity gap presents a capacitance
and resistive load shown in Fig. 3.31, where Zin = jωLeq, and Ceq = Cgap + Cload.

The matching condition of Eq. (3.246) implies that the reactance of the cavity is zero
on resonance, and the effective impedance is Rsh. The resonance frequency and the

Q-factor of the equivalent RLC-circuit are ωr = 1/
√

LeqCeq and Q = Rsh

√
Ceq/Leq.

Figure 3.31: Top: Schematic drawing of an equiv-
alent circuit of a cavity. The input impedance of
the wave guide is represented by an equivalent in-
ductance. The wave guide is loaded with capaci-
tive cavity-gap and real shunt impedance. Bottom:
Plot of the impedance of Eq. (3.252). The solid
lines are the real and the imaginary parts of a res-
onance impedance with Q=1, and the dashed lines
are the corresponding parts at Q=30.

The impedance of the rf system, represented by a parallel RLC circuit, is

Z =

(
1

Rsh
+ jωCeq +

1

jωLeq

)−1

=
Rsh

1 + jQ( ω
ωr

− ωr

ω
)
≈ Rsh cosψe

−jψ, (3.252)

ψ = tan−1 2Q(ω − ωr)

ωr

, ωr =
1√

LeqCeq

, Q = Rsh

√
Ceq

Leq

=
Rsh

Rc

,
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where Leq and Ceq are the equivalent inductance and capacitance, ψ is the cavity

detuning angle, and Rc is the characteristic impedance. At the resonance frequency
ωr particles see a pure resistive load with an effective resistance Rsh. The rf system

becomes capacitive at ω > ωr, and inductive at ω < ωr. The bottom plot of Fig. 3.31
shows the real and imaginary parts of Eq. (3.252) for Q=1 and Q=30.

Accelerator cavities usually contain also many parasitic HOMs. Each HOM has
its shunt impedance and Q-value. If the frequency of one of the HOMs falls on a

synchrotron or betatron sideband, the beam can be strongly affected by the parasitic rf
driven resonance. Correction, detuning, and lowering the Q-factor of these sidebands

are very important in rf cavity design and operation.

B. Filling time

The quality factor defined in Eq. (3.249) is equal to the ratio of the stored power Pst

to the dissipated power Pd, Using energy conservation, we find

Q =
Pst

Pd
=

ωWs

Pd
, (3.253)

dWs

dt
= −Pd = −ω

Q
Ws,

Ws = Ws0e
−ωt/Q = Ws0e

−2t/Tf0 , Tf0 =
2Q

ω
. (3.254)

where Ws is the stored energy and the unloaded filling time Tf0 is equal to the time
for the electric field or voltage to decay to 1/e of its original value.

C. Qualitative feature of rf cavities

Qualitatively, the rf voltage is the time derivative of the total magnetic flux linking

orbit (Faraday’s law of induction). We assume that a sinusoidal time dependent
magnetic flux density with 1/r dependence in a coaxial cavity structure. The induced

voltage is

Vrf =
ΔΦ

Δt
= frf�

∫ r2

r1

B(r)dr = frfB1[�r1 ln
r2
r1

≈ frfB1A, (3.255)

where A = �r1 ln(r2/r1) ≈ �(r2 − r1) is the effective area of the ferrite core and B1

is the peak magnetic flux at r = r1. Because of the logarithmic dependence on r2, it

is inefficient to increase the outer radius of the ferrite core to increase the rf voltage.
The peak magnetic flux in Eq. (3.255) depends on the ferrite material.

The quality factor Q is the ratio of stored power to the dissipated power. When
there are many dissipative power sources, the loaded Q-factor is

1

QL
=

Pd

Pst
=

1

Q1
+

1

Q2
+

1

Q3
+ · · · ,
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where Pst is the power stored in the cavity and Pd is the total dissipated power. The

shunt impedance of an rf structure is the resistance presented to the beam current at
the resonance condition, i.e.

Rsh =
|Vrf |2
2Pd

=
RcPst

Pd

≈ RcQL. (3.256)

The quality factor Q of the ferrite loaded cavity is dominated by the Q value of

the ferrite material itself, i.e. Qferrite ≈ 10− 300, which alone is not adequate for the
required frequency tuning range. Frequency tuning can be achieved by inducing a

shunt capacitor and a DC magnetic field in the ferrite core. With an external magnet
or bias current that encircles the ferrite without contributing a net rf flux, the effective

permeability for rf field can be changed.
Since the Q-value of ferrite is relatively low, power dissipation in ferrite is impor-

tant. The dissipation power is

Pd =
frf
Q

[
�

2μ

∫ r2

r1

B2(r)2πrdr

]
=

πr1frfB
2
1A

μQ
≈ πr1V

2
rf

A [μfrfQ]
(3.257)

where the bracket is the average magnetic energy dissipated in each cycle. The power

dissipation in a ferrite cavity is inversely proportional to (μfrfQ), which characterizes
ferrite materials. Since the power is inversely proportional to the effective area A, we

need a large volume of ferrite to decrease the flux density in order to minimize energy

loss for achieving high rf voltage at low frequencies,
At rf frequencies above tens of MHz, the cavity size (normally 1/2 or 1/4 wave-

length) becomes small enough that a resonant structure containing little or no ferrite
may be built with significantly lower power loss at Q ≈ 104 with a narrower band-

width. At frequencies of a few hundred MHz, where adequate and efficient rf power
sources are commercially available, the main portion of the rf cavity can be made

of copper or aluminum with a small amount of ferrite used for tuning. The cavity
can still be considered as a coaxial wave guide, and Eqs. (3.241) to (3.255) remain

valid. The characteristic impedance Rc of Eq. (3.243) is about 60 Ω. The stored
power is I2Rc and the power dissipation is I2R, where I is the surface current and

R of Eq. (3.248) is the surface resistance of the structure. At frequencies above a
few hundred MHz, resonance frequency can be tuned only by a slotted tuner or by

physically changing the size of the cavity.

D. The rf cavity of the IUCF cooler injector synchrotron

The IUCF cooler injector synchrotron (CIS) is a low energy booster for the IUCF
cooler ring. It accelerates protons (or light ions) from 7 MeV to 225 MeV. The

cavity is a quarter-wave coaxial cavity with heavy capacitance loading.To make the

cavity length reasonably short and to achieve rapid tuning, required for synchrotron
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acceleration, ten Phillips 4C12 type ferrite rings are used. The μ of the ferrite material

is changed by a superimposed DC magnetic field provided by an external quadrupole
magnet. The ferrite rings return the magnet flux between the two adjacent quadrupole

tips (Fig. 3.32).

   Outer 
conductor

    Inner
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Figure 3.32: The cross section (left) and the longitudinal view of the CIS rf cavity. The
external quadrupole magnet provides biased field in ferrite rings to change the effective
permeability (courtesy of Alex Pei).

Analysis of such a field shows that the field direction is mostly parallel to the rf
field, i.e. along the azimuthal direction, except near the tips of the quadrupole, where

the biased fields in the ferrite rings are perpendicular to the rf field. In the working
region of the ferrite biasing strength, the effect of the perpendicular component on

ferrite rf-μ is small. The effective rf-μ, to first order in wave propagation, is determined
by dB/dH , as in parallel biasing analysis, rather than B/H , as in perpendicular

analysis. The phenomenon of gyromagnetic resonance associated with perpendicular

biasing, however, needs to be considered and avoided in the design of the cavity.
The advantages of using an external biasing magnet include making it possible to

separate the rf field from the biasing elements, and the rf field in the cavity will not
be affected by the biasing structure. As many windings of the bias coils as practical

can be used — resulting in a smaller amperage requirement for the bias supply. In
CIS and the IUCF cooler ring, the bias supplies for these external quadrupole biasing

magnet type cavities are rated at only 20 A. If the biasing field is to be produced only
by a bias winding threaded through the rf cavity, the number of windings is usually

limited to no more than a few turns because of possible resonance and arcing. It
usually takes 1000 A or more to bias such a cavity.

As the frequency changes, the power loss in ferrite material varies (usually in-
creasing as frequency increases). As a result, it has been difficult to feed the rf

generator power to the cavity efficiently because of the high voltage standing wave
ratio (VSWR) caused by impedance mismatch (see Appendix B.IV.3). In the CIS

cavity this problem was solved by dividing the ferrite rings into two sections; the

strength of the biasing magnet in each section can be adjusted by the coupling loop.
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The coupling coefficient can be used to compensate the change in the gap impedance,

and the input impedance can be maintained constant to match the transmission line
impedance of the rf amplifier. The CIS cavity is thus able to operate with a 10:1 fre-

quency ratio with high efficiency, due to the higher impedance of a resonant structure
and optimized amplifier coupling.

The loading capacitor can further reduce the length requirement of coaxial cavities
and can also be used conveniently to switch frequency bands. For example, the CIS

cavity can be operated at 0.5 – 5 MHz or 1 – 10 MHz by varying its loading capacitor.
Including the load capacitance, Cload, the circuit matching (resonance) condition of

Eq. (3.246) becomes cot(k�r) = Rcω(Cgap + Cload).

E. Wake-function and impedance of an RLC resonator model

If we represent a charged particle of charge q by I(t) = qδ(t) = (1/2π)
∫
qejωtdω, the

energy loss due to the passage of an rf gap, represented by an RLC resonator model,

is

ΔU =

∫
|I(ω)|2Z(ω)dω = 2krq

2, kr =
ωrRsh

4πQ
, (3.258)

where kr is the loss factor of the impedance at frequency ωr. This means that the

passing particle loses energy and induces a wakefield in the cavity.
The longitudinal impedance is the Fourier transform of the wake function, and

thus the wake function is the inverse Fourier transform of the impedance, For the
RLC resonator model, the wake function becomes (see Exercise 3.6.5)

Z(ω) =

∫ ∞

0

W (t)e−jωtdt =

∫ ∞

−∞
W (t)e−jωtdt,

W (t) =
1

2π

∫
Z(ω)ejωtdω = 4πkr

[
cos ω̃rt− 1

ω̃rTf0
sin ω̃rt

]
e−t/Tf0 Θ(t), (3.259)

where Θ(t) = 1 if t > 0, and 0 if t < 0; Tf0 = 2Q/ωr is unloaded filling time defined in

Eq. (3.254); and ω̃r = ωr (1− (1/4Q2))
1/2

. If the filling time is long, then the wake
potential is a sinusoidal function with angular frequency ω̃r, i.e.

W (t) ≈ 4πkre
−t/Tf0 cosωrt.

Thus the filling time corresponds also to the wakefield decay time. When beams pass

repetitively through the cavity, the effective voltage is the sum of the voltage supplied

by the generator current and the wakefields of all beams. Beam loading is important
in the design and operation of rf cavities.

VI.3 Beam Loading

A passing beam charge can induce wakefield in an rf cavity. The beam induced rf

voltage can alter the effective voltage at the rf gap. Without proper compensation,
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the resulting rf voltage acting on the passing beam may cause beam deceleration in an

uncontrollable manner. Thus beam loading needs to be considered in the operation
of rf cavities.

A. Phasor

The sinusoidal electromagnetic fields and voltages in a standing wave rf structure can

be expressed as complex quantities, i.e. V = V0e
j(ωt+θ), where ω is the frequency, θ

is a phase angle, and V0 is the amplitude of the rf voltage. The rf voltage seen by
the beam is the projection of the rotating vector on the real axis. Now, we choose

a coordinate system that rotates with the rf frequency, and thus the rf voltage is
stationary in this rotating coordinate system. In the rotating coordinate system,

the voltage vector is called a phasor: Ṽ = V ejθ with V0 cos θ = V0 sin φs, where φs

is the synchronous phase angle. Phasors are manipulated by using usual rules of

complex vector algebra. The properties of rf fields can be studied by using graphic
reconstruction in phasor diagrams.

B. Fundamental theorem of beam loading

The cavity provides a longitudinal electric field for particle acceleration. However,

when a charged particle passes through the cavity, the image current on the cavity

wall creates an electric field that opposes the particle motion. The question arises:
what fraction of the electric field or voltage created by the beam affects the beam

motion? The question can be addressed by the fundamental theorem of beam loading
due to Wilson [see P. B. Wilson, AIP Conf. Proc. 87, 452 (1981).]: A charged particle

sees exactly 1
2
of its own induced voltage.

To prove this fundamental theorem, we assume that the stored energy in a cavity

in any given mode is W = αV 2. We assume that a fraction f of the induced voltage
is seen by the inducing particle, and the effective voltage is Ve = fVb, where Vb is the

induced voltage in each passage. We assume further that the induced voltage lies at
phase angle χ with respect to the inducing current or charge.

Now, we consider two identical charged particles of charge q, separated by phase
angle θ, passing through the cavity. The total energy deposited in the cavity and the

energy loss by these two particles are respectively

Wc = α|Ṽb(1) + Ṽb(2)|2 = α

(
2Vb cos

θ

2

)2

= 2αV 2
b (1 + cos θ),

ΔU = [qVe] + [qVe + qVb cos(χ+ θ)],

where the first and second brackets are the energy losses due to the first and second
particles respectively. From the conservation of energy, ΔU = Wc, we obtain

χ = 0, Vb =
q

2α
, Ve =

1

2
Vb, f =

1

2
. (3.260)
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The result can be summarized as follows:

1. The induced voltage of a beam must have a phase maximally opposite the

motion of the charge, i.e. the phase angle χ = 0.

2. Ve = Vb/2. The particle sees exactly 1/2 of its own induced voltage.

3. Wc = αV 2
b = q2/4α = kq2, where k is the loss factor, k = V 2

b /(4Wc).

4. Vb = 2kq or Ve = kq.

C. Steady state solution of multiple bunch passage

Consider an infinite train of bunches, separated by time Tb, passing through an rf
cavity gap. When the cavity is on resonance, the induced voltage seen by the particle

is

Vb =
1

2
Vb0 + Vb0(e

−(λ+jφ) + e−2(λ+jφ) + · · ·) = Vb0(−1

2
+

1

1− e−(λ+jφ)
), (3.261)

where φ = (ω − ωr)Tb is the relative bunch arrival phase with respect to the cavity
phase at the rf gap, ωr is the resonance frequency of the rf cavity, and λ = Tb/Tf

is the decay factor of the induced voltage between successive bunch passages, and
Tf = 2QL/ωr is the cavity time constant or the cavity filling time. Here QL is the

loaded cavity quality factor, taking into account the generator resistance Rg in parallel
with the RLC circuit of the cavity, i.e.

QL =
RshRg

(Rsh +Rg)Rc
=

Q0

1 + d
, d =

Rsh

Rg
. (3.262)

The filling time of the loaded cavity is reduced by a factor 1/(1 + d).

The cavity detuning angle ψ and the rf phase shift are

ψ = tan−1

[
2QL(ω − ωr)

ωr

]
= tan−1 [(ω − ωr)Tf ] , (3.263)

φ = (ω − ωr)Tb = +(Tb/Tf) tanψ = +λ tanψ, (3.264)

where ω is the cavity operation frequency. For rf cavities used in accelerators, we
have λ = Tb/Tf = ωrTb/2QL � 1, and the induced voltage seen by the beam is

Vb = IiRshλ(−1

2
+

1

1− e−(λ+jφ)
) ≈ Ii

Rsh

(1 + d)
cosψe−jψ (λ → 0), (3.265)

where Ii is the rf image current, Vb0 = IiRshTb/Tf , and the term −1/2 is neglected.

The beam induced voltage across the rf gap at the steady state is exactly the rf image

current times the impedance of the rf cavity (see Eq. (3.252)).
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VI.4 Beam Loading Compensation and Robinson Instability

To provide particle acceleration in a cavity, we need a generator rf current Ĩ0 = I0e
jθ

with phase angle θ so that the voltage acting on the beam is Vacc = Vg cos θ = Vg sinφs,
where φs is the synchronous phase angle. It appears that the rf system would be

optimally tuned if it were tuned to on-resonance so that it had a resistive load with
Vg = I0Rsh. However, we will find shortly that the effect of beam loading would

render such a scheme unusable.

When a short beam bunch passes through the rf system, the image rf current Ii
generated by the beam is twice the DC current, as shown in Eq. (2.125). The beam
will induce IiRsh across the voltage gap (see dashed line in Fig. 3.33). The voltage

seen by the beam is the sum of the voltage produced by the generator current and the
beam induced current. Thus the stable phase angle φs of the synchrotron motion will

be changed by the induced voltage. This is shown schematically in Fig. 3.33 (left),

where the required gap voltage I0Rsh and the synchronous phase angle φs are altered
by the voltage induced by the image current. The projection of the resultant vector

V0 on the real axis is negative, and results in deceleration of the beam.

One way to compensate the image current is to superimpose, on the generator

current, current directly opposite to the image current. Such a large rf generator
current at a phase angle other than that of the rf acceleration voltage is costly and

unnecessary.

Figure 3.33: Phasor diagrams for beam load-
ing compensation. Left: The beam loading
voltage for a cavity tuned on resonance. The
combination of generator voltage Vg and in-
duced voltage Vi gives rise to a decelerating
field V0. Right: When the cavity is detuned
to a detuning angle ψ, the superposition of
the generator voltage Vg and the beam load-
ing voltage Vi gives a proper cavity voltage V0

for beam acceleration.

An alternative solution is to detune the accelerating structure.47 The detuning
angle and the generator current are adjusted so that the resultant voltage has a correct

magnitude and phase for beam acceleration. This scheme will minimize the generator
current. We define the following phasor currents and voltages for the analysis of this

47J.E. Griffin, AIP Conf. Proc. 87, 564 (1981); F. Pedersen, IEEE Tran. Nucl. Sci. NS-32,
2138 (1985); D. Boussard, CERN 91-04, p. 294 (1991).
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problem.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĩ0 = I0e
jθ generator current necessary for accelerating voltage

in the absence of beam
Ĩg = Ige

j(θ+θg) required generator current with beam
Ĩi = −Ii = −Ib rf beam image current, Ii is a positive quantity
Ṽg = ĨgRsh cosψe

−jψ voltage induced by generator current
Ṽ0 = V0e

jθ required rf accelerating voltage

ψ = tan−1
�
2Q(ω−ωr)

ωr

�
detuning angle

Y = Ii/I0 ratio of image current to unloaded generator current

The equation for a proper accelerating voltage is

Ṽ0 = Ṽg + Ṽi

I0Rshe
jθ = [Ige

j(θ+θg) − Ii]Rsh cosψe
−jψ. (3.266)

Here the induced voltage is derived from the steady state beam loading. By equating
the real and imaginary parts, we obtain

tan θg =
tanψ − Y sin θ

1 + Y cos θ
, Ig = I0

1 + Y cos θ

cos θg
, (3.267)

where θg is the phase angle of the generator current relative to the ideal Ĩ0. The
optimal operating condition normally corresponds to θg = 0, which minimizes Ig, i.e.

the generator current is optimally chosen to be parallel to Ĩ0, and Eq. (3.267) reduces
to

Ig = I0(1 + Y sin φs), tanψ = Y cos φs. (3.268)

Figure 3.33 (right) shows the beam loading phasor diagram with a detuned cavity

angle ψ. The resultant vector of the generator voltage and the image current voltage
is the effective accelerating voltage for the beam.

A. Robinson dipole mode instability

In accelerators, beams experience many sources of perturbation such as power supply

ripple, mis-injection, mismatched beam profile, rf noise, voltage error, etc. Beam
stability may sometimes need sophisticated active feedback systems. The topic of

control and feedback is beyond the scope of this textbook. Here, we discuss only the
dipole mode stability condition related to beam loading, studied by Robinson in 1964

[K.W. Robinson, CEA report CEAL-1010 (1964)].
We consider a small perturbation by shifting the arrival time of all bunches by

a phase factor ξ. The accelerating rf voltage will be perturbed by the same phase
factor,

Vacc = V0 cos(θ − ξ) = V0 cos θ + ξV0 sin θ = V0 sin φs + ξV0 cosφs. (3.269)
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where the first term is the intended accelerating voltage and the second term is the

effect of phase perturbation due to an error in arrival time.
The wrong arrival time shifts the image beam current by a phase angle ξ. The

perturbation to the image rf current its induced rf voltage are

ΔĨi = jξĨi = −jξIi,

ΔṼi = −jξIiRsh cosψe
−jψ,

ΔVir = �{ΔṼi} = −ξY V0cosψ sinψ,

where the beam sees real part ΔVir of the induced voltage or the projection of the

phasor voltage onto the real axis. The net change in accelerating voltage seen by the
bunch becomes

ΔVacc = ξV0 cosφs

[
1− Y

sinψ cosψ

cosφs

]
. (3.270)

A small perturbation in arrival time causes a perturbation in acceleration voltage

proportional to the phase shift. If the voltage induced by the image charge is not
significant, the bunches in the accelerator will execute synchrotron motion. Thus the

equation of motion for the phasor error ξ is (see Exercise 3.6.7)

ξ̈ = −ν2s

(
1− Y

sinψ cosψ

cosφs

)
ξ. (3.271)

Using Eq. (3.268), we find that the Robinson stability condition becomes

1− Y
sinψ cosψ

cos φs

≥ 0 or 1− sin2 ψ

cos2 φs

≥ 0. (3.272)

This means that Robinson stability requires ψ < θ = |1
2
π−φs|. In general, Eq. (3.272)

is applicable to all high order modes. For those modes, Robinson stability can be

described as follows.
Below transition energy, with cosφs > 0, Robinson stability can be attained by

choosing sinψ < 0, i.e. the cavity frequency is detuned with ω < ωr. Above transition
energy, with cosφs < 0, the cavity should be detuned so that sinψ > 0 or ω > ωr

in order to gain Robinson stability. Since the stability condition is a function of
bunch intensity, instability is a self-adjusting process. Beam loss will appear until

the Robinson stability condition can be achieved. Active feedback systems have been
used to enhance the stability of bunched beam acceleration [ See e.g. D. Boussard,

CERN 87-03, p. 626 (1987); CERN 91-04, p. 294 (1991).]

B. Qualitative feature of Robinson instability

Robinson instability can be qualitatively understood as follows. The wakefield pro-

duced in a cavity by a circulating bunch is represented qualitatively in Fig. 3.34,

where the impedance of the cavity is assumed to be real.
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Figure 3.34: A schematic drawing of the real part
of impedance arising from a wakefield induced by
the circulating beam. To avoid Robinson instabil-
ity, the cavity should be detuned to hω0 > ωr above
transition energy and hω0 < ωr below transition en-
ergy. Above transition energy, higher energy par-
ticles have a smaller revolution frequency and thus
lose more energy if the cavity detuning is hω0 > ωr.
A similar argument applies to rf cavities operating
below transition energy.

Since the revolution frequency is related to the fractional momentum spread by

Δω

ω0
= −η

ΔE

β2E0
,

a higher beam energy has a smaller revolution frequency above the transition energy.
If the cavity is detuned so that hω0 > ωr, where ωr is the resonance frequency of
the cavity (Fig. 3.34, left), the beam bunch at higher energy sees a higher shunt
impedance and loses more energy, and the beam bunch at lower beam energy sees a
lower shunt impedance and loses less energy. Thus the centroid of the beam bunch
will damp in the presence of beam loading, and the dipole mode of beam motion is
Robinson damped. Similarly, if the cavity is detuned such that hω0 < ωr, Robinson
stability will be attained below transition energy.

Exercise 3.6

1. The skin depth δskin of an AC current with angular frequency ω traveling on a con-
ductor of bulk conductivity σ is δskin =

√
2/μσω, where μ is the permeability.

(a) Show that the surface resistivity defined as Rs = 1/σδskin [in Ohm] is given by

Rs =

√
μω

2σ
.

The surface resistivity does not depend on the geometry of the conductor.

(b) Show that the resistance of a coaxial structure is given by Eq. (3.248) with

R =
Rs�

2π
(
1

r1
+

1

r2
),

where � is the length of the structure and r1, r2 are the inner and outer radii of
the coaxial wave guide.

2. Show that the solution of Maxwell’s equation in the cylindrical coordinate is given
by Eq. (3.237).



346 CHAPTER 3. SYNCHROTRON MOTION

3. In a lossless transverse electromagnetic (TEM) wave transmission line, the equation
for the current and voltage is

∂V

∂s
= −L̃

∂I

∂t
,

∂I

∂s
= −C̃

∂V

∂t
,

where L̃ and C̃ are respectively the inductance and capacitance per unit length.

(a) Show that the general solution of the right/left traveling TEM wave is given by

V = f(t∓ s

v
), I = ± 1

Rc
f(t∓ s

v
),

where f is an arbitrary wave form, v = 1√
L̃C̃

is the wave speed, Rc =
√

L̃/C̃ is

the characteristic impedance of the line.

(b) For TEM sinusoidal waves in a transmission line, show that the current and
voltage are related by

{
I(s, t) = [I0 cos ks− j(V0/Rc) sin ks]e

jωt

V (s, t) = [V0 cos ks− jI0Rc sin ks]e
jωt

where ω is the wave angular frequency, k is the wave number with wave speed
v = ω/k, and I0 and V0 are the amplitudes of current and voltage at s = 0.

4. Verify Eqs.(3.252) and plot Z vs ω for ωr = 200 MHz, Q = 104, and Rsh = 25 MΩ.

5. Consider the excitation of an RLC circuit with a current impulse I(t) = qδ(t), where
δ(t) is the Dirac delta-function.

(a) Using Eq. (2.252) for pole decomposition of the RLC resonantor, Show that the
induced voltage is

V (t) =
1

2π

∫
q ejωt

jωC + 1
R + 1

jωL

dω =
qωrRshe

−t/Tf

Q

[
cos ω̃rt− 1

ω̃rTf
sin ω̃rt

]
Θ(t),

where ωr = 1/
√
LC, Rsh = R, Rsh/Q =

√
L/C, ω̃r = ωr

√
1− (1/2Q)2, Tf =

2Q/ωr, and Θ(t) = 1 if t ≥ 0 and 0 elsewhere.

(b) Evaluate the integral of Eq. (3.258) and show that the loss factor of a parallel
RLC resonator is

kr =
ωrRsh

4πQ
,

where Rsh is the shunt resistance, Q is the Q-factor, and ωr is the resonance
frequency.

6. Using the result of Exercise 3.6.5, show that Vb0 = IiRshλ for a train of bunches
separated by a time interval Tb, where λ = Tb/Tf , Ii = 2q/Tb, and Tf = 2Q/ωr.
Verify Eq. (3.265)

7. Use the following steps to derive Eq. (3.271).
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(a) Let ξ be the rf phase associated with the error in beam arrival time. Show that

ξ̇ = hηδb,

where the overdot indicates the derivative with respect to orbiting angle θ, and
δb is the momentum error of the beam centroid.

(b) Show that

δ̇b =
eV0 cosφs

2πβ2E

[
1− Y

sin 2ψ

2 cosφs

]
ξ.

Thus you have arrived at Eq. (3.271).

(c) Draw the Robinson stability region, i.e. 1 ≥ (sin 2ψ/2 cos φs)Y , in (Y, ψ) for
φs = 0◦, 30◦, 60◦, 120◦, 150◦, 180◦.

8. The current for charged-particle beams in an accelerator is

I(t) =
∑
�

h∑
m=1

qmδ(t−m
T0

h
− �T0),

where T0 is the revolution period, h is the harmonic number, and qm is the charge in
the mth bucket. Show that the amplitude of the Fourier harmonic is

I(ω) =
∑
m

Ime−jmωT0/h

where Im = qm/T0 is the current of the mth bucket. (1) If all buckets are filled with
equal charge, what happens to the spectrum? (2) If there is only one bunch in the
ring with harmonic number h, what is the beam spectrum? (3) Verify the symmetric
properties: I(−ω) = I(ω)∗; I(nω0) = I((h− n)ω0)

∗, and I(nω0) = I((h+ n)ω0).
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VII Longitudinal Collective Instabilities

As the demand for beam brightness increases, the physics of collective instabilities

becomes more important. Indeed, almost all accelerators and storage rings have suf-
fered some type of collective instability that limits beam intensity or beam brightness.

This section provides an introduction to the collective instability in synchrotron mo-
tion induced by wakefield, similar to the transverse collective dipole mode instability

discussed in Chap. 2, Sec. VIII. A beam bunch can produce wakefield that affects the
particle motion and change the beam distribution, the beam distribution can further

enhance the wakefield to cause a run-away collective instability.

In the frequency domain, the collective motion is governed by the impedance,

which is the Fourier transform of the wakefield. The impedance responsible for col-
lective instabilities can be experimentally measured by the beam transfer function

measurements,48 or from passive measurements of beam loss, coherent and incoherent
tune shift, and equilibrium momentum spread and emittance. Collective instabilities

can cause bunch lengthening, beam brightness dilution, luminosity degradation, beam
loss in machine operation.

Longitudinal collective instabilities have many modes. The collective synchrotron
motion can be classified according to synchrotron modes, as discussed in Sec. III,

where the phase space are split into resonance islands. On the other hand, since the

growth rate of the microwave instability is very large, it can be classified according to
the longitudinal mode with density fluctuation. This causes a beam bunch to form

microbunches. Decoherence due to nonlinear synchrotron motion generates emittance
dilution.

In this introduction text, we discuss only single bunch effects without mode cou-
pling. In Sec. VII.1, we discuss the coherent frequency spectra of beams in a syn-

chrotron. Knowledge of coherent synchrotron modes provides useful information
about possible sources, and about the signature at the onset of collective instabil-

ities. An experimental measurement of coherent synchrotron mode will be discussed.
Detecting the onset of instabilities and measuring coherent synchrotron modes can

help us understand the mechanism of collective instabilities. In Sec. VII.2, we study
the linearized Vlasov equation with a coasting beam, and derive a dispersion rela-

tion for the collective frequency in single mode approximation. In Sec. VII.3, we
list possible sources of the longitudinal impedance. In Sec. VII.4, we examine the

microwave instability for a beam with zero momentum spread and for a beam with
Gaussian momentum spread, and discuss the Keil-Schnell criterion and the turbu-

lent bunch lengthening. Mode coupling and coupled bunch collective instabilities and

other advanced topics can be found in a specialized advanced textbooks [5, 6, 7].

48A. Hofmann, Proc. 1st EPAC, p. 181 (World Scientific, Singapore, 1988).
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VII.1 Beam Spectra of Synchrotron Motion

The current observed at a wall gap monitor or a BPM from a circulating charged
particle is represented by a periodic δ-function in Eq. (2.125). The corresponding

frequency spectra occur at all harmonics of the revolution frequency f0. Similarly,
the current of N equally spaced circulating particles is described by Eq. (2.130),

where the Fourier spectra are separated by Nf0. Since N ∼ 108 − 1014, Nf0 is well
above the bandwidths of BPMs and detection instruments, the coherent rf signal is

invisible. Such a beam is called a coasting or DC beam because only the DC signal
is visible. Nevertheless, the Schottky signal of each individual charged particle can

produce high frequency resistive power loss proportional to the number of particles.49

The analysis above is applicable to a single short bunch or equally spaced short

bunches. The frequency spectra of a single short bunch occur at all harmonics of the
revolution frequency f0. For B equally spaced short bunches, the coherent frequency

spectra are located at harmonics ofBf0. For bunches separated by T0/h, the dominant
harmonics are located at harmonics of hf0.

A. Coherent synchrotron modes

The synchrotron motion of beam particles introduces a modulation in the periodic

arrival time. Modifying Eq. (3.63) with a periodic linear synchrotron motion and
expanding it in Fourier series, we obtain

Ie(t) = e

∞∑
�=−∞

δ(t− τ cos(ωst+ ψ)− �T0)

=
e

T0

∞∑
n=−∞

∞∑
m=−∞

j−mJm(nω0τ)e
j[(nω0+mωs)t+mψ], (3.273)

where e is the charge, τ and ψ are the amplitude and phase of the synchrotron

motion, ωs = ω0

√
heV |η cosφs|/2πβ2E is the synchrotron angular frequency with φs

as the rf phase of the synchronous particle, T0 is the revolution period, and Jm is

the Bessel function of order m. The resulting spectra of particle motion are classified
into synchrotron modes, i.e. there are synchrotron sidebands around each orbital

harmonic n. The amplitude of the mth synchrotron sideband is proportional to the
Bessel function Jm.

For a beam with bunch length στ , the coherent synchrotron mode frequency ex-
tends typically up to ωroll off ∼ 1/στ (see Eq. (2.129)), and thus nω0τ ≤ τ/στ , where

τ is the synchrotron oscillation amplitude, and στ is the bunch length. For a stable
beam with τ/στ ≤ 0.1, the power of the first order synchrotron sideband is about −26

dB below that of the revolution harmonic. However, the coherent mode frequency

49See A. Hofmann and T. Risselada, Proc. of PAC 1983, p. 2400 (1983).
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may extend beyond the bunch-length roll-off 1/στ due to micro-bunching, residual

coherent synchrotron motion, etc. The measurement of the synchrotron sideband
power can be used to infer the residual coherent synchrotron motion of a beam and

other coherent synchrotron modes. Figure 3.35 shows the coherent spectrum of a
production beam in the Taiwan Light Source in Taiwan. There were 154 bunches in

200 buckets separated by 2.0 ns. The coherent mode frequencies are mainly located
at revolution harmonics multiples of 499.6438 MHz. Because of the resolution band-

width of spectrum analyzer (SA), the observed peak power of each harmonic appeared
to roll-off faster than the prediction of a Gaussian distribution with a bunch length of

24 ps. The m = 1 synchrotron sideband around the 499.6438 MHz was about 82 dB
below the revolution harmonic, indicating that the amplitude of coherent synchrotron

oscillation was about τ ∼ 0.05 ps, a very stable beam.

Figure 3.35: Beam power (10 dB/division) vs frequency. Left: The spectra (0-3 GHz)
of a TLS production beam. There are 154 bunches in 200 buckets with frf = 499.6438
MHz. The rms bunch length is about 24 ns. Right: The spectrum around the frequency
frf with span 20 kHz. The power of the synchrotron mode is about 82 dB below that of the
revolution harmonic (Graph courtesy of Yi-Chih Liu).

A bunch is made of particles with different synchrotron amplitudes and phases,

the coherent synchrotron modes of the bunch can be obtained by averaging the syn-
chrotron mode over the bunch distribution. For a ψ-independent beam distribution

function ρ(τ, ψ) = ρ0(τ), the beam current becomes

I0(t) =

∫
Ie(t)ρ0(τ)τdτdψ = Iav

∞∑
n=−∞

An,0e
jnω0t, (3.274)

An,0 = 2π

∫ ∞

0

J0(nω0τ)ρ0(τ)τdτ,

where Iav = NBef0 is the average current, and An,0 is the Hankel transformation of ρ0.
Equation (3.274) contains only orbital harmonics nω0, i.e. all synchrotron sidebands

of individual particles are averaged to zero. The inverse Hankel transformation can

be used to determine the unperturbed distribution function ρ0(τ).



VII. LONGITUDINAL COLLECTIVE INSTABILITIES 351

Now, consider a coherent synchrotron mode in the bunch distribution, e.g.

ρ(τ, ψ) = ρ0(τ)+Δρ(τ, ψ) with the mth synchrotron mode at the coherent frequency
Ωc, the coherent density becomes Δρ(τ, ψ) = ρm(τ)e

j(Ωct−mψ), and the current signal

is

I(t) = I0(t) +

∫
Ie(t)Δρ(τ, ψ)τdτdψ = I0(t) + Iav

∞∑
n=−∞

An,me
j(nω0+mωs+Ωc)t,

An,m = 2π

∫ ∞

0

Jm(nω0τ)ρm(τ)τdτ, (3.275)

where An,m is the mth order Hankel transformation. The mth coherent synchrotron

sideband appears around all coherent revolution harmonics. Using the inverse Hankel
transformation, we can deduce the beam distribution function from the amplitudes

of coherent modes integrals An,m, that form the kernel of the Sacherer integral equa-
tion to solve the coherent mode frequency of the longitudinal collective instability.

The coherent synchrotron mode intensity can be obtain by taking the spectrum of a
beam during the onset of coherent mode instability.50 As an illustrative example, we

measure the power of a synchrotron mode of a longitudinally kicked beam.

B. Coherent synchrotron modes of a kicked beam

We consider an initial Gaussian beam distribution (see Eq. (3.29) for the phase space

coordinates) and a phase kick of time τk:

ρ0

(
τ,

τ̇

ωs

)
=

1

2πσ2
τ

exp

(
−τ 2 + (τ̇ /ωs)

2

2σ2
τ

)
.

→ 1

2πσ2
τ

exp(− τ 2k
2σ2

τ

− τ̂ 2

2σ2
τ

− τ̂ τk
σ2
τ

cosψ),

=
1

2πσ2
τ

exp(− τ 2k
2σ2

τ

− τ̂ 2

2σ2
τ

)
∞∑

m=−∞
(−1)mIm(

τ̂ τk
σ2
τ

)ejmψ, (3.276)

where τk is the amplitude of an initial phase kicked and the coherent mode amplitudes
obey I−m = Im. Using formula 6.633.4 in Ref. [31], we obtain the coherent distribution

and the coherent mode integral of Eq. (3.275) as

ρm(τ̂) =
(−1)m

2πσ2
τ

exp(− τ 2k
2σ2

τ

− τ̂ 2

2σ2
τ

)Im(
τ̂ τk
σ2
τ

),

An,m = e
− 1

2
(nω0τk)

2(στ
τk

)2
Jm(nω0τk). (3.277)

50F. Sacherer, IEEE Trans. Nucl. Sci. NS-20, (1973), ibid NS-24, (1977); J.L. Laclare, CERN
87-03, p. 264 (1987). Because the measurement of An,m peak power depends on the resolution band-
width and the beam intensity, it is difficult to obtain these amplitudes in a single scan. Furthermore,
for spectrum power in a very large frequency span, bandwidth limitation of amplifiers, attenuators,
and other components should be carefully evaluated.
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The power of the mth sideband of a kicked beam is proportional to the square of

the mth order Bessel function. For non-Gaussian beams, the power spectrum is a
weighted average of Bessel functions in Eq. (3.275). We describe below an experiment,

measuring the coherent mode power at the IUCF Cooler.

C. Measurements of coherent synchrotron modes

The experiment started with a single bunched beam of about 5 × 108 protons at a
kinetic energy of 45 MeV and harmonic number h = 1, revolution frequency f0 =

1.03168 MHz, and phase slip factor η = −0.86. The cycle time was 5 s, while the
injected beam was electron-cooled for about 3 s. The bunch length, could be adjusted

by varying the rf voltage, was about 4.5 m (50 ns) FWHM, or στ ≈ 20 ns. The
bunched beam was kicked longitudinally by phase-shifting the rf cavity wave form

(see Sec. III.3). A function generator was used to generate a 0 to 10 V square wave
to control the phase kick. The rf phase lock feedback loop, which normally locks the

rf cavity to the beam, was switched off. The resulting phase oscillations of the bunch
relative to the rf wave form were measured by a phase detector, which was used to

calibrate the control voltage for the phase shifters versus the actual phase shift. Both
the phase error due to control nonlinearity and the parasitic amplitude modulation

of the IUCF Cooler rf systems were kept to less than 10%. The response time of the

step phase shifts was limited primarily by the inertia of the rf cavities, which had a
quality factor Q of about 40. The magnitude of the phase shift was varied by the size

of the applied step voltage.

The spectrum analyzer (SA), set at frequency span 0 Hz, video bandwidth 100

Hz, resolution bandwidth 100 Hz, was triggered about 5 ms before the phase shift.
The power observed at a synchrotron sideband from the SA is shown in Fig. 3.36,

where the top and bottom traces respectively show the SA responses at f0 − fs and
6f0 − fs vs time. The kicked amplitude was 90 ns, or equivalently ω0τk = 0.58 rad.

The resolution bandwidth of SA was 100 Hz, thus the measurement of the sideband
power was taken at 10 ms after the phase kick. The sideband power shown in Fig. 3.37

was proportional to |A1,1|2 for the upper trace and |A6,1|2 for the lower trace.

Since ω0τk ≈ 0.58 and στ = 20 ns for the case shown in Fig. 3.36, we find A1,1 ∼
e−0.0083J1(0.58), and A6,1 ∼ e−0.299J1(3.48). The initial power at the fundamental
harmonic sideband, which is proportional to |A1,1|2, after the phase kick will be a

factor of 6 larger than that of the 6th orbital harmonic. As the synchrotron phase
amplitude decreases because of electron cooling, the power A1,1 decreases because

J1(ω0τa) decreases with decreasing ω0τa, where τa is the synchrotron amplitude. On
the other hand, as 6ω0τa decreases, J1(6ω0τa) increases. Therefore the power spectrum

shown in the lower plot of Fig. 3.36 increases with time. Figure 3.37 shows the power

of the m = 1 sideband as a function of ωτ = nω0τk, where n is the revolution
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Figure 3.36: The synchrotron sideband power of
a kicked beam observed from an SA tuned to the
first revolution sideband (upper trace) and the 6th
revolution sideband (lower trace) vs time. The
revolution frequency was 1.03168 MHz. The set-
ting of the SA was resolution bandwidth 100 Hz,
video bandwidth 100 Hz, and frequency span 0
Hz. The sideband power decreased with time for
the first harmonic and increased for the 6th har-
monic, probably due to electron cooling in the
IUCF Cooler. The vertical axis is coherent syn-
chrotron power in dB per division, and the hori-
zontal axis is time at 10 ms per division.

harmonic. For a kicked Gaussian beam, the power Pn,1 is proportional to |An,1|2:

Pn,1 ∼ |An,1|2 = e−(nω0τk)
2(στ /τk)

2 |J1(nω0τk)|2. (3.278)

Because the actual power depends on the beam intensity, all data are normalized
at the first peak around nω0τk ≈ 1.8. Solid curves are obtained from Eq. (3.278)

normalized to the peak of experimental data. Finite bunch length suppresses the

power of higher order harmonics is clearly seen in the experimental data of Fig. 3.37.

Figure 3.37: Measured m = 1 synchrotron
sideband power vs frequency for different
phase kicked amplitudes is compared with the-
ory based on a Gaussian beam distribution.
Plots from top to bottom correspond to a kick-
ing amplitude (time) of 53, 90, 100 and 150 ns.
These data were normalized to the peak of the
theoretical predictions of Eq. (3.278) without
other adjustable parameter.

When a bunched beam encounters collective instability, the observed sideband
power |An,1|2 is proportional to the weighted average of the coherent mode density

ρ(τ̂ ) shown in Eq. (3.277). Measurement of An,1 for all orbital harmonics can be
used to obtain the coherent mode distribution function. Similarly, setting up the

central frequency at the second synchrotron harmonic, we can measure the m = 2
synchrotron modes for the kicked beam.

Difficulties of all spectra power measurements are (1) the measurement of power

depends on the resolution bandwidth so that it can not be measured in one single
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sweep; (2) BPMs or wall-gap monitors, amplifiers and attenuators are bandwidth

limited; and (3) the coherent signal is proportional to N2
B, and thus sensitive to beam

intensity during the measurement. However, the experiments can be parasitic without

interfering regular machine operation.

VII.2 Collective Microwave Instability in Coasting Beams

For coasting beams, there is no rf cavity and the unperturbed distribution function

is a function only of the off-momentum coordinate δ = Δp/p0. Let Ψ0(δ) be the
normalized distribution function with

∫
Ψ0dδ = 1. Because of the impedance of the

ring, the beam generates wakefields, which in turn perturb particle motion.

A self-consistent distribution function obeys the Vlasov equation

dΨ

dt
=

∂Ψ

∂t
+ θ̇

∂Ψ

∂θ
+ δ̇

∂Ψ

∂δ
= 0, (3.279)

where the overdot is the derivative with respect to time t. In the presence of a
wakefield, we assume a single longitudinal mode with the distribution function:

Ψ = Ψ0(δ) + ΔΨne
j(Ωt−nθ), (3.280)

where Ψ0 is the unperturbed distribution, Ω is the coherent frequency, θ is the or-
biting angle, and ΔΨn(δ) is the perturbation amplitude for the longitudinal mode

n. The perturbation causes density fluctuation along the machine, i.e. the collective
instability of mode number n can cause a coasting beam into n microbunches. In gen-

eral, the perturbing distribution function should be written as a linear superposition
of all possible modes. The frequencies of the collective motion are eigenfrequencies

of the coupled system.

By definition, the energy gain/loss per revolution due to the wakefield is equal to
the current times the longitudinal broadband impedance, and the time derivative of

the fractional off-momentum coordinate δ of a coasting beam become

ΔE
∣∣∣
per turn

= Z�

(
eI0

∫
ΔΨndδ

)
ej(Ωt−nθ),

δ̇ =
ω0

2πβ2E

(
eI0Z�

∫
ΔΨndδ

)
ej(Ωt−nθ). (3.281)

where the impedance is evaluated at the collective frequency Ω. Since |ΔΨn| � Ψ0

at the onset threshold of collective instability, we linearize the Vlasov equation to

obtain

j(Ω− nθ̇)ΔΨn = −ω0eI0Z�
2πβ2E

∂Ψ0

∂δ

(∫
ΔΨndδ

)
. (3.282)
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Using θ̇ = ω and integrating Eq. (3.282), we obtain the dispersion relation

1 = j
eI0nω0 (Z�/n)

2πβ2E

�
∂Ψ0/∂δ

Ω− nω
dδ = j

eI0n
2ω0 (Z�/n)
2πβ2E

�
Ψ0

(Ω− nω)2
∂ω

∂δ
dδ, (3.283)

where partial integration has been carried out in the second equality.

The eigenfrequency Ω of the collective motion is the solution of the dispersion

relation. If the imaginary part of the coherent mode frequency is negative, i.e. ImΩ <
0, the perturbation amplitude grows exponentially, and the beam encounters the

collective microwave instability, where the terminology is derived from the fact that
the coherent frequency observed is in the microwave frequency range. With the

relation ω = ω0 − ω0ηδ, the dispersion integral can be analytically obtained for some
distribution functions of the beam. First we examine possible sources of longitudinal

impedance.

VII.3 Longitudinal Impedance

The impedance and the wake function are related by

Z�(ω) =
� ∞

−∞
W�(t)e−jωtdt, W�(t) =

1

2π

� ∞

−∞
Z�(ω)ejωtdω. (3.284)

Because the wake function is real and obeys the causality W�(t) = 0 for t < 0, the
impedance has the property: Z�(−ω) = Z∗

�(ω), i.e. the real part of the longitudinal

impedance is positive and is a symmetric function of the frequency. In fact, the
property of Z�(ω)/ω is similar to that of Z⊥(ω). Without making the effort to derive

them, we list below some sources of commonly used impedance models. Since the
wakefield obeys the causality principle, the impedance does not have singularities in

the lower complex plane. The real and imaginary parts of the impedance are related
by the Hilbert transform

ReZ�(ω) = − 1

π

�

P.V.

dω� ImZ�(ω�)
ω� − ω

, ImZ�(ω) = +
1

π

�

P.V.

dω�ReZ�(ω�)
ω� − ω

,

where P.V. stands for the principal value integral.

A. Space-charge impedance

Let a be the radius of a uniformly distributed coasting beam, and let b be the radius
of a beam pipe (Fig. 3.38). The electromagnetic fields of the coasting beam are

Er =

⎧⎪⎪⎨
⎪⎪⎩

eλr

2π�a2

eλ

2π�r

Bφ =

⎧⎪⎪⎨
⎪⎪⎩

μ0eλβcr

2πa2
r ≤ a

μ0eλβc

2πr
r > a

(3.285)
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Figure 3.38: Geometry of a uniformly dis-
tributed beam with radius a in a beam pipe
of radius b. The induced electric fields that
arise from impedance are shown schemati-
cally. The rectangular loop is used for the
path integral of Faraday’s law.

where λ is the particle’s line density, e is the charge, βc is the speed, and �0 and μ0

are the permittivity and permeability of the vacuum.

Consider a small fluctuation in the line density λ = λ0 + λ1e
j(Ωt−nθ) and current

I = I0 + I1e
j(Ωt−nθ), where I0 = eβcλ0 and I1 = eβcλ1. The perturbation generates

an electric field on the beam. Using Faraday’s law
∮

�Ed�� = − ∂

∂t

∫
�B · d�σ

along the loop shown in Fig. 3.38, where d�σ is the surface integral, we obtain

(Es − Ew)Δs+
eg0
4π�0

[λ(s+Δs)− λ(s)] = −Δs
μ0eβcg0

4π

∂λ

∂t
,

where Es and Ew are the electric fields at the center of the beam pipe and at the

vacuum chamber wall, and the geometry factor g0 = 1 + 2 ln(b/a) is obtained from
the integral along the radial paths from the beam center to the vacuum chamber

wall. If the impedance is averaged over the beam cross section, the geometric fac-
tor becomes g0 = 1

2
+ 2 ln (b/a). On the other hand, if the perturbation is on the

surface of the beam, the geometry factor becomes g0 = 2 ln(b/a). Assuming that

the disturbance is propagating at the same speed as the orbiting beam particles, i.e.
∂λ/∂t = −βc(∂λ/∂s), the electric field acting on the circulating beam becomes

Es = Ew − eg0
4π�0γ2

∂λ

∂s
, (3.286)

where the factor 1/γ2 arises from the cancellation of forces due to the electric and

magnetic fields.
For most accelerators, the vacuum chamber wall is inductive at low and medium

frequency range. Let L/2πR be the inductance per unit length, then the induced wall
electric field is

Ew =
L

2πR

dIw
dt

=
eβ2c2L

2πR

∂λ

∂s
. or Es = −e

[
g0

4π�0γ2
− β2c2L

2πR

]
∂λ

∂s
.

The total voltage drop in one revolution on the beam and the impedance are

ΔU = −eβcR
∂λ

∂s

[
g0Z0

2βγ2
− ω0L

]
;

Z�
n

= −ΔU

nI1
= −j

[
g0Z0

2βγ2
− ω0L

]
. (3.287)
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where βc = ω0R is the speed of the orbiting particles, Z0 = 1/�0c = 377 ohms is

the vacuum impedance, and we use R(∂λ/∂s) = (∂λ/∂θ) = −jnλ1, and eβcλ1 = I1,
The first term in Eq. (3.287) is the space-charge impedance and the second term

is the inductance of the vacuum chamber wall. Typical values of the space-charge
impedance at transition energy are listed in Table 3.7.

Table 3.7: Typical space-charge impedance at γ = γ
T
.

AGS RHIC Fermilab BST Fermilab MI KEKPS
γ

T
8.7 22.5 5.4 20.4 6.8

|Z‖,sc|/n [Ω] 13 1.5 30 2.3 20

B. Resistive wall impedance

The vacuum chamber wall is normally not perfectly conducting, and Ew can also
induce a resistive impedance part that depends on the conductivity, microwave fre-

quency, and skin depth. Because the resistivity of the vacuum chamber wall is finite,
part of the wakefield can penetrate the vacuum chamber and cause energy loss to

the beam. Penetration of electromagnetic wave into the vacuum chamber can be
described by Maxwell’s equations

∇× �E = −μ
∂ �H

∂t
, ∇× �H = �J = σc

�E, =⇒ ∇2 �E = μσc
∂ �E

∂t
, (3.288)

where σc is the conductivity and μ is the permeability. Here we use Ohm’s law, and
neglect the contribution from the displacement current provided that the frequency

of the electromagnetic wave is not very high.51 The electric field inside the conductor
becomes

�E = ŝ E0 exp{j(ωt− kx)}, k = (1− j)
√
|ω|σcμ/2.

where x is the depth into the vacuum chamber wall and k is the wave number.
The imaginary part of the wave number is the inverse of the penetration depth, or

equivalently, the skin depth is δskin =
√

2/μσcω. The electromagnetic fields penetrate
a skin depth inside the vacuum chamber wall. The resistance due to the electric field

becomes

Zreal
‖ ≈ 2πR

2πbσcδskin
=

Z0β

2b

( |ω|
ω0

)1/2

δskin,0, (3.289)

51For frequencies ω � σc/� ≈ σcZ0c ≈ 1019 Hz, where � is the permittivity, the displacement
current contribution to Maxwell’s equation is small.
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where Z0 is the vacuum impedance, β is Lorentz’s relativistic velocity factor, b is

the vacuum chamber radius, δskin,0 =
√

2/μσcω0 is the skin depth at the revolution
frequency ω0. Since the magnetic energy is equal to the electric energy, the magnitude

of the reactance is equal to the resistance. The resistive wall impedance becomes

Z‖(ω) = (1 + j sgn(ω))
Z0β

2b

( |ω|
ω0

)1/2

δskin,0, (3.290)

where the sign function, sgn(ω) = +1 if ω > 0 and −1 if ω < 0, is added so that the

impedance satisfies the causality condition.

C. Narrowband and broadband impedance

Narrowband impedance arise from parasitic modes in rf cavities and cavity-like struc-
tures in accelerators. Broadband impedance arise from vacuum chamber breaks,

bellows, and other discontinuities in accelerator components. The longitudinal nar-
rowband and broadband impedance can conveniently be represented by an equivalent

RLC circuit

Z(ω) =
Rsh

1 + jQ(ω/ωr − ωr/ω)
, (3.291)

where ωr is the resonance frequency, Rsh is the shunt impedance, and Q is the quality
factor. The high order mode (HOM) of rf cavities is a major source of narrowband

impedance. Parameters for narrowband impedance depend on the geometry and
material of cavity-like structures.

For a broadband impedance, the Q-factor is usually taken to be 1, and the res-

onance frequency to be the cut-off frequency ωr,bb = ω0R/b = βc/b,where ω0 is the

revolution frequency, R is the average radius of the accelerator, and b is the vacuum
chamber size. The magnitude of the broadband shunt impedance can range from 50

ohms for machines constructed in the 60’s and 70’s to less than 1 ohm for recently
constructed machines, where the vacuum chamber is carefully smoothed.

To summarize, the longitudinal impedance Z‖(ω)/ω or Z‖/n are schematically

shown in Fig. 3.39, where the solid and dashed lines correspond to the real and
imaginary parts respectively. The symmetry of the impedance as a function of ω is

also shown.

VII.4 Single Bunch Microwave Instability

The negative mass instability was predicted in 1960’s. Experimental observations
were obtained in the intersecting storage rings (ISR), where microwave signal was

detected in the beam debunching process. Subsequently, it was observed in almost

all existing high intensity accelerators.
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Figure 3.39: Schematic of a longitudinal
impedance that includes broadband, narrow-
band, and space-charge impedance. Including
the resistive wall impedance in the longitudinal
impedance, we find that |Re(Z‖/ω)| becomes
large at ω ≈ 0.

A. Negative mass instability without momentum spread

First, we consider negative mass instability. In the absence of momentum spread with

Ψ0(δ) = δd(δ), where δ = Δp/p0 and δd(x) is the Dirac δ-function, the solution of
Eq. (3.283) is (

Ω

nω0

)2

= −j
eI0 Z‖/n
2πβ2E

η . (3.292)

The condition for having a real Ω is−j(Z‖/n)η > 0. This condition is only satisfied
for a space-charge (capacitive) impedance below the transition energy, or an induc-

tive impedance above the transition energy. If Z‖/n is capacitive, e.g. space-charge

impedance, the collective frequency is a real number below the transition energy with
η < 0. This results in a collective frequency shift without producing collective insta-

bilities. On the other hand, if the impedance is inductive, the collective frequency
becomes a complex number below the transition energy, and the solution with a neg-

ative imaginary part gives rise to collective instability. For resistive impedance, the
beam with a zero momentum spread is unstable. Table 3.8 shows the characteristic

behavior of microwave collective instability.

Table 3.8: Characteristic behavior of collective instability without Landau damping.

Z‖/n capacitive inductive resistive
Below transition η < 0 stable unstable unstable
Above transition η > 0 unstable stable unstable

The terminology of “negative mass instability” is derived from a pure space charge

effect. Above the transition energy with η > 0, a higher energy particle takes longer
time to complete one revolution, or it appears to have a negative mass. Since the “mi-

crowave instability” resulting from the space-charge impedance occurs when η > 0, it
is also called negative mass instability. However, a beam with a small frequency spread

can also encounter microwave instability at γ < γ
T
if the impedance is inductive, or

resistive.
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B. Landau damping with finite frequency spread

For a beam with a finite momentum spread with η �= 0, the coherent mode frequency

can be obtained by solving the dispersion relation. In this case, there is a finite
region of impedance value where the growth rate of collective instability is zero, and

collective motion is Landau damped.
If the distribution function is a symmetric function of momentum deviation δ, the

threshold impedance for microwave instability is reflectively symmetric with respect
to the real part of the impedance. Depending on the actual distribution function, the

threshold of collective instability can be estimated from the dispersion relation.
For example, we consider a Gaussian beam model of a coasting beam given by

Ψ0 =
1√
2πσδ

exp

{
− δ2

2σ2
δ

}
,

where δ = Δp/p0 and σδ is the rms momentum spread. In the limit of small frequency

spread, the distribution becomes the Dirac δ-function. The rms frequency spread of
the beam becomes σω = ω0ησδ. The dispersion relation can be integrated to obtain

Z�
n

= j
4πβ2Eσ2

δη

eI0
J−1
G , (3.293)

JG =

√
2

π

∫ ∞

−∞

xe−x2/2

x+ Ω̃/(nω0ησδ)
dx = 2[1 + j

√
πyw(y)], (3.294)

where Ω̃ = Ω−nω0, and w(y) is the complex error function with y = −Ω̃/(
√
2nω0ησδ).

Asymptotically, we have JG → y−2 as y → ∞. Thus in the limit of zero detuning (or

zero frequency spread), Eq. (3.293) reduces to Eq. (3.292).
We usually define the effective U and V parameters, or U � and V � parameters as

U + jV =
eI0 (Z�/n)
2πβ2Eσ2

δη
, U � + jV � =

eI0 (Z�/n)
β2Eδ2

FWHM
η
. (3.295)

For the Gaussian beam, we find δ
FWHM

=
√
8 ln 2 σδ. In terms of U and V parameters,

Eq. (3.293) becomes −j(U + jV )JG/2 = 1.

The solid line in the left plot of Fig. 3.40 shows the threshold V � vs U � parameters
of collective microwave instability with Im(Ω) = 0. Dashed lines inside the thresh-

old curve correspond to stable motion, and the dashed lines outside the threshold
curve are unstable with growth rates −(ImΩ)/

√
2 ln 2ω0ησδ = 0.1, 0.2, 0.3, 0.4, and

0.5 respectively. The right plot of Fig. 3.40 shows the threshold V � vs U � parameters,
from inside outward, for the normalized distribution functions Ψ0(x) = 3(1 − x2)/4,

8(1 − x2)3/2/3π, 15(1− x2)2/16, 315(1− x2)4/32, and (1/
√
2π) exp(−x2/2). All dis-

tribution functions, except the Gaussian distribution, are limited to x ≤ 1. Note

that a distribution function with a softer tail, i.e. a less sudden cutoff, gives a larger

stability region in the parametric space.
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Figure 3.40: Left: The solid line shows the parameters V ′ vs U ′ for a Gaussian beam
distribution at a zero growth rate. Dashed lines inside the threshold curve are stable. They
correspond to −ImΩ/(

√
2 ln 2ω0ησδ) = −0.1,−0.2,−0.3,−0.4, and −0.5. Dashed lines

outside the threshold curve have growth rates −ImΩ/(
√
2 ln 2ω0ησδ) = 0.1, 0.2, 0.3, 0.4,

and 0.5 respectively. Right: The threshold V ′ vs U ′ parameters for various beam distribu-
tions.

C. Keil-Schnell criterion

Figure 3.40 show that the stability region depends on beam distribution. Based on

experimental observations and numerical calculations of the dispersion relation, a
simplified estimation of the stability condition is to draw a circle around the origin

in the impedance plane, called the Keil-Schnell criterion:
∣∣∣∣
Z‖
n

∣∣∣∣ ≤
2πβ2Eσ2

δ |η|F
eI0

, (3.296)

where F is a form factor that depends on the distribution function. For a Gaussian

beam, F = 1; and for a tri-elliptical distribution with Ψ0(x) = 8(1 − x2)3/2/3π,
F ≈ 0.94 [5, 6, 7]. The total longitudinal energy drop from impedance, eI0|Z‖|, per
unit frequency spread n|η|√2πσδ for mode number n should be less than the total

energy spread
√
2πβ2Eσδ of the beam. Since the microwave growth rate is usually

fast, and the the wavelength of the coherent wave is usually small compared with the

bunch length, the Keil-Schnell criterion at threshold of instability can be applied to
the bunched beam by replacing the average current I0 by the peak current Î:52

∣∣∣∣
Z‖
n

∣∣∣∣ ≤
2πβ2Eσ2

δ |η|F
eÎ

, (3.297)

52E. Keil and W. Schnell, CERN-ISR-TH-RF/69-48 (July 1969); A.G. Ruggiero and V.G. Vaccaro,
CERN ISR TH/68-33 (1968); Since the growth rate of the microwave instability is normally very fast,
the threshold condition can be obtained from the local peak current of the beam, called Boussard
conjecture, which has been well tested in the Intersecting Storage Ring (ISR). See e.g. J.M. Wang
and C. Pellegrini, Proc. 11th HEACC, p. 554 (1980).
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where I0 = NBef is the average bunch current, Î = FBI0, and FB = 2π/
√
2πσθ is the

bunching factor, where σθ = ω0σΔt is the bunch length in orbiting angle.

D. Microwave instability near transition energy

Near the transition energy, Landau damping for microwave single bunch instability
vanishes because of a small synchrotron frequency spread. The Keil-Schnell criterion

is not applicable in this region. For a pure capacitive impedance, e.g. space-charge
impedance, instability occurs when γ ≥ γ

T
. For a pure inductance impedance, in-

stability exists only below transition. Since the beam distribution function is non-
adiabatic in the transition energy region, determination of microwave instability needs

careful evaluation of the dispersion integral.

We assume a model of collective microwave instability such that the longitudinal

modes are nearly decoupled and thus the coherent growth rate can be obtained by
solving the dispersion relation Eq. (3.283). Furthermore, we assume a Gaussian beam

model with the threshold impedance determined by the peak current. The peak

current is located at the center of the bunch Δφ = 0. The distribution function and
the peak current become (see Sec. IV.1)

Ψ0(δ) =

√
3αδδ

π
e−3αδδδ

2

, Î = I0

√
3(αφφαδδ − α2

φδ)

παδδ
= I0

√
3π

Ã
√
αδδ

, (3.298)

where αδδ is given by Eq. (3.140), I0 is the average current and Ã is the rms phase-
space area of the beam. The dispersion integral can be integrated to obtain the

coherent mode frequency given by

1 = j
3eI0 (Z�/n)
2π3/2β2Eη

π
√
3αδδ

Ã
J−1
G , (3.299)

JG = 2[1 + j
√
πyw(y)], y = − Ω

nω0η

√
6αδδ.

For a given broadband impedance model with constant Z�/n, we can find the eigen-
value of the growth rate Im (Ω(t)) by solving Eq. (3.299).53

The solution of Eq. (3.299) shows that the growth rate near the transition energy is
nearly equal to the growth rate without Landau damping. This is easy to understand:

at γ = γ
T
, the frequency spread of the beam becomes zero, and Landau damping

vanishes. Fortunately, the growth rate is also small at γ ≈ γ
T
.

53See e.g. S.Y. Lee and J.M. Wang, IEEE Trans. Nucl. Sci. NS-32, 2323 (1985). The impedance
model Z‖/n = 5− j(Z‖,sc/n) ohms was used to study the growth rate around the transition energy
for RHIC. Microwave instability below transition may arise from the real impedance. Because of a
large space-charge impedance, the growth rate appears to be larger above the transition energy.
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The total growth factor across the transition energy region can be estimated by

G = exp

{∫
(−ImΩ)unstabledt

}
. (3.300)

The total growth factor is a function of the scaling variable |Z‖/n|Nb/Ã. Note that

the growth factor is much smaller if the initial phase-space area is increased. Phase-
space dilution below transition energy has become a useful strategy in accelerating

high intensity proton beams through transition energy. The CERN PS and the AGS
employ this method for high intensity beam acceleration. Bunched beam dilution can

be achieved either by using a high frequency cavity as noise source or by mismatched
injection at the beginning of the cycle.

The distribution function model Eq. (3.298) does not take into account nonlinear

synchrotron motion near the transition energy. For a complete account of microwave
instability, numerical simulation is an important tool near transition energy.54 A

possible cure for microwave instability is to pass through transition energy fast with
a transition energy jump. Furthermore, blow-up of phase-space area before transition

energy crossing can also alleviate the microwave growth rate.

We have discussed microwave instabilities induced by a broadband impedance.
In fact, it can also be generated by a narrowband impedance. Longitudinal bunch

shapes in the KEK proton synchrotron (PS) were measured by a fast bunch-monitor
system, which showed the rapid growth of the microwave instability at the frequency

of 1 GHz and significant beam loss just after transition energy.55 Temporal evolu-
tion of the microwave instability is explained with a proton-klystron model. The

narrowband impedance of the BPM system causes micro-bunching in the beam that
further induces wakefield. The beam-cavity interaction produces the rapid growth of

the microwave instability. This effect is particularly important near the transition
energy, where the frequency spread of the beam vanishes, and the Landau damping

mechanism disappears.

E. Microwave instability and bunch lengthening

When the current is above the microwave instability threshold, the instability can
cause micro-bunching. The energy spread of the beam will increase until the stability

condition is satisfied. For proton or hadron accelerators, the final momentum spread
of the beam may be larger than that threshold value caused by decoherence of the

synchrotron motion.

54W.W. Lee and L.C. Teng, Proc. 8th Int. Conf. on High Energy Accelerators, CERN, p. 327
(1971); J. Wei and S.Y. Lee, Part. Accel. 28, 77-82 (1990); S.Y. Lee and J. Wei, Proc. EPAC,
p. 764 (1989); J. McLachlan, private communications on ESME Program.

55See e.g. K. Takayama et al., Phys. Rev. Lett., 78, 871 (1997).
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Due to synchrotron radiation damping in electron storage rings, the final mo-

mentum spread and the bunch length are determined by the microwave instability
threshold of Eq. (3.297):

σθ = ω0σt =
|η|
νs

σδ =

(
eI0|ηZ‖/n|

(2π)3/2Fν2
s β

2E

)1/3

, (3.301)

where νs is the synchrotron tune. Note that the bunch length depends only on the
parameter ξ = (I0|η|/ν2

s β
2E) provided that the impedance does not depend on the

bunch length. Chao and Gareyte showed that the bunch lengths of many electron
storage rings scaled as σθ ∼ ξ1/(2+a). This is called Chao-Gareyte scaling law. For

a broadband impedance, we have a = 1. The scaling law is not applicable if the

impedance depends on the beam current and bunch length.

F. Microwave instability induced by narrowband resonances

At low energy, the longitudinal space charge potential, shown as the first term in
Eq. (3.287), can be large for high intensity beam bunch. It requires a costly large rf

cavity potential to keep beam particles bunched inside the rf bucket. In particular,
if it requires a beam gap for a clean extraction, and for minimizing the effect of the

electron-cloud instability.

The longitudinal space charge potential can be compensated by the inductive
impedance shown in the second term of Eq. (3.287). We consider a cavity with ferrite

ring filling a pillbox. The inductance is

L =
2μ′μ0�

4π
ln

R2

R1
, (3.302)

where μ′ is the real part of the ferrite permittivity, R1 and R2 are the inner and outer

radii of the ferrite rings, and � is the length of the pillbox cavity. The inductive inserts

carried out at PSR experiment employs coaxial pillbox cavity with 30 ferrite rings each
with width 2.54 cm, 12.7 cm inner diameter (id), and 20.3 cm outer diameter (od).

The Proton Storage Ring (PSR) at Los Alamos National Laboratory compresses high
intensity proton beam from the 800 MeV linac into a bunch of the order of 250 ns.

The parameters for PSR are C = 90.2 m, γT = 3.1, νx = 3.2, νz = 2.2, νs = 0.00042,
and f0 = 2.8 MHz.

To cancel the space charge impedance at 800 MeV for PSR at the harmonic h = 1,
one requires about 3 pillbox cavities. The experimental test for this experiment was

indeed successful. Unfortunately, the beam also encounters collective microwave beam
instability at high intensity. Figure 3.41 shows the microbunching of the beam under

the action of three ferrite inserts when an initial bunched coasting beam injected into
the ring. The instability is landau damped by heating up the ferrite core to change

its permeability and lower the Q-value of the TM010 mode.56

56M.A. Plum, et al., Phys. Rev. Special Topics, Accelerators and Beams, 2, 064201 (1999); C.
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Figure 3.41: The longitudinal beam profile at
PSR encountered microwave instability caused
by inductive inserts, where three 1-m long fer-
rite ring cavities were installed in the PSR
ring. The injected beam was a uniformly dis-
tributed bunched-coasting beam with cavity off.
After threshold intensity is encountered, the
impedance causes microbunching in the beam.
[Courtesy of R. Macek, LANL]

The microwave instability is induced by a narrowband impedance with Q ≈ 1
at the center frequency of fres ≈ 27f0. Although the inductive inserts can be used
to cancel the space charge impedance, the pillbox cavity can generate a narrowband
impedance to cause microwave instability of the beam at higher harmonics. In order
to alleviate this problem, it is necessary to broaden the narrowband impedance by
either choosing different design geometries for different ferrite inserts, or by heating
the ferrite so that the imaginary part (μ��) of the permittivity is larger at the cavity
resonance frequency. At PSR, the cavities was heated to 125-150◦ C, so that the
beam is below the microwave instability threshold.

Exercise 3.7

1. In synchrotrons, beam bunches are filled with a gap for ion-clearing, abort, ex-
traction kicker rise time, etc. Show that the frequency spectra observed from a
BPM for short bunches filled with a gap have a diffraction-pattern-like structure:
sin(nMπ/N)/ sin(nπ/N) for M identical consecutive bunches in N buckets. Specif-
ically, find the frequency spectra for 10 buckets filled with 9 equal intensity short
bunches. The revolution frequency is assumed to be 1 MHz.

2. Show that the impedance of Eq. (3.291) has two poles in the upper half of the ω
plane, and find their loci. Use the inverse Fourier transformation to show that the
wake function of the RLC resonator circuit is (ω̃r = ωr

√
1− 1/4Q2)

W� =
Rshωr

Q
e−ωrt/2Q

[
cos ω̃rt− 1√

4Q2 − 1
sin ω̃rt

]
.

3. The parameters of the SLC damping ring are E = 1.15 GeV, νx = 8.2, νz = 3.2,
αc = 0.0147, γ�x,z = 15 π mm-mrad, σΔp/p = 7.1 × 10−4, Vrf = 800 kV, C = 35.270
m, h = 84, frf = 714 MHz, ρ = 2.0372 m, and the energy loss per revolution is
U0 = 93.1 keV. If the threshold of bunch lengthening is NB = 1.5 × 1010, use the
Keil-Schnell formula to estimate the impedance of the SLC damping ring.57

Beltran, Ph.D. thesis, Indiana University (2003).
57G.E. Fisher et al., Proc. 12th HEACC, p. 37 (1983); L. Rivkin, et al., Proc. 1988 EPAC, p. 634

(1988); see also P. Krejcik, et al., Proc. 1993 PAC, p. 3240 (1993). The authors of the last paper
observed sawtooth instability at the threshold current NB = 3× 1010.
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4. Assuming that the microwave instability growth rate is equal to the damping rate at
equilibrium, find the tolerable impedance as a function of the machine parameters.
Use Eq. (3.292) for The growth rate of microwave instability in a quasi-isochronous
electron storage ring and the damping rate τs = 2ET0/JsU0, where E is the energy of
the particle, T0 is the revolution period, the damping partition Js ≈ 2, U0 = CγE

4/ρ,
Cγ = 8.85 × 10−5 m/(GeV3), and ρ is the bending radius.

5. Consider a pillbox-like cavity with length � (see Sec. VII.4). The cavity is filled with
ferrite rings with inner and outer radii a and b respectively. Show that the longitudinal
impedance for TM010 mode is58

Z�
�

= j
Z0

2πa

√
μ′ − jμ′′

�r

H
(1)
0 (kca)H

(2)
0 (kcb)−H

(1)
0 (kcb)H

(2)
0 (kca)

H
(1)
1 (kca)H

(2)
0 (kcb)−H

(1)
0 (kcb)H

(2)
1 (kca)

.

where H
(n)
m are Hankel functions which represent incoming and outgoing waves, Z0 =

377Ω is the impedance of free space. kc = ω
√
μ� = k

√
�r(μ

′ − jμ′′), k = ω
c = ω

√
μ0�0

in vacuum, �r is the relative permittivity and μ
′
and μ

′′
are the real and complex

parts of the relative complex permeability.

6. The equation of motion for the fractional off-momentum deviation of a particle is

dδ

dt
=

ω0

2πβ2E
[eV (sinφ− sinφs) + ΔU ] ,

where the second term in the bracket is the effect of voltage drop due to impedance
of the accelerator. Using the voltage drop of the space charge in Eq. (3.287), show
that the synchrotron Hamiltonian is

H(φ, δ) =
hηω0

2
δ2 +

ω0eV

2πβ2E
[cos φ− cosφs + (φ− φs) sinφs] +

hω0e
2cg0Z0NB

4πβ2γ2RE
ρ(φ),

where ρ(φ) is the normalized beam distribution in the synchrotron phase-angle, NB

is the number of particles in a bunch, g0 = 1+ 2 ln(b/a) is the geometric factor, R is
the mean radius of the accelerator. For a Gaussian normalized distribution function,

ρ(φ) = 1√
2πσφ

exp{− (φ−φs)2

2σ2
φ

}. Show that the Hamiltonian becomes

H(φ, δ) ≈ hηω0

2
δ2 − ω0e

4πβ2E

[
V cosφs − hecg0Z0NB

2γ2Rσ3
φ

]
(φ− φs)

2.

Note that the space charge produce potential well distortion, and synchrotron detun-
ing. At energies below the transition energy, where cosφs ≥ 0, the space charge force
tends to push particles away from the center. At energies above the transition energy,
the space charge force tends to focus the beam. As the beam bunch is accelerated
through the transition energy, the mis-match in the matched bunch length will set
off quadrupole mode oscillations. This phenomenon is called Sorenssen effect.59

58The general formula to calculate the shunt impedance is ΔV = −IZ‖ = −Es�, with Es the
longitudinal electric field, � the total length, and I obtained by Ampere’s law: I =

∮
Hdl = 2πaHφ.

59A. Sorrenssen, Particle Accelerators 6, 141 (1975).
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VIII Introduction to Linear Accelerators

By definition, any accelerator that accelerates charged particles in a straight line is
a linear accelerator (linac).60 Linacs includes induction linacs; electrostatic accel-

erators such as the Cockcroft-Walton, Van de Graaff and Tandem; radio-frequency
quadrupole (RFQ) linacs; drift-tube linacs (DTL); coupled cavity linacs (CCL); cou-

pled cavity drift-tube linacs (CCDTL); high-energy electron linacs, etc. Modern
linacs, almost exclusively, use rf cavities for particle acceleration in a straight line.

For linacs, important research topics include the design of high gradient acceleration
cavities, control of wakefields, rf power sources, rf superconductivity, and the beam

dynamics of high brightness beams.

Linacs evolved through the development of high power rf sources, rf engineering,

superconductivity, ingenious designs for various accelerating structures, high bright-

ness electron sources, and a better understanding of high intensity beam dynamics.
Since electrons emit synchrotron radiation in synchrotron storage rings, high energy

e+e− colliders with energies larger than 200 GeV per beam can be effectively attained
only by high energy linacs. Current work on high energy linear colliders is divided

into two camps, one using superconducting cavities and the other using conventional
copper cavities. In conventional cavity design, the choice of rf frequency varies from

S band to millimeter wavelength at 30 GHz in the two beam acceleration scheme.
Research activity in this line is active, as indicated by bi-annual linac, and annual

linear collider conferences.

Since the beam in a linac is adiabatically damped, an intense electron beam bunch

from a high brightness source will provide a small emittance at high energy. The
linac has also been used to generate coherent synchrotron light. Many interesting

applications will be available using high brilliance coherent photon sources.

This section provides an introduction to a highly technical and evolving branch of
accelerator physics. In Sec. VIII.1 we review some historical milestones. In Sec. VIII.2

we discuss fundamental properties of rf cavities. In Sec. VIII.3 we present the general
properties of electromagnetic fields in accelerating cavity structures. In Sec. VIII.4

we address longitudinal particle dynamics and in Sec. VIII.5, transverse particle dy-
namics. Since the field is evolving, many advanced school lectures are available.

VIII.1 Historical Milestones

In 1924 G. Ising published a first theoretical paper on the acceleration of ions by

applying a time varying electric field to an array of drift tubes via transmission
lines; subsequently, in 1928 R. Wideröe used a 1 MHz, 25 kV rf source to accelerate

potassium ions up to 50 keV. The optimal choice of the distance between acceleration

60See Ref. [4]; G.A. Loew and R. Talman, AIP Conf. Proc. 105, 1 (1982); J. Le Duff, CERN
85-19, p. 144 (1985).
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gaps is d = βλ/2 = βc/2f, where d is the distance between drift tube gaps, βc is the

velocity of the particle, and λ and f are the wavelength and frequency of the rf wave.
A Wideröe structure is shown in the top plot of Fig. 1.4. In 1931–34 E.O. Lawrence,

D. Sloan et al., at U.C. Berkeley, built a Wiederöe type linac to accelerate Hg ions
to 1.26 MeV using an rf frequency of about 7 MHz.61 At the same time (1931-1935)

K. Kingdon at the General Electric Company and L. Snoddy at the University of
Virginia, and others, accelerated electrons from 28 keV to 2.5 MeV.

The drift tube distance could be minimized by using a high frequency rf source.
For example, the velocity of a 1 MeV proton is v = βc = 4.6×10−2c, and the length of

drift space in a half cycle at rf frequency frf = 7 MHz is 1
2
vf−1

rf ≈ 1 m. As the energy
increases, the drift length becomes too long. The solution is to use a higher frequency

system, which became available from radar research during WWII. In 1937 the Varian

brothers invented the klystron at Stanford. Similarly, high power magnetrons were
developed in Great Britain.62

However, the accelerator is almost capacitive at high frequency, and it radiates
a large amount of power P = IV , where V is the accelerating voltage, I = ωCV

is the displacement current, C is the capacitance between drift tubes, and ω is the
angular frequency. The solution is to enclose the gap between the drift tubes in a

cavity that holds the the electromagnetic energy in the form of a magnetic field by
introducing an inductive load to the system. To attain a high electric field, the cavity

is designed to have a resonant frequency that synchronizes with the particle motion.
An acceleration cavity is a structure in which the longitudinal electric field can be

stored at the gap for particle acceleration, as shown in Fig. 3.42.

Figure 3.42: Left: Schematic drawing of a
single gap cavity fed by an rf source. The rf
currents are indicated by j on the cavity wall.
Middle: A two-gap cavity operating at π-mode,
where the electric fields at two gaps have oppo-
site polarity. Right: A two-gap cavity operating
at 0-mode, where the electric fields at all gaps
have the same polarity. In 0-mode (or 2π-mode)
operation, the rf currents on the common wall
cancel, and the wall becomes unnecessary.

When two or more cavity gaps are adjacent to each other, the cavity can be
operated at π-mode or 0-mode, as shown in Fig. 3.42. In 0-mode, the resulting

current is zero at the common wall so that the common wall is useless. Thus a group
of drift tubes can be placed in a single resonant tank, where the field has the same

61G. Ising, Arkiv für Matematik o. Fisik 18, 1 (1924); R. Wideröe, Archiv für Electrotechnik 21,
387 (1928); D.H. Sloan and E.O. Lawrence, Phys. Rev. 32, 2021 (1931); D.H. Sloan and W.M.
Coate, Phys. Rev. 46, 539 (1934).

62The power source of present day household microwave ovens is the magnetron.
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phase in all gaps. Such a structure (see Fig. 1.4) was invented by L. Alvarez in

1945.63 In 1945–47 L. Alvarez, W.K.H. Panofsky, et al., built a 32 MeV, 200 MHz
proton drift tube linac (DTL). Drift tubes in the Alvarez structure are in one large

cylindrical tank and powered at the same phase. The distances between the drift
tubes, d = βλ,64 are arranged so that the particles, when they are in the decelerating

phase, are shielded from the fields.

In 1945 E.M. McMillan and V.I. Veksler discovered the phase focusing principle,
and in 1952 J. Blewett invented electric quadrupoles for transverse focusing based

on the alternating gradient focusing principle. These discoveries solved the 3D beam
stability problem, at least for low intensity beams. Since then, Alvarez linacs has

commonly been used to accelerate protons and ions up to 50–200 MeV kinetic energy.

In the ultra relativistic regime with β → 1, cavities designed for high frequency

operation are usually used to achieve a high accelerating field. At high frequencies, the
klystron, invented in 1937, becomes a powerful rf power source. In 1947-48 W. Hansen

et al., at Stanford, built the MARK-I disk loaded linac yielding 4.5 MeV electrons in
a 9 ft structure powered by a 0.75 MW, 2.856 GHz magnetron.65 On September 9,

1967, the linac at Stanford Linear Accelerator Center (SLAC) accelerated electrons
to energies of 20 GeV. In 1973 P. Wilson, D. Farkas, and H. Hogg, at SLAC, invented

the rf energy compression scheme SLED (SLAC Energy Development) that provided
the rf source for the SLAC linac to reach 30 GeV. In 1990’s, SLAC has achieved 50

GeV in the 3 km linac.

Another important idea in high energy particle acceleration is acceleration by trav-
eling waves.66 The standing wave cavity in a resonant structure can be decomposed

into two traveling waves: one that travels in synchronism with the particle, and the

backward wave that has no net effect on the particle. Thus the shunt impedance of a
traveling wave structure is twice that of a standing wave structure except at the phase

advances 0 or π. To regain the factor of two in the shunt impedance for standing
wave operation, E. Knapp and D. Nagle invented the side coupled cavity in 1964.67

In 1972 E. Knapp et al. successfully operated the 800 MHz side coupled cavity linac
(CCL) to produce 800 MeV energy at Los Alamos. In 1994 the last three tanks of

63L. Alvarez, Phys. Rev. 70, 799 (1946).
64It appears that the distance between drift tubes for an Alvarez linac is twice that of a Wideröe

linac, and thus less efficient. However, the use of a high frequency rf system in a resonance-cavity
more than compensates the requirement of a longer distance between drift tubes.

65E.L. Ginzton, W.W. Hanson and W.R. Kennedy, Rev. Sci. Instrum. 19, 89 (1948); W.W.
Hansen et al., Rev. Sci. Instrum. 26, 134 (1955).

66J.W. Beams at the University of Virginia in 1934 experimented with a traveling-wave acceler-
ator for electrons using transmission lines of different lengths attached to a linear array of tubular
electrodes and fed with potential surges generated by a capacitor-spark gap circuit, similar to the
system proposed by Ising. Burst of electrons were occasionally accelerated to 1.3 MeV. See J.W.
Beams et. al., Phys. Rev. 44, 784 (1933); Phys. Rev., 45,849 (1934).

67E. Knapp et al., Proc. 1966 linac Conf., p. 83 (1966).
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the DTL linac at Fermilab were replaced by CCL to upgrade its proton energy to

400 MeV. Above β ≥ 0.3, CCL has been widely used for proton beam acceleration.
A combination of CCL with DTL produces the CCDTL structure suitable for high

gradient proton acceleration.
For the acceleration of ions, the Alvarez linac is efficient for β > 0.04. The

acceleration of low energy protons and ions relies on DC accelerators such as the
Cockcroft-Walton or Van de Graaff. In 1970 I. Kapchinskij and V. Teplyakov at

ITEP Moscow invented the radio-frequency quadrupole (RFQ) accelerator. In 1980
R. Stokes et al. at Los Alamos succeeded in building an RFQ to accelerate protons

to 3 MeV. Today RFQ is commonly used to accelerate protons and ions for injection
into linacs or synchrotrons.

Since the first experiment on a superconducting linear accelerator at SLAC in

1965, the superconducting (SC) cavity has become a major branch of accelerator
physics research. In the 1970’s, many SC post linear accelerators were constructed

for the study of heavy ion collisions in nuclear physics.68 Recently, more than 180 m
of superconducting cavities have been installed in CEBAF for the 4 GeV continuous

electron beams used in nuclear physics research. More than 400 m of SC cavities at
about 7 MV/m were installed in LEP energy upgrade, and reached 3.6 GV rf voltage

for the operation of 104.5 GeV per beam in 2000.69 The TESLA project had also
successfully achieved an acceleration gradient of 35 MV/m.

VIII.2 Fundamental Properties of Accelerating Structures

Fundamental properties of all accelerating structures are the transit time factor, shunt

impedance, and Q-value. These quantities are discussed below.

A. Transit time factor

We consider a standing wave accelerating gap, e.g. the Alvarez structure, and assume

that the electric field in the gap is independent of the longitudinal coordinate s. If E
is the maximum electric field at the acceleration gap, the accelerating field and the

energy gain in traversing the accelerating gap are

Es = E cosωt, (3.303)

ΔE = e

∫ g
2

− g
2

E cos
ωs

v
ds = eEgTtr = eV0, Ttr =

sin(πg/βλ)

πg/βλ
,

where V0 = EgTtr is the effective voltage of the gap, Ttr is the transit time factor,

λ = 2πc/ω is the rf wavelength, and πg/βλ is the rf phase shift across the gap. If the

68See e.g., H. Piel, CERN 87-03, p. 376 (1987); CERN 89-04, p. 149 (1994), and references
therein. These low energy SC cavities are essentially drift-tube type operating at λ/4 or λ/2 modes.

69P. Brown et al., Proceedings of PAC2001, p. 1059 (IEEE, 2001).
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gap length of a standing wave structure is equal to the drift tube length, i.e. g = βλ/2,

the transit time factor is Ttr = sin(π/2)/(π/2) = 0.637. This means that only 63%
of the rf voltage is used for particle acceleration. To improve the efficiency, the gap

length g should be reduced. However, a small g can lead to sparking at the gap. Since
there is relatively little gain for g < βλ/4, the gap g is designed to optimize linac

performance. The overall transit time factor for standing wave structures in DTL
is about 0.8. The transit time factor of Eq. (3.303) is valid for the standing wave

structure. The transit time factor for particle acceleration by a guided wave differs
from that of Eq. (3.303). An example is illustrated in Exercise 3.8.7.

B. Shunt impedance

Neglecting power loss to the transmission line and reflections between the source

and the cavity, electromagnetic energy is consumed in the cavity wall and beam
acceleration. The shunt impedance for an rf cavity is defined as

Rsh = V 2
0 /Pd, (3.304)

where V0 is the effective acceleration voltage, and Pd is the dissipated power. For a
multi-cell cavity structure, it is also convenient to define the shunt impedance per

unit length rsh as

rsh =
Rsh

Lcav

=
E2

Pd/Lcav

or
dPd

ds
= −E2

rsh
, (3.305)

where E is the effective longitudinal electric field that includes the transit time factor,

and dPd/ds is the fraction of input power loss per unit length in the wall. The power

per unit length needed to maintain an accelerating field E is Pd/L = E2/rsh and the
accelerating gradient for low beam intensity is E =

√
rshPd/Lcav.

For a 200 MHz proton linac, we normally have rsh ≈ 15−50 MΩ/m, depending on
the transit time factors. For an electron linac at 3 GHz, rsh ≈ 100 MΩ/m. For high

frequency cavities, the shunt impedance is generally proportional to ω1/2 (see Exercise
3.8.4). A high shunt impedance with low surface fields is an important guideline in

rf cavity design. For example, using a 50 MW high peak power pulsed klystron, the
accelerating gradient of a 3 GHz cavity can be as high as 70 MV/m. The working

SLC S-band accelerating structure delivers about 20 MV/m.70

C. The quality factor Q

The quality factor is defined by Q = ωWst/Pd, and thus we obtain

dWst/dt = −Pd = −ωWst/Q; Wst = Wst,0e
−2t/tF,sw , tF,sw = 2QL/ω, (3.306)

70P. Raimondi, et al., Proceedings of the EPAC2000, (EPAC, 2000).
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where Wst is the maximum stored energy, QL is the loaded Q-factor that includes

the resistance of the power source, and tF,sw is the filling time for the standing wave
operation, which is the time for the field to decay to 1/e of its initial value. The Q-

factor of an accelerating structure is independent of whether it operates in standing
wave or traveling wave modes.

For a traveling wave structure, the stored energy per unit length, the power loss
per unit length, and the filling time for a traveling wave structure are respectively71

wst = Wst/Lcav;
dPd

ds
= −ωwst

Q
, or Q = − ωwst

dPd/ds
; (3.307)

tF,tw = Lcav/vg, (3.308)

where Lcav is the length of the cavity structure and vg is the velocity of the energy
flow. A useful quantity is the ratio Rsh/Q:

Rsh

Q
=

V 2
0

ωWst
, or

rsh
Q

=
(V0/Lcav)

2

ω(Wst/Lcav)
=

E2

ωwst
, (3.309)

which depends only on the cavity geometry and is independent of the wall material,

welds, etc.

VIII.3 Particle Acceleration by EM Waves

Charged particles gain or lose energy when the velocity is parallel to the electric

field. A particle traveling in the same direction as the plane electromagnetic (EM)
wave will not gain energy because the electric field is perpendicular to the particle

velocity. On the other hand, if a particle moves along a path that is not parallel
to the direction of an EM wave, it can gain energy. However, it will quickly pass

through the wave propagation region unless a wiggler field is employed to bend back
the particle velocity vector.72 Alternatively, a wave guide designed to provide electric

field along the particle trajectory at a phase velocity equal to the particle velocity is
the basic design principle of rf cavities.

The rf cavities for particle acceleration can be operated in standing wave or trav-

eling wave modes.73 Standing wave cavities operating at steady state are usually used
in synchrotrons and storage rings for beam acceleration or energy compensation of

synchrotron radiation energy loss. The standing wave can also accelerate oppositely
charged beams traveling in opposite directions. Its high duty factor can be used to

71We will show that the velocity of the energy flow is equal to the group velocity, vg = Pd/wst.
The conventional definition of standing wave filling time in Eq. (3.306) is twice that of the traveling
wave in Eq. (3.308).

72This scheme includes inverse free electron laser acceleration and inverse Cerenkov acceleration.
73See G.A. Loew, R.H. Miller, R.A. Early, and K.L. Bane, Proc. 1979 Part. Acc. Conf., p. 3701

(IEEE, 1979); R.H. Miller, SLAC-PUB-3935 (1988); see also Exercise 3.8.7.
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accelerate long pulsed beams such as protons, and continuous wave (CW) electron

beams in the Continuous Electron Beam Accelerator Facility (CEBAF). On the other
hand, employing high power pulsed rf sources, a traveling wave structure can attain

a very high gradient for the acceleration of an intense electron beam pulse.
In this section we study the properties of electromagnetic waves in cavities. These

waves are classified into transverse magnetic (TM) or transverse electric (TE) modes.
The phase velocity of the EM waves can be slowed down by capacitive or inductive

loading. We will discuss the choice of standing wave vs traveling wave operation, the
effect of shunt impedance, and the coupled cavity linac.

A. EM waves in a cylindrical wave guide

First we consider the propagation of EM waves in a cylindrical wave guide. Since
there is no ends for the cylindrical wave guide, the EM fields can be described by the

traveling wave component in Eq. (3.237) in Sec. VI.1 (see Appendix B Sec. IV). The
EM fields of the lowest frequency TM01 mode, traveling in the +ŝ direction, are

Es = E0J0(krr)e
−j[ks−ωt],

Er = j
k

kr
E0J1(krr)e

−j[ks−ωt], (3.310)

Hφ = j
ω

cZ0kr
E0J1(krr)e

−j[ks−ωt],

Eφ = 0, Hs = 0, Hr = 0,

where Z0 =
√

μ0/�0 is the vacuum impedance, (r, φ) is the cylindrical coordinate, s
is the longitudinal coordinate, k is the propagation wave number in the +ŝ direction,

and kr is the radial wave number:

k2 = (ω/c)2 − k2
r kr,mn = jmn/b, (3.311)

where the propagation modes are determined by the boundary condition for Es =
Eφ = 0 at the pipe radius r = b with jmn are zeros of the Bessel functions Jm(jmn) = 0

listed in Table B.1 in Appendix B Sec. IV.

The frequency of the TM01 mode is ω/c =
√
k2 + (2.405/b)2, shown in Fig. 3.43.

The subscript 01 stands for m = 0 in φ-variation, 1 radial-node at the boundary

of the cylinder [see Eq. (3.237)]. This mode is a free propagation mode along the
longitudinal ŝ direction. We define ωc = krc = 2.405c/b. The wave number of the

TM01 wave and the corresponding phase velocity vp become

k =
ω

c

[
1−

(ωc

ω

)2
]1/2

, vp =
ω

k
=

c

[1− (ωc/ω)2]1/2
> c. (3.312)

Unattenuated wave propagation at ω < ωc is not possible. Since the phase velocity

propagates faster than the speed of light, the particle can not be synchronized with
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the EM wave during acceleration. At low frequency, the wave travels forward and

backward with a very large phase velocity; it is not useful for particle acceleration.
At high frequency, the phase velocity approaches c. However, the electromagnetic

field is transverse; it becomes the transverse TEM wave, i.e.

Es

Er
= j

kr
k

→ 0,
Hφ

Er
=

ω

ckZ0
→ 1

Z0
.

Figure 3.43: Left: Schematic drawing of a
cylindrical cavity. Right: Dispersion curve
(ω/c)2 = k2+(2.405/b)2 for the TM01 wave.
The phase velocity ω/k for a wave without
cavity load is always greater than the ve-
locity of light. At high frequencies, where
kr → 0, the phase velocity approaches the
speed of light. However, the longitudinal
component of the EM wave vanishes.

B. Phase velocity and group velocity

Equation (3.310) represents an infinitely long pulse of EM waves in the cylindrical
wave guide. The phase of the plane wave, ks − ωt, travels at a phase velocity of

vp = ds/dt = ω/k. In reality, we have to discuss a short pulse formed by a group
of EM waves. Since the Maxwell equation is linear, the pulse can be decomposed in

linear superposition of Fourier series.

For a quasi-monochromatic pulse at frequency ω0 in free space, the electric field
can be represented by

E(t, s) = A(t)ej(ω0t−ks) =
1

2π

∫ ∫
A(ξ)ej[ωt−ks−ωξ+ω0ξ]dξdω

=
1

2π

∫ ∫
A(ξ)ej[ωt−k(ω)s−ωξ+ω0ξ]dξdω, (3.313)

where A(t) is the amplitude with a short time duration and we include the dispersion

of the wave number in Eq. (3.311). For a quasi-monochromatic wave at the angular
frequency ω0, we expand the dispersion wave number around ω0:

k(ω) = k(ω0) +
dk

dω

∣∣∣∣
ω0

(ω − ω0) = k0 + k�(ω − ω0). (3.314)

Substituting Eq. (3.314) into Eq. (3.313), we obtain E(t, s) = A(t − k�s) ej(ω0t−k0s).
Note that the phase of the pulse propagates at a “phase velocity” of vp = ω0/k0, and

the amplitude function of the EM pulse propagates at the “group velocity”

vg =
1

k� =
dω

dk

∣∣∣∣
ω0

. (3.315)
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Using Eq. (3.312) for single-mode wave propagation, we obtain vg = kc2/ω, or vpvg =

c2. From Fig. 3.43 we see that the group velocity is zero at k = 0.
In fact, the group velocity is equal to the velocity of energy flow in the wave guide

to be shown as follows: The power of the TM wave, the total energy per unit length
stored, and the velocity of the energy flow are

P =
1

2
Re

�

S

ErH
∗
φdS =

1

2
E2

0

kω

cZ0k2
r

� b

0

J2
1 (krr)2πrdr,

W = 2Wm =
1

2
E2

0

μω2

c2Z2
0k

2
r

� b

0

J2
1 (krr)2πrdr,

ve =
P

W
=

k

ω
c2 = vg,

where H∗
φ is the complex conjugate of Hφ, Wm is the magnetic energy. The velocity

of energy flow is equal to the group velocity.

C. TM modes in a cylindrical pillbox cavity

Now we consider a cylindrical pillbox cavity, where both ends of the cylinder are nearly
closed. The cylinder has a beam hole for the passage of particle beams (Fig. 3.44).

Here we discuss the standing wave solution of Maxwell’s equation for a “closed pillbox
cavity,” and the effect of beam holes. The effect of a chain of cylindrical cells on the

propagation of EM waves is discussed in the next section.

Figure 3.44: Left: Schematic of a cylindri-
cal cavity. Right: Dispersion curve (ω/c)2=
(pπ/d)2 + (2.405/b)2 for TM01p resonance
waves (marked as circles) for a closed cylin-
drical pillbox without beam holes. With
proper design of pillbox geometry, the phase
velocity of the TM010 mode can be slowed
to the particle speed for beam acceleration.

We first discuss the standing wave solution of a closed pillbox cavity without beam
holes. With a time dependent factor ejωt, the TM mode solution of Eq. (3.237) in

the closed cylindrical pillbox cavity is reproduced as follows:

⎧⎪⎨
⎪⎩

Es = Ck2
r Jm(krr) cosmφ cos ks,

Er = −Ckkr J �
m(krr) cosmφ sin ks,

Eφ = Cnk
1

r
Jm(krr) sinmφ sin ks,

⎧⎨
⎩

Hs = 0,

Hr = −jC
mω�0
r

Jm(krr) sinmφ cos ks,

Hφ = −jCω�0kr J
�
m(krr) cosmφ cos ks,

where the longitudinal magnetic field is zero for TMmodes, ω is the angular frequency,

and kr and k are wave numbers of the radial and longitudinal modes. The dispersion
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relation is ω/c =
√

k2
r + k2. Similarly, there are also TE modes where the longitudinal

electric field is zero.

Using the boundary conditions that Er = 0 and Eφ = 0 at s = 0 and d, we obtain
kd = pπ (p = 0, 1, 2, · · ·), where d is the length of the pillbox, kd is the phase advance

of the EM wave in the cavity cell. We also use the boundary conditions Es = 0 and
Eφ = 0 at the pipe radius r = b to obtain the radial modes kr,mnb = jmn, where b is

the inner radius of the cylinder, and jmn are zeros of the Bessel functions Jm(jmn) = 0

listed in Table B.1 (Appendix B Sec. IV).

In summary, the resonance frequency ω for the TMmnp mode is

ωmnp

c
=

√
j2mn

b2
+

p2π2

d2
. (3.316)

For the TM010 mode, we have k = 0 and ω/c = kr = 2.405/b shown as a circle on

Fig. 3.44. The electromagnetic fields for this mode are

Es = E0J0(krr), Bφ = j
E0

c
J1(krr). (3.317)

Figure 3.44 (right) show also the mode frequency of TM011 on the dispersion curve.
Both these modes have phase velocities greater than c.

To lower the phase velocity, beam hole radius a and cylinder radius b are tailored to

provide matched phase advance kd and phase velocity ω/k for the structure. Analytic

solution of Maxwell’s equations for an actual cavity geometry is difficult. The EM
wave modes can be calculated by finite element or finite difference EM codes with a

periodic boundary (resonance) condition and a prescribed phase advance kd across
the cavity gap.

The solid lines in Fig. 3.45 are the dispersion curves of frequency f vs phase shift

kd for TM0np modes of a SLAC-like pillbox cavity with a = 18 mm, b = 43 mm,
and d = 34.99 mm.74 Because of the coupling between adjacent pillbox-cavities, the

discrete mode frequencies become a continuous function of the phase advance kd, and
the phase-velocity is effectively lowered. The dashed lines show the world line vp = c.

The details of the TM010 mode are shown in the right plot. At f = 2.856 GHz, the

phase shift per cell is about 120◦, and the phase velocity vp is equal to c.

The frequencies of the TM modes 010, 011, 020, 021, 030 for a closed cylindrical
pillbox are shown as circles in the left plot of Fig. 3.45. Increasing the size of the beam

74The calculation was done by Dr. D. Li using MAFIA in 2D monopole mode. The wall thickness
chosen was 6.027 mm. The wall thickness slightly influences the mode frequencies of TM0n1 modes,
where the effective d parameter is reduced for a single cell structure. The actual SLAC structure
is a constant gradient structure with frequency of f = 2.856 GHz, phase advance of 2π/3, length
of the structure of L = 3.05 m, inner diameter of 2b = 83.461 − 81.793 mm, disk diameter of
2a = 26.22− 19.24 mm, and disk thickness of 5.842 mm. See also C.J. Karzmark, Xraig S. Nunan,
and Eiji Tanabe, Medical Electron Accelerators, (McGraw-Hill, New York, 1993).
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Figure 3.45: Left: Disper-
sion curves, f vs kd, for
TM01p modes for a pillbox
cavity with a = 18 mm,
b = 43 mm, and d =
34.99 mm. Circles show the
TM0np mode frequencies for
a closed pillbox cavity. The
dashed lines show the world
line vp = c. Right: Disper-
sion curve of TM010 mode.

hole decreases the coupling capacitance and increases the TM010 mode frequency.

More importantly, it provides a continuous TM mode frequency as a function of
wave number k. When the beam hole radius decreases, all mode frequencies become

horizontal lines. When the beam hole is completely closed, the mode frequencies
become discrete points, the circles in the left plot of Fig. 3.45.

Table 3.9: Parametric dependence of the SLAC cavity geometry
b (mm) d (mm) kd (deg) f (GHz) Rsh (MΩ) Q rsh (MΩ/m)
42.475 17.495 60 2.8579 0.5107 7713 29.2
42.000 26.24 90 2.853 1.2 10947 45.73
41.805 30.616 105 2.857 1.559 12413 50.92
41.685 34.99 120 2.854 1.874 13700 53.56
41.580 39.36 135 2.857 2.14 14848 54.37
41.415 46.653 160 2.857 2.416 16507 51.79
41.290 52.485 180 2.857 2.466 17646 46.98

Table 3.9 shows parametric dependence of a SLAC-like pillbox cavity at f = 2.856
GHz. Note that the shunt impedance per unit length is maximum at a phase advance

of about 135◦. The phase advance per cell at a given frequency is mainly determined
by the cell length.

D. Alvarez structure

The Alvarez linac cavity resembles the TM010 standing wave mode (see Table 3.10).
The tank radius and other coupling structures, such as rods and slugs inside the

cavity, are designed to obtain a proper resonance frequency for the TM010 mode, and
thus we have b ≈ 2.405c/ω. The resulting electric field of Eq. (3.317) is independent

of s. The total length is designed to have a distance βλ between two adjacent drift

tubes (cells), where βc is the speed of the accelerating particles. Since β increases
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along the line, the distance between drift tubes increases as well. Table 3.10 shows

some properties of an Alvarez linac, the SLAC cavity, and the CEBAF cavity.

Table 3.10: Some parameters of basic cylindrical cavity cells
Machine f (MHz) b (cm) d (cm) Ncell E (MV/m)
Alvarez linac 201.25 57.0

∑
i βiλ

Fermilab (cavity1) 47 744 55 1.60
Fermilab (cavity2) 45 1902 59 2.0
CEBAF SC cavity 1497 7.66 10. 5 5− 10
SLAC linac 2856 4.2 3.5 ≈ 100 20

E. Loaded wave guide chain and the space harmonics

The phase velocity must be brought to the level of the particle velocity, i.e. vp ≈ c.
A simple method of reducing the phase velocity is to load the structure with disks,

or washers. Figure 3.45 shows, as an example, frequency f vs phase advance kd of
the loaded SLAC-like pillbox cavity. Loaded cavity cells can be joined together to

form a cavity module. Opening a beam hole at the center of the cavity is equivalent
to a capacitive loading for attaining continuous bands of resonance frequencies. The

question is, what happens to the EM wave in a chain of cavity cells?
If the wave guide is loaded with wave reflecting structures such as iris, nose-

cone, etc., shown in Fig. 3.46 (top), the propagating EM waves can be reflected by

obstruction disks. The size of the beam hole determines the degree of coupling and
the phase shift from one cavity to the next. When the a, b parameters of the disk radii

are tailored correctly, the phase change from cavity to cavity along the accelerator
gives an overall phase velocity that is equal to the particle velocity. The reflected

waves for a band of frequencies interfere destructively so that there is no radial field
at the irises. Since the irises play no role in wave propagation, this gives rise to a

minor perturbation in the propagating wave. The dispersion relation in this case
resembles that in Fig. 3.43. At some frequencies the reflected waves from successive

irises are exactly in phase so that the irises force a standing wave pattern. At these
frequencies, unattenuated propagation is impossible, so that the EM wave becomes

a standing wave and the group velocity again becomes zero, i.e. the phase advance
kd = π. Such a chain of loaded wave guides can be used to slow the phase velocity

of EM waves.
With the Floquet theorem for the periodic wave guide, the EM wave of an infinitely

long disk loaded wave guide is

Ẽs(r, φ, s, t) = e−j[k0s−ωt]Es(r, φ, s), H̃φ(r, φ, s, t) = e−j[k0s−ωt]Hφ(r, φ, s),

Es(r, φ, s+ d) = Es(r, φ, s), Hφ(r, φ, s+ d) = Hφ(r, φ, s),
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Figure 3.46: Top: Schematic of a chain of cylin-
drical cavities. Bottom: Dispersion curve (ω/c) vs
k. The phase velocity ω/k with a cavity load is
equal to the speed of light at a specific point of
the dispersion curve, shown as the intersection of
the dashed diagonal line and the solid dispersion
curve. The solid line branches correspond to for-
ward traveling waves and the dashed line branches
are associated with backward traveling waves. The
q = 0 space harmonic corresponds to kd ∈ (−π, π),
and the q = 1 space harmonic to kd ∈ (π, 3π), etc.

Ẽs(r, φ, s, t) = e−j[k0s−ωt]

∞∑
q=−∞

Es,q(r, φ)e
−j2qπs/d = ejωt

∞∑
q=−∞

Es,q(r, φ)e
−jkqs,

where d is the period of the wave guide, the propagation wave number is kq = k0+
2πq
d

(q = integer) for the qth “space harmonic”, and k0 is the propagation wave number

of the “fundamental space harmonic.” These space harmonics are shown in Fig. 3.46.
We note further that as k0d → 0 or π, forward and backward traveling branches

coincide and they will contribute to enhance the electric field.

The field components of the lowest TM0n mode with cylindrical symmetry become

Ẽs =
∑
q

E0qJ0(kr,qr)e
−j[kqs−ωt], (3.318)

Ẽr = j
∑
q

kq
kr,q

E0qJ1(kr,qr)e
−j[kqs−ωt], (3.319)

H̃φ = j
1

Z0

∑
q

k0
kr,q

E0qJ1(kr,qr)e
−j[kqs−ωt], (3.320)

where the wave number and the phase velocity at a given frequency ω are

k2
q = (ω/c)2 − k2

r,q, vp,q =
ω

kq
=

ω

k0 + 2πq/d
. (3.321)

Note that kr,q = 0 and J0(kr,qr) = 1 for vp,q = c. This indicates that the electric field

of the qth space harmonic is independent of the transverse position.75

The dispersion curve of a periodic loaded wave-guide structure (or slow wave

structure) is a typical Brillouin-like diagram shown in Fig. 3.46, where the branches
with solid lines correspond to forward traveling wave, and the branches with dashed

75One may wonder how to reconcile the fact that the tangential electric field component Es must
be zero at r = b. The statement that the electric field is independent of transverse position is valid
only near the center axis of loaded wave-guide structures.
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dots are backward traveling wave. Because the dispersion curve is a simple translation

of 2π/d, and these curves must join, they must have zero slope at the lower frequency
ω0/c, where k0d = 0, and at the upper frequency ωπ/c, where k0d = π (see also

Fig. 3.45). The range of frequencies [ω0, ωπ] is called the pass band, or the propagation
band. The extreme of the pass band is k0d = π, where the group velocity is zero. At

k0d = π, the cavity has lowest rf loss,76 making this a favorable mode of operation
for accelerator modules.

The electric field at a snapshot is shown schematically in Fig. 3.47. At an instant
of time, it represents a traveling wave or the maximum of a standing wave. The upper

plot shows the snapshot of an electromagnetic wave. The lengths of kd = π, 2π/3,
and π/2 cavities are also shown. The arrows indicate the maximum electric field

directions. The lower plot shows a similar snapshot for kd = 0, π/2, 2π/3 and π
cavities.

Figure 3.47: Top: Snapshot of a sinusoidal wave
for phase advances kd = π/2, 2π/3, and π. Bottom:
Snapshot at the maximum electric field configuration
across each cell for kd = 0, π/2, 2π/3, and π phase
shift structures. The actual electromagnetic fields
must satisfy the periodic boundary conditions. The
snapshot represents the field pattern of a traveling
wave guide or the maximum field pattern of a stand-
ing wave. Note that only half of the kd = π/2 mode
has longitudinal electric field in the standing wave
mode. The resulting shunt impedance is half of that
in traveling wave operation.

The condition for wave propagation is −1 ≤ cos k0d ≤ 1. If we draw a horizontal

line in the dispersion curve within the pass band of the frequency, there are infinite
numbers of crossings between the horizontal line and the dispersion curve. These

crossings are separated into space harmonics. Higher order space harmonics have

no effect on a beam because they have very different phase velocity. Each point
corresponds to the propagation factor kq, which has an identical slope in the ω/c vs

k curve, i.e. an identical group velocity:

vg,q =
dω

dkq
=

dω

dk0
= vg. (3.322)

A module made of N cells resembles a chain of N weakly coupled oscillators.

There are N + 1 resonances located at

k0md = mπ/N (m = 0, 1, 2, · · · , N). (3.323)

76The rf loss is proportional to |Hφ|2 on the cavity wall.
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In the coupled RLC circuit model, the resonance frequency of the electric coupled

cavity is77

ωm = ω0 [1 + κ(1− cos k0md)]
1/2 , (3.324)

where ω0 is the resonance frequency without beam hole coupling, and κ is the cou-
pling coefficient. The resonance frequency can be more accurately calculated from

powerful finite difference, or finite element, programs such as 2D URMEL, SUPER-

FISH, LALA, and 3D MAFIA. The size and the length of cavity cells are also tailored
to actual rf sources for optimization.

The operating condition vp = c is equivalent to

k0 = ω/c, or kr,0 = 0

for the fundamental space harmonic [see Eq. (3.321)]. Since J0(kr,0r) = 1, the energy
gain of a charged particle is independent of its transverse position, i.e. the longitudinal

electric field of the fundamental space harmonic is independent of the radial position
within the radius of the iris. This implies that the transverse force on the particle

vanishes as well (see Sec. VIII.5).

F. Standing wave, traveling wave, and coupled cavity linacs

We have shown that the Alvarez linac operates at the standing wave TM010 mode,
with drift tubes used to shield the electric field at the decelerating phase. The effective

acceleration gradient is reduced by the transit time factor and the time the particle
spends inside the drift tube. On the other hand, a wave guide accelerator, where the

phase velocity is equal to the particle velocity, can effectively accelerate particles in
its entire length. A wave guide accelerator is usually more effective if the particle

velocity is high. There are two ways to operate high-β cavities: standing wave or
traveling wave.

The filling time of a standing wave structure is a few times the cavity filling time
2QL/ω, where QL is the loaded Q-factor, to allow time to build up its electric field

strength for beam acceleration. Standing wave cavities are usually used to accelerate
CW beams, e.g. the CEBAF rf cavity at the Jefferson Laboratory (see Table 3.10),

and long pulse beams, e.g. in the proton linacs and storage rings. In a storage ring, a
standing wave can be used to accelerate beams of oppositely charged particles moving

in opposite directions.

Standing wave operation of a module made of many cells may have a serious
problem of many nearby resonances. For example, if a cavity has 50 cells, it can have

standing waves at

kd = π,
49

50
π,

48

50
π, · · · .

77See Exercise 3.8.6. For magnetically coupled cavity, the resonance frequency is given by ω0 =

ω [1 + κ(1− cos k0d)]
1/2

.
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Since dω/dk = 0 for a standing wave at kd = 0 or π, these resonances are located

in a very narrow range of frequency. A small shift of rf frequency will lead to a
different standing wave mode. This problem can be minimized if the standing wave

operates at the kd = π/2 condition, where dω/dk has its highest value. However, the
shunt impedance in kd = π/2 mode operation is reduced by a factor of 2, because

only half of the cavity cells are used for particle acceleration. Similarly, the forward
traveling wave component of a standing wave can accelerate particles, the resulting

shunt impedance is 1/2 of that of a traveling wave structure except for the phase
advance kd = 0 or π (see Fig. 3.48).

Figure 3.48: A standing wave (left) can be de-
composed into forward and backward traveling waves
(right). Since only the forward traveling wave can ac-
celerate the beam, the shunt impedance is 1/2 of that
of the traveling wave structure except for kd = 0 and
π standing wave modes, where two neighboring space
harmonics contribute to regain the factor of two in
the shunt impedance. Note that the particle riding on
top of the right-going wave that has the phase velocity
equal to the particle velocity will receive energy gain

Since every other cavity cell has no electric fields in kd = π/2 standing wave
operation, these empty cells can be shortened or moved outside. This led to the

invention of the coupled cavity linac (CCL) by E. Knapp and D. Nagle in 1964. The
idea is schematically shown in Fig. 3.49.

Figure 3.49: A schematic drawing of the π/2 phase
shift cavity structure (top), where the field free regions
are shortened (middle), and moved outside to become
a coupled cavity structure (bottom).

The CCL cavities operate at π/2 mode, where field free cells are located outside
the main cavity cells. These field free cells are coupled to the main accelerating cavity

in the high magnetic field region. The electric field pattern of the main accelerating
cavity cells looks like that of a π-mode cavity. Such a design regains the other half of

the shunt impedance and provides very efficient proton beam acceleration for β > 0.3.
The high-β linac can also be operated as a traveling wave guide. There are divided

into “constant gradient” and “constant impedance” structures (see Exercise 3.8.8).
The accelerating cavities of a constant impedance structure are identical and the

power attenuation along the linac is held constant. On the other hand, the geometry

of accelerating cavities of a constant gradient structure are tapered to maintain a
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constant accelerating field along the linac. The filling time for a traveling wave guide

is Lcav/vg, where Lcav is the length of a cavity and vg is the group velocity. Typical
group velocity is about 0.05c. Table 3.10 lists the properties of SLAC linac cavity,

that is a constant gradient structure operating at a phase advance of 2π/3. With a
high peak power rf source, a traveling wave cavity can provide a high acceleration

gradient for intense electron beams.

G. High Order Modes (HOMs)

So far we have discussed only the fundamental mode of a cavity. In reality, high
order modes (HOMs) can be equally important in cavity design. Efforts are being

made to design or invent new cavity geometries with damped HOMs or detuned and
damped HOMs. Such efforts are instrumental for future linear colliders operating at

high frequencies.
These HOMs, particularly TM11p-like modes, can affect the threshold current of

a linac. When a beam is accelerated in cavities, it also generates long range and
short range wakefields. A long range wake can affect trailing bunches, and a short

range wake can cause a bunch tail to break up. These instabilities are called BBU
(beam break up, or beam blow up) instabilities, observed first in 1957.78 The BBU is a

transverse instability. Its threshold current can be increased by a quadrupole focusing
system. It also depends strongly on the misalignment of accelerating structure and

rf noise. Operation of the SLAC linac provides valuable information on transverse
instability of intense linac beams.79

VIII.4 Longitudinal Particle Dynamics in a Linac

Phase focusing of charged particles by a sinusoidal rf wave provides longitudinal sta-

bility in a linac. Let ts, ψs and Ws be the time, rf phase, and energy of a synchronous
particle, and let t, ψ, and W be the corresponding physical quantities for a non-

synchronous particle. We define the synchrotron phase space coordinates as

Δt = t− ts, Δψ = ψ − ψs = ω(t− ts), ΔW = W −Ws. (3.325)

The accelerating electric field is

E = E0 sin ωt = E0 sin(ψs +Δψ), (3.326)

where the coordinate s is chosen to coincide with the proper rf phase coordinate. The
change of the phase coordinate is

dΔψ

ds
= ω

(
dt

ds
− dts

ds

)
= ω

(
1

v
− 1

vs

)
≈ − ω

mc3β3
s γ

3
s

ΔW, (3.327)

78T.R. Jarvis, G. Saxon, and M.C. Crowley-Milling, IEEE Trans. Nucl. Sci. NS-112, 9 (1965).
79See J.T. Seeman, p. 255 in Ref. [19].
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where v = ds/dt and vs = ds/dts are the velocities of a particle and a synchronous

particle, and the subscript s is used for physical quantities associated with a syn-
chronous particle. This equation is in fact identical to Eq. (3.13), where ω/βsc is

equivalent to the harmonic number per unit length, ΔW/β2
sE is the fractional mo-

mentum spread, and −1/γ2
s is the equivalent phase slip factor. Since the momentum

compaction in a linac is zero, the beam in a linac is always below transition energy.
The energy gain from rf accelerating electric fields is80

dΔW

ds
= eE0 [sin(ψs +Δψ)− sinψs] ≈ eE0 cosψs Δψ. (3.328)

The Hamiltonian for the synchrotron motion becomes

H = − ω

2mc3β3γ3
(ΔW )2 + eE0 [cos(ψs +Δψ) + Δψ sinψs] . (3.329)

Hereafter, βs and γs are replaced by β and γ for simplicity. The linearized synchrotron

equation of motion is simple harmonic:

d2ΔW

ds2
= −k2

syn ΔW, ksyn =

√
eE0ω cosψs

mc3β3γ3
, (3.330)

where ksyn is the wave number of the synchrotron motion. For medium energy proton

linacs, ksyn is about 0.1 to 0.01 m−1, which is equal to the wave number of transverse
motion. Synchro-betatron coupling can be an important beam dynamics issue. For

high energy electrons, ksyn ∼ 1/
√
γ3 is small. The beam particles move rigidly in

synchrotron phase space, and thus the synchronous phase angle is normally chosen

as φs =
π
2
, i.e. electron bunches are riding on top of the crest of the rf wave. The

beam will get the maximum acceleration and a minimum energy spread.
In contrast to synchrotrons, the linac usually do not have repetitive periodic struc-

tures, the concept of synchrotron tune is not necessary. However, if there is a quasi-
periodic external focusing structures such as periodic solenoidal focusing systems,

FODO focusing systems, or periodic doublet focusing systems, etc., the synchrotron
tune can be defined as the νsyn = ksynL/(2π), where L is the length of the periodic

focusing system. Parametric synchrotron resonances can occur if mνsyn = � is sat-
isfied, where m and � are integers. Near a parametric synchrotron resonance, the

longitudinal phase space will form islands as discussed in Sec. III.

A. The capture condition in an electron linac with vp = c

Since βsγs changes rapidly in the first few sections of electron linac, the Hamiltonian

contour is not a constant of motion. Tori of phase space ellipses form a golf-club-like

80Note that the convention of the rf phase used in the linac community differs from that of the
storage ring community by a phase of π/2. In this textbook, we use the rf phase convention of the
storage ring community.
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shape, shown in Fig. 3.3. This section will show that all captured particles ride on

top of the rf wave.
In an electron linac operating at a phase velocity equal to c, what happens to

the injected electrons with velocities less than c? Let ψ be the phase angle between
the wave and the particle. Assuming constant gradient acceleration, the electric field

seen by the electron is E0 sinψ. Since the phase velocity and the particle velocity are
different, the path length difference between the EM wave and the particle in time

interval dt is

d� = (c− v)dt =
λ

2π
dψ,

dψ

dt
=

2πc

λ
(1− β), (3.331)

where λ = 2πc/ω is the rf wavelength, d�/λ = dψ/2π, and β = v/c. The particle
gains energy through the electric field, i.e.

d(γmv)

dt
= mc

d

dt

[
β

(1− β2)1/2

]
= eE0 sinψ, or

dζ

dt
= −eE0

mc
sinψ sin2 ζ,

where β = cos ζ . Using the chain rule dψ/dt = (dψ/dζ)(dζ/dt), we can integrate the
equation of motion to obtain

cosψ2 − cosψ1 =
2πmc2

eE0λ tan
ζ

2

∣∣∣∣
2

1

= −2πmc2

eE0λ
(
1− β1

1 + β1

)1/2

= −Yinj, (3.332)

where the indices 1 and 2 specify the injection and the captured condition respectively,
and we have used β2 = 1 and the relation

tan (ζ/2) = ((1− cos ζ)/(1 + cos ζ))1/2 = [(1− β)/(1 + β)]1/2 = γ −
√

γ2 − 1.

The capture condition, Eq. (3.332), favors a linac with a higher acceleration gradient

E0. If Yinj = 1.5, particles within an initial phase −π/3 < ψ1 < π/3 will be captured
inside the phase region π > ψ2 > 2π/3. If the factor Yinj = 1, all particles within

−π/2 < ψ1 < π/2 will be captured into the region π > ψ2 > π/2. In particular,
particles distributed within the range Δ > ψ1 > −Δ will be captured into the range

π/2 ≤ ψ2 ≤ π/2 + Δ2/2 (Δ � 1). For example, all injected beam with phase length
20◦ will be compressed to a beam with a phase length 3.5◦ in the capture process.

The capture efficiency and energy spread of the electron beam can be optimized
by a prebuncher. A prebuncher is usually used to prebunch the electrons from a

source, which can be thermionic or rf gun. We assume a thermionic gun with a DC
gun voltage V0, which is usually about 80–150 kV. Let the electric field and the gap

width of the prebuncher be E sin(ωt) and g. Electrons that arrive earlier are slowed
and that arrive late are sped up. At a drift distance away from the prebuncher,

the faster electrons catch up the slower ones. Thus electrons are prebunched into
a smaller phase extension to be captured by the buncher and the main linac (see

Exercise 3.8.9). All captured high energy electrons can ride on top of the crest of the

rf wave in order to gain maximum energy from the rf electric field.
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B. Energy spread of the beam

In a multi-section linac, individual adjustment of each klystron phase can be used to
make a bunch with phase length Δ ride on top of the rf crest, i.e. ψs =

π
2
. The final

energy spread of the beam becomes

ΔW

Ws
= 1− cos

Δ

2
=

Δ2

8
. (3.333)

This means that a beam with a phase spread of 0.1 rad will have an energy spread

of about 0.13 %. Thus the injection match is important in minimizing the final
energy spread of the beam. Other effects that can affect the beam energy are beam

loading, wakefields, etc. A train of beam bunches extracts energy from the linac
structure and, at the same time, the wakefield induced by the beam travels along at

the group velocity. Until an equilibrium state is reached, the energies of individual
beam bunches may vary.

C. Synchrotron motion in proton linacs

Since the speed of protons in linacs is not highly relativistic, the synchronous phase

angle ψs can not be chosen as π
2
. The synchrotron motion in ion linac is adiabatic. The

longitudinal particle motion follows a torus of the Hamiltonian flow of Eq. (3.329).

Table 3.11 lists bucket area and bucket height for longitudinal motion in proton linacs
(see also Table 3.2 for comparison), where αb(ψs) and Y (ψs) are running bucket factors

shown in Eqs. (3.35) and (3.38). The rf phase region for stable particle motion can
be obtained from ψu and π−ψs identical to those in the second the third columns of

Table 3.1.

Table 3.11: Properties of rf bucket in conjugate phase space variables

(ψ, ΔE
ω
) (ψ, δ)

Bucket Area 16
(

mβ3γ3c3eE0
ω3

)1/2

αb(ψs) 16
(

γeE0
ωβmc

)1/2

αb(ψs)

Bucket Height 2
(

mc3β3γ3eE0
ω3

)1/2

Y (ψs) 2
(

βcγ2eE0
ωβ2E

)1/2

Y (ψs)

The equilibrium beam distribution must be a function of the Hamiltonian, i.e.

ρ[H(ΔW/ω,Δψ)]. In small bunch approximation, the Hamiltonian becomes

H = − ω3

2mc3β3γ3
(
ΔW

ω
)2 − 1

2
eE0 cosψs (Δψ)2. (3.334)
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A Gaussian beam distribution with small bunch area becomes

ρ(
ΔW

ω
,Δψ) =

1

2πσΔW/ωσΔψ

eH/H0 , (3.335)

σΔW/ω =

√
H0mc3β3γ3

ω3
=

√
Arms

π

(
mc3β3γ3eE0 cosψs

ω3

)1/4

,

σΔψ =

√
H0

eE0 cosψs
=

√
Arms

π

(
ω3

mc3β3γ3eE0 cosψs

)1/4

,

where H0 is related to the thermal energy of the beam and the rms energy spread
and bunch width are given by where Arms is the rms phase space area in (eVs), i.e.

Arms = πσΔW/ωσΔψ. The bunch length in τ -coordinate is given by στ = σΔψ/ω.
Note that, for a constant phase space area Arms, we find σΔW ∼ (ωE0)1/4(βγ)3/4,
and στ ∼ (ωE0)−1/4(βγ)−3/4. However, the fractional momentum spread will decrease
when the beam energy is increased:

σΔp/p =

√
Arms

π

(
ωeE0 cosψs

m3c5β5γ

)1/4

. (3.336)

Examples for beam properties in the Fermilab DTL linac and SNS linacs are available

in Exercises 3.8.3 and 3.8.10 respectively.

VIII.5 Transverse Beam Dynamics in a Linac

Figure 3.50 shows the electric field lines between electrodes in an acceleration gap, e.g.,

the drift tubes of an Alvarez linac or the irises of a high-β linac. In an electrostatic
accelerator, the constant field strength gives rise to a global focusing effect because

the particle at the end of the gap has more energy so that the defocusing force is
weaker. This has been exploited in the design of DC accelerators such as the Van de

Graaff or Cockcroft-Walton accelerators.

Figure 3.50: A schematic drawing of electric field lines between
electrodes of acceleration cavities. Note that the converging field
lines contribute to a focusing effect in electrostatic accelerators.
For rf accelerators, the field at the exit end increases with time so
that the defocusing effect due to the diverging field lines is larger
than the focusing effect at the entrance end of the cavity gap. E.O.
Lawrence placed a screen at the end of the cavity gap to straighten
the electric field line. The screen produces a focusing force, but
unfortunately it also causes nuclear and Coulomb scattering.

For rf linear accelerators, phase stability requires π/2 > ψs > 0 (below transition

energy), and field strength increases with time during the passage of a particle. Thus
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the defocusing force experienced by the particle at the exit end of the gap is stronger

than the focusing force at the entrance of the gap.
Using Eq. (3.310), the EM field of TM010 mode is

Es = E0 sin ψ, Er = +
ωr

2vp
E0 cos ψ, Bφ = +

ωr

2c2
E0 cos ψ, (3.337)

where ψ =
(
ωt− ω

∫
ds/vp

)
. The transverse force on particle motion is

d(γmṙ)

dt
= +eEr − evBφ = +

erω�0
2vp

(1− vvp
c2

) cos ψ
v=vp−→ |e|ω�0 cosψ

2βγ2c
r. (3.338)

For a relativistic particle with γ � 1, the transverse defocusing force is highly re-

duced because the transverse electric force and the magnetic force cancel each other.
Assuming a zero defocusing force, Eq. (3.338) becomes

dpx
dt

= 0 or
d

ds
γ
dx

ds
= 0 =⇒ γ

dx

ds
= constant = γ0x

′
0. (3.339)

Assuming γ = γ0 + γ′s, where γ′ = dγ/ds, we obtain

x− x0 =

(
γ0
γ′ ln

γ

γ0

)
x′
0. (3.340)

Thus the orbit displacement increases only logarithmically with distance along a

linac (Lorentz contraction), if no other external force acts on the particle. In reality

quadrupoles are needed to focus the beam to achieve good transmission efficiency and
emittance control in a linac.

Transverse particle motion in the presence of quadrupole elements is identical to
that of betatron motion. The linear betatron equation of motion is given by

d2

ds2
x(t, s) +Kx(s)x(t, s) = 0,

d2

ds2
z(t, s) +Kz(s)z(t, s) = 0, (3.341)

where Kx(s) and Kz(s) are focusing functions. Since there is no repetitive focusing

elements, the betatron motion in linac is an initial value problem. It should be
designed from a known initial or desired betatron amplitude function and matched

through the linac. A mismatched linac will produce quadrupole mode oscillations
along the linac structure.

In smooth approximation, the linear betatron motion can be described by

d2

ds2
y(t, s) + k2

y(s)y(t, s) = 0, (3.342)

where y is used to represent either x or z, and ky is the wave number. Since there

is no apparent periodic structure, the concept of betatron tune is not necessary.
However, many linacs employ periodic focusing systems. In this case, one can define

the betatron tune per period as νy = kyL/2π, where L is the length of a period.
Betatron resonances may occur when the condition mνx + nνz = � is satisfied, where

m,n, and � are integers. Furthermore, synchrobetatron resonances may occur when

the condition mνx + nνz + lνsyn = � is satisfied, where l is also an integer.
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Wakefield and beam break up instabilities

Applying the Panofsky-Wenzel theorem [29], we find the transverse force:

∇⊥

∫
ds F� =

∂

∂s

∫
ds �F⊥ , �F⊥ =

∫
ds ∇⊥F� =

ce

ω
∇⊥Es . (3.343)

Thus the transverse force on a charged particle is related to the transverse depen-
dence of the longitudinal electric field; it vanishes if the longitudinal electric field

is independent of the transverse positions. This is the basic driving mechanism of
synchro-betatron coupling resonances.81 Since TE modes have zero longitudinal elec-

tric field, its effect on the transverse motion vanishes as well. Thus we are most
concerned with HOMs of the TM waves. These HOMs are also called wakefields.

The design of cavities that minimize long range wakefields is an important task in
NLC research.82

In the presence of a wakefield, the equation of motion is [5]

d2

ds2
x(t, s) + k2(t, s)x(t, s) =

r0
γ(t, s)

∫ ∞

t

dt̃ρ(t̃)W⊥(t̃− t)x(t̃, s), (3.344)

where t describes the longitudinal position of a particle, s is the longitudinal coordi-

nate along the accelerator, x(t, s) is the transverse coordinate of the particle, k(t, s)
is the betatron wave number (also called the focusing function), ρ(t) is the density

of particle distribution, and W⊥(t� − t) is the transverse wake function. Detailed
properties of the wake function and its relation to the impedance and the transverse

force can be found in Ref. [5]. We will examine its implications on particle motion in
a simple macro-particle model.

We divide an intense bunch into two macro-particles separated by a distance
� = 2σz. Each macro-particle represents half of the bunch charge. They travel at the

speed of light c. The equation of motion in the smoothed focusing approximation is

x��
1 + k2

1x1 = 0, (3.345)

x��
2 + k2

2x2 =
e2NW⊥(�)

2E
x1 = Gx1, (3.346)

where eN/2 is the charge of the leading macro-particle, x1 and x2 are transverse
displacements, W⊥(�) is the wake function evaluated at the position of the trailing

particle, and k1 and k2 are betatron wave numbers for these two macro-particles.
If, for some reason, the leading particle begins betatron oscillation; the trailing

particle can be resonantly excited, i.e.

x1 = x̂1 sin k1s,

81See e.g., S.Y. Lee, Phys. Rev. E49, 5706 (1994).
82See R. Ruth, p. 562 in Ref. [19].
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x2 =
k1
k2

x̂1 sin k2s+
Gx̂1

k2
2 − k2

1

(
sin k1s− k1

k2
sin k2s

)
.

→ x̂1 sin k1s+ x̂1

(
Δk − G

2k1

)
s cos k1s, (3.347)

where Δk = k2 − k1. In the limit Δk → 0, The amplitude of the trailing particles
can grow linearly with s. This is the essence of BBU instability. If the beam bunch is

subdivided into many macro-particles, one would observe nonlinear growth for trailing

particles.83

An interesting and effective method to alleviate the beam break up instabilities is

BNS damping.84 If the betatron wave number for the trailing particle is higher than
that for the leading particle by

Δk =
G

2k1
=

e2NW⊥(�)
4Ek1

, (3.348)

the linear growth term in Eq. (3.347) vanishes. This means that the dipole kick

due to the wakefield is exactly canceled by the extra focusing force. The bunch will
perform rigid coherent betatron oscillations without altering its shape. Note that

BNS damping depends on the beam current.

The BNS damping of Eq. (3.348) can be achieved either by applying rf quadrupole

field across the bunch length or by lowering the energy of trailing particles. The SLC

linac uses the latter method by accelerating the bunch behind the rf crest early in the
linac, and then ahead of the rf crest downstream, to restore the energy spread at the

end of the linac. Since the average focusing function is related to the energy spread
by the chromaticity

Δk

k1
= Cx

ΔE

E
, (3.349)

and the chromaticity Cx ≈ −1 for FODO cells, the energy spread is equivalent to a

spread in focusing strength. This method can also be used to provide BNS damping.
It is also worth pointing out that the smooth focusing approximation of Eq. (3.345)

provides a good approximation for the description of particle motion in a linac.

Exercise 3.8

1. Show that the phase shifts per cell for the CEBAF and SLAC linac cavities listed in
Table 3.10 are kd = π and 2π/3 respectively.

83Including beam acceleration, the amplitude will grow logarithmically with energy (distance), as
in Eq. (3.340) [5].

84V. Balakin, A. Novokhatsky, and V. Smirnov, Proc. 12th HEACC, p. 119 (1983).
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2. Show that the peak rf magnetic flux density on the inner surface of a pillbox cylindrical
cavity in TM010 mode is

B̂φ ≈ πμ0

2Z0
E or B̂φ [T] ≈ 50× 10−4 E [MV/m],

where Z0 = μ0c is the impedance of the vacuum.

3. In an Alvarez linac, the longitudinal equations of motion (3.327) and (3.328) can be
expressed as mapping equations:

Δψn+1 = Δψn − Lcellω

mc3β3γ3
ΔEn,

ΔEn+1 = ΔEn + eV cosψs Δψn+1,

where ψn,ΔEn are the synchrotron phase space coordinates at the nth cell, Lcell is
the length of the drift tube cell, and eV is the energy gain in this cell.

(a) Using the Courant–Snyder formalism, we can derive the amplitude function
for synchrotron motion similar to that for betatron motion. Show that the
synchrotron phase advance per cell is

Φsyn = 2 arcsin

(
πeV cosψs

2β2γ2E

)1/2

,

where E = γmc2 is the beam energy, Eav = V/Lcell is the average acceleration
field, λ is the rf wave length, and ψs is the synchronous phase.

(b) Using the table below, calculate the synchrotron phase advance per cell for the
first and last cells of cavities 1 and 2, where the synchronous phase is chosen to
be cosψs = 1/2. Estimate the total synchrotron phase advance in a cavity.

Fermilab Alvarez linac
Cavity Number 1 2

Proton energy in (MeV) 0.75 10.42
Proton energy out (MeV) 10.42 37.54
Cavity length (m) 7.44 19.02
Cell length (cm) (first/last) 6.04/21.8 22.2/40.8
Average field gradient (MV/m) (first/last) 1.60/2.30 2.0
Average gap field (MV/m) (first/last) 7.62/7.45 10.0/6.45
Transit time factor (first/last) 0.64/0.81 0.86/0.81
Number of cells 55 59

4. In a resonance circuit, Q is expressed as

Q =
1
2ωLI

2

1
2RI2

=
ωL

R
= 2π

stored energy

energy dissipation per period
,

where ω = (LC)−1/2. The energy stored in the cavity volume is

Wst =
μ

2

∫

V
|Hφ|2dV =

�

2

∫

V
|E|2dV.
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The power loss in the wall is obtained from the wall current,

Pd =
1

2

∫

S
Rs|H|2dS =

μδskinω

4

∫

S
|H|2dS,

where Rs = 1/σδskin is the surface resistance,85 δskin =
√

2/μσω is the skin depth,
and σ is the conductivity. The total energy loss in one period becomes

ΔWd =
2π

ω
Pd =

πμδskin
2

∫

S
|H|2dS.

(a) Using the identity
∫ b
0 J2

1 (krr)2πrdr = πb2J2
1 (krb), show that the quality factor

for a pillbox cavity at TM010 mode is

Q =
2
∫
V |H|2dV

δskin
∫
S |H|2dS =

d

δskin

b

d+ b
=

2.405Z0

2Rs(1 + b/d)
,

where b and d are the radius and length of a cavity cell, Rs is the surface resis-
tivity, and Z0 = 1/μ0c ≈ 377Ω. The Q-factor depends essentially on geometry

of the cavity. Since δskin ∼ ω−1/2, we find Q ∼ ω+1/2. Find the Q-value for the
SLAC copper cavity at f = 2.856 GHz.

(b) Show that the shunt impedance is

Rsh =
Z2
0d

2

Rsπb(b+ d)J2
1 (krb)

or
rsh
Q

=
2ωμ

π(krb)2J
2
1 (krb)

= 0.41ωμ,

where krb = 2.405. Note here that the shunt impedance behaves like rsh ∼ ω1/2.
At higher frequencies, the shunt impedance is more favorable; however, the
diameter of the cavity will also be smaller, which may limit the beam aperture.

5. The average power flowing through a transverse cross-section of a wave guide is

P =
1

2

∫
E⊥ ×H⊥dS

where only transverse components of the field contribute. For TM mode, The energy
stored in the electric and magnetic fields are

E⊥
H⊥

= Z0
λ

λg
, P =

1

2Z0

∫
k

β
|E⊥|2dS

Wst,m =
μ

4

∫
|H⊥|2dS =

μ

4

k2

Z2
0β

2

∫
|E⊥|2dS

Wst = Wst,m +Wst,e = 2Wst,m.

85In the limit that the mean free path � of conduction electrons is much larger than the skin
depth δskin, the surface resistance becomes Rs = (8/9)(

√
3μ2

0ω
2�/16πσ)1/3. Since the conductivity

is proportional to the mean free path �, the resulting surface resistance is independent of the mean
free path, and is proportional to ω2/3. There is little advantage to operating copper cavities at very
low temperature. See G.E.H. Reuter and E.H. Sonderheimer, Proc. Roy. Soc. A195, 336 (1984).



EXERCISE 3.8 393

(a) Show that the energy flow, defined by ve = P/Wst, is ve = βc/k.

(b) Verify that vg = dω/dβ = ve.

6. The disk-loaded linac acceleration structure can be modeled by LC resonant circuits
coupled with capacitors 2Cp shown in the figure below. The model describes only
the qualitative narrowband properties of a loaded wave guide. Thus the equivalent
circuit does not imply that a coupled resonator accurately represents a disk loaded
structure. In the limit of large Cp, these resonators are uncoupled, which corresponds
to a pillbox without holes, or equivalently, a small beam hole in a pillbox cavity
corresponds to Cp � Cs.

(a) Applying Kirchoff’s law, show that

in+1 − 2 cos(kd) in + in−1 = 0, cos(kd) = 1 +
Cp

Cs
− ω2CpL.

(b) Show that the solution of the above equation is

in = e±j[nkd+χ0], n = 0, 1, 2, · · · .
We identify kd as the phase advance per cell, and k as the wave number. Show
that the frequency is

ω2 = ω2
0 [1 + κ(1− cos kd)] ,

where ω0 = 1/
√
LCs is the natural frequency without coupling at kd = 0, and

κ = Cs/Cp is the coupling constant between neighboring cavities.

(c) Show that the condition for an unattenuated traveling wave is ω0 ≤ ω ≤ ωπ,
where

ωπ = ω0

(
1 + 2

Cs

Cp

)1/2

≈ ω0

(
1 +

Cs

Cp

)

is the resonance frequency at phase advance kd = π. Draw the dispersion curve
of ω vs k. In a realistic cavity, there are higher frequency modes, which give rise
to another passband (see Fig. 3.45).

(d) Find k such that the phase velocity vp = c.

(e) Cavities can also be magnetically coupled. The magnetically coupled-cavity
chain can be modeled by replacing 2Cp in the LC circuit with Lp/2. Show that
the dispersion curve of a magnetically coupled cavity is

ω2
0 = ω2 [1 + κ(1− cos kd)] ,

where ω0 = 1/
√
LCs is the natural frequency without coupling at kd = 0, and

κ = Lp/L is the coupling constant between neighboring cavities. Discuss the
differences between the electric and magnetic coupled cavities.
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7. Using Eq. (3.318), the electric field of a standing wave rf cavity structure that consists
of N cells is

Es = E0 cos ks cosωt,

where s ∈ [0, Nd] is the longitudinal coordinate, k is the wave number, d is the cell
length of one period, and ω is the frequency. The resonance condition is

kd = mπ/N, m = 0, 1, · · · , N,

where kd is the rf phase advance per cell.

(a) For a particle traveling at velocity v, show that the total voltage gain in passing
through the cavity is

ΔV =
1

2
N d E0

[
sin (k − (ω/v))Nd

(k − (ω/v))Nd
+

sin (k + (ω/v))Nd

(k + (ω/v))Nd

]
.

Show that the energy gain is maximum when the phase velocity k/ω is equal
to the particle velocity v. Show that the maximum voltage gain of the standing
wave is (ΔV )max = Nd E0/2, i.e. the energy gain of a standing wave structure
is only 1/2 that of an equivalent traveling wave structure.

(b) For a sinusoidal electric field, the power consumed in one cell is

|E0d|2/2Rsh,cell,

where Rsh,cell is the shunt impedance per cell for the traveling wave. For an rf
structure composed of N cells, the power is

Pd = N |E0d|2/2Rsh,cell.

Using the definition of shunt impedance, show that the shunt impedance of a
standing wave rf structure is

Rsh =
1

2
NRsh,cell.

Thus the shunt impedance for a standing wave structure is equal to 1/2 that of
an equivalent traveling wave structure.86

8. There are two types of traveling wave structures. A constant impedance structure
has a uniform multi-cell structure so that the impedance is constant and the power
decays exponentially along the structure. A constant gradient structure is tapered so
that the longitudinal electric field is kept constant. The electric field is related to the
shunt impedance per unit length by [see Eq. (3.305)]

E2 = −rsh
dPd

ds
= 2α rsh Pd(s) where α = − 1

2Pd

dPd

ds
.

The total energy gain for an electron in a linac of length L is

ΔE = e

∫ L

0
Eds.

86The above calculation for voltage gain in the cavity structure is not applicable for an standing
wave structure with kd = 0 and π, where two space harmonics contribute to the electric field so that
Es = 2E0 cos ks cosωt. This means that the voltage gain in the rf structure is ΔV = NdE0, and the
shunt impedance is Rsh = NRsh,cell.



EXERCISE 3.8 395

(a) In a constant impedance structure, show that the energy gain is

ΔE(L) = eL(2rshP0α)
1/2 1− e−αL

αL
,

where P0 is the power at the input point.

(b) Assuming that rsh and Q are nearly constant in a constant gradient structure,
show that

Pd = P0

(
1− s

L
(1− e−2τ )

)
,

where τ =
∫ L
0 α(s)ds. The group velocity is equal to the velocity of energy flow.

Show that the group velocity of a constant gradient structure [see Eq. (3.307)]
and the energy gain are

vg = ωL
(
1− s

L
(1− e−2τ )

) (
Q(1− e−2τ )

)−1
,

ΔE = eEL = e
√

P0rshL (1− e−2τ ).

9. The design of the 2 MW spallation neutron source uses a chain of linacs composed of
ion source, RFQ, DTL, CCL, and SCL to accelerate 2.08 × 1014 particles per pulse
at 60 Hz repetition rate. An accumulator compresses the 1 ms linac pulse into a 695
ns high intensity beam pulse with 250 ns beam gap. The following table lists linac
and beam parameters. Calculate the longitudinal bucket and bunch areas in (eVs).
Compare the rms bunch length in (ns) and in (m) with the rms transverse beam size
at exit points of linacs. Each microbunch has about NB = 8.70 × 108 protons, what
is the longitudinal brightness of the beam in number of particles per (eVs)?

RFQ DTL CCL SRFL

L (m) length of the structure 3.723 38.7 55.12 206.812

frf (MHz) 402.5 402.5 805 805

ψs (differ from linac convention by −π/2) 60◦ 45-65◦ 60-62◦ 20◦

E0T (MV/m) 3.0 3.37 10.6

KEinj (MeV) 0.065 2.5 86.8 185

KEext (MeV) 2.5 86.8 185 1001.5

�� (π-MeV-deg) emittance at exit point 0.108 - - 0.60

�⊥ (π-mm-mrad) emittance at exit point 0.21 - - 0.45

σΔW (MeV) 0.0092 0.33

Abucket (eVs) at injection energy

Arms (eVs)

στ (ns)

ksyn (m−1)

βx/z at exit (m) 0.2/0.2 - - 10.1/5.3

10. A prebuncher is usually used to prebunch the electrons from a source, which can be
thermionic or rf gun. We assume a thermionic gun with a DC gun voltage V0, which
is usually about 80–150 kV. Let the electric field and the gap width of the prebuncher
be E sin(ωt) and g. Electrons that arrive earlier are slowed and that arrive late are
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sped up. At a drift distance away from the prebuncher, the faster electrons catch up
the slower electrons. Thus electrons are prebunched into a smaller phase extension
to be captured by the buncher and the main linac. Assuming a small prebuncher gap
with V1 = Eg � V0, find the drift distance as a function of the V0 and V1. Discuss
the efficiency of prebunching as a function of relevant parameters.



Chapter 4

Physics of Electron Storage Rings

Accelerated charged particles, particularly electrons in a circular orbit, radiate elec-
tromagnetic energy. As far back in 1898, Liénard derived an expression for elec-

tromagnetic radiation in a circular orbit. Modern synchrotron radiation theory was
formulated by many physicists; in particular, its foundation was laid by J. Schwinger.

Some of his many important results are summarized below:1

• The angular distribution of synchrotron radiation is sharply peaked in the di-

rection of the electron’s velocity vector within an angular width of 1/γ, where
γ is the relativistic energy factor. The radiation is plane polarized on the plane

of the electron’s orbit, and elliptically polarized outside this plane.

• The radiation spans a continuous spectrum. The power spectrum produced
by a high energy electron extends to a critical frequency ωc = 3γ3ωc/2, where

ωρ = c/ρ is the cyclotron frequency for electron moving at the speed of light.2

• Quantum mechanical correction becomes important when the critical energy of

the radiated photon, �ωc =
3
2
�cγ3/ρ, is comparable to E = γmc2, or at the elec-

tron beam energy mc2(mcρ/�)1/2 ≈ 103 TeV. The beamstrahlung parameter,

defined as Υ = 2
3
�ωc/E, is a measure of the importance of quantum mechanical

effects.

Shortly after the first observation of synchrotron radiation at the General Electric
70 MeV synchrotron in 1947,3 applications of this radiation were contemplated.4 The

1J. Schwinger, Phys. Rev. 70, 798 (1946); 75, 1912 (1949); Proc. Nat. Acad. Sci. 40, 132
(1954).

2D.H. Tomboulin and P.L. Hartman experimentally verified that electrons at high energy (70
MeV then) could emit extreme ultraviolet (XUV) photons; Phys. Rev. 102, 1423 (1956).

3F.R. Elder et al., Phys. Rev. 71, 829 (1947); ibid. 74, 52 (1948); J. Appl. Phys. 18, 810 (1947).
4R.P. Madden and K. Codling at the National Bureau of Standards were the first to apply

synchrotron radiation to the study of atomic physics. See Phys. Rev. Lett. 10, 516 (1963); J. Appl.
Phys. 36, 380 (1965).
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first dedicated synchrotron radiation source, Tantalus at the University of Wisconsin,

was commissioned in 1968.5 Today, nearly a hundred light sources are distributed in
almost all continents. Applications of synchrotron radiation include surface physics,

condensed matter physics, biochemistry, medical research, advanced manufacturing
processes, etc.

A. Basic properties of synchrotron radiation from electrons

According to Larmor’s theorem, the instantaneous radiated power from an accelerated
electron is

P =
1

4π�0

2e2v̇2

3c3
=

2r0
3mc

�
d�p

dt
· d�p
dt

�
, (4.1)

where v̇ is the acceleration rate and r0 = e2/4π�0mc2 is the classical radius of the
electron. The relativistic generalization of Larmor’s formula (obtained by Liénard in

1898) is

P =
2r0
3mc

�
dpμ
dτ

· dpμ
dτ

�
=

2r0
3mc

��
d�p

dτ

�2

− 1

c2

�
dE

dτ

�2
�
, (4.2)

where the proper-time element dτ = dt/γ, and pμ = (p0, �p) is the 4-momentum
vector. In Sec. I.2 we will show that the power radiated from a circular orbit of a

highly relativistic charged particle is much higher than that from a linear accelerator,
i.e. ����

d�p

dτ

���� = γω|p| � 1

c

dE

dτ
, (4.3)

where ω is the angular cyclotron frequency.

The radiation power arising from circular motion is

P =
2r0
3mc

γ2ω2|�p|2 = 2r0
3mc

γ2|F⊥|2 = β4c

2π
Cγ

E4

ρ2
=

β2e2c3

2π
CγE

2B2, (4.4)

where F⊥ = ω|�p| = evB is the transverse force,6 v = βc is the speed of the particle,

B is the magnetic field of the bending dipole, ρ is the local radius of curvature, and

Cγ =
4π

3

r0

(mc2)3
=

⎧
⎨
⎩

8.846× 10−5 m/(GeV)3 for electrons
4.840× 10−14 m/(GeV)3 for muons
7.783× 10−18 m/(GeV)3 for protons.

(4.5)

5See e.g. G. Margaritondo, The evolution of a dedicated synchrotron light source, Phys. Today
61, 37 (2008); D. W. Lynch, J. Synchrotron Rad. 4, 334 (1997).

6In other applications, the velocity v is the component perpendicular to the magnetic field, i.e.
v = v⊥. Since �v2⊥� = 2

3v
2, the power of synchrotron radiation is �P � = 2

3P = 4
3σTcUradβ

2γ2,
where P is the power given by Eq. (4.4), σT = 8π

3 r20 is the Thomson scattering cross-section,
Urad = B2/(2μ0) is the radiation energy density.
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The energy radiated from the particle with nominal energy E0 in one revolution is

U0 =

∮
Pdt = Cγβ

3E4
0R� 1

ρ2
� = Cγβ

3E4
0

2π

∫ 2πR

0

ds

ρ2
, (4.6)

where R is the average radius. For an isomagnetic ring with constant field strength
in all dipoles, the energy loss per revolution and the average radiation power become

U0 = Cγ
β3E4

0

ρ
= e

ecZ0

3ρ
β3γ4, �P � = U0

T0

=
cCγβ

3E4
0

2πRρ
, (4.7)

where Z0 = μ0c = 377Ω is the vacuum impedance, e2cZ0 ≈ 18.1 × 10−9 eV-m, and
T0 = 2πR/βc is the orbital revolution period.

Because the power of synchrotron radiation is proportional to E4/ρ2, and the
beam is compensated on average by the longitudinal electric field, the longitudinal

motion is damped. This natural damping produces high brightness electron beams,
whose applications include e+e− colliders for nuclear and particle physics, and electron

storage rings for generating synchrotron light and free electron lasers for research in
condensed matter physics, biology, medicine and material applications.

B. Synchrotron radiation sources

The brilliance of the photon beam is defined as

B =
d4N

dt dΩ dS (dλ/λ)
=

d4Nph

dtσxσx′σzσz′(dλ/λ)
(4.8)

in units of photons/(s mm2-mrad2 0.1% of bandwidth). Neglecting the optical diffrac-

tion, the product of the solid angle and the spot size dΩdS = σxσx′σzσz′ is propor-
tional to the product of electron beam emittances �x�z . Therefore a high brilliance

photon source demands a high brightness electron beam with small electron beam
emittances. Furthermore, a beam with short bunch length can also be important in

time resolved experiments. Using the synchrotron radiation generated from the stor-
age rings, one can obtain a wide frequency span tunable high brilliance monochromatic

photon source.
Synchrotron radiation sources are generally classified into generations. A first gen-

eration light source parasitically utilizes synchrotron radiation in an electron storage
ring built mainly for high energy physics research. Some examples are SPEAR at

SLAC, and CHESS in CESR at Cornell University. A second generation light source
corresponds to a storage ring dedicated to synchrotron light production, where the

lattice design is optimized to achieve minimum emittance for high brightness beam
operation. In Secs. II and III we will show that the natural emittance of an electron

beam is �nat = FCqγ
2θ3/Jx, where Cq = 3.83 × 10−13 m, Jx ≈ 1 is a damping par-

tition number, and θ is the bending angle of one half period. The factor F can be
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optimized in different lattice designs. A third generation light source employs high

brightness electron beams and insertion devices such as wigglers or undulators to op-
timize photon brilliance, mostly about 1020 photons/[s (mm-mrad)2 0.1%bandwidth],

which is about five to six orders higher than that generated in dipoles, or about ten
order higher than the brilliance of X-ray tubes. Using long undulators in long straight

sections of a collider ring, a few first generation light sources can provide photon beam
brilliance equal to that of third generation light sources. Table 4.1 lists some machine

parameters of the advanced light source (ALS) at LBNL and the advanced photon
source (APS) at ANL.

The widely discussed “fourth” generation light source is dedicated to the coherent
production of X-rays and free electron lasers at a brilliance at least a few orders higher

than that produced in third generation light sources.7

Table 4.1: Properties of some electron storage rings.

Colliders Light Sources
BEPC CESR LER(e+) HER(e−) LEP APS ALS

E [GeV] 2.2 6 3.1 9 55 7 1.5
νx 5.8 9.38 32.28 25.28 76.2 35.22 14.28
νz 6.8 9.36 35.18 24.18 70.2 14.3 8.18
ρ [m] 10.35 60 30.6 165.0 3096.2 38.96 4.01
α [×10−4] 400 152 14.9 24.4 3.866 2.374 14.3
C [m] 240.4 768.4 2199.3 2199.3 26658.9 1104 196.8
h 160 1281 3492 3492 31320 1296 328
frf [MHz] 199.5 499.8 476 476 352.2 352.96 499.65
νs 0.016 0.064 0.034 0.0522 0.085 0.006 0.0082
ΔE
E0

[×10−4] 4.0 6.3 9.5 6.1 8.4 10 7.1

A [×10−4eV-s] 3.5 7.2 3.1 5.7 78. 4.1 0.43
�x [nm] 450 240 64 48 51 3.1 4.8
�z [nm] 35 8 3.86 1.93 0.51 0.045 0.48

7M. Cornacchia and H. Winick, eds., Proc. Fourth Generation Light Sources, SSRL 92/02 (1992);
J.L. Laclare, ed., Proc. Fourth Generation Light Sources, ESRF report (1996).
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I Fields of a Moving Charged Particle

Let �x ′(t′) be the position of an electron at time t′ and let �x be the position of the

observer with �R(t) = �x − �x ′(t′) (Fig. 4.1). The electromagnetic signal, emitted by
the electron at time t′ and traveling on a straight path, will arrive at the observer at

time

t = t′ +
R(t′)
c

(4.9)

where R(t′) = |�x− �x ′|; t′ is called the retarded time or the emitter time; and t is the
observer time. The motion of the electron is specified by �x ′(t′) with

d�x ′

dt′
= �βc = −d�R

dt′
.

Figure 4.1: Schematic drawing of the coordi-
nates of synchrotron radiation emitted from
a moving charge. Here t′ is the retarded time.
The unit vector along the line joining the
point of emission and the observation point

P is n̂ = �R(t′)/R(t′).

The retarded scalar and vector potentials (4-potential) due to a moving point
charge are

Aμ(�x, t) =
1

4π�0

∫ ∫
Jμ(�x

′, t′)
R

δ(t′ +
R

c
− t) d3x ′dt′,

=
e

4π�0

∫
βμ(t

′)
R(t′)

δ(t′ +
R(t′)
c

− t)dt′, (4.10)

where Jμ(�x
′, t′) = ecβμδ(�x

′ − �r(t′)) is the current density of the point charge with

βμ = (�β/c, 1), and r(t′) is the orbiting path of the charge particle. The delta func-

tion in Eq. (4.10) is needed to ensure the retarded condition. With the identity∫
Fδ(f(t′))dt′ = F/|df/dt|, the scalar and vector potentials become

Φ(�x, t) =
e

4π�0

1

κR

∣∣∣
ret
, �A(�x, t) =

e

4π�0c

�β

κR

∣∣∣
ret
, (4.11)

with

κ =
dt

dt′
= 1 +

1

c

dR

dt′
= 1− n̂ · �β, (4.12)

where n̂ = �R/R = ∇R.
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The electric and magnetic fields are �E = −∇Φ − ∂ �A/∂t and �B = ∇× �A. Using

the identity ∇ → ∇R ∂
∂R

= n̂ ∂
∂R

, we obtain

�E =
e

4π�0

∫
[
n̂

R2
δ(t� +

R

c
− t) +

�β − n̂

cR
δ�(t� +

R

c
− t)]dt�

=
e

4π�0

[
n̂

κR2
+

1

cκ

d

dt�
n̂− �β

κR

]

ret

, (4.13)

�B =
e

4π�0c

∫
(n̂× �β)[− 1

R2
δ(t� +

R

c
− t) +

1

cR
δ�(t� +

R

c
− t)]dt�

=
e

4π�0c

[
�β × n̂

κR2
+

1

cκ

d

dt�
�β × n̂

κR

]

ret

. (4.14)

Since the time derivative of the vector n̂ is equal to the ratio of the vector �v⊥ to R

dn̂

cdt�
=

n̂× (n̂× �β)

R
=

(n̂ · �β)n̂− �β

R
, (4.15)

we obtain

�E(�x, t) =
e

4π�0

[
n̂− �β

κ2R2
+

n̂

cκ

d

dt�
1

κR
− 1

cκ

d

dt�
�β

κR

]

ret

, (4.16)

�B(�x, t) =
e

4π�0c

[(
�β

κ2R2
+

1

cκ

d

dt�
�β

κR

)
× n̂

]

ret

. (4.17)

Note that the magnetic field is in fact related to the electric field by �B = (1/c) n̂× �E,
a feature common to all electromagnetic radiation in free space. Thus it suffices to

calculate only the electric radiation field. Using the relations

d�β

dt�
= �̇β,

dR

cdt�
= −n̂ · �β, d(κR)

cdt�
= β2 − �β · n̂− R

c
n̂ · �̇β, (4.18)

we obtain the electric field as

�E(�x, t) =
e

4π�0

[
n̂− �β

γ2κ3R2

]

ret

+
e

4π�0c

[
n̂

κ3R
× ((n̂− �β)× �̇β)

]

ret

. (4.19)

The flux, defined as the energy passing through a unit area per unit time at the
observer location, is the Poynting vector

�S =
1

μ0
[ �E × �B] =

1

μ0c
| �E|2n̂. (4.20)
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The total power radiated by the particle is

dP

dΩ
= (n̂ · �S)R2 dt

dt′
= κR2| �E|2. (4.21)

Note here that the electric field in Eq. (4.19) is composed of two terms. The first
term, which is proportional to 1/R2, is a static field pointing away from the charge at

time t. This field can be transformed into an electrostatic electric field by performing
a Lorentz transformation into a frame in which the charge is at rest. The total energy

from this term is zero.
The second term, related to the acceleration of the charged particle, is the radia-

tion field, which is proportional to 1/R. Both �E and �B radiation fields are transverse
to �n and are proportional to 1/R.

I.1 Non-relativistic Reduction

When the velocity of the particle is small, the radiation field, the Poynting’s vector

(energy flux), and the power radiated per unit solid angle are

�Ea =
e

4π�0c

[
n̂× (n̂× �̇β)

R

]

ret

, �S =
1

μ0

�E × �B =
1

μ0c
|Ea|2n̂,

dP

dΩ
=

1

μ0c
|Ea|2R2 =

e2

16π2�0c
|n̂× (n̂× �̇β)|2 = e2

16π2�0c3
v̇2 sin2Θ, (4.22)

where Θ is the angle between vectors n̂ and �̇β, i.e. n̂× �̇β = |�̇β| sinΘ. Integration over
all angles gives the same total radiated power as Larmor’s formula of Eq. (4.1).

I.2 Radiation Field for Particles at Relativistic Velocities

For particles at relativistic velocity, the Poynting’s vector becomes

�S · n̂ =
remc

4π

[
1

κ6R2
|n̂× ((n̂− �β)× �̇β)|2

]

ret

. (4.23)

The total energy of radiation during the time between T1 and T2 is

W =

∫ T2+(R2/c)

T1+(R1/c)

(�S · n̂)dt =
∫ t′=T2

t′=T1

(�S · n̂) dt
dt′

dt′. (4.24)

Thus the power radiated per unit solid angle in retarded time is

dP (t′)
dΩ

= R2(�S · n̂) dt
dt′

= κR2(�S · n̂) = remc

4π

|n̂× ((n̂− �β)× �̇β)|2
(1− n̂ · �β)5

. (4.25)
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There are two important relativistic effects on the the electromagnetic radiation.

The first arises from the denominator with κ = 1− n̂ · �β. Note that the instantaneous
radiation power is proportional to 1/κ5, where κ = dt/dt� is the ratio of the observer’s

time to the electron’s radiation time. At relativistic energies, we have

β = (1− 1

γ2
)1/2 ≈ 1− 1

2γ2
,

1

κ
≈ 2

(θ2 + 1/γ2)
, (4.26)

where θ is the angle between the radiation direction n̂ and the velocity vector �β.
Since the angular distribution is proportional to 1/κ5, the radiation from a relativistic

particle is sharply peaked at the forward angle within an angular cone of θ ≈ 1/γ.

The second relativistic effect is the squeeze of the observer’s time: dt = κdt� ≈
dt�/γ2. When the observer is in the direction of the electron’s velocity vector within an
angle of 1/γ, the time interval of the electromagnetic radiation dt� of the electron ap-

pears to the observer squeezed into a much shorter time interval because a relativistic
electron follows very closely behind the photons it emitted at an earlier time. Thus

photons emitted at later times follow closely behind those emitted earlier. Therefore
it appears to the observer that the time is squeezed. The resulting wavelength of the

observed radiation is shortened or, equivalently, the energy of the photon is enhanced.

Example 1: linac

In a linear accelerator, �̇β is parallel to �β. The angular distribution of the electromag-

netic radiation is
dP (t�)
dΩ

=
remcv̇2

4π

sin2Θ

(1− β cosΘ)5
, (4.27)

where Θ is the angle between n̂ and �̇β. The maximum of the angular distribution is
located at

Θmax = cos−1

[
1

3β
(
√

1 + 15β2 − 1)

]
→ 1

2γ
. (4.28)

The rms of the angular distribution is also �Θ2�1/2 = 1/γ. The integrated power is

P (t) =

∫
dP

dΩ
dΩ =

1

4π�0

2e2γ6v̇2

3c3
=

e2

6π�0m2c3

(
dp

L

dt

)2

, (4.29)

dp
L

dt
= mγ3v̇ =

ΔE

Δs
.

Here ΔE/Δs is the energy gain per unit length, typically, about 20 MeV/m in the

SLAC linac, and 25 to 100 MV/m in future linear colliders.
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Example 2: Radiation from circular motion

When the charged particle is executing circular motion due to a transverse magnetic

field, �̇β is perpendicular to �β. Figure 4.2 shows the coordinate system (see Exercise

4.1.3). The power per unit solid angle is

dP

dΩ
=

e2v̇2

16π2�0c3
1

(1− β cosΘ)3

[
1− sin2Θcos2Φ

γ2(1− β cosΘ)2

]

≈ e2v̇2

2π2�0c3
γ6 1

(1 + γ2Θ2)3

[
1− 4γ2Θ2 cos2Φ

(1 + γ2Θ2)2

]
, (4.30)

where v̇ = β2c2/ρ, and ρ is the bending radius. Therefore the radiation is also confined
to a cone of angular width of �Θ2�1/2 ∼ 1/γ. The total radiated power is obtained by

integrating the power over the solid angle, i.e.

P (t) =

∫
dP

dΩ
dΩ =

2e2

6π�0m2c3
γ2

(
dp

T

dt

)2

, (4.31)

dp
T

dt
= γmv̇ = γm

β2c2

ρ
= 299.79 β B[T] [MeV/m].

Comparing Eq. (4.31) with Eq. (4.29), we find that the radiation from circular motion
is at least a factor of 2γ2 larger than that from longitudinal acceleration.

Figure 4.2: The coordinate system for syn-
chrotron radiation from the circular motion
of a charged particle.

I.3 Frequency and Angular Distribution

The synchrotron radiation from an accelerated charged particle consists of contribu-
tions from the components of acceleration parallel and perpendicular to the velocity.

Since the radiation from the parallel component has been shown to be 1/γ2 smaller
than that from the perpendicular component, it can be neglected. In other words, the

radiation emitted by a charged particle in an arbitrary extremely relativistic motion
is about the same as that emitted by a particle moving instantaneously along the

arc of a circular path. In this case, the acceleration v̇⊥ is related to the radius of
curvature ρ by v̇⊥ = v2/ρ ≈ c2/ρ.

The angular distribution given by Eq. (4.25) has an angular width �Θ2�1/2 ∼ 1/γ,

and the charged particle illuminates the observer for a time interval cdt� ≈ ρΘrms =
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ρ/γ. To the observer, however, the corresponding time interval Δt of the radiation

and the critical frequency are

Δt ∼ dt

dt�
Δt� ≈ 1

γ2
Δt� =

ρ

γ3c
, ωc ∼ 1

Δt
∼ γ3 c

ρ
= γ3ωρ. (4.32)

The frequency spectrum spans a broad continuous spectrum up to the critical fre-
quency, defined as ωc =

3
2
γ3ωρ.

To obtain the frequency and angular distribution of the synchrotron radiation, we

should study the time dependence of the angular distribution discussed in the last
section. The power radiated per unit solid angle is given by Eq. (4.22), i.e.

dP

dΩ
= | �G(t)|2, �G(t) = (

1

μ0c
)1/2[R�E]ret (4.33)

with electric field �E given by Eq. (4.22). Using the Fourier transform

�G(ω) =

∫
�G(t)ejωtdt, �G(t) =

1

2π

∫
�G(ω)e−jωtdt, (4.34)

we obtain the total energy radiated per unit solid angle as

dW

dΩ
=

∫ ∞

−∞
| �G(t)|2dt = 1

2π

∫ ∞

−∞
| �G(ω)|2dω, (Parseval�s theorem). (4.35)

Since the function �G(t) is real, the Fourier component has the property �G(−ω) =
�G∗(ω). Since the negative frequency is folded back to the positive frequency, we can

define the energy radiation per unit solid angle per frequency interval as

dW

dΩ
=

∫ ∞

0

dI(ω)

dΩ
dω, (4.36)

with
dI(ω)

dΩ
= | �G(ω)|2 + | �G(−ω)|2 = 2| �G(ω)|2. (4.37)

The Fourier amplitude �G(ω) is

�G(ω) = (
e2

32π3�0c
)1/2

∫ ∞

−∞

n̂× ((n̂− �β)× �̇β)

κ3
ejωtdt

= (
e2

32π3�0c
)1/2

∫ ∞

−∞

n̂× ((n̂− �β)× �̇β)

κ2
ejω(t

′+R/c)dt�, (4.38)

where R = |�x−�r(t�)| is the distance between the observer and the electron. With the

observer far away from the source, we have R = |�x − �r(t�)| ≈ x − n̂ · �r(t�), where x
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is the distance from the origin to the observer. Apart from a constant phase factor,

the amplitude of the frequency distribution becomes

�G(ω) = (
e2

32π3�0c
)1/2

∫ ∞

−∞

n̂× ((n̂− �β)× �̇β)

κ2
ejω(t

′−n̂·�r/c)dt�

= jω(
e2

32π3�0c
)1/2

∫ ∞

−∞
n̂× (n̂× �β)ejω(t

′−n̂·�r/c)dt�, (4.39)

where we use integration by parts and the relation n̂×((n̂−�β)×�̇β)
κ2 = d

dt′
n̂×(n̂×�β)

κ
.

We now consider a group of charged particles ej . The radiation amplitude is a
linear combination of contributions from each charge, and the corresponding intensity

spectrum becomes

e�βe−jωn̂·�r/c →
∑
k=1

ek�βke
−jωn̂·�rk/c → 1

c

∫
d3x �J(�x, t)e−jωn̂·�x/c,

dI(ω)

dΩ
=

ω2

16π3�0c3

∣∣∣∣
∫

dt

∫
d3x n̂× (n̂× �J)e−jω(t−n̂·�x/c)

∣∣∣∣
2

. (4.40)

Figure 4.3: Coordinate system for a
circular trajectory of electrons.

A. Frequency spectrum of synchrotron radiation

The radiation emitted by an extremely relativistic particle subject to arbitrary accel-
eration arises mainly from the instantaneous motion of the particle along a circular

path. The radiation is beamed in a narrow cone in the forward direction of the ve-
locity vector. The short pulse of radiation resembles a searchlight sweeping across

the observer. Figure 4.3 shows the coordinate system of a particle moving along a

circular orbit, where the trajectory is

�r(t�) = ρ(1− cosωρt
�, sinωρt

�, 0),

�β = β(sinωρt
�, cosωρt

�, 0),



408 CHAPTER 4. PHYSICS OF ELECTRON STORAGE RINGS

where ωρ = βc/ρ is the cyclotron frequency and �βc = d�r(t�)/dt� is the velocity vector.

Let
n̂ = (cosΘ sinΦ, cosΘ cosΦ, sinΘ) (4.41)

be the direction of photon emission, as shown in Fig. 4.3. Because the particle is
moving on a circular path, all horizontal angles are equivalent, and it is sufficient to

calculate the energy flux for the case Φ = 0. The vector n̂×(n̂×�β) can be decomposed
into

n̂× (n̂× �β) = β
[−ê� sinωρt

� + ê⊥ cosωρt
� sin Θ

]
, (4.42)

where ê� is the polarization vector along the plane of circular motion in the outward

x̂ direction and ê⊥ = n̂ × ê� is the orthogonal polarization vector, which is nearly

perpendicular to the orbit plane.
Since the range of the t� integration is of the order of Δt� ∼ ρ/cγ, the exponent of

Eq. (4.39) can be expanded as

ω(t� − n̂ · �r
c

) = ω(t� − ρ

c
sinωρt

� cosΘ) ≈ ω

2

[
(
1

γ2
+Θ2)t� +

c2

3ρ2
t�3
] [

1 + O(
1

γ2
)

]

=
3

2
ξ(x+

1

3
x3) + · · · , (4.43)

where

x =
γωρt

�

(1 +X2)
1
2

, X = γΘ, ξ =
ω

2ωc

(1 +X2)3/2, ωc =
3

2
γ3ωρ =

3γ3c

2ρ
.

Note that both terms in the expansion of Eq. (4.43) are of the same order of magni-
tude. The critical frequency ωc has indeed the characteristic behavior of Eq. (4.32).

With the identity
∫ ∞

0

x sin

[
3

2
ξ

(
x+

1

3
x3

)]
dx =

1√
3
K2/3(ξ), (4.44)

∫ ∞

0

cos

[
3

2
ξ

(
x+

1

3
x3

)]
dx =

1√
3
K1/3(ξ) (4.45)

for the modified Bessel function, the energy and angular distribution function of

synchrotron radiation becomes

dP (ω)

dωdΩ
=

β2e2ω2

16π3�0c

∣∣−ê�G�(ω) + ê⊥G⊥(ω)
∣∣2 (4.46)

where the amplitudes are

G� =
1

ωργ2
(1 +X2)

∫ ∞

−∞
xej

3
2
ξ(x+ 1

3
x3)dx =

2(1 +X2)√
3ωργ2

K2/3(ξ), (4.47)

G⊥ =
1

ωργ2
X(1 +X2)

1
2

∫ ∞

−∞
ej

3
2
ξ(x+ 1

3
x3)dx =

2X(1 +X2)1/2√
3ωργ2

K1/3(ξ). (4.48)
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Thus the energy radiated per unit frequency interval per unit solid angle becomes

dP

dωdΩ
=

3e2

16π3�0c
γ2(

ω

ωc
)2(1 +X2)2

[
K2

2/3(ξ) +
X2

1 +X2
K2

1/3(ξ)

]
, (4.49)

where the first term in the brackets arises from the polarization vector on the plane
of the orbiting electron and the second from the polarization perpendicular to the

orbital plane. The angular distribution has been verified experimentally.8 On the

orbital plane, where X = 0, the radiation is purely plane polarized. Away from
the orbital plane, the radiation is elliptically polarized.

B. Asymptotic property of the radiation

Using the asymptotic relation of the Bessel functions

Kν(ξ) ∼
{
2ν−1Γ(ν)ξ−ν , if ξ � 1,√

π/2ξe−ξ, if ξ � 1,
(4.50)

we find that the radiation is negligible for ξ ≥ 1. Thus the synchrotron radiation is

confined by

ω ≤ 2ωc

(1 +X2)3/2
or �Θ2�1/2 ≤ 1

γ
(
ωc

ω
)1/3. (4.51)

The synchrotron radiation spans a continuous spectrum up to ωc. High frequency

synchrotron light is confined in an angular cone 1/γ. The radiation at large angles is
mostly low frequency.

C. Angular distribution in the orbital plane

In the particle orbital plane with Θ = 0, the radiation contains only the parallel
polarization. We find

dI

dΩ

∣∣∣∣
Θ=0

=
3e2

16π3�0c
γ2H2(

ω

ωc
),

H2(y) = y2K2
2/3(

y

2
) ∼

{
4

1
3 [Γ(2

3
)]2y2/3, if y � 1,

πye−y, if y � 1,
(4.52)

with y = ω/ωc (Fig. 4.4). Thus the energy spectrum at Θ = 0 increases with frequency

as 2.91(ω/ωc)
2/3 for ω � ωc, reaches a maximum near ωc, and then drops to zero

exponentially as e−ω/ωc above critical frequency.

8F.R. Elder et al., Phys. Rev. 71, 829 (1947); 74, 52 (1948); J. Appl. Phys. 18, 810 (1947).
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Figure 4.4: The functions H2(y) and S(y) for
synchrotron radiation are shown as functions of
y = u/uc, where u = �ω, uc = �ωc.

D. Angular distribution for the integrated energy spectrum

When the energy flux is integrated over all frequency (see Section 6.576 in Ref. [31]),
we obtain ∫ ∞

0

dP

dωdΩ
dω =

7e2

96π�0c

γ2ωc

(1 +X2)5/2

(
1 +

5X2

7(1 +X2)

)
(4.53)

where the first term corresponds to the polarization vector parallel to the orbital
plane, while the second term is the perpendicular component. Integrating over all

angles, we find that the parallel polarization carries seven times as much energy as

does the perpendicular polarization.

E. Frequency spectrum of radiated energy flux

Integrating Eq. (4.49) over the entire angular range, we obtain the energy flux9

I(ω) =

√
3e2

4π�0c
γ
ω

ωc

∫ ∞

ω/ωc

K5/3(y)dy =
2e2

9�0c
γS(

ω

ωc
), (4.54)

S(y) =
9
√
3

8π
y

∫ ∞

y

K5/3(y
�)dy�,

∫ ∞

0

S(y) = 1. (4.55)

The total instantaneous radiation power becomes

Pγ =
1

2πρ

∫ ∞

0

I(ω)dω =
4e2

36π�0ρ
γωc =

cCγ

2π

E4
0

ρ2
, (4.56)

where Cγ = 8.85× 10−5 meter/(GeV)3. This result was obtained by Liénard in 1898.
The instantaneous power spectrum becomes

Ĩ(ω) =
1

2πρ
I(ω) =

Pγ

ωc
S(

ω

ωc
). (4.57)

9J. Schwinger, Phys. Rev. 75, 1912 (1949).
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Since the energy of the photon is �ω, the photon flux density is

dF
dΩ

=

[
I

e

]
3e2

16π3�0�c
δω

ω

(
ω

ωc

)2

(1 +X2)2
[
K2

2/3(ξ) +
X2

1 +X2
K2

1/3(ξ)

]
, (4.58)

dF
dΩ

∣∣∣
Θ=0

=

[
I

e

]
3e2

16π3�0�c
δω

ω
H2(

ω

ωc
)

= 1.33× 1013E2
0I[A]H2(

ω

ωc
)

[
photons

s mr2 0.1% bandwidth

]
, (4.59)

which peaks at y = 1 or ω = ωc. Thus the radiation due to the bending magnets has
a smooth spectral distribution with a broad maximum at the critical frequency ωc.

The critical photon energy is

ωc =
3cγ3

2ρ
, uc [keV] = �ωc = 0.665 E2[GeV] B[T], (4.60)

where E is the electron beam energy and B is the magnetic flux density.
Using the asymptotic properties of the modified Bessel functions of Eq. (4.50),

we find that the spectral flux vanishes as (ω/ωc)
2/3 for ω � ωc and as e−ω/ωc for

ω � ωc. Following the traditional convention, we define 4ωc as the upper limit for

useful photon frequency from bending magnet radiation.
Integrating Eq. (4.49) over the vertical angle Θ, we obtain

dF
dΦ

∣∣∣
Θ=0

=

[
I

e

] √
3e2

8π2�0�c
δω

ω
γ
ω

ωc

∫ ∞

ω/ωc

K5/3(y)dy

= 2.46× 1013E0[GeV ]I[A]G1(
ω

ωc

)

[
photons

s mr2 0.1% bandwidth

]
(4.61)

G1(y) = y

∫ ∞

y

K5/3(y
�)dy�

The function S(y) = 9
√
3

8π
G1(y) is shown in Figure 4.4.

I.4 Quantum Fluctuation

Electromagnetic radiation is emitted in quanta of energy u = �ω, where � is Planck’s

constant. Let n(u)du be the number of photons per unit time emitted in the frequency
interval dω = du/� at frequency ω, i.e.

un(u)du = I(ω)dω = I(ω)
du

�
(4.62)

n(u) =
Pγ

u2
c

F (
u

uc

) =
9
√
3

8π

Pγ

u2
c

∫ ∞

u/uc

K5/3(y)dy, (4.63)

F (y) =
1

y
S(y),

∫ ∞

0

F (y) =
15
√
3

8
. (4.64)
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The total number of photons emitted per second, N , and the average number of

photons emitted per revolution are

N =

∫ ∞

0

n(u)du =
15
√
3

8

Pγ

uc
=

5αcγ

2
√
3ρ

, (4.65)

Nγ = N 2π
ρ

c
=

5π√
3
αγ, (4.66)

where α = e2/4π�0�c is the fine structure constant. Table 4.2 lists synchrotron
radiation properties of some storage rings. Note that the number of photons emitted

per revolution is typically a few hundred to a few thousand. In Table 4.2, E is the

beam energy, ρ is the bending radius, C is the circumference, T0 is the revolution
period, U0 is the energy loss per revolution, τs and τ⊥ are radiation damping times

of the longitudinal and transverse phase spaces (to be discussed in Sec. II), uc is
the critical photon energy, and Nγ is the average number of photons emitted per

revolution.

Table 4.2: Properties of some high energy storage rings

BEPC CESR LER HER APS ALS LEP LHC
E [GeV] 2.2 6 3.2 9 7 1.5 55 7000
ρ [m] 10.35 60 30.6 165 38.96 4.01 3096.2 3096.2
C [m] 240.4 768.4 2199.3 2199.3 1104 196.8 26658.9 26658.9
T0 [μs] 0.80 2.56 7.34 7.34 3.68 0.66 89. 89.
U0 [MeV] 0.20 1.91 0.30 3.52 5.45 0.11 261. 0.00060
τ� [ms] 8.8 8.0 77. 19. 4.7 8.8 19. 1.0× 109

τ⊥ [ms] 18. 16. 155. 38. 9.4 18. 38. 2.0× 109

uc [keV] 2.28 7.97 2.37 9.78 19.50 1.86 119.00 0.040
Nγ 285 777 415 1166 907 194 7125 494

The moments of energy distribution become

�u� = 1

N
∫ ∞

0

un(u)du =
8

15
√
3
uc, �u2� = 1

N
∫ ∞

0

u2n(u)du =
11

27
u2
c ,

N�u2� = CuucPγ =
3CuCγ

4π

�c2

(mc2)3
E7

0

ρ3
, Cu =

55

24
√
3
. (4.67)

At a fixed bending radius, the quantum fluctuation varies as the seventh power of the

energy.
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Exercise 4.1

1. A particle of mass m and charge e moves in a plane perpendicular to a uniform, static
magnetic induction B.

(a) Calculate the total energy radiated per unit time. Express it in terms of the
constants m, e, γ and B.

(b) Find the path of the electron.

2. Plot the angular distribution of synchrotron radiation shown in Eq. (4.49) for β = 0.5
and β = 0.99. Find the maximum angular distribution of synchrotron radiation, and
show that the integrated power is given by Eq. (4.56).

3. Using the coordinate system of Fig. 4.2 with �β = ββ̂, �̇β = (v̇/c)ˆ̇β, and n̂ = cosΘβ̂ +

sinΘ cosΦ
ˆ̇
β + sinΘ sinΦĵ, where ĵ = β̂ × ˆ̇

β, verify Eq. (4.30). Plot the angular
distribution of synchrotron radiation shown in Eq. (4.30) for β = 0.5 and β = 0.99.
Find the angle of the maximum angular distribution, and show that the integrated
power is given by Eq. (4.31).

4. The synchrotron radiation generated by the circulating beam will liberate photo elec-
trons from the chamber walls, which will desorb the surface molecules. The photon
yields depend on the photon energy and the chamber wall material. Using Eq. (4.54),
show that the number of primarily photons per unit energy interval in one revolution
is

dN

du
=

9
√
3

8π

U0

u2c

∫ ∞

u/uc

K5/3(y)dy,

where K5/3 is the Bessel function of order 5/3; uc = 3�cγ3/2ρ is the critical photon
energy; and

U0 =
4πrpmpc

2γ4

3ρ
=

{
8.85 × 10−5[(E [GeV])4/ρ [m]] [GeV] for electrons,
7.78 × 10−6[(E [TeV])4/ρ [m]] [GeV] for protons,

is the energy loss per revolution. Show that the total number of primary photons in
one revolution is given by

Nγ =
15
√
3

8

U0

uc

Verify Nγ of the machines in the table below.

Proton storage rings Electron storage rings

VLHC SSC LHC LEP HER(B) APS

E [GeV] 50000 20000 8000 55 9 7
ρ [m] 15000 10108 3096.2 3096.2 165 38.96
γ 53289 21316 8526 107632 17612 13699
uc [keV] 3.0 0.28 0.059 119 9.78 19.5
U0 [keV] 3246 123 10.3 261495 3518 5453

Nγ 3530 1429 567 7136 1168 908
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5. At 55 GeV, the magnetic flux density in a LEP dipole is B = 592.5 G. What happens
if you design the LEP with a magnetic flux density of 0.5 T at 55 GeV beam energy?
What will the energy loss per revolution be at 100 GeV? With the present LEP dipole
magnets, at what energy will the beam lose all its energy in one revolution?

6. Verify Eq. (4.53), integrate the intensity over all angles, and prove that the parallel
polarization carries seven times as much energy as that of the perpendicular polar-
ization.

7. Verify Eqs. (4.59) and (4.61).

8. In designing a high energy collider, you need to take into account the problems asso-
ciated with gas desorption due to synchrotron radiations.

(a) For an accelerator with an average current I [A], show that the total synchrotron
radiation power is given by

Pγ = 6.03 × 10−9 γ
4R [m] I [A]

(ρ[m])2
[W ].

(b) Show that the total number of photons per unit time (s) is given by

N = 4.14× 1017
R

ρ
γ I [A].

Show that the total number of photons per unit length in the dipole magnet is
given by10

dN
ds

= 6.60× 1016
R

ρ2
γ I [A] [photons/m].

10The resulting pressure increase is given by

ΔP =
η

kS
× dN

ds
,

where η is the molecular desorption yield (molecules/photon), S is the pumping speed (liter/s), and
k = 3.2× 1019 (molecules/torr-liter) at room temperature. See O. Gröbner, p. 454 in Ref. [19].
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II Radiation Damping and Excitation

The instantaneous power radiated by a relativistic electron at energy E in the mag-

netic field strength B is given by (4.4), i.e. P ∼ E2B2 ∼ E4/ρ2, where ρ is the
local radius of curvature. The total energy radiated in one revolution and the average

radiation power for an isomagnetic ring are respectively

U0 =
Cγβ

2E4

2π

∮
ds

ρ2
isomagnetic−−−−→ CγE

4

ρ
= 26.5 (E[GeV])3 B[T] [keV].

�Pγ� = U0

T0

=
cCγE

4

2πRρ
,

where T0 = βc/2πR is the revolution period, and R is the average radius of a storage

ring. For example, an electron at 50 GeV in the LEP at CERN (ρ = 3.096 km) will
lose 0.18 GeV per turn, and the energy loss per revolution at 100 GeV is 2.9 GeV,

i.e. 3% of its total energy. The energy of circulating electrons is compensated by rf

cavities with longitudinal electric field.
Since higher energy electrons lose more energy than lower energy electrons [see

Eq. (4.4)] and the average beam energy is compensated by longitudinal electric field,
there is radiation damping (cooling) in the longitudinal phase space. Furthermore,

electrons lose energy in a cone with an angle about 1/γ of their instantaneous ve-
locity vector, and gain energy through rf cavities in the longitudinal direction. This

mechanism provides transverse phase-space damping. The damping (e-folding) time
is generally equal to the time it takes for the electron to lose all of its energy.

At the same time, photon emission is discrete, random and quantized. The quan-
tum process causes diffusion and excitation. The balance between quantum fluctua-

tion and phase-space damping provides natural momentum spread of the beam.
The longitudinal and transverse motions are coupled through the dispersion func-

tion; there is a damping-fluctuation partition between the longitudinal and transverse
radial planes. The balance between damping and excitation provides natural emit-

tance or equilibrium beam size. The vertical emittance is determined by the residual

vertical dispersion function and linear betatron coupling. In this section we discuss
damping time, damping partition, quantum fluctuation, beam emittances, and meth-

ods of manipulating the damping partition number.

II.1 Damping of Synchrotron Motion

Expanding the synchrotron radiation power of Eq. (4.4) around synchronous energy,

we obtain

U(E) = U0 +WΔE, W =
dU

dE

∣∣∣
E=E0

, (4.68)

where E0 is the synchronous energy. Since a particle having nonzero betatron am-

plitude moves through different regions of magnetic field, its rate of synchrotron
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radiation may differ from that of an electron with zero betatron amplitude. How-

ever, if the field is linear with respect to displacement, the radiation power averaged
over a betatron cycle is independent of betatron amplitude. Thus Eq. (4.68) does

not depend explicitly on betatron amplitude. We will show that the coefficient W
determines the damping rate of synchrotron motion.

First, we consider the longitudinal equation of motion in the presence of energy
dissipation. We assume that all particles travel at the speed of light. Let (c(τ +

τs),ΔE) be the longitudinal phase-space coordinates of a particle, where ΔE is the
energy deviation from the synchronous energy. Let (cτs, 0) be those of a synchronous

particle. The path length difference between these two particles is ΔC = αcC
ΔE
E
,

where αc is the momentum compaction factor, C is the accelerator circumference.

The difference of the arrival time and its time derivative become

Δτ = αc
C

c

ΔE

E
= αcT0

ΔE

E
=⇒ dτ

dt
=

Δτ

T0
= αc

ΔE

E
. (4.69)

Here, the phase slip factor is η = αc − 1/γ2 ≈ αc for high energy electrons.
During one revolution, the electron loses energy U(E) by radiation, and gains

energy eV (τ) from the rf system. Thus the net energy change is

d(ΔE)

dt
=

eV (τ)− U(E)

T0
, (4.70)

where the energy loss per revolution is U(E) = U0+WΔE. For simplicity, we assume
a sinusoidal rf voltage wave and expand the rf voltage around the synchronous phase

angle φs = hω0τs,

V (τ) = V0 sinφ = V0 sinωrf(τ + τs),

where the rf frequency is ωrf = hω0 = 2πh/T0; ω0 is the revolution frequency; and h

is the harmonic number. Now we consider the case of a storage mode without net
acceleration, where the energy gain in the rf cavity is to compensate the energy loss

in synchrotron radiation, i.e.

Urf = eV (τ) = U0 + eV̇ τ,

U0 = eV0 sin(ωrfτs), V̇ = ωrfV0 cos(ωrfτs).

Thus, in small amplitude approximation, we have

d(ΔE)

dt
=

1

T0
(eV̇ τ −WΔE). (4.71)

Combining with Eq. (4.69), we obtain

d2τ

dt2
+ 2αE

dτ

dt
+ ω2

s τ = 0, αE =
W

2T0

, ω2
s = −αceV̇

T0E
. (4.72)
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Figure 4.5: A schematic drawing of damped syn-
chrotron motion. Particle motion is damped to-
ward the center of the bucket.

This is the equation of a damped harmonic oscillator with synchrotron frequency ωs

and damping coefficient αE. The longitudinal damping time is τ� = 1/αE. Since the

damping rate is normally small, i.e. αE � ωs, the solution can be expressed as

τ(t) = Ae−αEt cos(ωst− θ0). (4.73)

Figure 4.5 illustrates damped synchrotron motion. Table 4.2 lists the longitudinal

damping time of some storage rings. Typically, 1/e damping time is 103 − 104 revo-
lutions.

The damping partition

To evaluate the damping rate, we need to evaluate W . Since the radiation energy

loss per revolution is

Urad =

∮
Pγdt =

∮
Pγ

dt

ds
ds =

1

c

∮
Pγ(1 +

x

ρ
)ds =

1

c

∮
Pγ(1 +

D

ρ

ΔE

E0

)ds,

where D is the dispersion function, ρ is the radius of curvature, and we have used
cdt/ds = (1 + x/ρ). The transverse displacement x is the sum of betatron displace-

ment and off-momentum closed orbit. Since we are interested in the dependence of
total radiation energy on the off-energy coordinate and �xβ� = 0, we replace x by

D(ΔE/E0). The derivative of radiation energy with respect to particle energy is

W =
dUrad

dE
=

1

c

∮ {
dPγ

dE
+

D

ρ

Pγ

E

}

E0

ds.

Using Pγ ∼ E2B2 of Eq. (4.4), we obtain

dPγ

dE

∣∣∣∣
E0

= 2
Pγ

E0
+ 2

Pγ

B0

dB

dE
= 2

Pγ

E0
+ 2

Pγ

B0

dx

dE

dB

dx
= 2

Pγ

E0
+ 2

Pγ

B0

D

E0

dB

dx
,

dUrad

dE
=

1

c

∮ {
2
Pγ

E0
+ 2

Pγ

B0

D

E0

dB

dx
+

Pγ

E0

D

ρ

}

E0

ds

=
U0

E0

[
2 +

1

cU0

∮ {
DPγ

(
1

ρ
+

2

B

dB

dx

)}

E0

ds

]
.
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Thus the damping coefficient becomes

αE =
1

2T0

dUrad

dE
=

U0

2T0E
(2 +D).

Here D is the damping re-partition number:

D =
1

cU0

∮ {
DPγ

(
1

ρ
+

2

B

dB

dx

)}

E0

ds =

[∮
D

ρ

(
1

ρ2
+ 2K(s)

)
ds

] [∮
ds

ρ2

]−1

(4.74)

where K(s) = B1/Bρ is the quadrupole gradient function with B1 = ∂B/∂x. The

damping re-partition number D is a property of lattice configuration. For isomagnetic
ring, the re-partition factor becomes

D =
1

2π

∮
D(s)

(
1

ρ2
+ 2K(s)

)

dipole

ds, (4.75)

which is to be evaluated only in dipoles.

Example 1: Damping re-partition for separate function accelerators

For an isomagnetic ring with separate function magnets, where K(s) = 0 in dipoles,

D =
1

2πρ

∮
D(s)

ρ
ds =

αcR

ρ
, (4.76)

where αc is the momentum compaction factor. Since normally αc � 1 in synchrotrons,
D � 1 for separate function machines.

The damping coefficient for separate function machines becomes

αE =
�Pγ�
2E

(
2 +

αcR

ρ

)
≈ U0

ET0
=

�Pγ�
E

. (4.77)

The damping time constant, which is the inverse of αE, is nearly equal to the time it

takes for the electron to radiate away its total energy.

Example 2: Damping re-partition for combined function accelerators

For an isomagnetic combined function accelerator, we find (see Exercise 4.2.1)

D = 2− αcR

ρ
(4.78)

and αE ≈ 2�Pγ�/E. The synchrotron motion is damped two times faster at the

expense of horizontal betatron excitation, to be discussed in the next section.
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II.2 Damping of Betatron Motion

A. Transverse (vertical) betatron motion

A relativistic electron emits synchrotron radiation primarily along its direction of mo-

tion within an angle 1/γ. The momentum change resulting from recoil of synchrotron
radiation is exactly opposite to the direction of particle motion. Figure 4.6 illustrates

betatron motion with synchrotron radiation, where vertical betatron coordinate z is
plotted as a function of longitudinal coordinate s. The betatron phase-space coordi-

nates are

z = A cosφ, z′ = −A

β
sinφ, A2 = z2 + (βz′)2, (4.79)

where A is betatron amplitude, φ is betatron phase, and β is betatron function.

Figure 4.6: Schematic drawing of the damping of
vertical betatron motion due to synchrotron radi-
ation. The energy loss through synchrotron radia-
tion along the particle trajectory with an opening
angle of 1/γ is replenished in the rf cavity along
the longitudinal direction. This process damps the
vertical betatron oscillation to a very small value.

When an electron loses an amount of energy u by radiation, the momentum vector

changes by Δ�P , which is parallel and opposite to �P with |cδ �P | = cδp = u. Since the
radiation loss changes neither slope nor position of the trajectory, the betatron am-

plitude is unchanged except for a small increment in effective focusing force. Putting

the above statement into equation, we find

z′|before =
pz
p

= z′|after =
pz

p− δp

(
1− δp

p

)
after cavity−−−−→ pz

p

(
1− δp

p

)
,

where the effect of energy compensation is shown in the above equation. Thus the

change of z′ is

z′ → z′(1− δp

p
), or Δz′ = −z′

δp

p
= −z′

u

E
. (4.80)

The corresponding change of amplitude A in one revolution becomes

AδA = �β2z′Δz′� = −�(βz′)2�U0

E
,

where �. . .� averages over betatron oscillations in one revolution, and U0 is synchrotron

radiation energy per revolution. Since the betatron motion is sinusoidal, we find

�(βz′)2� = A2/2. The time variation of the betatron amplitude function and the
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damping coefficient become

1

A

dA

dt
=

1

T0

δA

A
= − U0

2ET0
,

αz =
U0

2ET0

=
�Pγ�
2E

. (4.81)

The radiation loss alone does not result in betatron phase-space damping. The radi-

ation damping arises from the combination of energy loss in the direction of betatron
orbit and energy gain in the longitudinal direction from rf systems. The 1/e damping

time of the vertical betatron motion is τz = 1/αz. The damping rate of Eq. (4.81)
applies also to the horizontal betatron motion.

B. Horizontal betatron motion

The horizontal motion of an electron is complicated by the off-momentum closed
orbit. The horizontal displacement from the reference orbit is

x = xβ + xe, xe = D(s)
ΔE

E
, x′ = x′

β + x′
e, x′

e = D′(s)
ΔE

E
,

where xβ is the betatron displacement, xe is the off-energy closed orbit, and D(s) is

the dispersion function. When the energy of an electron is changed by an amount u
due to photon emission, the off-energy closed orbit xe changes by an amount δxe =

D(s) (u/E) shown schematically in Fig. 4.7. Since phase-space coordinates are not

changed by any finite impulse, the resulting betatron amplitude is

δxβ = −δxe = −D(s)
u

E
, δx′

β = −δx′
e = −D′(s)

u

E
. (4.82)

The resulting change of betatron amplitude can be obtained from the betatron phase
average along an accelerator.

Figure 4.7: Schematic illustration, after M.
Sands [2], of quantum excitation of horizon-
tal betatron motion arising from photon emis-
sion at a location with nonzero dispersion func-
tions. At a location marked by a vertical
dashed line, the electron emits a photon, and
the electron energy is changed by u, and thus
the off energy closed orbit is shifted by δxe,
which perturbs the betatron motion. A small
and not so important effect is a stronger focus-
ing field for betatron motion.

We consider betatron motion with

xβ = A cosφ, x′
β = −A

β
sinφ, A2 = x2

β + (βx′
β)

2; (4.83)
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the change in betatron amplitude becomes

AδA = xβδxβ + β2x�
βδx

�
β = −(Dxβ + β2D�x�

β)
u

E
. (4.84)

Substituting the energy loss u in an element length δ� with

u = −Pγ(xβ)

c
δ� = −1

c

(
Pγ + 2

Pγ

B

dB

dx
xβ

)(
1 +

xβ

ρ

)
ds (4.85)

into Eq. (4.84), we obtain the change in betatron amplitude as

AδA = xβD

(
1 +

2

B

dB

dx
xβ +

xβ

ρ

)
Pγ

cE
ds. (4.86)

Here we use δ� = (1 + x/ρ)ds with x = xβ , because we are interested in the effect on
betatron motion. The off-momentum closed orbit does not contribute to the change

in betatron amplitude. We have also neglected all terms linear in x�
β, because their

average over the betatron phase is zero. We are now looking for the time average
over the betatron phase, where �xβ� = 0 and �x2

β� = 1
2
A2. The fractional betatron

amplitude increment in one turn becomes

�δA�
A

=
U0

2E

(∮
D

ρ

[
2K(s) +

1

ρ2

]
ds

)(∮
1

ρ2
ds

)−1

= D U0

2E
, (4.87)

where D is the damping re-partition number given in Eq. (4.74). In particular, we

observe that the right side of Eq. (4.87) is positive, i.e. there is an increase in horizon-
tal betatron amplitude due to synchrotron radiation. Emission of a photon excites

betatron motion of the electron. This resembles the random walk problem, and the
resulting betatron amplitude will increase with time. Including the phase-space damp-

ing due to rf acceleration given by Eq. (4.81), we obtain the net horizontal amplitude
change per revolution and the damping (rate) coefficient:

ΔA

A
= −(1 −D)

U0

2E
; αx = (1−D)

U0

2T0E
, (4.88)

where the damping re-partition D is given by Eq. (4.74).
In summary, radiation damping coefficients for the three degrees of freedom in a

bunch are
αx = Jxα0, αz = Jzα0, αE = JEα0, (4.89)

where α0 = �Pγ�/2E, and the damping partition numbers

Jx = 1−D, Jz = 1, JE = 2 +D (4.90)

satisfy the Robinson theorem [see K. Robinson, Phys. Rev. 111, 373 (1958)]:
∑

Ji = Jx + Jz + JE = 4 or Jx + JE = 3 (4.91)
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provided that all fields acting on the particle are predetermined and are not influenced

by the motion of electrons. The corresponding damping time constants are

τx =
2E

Jx�Pγ� =
4πRρ

cCγJxE3
=

2E

JxU0

T0,

τz =
2E

Jz�Pγ� =
4πRρ

cCγJzE3
=

2E

JzU0

T0,

τE =
2E

JE�Pγ� =
4πRρ

cCγJEE3
=

2E

JEU0

T0,

where T0 is the revolution period. Note that the damping time, for constant ρ, is
inversely proportional to the cubic power of energy and, for a fixed B-field, is inversely

proportional to the square of energy. Some typical damping times for electron storage
rings are listed in Table 4.2. The damping decrements are defined as

λx = T0/τx, λz = T0/τz, λE = T0/τE , (4.92)

i.e. the beam phase space areas are reduced by exp(−λx), exp(−λz), and exp(−λE)

per revolution respectively. The damping rate of an individual particle or a portion

of a bunch can be modified if additional forces are introduced that depend on the
details of particle motion. Some examples are image current on vacuum chamber wall,

induced current in rf cavity, wakefields, longitudinal and transverse dampers powered
by amplifiers sensing beam displacement, and electron and stochastic cooling devices.

II.3 Damping Rate Adjustment

The damping re-partition and damping times are determined by the lattice design.

However, insertion devices, such as undulators and wigglers, can be used to adjust
beam characteristic parameters. We discuss below some techniques for damping rate

adjustment.

A. Increase U to increase damping rate (damping wiggler)

Phase-space damping rates, apart from damping partition numbers, depend on radia-

tion energy U0 per turn. Wiggler magnets, which consist of strings of dipole magnets

with alternate polarities excited so that the net deflection is zero, can be used to
increase the radiation energy and thus enhance damping rate. The resulting energy

loss per revolution and the damping rate become

Uw = U0 + Uwiggler, αw =
Uw

2ET0

= α0 + αwiggler. (4.93)

The damping time is shortened by a factor of (1 + Uwiggler/U0)
−1.
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B. Change D to re-partition the partition number

Many early synchrotrons, such as the 8 GeV synchrotron (DESY) in Hamburg, the 28

GeV PS at CERN, the 33 GeV AGS at BNL, etc., used combined function isomagnetic
magnets, where D ≈ 2 (see Exercise 4.2.1). Thus the energy oscillations are strongly

damped (JE ≈ 4) and the horizontal oscillations become anti-damped (Jx ≈ −1).

At the CERN PS, in facilitating the acceleration of e+/e− from 0.6 to 3.5 GeV
as part of the LEP injection chain, horizontal emittance is an important issue. The

growth time at 3.5 GeV is about 76 ms (Jx ≈ −1, ρ = 70 m), which is much shorter
than the cycle time of 1.2 s. Stability of the electron beam can be achieved only by

having a positive damping partition number, which can be facilitated by decreasing
the orbit radius R.

The reason for the change in damping partition due to orbit radius variation is as

follows. The potential for betatron motion in a quadrupole is

Vβ =
1

2
K(s) (x2 − z2), (4.94)

whereK = (1/Bρ)(∂Bz/∂x) is the focusing function; K > 0 for a focusing quadrupole,

andK < 0 for a defocusing quadrupole. If the rf frequency is increased without chang-
ing the dipole field, the mean radius will move inward, and the change of radius ΔR

is
Δf

f
= −ΔR

R
= −αcδs. (4.95)

The actual closed orbit can be expressed as x = xco + xβ, where xco < 0 is a new

closed orbit relative to the center of a quadrupole, and xβ is the betatron coordinate.
The potential for betatron motion becomes

Vβ =
1

2
K(s) (x2

β − z2 + 2xβxco + x2
co). (4.96)

Since xco < 0, the effective dipole field xcoK(s) in a quadrupole and the quadrupole

field have opposite signs, i.e. (1/Bz)(∂Bz/∂x) < 0. This is similar to the effect of
a Robinson wiggler, discussed below. The combined effect is that the damping re-

partition D will get a negative contribution from these quadrupoles. The effective
dipole field arising from the closed orbit in a quadrupole is given by BρK (xβ +

xco), where Bρ is the momentum rigidity. Substituting the contribution of quantum
excitation from the quadrupole into Eq. (4.85) gives the additional change of betatron

amplitude in Eq. (4.86) as

Δ

(
δA

A

)
=

CγE
3

2π

∮
K2D2ds δs, (4.97)
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where we have used xco = Dδs, and the fractional off-momentum shift δs = −Δf/αcf .

The resulting change of damping re-partition is (see also Exercise 4.2.9)

ΔD
δs

=

(
2

∫
K2D2ds

)[∮
1

ρ2
ds

]−1

. (4.98)

The CERN PS lattice is composed of Ncell = 50 nearly identical combined function

FODO cells with a mean radius of R = 100 m. Using Eq. (4.74) or Eq. (4.85) we get
the change in damping partition due to closed orbit variation (see Exercise 4.2.9),

ΔD =
ρ

π

∮
D

(
B�

Bρ

)2

dsΔR ≈ 8N2
cell

π2R
ΔR. (4.99)

Figure 4.8 shows Jx,JE vs ΔR for the CERN PS.

Figure 4.8: The variation of the damp-
ing partition number of the CERN PS
with the strength of the Robinson wiggler.
Without the Robinson wiggler, a fairly
large change in ΔR is needed to attain
Jx = 1, with loss of useful aperture. From
K. Hubner, CERN 85-19, p. 226 (1985).

C. Robinson wiggler

Without a Robinson wiggler, changing the damping re-partition requires a large shift

of the mean orbiting radius (Fig. 4.8), and this limits the dynamical aperture of
circulating beams. Thus, it is preferable to change the damping re-partition number

by using the Robinson wiggler, which consists of a string of four identical magnet
blocks having zero net dipole and quadrupole fields so that it will not produce global

orbit and tune distortion in the machine. If the gradient and dipole field of each
magnet satisfy Kρ < 0, as shown in Fig. 4.9, the damping re-partition of Eq. (4.74)

can be made negative.

Figure 4.9: Schematic drawing of a
Robinson wiggler, where gradient dipoles
with B dB

dx < 0 are used to change the
damping re-partition number.
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Since these magnets have Kwρw < 0, the wiggler contributes a negative term to

the damping re-partition of Eq. (4.74). The change of damping re-partition is

ΔD = 2�D� 1

Bw

dBw

dx

4Lwρ

2πρ2w

(
1 +

4Lwρ

2πρ2w

)−1

, (4.100)

where ρw, Bw, dBw/dx, and Lw are respectively the bending radius, the wiggler field
strength, its derivative, and the length of each wiggler; and ρ is the bending radius

of ring magnets and �D� the average dispersion function in wiggler locations. The
Robinson wiggler has been successfully employed in the CERN PS to produce Jx ≈ 2,

which enhances damping of horizontal emittance and reduces damping in energy
oscillation. The resulting line density of beam bunches is likewise reduced to prevent

collective instabilities.

II.4 Radiation Excitation and Equilibrium Energy Spread

Electromagnetic radiation is emitted in quanta of discrete energy. When a photon

is emitted, the electron energy makes a small discontinuous jump. The emission
time is short and thus the synchrotron radiation can be considered as instantaneous.

This can be verified as follows. In a semi-classical picture, the time during which a
quantum is emitted is about

ρΘ

c
≈ ρ

cγ
≈ 6

B[Tesla]
× 10−12 s,

where γ is the relativistic Lorentz factor, ρ is the radius of curvature, and B is the

magnetic flux density. Since this time is very short compared with the revolution

period and the periods of synchrotron and betatron oscillations, quantum emission
can be considered instantaneous.

Another important feature of synchrotron radiation is that emission times of in-
dividual quanta are statistically independent. Since the energy of each photon [keV]

is a very small fraction of electron energy, the emission of successive quanta is a
purely random process, i.e., the probability of an electron emitting n photons per

second is given by a Poisson distribution f(n) = pne−p/n!. Here p = �n� is the
average rate per second. The variance of Poisson distribution σ2 is equal to p.

In the limit of large p, Poisson distribution approaches Gaussian distribution, i.e.
P (n) = (1/

√
2πp)e−(n−p)2/2p.

Discontinuous quantized photon emission disturbs electron orbits. The cumulative
effect of many such small disturbances introduces diffusion similar to random noise.

The amplitude of oscillation will grow until the rates of quantum excitation and
radiation damping are on the average balanced. The damping process depends only

on the average rate of energy loss, whereas the quantum excitation fluctuates about

its average rate.
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A. Effects of quantum excitation

When a quantum of energy �ω is emitted, the energy of the electron is suddenly de-

creased by an amount �ω. The impulse disturbance sets up a small energy oscillation.
The cumulative effect of many such random disturbances causes energy oscillation to

grow (as in a random walk). The growth is limited by damping.
In the absence of any disturbance and damping, the energy deviation ΔE from

the synchronous energy, expressed in complex representation, is

ΔE = A0e
jωs(t−t0), (4.101)

where A0 is the amplitude of synchrotron motion, and ωs is the synchrotron frequency.
Now if the energy is suddenly decreased by an amount u at instant t1 via quantum

emission, the energy oscillation of the particle becomes

ΔE = A0e
jωs(t−t0) − uejωs(t−t1) = A1e

jωs(t−t1), (t > t1), (4.102)

where
A2

1 = A2
0 + u2 − 2A0u cosωs(t1 − t0). (4.103)

The quantum emission has changed the amplitude of synchrotron oscillation. Since

the time t1 is unpredictable, the probable change in amplitude will be

δA2 = �A2 − A2
0�t = u2, (4.104)

where �. . .�t stands for time average. Qualitatively, the amplitude growth rate be-

comes

�dA
2

dt
� = d�A2�

dt
= Nu2, (4.105)

where N is the rate of photon emission.

B. Equilibrium rms energy spread

Since damping time of the amplitude A is τE = 1/αE, as shown in Eq. (4.72), the
damping time ofA2 is τE/2. The equation for the synchrotron amplitude thus becomes

d�A2�
dt

= −2
�A2�
τE

+Nu2, (4.106)

where the stationary state solution is �A2� = 1
2
Nu2τE . A qualitative estimation of

the rms beam energy spread for sinusoidal energy oscillation is

σE
2 =

�A2�
2

=
1

4
Nu2τE . (4.107)

For an order of magnitude estimation, we use u ≈ �ωc, N ≈ Pγ/�ωc, and τE ≈ E/Pγ

to obtain an rms energy oscillation amplitude of σE ∝ √
E�ωc ∼ γ2. The energy
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fluctuation is roughly the geometric mean of electron energy and critical photon

energy, and is proportional to γ2. To attain a better calculation on the equilibrium
beam momentum spread, the quantum fluctuation should be obtained from the sum of

the entire frequency spectrum because the photon spectrum of synchrotron radiation
is continuous.

Let n(u)du be the photon density at energy between u and u+du. The amplitude
growth rate due to quantum fluctuation becomes

d�A2�
dt

=

∫ ∞

0

u2n(u)du = N�u2�, N =

∫ ∞

0

n(u)du. (4.108)

This shows that the amplitude growth rate depends on mean energy loss �u2� of
electrons, which depends on electron energy E and local radius of curvature ρ. Since

the radius of curvature may vary widely along the ring, and damping time τE and
synchrotron period 1/ωs are much longer than revolution period T0, it is reasonable

to average the excitation rate by averaging N�u2� over one revolution around the
accelerator. We define the mean square energy fluctuation rate GE as

GE = �N �u2��s = 1

2πR

∮
N�u2�ds, (4.109)

where the subscript s indicates an average over the ring. The mean square equilibrium

energy width becomes

σ2
E =

1

4
GEτE. (4.110)

On the design orbit, the radiated power is

Pγ

∣∣∣∣
designed orbit

=
cCγ

2π

E4

ρ2
=

�Pγ�
�1/ρ2�ρ2 . (4.111)

Equation (4.67) then gives

N�u2�
∣∣∣∣
designed orbit

=
3

2
Cu�c

γ3

|ρ3|
�Pγ�
�1/ρ2� , (4.112)

where Cu = 55/24
√
3. Using Eq. (4.109) and τE = 2E/JE�Pγ�, we obtain

GE =
3

2
Cu�cγ3 �Pγ�

�1/ρ2��1/|ρ
3|� (4.113)

and

σ2
E =

3Cu�mc3γ4

4JE�1/ρ2� �1/|ρ
3|�. (

σE

E
)2 =

Cqγ
2

JE�1/ρ2��1/|ρ
3|�, (4.114)

where

Cq =
3Cu�
4mc

=
55

32
√
3

�
mc

= 3.83× 10−13 m. (4.115)
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For an isomagnetic ring, we obtain

(
σE

E
)2 =

55

48
√
3

�ωc

JEE
= Cq

γ2

JEρ
or

σE

E
∼ (0.62× 10−6)

γ√JEρ[m]
. (4.116)

Note that the energy spread is independent of the rf voltage. For a bunch with a
given momentum spread, the bunch length is shorter with higher rf voltage, and the

resulting phase-space area is smaller; with lower rf voltage phase-space area is larger.
In many electron storage rings, the bunch length is also affected by wakefields [5].

C. Adjustment of rms momentum spread

Insertion devices, such as undulators and wigglers, can change the rms energy spread
of Eq. (4.110). Two competing effects determine the equilibrium energy spread. In-

sertion devices increase radiation power, which will increase quantum fluctuation GE .

Since the damping time is also shortened, the resulting equilibrium energy spread
becomes

σ2
E = σ2

E0

(
1 +

I3w
I3

)(
1 +

I2w
I2

)−1

, (4.117)

I3 =

∫
1

|ρ|3ds, I2 =

∫
1

|ρ|2ds, I3w =

∫
1

|ρw|3ds, I2w =

∫
1

|ρw|2ds,

where I’s are radiation integrals for ring dipoles and wigglers respectively. Because

the magnetic field of insertion devices is usually larger than that of ring dipoles, i.e.
|ρw| < ρ, the rms energy spread will normally be increased by insertion devices.

D. Beam distribution function in momentum

The energy deviation ΔE at any instant t is a result of contributions from the emission
of quanta at an earlier time ti. We can write

ΔE(t) =
∑

uie
−αE(t−ti) cos [ωs(t− ti)], (4.118)

where ui is the energy of a quantum emitted at time ti. Since the typical value of
ΔE(t) is much larger than the energy of each photon, and ti’s are randomly dis-

tributed, the sum at any time t consists of a large number of individual terms, which
are positive and negative with equal probability. The central limit theorem (see Ap-

pendix A) implies that the distribution function of energy amplitude is Gaussian:

Ψ(ΔE) =
1√
2πσE

e−ΔE2/2σ2
E , (4.119)

where σE is the rms standard deviation. Normally the damping time is much longer

than the synchrotron period, 2π/ωs. For a particle executing synchrotron motion,
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we find the off-energy and the relative-time coordinate to a synchronous particle [see

Eq. (4.69)] are

ΔE(t) = A cos(ωst− χ), τ =
αcA

Eωs

sin(ωst− χ), (4.120)

where αc is the momentum compaction factor, and χ is an arbitrary phase factor.
The normalized phase-space coordinates are (ΔE, θ = Eωsτ/αc).

Since the normalized phase-space ellipse is a circle, the Gaussian distribution of a
beam bunch is

Ψ(ΔE, θ) = NBΨ(ΔE)Ψ(θ), (4.121)

where NB is the number of particles in a bunch, and

Ψ(θ) =
1√
2πσE

e−θ2/2σ2
E , Ψ(ΔE) =

1√
2πσE

e−(ΔE)2/2σ2
E .

The bunch length in time is στ = αc

Eωs
σE , which depends on the rf voltage. We define

the invariant amplitude A2 = ΔE2 + θ2, and the distribution function becomes

g(A) = N
A

σ2
E

e−A2/2σ2
E = N

2A

σ2
A

e−A2/σ2
A . (4.122)

where σ2
A = �A2� = 2σ2

E. Using the variable W = A2 with dW = 2AdA, we get the

probability distribution function as

h(W ) = N
1

�W �e
−W/�W �, �W � = 2σ2

E. (4.123)

II.5 Radial Bunch Width and Distribution Function

Emission of discrete quanta in synchrotron radiation also excites random betatron

motion. The emission of a quantum of energy u results in a change of betatron
coordinates, i.e.

δxβ = −D (u/E0), δx�
β = −D� (u/E0). (4.124)

The resulting change in the Courant-Snyder invariant is

δa2 =
2

βx

[
Dxβ + (βxD

� − β �
x

2
D)(βxx

� − β �
x

2
x)

]
u

E0

+
1

βx

[
D2 + (βxD

� − β �
x

2
D)2

]
(
u

E0

)2,

where βx and β �
x are the horizontal betatron amplitude function and its derivative

with respect to longitudinal coordinate s. Averaging betatron coordinates xβ , x
�
β, the

resulting amplitude growth becomes

δ�a2� = H(
u

E0
)2, H =

1

βx

[
D2 + (βxD

� − 1

2
β �
xD)2

]
, (4.125)
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where theH-function depends on the lattice design. In an accelerator straight section,

where there is no dipole, the H-function is invariant; it is not invariant in regions with
dipoles. The rate of change of betatron amplitude (emittance) is obtained by replacing

u2 with N�u2� and averaging over the accelerator, i.e.

d�a2�
dt

≡ Gx =
1

2πRE2

∮
N�u2�Hds =

�N �u2�H�s
E2

, (4.126)

where �· · ·�s stands for an average over a complete revolution. The emittance growth

in a transport line is d�/dt = 1
cE2

∫ s

0
N�u2�Hds. Adding the damping term of

Eq. (4.81), we obtain
d�a2�
dt

= −2
�a2�
τx

+Gx. (4.127)

The equilibrium rms width becomes

�a2� = 1

2
τxGx and σ2

xβx
=

1

2
βx �a2�. (4.128)

Using Eq. (4.67) for N�u2�, we obtain

Gx =
3

2
Cu�cγ3 �Pγ��H/|ρ|3�

E2�1/ρ2� =
3Cqcr0γ

5�H/|ρ3|�
3�ρ2��1/ρ2� ,

�x =
σ2
xβx

βx
=

1

4
τx Gx = Cq

γ2�H/|ρ|3�
Jx�1/ρ2�

isomagnetic−−−−→ Cq
γ2�H�mag

Jxρ
, (4.129)

where Cq = 3.83 × 10−13 m is given by Eq. (4.115) and �H�mag = 1
2πρ

∫
dipole

Hds is
the average H-function in isomagnetic dipoles. The emittance of Eq. (4.129) is called

the natural emittance. Since the H-function is proportional to Lθ2 ∼ ρθ3, where θ
is the dipole angle of a half cell, the natural emittance of an electron storage ring

is proportional to γ2θ3. The normalized emittance is proportional to γ3θ3. Unless
the orbital angle of each dipole is inversely proportional to γ, the normalized natural

emittance of an electron storage ring increases with energy. Comparing with the
energy width for the isomagnetic ring, we find

σ2
xβx

βx
=

JE�H�mag

Jx

(σE

E

)2

. (4.130)

The horizontal distribution function

The distribution function for particles experiencing uncorrelated random forces with
zero average in a simple harmonic potential well is Gaussian:

Ψ(xβ) =
1√

2πσxβx

exp

{
− x2

β

2σ2
xβx

}
. (4.131)
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Since the betatron oscillation period is much shorter than the damping time, the

distribution in phase-space coordinates follows the Courant-Snyder invariant

Ψ(xβ, x
′
β) =

1√
2πσxβx

exp

{
−x2

β + (βxx
′
β − (β ′

x/2)xβ)
2

2σ2
xβx

}
. (4.132)

The total radial beam width has contributions from both betatron and energy

oscillations. The rms beam width is Gaussian quadrature

σ2
x = σ2

xβx
+ σ2

x�

isomagnetic−−−−→ Cq
γ2

ρ

[
βx(s)�H�mag

Jx
+

D2(s)

JE

]
. (4.133)

II.6 Vertical Beam Width

Synchrotron radiation is emitted in the forward direction within a cone of angular

width 1/γ. When the electron emits a photon at a nonzero angle with respect to its
direction of motion, it experiences a small transverse impulse. Consider the emission

of a photon with momentum u/c at angle θγ from the electron direction of motion,
where we expect θγ ≤ 1/γ. The transverse kick is then equal to θγu/c. The transverse

angular kicks on phase-space coordinates become

δx = 0, δx′ =
u

E0
θx, δz = 0, δz′ =

u

E0
θz , (4.134)

where θx, θz are projections of θγ onto x, z axes respectively. Since δx′ is small com-

pared with that of Eq. (4.124), we neglect it. We consider only the effect of random
kick on vertical betatron motion. Emission of a single photon with energy u gives rise

to an average change of invariant betatron emittance δ�a2z� = (u/E0)
2θ2zβz. Including

both damping and quantum fluctuation, the equilibrium beam width is

σ2
zβ =

1

4
τzGzβz, (4.135)

Gz =
�N �u2θ2z�βz�s

E2
≈ �N�u2��θ2z�βz�s

E2
≈ �N�u2���βz�

γ2E2
, (4.136)

where we have used the fact that �θ2z� ∼ 1/γ2. Recalling that �N �u2�� = GE, we
obtain

σ2
z

σ2
E

=
τzGzβz

τEGE
≈ JE�β2

z�
Jzγ2E2

. (4.137)

Using Jz = 1, we obtain

σ2
z ≈ Cq�β2

z�/ρ or �z ≈ Cq�β2
z �1/2/ρ, (4.138)

which is very small. Thus the vertical oscillation is energy independent and is less

than the radial oscillation by a factor of 1/γ2. The vertical beam size is damped

almost to zero.
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Emittance in the presence of linear coupling

Sometimes it is desirable to introduce intentional horizontal and vertical betatron

coupling. When the coupling is introduced, the quantum excitation is shared up to
an equal division. Let �x and �z be the horizontal and vertical emittances with

�x + �z = �nat, (4.139)

where the natural emittance �nat is Eq. (4.129). The horizontal and vertical emittances

can be redistributed with appropriate linear betatron coupling

�x =
1

1 + κ
�nat, �z =

κ

1 + κ
�nat, (4.140)

where the coupling coefficient κ is (see Exercise 4.2.8).

II.7 Beam Lifetime

We have used a Gaussian distribution function for the electron beam distribution

function. Since the aperture of an accelerator is limited by accelerator components
such as vacuum chambers, injection or extraction kickers, beam position monitors,

etc., the Gaussian distribution, which has an infinitely long tail, is only an ideal

representation when the aperture is much larger than the rms width of the beam so
that particle loss is small.

A. Quantum lifetime

Even when the aperture is large, electrons, which suffer sufficient energy fluctuation
through quantum emission, can produce a radial displacement as large as the aperture.

If the chance of an electron being lost at the aperture limit, within its damping time,
is small, then the loss probability per unit time is the same for all electrons. The loss

rate becomes
1

N

dN

dt
= − 1

τq
, (4.141)

where τq is the quantum lifetime. We discuss quantum lifetime for radial and longi-
tudinal motion below.

Radial oscillation

We consider radial betatron oscillation x = a cosωβt. The invariant amplitude of
betatron motion is W = a2. Quantum excitation and radiation damping produce an

equilibrium distribution given by

h(W ) =
1

�W �e
−W/�W �, �W � = 2σ2

x. (4.142)
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To estimate beam lifetime, we set up a diffusion equation for h(W ). We assume an

equilibrium distribution without aperture limit and consider an electron at amplitude
W0, with W0 � �W �, so that the probability for the electron to have W > W0 is

small. Once the electron gets into the tail region (W > W0) of the distribution, it is
most likely to return to the main body of the distribution because of faster damping

at large amplitude, i.e.
dW

dt
= −2W

τx
. (4.143)

The flux inward through W0 due to damping is

Nh(W )
dW

dt

∣∣∣
W0

=
2NW0h(W0)

τx
. (4.144)

In a stationary state, an equal flux of electron passes inward and outward through

W0, i.e.

−dN

dt
=

2NŴh(W )

τx
= N

2Ŵ

τx�W �e
−Ŵ/�W �, (4.145)

where W0 has been replaced by Ŵ . Thus the quantum lifetime is

τq =
τx
2ξ

eξ, ξ =
Ŵ

�W � . (4.146)

Note that the formula is valid only in a weakly damping system [See M. Bai et al.,

Phys. Rev. E55, 3493 (1997)].

Synchrotron oscillations

For synchrotron motion, the aperture is limited by rf voltage and bucket area. The

Hamiltonian of synchrotron motion is

H(δ, φ) =
1

2
hωαcδ

2 +
ωeV0

2πE
[cosφ− cosφs + (φ− φs) sinφs] , (4.147)

where δ = Δp/p = ΔE/E, φ = hcτ , and h is the harmonic number. If the nonlinear
term in the momentum compaction factor is negligible and the synchrotron tune

differs substantially from zero, the Hamiltonian is invariant.
The Hamiltonian has two fixed points, (0, φs) and (0, π − φs). The value of the

Hamiltonian at the separatrix is

Hsx = H(0, π − φs) =
ω0eV0

πE

[
− cosφs +

(π
2
− φs

)
sinφs

]
. (4.148)

The stable rf phase angle φs is determined by the energy loss due to synchrotron
radiation with eV0 sinφs = U0 = CγE

4/ρ. From Eq. (4.146), the quantum lifetime is

τq =
τE
2ξ

eξ, (4.149)
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where ξ = Hsx/�H�, �H� = hω0αc(σE/E)2) is the average value of the Hamiltonian

of the beam distribution, and

ξ =
48
√
3

55πhα
JE

eV0

uc

[
− cosφs +

(π
2
− φs

)
sin φs

]
. (4.150)

B. Touschek lifetime

In the beam moving frame, the deviation of the momentum Δpb of a particle from that
of the synchronous particle, which has zero momentum, is related to the momentum

deviation in the laboratory frame Δp by

Δpb = Δp/γ. (4.151)

Thus the momentum deviation in the rest frame of the beam is reduced by the rela-

tivistic factor γ. Because of synchrotron radiation damping and quantum fluctuation
in the horizontal plane, the rms beam velocity spreads in the beam moving frame

satisfy the characteristic property

�(x�
β)

2�1/2 � �(z�β)2�1/2 ≈ �(Δpb/p0)
2�1/2, (4.152)

where xβ and zβ are betatron coordinates; x�
β = dxβ/ds, z

�
β = dzβ/ds are the slopes

of the horizontal and vertical betatron oscillations; and p0 is the momentum of a

synchronous particle. Since the transverse horizontal momentum spread of the beam
is much larger than the momentum spread of the beam in the longitudinal plane,

large angle Coulomb scattering can transfer the radial momentum to the longitudinal
plane and cause beam loss. This process was first pointed out by Touschek et al. in

the Frascati e+e− storage ring (AdA) [see e.g. C. Bernardini et al., Phys. Rev. Lett.
10, 407 (1963)]. The Touschek effect has been found to be important in many low

emittance synchrotron radiation facilities.
We consider the Coulomb scattering of two particles in their center of mass system

(CMS) with momentum �p1,init = (px, 0, 0) and �p2,init = (−px, 0, 0), where the momenta

are expressed in the x̂, ŝ, and ẑ base vectors. The velocity difference between two
particles in the CMS is

v = 2px/m. (4.153)

Since the transverse radial momentum component of the orbiting particle is much
larger than the transverse vertical and longitudinal components, we assume that the

initial particle momenta of scattering particles are only in the horizontal direction. In

the spherical coordinate system, the differential cross-section is given by the Möller
formula,

dσ

dΩ
=

4r20
(v/c)4

[
4

sin4 θ
− 3

sin2 θ

]
, (4.154)
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where r0 is the classical electron radius. Let χ be the angle between the momentum

�p1,scatt of a scattered particle and the s-axis, and let ϕ be the angle between the x-axis
and the projection of the momentum of the scattered particle onto the x-z plane, as

shown in Fig. 4.10.

χ

ϕ

θ

s

sin χ cosϕ

q cosχ

z

p

p
1,scatt

1,init

x

Figure 4.10: The schematic geom-
etry of Touschek scattering, which
transfers horizontal momentum into
longitudinal momentum in the center
of mass frame of scattering particles.
We use �x,�s, and �z as orthonormal
curvilinear coordinate system. Par-
ticle loss resulting from large angle
Coulomb scattering gives rise to the
Touschek lifetime, which becomes a
limiting factor for high brightness
electron storage rings.

With the geometry shown in Fig. 4.10, the momentum of a scattered particle is

�p1,scatt = (px sinχ cosϕ, px cosχ, px sinχ sinϕ), (4.155)

where the momentum of the other scattered particle is −�p1,scatt. The scattering angle

θ is related to χ and ϕ by cos θ = sinχ cosϕ, and the momentum transfer to the

longitudinal plane in the CMS is Δpcms = px| cosχ|. Now we assume that the scat-
tered particles will be lost if the scattered longitudinal momentum is larger than the

momentum aperture, i.e.

| cosχ| ≥ Δ̂p

γpx
(4.156)

where Δ̂p = (2νs/hαc)Y (φs) is the rf bucket height. Thus the total cross-section

leading to particle loss in the CMS is σ
T
=

∫
| cosχ|≥Δ̂p/γpx

(dσ/dΩ)dΩ, i.e.

σ
T

=
4r20

(v/c)4

∫ cos−1 (Δ̂p/γpx)

0

sinχdχ

∫ 2π

0

dϕ

[
4

(1− sin2 χ cos2 ϕ)2
− 3

1− sin2 χ cos2 ϕ

]

=
8πr20
(v/c)4

[
γ2p2x

(Δ̂p)2
− 1 + ln

Δ̂p

γpx

]
. (4.157)

The number of particles lost by Touschek scattering in the CMS becomes

dN = 2σ
T
N ndx, (4.158)
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where n is the density of the beam bunch, ndx is the target thickness, N is the total

number of particles in the bunch, and the factor 2 indicates that two particles are lost
in each Touschek scattering. Thus the loss rate in the CMS is dN/dt = 2

∫
σ

T
vn2dV ,

where dV is the volume element, and v = dx/dt.
In the laboratory frame, the Touschek loss rate becomes

dN

dt
=

2

γ2

∫
vσ

T
n2dV, (4.159)

where the factor 1/γ2 takes into account the Lorentz transformation of σ
T
v from

the CMS to the laboratory frame. Since Touschek scattering takes place only in the
horizontal plane, the vertical and longitudinal planes can be integrated easily, and

the Touschek loss rate becomes

dN

dt
= 2

N2

γ2

1

4πσzσs

∫
vσ

T
ρ(x1, x

�
1)ρ(x2, x

�
2)δ(x1 − x2)dx1dx

�
1dx2dx

�
2, (4.160)

where σz and σs are respectively the rms bunch height and bunch length, and the
function δ(x1−x2) indicates that the scattering process takes place in a short range be-

tween two particles. For Gaussian longitudinal and vertical distributions, the integrals
of the vertical and longitudinal planes are respectively (2

√
πσz)

−1 and (2
√
πσs)

−1.

Using the Gaussian horizontal density function

ρ(x, x�) =
βx

2πσ2
x

exp

[
− 1

2σ2
x

(
x2 + (βxx

� − β �
x

2
x)2

)]
, (4.161)

we easily integrate the integral of Eq. (4.160) to obtain

1

N

dN

dt
=

Nr20c

8γ2πσxσzσs

(
γmc

Δ̂p

)3

D(ξ), (4.162)

where ξ = (Δ̂p/γσpx)
2 = (βxΔ̂p/γ2mcσx)

2; σpx = γmcσx/βx; and

D(ξ) =
√

ξ

∫ ∞

0

1

(u+ ξ)2

[
u− 1

2
ξ ln

u+ ξ

ξ

]
e−(u+ξ)du. (4.163)

The Touschek loss rate is inversely proportional to the 3D volume σxσzσs.
With typical parameters Δp ≈ σp; σp/p =

√
Cqγ/

√JEρ [see Eq. (4.114)]; σx =√
βx�x; and �x = FCqγ

2θ3/Jx [see Eq. (4.167) Sec. III]; the parameter ξ is

ξ ≈ 10

γ θ3/2

√
βxJx

ρFJE
, (4.164)

where Jx and JE are the damping partition numbers, ρ is the bending radius, F is

the lattice dependent factor, and θ is the orbital bending angle in one half period.
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Figure 4.11: The Touschek integral
D(ξ) of Eq. (4.163).

Thus the typical ξ parameter for Touschek scattering is about 10−3 to 1. In this

parameter region, D(ξ) is a slow varying function of the parameter ξ (see Fig. 4.11).

In a low emittance storage ring, the betatron amplitude function can change
appreciably. The actual Touschek scattering rate should be averaged over the entire

ring, i.e.

1

τ
T

=

〈
1

N

dN

dt

〉

s

=
1

2πR

∮
1

N

dN

dt
ds. (4.165)

Since D(ξ) a a slowly varying function, we can approximate �D(ξ)� = 1/6 to obtain

τ
T
≈ 48γ2πσxσzσs

Nr20c

(
Δ̂p

p

)3

. (4.166)

The Touschek lifetime is a complicated function of machine parameters. It can be

affected by linear coupling, rf parameters, peak intensity, etc. If we choose Δ̂p ≈ 10σp,
i.e. the rf voltage increases with energy with Vrf ∝ γ2, we obtain τ

T
∝ γ6, and at a

fixed energy the Touschek lifetime is proportional to Vrf because σs ∝ V
−1/2
rf . Actual

calculation of Touschek lifetime should include the effect of the dispersion function.

See, e.g., J. LeDuff, CERN 89-01, p. 114 (1989). Touschek lifetime calculation is
available in MAD [23] and other optics codes. The beam current in many high

brightness synchrotron radiation light sources is limited by the Touschek lifetime.

II.8 Summary: Radiation Integrals

To summarize the properties of electron beams, we list radiation integrals in the left
column and the corresponding physical quantities in the right column. Here �S� is

the spin polarization, PST = −8/5
√
3 is the Sokolov-Ternov radiative polarization

limit, Cγ and Cq are respectively given by Eqs. (4.5) and (4.115).
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I1 =

∫
D

ρ
ds αc =

I1
2πR

I2 =

∫
1

ρ2
ds U0 =

Cγ

2π
E4I2

I3 =

∫
1

|ρ|3 ds
(σE

E

)2

=
Cqγ

2I3
2I2 + I4

=
Cqγ

2I3
2I2JE

I3a =

∫
1

ρ3
ds �S� = PST

I3a
I3

I4 =

∫
D

ρ

(
1

ρ2
+ 2K

)
ds D =

I4
I2
; Jx = 1−D, JE = 2 +D, Jz = 1

K =
1

Bρ

∂Bz

∂x
αx =

U0

2T0E
Jx, τx =

2E

JxU0
T0,

αz =
U0

2T0E
Jz, τz =

2E

JzU0
T0,

αE =
U0

2T0E
JE, τE =

2E

JEU0
T0,

I5 =

∫ H
|ρ|3 ds �x =

Cqγ
2I5

I2 − I4
=

Cqγ
2I5

I2Jx

Exercise 4.2

1. Show that the damping partition number is D = 2 − (αcR/ρ) for an isomagnetic
combined function lattice, and D = (αcR/ρ) for an isomagnetic separate function
lattice with sector magnets.

(a) In thin-lens approximation, show that the damping re-partition number for an
isomagnetic combined function accelerator made of N FODO cells is given by

D ≈ 2− R

ρ

(
2π

2N sin (Φ/2)

)2

,

where R is the mean radius of the accelerator, ρ is the bending radius of the
dipole, and Φ is the phase advance per cell.

(b) Show that the damping re-partition number for a separated function double
bend achromat with sector dipoles [see Eq. (2.195)] is

D =

(
1− sin(π/N)

(π/N)

)
≈ θ2

6
,

where N is the number of DBA cells for the entire lattice, and θ is the bending
angle of a half DBA cell. The damping re-partition number of DBA lattices is
independent of the betatron tunes.
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(c) Use the midpoint rule to evaluate the integral of the damping re-partition D,
and show that the damping re-partition number for the separate function FODO
cell lattice is

D ≈ R θ2

ρ sin2(Φ/2)
,

where R is the average radius of the ring, ρ is the bending radius of the dipoles,
θ is the bending angle of a half FODO cell, and Φ is the phase advance per cell.

2. The damping partition number D for energy spread and natural emittance is given
by D = (I4a + 2I4b)/I2, where the radiation integrals are

I4a =

∮
D

ρ3
ds, I4b =

∮
K

D

ρ
ds, I2 =

∫
1

ρ2
ds.

Here ρ is the bending radius, D is the dispersion function, and K = (1/Bρ)∂Bz/∂x
is the quadrupole gradient function.

(a) For a separate function isomagnetic machine with sector dipoles, show that
I4a = 2παcR/ρ2 and I4b = 0, where αc is the momentum compaction factor and
R is the average radius of the synchrotron.

(b) Show that the contribution from the edge angles of a non-sector type magnet to
the integral I4b is [see e.g. R.H. Helm, M.J. Lee, P.L. Morton, and M. Sands,
IEEE Trans. on Nucl. Sci. NS-20, 900 (1973)]

I4b = D1
tan δ1
2ρ2

+D2
tan δ2
2ρ2

,

where δ1 and δ2 are entrance and exit angles of the beam, D1 and D2 are
values of the dispersion function at the entrance and exit of the dipole with
D2 = (1− cos θ)ρ+D1 cos θ + (ρD′

1 +D1 tan δ1) sin θ.

3. The beam energy spread of a collider should be of the order of the width of the
resonance in the energy region of interest. For example, Γ(J/ψ : 3100) = 0.063 MeV
and Γ(ψ′ : 3685) = 0.215 MeV. The rms beam energy spread is given by Eq. (4.114).
Show that

σE [MeV] = 1.21
E2[GeV]√JEρ[m]

.

For a SPEAR-like ring, with ρ = 12 m and JE ≈ 2, find the energy spread at the
J/ψ and ψ′ energies. Note that, when the energy spread is large, the production rate
is reduced by a factor of Γ/σE .

4. From the previous problem, we learn that the beam energy spread can reduce the
effective reaction rate. Now imagine that you want to design an interaction region
(IR) such that the higher energy electrons will collide with lower energy positrons
or vice versa. What is the constraint of the IR design such that the total center of
mass energies for all electron-positron pairs are identical? Discuss possible difficulties.
Discuss your result.

5. Verify Eq. (4.125) for the change of betatron amplitude in photon emission.



440 CHAPTER 4. PHYSICS OF ELECTRON STORAGE RINGS

6. Show that the vertical emittance resulting from residual vertical dispersion is given
by

�z = Cqγ
2 �Hz/|ρ|3�
Jz�1/ρ2� ,

where

Hz =
1

βz
[D2

z + (βzD
′
z + αzDz)

2],

βz and αz are vertical betatron amplitude functions, and Dz and D′
z are the residual

vertical dispersion function and its derivative with respective to s. Make a realistic
estimate of the magnitude of the vertical emittance arising from the residual vertical
dispersion.

7. Near a betatron coupling resonance, the horizontal action of each particle can inter-
change with its vertical action, while the total action of the particle is conserved, as
shown in Eq. (2.221). Use the following model to find emittances of electron storage
rings. The equation of motion for emittance of an electron storage ring near a linear
coupling resonance is

d�x
dt

= −C(�x − �z)− αx(�x − �0),

d�z
dt

= −C(�z − �x)− αz�z,

where αx, αz are damping rates, �0 is the natural emittance, and C is the linear
coupling constant.

(a) Show that the equations of motion for horizontal and vertical emittances are

d2�x
dt2

+ (αx + αz + 2C)
d�x
dt

+ [αxαz + C(αx + αz)]�x = αx(αz + C)�0,

d2�z
dt2

+ (αz + αz + 2C)
d�z
dt

+ [αxαz + C(αx + αz)]�z = αxC�0.

Find the equilibrium emittances.

(b) For αx = αz = α, show that the emittance can be expressed by Eq. (4.140)
where the κ parameter is given by

κ =
C

α+C
.

8. The damping partition D can be decreased by moving the particle orbit inward. Use
the following steps to derive the expression for ΔD/ΔR.

(a) The synchrotron radiation power is

Pγ =
c3Cγe

2

2π
E2B2.

If the rf frequency is altered, the average radius and the beam energy are changed
by ΔR/R = −Δf/f0 and E0 + δe, and the magnetic field can be expanded as
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B = B0+B�xco+B�xβ. Using Eq. (4.86) show that the average rate of betatron
amplitude diffusion per revolution is

δA

A
=

c3Cγe
2

4πcE
(E0 + δe)

2

∮
D

[
(B0 +B�xco)2

ρ
+ 2B�B0 + 2B�2xco

]
ds.

(b) Show that the change in damping partition with respect to xco is

ΔD
Δxco

≈
(
2

∮
D

(
B�

Bρ

)2

ds

)(∮
1

ρ2
ds

)−1

.

For an isomagnetic FODO cell combined function machine, show that

ΔD
Δxco

≈ 8N2
cell

π2R
,

where Ncell is the number of FODO cells.

(c) The above analysis assumes that xco = ΔR. In fact, xco = Dδs, where

δs = − 1

αc

Δf

f0
=

1

αc

ΔR

R

is the fractional momentum deviation from the momentum at frequency f0.
Show that the variation of the damping partition with respect to δs is

ΔD
Δδs

≈
(
2

∮
D2

(
B�

Bρ

)2

ds

)(∮
1

ρ2
ds

)−1

.

For a FODO cell combined function lattice, show that

ΔD
Δδs

≈ 8

sin2(Φ/2)
and ΔD =

8N2
cell

π2R
ΔR.

(d) Compare your estimation with that in Fig. 4.8 for the CERN PS.

9. Consider a weak focusing synchrotron (Exercise 2.4.5) with focusing index 0 < n < 1.

Show that �H� = ρ/(1 − n)3/2; D = (1 − 2n)/(1 − n); Jx = n/(1 − n); JE = (3 −
4n)/(1− n); and �x = Cqγ

2/n
√
1− n, where ρ is the bending radius. Show also that

the quadrature horizontal beam size of the electron beam is σ2
x = 3ρCqγ

2/[n(3−4n)].

10. The displacement vector from a reference orbit for a particle is x = xβ + Dδ, and
x = xβ +Dδ, where xβ, x

�
β are phase space coordinates of betatron motion and δ is

the off-momentum parameter. If the betatron motion and synchrotron motion are
independent, show that (see Exercise 2.2.14):

σ2
x = βx�x +D2σ2

δ , σ2
x′ = γx�x +D�2σ2

δ , σx,x′ = −αx�x +DD�σ2
δ ,

where αx(s), βx(s) and γx(s) are the betatron amplitude functions, D(s) andD�(s) are
dispersion functions, and �x and σδ are the rms emittance and the rms off-momentum
width of the beam. Show also that the effective emittance defined as that of Eq. (2.57)
is

�x,eff ≡
√

σ2
xσ

2
x′ − σ2

xx′ =
√
�x

[
�x +H(s)σ2

δ

]
,

where H(s) = γxD
2 + 2αxDD� + βxD

�2.
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11. The horizontal beta-function and dispersion function at s=0 of a long drift space from
s=?10m to 10m (straight section without any magnet elements) are measured to be
βx0 = 20.0 m, αx0 = −2.00, Dx0 = 2.0 m and D�

x0 = +0.10.

(a) Find the location of the minimum horizontal beta-function, and its value. Find
the value of the H-function at the end of the straight section, i.e. s = +10 m.

(b) What is the phase advance from s = 0 to s = 10m?

(c) A Gaussian beam is measured to have �rms = 15.0 nm (known as π-nm), and
σδ = 3.0× 10−4. What is the effective rms emittance of the beam at s = 5 m?

12. The brilliance of the photon beam is inversely proportional to σxσx′ and σzσz′ . In

Exercise 2.4.19, we derived the effective emittance, defined as
√

σ2
xσ

2
x′ − σ2

xx′, for the

horizontal plane of the electron beam. However, if the photon beam does not retain
the correlation of the electron beam, show that the effective source emittance becomes

�x,eff = �σxσ�
x� =

〈√
(βx(s)�x +D2σ2

δ ) (γx(s)�x +D�2σ2
δ )

〉
,

where �...� is the average of s within the length of the photon emission. In reality,
σx′ = Maximum( Kw/γ, 1/γ,

√
γx�x ). If the angular divergence of the photon beam

Kw/γ or 1/γ is larger than the angular divergence of the electron beam
√
γx�x, the

photon brilliance will be independent of the divergence of the electron beams, and
the brilliance is proportional to

1

�σx� =
1〈√

βx(s)�x +D2σ2
δ

〉 .

13. Particle loss through random and non-resonant processes in a storage ring can be
described by

N(t) = N0 exp

(
− t

τ

)
,

1

τ
=

∑
i

1

τ i
,

where τ is called the lifetime of the beam, 1/τi is the decay rate the i-th process. The
decay rates of independent processes add. The half-life is equal to 0.693τ . Mecha-
nisms contribute to beam loss are (1) the interaction of the beam with the target, (2)
intrabeam interaction induced emittance growth resulting in beam loss due to lon-
gitudinal or transverse acceptance of the ring, (3) scattering loss due to large angle
Coulomb scattering with residual gas atoms; elastic and inelastic nuclear reaction; (4)
diffusion processes due to finite dynamic aperture, etc. Signal on a wall gap monitor
or Pick-up electrode (PUE) is proportional to the number of particle in the beam.
Show that the lifetime of the beam is related to the decreases of beam signal power
(in unit of dB) in a time interval Δt via

τ = 8.7
Δt

Decrease of beam power in dB
,
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III Emittance in Electron Storage Rings

The synchrotron light emitted from a dipole spans vertically an rms angle of 1/γ

around the beam trajectory at the point of emission, where γ is the Lorentz factor.
Horizontally, the synchrotron light fans out to an angle equal to the bending angle

of the dipole magnet. The critical frequency or the critical photon energy of the
synchrotron light spectrum is given by Eq. (4.60). Beyond the critical photon fre-

quency, the power of the synchrotron light decreases exponentially e−ω/ωc . Because

synchrotron light sources from electron storage rings are tunable, they have been
widely applied in basic research areas such as atomic, molecular, condensed matter,

and solid state physics, chemistry, cell biology, microbiology, electronic processing,
etc. The brilliance of a photon beam, defined in Eq. (4.8), is inversely proportional to

the product of electron beam emittances �x�z. Thus a small electron beam emittance
is desirable for a high brightness synchrotron radiation storage ring.

The amplitudes of the betatron and synchrotron oscillations are determined by
the equilibrium between the quantum excitation due to the emission of photons and

the radiation damping due to the rf acceleration field used to compensate the energy
loss of the synchrotron radiation. The horizontal (natural) emittance of Eq. (4.129)

is

�x = Cqγ
2 �H/|ρ|3�
Jx�1/ρ2�

isomagnetic−−−−→ Cqγ
2 �H�dipole

Jxρ
,

where Cq = 3.83×10−13 m, Jx ≈ 1 is the damping partition number, ρ is the bending

radius, the H-function is given by Eq. (2.159), and �H� is the average of H-function
in an isomagnetic ring. The objective of low emittance optics is to minimize �H� in
dipoles. Computer codes such as MAD [23], SYNCH [24] or ELEGANT [25] can be
used to optimize �H�. However, it would be useful to understand the theoretical limit

of achievable emittance in order to determine the optimal solution for a given lattice.
Since H ∼ Lθ2 = ρθ3, the �H� and the resulting natural emittance obey the scaling

laws:
�H�/Jx = Flatticeρθ

3 and �x = FlatticeCqγ
2θ3, (4.167)

where the scaling factor Flattice depends on the design of the storage ring lattices,

and θ is the total dipole bending angle in a bend-section. The resulting normalized
emittance �n = γ�x = FlatticeCq(γθ)

3. depends essentially only on the lattice design

factor Flattice for electron storage rings at constant γθ.

III.1 Emittance of Synchrotron Radiation Lattices

Storage ring lattices are designed to attain desirable electron beam properties. Elec-
tron storage rings have many different applications, and each application has its spe-

cial design characteristics. For example, the lattice of a high energy collider is usually

composed of arcs with many FODO cells and low β insertions for high energy particle
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detectors. The function of arcs is to transport beams in a complete revolution. On the

other hand, lattices for synchrotron radiation sources are usually arranged such that
many insertion devices can be installed to enhance coherent radiation while attaining

minimum emittance for the beam. Popular arrangements include the double-bend
achromat (DBA), three-bend achromat (TBA), FODO cells, etc. In this section, we

review the properties of these lattices.

A. FODO cell lattice

FODO cells have been widely used as building blocks for high energy colliders and

storage rings. Some high energy colliders have been converted into synchrotron
light sources in parasitic operation mode. A FODO cell is usually configured as

{1
2
QF B QD B 1

2
QF}, where QF and QD are focusing and defocusing quadrupoles and

B is a dipole magnet (see Chap. 2, Sec. II). The H-function, given in Eq. (2.160),

is invariant outside the dipole region. The ratio H
F
/H

D
is typically less than 1, as

shown in the left plot of Fig. 4.12. Note that the dispersion invariant

Figure 4.12: Left: the ratio H
F
/H

D
;

right: the lattice factor F with Jx = 1
for a FODO cell lattice.

Since the dispersion invariant does not vary much from QF to QD, The �H� in the
dipole can be approximated by averaging H

F
and H

D
(see Exercise 4.3.1) to obtain

the lattice coefficient F of the FODO cell:

�H� ≈ 1

2
ρθ3

cos(Φ/2)

sin3(Φ/2)

[
(1 + 1

2
sin(Φ/2))2

(1 + sin(Φ/2))
+

(1− 1
2
sin(Φ/2))2

(1− sin(Φ/2))

]
.

F
FODO

=
1− 3

4
sin2(Φ/2)

sin3(Φ/2) cos(Φ/2)
J −1

x . (4.168)

The right plot of Fig. 4.12 shows the coefficient F as a function of phase advance per

cell, where we assume Jx = 1. The coefficient decreases rapidly with phase advance
of the FODO cell. The factor F has a minimum of about 1.3 at φ ≈ 140◦. At this

phase advance, the chromaticity and the sextupole strength needed for chromaticity
correction are large. Nonlinear magnetic fields can become critical in determining the

dynamical aperture.

One can employ focusing quadrupole and the defocusing combined function dipole

for the FODO cells to increase packing factor and thus reduce emittance. The left plot
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of Fig. 4.13 shows the lattice structure (top), H/ρθ3 (middle), and betatron amplitude

functions (bottom) at Φx = 99◦. The right plot shows H/ρθ3 as the betatron phase
advance increases. At large betatron phase advance, the dispersion function inside the

dipole is minimum at the middle of dipole, but the H-function is larger inside dipole
than that at the quadrupole, although the H-function decreases with the betatron

phase advance.

Figure 4.13: Left: the lattice function (bottom), H/ρθ3 (middle), and lattice configuration
(top) with Lq = 0.5 m, K1q = 3.8 m−2 Ldipole = 1.0 m, and K1,dipole = −1.5. The betatron
tunes and the chromaticities of the cell are μx = 0.2749, μz = 0.1266, Cx = −0.311 and
Cz = −0.215. Right: H/ρθ3 as phase advance φx increases.

The scaling properties of �H� normalized to the TME lattice of ρθ3/[12
√
15] of

Eq. (4.180), and the normalized chromaticities, Cx/νx and Cz/νz marked with symbol

”X” and ”Z” respectively, are shown in Fig. 4.14.

Figure 4.14: Left: the scaling property of �H�/[ρθ3/12√15] vs the horizontal phase advance
for the FODO cell. The normalized chromaticities are marked ”X” or ”Z” respectively.
Right: the scaling property of �H�q/[ρθ3/3

√
15] vs the normalized phase advance.

The �H� depends only on the horizontal phase advance Φx. If the strength of

defocusing dipole is too weak (e.g. |K1d| ≤ 1.5), the vertical plane becomes unstable

too quickly (see the necktie diagram in Fig. 2.10), and the corresponding vertical
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betatron function will be too large and the vertical chromaticity also becomes very

large (see the K1d = −1.5 m−2 cases in Fig. 4.14, where the �H� is still large, while the
vertical chromaticity is already large). If the strength of the focusing quadrupole is too

large, the horizontal chromaticity also becomes large. The H-function at the focusing
quadrupole, normalized to the TME value ρθ3/[3

√
15] of Eq. (4.180), is shown in the

right plot of Fig. 4.14. It depends only on φx. Since Hq of the FODO cell arc section
is small, it requires a special matching this section to rest of the accelerator lattice.

It is tempting to replace the focusing quadrupole of by a combined function fo-
cusing dipole at the same strength so that we need to make only one kind of dipole.

Figure 4.15 shows the lattice functions and the corresponding normalized H-function.

Figure 4.15: Left: the lattice configuration of a combined function FODO cell (top), the
lattice function (middle), and the normalized H-function (bottom). Right: the scaling
property of �H�q/[ρθ3]] vs the normalized phase advance.

Note that the H-function in defocusing dipole is higher than that in the focusing
dipole. The average of theH-function turn out to be nearly equal to the H function in

straight section. Although the dipole angle in this configuration is smaller by a factor
of 2, i.e. its H-function is smaller by a factor of 8, the resulting �H� is still larger

than that of the configuration with focusing quadrupole shown in Fig. 4.13 by about
a factor of 2. If the magnet sagitta is not an issue, so that all the dipole magnets are

straight, we need only one kind of dipole magnet in this FODO cell section. Possible
schemes of the low emittance FODO section is schematically shown in Fig. 4.16.

Figure 4.16: Possible FODO arc schemes
for low emittance lattices.

The wholly combined function FODO cell of the scheme (2) has a problem of

damping partition number. The contribution of the radiation integral I4 to the damp-
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ing partition of the combined function arc-cell section in Fig. 4.16(2) is

∫ s2

s1

2K1Dx

ρ
ds =

2Ldipole − 2ρ [D′
x(s2)−D′

x(s1)]

ρ2
, (4.169)

where Ldipole is the total length of the arc dipoles, ρ is the bending radius of dipoles,

and D′
x is the slope of the dispersion function. Detailed calculations show that the

dipole length is nearly compensated by the slope of the dispersion-function term. It is

worth noting that the number of FODO cells can be optimized to attain proper phase
advances (both the horizontal and vertical planes) for nonlinear optics optimization.

B. Double-bend achromat (Chasman-Green lattice)

The simplest Chasman-Green lattice is made of two dipole magnets with a focusing

quadrupole between them to form an achromatic cell (see Exercise 2.5.14). A possible

configuration is {[OO] B {O QF O} B [OO]}. The betatron function matching [OO]
section can be made of doublets or triplets for attaining optical properties suitable

for insertion devices such as wigglers, undulators, and rf cavities. The {O QF O}
section may consist of a single focusing quadrupole, or a pair of doublets, or triplets

with reflection symmetry for dispersion matching. Since the dispersion function is
nonzero only in this section, chromatic sextupoles are also located in this section. In

general, the dispersion function inside the dipole is

D = ρ(1− cosφ) +D0 cosφ+ ρD′
0 sin φ, (4.170)

D′ =
(
1− D0

ρ

)
sin φ+D′

0 cosφ , (4.171)

where φ = s/ρ is the bend angle at a distance s from the entrance of the dipole, ρ
is the bending radius, and D0 and D′

0 are respectively the values of the dispersion

function and its derivative at s = 0. For the Chasman-Green lattice, we need D0 = 0
and D′

0 = 0 to attain the achromatic condition.

The evolution of the H-function in a dipole is (see Exercise 2.4.14)

H(φ) = H0 + 2(α0D0 + β0D
′
0) sinφ− 2(γ0D0 + α0D

′
0)ρ(1− cosφ)

+β0 sin
2 φ+ γ0ρ

2(1− cosφ)2 − 2α0ρ sin φ(1− cosφ), (4.172)

where H0 = γ0D
2
0 + 2α0D0D

′
0 + β0D

′2
0 , and α0, β0, and γ0 are the Courant-Snyder

parameters at s = 0. Averaging the H-function in the dipole, we get

�H� = H0 + (α0D0 + β0D
′
0)θE(θ)− 1

3
(γ0D0 + α0D

′
0)ρθ

2F (θ)

+
β0

3
θ2A(θ)− α0

4
ρθ3B(θ) +

γ0
20

ρ2θ4C(θ), (4.173)
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where L and θ = L/ρ are the length and bending angle of dipole(s) in a half DBA

cell, and

E(θ) = 2(1− cos θ)/θ2, F (θ) = 6(θ − sin θ)/θ3, A(θ) = (6θ − 3sin 2θ)/(4θ3),

B(θ) = (6− 8 cos θ + 2 cos 2θ)/θ4, C(θ) = (30θ − 40 sin θ + 5 sin 2θ)/θ5.

In the small angle limit, we find A → 1, B → 1, C → 1, E → 1, F → 1. With the
normalized scaling parameters

d0 =
D0

Lθ
, d�0 =

D�
0

θ
, β̃0 =

β0

L
, γ̃0 = γ0L, α̃0 = α0, (4.174)

the avgH-function becomes

�H� = ρθ3
{[

γ̃0d
2
0 + 2α̃0d0d

�
0 + β̃0d

�2
0

]
+

[
α̃0E − γ̃0

3
F

]
d0

+

[
β̃0E − α̃0

3
F

]
d�0 +

β̃0

3
A− α̃0

4
B +

γ̃0
20

C

}
. (4.175)

B1. Minimum emittance DBA lattice

Applying the achromatic condition with d0 = d�0 = 0, we get the average H-function
as

�H� = ρθ3

[
β̃0

3
A− α̃0

4
B +

γ̃0
20

C

]
, (4.176)

where β̃0γ̃0 = (1 + α̃2
0). The Courant-Snyder parameters that minimize �H� and its

minimum value are (see Exercise 4.3.3)

β̃0 =
6C√
15G

, α̃0 =

√
15B

G
, γ̃0 =

8
√
5A√
3G

, → �H�
MEDBA

=
G

4
√
15

ρθ3, (4.177)

where G =
√
16AC − 15B2, shown in Fig. 2.40, decreases slightly with increasing θ.

The corresponding minimum β-function value and its location are β∗
MEDBA

= 3
4
√
60
L

and s∗
MEDBA

= 3
8
L.

The dispersion action H(θ) outside the dipole is an important parameter in de-
termining the aperture requirement. For a minimum emittance (ME) DBA lattice,

we find H = 0 at s = 0, and the H-function at the end of the dipole is

H(θ) =
ρθ3√
15G

{
6C[

sin2 θ

θ2
]− 15B[

2 sin θ(1− cos θ)

θ3
] + 10A[

4(1− cos θ)2

θ4
]

}

→ 1√
15

ρθ3 (thin lens approximation). (4.178)
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One can understand the result of Eq. (4.177) as follows. Since H(φ) ∼ φ3, the average

of H is 1
4
of its maximum value, i.e. �H� = 1

4
H(θ), The minimum emittance DBA

lattice factor of Eq. (4.167) is F
MEDBA

= 1/(4
√
15Jx).

In zero gradient approximation, the horizontal betatron phase advance across a

dipole for the MEDBA lattice is 156.7◦, and the phase advance in the dispersion
matching section is 122◦ (see Exercise 4.3.3). Thus the minimum phase advance for

the MEDBA module is 435.4◦, which does not include the phase advance of the zero
dispersion betatron function matching section for the insertion devices. Thus each

MEDBA module will contribute about 1.2 unit to the horizontal betatron tune. Since
the phase advance is large, the chromatic properties of lattices should be carefully

corrected. The resulting emittance is smaller than the corresponding FODO cell

lattice by a factor of 20 to 30.

B2. Examples of low emittance DBA lattices

Many high brilliance synchrotron radiation light sources employ low emittance DBA

lattice for the storage ring. Figure 4.17 shows the lattice functions of a nearly mini-

mum emittance DBA lattice ELETTRA at Trieste in Italy for 2 GeV electron stor-
age ring (left), and the low emittance DBA lattice of APS at Argonne for 7 GeV

electron storage ring (right). The total phase advance of each ELETTRA DBA-
period is about 429◦, while the corresponding phase advance of APS DBA-period

is about 319◦. The ELETTRA lattice employs defocusing combined-function dipole
with q =

√|B1|/Bρ�dipole = 0.9439 to increase damping partition number Jx. The

resulting horizontal emittances of these lattices are respectively �elettra/�MEDBA
≈ 1.38

and �aps/�MEDBA
≈ 3.64.

Figure 4.17: The low emittance lattice functions for a superperiod of ELETTRA (left)
and APS (right). The ELETTRA lattice has 12 superperiods, and the APS lattice has 40
superperiods.

B3. Triplet DBA lattice

A variant of the DBA lattice is the triplet DBA, where a quadrupole triplet is used

in the dispersion matching section for the achromat condition. Because there is no
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quadrupole in the [OO] section of the DBA, the lattice is very simple (see the lower

plot of Fig. 2.34). The minimum emittance lattice factor is11 FME,triplet =
2β∗
3�Jx

, where
β∗ is the value of the betatron amplitude function at the symmetry point of the

dispersion free straight section, and � is the length of the dipole.

C. Theoretical Minimum Emittance (TME) lattice

Without the achromat constraint, each module of an accelerator lattice has only one

dipole. The optical functions that minimize �H�, i.e. the dispersion and betatron
amplitude functions, are symmetric with respect to the center of the dipole.

From Eq. (4.173), the minimization procedure for �H� can be achieved through

the following steps. First, �H� can be minimized by finding the optimal dispersion
functions with

∂�H�
∂d0

= 0,
∂�H�
∂d�0

= 0,

where we obtain

d0,min =
1

6
F, d�0,min = −1

2
E, �H� = 1

12
ρθ3

(
β̃0Ã− α̃0B̃ +

4γ̃0
15

C̃

)
(4.179)

with Ã = 4A − 3E2, B̃ = 3B − 2EF , and C̃ = 9
4
C − 5

4
F 2. With the relation

β̃0γ̃0 = 1 + α̃2
0, the minimum emittance is

�H�
ME

=
G̃

12
√
15

ρθ3, (4.180)

where G̃ =
√
16ÃC̃ − 15B̃2 is also shown in Fig. 2.40. The corresponding lattice

properties at the entrance of the dipole are

β̃0 =
8C̃√
15G̃

, α̃0 =

√
15B̃

G̃
, γ̃0 =

2
√
15Ã

G̃
. (4.181)

The waist of the optimal betatron amplitude function for minimum �H� is located

at the center of the dipole, i.e. s∗
ME

= L/2. The corresponding minimum betatron

amplitude function and dispersion function at the waist are β∗
ME

= L/
√
60 and D∗

ME =

Lθ/24 respectively. The required minimum betatron amplitude function is β∗
ME

=
4
3
β∗

MEDBA
. The attainable theoretical minimum emittance lattice factor of Eq. (4.167) is

F
ME

= 1/(12
√
15Jx). To attain the minimum emittance, the betatron phase advance

across the dipole is 151◦, and the dispersion matching section is 133.4◦. Thus the

horizontal betatron tune of this minimum emittance single dipole module is 284.4◦

11See Exercise 4.3.9, where we find that the stability condition is incompatible with the achromat
condition. Therefore, this minimum emittance condition can not be reached.
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(see Exercise 4.3.4). Each minimum emittance module with a single dipole would

contribute a horizontal betatron tune of 0.79.
The values of the dispersion H-function on both sides of the dipole are important

in determining the beam size in the straight sections, where insertion devices such
as undulators are located. Using Eq. (4.179) and (4.181) for the ME condition, we

obtain

H(0) = H(θ) =
1

3
√
15

ρθ3
{
6C̃E2 − 15

2
B̃EF +

5

2
ÃF 2

}
G̃−1. (4.182)

In small bending angle approximation, we have H(θ) = 1
3
√
15
ρθ3 = 4�H�

ME
, which is

equal to 1
3
H(θ)|

MEDBA
.

The brilliance of the photon beam from an undulator depends essentially on the
electron beam width. The horizontal beam width is given by the quadrature of the

betatron beam width and the momentum beam width. It is appropriate to define the
dispersion emittance as

�d ≡ γx(Dσδ)
2 − β �

x(Dσδ)(D
�σδ) + βx(D

�σδ)
2 = H(0)σ2

δ , (4.183)

where σ2
δ = (σE/E)2 = Cqγ

2/ρJE is the equilibrium energy spread of the beam

below the microwave instability threshold. Because the H-function is invariant in
the straight section, �d is invariant in the straight section. Substituting H(0) of

Eq. (4.182) into Eq.(4.183), we obtain

�d =
1

3
√
15

Cqγ
2θ3

JE
. (4.184)

For a separated function lattice, we find JE ≈ 2, Jx ≈ 1 or JE ≈ 2Jx. The effective
1D emittance for a bi-Gaussian distribution becomes

�x,1D = �x +HIDσ
2
δ = �

ME
+ �d =

1

4
√
15

Cqγ
2θ3

Jx
= �

MEDBA
, (4.185)

where HID is the H-function at the ID locations. The decrease in betatron beam size
in minimum emittance lattice is accompanied by an equal amount of increment in

the dispersion beam size, i.e. the 1D effective emittances of the TME and MEDBA

lattices are equal. The brilliance of a photon beam is inversely proportional to the
phase space areas σxσx′σzσz′ ∼ �x,eff�z,eff , where the effective horizontal and vertical

emittances are �x,eff =
√
�x�x,1D and �z,eff = �z [see Exercises 2.4.19 and 4.2.12].

D. Three-bend achromat

Now we are ready to discuss the minimum emittance for three-bend achromat (TBA)

lattices, which have been used in synchrotron radiation sources such as the Advanced
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Light Source (ALS) at LBNL, the Taiwan Light Source (TLS), the Pohang Light

Source (PLS), etc. The TBA is a combination of DBA lattices with a single dipole
cell at the center.

To simplify our discussion, we use small angle approximation, which is good ap-

proximation provided that the bending angle for each dipole is less than 30◦. Since
the H-function is invariant in the optical matching section without dipoles, equating

Eqs. (4.178) and (4.182), we find

ρ2θ
3
2 = 3ρ1θ

3
1, or

L3
2

ρ22
= 3

L3
1

ρ21
, (4.186)

where ρ1, θ1, L1 and ρ2, θ2, L2 are respectively the bending radii, bending angles and
lengths of the outer and inner dipoles. This is the necessary condition for achieving

dispersion phase space matching.12 The matching condition of Eq. (4.186) requires
L2 = 31/3L1 for isomagnetic storage rings, or ρ1 =

√
3ρ2 for storage rings with equal

length dipoles.

Thus we have proved a theorem stating that an isomagnetic TBA with equal

length dipoles can not be matched to attain the advertised minimum emittance. For

an isomagnetic storage ring, the center dipole for the TBA should be longer by a
factor of 31/3 than the outer dipoles in order to achieve dispersion matching. In

this case, we can prove the following trivial theorem: The emittance of the matched
minimum TBA (QBA, or nBA) lattice is

�
METBA

=
Cqγ

2θ31
4
√
15Jx

, (4.187)

where θ1 is the bending angle of the outer dipoles, provided the middle dipole is longer
by a factor of 31/3 than the outer dipoles. The formula for the attainable minimum

emittance is identical to that for the MEDBA.

E. Summary of Lattice Properties and QBA

The lattice factor Flattice is generally smaller for the nBA lattices. The natural emit-

tance depends also on the number of dipoles. Figure 4.18 shows a compilation of
achieved natural emittance for published synchrotron light sources scaled to 3 GeV

energy.13

12S.Y. Lee, Phys. Rev. E 54, 1940 (1996). The necessary condition for finite angle can be
obtained by equating Eq. (4.178) and Eq. (4.182).

13G. Mülhaupt, EPAC1990, 65 (1990); M. Böge, et al, EPAC1998, 623 (1998); M. Böge,
EPAC2002, 39 (2002); L. Dallin, et al, PAC2003, 220 (2003); M.-P. Level, et al, PAC2003, 229
(2003); R.P. Walker, PAC2003, 232 (2003); R. Hettel et al, PAC2003, 235 (2003); D. Einfeld et al,
PAC2003, 238 (2003); B. Podobedov et al, PAC2003, 241 (2003); H. Ohkuma et al, PAC2003, 883
(2003); Greg LeBlanc, et al., PAC2003, 2321 (2003); M. Eriksson et al, EPAC2004, 2392 (2004);
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Figure 4.18: Compilation of the nat-
ural emittances in unit of nm achieved
for some synchrotron light sources vs
the number of pairs of dipoles, in-
cluding some of the recently upgraded
6 GeV light sources. All emittance
is scaled down to 3 GeV beam en-
ergy. For example, a 12 cell 7BA corre-
sponds to 42 pairs of dipoles. The lines
are the minimum emittance for DBA
lattice and the theoretical minimum
emittance (TME) respectively. The
minimum emittance of nBA lattice is
given by Eq. (4.187).

The diamond symbols are emittances of the achromatic lattices. Many storage
ring designers choose non-achromatic (TME) concept in order to reduce the natural

emittance by a factor of 3, shown as the square symbols. For the multiple-bend
lattices, the pairs of dipoles is not equal to the number of cells. For example, a lattice

with 12(7BA) is equivalent to 42 pairs of dipoles.
Although the non-achromatic lattice can reduce the natural emittance by a factor

of 3, the effective emittance does not gain as much as one wishes. Since it is difficult
to design a lattice reaching MEDBA or TME condition, we ask a simple question:

would it be better off with the achromatic or the non-achromatic mode of operation?
We assume that we can design a lattice at the achromatic mode with �x,a =

fa�MEDBA, and another non-achromatic mode with �x,na = fna�TME, where both fa
and fna are typically about 2∼4. The effective emittance (see Exercise 4.2.10) of

these lattices can be compared as follows:

�x,a =
fa

4
√
15Jx

Cqγ
2θ3, �x,1D,na =

[
fna

12
√
15Jx

+
1

3
√
15JE

]
Cqγ

2θ3,

�x,eff,na
�x,a

≈
√
fna(fna + 2)

3fa
. (4.188)

where we have used HID ≈ HTME with Jx ≈ 1 and JE ≈ 2. If both fa and fna
are 2, the effective emittance of the non-achromatic lattice is about 0.47 of the
achromatic one, i.e. the effective emittance is only reduced by about a factor of 2.

However, all straight sections are non-achromatic, and the insertion devices in these
non-achromatic straight sections can increase the natural emittance to be discussed

J.B. Murphy et al, EPAC2004, 2457 (2004); A. Jackson, PAC2005, 102 (2005); Z. Zhao et al,
PAC2005, 214 (2005); R.O. Hettel, PAC2005, 505 (2005); G. Vignola et al, PAC2005, 587 (2005);
V.M. Tsakanov, PAC2005, 629 (2005); E.S. Kim, APAC2004, 85 (2004); C.C. Kuo, et al., PAC2005,
2989 (2005); D. Einfeld et al, PAC2005, 4203 (2005). K. Tsumaki, et al, PAC1989, 1358 (1989);
D.Einfeld and M.Plesko, Nucl. Instru. and Methods, A 335, 402 (1993).
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in Sec. III.3. The effect of emittance increase is most important in low energy storage

rings, where high power wavelength shifters are needed for hard X-ray production.
These wavelength shifters in the dispersive straight section can dramatically increase

the natural emittance of the beam.

Figure 4.19: A basic QBA cell. Sev-
eral QBA cells can be grouped together
to form a superperiod with different op-
tical properties in the straight sections.

This defect can be remedied by the introduction of the quadruple-bend-achromatic
(QBA) cell, defined as a super cell made of two double-bend (DB) cells (see Fig. 4.19),

where the two inner dipoles have larger bending angles than those of two outer dipoles
required for dispersion function matching. For the same number of dipole, the natural

emittance of a QBA lattice is about half of that of the DBA, while retaining 50%
of achromatic straight sections. The number of straight sections is the same as that

of the DB cells. In thin lens approximation, the necessary condition for a minimum

emittance is Linner dipole/Louter dipole = 31/3 as shown in Eq. (4.186) for isomagnetic
lattice. In actual lattice design, the ratio is found to be about 1.5∼1.6 for an optimal

matching. Figure 4.20 shows the optical functions of a QBA lattice with 12 QBA
cells (equivalent to 24 DBA cells) with circumference 486 m.14
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Figure 4.20: The Optical functions
of two QBA cells with a 10.91 m
and a 5.31 m dispersion-free and
two 5.31 m dispersive straight sec-
tions. The dipole length ratio is
L2/L1 = 1.5. The circumference is
C = 486 m. At 3 GeV, the resulting
natural emittance is about 3.0 nm.

The QBA lattice provides an advantage over the DBA by reducing the emittance

by a factor of 2, and over the double-bend non-achromat in performance by providing
50% zero-dispersion straight-sections. The X and star symbols on Fig. 4.18 are the

natural emittance obtained from the QBA lattices.

14M.H. Wang, et al. Review of Scientific Instruments, 78, 055109 (2007).
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Figure 4.21: Lattice configura-
tion of an upgrade low emittance
lattice cell for the ESRF-U.

F. Design concepts of recent light source upgrades

In recent years, there are efforts toward diffraction limited light source upgrade

projects at Argonne Photon Source (APS-U), European Synchrotron Radiation Facil-
ity (ESRF-U), and the Spring-8-U in Japan. An interesting idea proposed by ESRF-

U design is the combination of DBA and small emittance FODO-cell arc, shown in
Fig. 4.21.15

The optical functions of the ESRF upgrade lattice is shown in Figure 4.22. The
three low emittance FODO cells in the middle of the arc is matched to dispersion

free-straight sections by 2 DBA-like matching sections. The matching section of each
DBA-section can create a large dispersion bump for chromatic correction. The ESRF

lattice has also an interesting trick in the dipoles of the DBA-like section. The dipole
field is stronger at the low H-function location so that its �H/|ρ|3� in these DBA-

like dipoles contributes about equally to the radiation integral I5 of the low emittance
FODO cells. A simple model of longitudinal gradient dipole on the dispersion function

and �H/|ρ|3� is given in Exercise 4.3.7.

Figure 4.22: Optical functions of an
upgrade low emittance lattice of ESRF.
Top: The H-function in low emittance
cell. Note that the H-function is in-
creased to a large number for achiev-
ing a large dispersion function for
non-linear chromatic correction. These
two-dipoles on both sides of the cell re-
semble the DBA-like structure. In the
middle of the superperiod, there are 3
low emittance FODO cells, with phase
advance of about 101 degree per cell.

It is worth noting that the lattice of the APS upgrade project employs reverse-
bend dipoles inside the DBA-like structure to control dispersion function matching

without affecting the betatron amplitude functions.16 Independent control of the
dispersion function and betatron amplitude functions can provide a better matching

of the low emittance lattice.

15L. Farvacque et al., IPAC2013, 79 (2013)
16M. Borland et al., IPAC2015, 1776 (2015).
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All light source upgrade projects are limited by the existing tunnel and the optical

beam-lines, the cell length can not be changed. All storage ring lattices with very low
emittance have very small dynamic aperture, due to very strong sextupoles needed for

chromaticity correction. Increasing the dispersion function at the matching section
can minimize the strength of sextupoles. For green-field light sources, the number

of the low emittance FODO cells may be optimized to create proper phase advances
between sextupoles for nonlinear dynamic aperture optimization.

III.2 Insertion Devices

The straight sections in storage rings can house insertion devices (IDs), e.g. wigglers
or undulators, that can greatly enhance the brilliance and wavelength of photon

beams. The IDs are normally made of dipole magnets with alternating dipole fields
so that the orbit outside the device is un-altered. A simple planer undulator with

vertical sinusoidal fields, that satisfies Maxwell’s equation, is

Bz = Bw cosh(kwz) cos(kws), (4.189)

where kw = 2π/λw is the wiggler wave number, λw is the wiggler period, and Bw

is the magnetic field at mid-plane.17 The corresponding horizontal and longitudinal

magnetic fields, and the vector potential are Bx = 0, Bs = −Bw sinh kwz sin kws, and

Ax = − 1

kw
Bw cosh kwz sin kws, Az = 0, As = 0. (4.190)

Thus the Hamiltonian of particle motion is

H =
1

2
(px +

1

kwρw
cosh kwz sin kws)

2 +
1

2
p2z, (4.191)

where ρw is the bending radius of the wiggler field, i.e. Bwρw = p/e with particle
momentum p. The equation of motion is⎧

⎪⎪⎨
⎪⎪⎩

x�� =
1

ρw
cosh kwz cos kws,

z�� +
sin2 kws

ρ2w

sinh 2kwz

2kw
=

px
ρw

sinh kwz sin kws ≈ 0.

(4.192)

The nonlinear magnetic field can be neglected if the vertical betatron motion is
small with kwz � 1. The horizontal closed orbit becomes

xco =
1

ρwk2
w

(1− cos kws), x�
co ≡ β⊥ =

1

ρwkw
sin kws =

Kw

γ
sin kws,(4.193)

Kw =
eBwλw

2πmc
= 0.934Bw [T]λw [cm]. (4.194)

17The magnetic field Bw at z = 0 is related to the field B̂ at the pole-tip by Bw = B̂/ cosh(πg/λw),
where g is the wiggler gap-height. Small period wigglers demands small-gap operation with g ≤
0.5λw. The dynamic and physical aperture of small gap wigglers may be small.
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where we use 1/ρwkw = Kw/βγ ≈ Kw/γ with Kw as the wiggler parameter. Table 4.3

lists some wiggler parameters of some insertion devices for the third generation light
sources.

Table 4.3: parameters of some undulators and wigglers
Machine E [GeV] B [T] λw [cm] L [m] Kw

ALS 1.5 5 14 1.96 65
1.15 9 4.8 9.7

APS 7 0.65 2.2 5 1.3

The transverse electron angular divergence inside the undulator or wiggler is equal
to Kw/γ. For Kw ∼ 1, the device is called an undulator; for Kw � 1, it is called a

wiggler. The velocity vector of an electron in the planar undulator is �β = β⊥x̂+ β�ŝ,
where β2 = β2

⊥ + β2
� = 1− 1/γ2, or

β� =
√
β2 − β2

⊥ =

(
1− 1

γ2
− K2

w

γ2
sin2 kws

)1/2

≈ 1− 1 +K2
w sin2 kws

2γ2
= 1− 1 +K2

w,rms

2γ2
+

K2
w,rms

2γ2
cos 2kws. (4.195)

Note that the magnitude of the longitudinal velocity oscillates at two times the un-

dulator wave number. The quantity Kw,rms ≡ 1√
2
Kw is called the rms undulator

parameter for planer undulator. The photon emitted in each wiggler period is en-

hanced by a resonance condition to be discussed in the next section.

A: Ideal helical undulators or wigglers

We next consider a helical wiggler with magnetic field18

�Bw = Bw (x̂ cos
2πs

λw
+ ẑ sin

2πs

λw
), (4.196)

where (x̂, ŝ, ẑ) are unit vectors of the curvilinear coordinate system for the transverse
radial, longitudinal, and transverse vertical directions. The transverse equation of

motion for electrons traveling at nearly the speed of light in the longitudinal direction
inside the wiggler is

γmc
d�β

dt
= eβcŝ× �B, or

d�β

ds
=

eBw

γmc
(ẑ cos kws− x̂ sin kws),

18In order for the ideal helical magnetic field to obey the Maxwell’s equation, we need to include
higher order nonlinear terms in the magnetic field. For linear betatron motion, we neglect all higher
order terms in the following discussions.
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Figure 4.23: Coherent addition of radi-
ation from electrons in wigglers or un-
dulators. Longitudinal coherence gives
rise to resonance condition of single
frequency of diffraction like structure.

�β =
Kw

γ
(x̂ cos kws+ ẑ sin kws) + β�ŝ, (4.197)

β2 = β2
⊥ + β2

� = 1− 1

γ2
, β� ≈ 1− 1 +K2

w

2γ2
.

where the wiggler parameter Kw is defined in Eq. (4.194). Note that the magnitude

of the transverse velocity vector is β⊥ = Kw/γ. Unlike the planer undulator, the
helical undulator does not produce a large tune shift in linear approximation.

The displacement vector of the electron in the wiggler is obtained by integrating
Eq. (4.197):

�r(t�)
c

=
Kw

ωwγ
(x̂ sinωwt

� − ẑ cosωwt
�) + β�t�ŝ; (4.198)

where t� is the reference frame of the moving electrons. Let the observer be located
at one end of the wiggler. The n̂ can be written as (see Fig. 4.23),

n̂ = φx̂+ ψẑ + (1− 1

2
θ2)ŝ (4.199)

with φ2 + ψ2 = θ2, where these angles are of the order of 1
γ
. The observer’s time t is

related to the electron’s time t� via the retarded condition, i.e.

t = t� − n̂ · �r(t�)
c

=
1 +K2

w + γ2θ2

2γ2
t� − φKw

ωwγ
sinωwt

� +
ψKw

ωwγ
cosωwt

�. (4.200)

Let ξ = ωwt
�, Eq. (4.200) can be transformed to

2γ2

1 +K2
w + γ2θ2

ωwt = ξ − 2γφKw

1 +K2
w + γ2θ2

sin ξ +
2γφKw

1 +K2
w + γ2θ2

cos ξ. (4.201)

It is apparent to see that the periodic motion of the electron in the wiggler are
transformed to the observer at a frequency boosted by the factor shown in Eq. (4.201).

Let us use the notation ω
L
for the laser frequency, i.e.

ω
L
=

2γ2

1 +K2
w + γ2θ2

ωw. (4.202)
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Here ω
L
corresponds to the characteristic frequency of the device in the observer’s

frame. We can rewrite Eq. (4.201) as ω
L
t = ξ − p sin ξ + q cos ξ, where

p =
2γφKw

(1 +K2
w + γ2θ2)

; q =
2γψKw

(1 +K2
w + γ2θ2)

. (4.203)

The integrand of the radiation integral in Eq. (4.39) of the classical radiation formula

is

n̂× (n̂× �β) ≈ x̂[φ− Kw

γ
cosωwt

�] + ẑ[φ− Kw

γ
sinωwt

�], (4.204)

where we retain only terms up to the order of 1/γ. The radiation integral of Eq. (4.39)

becomes

�G = −j

(
ω2e2

8π2ω2
wc

)1/2 ∫ ∞

−∞

(
[φ− Kw

γ
cos ξ]x̂+ [φ− Kw

γ
sin ξ]ẑ

)
e−jωtdξ.

For a periodic wiggler, we obtain

�G = −j
2γω0Kw

ω
L
(0)[1 +K2

w]

(
e2

8π2c

)1/2

NwS̃(ω/ωL
)

∫ π

−π

[(
φ− Kw

γ
cos ξ

)
x̂

+

(
φ− Kw

γ
sin ξ

)
ẑ

]
× exp

{
−j

ω

ω
L

(ξ − p sin ξ + q cos ξ)

}
dξ, (4.205)

where Nw is the number of the wiggler period, the apparent angular frequency ω
L
(0)

at the forward direction is

ω
L
(0) = ω

L
(θ = 0) =

2γ2

1 +K2
w

ωw, λ
L
=

λw

2γ2
(1 +K2

w) (4.206)

and the spectral coherent factor S̃(ω/ω
L
) is sharply peaked at integer harmonics of

ω
L
(θ):

S̃(ω/ω
L
) =

[
sinNw

ω
ω
L
π

Nw sin ω
ω
L
π

]
≈ ±

[
sin πNw(ω − ωn)/ωL

πNw(ω − ωn)/ωL

]
, (4.207)

ωn = nω
L
(θ) = nω

L
(0)

(
1 +

γ2θ2

1 +K2
w

)−1

.

The corresponding photon energy at the fundamental frequency is

�1[keV] = �ω(0) =
0.95E2

e [GeV]

(1 +K2
w)λw[cm]

; or λ1[Å] =
13.1(1 +K2

w)λw[cm]

E2
e [GeV]

. (4.208)

Thus the photon energy can be adjusted by tuning the electron energy, or the wiggler

parameters, λw and Kw. The spectral distribution of the diffraction pattern has a
full width half maximum at the n-th harmonic:

Δω

ωn

≈ 2.7

πnNw

≈ 0.85

nNw

. (4.209)
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Due to the coherent interference nature, the frequency spectrum is discrete. The

maximum power is proportional toN2
w. The photon flux is proportional to the number

of electron due to incoherent nature. The frequency spectrum will also be broadened

by the momentum spread of the electron beam.

B. Characteristics of radiation from undulators and wigglers

If the wiggler parameter is large, i.e. Kw � 1, the spectra are similar to those of

synchrotron radiation from dipoles. Synchrotron radiation has a continuous spectrum
up to the critical frequency ωc,w = 3γ3c/2ρw. Since a wiggler magnet may have a

stronger magnetic field, the synchrotron radiation spectrum generated in a wiggler is

shifted upward in frequency. Such a wiggler is also called a wavelength shifter.

If Kw ≤ 1, the radiation from each undulator period can coherently add up to

give rise to a series of spectral lines given by

λn =
1 +K2

w + γ2Θ2

2nγ2
λw =

13.1 λw [cm]

nE2 [GeV]
(1 +K2

w + γ2Θ2) [Å] (n = 1, 2, . . .), (4.210)

where Θ is the observation angle with respect to the undulator plane. For reference,

the critical wavelength from a dipole is

λc, dipole =
4πmc

3eBγ2
=

0.007135

B [T] γ2
[m] =

18.6

B [T] E2 [GeV]
[Å].

The resonance condition for constructive interference is achieved when the path length

difference between the photon and electron, during the time that the electron travels
one undulator period, is an integer multiple of the electromagnetic wavelength, i.e.

λw/β‖−λw cosΘ = nλn. Figure 4.24 shows schematically the sinusoidal electron orbit
and electromagnetic radiation (vertical bars), where the electron (circle) lags behind

the electromagnetic wave by one wave length in traversing one undulator period for
n = 1.

Figure 4.24: Schematic drawing of the sinu-
soidal orbit of an electron in a planar undu-
lator and the electromagnetic wave (vertical
bars). The resonance condition is achieved
when the electron travels one undulator pe-
riod, it lags behind the electromagnetic wave
by one full wave length for the n = 1 mode.

The pulse length of a photon from a short electron bunch is

Δt =
Nwλw

β‖c
− Nwλw

c
cosΘ ≈ Nwλ1

c
. (4.211)
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Thus the frequency bandwidth is

Δω =
π

Δt
=

πc

Nwλ1
=

ω1

2Nw
, (4.212)

where λ1 is the wavelength of the fundamental radiation. The fractional bandwidth

is then Δω/ω1 = 1/(2Nw) with the angular aperture �Θ2�1/2 =
√
λ/Nwλw and the

source radius
√
λNwλw/4π, i.e. the emittance of the photon beam is λ/4π. Optical

resonance cavities have been used to enhance the radiation called the free electron
laser (FEL).19 The number of photons, emitted within the solid angle λ/(Nwλw) and

bandwidth Δω/ω, is Nγ = πξα[JJ]2 per undulator period, where ξ = K2/(2 +K2),

and the factor [JJ] = J0(
1
2
ξ)− J1(

1
2
ξ) comes from the planar undulator.

With the progress in small emittance beam sources from photocathode rf guns,

emittance preservation in linacs, longitudinal bunch compression, and precise undu-
lators, efforts are being made in many laboratories to demonstrate the self-amplified

spontaneous emission (SASE) principle, to produce an infrared FEL, and to achieve
single pass X-ray FELs such as the Linac Coherent Light Source (LCLS) at SLAC

and DESY.

III.3 Effect of IDs on beam dynamics

The rm beam emittance �x and the fractional energy spread σE/E in electron storage

rings are given by the the radiation integrals listed in Sec. II.8). The natural emittance
and the energy spread of the beam in the presence of IDs become

�x = �x0

(
1 +

I5w
I50

)(
1 +

I2w − I4w
I20 − I40

)−1

≈ �x0
1 + I5w/I50
1 + I2w/I20

, (4.213)

(σE

E

)2

=
(σE

E

)2

0

(
1 +

I3w
I30

)(
1 +

2I2w + I4w
2I20 + I40

)−1

≈
(σE

E

)2

0

1 + I3w/I30
1 + I2w/I20

, (4.214)

where I20, I30, I40, and I50 are radiation integrals evaluated in bending dipoles, and

�x0 = Cqγ
2I50/(I20 − I40) and (σE/E)20 = Cqγ

2I30/(2I20 + I40) is the emittance of the
lattice without IDs and I2w, I3w, I4w, and I5w are radiation integrals evaluated in

wigglers with I40 � I20, I4w � I2w, and I4w � I20 for high energy storage rings with
separated function magnets. In particular, we find I2w/I20 = Uw/U0, where

U0 = CγE
4/ρ0,

Uw =

{
CγE

4Lw/(4πρ
2
w), planer undulator,

CγE
4Lw/(2πρ

2
w), helical undulator,

19The free electron laser was realized in 1977 by J. Madey’s group [D.A.E. Deacon et al., Phys.
Rev. Lett. 38, 892 (1977)]. Since then, this field has been very active, with many regular workshops
and conferences. See, e.g. R.H. Pantell, p. 1708 in Ref. [16]; G. Dattoli, A. Torre, L. Giannessi, and
S. Dopanfilis, CERN 90-03 p. 254 (1990); G. Dattoli and A. Torre, CERN 89-03 (1989).
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are the energy losses in the storage ring dipoles and in an undulator or wiggler in one

revolution respectively. Here ρ0 and ρw are the bending radii of storage ring dipoles
and wiggler magnets, Lw is the length of the undulator or wiggler, and E is the beam

energy. Depending on the values of these radiation integrals, the emittance and the
energy spread can increase or decrease.

A. Effect of IDs on beam emittances

Normally, the change of the H-function due to the ID with rectangular magnets
is small. The natural beam emittance depends on

� H/|ρ|3ds ≡ �H� � (1/ρ3)ds =

2π�H�/ρ20, where �H� is the average of H-function in dipoles. Let the parameter fh
be defined as �H� = fhHID, where HID is the value of the H-function at an ID section.
Thus the value of fh may vary slightly in different straight sections. For example, we

find fh = ∞ in an achromatic straight section, fh = 0.25 for a TME lattice, and a
typically well designed non-achromatic lattice has fh ≈ 0.5 ∼ 0.8. Since H = HID is

constant in the entire ID region, we find

I50 =

� H
|ρ|3ds ≈ �H�

�
1

|ρ|3ds =
2π

ρ20
fhHID, (4.215)

I5w = HID

�

W

1

|ρ|3ds ≈

⎧
⎪⎪⎨
⎪⎪⎩

4

3π

HIDLw

ρ3w
planer,

HIDLw

ρ3w
helical,

(4.216)

where we assume sinusoidal magnetic field for undulators. The ratio of the radiation
integrals becomes

I5w
I50

≈

⎧
⎪⎨
⎪⎩

8ρ0
3πfhρw

Uw

U0
=

8Bw

3πfhB0

Uw

U0
, planer

ρ0
fhρw

Uw

U0
=

Bw

fhB0

Uw

U0
, helical

(4.217)

where Bw and B0 are the magnetic flux densities of the undulator and the main dipole

magnet, and the emittance becomes

�x
�x0min

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
1 +

�
w

8

3πfh

ρ0
ρw

Uw

U0

��
1 +

�
w

Uw

U0

�−1

, planer

�
1 +

�
w

1

fh

ρ0
ρw

Uw

U0

��
1 +

�
w

Uw

U0

�−1

, helical.

(4.218)

The emittance will decrease slightly when the undulators field is Bw ≤ 3πfh
8

B0, and

the natural emittance will increase for strong field wigglers. To minimize the emit-

tance increase, strong field IDs should be installed in straight sections with smaller
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HID. For a given �H�, we would prefer a larger H in the dispersion matching sec-

tion, and a smaller H in the ID section. To minimize emittance degradation in the
non-achromatic lattice, one chooses a strong main dipole field by making the dipole

length short, or ρ0 small. The drawback is that the value of dispersion function in
the dispersion matching section, which is proportional to ρ0θ

2, becomes smaller, and

thus the chromatic sextupole strength becomes larger. Optimization of the dynamic
aperture becomes a difficult task in the design of such a machine.

Since U0 � Uw in high energy photon sources such as the ESRF, APS, and Spring-
8, non-zero dispersion function in the IDs does not cause much emittance degradation,

and thus there is a small advantage of non-achromatic DB mode over the DBA mode
of operation as shown in Eq. (4.188).

Each ID increases radiation power in a storage ring. If an ID is located in an

achromatic straight section, where HID = 0 or fh = ∞, the natural beam emittance
becomes

�x ≈ �x0
1 + Uw/U0

, (4.219)

where we assume the effect of the ID on dispersion function is small so that I5w ≈ 0.

Since �x0DBA ≈ 3�x0min, the energy loss Uw in the damping IDs must be at least twice
that in the dipole U0 to achieve the same emittance as the non-achromat lattice.

In order to maximize emittance damping effect, one chooses a low main dipole field
option, the dipole length L is increased, and the dispersion function (∼ ρ0θ

2) in the

dispersion matching section is larger. This, in turn, reduces the sextupole strength
needed for chromatic correction. The dynamic aperture is still a very difficult problem,

but is relatively easier to handle than in the high field dipole option. However,
the DBA design requires a larger circumference or potentially, a smaller fraction of

available space for IDs.

B. Effect of IDs on momentum spread

Evaluating the radiation integrals in Eq. (4.214), we obtain

I30 =
2π

ρ20
, I3w =

⎧
⎪⎪⎨
⎪⎪⎩

4

3π

Lw

ρ3w
Lw

ρ3w

,
I3w
I30

=

⎧
⎪⎨
⎪⎩

8

3π

ρ0
ρw

Uw

U0
ρ0
ρw

Uw

U0

,

�σE

E

�2

=
�σE

E

�2

0
×

⎧
⎪⎪⎨
⎪⎪⎩

�
1 +

8

3π

ρ0
ρw

Uw

U0

��
1 +

Uw

U0

�−1

, planer
�
1 +

ρ0
ρw

Uw

U0

��
1 +

Uw

U0

�−1

, helical.

(4.220)

If Bw ≤ 3πB0/8 for the planer undulator, the beam momentum spread will decrease.

On the other hand, the high field IDs can increase momentum spread, particularly

important for the low main dipole field design.



464 CHAPTER 4. PHYSICS OF ELECTRON STORAGE RINGS

C. Effect of ID induced dispersion functions

We consider a simple ideal vertical field wiggler (Fig. 4.25), where ρw = p/eBw is the
bending radius, θ = Θw = Lw/ρw is the bending angle of each dipole, and Lw is the

length of each wiggler dipole. Since the rectangular magnet wiggler is an achromat
(see Exercise 2.4.20), the wiggler, located in a zero dispersion straight section, will not

affect the dispersion function outside the wiggler. However, this wiggler can generate
it’s own dispersion (see Exercise 2.4.20), i.e.

D(s) ≈
{−s2/2ρw
−[2L2

w − (2Lw − s)2]/2ρw
, D�(s) ≈

{−s/ρw, 0 ≤ s < Lw

−[2Lw − s]/ρw, Lw < s ≤ 2Lw
.

Figure 4.25: A schematic drawing
of a period of a vertical field wiggler.

We assume that the center of the wiggler magnet is located at the symmetry point
so that βx(s) = β∗

x+(s−2Lw)
2/β∗

x. The radiation integral I5w in the wiggler becomes

I5w =
4

3
β∗
x

L3
w

ρ5w

(
1 +

103

40

L2
w

β∗
x
2

)
≈ 4β∗

x

3ρ2w
Θ3

w, (4.221)

where we make an approximation that β∗
x � Lw with Θw = Lw/ρw. The approxi-

mation implies that each pole contributes an equal amount to the radiation integral
I5w. The contribution of each wiggler period to I2 is I2w = 4Lw/ρ

2
w = 4Θw/ρw. For

Nw wiggler periods in the straight section, the emittance of Eq. (4.213) becomes

�x,w
�x0

≈
(
1 +

2ρ20Nwβ
∗
xΘ

3
w

3πρ2w �H�0

)(
1 +

2ρ0NwΘw

πρw

)−1

=
1 + F� × (Uw/U0)

1 + (Uw/U0)
, (4.222)

F� =
ρ0β

∗
xΘ

2
w

3ρw�H�0 ≤ 16
√
15

3
Nw

(
θw
θ0

)3

, (4.223)

where we have used I50 = 2π�H�0/ρ20 and I20 = 2π/ρ0 for the isomagnetic storage
ring with I40 ≈ 0 and I4w ≈ 0, β∗

x ∼ 4LwNw ≈ Nwλw, �H�0 ≥ 1
4
√
15
ρ0θ

3
0, and θ0 is the

bending angle of the outer nBA or DBA dipole. For a sinusoidal wiggler, θw = Kw/γ.
For most high field wigglers, we find F� < 0.01 and the wigglers in dispersion-free

regions will reduce the beam emittance. The emittance reduction is approximately
given by Eq. (4.219). At a constant field strength, i.e. constant ρw, the factor F� is

smaller if Θw or Lw is reduced while maintaining a constant NwΘw, i.e. increasing

the number of poles by reducing the length of each pole.
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Similarly, the dispersion functions in the insertion region induced by a sinusoidal

vertical wiggler field of Eq. (4.189) is

D = − 1

ρwk2
w

(
1− cos

[
kw

(
s+

Lw

2

)])
, D� = − 1

ρwkw
sin

[
kw

(
s+

Lw

2

)]
,

(4.224)
where we have assumed D0 = D�

0 = 0 at s = −Lw/2, and Lw is the wiggler length.

The sinusoidal wiggler is achromatic if kwLw is an integer multiple of 2π. With
βx = β∗ + s2/β∗, the radiation integrals of the sinusoidal wiggler are

I2w =
Lw

2ρ2w
, I3w =

4Lw

3πρ3w
, I5w ≈ 8Nw�βx�

15ρ5wk
3
w

=
8Nw�βx�
15ρ2w

θ3w, (4.225)

where θw = 1/(ρwkw) = Kw/βγ is the maximum orbit angle of the electron beam in

the wiggler. Using I2w/I20 = Uw/U0, we find

�x = �x0
1 + F� × (Uw/U0)

1 + (Uw/U0)
, σ2

E = σ2
E0

1 + FΔE × (Uw/U0)

1 + (Uw/U0)
, (4.226)

F� ≤ 64�βx�√
15Lw

Nw

(
θw
θ0

)3

≈ 64√
15

Nw

(
θw
θ0

)3

, FΔE =
8ρ0
3πρw

, (4.227)

where we use �H�0 ≥ 1
4
√
15
ρ0θ

3
0 in main-dipoles and �βx� ∼ Lw. Since F� ∼ 0.01,

the damping wigglers will generally reduce the emittance, given approximately by
Eq. (4.219). For a given Uw/U0 = (ρ0/2ρw)Nwθw with a constant Nwθw, the factor F

is smaller for a smaller θw. However, wigglers with very large Kw values may increase
the beam emittance. The momentum spread of the beam will increase or decrease

depending on whether the magnetic field Bw of the planer wiggler is larger or smaller
than (3π/8)B0 of the main dipole field.

D. Effect of IDs on the betatron tunes

The IDs with rectangular magnets is achromatic, and the edge defocusing in the

rectangular vertical field magnets cancels the dipole focusing gradient of 1/ρ2. Thus
there is no net focusing in the horizontal plane. The focal length of the vertical

betatron motion and the tune shift resulting from the rectangular wiggler dipole are
respectively

f ≈ ρw
4 tanΘw

≈ ρ2w
4Lw

, Δνz =
1

4π

∫
βz

f
ds ≈ Lw,total�βz�

4πρ2w
, (4.228)

where Lw,total = 4NwLw is the total length of the undulator, and �βz� is the average

betatron amplitude function in the wiggler region.



466 CHAPTER 4. PHYSICS OF ELECTRON STORAGE RINGS

Similarly, the vertical sinusoidal field undulator of Eq. (4.189) generates average

vertical focusing strength and vertical betatron tune shift:

�sin
2 kws

ρ2w
� = 1

2ρ2w
, Δνz =

1

4π

∫
βz(s)ds

2ρ2w
= +

�βz�Lw,total

8πρ2w
, (4.229)

where Lw is the total length of the undulator. The tune shift induced by the sinusoidal
undulator is a factor of 2 smaller than the dipole undulator because the effective (rms)

dipole field is 1/
√
2 of the peak dipole field. The nonlinear field in the wiggler can

also affect the dynamical aperture. The betatron tunes should avoid all low order

nonlinear resonances.

III.4 Beam Physics of High Brightness Storage Rings

High brilliance photon beams are generally produced by the synchrotron radiation

of high brightness electron beams, which can be attained by high quality linacs with
high brightness rf-gun electron sources or by high brightness storage rings. Here, we

discuss only the physics issues relevant to high brightness electron storage rings. Some
of these issues are the emittance, dynamical aperture, beam lifetime, beam intensity

limitation, beam brightness limitation, etc.

A. Low emittance lattices and the dynamical aperture

In Sec. III.1, we have studied methods of attaining a small natural emittance. At
the same time, the vertical emittance is determined mainly by the residual vertical

dispersion and the linear betatron coupling. The beam brightness is proportional to

NB/�x�z, where NB is number of electrons per bunch. If we neglect the effects of the
residual vertical dispersion function, the vertical emittance is arrived from the linear

betatron coupling with �x + �z = �nat. Thus, minimizing the natural emittance in
an accelerator lattice and minimizing the vertical emittance by correcting the linear

coupling will provide higher beam brightness.

The natural emittance obeys the scaling law �nat = FCqγ
2θ31, where θ1 is the total

bending angle of dipoles in a half-cell or of dipoles in the outer half-cell of nBA lattice.

The lattice factor F is

ME MEnBA Triplet DBA FODO

F 1

12
√
15Jx

1

4
√
15Jx

2β∗

3LJx

5 + 3 cosΦ

2(1− cosΦ) sinΦJx

Here β∗ is the betatron amplitude function at the symmetry point of the dispersion

free straight section, L is the length of the dipole, and Φ is the phase advance of a

FODO cell. To maximize beam brightness for synchrotron radiation with insertion
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devices, lattices with zero dispersion-function straight sections are favorable. Thus

DBA, TBA, or nBA lattices are often used in the design of synchrotron radiation
sources (see Sec. III.1).

Low emittance lattices require strong focusing optics. The correction of large
chromaticities in these lattices requires strong chromaticity sextupoles. Dynamical

aperture can be limited by strong nonlinear resonances and systematic chromatic stop-
bands. Multiple-families of sextupoles are needed to correct geometric and chromatic

aberrations. Since a strong focusing machine is much more sensitive to the dipole

and quadrupole errors, the lifetime and brightness of the beam can be considerably
reduced by power supply ripple, ground motion, and other error sources.

B. Diffraction limit

The conjugate phase space coordinates of a wave packet obey the uncertainty relation
σxσkx ∼ 1

2
, where σx and σkx are the rms beam width and the rms value of the

conjugate wave number. The equality is satisfied for a Gaussian wave packet. Thus

σxσx′ = σx(σkx/k) ∼ 1/(2k) = λ/(4π), where k = 2π/λ is the wave number in
the longitudinal direction. The emittance of photon with wavelength λ is �photon =

ΔxrΔx�
r = ΔzrΔz�r = σrσ

�
r ∼ λ/4π,where the subscript r stands for radiation. The

electron beam emittance that reaches the diffraction limit is �diff ∼ �photon.

The electron beam emittance for producing hard X-ray at energies 10 keV is about
�diff ≈ 10−11 m. High energy linacs can reach such a small emittance. For a storage

ring, the emittance is given by Eq. (4.187). The photon wave length in undulator
radiation is given by Eq. (4.210). To reach hard X-ray energy of 10 keV or wavelength

of 0.1 nm for undulator wavelength of λw = 15 mm and Kw = 1, the electron energy
must be larger than 6 GeV. We consider the 11BA lattice as a candidate of this

storage ring. Each 11BA cell is made of 11 dipoles with middle dipole θ2 = 1.5θ1
for dispersion function matching. We find that the bending angle is θ1 = 0.77◦, and
the required number of superperiods is N = 2π/](2 + 9 × 1.5)θ1] ≈ 30. The dipole

bending radius is determined energy spread of Eq.(4.116). With the energy spread
about σδ = 5×10−4, the bending radius is ρ = 115 m. the circumference is about 2400

m, and the compaction factor of this 30-11BA storage ring will be about 9 × 10−6.
With broadband impedance of |Z�/n| ∼ 0.5Ω, the single bunch peak current for the

microwave threshold is about 180 mA. This is about a thousand times smaller than
that can be achieved in linacs.

Now we consider vacuum ultra-violet (VUV) photons of 100 eV. The photon
emittance is about 1 nm. A number of storage ring at 1 GeV can produce respectable

emittance that reaches the diffraction limit. As an example, we consider a storage
ring with ρ = 3.5 m, θ1 = 20◦, C = 120m, the emittance of TME lattice is 1.34 nm.

The momentum spread and compaction factor of such a lattice are σδ = 4.6 × 10−4

and αc = 1.9× 10−3. The microwave threshold peak current is about 5 A.
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C. Beam lifetime

Since high energy photons can desorb gases in a vacuum chamber, vacuum pressure is
particularly important to beam lifetime in synchrotron radiation sources (see Exercise

4.1.8). The beam gas scattering processes include elastic and inelastic scattering with
electrons and nuclei of the gases,20 bremsstrahlung, ionization, ion trapping, etc. The

beam-gas scattering lifetime is

τg = − 1

N

dN

dt
= σtotβcn, (4.230)

where σtot is the total cross-section, n = 3.22× 1022P [Torr] m−3 is the density of the

gas, and βc is the speed of the particle.

Because of these problems, many high brightness storage rings employ positrons
with full energy injection. An effect associated with beam gas scattering is the mul-

tiple small angle Coulomb scattering, which results in emittance dilution. The small
angle multiple Coulomb scattering between beam particles within a bunch is called

the intrabeam scattering. This is particularly important for high-charge density low-
energy beams (≤ 1 GeV). The beam emittances in low energy storage rings are usually

determined by the intrabeam scattering.

The quantum lifetime can be controlled by the rf cavity voltage. The Touschek
scattering discussed in Sec. II.7 arises from the Coulomb scattering that transfers

transverse horizontal momentum into longitudinal momentum. If the longitudinal

momentum of the scattered particle is outside the rf bucket, the particle will be lost.
The Touschek lifetime depends on a high power of γ, and it is usually alleviated by

increasing the beam energy. Another solution is to increase the rf voltage. However,
the corresponding bunch length will be decreased and the peak beam current may be

limited by collective beam instabilities.

D. Collective beam instabilities

Collective instabilities are important to high intensity electron beams. The single

beam instabilities are usually driven by broadband impedance. The turbulent bunch
lengthening or microwave instability leads to increase in bunch length and momentum

spread (see Sec. VII.4; Chap. 3). The broadband impedance can be reduced by
minimizing the discontinuities in the vacuum chamber. The transverse microwave

instability has usually a larger threshold provided that the chromaticities are properly
corrected.

In storage ring, there are high-Q components such as the rf cavities, un-shielded

beam position monitors, etc. These accelerator components can lead to coupled

20See e.g., E. Weihreter, CERN 90-03, p. 427 (1990) for analysis on the vacuum requirement for
compact synchrotron radiation sources.
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bunch oscillations. The results are emittances dilution, fluctuation, lifetime degra-

dation, intensity limitation, etc. Methods to combat these collective instabilities are
minimizing the impedance by careful design of vacuum chamber, de-Qing HOMs of rf

cavities, enlarging the tune spread with Landau cavities, and active feedback systems
to damp the collective motion [5]. Besides collective beam instabilities, stability of

the beam orbit is also an important issue. Power supply ripple, ground motion, me-
chanical vibration, and/or ground motion can perturb the closed orbit of the beam.

Bunch-by-bunch feedback system is normally implemented for the control of the beam
orbit.

Exercise 4.3

1. Dividing the dipole into two pieces, we can express the dispersion function transfer
matrix of the half dipole by

M 1
2
B =

⎛
⎝

1 1
2L Lθ/8

0 1 θ/2
0 0 1

⎞
⎠ ,

where L and θ are the length and the bending angle of the dipole in the half cell.

(a) Use thin lens approximation and show that the dispersion function at the center
of the dipole of a separate function FODO cell is

D =
Lθ(1− 1

8 sin
2 Φ

2 )

sin2(Φ/2)
, D′ = − θ

sin(Φ/2)
,

where Φ is the phase advance per cell and L is the half cell length; and show
that the dispersion invariant at the center of the dipole is

H =
ρθ3

sin3(Φ/2) cos(Φ/2)
(1− 3

4
sin2

Φ

2
+

1

32
sin4

Φ

2
).

(b) Apply 3-point Simpson’s rule and show that the average of H-function in dipole
of a separate-function FODO cell is

�H� = ρθ3

�
1− 3

4 sin
2(Φ/2) + 1

48 sin
4(Φ/2)

sin3(Φ/2) cos(Φ/2)

�
.

The number in brackets is the F factor of Eq. (4.167), where the numerator
depends slightly on the dipole configuration.

2. In a zero gradient dipole, the dispersion transfer matrix is

M =

⎛
⎝

cosϕ ρ sinϕ ρ (1− cosϕ)
−(1/ρ) sinϕ cosϕ sinϕ

0 0 1

⎞
⎠
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where ρ is the bending radius, and ϕ = s/ρ is the beam bending angle along the
dipole. Using Exercise 2.4.11, show that the average of the H-function in the dipole
is

�H� = H0 + 2(α0D0 + β0D
�
0)
(1− cos θ)

θ
− 2(γ0D0 + α0D

�
0)ρ (1 −

sin θ

θ
)

−2α0
ρ

θ
(
3

4
− cos θ +

cos 2θ

4
) +

β0
2
(1− sin 2θ

2θ
) + γ0ρ

2(
3

2
− 2 sin θ

θ
+

sin 2θ

4θ
),

where θ is the bending angle of dipoles in a half cell and ρ is the bending radius.
Express the �H� in Eq. (4.173).

3. Show that average H in a dipole for a double-bend achromat (DBA) is

�H� = ρθ3
(
β0
3�

− α0

4
+

γ0�

20

)
,

in small angle approximation, where � = ρθ, ρ and θ are respectively the length, the
bending radius and bending angle of the dipole. If the betatron amplitude functions
are normalized with α̃0 = α0, β̃0 = β0/� and γ̃0 = γ0�, the average of the H-function

in the dipole becomes �H� = ρθ3
(
aβ̃0 − bα̃0 + cγ̃0

)
, with a = 1

3 , b =
1
4 , c =

1
20 .

(a) Consider the function F (α̃0, β̃0, γ̃0) = aβ̃0 − bα̃0+ cγ̃0 with β̃0γ̃0 = 1+ α̃2
0. Show

that the minimum of the function F is F =
√
4ac− b2 with α̃0 = b/

√
4ac− b2,

β0 = 2c/
√
4ac− b2, and γ0 = 2a/

√
4ac− b2. Using the result to show that the

minimum of �H� is

�H�
MEDBA

=
1

4
√
15

ρθ3 with α0 =
√
15, β0 =

6√
15

�, γ0 =
8
√
15

3�
,

where the minimum of the �H� function occurs at s∗ = 3
8� with β∗ = 3

4
√
60
�.

(b) Show that the horizontal betatron phase advance across the dipole for a MEDBA
lattice is

(tan−1
√
15 + tan−1 5

√
15/3).

(c) Evaluate (αD + βD�)/
√
βx and D/

√
βx at the exit points of the dipole magnet

for the MEDBA condition and show that

1√
βx

(αD + βD�) = ± 7�3/2

8(15)1/4ρ
,

1√
βx

D =
(15)1/4�3/2

8ρ
.

Use the result to show that the phase advance of the dispersion function match-
ing section of the MEDBA is 2 tan−1(7/

√
15).

4. When the �H� of the minimum emittance (ME) lattice in Eq. (4.179) is minimized,
show that the dispersion and the betatron amplitude functions inside the dipole are

D(s) =
�2

24ρ
+

1

2ρ
(s− �

2
)2, β = β∗ +

1

β∗ (s−
�

2
)2,
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where s = 0 corresponds to the entrance edge of the dipole, � is the length of the
dipole magnet, and β∗ = �/

√
60. Show that the horizontal betatron phase advance in

the dipole is 2 tan−1
√
15. Evaluate (αD + βD�)/

√
βx and D/

√
βx at the exit point

of the dipole magnet for the ME condition and show that

1√
βx

(αD + βD�) = ± 3�3/2

4
√
2(15)1/4ρ

,
1√
βx

D =
(15)1/4�3/2

12
√
2ρ

.

Use the result to show that the phase advance of the matching section is 2 tan−1(9/
√
15).

5. A minimum emittance n-bend achromat (MEnBA) module is composed of n− 2 ME
modules inside a MEDBA module. Show that the necessary condition for matching
ME modules to the MEDBA module in small angle approximation is

�3

ρ2

∣∣∣∣
ME

= 3
�3

ρ2

∣∣∣∣
MEDBA

.

Thus an isomagnetic nBA can achieve optical matching for the minimum emittance
only if the middle dipole is longer than the outer dipole by a factor of 31/3. Find the
minimum emittance. Extend your result to find a formula for the condition necessary
for a matched MEnBA without using small angle approximation.

6. The dispersion function in the combined function dipole is

D =
1

ρK
(cosh φ− 1) +D0 coshφ+

1√
K

D�
0 sinhφ,

D� = (D0

√
K +

1

ρ
√
K

) sinhφ+D�
0 coshφ,

where K = −Kx = |+B1/Bρ+ 1/ρ2| is the defocusing strength with B1 = ∂Bz/∂x,

φ =
√
Ks is the betatron phase, s = 0 corresponds to the entrance of the dipole, and

D0 and D�
0 are respectively the values of the dispersion function and its derivative at

s = 0. The evolution of the H-function in a dipole is

H(φ) = H0 +
2

ρ
√
K

(α0D0 + β0D
�
0) sinhφ− 2

ρK
(γ0D0 + α0D

�
0)(cosh φ− 1)

+
β0
ρ2K

sinh2 φ+
γ0

ρ2K2
(cosh φ− 1)2 − 2α0

ρ2K3/2
sinhφ (cosh φ− 1),

where H0 = γ0D
2
0 + 2α0D0D

�
0 + β0D

�2
0 , and α0, β0, and γ0 are the Courant-Snyder

parameters at s = 0.

(a) Averaging the H-function in the dipole, show that

�H� = H0 + ρθ3
[
(α̃0d0 + β̃0d

�
0)E(q)− 1

3
(γ̃0d0 + α̃0d

�
0)F (q)

+
β̃0
3
A(q)− α̃0

4
B(q) +

γ̃0
20

C(q)

]
,
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where θ = L/ρ is the bending angle of the dipole, L is the length of the dipole,

q =
√
KL is the defocusing strength of the dipole, the normalized betatron

amplitude functions are α̃0 = α0, β̃0 = β0/L, γ̃0 = γ0L, d0 = D0/Lθ, d
′
0 = D′

0/θ,
and

E(q) =
2(cosh q − 1)

q2
, F (q) =

6(sinh q − q)

q3
, A(q) =

3sinh 2q − 6q

4q3
,

B(q) =
6− 8 cosh q + 2cosh 2q

q4
, C(q) =

30q − 40 sinh q + 5 sinh 2q

q5
.

(b) The minimization procedure can be achieved through the following steps. First,
�H� can be minimized by finding the optimal dispersion functions with

∂�H�
∂d0

= 0,
∂�H�
∂d′0

= 0.

Show that the solution is d0,min = 1
6F (q), d′0,min = −1

2E(q), with

�H� = 1

12
ρθ3(β̃0Ã− α̃0B̃ +

4γ̃0
15

C̃),

where Ã = 4A− 3E2, B̃ = 3B − 2EF, C̃ = 9
4C − 5

4F
2.

(c) Using the relation β̃0γ̃0 = 1 + α̃2
0, show that the minimum �H� is

�H�ME =
G̃

12
√
15

ρθ3, with β̃0 =
8C̃√
15G̃

, α̃0 =

√
15B̃

G̃
, γ̃0 =

2
√
15Ã

G̃
,

where G̃ =
√

16ÃC̃ − 15B̃2. Plot G̃ vs q. Show also that the value of the
dispersion H-function at both ends of the dipole for the ME condition is

H(0) = H(q) =
1

3
√
15G̃

ρθ3{6C̃E2 − 15

2
B̃EF +

5

2
ÃF 2}.

(d) Show that the damping partition number Jx for horizontal motion is

Jx = 1− αc
R

ρ
+

4

q2

(
cosh q − 1− 1

2
q2
)
.

Discuss the effect of damping partition number for the combined function ME
lattice.

7. Consider a dipole in an achromat cell, shown schematically as follows, where (a) is a
uniform field dipole, and (b) is divided into two sections having different dipole field
strength. These two dipole schemes have the same bending angle, i.e.

θ =
L

ρ
= θ1 + θ2 =

L

2ρ1
+

L

2ρ2
.
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(a) Show that the dispersion function at the non-achromat end of the uniform field
dipole in small angle approximation is Dx(s2) =

1
2Lθ and D�

x(s2) = θ.

(b) Show that the dispersion function at the end of different strength dipole in small
angle approximation is Dx(s2) =

1
2Lθ +

1
4L(θ1 − θ2) and D�

x(s2) = θ.

The dispersion function is larger than that of the uniform dipole field if θ1 > θ2.
This means that the dispersion function at the non-achromatic end of a dipole with
higher field at the achromatic end will be larger. The theoretical �H/ρ3�minimum is
not smaller for the longitudinal gradient dipole than that of the uniform field dipole.
However, it appears easier to minimize �H/ρ3� in realistic lattice design.

8. Show that the dispersion function generated by a helical wiggler in a dispersion-free
straight section is

D =
Kwλw

2πγ

[
x̂ sin

2πs

λw
+ ẑ

(
1− cos

2πs

λw

)]
.

Find the ratio of the transverse beam sizes arising from the dispersion function and
betatron motion, where we assume Kw = 5, γ = 800, λw = 8.0 cm, σδ = 0.1 %,
βx = βz = 10 m, and �

N
= 2π mm-mrad.

9. A variant of the double bend achromat is to replace the focusing quadrupole by a
triplet. The configuration of the basic cell is21

Here 2L1 is the length of the zero dispersion straight section, and � is the length of
the dipole. Since the mid-point of the straight section is the symmetry point for the
lattice function, the betatron amplitude function inside the dipole is

β = β∗ +
(s+ L1)

2

β∗ ,

where s = 0 corresponds to the entrance of the dipole.

(a) In small angle approximation, show that the average of the H function in the
dipole is

�H� = ρθ3
[
β∗

3�
+

1

β∗

(
L2
1

3�
+

L1

4
+

�

20

)]
,

where 2L1 is the length of the zero dispersion straight section, and � is the length
of the dipole. Show that the minimum emittance of the triplet DBA is

�H�min = ρθ3
2β∗

3�
with

β∗

�
=

√
L2
1

�2
+

3L1

4�
+

3

20
.

21Because there is no quadrupole in the straight section, such a configuration has the advantage of
a very compact storage ring for synchrotron light with dispersion free insertions. This configuration
appears in the SOR Ring in Tokyo and the ACO Ring in Orsay, where combined function dipoles
are used.
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Since the emittance is proportional to the betatron amplitude function at the
insertion region, the emittance will be altered by insertion devices that alter the
betatron amplitude function.

(b) Show that the betatron phase advance of the dispersion matching section for a
minimum emittance triplet DBA is

ψ = 2arctan

⎛
⎝ 4ξ2 + 9

2ξ +
13
10�

ξ2 + 3
4ξ +

3
20

⎞
⎠ ,

where ξ = L1/�. Plot the betatron phase advance of the matching section and
β∗/� as a function of ξ.

(c) What happens to �H� and the natural emittance if the dipole is replaced by a
combined function magnet?

(d) Study the linear stability of the triplet DBA lattice.



Chapter 5

Special Topics in Beam Physics

In preceding chapters, we have focused on particle dynamics of betatron and syn-
chrotron motions, nonlinear beam dynamics, the effects of space-charge force, linac,

impedance and collective beam instabilities, radiation damping and quantum fluctua-
tion in electron storage rings, and synchrotron radiation. However, this introductory

textbook does not address advanced topics including free-electron laser, laser-particle
interaction, beam-beam interaction, beam cooling, advanced nonlinear beam dynam-

ics, and collective beam instabilities. There are many textbooks and workshop pro-

ceedings on these advanced topics [14, 15, 16, 17, 18]. Nevertheless, this chapter
provides introduction to two topics: free electron laser and beam beam interaction.

In Chapter 4, we discussed incoherent spontaneous synchrotron radiation of each
individual electron in dipole or wiggler fields. The radiated electromagnetic wave

plays no role on the motion of electrons. The radiation is incoherent and the power
or intensity of the radiation is proportional to the number of electrons in a bunch. To

produce coherent photons, it is necessary to induce laser oscillation in a laser cavity
consisting of undulator and mirrors.1 The idea has been extended to vacuum ultra-

violet (VUV) and X-ray production by a process called Self-Amplified Spontaneous
Emission (SASE), a collective instability induced microbunching in electron beam

through interaction with the EM fields.

The center of mass energy available in fixed target experiments is limited by the

kinematic transformation. Since 1960’s, there are great efforts in developing colliders,
where two counter-traveling beams collide at interaction points. The space charge

force between two counter-traveling bunches produces large impulse on each other.
The force is highly non-linear. It perturbs the beam distribution, degrades beam

lifetime, causes beam instability, induces noises in the detector area, and plays a
major role in limiting the luminosity of all high energy colliders.

1J.M.J. Madey, J. Appl. Phys. 42 (1971) 1906; R.L. Elias et al., Phys. Rev. Lett. 36 (1976) 717;
see also C.W. Robinson and P. Sprangle, a Review of FELs, p. 914 in Ref. [14].
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I Free Electron Laser (FEL)

Lasers are coherent and high power light (radiation) sources. The radiation is gener-

ated by coherent transition from population-inverted states to a low-lying state of a
lasing medium made of atomic or molecular systems. A free electron laser employs

relativistic electron-beams in undulators to generate tunable, coherent, high power
radiation. Its optical properties possess characteristic of conventional lasers: high

spatial coherence and near the diffraction limit. Its wavelengths are tunable from
millimeter to visible and potentially ultraviolet to x-ray.2 Figure 5.1 summarizes the

existing laboratories with free electron laser research facilities. For a complete up-
dated list, see the World Wide Web Virtual Library of the Free Electron Laser at

http://sbfel3.ucsb.edu/www/vl fel.html.

Figure 5.1: A compilation of the ex-
isting FEL laboratories with associated
FEL wavelength. High gain X-ray FEL
projects, such as the LCLS and XFEL
to be completed around 2007, are not
listed on this graph. The wavelengths of
these projects are of the order of 0.1 nm.
Besides these operational facilities listed
in the graph, there are about 10 FEL
development centers in universities and
National Laboratories.

The circularly polarized plane electromagnetic (EM) wave, produced by the rela-
tivistic electron-beam in a helical wiggler magnetic field �Bw of Eq. (4.196)3 is

�E = E0[x̂ sin(k0s− ω0t+ φ0) + ẑ cos(k0s− ω0t+ φ0)], �B =
1

c
ŝ× �E (5.1)

propagating along the wiggler axis ŝ. Here k0 = 2π/λ, ω0 = 2πc/λ, φ0 is an arbi-
trary initial phase of the EM wave, s is the longitudinal distance, and t is the time

coordinate. In the presence of the electromagnetic fields, the equation of motion for
electron is

d�p

dt
= e �E + ec�β × ( �B + �Bw) + Fs.c. + Fradiation. (5.2)

2See Ref. [32] and FEL Physics, in SLAC-R-521 Chapter 4, (2001) and reference there in.
3For radiation from planar undulator, see Exercise 5.1.1. For simplicity, we limit our discussion

to 1D FEL-theory, where the amplitude E0 is independent of the transverse coordinates, and is a
slowly varying function of t and s.
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where βc is the speed of the electron. The space charge force Fs.c. is proportional

to 1/γ2 (see Exercise 2.3.2), it is negligible at the energy of our consideration. The
radiation reaction force Fradiation is also small in the energy E of electrons of our

interest because

Fradiation

ecBw
=

Pγ

ec2Bw
=

2r0c

3mc2
γ2Bw = 4.22× 10−6 (E[GeV])2Bw[T] � 1.

Here Pγ is the instantaneous radiation power in the wiggler and r0 is the electron
classical-radius.

The wiggler field provides electron trajectory while the EM-fields interact with
electrons for energy exchange. Using Eqs. (5.1) and (4.197), we obtain the energy-

exchange between the electron and electromagnetic wave: mc2γ̇ = −e �E · �βc, or

γ� ≡ dγ

ds
= −eE0β⊥

mc2
sinφ = −eE0Kw

γmc2
sin φ, (5.3)

φ = (kw + k0)s− ω0t+ φ0. (5.4)

With ds/dt = cβ� of Eq. (4.197), the stationary phase (or resonance) condition to
maximize the energy exchange is

0 = φ� ≡ dφ

ds
=

2π

λwλ

[
λ+ λw

(
1− 1

β�

)]
≈ kw

(
1− λw(1 +K2

w)

2γ2λ

)
, (5.5)

For a planar undulator, the longitudinal velocity vector is given by Eq. (4.195), and

thus the wiggler parameter in the resonance condition should be replaced by the
rms undulator parameter Kw,rms = Kw/

√
2 (See also Exercise 5.1.1). The resonance

condition

γ2
r =

λw(1 +K2
w)

2λ
or λr = λw

1 +K2
w

2γ2
. (5.6)

agrees with Eq. (4.210). When this resonance condition is satisfied, electrons lag
behind the EM wave by one wavelength as electrons advance one wiggler period, i.e.

ω0Δt = ω0(
λw

β‖c
− λw

c
) = 2π, graphically represented in Fig. 4.24.

The equation of motion for the phase angle φ becomes

φ� = kw(1− γ2
r

γ2
). (5.7)

The coupled equations (5.3) and (5.7) can be derived from the Hamiltonian

H = kw(1 +
γ2
r

γ2
)γ − eE0Kw

γrmc2
cos φ, (5.8)

where (γ, φ) are conjugate phase-space coordinates and longitudinal distance s serves

as the independent “time” coordinate. The energy exchange between the electron and

the external electromagnetic fields can be obtained by solving Hamilton’s equation.
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I.1 Small Signal Regime

In a small radiation loss regime, γ � γr, we define a small parameter

η =
γ − γr
γr

. (5.9)

The Hamiltonian and Hamilton’s equations of motion are

H = kwη
2 − eE0Kw

mc2γ2
r

cosφ; η� = −eE0Kw

mc2γ2
r

sinφ, φ� = 2kwη, (5.10)

where (η, φ) are conjugate phase-space coordinates and the longitudinal coordinate

s is the independent variable. The Hamiltonian resembles that of the synchrotron
motion. The small amplitude wave-number κ is

κ2 =
2kweE0Kw

mc2γ2
r

=
eE0λwKw

πγ2
rmc2

k2
w. (5.11)

κ

kw
=

√
eE0λwKw

πγ2
rmc2

= 4.03× 10−5

√
Kwλw[cm]E0[MV/m]

E[GeV]
. (5.12)

Here, the quantities kw and κ/kw play the roles of the orbital wave number and “syn-
chrotron” tune respectively. The Hamiltonian and Hamilton’s equations of motion

become

H = kwη
2 − 1

2
kw

(
κ

kw

)2

cosφ =
κ2

2kw

[
1

2

(
φ�

κ

)2

− cosφ

]
, (5.13)

φ� = 2kwη, η� = −kw
2
(
κ

kw
)2 sin φ, (5.14)

where (φ, φ
′
κ
) forms a set of normal phase-space coordinates. Figure 5.2 shows tori of

Hamiltonian flow in phase-space (φ�/κ = 2kwη/κ, φ). The separatrix corresponds to
a Hamiltonian torus that passes through (φ = ±π, φ′

κ
= 0) and (φ = 0, φ′

κ
= ±2):

Hsx = kwη
2
sx −

eE0Kw

mc2γ2
r

cosφ =
eE0Kw

mc2γ2
r

. (5.15)

The energy exchange between the electron and EM-fields depends on the electron

trajectory in phase-space. The electron can lose or gain energy. To calculate the
energy transfer, we have to integrate the electron paths and average over the initial

condition of all electrons in the beam bunch. The time evolution of the electron beam

distribution function f(φ, η, s) is governed by the Vlasov equation.
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Figure 5.2: The phase-space ellipses of the energy
loss φ�/κ vs. φ for electrons in an undulator. The
energy exchange between the electron and the EM
fields resembles the synchrotron motion for a particle
in the rf system.

A. Vlasov equation in longitudinal phase-space coordinates

When the transverse and longitudinal oscillations are decoupled, the longitudinal
distribution function obeys the Vlasov equation:

∂f

∂s
+ φ�∂f

∂φ
+ η�

∂f

∂η
= 0, (5.16)

where the conjugate coordinates (φ, η) satisfy Eq. (5.13). A steady-state solution of
the Vlasov equation is a function of the Hamiltonian: feq = feq(H(φ, η)), which is an

even function of η. If an initial beam distribution is not a function of the Hamiltonian,
the distribution function evolves with “time”, s. Depending on the initial condition,

the time evolution of the bunch can be obtained by solving the Vlasov equation. Once
the distribution is obtained, the energy exchange can be calculated by averaging the

variable η over distribution function in phase-space coordinates, i.e.

�η� =
∫

ηf(φ, η)dφdη.

Any equilibrium distribution function that is an even function of η gives �η� = 0. The

equilibrium distribution function has no net energy-exchange between electrons and
EM-fields. For example, we consider a distribution that is initially uniform in φ, i.e.

f0(φ, η) = f(φ, η, s = 0) =
n0

2π
g(η). (5.17)

where n0 is the number of particle per unit volume. The maximum change in the
energy-deviation coordinate in one wiggler period is Δη|max ≈ π( κ

kw
)2 as shown in

Eq. (5.14). Since κ
kw

is a small number, we expand the distribution function in power
series of ( κ

kw
)2 and solve the distribution function iteratively:

f =
∑
n

fn(φ, η, s)(
κ

kw
)2n,

∂fn
∂s

+ 2kwη
∂fn
∂φ

=
kw
2

sin φ
∂fn−1

∂η
, (5.18)

f1 = − n0

8πη

dg

dη
(cos φ− cos(φ− 2ηkws)), (5.19)
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where we use f0 of Eq. (5.17) to obtain f1, which is not a uniform function of φ, i.e.

the electron beam becomes bunched.
The exchange of energy between the electron and the EM-fields is

�η� =
∫

ηf0dηdφ+ (
κ

kw
)2
∫

ηf1dηdφ ≡ �η�0 +
(

κ

kw

)2

�η�1, (5.20)

where Δ�η� = �η� − �η�0 = �η�1 = 0 in the φ-integral with the distribution func-

tion (5.19). The beam is bunched in the first order perturbation expansion without
producing any energy exchange.

To obtain an energy exchange, we need to perform a second order perturbation
calculation by expanding f2 as

f2 =

m=2∑
m=−2

f2me
imφ. (5.21)

The term that contributes to the energy exchange is f20 with

∂f20
∂s

=
n0kw
32π

[(
∂

∂η

[
1

η

∂g

∂η

])
sin(2ηkws) + 2kws

(
1

η

∂g

∂η

)
cos(2ηkws)

]

f20 =
n0

64π

∂

∂η

[
1

η2
∂g

∂η
[1− cos(2ηkws)]

]
. (5.22)

Averaging η over the distribution function f20, we obtain

Δ�η� = �η� − �η�0 = n0

16

(
κ

kw

)4

(2kws)
3

∫
g(η)F (2ηkws)dη, (5.23)

with

F (τ) =
1

τ 3

[
cos τ − 1 +

τ

2
sin τ

]
=

1

4

d

dτ
[S(τ)]2, S(τ) =

sin(τ/2)

(τ/2)
, (5.24)

where S(τ) is the line-shape function of the spontaneous emission in an undulator.

The line shape function is equal to the square of the diffraction coherent function in

Eq. (4.207). The factor n0

16

(
κ
kw

)4

in Eq. (5.23) can be expressed as

n0

16

(
κ

kw

)4

=
1

2
(2ρfel)

3 Uem

γrmc2
, (5.25)

where Uem = �Ue+Um� = �0E
2
0 is the average energy-density of electromagnetic fields,

ρfel is the FEL (or the Pierce) parameter:

(2ρfel)
3 =

μ0n0e
2λ2

wK
2
w

8π2γ3
rm

= 2

(
Kwωpl

γωw

)2

=
Î

IA

λ2
wK

2
w

2πΣeγ3
. (5.26)
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Here, ωpl =
√

n0e2/�0γm is the plasma frequency of the electron beam, ωw = kwc,

Î = n0Σeec is the peak current, IA = ec/r0 = 17.0 kA is the Alfvén current, and

Σe is the electron beam cross-sectional area. Equation (5.23) allows us to evaluate
the average electron energy exchange at the exit of the wiggler: s = Nwλw and

τ = η2kws = η4πNw. The gain function F (τ) is plotted in Fig. 5.3. Electrons lose
energy if τ ≥ 0 and gain energy if τ < 0. The gain is proportional to the slope of the

spontaneous emission line-shape function.

Figure 5.3: The gain function
F (τ) = [cos τ − 1 + (τ/2) sin τ ]/τ3 of
the FEL is plotted as a function of
the parameter τ = 2ηkws = 4πNwη.

If the initial energy distribution is narrow compared with the width of the function

F (τ), e.g. 4πNwΔη < 2 or Δη < 1
2πNw

, we can approximate g(η) = δ(η − η0). The
energy exchange becomes

Δ�η� = n0

16

(
κ

kw

)4

(4πNw)
3F (τ0) =

{
4(4πρfelNw)

3F (τ0)
} Uem

γrmc2
, (5.27)

where τ0 = 4πNwη0. The maximum energy loss is obtained with τ0 = 2.6 or η0 =
0.2
Nw

,
which corresponds to F (τ0) = 0.0675.

B. The free electron laser gain

The energy loss or gain of the electron beam bunch transforms energy to or extracts
energy from the electromagnetic fields. The gain of the free electron laser, defined as

the fractional increase of electromagnetic wave intensity of the spontaneous emission
in a single pass, is

G0 =
NwλwΣeγrmc2�Δη�

NwλwΣγUem
= 4(4πρfelNw)

3F (τ0), (5.28)

where Σe and Σγ are the cross-sectional areas of the electron and photon beams and

Σe = Σγ = Nwλwλ/(16π) is assumed at the undulator.
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Electrons lose energy if γ > γr and gain energy if γ < γr. There is no energy

exchange if γ = γr. The maximum energy gain occurs at the condition τ0 = 2.6:

Δγ
∣∣∣
max

≈ 5.2

4πNw

γr ≈ γr
2Nw

. (5.29)

The efficiency for spontaneous emission in an undulator is ≤ 1
2Nw

. For a beam with

finite momentum spread, the gain function is reduced by folding integral of Eq. (5.23).
If the fractional momentum width is larger than 1/2Nw, i.e. σγ/γ ≥ 1/2Nw, the

effective gain becomes nearly zero. The natural momentum width of the beam, given

by Eq. (4.114), is normally well within the limit.

The FEL gain G0 in Eq. (5.28) is proportional to the peak current Î. It is im-

portant to increase the peak current in wiggler region in order to enhance the FEL
gain. Since the FEL gain is only a few percent, an optical cavity with two mirrors

in the simplest configuration can be added to induce FEL oscillation. One of these
mirrors is assumed to be a perfect reflector, while the other is assumed to transmit a

fraction g0 of the incident light (see Fig. 5.4). Neglecting the possible loss of light in
the cavity, the system can be a laser oscillator if the gain is larger than the loss, i.e.

G ≥ g0. When G = g0, the system is in steady state operation. At the steady state,
the laser output power is

P
L
= efficiency × EIav, (5.30)

where Iav is the average electron particle current and E is the energy of the electron.

The efficiency of the device, i.e. the fraction of energy transfer, is about 1
2Nw

.

Figure 5.4: A schematic drawing of
an optical cavity for FEL resonator
with mirrors, while the electron beam
is guided by the deflectors.

Because the laser gain is proportional to the peak electron beam current, the space

time structure of the laser beam reflects the electron beam structure. For a bunch
beam operation, the laser pulse length is equal to the electron pulse length σs. The

time structure of the laser line width becomes

σω =
2πc

σs
; or

σω

ω
=

λ

σs
=

Lw(1 +K2
w)

2γ2σsNw
, (5.31)

which is smaller than the diffraction limit of 1/2Nw. To sustain amplification, the
synchronization of the laser pulses with the electron beam bunches is important as

well. The synchronization procedure can be achieved by adjusting the length of the

optical cavity.
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I.2 Interaction of the Radiation Field with the Beam

We obtained the gain of EM field-intensity through the electron motion. When the

gain is large, the system is coupled. The evolution of the electromagnetic fields is
obtained through Maxwell’s equation:

∇× �B − 1

c2
∂ �E

∂t
= μ0

�J, �J = ec
∑

�β⊥iδ(�r − �ri). (5.32)

where J is the transverse electric-current: The electric and magnetic fields are (see

Eq. (5.1))

�E = E0(s, t)[x̂ sin(k0s− ω0t+ φ0) + ẑ cos(k0s− ω0t + φ0)],

�B =
1

c
E0(s, t)[x̂ cos(k0s− ω0t + φ0)− ẑ sin(k0s− ω0t+ φ0)].

The amplitude and phase, E0(s, t) and φ0(s, t), are slowly varying functions in coor-

dinates s and t within one optical wave length, i.e.

∂E0

∂t
� ω0E0;

∂E0

∂s
� 2π

λ
E0;

∂φ0

∂t
� ω0φ0;

∂φ0

∂s
� 2π

λ
φ0.

Carrying out some algebraic manipulation, we obtain

∂E0

∂s
+

1

c

∂E0

∂t
= −μ0cJa, E0(

∂φ0

∂s
+

1

c

∂φ0

∂t
) = −μ0cJb, (5.33)

Ja = Jx sin(k0s− ω0t + φ0) + Jz cos(k0s− ω0t+ φ0) =
ecKw

γr
n0� sinφ

1 + η
�,

Jb = Jx cos(k0s− ω0t+ φ0)− Jz sin(k0s− ω0t + φ0) =
ecKw

γr
n0� cos φ

1 + η
�.

Here �...� is the ensemble average over the beam distribution in phase space coordi-
nates φ and η = γ−γr

γr
given by Eqs. (5.3) and (5.9), and we use Eq. (5.32) to obtain

Ja and Jb. The ensemble average of any function g is defined as

�g� =
∫

dφ

∫
dηg(φ, η)f(φ, η, s) (5.34)

where the electron-beam distribution-function f(φ, η) satisfies the Vlasov equation

Eq. (5.16). The system of coupled equations can be solved numerically at a given
initial condition to obtain the time and space evolution of the electron beam and of

the EM fields.

A. Perturbation solution of the Maxwell-Vlasov equations

The perturbed distribution function of Eq. (5.19), up to the first order of ( κ
kw
)2, is

f =
n0

2π
g(η) +

n0

8π

1

η

∂g

∂η
[− cosφ+ cos(φ− 2ηkws)](

κ

kw
)2. (5.35)
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This solution was obtained by assuming a constant electric field-amplitude E0. Using

the zeroth order distribution function, we find �cosφ� = 0 and �sinφ� = 0, and this
Ja = 0 and Jb = 0.

Using the first order perturbation distribution function, which carries the infor-
mation of beam bunching, we obtain Ja and Jb as

Ja =
ecKw

16γr
n0(

κ

kw
)2

1

η2
[sin(2ηkws)− (2ηkws) cos(2ηkws)],

Jb =
ecKw

16γr
n0(

κ

kw
)2

1

η2
[cos(2ηkws)− 1 + (2ηkws) sin(2ηkws)].

The change in the electric field-amplitude E0, up to first order in ( κ
kw
)2, and the gain

of electromagnetic-field energy can be obtained by integrating Eq. (5.33):

ΔE0 =
μ0n0ec

2λwKw

32πγr
(
κ

kw
)2(2kws)

3F (τ0). (5.36)

G0 =
2ΔE0

E0
= 4(4πρfelNw)

3F (τ0),

which is identical to that of Eq. (5.28). This verifies the fact that energy loss or gain
in electron beam is equal to the energy gain or loss in the electromagnetic radiation.

B. High gain regime

The wavelength of the electromagnetic wave radiated by electrons in an undulator is
determined by the resonance condition Eq. (5.5) with a line-width of (4.209). The

radiation is not transversely coherent and its power is proportional to the peak beam

current, or the number of electrons. Under certain conditions, the EM-wave can cause
the electron-beam to bunch itself into microbunches with bunch-length equal to the

wavelength of the EM-wave. All electrons in each microbunch radiate coherently in-
phase. The radiation-intensity is proportional to the square of the total charge in a

microbunch; and its power is greatly enhanced.
The population inversion in the free-electron coherent-lasing process is produced

by the electron beam microbunching. The electromagnetic radiation occurs through
coherent transition of the microbunched electron beam as a single identity. The

process can be described by the coupled Vlasov-Maxwell equations. We consider a
simple one-dimensional (1D) approximation:

∂f

∂s
+ φ′∂f

∂φ
+ η′

∂f

∂η
= 0, (5.37)

∂E0

∂s
+

1

c

∂E0

∂t
= −μ0cJa, (5.38)

φ′ = 2kwη, η′ = −kw
2
(
κ

kw
)2 sinφ, Ja =

n0ecKw

γr
� sin φ
1 + η

�.
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With the coordinate-transformation from (s, t) to (s, φ) of Eq. (5.4), Maxwell’s equa-

tion (5.38) becomes (see Exercise 5.1.2)

∂E0

∂s
≈

(
μ0n0c

2eKw

γr

)[
1

2π

∫
dηdφ f(η, φ)sinφ

]
, (5.39)

where we assume E0 is independent of φ or the detuning of the electric field amplitude

E0 is neglected. The amplitude of the EM-field can be enhanced by the electron-beam
distribution function.

Now we consider perturbation to the electron beam distribution function with
f = f0(η)+f1(η, φ), where f0 is the unperturbed distribution, and f1 is the perturbed

distribution function resulting from the interaction with the EM-field. With κ/kw
from Eq. (5.12), the linearized Vlasov equation is

∂f1
∂s

+ 2kwη
∂f1
∂φ

= +j

(
eKw

2γ2
rmc2

∂f0
∂η

)(
e−jφ − e+jφ

)
E0. (5.40)

The perturbed electron beam distribution f1 is coupled to the ponderomotive force

of the electric field.
Self-consistent solution of the electric field and the perturbed distribution function

can be expressed as

E0 = Ẽ0 exp[j(Ωs] + c.c., (5.41)

f1 = f̃1+ exp[j(Ωs− φ)] + f̃1− exp[j(Ωs + φ)] + c.c.. (5.42)

Substituting the above equation to Eqs (5.39) and (5.40), we obtain the equation for

eigen-wave-number Ω:4

Ω + (2ρfelkw)
3

∫
∂f0/∂η

Ω− 2kwη
dη = Ω− (2ρfelkw)

3

∫
f0(η)

(Ω− 2kwη)2
dη = 0. (5.43)

For an initial delta-function distribution function with f0 = δ(η), the eigenvalues are

Ω1 = 2ρfelkw, Ω2 = 2ρfelkw exp

(
j
2π

3

)
, Ω3 = 2ρfelkw exp

(
−j

2π

3

)
, (5.44)

where ρfel is the FEL parameter given by Eq. (5.26). There is a mode that grows
exponentially. The exponential growth-factor of the electric field |Ẽ0| and the mi-

crobunching in the electron beam distribution function is determined by the imagi-
nary part of the eigenvalues: |Im(Ω2)| =

√
3ρfelkw. The evolution of the magnitude

of electric field and power is

|E0| ∼ e|Im(Ω)|s = e
√
3ρfelkws, Power ∼ |E0|2 ∼ e2

√
3ρfelkws = es/Lg .

Lg,1D =
1

2|Im(Ω)| =
λw

4
√
3 πρfel

. (5.45)

4R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Commun., 50, 373 (1984); K.-J. Kim, Nucl.
Instru. and Methods, A250, 396 (1986); J.M. Wang and L.H. Yu, Nucl. Instru. and Methods,
A250, 484 (1986).
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where the power gain-length is defined as the e-folding distance of the electromagnetic-

field energy. The electric field gain-length is twice the power gain-length. The expo-
nential growth will eventually saturate at a saturation length about 20Lg.

The fact that the beam microbunching arises from the shot-noise and its effect

is amplified by the beam-laser interaction. This instability is called self-amplified
spontaneous emission (SASE) process.

I.3 High Gain FEL Facilities

Since 1980, experiments using high gain FEL as an amplifier have been successfully

carried out at LLNL.5 The high peak beam-current of the induction linac accelerators
is used as the amplifier from microwave to CO2 laser attaining up to 35% efficiency

with tapered undulators.

In 2000, there were many successful SASE-FEL experiments.6 These experiments
verified the exponential growth of FEL power, statistical nature of the SASE process,

and the transverse coherence of the photon beam in diffraction pattern. The high-
gain harmonic generation (HGHG) concept uses the high-gain amplifier by dividing

the undulator into a modulator, a dispersive section for electron beam-bunching, and
a radiator section for harmonic generation. The resulting coherent radiation can be

greatly enhanced at a narrower bandwidth and shorter wavelength.7

Upon the verification of the SASE-FEL and HGHG principles, many proposals

aimed to produce single pass high gain FEL from vacuum-ultra-violet (VUV) to X-
ray. In 2009, the LCLS at SLAC were successfully commissioned.8 Development of

coherent light sources is an important topic in accelerator physics research.

Exercise 5.1

1. In a planar undulator, the closed orbit and the velocity vector are given by Eqs. (4.193)
and (4.195). The interaction of the electron with the EM field becomes

dγ

ds
= −eE0(s, t)Kw

2mc2γ
sin kws

(
ej(k0s−ω0t) + c.c.

)

5See e.g. T.J. Orzechowski, p. 1840 in [14] and references therein.
6See e.g. J. Rossbach, in Proc. of Linac Conference 2002, p.582 (2002) and references therein;

M. Hogan et al., Phys. Rev. Lett., 81, 4867 (1998); S. Milton et al., Phys. Rev. Lett., 85, 988 (2000),
Science 292, 2037 (2001); J. Andruszkow et al., Phys. Rev. Lett. 85, 3825 (2000); V. Ayvazyan
et al., Phys. Rev. Lett. 88, 104802 (2002); see also G.T. More, Nucl. Instrum. Methods 239, 19
(1985); K.J. Kim, Phys. Rev. Lett., 57, 1871 (1986); S. Krinsky and L.H. Yu, Phys. Rev. A35,
3406 (1987); L.H. Yu, S. Krinsky and R. Gluckstern, Phys. Rev. Lett., 64, 3011 (1990); Z. Huang
and K.J. Kim, Nucl. Instrum. Methods A475, 59 (2001);

7L.H. Yu et al., Science 289, 932 (2000); see also S.G. Biedron, Ph.D. thesis, University of Lund
(2001).

8J.N. Galayda, Proc. of IPAC 2010, p. 11.
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≈ +
eE0(s, t)Kw

4mc2γ

(
jejψ − jejψ−2kws + c.c.

)
,

where E0(s, t) is a slow-varying amplitude of the electric field and the phase factor ψ
is defined as ψ = (kw + k0)s − ω0t.

(a) The energy exchange is maximum at the stationary phase condition: �dψ/ds� =
0. Show that the resonance condition and the equation for the phase factor ψ
are

γ2r =
λw(1 +

1
2K

2
w)

2λ
, or λr = λw

1 + 1
2K

2
w

2γ2
.

dψ

ds
= 2kwη + 2kwb cos 2kws,

where η = Δγ/γr as defined in Eq. (5.9) and the constant b = 1
4K

2
w/(1+

1
2K

2
w).

The phase factor ψ is not monotonic, it oscillates at twice the undulator wave
number. Defining the phase factor φ = ψ + b sin 2kws, show that the equation
for the phase factor φ becomes

dφ

ds
= 2kwη.

(b) Expanding the exp(−jb sin 2kws) in Bessel functions (see Sec III in Appendix B),
show that the energy equation of the electron becomes

dγ

ds
= −eE0Kw[JJ]

2mc2γr
sinφ, or

dη

ds
= −eE0Kw[JJ]

2mc2γ2r
sinφ,

where the factor [JJ] is defined as [JJ] ≡ J0(b) − J1(b) and J0(b) and J1(b) are
the Bessel functions of order 0 and 1. Note that (φ, η) forms a set of conjugate
phase-space coordinates. The spontaneous emission of electrons in an undulator
is identical to that of a helical undulator with the FEL parameter of Eq. (5.26)
replaced by

(2ρfel)
3 =

μ0n0e
2λ2

wK
2
w[JJ]

2

16π2γ3rm
.

2. With the coordinate-transformation from (s, t) to (s, φ = [kw + k0]s− ω0t+ φ0):

(
∂

∂s

)

t

=

(
∂

∂s

)

φ

+

(
∂φ

∂s

)

t

(
∂

∂φ

)

s

=

(
∂

∂s

)

φ

+ (kw + k0)

(
∂

∂φ

)

s

,

(
∂

∂t

)

s

=

(
∂φ

∂t

)

s

(
∂

∂φ

)

s

= −ω0

(
∂

∂φ

)

s

,

show that Maxwell’s equation (5.38) becomes

∂E0

∂s
+

1

c

∂E0

∂t
=

∂E0

∂s
+ kw

∂E0

∂φ
≈ ∂E0

∂s
=

(
μ0n0c

2eKw

γr

)[
1

2π

∫
dηdφ f(η, φ)sin φ

]
.
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II Beam-Beam Interaction

Coulomb force plays an important role in high brightness beams. The small-angle
intrabeam scattering causes emittance dilution. The Touschek scattering is a process
of momentum-transfer from the horizontal to longitudinal planes. The mean field of
Coulomb force is called the space charge force, which is proportional to γ−2 due to
cancellation between the electric and magnetic fields. Thus the beam brightness at
low energy is normally set by the space charge limit.

For high energy colliders, the beam-beam interaction describes the force between
two oppositely moving colliding beam bunches. The force is enhanced by the addition
of both the electric and magnetic fields. The luminosity of all colliders are limited by
the beam-beam force. This section addresses its effect on particle motion. The electric
potential Φ of a bunch can be obtained from the Poisson equation, i.e. ∇2Φ = −ρ/�0,
where ρ is the beam charge distribution. However, for simplicity, we discuss only
the Gaussian charge distribution where the electric potential can easily be obtained.
Although a real charge-distribution may not be Gaussian, results based on Gaussian
distribution quantitatively agree with most beam-beam phenomena.

II.1 The Beam-Beam Force in Round Beam Geometry

We consider head-on collisions between two Gaussian round beams of length L with
transverse charge distribution:

ρ(r) =
Ne

2πσ2
exp

[
− r2

2σ2

]
, (5.46)

where Ne =
∫
ρ(r)2πrdr is the charge per unit length, σ2 = 1

2
�r2� is the rms beam

width. The Lorentz force on a test particle due to the opposing bunch at a radius r
is �F⊥ = e( �E + �v × �B) = e(Er + βcBφ)r̂:

�F⊥ = ±γNe2(1 + β2)

4π�0r

(
1− exp

[
− r2

2σ2

])
r̂

β→1−→ ± γNe2

4π�0σ2
(xx̂+ zẑ + · · ·),

where β = v/c, γ =
√

1− β2, and ± signs correspond to the force seen by the
like/unlike charges. The kick-angle Δx� is (in linear approximation)

Δx� =

∫
Fx (ds/γ)

γmc2β2

β→1−→ ±NBr0
γσ2

x+ · · · (5.47)

where NB =
∫
Nds is the number of particles in the opposing bunch, r0 =

e2

4π�0mc2
is

the classical radius. The focal length of the beam-beam kick is 1
f
= −Δx′

x
= ∓NBr0

γσ2 .
The linear beam-beam parameter ξbb is defined as the magnitude of the linear beam-
beam tune shift:

ξbb = |Δν| =
∣∣∣∣
1

4π

β∗

f

∣∣∣∣ =
NBr0β

∗

4πγσ2
=

NBr0
4π�

N

, (5.48)
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where β∗ is the betatron amplitude function at the interaction point and �
N

is the
normalized emittance of the bunch. The beam-beam force is highly nonlinear, and
ξbb serves as the scaling factor for the nonlinear beam-beam force.

A. The beam-beam potential

The beam-beam kick can be derived from a beam-beam potential Vbb(x, z), which
is obtained by solving Poisson’s equation for a beam distribution function. For a
Gaussian beam distribution, the beam-beam potential is (see Exercise 5.2.1):

Vbb(x, z) = ∓Nr0
γ

∫ ∞

0

1− e
− x2

2σ2
x+t

− z2

2σ2
z+t

√
(2σ2

x + t)(2σ2
z + t)

dt

= ∓Nr0
γ

(
x2

σx(σx + σz)
+

z2

σz(σx + σz)

)

± Nr0
4γσ2

x(σx + σz)2

(
2 +R

3
x4 +

2

R
x2z2 +

1 + 2R

3R3
z4
)
+ · · · (5.49)

where σx and σz are the rms radii of the beam, R = σz/σx is called the round-beam
parameter. In linear approximation with x � σx and z � σz, the beam-beam kicks,
the focal lengths, and the beam-beam parameters are (see Exercise 5.2.1)

Δx� = ± 2NBr0
γσx(σx + σz)

x, Δz� = ± 2NBr0
γσz(σx + σz)

z. (5.50)

1

fx
= ∓ 2NBr0

γσx(σx + σz)
,

1

fz
= ∓ 2NBr0

γσz(σx + σz)
. (5.51)

ξx =
NBr0β

∗
x

2πγσx(σx + σz)
, ξz =

NBr0β
∗
z

2πγσz(σx + σz)
, (5.52)

The focal length is positive (focusing) for the collision of unlike-charges, and negative
(defocusing) for the collision of like-charges.

B. Dynamics betatron amplitude functions

At ξbb ∼ 0.05, the focal length |fbb| ∼ β∗ is usually small and the beam-beam
force is strong. Thus the linear lattice is also strongly perturbed by the beam-beam
interaction. The one-turn map, including a thin-lens beam-beam kick, is

M =

(
cos Φ0 + α∗

0 sin Φ0 β∗
0 sin Φ0

−γ∗
0 sin Φ0 cosΦ0 − α∗

0 sinΦ0

)(
1 0
− 1

f
1

)
, (5.53)

where β∗
0 , α

∗
0, and γ∗

0 are the values of the unperturbed betatron amplitude function
at IP, Φ0 is the unperturbed betatron phase advance in one revolution. Identifying
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the one-turn map M with Courant-Snyder parametrization, we obtain

cosΦ = cosΦ0 − β∗
0

2f
sinΦ0 = cosΦ0 ∓ 2πξbb sinΦ0, (5.54)

β∗

β∗
0

=
sin Φ0

sinΦ
≈ 1∓ 2πξbb cot Φ0, (5.55)

where β∗ is the value of the perturbed betatron amplitude function at IP, Φ is the
perturbed betatron phase advance in one turn. The betatron tune-shift due to the
beam-beam interaction is ΔQ = (Φ− Φ0)/(2π) ≈ ±ξbb, and the betatron amplitude
function is dynamically modified. The tune-shift can cause betatron tunes to overlap
with betatron resonances. This can result in emittance blow-up, beam halo, and
beam loss. The mismatched betatron amplitude-function can induce lattice-function
modulation (β-beat) if the resulting betatron tune is near a half-integer stopband.

The linear stability condition for the betatron motion is

|cosΦ0 ∓ 2πξbb sin Φ0| ≤ 1 =⇒ ξbb ≤ 1

2π
cot

Φ0

2
, or ξbb ≤ 1

2π
tan

Φ0

2
. (5.56)

The shaded area in Fig. 5.5 shows the stable region of the beam-beam parameter.
Experimentally, the measured beam-beam tune parameters are about 0.05 for e+e−

colliders and 0.03 for hadron colliders. The actual beam-beam parameter may be
limited by the effects of nonlinearity in the beam-beam interaction, noises, time-
dependent tune modulation, and nonlinear magnetic fields in the storage ring.

Figure 5.5: The shaded area corre-
sponds to stable condition of Eq. (5.56),
where ν0 is the fractional part of the
bare betatron tune Φ0/(2π). The left
plot is for the e+e− or pp̄ colliders, and
the right plot is for colliders with like-
charges. The actual achieved beam-
beam parameters, shown as various sym-
bols, are smaller than that of the linear
stability limit. The coherent beam-beam
limit is shown as the dashed line.

C. Disruption factor

The disruption factor, defined as the ratio of the bunch length to the focal length of
the beam-beam interaction,

D =
σs

f
=

Nr0σs

γσ2
= 4πξbb

σs

β∗ , (5.57)
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is commonly used to gauge the strength of beam-beam interaction in linear colliders.
If the disruption factor is larger than 1, the beam particles are focused toward or
defocused away from each other within the bunch length. For colliders with β∗ ≈ σs

and ξbb ≈ 0.05 at a single IP, we find D ≈ 0.63, If this beam-beam tune shift is
produced by a single interaction point, the focal length of beam-beam interaction is
about f ≈ 2β∗. For e+e− linear colliders, D can be much larger than 1 in order to
achieve luminosity enhancement (pinch effect).

II.2 The Coherent Beam-Beam Effects

For two beams with similar intensity, if one beam is slightly displaced with respect to
the other, coherent oscillations can be induced, which may lead to unstable motion.9

We consider two counter circulating bunches, specified by indices 1 and 2 respectively.
The center of mass motion relative to each other is

y�1 = − g

f1
(y1 − y2), y�2 =

g

f2
(y1 − y2), (5.58)

where g is the geometric overlapping factor that depends on the transverse distribu-
tions of two beams. In rigid beam approximation, the c.m. linear betatron motion
(closed orbit) of the two beams is obtained from the one turn transfer matrix. The
transfer matrix in the normalized coordinates becomes (see Exercise 5.2.4)

M =

⎛
⎜⎜⎝

cosΦ1 sin Φ1 0 0
− sinΦ1 cosΦ1 0 0

0 0 cosΦ2 sinΦ2

0 0 − sinΦ2 cos Φ2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
−4πgξ1 1 4πgξ1 0

0 0 1 0
4πgξ2 0 −4πgξ2 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

cosΦ1 − 4πgξ1 sinΦ1 sinΦ1 4πgξ1 sin Φ1 0
− sinΦ1 − 4πgξ1 cosΦ1 cos Φ1 4πgξ1 cosΦ1 0

4πgξ2 sinΦ2 0 cosΦ2 − 4πgξ2 sinΦ2 sinΦ2

4πgξ2 cosΦ2 0 − sin Φ2 − 4πgξ2 cosΦ2 cos Φ2

⎞
⎟⎟⎠ .

The stability of the system is determined by the eigenvalue of the transfer matrix M,
i.e. |λ − M| = 0. Consider a simple example of two beams with identical intensity
and betatron amplitude functions with ξbb = ξ1 = ξ2 and Φ0 = Φ1 = Φ2. Two of four
eigenvalues are given by

λσ = cosΦ0 ± j sinΦ0, (5.59)

i.e., the same eigenvalues as the original unperturbed system. This is identified as
the σ-mode, where two beams oscillate in-phase with each other, and produce no
coherent beam-beam effect on betatron motion.

The eigenvalues of π-mode are solutions of the equation:

λ2
π − 2(cosΦ0 − 4πgξbb sin Φ0)λπ + 1 = 0, (5.60)

9A. Piwinski, Proc. 8th Int. Conf. on High Energy Accelerators, p. 357 (1971).
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where two beams oscillate out of phase. In small linear beam-beam parameter approx-
imation, the coherent tune shift is ΔQ = 2gξbb. For rigid Gaussian distribution, the
coherent beam-beam tune-shift factor is 2g =

√
2. Yokoya et al. carried out careful

analysis of coherent motion using Vlasov equation and found that the Yokoya-factor
is about 2g ≈ 1.21 ∼ 1.33. Experimental observations show that the Chao-Yokoya
factor agreed well with Yokoya’s analysis.10 The stability condition is

| cosΦ0 − 4πgξbb sinΦ0| ≤ 1, or ξbb ≤ 1

4πg
cot

Φ0

2
. (5.61)

This condition is more stringent than that of Eq. (5.56) by a factor 1/(2g), shown as
dashed line in Fig. 5.5.

II.3 Nonlinear Beam-Beam Effects

With beam beam interaction, the effective particle Hamiltonian in impulse approxi-
mation is

H =
1

2
(x�2 +Kxx

2) +
1

2
(z�2 +Kzz

2) + Vbb(x, z)δ(s), (5.62)

which is highly nonlinear. The integrated beam-beam potential Vbb(x, z) of Eq. (5.49)
is represented by point interaction, which is rich in perturbing harmonics. As an
example, we consider the nonlinear octupole-like beam-beam force for a round beam:

Δx� = − πξbb
β∗σ2

(x3 + xz2). (5.63)

This octupole-like nonlinear beam-beam force differs from a regular octupole pole
magnetic force shown in Eq. (2.19), and is difficult to be compensated by octupole
magnets. Even if we were using an octupole to compensate the x3 nonlinearity, the
required octupole strength, B3� =

πξbb
β∗σ2Bρ, is very very large.

Using the Floquet transformation of Eq. (2.55) and the orbital angle θ = s/R as
the time coordinate, we obtain

H̃ = νxJx + νzJz + U(Jx, Jz, ψx, ψz; θ),

U =
1

2π

∑
Km,n(Jx, Jz)e

−j(mψx+nψz−�θ)

Km,n =
Nr0

(2π)2γ

∫ ∫
dφxdφzdt

1− exp{−βxJx cos2 φx

2σ2
x+t

− βzJz cos2 φz

2σ2
z+t

}√
(2σ2

x + t)(2σ2
z + t)

ej(mφx+nφz),

10A. Chao, Beam-beam Instability, in AIP Conference Proceedings #127, Physics of High Energy
Accelerators, p. 202 (AIP, NY, 1983); K. Yokoya et al., KEK Preprint 89-14 (1989); K. Yokoya and
H. Koiso, Particle Accelerators 27, 181 (1990); W. Fischer et al., Proceedings of PAC2003, p. 135
(2003); J.T. Seeman, Luminosity and beam-beam interactions, in AIP Proceedings #592, p. 163
(AIP, NY, 2001).
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where we have assumed transverse Gaussian beam distribution. If the beam distribu-
tion is symmetric in x and z, we find only even order resonances, i.e., m and n must
be even. Using the generating functions for the Bessel functions listed in Sec. III
Appendix B, we obtain the detuning term:

K0,0 =
Nr0
γ

∫
dt

Z0(
βxJx
2σ2

x+t
)Z0(

βzJz
2σ2

z+t
)√

(2σ2
x + t)(2σ2

z + t)
; Z0(a) = e−aI0(a). (5.64)

The Hamiltonian becomes

H̃ = νxJx + νzJz +K0,0(Jx, Jz) +
1

2π

∑
m,n �=0

Km,n(Jx, Jz)e
−j(mψx+nψz−�θ). (5.65)

The beam-beam interaction creates an amplitude dependent betatron tune through
K0,0, and produces nonlinear resonances at mνx + nνz = �, where m and n are even-
integers for head on collisions. If two beams are colliding off-axis, or with an angle, the
odd order resonances appear. The strengths of these resonances are usually strong.
Similar to what we have discussed in Sec. VII in Chapter 2, nonlinear resonances can
profoundly influence the beam distribution function in phase-space, reduce beam life-
time, and cause beam loss. When higher order resonances are important, the available
resonance-free-tune space becomes very small as shown in Fig. 2.57 in Chap. 2.

II.4 Experimental Observations and Numerical Simulations

In 1960-1990, the e+e− colliders have played an important role in the discovery and
exploration of elementary particle physics, such as J/Ψ, Υ, etc. Because e+ and e−

particles have opposite charges, e+e− beams can sometimes be confined in a single
storage ring. Some of e+e− colliders were the SPEAR, PEP, and SLC at SLAC,
DORIS and PETRA at DESY, CESR at Cornell, BEPC in China, VEPP-4M in
Novosibirsk, TRISTAN at KEK, and LEP at CERN.

In the 1990’s, the LEP and SLC have provided careful tests of the electro-weak
theory of the standard model. In 2000’s, particle factories (the B-factories: PEP-II
and KEKB the DAΦNE at Frascati, and the tau-charm factory at BEPC in China)
further our understanding of the fundamental symmetry in the force of nature. The
luminosity of all high energy colliders is limited by the beam-beam interaction. There
are many experiments, numerical simulations, methods of compensation, and work-
shops conducted on this subject.

We consider two interacting beams with identical intensity. The luminosity for a
head-on collision is

L =
BN1N2f0
2πΣxΣz

(N1=N2, σy1=σy2)−−−−−−−−−−−→ N2
Bfcoll

4πσxσz
=

(I/e)2

4πσxσzfcoll
, (5.66)

where N1 andN2 are numbers of particles in counter-moving bunches, B is the number
of bunches, f0 is the revolution frequency, fcoll = Bf0 is the bunch collision frequency,
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Σx and Σz are effective transverse rms beam widths of these colliding bunches at the
interaction point (IP) with Σ2

x = σ2
x1 + σ2

x2 and Σ2
z = σ2

z1 + σ2
z2. Here, σx1, σz1

and σx2, σz2 are the rms horizontal and vertical beam widths of two interacting beam
bunches. When the colliding bunches have equal number of particles with NB = N1 =
N2 and equal transverse beam widths (σx1 = σx2, σz1 = σz2), the luminosity formula
is further reduced as shown in the right-side of Eq. (5.66), where I/e = NBfcoll is the
particle current, 4πσxσz is the effective cross-section area of the beam at the IP:

σ2
x = β∗

x�x +

(
D∗

x

Δp

p0

)2

, σ2
z = β∗

z �z +

(
D∗

z

Δp

p0

)2

. (5.67)

Here �x,z are the horizontal and the vertical rms emittances, β∗
x,z and D∗

x,z are the
values of the horizontal and vertical betatron and dispersion functions at IP. Normally,
the collider lattice is designed such that D∗

z = 0 and D∗
x = 0 in order to maximize

the luminosity. Table 5.1 lists parameters of some high luminosity e+e− colliders.

Table 5.1: Parameter-list of high luminosity e+e− colliders

KEKB PEP2 BEPC DAΦNE LEP
E (GeV) 3.5 8 3.12 8.97 1.55 0.511 98
C (m) 3016.3 2199.318 240.4 97.69 26659
ρ (m) 16.3 104.5 13.75 165 10.35 1.4 3096.2
τdamping (ms) 43 46 63 37 44 36 6.5
�x (nm) 18 24 40 49 390 160 45
�z (nm) 0.36 0.36 4 2 3.9 1.4 0.1
θx (mrad) 11 11 0 0 0 25 0
β∗
x (cm) 59 63 50 50 120 25 150

β∗
z (cm) 0.7 0.7 1.25 1.25 5 0.9 5

σ� (mm) 7 7 13 13 45 30 13
Nb (10

10) 7.3 5.4 9.9 5.3 21.6 8.9 43
B 1284 1284 1658 1658 1 45 4
ξx 0.097 0.074 0.065 0.075 0.04 0.03 0.021
ξz 0.066 0.05 0.048 0.06 0.04 0.042 0.083
L (1030) 19000 9200 15 436 100

Because of the importance of the beam-beam interaction, many numerical simu-
lations and experimental studies have been conducted to understand the underlying
beam-beam physics. Two theoretical models are (1) weak-strong (incoherent) beam-
beam model and (2) strong-strong (coherent) beam-beam model. In the incoherent or
the weak-strong model, a test particle interacts with the mean field produced by the
counter rotating beam bunch. The stability of the test particle depends essentially on
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the single particle dynamics. In the coherent beam-beam model, beam stability and
bunch shape deformation are dynamically excited by coherent mode interactions. In
both models, the linear beam-beam parameters ξx and ξz of Eq. (5.52) serve as scaling
strength-parameters for beam-beam interaction.

Past experiments show that the luminosity of colliders is determined mainly by the
beam-beam interaction. Although the horizontal emittance of electron storage rings is
much larger than the vertical emittance, the beam-beam parameters ξz and ξx can be
made equal by setting β∗

x/�x � β∗
z/�z. Figure 5.6 shows the typical beam-beam param-

eter ξz achieved for some e+e−-colliders: DAΦNE, VEPP2M, DCI, ADONE, SPEAR,
BEPC, CESR, PEP, KEKB, PEP2, PETRA, HERA, TRISTAN, and LEP.11 The en-
ergy dependence of the beam-beam parameter is not obvious. Typical value achieved
is about 0.05-0.08 for e+e−-colliders and about 0.005-0.025 for hadron-colliders. The
curves on the right plot correspond to ξ0+(ξLEP−ξ0)(λdamping/λLEP)

a, where λdamping

is the damping decrement, λLEP is the damping decrement for LEP at 102.7 GeV,
ξ0 = 0.025, ξLEP = 0.115 and a = 0.175 (solid) and 0.35 (dashes) respectively. The
dependence of the beam-beam parameters on the damping decrement has not been
fully established. There is no theoretical basis for these curves.

Figure 5.6: Left: A compilation of
the achieved linear beam-beam pa-
rameter ξz vs. the beam-energy of
e+e− colliders. Right: The same data
plotted vs the transverse damping-
decrement.

In e+e− colliders, we have σx � σz and thus ξz > ξx. One expresses the luminosity
in terms of ξz as

L =
γ(I/e)ξz
2reβ∗

z

(1 +
σz

σx
) =

γ2Bfπ

r2e
ξ2z
σzσx

β∗2
z

(1 +
σz

σx
)2. (5.68)

If ξz is the limiting factor for colliders, the luminosity is increased by increasing the
beam intensity and beam emittance while maintaining a constant ξz. For a constant
ξz, the luminosity can be increased by decreasing β∗

z value at the IP, increasing σz,
or increasing the number of bunches B.12 However, the maximum luminosity occurs

11See e.g. J. Seeman, Observation of the Beam-Beam Interaction, in Lecture Notes in Physics
#247, p. 121 (Springer-Verlag, Berlin, 1985); R. Assmann and K. Cornelis, Proceedings of
EPAC2000, p. 1187 (EPAC, 2000).

12If the counter rotating e+e− beams are stored in the same storage ring, these two counter-
rotating beams should be separated by orbit separation schemes to minimize the long-range beam-
beam tune shift.
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when β∗
z � σs.

If β∗
z < σs, the hourglass effect becomes important and the effective luminosity

decreases. This arises from the fact that the betatron amplitude function in the
interaction region is given by βz(s) = β∗

z + s2/β∗
z , where s is the distance away

from the IP (see Exercise 2.2.17). Since the betatron amplitude function within the
bunch length increases, the effective cross-sectional area of the beam increase and the
effective emittance is reduced. The luminosity reduction factor for the flat beam and
the round beam are respectively

L =

⎧⎨
⎩

L0

�
Az

π
exp(

A2
z

2
)K0(

A2
z

2
) flat beam with Az = β∗

z/σs

L0 ×
√
π exp(A2) erfc(A) round beam with A = β∗/σs

where L0 is the luminosity for zero bunch length, K0(A
2
z/2) is the zeroth order modi-

fied Bessel function, erfc(A)=1-erf(A) is the error function, and Az and A are lattice
variation parameters.

If e+ and e− beams are of the same energy, the counter-circulating e+ and e−

beams can be stored in a single storage ring. The number of bunches is limited
by avoiding un-wanted beam-beam interactions other than the interaction points
for physics experiments. Electrostatic separators are installed in these colliders to
separate these counter-circulating beams, called pretzel scheme for achieving separate
closed orbits for these two beams. In order to produce high luminosity in B-meson
(KEKB and PEPII), Φ-meson (DAΦNE), and τ -charm (BEPC) factories, two storage
rings crossing only at an interaction area are used for multi-bunch operation. Since
the luminosity of e+e− colliders is usually limited by the beam-beam parameter, the
design strategy differs from that of synchrotron radiation sources, where the emittance
is minimized to maximize the beam brightness.

For hadron colliders, the pp̄ colliders (TEVATRON or Spp̄S) have used one ring
strategy to minimize construction cost. These colliders have also been limited by the
beam-beam interaction. In order to avoid un-wanted beam-beam interaction, elec-
trostatic beam separators are installed in the storage ring for multi-bunch operation.
Proton-proton and heavy ion colliders require two independent rings for counter-
circulating beams to collide at a few interaction points. In this case, the parasitic
long-range beam-beam interactions at the interaction area can also set limit on the
number of bunches in the ring.

Because of the importance of this subject, there have been many workshops de-
voted to this subjects. For related and current topics on this subject, the proceedings
of these workshops are handy.13

13See e.g. Lecture Notes in Physics 247, Nonlinear Dynamics Aspects of Particle Accelerators
(Springer-Verlag, NY, 1985); Proceedings of the ICFA Beam Dynamics Workshop on Beam-Beam
Effects in Circular Colliders, (Novosibirsk, 1989); AIP Conf. Proc. 693, (AIP, New York, 2003).
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II.5 Beam-Beam Interaction in Linear Colliders

The beam-beam interactions in linear collider at TeV energies are usually charac-
terized by disruption factors Dx and Dz, disruption deflection angle θ0 for colliding
particles, and the beamstrahlung parameter Υ for pair production through beam-
strahlung.

In linear approximation, the effect of beam-beam interaction is characterized by
the focal length fx and fz in Eq. (5.51). The disruption deflection angle for a particle
at 1σ amplitude is

θ0 =
σx

fx
=

σx

fz
=

2NBr0
γ(σx + σz)

, (5.69)

and the disruption factors Dx and Dz are defined as

Dx,z =
2NBr0σs

γσx,z(σx + σz)
=

σs

fx,z
=

ξx,z
Ax,z

, (5.70)

where ξx,z are the linear beam-beam tune shift parameter, Ax,z = βx,z

σs
is the lattice

variation parameter at the interaction point.
Defining the normalized coordinates:14

X =
x

σx

; Z =
z

σz

; S =
s

σs

,

we find linearized equations of motion within the bunch crossing as

d2X

dS2
= −DxX;

d2Z

dS2
= −DzZ.

The solution is sinusoidal. In the range of opposing bunch, S ∈ (−1, 1), the number
of oscillation is n =

√D/π or D = π2n2. These oscillations can also be viewed as
plasma oscillation with

ωpΔt = ωp

√
2πσs

c
= 2πn = 2

√
D, or D =

√
π

2

σ2
sω

2
p

c2
=

√
π

2
(
2πσs

λp
)2.

Note that the disruption parameter is proportional to the number of plasma oscil-
lations within the bunch length. Another quantity of interest is the Debye length,
λD, defined as the transverse amplitude of the plasma oscillation. The time for the
maximum amplitude is about 1

4
Tp. Define the emittance as � = πσx

√�v2⊥�/c, one
obtains

λD =
1

4

√
�v2⊥�Tp =

2π

4

√�v2⊥�
ωp

, or
λD

σx
= (

π

2
)1/4

σs

2β∗√D = (
π

2
)1/4

1

2A
√D .

14R. Hollebeck, NIM 184, 333 (1981); AIP Proc. 184, 680 (1988).
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The Debye length is normally less than the bunch width for a reasonable machine
parameter A. Particle motion in the e+e− linear collider is trapped in the bunch
during the collision.

When the disruption factor is large, the number of particle oscillation within the
opposing bunch may be large. As the disruption factor increases, the luminosity can
be enhanced by the pinch effect, i.e. L = L0 ×HD where HD is a function of Dx, Dz,
Ax, and Az. The luminosity enhancement for a nearly round SLC beams was found
to be about 2.15

The strong beam-beam interaction in e+e− colliders at TeV energies can cause
beam particles to lose substantial amount of their energy to synchrotron radiation.
The quantity is characterized by the beamstrahlung parameter:

Υ =
2

3

�ωc

E
=

�γ2

mcρ
= γ

2B

Bc

, (5.71)

where B is the magnetic field produced by the colliding bunches, the factor 2 takes into
account the contributions both the electric and magnetic fields, andBc = m2c2/(e�) ≈
4.4× 109 T is the Schwinger critical field. Averaging the induced magnetic field over
the beam distribution, the average beamstrahlung parameter is

�Υ� ≈ 5

12π

NBr0λcγ

σs(σx + σz)
=

5

24π

γ2Dzλcσz

σ2
s

, (5.72)

where λc = h/mc is the Compton wavelength. When the beamstrahlung parameter
�Υ� becomes large, quantum-electrodynamics processes are important in the beam-
beam interaction. The beamstrahlung parameter is about 10−3 for the SLC, and
about 0.1 for the ILC design. These topics are actively researched in the quest of
linear collider design studies.16

Exercise 5.2

1. Follow the following steps to derive the beam-beam interaction potential for a beam
with N particles per unit length with Gaussian charge density:

ρ(x, z) =
Ne

2πσxσz
exp{− x2

2σ2
x

− z2

2σ2
z

},

(a) Show that the Fourier transform of the Poisson equation of the ∇2Φ = − ρ
�0
,

where ρ is the charge distribution, and �0 is the vacuum permittivity, for the

15T. Barklow et al., Proc. of PAC1999, p. 307 (IEEE, 1999).
16See K. Yokoya, in High Quality Beams, AIP Proceedings 592, p. 185 (AIP, N.Y. 2001); D.

Schulte, Proc. of PAC1999, p. 1688 (IEEE, 1999); P. Chen, in Handbook of Accelerator Physics and
Engineering, edited by A. Chao and M. Tigner, p. 140 (World Scientific, Singapore, 1999).
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electrostatic potential Φ of a beam is

(k2x + k2z)Φ̃(kx, kz) =
1

�0
ρ̃(kx, kz),

Φ̃ =
1

4π2

∫
Φ(x, z)eikxx+ikzzdxdz, ρ̃ =

1

4π2

∫
ρ(x, z)eikxx+ikzzdxdz.

For a Gaussian beam distribution, show that

ρ̃ =
Ne

4π2
e−

1
2
σ2
xk

2
x− 1

2
σ2
zk

2
z , Φ̃ =

Ne

4π2�0

1

k2x + k2z
e−

1
2
σ2
xk

2
x− 1

2
σ2
zk

2
z .

(b) Show that the electrostatic potential Φ is17

Φ(x, z) =
Ne

4π�0

∫ ∞

0

−1 + exp{− x2

2σ2
x+t − z2

2σ2
z+t}√

(2σ2
x + t)(2σ2

z + t)
dt,

where the singularity at x = z = 0 is removed by the addition of the −1 term
in the numerator of the integrand.

(c) Show that the beam-beam kick at β ≈ 1 is (see Sec. II.1)

Δx� = −∂V

∂x
, Δz� = −∂V

∂z
, V (x, z) =

Nr0
γ

∫ ∞

0

1− exp{− x2

2σ2
x+t − z2

2σ2
z+t}√

(2σ2
x + t)(2σ2

z + t)
dt

(d) For small amplitude particle motion with x � σx, z � σz, show that18

Δx� =
2Nr0

γσx(σx + σz)
x, Δz� =

2Nr0
γσz(σx + σz)

z

(e) In many electron storage rings, we have σx � σz. Now we define

r =
σz
σx

, a =
x√

2(σ2
x − σ2

z)
, b =

z√
2(σ2

x − σ2
z)
, s2 =

2σ2
z + t

2σ2
x + t

,

show that

V =
2Nr0
γ

∫ 1

r

1

1− s2

(
1− exp

[
−a2(1− s2)− b2

(
1

s2
− 1

)])
ds.

(f) Show that the beam-beam kick is19

Δx� − jΔz� = − 4Nr0

γ
√

2(σ2
x − σ2

z)
e−(a+jb)2

∫ a+jb

ar+j b
r

eζ
2
dζ

17S. Kheifeit, “Potential of a three dimensional Gauss-bunch”, PETRA Note 119 (1976). Note
that

1

k2x + k2z
=

1

4

∫ ∞

0

e−
1
4 t(k

2
x+k2

z)dt.

18Change the dummy variable to s2 = (2σ2
z + t)/(2σ2

x + t).
19Hint: change the dummy variable to ζ = as+ ib/s with (r < s < 1).
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(g) Using the complex error function [30] of Sec. III.3 in Appendix B, show that20

Δx� − jΔz� = j
2Nr0

√
π

γ
√

2(σ2
x − σ2

z)

[
w(a+ jb)− e−(a+jb)2+(ar+j b

r
)2w(ar + j

b

r
)

]

or

Δx� = − 2Nr0
√
π

γ
√

2(σ2
x − σ2

z)
Im

[
w(

x+ iz√
2(σ2

x − σ2
z)
)− e

− x2

2σ2
x
− z2

2σ2
z w(

xσz
σx

+ iz σx
σz√

2(σ2
x − σ2

z)
)

]

Δz� = − 2Nr0
√
π

γ
√

2(σ2
x − σ2

z)
Re

[
w(

x+ iz√
2(σ2

x − σ2
z)
)− e

− x2

2σ2
x
− z2

2σ2
z w(

xσz
σx

+ iz σx
σz√

2(σ2
x − σ2

z)
)

]

2. Using Eq. (5.65), show that [See A. Chao, AIP127, 202 (1979)]

Δνx =
ξ(1 + 1

r )

2

∫ ∞

0

du

(1 + u)3/2(1 + u
r2
)1/2

Z1(
βxJx/σ

2
x

1 + u
)Z0(

βzJz/σ
2
z

1 + u
r2

)

Δνz =
ξ(1 + r)

2

∫ ∞

0

du

(1 + u)3/2(1 + r2u)1/2
Z1(

βxJx/σ
2
x

1 + ur2
)Z0(

βzJz/σ
2
z

1 + u
)

with r = σz
σx
, Z0(x) = e−xI0(x) and Z1(x) = e−x[I0(x)− I1(x)].

3. Using the normalized phase-space coordinates Y=y/
√

β∗
0 and PY =(α∗

0y+β∗
0y

�)/
√

β∗
0 ,

show that the one-turn transfer matrix M of Eq. (5.53) becomes

M =

(
cos Φ0 sinΦ0

− sinΦ0 cos Φ0

)(
1 0

−4πξ 1

)
,

where ξ = β∗
0/(4πf) is the linear beam-beam tune-shift parameter.

20Numerical calculation of beam-beam interaction by using the complex error functions in CERN
library is considerably more accurate and faster than that obtained from the numerical integration.
The derivation of this homework problem was due to M. Bassetti, and G.A. Erskine, CERN-ISR-
TH/80-06 (1980).



Appendix A

Classical Mechanics and Analysis

I Hamiltonian Dynamics

I.1 Canonical Transformations

Based on the variational principle of the Lagrangian, δ
∫
Ldt = 0, particle motion

obeys Lagrange’s equation:

dpi
dt

− ∂L

∂qi
= 0, pi ≡ ∂L

∂q̇i
, (A.1)

where the Lagrangian is a function of the coordinate (qi, q̇i). Hereafter the subscripts
of the phase-space coordinates are omitted when there is no ambiguity. The Hamil-
tonian and Hamilton’s equation of motion are

H(q, p, t) =
∑
i

q̇ipi − L(q, q̇, t), (A.2)

dp

dt
= −∂H

∂q
,

dq

dt
=

∂H

∂p
;

∂H

∂t
= −∂L

∂t
. (A.3)

Hamilton’s equation of motion is derived from the variational principle of the
Lagrangian. The conjugate variables (q, p) of the coordinates and momenta can be
transformed to another set (Q,P ) by a total differential (contact transformation) with
a generating function. Four forms of generating functions are F1(q, Q, t), F2(q, P, t),
F3(p,Q, t) and F4(p, P, t). The corresponding canonical transformations are

G = F1(q, Q, t) : p =
∂F1

∂q
, P = −∂F1

∂Q
; H(Q,P, t) = H(q, p, t) +

∂F1

∂t
; (A.4)

G = F2(q, P, t) : p =
∂F2

∂q
, Q =

∂F2

∂P
; H(Q,P, t) = H(q, p, t) +

∂F2

∂t
; (A.5)

G = F3(p,Q, t) : q = −∂F3

∂p
, P = −∂F3

∂Q
; H(Q,P, t) = H(q, p, t) +

∂F3

∂t
; (A.6)

G = F4(p, P, t) : q = −∂F4

∂p
, Q =

∂F4

∂P
; H(Q,P, t) = H(q, p, t) +

∂F4

∂t
. (A.7)
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I.2 Fixed Points

Fixed points of Hamiltonian flow are phase space points where both q̇ = 0 and ṗ = 0.
Thus the velocity field at fixed point is zero. Fixed points are classified into stable
fixed points (SFPs) and unstable fixed points (UFPs). Near the SFP, the Hamiltonian
flow resembles elliptical motion, and it is also called elliptical fixed point. Near the
UFP, the Hamiltonian flow is hyperbolic, thus it is also called hyperbolic fixed point.

The fixed points are important in the Hamiltonian dynamics, because they de-
termine the topology of Hamiltonian flow in the phase space. The Hamiltonian flow
(torus) that pass through the UFP is called the separatrix, which separates the Hamil-
tonian flow into stable and unstable regions.

I.3 Poisson Bracket

The Poisson bracket of two functions, u(q, p), v(q, p) of the phase-space coordinates
is defined as

[u, v] =
∑
i

(
∂u

∂qi

∂v

∂pi
− ∂v

∂qi

∂u

∂pi
). (A.8)

By definition, we have [qi, qj] = 0; [qi, pj] = δij; [pi, pj] = 0. From the definition, the
Poisson brackets satisfy the following properties:

• anti-commutative : [u, v] = −[v, u];

• Jacobi’s identity : [[u, v], w] + [[v, w], u] + [[w, u], v] = 0.

Using the Poisson bracket, we can express Hamilton’s equation and the time
derivative of an arbitrary function F (q, p, t) as

dq

dt
= [q,H ],

dp

dt
= [p,H ];

dF

dt
= [F,H ] +

∂F

∂t
. (A.9)

If the Poisson bracket [F,H ] = 0 and F is not an explicit function of time, then F
is a constant of motion. Clearly, if the Hamiltonian H is not an explicit function of
time, then H is a constant of motion. If H is independent of coordinate qi then the
conjugate momentum pi is a constant of motion. This can be observed easily from
the Hamilton’s equation. If a canonical transformation can be found that transforms
all momenta to constants, the complete solution can be obtained through inverse
transformation. Some examples of Hamiltonian systems are given in this section.

I.4 Liouville Theorem

Let H(t, q1, · · · , qN , p1, · · · , pN) be the Hamiltonian of an isolated dynamical system,
where t is the time coordinate, and (q1, · · · , qN , p1, · · · , pN) are the generalized phase-
space coordinates with

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (A.10)
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Let ρ(q1, · · · , qN , p1, · · · , pN) be the density function, and ρdτ be the number of the
system within phase-space volume dτ =

∏
dqi

∏
dpi. The rate of increasing phase-

space points inside volume V and the rate of phase-space points flowing out of the
volume are respectively

∂

∂t

∫

V

ρdτ and

∫
ρ(�v · �n)dσ,

where �v is the vector field of the Hamiltonian flow, �n is the normal vector on the sur-
face of the volume V , and dσ is the surface integral differential. For a non-dissipative
Hamiltonian system with no source and sink, we obtain the continuity equation with
Gauss’s theorem:

∂ρ

∂t
+∇ · (ρ�v) = 0, ⇐=

∫
ρ(�v · �n)dσ =

∫

V

∇ · (ρ�v)dτ. (A.11)

Using Hamilton’s equation, Eq. (A.10), we get the equation of continuity

dρ

dt
=

∂ρ

∂t
+
∑
i

q̇i
∂ρ

∂qi
+
∑
i

ṗi
∂ρ

∂pi
= 0. (A.12)

This is called the Liouville theorem.

I.5 Floquet Theorem

We consider the linear Hill’s equation of motion y′′ +K(s)y = 0,where y and y′ are
conjugate phase space coordinates, K(s) is the focusing function, and the prime is the
derivative with respect to the independent variable s. In particle accelerators, K(s)
is a periodic function of s with period L, i.e. K(s + L) = K(s). It is advantageous
to make the Floquet transformation and express the solution in amplitude and phase
functions. The Floquet theorem states that the amplitude and phase functions satisfy
a periodic periodic boundary condition similar to that of the potential function K(s),
i.e.

y(s) = w(s)ejψ(s), w(s) = w(s+ L), ψ(s+ L)− ψ(s) = 2πμ, (A.13)

where the phase advance μ in one period is independent of s. Although the periodic
boundary condition is not necessary, it would simplify the solution of the differential
condition. Using the Floquet transformation, we get the differential equation

2w′ψ′ + wψ′′ = 0, ψ′ =
1

w2
, ψ =

∫ s

s0

dt

w2
, (A.14)

w′′ +K(s)w − wψ′2 = 0 , w′′ +K(s)w − 1

w3
= 0, (A.15)
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where we have chosen a normalization for the amplitude function in Eq. (A.14). By
defining Y = w2, we obtain

d3Y

ds3
+ 4K

dY

ds
+ 2

dK

ds
Y = 0.

The amplitude function can be solved easily for some special function K. The second
order differential equation has two independent solutions y1 = wejψ and y2 = we−jψ.
It is easy to verify that the Wronskian W = y1y

�
2 − y�1y2 is invariant. The solution y

of Hill’s equation is a linear combination of y1 and y2; it satisfies the Courant-Snyder
invariant,

� = w−2y2 + (w�y − y�w)2, (A.16)

where π� is the phase-space area enclosed by the ellipse of particle motion.

II Stochastic Beam Dynamics

Electrons in storage rings emit synchrotron radiation, which is a quantum process.
Since the photon emission is discrete and random, the quantum process causes also
diffusion and excitation. The balance between damping and excitation provides a
natural emittance or beam size for the electron beam bunch in a storage ring. Because
the synchrotron radiation spectrum depends weakly on the energy of photons up to
the critical frequency, the emission of photons can be approximated by white noise,
i.e. electrons are acted on by a Langevin force. For random noise, an important
theorem is the central limit theorem discussed below.

II.1 Central Limit Theorem

If the probability P (u) of each quantum emission is statistically independent, and the
probability function falls off rapidly as |u| → ∞, then the probability distribution
function for the emission of n photons is a Gaussian,

Pn(w) =
1√
2πσn

e−(w−wn)2/2σ2
n , (A.17)

wn = n�u�, �u� =
∫

uP (u)du, σ2
n = nσ2

u, σ2
u =

∫
(u− �u�)2P (u)du.

The theorem is important in all branches of information science. We provide a
mathematically non-rigorous proof as follows. Since the quantum emission is statis-
tically independent, the probability of n photons being emitted is

P (u1)du1P (u2)du2 · · ·P (un)dun.
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Thus we have

Pn(w) =

∫ ∫ ∫
P (u1)P (u2) · · ·P (un)δ(w −

n∑
i=1

ui)du1du2 · · · dun. (A.18)

Using the identity

δ(w −
n∑

i=1

ui) =
1

2π

∫ ∞

−∞
ejk(w−∑

ui), (A.19)

we obtain

Pn(w) =
1

2π

∫ ∞

−∞
e−jkw [Q(k)]n , (A.20)

Q(k) =

∫ ∞

−∞
duejkuP (u) ≈ 1 + jk�u� − 1

2
�u2�k2 + · · · . (A.21)

Since Q(k) is small for large k, we can expand it in power series shown in Eq. (A.21).
Substituting into Eq. (A.20) and using the formula ln(1 + y) = y − 1

2
y2 + · · ·, we

obtain

Pn(w) =
1

2π

∫ ∞

−∞
e−j(kw+n ln [Q(k)])dk =

1√
2πσn

e−(w−wn)2/2σ2
n , (A.22)

where ωn and σn are given in Eq. (A.17), which is called the Einstein relation in
the random walk problem. This result indicates that the distribution function is
Gaussian, and the square of the rms width increases linearly with the number of
photons emitted. The balance between diffusion and phase-space damping gives rise
to an equilibrium beam width.

II.2 Langevin Equation of Motion

We consider a 1D noisy damping dynamical system: H0 =
1
2
p2+U(x). In the presence

of damping and white noise, the unperturbed Hamiltonian and equations of motion
are

x� = p, p� = −dU

dx
−Ap +Dξ(t), �ξ(t)� = 0, �ξ(t)ξ(t�)� = δ(t− t�) . (A.23)

Here (x, p) are conjugate phase-space coordinates, and U(x) is the potential energy,
D is the diffusion coefficient, A is the phase-space damping coefficient, and ξ(t) is the
white noise function. The stochastic differential equation becomes

x�� + Ax� +
dU

dx
= Dξ(t), (A.24)

To solve the stochastic differential equation numerically, we can use several numerical
algorithms of stochastic integration methods listed as follows.
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A. Random walk method

Including the quantum emission of photons, the difference tracking equation for the
normalized synchrotron phase-space coordinates is
⎧
⎨
⎩

xi+1 = xi + 2πνs(−Axi + pi)

pi+1 = pi − 2πνs
dU

dx

����
i+1

+ (2πνs)
1/2DW (t) ,

W (t) =
1

T
1/2
0

� t+T0

t

ξ(t′)dt′ ,

where the subscript indicates the revolution number, and νs is the (synchrotron) tune,
the W (t) is Wiener process function, T0 is the time for one revolution in the ring, and
ξ(t) is the white-noise function. Thus the variance of the Wiener process function
becomes �W (t)W (t)� = 1 .In the tracking equations, a Wiener process W (t) can be
imitated by a random walk of ±1 per revolution. In the smooth approximation, the
above tracking equation is equivalent to the differential equations of motion:

⎧
⎪⎪⎨
⎪⎪⎩

dx

dt
= −

�
2πνs
T0

�
Ax+

�
2πνs
T0

�
p

dp

dt
= −

�
2πνs
T0

�
dU

dx
+

�
2πνs
T0

�1/2

Dξ(t) .

(A.25)

Here t is the real time for particle motion in a storage ring.

B. Other stochastic integration methods

For one stochastic variable x, the general Langevin equation has the form

ẋ(t) = f(x) + g(x)ξ(t). (A.26)

The Langevin force ξ(t) is assumed to be a Gaussian random variable with zero mean
and δ-function correlation shown in Eq. (A.23). The integration of Eq. (A.26) is

x(t + h) = x(t) + f(x)h+ g(x)
√
hW (h),

W (h) =
1√
h

� t+h

t

ds ξ(s).

Two widely used methods for solving stochastic differential equations numerically are
Euler’s and Heun’s.

B.1 Euler’s scheme

Euler’s integration scheme includes terms up to order h for additive noise. To integrate
stochastic differential equations from t = 0 to t = T , we first divide the time interval
T into N small finite steps of length h

tn = nh, h = T/N, n = 1, 2, ..., N.



II. STOCHASTIC BEAM DYNAMICS 507

The stochastic variable at a later time tn+1, xn+1 = x(tn+1) = x((n+1)h), is calculated
according to xn+1 = xn + f(xn)h + g(xn)

√
hWn(h), where W1(h), W2(h), ..., WN(h)

are independent Gaussian-distributed random variables with zero mean and variance
1, i.e. �Wn� = 0, �WnWm� = δnm. A possible choice of the set of Gaussian random
variable Wn is

Wn(h) =
M∑
i=1

√
12

M
(ri − 0.5), (A.27)

where ri is a random number with 0 ≤ ri < 1, and M is an arbitrary non-zero large
integer, e.g. M ≥ 10.

B.2 Heun’s scheme

Heun’s scheme is second order in h. The difference from Euler’s scheme is an addi-
tional predictor step,

xn+1 = xn +
1

2
(f(xn) + f(yn))h + g(xn)

√
hW2n−1(h) (A.28)

with yn = xn + f(xn)h + g(xn)
√
hW2n(h). In this case we need 2N independent

random variables {Wn(h)}. The equilibrium distribution function does not depend
on the method of stochastic integration used in numerical simulations. It is, however,
worth pointing out that a non-symplectic integration method can lead to a slightly
different Eth due essentially to the change in the effective A parameter.

II.3 Fokker-Planck Equation

The equilibrium distribution function of a stochastic differential equation (A.24) sat-
isfies the Fokker-Planck equation

∂Ψ

∂t
=

[
−p

∂

∂x
+ A

∂

∂p
p+

dU

dx

∂

∂p
+

D2

2

∂2

∂p2

]
Ψ. (A.29)

The solution of the Fokker-Planck equation is

Ψ =
1

N exp{− H

Eth
}, Eth =

D2

2A
, (A.30)

where N is the normalization, and Eth is the “thermal” energy. In the small bunch
approximation, the normalization constant becomes N = Eth. This is the Einstein
relation, where the diffusion coefficient is proportional to the thermal energy Eth =
kT , where k is the Boltzmann constant and T is the temperature.

If the potential is nearly quadratic, i.e., the restoring force is simple harmonic, the
distribution is bi-Gaussian. Thus the central limit theorem of white noise gives rise
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to a Gaussian distribution. In reality, if the potential is nonlinear, the distribution
may not be Gaussian in coordinate space x.

The rms phase-space area A of the beam distribution is

A
π

=
�
var(x)var(p)− (covar(x, p))2, (A.31)

where var(x) = �(x− �x�)2�, var(p) = �(p− �p�)2�, covar(x, p) = �xp� − �x��p�. Here
�· · ·� denotes an average over the beam distribution. In a small bunch nearly Gaussian
approximation, the rms phase-space area is equal to πEth, i.e. the emittance A/π is
equal to the thermal energy Eth.

III Methods of Data Analysis in Beam Physics

The linear response of a dynamical system is represented by the relation between
the Nb-dimensional observation vector y(t), i.e. the number of BPMs, and the Ns-
dimensional source-signal vector s(t) by

y(t) = As(t) +N (t) (A.32)

where Nb ≥ Ns, Ns is unknown a priori, A ∈ �Nb×Ns is the mixing matrix, and
N (t) is the noise vector assumed to be stationary, zero mean, temporally white and
statistically independent of source signal s(t). The task is to determine the mixing
matrix A and the source signals s(t) from the measured sample signal y(t).

The source signals s(t) in most physical processes are independent and temporally
un-correlated, i.e.

�si(t)sj(t− τ)� =
�

si(t)sj(t− τ)dt = Ciiδij (A.33)

for an arbitrary non-zero time-lag constant τ . Here �· · ·� stands for mathematical
expectation value or the ensemble average of the source signal. In particle accelera-
tors, sources are betatron motion, synchrotron motion, power supply ripple, collective
beam instabilities due to wake fields, ground motion, high frequency noises, etc. The
data sampled by BPMs around the ring are put into a data matrix

y =

⎛
⎜⎜⎜⎝

y1(1) y1(2) . . . y1(N)
y2(1) y2(2) . . . y2(N)
...

...
. . .

...
ym(1) ym(2) . . . ym(N)

⎞
⎟⎟⎟⎠ (A.34)

where N is the total number of turns, m = Nb is the number of BPMs. The element
yi(j) is the reading of the i’th BPM on the j’th turn. BPM gains may be applied to
correct the BPM calibration error if necessary and available.



III. METHODS OF DATA ANALYSIS IN BEAM PHYSICS 509

Traditionally, the model independent analysis (MIA) method analyzes data by
making SVD decomposition to the data matrix, i.e.

y = UΛVT , (A.35)

where U and V are unitary real matrices with UTU = I and VTV = I, and Λ is a
diagonal matrix. The MIA procedure is equivalent to yyT = �yyT � = UΛ2UT , i.e.
making equal-time correlation to the data matrix. The eigenvalues in Λ of equal time
correlation may sometimes become degenerate, and cause mode-mixing.

For example, we consider the betatron motions: y =
�

2βyJ sin(νyφ), where βy(s)
is the betatron amplitude function and J is the action. The SVD of the M-BPMs,
N -turn data-matrix becomes

U =

⎛
⎜⎜⎝

P
�

2βy

M
sin(νyφ1) P

�
2βy

M
cos(νyφ1) 0 ...

P
�

2βy

M
sin(νyφ2) P

�
2βy

M
cos(νyφ2) 0 ...

: : : ...

⎞
⎟⎟⎠ ,

VT =

⎛
⎜⎜⎜⎜⎜⎝

�
2
N
cos(2πνy · 0)

�
2
N
cos(2πνy · 1) ...

�
2
N
cos(2πνy · (N − 1))�

2
N
sin(2πνy · 0)

�
2
N
sin(2πνy · 1) ...

�
2
N
sin(2πνy · (N − 1))

0 0 ... 0

: :
. . . :

⎞
⎟⎟⎟⎟⎟⎠

where P is the normalization factor. The diagonal Λ matrix is Λ11 =
√
2JMN/(2P )

and Λ22 =
√
2JMN/(2P ). The spatial wave function of U matrix describes the

betatron amplitude function, and the temporal wave function of V describes the
sinusoidal betatron amplitude function. The SVD decomposition usually works well
in identifying modes in the data matrix y, except when the eigenvalues are degenerate,
or weak modes that can be mixed by random noise.

The independent component analysis (ICA) extends the data analysis of MIA into
unequal-time correlation, and thus it has the potential to separate these independent-
modes. The source signal separation is to jointly diagonalize the covariance matrices
with selected time-lag constants τ with data whitening procedure listed as follows.1

1. Compute the Nb ×Nb sample covariance matrix Cy(0) ≡ �y(t)y(t)T �. Perform
eigenvalue decomposition to Cy(0) to obtain

Cy(0) = (U1,U2)

�
D1 0
0 D2

��
U1

U2

�
(A.36)

1see X. Huang, et al.,PRSTAB, 8, 064001 (2005); X. Huang, Ph.D. Thesis, Indiana University
(2005); F. Wang, and S.Y. Lee, PRSTAB 11, 050701 (2008); F. Wang, Ph.D. Thesis, Indiana
University (2008); X. Pang, S.Y. Lee, Journal of Applied Physics, 106, 074902 (2009); X. Pang,
Ph.D. Thesis, Indiana University (2009); J. Kolski, Ph.D. Thesis, Indiana University (2010).
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where D1,D2 are diagonal matrices with min(D1ii) > λc > max(D2ii) ≥ 0,
λc is a cut-off threshold set to remove the singularity of the data matrix, or
equivalently removing the noise background. Defining the matrix V as V ≡
D1

−1/2U1
T , we construct an Ns-component vector as Y = Vy. The Vector Y

is called white because �YYT � = I, where I is the Ns × Ns identity matrix.
This MIA procedure reduces the dimension of the data space, separates the
noise from the original data, and de-correlates and normalizes the data.

2. For a selected set of time-lag constants {τk|k = 1, 2, . . . , K}, compute the time-
lagged covariance matrix {CY(τk) = �Y(t)Y(t−τk)

T �|k = 1, 2, . . . , K} and form
symmetric matrix CY(τk) = (CY(τk) +CY(τk)

T )/2, and find a unitary matrix
W that diagonalize all matrices CY(τk) of this set, i.e. CY(τk) = WTDkW,
where Dk is diagonal.2

3. The source signals are found by s = WVy, i.e. the mixing matrix is A =
V−1WT .

For digitized sample data yi(t), constants τk have to be integers. The expectation
functional �· · ·� are replaced with sample average in practice.3 The application of
ICA to synchrotron beam diagnosis involves three phases: data acquisition and pre-
processing, source signal separation and beam motion identification. A pinger or rf
resonant kicker is used excite the beam, the coherent transverse motion of turn-by-
turn data is digitized. ICA algorithm is then applied to data matrix y to extract
the mixing matrix A and source signals s. Each source signal si and its spatial
distribution Ai, where Ai is the i’th column of A, is called a mode. The physical
origin of a mode can be identified by its spatial and temporal pattern. For example,
the betatron amplitude and phase functions of a betatron mode are

βi = a2(A2
b1,i + A2

b2,i), ψi = tan−1 Ab1,i

Ab2,i
, (A.37)

where a is a scaling factor depending on the kick amplitude and BPM calibrations.
The dispersion function is D = bAs. Here, b is also the scaling factor, that depends
on the magnitude of synchrotron motion.

2The time-lagged covariance matrix is in fact symmetric if there is no error in noise and finite
sampling. The symmetrization is used to guarantee a real solution in matrix diagonalization. Since
the source signals are independent as shown in Eq. (A.33), the matrices CY(τk) can be jointly
diagonalized with an identical eigenvector matrix W and the eigenvalue-matrix Cs(τk) for each τk.
In practice, joint diagonalization can be achieved only approximately due to finite sampling error
and noise. See J. F. Cardoso and A. Souloumiac, SIAM J. Mat. Anal. Appl., 17, 161, (1996).

3The algorithm could be improved by robust whitening or by combining the non-stationary and
time-correlation. See e.g. Aapo Hyvarinen, Juha Karhunen, Erkki Oja, Independent Component
Analysis, (John Wiley & Sons, New York, 2001).



Appendix B

Numerical Methods and Physical
Constants

I Fourier Transform

Spectral analysis of beam properties has many applications in beam physics. When a
detecting device picks up a beam current or position signal as the beam passes by, the
time structure and its frequency can be analyzed to uncover characteristic properties
of the beam in the accelerator.

Let y(t) be a physical quantity of the beam, e.g. a transverse betatron coordinate,
a transverse sum signal, or a longitudinal phase coordinate of the beam. The Fourier
spectrum function of y(t) and its inverse Fourier transforms are

Y (ω) =

∫ ∞

−∞
y(t) e−jωt dt,

y(t) =
1

2π

∫ ∞

−∞
Y (ω) ejωt dω

The variable t is time and the conjugate variable ω is the angular frequency.
In a synchrotron, the beam passes through the detector in a discrete sampling

time at revolution period T0. The measured physical quantities are

yn = y(nT0), n = 1, 2, 3, . . . ,

where the sampling rate for beam motion in a synchrotron is usually equal to the
revolution period.

I.1 Nyquist Sampling Theorem

The Nyquist theorem of discrete sampling states that, if the data are taken in time
interval T0, then their spectral content is limited by the Nyquist critical frequency

fc =
1

2T0
. (B.1)
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In terms of betatron tune, the Nyquist critical tune is qc = fcT0 = 1
2
. The discrete

sampling of beam motion can provide power spectrum only within the frequency
range (−fc, fc). The power spectrum of all outside frequencies is folded into the
range (−fc, fc). This is called aliasing. Frequency components outside the critical
frequency range are aliased into the range by discrete sampling. In other words, we
can assume that the Fourier component is nonzero only inside the frequency range
−fc to fc for our discrete sampling data.

I.2 Discrete Fourier Transform

Now we would like to find the Fourier transform Y (ω) of the phase space coordinate
y(t), where we have collected N consecutive data samples,

yk = y(kT0), k = 0, 1, 2, · · · , N − 1. (B.2)

The data can provide the Fourier amplitude for all frequencies within the range −fc
to fc. For the N data points, we can estimate the Fourier amplitude at discrete
frequencies

ωn =
n

N
ω0, n = −N

2
, . . . ,

N

2
, (B.3)

where ω0 = 2π/T0 is the angular revolution frequency. The discrete Fourier transform
and its inverse transform are1

Yn = Y (ωn) =

∫ ∞

−∞
y(t) e−jωntdt ≈ T0

N−1∑
k=0

yk e
−j2πkn/N . (B.4)

yk =
1

NT0

N−1∑
n=0

Yn e
j2πkn/N .

Here n varies from −N/2 to N/2. We note that Yn of Eq. (B.4) has a period N with
Y−n = YN−n, n = 1, 2, · · ·. Thus we can let n in Yn vary from 0 to N − 1. Here the
frequency range 0 ≤ f < fc corresponds to 0 ≤ n ≤ N/2 − 1, the frequency range
−fc < f < 0 corresponds to N/2 + 1 ≤ n ≤ N − 1, and f = fc and f = −fc give
rise to n = N/2. The discrete Fourier transform has properties similar to those of the
Fourier transform of continuous functions, e.g.

yn real Y−n = Y+n

yn imaginary Y−n = −Y ∗
+n

yn even/odd Yn even/odd

1The discrete Fourier transform can be optimized by an algorithm called the Fast Fourier Trans-
form (FFT), which uses clever numerical algorithms to minimize the number of operations for the
calculation of Yn in Eq. (B.4). See, e.g., W.H. Press, B.P. Flannery, S.A. Tukolsky, and W.T.
Vetterling Numerical Recipes (Cambridge Press, New York, 1990).
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Since the tune is equal to the number of (betatron or synchrotron) oscillations
per orbital revolution, the discrete Fourier transform gives a tune within the range
0 ≤ q ≤ 1/2. Equation (B.3) of Nyquist’s theorem implies also that the spectrum
resolution from N sampling data points is

Δω =
1

N
ω0, or Δq =

1

N
. (B.5)

For example, the betatron tune resolution is 0.001 from 1000 digitized data points.
Figure 2.22 shows the FFT spectrum of horizontal betatron oscillations excited by a
magnetic kicker. Since 385 data points are used in obtaining the FFT spectrum, the
betatron tune resolution is about 0.003.

Discrete sampling of the phase space coordinate also gives rise to aliasing. Fig-
ure B.1 shows that the discrete data points can be fitted by sinusoidal functions with
tunes Q = m± q, where m is an integer, and q is the fractional part of the betatron
tune.

Figure B.1: Discrete data points
(circles) fitted by sinusoidal functions
with Q = m ± q, where q is the frac-
tional part of the betatron tune, and
m is an integer.

I.3 Digital Filtering

The digitized data for a low intensity beam can be contaminated by many sources of
noise, e.g. cable noise, cable attenuation, amplifier noise, power supply ripple, ground
motion, etc., and the resulting betatron and synchrotron phase space coordinate data
can be noisy.2 A possible way to enhance the signal to noise (S/N) ratio is to filter the
FFT spectrum by multiplying it by a filtering function F (q). Performing the inverse
FFT transformation with the filtered data can provide a much clearer beam signal.
The filtering function can be a low pass filter, a high pass filter, a band pass filter,
or a notch filter to remove only narrow bands of unwanted frequencies. A DC offset
such as a closed orbit or BPM offset can be filtered by removing the running average
of the BPM signals.

2See e.g., R.W. Hamming, Digital filters (Prentice Hall, Englewood Cliffs, NJ, 1977).
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I.4 Some Simple Fourier Transforms

δ(θ − θ�) = 1
2π

∑∞
n=−∞ ejn(θ−θ′) ∑∞

�=−∞ δ(t− �T0) =
1
T0

∑∞
n=−∞ ej2πnt/T0

δ(t) = 1
2π

∫∞
−∞ ejωtdω δ(ω) = 1

2π

∫∞
−∞ e−jωtdt

y(t) =
{
1 −T < t < T
0 otherwise

Y (ω) = 1
π
sinωT

ω
.

Y (ω, T )
∣∣∣
T→∞

= δ(ω).

θ(t) =

{−1
2

t < 0
1
2

t > 0
θ(ω) = − 1

2πjω
.

Θ(t) =
{
0 t < 0
1 t > 0

Θ(ω) = − 1
2πjω

+ 1
2
δ(ω).

y(t) = e−t/τ , (t ≥ 0), Y (ω) = 1
2πj

1
ω−j/τ

.

y(t) = 1
π

τ
t2+τ2

Y (ω) = 1
2π
e−ω|τ |.

II Cauchy Theorem and the Dispersion Relation

II.1 Cauchy Integral Formula

If f(z) is an analytic function within and on a contour C, then
∮
C
f(z)dz = 0. Let

f(z) be an analytic function within a closed contour C, and continuous on the contour
C, then

f(a) =
1

2πj

∮
f(z)

z − a
dz, (B.6)

where a is any arbitrary point within C. The denominator of a Cauchy integral can
usually be represented by

1

z − a∓ j�
=

1

z − a

∣∣∣∣
P.V.

± jπδ(z − a), (B.7)

where P.V. stands for the principle value of the integral, i.e.

∫

P.V.

f(z)

z − z1
dz =

∫

P.V.

f(z)− f(z1)

z − z1
dz.
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Figure B.2: The contour integral of the
impedance in the complex ω� plane. Because
the impedance is analytic in the lower complex
ω� plane, the Cauchy integral formula can be
used to obtain the dispersion relation.

II.2 Dispersion Relation

Since the impedance must be analytic in the lower complex plane, we obtain

Z(ω) =
−1

2πj

∮

C

Z(ω�)
ω� − ω

dω�, (B.8)

where the contour integral C is shown in Fig. B.2. Assuming that Z(ω) → 0 as
ω → ∞, we obtain

Z(ω) =
−1

2πj

∮

C

Z(ω�)
ω� − ω + j�

dω� =
−1

2πj

[∮

P.V.

Z(ω�)
ω� − ω

dω� − jπZ(ω)

]
, (B.9)

where P.V. means taking the principal value of the integral. Thus the real and the
imaginary impedance are related by the Hilbert transform

ReZ�(ω) = − 1

π

∫

P.V.

dω� ImZ�(ω�)
ω� − ω

, ImZ�(ω) = +
1

π

∫

P.V.

dω�ReZ�(ω�)
ω� − ω

.

III Useful Handy Formulas

III.1 Generating Functions for Bessel Functions

ejz cos θ =
∞∑

k=−∞
jkJk(z)e

jkθ =
∞∑

k=−∞
jkJk(z) cos(kθ)

cos(z cos θ) = J0(z) + 2

∞∑
k=1

(−1)kJ2k(z) cos(2kθ)

sin(z cos θ) = 2

∞∑
k=0

(−1)kJ2k+1(z) cos((2k + 1)θ)

ejz sin θ =
∞∑

k=−∞
Jk(z)e

jkθ
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cos(z sin θ) = J0(z) + 2

∞∑
k=1

J2k(z) cos(2kθ)

sin(z sin θ) = 2
∞∑
k=0

J2k+1(z) sin((2k + 1)θ)

e
1
2
z(t+1/t) =

∞∑
k=−∞

tkIk(z)

ez cos θ = I0(z) + 2

∞∑
k=1

Ik(z) cos kθ

ez sin θ = I0(z) + 2

∞∑
k=1

(−1)kI2k(z) cos 2kθ + 2

∞∑
k=0

(−1)kI2k+1 sin(2k + 1)θ

III.2 The Hankel Transform

f(r) =

∫ ∞

0

g(k)Jn(kr)kdk g(k) =

∫ ∞

0

f(r)Jn(kr)rdr

δ(r − r�) = r

∫ ∞

0

Jn(kr)Jn(kr
�)kdk δ(k − k�) = k

∫ ∞

0

Jn(kr)Jn(k
�r)rdr

III.3 The Complex Error Function [30]

w(z) = e−z2erfc(−jz) =
j

π

∫ ∞

−∞

e−t2

z − t
dt = e−z2

[
1 +

2j√
π

∫ z

0

eζ
2

dζ

]

III.4 A Multipole Expansion Formula

b2 − r2

b2 + r2 − 2br cosχ
= 1 + 2

∞∑
n=1

(r
b

)n

cosnχ

III.5 Cylindrical Coordinates

A point in rectangular space coordinates is represented in cylindrical coordinates
by x = ρ cosφ, z = ρ sin φ, s = s, so that the unit vectors ρ̂, φ̂ and ŝ form the
orthonormal basis with

dφ̂

dφ
= −ρ̂,

dρ̂

dφ
= φ̂.

The Jacobian is ρ, i.e. the volume element is dV = ρ dρ dφ ds. Any vector in the
space can be expanded in the coordinate system by �A = Aρρ̂ + Aφφ̂ + Asŝ, where
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Aρ, Aφ and As are components. The position vector is �r = ρρ̂+ sŝ, and the gradient
operator and the Laplacian are respectively,

∇ = ρ̂
∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
+ ŝ

∂

∂s
,

∇2 =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂φ2
+

∂2

∂s2
,

∇Φ = ρ̂
∂Φ

∂ρ
+ φ̂

1

ρ

∂Φ

∂φ
+ ŝ

∂Φ

∂s
,

∇ · �A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aφ

∂φ
+

∂As

∂s
,

∇× �A = ρ̂

(
1

ρ

∂As

∂φ
− ∂Aφ

∂s

)
+ φ̂

(
∂Aρ

∂s
− ∂As

∂ρ

)
+ ŝ

(
1

ρ

∂

∂ρ
(ρAφ)− 1

ρ

∂Aρ

∂φ

)
,

∇2Φ =
1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2
∂2Φ

∂φ2
+

∂2Φ

∂s2
.

III.6 Gauss’ and Stokes’ Theorems

∮

S

�A · d�S =

∫

V

(∇ · �A) dV
∮

C

�A · d�s =
∫

S

∇×A · d�S

Here S is the surface area that encloses the volume V , d�S is the differential for the
surface integral, d�s is the differential for the line integral, and C is the line enclosing
the surface area S.

III.7 Vector Operation

�A · ( �B × �C) = ( �A× �B) · �C
�A× ( �B × �C) = �B ( �A× �C) + �C ( �A× �B)

∇( �A · �B) = �B × (∇× �A) + �A× (∇× �B) + ( �B · ∇) �A+ ( �A · ∇) �B

∇ · ( �A+ �B) = ∇ · �A +∇ · �B
∇ · (f �A) = (∇f) · �A + f (∇ · �A)
∇ · ( �A× �B) = (∇× �A) · �B − �A · (∇× �B)

∇× ( �A+ �B) = ∇× �A+∇× �B

∇× (f �A) = (∇f)× �A+ f (∇× �A)

∇× (∇× �A) = ∇(∇ · �A)−∇2 �A

∇× ( �A× �B) = �A(∇ · �B)− �B(∇ · �A) + ( �B · ∇) �A− ( �A · ∇) �B

(B.10)

The term ( �B · ∇) �A obtains from the operation of the differential operator ( �B · ∇) on

the vector function �A.
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III.8 2D Magnetic Field in Multipole Expansion

order Normal multipole (B0bn)
n Bx Bz

0 B0b0
1 B0b1z B0b1x
2 B0b2(2xz) B0b2(x

2 − z2)
3 B0b3(3x

2z − z3) B0b3(x
3 − 3xz2)

4 B0b4(x
3z − xz3) B0b4(x

4 − 6x2z2 + z4)
5 B0b5(5x

4z − 10x3z3 + z5) B0b5(x
5 − 10x3z2 + 5xz4)

order Skew multipole (B0an)
n Bx Bz

0 B0a0
1 B0a1x −B0a1z
2 B0a2(x

2 − z2) −B0a2(2xz)
3 B0a3(x

3 − 3xz2) −B0a3(3x
2z − z3)

4 B0a4(x
4 − 6x2z2 + z4) −B0a4(x

3z − xz3)
5 B0a5(x

5 − 10x3z2 + 5xz4) −B0a5(5x
4z − 10x3z3 + z5)

IV Maxwell’s Equations

The following table lists Maxwell’s equations in a homogeneous medium, and the
scalar and vector potentials:

∇ · �E =
ρ

�

∮

S

�E · d�S = Qencl. / �

∇ · �B = 0 �B = ∇× �A,

∇× �E = −∂ �B

∂t
�E = −∇Φ − ∂ �A

∂t

∇× �B = μ �J + μ�
∂ �E

∂t

∮

C

�H · d�s = Iencl.

Here � and μ are the permittivity and permeability of the medium, �B = μ �H is the
magnetic flux density, J is the current density, Qencl. is the charge inside the enclosed
volume, and Iencl. is the total current enclosed by a contour C.

The equation of continuity ∇ · �J + ∂ρ/∂t = 0 is a consequence of Maxwell’s

equation. The boundary condition at the interface of two material is (�2 �E2 − �1 �E1) ·
n̂ = σ, where σ is the surface charge density on the boundary, ( �E2 − �E1)‖ = 0,

( �B2 − �B1) · n̂ = 0, and ( �H2 − �H1)‖ = Ks, where Ks is the surface current density per
unit length along the boundary.
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IV.1 Lorentz Transformation of EM Fields

The electromagnetic fields ( �E, �B) at a rest frame (x, y, z) are transformed to another
inertial reference frame (x�, y�, z�) moving at a velocity �v relative to the rest frame
with velocity in the +x̂ direction by

E �
x = Ex, E �

y = γ(Ey − vBz), E �
z = γ(Ez + vBy),

B�
x = Bx, B�

y = γ(By +
v

c2
Ez), B�

z = γ(Bz − v

c2
Ey),

where γ = 1/
√
1− β2, β = v/c.

IV.2 Cylindrical Waveguides

The electromagnetic fields in a cylindrical waveguide can be expressed in cylindrical
coordinate system as �E = Eρρ̂ + Eφφ̂ + Esŝ and �H = Hρρ̂ + Hφφ̂ + Hsŝ. For the
propagation of electromagnetic fields in a uniform sourceless medium (e.g. the free
space), only two components of the EM fields, e.g., Es and Hs, are sufficient to

determine �E and �H .
Without loss of generality, we consider the forward propagation mode with ej[ωt−kss].

The resulting field equations are
(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2
+ k2

ρ

)
Es = 0, (B.11)

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2
+ k2

ρ

)
Hs = 0, (B.12)

where k2ρ = (ω/c)2 − k2
s with c = 1/

√
�μ. The longitudinal components of the EM

fields can be solved by the method of separation of variables, and all other components
of the EM fields are

Eρ = − j

k2
ρ

(
ks
∂Es

∂ρ
+

ωμ

ρ

∂Hs

∂φ

)
, Hρ = +

j

k2
ρ

(
ω�

ρ

∂Es

∂φ
− ks

∂Hs

∂ρ

)
,

Eφ = − j

k2
ρ

(
ks
ρ

∂Es

∂φ
− ωμ

∂Hs

∂ρ

)
, Hφ = − j

k2
ρ

(
ω�

∂Es

∂ρ
+

ks
ρ

∂Hs

∂φ

)
.

One can replace ks by −ks for backward traveling waves.
The EM fields are conveniently classified into transverse magnetic (TM) modes,

where Hs = 0 or H� = 0, and transverse electric (TE) modes, where Es = 0 or
E� = 0.

A. TM modes: Hs = 0

The solution of the longitudinal electric field is

Es = A cos(mφ+ χ)Jm(kρρ), (B.13)



520 APPENDIX B. NUMERICAL METHODS AND PHYSICAL CONSTANTS

where m = integer is the azimuthal mode number, Jm(kρρ) is Bessel’s function of or-

der m, kρ =
√
ω2/c2 − k2

s is the radial wave number, and ks is the longitudinal wave
number. In a perfectly conducting wave guide with radius b, the longitudinal com-
ponent of the electric field must vanish on the wave guide wall, i.e. Jm(kρb) = 0, or
kρ,mn = jmn/b, where jmn, listed in Table B.1, are zeros of Jm(z). The corresponding
wave propagation mode is called TMmn mode. Other components of the electromag-
netic field are

Eρ = −jks
kρ

A cos(mφ+ χ)J ′
m(kρρ), Hφ =

ω�

ks
Eρ,

Eφ = +
jksm

k2
ρρ

A sin(mφ+ χ)Jm(kρρ), Hρ = −ω�

ks
Eφ.

The wave impedance is

ZTM =
Eρ

Hφ
= −Eφ

Hρ
=

√
μ

�

ks
ω/c

. (B.14)

Table B.1: Zeros of Bessel function for TM and TE modes

jmn (TM) j′mn (TE)
m\n 1 2 3 4 1 2 3 4
0 2.405 5.520 8.654 11.79 3.832 7.016 10.174 13.32
1 3.832 7.016 10.17 13.32 1.841 5.331 8.536 11.71
2 5.136 8.417 11.62 14.80 3.054 6.706 9.969 13.17
3 6.380 9.761 13.02 16.22 4.201 8.015 11.35 14.59

B. TE modes: Es = 0

The solution of the longitudinal electric field is

Hs = A cos(mφ+ χ)Jm(kρρ), (B.15)

where m = integer is the azimuthal mode number, Jm(kρρ) is Bessel’s function of

order m, kρ =
√
ω2/c2 − k2

s is the radial wave number, and ks is the longitudinal
wave number. Other components of the electromagnetic field are

Eρ = + jmωμ
k2ρρ

A sin(mφ+ χ)Jm(kρρ), Hφ =
ks
ωμ

Eρ,

Eφ = + jωμ
kρ

A cos(mφ+ χ)J ′
m(kρρ), Hρ = − ks

ωμ
Eφ.

In a perfectly conducting wave guide with radius b, the φ-component of the electric
field must vanish on the wave guide wall, i.e. J ′

m(kρb) = 0, or kρ,mn = j′mn/b, where
j′mn, shown in Table B.1, are zeros of J ′

m(z). The corresponding wave propagation
mode is called TEmn mode. The wave impedance is

ZTM =
Eρ

Hφ
= −Eφ

Hρ
=

√
μ

�

ω/c

ks
. (B.16)
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IV.3 Voltage Standing Wave Ratio

The voltage standing wave ratio (VSWR) measures the amount of reflection in a
transmission line. Let the forward wave be ej(ωt−ks) and the reflected wave R ej(ωt+ks).
Then the wave amplitude along the transmission line is (e−jks +Re+jks)ejωt.

The wave in the transmission line appears to oscillate in phase with respect to time
but has spatial modulations due to interference. When R = 0 the spatial modulation
disappears, and when R = 1 (100% reflection) the modulation looks like a standing
wave on a string with nodes and peaks. The VSWR is defined as

VSWR =
Max|e−jks +R ∗ e+jks|
Min|e−jks +R ∗ e+jks| , or R =

VSWR − 1

VSWR+ 1
.

V Physical Properties and Constants

Microwave transmission in wave guide

We list some useful electromagnetic wave transmission properties of some media.
Here ρ is resistivity; δskin, skin depth; ω, microwave frequency; �, permittivity; μ,
permeability; c, capacitance per unit length; and �, inductance per unit length.

δskin =
√

2ρ/ωμ skin depth

Z = (1 + j)ρ/ωδskin resistive wall impedance

c = 2π�/ ln(r2/r1) capacitance per unit length in a coaxial cable

� = (μ/2π) ln(r2/r1) inductance per unit length in a coaxial cable

Zc =
√

L/C characteristic impedance of a transmission line

v = 1/
√
LC = 1/

√
μ� speed of a wave in a transmission line

Thermodynamic law of dilute gases

The ideal gas law PV = NkT = nRT is often used in the calculation of molecules in
vacuum chamber, where P, V,N, k, T, n and R are respectively the pressure, volume,
number of molecules, Boltzmann’s constant, temperature, number of moles, and the
ideal gas constant. Since there are a composition of gases in the vacuum chamber,
partial pressure is usually used with P =

∑
Pi, N =

∑
Ni, and n =

∑
ni, where the

ideal gas law becomes PiV = NikT = niRT , where Pi, Ni and ni, partial pressure,
number of molecules, and number of moles for the ith gas species.

The target thickness t, defined as the number of molecules per m2, is given by
t = CN/V = CP/kT , where C is the circumference of the accelerator.

Critical temperature Tc of some superconducting materials

Nb3Sn Nb Pb Hg YaBa2Cu3O7 BiSrCaCuO TlBaCaCuO
Tc (K) 18.05 9.46 7.18 4.15 90 105 125
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Resistivity and density of some materials

Resistivity Ag Cu Au Al SS304 W
ρc0 [10−8Ωm] (at 20◦C) 1.59 1.7 2.44 2.82 7.3 5.5
αc [10

−3 /◦ C] 3.8 3.9 3.4 3.9 5.0 4.5
Resistivity at temperature T ρc(T ) = ρc0[1 + αc(T − T0)]

Density [g/cm3] 10.5 8.92 19.3 2.70 7.87 19.3

Units of physical quantities

Quantity unit SI unit SI derived unit
Capacitance F (farad) m−2 kg−1s4A2 C/V
Electric charge C (coulomb) As
Electric potential V (volt) m2 kg s−3A−1 W/A
Energy J (joule) m2 kg s−2 Nm
Force N (newton) m kg s−2 N
Frequency Hz (hertz) s−1

Inductance H (henry) m2 kg s−2A−2 Wb/A
Magnetic flux Wb (weber) m2 kg s−2A−1 Vs
Magnetic flux density T (tesla) kg s−2A−1 Wb/m2

Power W (watt) m2 kg s−3 J/s
Pressure Pa (pascal) m−1 kg s−2 N/m2

Resistance Ω (ohm) m2 kg s−3A−2 V/A

Magnetic flux density is in Tesla [T], where 1 T =104 G. Magnetic field in the SI unit
is (A/m). However, The cgs unit of Oe (in honor of Oersted) is also commonly used.
The unit conversion is 1 Oe = 1000/4π A/m, or 1 A/m =4π × 10−3Oe.

Radiation dose units and EPA limit

Activity Ci 3.70× 1010 disintegrations/s
Bq 1 disintegration/s

Energy deposit rad amount of radiation that deposits energy 1.00× 10−2 J/kg
Gy 1 Gy = 100 rad = 1 J/kg in absorber

quality factor QF RBE (relative biological effect)
effective dose rem dose (in rad × QF)

Sv 1 sievert = dose (in Gy × QF) = 100 rem

The RBE (QF) factors are 1.0 for X-rays and γ-rays, 1.0–1.7 for β-particles, 10–20
for α-particles, 4–5 for slow neutrons, 10 for fast neutrons, 10 for protons, and 20 for
heavy ions.
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Low level radiation dosage from natural sources accounts for about 130 mrems/year.
The upper limit of radiation dose recommended by the U.S. government is 500
mrems/year apart from background radiation and exposure related to medical pro-
cedures. The upper limit of radiation dosage for radiation worker is 5 rems/year (or
50 mSv/year) for the entire body.

Quantities associated with nuclear collisions

1. Target thickness: t = ρ�t in (mass/area), where ρ is the density of the target
material and �t is the thickness of the target.

2. Target thickness: Nt = NAρδs/A, usually in (number of atoms/cm2), where NA

is the Avogadro number and A is the atomic mass in one mole.
3. Luminosity for fixed target: L = F×Nt, where the incident flux is the number of

incident beam particle per unit time, i.e. F = dNbeam particles/dt. The dimension
of the luminosity is usually cm−2s−1.

4. Counting rate: R = Lσ, where σ is the collision cross-section.
5. Absorption length: λabs = A/(NAσinelρ), where A is the atomic mass, NA is the

Avogadro number, σinel is the inelastic cross-section, and ρ is the density of the
material.

Unit definition and conversion often used in beam physics:

1 cal = 4.186 J; 1 J = 107 erg; 1 eV = 1.60217733× 10−19 J

Ephoton[eV] =
1239.84 [eV − nm]

λ [nm]

1 in. = 0.0254 m; 1 Angstrom [Å] = 10−10 m

1 barn = 10−28 m2 = 10−24 cm2;

1 atm = 760 torr = 1.01325× 105 Pa = 1.01325 bar

Power units:

1 dBm = 10 log (P/1.0mW)

dB gain of power amplifier = 10 log (Pout/Pin) = 20 log (Vout/Vin)

Momentum rigidity of a beam:

p = mv = qBρ, Bρ [T−m] =
p

q
=

A

Z
× 3.33564× p [GeV/c/u],

Longitudinal action in mm-mrad vs longitudinal phase space area in eV-s
The relation between the longitudinal action Is (in mm-mrad) and the longitudinal
phase space area A (in eV-s):

Is = (c/βE)A =

{
1.60× 105(A [eV s]/βγ) [πμm] proton synchrotron
2.93× 108(A [eV s]/βγ) [πμm] electron synchrotron
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Fundamental physical constants

Physical constant symbol value unit
Avogadro’s number NA 6.022141 ×1023 /mol
atomic mass unit ( 1

12
m(C12)) mu or u 1.660539 ×10−27 kg

Boltzmann’s constant k 1.38065 ×10−23 J/K
Bohr magneton μ

B
= e�/2me 9.274009 ×10−24 J/T

5.788382× 10−5 eV/T
Bohr radius a0 = 4π�0�2/mec

2 0.529177×10−10 m
classical radius of electron re = e2/4π�0mec

2 2.81794×10−15 m
classical radius of proton rp = e2/4π�0mpc

2 1.5346986 ×10−18 m
elementary charge e 1.602176 ×10−19 C
fine structure constant α = e2/2�0hc 1/137.036
muc

2 931.494 MeV
mass of electron me 9.10938 ×10−31 kg
mec

2 0.5109989 MeV
mass of proton mp 1.6726216 ×10−27 kg
mpc

2 938.272 MeV
mass of neutron mn 1.674927×10−27 kg
mpc

2 939.5655 MeV
molar gas constant R = NAk 8.314 J/mol K
neutron magnetic moment μn −0.966236× 10−26 J/T
proton g factor gn = μn/μN = Gn/2 −1.913427
nuclear magneton μp = e�/2mu 5.05073×10−27 J/T
Planck’s constant h 6.626069 ×10−34 J s
permeability of vacuum μ0 4π × 10−7 N/A2

permittivity of vacuum �0 8.854188 ×10−12 F/m
proton magnetic moment μp 1.410607 ×10−26 J/T
proton g factor gp = μp/μN = Gp/2 2.7928473
speed of light (exact) c 299792458 m/s
vacuum impedance Z0 = 1/�0c = μ0c 376.73 Ω



Bibliography

[1] M. Stanley Livingston and John P. Blewett, Particle Accelerators (McGraw-Hill,
New York, 1962)

[2] M. Sands, in Physics with Intersecting Storage Rings, edited by B. Touschek
(Academic Press, N.Y. 1971), see also SLAC report SLAC-r-121 (1971).

[3] D. Edwards and M. Syphers, An Introduction to the Physics of High Energy
Accelerators (Wiley, N.Y. 1993)

[4] T. Wangler, Principle of RF Linear Accelerators, (Wiley, N.Y. 1998).

[5] A. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators
(Wiley, N.Y. 1993)

[6] Bruno W. Zotter and Semyon Kheifets, Impedance and Wakes in High-Energy
Particle Accelerators (World Scientific, 1998).

[7] K.Y. Ng, Physics of Intensity Dependent Beam Instabilities (World Scientific,
2005).

[8] M. Reiser, Theory and Design of Charged Particle Beams (Wiley, N.Y. 1994).

[9] S. Humphries, Principle of Charge Particle Acceleration (Wiley, N.Y. 2012).

[10] L. Michelotti, Intermediate Classical Mechanics with Applications to Beam
Physics (Wiley, N.Y. 1995)

[11] H. Wiedemann, Particle Accelerator Physics: Basic Principles and Linear Beam
Dynamics (Springer-Verlag, 1993)

[12] H. Wiedemann, Particle Accelerator Physics II: Nonlinear and Higher-Order
Beam Dynamics (Springer-Verlag, 1995).

[13] N.S. Dikanskii and D. PestrikovThe Physics of Intense Beams and Storage Rings
(AIP, N.Y. 1994).

[14] M. Month (ed.), AIP Conference Proceedings No. 249: The Physics of Particle
Accelerators (Upton, N.Y. 1989, 1990)

[15] M. Month, (ed.), AIP Conference Proceedings No. 184: The Physics of Particle
Accelerators (Ithaca, N.Y. 1988)

525

2021 © The Author(s). This is an Open Access chapter published by World Scientific Publishing Company, 
licensed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
https://doi.org/10.1142/9789813274686_bmatter

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/9789813274686_bmatter


526 BIBLIOGRAPHY

[16] M. Month, (ed.), AIP Conference Proceedings No. 153: The Physics of Particle
Accelerators (Fermilab, 1984, SLAC, 1985)

[17] M. Month, (ed.), AIP Conference Proceedings No. 127: The Physics of Particle
Accelerators (BNL, 1983)

[18] M. Month, S. Turner (eds.), Lecture Notes in Physics, Frontiers of Particle
Beams (Springer-Verlag, Heidelberg, 1988).

[19] M. Dienes, M. Month, S. Turner (eds.), Lecture Notes in Physics, No. 400,
Frontiers of Particle Beams: Intensity Limitations (Springer-Verlag, Heidelberg,
1990).

[20] E.D. Courant, H. Snyder, Theory of the Alternating Gradient Synchrotron, Ann.
Phys. 3,1 (1958). E.D. Courant, M.S. Livingston, and H.S. Snyder, Phys. Rev.
88, 1190 (1952); E.D. Courant, M.S. Livingston, H.S. Snyder, and J.P. Blewett,
Phys. Rev. 91, 202 (1953).

[21] E.M. McMillan, Phys. Rev., 68, 143 (1945); V.I. Veksler, Compt. Rend. Acad.
Sci. U.S.S.R., 43, 329 (1944); 44, 365 (1944).

[22] J.D. Jackson, Classical Electrodynamics, (John Wiley & Sons, New York, 1963).

[23] H. Grote and F.C. Iselin, The MAD Program, Version 8.1, User’s Reference
Manual, CERN/SL/90-13(AP) (1991); see http://mad.web.cern.ch/mad/

[24] A. Garren, The SYNCH Program.

[25] M. Borland, THE ELEGANT program; https://www3.aps.anl.gov/forums/
elegant/

[26] L. Sanchez et al., COMFORT (Control of Machine Functions, Orbits, and
Trajectories) Version 4.0, unpublished.

[27] S.Y. Lee, Spin Dynamics and Snakes in Synchrotrons, (World Scientific, Singa-
pore, 1997).

[28] W.H. Press et al., Numerical Recipes in Fortran, The Art of Scientific Comput-
ing, 2nd ed., Cambridge University Press (1992).

[29] W.K.H. Panofsky and W.A. Wenzel, Rev. Sci. Inst. 27, 967 (1956).

[30] M. Abramowitz and I.A. Stegun, eds, Handbook of Mathematical Functions, Na-
tional Bureau of Standards, Applied Mathematics Series 55, 9th printing (1970).

[31] I.S. Gradshteyn and I.M. Ryzlik, Table of Integrals, Series, and Products (Aca-
demic Press, New York, 1980); E.T. Whittaker and G.N. Watson, A Course of
Modern Analysis, 4th edition, pp.404–427 (Cambridge Univ. Press, 1962).

[32] S. Turner, Editor, Synchrotron Radiation and Free Electron Laser, CERN-90-
03 (CERN, Geneva, 1990); H. Winick and S. Doniach, Synchrotron Radiation
Research (Plenum press, N.Y. 1980); C. Kunz, Editor, Synchrotron Radiation,
in Topics in Current Research No.10 (Springer-Verlag, Berlin, 1979).



Index

A

accelerators and laboratories

Argonne National Laboratory (ANL)

APS, 148, 239, 400, 412, 449, 465

Brookhaven National Laboratory (BNL)

AGS, 52, 127, 151, 239, 252, 286, 357

AGS booster, 81, 88, 301

RHIC, 151, 239, 252, 286, 301, 357

BEPC, 239, 400, 412, 494

CERN,

ISR, 17, 310, 361

LEP, 239, 400, 412, 413, 494

LHC, 151, 412, 413

PS (CPS), 139, 292, 424

PSB, 311

SPS, 324

CESR, 400, 412, 493

ELETTRA, 449

Fermilab,

booster, 44, 114, 170, 234, 286, 290

MI, 252, 286, 301

Tevatron, 151, 496

IUCF (now IU CEEM)

CIS, 19, 79, 303, 337

Cooler, 90, 195, 239, 249, 251, 283

JLAB (TJNAF), 23, 143

CEBAF, 378, 391

KEK

PS, 201, 286, 357

KEKB, 494

TRISTAN, 239

KURRI, 199

LBNL

ALS, 239, 400, 412

LLNL,

induction linac, 7

LANL,

CCL, CCDTL, 382, 395

PSR, 94, 113, 364
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superconducting cyclotrons, 12
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NLC damping ring, 239, 254

SSC, 24, 151, 239, 413

accelerator applications, 22

accelerator components,

acceleration cavities (rf system), 329

dipoles (see dipole)

quadrupole (see quadrupole)

miscellaneous components, 22

accelerator lattice (see betatron motion)

achromats (see dispersion function)

action-angle variables,

transverse (see betatron motion)

longitudinal (see synchrotron motion)

adiabatic damping (see betatron motion)

adiabatic time (see synchrotron motion)

adiabaticity condition (see synchrotron mo-

tion)

admittance, 59

Alfvén current, 481

α-bucket (see synchrotron motion)

atomic-beam polarized ion source, 78

attractor (see resonances)

B

barrier rf bucket (see rf system)

beam-beam effects, 488

beam-beam parameter, 488
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coherent beam-beam effects, 491

dynamic beta, 489

in linear collider, 497

beamstrahlung (see beamstrahlung)

disruption deflection angle, 498

disruption factor, 490, 497

hour-glass effect (see luminosity)

nonlinear effects, 492

pretzel scheme, 496

tune shift, 488

beam-gas scattering, 121, 468

beam loading, 339

fundamental theorem, 340

phasor, 340

Robinson instability, 343

steady state, 341

beam manipulation, 292, 300

bunch compression (rotation), 305

(pre)buncher, 385, 395

capture, 302, 384

debunching, debuncher, 252, 308

extraction, 108

fast, 87, 109

slow, 110

injection, 108

charge exchange, 108

multi-turn injection, 119

strip (see charge exchange)

mismatch, 76, 254

phase space stacking, 109, 308

rf knock-out, 89

tune jump, (see tune)

beam position monitor (BPM), 32, 99

Δ-signal, 100

Σ-signal, 100

beam transfer function, 91, 275, 348

beamstrahlung parameter, Υ, 397, 497

betatron, betatron principle, 7

betatron motion, 44

accelerator lattice

Chasman-Green (see DBA)

combined function DBA, 445

DBA, 134, 149, 440

doublet cell, 52

Fixed-Field-Alternating-Gradient (FFA),

146

FMC, 141

FODO cell, 50, 124

missing dipole, 125

FOFO cell, 72

insertions, 151, 166

nBA, 452

QBA, 452

TBA, 452

triplet DBA, 473

action-angle, 53

adiabatic damping, 60, 236, 245

betatron tune (see tune)

betabeat (beta-beat), 96, 167

betatron amplitude matrix, 49

chromatic aberration, 158

correction, 163

chromaticity, 159

chromaticity corrections, 159

chromaticity measurement, 159

specific chromaticity, 159

Courant-Snyder invariant, 55

Courant-Snyder parametrization, 47

closed orbit, 80

integer stopband (see stopbands)

correction, 84

closed orbit bump, 84, 118

golden orbit, 122

off-momentum, 122

envelope equation (see envelope equation)

errors (dipole, quadrupole, see errors)

geometric aberration, 161, 186

momentum compaction, 129, 232

DBA and TME lattices, 150

flexible γ
T
lattice, 141

FODO cell lattice, 128

γ
T
manipulation, 138

necktie diagram, 61

normalized phase space coordinates, 55,

256

path length, 70, 85, 129, 154, 233, 267,

385

stability, 61
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symplecticity, 61, 235, 239, 507

Beth representation (see magnetic field)

bifurcation (see resonance)

bucket area (see synchrotron motion)

bunched beams, 130, 242

bunch area (see synchrotron motion)

bunch height (see synchrotron motion)

bunching factor, 117, 245, 362

C

canonical perturbation, 208, 246, 254, 328

canonical transformation, 501

cavity (see rf systems)

central limit theorem, 504

Child’s law, 31

chromatic aberration (see betatron motion)

chromaticity (see betatron motion)

Chasman-Green lattice (see lattice DBA)

circumference, 50

closed orbit (see betatron motion)

coasting (DC) beam, 107, 354, 360

Cockcroft-Walton, 6

collective instabilities, 210, 348

beam break up (BBU), 383, 389

head-tail, 159, 221, 255

Keil-Schnell criterion, 360

Landau damping, 210

longitudinal, 347

microwave, 353

Robinson instability (see beam loading)

transverse, 210

collider (colliding beam facility), 16, 400, 494

e+e− colliders, 16, 494

compaction factor (see betatron motion)

cooling, beam cooling, 17, 109, 415

stochastic cooling, 3, 88

electron cooling, 3

laser cooling, 3

ionization cooling, 3

synchrotron radiation cooling, 3, 415

Courant-Snyder invariant (see betatron mo-

tion)

Courant-Snyder parametrization (see beta-

tron motion)

critical frequency ωc, 411

cyclotron, 11

AVF, sector-focused, 13

isochronous, 13

K-value, 12

superconducting, 13

synchrocyclotron, 14

separate-sector (ring), 13

cyclotron frequency ωcyc, 11

D

damping decrement, 265, 298, 422

Debuncher (see beam manipulation)

diffraction function ζ
P
(u), 165

dipole (magnet), 20, 28

sector dipole, 40, 45, 69, 124

edge focusing, 69

dipole mode, 217, 260

dispersion function, 122

achromat, 133

dispersion action, 126

H-function, 126

�H� minimization, 146

dispersion suppression, 133

integral representation, 128

momentum compaction, 129, 232

phase slip factor, 129, 233

transition energy, 129, 138, 153, 233

distribution functions,

transverse, 59, 63, 204, 217, 430

longitudinal, 106, 244, 255, 271, 289, 350

double bend achromat (see betatron motion)

double rf system (see rf system)

dynamic aperture, 198

E

electrostatic accelerators, 5

Cockcroft-Walton, 6

tandem, Van de Graaff, 6
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X-ray tube, 6

EM fields (see Maxwell’s equation)

emittance, 55

effective emittance, 441, 453

electron storage rings, 397, 443

IDs on emittances, (see undulator)

growth (see beam gas scattering)

growth (see injection mismatch)

longitudinal emittance (see phase space

area)

normalized emittance, 60

measurement, 57

quadrupole tuning method, 58

moving screen method, 58

momentum spread, 244

momentum spread (quantum fluctuation),

428

statistical definition, 56, 73

transverse emittance, 56

envelope equation

of betatron motion, 48, 62, 75

KV envelope equation, 65

errors,

dipole field error, 80

quadrupole field error, 95

extraction (see beam manipulation)

F

feed-down, 95

FEL (see synchrotron radiation)

ferrite, 332

fixed point (see resonances)

fixed-field-alternating-gradient (FFA), 23, 198

Floquet theorem, 497

Floquet transformation, 48, 53, 154, 497

FMC (see betatron motion, lattice)

focal length, 45

focusing of atomic beams, 78

focusing: lithium lens, 78

focusing: solenoid, 42, 72

focusing index, 21, 39, 70, 153, 441

Fokker-Planck equation (see Langevin force)

Fourier transform, 104, 188, 339, 406, 511

discrete Fourier transform, 512

digital filtering, 513

Nyquist theorem, 511

free electron laser (see synchrotron radiation)

Frenet-Serret coordinate system, 35

frequency map (see tune)

G

gain (see FEL)

gain-length (see FEL)

geometric aberration (see betatron motion)

Green’s function, 80, 92

gradient error, (see errors)

half-integer stopband (see stopbands)

group velocity (see velocity)

H

H-function (see dispersion function)

Hamilton’s equation, 501

Hill’s equation, 39, 44, 503

HOM, 332, 383, 389

hour-glass effect (see luminosity)

I

impedance, 210, 355

characteristic, 333

longitudinal, 355

RLC, 335

shunt impedance, 335, 371

transverse, 210

vacuum impedance Z0, 211, 357, 373

independent component analysis (ICA), 509

inductance of accelerator magnets

solenoid, 27

dipole, 28

quadrupole, 29

injection (see beam manipulation)

insertions (see betatron motion, lattice)
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insertion devices (IDs) (see undulator)

instabilities,

see resonances

see collective instabilities

interaction point (IP), 77, 169

isochronous

cyclotron (see cyclotron)

quasi-isochronous (see cyclotron)

isomagnetic, 399

J

Jacobian, 53, 59, 235

Jacobian elliptical function, 258, 296, 315

[JJ] factor, 461

K

KAM theorem, 198, 273

K-value (see cyclotron)

Keil-Schnell (see collective instabilities)

kicker, 88

kicker lever arm, 71, 88

Kilpatrick limit, 305

klystron, 10, 369

KV distribution, 63

KV equation (see envelope equation)

L

Lambertson septum, 89

Landau damping (see collective instabilities)

Landé g-factor, 78

Langevin force, 505

Fokker–Planck equation, 507

Larmor theorem, 398

Laslett tune shift (see space charge)

lattice (see betatron motion)

linac, 9, 367

Alvarez, DTL, 9, 369, 377

beam breakup instability, 390

BNS damping, 390

CCL, 382

RFQ, 10

standing wave, 330, 370, 381

superconducting, 372, 524

traveling wave, 381

constant gradient, 394

constant impedance, 395

Wideröe, 9

linear coupling, 171

solenoid, 171

skew quadrupole, 171

coupling coefficient, 172

lithium lens (see focusing)

loss factor (see rf system)

luminosity, 26, 77, 493

hour-glass effect, 77

Lyapunov exponent, 200

M

magnetic moment (dipole), 78

magnetic field,

Beth representation, 38

multipole expansion, 38

pressure, 79

Mathieu instability, 113, 276

Maxwell’s equations, 330, 357, 483, 518

Electromagnetic fields

TE mode, 519

TM mode, 520

microtron, 14

microwave instability (see instabilities)

model independent analysis (MIA), 94, 509

momentum compaction (see betatron motion)

momentum rigidity, 4, 20, 523

momentum spread (see emittance)

N

necktie diagram (see betatron motion)

negative mass, 233, 358

normalized emittance (see emittances)

nonlinear resonances (see resonances)
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nonlinear time (see synchrotron motion)

O

OFHC (oxygen free high conductivity), 21

off-momentum closed orbit (see closed orbit)

optically pumped polarized ion source, 78

orbit response matrix (ORM), 91, 132

P

Panofsky-Wenzel theorem, 211, 227, 389

paraxial ray equation, 31, 66, 78, 111

path length (see betatron motion)

perveance (see space charge)

phase detector, 251

phase displacement acceleration, 309

phase focusing, 130, 230, 383

phase slip factor (see dispersion function)

phase space area

longitudinal (see emittance)

transverse (see emittance)

phase space stacking (beam manipulation)

phase stability (see phase focusing)

phase velocity (see velocity)

Pierce parameter (see synchrotron radiation)

phasor (see beam loading)

Poisson bracket, 502

Poisson equation, 31, 488, 498

Poisson distribution, 425

Poincaré surface of section, 54, 174, 266

pretzel scheme (see beam-beam interaction)

proper time, 25, 398

PUE (Pick Up Electrode), (see BPM)

Q

Q-factor (see rf systems)

quadrupole, 21, 28

quadrupole mode,

longitudinal, 278, 366, 388

transverse, 75

R

radiation length, 121

reaction length, 79

response matrix (see orbit response matrix)

RFQ linac (see linac)

Robinson instability (see beam loading)

Robinson theorem, 421

Robinson wiggler (see wiggler)

resonances,

attractor, 268

bifurcation, 195, 261

bifurcation tune, 260

devil’s stair case, 195

difference resonance 172, 188, 203

fixed point (FP), 190, 241, 256, 278, 502

elliptical, stable (SFP), 190, 241

hyperbolic, unstable (UFP), 190, 241

separatrix, 190, 241, 297, 433, 502

hysteretic phenomena, 272

island tune (see tune)

linear coupling, 171

nonlinear resonance, 186

parametric resonance, 259

sum resonances, 185, 188, 205

sum rule (see sum rule)

synchro-betatron resonance (SBR), 227

torus, 53, 190, 236, 247, 262

retarded

scalar and vector potential, 36, 401, 520

retarded time, 401

rf systems, 329

barrier bucket, 316

beam loading (see beam loading)

coaxial cavities, 332

double rf system, 310

ferrite loaded cavities, 333

filling time, 336, 372

loss factor, 339

pillbox, 330

Q-factor, 334, 372

rf accelerators, 8

rf cavities, 330

RLC equivalent circuit, 335
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shunt impedance (see impedance)

transit time factor, 231, 238, 370

wake function, 339

rf knockout (see beam manipulation)

rotation harmonics, 104, 214

S

σ–matrix, 57

Schottky noise, 106, 349

sensitivity factor, 83

separatrix (see resonance)

septum, 88

shunt impedance (see impedance)

skin depth, 211, 333, 345, 357, 392, 521

slow extraction (see beam manipulation)

solenoid, 27, 42, 72, 172, 182

Sokolov-Ternov radiative polarization, 437

space charge, 62

tune shift, 68, 112, 117

perveance, 64, 112, 117

ion source, 31

potential (longitudinal), 356

potential (transverse), 68

spectrum, beam spectrum

longitudinal, 104, 250, 349

roll-off frequency, 106, 349

spectrum analyzer (SA), 350

transverse, 104, 181, 214

spin polarization, 103, 437

intrinsic spin resonances, 103

imperfection spin resonances, 103

Stern-Gerlach effect, 78

stochastic integration methods, 506

stopbands,

integer stopband, 82

half-integer stopband, 96

systematic (chromatic) stopband, 165

storage rings, 16, 397

sum rule (resonances), 258, 283, 317

superconductor (type II), 17, 521

superperiod, 46

surface resistivity, surface resistance, 334

symplecticity (see betatron motion)

synchronous particle, 130, 231

synchrotron, 14

synchrotron motion, 229

action-angle variables, 246, 256

adiabaticity coefficient αad, 302

adiabatic synchrotron motion, 241

adiabatic time, 286

α-bucket, 295

barrier bucket (see rf systems)

bucket area, 242, 298

bucket height, 242

bunch area, 244

bunch rotation (see beammanipulations)

double rf system (see rf systems)

mapping equation, 235

non-adiabatic, 285

nonlinear time, 290

rf phase modulation, 259

rf voltage modulation, 275

synchrotron sidebands, 260, 349

synchrotron tune (see tune)

torus (see nonlinear resonances)

synchrotron radiation, 397

FEL, 476

efficiency, 482

FEL (Pierce) parameter, 485

gain, 481

gain-length, 485

critical frequency (see critical frequency)

damping, 415

longitudinal, 417, 422

partition number, 418

re-partition number, 418

transverse (horizontal), 420, 422

transverse (vertical), 420, 422

emittance (see emittance)

radiation excitation, 425

lifetime

quantum, 432

Touschek, 434

measurement, 442

momentum spread (see emittance)

photon flux, 411
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power, 410

quantum excitation (see radiation)

quantum fluctuation, 411

radiation integrals, 438

undulator, (see undulator)

wigglers (see undulator)

T

tandem (see electrostatic accelerators)

target (foil) thickness, 26, 121, 524

three bend achromat (see lattice)

torus (see resonances)

Touschek lifetime (see synchrotron radiation)

transport notation, 136

tune,

betatron tune, 50

frequency map, 195

instantaneous, or turn-by-turn, 195

island tune, 207, 261, 278

nonlinear detuning, 196, 260

synchrotron tune, 234

tune diffusion rate, 200

tune jump, 102

tune shift,

beam-beam (see beam-beam effect)

of quadrupole error, 96

space charge (see space charge)

transfer matrix, 44

transit time factor (see rf systems)

transition energy (see dispersion function)

U

U parameter (impedance), 215, 359

undulator, 456

on beam dynamics, 461

on emittances, 461

on momentum spread, 461

resonance wavelength, 460

Robinson wiggler, 424

wavelength shifter, 460

undulator or wiggler parameter, 456

V

V parameter (impedance), 215, 359

vector and scalar potential, 36, 401, 520

velocity,

group velocity, 374

phase velocity, 374

vacuum impedance (see impedance)

Van de Graaff, 6

VSWR, 338, 521

W

wavelength shifter (see wiggler)

wigglers (see undulator)

wall gap monitor, 250

wake function (see rf system)

wakefield, 214, 339

Weierstrass function, 296

Wronskian, 46, 504

XYZ

X-ray tube, Coolidge, 5

zero gradient synchrotron (ZGS), 69
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