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PREFACE TO FIRST EDITION

In the course of the 1970s important developments in the substance and form 
of particle physics have gradually rendered the excellent field theory texts of 
the 1950s and 1960s inadequate to the needs of postgraduate students. The 
main development in the substance of particle physics has been the emergence 
of gauge field theory as the basic framework for theories of the weak, 
electromagnetic and strong interactions. The main development on the formal 
side has been the increasing use of path (or functional) integral methods in the 
manipulation of quantum field theory, and the emphasis on the generating 
functionals for Green functions as basic objects in the theory. This latter 
development has gone hand-in-hand with the former because the comparative 
complexity and subtlety of non-Abelian gauge field theory has put efficient 
methods of proof and calculation at a premium.

It has been our objective in this book to introduce gauge field theory to the 
postgraduate student of theoretical particle physics entirely from a path 
integral standpoint without any reliance on the more traditional method of 
canonical quantisation. We have assumed that the reader already has a 
knowledge of relativistic quantum mechanics, but we have not assumed any 
prior knowledge of quantum field theory. We believe that it is possible for the 
postgraduate student to make his first encounter with scalar field theory in the 
path integral formalism, and to proceed from there to gauge field theory. No 
attempt at mathematical rigour has been made, though we have found it 
appropriate to indicate how well-defined path integrals may be obtained by an 
analytic continuation to Euclidean space.

We have chosen for the contents of this book those topics which we believe 
form a foundation for a knowledge of modern relativistic quantum field 
theory. Some topics inevitably had to be included, such as the path integral 
approach to scalar field theory, path integrals over Grassmann variables 
necessary for fermion field theories, the Faddeev-Popov quantisation 
procedure for non-Abelian gauge field theory, spontaneous breaking of 
symmetry in gauge theories, and the renormalisation group equation and 
asymptotic freedom. At a more concrete level this enables us to discuss 
quantum chromodynamics (q c d ) and electroweak theory. Some topics have 
been included as foundation material which might not have appeared if the 
book had been written at a slightly earlier date. For example, we have inserted 
a chapter on field theory at non-zero temperature, in view of the large body of



viii PREFACE

literature that now exists on the application of gauge field theory to 
cosmology. We have also included a chapter on grand unified theory. Some 
topics we have omitted from this introductory text, such as an extensive 
discussion of the results of perturbative q c d  (though some applications have 
been discussed in the text), non-perturbative q c d , and supersymmetry.

We owe much to Professor R G Moorhouse who suggested that we should 
write this book, and to many colleagues, including P Frampton, A Sirlin, J 
Cole, T Muta, H F Jones, D R T Jones, D Lancaster, J Fleischer, Z Hioki and 
G Barton, for the physics they have taught us. We are very grateful to Mrs S 
Pearson and Ms A Clark for their very careful and speedy typing of the 
manuscript. Finally, we are greatly indebted to our wives, to whom this book 
is dedicated, for their invaluable encouragement throughout the writing of this 
book.

David Bailin 
Alexander Love



PREFACE TO REVISED EDITION

We are grateful to IOP Publishing Ltd for giving us the opportunity to 
correct the typographical and other errors which occurred in the original 
edition of this book. This task was greatly assisted by a careful reading of 
the book by G Barton. We are also grateful to I Lawrie and D Waxman 
who pressed us to clarify several points. Some new material on instantons 
and axions has been included in chapter 13, and some of the calculations in 
chapters 12 and 16 have been updated to make use of the more precise values 
of gauge coupling constants now available.

David Bailin 
Alexander Love



http://taylorandfrancis.com


CONTENTS

Preface to first edition vii
Preface to revised edition ix

1 Path integrals 1
Problem 4
References 4

2 Path integrals in non-relativistic quantum mechanics 5
2.1 Transition amplitudes as path integrals 5
2.2 The ground-state-to-ground-state amplitude, W[ J ]  8
2.3 Ground-state expectation values from W[J]  11

Problems 14
References 14

3 Classical field theory 15
3.1 Euler-Lagrange equations 15
3.2 Noether’s theorem 18
3.3 Scalar field theory 20
3.4 Spinor field theory 25
3.5 Massless vector field theory 33

Problems 37
References 38

4 Quantum field theory of a scalar field 39
4.1 The generating functional 39
4.2 The generating functional for free-field theory 42
4.3 Green functions for free-field theory 45
4.4 The effective action and one-particle-irreducible

Green functions 47
Problems 50
References 50



5 Scattering amplitudes 51
5.1 Scattering amplitude in quantum mechanics 51
5.2 Scattering amplitude in quantum field theory 54

References 59

xii CONTENTS

6 Feynman rules for kcp* theory 60
6.1 Perturbation theory 60
6.2 Momentum space Feynman rules 64
6.3 One-particle-irreducible Green functions 66
6.4 Scattering amplitudes 67
6.5 Calculation of the scattering cross section 70

Problems 73
References 73

7 Renormalisation of X(p4 theory 74
7.1 Physical motivation for renormalisation 74
7.2 Dimensional regularisation 79
7.3 Evaluation of Feynman integrals 81
7.4 Renormalisation of /-<pA theory at one-loop order 85
7.5 Renormalisation schemes 90

Problems 94
References 94

8 Quantum field theory with fermions 96
8.1 Path integrals over Grassmann variables 96
8.2 The generating functional for spinor field theories 99
8.3 Propagator for the Dirac field 100
8.4 Renormalisable theories of Dirac fields and scalar

fields 101
8.5 Feynman rules for Yukawa interactions 103
8.6 Massless fermions 106
8.7 Scattering amplitudes with fermions 107

Problems 109
References 109

9 Gauge field theories 110
9.1 Abelian gauge field theory 110
9.2 Non-Abelian gauge field theories 112
9.3 Field equations for gauge field theories 115

References 115



10 Feynman rules for quantum chromodynamics and

CONTENTS xiii

quantum electrodynamics 116
10.1 Quantum chromodynamics 116
10.2 Problems in quantising gauge field theories 116
10.3 An analogy with ordinary integrals 118
10.4 Quantisation of gauge field theory 119
10.5 Gauge fixing terms and Faddeev-Popov ghosts 123
10.6 Feynman rules for gauge field theories 125
10.7 Scattering amplitudes with gauge fields 129

Problems 129
References 130

11 Renormalisation of q c d  and q e d  at one-loop order 131
11.1 Counter terms for gauge field theories 131
11.2 Calculation of renormalisation constants 133
11.3 The electron anomalous magnetic moment 140

Problems 143
References 143

12 q c d  and asymptotic freedom 144
12.1 The renormalisation group equation 144
12.2 Deep inelastic electron-nucleon scattering 149
12.3 The Wilson operator product expansion 152
12.4 Wilson coefficients and moments of structure

functions 154
12.5 Renormalisation group equation for Wilson

coefficients 157
12.6 Calculation of anomalous dimensions 159
12.7 Comparison with experiment, and AqcD 163
12.8 e+e“ annihilation 165

Problems 167
References 168

13 Spontaneous symmetry breaking 169
13.1 Introduction 169
13.2 Spontaneous symmetry breaking in a ferromagnet 172
13.3 Spontaneous breaking of a discrete symmetry 173
13.4 Spontaneous breaking of a continuous global

symmetry 175
13.5 The Higgs mechanism 180
13.6 The Higgs mechanism in non-Abelian theories 185



CONTENTS

13.7 Fermion masses from spontaneous symmetry breaking 190
13.8 Magnetic monopoles 193
13.9 The effective potential in one-loop order 200
13.10 Instantons 212
13.11 Axions 217

Problems 227
References 227

14 Feynman rules for electroweak theory 230
14.1 SU(2) x U(l) invariance and electroweak interactions 230
14.2 Spontaneous breaking of SU(2) x U(l) local gauge

invariance 235
14.3 Feynman rules for the vertices 240
14.4 Tests of electroweak theory 248
14.5 Inclusion of hadrons 252

Problems 258
References 258

15 Renormalisation of electroweak theory 260
15.1 Electroweak theory renormalisation schemes 260
15.2 Definition of the renormalised parameters 262
15.3 Evaluation of the renormalisation constants 274
15.4 Radiative corrections to muon decay 285
15.5 Anomalies 288

Problems 296
References 297

16 Grand unified theory 298
16.1 Philosophy 298
16.2 SU(5) grand unified theory 299
16.3 The grand unification scale and 0W 305
16.4 Spontaneous symmetry breaking for SU(5) grand

unified theory 307
16.5 Fermion masses in SU(5) 310
16.6 Proton decay 313

Problems 314
References 314



17 Field theories at finite temperature 315
17.1 The partition function for scalar field theory 315
17.2 Partition function for free scalar field theory 317
17.3 Partition function for gauge vector bosons 320
17.4 Partition function for fermions 322
17.5 Temperature Green functions and generating

functionals 324
17.6 Finite temperature generating functional for a

free scalar field 327
17.7 Feynman rules for temperature Green functions 328
17.8 The finite temperature effective potential 328
17.9 Finite temperature effective potential at one-loop

order 330
17.10 The Higgs model at finite temperature 334
17.11 Electroweak theory at finite temperature 336
17.12 Grand unified theory at finite temperature 338
17.13 First-order phase transitions 339

Problems 343
References 344

Appendix A: Feynman integrals in 2a>-dimensional space 345

Appendix B: S-matrix elements are independent of £ 346

Appendix C: C.l Vector-vector-scalar-scalar vertices 351
C.2 Vertices involving four scalars 353

Appendix D: SU(5) X matrices 355

Appendix E: Matsubara frequency sums 358

Index 359

CONTENTS xv



http://taylorandfrancis.com


DOI: 10.1201/9780203750100-1



2 PATH INTEGRALS

number of components of the column vector Y. Such an integral is called a 
path (or functional) integral. Proceeding intuitively2 we write

J@<p exp^— j  Jdx ' ^dx<p(xf)A(x', x)<p(x)  ̂= exp( — ̂ T r In A) (1.6)

where we use the symbol Q) for path integration, and we assume that the 
integral has been defined in such a way as to remove any normalisation factor 
(corresponding to the factor (27t)~',/2 in (1.5)). The integrals over x' and x are 
assumed to be one-dimensional integrals over the range (— oo, oo). However, 
the treatment generalises trivially to the case where dx is replaced by d4x, and 
the integration is over the whole four-dimensional space. The trace in (1.6) may 
be evaluated by Fourier transforming. For example, consider the case

Ai*’x)- ( j h h +r) M-x' - x) (L7>
where r is a constant. (This is closely related to situations we shall encounter in 
later chapters.) The one-dimensional Dirac delta function has the integral 
representation

8 (x' — x)=  I ~  Qip(x‘-X) (L8)
J-oo 2tt

Thus

A(x',x)= I ^ e ip<*'-*>(p2 + r) (1.9)
J-oo 2n

and

Tr In A =  I dx ^ l n ( p 2 + r) (1.10)
2 n

where to take the trace we have set x' =  x and integrated over all values of x, 
since we have a continuous infinity of degrees of freedom.

A slight generalisation can be made by introducing a linear term in (1.5).

(2n) -n/2 d^i ■ • • dy„ exp(—%YTA F +  pTF)

=  exp( — j  Tr In A) exp(^pTA 1 p) (1.11)

where p is a given column vector, and A " 1 exists because A is positive definite. 
Equation (1.11) is derived from (1.5) by completing the square,

y TA Y - 2 p TY = { Y - A 1 p)TA ( Y - A ~ ip ) - p 1 / K 1p (1.12)

and making the change of variable

Y’= Y —A ~ lp. (1.13)



The corresponding path integral is

J  <2 xp exp^ — \  Jdx ' dx<p(x');4(x', x)<p(x) + Jdxp(x)<p(x)^

= exp( —̂  Tr In A) exp^r Jdx ' Jdxp(x')v4 “ l(x\ x)p(x)^. (1.14)

where p(x) is a given function. In (1.14), A ~ *(x', x) is easily evaluated from the 
Fourier transform of A(x\ x). Thus, with A(x\ x) as in (1.7), we have from (1.9),

i4- 1(x\*) = | ^-Q lp{x'~x)(p2 Ar)~1. (1-15)
J -  00

Equations (1.11) and (1.14) enable us to carry out somewhat more general 
integrals than Gaussian integrals. If we differentiate with respect to 
Pm.> Pm2> ■ ■; Pm, at p = 0 in (1.11) we obtain

{2n) - " / 2  r  d3/1. . . d ^ y mi. . .y mpe x p (- |F A F )
J — 00

= e x p ( T r  In A)(A~X...  A ' 1̂  + permutations) (1.16)

when p is even, and zero when p is odd.
Generalised to the path integral case

PATH INTEGRALS 3

9(p (p{xx) ... cp(xp) exp _iK dx (p(x')A(x', x)(p(x)

= exp(— j  Tr In A)(^4 1(x1,x 2) ...  A 1 (xp_ 1 , x p) + permutations). (1.17)

To carry through the differentiations in the path integral case we understand 
the derivatives to be functional derivatives d/dp(xl) ,.. .,S/dp(xp), where by 
definition

~bp(x) ( I dxp(x^ x)) = i =l , - . ; P■ (1.18)

We have been discussing a real column vector or a real function cp(x). The 
discussion is easily extended to the case of complex column vectors or 
functions. Thus, for example,

(2n)~n j*dzi dzf  ... dzwdz* exp( — j t AZ) = (det A)-1 =exp(—Tr In A) (1.19)

where A is a Hermitian matrix, Z  is the complex column vector with
components (zu ... ,  z„), Z t = (Z*)T, and

Jdz  dz* = 2 |d (R e z) d(Im z). (1.20)
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The corresponding path integral is

exp^ —j*dx' Jd x  <p*(x')/l(x', x)<p(x)  ̂= exp( —Tr In A). (1.21)

So far we have been assuming that the reader is making the intuitive leap 
from a column vector with a finite number of components to a function with a 
continuous infinity of components. We can put path integrals on a (slightly) 
more formal basis, as follows1. Suppose that the x and x' integrations in (1.6) 
are over the finite range from X  to X . We can take the limit of an infinite range 
of integration at the end of our discussion. Divide the range up into N -1-1 
equal segments of length s

{N +  l)e = X - X .  (1.22)

Let the steps begin at x0 = X, x l 9  x2, . . . ,  xN, and adopt the notations

Vi =  <p(x .) Ajk =  A(xj 9  xk). (1.23)

Then we may define the Gaussian path integral as follows:

J 3>(p exp^—j  dx' dx cp(xf)A(x\ x) cp(x)

= lim (2n) ~ N / 2  [7 d ^  exp( £  <PjAjk<Pk)
N-tcc J \  jfk /

n  r
= lim (2n) ~ N / 2  d<pf exp(-jq>TA(p) (124)

N - o o  i =  1 J

where (p is the column vector with components (<p1?. . .,(pN), and A is the 
matrix with entries A jk. In the case where we allow the range of integration 
(X, X)  to become the interval ( — 00, 00), we may perform the Gaussian 
integral to obtain the result of equation (1.6). We must, of course, interpret 
limN_ 00 exp( — \  Tr In A), where A is the matrix, as exp( — \  Tr In A), where A is 
A(x', x).

Problem

1.1 Derive (1.19) from (1.5).

References

1 Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals (New 
York: McGraw-Hill)

2 We follow most closely the approach of
Coleman S 1973 Lectures given at the 1973 International Summer School o f Physics, 
Ettore Majorana.
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6 PATH INTEGRALS IN NON-RELATIVISTIC QUANTUM MECHANICS 

set for any given value of t. Thus
N p

t"\q' 9 O  = J1 J dqj^q”, t"\qN, tN}(q N, tN\qN - l 9  tjv-i)

(2.7)

We need to study {qj+i9 tj+l\qp tj} as N  becomes very large and the step 
length s becomes very small. The discussion is much simplified if the 
Hamiltonian is of the form

H {Q ,P)= ^+ V(Q ).  (2.8)
2 m

(Simplification results because products of P with Q are not involved, and 
problems of order associated with the lack of commutativity of the 
corresponding operators are alleviated.) Applying equation (2.5) to first non­
trivial order in e,

But

s <4/ + i \H\qj >s =  ̂  ^  ^ 2  ̂  s <4/ + i kj >s (2-1°)

and using the usual integral representation of the Dirac <5 function

sUj + 1 kj>s =  + 1 -q j)  = h~l J  ^ e x p [ i p f a +i - q j f t_1] (2.11)

where we have chosen to write the integration variable as pj/h. Using (2.11) in 
(2.10) gives

s<qj +1 |% j> s = h ~1 +  V(qj)jexp[ip f a  +1 - q j h “ *]

(2 .12)

= h~l exp[iPj(qj+ 1  - q^h '  l]H(qp pj). (2.13)

We may now rewrite (2.9) as 

( qj+i>tj+i k i’

~ h ~ l J ^ e x p [ i p j( ^ +1 - ^ ) f t _1](l-if if t- 1/f(^ ,p J)). (2.14) 

Still working to first non-trivial order in c, we write the integrand in (2.14) as an

iHe
h 9j (2.9)



exponential

<4; +1 > 0 +1 k l’ 0> ~  ~1 expjifr l £ [ P j (q j  + j -  g7.)e - 1 -  H ( q j  ,/>;)]}. (2.15)

Returning to (2.7), the transition amplitude may now be expressed in the form

x  n  j V i  n  ^ exp( ift l g _ ^)£-1 ~ H(9 pPj)^j (2.i6)

where we have written

Qq — Q' Qn + i =(1"' (2-17)

Taking the limit N  -► oo with (N + 1)6 fixed as in (2.6), we obtain the transition 
amplitude as a path integral

(q”,t"\q',t’)cc j@q j ^ p e x p i h ' 1 j  d t(pq-H(p,q)) (2.18)

where the integration is over all functions p(t), and over all functions q(t) which 
obey the boundary conditions

q(t') = qf q(t") = q". (2.19)

The result is more general than the case to which we have restricted ourselves 
in (2.8).

When the Hamiltonian is given by (2.8), the pj integrations in (2.15) and
(2.16) may be carried out (formally). We complete the square by making the 
change of variables

Pj = Pj — ms~l(qj +1 - qj) (2.20)

and perform the integrations formally by pretending that is is real 
(continuation to imaginary time). We then have Gaussian integrals and obtain

tj+i k r  f/)
&(2 nish/m) ~ 1 1 2 Qxp{ih~l s lum s' 2 {qj+ l—q j)2— (2.21)

Using (2.21) in (2.7) gives

<q",t"\q\ O

x(2niEh/m) ~ i N + l ) / 2  p  J d ^ e x p ^ T ^  £  l im e- 2 (qJ + 1  - q j ) 2 - V ( qjj}j .

(2.22)

Taking the limit N  -+ oo with (N -f- l)e fixed as in (2.6) yields the path integral

2.1 TRANSITION AMPLITUDES AS PATH INTEGRALS 7
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representation

i/i' 1 j '  d t U q , $ j  (2.23)

where
Uq, q) =  \mq 2  -  V(q) (2.24)

is the Lagrangian, and the path integral is over all functions q(t) which obey the 
boundary conditions of (2.19). The constant of proportionality is formally 
infinite, but is inessential for our purposes.

t"\q', O  oc j  Q)q exp

2.2 The ground-state-to-ground-state amplitude, W[J]

If an external source term (or driving force) — J(t)Q is added to the 
Hamiltonian in (2.8), then the transition amplitude in the presence of this 
source is

t}J °c j@q  ^pexp ift- 1 ^  dt(pq—H(p,q) + Jq) (2.25)

where H(p,q) denotes the Hamiltonian for 7 = 0. The integration is over all 
functions p(t) and over functions q(t) obeying the boundary conditions of 
(2.19). We shall see in Chapter 4 that the ground-state-to-ground-state 
amplitude in the presence of a source plays a central role in quantum field 
theory. With that application in mind, we now derive the corresponding 
amplitude in non-relativistic quantum mechanics. To start with we shall take 
7(0 to be zero for times less than t_ and also for times greater than t+. Using 
the completeness of the eigenstates \q+, t + > and \q _, t _ > of Qn at times t + and 
t - 9

W ,t" \q ' , 0 J = |d g + (dq„W',t"\q + , t  + y<q + , t  + \ q - , t ^ J<q-,t-\q ' , 0

J J (2.26)

provided t"> t+> t_>t'.  Let |n> be the energy eigenstates

H\n> = E„\n> (2.27)

and introduce corresponding time-dependent wave functions

f) = <9> t\n) = e~,E"‘/h s<<?|n>.

Then

<q", t"\q +, t + > =  ̂  (q", t"|n> <n\q +, t + >

11

(2.29)



2.2 THE GROUND-STATE-TO-GROUND-STATE AMPLITUDE, W[J] 9

and

<4_, t.\q', o  = £  t-M W , 0- (2.30)
It

The connection with the ground-state-to-ground-state amplitude is obtained 
by continuing to the imaginary time axis and taking the limit t" -► — ioo, 
f  -► ioo. Then the decaying exponentials ensure that only the contribution 
from the ground-state wave function i/ / 0  survives in (2.29) and (2.30), and we 
have

lira (q”,t"\q+, t +) = lim *"¥*(«+»*+) (2-31)

and

lim (q _, t _ |g', O  = lim i//0(q _, t _ I'). (2.32)
I '- m o o  t ' - * i a c

Substituting in (2.26) and returning to real time we obtain 

lim <q,',t"\q ',f}J/ U q " , t ' ' m q ' , n
t "  —* GC ,f / —* — OC

= j"d^+ dq-il/${q + , t +Xq + , t +\q-,t_y \l/ 0 (q„,t-). (2.33)

(The alert, or even half-alert, reader will, with reason, feel uneasy about the 
way in which we have returned to real time, where the exponentials are 
oscillatory and cannot unambiguously damp all but the ground-state wave 
function. The result only remains unambiguous if we replace real t by e~i£f, 
with e a small positive quantity. We shall make amends after (2.38).)

The expression on the right-hand side of (2.33) is the probability amplitude 
to find the system in the ground state at time t + given that it was in the ground 
state at the time r_. We are really interested in the case where J(t) is non-zero 
not just between finite times t _ and t + 9 but for all times. We can reach this case 
by taking t _ large and negative, and t + large and positive. Then the right-hand 
side of (2.33) is the probability amplitude to find the system in the ground state 
at time oo, given that it was in the ground state at time — oo. We shall denote 
this ground-state-to-ground-state amplitude by W[J]. Thus, subject to the 
same qualifications as (2.33),

W \J\  oc lim t"\q\ t ')J (2.34)
-  oc

which is the required result. Notice that it does not matter what values we 
choose for q' and q". Returning to (2.25) we see that

WlJ]oz js>q j@ p ex p ih ~ l j  dt(pq- H(p, q) + Jq). (2.35)
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The path integration is over all functions p(t), and, using (2.19), over all 
functions q(t) obeying the boundary conditions

lim q(t')=q' lim q(t") = q" (2.36)
f-+ — oc t" —* 00

where q' and q" are any chosen constants, but are often taken to be zero.
In the special case where the Hamiltonian is given by (2.8), the generalisation

of (2.23) to include a source term is

oz js>q exp ifT 1 J* dt(L(q,q) + Jq) (2.37)

and the corresponding expression for W[J] is

W[_J] x  J&q exp ih ~1 J  d t{Uq, q) + Jq). (2.38)

The oscillatory path integral of (2.38) is not well defined, and it is necessary to 
make some more precise statement before it can be evaluated unambiguously. 
A convenient procedure suggested by the above derivation is to continue the 
integrand to imaginary time, which makes the path integral well defined, 
perform the path integral, and then continue back to real time (see figure 2.1). 
We introduce the variable

t =  it (2.39)

and denote the continuation of W\T\ to imaginary time by WE[J] (where the 
subscript E is used because the continuation will be from Minkowski to 
Euclidean space in the relativistic case considered in Chapter 4).

WEi J ] o c @qexph d£ + (2.40)

- io o

Figure 2.1 Rotation of integration contour in complex t plane.



where q and J  are now to be regarded as functions of t. In accordance with 
(2.36), the path integral is over all functions q(t) which obey the boundary 
conditions

lim q(tj = q' lim q(t) = q" (2.41)
t-+ — 00 t-+ 00

where q' and q" are any chosen constants. The integrand is now a damped 
exponential and the path integral is well defined. As has been emphasised by 
Coleman3, if we proceed directly from the Hamiltonian form of (2.35), 
continuing to imaginary time does not immediately yield a damped 
exponential because the derivative term remains oscillatory. If we are to 
proceed unambiguously from (2.35), we must first perform the path integral 
over p (formally), and then continue the integrand to imaginary time as in
(2.39). In the case where the Hamiltonian is of the form of (2.9) this leads to
(2.40), but, more generally, an effective Lagrangian (differing from the true 
Lagrangian) has to be introduced to render WE[J] into the form of (2.40).

With these words of caution, we shall continue the integrand in (2.35) to
imaginary time and write for the general case

)• (2.42)

If any ambiguity arises, it is to be resolved as described above.

2.3 GROUND-STATE EXPECTATION VALUES FROM W[_f\ 11

2.3 Ground-state expectation values from W[J]

So far we have been concentrating upon the ground-state amplitude W[J]. In 
the discussion of quantum field theory in Chapter 4, we shall see that Green 
functions, which are ground-state expectation values of products of field 
operators, play an important part. The analogous objects in non-relativistic 
quantum mechanics are ground-state expectation values of products of 
operators QH. We shall now see how these may be derived from W[J]. For 
notational simplicity, we shall consider first the case where the product 
involves only two operators. Thus, we begin by studying the object

with th> fa. Just as when discussing the transition amplitude <<?", t”\q\ O , we 
divide the time interval t' to t” into small steps beginning at t \  t l9t29-.-,  tN. 
Choosing th and ta to coincide with the beginning of two of these steps, we may 
use completeness as in (2.7) to obtain

<q\t"\QH(tb)QH(ta) \ q \ 0  = Y\
J= i

J dqj(q \qN, tNy(qN,tN\qN _ l 9  f^-i)  • • •

WEIJ1 OC 2 q
‘

3)p exp —ft"

<<Zb + !> tb + i|(2H('b)teb,fb> • • • <4. + !, t, + i \ G M \ q „ 0  . . . { q i ,  t^q’, f )  (2.43)



N /•

= n  ^V-l) • • • ^ 1? 5 O - (2.44)
i=l J

For a Hamiltonian of the form of (2.8), < ^ +1, tj+1 \qj 9 tj} is given by (2.15). 
Thus,

N r N dp. N
% n  \ d(lj n  T ~ t ^ a exP ^  % IPMj + i -q j te

J= 1 J j = 0 Znn j = 0
(2.45)

Taking the limit iV -> oo with (iV + l)e fixed as in (2.6) we obtain the path 
integral
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oc ® PqitM td  exp i r dr(/?g-//(/?, 4)) (2.46)

for tb > ta, where the integration is over all functions p(t) and over all functions 
q(t) which obey the boundary conditions of (2.19), and the constant of 
proportionality is the same as in (2.18). In deriving (2.46), we have assumed 
that tb> ta. If instead we had assumed that ta> tb, then we would have found 
that

W ',  tlGH(la)QH(tb)k, O  °c j@q j 3>p q(tb)q(ta) exp i h~l J  d t ( p q - H( p , q ) )

(2.47)

for ta> tb. We may summarise (2.46) and (2.47) as

oc <2 >q
• - ■ r

d t(pq-H(p,q))  (2.48)

where the time ordering operation T is defined by

T(Qu(tb)Qn(ta)) =  GhWGhW f°r tb > t*

= QniQQuith) for ta > tb. (2.49)

The constant of proportionality is the same as in (2.18).
The result is easily generalised to a time-ordered product of any number n of 

operators.

<«*. t"\T(QH(t'n) . . .  QH(t'2 )QH(t\))\q', O

OC J2>q 2>pq(t'n) . . .  q(t'2)q(t\) exp ih d t(pq - H(p, q)) (2.50)
■ r



where the time ordering operation T  puts the operators in chronological 
order, with operators corresponding to later times to the left of operators 
corresponding to earlier times.

When the Hamiltonian is given by (2.8), the integrations in (2.45) may be 
performed (formally), as in equations (2.20) to (2.23), to yield the alternative 
path integral representation

<q", t"\T(QH(t'n) . . .  QH(t'2)QH(t\))\q’, t'>

2.3 GROUND-STATE EXPECTATION VALUES FROM W[J] 13

oc 3>qq{Q . . .  q(tf2W i )  exp ih -1 dtL(q, q) (2.51)

where the constant of proportionality is the same as in (2.23), and the path 
integral is over all functions q(t) that obey the boundary conditions of (2.19).

To make the connection with the expectation value in the ground state of 
the time-ordered product of operators, we now introduce times t'+ and r'_ with 
t”>?+>?_>?. Using the completeness of the eigenstates |#'+,£'+> and 

of Qh at times t'+ and t'_,

<q", t"\T(QH( Q . . .  QH(t\))\q’, f'> =  J d q’+ dq'_(q", t"\q’+,t'+)

x <<?;, f +\n Q H( Q . . .  Q M M '- ,  t'~ ><q'-, t'_\q', O .  (2.52)

Introducing energy eigenstates and proceeding in the fashion of equations
(2.27) to (2.33), we see that

lim iq", t"\T(Qn( Q .. .  Q ^ q ' ,  O/<A0(<?", t "W M , <)
t ~ *  -  oo,r"->co

= JdqV j d q '^*(q’+,t'+K q X  t'+\T(QH( Q ...  QH(t\))[q'_, t ' X U q X  if-) 

=  <0|7’(e H(O---GH(f,1))|0> (2.53)

where <0|T(<2h(̂ ,) • • • QhĈ i))!̂ )) denotes the expectation value in the ground 
state of the time-ordered product of operators. (The same qualifications as 
after (2.33) apply.) Combining (2.53) with (2.50),

<0|7X(2H(O-.6H(a|0>

oc Q)q
■I.

®pq(0 ■ ■ ■ q(fi) exp ih 1 d t(pq-H(p,q)). (2.54)

Armed with (2.54) we may now make the connection of ground-state-to- 
ground-state amplitude W[J] with ground-state expectation values of time- 
ordered products of operators Qn. Consider the functional derivative of 
with respect to J(t'2) , . . where the differentiation is in the sense of
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(1.18). Using (2.35),

oc (i h ~ 1)n 2 >q^2 )pq{Q... q(t\) exp ih 1 j" d t(pq-H(p,q)). (2.55)

The constants of proportionality are the same in (2.54) and (2.55), thus

dnW[J]
(2.56)

J(t)=0

We now see that once the ground-state-to-ground-state amplitude W[J~] is 
known, all the ground-state expectation values of time-ordered products of 
operators QH may be generated from it. For this reason, W[J] is referred to as 
the generating functional. The corresponding amplitude in quantum field 
theory is used to generate the Green functions, as we shall see in Chapter 4.

Problems

2.1 Derive expression (2.21).

2.2 Obtain the effective Lagrangian when H  = iP2f(q)-
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16 CLASSICAL FIELD THEORY

with x° = ct. Thus the action

(3.3)

is a functional of the field cp. Note that, since L has the dimensions of energy, S 
has the dimensions of angular momentum, i.e. it is dimensionless if we use 
natural units h = c=  I.

Lagrange’s equations follow by demanding that S is stationary under 
variations of the generalised coordinate q. Thus we must consider an arbitrary 
change in the field <p:

The last term may be integrated and it involves the value of l 8 ^/d(d^q>)]8 (p 
only on the surface of the space-time volume being integrated over. If we 
restrict the permissible variations Sep to those which vanish on this surface, just 
as in deriving Lagrange’s equations we require dq to vanish at tx and t2, then 
this last term vanishes and the functional derivative

If there are several fields cpa associated with each point x, then there is an 
Euler-Lagrange equation for each index a.

It is easy to construct Lagrangian densities to yield any desired field 
equation. For example,

-► (p + S(p. (3.4)

Then
S-+S + 5S

where

(3.6)

If we demand that S is stationary under such variations, then

S(p(x)

and the Euler-Lagrange equations follow:

^ T - 0 (3.7)

(3.8)

2 ’ =\p(Vy){d,y) (3.9)



with p a mass density, gives

d l ?
^ = 0  and ^ r z = P ^ y  (3.10)
dy did„y)

so the Euler-Lagrange equation implies

1
\Jy  = dlld»y=-^-^p:- V 2 y=0  (3.11)

which is just the wave equation.
The electromagnetic field equations are also derivable from a Lagrangian, 

which may be expressed in terms of the Lorentz co variant vector potential Au:

JS?= -H d MAv- d vAMXd'lA ' - d 'A ' l) - j /tA't. (3.12)

Then the Euler-Lagrange equations (3.8) for each component Av give

-  dM(dflAv -  SM") = - j \  (3.13)

This is just the co variant form of Maxwell’s equations, since the v = 0
component gives

V •£=/> (3.14a)

where

£ = - - ^ - V A 0 (3.14b)
c ot

and

P = 7°. (3.14c)

The spatial components give

1 dE
V a  B = -  —  + j  (3.15a)

c ot

where

B = V  a  A. (3.15b)

The two remaining Maxwell’s equations

ld B
V a E = —  —  (3.16a)

c ot

V B = 0 (3.16b)

follow directly from (3.14b) and (3.15b).

3.1 EULER-LAGRANGE EQUATIONS 17



3.2 Noether’s theorem
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One of the advantages of the Lagrangian formulation is that it permits the 
ready identification of conserved quantities by studying the invariances of the 
action 5. The fundamental result behind this statement is Noether’s theorem1, 
which identifies the conserved current associated with the invariance of S 
under a very general infinitesimal transformation.

We consider the variation <55 of

under a general transformation of the coordinates x and the field (p. Suppose

where the infinitesimal <5xM is specified by a set of infinitesimal parameters <W, 
so

As examples we shall later consider the cases when the parameters Sco* specify 
an infinitesimal translation, or an infinitesimal Lorentz transformation. Under 
such a transformation the field <p{x) will, in general, also transform. Thus

Evidently the total variation 3<p(x) derives both from the variation of the field 
function and from the variation of its argument:

q>\x') =  <p'(x 4- <5x)

=  <?'(*) +<5* v(dv<P)

where <50<p is the variation of the field function alone. Thus from (3.21) and 
(3.22), using (3.19),

<50<p(x) =  <5<p(x) — <5xv(dv<p) =  [<Df(x) — (dv<p)A7(x)] <5co\ (3.23)

Then the variation of the action 5 is

where b<£ is the variation in the Lagrangian density caused by the above 
variations of x and <p, and <5(d4x) is the variation of the integration measure

(3.17)

x?-+x!l> = x* + Sxlg (3.18)

d x ^ X f i x )  5co\ (3.19)

<p(x) -* (p'(x’) = cp(x) -f 5(p(x) 

where 5(p is also specified by the parameters Sco1, so

<5<p(x) =  ®i(x) <5co\

(3.20)

(3.21)

= q>(x) 4- 8 0 q>(x) 4- <5xv(3v<p) (3.22)

(3.24)
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caused by the variation (3.18). In fact

=  |d e t[^  + 3v( X f ^ ) ] |d 4x 

= [1 + dli(X?dcoi)-] d4x

d4x' = det

so

S(d*x) = [dfl(Xf  <W)] d4x. (3.25)

The variation bS£ derives from the variations dx and dcp, where S(p in turn 
derives from d0 q> and dx, as specified in (3.23). We have already evaluated the 
variation of the action caused by an arbitrary variation of the field function 
alone in (3.5). (What we are now calling 30(p was called dcp in (3.5).) If q> satisfies 
the Euler-Lagrange equation (3.8), only the second integral on the right-hand 
side of (3.5) survives. Thus

Now, suppose that S is invariant when the variations are parametrised by 
constant dco1 (i.e. ‘global’ transformations). Then, under ‘local’ trans­
formations (in which dco1 depend upon x), SS must have the form

for some jf. Thus in these circumstances we deduce from (3.27) that

5S=  d4xd„0?<W ) (3.26)

where

(3.27)

(3.28)

for arbitrary Sco'ix), so the current j f  is conserved:

This is Noether’s theorem. It follows that the ‘charge’

(3.29)
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is a constant, independent of t, since

£ i( t )= jd 3x d0 j?(x, t)

=  J* d 3x[d„jf(t, * )  -  drj%t, * ) ]

= - j d S rj'(r,., * )

= 0 (3.31)

if we assume that j \  vanishes on the boundary surface. (We have used current
conservation (3.29), and Gauss’s theorem to relate the spatial divergence to an 
integral over the boundary surface with surface element dS.) It is important to 
note that in deriving the current conservation (3.29) we used the Euler- 
Lagrange equation (3.8) for (p. Thus we are free to add toyf any quantity whose 
divergence vanishes by virtue of the equation of motion. Of course, we can also 
add to yf any quantity whose divergence is identically zero, such as

J f s d / r r  (3.32a)

where is an antisymmetric tensor:

77V = — (3.32b)

We have proved Noether’s theorem in the simplest case that <£ is a function
only of a single field q> and its derivative d^cp. If there are several fields <pa 
associated with each point x, then the total variation <I> of each field acquires 
an index a, and it is easy to see that the generalisation of the conserved current
(3.28) is

* - ( <3J3>

3.3 Scalar field theory

The simplest field theory that we shall study is that described by a single real 
scalar field (p(x) having a Lagrangian density

(3.34)

where ja2  and X are constants. The Euler-Lagrange equation yields

(dlldl‘+ n 2 )(p(x)=-&<p3(x). (3.35)

The term on the right-hand side of (3.35) is analogous to the current source j v



on the right of (3.13), except that it arises from the field itself (because of its self­
interaction). In the case that such a term is absent (A=0), (3.35) reduces to the 
Klein-Gordon equation2. Interpreting cp(x) as the wave function of a particle 
with energy E and momentum p, the Klein-Gordon equation gives

- E 2 -\-p2 jt p 2  — 0  (3.36)

showing that the particle has rest mass p. More generally, if

&=^<pWq>)-V(<p)  (3.37)

and if V has an absolute minimum at cp =  v, then

dV

3.3 SCALAR FIELD THEORY 21

dcp

and

d2K
dcp2

= 0 (3.38a)

= jU . (3.38b)

The statement that ‘cp is a scalar field’ describes its behaviour under a Poincare 
transformation. Under such a transformation

x#l-*x '', = A?xv + a v (3.39)

where A? describes a proper Lorentz transformation, and a is a (space-time) 
translation. Then ‘<p is a scalar field’ means that under this transformation

cp(x) -+ <p'(x') =  cp(x) (3.40)

i.e. (p(x) is invariant. Since cp is invariant under an arbitrary Poincare
transformation it is necessarily invariant under an infinitesimal such
transformation.

Consider first an infinitesimal translation

x/i->x'l + £". (3.41)

Then the infinitesimal parameters <5co' may, on this occasion, be chosen to be 
the quantities ev and

X !(x ) = Sj!. (3.42)

Since cp is invariant Sep is zero and, from (3.21),



22 CLASSICAL FIELD THEORY

Then, from (3.33), the conserved current in this case is denoted

(3.45)

In the free field case A=0 and the ‘charge’ is
/%

P v=  d 3x 7 °
%

=  j*d3x [ ( d V ( d v(p) +  d%q>{U<P + P 2<jo)] 

%

=  d 3x(d°<p){dvq>). (3.46)

In deriving this we have added the total divergence cpd^cp] to the
integrand, as we may, and then used the equation of motion (3.35) to eliminate 
the* second term. Since cp(x) is a free field and real we may without loss of 
generality write

where fc0=  + (&2 + ju2)1/2. Substituting into (3.46) and performing several 
trivial integrations gives

which is independent of x° =  ct, as promised. P^ is the energy-momentum 
vector of the field: each mode is labelled by a vector k (with k 2 = n 2) and a(k) is 
the amplitude for a mode having momentum fc, and (2n) ~ 3(2k0)" 1 \a(k) \ 2  d3fc is 
the number of modes having momentum in the element d 3/c around k.

The /i =  0 component is therefore the energy of the field. In general we have

using (3.44) and (3.37). Expressed in this way, as a functional of <p(x) and 7i = 
d<£/d(d0 (p), the energy is called the Hamiltonian H of the field theory, and J f  is 
called the Hamiltonian density. Just as in mechanics, the equations of motion 
may be recast in a form reminiscent of Hamilton’s equations. The first follows

(3.47)

(3.48)

(3.49a)

= d 3x [^ 7r2(x) +  j{dr(p2 ) 2  + V((p)~] =  d 3x J f  = H  (3.49b)



trivially:

Also

and

|3'50)

d0n = dlq> (3.51)
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8 H  - dV
- - V V + — . (3.52)dcp(x) dcp

The Euler-Lagrange equation in this case, is

8 V
(3.53)

which yields the second equation:

a0» - - ¥ . (3.54)

Next we consider an infinitesimal Lorentz transformation

xM -► x M + eMVx v (3.55a)

with

eMV= - £ VM. (3.55b)

The infinitesimal parameters dco1 of (3.21) are now chosen to be the quantities 
— epa, and now

Xpo(x) =  ~  dpXa + S*xp. (3.56)

Since <p is scalar, dcp is zero and, from (3.21),

<!>„(*) = 0. (3.57)

Thus the conserved current (3.33) may be expressed in terms of the energy- 
momentum tensor T, defined in (3.45). We find

M*, = x pT S - X'T» (3.58)

and the associated ‘charge’

M pc = j d 3 xM°pc (3.59)

is the angular momentum tensor of the field.
Noether’s theorem also applies to ‘internal’ symmetry transformations, i.e.

those not involving the space-time coordinates x. To illustrate this we



consider a field theory described by a complex field

<P(x)=-j^[.(p1 (x) + i(p2 (x)'] (3.60)

where <pf(x) (/ =  1,2) are real scalar fields. The Lagrangian density is then a 
function of both fields <pf and their derivatives, or equivalently of <p(x) and its 
complex conjugate <p*(x) (and their derivatives):

JS? = (3„<p*)(d»- p 2 <p*(p -  K(P*<i>)2- (3.61)

By varying with respect to cp* we obtain the Euler-Lagrange equation

3#<(d#ty)= —n 2 (p—2X((p*(p)(p (3.62)

and the complex conjugate equation follows by varying with respect to cp. In 
the absence of any interaction (A=0), clearly cp and cp* describe fields having 
modes of mass p. since

( □ + A ( x )  =  0 (3.63)

as in (3.36).
The internal symmetry transformation that we wish to consider is a ‘global 

gauge transformation’. That is to say, the transformations

cp(x) -* q>\x) = Q~iqA cp(x) (3.64a)

and

<p*(x) q>*'(x) =  ei<?A <p*(x) (3.64b)

where q and A are real and independent of x. (The transformation is ‘global’
because it is the same at all space-time points x, and ‘gauge’ because it alters
the phase of the complex field cp(x).) If A is infinitesimal
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then

and, from (3.21),

Similarly

so

Q~iqA& 1—iqA (3.65)

S<p(x) = -  iqAcp(x) (3.66)

0(x)= —iqq>(x). (3.67)

d(cp*) = (5<p)* (3.68)

®*(x)=[®(x)]*. (3.69)



Since !£ is invariant under (3.64), so is S. Thus the Noether current

ese _ 8 <e _j ̂  = ________ <T)----------------(I)*
8 (8 ^ o) 8 {di<p*)

= (d"<p*)i qq> — ((Mip)\qtp*

= — iq<p* 8  "<p (3.70)

is conserved in this case.
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3.4 Spinor field theory

This is defined as the field theory which yields the Dirac equation3

(i/5 ,-m l)^ (x )= 0  (3.71)

which, it is well known, describes particles with spin angular momentum 1/2. 
In (3.71), \l/ is a four-component column vector in ‘spinor-space’, I is the unit 
4 x 4  matrix and the matrices /  (/i=0, 1, 2, 3) satisfy

{y", / } = y V + y Y = 20"vi- (3.72)

It follows from (3.71) that the Hermitian conjugate field

i/<x)t 3 i/r(x)*T (3.73)

satisfies

il/(x)\ -  id # *  -  ml)=0. (3.74)

Thus

$ x ) s ^ (x )A  (3.75)

satisfies

i^(x)(—1 8 ^  — ml)= 0  (3.76)

provided the matrix A satisfies

/ t A = A/ .  (3.77)

It is easy to see that the matrices

o'! <i- ‘-2-3) <3-78)
where a 1 are the Pauli matrices, satisfy (3.72). In this representation, but not in 
all representations,



Thus in this representation we may take

A =y° =  At. (3.80)

Then
<£= $(x)(i/d,, -  m)\l/(x) (3.81)

is the required Lagrangian density. The Euler-Lagrange equation for \j/ yields 
(3.71) immediately, since

s<e
(3-82)

Alternatively, variation with respect to gives

sse
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< W )

and

=  ̂ (x)iy" (3.83a)

8 S £
— = -mil/(x) (3.83b)

and the Euler-Lagrange equation then gives (3.74), as required.
Under the Poincare transformation (3.39)

x -» x ' =  Ax-ba (3.84)

and the spinor field transforms according to

il/(x) -  i//'(xf) = S(A)\//(x). (3.85)

Thus under an infinitesimal translation ij/ is invariant, and (as in the scalar 
case) the energy-momentum tensor is

= < /a y ^  (3.86)

since 5£ is zero using the Dirac equation (3.71). As before, we may decompose 
ij/ into its Fourier components. Since there are four independent solutions of 
the Dirac equation, two positive energy solutions u(k, ±s) and two negative 
energy solutions v(k, ±s), we may write, without loss of generality,

M*) =  Ti~ Z  5)ŵ ’5) e_ikx + 5) eikx]J (2n) 2k0 ±s

(3.87)

where w, v  satisfy

(1/t—m)u(k, ±  s) =  0 (3.88a)

(t + m)v(k,±s) = 0 (3.88b)



and we are using the Feynman notation

I ( 3 . 8 8 c )  

The vector s is the co variant spin vector satisfying

s2= - l  s-k=0  (3.89)

so that in the rest-frame s = (0, n) specifies the spin direction. Then m, v satisfy

y5 fu(k, ±s)= ±u(k , ±s) (3.90a)

y 5 fo(k, ± s ) = ±  v(k, ±  s) (3.90b)

and are normalised so that

u(k, s)yllu(k, s) =  v(k, s)ytlv(k, s) = 2k ̂ (3.90c)

u(k, s)yfiy 5 u(k, s) = -  v(k, s)y„y5 v(k, s) = 2 msfl (3.90d)
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with

and satisfying
y5 = iy y y y (3.91a)

7s =  1 7„75 + 7s7̂  =  0- (3.91b)r»

In the representation (3.78)

- C .  97s = l r  n )• (3-92)

From (3.75) it follows that

^(x) = j ^ 3 ~ 'Z {b (k ,s )v (k ,s )  e~'kx+a*(k,s)u(k,s)e‘kx} (3.93a)

with

u W y 0 w = wy  (3.93b)

using (3.80). Then, using (3.33), we find the energy-momentum vector

p > =

4

d 3x T °  

d 3k  1
i r r  ~pr\ j  Z  sM fc’ S)K ~ b(k’ s)b*(k, s )k j  (3.94)
2 k 0  (2 n) 3 £

It is at this point that the features characteristic of the spinor field theory 
begin to emerge. We might interpret (27i)~3(2k0)~ 1a*(k,s)a(k ,s)d3k as the 
number of a modes having spin 5 and momentum in the element d3fc around k , 
just as in the scalar case. The trouble is that the second term of (3.94) then 
describes b modes having negative energy. In (traditional) canonical field 
theory the resolution of this difficulty is made by identifying the negative-
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energy modes as positive-energy antiparticle states. We, however, must eschew 
this escape. Following Berezin4 we instead take the quantities a, a*, b, b* to be 
anticommuting (c-numbers). That is to say, we take all pairs of these to 
anticommute. Using the anticommutator notation of (3.72), this means that

{a, a'} =  {a, a*'} =  (a, b'} =  {a, b'*}

= {a*, a'*} = {a*, b'} =  {a*, b'*}

= {b, b'} =  (b, b'*} =  {b*, b'*} = 0  (3.95a)

where

a = a(k,s) a' = a(k', s') etc. (3.95b)

Mathematicians call such anticommuting variables elements of a Grassmann 
algebra. In the scalar field case we tacitly assumed that a and a* were ordinary 
commuting c-numbers, and the reason for the different treatment of the spinor 
field stems ultimately, of course, from the spin and statistics theorem5; the 
scalar field describes spin zero and therefore boson particles, while the spinor 
field describes spin 1/2 and therefore fermion particles. This device therefore 
evades the positivity problem by making the energy a Grassmann variable, 
rather than a real number, and consequently not something whose positivity, 
or lack of it, can be enquired about. Thus it is clear that in this approach spin 
fields are essentially non-classical. We know that in quantum mechanics we 
may only ask what the expectation value of the energy is and this, when we 
have learned how to make the transition to quantum mechanics, had better be 
a real positive number.

We shall see in Chapter 4 that the formulation of the quantum version of 
scalar field theory is achieved by means of a functional integral over the 
classical scalar field configurations. We therefore anticipate that 
generalisation of spinor field theory to a quantum field theory will require 
functional integration over classical spinor field configurations. Since we have 
just decreed that the classical spinor field is a Grassmann variable, functional 
integrals over them involve certain peculiar aspects of which it is as well to be 
forewarned. We therefore digress briefly on differentiation and integration 
with respect to Grassmann variables. We start with two such variables a, b 
satisfying

{a, a} =  (a, b} = (b, b} = 0 (3.96)

so that a 2 = b2 =  0. Without loss of generality any function f(a, b) may 
therefore be written

f (a,b)  = f 0 + f 1a + ] ‘1b + f 2ab (3.97a)

=  /o + / i a + i > - / 2&a (3.97b)

where f 0, f t , }■i, f 2 are ordinary c-numbers. Differentiation is defined in an
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obvious way:

<3/ (3.98)

except that we must be careful to respect the anticommutativity of a, b. Thus

df
db = 7 i - / j a

using the second version (3.97b) of /. It follows that

d2f  d2f
da db db da =  - / 2.

(3.99)

(3.100)

We may also define integration with respect to Grassmann variables. 
Obviously we shall want it to be a linear operation, and the ‘infinitesimals’ da, 
db will also be Grassmann variables, so that

{a, da} = {a , db} = {da, b} =  {da, db} = 0. (3.101)

Multiple integrals will be interpreted as iterated integrals, so that we may 
compute

Ida d bf(a,b) = da db f(a, b)

provided we know the basic single integrals j  da and j  da a. Now

da ) = daXJdb da dfr= — dfe da = — da

so

Ida = 0.

(3.102)

(3.103)

Then, as there is no other scale to Grassmann variables, we are free to define

I da a =  1. (3.104)

From (3.103) and (3.104) we see that integration is the same as differentiation 
for Grassmann variables. With the parametrisation (3.97) we find

da db/(a, b) = - / 2 = d2f
da db

(3.105)

The generalisation of these results to countable numbers of Grassmann 
variables is straightforward, and even the generalisation to Grassmann 
functional differentiation and integration is not especially difficult, once the
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ordinary functional calculus has been mastered. We defer discussion of the 
functional aspects to Chapter 8. Finally we note that there is no distinction 
between definite and indefinite integration with respect to a Grassmann 
variable.

Let us now return to the main problem in hand: the formulation of classical 
spinor field theory. We consider next the behaviour of the field under an 
infinitesimal Lorentz transformation (3.55)

Under such a transformation the matrix S(A) of (3.85) is given by

and it follows from (3.21) (taking the infinitesimal parameter to be — epa) that

Thus the conserved current (3.33)—the angular momentum density tensor 
M $a—is given by

Clearly the first two terms describe the orbital angular momentum in the field, 
while the last term is its spin angular momentum.

The Lagrangian (3.81) is also invariant under a global gauge transformation 
analogous to (3.64)

(3.55a)

with the infinitesimal satisfying

(3.55b)

S(A) =  l- i i£ " v<TMV (3.106a)

where

(3.106b)

Thus, using the notation (3.20)

<5ip(x)= - -  e T o ^ x ) (3.107)

<^<7=2 <7̂ W - (3.108)

M% = x pT ^ - x aT^ + iA(*)y"KXx> (3.109a)

and the angular momentum of the field is

(3.109b)

ip(x)=e-'qAil/(x) 

\j/(x) = e,,A ifi(x).

(3.110a)

(3.110b)
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In this case, since

0(x) = — i qi//(x) (3. I ll)

and dJ&/0(9^)  is given by (3.83), the conserved Noether current is

- q ^ y ^ .  (3.112)

We shall see in Chapter 8 that this is indeed (minus) the electromagnetic 
current which is coupled to the electromagnetic field.

The four-component (Dirac) spinor field theory with which we have so far 
concerned ourselves is certainly the most economical description of spin 1/2 
particles with non-zero mass. Indeed we shall see in Chapters 8 and 9 that the 
electron field in quantum electrodynamics (q e d )  and the quark fields in 
quantum chromodynamics ( q c d )  are all described by Dirac fields. The reason 
is that the four-component field provides a representation of the ‘parity’ 
transformation, i.e. space reversal x  -► -  jc. To see this we note that the parity- 
transformed field ^ p(x°, x) may be written as

(Ap(x°,jc) =  eyV(x°, -  jc) (3.113)

(where e is a phase factor) since ij/p then satisfies

(iy^dp — m)il/p(xp) = 0 (3.114a)

where

xp= (x ° ,- x )  3P= - ^ .  (3.114b)

Since parity is conserved in q e d  and q c d , the use of Dirac fields provides an 
economic realisation of this symmetry.

It is well known that weak interactions do not conserve parity. A particular 
manifestation of this is provided by processes involving neutrinos and 
antineutrinos. Neutrinos are observed only in a left-handed helicity state; the 
right-handed neutrino state, even if it exists, is not observed in weak processes. 
Similarly the antineutrino is observed only in a right-handed helicity state, 
never in the left-handed state. Helicity is a Lorentz-mvariant quantity only for 
massless particles, whereas a massive particle having right-handed helicity 
(say) in one inertial frame will have left-handed helicity in an inertial frame in 
which its momentum has opposite direction. Now, it may be that (some) 
neutrinos and antineutrinos are indeed massless. Thus for spin 1/2 neutrinos 
with zero mass, the use of a four-component Dirac field is at best a luxury and 
at worst can lead to confusion if the uncoupled modes do not even exist. In any 
event, we need to revise the specification (3.90) of the spin eigenstates, since for 
a massless particle there is no rest frame. However, the helicity, defined as the 
component of angular momentum (J) in the direction of momentum (k), 
always exists. For massless particles we can show that it is proportional to the 
matrix y5, defined in (3.91).
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Let \j/(x) be any solution of the massless Dirac equation. Without loss of 
generality we may write it in the form

Now since il/(x) satisfies the massless Dirac equation, so does y 5 i//(x) (since y 5  

anticommutes with y j ,  and so therefore do \l/L(x) and ij/R(x). These solutions \j/L 
and \j/R are called ‘Weyl spinors’. They each contain two components, as can be 
made explicit if we use a representation of the y-matrices different from that 
given in (3.78). In the Weyl representation

In this representation the Weyl spinor (i/fR)a has (two) non-zero upper 
components a =  1,2, and (ij/L)a has two non-zero lower components a = 3,4. 
The (four-component) Dirac spinor field is the sum of two (two-component) 
Weyl spinors.

As in (3.87) we may decompose i//L and ij/R into their Fourier components

where m(/c, h) and v(k, h)(h= ±  1/ 2 )  are positive and negative energy solutions 
of the massless Dirac equation

(3.115a)

i/'rW = 2(1+ 75) ^ ) -

(3.115b)

(3.115c)

Then ij/L and \f/R are eigenvectors of y5, since

ys'pR='l'R ?5 V>L= — <Al- (3.116)

(3.117)

so that

(3.118)

( 0  W 0  (fl(fe’ + )u(k' +^ e ~'kx+b*{k' + 2) e‘kx> (3.119a)

(M*) = - ) u ( k , - j ) e ~ ik* + b*(k, -)v(k, -i)e**) (3.119b)

fiu(k, h) = 0 = jlv(k, h) (3.120a)

satisfying

ysu(k,h) = 2 hu(k,h) 

y 5 v(k, h) = 2 hv(k, h)

(3.120b)

(3.120c)



and normalised so that

u(k, h)y^u(k, h) = v(k, fy y ^k ,  h) =  2k/i. (3.120d)

From (3.109) we see that the total spin of the field ij/(x) is given by
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*S>r —

Thus the spin vector 5, defined by

Sk=±eijkSij (3.122a)

is given by

i - i j .‘S'M  =  2 I d3xi//(x)yy5i/̂ (x). (3.122b)

For the Weyl field this gives 

f d 3/c 1
( 2 tt) 3 2 k 0

[a*(k, + )a(/c, + )ft + b(/c, 4- )b*(k, + )Jk] (3.123)

Evidently the (positive energy modes of the) field if/R has positive (i.e. right- 
handed) helicity, since the orbital angular momentum is always perpendicular 
to k .  Similarly \/j l  has negative (i.e. left-handed) helicity. Hence the labels ‘l ’

and ‘r \  Notice also that (in the Weyl representation) y° interchanges left and
right as it should since it represents the parity transformation. As anticipated, 
y 5 gives twice the helicity.

It is easy to see that when m = 0 the Lagrangian (3.81) is the sum of two 
contributions, one from each Weyl spinor

i?  =  $iy,,d)lilt=xk<T'‘dllxti+xlic'‘&‘Xi. (3.124a)
where (in the Weyl representation)

*“ = Cl) (1124b)
and

cr/i = (l,<r) (3.124c)

<F* = (1, -a).  (3.124d)

3.5 Massless vector field theory

It is clear that Maxwell’s equations

3„(3M v- d vA^)=jv (3.125)

discussed in (3.12) and thereafter, do not completely specify the vector
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potential A^x). For, if A^x) satisfies (3.125), so does

A>\x) = A»(x) + & A(x) (3.126)

for an arbitrary function A(x). (We shall see later that this is associated with a 
‘local’ gauge invariance related to the global gauge invariance already 
discussed.) It is clear also that both vector potentials yield the same E  and B  
fields, since E  and B, defined in (3.14b) and (3.15b), are invariant under the 
substitutions

This lack of uniqueness of the vector potential for given electric and magnetic 
fields generates difficulties when, for example, we have to perform functional 
integrals over the different field configurations. The lack of uniqueness may be 
reduced by imposing a further condition on A “, besides those required by 
(3.125). It is customary to impose the ‘Lorentz condition’:

which is clearly the unique covariant condition which is linear in A. 
(Occasionally non-covariant conditions, such as =0, are also encountered
in the literature but we shall not have recourse to them.) Even the imposition of 
the Lorentz condition does not completely fix the vector potential, since if A 
and A  are related as in (3.126), then they will both satisfy (3.128) if

The imposition of the Lorentz condition (3.128) is achieved in a Lagrangian 
formalism by the use of a Lagrange multiplier <J. The Lagrangian of the 
electromagnetic field is modified by the addition of a ‘gauge fixing term’ 
—(1 /IQUdpA11)2. Thus instead of (3.12) we have

Aq —► Aq — Aq +  8 0  A 

A->A' = A - V  A.

(3.127a)

(3.127b)

dfiA»(x) = 0 (3.128)

□ A s ^ A  =  0. (3.129)

(3.130a)

(3.130b)

(3.131)

Provided the current j  is conserved, it follows that

□  (<3^) =  0. (3.132)



Thus if 8  ̂A* and (d/dt)(dflA,‘) vanish at one time t0, it follows from (3.132) that

dpA“= 0 (3.133)

for all times. Then (3.131) reduces to Maxwell’s equations, which, when (3.128) 
is satisfied, may be written as

\ J A '= r .  (3.134)

As anticipated, this equation is also satisfied by A" + dvA if □  A =0. It follows 
from (3.130) and the Lorentz condition (3.128) that

1
-= -F>“— -g>‘'’(dlAx)= - F " v. (3.135)
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d id p A ,)  T

Under the Poincare transformation (3.39)

x->x '  =  Ax +  a (3.136)

and the vector potential transforms as

A*(x) -  A^(x')= A A ’(x). (3.137)

Thus AM is invariant under an infinitesimal translation and the energy 
momentum tensor is

d(dpAv)

= -F>"dxA y + 5'&Fpi,F<>° (3.138)

in the free-field case / = 0. Decomposing A into Fourier components gives

Ap(x) =  J (0 -2^ K W  e~fa + a*(k) eto) (3.139a)

where k 0  = \k\, from (3.134), and

k-a(k) = 0 (3.139b)

using the Lorentz condition (3.128). Proceeding as before we find that the 
energy-momentum vector

’ d3fc 1
d3xTv° = [ -a*(k) • a(/c)/cv]. (3.140)

(2;r)3 2 k 0

We cannot immediately identify (27r)_3(2/c0)-1[~a*(fc)*a(/c)] d 3/c as the 
number of modes having momentum in the element dfc around k, since 
— a*(k) • a(k) is not obviously positive definite. However, the Lorentz condition 
(3.139b) implies that

a0 (k) = k*a(k) (3.141)

where k  = k/\k\. Thus the time component of a  ̂ equals the longitudinal



component a-£, so that a*(k) • a(k) is given entirely by the transverse 
component

a± = a — a-k k (3.142)

and

-  a*(k) • a(k) =  -  «*(*;) k  a(k) k  + a*(k) •a(k)

= «J(k)-«i(k). (3.143)

Thus the Lorentz condition ensures that the ‘time-like’ photons are cancelled 
by the ‘longitudinal’ modes leaving a non-negative energy, as required. Now, 
any function A(x) satisfying (3.129) may be written as

AM = J ^ 3  2^ -  (Mh) e_ikx + A*(k) eikx) (3.144)

so the residual ‘gauge invariance’ allows us to replace a/i(k) by

a'n(k) = a^k) -  ik^(k). (3.145)

Thus we can always ‘choose a gauge’ in which

a'o(k) =  a'(k) -k = 0 (3.146)

and the only non-zero components are the transverse ones. In this gauge

<Mfc)= I  a (M )M M ) (3.147)
A =  1 , 2

where clt(k. 1), t^k, 2) are two orthonormal space-like vectors in the plane 
transverse to k :

£o(M ) = 0 (3.148a)

e(k,2)-s(k,A') = 5u. (3.148b)

e(k, 1) A g (/c , 2)= £  (3.148c)

k-e(k,X)=0 . (3.148d)

36 CLASSICAL FIELD THEORY

Then substituting into (3.140) we find

d 3fc 1
(2 n)3 2 k 0  x^t , 2  

Under an infinitesimal Lorentz transformation

£  a*(k,X)a(k,X)K (3.149)

x 11 -*■ x'l,= x f, + £ll',x v (3.150a)

with the infinitesimal satisfying

(3.150b)
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Then, using the notation of (3.20) and (3.21)

dA'ix^eTAJix)  (3.151)

and

(3.152)

The angular momentum density tensor is thus

M t'= x pT ! - x aT!+F'"(gv A ' - g v<JAp). (3.153)

As in (3.109) the total angular momentum is composed of both orbital and spin 
contributions. With the gauge choice (3.146) it is easy to see that the total spin 
of the field

Spa = j*d 3 xF 0 v{gvpA<, - g v<,Ap)

= ■ 2/c0  W fc)a^ ) - a SfcK(k)]- (3.154)

Then the spin vector

S, = y mSpu (3.155)

may be expressed entirely in terms of the transverse modes defined in (3.147).

S = i j | ^ ^ - [a*(/c, l)a(k,2 )~a*(k,2 Mk, 1)]*

’ d3/c 1
(2tt)3 2 k 0

[b*(k, +)b(k9 + ) -b*(k 9 - )b(k, - ) ] k  (3.156a)

where

h(fc, ± )= -^ 2  \a(K l )± ia(k,2)]. (3.156b)

Clearly the modes associated with h(fc, ±) have positive (negative) helicities.

Problems

3.1 Under an infinitesimal scale transformation (dilatation) dx,i = ocxfi and 
d(p(x) = Dotcp(x), the a is infinitesimal and D is constant. Show that the action 
for the massless real scalar field <p(x) is dilatation invariant (in four space-time 
dimensions) provided D= — 1.

3.2 Generalise the result of problem 3.1 to the case of d space-time 
dimensions, and for a spinor field \j/{x).
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3.3 Identify the Noether current associated with the dilatation invariance of 
a massless real scalar field theory, and verify that it is divergenceless using the 
field equations.

3.4 Show that the action for a massless spinor field is invariant under the 
‘chiral transformation’, in which <5x^=0 and 5^(x) =  iay5̂ (x), with a an 
infinitesimal. Find the Noether current associated with this transformation.

3.5 Repeat the analysis of the massless vector field theory using the gauge 
condition tflA tl = 0, where Ms a unit time-like vector.
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q>(t\x) = (p"(x) (p(t',x) = (p'(x). (4.3)

Notice that the path integral is over classical fields <p(t, x) and n(t, x), not over 
operator fields.

If an external source term J(t, x)cp(t, x) is subtracted from the Hamiltonian 
density J f  (n, <p), then we may discuss the transition amplitude from the ground 
state at time — oc to the ground state at time + oo, in the presence of this 
source. In the case of relativistic quantum field theory, we shall refer to the 
ground state as the vacuum state, since creation and annihilation of particles 
can occur in relativistic systems, and we would expect the lowest energy state 
of the theory to contain no particles. (Of course, this lowest energy state cannot 
necessarily be obtained in practice, because, for example, of baryon number 
conservation in fermi systems.) We denote the vacuum-to-vacuum amplitude 
in the presence of the source by W\J], By analogy with (2.35), we assume that

WIJ] = N  lim
♦ o o , t '  ->  -  oo

Sxp Q)n

x exp ih 1 dr d3x(7i dQ(p — J f  (71, cp) -1- J(p) (4.4)

where again the path integral is over all functions n(t, x) and over functions 
<p(f, *) obeying the boundary conditions of (4.3). The normalisation factor N  is 
chosen so that W [J] = 1 when J  =  0. Also by analogy with (2.56),

3J(xi). . .  5J(xn) J( jc )  = 0

where

i=  1 ,..., n

(4.5)

(4.6)

and |0> denotes the vacuum state. We shall refer to the vacuum expectation 
value of a time-ordered product of n field operators as an n-particle Green 
function, and use the notation

. .,x„) =  <0|T(<p(x1) . . .  <p(x„))|0>.

Thus

5nW[_J]

(4.7)

(4.8)
J(x) = 0

We shall see, in Chapter 5, that the Green functions are of the utmost 
importance, since the n-particle Green function defined above is directly 
related to the scattering amplitude involving a total of n incoming or outgoing 
spin zero particles. We can therefore calculate these scattering amplitudes by 
first evaluating IF[J] using (4.4) and then obtaining 9 (x l9. . . ,xn) from (4.5). 
Using (4.8) and the symmetry of 9  in its variables, we may make the expansion
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n =  0

d4x t ... dAxn̂ {n\ x x, . . . ,  x„)J(Xi). . .  J(xn) (4.9)

where the n = 0 term is 1.
As in §2.2, we may define the continuation WE\J~\ of W\_JT] to Euclidean 

space by introducing the variables

x =  (x0,x) = (ix0,x) (4.10)

and rotating the integration contour in the complex x0 plane. (Recall that we 
have set c= 1, and consequently there is no distinction between x0 and t.)

We[J]= N @<p ^rcexp — ft 1 J d 4x^ — \ n ^ r  + — Jcp (4.11)

where the volume integration is over all four-dimensional Euclidean space, 
and the path integral is over all functions n(x), and over functions <p(x) obeying 
the boundary conditions

lim (p(x) = cp'(x) lim <p(x) = <p"(x) (4.12)
X0-> 00 Xq-* — 00

where <p'(x) and (p"(x) may be chosen arbitrarily, as in §2.2. In particular 
they may be chosen to be zero. The Euclidean space Green functions will 
be given by

SnWE[J]
s j i x j . - . s j a j

(4.13)
J ( x ) = 0

(For the Euclidean generating functional, a functional differentiation with 
respect to J  pulls down a factor h~l<p, whereas for the Minkowski space 
generating functional a factor ift_1<p was produced.)

The corresponding functional expansion is
0° h -n r r

W'eW = I  —  d4x , ... d *x Hn \ x l , • • ; X n)J (x , ) . . .  J(xn) (4.14) 
n = 0 n ’ J J

where the n = 0 term is 1.
In the special case where the Lagrangian density has the form

jS?(<p, d„(p) = ■— (d0<p)2 + F(<p, V<p) (4.15)

where F is an arbitrary function, the Hamiltonian density takes the form
h - 2

y = ̂ - n 2-F{<p, V<p). (4.16)

The path integral in (4.11) is then

WE[f] = N j&<p J^7rexpj^ — ft 1 jd 4x^ —i7 r^ -  + — — F(<p, V(p) — Jcp̂ j

(4.17)
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The path integral over n may be carried out explicitly as follows. We have to 
evaluate

/ = J^7texp£ — h 1 Jd 4x^-i7c^-+^ft 2n: (4.18)

This is of the form 

/  =

with 

and

3)n exp^ — \  J d 4x' J d4xn(x')A(x'9 x)n(x) + J d 4xp(x)7c(x)^ (4.19)

A(x\  x) =  h 3<54(x' —x) 

p(x) = ih~~l dq>/dx0.

Using (1.14) we see that

/  oc exp

Returning to (4.17), the Euclidean generating functional is 

WeIJ] = N'

and in terms of the continuation of (4.15) to Euclidean space 

WEIJ]>

Continuing back to Minkowski space,

| = N' j@<p exp h 1 j*d4x(i?E + J<p).

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

WIJ^ = N' J ^ e x p i / i - 11  dt \d3x( ^ ( v ’^ ) +J(py (4.25)

The normalisation factor N f is to be chosen so that W[J~] = 1 when J= 0 . This 
is a simpler alternative to (4.4) when the Lagrangian is of the special form
(4.15). Otherwise, it is necessary to perform the integral over n first. W{JT\ may 
then be cast in the form of (4.25), but with 5£ replaced by an effective 
I agrangian which in general differs from if .

4.2 The generating functional for free-field theory

In the case of the free-field theory of a scalar field it is possible to evaluate the 
generating functional exactly. We shall see in Chapter 6 that in the case of the



interacting scalar field, the best we can do is to evaluate the generating 
functional approximately by expanding in powers of the coupling constant, 
starting from the exact result for the free-field theory. The free-field 
Lagrangian is as in equation (3.34) with X=0
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In order to perform an unambiguous calculation, we continue to Euclidean 
space, evaluate WE\_J] and then continue back to Minkowski space. The 
Lagrangian is of the form of (4.15) and equation (4.24) for WE[J] is applicable. 
The continuation of the Lagrangian to Euclidean space is

where the constant of proportionality has been chosen so that WE[ f\  =  1 when

(4.26)

(4.27)

This is of the form

WE[_J~] =  N' @(p exp d*x(p(x')A(x\ x)cp(x)

with

(4.31)

and

p(x) = h 1J(x). (4.32)

Using (1.14)

(4.33)

J = 0.
We adopt the notation

Af (x '—x) = h iA (4.34)



and refer to Ap as the Feynman propagator in Euclidean space for the scalar 
field. (We see shortly that it is a function of x' — x alone.) Thus, we write

w yy] =  e x p ^ -  J*d4x' J d 4xJ(x') Ap(x'-x)/(x). (4.35)

To evaluate the inverse of A -1 we Fourier transform by using the 
representation for the Dirac 5 function

<5(x' -  x) = J  " ^ 4  e x p [i/r1 p • (x' -  x)] (4.36)

where the scalar product in Euclidean space is defined by

p ■ x  = p0x0 + Pi xx +  p2 x 2 +  p3.x3. (4.37)

Then

f  d4 -
A (x \x) = I exP " 1P‘• (* '“ *)] x h ~ \ p 2+ n 2) (4.38)

with

P2 = Po + Pi+Pi + P l  (4.39)
The inverse is

f d V
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A 1(x',x) = (2nh)4

Returning to (4.34) we may write

d4p

exp[ih lP '(x '-xJ]  x h(p2+ p2) l . (4.40)

AF(x' — x)

with

(2nh)A
exp[ih *p • (x' -  x)] x KE(p) (4.41)

Ap (p) = (p2+ /i2)"1. (4.42)

Now that we have evaluated WE\_J] we may continue back to Minkowski 
space to obtain

W[J] =  exp ̂  ~  | d 4x ' | d 4x J(x')Af(x' -  x)J(x)^ (4.43)

with

d4p
Af(x' — x) =

and

exp[ - ih V ’fx '-x J jx A ^ p ) (4.44)(2nh)4

AF(p) = (p2- p 2 + i 8 )-1. (4.45)
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The analytic continuation in x and x' has been made as in (4.10), and the 
continuation in p has been made by writing

P = (Po.^) = ( — iPo, P) (4.46)
All scalar products are now defined as appropriate to Minkowski space. The 
x0, x'0 and p0 integrations have been rotated from the imaginary axis to the real 
axis, and, in rotating the contour for the p0 integration, the ie of (4.45), with 
e -► 0 +, has been introduced. This is necessary to avoid correctly the poles in p0 
when p2= p 2.

An alternative way of deriving the generating functional for the free-field 
theory is to add to the Lagrangian in (4.25) a term jizip2 (with e -> 0 +) to 
guarantee convergence of the path integral. Thus,

W[J] = N' j k p e x p i f r 1 | d 4x^ ^ , + J<p +^i£<p2̂ . (4.47)

With <£ given by (4.26), the free-field generating functional is derived by 
Fourier transforming. We shall not pursue this approach here since it does not 
generalise to the fermion field and gauge field cases.

4.3 Green functions for free-field theory

Now that we have evaluated the generating functional for free-field theory 
(equations (4.43) to (4.45)), the corresponding Green functions may be 
calculated by functional differentiation as in (4.8). Thus

y (2)(xl , x 2) = ihAF(x1 — x2) (4.48)

&i*Xx1, x 2, x 3, x 4 ) =  (ift)2[AF(x1 - x 2)AF(x3 - x 4 )

+ Af(x! — x3)Af(x2—x4)

+ Apfrj -  x4) Af(x2 -  x3)] (4.49)

and so on, with ^ (w) = 0 for n odd.
We may represent these results diagramatically by using a line with end 

points x and y to symbolise ih AF(y—x).

ihAF( y - x ) = ~  ;  (4.50)

Then

&i2)(x1, x 2)= x2 (4.51)

and

^ (4)(x1,x 2,x 3,x 4) = ;f2 X1 * (x3~*x2) . i x ^ x 2) (4.52)
XU x3
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From (4.44) it may be deduced directly that

(h2 dvdv+fi2) AF(x—x') =  -S (x  — x'). (4.53)

Thus, AF(x—x') is the Green function for the operator (ft2 dvdv+ /i2) with the 
boundary conditions implied by the is in (4.45). It is therefore associated with 
the propagation of solutions of the Klein-Gordon wave equation

(ft2 dvdv+fi2)(p(x) = 0. (4.54)

Since this is the classical field equation for a neutral free scalar field, we 
conclude that AF(x—x') is associated with propagation of neutral scalar 
particles from x! to x. We should therefore expect ^ (4)(x1,x 2,x 3,x 4) to be 
intimately connected with the scattering amplitude for a process involving a 
total of four incoming or outgoing neutral scalar particles. We shall see in 
Chapter 5 that this is indeed the case.

We shall find it convenient from now on to work for the most part in units 
where ft = c =  1. (We are already working with c == 1.) Fourier transforming the 
Green functions to momentum space we write

P„)(2n)* S(p1+ . . .+  pn)

=  j d 4X!...  J d 4x„ exp[i(p! • Xj+ . . . + p„• x j ]  x 9 in\ x l t . . .,x„). (4.55)

The Dirac 5 function factor occurs because translation invariance implies that 
, . . . ,  x„) depends only on the differences of the x*. From (4.48), (4.44) and

(4.45),

^ (2)(P, -P) = i^ F(p) = i(p2- y 2 + ie)~1. (4.56)

(Because of the Dirac <5 function in (4.55), @(2){pi,p2) is defined only for 
P i+ P 2=0.)

Diagramatically we symbolise iKF(p) by a line with an associated 
momentum.

^ (2)(P, -p )  =  i AF(p )=  — —  (4.57)

The free-field Green function symbolised in (4.52) is a disconnected object. It 
is often convenient to study instead the so-called connected Green functions. 
These are constructed by first introducing a generating functional X \J]  for 
connected Green functions, defined by writing

IF[J] = eix[J]. (4.58)

The connected Green functions G(n)(xl9.. .,x„) are then defined through the 
functional expansion
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Thus

dnX\_J]
SJ(Xl) . . .5 J (xn) 

In the free-field case (4.43) means that

(4.60)
J ( X )  -  O

h MiX [J] = - -  d4x' d4x J(x') AF(x' -  x)J(x) (4.61)

and the only non-zero connected Green function is G(2). Thus for the free-field 
theory

G(2)(x1,x 2) =  iAF(x1 ~ x 2) =  ̂ (2)(x1,x 2). (4.62)

When we include interactions in Chapter 6 we shall see that there are 
connected Green functions involving more than two scalar particles. We may 
Fourier transform the connected Green functions to momentum space in exact 
analogy with (4.55)

& n\ P i p „ ) ( 2 n ) A 5  ( P i  +  . - . + P n )

= j d 4X!... J  d4x„ exp[i(pj ■x1 + ... + p„-x„)]x GM(Xl , x „ ) .  (4.63)

4.4 The effective action and one-particle-irreducible Green functions

The developments of this section2,3 require the introduction of the quantity 
<pc(x), referred to as the classical field, and defined by

SX[J1
(464)

(It should be borne in mind that cpc(x) is a functional of J.)
From (4.5),

^ a - K O ^ I O ) ,  (4.65,

where <O|0(x)|O>j is the vacuum expectation value of the field operator in the 
presence of the source J. Thus, using (4.58),

^cW = <0|(p(x)|0>y/<0|0>y (4.66)

where we have used the notation

^ [7 ]  = <0|0>, (4.67)

for the vacuum-to-vacuum amplitude in the presence of the source J. In the 
absence of the source, cpc(x) is just the vacuum expectation value of the field 
operator.



The effective action T[(/)c] is then defined by

J  =  X [J] -  fd4x J(x)<pc(x). (4.68)
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(This equation is completely analogous to the thermodynamic equation 
E = F + T S  which expresses the energy E regarded as a function of S in terms of 
the free energy F regarded as a function of T.)

By making a functional differentiation with respect to J(x) and using (4.64), 
we see immediately that T[<pJ depends only on <pc, as the notation implies.
Just as q>c can be obtained as in (4.64) as a functional derivative of X [J], so J
may be obtained as a functional derivative of

J (X )=  - 7 - 7 - 7 -  (4.69)0(PC(X)

In the case of free-field theory, we may obtain (pc(x) from (4.61). Thus

fA p ( x - x V ( 4  (4.70)(pc(x)= -  j d V ,

Since AF(x — x') is the Green function for the operator dvdv + ju2 (see (4.53)), we 
have

(dvdv+ii2)(pc{x) = J(x). (4.71)

This is identical to the classical field equation in the presence of a source J, and 
it is therefore appropriate to refer to cpc(x) as the classical field.

We may now calculate T[<pc] explicitly for the free-field case, because we 
already have an exact calculation of X I  J] in equation (4.61), and because (4.71) 
allows us to eliminate J  in favour of cpc. Thus, integrating by parts and using
(4.53) we find

r[<Pc]= J d *x <pc(x)(dvd '+ n2)<p0{x)

(%

d 4x(dv(pcdv<pQ- f i 2(p*). (4.72)““ 2

This is exactly the action for the classical free-field theory discussed in Chapter 
3, thus justifying referring to r[<pc] as the effective action.

In the case of an interacting field theory we will be unable to calculate <pc(x) 
and T |> c] exactly, and there will be quantum corrections to (4.71) and (4.72). 
In general, we make the functional expansion

n > c ]=  E  £  J d 4x t . . .  JV x„  r ^ X j , . . X > c(x ,). . .  <pc(x„). (4.73) 

The coefficients T(,,) in this expansion are referred to as one-particle-
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irreducible (o p i ) Green functions. We see later in the interacting field theory 
that the Feynman graphs involved in the calculation of r (n) are all connected, 
and, moreover, cannot be made disconnected by cutting a single internal line. 
They have also had any factors coming from external lines divided out.

In the free-field theory, we see from (4.72) that the only non-zero o p i  Green 
function is

r (2)(x', x) = (5jf dvx. + n2) S(xf -  x). (4.74)

We may Fourier transform the o p i  Green functions to momentum space by 
analogy with (4.55)

P [B>(Pl, • • • > Pn)( 2rc)4 <5(Pi+■■•+/>„)

=  j V * ! ...  j*d4x„ exp[i(p! • x 1. . .+pn ■ x„) r B)(xl5. . x„). (4.75)

Thus

f  (2)( p , - p ) = - ( p 2-M 2). (4.76)

This is consistent with the above remarks about the interpretation of o p i  

Green functions.
Alternatively, we may expand in powers of momentum about zero 

momentum. Written in position space this is an expansion of the type

r W  =  J d 4x (  -  V(<pc) + Â -  dv<pc d'cpc + . . . )  (4.77)

where V(q>c), A(q>c) etc are functions of cpc (not functionals).
The coefficient V(cpc) is referred to as the effective potential. In the case of a 

classical field <pc{x) which is constant in space and time, we may use (4.69) to 
write

dV
= (4.78)

&<Pc
In particular, if we set the source term J  to zero, cpc has the significance of the 
vacuum expectation value (v e v ) of the field operator, and

dV
—  = 0. (4.79)
d<pc

Thus once we know the effective potential, (4.79) is an equation which may be 
solved for the v e v  of the field operator. In other words, the v e v  of the field 
operator, taking account of quantum corrections, may be obtained by
minimising the effective potential. (If (pc(x) were to vary in space or time we
would instead have to calculate the v e v  of the field operator from the more 
general equation (5 r/d(pc=0.) Strictly speaking, (4.79) only tells us that the v e v  

of the field operator has to be a stationary point of V(cpc). However, it is
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possible to show3 that V((pc) has the interpretation of the expectation value of 
the energy density in the state for which the v e v  of the field is cpc. Thus, in the 
true ground state, or vacuum state, cpc must be the absolute minimum of the 
effective potential.

In the free-field case (4.72) means that

n<Pc)=y<Pc2. (4.80)

In this case, minimisation of the effective potential shows that the v e v  of the 
field operator is zero. However, in Chapter 12 we shall discuss certain 
interacting field theories where a non-zero v e v  occurs.

It is sometimes useful to have an expansion of the effective potential in terms 
of Green functions. This is obtained by using the inverse of (4.75) in (4.73) (see 
problem 4.3) and is

V(cpc) =  -  £  -  f  <n)(0,.. . ,  0)<?" (4.81)
n= 1 nl

Problems

4.1 Check in detail the analytic continuation involved in going from (4.41) to
(4.44).

4.2 Carry through the alternative derivation for the free-field generating 
functional by adding a term jiecp2 to the Lagrangian.

4.3 Derive the expansion (4.81) for the effective potential.
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are, of course, the wave functions corresponding to the initial and final states. 
We can expand them in terms of the momentum eigenstates |p>s. Then

t )= jdp<qr, r|p>s s<p|a> =  Jdp  s<^|e_iH'|p)s Ca(p) (5.4a)

where we have used (2.4) and denoted

<p\a> = Ca(p) (a =  i, f)- (5.4b)

We now assume that the potential V(q) has a short range and is negligible when 
\q\ > R0. We are concerned with the scattering from an initial state |i>, which 
describes a particle well outside the range R0 of the potential, to another such 
state |f>. The S-matrix element Sfi is defined as

S f i =  l / f j ( +  co,  — oo)

=  lim (W  dq"ip?(q", t")(q", t"\q\ O M ? '. t'). (5.5)
00  J

t " ~ *  + 0 0

Since only the behaviour of ipKq, t') for t' -+ — oo and of t”) for t” -+ +  oc is 
involved in calculating Sfi, and since in these limits ^  and describe a particle 
well outside the range R0 of V(q), it follows that we may ignore the 
contribution of V to H  in the calculation of il/a(q, t) (a =  i, f) and retain only the 
kinetic energy term. In these circumstances as t — oo

1I 'M ,0 *  jdp  Ci(p )(q  exP ^ 2^f '

dp Q p ) e_ip2'/2'' s<<?|p>s

=(2ji)_1/2 Jd p  Q p ) e‘ ,',2'/2" dpq (5.6)

and a precisely similar expression holds for ij/^q, t) as t -> + oc. Since only large 
values of \t\ (and \q\) are involved in these expressions, we may make an 
asymptotic expansion of the wave functions1. This may be obtained as follows. 
First we shift the integration variable p in (5.6) to a symmetric one. Since

p2 f t (  n q \ 2 m 2 _(5.7)

p , s

we define



*M, C- [ t +( ! ) ‘,! fc] (5'9a)
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and then for |t| —+ oo

where

e(t) =
1 t>  0

(5.9b)- 1  t<0.

For q / t= 0(1) we may expand Ca:

C( ^ +( t ) 1/2fe ~ C« ( ? ) [1 + ° (ltl" 1/2)] (5-10)

and then from (5.9a) we obtain

U q ,  t) ~  ( | J /2 e '-2/2' Ca( ^ ) [ l  +  0(|t| - ̂ ) ]  e - ^ 4

as Id -► oo (5.11)

after performing the k integration. Now we substitute the leading terms back 
into (5.5), since the non-leading terms vanish in the limit It'l, \ f \  -> oo. Then

Sfi = lim i
t ' - +  —  0 0  
t " ->  +  oo

Finally we may change integration variables according to

m "ML=P'
t' v -=p

Then

Sn= lim f dp'd p"p~l \ft"\il2C H pl t r v *ei2*
tr~* -co J

(5.12)

(5.13)

x ^ , t "  
P

— , t ' ) eip 2( /2'‘ Q(P').
n

(5.14)

Thus to calculate the S-matrix element (in the momentum representation) 
using the path integral method developed in Chapter 2, we must evaluate the 
functional integral given in (2.23) by integrating over all functions q(t) defined
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on —cc<t<ao  and having the asymptotic behaviour

p't
q(t)~—  as t — oo (5.15a)

H'

and

v t
q(t)~—  as t-+ + q o .  (5.15b)

A*
This should be contrasted with the fixed boundary conditions (2.19) which are 
appropriate for the calculation of (q", t"\q', t'}. The asymptotic behaviour
(5.15) corresponds, of course, to the free motion of a non-relativisitic particle of 
mass /*, since for \t\ -► oo (and therefore \q\ -+ oo) the contribution from the 
potential energy is negligible.

These considerations make it apparent why the Green functions generated 
by W[J] in Chapter 4 are not those appropriate for a physical scattering 
process. The boundary conditions (4.3) are the field theory analogues of the 
fixed boundary conditions (2.19). Evidently to generate physical scattering 
amplitudes we have to find a generating functional 5[J] in which the path 
integral (4.4) is performed over all field configurations having an asymptotic 
behaviour analogous to (5.15). This is the task to which we now turn.

5.2 Scattering amplitude in quantum field theory

We now wish to generalise the considerations of the previous section to the 
case where we have a relativistic field theory. We have seen in Chapter 4 how to 
calculate the quantum transition amplitude ((p"(x)t"\(p'(x)t'yJ, when we have a 
real scalar field cp(jc, t) which achieves the configurations cp'{x) at t =  t' and (p"(x) 
at t = r", in the presence of a source J(x). The moral of the previous section, and 
of (5.14) in particular, is that to calculate the 5-matrix elements we need to 
calculate the transition amplitude by performing the functional integral over 
all (classical) field configurations <p(x, t) having free-field asymptotic behaviour. 
That is to say

<p(jt, t) ~  q>m(x, t) as t-*  — oo (5.16a)

and

cp(x, t) ~  (pout(x, t) as t -► + oo (5.16b)

where (pm’out(x,t) satisfy the free-field equation which follows from the 
Lagrangian (4.26), namely

(dvdv+ p2)(pinout = 0 (5.16c)

(which is of course (3.35) when A = 0). Now we have seen that any free field cp0
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may be cast in the form (3.47)

and (pm(x) and <pout(x) are therefore special cases of this. As we can see from (5.6), 
the momentum space wave function C,(p) of the initial state is associated with a 
factor e~lEt where E = p2/2p is the energy of a (free) particle having momentum 
p. Thus the initial state (t-> — oo) is associated with the ‘positive frequency’ 
piece of cp0, namely

Similarly, the final outgoing state (t -► + oo) is associated with the ‘negative 
frequency’ part of <p0

This required separation may be achieved by assigning the zeroth component 
of the momentum integration variable k0 a small negative imaginary part

and only e~ikx survives as t-+ -  oo, as required. Similarly only the part 
associated with elkx survives as t -► oo. Thus the assignment (5.20) of a small 
negative imaginary part to k0 ensures that

It follows that the asymptotic conditions (5.16) are equivalent to the 
conditions

We now wish to determine the functional which generates S-matrix 
elements. For the reasons already given it is clear that we must perform the 
path integral (4.25). Thus we define

but now the integration is over all field configurations having the asymptotic

(5.17)

(5.18)

(5.19)

k0 ->k0—is (e>0). (5.20)

This has the effect

as t-* —  GO (5.21)

(p0(x)~(pin (x) as — oo.0 (5.22)

and

q>0(x) ~  <pout(x) as x°-> +00. (5.23)

(p{x) ~  (p0(x) x° —* ±00. (5.24)

(5.25)



behaviour (5.24). (Without ambiguity, we now denote the space-time volume 
element d4x by dx.) We shall see in §6.4 how S-matrix elements emerge from 
this generating functional.

To determine S[J, <p0] we first split i f  into two pieces:

i f  =  i f 0 + if,(<p) (5.26)

where

=%dv<p)(dv(p)-W<P2 (5.27)

is the free-field Lagrangian density, and i f  j (<p) specifies the interaction piece of 
i f .  The only case we shall consider in detail is the example given in (3.34), 
where

(5.28)

For the present, however, we shall take ££l to be an arbitrary function of q>. 
Secondly, we write the integrand in (5.25) in the form

expi Jd x (if  + Jq>) =  ̂ expi jd x i f ^ tp ^ e x p i  jdy(JSf0 + Jcp^j. (5.29)

We can expand the first exponential
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expi d xif,(<p) = 1 + i d x i f ^ - h — dx d y if j(<p(x))if i(cp(y)) + ... .  (5.30)

Now, since

icp(x) exp i Jdz(J^0 + Jcp) = exp i Jdz(if 0 +  J(p) (5.31)

it follows that

 ̂ dx ifi(<p)SJ^expi Jdz(if0 + J(p)^

= J d x i ^ - i ^ ^ e x p i  jdz(J?0 + (5.32)

Since the operator J dx i f t( — i 5/8J(x)) is independent of cp(x), it can be taken 
outside the functional integral (5.25). Then we have

i Jd x  ifj^ — is u , (Pol =  exp i I dx £e\ -  i )S0[J, (p0l  (5.33)

where



is the generating functional with only the free-field Lagrangian (5.27) in its 
integrand. The integration, of course, is still over fields having free-field 
asymptotic behaviour. Next we change the functional integration variable 
from cp to <p, where cp satisfies

cp{x) = (p{x) + <p0{x). (5.35)

Then (5.24) shows that

q>(x) -> 0 as x° -► ±  oo. (5.36)

Substituting (5.35) into the integrand of (5.34) gives

+ J<P)= Jdy[^(dv<p)(0t<p)-V<P2 + M  + <p0)
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-<pdvdvcp0 - n 2<pq>Q-%<p0dvdvq>0~ i p 2<Po] (5-37)

after integrating by parts and dropping surface terms. Now since cp0 is a free 
field

(dvdv+fi2)<p0= 0 (5.38)

and a number of terms drop out of (5.37), which then gives

SoU> (Pol = \@<P exP i d y[$dv<pdv( p - \n 2(p2 + J<p)

x expi dz J(z)<p0(z). (5.39)

Remember the functional integral is now over paths which satisfy (5.36). 
However this is a special case of the fixed boundary condition considered in 
the previous chapter. In the present case we have

<p'(x)=(p"(x)=Q. (5.40)

So the first factor in (5.39) is just the functional W0[J] which generates the free- 
field Green functions ^ (o \x u .. .,x„). We saw in (4.43) that

W0[J] =  N  e x p ^ J d x  d y J(x)iAF(x -  y)J(y)j (5.41a)

where

’ d4p e p{x~y)r i
AF(x -y ) = hI (2tt)4 p2- p 2 + is

Now differentiating VV(,[./] gives 

<5W0[y]

(5.41b)

SJ(x)
= -  dyi Ap(x - y ) J ( y ) (5.42)
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It follows from (5.41b) that

(d2dxv+ n2) Af(x -  y) =  -  d P

So

( 2 k ) 4

2J W 0iJ]
(dvxdxv+fi2) - ^ - = U ( x ) W 0[_J]. (5.44)

This means that we can recast (5.39) in the form

S0IJ, Vo] = exp(Jdx <Po(x)(dyxdxv + n2) woU]- (5-45)

We substitute this back into (5.33) and interchange the order of the two 
functional differentiations. This gives

S\_J, Vo] = exp (j* dx +  M2) 8J(x).

3
x exp| i |dy  J*f[\ —i woU]- 5-46)

The last two terms may be combined, if we choose, to give the functional W[J] 
which generates the Green functions ? (B)(x1,...,x„) of the interacting field 
theory. This is because we can reverse the steps from (5.25) to (5.33) for the 
functionals W \f \  and W0[J], since the only difference is in the boundary 
conditions on the integration variable, and this was not used in the derivation. 
Thus finally we obtain2

SLJ> Vo] =  exp( I dx (p0(x)(8vxdxv + n2) W U ] ■ (5.47)

This gives the (asymptotic-state-to-asymptotic-state) transition amplitude 
in the presence of a source J(x). In the actual physical processes with which we 
are concerned there is no source, so the quantity of physical interest is obtained 
by setting J(x) to zero:

S[>o]^S[0,(po]. (5.48)

(Of course, if there really were a physical source J 0(x) in this system, we should 
want to evaluate S[J0,<p0].)

We shall address the task of calculating W{J] and hence S[<p0] in the 
following chapter. For the moment we shall content ourselves with observing 
how the first factor in (5.47) fulfils the task assigned to it. Recall that q>0(x) is a 
free field, so its Fourier components k in (5.17) all satisfy the mass shell 
condition k2= p 2. If we perform the x  integration in (5.47) by parts, we can pull 
the Klein-Gordon operator dvxdxv + p 2 back on to <p0M  and hence obtain a
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factor \x2 — k 2 from each Fourier component k. Unless the contribution from 
W\J] has a compensating factor (k2 —/i2)-1, its contribution to S[J, <p0] will 
vanish, since fi2 — k 2 = 0 for all Fourier components in cp0, as we have said. 
Thus the effect of the pre-factor in (5.47) is to project off-mass-shell 
contributions to zero, and to retain the on-shell contribution, as required. 
Setting J  zero, as in (5.48), ensures that all external lines of W \J ] are subjected 
to this treatment.
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6.1 Perturbation theory 

We have seen in Chapter 4 that the functional W[J] generates the Green 
functions of the theory, and we have seen in Chapter 5 how W[J] may be 
related to the functional S[ fPo] which generates the S-matrix elements of the 
theory. Thus all that is required for the evaluation of the scattering amplitudes 
is the evaluation of W[J]. Unfortunately this is more easily said than done. 
The path or functional integral which we are required to evaluate is 

W[J] = N f ~fP exp if d4 x(2(qJ, o~'qJ) +JqJ) (6.1) 

where we have seth= 1, N is the undetermined constant of proportionality, 
and it is understood that the space-time integral is over all space with the time 
integrations along the real axis from - oo to + oo. W[J] can be evaluated 
exactly only in the trivial case of a free-field theory. In this case 

2 = 2o =!<opfP)(81'fP) -ip2fP 2 (6.2) 

for a free scalar field fP· Then, as we saw in (4.43), 

W[J] = W0 [J] = N exp( -~ f dx dy J(x) L\rlx- y)J(y)) (6.3) 

where (without ambiguity) we now denote the space-time volume element d4x 
by dx, and 

f d4p eip(x-y) 

L\F(x - Y) = (2 )4 2 2 · 
1t p -p +1e 

(6.4) 

is the Feynman propagator for the scalar field. 
The best that can be done for interacting fields is to develop a perturbation 

series for W[J]. If 

(6.5) 

and 2 1 is proportional to a parameter A., we can expand W[ J] as a power series 
in A.. To do this we recall the result (5.33) from the previous chapter which 
expressed the generating functional S[J] for the interacting field theory, in 
terms of S0(J], the generating functional of the free-field theory. Clearly a 
precisely similar relationship may be derived between the functionals W[J] 
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and W0[jy.

w m = expj î Jdx w0m (6.6)
dJ(x)/J

since the only difference between the functionals W [J] and S[J] derives from 
the different classes of field configurations which are integrated over, and this 
feature was not used in the derivation of (5.33). The perturbation series comes 
from expanding the exponential operator as a power series:

exp l
SJ{x) = l + i dx^fd  —i

+
2!

dxdy if ,(  —

5J(x)

6
\  5 J(x) SJ(y) + .... (6.7)

Since is proportional to A, the above expression generates an expansion of 
W[J] as a power series in A. We illustrate this by consideration of the special 
case

In this case, substituting (6.7) into (6.6) gives

<54WC 
3J(x)

From (6.3) and (6.4) we find

SWr

w m  = Wom  ~ j d x  + 0(A2).

y° L  ■
w = - J d3;i5J(x)

and repeated differentiation gives

i Af(x—y)J{y)W0[T\

(6.8)

(6.9)

(6.10)

w m = [ l - ^ ( j d x 3 ( i A F(0))2

—6iAF(0) Jdyt dy2 iAF(x - y x)iAF(x - y 2)Ayi)J{y2)

+ Jdyi dy2 dy3 dy4 i AF(x -  yt)iAF(x -  y2)iAF(x -  y3)iAF(x -  y4) 

x 7(y1)J(y2)J(y3)J(y4)) + Q(A2)J W0[m

The Green functions generated by W[J] are defined as in (4.8) by

5nW m

(6.11)

i '^ (,,)(x1, . . . ,x n) = (6.12)



and it is clear that the additional terms in (6.13), generated by the interaction,
change the Green functions from the values derived in Chapter 4. If the 
normalisation N  is chosen so that

% [0] =  1 (6.13)

as in Chapter 4, then

^ (0) =  W[0] = 1 — j* dxi AF(x — x)i AF(x—x) +  0(A2). (6.14)

Also
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^ (2)(xl9x 2) = ̂ io )(xl , x 2)~ 2 ^  dxiAF(xx — x)iAF(x — x)iAF(x — x2) + 0(A2)

(6.15)
where

y {oXx i , x 2) =  i Ajr(x l x2) (6.16)

is the free-field Green function derived in (4.48). Similarly

X2, X3, X4) = ^o^(Xj, X2, X3, X4)

— x 2 ) JdxiAF(x3—x)iAF(x —x)iAF(x —x4)

+ ^ (02)(x3, x4) JdxiA^Xj — x)iAF(x —x)iAF( x - x 2)

-F ̂ (q)(x 1, x3) J  dxiAF(x2 — x)iAF(x — x)iAF(x — x4)

+ ̂ o2)(x2, x4) dxiAF(xx — x)iAF(x — x)iAF(x — x 3)
*

+ &(o }(xl9 x4) j*dxiAF(x2 — x)iAF(x -  x)iAF(x - x3)

+ ̂ (02)(x2, x3) JdxiA^Xj -x)iA F(x—x)iAF( x - x 4)^

—\X JdxiA F(xx — x)iAF(x2 — x)iAF(x3 — x)iAF(x4—x) +  0(A2) (6.17)

where ^ (04)(x1,x 2,x 3,x 4) is the free-field Green function given in (4.49). 
Evidently we may extend the diagrammatic notation developed in Chapter 4 
to include the additional terms generated by the interaction. We write

# (2)(x i , x 2)= ^  -  + L +...... (6.18)
X 7 * 2 X ,  x 7
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where the first term is just the free-field propagator given in (6.16), and the 
second term is the O(A) part of (6.15). If the internal vertex is at x the three 
propagators iAF(xt — x)iAF(x-x)iA F(x —x2) arise from the rule already given 
associating a line with a propagator. In addition, it is apparent from (6.15) that 
we must associate a factor — \X with the vertex:

v >
\  /

\  /
V  •• (6-19)

y  v// \
\

and we are to integrate over the coordinates x of any internal vertex. Using this 
notation

&i4)(xl9 x2, x3, x4) =

*2  *1 *4 *1

*3 *4 *3 X 2 x2 *U

r*2

*3 (6.20)

As before, it is easier to work with the connected Green functions 
G(n)(x1, . . x„). These are generated by

(6.21)



Thus from (6.11) we find

iX[J] = In N fdyx dy2iAF(yx -  y2)J(yi)J(y2)

dyi dy2iAF(y, -x )
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- | |d x ^ 3 [ i A F(0)]2- 6  

x iAp(x -x)iA F(x- y 2)Ay1)J(y2)

+ dyt dy2 dy3 dy^Apfy, -x)iA F(y2 - x )

x iAF(y3 -  x)iAF(y4 -  x)J(yl)J(y2)J(y3)J(y4) + 0(A2). (6.22)

(6.23)

With the connected Green functions defined by (4.60):

i<5"Y[J]
i'’G<">(x1, . . . , x n)=-

5J(Xi)...5J(x„) 

we find
j = o

G(2)(x1;x2)=  .________   t i  _ _ k X — . (6.24)
x, x2 2 X ,  x2

*1 V f  *2
\  /

G(4,(xl5 x2, x3, x4)=  (6-25)

Thus, as anticipated in Chapter 4, the interaction generates additional terms in 
G(2) and makes G(n) non-zero even when n> 2.

6.2 Momentum space Feynman rules

It is apparent from (6.4) that the propagator has its simplest form in 
momentum space. For this reason it is the custom to evaluate the Fourier 
transforms of the Green functions with which we have so far been concerned. 
Thus, as in (4.55), we define

#">(Pl, .. .,Pn)(2n)4S(Pl + ... + />„) = dx, . . .  dx„&">(xu . .., x„) e-<'t**+~+w J

(6.26)
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with a similar definition to (4.63) for the connected Green functions. Thus 
using (6.16) and (6.4) we find the Fourier-transformed free-field Green function

W \ p , - p ) = — L2-z -  (627)p —/ r  + ie

while the connected Green function in the presence of interactions is 

i
& 2)(p, - p ) = p2 — p2 +  ie

iA
T

f d  4k
7 ^ 1 —2-----2 ~ ~l~2 2 • 2-----2 ~ + 0(A2). (6.28)(2n) p  —p  + i s k 2 —fi2 +  i e p  —p  + \ b

These too may be represented diagrammatically. For example

e <2‘( p . - p ) - ____________________________________(6-29>
P 2 P ~P

and the Feynman rules are as follows:

1 With each line carrying momentum p we are to associate a factor 
i (p2- ^ 2 + ie)_1

 : - 2 — 2 - ~ - (6-30)P P ~ P  + 1£

2 With each vertex of four lines carrying momenta p1,p2,P 3, Pa. we associate 
a factor — U, constraining the momenta so that there is overall 
conservation:

\  yV \  / p, ■ - i *  ( P i + P 2 + P 3 + P 4 = 0 ) .  (6.31)
V/ \

/  \
" p, p\

3 Integrate over each independent internal loop momentum k with weight 
d4k(27t)-4.

Using this notation it is readily verified that

G(4)(p1,p 2,p 3,P4)= \  y  (6.32)

X  ♦00')
/  \

\

/p3 P, '

Notice that the Green functions have propagator factors on every external 
line.
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6.3 One-particle-irreducible Green functions

The notation and techniques of the previous two sections may also be used to 
develop a perturbative expansion of the opi Green functions in the presence of 
interactions. It follows from (6.22), and the definition (4.64) of the classical field 
<joc(x), that

<PcM =  -  dy  Af(x -  y)J(y)
ft

+\X Jdydz  i AF(x -  y)i AF(y -  y)i AF(y -  z)J(z)

-  J dy  dZj dz2 dz3 i AF(x -  y)\ AF{zl -  y)i AF(z2 -  y)

x i Af(z3 -  y)J(zl)J(z2)J(z3) + 0(A2). (6.33)

Thus the generating functional r[<pj (or the effective action) of the opi Green 
functions

dxJ(x)<pc(x)

=  - i l n  N + \

-4A

dyi dy2 AF(yl - y 2)J(y1)J(y2) - U dx[i Af(0)]2

dx dyj dy2 i AF(yx -  x) i AF(x -  x) i AF(x -  y 2)J(y1)J(y2)

+ J dx dy, dy2 dy3 dy4 i A ^ y 2 -  x) i AF(y2 -  x) i AF(y3 -  x) 

x i A ^ - x ^ y ^ J C V j^ y jJ J ty J  +  OtA2). (6.34)

We may solve (6.33) for J(x) perturbatively, and after performing integrations 
by parts using (4.53) we find

J(x) = ( d ^ + n 2)(pc{x)+ix i Ap(0)<pc(x) + iA[<j»c(x)] 3 +  0(A2). (6.35)

Note that cpc(x) satisfies an equation similar to (3.35) derived in classical field 
theory. The differences are first the source term J(x), which would have 
appeared in (3.35) had we included such an interaction, and second a term 
involving iAF(0) which is a quantum correction. If we were to restore the 
factors of h which we have set to unity it would be apparent that this term is 
proportional to ft. Substituting (6.35) into (6.34) gives T explicitly as a



functional of cpc(x):
(%

r[>c] = - i  In N - U  dx[iAp(0)]2
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2 dx[<pc(x)]2

- * * J 'dx[<pc(x)]4 + 0(A2).
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(6.36)

Thus the momentum space o p i  Green functions defined in (4.75) satisfy 

if<2>(p, - p )  = i(p2- p 2) -iiAiAF(0) + 0(A2)

= - ( - —   -r' * 4-
(6.37)

and

if,<4>(Pl.P2,P3,P4) =
\  /

/ \/ \
/  \/n

(6.38)

using the Feynman rule given in (6.30), (6.31), (6.32). Note that unlike the 
connected Green functions, given in (6.29), (6.32) for example, the o p i  Green 
functions have the propagators associated with the external legs divided out.

6.4 Scattering amplitudes

In §6.1 we have seen how to evaluate the Green functions .. . ,  x„) of the
interacting field theory, at least as a perturbation series in L  The Green 
functions are generated by the functional W[J] using the formula (4.8)

i,'^ <n)(x1,...,x„) =
5J(Xl) ... 5J(xn)

(6.39)
J = 0

We have also seen in §5.2 how the functional W[f]  is related to the functional 
S[q>o] which generates scattering amplitudes. Assuming there is no external 
source in the system, we find from (5.47) and (5.48) that



Thus by expanding the exponential,

exp |  dx<p0(x)(d'x8xv+ p2)

“ „ t i ' ' ' d)c■,>“()t' , ' n i x -)K“ ■ ■ ■ * ' s i w ? S w  (6-41)

we can express S[<p0] in terms of the Green functions &{n)(xu . . . x n).
In (6.41) we are using the notation

K x =dvXjdXjV+fi2 (6.42)

to denote the Klein-Gordon operator. Substituting (6.41) into (6.40) gives

S[<Po] = Z  ^  J d x , ... dx„<p0(x ,)... <p0(xn)KXi... K x^ n\ x 1, . . . ,x n). (6.43)

Thus, as anticipated at the end of Chapter 5, every external line of 
9 (n)(xl9. .., xn) has attached to it a Klein-Gordon operator K Xj and a free field 
(p0(Xj). It is therefore natural to associate the contribution from the term 
involving 9 (,l) with the physical process involving a total of n incoming or 
outgoing free particles. In physical scattering processes these free particles are 
usually momentum eigenstates. It is therefore useful to have the momentum 
space representation of the right-hand side of (6.43). To find this we substitute 
for ^ (,,) in terms of its Fourier transform # (,,) defined in (4.55). Inverting (4.55) 
gives

(S {r' \ x u . . . , x n)

=  +^ w(Pl, . . . ,p „ ) ( 2 ^ ( Pl + . . .  + p„). (6.44)
J (2nr (2?zF

Each Klein-Gordon operator K x in (6.43) acts upon ̂ (,,) and produces a factor 
fi2 — pf, and we find
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% o ] =  I  -f
n =  0  n *

00 i" f  dpi dp„
(2n f ' ' '  (2«)4 {2n)A5{Pi + • • •+ Pll)

x (p 2- p \ ) . . . { p 2-  p ^ in)(Pi dxx... dxn

(6.45)

<p0(x) has already been given in (5.17) in terms of its Fourier components. 
Using this we find

dx e'px(p0(x) = l d 3k £  [a(k)S(p -k)+a*(k)5{p+*)] (6.46a)
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where

k 0 =  ( k 2 + p 2) i l 2 . (6.46b)

It therefore follows that the only momenta pj which can contribute to S[<Po] 
must satisfy pj = + fc, which, since k2 = p2, ensures

Thus the only Green functions,^ {n)(ply. .. ,pn) which can contribute to S[<p0] 
are those with all external lines ‘on the mass shell’, as required of a physical 
scattering process. Also, even when (6.47) is satisfied only one of the two terms 
in (6.46a) can contribute; if pj0 is positive (and therefore equal to + k0) only the 
first term can contribute, while if pj0 is negative only the second term 
contributes. This reflects the fact that in any such physical process some of the 
momenta are associated with incoming particles while others are associated 
with outgoing particles. As explained in (5.18) and (5.19), we associate the 
‘positive frequency’ part of cp0 (involving a(kj) with an incoming particle, while 
the negative frequency part (involving a*{k)) is associated with an outgoing 
particle. (The overall energy-momentum conservation, ensured by the 3 
function in (6.44), guarantees that not all pj0 can have the same sign.) For these 
reasons the term involving a{k) is associated with an incoming particle having 
momentum k, and the term involving a*(k) is associated with an outgoing 
particle of momentum k.

Now consider a scattering process with m particles in the initial state (i) 
having incoming momenta ql9..., qm, and n — m particles in the final state (f) 
having outgoing momentum qm +1,. . . ,  qn. Since all momenta qr are momenta 
of physical particles, they satisfy

because of overall energy-momentum conservation. Then the scattering 
amplitude (S-matrix element) Sfi for this process is given by the part of S[<p0] 
involving the m factors a(qx) ... a(qm) and the n — m factors a*(qm + x) ... a*(qn).

Thus

(6.47)

q2 = H2 (r= (6.48)

and also

q1 + .. . + qm — qm + i + ■■ -+q„ (6.49)

Sn = lp(q1)...p(q„)T1
S"S[<Po]

(6.50a)
da(qt) ... 5a(qm) 8a*{qm + 1).. .  3a*(q„)

where

p(q) = (2n)-3(2qor l (6.50b)

is the (covariant) momentum integration weight function. (The reason for 
putting a = a* = 0 after the functional differentation is to ensure that only # (n)
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contributes to n-particle processes.) Substituting (6.46) into (6.45) and 
performing the differentiation gives

Sfi = (In)4- 3(q1+ .. .+ q m- q m + 1~ . . . - q n)Mfi (6.5 la)

where

Afn = ( -  i f ( q l - H 2) ■ ■ ■ (q l- ^ 2)^<n,(i?1 , . . . ,q m, - q m + 1, . . . , ~  qn). (6.5 lb)

In deriving this we have used the invariance of ̂ {n)(pl9. .., pn) with respect to 
the interchange of any p( and pj.

Thus to obtain the (Lorentz invariant) amplitude Mfi from the associated 
Green function # (n) one merely has to multiply each leg, carrying momentum 
qn by the factor — i(q2 —p2), which is just the inverse of the propagator (6.30) 
for a line having momentum qr. Having done this there is the further 
multiplication by (In )4 times an overall energy-momentum conserving S 
function to get the S-matrix element. We have observed earlier that the 
connected Green functions Gin) all have a propagator factor associated with 
each external line, and the same is clearly true of the full Green functions # (n). 
Thus the multiplication by —i(q2—p 2) cancels each of these propagators 
leaving a finite limit as q* -► p 2. So the S-matrix elements are obtained from the 
complete Green functions by deleting the external line propagators and 
supplying an overall (27r)4<5(...). It follows that the Feynman rules for S-matrix 
elements are similar to those for the o p i  Green functions, discussed in §6.3, in 
having the propagators associated with the external lines divided out. 
However, the diagrams to be considered differ in two respects from the o p i  

Green functions. First, the external lines in S-matrix elements are constrained 
to be on the mass shell, and second we have to include all contributing 
diagrams, disconnected and one-particle-reducible ones as well as the 
connected and o p i  ones.

In certain special cases (some of) the disconnected diagrams do not 
contribute to the actual scattering process. For example, in the case of two 
incoming and two outgoing particles, energy-momentum conservation 
ensures that (in this case, all of) the disconnected diagrams only contribute 
when the initial and final states are identical, which is the case only if there is no 
actual scattering. The scattering cross section (by definition) measures 
processes in which the initial and final states differ. For this reason the 
disconnected diagrams do not contribute to the two-particle cross section, as 
we shall see in the following section.

6.5 Calculation of the scattering cross section

Finally we show how the results of the foregoing sections may be used to 
calculate the scattering of two incoming particles having momenta ql9q2 to a 
final state of two particles having momenta q3, q4. So energy-momentum



6.5 CALCULATION OF THE SCATTERING CROSS SECTION 71 

conservation (6.49) gives

9i+92 = «3 + 94 (6.52)

and then from (6.51a) the S-matrix element is

S„ =  (2n)*8(qi + q2- q 3-  q,)Mn (6.53)

where Mfi is obtained from (3 w (ql , q2, —q3, —94) in the manner described in 
the previous section. The contributing diagrams are

M fi=  <7,___ >____ <73__<h___   ?3 <7l t <73

4  4 .  o
±2__   J7* <7;r 4 . - y . <7; t <7t

^  4̂ ^ ___ 4̂ 9  ̂ —»-?4
.1 +i  ( )2 / \ 2

 ?3 q?. y  J  . <?3 12__   ?J

" ̂ 2 9i   ;̂ 2 Jhm____ -Q2

♦ 1 4  O '2

3̂ ^  “ 4̂ 3̂ ̂  Qu Qj_____2.̂ 4

*1\

\  /X
/  \/  \

*2 ?4

Since g10 and g20 are both positive, qx ^  - g 2, and the first six (disconnected) 
diagrams can only contribute to Mfi if =<?3 or g4, which corresponds to no 
actual scattering. By definition the scattering cross section is only concerned 
with final states which are different from the initial one. Thus with q1¥:q3 or 
q4, Mfi is given by the last diagram

Mfi= - i l  (6.55)

Now Sfl gives the transition amplitude, so the probability is

Pn =  |Sfi|2 =  (27r)8̂ (0)%1 + 9 2 -9 3 -9 4 )4 . (6.56)

The appearance of the (infinite) <5(0) stems from the fact that we are integrating 
plane wave functions over an infinite space-time volume. Since

(2tt)4<5(P) = j d4x eiPx (6.57)



putting P —0 gives
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(2n)*m  = d4x =  VT (6.58)

where V is the (infinite) spatial volume and T  the (infinite) extent of time. 
Dividing pn by VT  therefore gives the transition probability per unit volume 
per unit time:

Wri =  (2*)4* 9l +q2- q 3-  q,)X2- (6.59)

The (infinitesimal) cross section dtr(i -» f) is defined by

dcr(i -► f) = ^ (6.60)

where dN  = the number of particles scattered into a particular element dQ of 
solid angle by a single target particle, and F =  the flux of projectiles incident 
upon the target. The covariant momentum integration measure 
(2n)3(2k0)~l d3k which we are using requires the state normalisation

(k\k ')  = (2n)32k0 S(k—k') (6.61)

which corresponds to 2k0 particles per unit volume. Thus if we regard particle 
1 as the target particle, we have to divide Wn by 2q10 to obtain the transition 
probability per unit time for scattering from a single target particle. Then

dN(i -  f) =_-L Wfc ,, Sr wTT37V u (6.62)
2<?io (2n) (2<?3o) (27t) (2q40)

The incident flux F is given by the density of projectiles multiplied by their 
velocity relative to the target (at least when the target is at rest or moving along 
the same line as the projectiles). So

F = 2q20vl2

where v12 is the relative velocity. Putting all this together gives

da(i -> f) =  (2Jt)~2n  . 1 n  " ' + q2- q 3- q 4)(2qi0)vl2(2q20) 2^30 2q40

(6.63)

The contribution ^10^20^12 may be written in a ‘co variant’ form due to Moller: 

qioVi2q2o=l(qi- q2)2 - W 2 (6.64)
provided qx and q2 are collinear; and we may perform the q4 integration 
trivially, using the S function, if we write

d3<?4 = % 2- ^ 2)% 40)d 494. (6.65)
H 40
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Thus

do(i - » 0 = ^ - 2  Ctai • Qi)2~ V 21 ~1/2 +q2-q3)2 -M 2] — (6.66)32n* q30

From now on it is easier to work in this centre-of-mass frame, in which

qt=(E,p) (6.67a)

q2 = (E,-p). (6.67b)

We write

—  = q io W  d|f3| dQ3 =  k 3| dq30 d£l3 (6.68)
H 30

and use the 5 function

*[(«i + q2- q 3)2- p 2l = S(4E2-4 E q 30) (6.69)

to perform the q30 integration. Finally we obtain the differential cross section

da(i -* f) X2
— 2T~2~ (6.70a)dQ3 647rs

where

5=(^i +q2)2 = 4E2 (6.70b)

is the (Lorentz invariant) total centre-of-mass energy squared.

Problems

6.1 Derive the 0(X2) contributions to W[J] in (6.11).

6.2 Derive the 0(X2) contributions to X\_J] in (6.22).

6.3 Derive the 0 (22) contributions to (pc in (6.33), and hence determine the
0(22) contributions to T(<pc) in (6.36).

6.4 Draw the 0(22) contributions to f (2)(p, — p) and T ^ \p 1, p2, p3, p4) and
determine their weight factors.

References

The books and review articles which we have found most useful in preparing this 
chapter are
Iliopoulos J, Itzykson C and Martin A 1975 Rev. Mod. Phys. 47 165 
Ramond P 1981 Field Theory: A Modern Primer (Reading, Mass.: Benjamin- 

Cummings) Chapter IV
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RENORMALISATION OF A.cp 4 THEORY 

7.1 Physical motivation for renormalisation 

We have already noted that the classical field qJ0(x) satisfies an equation (6.35) 
which, although similar to that derived in classical field theory (3.35), differs 
from it in one important respect. When the source J is put to zero (6.35) may be 
cast in the form 

where the extra term iA.A~O)qJ0 is a quantum correction arising when the field 
interacts. Writing it in this way makes it apparent that the interactions have 
had the effect of shifting ('renormalising') the mass squared from its value f1. 2 , 
when there are no interactions, to the 'renormalised' value 

(7.2) 

Thus the parameter f1. 2 which appears in the Lagrangian is only the physical 
mass squared in the classical (i.e. non-quantum limit). The same is true of the 
coupling constant A.. As would have become apparent had we calculated the 
0(...:1.2) on the right of (7.1), the interactions have the effect of generating 
(quantum) corrections which shift the coupling constant from its 'bare' value A. 
to a renormalised value A.R. Now the only quantities which we can measure are, 
of course, the renormalised quantities, since we are not able to tum the 
interaction on and off at will. For example, we might measure the four-point 
function f'<4l(p1 , p2 , p3, p4 ) for a particular choice of momenta Pi• and define 
this to be the renormalised coupling constant A.R. We could then, in principle, 
calculate r141, or indeed any Green function r 1">, using the Feynman rules, for 
arbitrary momenta as a function of the (input measured) renormalised 
parameters A.R, p.i_. Obviously we should expect any perturbative 
approximations we make to be more successful in predicting r1n1 at (say) GeV 
values of the momentum variables if we use renormalised parameters defined 
at (particular) GeV scale momenta, rather than those defined at eV or TeV 
momentum scales, for example. This notion, that we may vary the energy scale 
at which we choose to define our renormalised parameters A.R, fl.i., is the key to 
the renormalisation group equation which will be derived in Chapter 12. 

The essence of the above discussion is that the Lagrangian we have been 
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using is given in terms of the ‘bare’ or ‘unrenormalised’ quantities, hereinafter 
denoted cpB, fi£, XB. The objective is to calculate cross sections, and other 
observable quantities, as functions of the renormalised quantities, which 
henceforth will be denoted n2, X. Thus the Lagrangian of the scalar field theory 
with which we have been concerned hitherto is

\  (3m<Pb)(5>b) -  ̂  Mb<Pb ~  ̂  b̂<Pb (7-3)

and the Green functions calculated in Chapter 6 are ‘bare’ ones, denoted GB, 
etc. The choice of the coefficient \  of the derivative term amounts to an 

arbitrary choice of field strength normalisation, and we shall also introduce a 
renormalised field denoted q> differing from the bare field by an overall 
multiplicative constant.

We have seen how renormalisation of the parameters fiB, XB occurs as a 
(quantum) effect of the interactions, and why it may be desirable for 
computational reasons to express any cross sections, for example, which we 
calculate in terms of suitably chosen renormalised parameters jx2, X. However, 
there is an additional reason why renormalisation is necessary, and not merely 
desirable. This is because the shifts of \iB, XB caused by the interactions are 
actually infinite, as we shall see shortly. Since any (measured) renormalised 
parameters are, by definition, finite, it follows that the bare parameters are 
infinite. Thus the use of renormalised quantities is necessary if we are to avoid 
the appearance of infinities in our calculations of cross sections etc. This raises 
the question of whether all infinities may be expunged from the theory by the 
use of renormalised mass squared fi2, coupling constant A, and field (p. In fact, 
for the theory (7.3) the renormalisation of mass, coupling constant and field is 
sufficient to render the cross sections, Green functions etc of the theory finite. A 
quantum field theory is said to be renormalisable if it is rendered finite by the 
renormalisation of only the parameters and fields appearing in the bare 
Lagrangian. Not all field theories are renormalisable, but in this book we shall 
be concerned only with those which are. The central problem facing particle 
physicists is whether all interactions occurring in nature may be described by 
renormalisable quantum field theories. At present we have renormalisable 
theories which are candidates to describe the strong, weak and 
electromagnetic interactions, and we shall discuss all of them in the succeeding 
chapters. To date, there is no such theory which could provide a quantum 
theory of gravitation.

The main object of this chapter is to show how the theory (7.3) is 
renormalised. Before embarking on that enterprise let us first verify that the 
bare theory is indeed infinite, as we have claimed. The infinity associated with 
mass renormalisatiion occurs in (7.2) because AF(0) is infinite, which in turn 
derives from the divergence of the internal momentum integration in the
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second diagram contributing to f B<2) in (6.37):

V M 0 )=  —

(7.4a)

The is in the propagator makes the poles in the k0 integration lie just above 
and below the real axis of the complex k0 plane at ±[{k2 + n%)112 —ib] as 
shown in figure 7.1.

Im /r0

Since there are no other singularities in the k0 plane, we may perform the 
(Wick) rotation of the contour in an anticlockwise direction to lie along the 
imaginary kQ axis, running from —ioo to + ioo. Next we change integration 
variables according to

k0 =  1^4 
k  =  k

so that the k4 integration runs from — oo to +00. Thus

ABAF(0) — iAB
(2ny : ( — * —Âb)2\ -1

where

k2 = k 2-Vk\

(7.4b)

(7.4c)

and d4ft is the Euclidean volume element. (Effectively all we have done is to 
perform the continuation back to the Euclidean form from which we obtained 
AF(x) in the first place.) Since d4k is proportional to | k\3 d |k\, it is clear that the 
integral diverges for large values of | k \—we say that it is ‘ultraviolet divergent’.



Similarly, had we evaluated T(B4) to order Af, we would have encountered the 
diagram

k

' Nv y>> (7-5a)

According to the Feynman rules derived in Chapter 6, this represents the 
expression

% +i«)'"1 l(Pi + P2  + fc)2 - j “b + ie] ~ 1 (7.5b)

and it is clear that it too is ultraviolet divergent. For large (Euclidean) values of 
k each propagator behaves as \k\~2, while the volume element contributes 
|fc|3d|fc|. We say that this contribution to T̂ 4) diverges ‘logarithmically’, 
because if we cut off the | k\ integration at a value | k\ = A, then the integral (7.5) 
has a dominant contribution proportional to In A. Similarly the integral (7.4), 
and fk2) are said to be ‘quadratically’ divergent.

Having considered these two simple cases it is clear how to generalise the 
argument to identify which Green functions are divergent. The naive
superficial ‘degree of divergence’ D of a diagram is given by

D = 4 L - 2 I  (7.6)

where L is the number of independent loop momenta, and I is the number of 
internal lines. This is because each loop momentum k has a volume element 
d4/c associated with it, while each (scalar) internal line is associated with a 
propagator which for large \k\ behaves like \k\~2. If D = 0 the diagram is 
logarithmically divergent, while if D = 2 the diagram is quadratically 
divergent. The number of independent loop momenta L is less than the 
number of internal lines /  because of momentum conservation at each vertex. 
In fact for a connected diagram

L = I - V + 1 (7.7)

where V is the number of vertices. (Only V —l of these conservation 
requirements constrain L because of overall momentum conservation.) 
Substituting into (7.6) gives

D = 2I — 4V — 4. (7.8)

The combination 4 V —2I is just the number of external lines £, since each 
vertex has four lines emerging and each internal line removes two of these. 
Thus
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E = 4V—2I. (7.9)
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Hence

D = 4 — E (7.10)

and we see that the degree of divergence is independent of how many vertices 
there are in the diagram. Since in this theory E must be even, the only Green 
functions which are superficially divergent are f (0), f (2) and f (4).

This does not of course prove that the diagrams with E > 4 are convergent— 
this is why we called D the ‘superficial’ degree of divergence. In fact, it is rather 
easy to see that there are many contributions to Green functions with more 
than four external lines which are indeed divergent. Consider the following 
two-loop contribution to f (6):

Although it has six external lines (E =  6), it is evidently divergent, because the 
integration over the loop momentum kx diverges. But this divergence of the k i 
sub-integration, while k2 is fixed, is just the divergence already encountered in 
f  (b4) and written down in (7.5). So this divergence is not a ‘new’ divergence as it 
stems from one which we might have anticipated, since f  k4) has D =  0. Clearly 
there will be a divergent contribution to every Green function arising (at least) 
whenever in a particular diagram we make the replacement:

\
/\

X
\

\  /  
V  /  \

X  /N// \/  \

What we can say is that if the overall degree of divergence D of a diagram is 
negative, and if the degree of divergence of all of its subgraphs is also negative, 
then the Feynman diagram is convergent. This is Weinberg’s theorem1. It 
holds for any field theory, not just the Xq>4 field theory with which we are 
concerned in this chapter. The above conditions are sufficient for the 
convergence of a diagram, but not always necessary; it may happen that some 
invariance of the theory makes a diagram more convergent than the degree of 
divergence would lead one to suppose. This does not happen in the Xcp4 theory, 
but it does occur in q e d , for example, because of gauge invariance or charge 
conjugation invariance. If the theory is to be renormalisable, the only 
divergences which occur are those which arise from mass, coupling constant 
and field renormalisations.
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7.2 Dimensional regularisation

To study the renormalisability of the Xcp4 theory which we are considering we 
must be able to manipulate the divergences which, we have seen, certainly 
occur. Thus we are required to devise some procedure which renders the 
divergent momentum integrations finite but leaves the convergent diagrams 
unaffected. The simplest method is to cut off the radial Euclidean momentum 
integration at | k\ = A, as discussed in connection with (7.5). If A is large enough 
the convergent diagrams receive a negligible contribution from the region with 
\k\ larger than A, so they will be unaffected, while diagrams which are 
quadratically or logarithmically divergent will have dominant terms 
proportional to A2 or In A respectively. Alternatively, and until 1972 
commonly, we may use a ‘covariant cut-ofF. In a loop integration over k we 
insert one (or more) factors

where, again, A is large. Then for values of \k\ small compared with A the 
integrand is unaffected. Since convergent diagrams receive a negligible 
contribution from the region where | k\ is large, they are again unaffected by the 
cut-off procedure. On the other hand, diagrams which were divergent are now 
convergent because of the extra \k\~2 supplied by the factor for \k\>A. 
However, both of the above methods have a drawback if they are used in the 
gauge theories which are the leading candidates to describe the known 
interactions. They both destroy the local gauge invariance from which the 
theories were deduced. Thus although they may be used quite satisfactorily in 
the renormalisation of the X(p4 theory, they are inadequate for the theories 
with which we are ultimately concerned.

The insertion of the cut-off factor (7.11) into the integrand of (7.5), for 
example, makes the integral finite (‘regularises’ it) by increasing the powers of 
\k\ in the denominator of the integrand. Another way to regularise the integral 
is to decrease the powers of | k\ deriving from the (Euclidean) volume element. 
In (7.5) we have d4k because of the four-dimensional space-time continuum. To 
decrease the contribution from the volume element thus requires us to work in 
a space-time continuum of 2co dimensions with

So in the method o f‘dimensional regularisation’ we consider the whole theory 
in 2co-dimensional space-time2. This makes the Green functions depend upon 
co. Those corresponding to divergent Green functions in four dimensions 
typically have poles in co —2. Consider, for example, the divergent integral

co < 2 . (7.12)

(7.13)
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contributing to f (B2) and appearing in (7.4). In the dimensionally regularised 
theory we evaluate instead

„  ,  f d2tok /f ,  ,

performing the Euclidean continuation/Wick rotation as before. Since the 
integral is spherically symmetric we may write

is the volume of the 2co-dimensional unit sphere. The radial integration may be 
cast into standard form by the substitution

for co< 1. This expression may be used to define /(co,/cB), by analytic 
continuation in co, in regions where the original definition (7.14) does not exist. 
The r ( l-c o )  has poles at co = 1,2,3,...  and we are obviously interested in the 
neighbourhood of the pole at co =  2. We may not expand the factor /iBw-2 in 
powers of co—2, as it stands, because it is dimensionful. To be general we 
express the dimensions of /(co, /iB) in terms of an arbitrary mass scale Af, which 
may be chosen according to convenience, taste, or, more likely, the 
renormalisation scheme which is adopted (see §7.5). Thus we write

showing that /(co, juB) has the anticipated pole at co = 2, together with a piece 
which remains finite as co -► 2.

A similar treatment may be applied to other integrals. By differentiating
(7.14) with respect to /iB, or else directly (for non-integral n), we can show that

/(w,jUB)=  +  1

(7.14)

d2ak=2oiV(2co)m2m- 1 d\ic\ (7.15a)

where

(7.15b)

|*|2=A*b* (7.16)

and for co < 1 it reduces to a Beta function. Then

I((»,Hb)=  2(4rc) °T(l-<») (7.17)

and expand only the last (dimensionless) factor. This gives

(7.18)
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f ^ N / c 2 u2 I ic )-"-i(  n - ^ ~ 2nn » - ^ )  (?19)
J(27t)2“ ( ^b ) ( ' (Any  T\n) ' ( }

If n > 2 the right-hand side is regular at co = 2 and the left-hand side is also
convergent in four dimensions. Thus dimensional regularisation has the
desired property of regularising the divergent integrals while leaving 
convergent integrals unaffected when co-> 2.

For future reference we shall need some further integrals which may be 
derived easily from (7.19). By changing the integration variable to

k' = k+ p

it is clear that

(| >  +  2 , ^ + i (7.20,li
Differentiating with respect to p^ pv... yields more formulae:

(lit)1" ' P '■+'«> * r(n) (4«r

d2w/c
— kji,(k2 +  2p-/c—/ig +  is)- "
(2tc)2

= i( _  1,n F'(n r(n) ^  (4^f---- tPftPvi11 - c o - I ) + p2)]. (7.2 lb)

Contracting both sides with and remembering

gM% , = 2co (7.22)

gives 

d2o7c

Ji
\2a>k (k + 2p-k— p l + ie) "(2tc)

2 i _2\a> — n
V m r ( n - < » - l ) ( P B + P T  " r ,  T  n  2  2 t

= l(_  r -----f w  (4nf  L(n - 2o> - l)P *]• <7-23)

7.3 Evaluation of Feynman integrals

In the previous section we showed how to calculate the Feynman diagram 
(7.4a) which contributes to f (B2). All other single-loop diagrams involve more 
than one propagator, and additional technology is needed to evaluate them.



For example, we shall need to calculate the diagram (7.5a) which contributes 
to A 4)

x  \  <7-5a>
P1 p,

In 2co-dimensions this is proportional to the integral 

d2tok
- (k2 -  n i + ie)~1 [(P+ k)2 -  n l  + is] " 1 (7.24a)
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'“ IfI (2ti)2“ 

where

P=Pi+Pz= - P s - P a- (7.24b)

The technique we follow is that proposed by Feynman3 which combines the 
denominators in (7.24a) into a single quadratic using the identity

~ = f 1 dx[ax + b{ 1 -  x)] “ 2. (7.25)
ab  Jo

Taking

a = (P + k)2- n i  + ie (7.26a)

b = k2 —\x\ 4- ie (7.26b)

and substituting into (7.24a) gives

 f d2(°k f 1
~  J (27i)2<° J o

dx[(fc + Px)2 -h P 2x( 1 -  x) -  \x\ + is] 2. (7.27)

Next we interchange the loop momentum (k) integration and the ‘Feynman 
parameter’ (x) integration. For co<2 the k integration is convergent and we 
may legally shift the integration variable by the substitution

k' = k + Px. (7.28)

Then the k integration is performed easily, using (7.19), to give

J = (7.29)

As before, we expand in the neighbourhood of the pole at co = 2 using the mass 
M  to carry the overall dimensions. This gives
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The maximum value of x( 1 — x) is 1/4, so provided P 2 < 4/iB the argument of the 
logarithm is always positive. Then it is easy to perform the final integration, 
and we obtain finally:

y=-l-(M 2r + r'(l)-ln t4 ? 2167c |_2 — co AnM

_ 2( 4 ^ ) ' « tan. , ( _ ^ _ ) + 2J + 0(m _2). (7.3l)

We leave it as an exercise (problem 7.2) to find the appropriate expression for 
P2 > 4/x|.

The loop integral we have just considered has the property that after the 
ultraviolet divergence has been regulated by dimensional regularisation, the 
remaining Feynman parameter integration is convergent when co -► 2. This is 
always the case in any diagrams encountered in kq>* theory. However, it is not 
a property which is invariably true in the gauge theories which are our 
principal concern. The gauge fields characteristic of these theories are 
associated with particles having zero mass; for example, the photon, which is 
the gauge field of quantum electrodynamics, has zero mass. The presence of 
zero-mass particles generates additional divergences in the Feynman integrals, 
which stem from the small k (infrared) behaviour of the integrand. This can be 
illustrated in the kq>* theory when we set /*B=0. If we consider (7.24a), for 
example, and set co = 2 (and /xB=0), then the integral is ultraviolet divergent for 
all P2. It is also infrared divergent when P 2=0. The ultraviolet divergence is 
the origin of the T(2—co) in the dimensionally regularised integral (7.29), while 
the infrared divergence is apparent in the remaining factor of the integrand; 
since /cB =  0, the remaining factor is proportional to {P2)w ~ 2 which is divergent 
(when co < 2) as P 2-+ 0. These infrared divergences are less serious than the 
ultraviolet ones, since they do not contribute to observable quantities4, at least 
in quantum electrodynamics. (The situation is not so clear-cut in quantum 
chromodynamics5, but we shall not pursue this topic in this text.) Nevertheless 
it is desirable that they are regulated, since, if they are not, certain (on-shell) 
renormalisation schemes are not well defined. One option is to introduce a 
mass k for the massless particle. (In our illustration this would mean restoring 
/cB 0.) Then everything is well defined and, since observables are independent 
of k, the limit k 0 can be taken at the end with impunity. This is a less 
fashionable option than it used to be, since in gauge theories a massive gauge 
field is often forbidden by gauge invariance and certain (Ward) identities will 
no longer be valid. The preferred option these days is to maintain co #  2 in the 
Feynman parameter integration. After the ultraviolet divergences have been 
removed by renormalisation (in a manner to be detailed in the following 
section), we are free to continue from co< 2 to co> 2, which regulates the 
remaining infrared divergences6; after the parameter integration they appear, 
for certain values of the external momenta, as poles in co—2.



Integrations involving more propagators and/or more loops require more 
general identities than (7.25). These follow from an extension of (7.25):

1 n a  + f l f 1 x’ - H l - x )*-1 
a*b» m m  j0 X tax +  b{ l - x ) ] ' +/i

This follows from a standard form of the Beta function after we change the 
integration variable to t = ( l —x)/x. Using this we can prove

—  = H») P  dx, P ‘ dx2. ..  P""dx„-,
O f - a n Jo Jo Jo

x [a1( l - x 1) +  a2(x1 - x ^  + .-. + anX ^J- " (7.33)

by induction. For, assuming that (7.33) is true for some n, it follows from (7.32) 
--Jwith (x =  n and /?= 1 that
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1
ai(a2...a„)

= T(n + 1) f dy P dxt
Jo Jo

*1
dx,2 ’ 

0

d x „ _ ,/  ‘[a ^ l - y ) + D y] <n + 1) (7.34a)

where

£> = a2( l - x 1)+ a 3(x1- x 2) + . . .+ a„+1x„_1. (7.34b)

Now change integration variables to

y, =  y (7.35a)

yi+1=yx,. ( i = l , . . . , n - l ) .  (7.35b)

The Jacobian gives

dy, •••dy„ = y ,_1 dydxt . . . d x ^ i  (7.36)

and the integration region is clearly

l > y i > y 2> . . .> y„_ i> y„> 0 .  (7.37)

Thus

1 -=r(n+l) P  dyx P ' d y 2.. .
a1a2 . . . + i

CVh-I

r dy„[ai( i -y1) + a 2(y i - y 2 )+ . . .+ a „ +i y J ' (" X) (7.38)

which is just (7.33) with n replaced by n +  1. The result for n =  2 is just (7.25),
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which is trivially verified. A similar treatment generalises (7.32) to

n « , ) - n « j J 0 ‘ J ,  .o
X (1 -  X i)“‘ ■ *(Xi -  X 2p  - 1 . . .  x “”_ 7  

x  [ a 1( l - x 1) + a 2( x 1 - x 2) +  . . . + a 1Ix „ _ 1] _(0I1+^-+“J.
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(7.39)

We leave the proof as an exercise (Problem 7.3). This may be used, together 
with the identities derived in the previous section, to prove the general results 
contained in Appendix A.

7.4 Renormalisation of X<p* theory at one-loop order

We have seen in §7.2 how the use of dimensional regularisation enables us to 
define our Green functions in 2co dimensions, and that, when co 2, f  jj2) and 
f (B4) diverge. In this section we shall show how renormalisation, which is 
necessary in any interacting field theory, enables us to remove the infinites by 
absorbing them into the renormalisation constants.

We start from the Lagrangian given in (7.3) and define a renormalised 
field (p(x) by

<pB{x) = Z l/2(p(x) (7.40)

where the ‘wave function renormalisation constant’ Z differs from unity
because of quantum corrections. Thus we write

Z = 1  + <5Z. (7.41)

Similarly quantum effects lead to mass and coupling constant renormalisation 
because of the interactions. We define the renormalised mass n by

Zfi£ = fi2 + dfi2 (7.42)

where d[i2 is a quantum effect, and the renormalised coupling constant A by

Z 2XB = A +  <5A (7.43)

with SX arising from quantum effects. In terms of these parameters

jSPB = j?  + 5jgf (7.44a)

where

£ ’=^(dtl<p)(&‘<p)-^n2(p2- ^ l ( p 4 (7.44b)

and the ‘counter term’ Lagrangian

= \  < 5 Z ( d V ) ( d » 5fi2q>2 dXq>*. (7.44c)



The Feynman rules deriving from J*f are precisely those written down in §6.2. 
However the additional piece Si£ generates extra vertices. To see this we note 
that

i f +  <5if =  if0 + ifi (7.45)

where if0 is given in (6.2) and now the interaction is given by

j ^ = - i - 2 ( p 4+<5if (7.46)

Then following the analysis given in §§6.1 and 6.2 for this interaction rather 
than that given in (6.8), we find that the Feynman rules are those given in §6.2 
augmented by the following additional rules:

4 There is a vertex involving two lines. Momentum is conserved and the 
vertex is associated with a factor i(SZp2 — d/i2):

: i(dZp2- 5 p 2). (7.47)

5 There is an additional vertex involving four lines, conserving momenta, 
which is associated with a factor — i<5A

x  X
: -idX  (Pi+/>2+p3+P4=0). (7.48)

' i  K
Rule 5 in any case follows immediately from rule 2, and we can check that rule 
4 is correct by setting X = <5A = 0 temporarily. Then we have a non-interacting 
field theory in which clearly

tKp> -p )  = i[p2(l + d Z ) - (p 2 + dp2) + is]~l . (7.49)

Expanding the right-hand side to lowest order in <5Z and dp2 gives

$ o \p ,  -p )= ~2— *1— + ~2— "y—  >(5Zp2 -  S/i2) —— l- j - — + ...
p 2 — p r  +  i s  p ^ — p + i s  p z —p z +  \E,

= ■— *— - ♦ •— — *— T "  +   (7-5°)
p  p  p  y  '

as required by rule 4. The quantities dp2 and SZ are non-zero because of 
quantum effects due to the interactions. Thus we may expand them as power 
series in X with leading terms of order X:

5n2= t Sr i  (7-51a)
i = 1
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<5Z= £  8Zt (7.51b)
i = 1

where <5/̂ ? and bZ{ are proportional to X\ Similarly since SX/X is a quantum 
effect caused by the interactions, we may expand SX as a power series starting 
with a term proportional to X2:

£  <5At,  (7.52)
i = 2

We may now calculate the ( o p i )  Green functions of the renormalised theory 
f (n), as functions of the external momenta, the renormalised parameters fi2, X, 
and the counter term parameters SZ, Sfi2, SX. For example f (2) is given in 
leading order by

i f (2)(p, -p )  = (.  ----
p

-p (7.53)

The first two diagrams are given in (6.37) for the bare theory (fi2, X were 
subsequently relabelled fil, AB), while the additional term derives from the 
counter term Lagrangian. Hence

f (2,(p, — P) =  P2(1 + <5Zt) —(ju2+^AiAF(0) + 6n\) + 0(A2). (7.54)

The quantity iAF(0) is given in our dimensionally regularised theory by

M ^ 0> - ^ ' 4 l £ ( 2 ^  +  r , l ) + 1 - | " 4 | p  +  O '“ - 2) )  <7-55>

using (7.13) and (7.18). It looks as though our dimensions have gone awry.
However it must be borne in mind that X is only dimensionless in four
dimensions. Since the action

S = j d 2ojx ^  (7.56)

is dimensionless, the field cp(x) and the coupling constant X have (mass) 
dimensions given by

[<p] =  M“ ~1 (7.57a)

[A] =  M 4-2“. (7.57b)

So AM2<“~4 is dimensionless and we define

AM2“ -4 = X (7.58)



where X depends implicitly on the mass scale M. Thus 

r <2,( p ,  - p ) ^ p 2(l + SZ1) - p 2- d p f

+^ ( 2^  + n l)+ 1- ,"4^  + 0(“' - 2)}  (759)
The quantities bji\ and bZx are fixed by a ‘renormalisation scheme’, which is 
essentially a boundary condition on f (2). We shall discuss the most commonly 
used schemes in the next section. However, the essential point, shared by all 
schemes, is that, since f (2) is an observable quantity (at least in principle), it 
must be finite in four dimensions. So as co -+ 2

Xu2 1
f y i  ~  j   ► constant (7.60a)32ti 2 —co

and

bZx -► constant. (7.60b)

Clearly, since the constants have not (yet) been fixed, the finite parts of bjif and 
bZx are unconstrained.

Similarly we may evaluate f (4) to order k2\

i f 4)( P i ,  p z > P 3 > P 4) =  \ x  /

\  A  , ,  A / '  ' y ,

X \  P1 ^
\ '

\ *2 /  P3

X X * * X X * X
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? <
^  sp.

(7.61)
The integration needed to calculate the second, third and fourth diagrams was 
performed in §7.3 and the result given in (7.31). Then

r " V , .  Ps, p4) — i + i ^ ^ + ^ n D - s i n ^

+ A(s, P2) + Aft, ju2) + A(u, P2)j  -  SA2 + 0(A3) (7.62a)

where
- - , / v  , x ~ i / 2
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and

S = (P l+P2)2 t = {p1+p3)2 M = (Pl+P4)2-

Since f (4> is finite in any renormalisation scheme

(7.62c)

32tt2 2 — a>
— bX2 constant (7.63)

as co -* 2. As before, the finite part of bX2 is arbitrary. It too is fixed by the 
particular renormalisation scheme which is adopted. Evidently different 
schemes correspond to different choices of the finite parts of the counter terms, 
and therefore to different choice of the renormalised parameters.

We saw in §7.1 that the only bare o p i  Green functions which are divergent (in 
one loop order) are r (B2) and f  (B4), so it is of some interest to relate these to the 
renormalised Green functions f (2) and f (4), which we have shown in (7.60) and
(7.63) are finite in one-loop order. To do this we note that (7.40) and (7.44) 
imply that

We may use this to relate the generating functionals of the bare and 
renormalised theories. We denote by WB\_J \̂ the generating functional defined 
in (4.25) where now 5£ is J§?B, J(x) is J B(x) and the functional integration 
variable is <pB(x). We now denote by W \J] the generating functional when is 
Se + bS£, J is J  and the functional integration variable is (p(x). Then (7.64) 
shows that

This may be used to relate the Green functions of the bare and renormalised 
theories. Let us denote by G{n) the Green functions (ordinary or connected) 
generated by W[J], and by G{B] those generated by WB[J^\. Then, using (7.65) 
and (4.8), we find that

gives the relationship between (the Fourier transforms of) the Green functions.
The generating functionals of the o p i  Green functions may be related 

similarly. In an obvious notation, it follows from (7.65) that

5£ + bS£ + J(x)(p(x) =  j£?b + Jb(x)(Pb(x) (7.64a)

where

J b(x ) = Z ~ 1/2J(x ). (7.64b)

(7.65)

g (h,(pi . • • •. Pn)= (z-ii2rtfsKpi . . . . .  P.) (7.66)

X [J] =  Xb[Jb] (7.67a)

so that

(7.67b)
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and hence that

r w  = r B[>cB] = r ^ z 1'V j .  (7.67c)

Using (4.73) and (4.75) it follows that the relation between the Green functions 
is

r<">(Pl, . . . , p n) = Z»'2n»>(Pl, . . . , ptt). (7.68)

For n = 2 the right-hand side is

zt p!- ' ‘5+l ? ( 2^ ; +r<1,+ ! - |n4S +0<‘" -2,) +0<® ] a69)
which is easily seen to equal f (2), as calculated in (7.59), using (7.42) and 
remembering that SZ is of order X.

Thus the divergence in T̂ 2) has been absorbed into the renormalisation
constants, and the same is true of f (4). We have thereby verified that Xq>4
theory is renormalisable at one loop order, as claimed. The proof that this is 
true in all orders is more difficult, and therefore beyond the scope of this book. 
The interested reader is referred to reference 7.

7.5 Renormalisation schemes

The precise way in which the parameters SX, b\i2 and SZ of the counter term 
Lagrangian are fixed is called a ‘renormalisation scheme’. The simplest such 
scheme, which is also particularly suited to gauge theories, is one which 
emerges naturally from the dimensional regularisation which we are using. It is 
called the ‘minimal subtraction’ ( m s ) scheme8. In it the counter terms remove 
just the divergence and no more.

Let us state this more precisely. With dimensional regularisation the bare 
Green functions develop poles and higher order singularities in co—2, as we 
have seen. In any renormalisation scheme these singularities are removed by 
the counter terms, which have the form

<5 A — A/4 ~ 2"^ a 0(A, M/p,a))+  £

s ^ = p 2(b 0a , M / p M + 1

&Z =  c0(A,M/p,(a) + i
V=1 (2—co)

where a0, b0 and c0 are regular as co 2. Since av, bv and cv are dimensionless, 
they can only depend on the dimensionless parameters M/\x and %=XM2oi~A, 
as indicated. In the m s  scheme these counter terms remove only the

(7.70a)

(7.70b)

(7.70c)
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singularities in co —2, so

(7.71)

The beauty of the m s  scheme is that the remaining coefficients av, bvi cv turn out 
to be mass-independent. That is to say

We can verify this in lowest order using the results derived in §7.4. Comparing
(7.63) with (7.70a) and using (7.71) we find

so that is mass-independent to order A2, as claimed. Similarly, we find

This mass-independence of the counter terms permits a ready solution of the 
‘renormalisation group equation’ in this scheme, as we shall see in Chapter 12.

Having fixed the counter terms, the Green functions are now finite 
unambiguous functions of the renormalised parameters, and we may take the 
limit co -► 2. Then in the m s  scheme

using (7.59), (7.62), (7.73a), (7.74). In (7.75) there is an implicit dependence of the 
parameters A, \x2 on the renormalisation scheme.

The m s  scheme is just one of a class of mass-independent schemes, in all of 
which av etc are independent of M/ju, but in which a0 etc are not necessarily 
zero, as in (7.71). One such scheme, the m s  scheme9, is clearly related to m s , as 
the name suggests. It derives from the observation that the factors F (l) and 
ln47t, appearing in (7.19), (7.31) etc, appear as a result of expanding the 
quantity (47r)2-aT(2 — co) which occurs naturally in the dimensionally

a™s(%, M/n) =  av{X) etc. (7.72)

(7.73a)

and

(7.73b)

f ^ + ° a 2> (7.74a)

<5ZMS= 0 ( A 2) cJ<s=0(A 2). (7.74b)

+ A(s, n2) +  A(t, /I2) + A(u, fi2) + 0(A3) (7.75a)

(7.75b)
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regularised theory. In the ms scheme these (finite mass-independent) quantities 
are also subtracted by the counter terms. So, for example,

“ “ - : l K ^ + r<1)+ln4’')+OM5)
instead of (7.73a); and

— 3 X2
^ S = 3 2 ^ Cr(1) + ln47r]+0(A3)- 

In the m s  scheme then, taking co -► 2,

F*\Pu Pi , Pi, p j  =  -  A + 3 ^ 2  (  “  3 ln M1 + ^  ^

+ A{t, n2) + A(u, n2)̂ j +  0(A3) (7.78a)

f  <2)(Pi, Pz, Pz, Pd = P2~ P 2 + ^ 5  ^ 1 “ In j p j  + 0(A2). (7.78b)

In the two remaining schemes which we shall mention the counter terms are 
determined incidentally, by imposing boundary conditions on T(2) and T(4). 
Clearly three conditions are needed to fix the three quantities SX, Sfi2, SZ. In 
the ‘momentum scheme’10 the boundary conditions are imposed at a point 
where the external momenta are characterised by a single scale m. The 
conditions are that at the (Euclidean) point p2= — m2

F{2)(P, - p ) =  - p 2- m 2 (7.79a)
and

^ P 2\ p , - p ) = l .  (7.79b)

In other words, the conditions require that

f ,2)(p, - p ) = p 2- / i 2 +  0 [ (p 2 + m2)2]. (7.80)

Referring back to (7.59) we see that these require

(7.76)

(7.77a)

(7.77b)
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5k is fixed by a similar boundary condition on f (4), namely

^ ( P d Pi , P3> Pa) = - A  (7.83)

at the ‘symmetric point’

Pi • pj = m2(i- id ij)  (/, j  = 1 ,. . . ,  4). (7.84)

At this point

s = t = u = - j m 2 (7.85)

so from (7.62) we find

i i“ - 3^ ( 2^  + 3r(1)- 3 ln4^  + 3'4(- ^ ' ‘i>) + 0<n
(7.86)

Thus in the momentum scheme, taking co->2,

r <2)(p , -p )  = p2- / i 2 + 0(/l2) (7.87a)

k2
r (4)(P!, p2, P3> P*)=  -/l + 32^2 ^ S’ ^2) + ̂ (t> P2)

+ A(u, p 2) -  3A(—jm 2, p 2)] + 0(A3). (7.87b)

In this scheme, therefore, the mass scale M has disappeared from the Green 
functions, but the counter terms dp2,5k are manifestly not mass-independent.

In all of the schemes so far discussed the quantities p and k , which are called 
the ‘renormalised mass’ and the ‘renormalised coupling constant’, have been 
merely the parameters which we chose to characterise the Green functions. In 
the ‘on-shell’ or ‘physical’ scheme, p and k are ‘the’ mass and ‘the’ coupling 
constant. That is to say, they have the values which are actually measured. The 
physical mass is defined as the position of the pole in G(2), or equivalently of the 
zero in f (2). Thus the boundary conditions on T(2) are that at p2 = p 2

r (2)(p , -p )  = 0 (7.88a)

^ J r (2»(p ,-p)= l .  (7.88b)

Comparing these with (7.79) we see that the on-shell scheme is merely the 
special case of the momentum scheme in which m2= —p 2. The Green 
functions in this scheme are therefore trivially obtained from (7.87) by making 
this substitution. The only mass parameter appearing in the Green functions is 
p , but the counter terms remain mass-dependent.

Finally, we remark that any Green function has a unique value, no matter 
which scheme has been chosen to define the parameters. This means that the 
values of the parameters differ by finite amounts which depend upon the



scheme adopted. For example, comparing (7.77) with (7.87) we find
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  t ; 2 M S  /  . 2 MS   \ --------------- ----

r ra= ams ( ln ^ r  ~  A( - * m2> » 2 MS)) + ° ( A3 MS)* (7*89b)

Problems

7.1 Identify the Green functions f (n) which are superficially divergent in a 
A<p3 field theory.

7.2 Evaluate the Feynman integral J, defined in (7.24), when P 2>4/xI.

7.3 Prove (7.39).

7.4 Verify the formulae quoted in Appendix A.
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variables

I d 0 ! ...  d0„ exp( - ^ 0 TA 0) (8.6)
'■s I d

where A is a real antisymmetric matrix, and 0  is the column vector with 
components (0l9. . 0n). We must not take A to be a symmetric matrix here as 
we did in Chapter 1, otherwise (8.3) will immediately imply that the integral is 
zero. Each non-zero term in the expansion of the exponential in (8.6) in volves a 
even number of factors of 0t which must all differ because of (8.3). On the other 
hand, when n is odd, there is an odd number of factors d0. There must therefore 
be at least one factor J d0t where the integrand is 1. Thus, using (8.4),

/„ =  0 for n odd. (8.7)

When n is even, the only term which need be retained in the expansion of the 
exponential in (8.6) is the one which involves n factors of 0. Terms with more 
than n factors of 0 are immediately zero because of (8.3). Terms with less than n 
factors of 0 give zero upon integration because there is at least one factor J d0( 
where the integrand is 1. Thus for n even,

1 (  1 Y1/2
d0x . . .d 0 n-------1 — 0 TA©

1 (n/2)! \  2

=(det A)1/2. (8.8)

One easily convinces oneself of the correctness of this last step (see Berezin1) 
by starting with the simple cases n = 2 and n = 4. We may also use (8.8) for 
n odd consistently with (8.7), because the determinant of an antisymmetric 
n x n  matrix with n odd is zero. It is worth noting at this stage that a positive 
power of the determinant occurs in (8.8) whereas in (1.2) it was a negative 
power that arose.

Generalising to the case where the integration is over the continuous infinity 
of components of a (Grassmann) function \j/(x), instead of over the finite 
number of components of the column vector 0 , we obtain the path (or 
functional) integral

exp( — j  dx' dxij/(x')A(x\x)il/(x) ) = (det A)1/2 = exp(^ T rln A).

(8.9)

A useful extension of (8.8) is to include a linear term in the exponent in (8.6). 
We then obtain 

»

d$!. . .  d0n exp(—^0TA© + pT&) — exp(j Tr In A) exp(—%pTA ~1 p) (8.10)

where p is a given column vector consisting of Grassmann variables



(P j,.. . , p„). Thus, in addition to (8.3), we have

{p„Pj}=o={Pl,ej}. (8.11)

Equation (8.10) may be derived from (8.8) by completing the square and 
changing variables. Thus

©TA 0 -2 p T© = (© + A - 1p)TA(© + A 'V )  + pTA ~ V  (8.12)

where we have used the antisymmetry of the matrix, A, and we then make the 
change of variables

©' = © + A -1p. (8.13)

dxil/(x')A(x', x)\j/(x) + dxp(x)il/(x) )
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J @>ij/ exp^ — \  Jdx' dxil/(x')A(x', x)\j/(x) + J i

=  exp(^TrIn A )exp^— j  Jdx' dxp(x')A~1(x\x)p(x)Sj  (8.14)

where p(x) is a given (Grassmann) function.
So far we have been discussing real Grassmann variables 01?. . . ,  0n or a real 

Grassmann function \j/(x). In the case of complex Grassmann variables, the 
generalisation of (8.6) and (8.8) is

Jd0* d0t ... jd0„* d0„ exp( -  ©tA©) =  det A (8.15)

where A is a skew Hermitian matrix and we define integration over complex 
variables by

d0? d0f= 2  J*d(Re 0.) d(Im 0,). (8.16)

The corresponding path integral is

J ^ r * ^ r  exp^- dx' dx\lt*(x')A{x', x#(x)^ = det A =  exp(Tr In A). (8.17)

If a linear term is included in the exponent, the generalisation of (8.14) is 

J^ *® ^  exp^ —Jdx' d xi//*(x')A(x\ x)ij/(x) + Jdx[p*(x) (̂x) —

= exp(Tr In A) exp^ — Jdx' Jdxp*{x')A~l{x', x)p(x)̂ . (8.18)

In the next sections, we shall find it convenient to work in four-dimensional 
Minkowski space. In that case, (8.17) is replaced by

J*
<3nl/*@}\l/ exp^i J d 4*' d4xip*(x')B(x\ x)^(x)^ = det(iB) =  exp Tr ln(iB) (8.19)
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where B is Hermitian, and (8.18) is replaced by 

exp^i J d 4x' ^ d 4xi//*(x')B(x', x)\j/(x)

+ i J  d4x[<7*(x)il/(x) -F ̂ *(x)a{x)]j

= exp Tr ln(iB)exp^ —i d4x 'J d 4xa*(x')£ 1(x',x)<7(x)^. (8.20)

8.2 The generating functional for spinor field theories

In analogy with (4.47) we write the generating functional

9)$$)^ exp i J d 4x(i? + ij/a 4- <j \I/) (8.21)

where <r(x) is an external source which is a Grassmann variable, and the 
normalisation factor N' is to be chosen so that W= 1 when <7=0. We have not 
added a small term quadratic in the field as in (4.47), because for integration 
over Grassmann variables this does not provide a convergence factor. The 
ambiguity arising from the definition of the path integral will be discussed 
later.

Green functions may be defined by

^ (2w)(x j,. . . ,  xni ,y„)

=  <0|T(^(x,). . .  f t x j f t * ) .. .  iRy„))|0> (8.22)

where $  denotes a field operator, and the time ordering operation T  is defined 
for Dirac fields so that it not only reorders the fields in chronological order (as 
for scalar fields), but also introduces a minus sign each time two Dirac fields 
have to be transposed in the reordering. (This is necessary because of the
anticommuting nature of Grassmann variables.) The Green functions are
related to the generating functional W[a, <t] by

S ^ W r a 9a]j2«^<2")(x x ; y . y ) = T-J — , (8.23)
^ x j ) ... <5cr(x„) <Myi) • • ■ <My„)

^ (2n) is antisymmetric in the indices xf, and in the indices y, (as appropriate for 
fermions) because

52 d2
f5ff(Xi) Sa(Xj) do(Xj) do{Xj)

(8.24)



8.3 Propagator for the Dirac field

It is possible to evaluate exactly the generating functional for the free-field 
theory of a Dirac field, much as for the free-field theory of a scalar field. From 
(3.81), the appropriate free-field Lagrangian is

<£ =  \j/{x)( iy^d^ — m)\l/(x). (8.25)

This Lagrangian must be substituted in (8.21) to obtain the generating 
functional. This is of the form

W[o, a] =  N' J e x p ^ i  d4x' J d 4xiJ/(x')B{x\ x)\jj(x)

+ i j* d 4x[^(x)(t(x) + d(x)^(x)^ (8.26)

with

B(x\ x) = ( — iy^d* — m)<54(x' — x) (8.27)

where d* signifies that the differentiation is on x rather than x'. Using (8.20),

W[a, <r] = exp — i J d 4x 'J d 4x(T(x')B-1(x',x)(7(x) (8.28)

where we have chosen the constant of proportionality so that W[o, a] — 1 
when a = 0. (It is easy to check that replacing \j/* by î y°  and a* by <j = afy0 in 
(8.20) does not affect the result.) Thus

(%

d4x<r(x')SF(x' -  x)cr(x) (8.29)
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W[a, g] = exp — i J d4x' 

with

Sf{x' - x) = B~1(x\ x) (8.30)

the propagator for the Dirac field. We may construct the inverse B~ 1(x', x) by 
Fourier transforming:

'd 4p

implies that

Thus,

B(X'’X ) = ~  w) <8 3 !)

B - V .* ) =  (8-32)J(27t)4 p2- m 2

I (27r)4 p2—m2
(8.33)



We notice that an ambiguity has arisen because of the pole at p2 = m2. This 
ambiguity may be resolved by analogy with (4.45) for the scalar case by 
introducing ie. Thus we write

SF(x ' - x )  = SF(p) (8.34)

with

+  , 8 ' 3 5 )

It is possible to justify this prescription by continuing to Euclidean space to 
carry out the evaluation (as for the scalar case).
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8.4 Renormalisable theories of Dirac fields and scalar fields

As is discussed in Chapter 7, for a field theory to be renormalisable it is 
necessary that there should be only a finite number of primitively divergent 
diagrams. When this criterion was applied to scalar field theories in four 
dimensions we were restricted to terms involving not more than four powers of 
(p in the Lagrangian. We shall now apply the criterion to theories of a Dirac 
spinor field \j/ and a scalar field (p.

Consider a theory in which there are interaction vertices (not involving 
derivatives of fields) with various numbers of fermion and scalar boson lines. 
In general, let an interaction vertex have N B boson lines and N F fermion lines. 
The (superficial) degree of divergence D of a Feynman diagram with / B internal 
boson lines, I F internal fermion lines, and L loops is

D = 4 L - 2 I b- I f (8.36)

(with the fermion propagator as in (8.35)). We shall express D in terms of the 
number of external lines and the number of vertices. Let a given Feynman 
diagram have V(NB, N F) vertices with N B boson lines and N F fermion lines 
attached, let there be EB external boson lines and EF external fermion lines, let 
the total number of internal lines be /, the total number of external lines be £, 
and the total number of vertices be V. Then the following relations hold:

£b + 2/b=  I  V(Nb,N f)Nb (8.37)
n b ,n t

£ f + 2 /f = £  V(NB,N F)NF (8.38)
N B , N  F

V= X W b,N f )
n b ,n  f

(8.39)
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/  =  / B +  / F (8.40)

E = E b + Ef (8.41)

and as before (Chapter 7)

L —l — V + l.  (8.42)

Using (8.37)-(8.42) we see that

D = 4 - E B- i E ¥+ £  V(Nb,N fM N f + N b- 4). (8.43)
n b,n f

For a renormalisable theory we want to avoid interaction vertices which lead 
to the degree of divergence of a diagram growing with the number of vertices. 
We must therefore restrict ourselves to interactions for which

fjVF+jVB-4<$0. (8.44)

The solutions of (8.44) are

JVF = 0 Nb< 4 (8.45)

as in Chapter 7,

jVB= 0 N f = 2 (8.46)

and

N b= 1 N f = 2. (8.47)

(The apparent solution N F =  1, N B = 2 is inconsistent with angular momentum 
conservation.) There are thus no renormalisable pure fermion interactions.
(The solution (8.46) is just a mass term.) The only renormalisable interactions
of fermions with scalars are given by (8.47). For a Dirac spinor field ij/, and a 
scalar field (p, the explicit interactions allowed are Yukawa interactions of the 
form ij/ij/q) and ij/y^q). In either case we represent the interaction vertex as in 
figure 8.1.

I

Figure 8.1 Yukawa interaction vertex.
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If we were to allow derivatives of fields in the interaction vertices, this would 
only lead to a degree of divergence growing more rapidly with the number of 
vertices, and there are no renormalisable derivative interactions of Dirac fields 
and scalar fields.

8.5 Feynman rules for Yukawa interactions

In §6.1, Feynman rules have been developed for a theory involving only scalar 
fields. Now that the theory involves both Dirac and scalar fields, a slight 
generalisation of the formalism of Chapter 6 is required. The generating 
functional depends on both scalar and spinor sources

W[J, tr, o] =  N' J exp i Jdx(if + J<p + $a + dij/) (8.48)

where i f  depends on cp and \p. The normalisation factor N' is to be chosen so 
that W=  1 when J = 0 , <7=0. In the free-field case, it follows from (4.43) and
(8.29) that

W[J, (T,o] = W0[J, g, o] = expf ~

x exp^ —i J  i

dx dy J(x )Af{x  — y)J(y) 

dx dy<7(x)SF(x — y)a{y)). (8.49)

In (8.48), we separate i f  into a free-field part and an interaction part:

i f  =  ifo + ̂ , ^ W -  (8-50)

Then

exp i Jdx(if 4- Jq> + \j/o +  d\j/)

= exp^i Jdxif^tp, i/s exp^i Jdx(if0 + Jcp + if/G + Gil/) .̂ (8.51)

The expansion in powers of the interaction may conveniently be made by 
observing that

^ e x p i j d x ( if0 +  o<p +  ij/a +  m/0
do(y)



and

8
8a(y)
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exp 1J*dx(jS?0 + J(p + $o + oil/)

= i^(y)expi I dx(j2?0 + Jcp + il/a + aij/). (8.53)

The minus sign in (8.53) relative to (8.52) arises because d/da and iJ/ 
anticommute, being Grassmann variables. Taking (8.52) and (8.53) together 
with (6.7), we have

dx(i?0 +  Jq> 4- [//a 4- aif/), i/r, i» ^ e x p  i

= j * d x i ^ - i - ^ ,  - i ^ , i ^ ^ e x p i  j*dx(ifo +  ̂ <?> + ^  + # ) ^ -  (8-54)

From (8.54), (8.51) and (8.48) it follows that 

W[J, a , <f] =  exp
da

W0 V ,a ,a] .  (8.55)

The perturbation series is now obtained as in Chapter 6, by expanding the 
exponential. We need to know the functional derivatives of W0 with respect to 
the sources. These are obtained from (8.49). Thus

dW0
dd(x)

dW0
da(x)

dyiSF(x-y)<r(y) W0

dy(T(y)iSF(y -x )  )W0

(8.56)

(8.57)

and dW0/dJ(x) is given by (6.12). It is important to notice that there is an extra 
minus sign in (8.57) arising because d/da and a anticommute, being 
Grassmann variables. Proceeding in strict analogy with Chapter 6, we obtain 
the additional momentum space Feynman rules for diagrams involving spin 
1/2 particles with Yukawa interaction

<£x = gi/ry\ltq> (8.58)

with y =  l or y5.

1 With each fermion line carrying momentum p there is associated a factor 
iSfip)

iQ/+ m)/(p2 - m 2 + ie).
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2 With each vertex there is associated a factor — igy

- m

where p3 = p2-Pi-  
3 For each closed fermion loop there is a factor — 1.

Because the fermion propagators and vertices are matrices we must be 
careful to maintain the order of the lines and vertices in the diagram. The rules 
for scalar lines and vertices involving only scalar particles are as in Chapter 6. 
It should be noted that a theory of scalar and spin 1/2 particles interacting 
through a Yukawa interaction will also necessarily involve a cp4 interaction. 
This is because there are diagrams like figure 8.2 contributing to the 
renormalised <p4 vertex.

/  \

Figure 8.2 Contribution to renormalised <p4 vertex.

The way in which the Feynman rule assigning a minus sign to closed 
fermion loops arises may be illustrated by considering the scalar meson two- 
point function, G{2)(p, — p). This has a contribution from the diagram of figure 
8.3. The relevant terms in W[J, a, <r] for the derivation of this diagram are 
given by

Figure 8.3 Contribution to scalar meson two-point function.
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(8.55) and (8.58) as

W[J , a, a] =  —— dx dyi y —

^da(y) 5a{y) 5J(y) 

Using (8.56), (8.57) and (6.12), we obtain 

9

8 g (x )  <5<t(x) SJ(y) 

y s t  (8.59)

dx
Sa(x) 5a(x) 3J(y)/

dy2 d y a ^ O C -iS F ^ i ~ F )]y [-iS F(y-y2)]ff(y2)

x [ —iAF(y—3/3)]J(y3)IF0[J, a, a], (8.60)

A crucial extra factor of — 1 arises because of the difference in sign between 
(8.56) and (8.57). The diagram in which we are interested corresponds to two 
external boson lines, but no external fermion lines. We are therefore interested 
in the terms in W[J, cr, a] with two factors of J  and no factors of a, <r. The 
derivatives 8 / 8 g ( x )  and <5/<5<x(x) must therefore be allowed to act on the fermion 
sources a(y2) and d iy j  rather than on W0[J, a, a] in (8.60). The term we want is 
therefore

W[J, a, a] = y  J d y 3 dj>4[ -  iAF(x -  y j ]  [ -  iAF(>> -  y3)~]J(y4)J(y3)

x [iSF(x -  y ) ]* „ y -  iSF(_y -  x ) ] ^  W0[J, a, o] + . . . .  (8.61)

No further minus signs arise at this stage from 8/Sa(x) and 5/Sd{x) because a 
and a are already in the correct order for immediate differentiation. To 
proceed from (8.61) to the momentum space Feynman rule for this diagram is 
now exactly along the lines of Chapter 6. The effect for this diagram of the 
anticommuting nature of the Grassmann fields has been an overall minus sign, 
as required by the third Feynman rule above.

8.6 Massless fermions

As we have seen in Chapter 3, massless fermions such as the neutrino which 
possess only a single helicity state may be described by two-component Weyl 
spinor fields. For a left-handed Weyl spinor field Xl we may write the 
generating functional

W'Or, 4 ]  = N ' j*^ X l^ X l exp i J*d4x (i? + *]>R +  4 * l)  (8.62)



where the source <rR(x) is a right-handed Weyl spinor. In the free-field case the 
Lagrangian is

£ ’=ixlv%XL (8.63)
where

<p* =  (| (8.64)

Following steps exactly analogous to those of §8.3 we obtain the momentum 
space propagator

SL(p) =  r ? ^ h  =  ^  + ie) " 1 (8-65)
(P  +  ie)

where

cr̂  = (l,€T). (8.66)

For a right-handed Weyl spinor field the free-field Lagrangian is

&  = ixWd»XK (8.67)

and the momentum space propagator is

SR(p)=( 7 + t j = (^ + i r l  (868)

An alternative procedure for massless fermions is to use the propagator of 
(8.35) in the zero mass limit. For m -► 0,

s F(p) ^ ^ r ^ = ( i ' + K r 1. (8.69)

For calculations at zero temperature and density this procedure is satisfactory 
because the vertices involving neutrinos in electroweak theory always involve 
a factor ^(1 —y5) which projects out the left-handed part of the propagator in 
any neutrino loop. However, at finite temperature (or density) the use of a 
massless Dirac propagator for the neutrino can lead to errors corresponding 
to the thermal (or Fermi) energy of unphysical right-handed neutrinos. In such 
cases, it may be safer to use Weyl spinors for massless fields.
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8.7 Scattering amplitudes with fermions

By analogy with §6.4 for scalar fields, we obtain a (Lorentz invariant) 
scattering amplitude involving fermions by calculating a (momentum space) 
Green function with the appropriate external legs. (See problem 8.3.) The 
propagators associated with external lines should be divided out as for o p i  

Green functions, but all connected diagrams, not just one-particle irreducible



ones, should be included. The only essential difference from the scalar case is 
that incoming external particle (antiparticle) lines for fermions will have 
associated factors u(p9 s)(v(p, s)) and outgoing lines will have associated factors 
u(p, s){v(p, 5)). These arise because in the analogue of (6.45) and (6.46), the free 
fermion fields contain factors of u(p,s), v(p,s), u(p,s) and v(p9s) from the 
expansions in Fourier components (3.87) and (3.93). These factors remain after 
carrying out differentiations with respect to a(p9 s), b*(p9 s), a*(p9 s) and b(p9 s) 
in the analogue of (6.50). Because of the antisymmetry of Green functions 
under interchange of identical fermions, the scattering amplitudes have this 
antisymmetry when external fermion lines are interchanged, as one should 
expect.

As an example of a scattering amplitude calculation, consider the scattering 
of two identical fermions with a Yukawa interaction given by (8.58). At lowest 
order, the two contributing diagrams are as in figure 8.4, where 1,2,3,4 label 
the momentum and spin degrees of freedom of the fermions. The contributions 
of these two diagrams to MP3P4tPiP2 differ by a sign because of the antisymmetry 
of the amplitude under interchange of the two final fermions.
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Figure 8.4 Contributions to fermion-fermion scattering.

The invariant amplitude is 

M PiP^tP2 = _ i02{“(P3> «3)?«(Pi» Si)u(p4, s4)yu(p2, s2)C(P3 - P i ) 2 - p 2] _1

-u (p 4, S4)y“(Pi> Si)w(p3, s3)yu(p2, s2)[(p4 - P i) 2 ~ P 2] " *} (8.70)

As in §6.5, the differential cross section may now be calculated (see problem
8.4) using the usual gamma matrix trace theorems of relativisitic quantum 
mechanics3, and being careful to include a factor of \  to allow for identical 
fermions in the final state.
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8.1 Derive (8.8) for n = 2 and n = 4.

8.2 By analogy with Chapter 6, derive the Feynman rules for fermion Green 
functions, listed after (8.58).

8.3 Carry out in detail the derivation of the Feynman rules for scattering 
amplitudes involving fermions described in §8.7.

8.4 Calculate the differential cross section in the centre-of-mass frame for 
scattering of identical fermions by a Yukawa interaction (with y = \ or y5), 
taking the incident fermions to be unpolarised.
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symmetry. In fact under the transformation (9.4),

-► ^ A* (9-5)

If we wish to insist on gauge invariance it is necessary to add more terms to the 
Lagrangian. This may be done as follows. The derivative in (9.2) is replaced by 
a covariant derivative defined by

D ^  = ( ^  + i qAJi/f (9.6)

where is a vector field referred to as the gauge field. The vector field is then
required to have the transformation property

A ^ A ^  + d, A (9.7)

under the gauge transformation which acts on \j/ according to (9.4). We then 
see that transforms in the same way as \j/

D > - e “^AD > . (9.8)

Thus, the Lagrangian

if2 = iA(i/D/i~m)^ (9.9)

is gauge invariant.
It remains to include gauge invariant terms for the vector field A^  It follows 

immediately that

= (9.10)

is invariant under the gauge transformation (9.7). Thus, we may write the final 
gauge invariant Lagrangian

se =  $ i /D „  -  I f #  -  i / v P ’ (9.11)

where we have build a Lorentz scalar from F^, and included a factor of \  to 
give a conventional normalisation of the field. With the definition of the 
(gauge) co variant derivative given by (9.6), this is just the Lagrangian density 
for the interaction of a Dirac field with the electromagnetic field, as in (9.1).

This Lagrangian density describes a massless vector field. We might ask 
whether it is possible to give the vector field a mass, while maintaining the
gauge invariance. The answer is ‘no’, because the mass term is not
invariant under the gauge transformation of (9.7). Thus a gauge invariant 
Lagrangian describing the interaction of a vector field with a spinor field 
necessarily means a massless vector field. However, we shall see later that there 
is a way round this, by introducing scalar fields, some of which develop 
vacuum expectation values.
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Suppose we want to construct a theory of a number of Dirac spinor fields 
i =  1 ,..., p interacting with a number of vector fields A%, a =  1 ,..., r. It will be 
convenient to assemble the Dirac fields into a column vector which we shall 
denote by i/t. A gauge invariant theory may be set up by giving each of the 
Dirac fields a ‘charge’ for its coupling to each vector field A%, and proceeding 
exactly as in the last section. This is then a theory of r Abelian gauge fields.

It is natural to ask whether there might not be generalisations1,2 of the 
principle of gauge invariance which differ from simply having r distinct 
Abelian gauge field theories, as above. To explore this conjecture, we first 
generalise the gauge transformation of (9.3) to

^ ) ^ e - i9TA,̂ ( x )  (9.12)

where the Ta are p x p matrices which act on the column vector r̂(x), the Aa(x) 
are arbitrary functions of x, a sum over a is understood, and g is eventually 
going to be a coupling constant. (If the matrices Tfl are all multiples of the 
identity, then we will simply have a succession of Abelian gauge 
transformations like that of (9.4).) More succinctly, we write

^ ( x ) - e - * 'A(xV(x) (9.13)

where

T-A(x)=TaAa(x). (9.14)

By analogy with (9.6), we write

(9.15)

(As before, each function Afl(x) is replaced by a vector field A£, to define the 
covariant derivative.) The development is easier if we now consider an 
infinitesimal gauge transformation

^(x) -> (l— igT • A)^(x). (9.16)

Under this infinitesimal transformation

-*(1— igT • A )d*+ -  ig(T • dA)+. (9.17)

We now adopt a gauge transformation property for the gauge fields

A> -  AS + d*Aa+gfabeAbA> (9.18)

where f abc are some constants. This is analogous to (9.7) except for the last
term, which has been introduced to give the gauge fields an opportunity to
fulfil their role of cancelling out the unwanted terms in (9.17). We want the 
covariant derivative of i/t to transform in the same way as r̂.

9.2 Non-Abelian gauge field theories

jyijf -> (I -  i#T • A )D ^. (9.19)
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This will occur provided

[ T - A ,T '# ] = i /aJ A 4  (9-20)

Consequently,

rrf,,Tc] = i/abcTa. (9.21)

If we assume that the coefficients f abc are antisymmetric in all indices, then this 
may be written as

IT*>TJ = i/haiT1I. (9.22)

Thus, the matrices l a give a representation of the Lie algebra with structure 
constants f abc. (The assumption of antisymmetry of f abc in its indices is 
necessary to obtain invariant terms for the gauge fields. Antisymmetry in the 
indices b and c is evident.) If we take a gauge transformation with constant 
Aa(x) in (9.18), we see that the gauge fields transform as the adjoint (or regular) 
representation of the Lie group.

It is sometimes convenient to use the finite gauge transformation of (9.13)

-  U(x)tfr(x) (9.23)

where

U(x) = e"i0TA(x). (9.24)

The corresponding finite gauge transformation on the gauge fields may be
developed from the infinitesimal transformation of (9.18). We first introduce
the p x p  matrix

A/i =  A^Ta = A/i*T. (9.25)

Multiplying (9.18) by Tfl, and using (9.21), the infinitesimal transformation 
becomes

A" -  A "+T d ^A - ig U  • A, A"]. (9.26)

This corresponds to the finite transformation

A"(x) -  U(x)(A^(x) l(x) (9.27)

taken to linear order in Afl.
Next we construct a gauge invariant Lagrangian for the gauge fields

themselves. To do this we shall need an object F£v with two Lorentz indices
which transforms in a covariant way under the gauge group. This may be 
constructed directly from the co variant derivative of (9.15) by defining

F"v = F f  Tfl= - i 0 ‘ 1[D'l,D v]. (9.28)

Thus

= d ^ A v -  d ' A *  4 - i g l A \  ^ v] (9.29)
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where we have dropped a total derivative, or equivalently

F?v =  P A ’. -  d 'A l -g fabcAlA'c (9.30)

where we have used (9.21). We notice that (9.30) is independent of the fermion 
representation chosen in (9.25).

The transformation property of F"v under the gauge group derived from 
(9.27) is

F ^ x ) -*■ t/(x)F"v(x)l/- Hx). (9.31)

A gauge invariant Lagrangian JFYM for the gauge (or Yang-Mills) fields may 
now be written down. It is usual for this purpose to use the generators ta for the 
fundamental representation of the gauge group in (9.25). Then, correctly 
normalised,

^Y M = ~ lT r(F mvF H  (9.32)

or equivalently

(9.33)

The equivalence of these two forms follows from the conventional
normalisation of the generators of the gauge group, which gives for the
fundamental representation

Tr(tatb)=±Sab. (9.34)

Summarising, we may write down gauge invariant Lagrangians, for Dirac
spinor fields interacting with vector gauge fields, of the form

&  = —m)il/ —  ̂T r(F(JVF',v) (9.35)

or equivalently
J? = iA(i/D„ -  m)ij/ -  iF ;vFJv- (9.36)

Here, the covariant derivative is given by (9.15), and the covariant curl F^  
(or F®v) by (9.29) and (9.25), with Ta replaced by ta, the generators of the 
fundamental representation, (or (9.30)). The gauge fields transform as the 
adjoint representation of some Lie group (referred to as the gauge group), and 
the spinor fields transform as some representation of the gauge group with 
matrix generators Ta. We may, of course, include further Dirac spinor fields, 
transforming as chosen representations of the gauge group, in the same 
fashion. As for the Abelian case, it is not possible to construct gauge invariant 
mass terms, and the gauge fields are necessarily massless. However, we shall 
discuss in Chapter 12 a method for generating masses for the gauge fields, if 
required, by using scalar fields some of which have non-zero vacuum 
expectation values. We shall also discuss situations where the left- and right- 
handed components of Dirac fields transform as different representations of 
the gauge group.
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If the gauge group is a simple Lie group (e.g. SU(N)) then there is a single 
gauge coupling constant g. However, if the gauge group is a semi-simple one, 
which can be written as a product of simple factors (e.g. SU(2) x SU(2)) then 
there are independent gauge coupling constants for the various simple factors.

9.3 Field equations for gauge field theories

The Euler-Lagrange equations corresponding to the Lagrangian (9.36) are

0js? _ d s e

d(dvAy~dAZ

and

(9.37)

dse dse

d(d'$)~~diiJ' (938)

It is easy to check that (9.37) leads to

^ n - g f a u A l F l ^ g ^ f T > . (9.39)

This can be written neatly in terms of the co variant derivative of a gauge field,

D »A\ = cTA:-gfabcA'tAl (9.40)

which arises from (9.15) with the replacement

( T X -  - i f aie (9.41)

for the adjoint representation to which the gauge fields belong. Thus, (9.39) is

(9.42)

The other Euler-Lagrange equation (9.38) leads immediately to

(i/D „-m )iA =0 (9.43)

where for the fermion fields is as in (9.15).
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FEYNMAN RULES FOR QUANTUM 
CHROMODYNAMICS AND QUANTUM 

ELECTRODYNAMICS 

10.1 Quantum chromodynamics 

We shall see later that quantum electrodynamics (QED) can be unified with the 
weak interactions leading to a gauge field theory (electroweak theory) based 
on the non-Abelian group SU(2) ® U(l), with independent coupling constants 
for the SU(2) and U(l) factors. For electroweak theory, it is necessary to 
generate masses for the gauge fields, through scalar fields with non-zero vEvs. 
This is discussed in Chapter 12. 

The theory of strong interactions, quantum chromodynamics ( Qco ), is based 
on the colour SU(3) group. This is a group which acts on the so-called colour 
indices of the quarks. Each flavour of quark u, d, s, c, b, ... comes in three 
'colours' labelled 1, 2, 3 which form a basis for the three-dimensional 
representation of colour SU(3). The colour degrees of freedom were 
introduced, in the first instance, to allow three quarks to be in an s-wave 
ground state, consistently with Fermi statistics, by having a colour singlet 
wave function anti symmetric in the colour indices. It was later observed that if 
this group were gauged, it might provide a theory of the strong interactions, 
while the flavour degrees of freedom are more closely related to the gauge 
group of the weak and electromagnetic interactions. In the case of QCD, it has 
been thought possible to live with massless gauge fields. This possibility rests 
on the hypothesis of colour confinement, namely that colour degrees of 
freedom are never observed, and all observed particles are colour singlets (at 
least at low density and temperature). We shall have more to say about this 
later. In what follows in this chapter we shall discuss a general simple gauge 
group with the example of QCD, where the gauge group is colour SU(3), in 
mind. 

In Chapter 15, the possibility will be discussed of combining electroweak 
theory and QCD into a single gauge theory, referred to as a grand unified theory. 

10.2 Problems in quantising gauge field theories 

The simplest guess to quantise a (non-Abelian) gauge field theory would be to 
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write for the generating functional

where the x° integration is from — oo to oo, and a continuation to 
Euclidean space is expected to make the path integral well defined. The 
Lagrangian j£?ym is as in (9.33), and J 3  A11 is used as shorthand for {~[a J 3 A*. 
Unfortunately (10.1) is unsatisfactory for several reasons.

First, if we proceed with this generating functional in the free-field case, 
g 0, we arrive at

In order to invert (10.5) we have to separate in terms of the transverse and 
longitudinal projection operators

where it is understood we will have to introduce the usual ie in the 
denominator. The second term in (10.9) is infinite, and so the Feynman 
propagator for the gauge field theory makes no sense.

Second, we should not really have expected a sensible result because (10.1) is 
overcounting degrees of freedom. In (10.1) we are integrating over all Aftx) 
including those that are connected by a gauge transformation. Consider the 
case J£ = 0 for all a. Then because i?YM is invariant under gauge

w y n  OC 9A> exp ih - 1 d4x[jS?YM( ^ )  + J aM „J (10.1)

where

D??Jx',x) = 8abDp(x',x) (10.3)

with

(10.4)

and

m \ p ) r i = - p 2g ^ + Py \ (10.5)

m p ) = < r - p " p v/p2 (10.6)

and

fT (p )= p V /P 2. (10.7)

Thus

C 0 fv(p)] ' 1 = - p 27T(p) + OPf(p). (10.8)

Inverting gives

£ r(p )=  -  (p2r 1 t t ( p)+ o  ■1 p f  (p) (10.9)
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transformations, the integral is constant over the infinite surface in gauge field 
space obtained from a given A£ by applying all possible gauge 
transformations. The contribution to the path integral corresponding to 
integrating over this surface is therefore infinite. We must find some way of 
separating out this infinity.

Another closely related way of looking at the problem is to say that the 
action does not depend on all the components of the gauge field. In the free- 
field case g -* 0, we may Fourier transform the gauge fields to obtain

J d 4x ^ YM = i  AZ(p)(-p2g„, + P»P>)A:(-p) (10.10)

where we have written

^ W = j ( 0 e- ,px^ (P). (10.11)

In terms of the transverse and longitudinal projection operators of (10.6) and 
(10.7)

J d 4x ^ YM= - i  j ^ L A ^ p ) P l v(p)AK-p). (10.12)

Thus the action depends only on the transverse components of the gauge field

%JP) = PUP)%(P) (1°. 13)
and not on the longitudinal components

a U p)= p lJ p)A:(p)- (10.14)

The path integral integrates over all the components of A*. Since the action 
does not depend on some of these components, an infinity is bound to arise.

10.3 An analogy with ordinary integrals

Before showing how to overcome the problems discussed in §10.2, we discuss 
an analogous situation which arises in connection with ordinary integrals 
rather than path integrals. This illuminating analogy has been particularly 
emphasised by Coleman1. Suppose that S is given as a function of m + n real 
variables x£ (i= 1,.. .,m + n) but that S depends on the last n variables 
xm + 1, . . .,xm+ll but not on the first m variables x l9. . . , x m. The variables
xm + 1,..., xm+w model the transverse components of the gauge fields, the
variables x l9... ,x m model the longitudinal components, and S models the 
action. Write



This would model the generating functional of (10.1) for zero sources, and 
would be infinite because S does not depend on all the variables of integration. 
(The integrations are understood to be from — oo to oo.) Suppose we consider 
instead
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W = Jd x m+1.. .J d x M+„eis (10.16)

which integrates over only the variables on which S depends, and which we
assume is finite (at least after continuation to Euclidean space in some sense.) 
This can be recast as an integral over all the variables x i9... ,  xm+n by using 
Dirac 8 functions.

Let

Xi=fi{xm + u . . . , x m+n) (i= 1, (10.17)

define an arbitrary surface. Then we may rewrite (10.16) as 
*  (%

d x j . . .  dxm+neiS J ]  5[*i-/i(*m + i , •••>*»+»)]• (10-18)
J 1=1

If instead we are given (10.17) in the implicit form

? • • •» + 1 ’ • • • > + «) ^ 0* 1, ...,fll) (10.19)

for more appropriate functions then we can recast (10.16) in terms of the Ft 
as follows:

W= dxm dxm+n JdFx ...JdFme‘s n  m )  (10.20)1? •

changing variables from Fl9. . Fm to x l9... ,  xm gives

j V ... Jdxm+„eisd e t ( |0  Wd. (10.21)

The determinant is for derivatives of Fl9. . . 9Fm with respect to x x, . . . ,  and 
because of the Dirac 8 functions we need evaluate the determinant only on the 
surface defined by (10.19). The Faddeev-Popov quantisation procedure for 
gauge fields is the analogue of (10.21).

10.4 Quantisation of gauge field theory

A procedure which overcomes the difficulties discussed in §10.2 has been 
devised by Faddeev and Popov2. We shall be considering how to amend (10.1) 
so as to make it well defined and, for simplicity, we shall discuss the path 
integral for zero source terms. There are some additional difficulties when the 
sources are included which we shall mention at the end. As discussed in
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Chapter 9, the action

J*d4x-£?YM (Aqu) (10.22)

is gauge invariant, where i f YM *s as in (9.33). Let us denote by AJJ, the gauge 
fields obtained from Aail by the finite gauge transformation specified in (9.24),
(9.25) and (9.27). The gauge invariance of the action means that

The difficulties discussed earlier arise because we overcount degrees of 
freedom by integrating over gauge fields which are connected by a gauge 
transformation. If we could factor out, from the path integral, a path integral 
over gauge transformations, then we might resolve the problem. The general 
guage transformation is associated with

as in (9.24) and is determined by the gauge parameters Aa(x). We shall adopt the 
notation J to denote an integration over the gauge group elements in some 
sense, and we shall try to factor out this path integral. It is possible3 to define 
J in such a way that

where / [ U] is any functional of U(x), and U'(x) is a fixed gauge 
transformation. In the case where the integration is restricted to an 
infinitesimal region we may take

This is indeed the case for infinitesimal regions with the <3\J of (10.26) because

(See problem 10.1.)
In the end we want to replace (10.1) by a path integral that does not integrate 

over gauge fields which are connected by a gauge transformation. In other

s [ < ] = s |> U . (10.23)

U(x) =  e-*T-AW (10.24)

<2>U/[U]= 0 U /[U U ] (10.25)

(10.26)
a

To check the correctness of (10.25) is to check that

<s>U"/[U"]= s u / r i n (10.27)

where

U" = UU'. (10.28)

(10.29)
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words, we want to have a path integral which remains in a definite gauge. Thus, 
we want to be able to introduce a gauge fixing term as in (3.130a) for the 
Abelian case. Generalising (3.128) a little, we may think of a choice of gauge as 
a set of conditions

Fa(Al) = 0 (10.30)

which may involve the derivatives of the gauge fields. The gauge choices in 
which we shall be particularly interested are given by

Fa( A ^ d ^ a- f a(x) = 0 (10.31)

where the f a(x) are some given functions of x. With a view to importing the
required gauge fixing term, consider the functional

A [/ U  =  jM J ,5[Fa(/0 ] (1032)

where a functional delta function has been introduced, and for compactness of 
notation we write

(10.33)
a

The functional A is invariant under gauge transformations:

A [ ^  =  A [ ^ J .  (10.34)

The proof is brief:

A IA%\ = 1 3>\J8lFa(A™)-}. (10.35)

Using (10.25) the result follows. The inverse of A will have the defining
property

A '1[AflJ A [ ^ ]  = l. (10.36)

With the aid of (10.36) and (10.32) the path integral we want may be recast as

f exp^i d4x ^ f  ym(Aqu) j — QiSlAâ

~1 lAafJ  J<2U«5[Fa« ) ]  e's[M  (10.37)

Using the gauge invariance of the action and of A, as in (10.23) and (10.34), 

9 A » =  | @AMA ~ I[Aa/l] [&U5[Fa(A tft  elSt/ia. (10.38)j & A M =  J,



Observing that J 3 A ^  is the same path integral as J 3A^, we now see that

2$ A* e^V l =  \3 U  j 3A»A ~1 \ A ^ S  W  (10.39)
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The integral over gauge transformations j  3 \J  has now factored out, as we had 
hoped, and the gauge is being fixed by the functional <5 function, as we had also 
intended. Thus if we write

9  A* eisDV  oc | 9 M A - 1 [AafJ5(Fa(Abl<fl e81̂  (10.40)

then the difficulties of §10.2 should have been removed.
It is necessary to be able to evaluate A ~1 in (10.40). This is done by changing 

the integration variables in (10.32) from to J~[a Q)Fa. We may use the of
(10.26) because the functional <5 functions in (10.40) and (10.32) restrict U to an 
infinitesimal region around the identity. Thus

<>o<»
where the functional differentiation is in the sense of (1.18).

Now

nS > F ad e t 'Mfc(x)
SFJL*)7\ H F J

= d e t ( ^ l
U f „(x'W Fa=0

The inverse is

(10.42)

(10.43)

Thus, we have the explicit expression (analogous to (10.21) for the case of 
ordinary integrals),

J^ /4" exp^i ̂ d * x S ’YM(Aall) j  = j* 9 A 11 e‘st/‘“'‘] oc 3iA* detj ^ 2 N)<5[FJ e ^
M„(x)

(10.44)

where

Fa(x) =  Fa« ( x ) )  (10.45)

and A^  is the gauge field obtained from Aafi by the gauge transformation 
defined in (9.24), (9.25) and (9.27). The generalisation when the source terms are
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non-zero is
r A5F

Jw v a  oc Jo)A' det(^|0<>[FJ

( ‘W -
xexp i d x ^ ym( ^ )  + JSAan (10.46)

That this generalisation is correct is by no means obvious because the 
derivation we have given depends on the gauge invariance of the action, and 
this is broken by the source terms. However, it can be shown that (10.46) is 
indeed correct provided we are in the end going to use the generating 
functional to calculate 5-matrix elements. This point is discussed in Taylor3.

10.5 Gauge fixing terms and Faddeev-Popov ghosts

If we are to use the generating functional for gauge field theory to develop a 
perturbation theory, we need to convert the functional 8 function and the 
functional determinant in (10.46) into exponentials.

First, we use the functional 8 function to obtain a conventional gauge fixing 
term in the exponent. With the choice of Fa of (10.31),

SlFa-] = 8 \ _ d ^ f a(x)l  (10.47)

Multiplying the generating functional by

JCn ^ / c ) e x p ( - ^  d4xfa2(x) ĵ

simply multiplies by a constant which can be absorbed into the overall 
normalisation. But

d4x(M S)2 • (10.48)

Consequently, the generating functional of (10.46) becomes

H V -]cc

x exp d4x( i f YM(AQ + J!Atm~ ( d ltAQ2 (10.49)

Secondly, we convert the determinant in (10.49) into an exponential by 
introducing the Faddeev-Popov ghost fields. These do not correspond to 
physical particles but are simply a mathematical device to enable a 
perturbation series to be developed. Using (8.19) for complex Grassmann



variables jj0( x )  we have

exp^i J d 4x j d 4x'fj;f(x')Ba),( x \x ^ x )^  cc d e t(-B ) (10.50)

where

3it}*9>r\=\\3ir}*<2)r\a. (10.51)
a

(We have absorbed det(—il) into the constant of proportionality for later 
convenience.)

Taking

(10.52)
5Ab(x)
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gives
//S7T (x-'W

3>rj*<3>rj expl — i
de,u w lcc

(10.53)

Using the infinitesimal gauge transformation specified in (9.18) we have

^ l  = Sab̂ ( x '  - x )+ g fabcA » ( x W - x ) .  (10.54)
<5Ab(x)

The functional differentiation is in the sense of (1.18). Thus, with the Fa of 
(10.31)

5 r 7 T * ^ { [ ^  +qfabcA » ( x ' ) W - x ) } .  (10.55)
<5Ak(x)

The required determinant (10.53) now becomes (after integration by parts) 

d6t(S ^ y )  ̂  \j 9r]*S>rl eXP(‘ | d*xdX ( dflria + 9fabct1b^)j. (10-56)

In the co variant gauge of (10.31), the final generating functional for a general 
gauge field theory is

W[J£]oc J ^ j W ^ e x p  i d4x ( ^ YM~ (d „ A > )2 + J?FP+J>{All)a'j

(10.57)

where

&FP = d?riZ(dli’1a + 9fabct1bAli) (10.58)
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and, as in (9.33),

^ ym= = - » V  (10.59)
A gauge fixing term has appeared, and, additionally, Faddeev-Popov ghost 

terms. In the Abelian case of q e d , the Faddeev-Popov ghost Lagrangian 
reduces to There is no coupling of the ghost fields to the gauge field,
and the ghosts simply contribute a multiplicative constant, which may be 
absorbed into the normalisation of the generating functional. Thus, in the 
co variant gauges used here, there is no need to introduce Faddeev-Popov 
ghosts into q e d . However, the ghosts play an important role in the non- 
Abelian case of q c d .

Other choices of gauge are possible. For example, we may choose a gauge 
by writing

Fa( A ^ t ^ a- f a(x) = 0 (10.60)

where tM is a four-vector with

t ^ =  1. (10.61)

These non-covariant gauges are referred to as axial gauges. They have the 
advantage that Faddeev-Popov ghosts decouple from gauge fields even in the 
non-Abelian case. However, there is the (more than) compensating
disadvantage that the gauge field propagator turns out to be very complicated
in these gauges. (See problem 10.3.) We shall not use these gauges here.

Finally, we may include fermion fields if/ transforming as an arbitrary
representation of the gauge group, by adding to the fermion Lagrangian

(10.62)

with the covariant derivative as in (9.15):

+ (10.63)

10.6 Feynman rules for gauge field theories

Our experience in Chapter 6 of deriving Feynman rules from a Lagrangian will 
allow us to read off the Feynman rules for gauge field theory. We shall want the 
Feynman rules in momentum space, so we first Fourier transform the fields as 
in (10.11):

A° M = \ ^ e ~iP'XA°W  d°-64)

and similarly for rja(x) and if/(x). The terms quadratic in the fields in the action
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of (10.57) yield 

J d 4xJ*f (quadratic)

= \  ^ + ( 1 ~  ̂  ~ ̂ ^  + ghost terms*

(10.65)

Corresponding to (10.5) we now have the inverse propagator

[5r(p)]_1=-pyv+(i-r w  (io.66)
and in terms of the transverse and longitudinal projection operators of (10.6) 
and (10.7)

\ P i \ p ) Y l = - p 2m p ) - r v m p ) .  (io.67)

Now that we have the gauge fixing term, it is possible to invert (10.67) to obtain 
a sensible answer in contrast to (10.9). Thus

l%lp) = (p2 + k r 1l-g*'H l-W p '/p2] (10.68)

where we have introduced the usual ie in the denominator, to resolve 
ambiguity in the meaning of this expression. The two most frequently used 
gauges are Feynman gauge, £= 1 and Landau gauge, £=0. The propagator 
takes its simplest form in Feynman gauge, but in Landau gauge the 
propagator is purely transverse and this can sometimes have calculational 
advantages. As we shall see later, the Landau gauge also has advantages in 
theories with Higgs scalar mesons, because the scalars decouple from the 
Faddeev-Popov ghosts in this gauge. (This is related to the transverse nature of 
the gauge field.) For Feynman diagrams we shall use a wiggly line

(10.69)

The quadratic terms for the Faddeev-Popov ghosts are those of a massless 
complex scalar field (though the Faddeev-Popov ghost fields are Grassmann 
variables). Correspondingly, the propagator is (see problem 4.1)

A?:bs' ( p ) = s jp 2+ i s r 1. (io.70)

For Feynman diagrams we shall use a dotted line.

*...V""* : tffiHp). (10.71)

Because Faddeev-Popov ghost fields are Grassmann variables, the closed loops 
in Feynman diagrams involving them will each attract a minus sign. To obtain 
the Feynman rules for the various interaction vertices in the theory, we next



Fourier transform the remaining terms in (10.57) and (10.62). For the gauge 
fields this leads to

j d 4xJ? (interaction)

/  f  d4p d4q d4r ~ ~ \
= -  i a / a J I  ^ 4  (2^4 (2^)4 x %P + 9 + r)AxJp)Al(q)Avc(r)\

- v r  f  ( f - ^ -  f—  f—4 0  J f lb c /o d c ^ J  (2 w )4  J  (2 w )4  J  ( 2 j f ) 4  J  ( 2 j t ) 4

X 5(p+4 + r + 5 ) ^ w^ ( p ) ^ ( 9)^ ( r )^ (s ) j . (10.72)

The trilinear term is antisymmetric under interchanges of (p, A), {q, p)9 (r, v) in 
the coefficient of A^{p)A^(q)Avc(r) as a result of the antisymmetry of f abc in its 
indices. We may make this antisymmetry explicit by making the replacement

- i 9fabcP„9xv -4 - ~  Wabclir- 9)x9^ + ( 0 - Pl9x* + (P- r )„ 0 j • (10.73)

It is easily checked that each of the six terms on the right-hand side of (10.73) is 
identical to the original term on the left-hand side. Thus the replacement does 
not change the value of the integral. (See problem 10.4.) Since we now have an 
expression which treats A„(p), A£(q) and A vc(r) on the same footing, we may read 
off the Feynman rule (including the usual factor of i for vertices).

C,V

OfabMr -  Q)x9^ + ( q -  Pl9x„ + (q -P ig  Xu + {p~ r)ugvJ  (10.74)
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a,  A b,\i

with

p + q + r = 0. (10.75)

The quadrilinear term is symmetric under interchanges of (b, 2), (c, p), (d9 v), 
(e, p) in the coefficient of Ai{p)A£(q)Avd(r)Ape(s). The symmetry becomes explicit 
on making the replacement

~^ 9 fa b c  f a d e d  XvQpp *  4 J  ^  [fa b c fa d e id X v d p p  dpvdX p)

~^~fadcfabe{9vx9pp dpX dvp)  

fa b d fa c e id  Xpd vp 9pv9Xp)~}’ (10.76)
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Again each term on the right-hand side of the equation is identical to the 
original term on the left-hand side. We now have an expression which treats
Al(p), A p(q), A vd(r) and A pe(s) on the same footing, and we may read off the
Feynman rule:

Ĝ \-fabcfade(G kvGpp GpvGkp)

fadcfabXGvkGpp GpXGvp)

+fabdface(GXpGVp ~GWGXp)] (10‘77)

with four-momentum conservation at the vertex

p + q + r + s = 0. (10.78)

In the case of q e d , where the gauge group is Abelian, f abc = 0, neither the 
trilinear nor the quadrilinear vertex in the gauge field occurs.

For the (ghost)-{gauge field) interaction, the relevant Fourier transform is

*.9 d,v

I'
d4xi?Fp (interaction)

■J;
. ,  , d4p
gJabc I (2tz)4 t

d *q
(2n) Pp5*(q + r-p)rj*(p)r}b(q)A^r) 

(10.79)

giving the Feynman rule

c.ii

l  ■ -gfabcPv (10.80)
/ q  p \

b a

with

q + r - p  = 0. (10.81)

Again this vertex does not occur for q e d .

As in Chapter 8, we denote Fermion propagators by a solid line.

u* .-----1------   ;.P : ^ [ ^ ( p ) ] /h  (10.82)

where a and j8 are spinor indices. The (gauge fieldHfermion) interaction may
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be read straight off from (10.62) and (10.63):

- i  g ( y M Tah (10-83)

with

p + r — q = 0. (10.84)

For q e d , igTa is simply replaced by iq, where q is the charge of the fermion and 
the Feynman rule is

10.7 Scattering amplitudes with gauge fields

By analogy with §6.4 for scalar fields, we obtain a (Lorentz invariant) 
scattering amplitude when there are gauge field external legs, by calculating a 
(momentum space) Green function with the appropriate external legs. Again 
the propagators associated with external lines should be divided out, as for o p i  

Green functions, but all connected diagrams, not just one-particle irreducible 
ones, should be included. The only difference from the scalar case is that 
incoming (or outgoing) external gauge field lines will have associated factors 

X) (or eM*(/e, 2), as defined in §3.4, where X specifies the helicity of the vector 
particle, and p is a Lorentz index. These factors arise from the expansion in 
Fourier components of the free massless vector field, (3.127) and (3.135), 
substituted in the analogue of (6.45) and (6.46). After carrying out 
differentiations with respect to a(k, X) in the analogue of (6.50), these factors 
remain.

10.1 U, IT, U" are infinitesimal gauge transformations satisfying UU' = U" 
as in (10.28), with gauge parameters Aa, A'a, A" respectively. Obtain an 
expression for A" correct to second order Aa, A'a and check (10.29).

a

Problems
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10.2 Show that the right-hand side of (10.44) is independent of the choice of 
gauge. (One way of doing this is to follow the analogous step in §10.3.)

10.3(a) Derive the gauge field propagator for the axial gauges specified by 
(10.60) and (10.61). (b) Show that in axial gauges there is no coupling of the 
Faddeev-Popov ghosts to the gauge fields.

10.4 Check directly that each of the terms on the right-hand side of (10.73) 
and (10.76) is identical to the original term of the left-hand side, and that the 
various claims made about symmetry and antisymmetry for these two vertices 
are correct.

10.5 Derive the Feynman rules for the Lagrangian

& =i 1+gq>)2 - W < P 2( 1 + W) 2+J<p(l+  hg<p)

(Coleman p. 48).
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11 

RENORMALISATION OF QCD AND QED 
AT ONE-LOOP ORDER 

11.1 Counter terms for gauge field theories 

In the covariant gauges discussed in Chapter 10,the gauge field propagator of 
( 10.68) has a high momentum behaviour - (p 2) -l just like the scalar 
propagator. Thus, the (superficial) degree of divergence of a Feynman diagram 
involving gauge fields will be given by a slight generalisation to include 
derivative interactions of the expressions derived in §8.4. (See problem 11.1.) 
The gauge field interactions in ( 10.58), ( 10.59), ( 10.62) and ( 10.63) all satisfy the 
criterion to avoid the degree of divergence increasing with the number of 
vertices 

(11.1) 

where N 8 is the number of boson lines, N F is the number of fermion lines, and 
N0 is the number of derivatives for a particular type of vertex. Consequently, 
we expect a renormalisable theory, and we should be able to generate all 
necessary counter terms for the renormalisation from a bare Lagrangian 
which involves the same types of vertices as the renormalised Lagrangian. 
However, at first sight there could be rather a lot of counter terms because 
there are two different vertices involving only gauge fields, one involving gauge 
fields and ghost fields, and one involving fermion fields and a gauge field for 
each type of fermion field. Fortunately, the situation is simpler than this, 
because it is possible to prove1 that if the bare Lagrangian is gauge invariant so 
is the renormalised Lagrangian. There is thus just a single bare coupling 
constant and a single renormalised coupling constant for a simple gauge 
group. We shall not prove that this is true to all orders of perturbation theory 
here, but shall simply assume that it is true. However, even if we were not to 
assume this general result, we would be able to prove its correctness at one­
loop order by computing all the vertices. (See problem 11.2.) 

The renormalised Lagrangian for a general simple gauge group is 

1 1 
If= - 4 F~'F:.- 2~ (o~'A~)2 

+ o~'11:W'1a + gfabcl'fbA~) 
+ (f(iy~'D~'- m)t/1 ( 11.2) 
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where

F r  =  F A va -  V K  -  gfatcAiAl (11.3)

and

D >  =  (5M + i g T - ^  (11.4)

for a fermion field transforming according to the representation Ta of the 
gauge group. We write for the bare Lagrangian

JSPb =  ̂  +  AJSP (11.5)

where A«£? is the counter term Lagrangian.
We assume that the bare Lagrangian takes exactly the same form as the 

renormalised Lagrangian but with the bare quantities i/fB, (^)b , (*?a)B> mB 
and gB replacing the corresponding renormalised quantities. Then the counter 
term Lagrangian is of the form

A i?=  —  A Z AF i ' F ^ - ^ ( d HAQ2

+ A Z ^ ^ d lt\a + A Z ^ i y ^ d ^

~  + gK  j d X ^ f a b c
- g K 2̂ l J > A ^ g K J abcAlA'cd^Aa)y

K J abcf aieAlAl(A4U A e)y. (11-6)

The relationships between bare and renormalised fields and masses are

( A % = ( 1  + A Z a)i i2A : = Z \ i2A: (11.7)

(tia)*=(1 + AZ,)1/2»ja = Z \ l2r\a (11.8)

^b= ( i+ a z ^ ) 1/V = z ; /V (11.9)

(11.10)

mB= m( 1 +  K J Z ^ 1 = mZmZ ^ 1 (11.11)

3b= ^ ( i + k 1) z - 1z ; 1/2= 3z 1z - 1z j 1/2 (11.12)

gB= g ( l  +  K 2)Z + 1Z ; ll2= g Z 2Z + 1Z ^ 112 (11.13)

g ^ g i l  + K J Z ^ i ^ g Z s Z ; 113 (11.14)

g i = g 2( i + k 4)z * 2= 02z 4z ; 2 (11.15)

where we have defined

Z a= 1 + A Z a 

Z„ = 1 + AZ„

11.16)

11.17)



Z*=1 + AZ* (11.18)

Z{= l  + K{ (11.19)

Zm= l  + Kra (11.20)

Z — l + Ki i —l,. .  .,4. (11.21)

There are four different expressions for the bare coupling constant (11.12) to
(11.15) depending on which vertex we consider. Thus, there are the 
relationships amongst renormalisation constants

z, z -1=z2z -1=z3z,-1 = zy 2z; "2. (11.22)
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11.2 Calculation of renormalisation constants

We now evaluate to one-loop order the renormalisation constants defined in 
the last section. We shall regularise the divergent loop integrations using 
dimensional regularisation, and shall adopt the m s  renormalisation scheme 
described in §7.5. As in Chapter 7, in 2co spatial dimensions, the dimensionless 
coupling constant

g = gM°)- 2 = gM - fi/2 (11.23)

is introduced, where M  is an arbitrary mass scale.
To compute Z A we must consider the o p i Green function for two gauge fields 

H 2U  — p, p) which we denote by

r & y - p ,? ) :  (1L24)

(This is often referred to as calculating the vacuum polarisation diagrams.) The 
contributions to this Green function to one-loop order are

6,v

(11.25)

Here we have used a cross to denote a counter term as in Chapter 7. The last 
diagram is quadratically divergent with no momentum flowing into the loop 
and vanishes in dimensional regularisation. This is a good thing because this 
diagram has no dependence on p and could only contribute to a gauge boson 
mass. The assumed gauge invariance of both the renormalised and 
unrenormalised Lagrangian means that there can be no bare or renormalised



gauge boson mass, and that there can be no mass counter term for the gauge 
bosons. We evaluate the remaining three one-loop diagrams.

Consider first
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where we have taken advantage of the Kronecker delta in the colour indices in
(10.69) to write the same colour index at each end of an internal gauge boson 
line. Using the Feynman rules of Chapter 10, including a symmetry factor of \  
for the two identical internal gauge boson lines,

J„X P,q) = l - ( P  + 2 q)„gpa+ {q -  p)„gpil+(2 p + q)pgpa] 

x [ -  (p + 2q \g lz + ( q -  p \g iv + (2p + q)>g^\

Taking the Feynman propagator from (10.68), we obtain (after some labour)

JpXp, q)l(p+q)2 + ie] 2{q2 + ie)2 
=  [2(4co -  3)qpqv + (4co -  3)(q„pv + ppqv) + (2co -  6)p„pv 

+  (5p2 +  2p • q +  2q2)gpv']q2(p + q)2 

+ ri2l p \ q ,+ ( p - q ) 2p„Pv-(p ■ q)p2(pPqv+qPpJ]

+ r)(p + q)2[_(q2 + 2 p - q -  p2)qpqv + (q2 + 3p- qKpPq, + qPP,) 

liq2 + 2 p - q ~  P2)qpqv + (q2 + 3 p • q)(ppqv + qppv) 

- q 2P^Pv-(q2 + 2p-q)2gpv']

+w 2l(q2 -  2.p2)qpq„+(p • q)(qPpv+ p„qv)

With the aid of the integrals of Appendix A, we find the pole in s = 4 — 2a> to be

(11.26)

c, 9 q c,\

(diagram 1 )=$M cg2f acdf cbd (2n)2̂ q) (11.27)

where

x Df(p+q)Dpp(q). (11.28)

+ (p2- 2 q 2)pppv- ( q 2-  p2)2gr„v] (11.29)

where

q = \ - Z - (11.30)

(diagram 1) = ^ ^  y - 2 ^ P MP, + ̂ + ^ P 2̂ , J + . . .  (11.31)



C ^ f a c J ™  dl-32)

Consider next
p+q

(diagram 2)= 5* (11.33)
^  *.v

<7

With the Faddeev-Popov ghost propagator of (10.70) and the vertex of (10.80),

’ d 2aq (p + q)„qv
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where the group theory factor is defined by

(diagram 2)= - M tg2cl5ab
(2n)2(° [(p + qf)2 + ie](q2 + ie)

(11.34)

including a minus sign for the closed loop of Grassmann fields. Performing the 
integral with the aid of Appendix A we find the pole term

*2 3
(diagram 2)= *9 ° \ ab (ip„pv+ ip 2g„v) + . ■ ■. (11.35)

lon e

Consider finally

(diagram 3)= ^  (11.36)

Using the fermion propagator of (10.82) and the vertex of (10.83), and 
including a minus sign for the closed fermion loop,

f  d2(°q
(diagram 3)= - g 2M*c23aJ ^ p T r ( 7/zSF( ^ v5F(p +  ̂ ) (11.37)

where the group theory factor is defined by

c2<U = Tr(TflTb) (11.38)

and SF(q) is as in (8.35). Evaluating the Dirac gamma matrix trace gives

’ d 2(33 q
(diagram 3)= - g 2M ec2Sab2

• a(2n)2a 

q„(P + q), + (P + g)„g» + {m2- q 2- p -  q)glx 
(q2 — m 2 +  ie)[(p+ q)2 - m 2 +  ie]

(11.39)

The pole term in e =  4 — 2co is most easily extracted by putting m =  0 in (11.39). 
Then we may use the integrals of Appendix A to obtain

(diagram 3) = f  ° f -ab( ~ iP tlp ,+ ^P 2qflv) + ■■■■ (11.40)
1071 8



We may now calculate the renormalisation constants AZ A and K^ from
(11.25). Thus, i f  we adopt the m s  renormalisation of §7.5, where the counter 
terms exactly cancel the poles in e, and read off the counter terms from (11.6), 
we have

i AZ a( — P29^+PpPv) ~  ~ l KtP„P,

= - r ^ r { ( - P 29^ + P „ P M -Xi- t l )C i+ ^c 2̂ - r ic 1pllpv}. (11.41)
107C 8

Thus

A Z ^ - ^ R - ^ + ^ + f c J  (11.42)

and

,1L43)

where we have used (11.30). The renormalised o p i  Green function of (11.24) 
may now be evaluated from (11.25) using the above counter terms. (See 
problem 11.3.)

Consider next the o p i  Green function for two Faddeev-Popov ghost fields. 
The contributions to this Green function at one-loop order are

P P• ► • vY/A■ = .........►......  + • x • • • •*•• •
a V&J' b

(11.44)
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There is only one non-trivial diagram to consider:
c,v

(diagram 4) =  p (11.45)
p ( T  pa . . . . . . . . . . . b

d p+q d

Using the propagators and vertices of §10.6,

d 2mq
1(24

Performing the integral with the aid of Appendix A, the pole term is

2ig2c1Sab J 3 _ 5 Z  
16n2e P 4

The counter term AZ n may now be obtained from (11.44) and (11.6). In the m s  

renormalisation scheme we require an exact cancellation of the pole term by

(diagram 4)=g2M ec15ab^ - j^ - ^ D £ ( -q ) (p  + q)llpv[_(p+q)2 + ie] l . (11.46)

(diagram 4) =  - 1 p2\ 7 — j - ) + .... (H-47)



and so

- 2 ^ /3  5<f 
167i2e \4  4
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the counter term. Then

(11-49)

The fermion wave function and mass renormalisation counter terms may be 
obtained from the equation for the o p i  Green function:

’ —    <1150’

There is only one diagram to evaluate, namely,
-q

(diagram 5)= ay w  (11.51)
/, a p+ q j, JJ-

Using the propagators and vertices of §10.6,

(diagram 5)=g2M ec3Sji j * (yvSF( p + q )y ^ M (~ Q )  (H-52) 

where the group theory factor is defined by

(T .T .h -C a V  (H-53)
It follows immediately from the definitions of c2 and c3 that

C3 =  ̂ c 2 (11.54)
flp

where dG is the dimensionality of the adjoint representation of the gauge group 
to which the gauge fields belong and dF is the dimensionality of the irreducible 
representation to which the fermions belong. To isolate the pole term from 
diagram 5, we may put m =0 in the denominator of the integrand, and use the 
integrals of Appendix A. The result is

(diagram 5 ) = ^ ^ l ( ^ - ( 3  +  ̂ )ml)^ + ... (11.55)

where we have used the identities

/y„= 2m l (11.56)

and

W " = 2(1-«)?„. (11.57)
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The fermion wave function and mass renormalisation counter terms may now 
be derived using (11.50) and (11.6).

Thus, in the m s  renormalisation scheme,

Given that there is a single bare coupling constant, it will be sufficient to 
calculate one of the renormalisation constants K h i =  1 ,..., 4. The other three 
are obtained from the one we choose to calculate by using (11.22), now that we 
have evaluated AZ n and AZ A. For ease of evaluation we should choose either 
K 1 or K 2• We select K 2. (The diagrams needed to calculate K 3 or X4 involve 
more gauge field internal lines.) The contributions at one-loop order to the o p i  

Green function with two external fermion legs and one external gauge field leg 
are

i(A Z ^ - m K J ) d }i= + (11.58)

and so

(11.59)

and

(11.60)

(11.61)

Consider first
Q

(diagram 6)=  p (11.62)

-/

With the propagators and vertices of §10.6, 

(diagram 6) = gg2M e( T J J b)ji

X £>f(0IjA (p + 1+ q)yliSF(p + QyJ*.
d2ml (11.63)
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The group theory factor is easily obtained in terms of the group theoretical 
constants defined in (11.32) and (11.38)

To evaluate the pole term we may put m = 0 because, as discussed in Chapter 7, 
the pole terms are independent of the renormalised mass. We may shorten the 
derivation further by noticing that the counter term for this vertex has no q 
dependence, and so the pole term can have no such dependence in a 
renormalisable theory. We may therefore set ^ = 0  to calculate the pole term. 
We must not, however, also put p = 0, because we would then run into trouble 
with infrared divergences. (An additional contribution to the pole in e would 
then appear which is only present at p=0. This should not be cancelled by the 
counter term, whose function is to cancel ultraviolet divergences, which are 
present for all values of p. The infrared divergences should remain after 
renormalisation, but should cancel when physical processes are calculated.)

Carrying out the evaluation at m=0, q=0, with the aid of the integrals of 
Appendix A, we find the pole term,

which is independent of p, as expected. In arriving at this result we have used 
the identities for Dirac gamma matrices (11.57) and

The group theory factor may be evaluated in terms of ct of (11.32)

T j j w c s - f c j r . . (11.64)

(diagram 6)=  —
2i0fl2(c3--ic1)£

1 6 7 T 2 £
^ a ) j i ( y "F • • • (11.65)

7 ,7 ^ 7  v /  =  -  27v7^a + 2(2 -  (o)yxy^yv. (11.66)
Finally, consider

(diagram 7) =

/

(11.67)

With the Feynman rules of §10.6, 

(diagram 7) = igg2M%bc( T J b)j,

^  [(2/ Q)ft0vp (Q 0pQpv (2<? (11.68)

. L J J b 2 (11.69)



Again the pole term is most easily evaluated by setting m = Q, q = 0. With the 
aid of the integrals of Appendix A we find the pole term

(diagram 7 ) = +  • • • (1L7°)

which is again independent of p as expected. To confirm that the theory is 
indeed renormalisable (at one-loop order) we should calculate the q 
dependence of diagrams 6 and 7 by combining denominators in (11.63) and
(11.68) and make sure that there is no q dependence in the pole term (problem
11.4).

We may now derive the renormalisation constant K 2. Using (11.61), (11.6),
(11.65) and (11.70), we find, in the m s  renormalisation scheme,

* 2= ~ d & i C3Ci+(Ci+4C3)a {1L71)

The renormalisation constants K u K 3 and K A are determined using (11.22). 
We now have at our disposal all the renormalisation counter terms necessary 
to renormalise the theory (to sufficient accuracy to carry out the 
renormalisation at one-loop order).
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11.3 The electron anomalous magnetic moment

In this section, we specialise to the case of q e d  (Abelian gauge theory) and 
derive the electron anomalous magnetic moment. For convenience we shall 
work in Feynman gauge, £== 1. To one-loop order, the contributions to the 
appropriate o p i  Green function are

(11.72)

The final diagram of (11.61) does not contribute here because the gauge field 
self-interactions only occur in a non-Abelian theory. Thus, the only Feynman 
diagram we need to study is diagram 6 of (11.62). We make the transition to the 
Abelian case of q e d  by the substitutions

Ta = l Cl= 0  c2 = c3= l  g = e. (11.73)
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Thus, for q ed ,

f  d2a7
=  ee2Me J  DfMbMP +1 + « ) ? M p +  ( 1 1 - 7 4 )

This time we shall focus on the finite part of the Feynman integral. Combining 
denominators with the aid of (7.33), we have

(diagram 6)=  —2ee2M c | dx

where
i d y

o
d2a7 N

(2n)2a (l2+ 2P -l—p2)3
(11.75)

P = (l + y - x ) p  + yq (11.76)

- p 2= Lip-+ q)2~ m2]y + (p2 -  m2)( 1 - x )  (11.77)

and

N = y l,{jt+f+4 + myf{J+f+m)y‘’. (11.78)

One is usually interested in situations where the electron-photon vertex finds 
itself sandwiched between Dirac spinors u(p+q) and u(p) associated with on- 
mass-shell electrons. Then

p2 — m2 = (p+q)2 — m2= p2= 0. (11.79)

Also, the Dirac equation for the spinors allows us to simplify the numerator in 
(11.75), leading to

-  N  = 2( 1 — (o)nt2yfl+ 4  mco(p + /),, + 2ma>4yll+ 2m{ytl, <jf]

~  2{J+1)yM+ /+  4) + 2(2 -m x y + /+  M + t )  (11-80)

where we have used (11.56), (11.57) and (11.66). The d2(01 integrations may be 
performed with the aid of (7.20), (7.2 la) and (7.2 lb), and simplifications may be 
made by noticing that

n pc pi
dx dycp(x, y) = dx

o Jo Jo
dycp(l-y, 1- x )  (11.81)

for any function. Everything may be expressed in terms of the co variants ŷ  and
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liy?’ 7v] by using the Gordon reduction for on-mass-shell electrons:

(P' +  P)pH(p')u(p) =  2mu(p')ytlu(p)+\u(p')[ylt, y v]u(p)(p' -  p)v (11.82) 
together with the identity

h„4=2qd-q\- (u.83)
This leads to the anomalous magnetic moment term (associated with the 
coefficient of yv] at q2=0):

2ie3

(diagram 6) [y„, rf]
'•l

dx
o

dy[xy—(1 —x)2](l -f-y—x)~2-K ...
o

(11.84)
Carrying out the parameter integration,

(diagram « ( - £ £  j [ r „ < ] +  ... (11.85)

where the omitted terms are contributions to the coefficient of ̂ [y ^ , y v]  when 
q2^ 0  and contributions to the coefficient of y ,̂ and

e2
a= — (11.86)

471

is the fine structure constant.
Thus, the anomalous magnetic moment of the electron pAMM is

A*amm=2^ -  (11’87)

Strictly, we should define a in terms of the ‘physical’ electromagnetic coupling 
constant ephys which is the coefficient of — iyM when q = 0, with on-mass-shell 
electrons. However, ephys only differs from e in order e3, and we are working in 
lowest order perturbation theory. (The relation between e and ephys depends on 
the scale of mass M  used in the renormalisation of e.)

One may now proceed to calculate the coefficient of ~icy^ to order q2. (See 
problem 11.5.) The result of such a calculation exhibits a pole in e even after
renormalisation. The reason for this is an infrared divergence. Such
divergences, though present in individual Green functions, always cancel when 
physical processes are calculated, provided all relevant diagrams are included, 
and appropriate integrations over phase space are carried out. Thus, for 
example, when scattering of an electron off a Coulomb potential is studied, the 
infrared divergence in the electron-photon vertex mentioned here is cancelled 
by contributions where the electron emits a real photon. Both types of 
contributions are needed to describe the physical process, because any 
experimental apparatus has a finite energy resolution and the emission of a 
real photon of sufficiently low energy cannot be ruled out.
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Problems

11.1 Derive the criterion (11.1) for renormalisable inreractions involving 
derivatives, where the bosons have propagators with the high momentum 
behaviour (p2)-1.

11.2 By studying the renormalisation of all the vertices involved in a non- 
Abelian gauge theory, show that at one-loop order there is a single 
renormalised coupling constant if the bare Lagrangian is gauge invariant.

11.3 Derive the renormalised o p i  Green function for a gauge field at one-loop 
order using the counter terms (11.42) and (11.43).

11.4 Calculate the q dependence of diagrams 6 and 7, and check that there is 
no q dependence in the pole term in £.

11.5 Calculate the coefficient of — iey^ for the vertex of (11.78) to order q2, 
and show that a pole in s remains after renormalisation.

References

1 ’t Hooft G and Veltman M 1972a Nucl. Phys. B 44 189
  1972b Nucl. Phys. B 50 318
Lee B W 1972 Phys. Rev. D 5 823
Lee B W and Zinn-Justin J 1972 Phys. Rev. D 5 3137
Taylor J C 1976 Gauge Theories o f Weak Interactions (Cambridge: Cambridge 
University Press) Chapter 14



DOI: 10.1201/9780203750100-12

12 

QCD AND ASYMPTOTIC FREEDOM 

12.1 The renormalisation group equation 

We have seen in Chapters 7 and 11 that renormalisation of a field theory 
depends on some mass M, and that the Green functions depend on this mass. 
(Of course scattering amplitudes and other directly observable quantities must 
be independent of M, which has no physical significance.) A question that may 
be asked is how do the Green functions of a gauge field theory change as the 
renormalisation scale M is varied? This question may be answered by recalling 
the connection between the renormalised and unrenormalised OPI Green 
functions (in 2w dimensions). Let f<">(p1, ... , p,, g, ~, m, M) be a normalised OPI 

Green function with a total of n external legs, n A of which are gauge fields and 
n"' of which are fermions 

( 12.1) 

Here, g and~ are the dimensionless renormalised gauge coupling constant and 
gauge parameter, and m is a renormalised fermion mass as in § 11.1. Reference 
to the Lorentz indices of the gauge fields, to the spinor indices of the fermion 
fields, and to the gauge group indices, has been suppressed since these will have 
no bearing on the derivation which follows. Let the corresponding 
unrenormalised OPI Green function be r~>(pl' ... ' Pn• 9s. ~B· rna). A crucial 
point to notice is that f~> does not depend on M, which only enters when 
renormalisation is carried out. The connection between the renormalised and 
unrenormalised Green functions is 

where Z A and Z"' are defined in (11. 7) and (11.9). If we carry out the 
differentiation M(ojoM) holding g8 , ~8 and m8 fixed, we obtain 

a og af<n) a~ af<n) om ar<n> 
M oMf<n>+M oM og +M oM~+M oM om 

= nA zn.;!2znA12z-t M oZA f<n)+ n"' Z"Ai2znA!2z-lM oZ"' f<n) 
2 1/1 A A oM B 2 1/1 A 1/1 oM B 

(12.3) 

where M of<n>joM denotes a differentiation at constant g, ~ and m, and 
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similarly for d/dg, d/dd, and d/dm. Thus

(12.4)

where the coefficients are defined by

(12.5)

(12.6)

M dm 
m dM

(12.7)

(12.8)

(12.9)

In (12.5M12.9), differentiation is understood to be holding gB, and mB 
constant. The essence of (12.4), called the renormalisation group equation, is 
that when the renormalisation scale M is changed, the corresponding changes 
in the renormalised quantities g, d; and m are such that the unrenormalised 
Green function (which does not depend on M) does not change.

The dimensionless coefficients in the renormalisation group equation 
depend in general on g and m/M. However, if we adopt a mass-independent 
renormalisation scheme, such as the m s  or m s  scheme, then the m/M 
dependence drops out, and the renormalisation group equation is 
considerably easier to use1,2,3. Accordingly, we shall always assume that such 
a renormalisation scheme is used in what follows, so that the renormalisation 
group coefficients depend only on g. These coefficients may be computed in the 
m s  scheme to one-loop order from the renormalisation constants of Chapter 
11 (see problem 12.1). The results are as follows:

Pg= ~ ^ g ~ b g 3 (12. 10)

( 12. 11)

7m~  8n 2 md (12.12)
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7  a =  - 16n2 (12.13)

and

(12.14)

where

(12.15)

We have assumed that the fermions belong to irreducible representations R of 
the gauge group, with values C2 of the group theory factor C2, and C? of C3. 
The group theory factors Cl9 C2 and C3 are defined in (11.32), (11.38) and
(11.53). In four dimensions the linear term in (12.10) vanishes. (We are 
assuming here that both chiral components of a fermion belong to the same 
irreducible representation R. This assumption may be relaxed when necessary, 
as in problem 16.2.)

An important use of the renormalisation group equation is to discuss the 
behaviour of Green functions as the momenta of the external legs are scaled, 
i.e. when pl9.. . ,  pn are replaced by spu .. . ,  spn where s is dimensionless. The 
Green function has energy dimensions (see problem 12.2)

Since T{n)(spl , . . . ,  spn, g, m, M) is homogeneous of degree dr in p l , . .  ,9p„, m, 
Af, we have

Combining (12.17) with the renormalisation group equation (12.4), we may 
eliminate M dT{n)/dM  to obtain

This equation may be solved with the aid of running coupling constant, gauge 
parameter and mass g(s), <f(s) and m(s), defined as the solutions of

dr = 2co -F nA( 1 — co) + n$  — co). (12.16)

= drTin)(spj M). (12.17)

r<">(sPl, . . . ,  spn, g, f , m, M )=0. (12.18)

(12.19)

s-^- = &($*)> £(s)) (12.20)
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and

s ^ i r =  - u +?«(#»). m m ® )  ( i2-2 i)

with the initial conditions

g{\)=g(M)=g (12.22)

f(l ) = W )  = Z (12.23)
and

m(l) = m(M)sm. (12.24)

Thus from (12.5), (12.6) and (12.7), we see that

g(s) = g(sM) (12.25)

<f(s) = £(sM) (12.26)
and

m(s)=s~lm{sM) (12.27)

where g(sM), C(.s’M) and m(sM) are the renormalised quantities when the 
renormalisation scale is sM  instead of M. The solution of (12.18) may now be 
written as

ds'
f (n)(spi, ..., sp„, g, £, m, M) = A e x p ^ - —  \nAyA(g(s'\ £(s')) 

1 S

+ n^y^gis'), <J(s')] j  ̂ " ’(Pi, • ■ ■, p„, g(s), £(s), m(s), M) (12.28)

(see, for example, the book of Piaggio4).
With the explicit expressions at one-loop order of (12.10H12.12) we may 

solve for g(s\ <f(s) and m(s). In four dimensions (e = 0), the solution for g(s) is

g2(s) = g \  1 + 2bg2 In s) ~1 (12.29a)

or equivalently
g~2(s) = g~2 + 2b In s. (12.29b)

Provided b> 0, we see that g2(s) decreases as 5 increases and tends to zero as 
s-> oo. The theory approaches a free-field theory (logarithmically). This 
phenomenon5 is spoken of as asymptotic freedom. Referring back to (12.28), 
we see that if we want to calculate Green functions at large momenta, then the 
solution is given in terms of a running coupling constant ^(5) which is small. It 
should therefore be possible to use perturbation theory in g(s) for this purpose, 
despite the fact that in q c d  we are dealing with the strong interactions, and 
perturbation theory in g (as opposed to g(s)) is not expected to be useful.

Conversely, g2(s) increases as s decreases and so phenomena at small 
momenta should be described by a running coupling constant which is large.
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Thus, perturbation theory is expected to be useless for q c d  when long distance 
behaviour is studied. In particular, we do not expect quarks, which are fields in 
the free Lagrangian, to be asymptotic states of the theory before and after 
scattering. Rather, we expect to have to calculate what the asymptotic states 
are in a non-perturbative fashion, and hope to find the known hadrons if we do 
so. Such calculations tend to rely on lattice gauge theory methods and are 
outside the scope of this book.

The restriction that b should be positive to obtain asymptotic freedom is not 
a very severe one for q cd  where the gauge group is colour SU(3). With N ( 
flavours of quark, each belonging to the three dimensional fundamental 
representation of the colour group, we find from (12.15) that

fc =  ( l l~ |iV f)/167r2. (12.30)

Thus, provided there are not more than 16 flavours of quark, q c d  is 
asymptotically free.

However, for q ed  the situation is quite different. In that case, the gauge 
group is U( 1) with coupling constant e, the gauge field does not couple to itself, 
so that Cx =0, and C2 is q2 in units of e. With N G generations of quarks and 
leptons, each generation containing a quark of charge f , a quark of charge — 
a lepton of charge — 1, and a lepton (neutrino) of charge 0, we have (instead of
(12.30))

In any case, — b is always given by a sum of squares of quark and lepton 
charges, and so b is always negative. Thus, in q ed  e2(s) grows as s increases and 
the theory is not asymptotically free. (It appears from (12.29) that e2(s) will 
become infinite as 2be2 In s -► — 1, but this is not the case, because lowest order 
perturbation theory has broken down by this stage.) On the other hand, there 
is no difficulty in deciding what the asymptotic states of the theory are since 
e2(s) decreases as s decreases so that the theory approaches a free-field theory 
at large distances. (There is, of course, the usual well understood problem 
associated with the long range nature of the electromagnetic interaction.) 
Scalar field theory resembles q ed  in these respects. (See problem 12.3.)

Combining (12.20) and (12.11) we see that

d£(s) 
S ds

In general, £(s) will vary with s. This complication can be avoided by working 
in Landau gauge. Then the initial condition is

<f(l) = 0 (12.33)
and (12.32) shows that

f(s) = 0 (12.34)
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for all values of s. We shall always adopt Landau gauge in what follows.
Apart from the (order g2(s)) correction from ym, (12.21) shows that m(s) 

decreases like s~l for large values of s. Since m(s) decreases as a power of s, 
whereas g(s) decreases only as a logarithm, it is often a good enough 
approximation to put m(s)= 0 in discussing the large momentum behaviour of 
qcd . (We shall discuss the effect of the running mass m(s) in §16.5 in the context 
of grand unified theories.)

At asymptotically high momenta, in Landau gauge, (12.28) gives for the 
behaviour of the Green functions

sp„, g, £ = 0, m, M) 

xs**' expl nAd, ~ r  92(s') ) r <n)(P1> • • •, P„> 0 (4  £(s)=0> m(s)=0, M)

where we have written

with (from 12.13))

(12.35)

7  M s) ,  <f(s)=0) = - dAg2(s) (12.36)

dA = ( j  Cx —  E c S ) / '16*2. (12.37)

Using (12.29), we have (in four dimensions), 

r ,n)(sPl, . . ., sp„, g , i  = 0, m, M)

~ sdr(l + 2bg2 In s)''AiAl2bt {n){pl ,. ,.,p„, g(s), f(s)=0, m(s)=0, Af).

(12.38)

The behaviour is free-field behaviour, apart from the multiplicative power of 
1 +2bg2 In s and apart from an additive logarithmic correction if we expand 
r ^ P i , . . . ,  P„,  g(s), <f(s)=0, m(s)=0, M )  about g2{s) =  0.

12.2 Deep inelastic electron-nucleon scattering

An important process where tests of q cd  are possible is the inclusive process 
eN -+ eX where N denotes a nucleon, and X denotes an arbitrary unobserved 
final state. When the scattering is approximated by one-photon Exchange (see 
figure 12.1) then the electron-photon vertex is just iey^ but the yNX vertex 
contains effects of the strong interactions. Thus, what we have to study using 
q cd  is the total cross section yN -► X or, because of the optical theorem, the 
absorptive part of the forward scattering amplitude for yN -> yN, where the 
photon is off-mass-shell {q2¥z0). In the case where we do not have a spin
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Figure 12.1 One-photon exchange contribution to eN—>eX.

polarised target, the object we need to describe eN -► eX is

J d 4x e*4 -(N.ptolXXX^OJlN.p)

j d 4x e*4 ■*<**, p \U x)m \K ,p>

= ^ | d 4x e 14 x< K p\LUx) J M M p> (12.39)

where p and q are the four-momenta of the nucleon and off-mass-shell photon, 
respectively, and j M(x) denotes the electromagnetic current operator. It is 
understood that the nucleon spin states are averaged over. (A proof that the 
product of currents may be replaced by the commutator may be found, for 
example, in §4.2.11 of reference 6.) The structure functions Wx and W2 are 
defined by the expansion in terms of covariants,

p-q V P'4 \Pn q2 %)[Pv ^2 4vJ
W ^ q )  = [ 4 Z ~ W2-q j  mN

(12.40)

The forward scattering amplitude of yN yN (the forward Compton 
amplitude) is determined by

TJp,q) = i d4x e*»'*<N, p\ T(Ux)JAO) |N, p> (12.41)

with the decomposition in covariants

. Iph~(p ■ q/q2)q*]lp,-(p• q!q2)qAr > , « ) =  m  +  ^  —  t2 (12.42)
\  q J wN

where again an average over the nucleon spin states is understood. Because of
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the optical theorem, there is the connection

Im Ta (7=1,2.
71 (12.43)

In writing down (12.41) and (12.39), we are going somewhat beyond what we 
have found in Chapter 6 about scalar boson scattering amplitudes, and its 
generalisation to amplitudes involving photons. Inspection of (6.43) shows 
that scalar boson scattering amplitudes are obtained from Green functions by 
acting with Klein-Gordon operators, or, in the case of photon scattering, by 
acting with factors of □*. Thus, essentially, scattering amplitudes are obtained 
from Green functions by replacing fields by currents. Such expressions are 
vacuum expectation values. What we are assuming here is that similar 
expressions for scattering amplitudes exist where not all the external particles 
occur as currents, but instead some external particles (the nucleons in (12.41)) 
occur as states in which the expectation value is taken.

The kinematical region in which we shall be able to apply asymptotic 
freedom will turn out to be the region referred to as the Bjorken limit,

As we now show, the Bjorken limit corresponds to studying the light cone in 
coordinate space. To see this it is convenient to work in the laboratory frame in 
which

with the z axis chosen along the direction of the momentum of the (virtual) 
photon. We next introduce the (light cone) variables

q2 —> — oo, p 'q  -► oo
— q 2

X = —^~  fixed. 
2 p-q (12.44)

p = (mN, 0, 0, 0) q = (q°, 0, 0, q°) (12.45)

q±=q°±q3 (12.46)

and

x ± = x ° ± x 2. (12.47)

In terms of these variables,

q2=q+q-
p-q = (mJ2)(q++q_)

(12.48)

(12.49)

and

mti(q++q_)
(12.50)

The Bjorken limit is thus the limit q + -» oo with q _ fixed (and negative), and



consequently, X =  —q_/mN. In (12.39), we may write

e* X = e x p ^ (q +x _ + g _ x +)^. (12.51)

Because the exponential oscillates rapidly as q+ -► oo the only contribution to 
the integral in the Bjorken limit comes from the region

x_ =0. (12.52)

Then

x2 = x +x_ — x2 — *2<0. (12.53)

However, (microscopic) causality means that the commutator in (12.39) 
vanishes for x2 <0. Thus, the only contribution to the integral is from the light 
cone

x2 =  0. (12.54)

Consequently, to study deep inelastic electron-nucleon scattering in the
Bjorken limit, we must study the product of two electromagnetic current
operators on the light cone. This is a task which is facilitated by the Wilson 
operator product expansion.
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12.3 The Wilson operator product expansion

Wilson7 has shown that the product of two local operators 4̂(x) and B(y) (for 
example, two electromagnetic or weak current operators) can be expanded in 
the form

A(x)B(y) = £  C,(x -  y ) o l ~ (12.55)

where Of(x) are the local operators of the theory with the quantum numbers of 
AB, and the Cf(x -  y) are c-number coefficients. The result is not too difficult to 
prove in free-field theory (see problem 12.4). The importance of the Wilson 
operator product expansion is that the behaviour of the product A(x)B(y) at 
short distances, x — y 0, is controlled by those local operators Ot for which 
Cf(x —y) is most singular as x —y-> 0. If there were no dimensionful 
parameters in the theory then the coefficients Cf(x — y) would involve a number 
of powers of x — y given by dimensional analysis and the (mass) dimensions of 
Of. Then, the most singular coefficients, Ct(x —y), would be those associated 
with operators 0, with the lowest mass dimensions, and these operators would 
dominate the short distance behaviour of ^4(x)B(y). Our experience in §12.1 
suggests that this will be true for asymptotically free theories like q c d , apart 
from logarithmic corrections which bring in the renormalisation scale. We
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shall see later that this is indeed the case, so that dimensional analysis enables 
us to isolate the leading contributions to the Wilson expansion in q c d .

The Wilson expansion may be used in applications of asymptotic freedom 
to decay processes where the exchange of a heavy gauge boson requires us to 
study a product of vector or axial current operators at short distances. 
Examples of this are the A/ = \  rule for hadronic decays in electroweak theory, 
and the baryon-number-violating decay of a proton in grand unified theory.

For present purposes, we are not so much interested in short distances, 
x — y —* 0, as in the vicinity of the light cone, (x — y)2 -► 0. Let us choose local 
operators Ot of definite spin lt and let us consider for definiteness the product of 
two electromagnetic currents Then the Wilson expansion (for y =0) for the 
time ordered product is of the form

iT(;,(x);v(0)) = £  C 'V(J, ...„I((x)Of -*.(0). (12-56)
i

(To reach this form we have first expanded O?1 ^  about x = 0  and then 
regrouped the coefficients using the fact that the derivatives of a particular 0 { 
are other 0 ,’s in the series.) When Of1 has definite spin Zf, we may write

C l , , . ,A.(x) =  -  aVte/wX* - - - x„l(

+ bi(x2)gm gvli2xll3. . .x lili

+ .... (12.57)

Here, we are using the fact that Of1 A is traceless to drop terms involving g ^  
etc, and the fact that it is symmetric to condense a collection of terms into the 
b \x2) term. There are other possible co variants of the form x/ixvx/ij... x^ and 
(xligVfixfl2. . .x fiii + (}x<r+v)). However, it will be sufficient to retain only those 
terms shown explicitly in (12.57) in order to identify the contributions to Tx 
and T2 in (12.42). A term of the type eMVAIlAxAxM2... x^ is forbidden by the 
symmetry of (12.41) under x<->—x. In the absence of dimensionful
parameters, the coefficients a \x 2) and h'(x2) involve a single power of x 2 which 
is dictated by the mass dimensions of the operator Ot and by the number of 
factors xMl... x^ which increase the mass dimensions available to a \x 2) and 
fel(x2). Thus, the leading terms on the light cone are those for which the twist

(12.58)

is smallest, where d( is the mass dimension of Oh and /* is the spin of Ot.
We now see that asymptotic freedom is relevant to the Bjorken limit. To 

study the operator product of currents on the light cone, it suffices to study the 
behaviour of the functions al(x2) and 6‘(x2) for x2 -» 0. Since a((x2) and b \x2) 
are scalar functions of x2 alone, all we need do is study them for x -> 0, i.e. at 
short distances, where asymptotic freedom will allow us to do a reliable 
calculation. We will be able to identify the leading contributions on the light
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cone as those of lowest twist. This is because our experience in §12.1 with 
asymptotically free q c d  is that at short distances dimensionful quantities enter 
only through logarithmic corrections involving the renormalisation scale Af. 
To derive the logarithmic corrections for the coefficients a'(x2) and h*(x2), it is 
necessary to derive renormalisation group equations for Green functions 
involving composite local operators built from the fundamental field 
operators. This we shall do in §12.5.

12.4 Wilson coefficients and moments of structure functions

In this section, we establish a connection between the structure functions for 
eN -► eX, defined in §12.2, and the coefficients in the Wilson operator product 
expansion, defined in §12.3. In the next section, we shall use asymptotic 
freedom to calculate the behaviour of the Wilson coefficients in q c d . First 
rewrite (12.57) as

CU, ,.a M =  - ( -  4 l(x2)

+ ( - 1 )l,~2gm gvltA s • • • V < * 2)
+ ... (12.59)

where

and

( _  i y , - 2 2 «,-2 B‘(x^ bi(x2y ( 1 2 .61)

Taking the matrix element of (12.56) between spin-averaged nucleon states, 
and performing the Fourier transform J d4x e** to reconstruct (12.41), we see 
that

T Jp , <?) = X K i i - g j p ■ qi'A^q2)+ p^pAP■ q)l'~1Bi(q2)'] +. . .
i

(12.62)

where

^(<?2) = 

B‘(q2) =

d4x e"1 'M ‘(x2) (12.63)

d ^ e *  * B \x2) (12.64)
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and

<N, p\0^ - A|N, p> =  K ^ ... p"< + . . .  (12.65)

where K t is some (in general unknown) constant. In (12.65), the omitted terms 
involve at least one factor of the type gMlM\  As can be seen from (12.57), these 
terms produce at least one extra factor of x2, and are thus less singular on the 
light cone, and may be dropped. On dimensional grounds, we may write,

( 12.66)

and

BXq2) = { - q 2r li+lBXq2) (12.67)

where A'(q2) and B'{q2) are dimensionless functions. (In q cd , they will be 
logarithmic functions of q2/M 2, where M  is the renormalisation scale.) We 
may now write (12.62) as

T,Xp , <Z) =  X K . [ -  g J 2 X )  - '•A ‘(q2) +  p,pXp ■ q) " \ 2 X ) -«■+1 B'(q2)l +...
i

(12.68)
with the variable X  as defined in (12.44).

Comparing with (12.42) we see that

7i(p, 9) = X U 2 X ) - l‘A \q2) (12.69)
i

and

vT2(p, <z) = mN£  KK2X) "l,+1 ̂ (<?2) (12.70)
i

where

v = p-q/mN. (12.71)

Thus, apart from the factors A'{q2) and B1̂ 2), T^p,^) and vT2(p,q) are
functions of the variable X, alone. (This is referred to as Bjorken scaling.) In
q cd , the factors Al(q2) and BXq2) produce slowly varying corrections8 to 
Bjorken scaling, which are logarithmic in q2/M 2 where M is the 
renormalisation scale. (There will also be contributions of order m^/q2 from 
the operators of higher twist in the operator product expansion.)

It remains to make the connection with the structure functions Wx and W2 
for deep inelastic electroproduction. The connection is given in the physical 
region 0 < X  < 1 by (12.43). However, in this region for X  sufficiently close to 0, 
the series (12.69) and (12.70) diverge. It is therefore necessary to use an analytic 
continuation in the variable X , and to isolate individual terms in the Laurent 
series. Taking a large circular counter-clockwise contour #  in the X  plane, we
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obtain for the coefficients in the Laurent expansion

(12.72)

and

(12.73)

(In (12.72) and (12.73), the sum over i is now a sum over only those operators 
which have the same spin lt = /.) The contour integrals may be obtained as 
integrals along a branch cut running between X  = ±  1 with the discontinuity 
across the cut obtained from (12.43).

We see that it is the moments of the structure functions (integrals with 
powers of X) that are related to the Fourier transforms of coefficients in the 
operator product expansion, At(q2) and B^q2) defined in (12.66), (12.67),
(12.63), (12.64) and (12.59). There also enter the (in general) unknown 
coefficients K h which are matrix elements between nucleon states of operators 

as defined in (12.65). In an asymptotically free theory, we will expect 
A^q2) and Ci(<72) to depend logarithmically on q2/M 2. In general (12.76) and
(12.77) will be difficult to test because more than one logarithmic term will be 
involved, with unknown coefficients K h whenever there is more than one 
operator Of1 for a given spin /,=  /. We shall see later that, by studying 
combinations of structure functions which are non-singlet with respect to 
SU(3) of flavour, we shall be able to ensure that only a single logarithmic term 
occurs9. Then experimental tests are feasible. Our next step is to calculate the 
behaviour of the coefficients A^q2) and B^q2) in q cd , using renormalisation 
group equations for Green functions involving composite local operators.

Thus

(12.74)

and

(12.75)

Consequently,

(12.76)

and

(12.77)
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12.5 Renormalisation group equation for Wilson coefficients

In this section, we shall derive renormalisation group equations for the 
coefficients in the Wilson operator product expansion by first obtaining 
renormalisation group equations for Green functions involving some legs 
which are composite operators (like f  and Of1 " Mli)- For succinctness, we shall 
denote a composite operator Of1 /i,i by Oi9 for the moment. Green functions 
with composite operator legs may be defined formally by adding source terms 
Ji(x)Oi(x) to the Lagrangian and setting up generating functionals, in the way 
discussed for ordinary Green functions in Chapter 4. In general, the 
relationship between bare operators (Of)B and renormalised operators Of is the 
matrix one,

(Ofo = Z uOj (12.78)

when there is more than one operator Ot in the operator product expansion 
with the same quantum numbers, including spin. (We shall see in §12.6 how the 
renormalisation constants Z {j may be computed from Feynman diagrams for 
Green functions with composite operator legs.) In exact analogy with §12.1, we 
introduce the notation f o}(Pi, • • • , g, w, M) for a renormalised opi Green 
function, with n external legs which are ordinary fields, nA of which are gauge 
fields, and n^ of which are fermions, and, additionally, one external leg with 
zero four momentum which is a composite operator Ot. Such Green functions 
are referred to as inserted Green functions. More than one composite external 
leg introduces no further difficulties, other than notational. The connection 
between the bare and renormalised inserted Green functions is

f'o.’O'i.- • • ,P„, Pn, 9, £, m, M )= ZiJZ n/ /2Z;*'2t ^ B(p1,.. .,p„, gB, fB, mB).

(12.79)

Carrying out the differentiation M5/8M  with gB, £B and mB held fixed, just as in 
§12.1, gives the renormalisation group equation

[ (  d d 3 d \ “
M "  m + ■ Tg+ ' w “ r - m f a \

x P S p i , - - ; P n,9 ,i,m ,M ) = 0 (12.80)

where

(12.81)

and the other coefficients are as in (12.5)—(12.9).
A renormalisation group equation for the Wilson coefficients may now be 

derived by utilising (12.80). We first multiply the operator product expansion 
(12.56) by nA factors of gauge fields and n^ factors of fermion fields, time order, 
and Fourier transform to momentum space. This gives (see problem 12.5) the
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relationship between inserted o p i  Green functions

i r $ v(9, - q , P u .. .,pn) = Z  . . ,Pn) (12.82)
i

where the left-hand side denotes an o p i  Green function, as in §12.1, but with 
two additional external legs which are composite operators jh and j v with four- 
momenta q and — <?, respectively. On the right-hand side of (12.82) we have 
suppressed the indices /,1, v and (The relationship is, in the first
instance, one between ordinary Green functions, but can be made one between 
o p i  Green functions because the subsets of Feynman diagrams which are 
disconnected or one-particle-reducible are in one-to-one correspondence on 
the two sides of the equation.) The Green function T$v obeys exactly the same 
renormalisation group equation (12.4) as f (n), because the conserved current j^ 
requires no renormalisation as may be checked directly at one-loop order by 
calculating Feynman diagrams. Substituting (12.82) into the renormalisation 
group equation for fj"jv and using the renormalisation group equation for f ^ ,  
we obtain

<i2-83)

This is the required renormalisation group equation for the Wilson 
coefficients. It involves the so-called anomalous dimensions matrix yjt defined 
through (12.81) and (12.78). Reintroducing the Lorentz indices in the operator 
product expansion, and defining the independent co variants as in §12.4, we see 
that Al(q2) and B \q2) obey the renormalisation group equations

(i2M )

and

(,2 '85>

Here, the sum over j  is over operators with some fixed value of spin /, =  /.
Life is particularly simple if there is only one operator O?1 ^  (of lowest 

twist) for the given value of spin Zf. (We see later that this happens if we take a 
flavour singlet combination of structure functions.) Then, we no longer need a 
matrix of anomalous dimensions ytj and we may write

yij = yoidir (12.86)

The renormalisation group equations are now diagonal, and have a solution, 
when q is scaled by a factor s, exactly analogous to that of (12.28)



(Since A1 is dimensionless, there is no factor like sdr.) At asymptotically high 
momentum, and in Landau gauge, we will have, in analogy with (12.38),

Al(s2q2, g,£ = 0, m, M)

%(1 + 2bg2 In s)~dil2bA \q2, g(s\ <f(s) = 0, m(s) =  0, M) (12.88)

where we have defined dt by

y0i(g, £ = 0 ) = - d t f2 + 0(g3). (12.89)

Thus

A \s2q2)~ Q ns)-4'i2b. (12.90)

(The dependence of A'iq2, g(s), <f(s) =  0, m(s) = 0, M) on g(s) is additive, and gives 
a non-leading term.) If q2= —M 2 is adopted as a reference momentum,

A \q 2) ~  [(ln( -  q2/M 2)] (12.91)

and similarly for B\q2). As promised in §12.4, the Wilson coefficients Al(q2) and 
B'iq2), and so the moments of structure functions, depend logarithmically on 
q2/M 2. The final step, which is the content of the next section, is to evaluate the 
anomalous dimensions.
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12.6 Calculation of anomalous dimensions

For q c d , when we analyse the Wilson operator product expansion for a 
product of two electromagnetic currents, the gauge invariant operators of 
lowest twist, d — /, have twist 2. The operators which are non-singlet under 
SU(3) of flavour are

i1' 1 -
O a w i ... DM,ijf + permutations) — (trace terms) (12.92)

for a =  1 ,..., 8, where \f/ denotes a quark field operator which is a triplet under 
colour SU(3), and also under SU(3) of flavour. (The c, b and t quarks do not 
need to be considered for moderate energies of scattering.) The Gell-Mann 
matrix 2“ is a matrix in the flavour space, and is the covariant derivative

=  ̂  + (12.93)

where Xa is a matrix in colour space, and A* are the colour gluons.
There are also flavour singlet operators

i/_1 _
01[ld . . .  D^ij/ -j- permutations) — (trace terms) (12.94)
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and

il~2
M,= -—  £  (F£MlDM2... permutations)

a

-(trace terms) (12.95)

where the co variant derivative acting on quark fields is as in (12.93), the 
covariant derivative acting on gauge fields is

= (12.96)

and F£v is the covariant curl as in (9.30).
If we consider a combination of structure functions which is flavour non­

singlet, then we need only consider an operator of the type (12.92) and the 
anomalous dimensions matrix will be diagonal. (The simplest case is to
consider the difference of vW2 with a proton target and vW2 with a neutron
target.) The renormalisation constant for GUaL (suppressing the Lorentz indices 
on the operator) will be denoted by Z ltlx. It may be determined by considering 
the renormalisation of the Green function f  with two quark external legs 
and one Ol a external leg. From (12.79),

f ^ z ^ f g y  (12.97)

At one loop order, this Green function is given by

(12.98)

where the two parallel fermion lines leaving and entering a black blob are 
being used to denote an Ol a external line, and a cross to denote a counter-term. 
The zeroth order term and counter term are

(12.99)
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and (as in §11.1)
^i,a— 1 a

— 1 + A-Ẑ .

(12.101) 

(12.102)

Calculating the non-trivial diagrams in Feynman gauge (for this gauge 
invariant8 object) gives

g2M eXtC3Sij 4 1
16n2s /(/ + 1) /!

—(trace terms)

— ...  p^1 -f- permutations)

(12.103)

where g is the dimensionless coupling constant and M  is the renormalisation 
scale, as in Chapter 11, and the group theory factor C3 is defined in (11.53).

g2M el*C38u (  ' 4 \ 1 
= ----- —- 2̂ — - (ŷ P**2 • • • P* + permutations)

—(trace terms). (12.104)

Also

= (diagram 2). (12.105)
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Returning to (12.98), and using (12.99)-(12.105), we obtain for the 
renormalisation constant in the m s  scheme

(mo6>
Taking the fermion wave function renormalisation counter term AZ^, from
(11.59), we find

; )  (12.107)
2 g2C,
16n2s \ *  1(1 + 1)

and

Z It.=  l +  AZJf.. (12.108)

Following (12.81) and (12.86), we obtain the anomalous dimension for Ol lx 
from

ro'«= M a ^ ln(1+AZ,-J - (11109)

Thus, using (12.107), and the renormalisation mass dependence of § given in 
(11.23), we find

2 a2C%(  2 ' 1\
(i2 .no ,

In the notation of (12.89),

(121U)

and from (12.91) and (12.92) we see that

d X X l ' 2vW2~  [In( - q 2/M 2) y d'«/2b (12.112)
o

with b as in (12.30), and the appropriate flavour non-singlet combination of 
structure functions understood (e.g. the difference of vW2 off protons and vW2 
off neutrons).

Similar calculations may be carried out for the flavour singlet structure 
functions8 using the operators of (12.94) and (12.95). In that case, there is a 
2 x 2  matrix of anomalous dimensions, and, in general, the moments of
structure functions depend on two distinct powers of ln( — q2/M 2) with
unknown coefficients K t (as in (12.76) and (12.77)). The calculations of this 
chapter may also be extended to deep inelastic neutrino production9, where 
moments of structure functions which involve a single power of ln( — q2/M 2) 
may be found, with the aid of charge conjugation invariance, without 
considering different targets.
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12.7 Comparison with experiment, and AQCD

To compare with experiment the prediction (12.112) for the variation with q2 
of the moments of flavour non-singlet structure functions, it is convenient to 
take logarithms. Thus

In Mi(q2) = - Ĉ~ ln { -q 2/M 2) + constant (12.113)
2b

where the Ith moment is

M,(q2) = |  dX X '~ 2vW2 (12.114)

and dl 0L and b are as in (12.111) and (12.30). If we now plot In M t(q2) against 
In M v(q2), where / and /' refer to two different moments of the structure 
function, the slope of the plot is d ^ /d ^

In M/(g2) = ^ L In M v{q2)+ constant. (12.115)

Since the dl a are as in (12.111), there is a clean prediction, which is in quite good 
agreement with experiment.

The alert reader will have noticed that, following on from (12.91), we have 
written the prediction for the structure function moment, (12.112), in terms of a 
reference mass M which is entirely arbitrary. Moreover, we have not yet fixed 
the value of the q c d  coupling constant g  in (12.29), defined as the value of the 
renormalised coupling constant for renormalisation scale M. The reason for 
this is that (12.29) is only valid when 2bg2 In s is very much greater than one 
(otherwise g2(s) is not necessarily small, and expansion in powers of g(s) in 
Pg(g(s)) is not valid), and then, to leading order, g2 divides out. 
Correspondingly, (12.112) is only valid when ln( — q2/M 2) is very much greater 
than one, at which stage ln( — q2) > ln M 2 (so to speak) and the scale M cannot 
be determined reliably. However, by going to next-to-leading order in the 
coupling strength g 2, in performing the q c d  calculations and comparing with 
experiment, it is possible to determine the scale on which g2, and consequently 
the structure function moments, vary. We may introduce this scale in the 
following way. In the leading order expression (12.29) take

5 = M/M (12.116)

where M is some new renormalisation mass. Then,

g2(M/M) = g2(M) = g2/[l+ 2bg2 In (M/M)] (12.117)

where we have used (12.25), and

g=g(M). (12.118)
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We may rewrite (12.117) in the form

g2(M) = [2b IiHM/Aqcd)] “ 1 (12.119)

valid for M  §> Aqcd where AqcD is defined by

ln(AQCD/M )= ~(2 bg2)~x. (12.120)

The value of the coupling constant g(M) at the new renormalisation scale 
M cannot depend on the original renormalisation scale M. Thus (12.119) 
must be independent of M, and A.qcD must be independent of M (the M 
dependence cancelling between InM  and g =  g{M)). The q c d  coupling 
constant at the Z mass g(mz), as determined from comparison with 
experiment of next-to-leading-order q c d  calculations is given by

a5(mz) =  0.113 mz =  91.18 GeV (12.121)

where

as(A?) = g2(M)/4n. (12.122)

With b as in (12.30) with 5 flavours of quark operative in the range of energy 
up to the Z mass, the corresponding value of the q c d  scale parameter AQCD is

A q c d  = 0 065 GeV. (12.123)

We may determine g2(M) for any renormalisation scale M  from this value
A  q C D .

The coupling constant for q e d  may be treated in a similar way by writing

e \M )  = -  [2b ln(AQED/M)] ' 1 (12.124)

valid for M  «  AQED. In this case b is negative, which accounts for the slight 
difference in form (12.124) and (12.119), and, for A? in the range of energy 
up to the Z mass, we take b to be given by (12.31) with two complete 
generations and the top quark contribution of 4/9 omitted for the third 
generation. Then AQED may be determined from the known value of epHYS/4n 
where cPHy s  t h e  coupling constant for on-mass-shell electrons.

From §11.3, we see that e2(M) for M =  me, the electron mass, differs from 
CpHYs by less than 1%, so we write

a (M )^  1/137 -  7.3 x 10"3 M = me (12.125)

where

oc(M) = e2(M)/4n. (12.126)
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A q e d  — 2.5 x 1066me (12.127)

This is such an enormous number that e2(M) grows exceedingly slowly with 
M. Thus, for example,

e2{mz)/e2{me)=  1.09 (12.128)

so that

a - 1(wz) =  126.1. (12.129)

12.8 e +e~ annihilation

The total cross section into hadrons for the inclusive process

e+e ~ - X  (12.130)

where X is an arbitrary unobserved hadronic final state, provides another test10 
of q c d . Treating the process to lowest order in the electromagnetic interaction, 
what we have to study is the total cross section for a photon to produce
hadrons (see figure 12.2). One way to approach this problem is to use the
optical theorem to relate the required cross section to the o p i  Green function 
for two photon fields, and then to use the renormalisation group equation with 
two running coupling constants, e and g, because both the electromagnetic 
coupling constant e, and the q c d  coupling constant g enter the diagrams. The 
variation of the electromagnetic coupling constant with renormalisation scale 
is extremely slow (see §12.7) and to a good approximation only the q c d

coupling constant need be allowed to run. This approach is described in detail
in the review of Politzer11.

Using (12.124) we then find

Figure 12.2 Electron-positron annihilation into hadrons.

There is an alternative less rigorous approach, which has the virtue that it 
can be extended to study the differential cross section for quark or gluon jets, 
as well as the total cross section for e+e “ annihilation. It can also be extended 
to other situations where the operator product expansion is not applicable. In
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this approach, one calculates (zero- and) one-loop diagrams for e +e" 
annihilation into hadrons of figure 12.2. We have to include not only diagrams 
for e+e~ -> qq (where q is a quark) but also diagrams for e +e~ qqg (where g 
is a gluon), because, as a matter of principle, any apparatus used for 
observations has a finite energy resolution, and there is no way of excluding 
the possibility that a sufficiently low energy gluon has been emitted. Because of 
the zero mass of the gluon, there are infrared divergences in the diagrams of 
figure 12.2(b), (c) and (d) which appear in dimensional regularisation as poles 
in e which remain after the counter terms have been subtracted using the 
diagrams of figure 12.4. However, after integrations over phase space have 
been made to obtain observable cross sections, these infrared divergences are 
cancelled by the infrared divergences in the diagrams of figures 12.3(c) and 
12.3(h). This is true in particular of the total cross section for e +e" 
annihilation. Thus, when all diagrams of figures 12.3 and 12.4 are included, a 
finite result is obtained for the total cross section into hadrons for virtual 
photon four-momentum, namely,

* . . - . X , - £ ( 3 l < 8 ) ( . + ? * £ U )  ,12.131,

where the sum over /  is a sum over the charges squared of all (active) quark 
flavours, the preceding factor of 3 is from the three quark colours, and the 
group theory factor c3 (as defined in (11.53)) is for the 3 of colour SU(3), and so 
has the value f . As observed earlier, the electromagnetic coupling constant 
varies only very slowly with renormalisation scale, and the fine structure

Figure 12.3 One-loop diagrams for e+e —>qq and e+e —>qqg.
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ib)

( c )

Figure 12.4 Counter term diagrams for e+e —>qq.

constant a  in (12.131) may be taken to be 1/137. The q c d  fine structure 
constant as must be allowed to run, and is given by (12.119). More detail 
of this calculation, together with extensions of the method to eN eX and 
other processes may be found in the reviews of Pennington12 and Sachrajda13.

Problems

12.1 Calculate the renormalisation group coefficients of (12.10)-( 12.14) from 
the renormalisation constants of Chapter 11.

12.2 Show that the energy dimensions of the n-point o p i  Green functions are 
as in (12.16).

12.3 Derive the renormalisation group equation for o p i  Green functions in 
scalar field theory with Xcp* interaction, and find the behaviour of the running 
coupling constant X(s) as a function of s.
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12.4 Derive the operator product expansion (12.55) for two electromagnetic 
currents in free-field theory.

12.5 Derive the relation (12.82) between Green functions with 
electromagnetic currents as external legs and inserted Green functions.
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SPONTANEOUS SYMMETRY BREAKING 

13.1 Introduction 

We have seen in Chapter 9 that the local gauge in variance of QED requires the 
vector field Aix)- the gauge field-to be massless (since a mass term m~A~'A~' 
is not invariant under the transformation (9.7)). All determines the 
electromagnetic field whose quantum, the photon, is indeed massless. So in 
this respect, and in many others too numerous to detail here, experiment is 
consistent with the predictions derived from gauge invariance. 

This masslessness is, of course, intimately related to the long (infinite) range 
of electromagnetic interactions. With the exception of gravitational 
interactions, which are not discussed in this book, these are the only long­
range forces found in nature. In particular, the weak interactions are known to 
have a very short range. We shall see in Chapter 14 that the fermion currents 
observed in weak processes have precisely the form which follows from a non­
Abelian gauge in variance based on the group SU(2) x U( 1). It is therefore 
tempting to suppose that a gauge field theory may be responsible for both 
weak and electromagnetic interactions. However, the gauge invariance 
requires, as before, that the associated gauge fields are massless, as noted in 
Chapter 9, and this masslessness implies a long-range weak interaction which 
is not in accord with experiment. Some of the quanta of the weak fields have 
electric charge, as we shall see, and 'charged photons' are simply not seen. So 
the immediate obstacle to implementing gauge in variance in weak interactions 
is to reconcile it with the massive gauge particles needed to generate the short­
range force actually observed. This is the objective of this chapter. 

However, it is not immediately apparent that we must reconcile these two 
facets of the weak interactions. Why do we not simply add the gauge invariant 
Lagrangian to whatever (non-invariant) mass terms are needed to make the 
interaction sufficiently short-range? The answer is that if we do, the resulting 
field theory is not renormalisable. Renormalisability was discussed in §7.1, but 
the essence is that in an unrenormalisable theory the infinities which occur 
cannot be removed by the renormalisation of only the parameters and fields of 
the bare Lagrangian. Their removal requires the introduction of an infinite 
number ofunpredicted but measurable quantities. Such theories therefore lack 
predictive power and we shall not discuss them further. The reason why the 
field theory described above is unrenormalisable is because its divergences are 
'worse' than those which appear in the massless gauge invariant theory. The 
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difference between the two stems from the form of the gauge field’s propagator 
in the two cases.

We start by deriving the propagator of the massive vector field. If we simply 
add a mass term to the Lagrangian for a free vector field given in (3.12), we 
obtain

The first term is invariant under the gauge transformation (9.7), while the 
second term is not. The Euler-Lagrange equations (3.8) now give

So Ap now describes a particle of mass mA, as anticipated, and the Lorentz 
condition (3.121) is a consequence of the field equations; it does not have to be 
imposed, as it was in the massless case. There is therefore no necessity for a 
gauge fixing term, as in (3.130). This is because the Lagrangian is no longer 
gauge invariant, so the field AM in this case is uniquely specified. The derivation 
of the propagator is now straightforward. We write

This may be compared with the propagator derived in (10.68) for the massless 
(gauge-invariant) case:

JS? =  -H d MAv- d vAM)(^A v- d vA n - h i m U ^  (13.1)

(13.2)

(13.3)

(13.4)

(13.5a)

where

Cp„(x',x)= ^ “ 4 e ,p(x' x>[ (m i-p 2)gpa+pppJ . (13.5b)

The inverse is easily found (as in Chapter 4) to be

(13.6a)

where iAF(W(p) is the massive vector boson propagator

(13.6b)
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The divergences which arise in the integration over loop momenta are 
determined by the large (Euclidean) momentum behaviour of the propagators 
and vertices appearing in any Feynman diagram. In the massless case we see 
that

In general, therefore, we shall expect that some diagrams which are convergent 
with massless vector boson propagators will be divergent when massive vector 
boson propagators are substituted. This is why we say that the divergences are 
‘worse’ in the massive case.

The difference is easily seen to arise from the difference between the 
numerators in the two cases; the ppp jm \  term in the massive case removes the 
|p |"2 supplied by the denominator. The numerator is in fact the sum over 
polarisation vectors

where the sum is over the three orthonormal space-like vectors transverse to p:

Recall that in §3.5 we showed that in the massless case the ‘time-like’ and 
‘longitudinal’ modes cancel and that we may choose a gauge in which only the 
two ‘transverse’ modes appear. In the massive case a third polarisation state, 
with a (longitudinal) component parallel to p , exists. In fact

Thus the pppa/m\ term in the numerator of &Fpa(p) is just the contribution from 
this longitudinal mode, at least in the large p limit.

Of course it may happen that this longitudinal mode is not coupled by any 
of the interactions in the theory, in which case the massive theory is no worse 
than the massless one. This happens, for example, in ‘massive q ed ’, in which we 
simply give the photon a mass. But in general, and for the weak interactions in 
particular, this prescription leads to an unrenormalisable theory.

(13.8)

whereas in the massive case we have

(13.9)

3

Z  6p)(p)«c)(p)= -Qoo + PePJml (13.10)

£«•£<*> =  - d U'

p-£W = 0.

(13.11a)

(13.11b)

£p3>( P) — fnA 1(\p\’ PoP)

~ P„/mA as p0, \p\ ->• oo. (13.12)
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13.2 Spontaneous symmetry breaking in a ferromagnet

In order to implement gauge invariance in weak interactions, we have to find 
some method of generating gauge vector boson masses without destroying the 
renormalisability of the gauge theory. Any such mass terms break the (gauge) 
symmetry, and the only known method of doing so in a renormalisable 
manner is called ‘spontaneous’ symmetry breaking, although it has been 
observed1 that the symmetry is not so much ‘broken’ as ‘secret’, or ‘hidden’.

The inspiration of the technique is to be found in the collective behaviour of 
certain many-body systems. Consider, for example, a ferromagnetic material 
in zero external magnetic field. Its properties are well understood in terms of 
the Heisenberg nearest-neighbour spin-spin interaction model with a 
Hamiltonian

H = - \ J  £  (13.13)
(U)

where the sum is over all nearest-neighbour sites (ij)  and is the spin on the 
site i. Clearly H is rotationally invariant, so the unitary operator U(R) 
describing a rotation R commutes with H :

U(R)H = HU(R). (13.14)

However, the energy eigenstates are not always rotationally invariant. In fact, 
it is well known that (below the Curie temperature Tc) the ground state of the 
system has a non-zero magnetisation M , which is clearly not rotationally 
invariant. The invariance expressed by (13.14) merely implies that the ground 
state |A/> and the state |M'>, where

M\ =  RijMj (13.15)

are degenerate. That is to say that the state with magnetisation Afhas the same 
energy as that in which M  has been rotated into some other direction M .  
Indeed, if the ferromagnet is heated up above Tc (at which point M  vanishes), 
and is then cooled down to the original temperature, still in zero external field, 
then in general the ground state will have a magnetisation M  ^  M  Thus the 
symmetry resides in the degeneracy of the ground state; any particular ground 
state is not symmetric since the magnetisation points in a definite direction. 
This direction is selected ‘spontaneously’ by the system as it cools, and this is 
why the symmetry is said to be ‘spontaneously broken’.

In Landau’s mean-field theory the free energy functional F of the system has 
a form reminiscent of (4.77)

F — d3xl3?(M )+^KL(M)(V-M)2 +%Kt (M)(V a  Af)2 + ...] (13.16a)
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where

^■(M) = N ^ ^ M 2 + p(M2)2 + . . ^  (13.16b)

with N  a (density of states) normalisation, T  the temperature and JS positive. In 
(13.16a) the dots indicate terms involving more than two derivatives, while in 
(13.16b) they stand for higher powers of A/2. The ground state of the system has 
no dependence upon spatial position

M(x) = M  (13.17)

so we may drop all derivative terms, and then F is a function only of M 2 
(because of the rotational invariance). Clearly, therefore, if  M  is non-zero we 
cannot predict its direction, and the symmetry will be spontaneously broken. 
|M| is found by minimising

F = F N ^ ^ | M | 2 + jS|M|4^ (13.18)

where V is the volume of the system and we have dropped the higher powers 
(M is small). It is clear from figure 13.1, or directly, that when T > T CF has a 
minimum when M =  0, while for T< Tc the minimum is when M is non-zero. 
Thus in the first case the ground state is (rotationally) symmetric, but in the 
second case the symmetry is spontaneously broken.

13.3 Spontaneous breaking of a discrete symmetry

The task then is to apply this technique to a (particle physics) field theory at 
zero temperature, and to apply it not to break rotational symmetry but some 
other (internal) symmetry. The analogue of the ground state of a many-body 
system is, of course, the vacuum in particle physics2. We must take the
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Hamiltonian (Lagrangian) of the field theory to be invariant under the 
symmetry, but the vacuum to be characterised by some field which is (non-zero 
and) not invariant under the symmetry transformation. If the field in question 
were a spinor or vector field, for example, then the vacuum would be 
characterised by a non-zero angular momentum J( = 1/2 or 1), and the 
rotational invariance would have been broken. The particle physics vacuum is 
observed to be rotationally invariant, so it is clear that the internal symmetry 
with which we are concerned must be broken by a scalar field having a non­
zero value in the vacuum.

This scalar field is called the Higgs field, and, although it has never been 
measured in the way that M  has, we are postulating its existence in order to 
break the internal symmetry spontaneously. Saying that it has a non-zero 
value in the vacuum means that there is a non-zero classical field in vacuo. 
Thus in the language of §4.4 we are saying that there is a scalar field operator 
cp(x) having a non-zero vacuum expectation value (v e v ) in the absence of any 
source

<0|<p(x)|0> =  <pc(x)#0 (13.19)

where <pc(x) is the field measured in the vacuum. Since the vacuum is observed 
to be translation invariant, when there is no source, we require (pc(x) to be 
independent of x:

<pc(x) =  <pc. (13.20)

It is clear from (4.5, 4.43) that the v e v  of <p is zero in every order of 
perturbation theory, at least in the kq>* theory considered there. So
spontaneous symmetry breaking must be a non-perturbative effect. We saw in
(4.79) that (pc is determined by minimising the effective potential. Further, if we 
ignore quantum effects temporarily, the effective potential is simply given by 
the potential K(<p). This is apparent from (6.35), which, as already noted, 
reduces to the (classical) field equation (3.35) when the source J  is absent and 
the quantum effect AfAF(0) dropped. The field theory discussed in Chapters 3 
and 4 is described by the Lagrangian density

J?=^<p)(d»<p)-V(<p) (13.21a)

with

V(cp)=~fi2(p2+ ~ ^ 4. (13.21b)

The only symmetry of this simple model is the invariance under the discrete 
transformation

<p(x) -► (p'(x) =  — cp(x). (13.22)

Obviously V will only have an absolute minimum if

(13.23)



13.4 BREAKING OF A CONTINUOUS GLOBAL SYMMETRY 175

and in any case this is required to ensure the convergence of the functional 
integral. When n 2 is positive V has a minimum only at q>= 0  and ft is the mass 
of the field <p. V does have a minimum at a non-zero value of <p provided

H2< 0  (13.24)

and then
cpc= ± ( - 6 , i 2/X)1/2. (13.25)

This, of course, does not fix which sign of q>c is actually selected by the system, 
because of the symmetry, but whichever one is chosen breaks the symmetry, 
since neither is invariant under (13.22). It is easy enough to define a new field 
which does have zero v e v . We let

(p = (p-cpc (13.26a)

so that, using (13.19, 13.20),

<0|<p|0>=0. (13.26b)

When <£ is expressed as a function of (p it will obviously not possess the 
reflection symmetry <p -► — <p, since q> measures fluctuations about the 
asymmetric point <p = <pc• Using (13.25) we find

K ^ X ^ H 2/*2*?2] -^(< P4+4<P3<Pc)-^H2(P?- (13.27)

The cubic term (p3 shows that the symmetry is spontaneously ‘broken’, as 
expected, although since this is the same Lagrangian as the symmetric (13.21) 
we can see why some1 prefer to describe the symmetry as ‘secret’; it is secret 
because only with the particular coefficient of the <p3 term given in (13.27) can 
the Lagrangian be recast in a symmetric form. Note that, since cpc is 
proportional to 2~1/2, the spontaneous symmetry breaking is indeed non- 
perturbative, as anticipated. Also, the mass squared of the field (p is clearly 
— 2)U2, which is just the second derivative anticipated in (3.38)

d2V 
d <p2

= - 2/i2. (13.28)
<P =  <Pc

13.4 Spontaneous breaking of a continuous global symmetry

The real scalar field theory (13.21) discussed so far has only the discrete 
symmetry (13.22), whereas we are concerned with a continuous gauge 
symmetry. The spontaneous breaking of a continuous symmetry exhibits 
novel features which do not arise in the discrete case. For this reason we shall 
discuss the complex scalar field theory introduced in (3.61). The Lagrangian

&  =  -  L(<p, q>*) (13.29)
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is invariant under a global U(l) gauge transformation

cp(x) cp'(x) = e~lqA <;p(x)

<p(x)* -► (p'(x)* =  clqAcp(x)* 

(with q, A real and constant) provided

V(cp,cp*)=V((pcp*).

(13.30b)

(13.30a)

(13.31)

If we restrict our attention to renormalisable theories, then (13.31) implies that 
V has the form

analogous to (13.21b). As before we require X to be positive, and then if \i2 is 
positive V has an absolute minimum only at cp = 0. When \x2 is negative V 
acquires a minimum at a non-zero value cpc of cp which satisfies

However, in this case there is a circle of degenerate minima, since (13.33) 
obviously does not fix the phase of <pc, because of the gauge invariance (13.30). 
Thus we have a situation analogous to that of the ferromagnetic system 
discussed in §13.2. Any particular choice of cpc breaks the symmetry 
spontaneously, since under a gauge transformation (13.30) the ground state 
|<pc> is transformed into a different ground state |e~J<?A<pc>. The novel feature 
which arises when we break a continuous symmetry emerges when we define a 
new field having zero v e v . Let the phase of cpc be <5, so that

it follows from (13.34) and (13.35) that only <px has a non-zero v e v :

V(<p, (p*) = n2<p<p* +\k(<p<p*)2 (13.32)

W 2= - V a (13.33)

(13.34a)

with
v =  + ( —4^2/A)1/2 (13.34b)

and similarly for (p.
Then we may express cp in terms of two real fields <pu cp2 by

(13.35)

Since
<0|#)> =  <pc (13.36)

<o|<Pi|o>= vsn a = 1 , 2 ).

Thus we define new fields cpt having zero v e v

cPiSWi-vdn (i= 1,2).

(13.37)

(13.38)
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Evidently cpi and </>2 measure deviations from the asymmetric point P (see 
figure 13.2) in the directions radial and tangential to the circle of degenerate 
minima passing through P.

The quadratic terms of the Lagrangian (13.32) are diagonalised by these 
variables and we find

^ = i [ ( 3 ^ 1)(3"<p1)+(^<p2)(^<p2)+ 2 /i2(<p1)2]

~ ^l(< P i)2+(<p2)2¥  -Ito c p tliv ,)2+(<p2)2] - & 2v2. (13.39)

Obviously the symmetry is spontaneously broken, as expected, and the field 
<px has a (positive) mass squared of — 2/i2 as before. This is because V has a true 
minimum at P in the plane (p2=Q

d2V
= —2/i2.

0(Pi {(px,<p2)=m
(13.40)

The novel feature is that the field <p2 is massless. This too could have been 
anticipated as

d2V
W i

=  0 (13.41)

since q>2 (=  q>2) measures deviations in the direction in which V is flat, because 
of the gauge symmetry. Such massless modes, which arise from the degeneracy 
of the ground state after spontaneous symmetry breaking, are called 
‘Goldstone bosons’.

In fact Goldstone bosons are a general consequence of the spontaneous 
breaking of a continuous global symmetry3. To see this consider a general 
non-Abelian gauge symmetry G, defined in (9.13), and some scalar fields
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transforming as some (possibly reducible) representation of G. Without loss of 
generality we may express these in terms of n (say) real scalar fields

<p(x) =

9 i (x ) ' 

9  2W

, <Pn(x)

(13.42)

(13.43a)

Under an infinitesimal global gauge transformation 

(p(x) -► (p(x)f = <p(x) + 8<p(x) 
with

5(p(x) =  — igTaAaq>(x) (13.43b)

where g, Afl are real, and Ta (a = 1 ,..., N) are the n x n matrices satisfying the 
Lie algebra (9.21); since iTfl is real and J a is Hermitian, Tfl must be 
antisymmetric. If !£ is invariant under the gauge transformation (13.43), as 
shown in (3.33), there is a conserved Noether current

where

j° = nl(x)iTa(p(x)

d<£

( a = l , . . . ,  AO

( i= l,. . . ,n ) .

The Euler-Lagrange equations (3.8) give

and current conservation then implies that

fd & V

(13.44a)

(13.44b)

(13.45)

(13.46)

In the field theories with which we are concerned the Lagrangian has the form

(13.47)

so

8& _8V_
8<p 8<p

(13.48a) 

(13.48b)

It follows from (13.48a) that the second term of (13.46) vanishes, since T“ is



antisymmetric, and we deduce that V satisfies

8VT
—  T >  = 0 (13.49) 
d<p

for all <p, as a consequence of the symmetry.
The masses of the various modes are controlled by the behaviour of V in the 

vicinity of its minimum. Since we are considering a spontaneously broken 
symmetry, V has its minimum at some value v of q> which fixes the vev of the 
field operators. Thus

<0|#x)|0> =  » (13.50a)

where

dV
—  =0. (13.50b)
Sip

Further, the ground state described by v is not in general invariant under a 
gauge transformation, which means that

( l - ig A 'T J o /o  (13.51)

for all choices of the infinitesimals A“. So, for at least one a,

iTa»*0. (13.52)

We now define fields

<p=<p-v (13.53)

having zero vev

<0|<p|0>=0 (13.54)

and express <£ in terms of <p. Then using (13.47) and (13.50b)
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1/ 82V
^  = x( (SuViWvd-vWf K(o) + O(<p3). (13.55)

ip =  v /2 \

Clearly the masses of the fields are the eigenvalues of the mass matrix

d2V
0*2) y = - (13.56)8q>id<Pj 9=u'

Differentiating (13.49) with respect to <p and evaluating at <p = u, we find

> 2)iT“o=0 (fl= l,...,IV ) (13.57)

using (13.50b). It follows from (13.52) that /i2 has at least one eigenvector with 
zero eigenvalue, and consequently that the linear combination ^ TiTflu is a 
Goldstone boson.

Now suppose that the ground state \v) is left invariant under gauge
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transformations belonging to some (maximal) subgroup S of G. Then we may 
choose generators Tfl (a = 1 ,..., N) of G such that Tfl (a =  1 ,..., M) generate S. 
Since |u) is invariant under the transformations belonging to S,

Tau=0 (a=  1 ,..., M) (13.58a)

but

Tflu ^ 0 (a =  M + 1 ,..., AO- (13.58b)

The N — M  vectors Tau (a = M  + 1 ,..., N) are clearly linearly independent, and 
it follows that there are N — M  Goldstone bosons.

13.5 The Higgs mechanism

We are now in a position to attack the main objective of the chapter, namely 
the generation of masses for the gauge vector boson fields in a way which does 
not destroy the renormalisability of locally gauge invariant theories. In §13.1 
we saw that the breaking of a local gauge invariance by the addition of gauge 
boson mass terms, which explicitly break the symmetry, leads in general to an 
unrenormalisable theory. We have also seen, in the following sections, how the 
global invariance of a field theory may be broken (or ‘hidden’) by the ground 
state (vacuum) spontaneously selecting one of the degenerate minima of the 
potential. This suggests that we study the effect of breaking a local gauge 
invariance spontaneously, in the hope that the breaking will induce gauge 
boson masses, while the (hidden) symmetry will protect the renormalisability.

In fact this is precisely what happens. We illustrate the mechanism (now 
called the Higgs mechanism) by applying it to the locally gauge invariant 
version of the model discussed in §13.4. This model has the Lagrangian of 
‘scalar electrodynamics’, but when it is spontaneously broken it is called the 
‘Higgs model’4. Thus we start with

^= (D „p)(D  > * )  ~H2<P<P*-lA<P<!>*)2 - iF „ , .F ’ (13.59a)

where

D ^ ee(^  + M >  (13.59b)

DM<p*s(3M- i  qAJcp* (13.59c)

are the U(l) gauge co variant derivatives defined in (9.6), and

(13.59d)

is the gauge invariant field tensor, defined in (9.10). The last term is the 
Lagrangian density for the electromagnetic field (3.12) without an external 
source When fi2 is positive the U(l) invariance is unbroken and (13.59a)
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evidently describes a scalar particle of mass ju and charge q interacting with a 
massless electromagnetic field; hence the name scalar electrodynamics.

We are concerned with the case when \x2< 0, so the symmetry is broken 
spontaneously and <p acquires a vev

<0|<p(x)|0>=~t;ew (13.60)

where v is given in (13.34b) and <5 is arbitrary. As before we change variables 
and use the fields <pt- (i =  1,2), defined in (13.35) and (13.38), which do have zero 
v e v s . In terms of these variables the covariant derivative becomes:

e1<5
D„<P=-y| IA<pi +i(dM<p2+qvAll) + iqA/l(<p1 +i<p2)]. (13.61)

Notice that the erstwhile Goldstone boson q>2 is inextricably attached to the 
hitherto massless gauge field Ar  Indeed, aside from interaction terms, 0 2 and 
Ap enter the Lagrangian only in the combination

A'll = Au+ — d ^ 2. (13.62)
qv

In other words, because of the spontaneous symmetry breaking the gauge field 
is mixed with the Goldstone mode q>2, which in momentum space provides a 
longitudinal degree of freedom. From our discussion at the end of §13.1 this 
suggests that the field has a non-zero mass. This is indeed the case. If we 
eliminate A^ in favour of in (13.59a), we find a mass term for the field A'^ as 
in (13.1), with

m(A') = qv (13.63)

and we see that the mass requires both the spontaneous symmetry breaking 
(v^O) and the coupling of the gauge field to the scalar field (q ^  0), as 
anticipated. We shall not exhibit the precise form of <£ as a function of A'^ (px 
and q>2, because cp2 can be eliminated from the Lagrangian. We can see this by 
exploiting the gauge invariance of (Remember any gauge transformation 
leaves ££ invariant.) Comparing (13.62) with (9.7) we notice that A^ may be 
obtained from Aiu by a particular gauge transformation, namely one with

A (x ) = ^ 2(x ). (13.64)

This suggests that the whole of the dependence of <£ upon cp2 might be 
absorbable into a (different) gauge transformation. From (13.35) and (13.38) 
we have that



Under a gauge transformation

(13.66)

s —7= (v +  <p\ +  i<p'2) e'*. (13.67)

So by choosing

<5,
qA = arctan  — (13.68)

v+<P i

we can arrange that

ip'2 = 0. (13.69)

In this gauge we denote <p\ by H, so that

<p(x) -* <p’(x)= 4 =  [i> ■+ H(x)] (13.70)
V 2
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and using (13.61) this gives

e*
D,q> -  (D„<py = -j=  (d^H + iqvA; + iqA'^H) (13.71)

where now A'M is the field A)t gauge-transformed using (13.68). Since i f  is gauge 
invariant we may evaluate it in any gauge, and in this gauge we obtain from
(13.59) using (13.70) and (13.71)

q2A'„A’Av+H)2

- 1  tx2(v + H)2 ~  F'^F"" (13.72a)

where

(i3.72b)

We may simplify (13.72) using the fact, expressed by (13.34b), that v j j l  
minimises the potential, and finally we have

[(dMH W H ) + 2p2H 2]

- \ n 2v2- ^ - ( H 4 + 4vH3)
4 16

- 1 F'llvF'’J'’+ ^ q 2A'flA'>‘(v2 + 2vH + H 2). (13.73)
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The Goldstone mode has been completely ‘eaten’ by the gauge-transformed 
boson A'm which has a mass qv, as in (13.63). There is one remaining scalar field, 
the Higgs field H , which is real, having a mass (—2/*2)1/2. Thus the total 
number (four) of degrees of freedom is unaltered. Instead of a massless gauge 
boson, having two (transverse) modes, plus a complex field cp composed of two 
real fields, we now have a massive vector field AJ, having three modes (two 
transverse and one longitudinal), plus one real scalar field H. Clearly the gauge 
invariance is completely broken, since A ' is massive and H  is real. However, 
the renormalisability of the theory, if it has been preserved, is not manifest, 
because of the problems with massive vector bosons discussed in §13.1.

To verify the renormalisability we work in a different gauge from that 
specified in (13.68). The gauge given in (13.68) is called the ‘unitary’ gauge, since 
it demonstrates that the Goldstone mode may be eliminated, (13.69), while the 
surviving fields H, are perfectly normal fields having the normal 
propagators for massive scalar and vector particles. In other words the only 
poles occurring in Green functions and Feynman diagrams are those deriving 
from real particles. In all other gauges, and in particular in the R( gauges which 
we shall shortly define, there are spurious vector and scalar poles which must 
cancel from S-matrix elements since they are absent in the unitary gauge. (See 
Appendix B.) In other words, the R€ gauges are not manifestly unitary.
However they are manifestly renormalisable; the ultraviolet divergences
encountered are no ‘worse’ than those occurring in q e d . The R{ gauge is 
specified by imposing a condition in the gauge field. For example in §3.5 we 
demonstrated that the addition of a gauge-fixing term to the Lagrangian

&<*=- ^ W ) 2 (13.74)

ensures that the gauge field A^ may be made to satisfy the Lorentz condition

<3^ = 0. (3.116)

In the present context it is useful to use a different gauge-fixing Lagrangian, 
first suggested by ’t Hooft5:

^ g f  = - ^ ( d liA > -tq v(p2)2. (13.75)

This ensures that A^ can be chosen so that

dpA t^iqvfa-  (13.76)

Provided qv is non-zero, we see that this reduces to (13.69) in the limit £ -► oo. 
Thus we shall expect the unitary gauge to be a limiting case of the R{ gauge. 
The advantage of t h e ’t Hooft gauge fixing is that it removes the bilinear 
mixing of A^ and cp2. We recall that this derives from the term of if,



and from (13.61) we see that this contains a quadratic term

zKdrfiH PVi) + 2qvA»(dll<p2) + ( q v f A ^

^ 2 l ( ^ 9 2W (P2)-2qv(8liAl‘) ^ 2 + (qv)2AllA ^  + qvdtl(A<1<p2). (13.77)

The total divergence may be dropped, since it does not contribute to the 
action, and the cross term now cancels that in (13.75) precisely. As explained in 
§10.5, there is no necessity to introduce ghost fields into this theory since it is 
based on an Abelian group U( 1). The full Lagrangian of the Higgs model in the 
R5 gauge is therefore <£ + i?GF which gives

•^Higgs^ [(dpVtWVi) + 2H2<pU ~ \ h2v2

+ ^ [ ( l - r  1XM'02 -(a„ W  Av)+

~ l6  + Vl)+ (V2 + <P2)2]

+qA“(p1*d>fi<p2+ ^ q 2AllA>‘(p2+ q2vAtiA>‘(pl ( 13.78a)

where

mA = qv. (13.78b)

Thus the cpx field has a mass squared n2 + 3Av2= — 2p 2 and the (unphysical) 
erstwhile Goldstone boson mode cp2 now has mass squared tm 2A. The 
propagator of the vector field may be found, as in §10.6, and we find

:X , . .0p<, + (£-l)PpP<J(P2- ^ r 1
' ^ p)-    (13-79)

As anticipated, this yields the ordinary propagator (13.6b) of a massive vector 
boson in the unitary limit £ oo, and the associated ultraviolet behaviour
(13.9). However for all finite values of <*; the behaviour as the (Euclidean) 
momentum p-> oo is

AfJ P)~ IpI~2 (13.80)

just as in the massless case (13.7). It is for this reason that the gauge is 
‘manifestly renormalisable’. To demonstrate that the theory really is sensible it 
is necessary to show that the poles at p2 = £,m2 cancel from S-matrix elements. 
This was done by ’t Hooft5.
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13.6 The Higgs mechanism in non-Abelian theories

We have seen that when the local U(l) invariance of scalar electrodynamics is 
spontaneously broken the gauge boson acquires a mass by ‘eating’ the 
Goldstone boson associated with the global symmetry, while the 
renormalisability of the theory is preserved. A similar phenomenon occurs 
when a local non-Abelian gauge invariance is spontaneously broken. Since 
electroweak theory is believed to be just such a theory, it is worthwhile to 
explore the general case in a little detail.

As in (13.42) we consider a general non-Abelian gauge symmetry G and n 
real scalar fields q>(x). We are now concerned with a local gauge invariance so 
we must replace the derivative d̂  in (13.47) by the co variant derivative (matrix) 
(9.15)

+ (13.81)

where I is the unit n x n  matrix,g  is the coupling constant,Ta (a = 1,..., N) are 
the n x n matrices satisfying the Lie algebra (9.21) of the group G, and A® are the 
gauge vector fields. Adding the (locally gauge invariant) Yang-Mills 
Lagrangian (9.33) for these gauge fields leads us to the non-Abelian analogue 
of (13.59a):

i f = i<D ^)T( D »  -  V(<p) —\F “vFm' (13.82a)

where

FJV =  a ; -  m ; - g f abc4 A cv (13.82b)

and V(<p) satisfies (13.49) as a consequence of the symmetry. When the 
symmetry is spontaneously broken some or all of the fields q> acquire v e v s , as 
in (13.50). As before, (13.53), we define new fields

(p = (p — v (13.83)

all of which have zero v e v s . Expressed in terms of these fields

(D„p)T( D »  = (3f‘<p)T(<9'i<p) + 2g(dlly T)iTaoA‘"1

+ g2A°Ab“vrTaT >o + .. .  (13.84)

where . . .  denotes cubic and quartic interaction terms. (In deriving (13.84) we 
have used the antisymmetry of the matrices Ta deduced in §13.4.) Suppose we 
choose the generators Ta, as in §13.4, so that the first M generate the maximal 
subgroup S of G which is left invariant after the spontaneous symmetry 
breaking. Then (13.58) is satisfied and we see from (13.84) that the N  — M 
Goldstone modes <pTiTav (a = M + l, . . . ,N )  are mixed with the corresponding 
gauge bosons. We therefore anticipate that the vector fields A® (a= 1 ,..., M) 
remain massless, as they are not mixed with Goldstone bosons, while the 
remaining N — M  vector fields acquire masses. This is clear if we presume the 
existence of a unitary gauge, as before, in which the Goldstone modes are
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transformed to zero. In other words, we assume that by an appropriate non- 
Abelian gauge transformation we can arrange that

<p(x)-+<p'(x) (13.85a)

where

(p,TiTav= 0  (a =  M + l,. . . ,N ) . (13.85b)

In this gauge it follows from (13.84) that the surviving n —N  +  M Higgs scalar 
fields are unmixed with gauge bosons. The third term of (13.84) is the vector 
bosons’ mass term. The actual masses are found by diagonalising the mass 
matrix

(M 2)ab= g2vrTaTbv (a,b=  1,.. .,N). (13.86)

Since the matrices Ta satisfy (13.58a), it is clear that

(M2A)ab= 0 for (a ,b = l , . . . ,M )

so that the gauge bosons (a =  1 ,..., Af) are indeed massless as anticipated. 
Further, if we restirct a, b to values larger than M, the resulting ( N - M ) x  
(N — M) sub-matrix (Ml)ab is positive definite. To see this we note first that 
(M2)ab is symmetric (exercise). It follows that it may be diagonalised using a 
real orthogonal transformation 0. Thus

[0(M l)0TY b= Aa5ab (no summation). (13.87)

Using (13.86) this gives
N

Xa = £  (gOapiTpv)T(gOaqiTqv). (13.88)
p,q =  M  +  1

Since any linear combination gOaqiTqv of the linearly independent (real) 
vectors fPo must be non-zero, it follows that Xa is positive and we have N —M  
massive vector particles, as anticipated. It remains only to justify the assumed 
existence of a unitary gauge. The proof is elegant6 but something of an aside, so 
we omit it.

The unitary gauge is unsuitable for calculations because the presence of 
massive gauge bosons means that the theory is not manifestly renormalisable. 
It is desirable to perform calculations in a guage in which the renormalisability 
is manifest, so that the divergences encountered are no worse than q e d , for 
example. As before, this is the case in ’t Hooft’s R% gauge, analogous to (13.76). 
In the general case the gauge-fixing Lagrangian is taken to be

^ o f  =  - L  (d„A* -  Zg<pT iT v)2 (13.89)

so that the cross term iTau cancels the corresponding term in (13.84),
after dropping a total divergence. Then in the quadratic terms the gauge fields



AJ are decoupled from the scalars. The choice (13.89) corresponds to the gauge 
conditions

Fa =  dpA<» -  £g<pTiTav - f a(x) = 0 (13.90)

instead of (10.31). This means that the functional derivative 5Fa{x')/8Ab(x) is 
different from that derived in (10.55), and consequently that the Fadeev- 
Popov Lagrangian will differ from (10.58).

Before discussing these modifications we derive the Feynman rules (in the 
gauge boson and scalar sectors) which follow from the addition of the gauge 
fixing Lagrangian ifGF to i f  given in (13.82). Identifying the terms which are 
quadratic in the gauge fields we have

^(quadratic, A°ft)=

- ~ { d llAa>‘)2 + A l(M ^abAb>‘ (13.91)

where (M2)ab is given in (13.86). Thus the massless gauge bosons A* 
(n = l,. . . ,M )  each have the propagator DFpa(p) given in (10.68) and the 
corresponding Feynman rule (10.69). As shown in (13.88), the remaining 
modes A°(a = M + l 9... ,N )  yield N —M  massive vector fields. We denote the 
mass eigenstates by

Bap = OabAb (13.92)

where O is the orthogonal matrix diagonalising this sector M 2 of the mass 
matrix M 2, as in (13.87). The eigenvalues Xa may be written

Xa={Ma)2 (13.93)

since we have verified their positivity. Then the propagator for each mode B“ is

i , „ l  (13.94a)p pz —{MaY + ie

as in (13.79), and the corresponding Feynman rule

: idab&Fpa(p, M a) (no summation). (13.94b)
B

The terms in the augmented Lagrangian which are quadratic in the (shifted) 
scalar fields <p are

^(quadratic, <p)=%dtl<p)T(dli<p)-\<pT(n2)< p-^g2(<pTiTav)2 (13.95)

where (jx2) is the scalar mass matrix defined in (13.56). The scalar fields <p may 
be decomposed into the (unphysical) Goldstone modes G and the surviving 
Higgs scalars H
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<p = G + H  (13.96)



as follows. Using (13.87) and (13.93) we see that the real vectors

rral ° abiJbDM a X  (no summation)

are orthonormal:

<?Teb=8ab. (13.98)

Since

(mV = 0  (13.99)

(from (13.57)), it is dear that the set {«“• a —M  + 1 ,.. . ,  N} provides a basis for 
the (zero-mass) Goldstone modes. The remaining scalar mass eigenstates all 
have positive eigenvalues of (pi2), since q>=v is a minimum of V Further, we 
may choose the eigenvectors {/*: b = l , n —N + M}  to be orthonormal and 
orthogonal to the Goldstone basis {e“}. The decomposition (13.96) is then 
defined by

G = '£ea(eaT<p) = Yt ^G a (13.100a)
a  a

t f = L A /* T<P) = I / t f fc- (13.100b)
b b

Using the orthogonality of 0 , it follows from (13.97) that

tpTigTav = '^ M bObttGb (13.101)
b

and we see that the last term of (13.95) involves only the Goldstone modes. We 
may rewrite (13.95) as

^(quadratic, $  = I  (gb)2HbHb
b

+ ^ G a)(^Gfl) - i X  {(M°)2GaGa (13.102a)
a

where

(H2) f  = (pib) Y .  (13.102b)

The Goldstone mode Ga thus has a propagator

£ f(P, M-) = O 2 -  m a)2 + ie] - 1 (13.103)

with the corresponding Feynman rule

b . i    a : idab&F(p, y/% M a) (no summation). (13.104)
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Similarly the Higgs scalar Hb has a propagator

£ F(P, A )  =  [P2 -  (P*)2 + ie] " 1 
with the corresponding Feynman rule

C. J  b : i«5*£ f(P,Hby (13.105)
H

The remaining terms of the augmented Lagrangian characterise the 
interactions of the scalar particles and vector particles:

^(interaction, cp, A)= (dplipv)igTa<pAâ + g2(pTT‘‘T buA“Abl‘

+^g2<pTTaT ’<pA;Ab“

A h g f ^ d ^ - d ^ A ^ A ^

-  $g2f abcf m,eAbAevAd*Ae''

-lH<P)~-2<PT(v2)<Pl (13.106)

where V(<p) is obtained from V(<p) by the substitution of v + <p for (p. This 
expression can be made even more complicated by casting it in terms of the 
mass eigenstates (a = 1 ,..., M), ££ (a = M  + 1 ,..., N) defined in (13.91), Ga, 
H b defined in (13.100). We shall forego this pleasure until we consider the 
specific spontaneous symmetry breaking required for the standard model (see 
§14.2).

There remains the question of the Faddeev-Popov ghost Lagrangian which 
is required by our gauge choice (13.90). This is controlled by the matrix B, 
defined in (10.52). With the present gauge condition

F „ M E F a( 4 " ( x l , f ( x ) )

= d ^ A ^ ix ')  -  £g<prv (x')iT“o -/■(*') (13.107)

where A"u, <pv are the (infinitesimally) gauge-transformed fields

Aa/iU(x') = /T(x') -(- 3$, Aa(x')+ gfabcAb(x’)AcAx') (13.108a)

4>u(x') =  V>u(x') —«

= <p(x') -  igTbA h{x')<p(x') -  v

= <p(x')—igT^A^x')^+ <p{x')~\. (13.108b)

Thus

8F (x'\
j ^ = S , A l ^ S ° b+ gfabcA‘>‘( x 'm x '- x ) }

+ Zg2(vT + <pV))T6Tat*5(x' -  x). (13.109)

Proceeding as before we find that the Faddeev-Popov ghost Lagrangian is now
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given by

^ fp  = {8»rja*W rja) +
-  Zrja*(Mi)abrib -  Zg2rja*rjlb<pTT*Tflu. (13.110)

Evidently the ghost fields rf ( a = l,...,A f)  remain massless and have the 
propagator (10.70) with the associated Feynman rule (10.71). The remaining 
ghost fields have a mass matrix £(M2A) proportional to that of the 
corresponding gauge fields. Thus the mass eigenstates %a are given by the same 
orthogonal matrix O as appears in (13.87)

Xfl =  OaY  (a,f> =  M + l, . . . ,N )  (13.111)

and the corresponding eigenvalues are y/% M a, where M a is defined in (13.92). 
The propagator for this mode is therefore

SgFhost(P, V ^M a) =  [p2- 1?(Ma)2+ i£ ] -1 (13.112)

and the corresponding Feynman rule is

 I  ■ idabA f°st(p, y f l  AT). (13.113)

The remaining (interaction) terms of (13.110) may be recast in terms of rj 
( a = l , . . . ,M ) , / ( «  =  M + l, . . . ,N ) ,  (a=  1,.. .,M), (a =  M +  1,.. ,,N), Ga,
Hb. Again, we shall not write down the precise Feynman rules until we turn to a 
specific example.
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13.7 Fermion masses from spontaneous symmetry breaking

The gauge theories we have encountered so far, namely q e d  and q c d , have all 
been invariant under the operation of parity, in which

p
x  —► — x. (13.114)

In consequence the left and right chiral components of the fermion fields must 
transform in the same way under gauge transformations. To see this we group 
all the fermion fields into a column vector \j/ and then decompose \j/ into its left 
and right chiral components L and R as follows:

il/= L + R (13.115a)

where

L = ahil/ (13.115b)

R = a R\l/ (13.115c)



with
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aL = 2(1 + 7s)- (13.115d)^ h
R

Then L and R are eigenstates of a chirality transformation eiays since

R -> &ay5R = eiaR (13.116a)

Gia75L = e~l<xL. (13.116b)

Now suppose that under a gauge transformation U

L -  exp( -  igTahAa)L (13.117a)

R exp( — igTRAa)R (13.117b)

with T£, Tr characterising the (possibly different) transformation properties of 
L and R, and consider the kinetic part of the Lagrangian

JSfk s  L f{  id , - g l lA ^ L  + Ry>( id ,-g T aRA;)R. (13.118)

By construction is gauge invariant, and it follows from (13.116) that it is 
also invariant under the chiral transformation. However is in general not 
invariant under the parity transformation, basically because parity 
interchanges the left and right chiral components. We can see this as follows. 
Under the parity transformation

with

and

Then

\j/ ^  ey0\j/ (13.119a)

|e|= 1 (13.119b)

AI-+A**. (13.120)

p
L -> ey0R (13.121a)

R -* s.y0L  (13.121b)

and «SPK is parity invariant if and only if

T [= T aR5 T “. (13.122)

In other words L  and R transform identically under a gauge transformation. 
Now consider the mass term

(13.123)
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It is never invariant under the chiral transformation (13.116), but it is gauge 
invariant if (13.122) is satisfied and if

[M F,Tfl] =  0. (13.124)

In the case of q c d , for example, parity invariance ensures that (13.122) is 
satisfied and (13.123) requires all colours of a given flavour to have the same 
mass, as in (9.35).

It is well known that the weak interactions are not invariant under parity. 
Thus when we construct the electroweak gauge theory in Chapter 14 it should 
come as no surprise to find that the left and right chiral components of the 
fermion fields behave differently under gauge transformations, as envisaged in 
(13.117). Then 5£M given in (13.123) is not gauge invariant. If we demand gauge 
invariance, the fermions are massless and the fermionic Lagrangian is chirally 
invariant. Clearly we must break these invariances, since with the exception of 
the neutrinos all fermions are known to have masses.

We have seen that it is possible to break the gauge invariance 
(spontaneously) by introducing scalar fields which acquire non-zero v e v s . 

However this does not of itself induce the chiral symmetry breaking which is 
essential if the fermions are to acquire masses. What is needed is an interaction 
of the fermion which is chirally non-invariant but gauge invariant. Then, when 
the gauge invariance is spontaneously broken, we shall expect fermion masses 
to emerge, since both invariances will have been broken. This may be achieved 
by including a Yukawa coupling of the fermions to the n real scalar fields 
cp1,...,(p n as follows. We take

= LYpR(pp +  RYlLcpp (13.125)

where Yp (p= 1 ,..., n) are matrices chosen so that Jz?Y is gauge invariant. The 
chiral non-invariance follows immediately from (13.116), and the gauge 
invariance requires that

TIYP -  YpTaR =  (T %)pqYq (13.126)

where T£, Tr are defined in (13.117) and under the same gauge transformation

<p <p' =  exp( -  ig llA a)(p. (13.127)

When the symmetry is spontaneously broken we must re-express in terms
of the field (p, as in (13.83). Then

j£?y = LYpR(vp + <pp) + RYlL(vp + <pP) (13.128)

and we see that the symmetry breaking has generated mass terms for the 
fermions, as required and anticipated. The mass matrix MF in (13.123) is given 
by

y t .0= y . u = - M F. (13.129)
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We have now derived the techniques necessary to apply spontaneous 
symmetry breaking to the case of actual interest. However, before doing so it is 
irresistible to note some further consequences which arise at the classical level 
when a non-Abelian gauge invariance is spontaneously broken.

As we have already said, spontaneous symmetry breaking occurs when 
some scalar fields <p(x) acquire non-zero vevs:

<0|<p(x)|0> = v (13.130)

and we argued that v is independent of x because the vacuum is observed to be 
spatially homogeneous. We might therefore wonder whether other states of 
finite energy might exist in which the scalar fields have spatially varying 
expectation values. Let us call such a state M. Then we want

<M|«p(x)|M> = <pM(x) (13.131)

and <pM(x) to describe a state of finite energy. We consider first a continuous 
global symmetry, such as that discussed in §13.4. The energy density T% for a 
single scalar field cp(x) was derived in (3.45). In the present case we have

*0 = l(S0<pr)(d0<p) + + V(<p) (13.132)

where to be definite we take
V((p) = {oc(q>T( p - v 2)2. (13.133)

Since we require the state |A/> to have finite energy, it is clear that the density 
Tq must approach zero as r = |jc| -> oo. In particular this requires that V -► 0, 
so

<Pm<Pm ^>v2 as r-»oo. (13.134)

This does not necessarily require that <pM approaches a constant, since (13.134) 
requires only that the magnitude of <pM approaches a constant; its orientation 
is arbitrary. We might therefore hope that it would be possible to arrange that 
<pM is tied to a non-trivial topological structure as r -► oo. For example in an 
SO(3) symmetric theory in which the fields <p constitute a three-dimensional 
representation we might hope to find a field configuration <pM in which

<pM-+vr as r-> oo. (13.135)
Unfortunately any such field configurations have infinite energy7. We can see 
this as follows. For large values of r we may approximate (pM by the form

<pM(r, 0, <p, £ )~#(0 , (p, t). (13.136)
Then

{A T x 1 f  # T #  , 1 # T #

13.8 Magnetic monopoles

r2 \  d6 89 sin2 0 d(p dq>/

= 0  (r~2). (13.137)



It follows from (13.132) that the energy is given by

E=  d3xTo> J d 3x ^ ^ ) ( 3 i^ )=  oo (13.138)

since d3x =  r2 dr dQ and the radial integration is divergent.
In any case it is easy to see that any such static solution having finite energy 

is unstable. The energy of a static solution is given from (13.132) by

£=T[<pM] + K[<pM] (13.139a)

where

r M  s  (13.139b)

and

=  DxV(<PM) (13.139c)

with D( =  3) the number of spatial dimensions. We denote by <pMx(x) the scale- 
transformed solution

<pMx(x)=tpM(Ax). (13.140)

Then

di<pMAx) = Adi(pM(Ax) (13.141)

and it follows, changing integration variables from x  to Ax, that

T [v»ma] =  A2- dT [^ m] (13.142)

and
= (13.143)

Since E must be stationary with respect to variation of A we have 

d£
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dA
= 0 = (2 -D )T -D V .  (13.144)

A=1
For the solution to be stable we also require that £  is a local minimum with 
respect to variation of A. So

d2£
= (2 -  D)( 1 -  D) T + D(D + 1) V

0 < d A2 X= 1

= (2—D)2T (13.145)

using (13.144). Since T is always positive, we see that in D = 3 dimensions 
(13.145) is not satisfied, and any such static solution is consequently unstable. 
This is ‘Derrick’s theorem’8.
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However, if we consider a local, rather than a global, symmetry, we must 
amend the above argument to include the effects of the gauge fields. We leave 
this as an exercise, and merely quote the results. Requiring that £  is a minimum 
with respect to variation of the scale parameter X now gives

and V is given in (13.139c). Eliminating V and putting D = 3 gives

which can be satisfied.
All that is happening is that the decrease in and V as X is increased is being 

(more than) compensated for by the increase in TA. The inclusion of the gauge 
fields also enables us to avoid the infinite energy of the purely scalar 
configuration. This is because we can arrange a cancellation so that although 
^i9M| =  0 ( r_1) and |^ iM| = 0 ( r_1) as r-*oo, the covariant derivative 
Di9 M| =  0 (r~ 2), which is sufficient to ensure the convergence of T9.

To see how, we consider the particular case9 already mentioned when the 
symmetry is SO(3) and the scalar fields q> transform as a three-dimensional 
representation. We further assume that a spherically symmetric configuration 
exists and that <pM is radial everywhere, not just as r -» oo as in (13.138). Thus 
we assume (pM has the form

Since v is the only dimensionful scale in the system it must scale the r 
dependence. Further, since the r dependence is controlled by the covariant 
derivative Df, it is clear that O(r) is a function of gr. Thus without loss of 
generality we may write instead of (13.148)

(2 — D)T(f>-\-(4 — D)TA— D V=0 

(2 -  DX 1 — D) % + (4 — D)(3 -  D) TA + D(D + 1) V > 0

(13.146a)

(13.146b)

where now

E= T9 + Ta+ V (13.146c)

with

Tv= dDx j(D & IW v h ) (13.146d)

(13.146c)

Ta> $ T > 0 (13.147)

(13.148)

(13.149)

and we insist that

■T1# ^ ) - !  as {-*<» (13.150)



so that (13.135) is satisfied. As before, di<pM = 0 (r_1) for large r, so this 
potentially divergent behaviour must be cancelled by the gauge field 
contribution to

=  di*pM ~9^iM  A <Pm (13.151)

where we have used (13.81) and the fact that

(T % = ieiflj (13.152)

in the regular representation of SO(3). To achieve the cancellation A m must 
have some component perpendicular to tpM and we assume that
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= - e a,  ^  1 1 -K (W )1  (13.153)

Then it follows that

gr2

D i(pJM{r)= H(vgr)K(vgr) (<50r2 -  r ^ )  + [vgrH'(vgr) -  H(vgr)] ^  (13.154)

and provided

as (13.155a)

and
£K(£)-*0 as £ - o c  (13.155b)

we see that Dtq>jM= 0(r ~ 2) for large r, as required. The gauge field tensor FaijM, 
may be calculated, directly using (13.153), or from the commutator [Df,D ;] 
using (9.28). We find

[j^2 j K 2 —1 \ T
~p. eiaj+y~p, ~4- )(£iaprprj~~ejaprpri) I- (13.156)

Then substituting (13.149) and (13.156) into (13.146) gives the energy of the
configuration as a functional of H  and K:

4nv
E iH ,K \-------

9
d W 2[ U iH '- H ) 2+ H 2K 2

o

+(ZK' )2 ( K2 -  I)2 (H 2 - £ 2)2̂ . (13.157)

Minimising with respect to variation of H  and K, or directly from the Euler- 
Lagrange equations, gives

Z2K" = K H 2 + K(K2- 1) (13.158a)

9
i 2H" = 2K 2H -\—j  H(H2 — î 2) (13.158b)
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which must be solved subject to the boundary conditions (13.155). Further, in 
order that the integral in (13.157) is convergent at £= 0  we require the 
boundary conditions

In general the functions H  and K  satisfying (13.158) must be found 
numerically, and the energy of the field configuration (interpreted as its mass) 
then has the form:

where /  is found to be a slowly varying function satisfying (for example)

The first of these values may be verified directly, since in the limit that a -*■ 0 
(and n2 ->0, so that i>#0) (13.158) has the analytic solution

discovered by Prasad and Sommerfield10.
We should emphasise that the field configurations (13.149) and (13.153) we 

have discovered are purely classical. The ‘mass’ calculated in (13.160) is just the 
energy of this classical field configuration and is not (except in conjecture1') 
the mass of any field quantum. We can however think of the field configuration 
as describing a localised system with the energy concentrated in a region 
around the origin. In fact for large values of £, H ~  £, from (13.150), so (13.158a) 
gives

and we see that the field energy is essentially concentrated in the sphere of 
radius (gv) ~1 centred at the origin. It is easy to see (from (13.160), for example) 
that

tf(£K  0(£) as -> 0 (13.159a)

and

as £ - 0 . (13.159b)

(13.160)

/(0)=1 

/(0.5) =1.42 

/(10) =1.44.

(13.161a)

(13.161b)

(13.161c)

tf  (£) = { coth { - 1  m )= {  cosech { (13.162)

K ”~ K

since K -* 0, from (13.155b). Thus the asymptotic form of K  is

K ~ e~ s = e - vgr

(13.163)

(13.164)

(13.165)

is just the mass of the (transverse) vector field which acquires mass by the
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spontaneous symmetry breaking. Thus the size of the field configuration we 
have been discussing is just the Compton wavelength of this massive vector 
field, and not the Compton wavelength associated with its ‘mass’.

At distances which are large compared with m l 1 the SO(3) local symmetry 
is broken, according to (13.135), and the residual symmetry is just the U(l) 
group of rotations about the radial direction r. If SO(3) had been the 
electroweak symmetry, which it is not (see Chapter 14), this surviving U(l) 
gauge symmetry would have been the electromagnetic gauge invariance, and 
presumably g — e. In this limit the surviving gauge field tensor is

( ^ 1 )  (13.166)

which corresponds to a magnetic field

B ^ ~ r .  (13.167)erz

Thus the field configuration we have been discussing is that of a magnetic 
monopole, since at large distances the field in everywhere radial. In fact the 
total magnetic charge of the monopole configuration is

J  B 'n d H = -4 n /e  (13.168)

where n is normal to the surface E enclosing the origin, all points of which have 
evrt> 1.

The monopole configuration(s) are of no great importance in the context of 
electroweak theory, because they do not arise in what is now the generally 
accepted electroweak symmetry. However, they do occur in the grand unified 
theories ( g u t s )  which will be discussed in Chapter 16. To see why this is so we 
must first appreciate that the field configuration (texture) which has been 
developed is important not just because it has finite energy, but also because of 
its topological stability. We noted at the outset that <pM was tied to a non­
trivial topological structure as r oo. This means that the asymptotic form 
(13.135) of <pM cannot be continuously deformed to the trivial texture

<Pm = vz (13.169)

for example. Another reflection of this is that the magnetic charge (13.168) is 
‘topologically conserved’—in fact its value must be an integral multiple of 
4n/e, for purely geometric reasons. We can see this as follows. For large 
r(evr^> l)<p(r) defines a mapping

ip: E -+ JK° (13.170)

where E is any closed surface enclosing the origin, and on all points of which r 
is large, and is the manifold of all values of ip which minimise V(ip). In the
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present case V(<p) is given by (13.133) and J t°  is the surface of the three- 
dimensional sphere

Thus in this case J i°  = S2. Now suppose that the points on Z are 
parametrised by u and w

This gives the mapping ip in terms of the parameters u, w. The normal n2 to S2 
is given in terms of the partial derivatives <pu and <pw by

As (w, w) covers U xW , r(u, w) covers the closed surface Z, and <p(r(u, w)) must 
also cover a closed surface which must be contained in S2. Evidently this can 
only be S2 itself, or an integral multiple of S2. Thus

where N  is an integer. Precisely because N  is an integer it cannot be varied 
continuously. Thus continuous deformation of ip leaves N  invariant, which is 
why we say that N  is a topologically conserved quantum number.

Finally we must demonstrate the connection between the topological 
charge and the magnetic charge. This is done by transforming (13.175) to an 
integral over Z. If the normal to Z is #*, then as in (13.173)

On Z we have already noted (13.171) that ip*ip = v2, and that Dtip =  0 (r  2). In

(13.171)

Z = {r(u, w): u e U, weW}. (13.172)

ipu a  ipw du dw =  n2 dS2 

where dS2 is the element of area on S2. It follows that

ip*ipuAipwdudw = v dS2.

(13.173)

(13.174)

' U x W
(13.175)

n dZ = ru a  rw dw dw (13.176)

which implies

(13.177)

Also

(13.178)

Substituting these into (13.175) gives

(13.179)
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fact because of the exponential fall off we can set

D t(p = 0. (13.180)

Then solving (13.151) we can find the component of perpendicular to ip:

At =  —~2 a  d{ip+■- atip (13.181)
QV V

where at is arbitrary. Then, as before, the field tensor Fjk is parallel to the axis ip 
of the residual U(l) symmetry and we find

~<P'Fjk=^p<p-dj<P*dk<p+dj akdkaj (13.182)

and the magnetic field is

B,= - ^ e , jk<p-Fjk. (13.183)

Then substituting into (13.179) gives

4nv3N = -  j  dZ n,[B, + (curl a)Jgv3. (13.184)

The unknown curl a does not contribute and we see that the magnetic charge

J  B 'ttd E =  (13.185)

remembering that g = e. Thus the topological charge measures the magnetic 
charge in units of ( —4rc/e), and the magnetic charge is conserved because of 
topological reasons.

13.9 The effective potential in one-loop order

We have seen in §13.3 and the following sections that spontaneous symmetry 
breaking requires that some scalar field develops a vacuum expectation value 
(v e v ) . This v e v  is determined by the minimisation of the effective potential as 
was shown in (4.79). (In the case that the classical field cpc(x) varies in space, as 
was the case in §13.8, it is obtained by minimising the effective action r[<pc].) 
So far in this chapter we have ignored quantum effects, so that the effective 
potential is given entirely by the potential V which appears in the Lagrangian. 
(It was for this reason that we minimised the expressions (13.21b) and (13.32), 
for example.) We could of course include some of the neglected terms by 
working to some (finite) order in perturbation theory. However, spontaneous 
symmetry breaking is a non-perturbative effect, as we have already observed. 
Thus some other expansion parameter is needed if we are to improve upon the
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calculations we have done so far. One of the few available alternatives is the 
loop expansion.

We start with the generating functional X[T\ of the connected Green 
functions in a scalar field theory, defined in (4.58) and (4.25), and insert a factor 
ft"1, so that

(We have hitherto set ft =  1, so this insertion makes no differences to the 
calculations we have already performed.) Since the ft"1 on the second line of 
(13.185) multiplies the whole Lagrangian, not just the interaction part, each of 
the V vertices in a diagram will carry a factor ft " 1, while each of the I  internal 
lines will carry a factor ft. In calculating the connected Green function G(£), with 
E externa lines, as in §6.2, each of the external lines has a propagator. Thus 
overall we have a factor

using (7.7), and any diagram in the expansion of ft-1X [J] has a factor (h)L~E. 
The one-particle-irreducible (o p i)  Green functions T{n) are generated by the 
effective action r[<pc] via (4.73). As we found in Chapter 6  the o p i  Green 
functions f (£) have no propagators associated with the E external legs, so these 
Green functions are multiplied by a factor (ft)L. In other words the power of ft in 

counts the number of loops. With no loops (L = 0) the only non-zero o p i  

Green functions are

Then from (4.81) we can write down the corresponding approximation to

which is precisely the ‘classical’ potential (13.21b) which was expected. In this 
connection it is perhaps worth emphasising that the insertion of ft is purely 
conventional. We do not have to assume that ft is ‘small’, and it is introduced 
merely as an expansion parameter. Indeed, we can write down T[<pc] in the 
same approximation by using (6.36). The terms involving AF(0) derive from

fF[J] = ex p

(13.186)

where N f is chosen so that

WTO] = 1 (*[0] = 0). (13.187)

(h)-y+I+E = (hyi L + l - E (13.188)

f <2>(p> - p)= p2- h2 (13.189)

and

f'(4>(Pl,P2>P3>P4)=-^ (13.190)

V(<pc):

y0((pc)=^p2<p2+ ^ ( p c (13.191)
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(divergent) loop integrations, so they do not contribute in zeroth order. Thus

since N =  1 so that T[0]=0.
We now wish to proceed beyond this approximation and to calculate the 

effective potential V and the effective action T accurate to order h, i.e. at the 
one-loop order. First we shift the functional integration variable (p in (13.186) 
by writing

where q>0 is the zeroth order approximation to cpc. It therefore satisfies

contains all the terms quadratic in q> after the shift. The term which is linear in 
<p in (13.195a) vanishes by virtue of (13.194) (this merely reflects the fact that cp0 
minimises the classical action). Next we rescale the new functional integration 
variable by

(13.192)

(p(x) =  (p0{x) + <p{x) (13.193)

(d,,#1+ f i 2)(p0(x) <PoW = J(x). (13.194)

Using the Lagrangian density given in (3.34)

&{<P)=^ (dt< pW < P)H 2<P2 - V (3.34)

and the change of variables (13.193), it follows that

J d 4x ( i ?  + Jq>) =  j d 4xm<P0) + J(p0)

(13.195a)

where

q̂uad(<£> <Po)= ^ ‘PX^'P) ~3/*2<P2 (13.195b)

q> = hll2q> (13.196)
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and substituting back into (13.186) gives

IF|7] =  jV'exp 1

x j"Qip exp i

d4x[-^(<Po) + M )]

1
d4x( =^qUad((p,(po)-^fill2<p3(p0-~ X h(p4 ).

(13.197)

The terms proportional to h1/2 and h in (13.197) may be neglected, if we only 
want to retain the first-order corrections, and this leaves a functional 
integration which may be continued to the Gaussian integral already 
encountered in Chapters 1 and 4. Writing

J*d4xi?quad(<p, (p0) =  jd4x d4x'(p{x')A(x’, x, (p0)(p{x) (13.198)

where

A (x\ x, q>0) =  i - d ^  + fi2 + &<p2o]d(x' -  x) (13.199)

the result is that

IF[J] sJV' exp ift-1 | d 4x[if(<Po) +  ̂ o ]

x ex p [—̂ T rln  A (x ',x ,<p0)]. (13.200)

Using (13.187) we have that

IF[0] = 1 a N' exp( - -  Tr In A(x', x, 0)

since

< P o [ 0 ] = 0 .

Then comparing with (13.186) we find

X0[J] = d4x[i?(<p0) + J  <p0]

X  j [ J ] = -  Tr In [/fix', x, <p0)/A{x', x, 0)]

(13.201)

(13.202)

(13.203)

(13.204)

where A is defined in (13.199). Of course, to go beyond this first-order 
approximation we should have to retain the 0(ft1/2) and O(h) terms in (13.202). 
Finally we can compute the effective action

rOJ = r Oo c] + hr! [(juj (13.205)
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in the same approximation of neglecting 0(ft2). From (4.64) we have that

8X
<PM=Xj(x)~<Po{x) + 0{h)- (13'206)

Thus using (4.68) we have

r  o [<pc] = x 0\ _ r \ - ^ x j < p 0

=  j d 4XjS?fo>0)

= ^  (d ^ )^< P c) —^H2(Pc—-^  ^ (13.207)

in agreement with (13.192). Next we have

h r ,  o j = x 0[ r \ -  r 0[<pc] - 1  d4*j<pc+ h x , [ j ]

= J d 4x[j£?(</>0) + J9ol ~  j*d4x[jSf(^c) + J(pJ

+ ~  Tr ln[i4(x', x, <p0)/A(x', x, 0)]. (13.208)

The difference on the second line is of order (cp0 — (pc)2 = O (ft2) since (p0 satisfies 
(13.194), and in the last term we may replace cp0 by cpc at the required accuracy. 
Hence

Tx [</>c] = j  Tr I n f ix ',  x, (pc)/A(x\ x, 0)]. (13.209)

The effective potential V(cpc) is obtained from T[<pc] by taking cpc to be 
constant. Then

' " - f
r[>J = -  d4x v(<pc). (13.210)

Now with cpc constant we can evaluate Tl5 and thereby Vx. To define the 
logarithm in (13.209) we must first diagonalise A(x', x, q>c):

A(x’, x, <pc) = ( - dx. ^ x + n2+ ̂ (Pc)S(x' - x)

d Ak

-Ji(2 7l)4

d4k
(271)

t (  — k2+ n2+\A.(p*) dk(x' ~x)
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d4/c d4fc'l(2n)~ 2 eix fe ] [ ( -  k2 + \i2 + \Xcp2)d(kf -  fc)] 

x [(2n)~2 e~,kx]. (13.211)

Thus 

In A(x

and

'' 1 X< <Pc) — j*<d4k d4/c'[(27r)" 2 e'*'k'] ln( - fc2+ y 2+{Xq>2)S(k’ - k)

Tr In A = I d4x d4x'd(x'—x) In A(x\ x, (pj

(13.212)

d4x f d4fc . r
J w ,n(-

fc +M + W c)- (13.213)

Thus from (13.209), (13.210) the one-loop order contribution to the effective 
potential is given by

n(<Pc) =
—  1 d4k /  — k 2 +ju2+ jl,(p (2

In
(2tc)

and to this order the effective potential is 

n < p J* r0(<Pc)+ri(Vc)

— k + p r
(13.214)

(13.215)

The last term is ultraviolet divergent, so we regularise the integral by 
evaluating it in 2m-dimensional space-time, as in §7.2. Also, the parameters ju2, 
A, <pc which appear in the expression are those of the original bare Lagrangian 
(3.34). They should more carefully have been written as /zB, /lB, <pcB, as we did in
(7.3) and subsequently. When we express V in terms of the renormalised 
quantities defined in (7.40), (7.42) and (7.43) we obtain

V((Pc)=^ H2( P c + ^  ^ 5 y 2q>2 5X(p*

’ d2<“fc . / .
(2tc)2

In 1 -
k2- y ‘ (13.216)

where now y 2, X, <pc are the renormalised parameters, defined as in §7.5 by 
imposing boundary conditions upon V. In the single loop order to which we 
are working the k integration yields only simple poles in 2 —a>. Thus in (7.70)



206 SPONTANEOUS SYMMETRY BREAKING

we have

av=0 = bv (v>l).

The poles in 2 —co are cancelled by taking

1
32tt

where

A = AM2“ - 4

as in §7.5. The remaining expression is finite as co -* 2 giving 

V((pc)= ^ 2<Pc| l̂ +  6 o - 3 ^ 2  (^  + H 1) + In

+ 4[ +  a° ~  32n 2 (2  +  r  ̂  ̂ +ln 4 n)

(13.217)

(13.218a)

(13.218b)

+ 647r2 ^ H2+l^<Pc) In
li2+\X<pj 

M 2
—(i* ln IlL

M 2 (13.219)

In the m s  scheme the counter terms remove only the poles in c o —2, so
flMS =  f,Ms= 0  (13.220)

and the counter terms are identical to those in (7.74a). (This could have been 
anticipated, since although they were derived perturbatively the expressions 
are clearly the only one-loop contributions.) In the m s scheme we also take a^s 
and ho s as given in (7.76) and (7.77), so as to remove the P ( l)+ ln  4 71 factors.

We may also renormalise V(<pc) by expressing it in terms of the ‘physical’ 
mass and coupling constant. This is done by choosing a£hys and b&hys such that

d 2V
&P2

d4V
dV i

<Pc=0

= 1
<PC =  M

(13.221a)

(13.221b)

We leave this as an exercise, and quote the result only in the case that /x2 is 
‘small’. It may then happen that the radiative corrections significantly modify 
the tree contributions to the effective potential. For example, it is possible that 
the radiative corrections can generate spontaneous symmetry breaking when 
this is not present in VQ. Clearly this requires /x2 to be small. Using the physical 
renormalisation (13.221) we find

1 7 9 A . X2(p* (  cp2 25
(13.222a)
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where

H2<&q>Z (13.222b)

in the radiative corrections. The parameter M  may be eliminated in favour of 
the value v of cpc at the minimum of V(<pcY

F'(tf)=0. (13.223)

This gives12

V(cpc) = b Q  av2<p2 - l-(oc+2 )<pt+ <p? In (13.224)

where

X2 - 2JJ
"256ti2 ~ Bv

(13-225)

Then the mass mH of the physical Higgs particle is given by

d2F
=  2Bv2( 4 - oc) (13.226)

<PC = V

2(which is positive provided \i2 is small enough). For V(v) to be the global 
minimum we require V(v)<0 which is satisfied if a <2.

The foregoing example is really only of academic interest, since, if the single­
loop contributions (which are of order X1) are large enough to modify the tree 
contributions to the effective potential (of order X), then presumably the two- 
and higher-order loop contributions, which have been neglected, are of equal 
importance. As an example of a model which is not open to this objection we 
consider next the Abelian Higgs model, which has already been explored in 
some detail in §13.5.

The Lagrangian is i f  + i fGF where S£ is given in (13.59) and the gauge fixing 
Lagrangian i?GF is given in (13.75). We first shift the (complex) field cp(x) by a 
constant amount which, without loss of generality, we take to be real. Then, as 
in (13.193), after the approximation (13.205), we have

<p(x) = -* p  [<pc +  <Pi(*) +  i<£2M ]- (13.227)

Next we rescale the U( 1) gauge field as well as the scalar fields <pi (i = 1,2) by
the factor h1/2 as in (13.196). In the one-loop approximation we need retain 
only the terms ifquad(^c) in the Lagrangian which are quadratic in the rescaled 
fields. Then the one-loop contribution V^fpc) to the effective potential is now 
given by

e x p ^ - i  J d  4xV1((pc)')=j3<P@A>‘ exp^i J d 4x ^ quad(<pc)j. (13.228)
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The choice of j£?gf ensured that there are no <pA* cross terms so we may write

(As a check, note that when we set (pc = v and use (13.34b) we retrieve the 
masses given in (13.78).) The functional integral may be evaluated as before 
and we find

where the trace is now with respect to the internal symmetry labels (i,j) and 
Lorentz labels (/i, v) as well as the space-time labels (x\ x). This aspect is 
easily handled by diagonalising the mass matrices and we find

In the Landau gauge (£ = 0), in which we shall now work, the coefficients of the 
surviving terms count the number of helicity states; one for each scalar mode, 
and three for each (massive) vector mode. The integrals are all of the form 
already encountered in (13.214), and if we again take \x2 <X(p2 in the radiative 
corrections we have

d4xi?quad((pc) = - i  d4x' d4x [ x ,  (pc)(Pj{x)

(13.229)

(13.230)

with

Mfi(<Pc)=/*2+i*<Pc2

= A*2 + U<Pc + £<J2<P?-

Similarly

(13.231a)

(13.231b)

d4xK1(<pc)=  - -  [Tr In A(<pc)/A(0) + Tr In B(<pc)/fi(0)] (13.233)

^(<Pc)= ~2

(13.234)

(13.235)

using the renormalisation scheme

2 (13.236)
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(13.237)

analogous to (13.221), and now

(i p+34 (13.238)

If we assume A is of order <?4, and small, it is legitimate to neglect the order A2 
contributions to B , but not, of course, the order g4 contribution. Thus in the 
case of a gauge theory the quantum effects can easily modify the tree 
contributions to the effective potential. As before, we may eliminate M in 
favour of the value v of <pc at the minimum of V(q>c). This gives the form (13.224) 
with B given now by (13.238). The mass mH of the physical Higgs particle is 
given by (13.226), which implies

is the mass of the vector particle. In the particular case \x2=0, so a =0, (13.226) 
yields

This feature, that we are able to bound, or, in the case that [i2 — 0, to predict the 
ratio of the Higgs boson to vector boson masses, is common to all gauge 
theories.

The generalisation of this technique to the non-Abelian gauge theories, 
which are our principal concern, is straightforward. The generalisation of 
(13.227) is now

where q>(x) are the real scalar fields defined in §13.6. The only novelty is that the 
functional integral in (13.228) must be generalised to include integration over 
the Fadeev-Popov ghost fields rja, rja* which are inescapable in a non-Abelian 
theory, and the fermion fields \j/, ij/9 as well as the scalar fields <p and the gauge 
fields /4“. The upshot is that (13.233) is generalised to

m ^ A B v 2

since a <2. Neglecting A2 compared with q4 this gives

(13.239)

(13.240b)

(13.240a)

(13.241)

q>(x) = <pc + (p(x) (13.242)

J d 4xK1(^c)=  - l-  [Tr In A(<pc)/A(0)+Tr B(<pc)/B(0)

—2 Tr In C(«pc)/C (0)-2 Tr In D(<pc)/D(0)] (13.243)
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where the matrices A, B, C, D specify the contributions to i?quad(<pc) fr°m the 
scalar, vector, ghost and fermion fields respectively. The extra factor of —2 
from the ghost and fermion fields is because these fields are complex 
Grassmann variables, as explained in (8.17) of §8.1. It follows from (13.95) that 
the (ij) element of A{x', x, cp) is

and V0(q>) the tree graph approximation to the effective potential. Similarly 
from (13.90)

Evaluating the required traces gives the following generalisation of (13.234):

where mf (<pc), m*((pc), mF(<pc) are respectively the eigenvalues of M f (<pc), M*(<pc), 
M F(<pc), and the sums are over all eigenvalues. As before, in the Landau gauge 
the coefficients of the surviving terms count the number of helicity states; the 
four for each spin 1/2 fermion mode is because there are two helicity states for 
both particle and antiparticle. Also as before, the effective potential may be

Aij{x', x, <pc) =  [ — Sijd^d* +  MH</>c)ij]S(x' - x) (13.244)

with the scalar mass matrix given by

(13.246)

with

Mi(<Pc)ab=g2<pJTaTb<pc.

The ghost contribution follows from (13.110):

C J x ',  x , *>c) =  [ -  Sabdx. ^ x + £M 2A(ipc)ak}<%x' -  x). 

Finally the fermion contribution, from (13.118) and (13.139), is 

D(x', x, <pc) = [ily'1dx/1 + IVM<pc)]<5(x' -  x)

(13.247)

(13.248)

(13.249)

where I is the unit matrix and the fermion mass matrix

MF(<pc)=  yT<pc- (13.250)

(13.251)



cast in the form (13.222) or (13.235) by writing

<Pc = (PcV~1v (13.252)

where v is the value of q>c which minimises V((pc), and neglecting the
contributions to mf(<pc) which are independent of <pc. Then

~2
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with

V0(<pc) + Bcpt(ln (13-253)

(13.254)

where gB = 1, 3 for the scalar, vector boson modes, and #F = 4 for the spin 1/2 
fermion modes; m\ = m|(u), m2(v) for the scalar, vector fields, and mF = mF(v). If 
we again assume that the masses of the vector fields dominate B then the 
bound (13.240) on the mass of the Higgs scalar is generalised to

v "
(1 3 2 5 5 >

In the special case /x2 =  0 the generalisation of (13.241) is

,i3 -256)
In this special case there is another interesting effect which we note. Since 
/x2 = 0 we may write

Vo(<Pc) = ̂ Xcp?. (13.257)

Then V((pc) can also be written in the form (13.224) (with a = 0) so

.4/1- v lVen((pc) = B < p ? \ \ n ^ - - )  (13.258)

with B now given by (13.254). Comparing (13.253) with (13.258) gives

1 1 25 /  1 M 2
— X——B = b I ——+ ln —
4! 6 V 2 v

X - — B = B[ —  + ln —  ) (13.259)

(which is just the condition (13.223)). Now if we choose the renormalisation 
scale

M = v (13.260)
this gives

where the last equality follows if we again assume that the vector field
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contributions dominate B. Thus we are able to eliminate the dimensionless 
coupling constant X in favour of the dimensionful quantity v, with the result 
that the effective potential (13.258) involves only g and v.

This phenomenom has been called ‘dimensional transmutation’ by 
Coleman and Weinberg12, and it is an inevitable consequence of symmetry 
breaking in a massless theory. In its original formulation the theory was 
described by two parameters (g and X), ignoring the fermion couplings. Since 
the spontaneous symmetry breakdown necessarily generates a mass scale v, we 
must be able to trade in one of the original parameters in favour of v, as we 
have done in (13.258).

13.10 Instantons

We have seen in §13.8 that spontaneously broken non-Abelian gauge theories 
may possess topologically non-trivial magnetic monopole solutions, although 
these do not arise in the standard electroweak theory. However a rather 
similar (topologically non-trivial) classical gauge field configuration does 
occur in q c d , which is not a spontaneously broken gauge symmetry. The 
existence of these solutions seriously affects our view of the q c d  vacuum, 
and this in turn is stringently constrained by phenomenology, as we shall 
see. In the attempt to circumvent these constraints in a natural way we are 
led to the existence of pseudoscalar ‘axion’ particles.

The gauge field configurations with which we are concerned are called 
‘instantons’ and were discovered first as solutions of the classical pure gauge 
field equations in four-dimensional Euclidean space13:

which follows from (9.42) in the absence of the fermion fields \//. In 
four-dimensional Euclidean space the action of the gauge field configuration 
is given, as in (4.29), by

(13.262)

SE= d M F rF Z ” (13.263a)

(13.2636)

where the dual field strength tensor F£v is given by

=  LgHvpappo (13.264)
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with epvp<T the totally anti-symmetric rank 4 tensor. It follows that

s E= i |d 4x(Fr ± f d 2+ k 6AxF?Fr& ^jd*xFrF?  (13.265)

and that the bound is saturated by self-dual or anti-self-dual gauge field 
strength configurations

i T =  ±?av- (13.266)

As before in order to get a finite action we require that Fpv vanishes fast
enough as r =  |x| -* oo. It follows that the vector potential must approach a
pure (vacuum) gauge transformation, i.e.

Ap = Ap{x)Ta~  —ig ~1U (xJ^U ~1 (x)

= i^ " 1a'‘U(x)U "1(x) (13.267)

as r -> 00, using the notation of (9.27). Although such a vector potential can 
always be transformed locally to zero, it may not be possible to do so globally 
if it has a non-trivial topological structure. The instanton solutions have 
finite and non-zero action just because they are supported topologically. 
Indeed the right-hand side of (13.265) is proportional to the ‘Pontryagin
index’ of the configuration. To see this we use the notation of (9.28) to write

jF pvFpy = tr(F 'vF lv) (13.268)

where

FMV = FpvTa = dpA v -  +  ig[Ap, A v] (13.269a)

and

p*v =  i eMvp<Tf p<r (13.269b)

Then

tr(P ‘VF'1V) = 2el,vpa tr[(5M v + igAMv)(dM° + igAM")]

=  2ep'",a tr [ (5 M v)(5M '7) +  2ig(^>‘A v)(A',A ,,)]

= 2 tr|  A"{ 8pAa + ^  APA‘

= 8PK P (13.270a)
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where

K n = snvP* tr[>lv(Fpff -  figA'A*)]. (13.270b)

In deriving this we have made extensive use of the cyclic property of the trace, 
as well as the total antisymmetry of eMvp<T. Using Gauss’ theorem we may 
then express the integral on the right-hand side of (13.265) in terms of the 
integral of K p over the surface sphere S3 of the four-dimensional volume V

provided we choose the sphere S3 with r large enough that the contribution 
from FpaS3 is negligible. Then, using the asymptotic form (13.267) for the 
vector potential, we get

and in the last expression the derivatives are with respect to the three 
coordinates (e.g. Euler angles) used to parametrise S3. It is the four­
dimensional generalisation of the three-dimensional result (13.175) used to 
demonstrate (topological) conservation of the magnetic charge. To see that 
q also has this property it may be shown that it is invariant under infinitesimal 
(and therefore continuous, finite) deformations (problem 13.11). We may 
also check that the prefactor is correct by verifying that q gives the winding 
number in the case when G is the group SU(2).

The general element #eSU(2) can be written uniquely in the form

v

- f i ge™* d3Snfl tr(AvApAa) (13.271)

d4x tr(F^F^)  = - 1 6 n2q/g2 (13.272a)
v

where

£•+11 J  S 3

d3SeiJk tr[U(d‘U “1 )U (^'U “ 1 )U (^U "1)]

is the Pontryagin index (winding number) for the map

U:S3 -» G

1'U "1)]

(13.272b)

(13.272c)

g =  a + ibjtj (13.273a)



with t i (i =  1,2, 3) the usual Pauli matrices, a, bf real and

a2 + 6 ,^ = 1  (13.273b)

ensures that # is unitary and has unit determinant. Thus the parameter space 
of SU(2) is the unit three-sphere. If we choose

U(x) =  (x4 +  ixiTi)/r (13.274a)

where

r = (x i +  x 2  + x l +  x l)1/2 (13.274b)

then we have

U :S3 - S 3 (13.275)

maps the Euclidean space-time three-sphere S3 in (1,1) correspondence with 
the elements of the group SU(2). In this case we expect the winding number 
to be unity

9 =  1. (13.276)

To verify that our formula (13.272b) does give this value we note first that 
the mapping (13.275) is spherically symmetric so gives a constant integrand 
in (13.272b). To find this constant value it suffices to evaluate it at any point 
of the Euclidean space-time surface S3, for example at

x* = r x1 = 0. (13.277)

At this point we may as well choose x 1>2,3 to be three coordinates, so

U(3I'U " 1)=  - i t  Jr (13.278)

and the integrand has the value — 12r3. Then using the result (7.15) that the 
surface area of S3 is 2n2r3 we obtain the anticipated value (13.276) for the 
winding number.

The consequence of all this is that the self-dual or anti-self-dual solutions 
which saturate (13.265) have actions

SE = Sn2\q\/g2. (13.279)

It follows that the instantons (with 0) cannot have F*v vanishingly small 
inside the surface sphere S3. However at large distances they are supported
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by vacuum gauge vector potential configurations having Pontryagin index 
q. In this chapter we are not especially concerned with the precise instanton 
gauge field configurations which solve the (classical) field equations. The 
important point for our purposes is that there are a countable infinity of 
topologically distinct vacua labelled by the index q, not merely the trivial 
vacuum which is globally equivalent to A{fl = 0.

The consequence of this observation is that we need to reconsider our 
path integral treatment of q c d  : our previous treatment, in chapter 9, tacitly 
assumed that the ground state, the particle physics vacuum, is unique. Instead 
we now find that there are infinitely many classical vacua, which we denote 
by |q}9 with q an integer. The fact that the instanton configurations have 
finite action means that there is a finite non-zero (quantum mechanical) 
transition amplitude of order e~SE connecting the different vacua. It follows 
that the true vacuum is a linear combination of the \q} vacua. Now consider 
a gauge transformation U having unit winding number. Applying this to the 
|q} vacuum gives

V\q> = \q + 1>. (13.280)

Further, gauge invariance means that the Hamiltonian is invariant so

UHU* =  H  (13.281)

or

[ l / , t f ]  = 0. (13.282)

It follows that the true (quantum mechanical) vacuum |0> is an eigenstate14 
of U with an eigenvalue which we can write as e‘8:

[7|0> =  ei9|0>. (13.283)

It is easy to check that the required linear combination is given by

|6»> =  ^ e- i«0|q>. (13.284)

Just such a situation arises in condensed state physics when, as in a crystal, 
there is a periodic potential. The true ground state (13.284) is the so-called 
Bloch wave. Different values of 0, corresponding to different U, label different, 
inaccessible sectors of the theory. The |0> to |0'> transition amplitude (in
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the presence of a source J) must therefore have the form

<e'\e>j = d(e-e ')iAO)

= I  e"«'r -*><9'|9>i,

Thus

= £  e -i(«-ij')8 exp^ij*d4x(=£? +  (13.285)

h(9) = E  e - in9J ( ^ ) n exp i j d 4x(i? + J ^ )

=  X exp i j*d4x(i?eff + J'A") (13.286a)

where we have written

e~in9 =  exp id ——r |d 4x tr(F"vF'‘v) (13.2866)
167T J

using (13.272a), so the effective q c d  Lagrangian is

32 n2

The extra 9 term is charge conjugation (C) and time-reversal (T) 
non-invariant. Although we have already shown in (13.270) that it may be 
expressed as the divergence of a current, it contributes to the action because 
of the topologically non-trivial instanton gauge field configurations, which 
provide a non-vanishing contribution at infinity.

The actual value of 9 in our vacuum is not determined by the theory. 
Furthermore, as it stands it is not even observable since it can be altered by 
a global (axial) U(l) transformation of all quark fields. It is this connection 
with the ‘axial U(l) problem’ to which we now turn15.

13.11 Axions

Suppose then that we have N flavours of massless quarks. Then the q c d  

Lagrangian posesses a U(N)L x U(iV)R global symmetry, besides the local
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colour gauge invariance. Explicitly i ^ D is invariant under the transformations

4 u - 9 u  = (U L)y4u (13.288a)

i #Ri = (Ur)ij^Rj (13.288b)

where UL R are arbitrary N  x N  unitary matrices, and i j  label the flavours. 
Besides the SU(N)L x SU(iV)R symmetry generated by the matrices UL>R,
having unit determinant, is the U(1)L x U(1)R symmetry generated by a
simultaneous phase change of all (chiral) fields

u  (l)L: « u - e ~ “t«u (13.289a)

U (l)R:«Ri^ e - % Ri (13.289ft)

where
0l =  A -< x (13.289c)

0R = A +  a (13.289d)

give the chiral phases in terms of the U (l)v and U(1)A (vector and axial U(l)s):

U (l)v: ^ ^ e - iÂ  (13.290a)

U (l)A: 9 ^ e - ^ f t . (13.290b)

All of these symmetries are symmetries of the classical (massless) q c d  

Lagrangian. Of course, since the quarks are not massless we do not expect 
to see an exact version of the symmetry in the hadron spectrum. What we 
do see is an approximate SU(iV)L x SU(iV)R symmetry, and an exact U (l)v 
symmetry, corresponding to conservation of baryon number. However there 
is no version of the U(1)A symmetry; for example, the (light) pions are 
regarded as the Goldstone bosons associated with the spontaneous breaking 
of the SU(2)a generated by the light u, d quarks, but there is no light rj meson 
associated with the spontaneous breakdown of the U(1)A. The observed rj 
is just too heavy.

From a theoretical perspective, what distinguishes the U(1)A symmetry is 
that, even in the massless case, it is broken in the full quantum theory. The 
way in which this occurs is analysed in §15.5, but it is this non-conservation 
which relates it to the d vacua. We can express the non-conservation as a 
divergence of the axial current

i l  = £  (i3.29i)
i = 1
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with the i labelling quark flavours, as above. Then for massless quarks

Na2
FaJ a<" (13.292)

is the qcd analogue of the U(l) result given in (15.175). We see that the 
non-invariance of the (quantum) qcd Lagrangian under a U(1)A trans­
formation of the quark fields is controlled by a term proportional to that 
which generates the 0 vacua. The change in the Lagrangian caused by the 
transformation (13.2906) is given, from (15.174), by

5 2  = oi ^ F ° F tt>\ (13.293)
167T

Comparing this with the change (13.287) caused by the 0 vacua, we see that 
by choosing

a = -0 /2 N  (13.294)

the effect of the 9 vacua can be removed.
However, in reality, the quarks are not massless so the U(1)A

transformation (15.2906) induces more than just the change (13.293) in the
Lagrangian. Consider first the case of a single quark flavour (N =  1). Then 
the chiral transformation changes the mass term.

mqq -+ mq e~2iaysq = m cos 2aqq — m sin 2aqiy5q (13.295)

and the second term violates time-reversal invariance, just as the original 9
term did. Thus for massive quarks the T  non-invariance is a real effect. A 
general mass term for the quarks can be written as

2 m = - q u M i f l  Rj + HC (13.296)

where M  is an N  x N  (mass) matrix. The effect of a U(1)A transformation 
is that

M -+ e “ 2iaM (13.297)

so

arg det M -+ arg det M — 2<xN. (13.298)

We see that the combination

0" = 0 +  arg det M (13.299)
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is invariant under U(1)A, and can in principle generate observable T-violating 
effects. The most severe constraint on is obtained by comparing the 
theoretically predicted value of the electric dipole moment of the neutron 
with that measured experimentally.

As it stands in (13.287) it is not so obvious how the 9 term contributes 
to the neutron’s electric dipole moment. The result above, however, shows 
that, by a chiral transformation, we can move the whole effect into the quark 
mass matrix Af. So suppose that the flavour q undergoes a chiral 
transformation

with the effect that, as in (13.295), the mass Lagrangian is transformed as

We need to specify the phases <xq so that the 9 term is removed. To do this 
we note first that, since the 9 term is a flavour group singlet, then so too 
must be the c p - violating part of (13.301). This requires that for all flavours

with x a constant independent of q. Also the required U(1)A transformation 
has

It is simple to solve these in the case that aq and 9 are infinitesimal:

(13.300)

-  = Z  -*■ E  mi cos 2(M 4 -  i I > ,  sin 2a,qy5q. (13.301)

m, sin 2a, =  x (13.302)

(13.303)

(13.304)

so that the cp-violating part of is

(13.305)

In the case that there are just two light flavours u, d we get

<g9 = —iff (Uy$u + Sy5d).
mu + md

(13.306)
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We leave it as an exercise (exercise 13.13) to solve for x in the general case
that <xq9 9 are finite.

It is clear now that will generate a c p - violating pion-nucleon interaction
described by the effective Lagrangian

(13.307)

where za (a = 1, 2, 3) are the SU(2) isospin flavour group Pauli matrices and 
the coupling constant is estimated as16

9%n — —9
mumd 1 mE — mN

™u + mdL  2ms - m u- m d
(13.308)

This cp-violating vertex contributes to the neutron’s electric dipole moment 
via the diagrams shown in figure 13.3.

 ̂TT.-V/ <79* nNN

Figure 13.3 Contributions to neutron’s dipole moment from cp-violating pion-nucleon 
interaction.

The estimate for the dipole moment is then

dn — 5.2 x lO~160ecm  

whereas the experimental data17 give

dn< 12 x 10~26ecm

which shows that

|0 |< 2 x  1 0 '10.

(13.309)

(13.310)

(13.311)

It is clear from our derivation that 9 is the vacuum angle in the basis where 
all quark masses are real, positive and y5-free, which is why we have replaced 
9 by B, the U(1)A invariant quantity.

We need dwell no longer on the technicalities of this estimate, nor on 
whether other estimates are superior. The important point is that B is
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extremely small. We have already noted that it is not predicted by the theory, 
so it is only aesthetic considerations which demand that we explain why & 
is so small.

The clue to understanding why, is to note that if the lightest of the quarks 
(the u quark) happened to be massless then the effect would disappear, as 
is apparent in (13.306). This was already clear in (13.299) since when det M  
is zero its argument is indeterminate, and can be chosen to cancel arbitrary 
9. However, the masses in (13.306) are the current quark masses, and the 
success of chiral perturbation theory in explaining so much low energy 
phenomenology points irrefutably to the fact that mu is non-zero18, in fact 
about 5 MeV. The solution of the ‘strong c p  problem’ proposed by Peccei 
and Quinn 19 is to extend the standard model so that there is a new anomalous 
axial symmetry even with non-zero masses; then the new symmetry can be 
used to transform & to zero, just as described above. We shall see in the next 
chapter that the quark mass terms in the standard model arise from the 
coupling of the quark fields to scalar fields in a gauge invariant way; the 
spontaneous breaking of the symmetry breaks it to SU(3)C x U (l)cm and 
generates non-zero masses for the gauge bosons and matter fermions. For 
our purposes all we need is the U(l) symmetry already discussed.

The left chiral components of the quark fields belong to SU(2) doublets 
Qfh =  (M/Lj dfL) where /  = 1,2, 3 labels the three generations. The right chiral 
components are SU(2) singlets denoted l/ /R, DfR. The scalar fields also 
form a doublet denoted q>. The mass terms then arise from Yukawa coupling

The first term generates masses for the down-like quarks when the scalar 
doublet develops a non-zero v e v

Similarly the second term generates masses for the up-like quarks because

=  Qfi.XHcpDgR +  QfM U gR +  h c  (13.312)

(as in (14.145)) where X , Yare matrices, and

[j/ = h 2cp*. (13.313)

(13.314)

(13.315)

with

l?l — v2 — (5 2 (13.316)



by virtue of (13.313). It follows that the determinant of the mass matrix Af, 
appearing in (13.296), is given by

det M = det^-^z vt ei8i X ^det^-^r v2  e^2 7^

= e3W«+J2> det(XY) (13.317)

so

arg det M = 3{8X + S 2) + arg det(XY). (13.318)

In the standard model (13.316) holds, so arg det M  is given entirely by the 
matrices X , Y.

The solution of the strong c p  problem which is proposed by Peccei and 
Quinn is to drop the requirement (13.313); in other words we make a 
(minimal) extension of the standard electroweak theory and introduce 
independent scalar doublets cp, ij/. Then the v e v s  are no longer related by
(13.316). Provided we are free to adjust the phases 8 X and S2 so that

3 (8 ^ 8 2 )=  —arg det(XY) — 0 (13.319)

then

<7=0 + arg det M =  0 (13.320)

and the strong c p  problem is solved. Of course we have to ensure that the 
required rephasing is a U(1)PQ symmetry of the theory. Since 9 , ^  are 
independent, suppose that

cp -► el0tri (p 1p -+ e10tr2 \j/ (13.321)

where Tl5 T2 are the Peccei-Quinn (PQ) charges of cp, i/j. Under the same 
transformation, suppose

e L- e ^ e L UR -* eiar“ UK Dr -* eiard DR. (13.322)

Then (13.312) is invariant under the U(1)PQ, provided
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r) +  i j  — rQ r2 + r„ -  rQ.

Thus provided

r 1 + r2 =  2rQ- r u- r d# o

(13.323)

(13.324)
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is non-zero, then by a suitable choice of the angle a we can adjust 5X +  d2 
so as to satisfy (13.319). For example, we may choose

^  = ^ = - ^ = - ^  = 1. (13.325)

(We may not choose the Peccei-Quinn charge to be the weak hypercharge 
Y, since necessarily cp, ij/ have opposite values of Y.) We still need to ensure 
that the rest of the Lagrangian is U(1)PQ invariant. It is easy to choose the 
PQ charges of the leptons so that this is so. For the scalar potential, the 
invariance limits the terms allowed in V(<p, ij/). For example, a term 
proportional to <pir2̂  conserves Y, but not the Peccei-Quinn charge.

The (extra) U(1)PQ invariance is spontaneously broken when q>, \j/ acquire 
their v e v s  (13.314), (13.315). Since U(1)PQ is not a gauge symmetry, the 
spontaneous symmetry breaking yields a massless Goldstone boson, called 
the axion and denoted a. As in §13.4 the Goldstone boson is associated with 
the phase angle of the field acquiring the v e v .  We write the neutral 
components <p°, i//° of q> and \j/ as

<p° = - L  (»! +  Piix)) e'e,ix)lvi (13.326a)
n/2

= _ L  (0 + p (*)) ei9» .  (13.3266)
s /2

Then the axion field is associated with the phase of (p°^°, so

a(x) =  kld1(x)/v1 +  02(x)/v 2]

= [i?2̂ i(x) -h v102(x)']/v (13.327a)

where

v = (vl + vl)1/2. (13.327b)

The orthogonal combination

X(x) = l - v ^ ^ x )  + v202(xy]/v (13.328)

is ‘eaten’ during the spontaneous electroweak symmetry breakdown and
generates a non-zero Z-boson mass, as we shall see in chapter 14. It is now
straightforward to determine the interactions of the axion with the matter 
fields. We expand the neutral fields cp°, if/0 as

y/2cp° = vx + P i ( x )  + iv 1[v2a(x) -  vtx(x)] +  • • • (13.329a)
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j i x j , 0 =  v2 + p2(x) + it; ' I v ^ ix )  + v2x(x)] + • • • (13.329b)

and then substituting into (13.312) gives the quark-axion Yukawa coupling

— 5£Y~q = \ — mdcty5d + — mMMy5u l . (13.330)
v L»i 2̂ J

We shall see in the next chapter that the quantity v is determined by the 
weak interaction data to have the value

v a* 246 GeV. (13.331)

In fact the axion is not massless; it acquires a mass by virtue of 
(non-perturbative) instanton effects. This can be understood qualitatively as 
follows. The introduction of the axion field a(x) amounts to making the $ 
parameter a dynamical field. Then the consequent $=  0 corresponds to a
minimum of the axion’s scalar potential V(a) at a value a — 0. However this
potential is non-trivial, in fact20

V(a) oc 1 — cos a (13.332)

which reflects the required periodicity property of (13.284) that the physics 
is invariant under

(13.333)

The mass of the axion has been calculated21 as

ma = ( — + — )74 keV. (13.334)
\ v 2 v j

However, it seems that such a particle does not exist. Despite extensive 
searches in kaon and ^  decays, in reactor and beam damp experiments, as 
well as in astrophysics, no axion has been found22.

Nevertheless, this is not the end of the story. The scale v which 
controls the strength of the axion coupling in (13.330) is the electroweak 
scale (13.331). In a grand unified theory, such as will be discussed in chapter 
16, the properties of the axion may be significantly altered23. Suppose that 
in such a theory there is a complex scalar field E which is a singlet under 
the SU(3) x SU(2) x U(l) gauge group. Then the scalar potential may 
include a term

V z  =  Xcpix2^  +  h c . (13.335)



This is also U(1)PQ invariant provided X has PQ charge

rs = - r , - r 2. (13.336)

Now suppose that X acquires a v e v

<0|I|0> -  V e". (13.337)
• f i

Then writing

Z ( x ) = - ~ ( V  + R(x))e*<‘,lr (13.338)
• f i

we can see that V1 generates a mass term for a linear combination of the 
fields 0lt 02, 0

X ( 0 X 02 0 \ 2
V*-* —  v . v M  — +  — +  — ) . (13.339)

y f i  \®1 V3 VJ

In this case the axion field &(x) must be orthogonal to this massive 
combination, as well as to the combination x(x) given in (13.328), which is 
eaten by the Z. Thus

a(x) oc 0(x) -  —  a(x) (13.340)
vV

where a(x) is the (original axion) field (13.327). The relevance to grand unified 
theories is that in such theories the v e v  V of L is of order 1015 Ge V, so that

V » v u v2. (13.341)

Then the axion field a is essentially aligned with 9(x), and its coupling to
the quark fields is reduced by a factor vxv2/vV. It is therefore essentially
decoupled from the light states, and has consequently been called the ‘invisible 
axion’. Nevertheless it is essential that the axion can decay rapidly enough 
to avoid dominating the energy density of the universe. This astrophysical 
bound requires24

F < 0(1011 GeV). (13.342)

Although such a v e v  for E can be arranged it does require fine tuning of the 
parameters of the effective potential. However this is a story which must 
await another book.
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Problems
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13.1 Prove (13.10).

13.2 Show that the N — M  vectors Tav (a = M  + 1 ,..., N) (defined in (13.58), 
are linearly independent.

13.3 Verify (13.79).

13.4 Verify (13.98).

13.5 Show that the mass term (13.123) is not invariant under the chiral 
transformation (13.116).

13.6 Verify that gauge invariance of the Yukawa interaction (13.125) leads to
(13.126).

13.7 Verify (13.146).

13.8 Solve (13.158) in the Prasad-Sommerfield limit that A -► 0, and show 
that the energy of the resulting field configuration is 4nv/g.

13.9 Show that the right-hand side of (13.175) is indeed invariant under an 
infinitesimal change of <p.

13.10 Find the effective potential (to one-loop order) when the 
renormalisation conditions (13.221) are imposed.

13.11 Show that q, defined in (13.272), is invariant under infinitesimal 
deformations <5U which may (always) be written as

SU(x) = U(x)M fl(x)Tfl

where Ta are the matrix generators.

13.12 Verify that the configuration (13.274) has q — 1, as claimed.

13.13 Show that for two flavours and finite 9 the prefactor in equation
(13.306) becomes

mumd sin 9 
(2 mumd cos 9 + m l-1- ml)112
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14 

FEYNMAN RULES FOR ELECTROWEAK 
THEORY 

14.1 SU(2) x U(1) invariance and electroweak interactions 

The spectacular success of quantum electrodynamics (QED) in calculating the 
Lamb shift and the anomalous magnetic moment of the electron and muon, 
for example, stimulated many attempts to develop a quantum field theory of 
weak interactions. After all, low energy weak processes are characterised by 
the Fermi weak coupling constant GF, which satisfies 

(14.1) 

so we might reasonably hope that perturbation theory with this parameter 
would be at least as good as perturbative QED, in which the expansion 
parameter is 

e2 l 
ex= 4n ~ 137· (14.2) 

Indeed, there are similarities between weak and electromagnetic interactions 
which suggest how one might proceed to construct a field theory of the weak 
interactions similar to QED. The principal similarity is that between the weak 
currents and the electromagnetic current. For the present we consider only the 
leptons (v., e, vw Jl., vn -r). It has been known for many years that the leptons 
enter the (effective) weak interaction in the combination known as the leptonic 
current L 11 , 

Lix)= L nx)y/1(1-ys)vl(x) (14.3a) 
1=•·1'·' 

and its hermitian conjugate 

L!(x)= L Vj(x)y11(l-y 5)/(x) (14.3b) 
l=e,p,< 

where l(x), v1(x) are the fields of land v1• It is beyond the scope of this book to 
give any details of how this was derived 1 from the phenomenology of weak 
processes. (The interested reader is referred to Bailin 2, and references therein, 
for a detailed account.) The currents (14.3) differ from the electromagnetic 
current (3.112) in that they are 'charged' currents; the neutrinos v1 and 
antineutrinos v1 are, of course, neutral, while the leptons l have charge -1 (in 
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units of the proton charge) and their antiparticles I have charge +1. Thus 
has charge 1 and L\ charge — 1, whereas j^ in (3.112) has zero charge. It follows 
that any field theory of the weak interactions similar to qed will couple these 
charged currents to charged vector fields W*, so as to conserve charge. In 
principle it is possible to proceed to construct a renormalisable theory of the 
weak interactions alone. However this is not sensible. Although we could 
calculate weak radiative corrections to arbitrary accuracy with such a theory, 
they would be small, at least at low energies, compared with the 
electromagnetic radiative corrections. So long as the only charged particles are 
leptons we know that these latter corrections may be calculated using qed. The 
trouble is that we now have in addition the charged vector fields W* which 
must also interact with the electromagnetic field. It is known that these fields 
are not massless, and the result is that there are extra divergences, generated by 
their electromagnetic interactions, which make the theory unrenormalisable. 
Thus we would be unable to calculate the electromagnetic corrections to our 
renormalisable weak theory. For this reason the only sensible course is to 
construct a unified renormalisable theory of weak and electromagnetic 
corrections, as we shall now proceed to do.

The weak currents involve only the left chiral components of the fields, 
whereas the electromagnetic current involves both components (since both 
spin states of the electron, say, have equal charge). We can make this explicit 
using the left and right chiral projection operators aL and aK

aL = 2U ""75)

flR=iU+7s)*

(14.4a)

(14.4b)

(14.5)

(14.6)

(14.7)

2 L m  = 'L 1l7„v,i (14.8a)

iLZ = Z  VilYJl- (14.8b)

The resemblance of these currents to the isospin raising and lowering 
operators suggests that we define a weak isospin, i.e. SU(2), group with the field
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components v/L and lL constituting a two-dimensional representation. Thus we 
define

Thus the SU(2) group generates the weak currents (14.3) but not, of course, the 
electromagnetic current

since j^ involves both left and right chiral components. Thus any group which 
is to include the weak and electromagnetic currents must contain at least one 
generator in addition to those given in (14.10). The simplest possibility3 
(which, amazingly, turns out to be correct) is therefore to enlarge SU(2) to 
SU(2)xU(l) where the new U(l) is similar, but not identical, to the U(l) 
already encountered in q e d . The current YM associated with it must be 
invariant under SU(2); that is what is meant by SU(2) x U(l). Thus a priori it 
can be any linear combination

of SU(2) invariants. The first terms are SU(2) invariant because of the unit 2 x 2  
matrix l2, and the second terms involve only the right chiral components 
which, by assumption, are SU(2) invariant. (We adopt the view that the 
components vm (/=e, p,z) do not exist—otherwise they too could contribute 
to Y^) Using the notation of (14.6) and (14.7), we now decompose the 
electromagnetic current (14.12) into iso vector and isoscalar pieces

L

(14.9)

and

n = I ^ i r f£ IL (i= 1,2,3) (14.10)

(14.11a)

and

(14.11b)

(14.12)

^ = Z  (x,ElLyll\2ElL + y,lRy J R) (14.13)

i
(14.14)

(14.15)
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where T 3 is given in (14.10) and Y^ in (14.13) with the values

y,= - 1- (14.16)

(This is where any possible contribution from vlR would have disappeared had 
we included it.) The notation (14.15) is reminiscent of the Gell-M ann- 
Nishijima formula, although we have dropped the conventional in front of 
Yr  Thus we say that v/L, lL have ‘weak isospin’ \  with T3 respectively +^, — j, 
and ‘weak hypercharge’ — j, while lR are weak isoscalars with weak 
hypercharge —1.

The next step is straightforward. We have to write down a Lagrangian 
which is locally SU(2) x U(l) gauge invariant, just as qed is locally U(l) gauge 
invariant. We have already seen how do to this for a general non-Abelian 
gauge group in §9.2. For the U(l) gauge group we use §9.1 with the ‘charges’ of 
the fermions now being the weak hypercharge. The group SU(2) has three 
generators and therefore there are three gauge bosons (a = 1, 2,3) 
associated with it. The gauge boson of the U(l) group is denoted BM to avoid 
confusion with the electromagnetic field Au, which will be identified later. Thus 
the SU(2) x U(l) gauge invariant Lagrangian containing the lepton fields with 
the weak isospin and hypercharges already assigned is

^  = X (£ /Li/D „ £ (L + rRiy"D,/R)
I

(14.17a)

where we have used (9.11), (9.36) and

D„EIL =  (5„ + i g ^ a w;  -  i 0 'K ) £ |L (14.17b)

D ,/R = ( d ,- i0'^ ) /R (14.17c)

w;v = Wav -  dv w; -  gsabc Wb Wcv (14.17d)

B ^ d ^ - 8 ^ .  (14.17e)

The quantities g and g' are the coupling constants associated with the SU(2) 
and U(l) gauge groups respectively, and in (14.17d) we have used the fact that 
the structure constants of SU(2) are eabc, the totally antisymmetric rank 3 
tensor in three dimensions with

e123= + l. (14.18)

The most obvious difference between (14.17) and the examples given in 
Chapter 9 is the absence of mass terms for the fermion fields. It is easy to see 
that the addition of any such mass terms would violate the gauge invariance. 
For example

mir/=mi(rLzR+ rR/L) (14.19)

violates the invariance because lR is an isoscalar while lL has weak isospin
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(The reason for the appearance of such mass terms in Chapter 9 was the tacit 
assumption, in (9.16), that both chiral components behave in the same way 
under an infinitesimal gauge transformation.) This absence of mass terms for 
the neutrino fields v* is quite acceptable, since they are thought to be massless. 
However the charged leptons I are known not to be massless, which means that 
the SU(2) x U(l) symmetry must be broken. The absence of mass terms for the 
gauge bosons also follows from the gauge invariance, as explained in Chapter 
9. This is of course entirely acceptable for the electromagnetic field. However 
we have a total for four massless gauge fields, and there is ample evidence that 
no such massless weak bosons exist. Indeed the very short range of weak 
interactions (not to mention the recent discovery of massive vector particles) 
indicates that in this respect also the electroweak symmetry is known to be 
broken.

It is easy to verify that the interaction of the leptons with the gauge fields 
contained in (14.17) does indeed couple the observed currents as anticipated, 
because, using (14.11)

The requirement that AM is coupled to the electromagnetic current given in
(14.12) with strength e as in (9.1) gives

+ (g sin OwTl+g' cos

+(g cos OwT*—g' sin 0wF,,)Z'‘ (14.20a)

where

(14.20b)

and we choose 0W so that the electromagnetic field

Am= cos + sin 0W Wl (14.20c)

and the orthogonal combination is

2 ^ = -  sin 0WB„+ cos 0W W*. (14.20d)

g sin 0^=g' cos 0w =  e 

and then we may rewrite (14.20) as

(14.21)

+ ^ " + ; d V ( r '  ~ sin2COS
(14.22)

It is now straightforward to write down the Feynman rules for the lepton-
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gauge boson vertices just as we did in Chapter 10. The rules thus obtained are 
those we shall eventually obtain. However at this stage it is not clear that this is 
worthwhile, since the SU(2) x U(l) gauge invariant theory to which they apply 
is manifestly deficient in the respects previously described. We therefore 
postpone this exercise until we have a phenomenologically acceptable theory.

14.2 Spontaneous breaking of SU(2) x U(l) local gauge invariance

For the reasons discussed in Chapter 13 the only known method of breaking 
the SU(2) x U(l) local gauge invariance while maintaining renormalisability is 
to do so ‘spontaneously’. This requires the introduction of a scalar field which 
has a non-zero vacuum expectation value (v e v ) and which transforms non- 
trivially under the action of the group. In the present case the simplest choice, 
which, again amazingly, turns out to be correct4, is that the scalar field has 
weak isospin The group S which must be left invariant is of course the 
electromagnetic U(l) gauge invariance, which in our present notation is 
generated by T3 -f Y. Thus from (13.58) we deduce that if the field acquiring a 
v e v  has T3= — (by convention), then the isospin \  multiplet to which it 
belongs must have weak hypercharge +\. We denote the scalar multiplet by

where <px and q>2 are real two-component column vectors. Under an 
SU(2) x U(l) transformation parameterised by Afl(x) (a= 1,2,3) and A(x)

We now use the general treatment presented in §13.6. We define a four- 
component column vector <I> of real scalar fields

Then under the SU(2) x U(l) transformation (14.24)

<D(x) -► exp[—igftflAfl(x) -igf'YA(x)]<I>(x)

where t a, Y are 4 x 4  matrices generating the SU(2), U(l) groups in the 
representation (14.25). It is easy to see (problem 14.1) that

(14.23)

<p(x) -► exp[-ig%TaAa(x)-ig '^\2A(xy]<p(x). (14.24)

(14.25)

(14.26)

(14.27)



Thus in this case the SU(2)x U(l) co variant derivative is given by

D f l H d .  + igrW '+ ig 'Y B J®  (14.28)

and the SU(2) x U(l) gauge invariant Lagrangian analogous to (13.82) is

^ = i ( D ^ ) T( D ^ ) - y 2* 7*  -*A(<!>T<|>)2. (14.29)

(We have omitted the pure gauge field contributions, as they have already been 
written down in (14.17).) As before, spontaneous symmetry breaking occurs 
when /i2<0. With our choice of basis we require that the field <p° in (14.23) 
acquires a v e v

<0|<£°(x)|0> (14.30)

That is, we assume that the ground state of the theory (when ju2<0) is
characterised by a non-zero value v of <p12, so that from (14.25)
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/  o \

<0|0Kx)|0> =  o= (14.31)

V
where, as before,

v = ( - 4 / i 2/A)1/2. (14.32)

The invariant subgroup 5 = 11(1)^ is generated by

T 1 =sin 0wQ =  ( t3 + Y) sin 0W (14.33)

using the notation of §13.6, and we can check from (14.26), (14.27) that

T 1u= 0 (14.34)

as required (by (13.58), for example). The constant of proportionality (sin 0\v) is 
so that T 1 is coupled with strength g sin 0w = e (from (14.21)). The remaining 
three generators are, from (14.22),

T 2= t 1 T 3 = t 2 T4=— ~  ( t3cos20w- Y s in 20w). (14.35)
COS l7\y

We define new (shifted) fields

0 = < D -u  (14.36)

as in (13.83), which means that the three Goldstone modes d^iT0!; (a =  2,3,4) 
are just the fields <pn , cp2l, q> 22 which do not acquire v e v s . Thus in (14.23) G + 
and the imaginary piece of cp° are the would-be Goldstone modes. They may 
be removed by a gauge transformation (to the unitary gauge) as in (13.85) and
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are therefore unphysical fields. The fourth field is associated with the physical 
Higgs scalar. It is easy to see that in this basis the mass matrix (13.86) is already 
diagonal.

(M^)ab = g2vTTaT v  (a,b= 1,2,3,4). (13.86)

The zero eigenvalue, for the photon mass, is associated with a = b= 1, while

(M%)22= (M ffi3= ig 2v2= m i  (14.37a)

{M2)44= \ sec2 6wg2v2=mz- (14.37b)

Thus, as anticipated, the three remaining gauge fields have acquired masses, 
showing that the SU(2) x U(l) gauge symmetry is indeed broken. The gauge- 
fixing Lagrangian is chosen precisely as in (13.89), so the Feynman rules for the 
gauge particle propagators may be read off from (13.94). They are

i(p2+ i£)-1[ - ^ v+ ( l - ^ P v / p 2] (14.38)

iAt>(p,mw) (14.39)

i &Fflv(p,mz) (14.40)

with

AF„v(p,m) = (p2- m 2 + i£) ^ - ^ v+ U -^ X p2- ^ 2) V fPv] (14.41)

as in (13.93). It is easy to verify from (13.97), remembering that Oab = Sab in this 
case, that

(14.42)

' 0^ l \ l°\
0 e3 = 0 e4= 0

1 0 0

\ ° j \°) I 1/
We therefore choose the remaining basis vector

I o\
1

f l =
0

\ ° /

(14.43)

and note that it is indeed an eigenvector of the matrix (/i2), defined in (13.56), as
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demanded by (13.102b):

(/i2)= diag(0, -  2ju2,0,0) (14.44)

where we have used (14.32). Thus from (13.104) we obtain the Feynman rule for 
the Goldstone boson propagators

■---- — - : i(p2-£m & +ie)_1 (14.45)

, P ■ i(p2- ^ m | + ifi)_1 (14.46)
o

and from (13.105) the Feynman rule for the Higgs particle propagator is

, ___^___ - . \( r\2  m? 1 1 c\ 1

with

H i(p2-m g+ is) 1 (14.47)

mj =  — 2 \i2= jXv2. (14.48)

The Faddeev-Popov ghost propagators follow immediately from (13.112). 
Evidently there is a massless ghost associated with the photon mode (a= 1) 
and massive ghosts associated with W* and Z. Thus the Feynman rules for the 
ghost propagators are

* ....... : i(p2 + ic)_1 (14.49)

 ti*   : i(p2- ^ m i  +  ie)_1 (14.50)

 J   : i(p2-£ m i + is)_1. (14.51)

(We remind the reader that (from Chapter 10), because the ghost fields are 
Grassmann variables, the closed loops in Feynman diagrams involving them 
will each have a minus sign associated with it.)

Finally we have to use the spontaneous symmetry breaking to generate 
masses for the charged leptons I, using the technique developed in §13.7. From 
(13.128) we can write down a Yukawa interaction of the lepton multiplets 
and lR with the real scalar fields <b. Thus

i ? Y =  X £ ILy IpfR<I>p + H C  (1 4 .5 2 )
l,P

where the matrices Y.P are chosen so that j£?y is SU(2) x U(l) invariant. This 
may be accomplished by imposing the condition (13.129). However in the 
present context it is more convenient to use the known transformation 
properties of the two-component (complex) column vector <p defined in (14.23).
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Since q> is a doublet with weak hypercharge + 2, and /R is a singlet with weak 
hypercharge — 1, it follows that iplR transforms as a doublet with hypercharge 
—̂  just like Eil. Thus ElL<plK is SU(2)x U(l) invariant and we take

■2y— — X  GI(£IL^R +  lRV>t£ IL).
I

When the symmetry is spontaneously broken, we write

G +
<P(x) = ,

1
—p fu + H  + iG0)

= ~ v  + <p(x)
V2

where

and

v= t; =  ( — 4fi2/X)112

<0|«p(x)|0>=0.

(14.53)

(14.54a)

(14.54b)

(14.55)

(14.56)

The fermion masses arise from the parts of (14.53) involving v. In fact using 
(14.9) and (14.55) we find the mass Lagrangian to be

^ M= I ~ ( / > / R+ rRt>/L). 
1 v 2

Thus only the charged leptons acquire a mass

(14.57)

G<

and the lepton propagators are

(14.58)

i(j/+ie) V (14.59)

(14.60)

with m, given in (14.58).
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14.3 Feynman rules for the vertices

It remains only to extract the Feynman rules for the various vertices included 
in (14.17), (14.29), (13.110) and (14.52). We start with lepton-gauge boson 
vertices contained in (14.17). We have already expressed these interactions in 
terms of the gauge boson fields ( W ^ Z ^ A J  which remain mass eigenstates 
after the symmetry breaking. Thus using (14.22) and (14.8) we find the 
following vertices

2 ^ 2
(14.61)

- i  ff
2 J l

7„(l-7s) (14.62)

(14.63)

-iff 
4 cos 0X-7„(1 —7s) (14.64)

iff (14.65a)

where

Qv~\  2 sin2 0W 

9a=1-

(14.65b)

(14.65c)
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The remaining pieces of the Lagrangian (14.17) describe the self-interactions of 
the gauge vector bosons. The Feynman rules may be read off directly from 
(10.74) and (10.77). Evidently the only non-zero trilinear vertex involves the 
fields W *and W*. It is straightforward to cast the rules (10.74) into a more
practical form involving the charge eigenstates W +, W " and Z, A. We find 
(using 14.21)) that the only non-zero vertices are

It is also clear from (10.77) that the only non-zero quadrilinear vertices involve 
either four charged vector bosons or two charged and two neutrals. We find

V

X

i e[_(r -  q)xg^ + (q -p )vgifl+ ( p -  r)„gtA] (14.66)

and
V

iff cos Ov,l(r-q)xgltv + (q -p )vg^ + (p -r ) llg<,i]. (14.67)

9 V

102[2 ffi,ffw -g^gxp —Ŝ xdvp] (14.68)

9

-  ie2 [2ffv„ff^ -  gwgvi -  ffMVffAJ  (14.69)

\

(14.70)
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- i eg cos 0WI2gvpg^  “ ~Q^Qxp] • (14.71)

Besides generating the masses (14.37) for the W*, Z gauge bosons the scalar 
Lagrangian (14.29) also generates interactions between the scalar fields and 
these gauge particles, as well as the self-interactions of the scalars. We can read 
off the required vertices from the general formula given in (13.106), and the 
generators T* given in (14.33) and (14.35). Alternatively we may rewrite JS?V 
given in (14.29) in terms of the original complex doublet <p given in (14.23)

v)f( D »  -  M V V  -  V )2 (14.72a)

where

D 0  = (d' + ig±T*Wl + t f i B lto .  (14.72b)

When the symmetry is broken we make the substitution (14.54). This gives

d»G+ + ' ^ T ^ r z P + + 'eAP + + ¥ g K ( » + n + iG ° )L  COS C%j  w

+ il d j f l  + iG°)+igW;G+-  iig sec 0wZ„(o + H+iG°)\2

m lH 2- \k v H lG +G~ +%G02 + i f 2)] -&[_G+G~ +%G02 +  H 2)]2.

(14.73)

As it must, this gives the same masses for the gauge bosons (and scalars) as we 
found in (14.37) from the general treatment. We may also use (14.73), instead of 
(13.106), to obtain the interaction vertices involving scalars, if we choose. 
Either way we obtain the same Feynman rules. We start with vertices 
involving two scalars and a gauge boson.

+ (14.74)
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P/  ' V  A *  g\

W-C

9 /  \ ?
/ G* G° \

w+<

9 /  \< 7  
>  e * \

/<? « \

Z s

9 /  \ 9
A  G°\

b (P  + q), (14.76)

-ig(p+q), (14.77)

- ^ ( P + « ) ,  (14.78)

-$g{p+ q),  (14.79)

<14-80>

Notice that in the unitary gauge, in which the (unphysical) Goldstone modes 
G±, G° do not appear, none of these vertices occurs. Thus these vertices are 
only important when calculating radiative corrections (higher-order loop 
contributions), in which it is impossible to calculate in the unitary gauge. Next 
we consider vertices involving two gauge particles and a scalar. Using the mass 
formulae (14.37) we can write the Feynman rules in the following form:

*i
iemŵ v (14.81)
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G‘ t
I

z
U v

I
H\I

"w* w+
M v

-  i gmz sin2 0W0„V (14.82)

(14.83)

"t
m l
—  (14.84)
mw

Note that there are no vertices involving G°. We may also derive the Feynman 
rules for the vertices involving two gauge particles and two scalars. It is 
possibly easier to do this from (14.72) rather than (13.106). In view of the large 
number of such vertices we merely include them in Appendix C.

Finally there are the vertices involving the Higgs scalar H and the 
Goldstone modes G±, G°. Using the formula (14.48) for mH as well as (14.37) 
the three-scalar vertices have the following Feynman rules
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H I

(14.88)

\

There are also six vertices involving four scalars with a strength proportional 
to

The rules for these are relegated to Appendix C.
Next we extract the Feynman rules for vertices involving the Fadeev-Popov 

ghost particles. Their interactions are specified by the trilinear terms of 
(13.110). Thus

In the first term the constants f abc are the structure constructs defined by the 
matrices Ta:

where Ta are defined in (14.33) and (14.35). We may either calculate the f abc 
directly, or else observe that they derive from the algebra of SU(2) x U(l). The 
SU(2) is generated by t 1 =T2, t 2=T3 and t 3 = sin 0WT* +cos 0WT4 and Y 
generates the U(l). Since U(l) is Abelian, there are of course no structure 
constants involving it. Thus the only gauge field combinations which can arise 
are W 1, from t 1 and t 2, and sin 0W A -4-cos 0WZ, from t 3. Similarly the only 
ghost combinations which interact with the gauge bosons are rj±, sin 0w>/y + 
cos 0w/yz, and their conjugates. Expressing (14.90) in terms of the mass 
eigenstates we find

JS?Fp(interaction, rja, r f*, )

= i£(cos 0WZ^ + sin 9^Ati)(dfxrj*~rf+ - d tlrj*+rj~)

+ i#(cos 0w^ ^ * z + sin 9wdfirj*y)(rj~W+fl-rj + W~fl)

+ igiWpfPri* + -  W*dMrj*~)(cos 9^rjz + sin 9^rjy)

-"20£mw#O?*+*7~ +ti*~rj + H-sec2 9^rj*zrjz)

+ 2 9 ^ ^ G 0(rj*+rj~ e£mw(G+*7*~ +G~rj* +)rjy

c o s  2 0
-?gZmv/ ---- (G+rj*~ +G~r]*+)riz +%g£mzr]*z{G+r\- +G~ri+).

COS

(14.92)

(14.89)

if^(interaction, tf ,  t]a*, <p)= g fabc(dllria*)ribAct‘

-  £g2tja*t]b(pTT bTav. (14.90)

(14.91)



This generates the following Feynman rules

M

1 1 : - ieq ,  (14.93)

V  x q
..■•V if--,

n

( : +ieqtl. (14.94)
p A  V  qyT\ J] \

The couplings to Z in place of y are obtained by replacing e by g cos 0W

p

vo
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- ieqM (14.95)

A  yT1 T? •

ie^ . (14.96)
p* ' < q.••V

The couplings to ?yz in place of rf are obtained by replacing e by g cos 0W.

n

j  : ieq, (14.97)
V ’

M

w" )
j  : (14.98)



Again couplings to rj1 in place of rjy are obtained by replacing e by g cos 0W

I
H !

I  : - i i ^ m w. (14.99)

n ri

The H has the same coupling to rj+ instead of and a coupling of 
—jiZgmy, sec2 0W if rjz replaces rj±
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i

Sr\ If''

Gu\
I

/ V  n+\

Tl+’

G+\

ii

- & m w (14.100)

ig{mw (14.101)

G+l
,1, : - i  e{mw (14.102)

cos20w „
-2*0----- (14.103)

COS U\h/

jig£mz. (14.104)

The couplings with G+ replaced by G~ and rj+ +-+n~ are identical. Note that 
all of the scalar-ghost couplings vanish in the Landau gauge (£ = 0).

Besides generating masses for the leptons, the Yukawa interaction (14.52) 
also generates (Yukawa) couplings of the scalars (G±,G°,H) to the leptons.
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Using the mass formula (14.58) the Feynman rules for these can be written as 
follows.

• 0 i / i  \- i —f — 2<i-ys) (14.105)

• 0 m, ^
-i —7= —  iO +ys)

>y/2 mw
(14.106)

14.4 Tests of electroweak theory

The electroweak theory which we have developed so far is incomplete because 
we still have to include the couplings of the hadrons (quarks). Thus we are not 
yet able to calculate the 5-matrix elements for processes such as neutron decay 
or pion decay. Nevertheless there are a number of weak processes involving 
only leptons which may be used to test the consistency of the theory so far.

At present we have introduced seven independent parameters into the 
theory. These are g and g\  the two coupling constants associated with the 
SU(2) and U(l) gauge groups, the (negative) mass squared fi2 and the <p4 
coupling constant A, both of which appear in the scalar Lagrangian in 
(14.29), and the three Yukawa coupling constants G, (/ =  e, /*, t), which 
appear in (14.57). It follows from (14.21) that g and g’ are expressible in 
terms of e and 0W, and of course e is very precisely determined:

e = y /4 m  =  0.302 822 1 (14.109)

from data on the fine structure constant a. Thus only one of these two 
parameters (0W) is not immediately known. Also, using (14.32) and (14.48), we



can use the parameters mH and i?, instead of fi2 and X. Finally, from £14.58), it is 
apparent that, since v is already a parameter, we can use the three masses mt 
(/=e,/z,r), rather than the Yukawa couplings Gh and these masses also are 
rather well determined:

me=0.5110034± 0.0000014 MeV (14.110a)

m„= 105.659 43 ±0.000 18 MeV (14.110b)

mT = 1784.2 ±3.2 MeV. (14.110c)

Now it is clear from (14.37) that the parameters 0W and v may be determined 
from knowledge of mw and mz, since

cos0w= —  (14.111a)
mz

v =  _  m2 j l /2 (14 11 ibj
emz

The discovery5 of W ± and Z in 1983 and the measurement of their masses

mz = 92.9 ±  1.6 GeV (14.112a)

mw = 80.8 ±  2.7 GeV (14.112b)

thus means that six of the seven parameters are completely determined 
without any direct recourse to weak interaction data:

sin2 0W=0.2433 ±  0.022 (14.113a)

t?=263 ± 59 GeV. (14.113b)

The remaining unknown, mH, will have to await the discovery of the Higgs 
scalar H , which is the last major component of the theory needing 
experimental confirmation. Nevertheless, it turns out that the weak data 
available to date is remarkably insensitve to mH, and it is possible to test a lot of 
the theory knowing nothing about the mass of the Higgs particle.

The purely leptonic process of muon decay,

li~ ->e~vev/, (14.114)

is an excellent illustration of this. It has been very carefully measured over 
many years, and the theory which we have described makes unambiguous 
predictions of both the energy spectrum of the electron in the final state, as well 
as the overall lifetime of the decay.

The 5-matrix element is

S(n~ e~vev„) = (27t)4<5(/i - e -  ve -  v J J t

where without confusion we use the same letter to denote a particle and its 
four-momentum. The Lorentz invariant J l  is given by the following Feynman
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diagrams

J i  =
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=  ̂ + ^ 2  + . . . .  (14.115)

The . . .  refers to higher order diagrams, involving loops. The Feynman rules 
derived in the previous section show that these diagrams give contributions 
which are smaller than those displayed by a factor of at least O(a). Thus, as 
a first approximation we need to calculate only the tree diagrams displayed 
above. Using the Feynman rules (14.39), (14.61) and (14.62) we have

J ^ £ \ a

x [ - + ( 1  - S)P„Pv(P2 ~ ^  (14.116)

where, using energy-momentum conservation:

P = P - v ^ = e  +  vc. (14.117)

Using (14.45), (14.105) and (14.106) we find

^ ‘X1+VsMu)i(P2- f» * w r 1 

x ( ^ | ) ^ M ( e ) ( 1- y 5)t)(ve). (14.118)

Note that each term depends upon the gauge fixing parameter <*. Physical 
quantities, such as 5-matrix elements, must be independent of f . To see how 
this comes about consider the <1;-dependent part of the numerator of the W 
propagator in ^ 1: ( l - f ) p Mpv(p2-{rtiw)~'1. The pM is contracted with the /  
matrix and

p ,.« (W (i - y sM p )= « (v ^ (l - y 5)«(p)

= “( v ^ - ^ ) ( l - y 5)«(p)
= w(vfI) ( l+ y 5) t̂i(Ju)

=mtlu(vf,)(l+y5)u{n) (14.119)

where we have used (14.117) and the Dirac equation (3.88) for both n(vM) and 
u(ju). Similarly

pvw(e)f( 1 - y 5)i;(ve) =  mew(e)(l - y sMve). (14.120)
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Substituting (14.119), (14.120) into (14.116), and combining with (14.118) gives

+ ^ 2= ^g2{p2- m l ) ~ 1(  u(v„)/(l - y 5H “)«(e)y„(l - y 5Mve)

u(v„)(l + y5)u(//)u(e)(l- y 5)v{vSj (14.121)m i

which is independent of £, as required. Since this expression is independent of 
mH, all of the parameters appearing above are known, and we can proceed to 
calculate the decay spectrum. The experimental values (14.110) and (14.112) 
mean that we may certainly neglect the term proportional to memM/mw, since it 
is considerably smaller than the higher order diagrams already neglected. 
Similarly since p2 =  O(m2) we may neglect p2 compared with We therefore
obtain

M ~2t?  “*v̂ (1 _ ^ ) “( / “(eW l - y 5Mve) (14.122)

using g2/8mi=(2v2)~1, which follows from (14.37). Proceeding as in §6.5 we 
find the transition rate for a single muon is

1 d3e d3v d 3v
dlXu -  eve v„)= (2n) ” 5 —  <5(//-e-ve-  v„)|^ |2 —  — i- — (14.123)

z e 0  Z V fiO  Z V eO

In practice neither ve nor is observed, so we may integrate d3vM d3ve over all 
of the available phase space. Also, the spin of the decaying muon and that of 
the final state electron are usually not measured. This means that we have to 
sum over the possible final spin states and average over the initial spin states. 
In these circumstances we may replace \Jt\2 by \  £  \Jt\2, where the sum is
over the two spin states of both muon and electron. The technicalities of 
performing the phase space integration, as well as such sums are adequately 
dealt with in many text books2 so we shall not dwell upon them. Instead we 
merely quote the results. The differential spectrum is given by

5 1 = ^57rpr - m e)1/2(3 W - 2 E - m i E ~l) (14.124a)

where E is the energy (e°) of the electron and W  is its maximum allowed value

W = ^ - ( m 2+m2). (14.124b)
LYYl̂

The total decay rate is

ml
= U -S y + S y 3- / - 1 2 / In y) (14.125a)

where
y = m 2/m 2. (14.125b)



252 FEYNMAN RULES FOR ELECTROWEAK THEORY

The differential spectrum is entirely consistent with the measured spectrum 
shape, and using the values (14.110), (14.113) we predict the mean lifetime

V h ^ r f y ) - 1 =  (2.90 ±  2.6 l)x  10 ~6 s. (14.126)

The value actually measured is
V xp=2.197 138±0.000065 x 10“6 s. (14.127)

Thus, while our prediction is consistent with the data, the large errors on TMth 
means that this is hardly a rigorous test of the theory. These large errors stem 
from those in v in (14.113), since v enters rMth via v4. It is only the recent 
determinations of mw and mz which allow such a test. Previously muon decay 
data was used as input leading to the determination of v. In fact using the data
(14.127) as input gives

t; =  246 GeV. (14.128)

14.5 Inclusion of hadrons

For simplicity, the only fermion fields we have so far included are those of the 
leptons. It is now time to rectify this deficiency. We now know that there are six 
quark flavours (u, d, c, s, t, b) and that their participation in electroweak 
interactions is similar, but not identical, to the way in which the six leptons 
participate. There are two principal differences. First, the electric charges of 
the quarks are not the same as those of the leptons. In fact, in units of e (the 
charge of the positron)

Gu = 6c =  e t = l  (14.129a)

<2d = e s= Q b = - i  (14.129b)

Second, all six of the quarks are massive, whereas three of the leptons (ve, v̂ , vT) 
are believed to be massless. We notice that the two distinct charge eigenvalues 
differ by one unit. So

eu-ed=<2ve- G e = i .  (14.130)

The difference between Q Ve and Qe, say, reflects their different weak isospins; veL 
and eL have T3= ^  and — j  respectively. It is therefore tempting to group the 
left chiral components of the quark fields into doublets, just as we did the 
lepton fields in (14.9). In fact this is correct, since it has been known for many 
years that the charged hadronic weak currents are left-handed’, just as the 
charged leptonic currents (14.3) are. However, when we attempt to construct 
doublets, some of the complications due to the second difference (the fact that 
all six quarks are massive) enter. The problem arises when we ask which (left 
chiral) quark field is to be the T3 = — ̂  partner of (say) uL. It would have been 
nice, from the viewpoint of model building, if the answer involved a single 
quark flavour, dL, for example. However the weak decays of hadrons show
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unambiguously that the partner of uL involves at least two flavours (dL and sL). 
Thus, to be general, we shall suppose that the partner is an arbitrary super 
position of dL, sL and bL. We therefore take the three left-handed quark 
doublets to be

and V is an arbitrary 3 x 3  unitary matrix6. (The unitarity is so that the field 
combinations are orthogonal to one another.) As before, the suffix ‘L’ is to 
denote the left chiral component of the field. The reason it is not necessary to 
have such a complication in the leptonic sector is because the neutrinos are, by 
assumption, massless. Therefore any superposition of them is also massless, 
and v/L is defined as the partner of /L. Should the neutrinos be found to have 
non-zero (and therefore presumably non-degenerate) masses, a precisely 
analogous mixing will have to be involved. Since the quarks all have different 
masses, the particular combinations D'f  of mass eigenstates which enter the 
weak currents is something which can in principle be ascertained from 
experiment. The other difference between the quarks and the leptons is that the 
quarks are coloured, while the leptons are not. However this presents only a 
trivial complication. Since the electroweak interactions are ‘colour-blind’ the 
matrix V does not mix colours, and the colour label of all of the three flavours 
involved in D'f  is the same, and the same as that of its T3=  + \  partner. We 
therefore leave the colour label undisplayed; where necessary a sum over 
colour labels will be understood.

The extra weak isodoublets of course mean extra contributions to the weak 
isospin currents. We denote these by

(summing over the repeated index / ,  and the suppressed colour label). Then 
the charged hadronic currents are and / 1, where

(14.131a)

(14.131b)

D'f =VfgDg

with Df  labelling the charge —̂  quarks

Dj = d  D2 = s D3= b

(14.131c)

(14.13 Id)

^ ‘m=Q fLlfaiQ ft ('=  1, 2, 3) (14.132)

J l  = 2 ( ^  + IT j)  =  Uf yM( 1 -  y 5) VfgDg (14.133a)

A  =  2 ( ^  - i f f )  = 5 ^ , ( 1 - y 5)V}gVg. (14.133b)



The third weak isospin current is given by

3r ?=UUfLyllUfL - D ’fLyllD’fL)

= in UfL ~  DfLynDfh)
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(14.134)

since V is unitary7. Also, from (14.129) the hadronic electromagnetic current

where the hadronic contribution <8̂  to the weak hypercharge current is 
therefore given by

Thus the first difference between the leptonic and hadronic sectors, namely the 
different charges (14.129) possessed by the quarks, manifests itself in a different 
structure for the weak hypercharge current; in the hadronic sector the doublets 
all have weak hypercharge whereas the lepton doublets have Y=  — j. 
The hypercharges of the right chiral quark fields correspond to their actual 
electric charges, since they are all singlets with respect to the SU(2)L group. It 
follows that the SU(2) x U(l) gauge invariant coupling of the quark field to the 
gauge fields (the analogue of (14.17)) is given by

<£?(quark) = Q/LiyMDMQfL + U/RiyMDMUfR + DfRiyMDMDfR (14.137a)

As in (14.22), it is more useful to express the interactions in terms of the mass 
eigenstates

Then without further ado we may derive the Feynman rules for the quark- 
gauge boson vertices:

jM(4) — 3 U/Jn Uf - h D f y f l f
(14.135)

fh7n 126/L + 3 UfR — fR. (14.136)

where
D „G/L = (d, +  i W; +  i g%B,)Q

+ ig'( —

6 * V V £ / L (14.137b)

(14.137c)

(14.137d)

+ ej)l(q)A>‘+— 9—  sin2 (14.138)
COS (7\v

(14.139)



14.5 INCLUSION OF HADRONS 255

’ 2^j2

- i iey .

(14.140)

(14.141a)

Hey* (14.141b)

-i —— ~ y M v - 9 UAii)2 cos Qyy (14.142a)

- 2 n {/__ i
2 3 S in  Qa ~  2- (14.142b)

~  2 +  3 Si n 2

(14.143a)

(14.143b)

As before, we must also arrange that the spontaneous symmetry breaking 
generates masses for the fermions. The complication is that all six quarks are 
massive, which means that we must couple the doublets Qfh to the singlets UgR 
and DgR. To achieve this we need to use not only the scalar doublet <p having



weak hypercharge +^, but also its charge conjugate ^

f  s i  x2<p*. (14.144)

We leave it as an exercise (problem 14.5) to verify that does transform as a 
doublet having weak hypercharge — % under an SU(2) x U(l) transformation. 
It follows that the most general SU(2) x U(l) invariant Yukawa coupling can 
be written

-SfY == —(QfLXfgtpDgR + DgR^XfgQfL

+ Qf iXfg4* UgR +  UgR̂ Y  %Qfh) (14.145)

where X fg and i / ,  are, for the moment, arbitrary matrices. When the
symmetry is broken the fermion mass terms arise from <0|<p|0> =  u and
<0|^|0> =  iT2». We find that the mass Lagrangian is

^ M= - ~ ( D ' fLX fgDg,  + DgRX*gD'fL

+ UfLYfgUgK + UgRY*fgUn ). (14.146)

Thus to ensure that the states Uf , Df  are mass eigenstates, as defined, the 
matrices X, Y and V must satisfy

4 v tX = ^ = X tV =  m(D) (14.147a)
y/2

-4= Y = m (t/) (14.147b)
n/2

where m((7) and m(D) are the diagonal mass matrices

m( U)= diag(wu, mc, w,) (14.148a)

m(D)= diag(md ,ms,mb). (14.148b)

The Feynman rules for the quark propagators are now trivial; for the quark 
flavour q, where <j =  u, c, t, d, s, b, it is
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<7

It follows from (14.147) that

ie)"1. (14.149)

X = ^ V m  (D) X ^ ^ m  (D)V+ (14.150a)
V V

Y =  Yt = ^ m ( L 7 )  (14.150b)
V
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and therefore that the interaction part of j£?y is

^(in teraction) =  / 0 [Vm(D)aR- m(t/)VaL]DG +
x/2mw \

+ D[m(D)VtaL- V tm(C7)aR]UG“ +-^= Dm(D)DH

+ ~  Om(U)Utf + - ^  iDm(D)y5DiG0 Om(U)y5UG0

(14.151)

Thus the Feynman rules are

-10
2 ^ 2 %

{ N D ) ^  — V tm( C7)]/g—y 5 [m(£))Vt+ V fm( [/)] /,} (14.152)

19 { [V m (D )-m ( t/)V] /g+ y s[Vm(D) +  m( U)V] fg} (14.153)

(14.155)
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G°j

2 ^  [m(D)]/975 (14.156)

G1
5- (14.157)

All of the above Feynman rules, as well as those for the interactions of the 
quarks with the gauge bosons, include an implicit unit colour matrix, reflecting 
the fact that the electro weak interactions are independent of the colour label of 
the quarks, as already noted.

Problems

14.1 Show that the matrices representing SU(2)xU(l) in the real 
representation (14.25) of the scalar fields are those given in (14.26), (14.27). 
Verify that they satisfy the Lie algebra of SU(2) x U(l).

14.2 Verify (14.34) and (14.35).

14.3 Check that both (13.106) and (14.73) yield the same Feynman rule for 
the G°-H-Z  vertex, for example.

14.4 Suppose that, more generally than (14.23), the scalar field <p° which 
develops a non-zero v e v  belongs to a representation with weak isospin I  and 
third component / 3. Calculate mw and mz in this case and determine vlaues of /  
and J 3 such that mz cos 0w =  ww.

14.5 Show that

\l/ = h 2<p*

with <p defined in (14.23), transforms under an SU(2) x U(l) transformation as 
a doublet with weak hypercharge —

14.6 Calculate T(Z e +e “).
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15 

RENORMALISATION OF ELECTROWEAK 
THEORY 

15.1 Electroweak theory renormalisation schemes 

The electroweak theory developed in the previous chapter has had 
considerable success in predicting accurately the results of various 
experiments: neutrino-electron and proton elastic scattering, e + e- -+ J1. + J1.-, 
charge and neutral current deep inelastic scattering of neutrinos, deep inealstic 
scattering of polarised electrons, atomic parity violation, neutrino and 
electroproduction of pions, to name but a few. However the experimental 
accuracy so far achieved means that the theory is only tested at tree level. To 
check whether the theory is correct at the quantum level requires more accurate 
experiments, and, of course, the calculation of the predictions to one or more 
loop order. In this way it is to be expected that electroweak theory will be 
subjected to the same rigorous testing as that to which QED has been subjected 
during the past 35 years. 

Actually to perform the calculation of the radiative corrections requires the 
renormalisation of the theory. Since the theory is renormalisable, the infinities 
which occur when we evaluate Feynman diagrams may be absorbed into the 
various renormalised parameters of the theory, and we obtain finite 
predictions involving these renormalised parameters. We have already 
observed in §7.5 that there is considerable freedom in the precise definition of 
the renormalised parameters; for example, the renormalised mass J1. 2 has a 
value which is different in the various renormalisation schemes (Ms. MS, mom, 
phys), and (by definition) only in one of the schemes is J1. 2 the actual physical 
mass of the scalar particle in the theory. The same arbitrariness exists, of 
course, in electroweak theory, but there is a further arbitrariness in deciding 
which parameters are fundamental, and which derived. We observed in §14.4 
that, in the leptonic sector, the original Lagrangian involves the parameters 

g, g', J1. 2 , A., G1 (l=e, Jl., -r). ( 15.1) 

Because of the tree-level formulae (14.21), (14.32), (14.37), (14.58) we could 
instead use the equivalent sets 

e, sin Ow, v, m~, m1 (I= e, Jl., -r) (15.2) 
or 

e, ma,, mi,, m~. m1 (l=e, Jl., -r). (15.3) 
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So long as we only make predictions at tree-level accuracy it is immaterial 
which set is used since the predictions can be transformed at will using the 
formulae relating the parameters. However, these formulae are in general not 
true beyond tree level, and it is necessary to select one set, and stick to it.

In view of the foregoing observations it is hardly surprising that the 
literature abounds1 with well-motivated but different approaches. If we were 
able to calculate to infinite order then all (correct!) calculations using different 
approaches must agree on the predicted value of some physically measurable 
quantity. However, since the perturbation series is always truncated at some 
finite order, different approaches in general lead to different numerical 
predictions, even though formally they are in agreement. To illustrate this 
consider a theory with just one parameter a  (like massless q e d ) ,  and suppose 
the physical quantity to be calculated is P: for example the magnetic moment 
of the ‘electron’. We denote by olx and a2 the renormalised parameter in two 
different renormalisation schemes 1 and 2. The value of P is calculated to order 
a 2 , so neglecting 0 ( a 3) the predictions from the two schemes are

^ i = a i + ciai (15.4a)

p 2 = a2 + c2o^ (15.4b)

where cx and c2 are independent of a. As we observed in §7.5, the renormalised 
txx and a2 differ by a finite amount, and so, to the same accuracy,

a i= a 2 + fca| (15.5)

where k is a constant. Substituting into (15.4a) gives

Px =  a2 + (k + cx)a2+ a2cx k(2 + ka2). (15.6)

Thus the two calculations are in formal agreement provided

c2 = k + cv  (15.7)

(If this is not satisfied one or both of the calculations must be incorrect.) 
Nevertheless the numerical values Px and P 2 clearly differ in general:

Pi — P2 = ot2clk{2 + k(x2) (15.8)

even though the difference is formally of higher order in a .  In q e d  the 
expansion parameter a  is so small as to make such differences negligible, for 
most purposes. And in any case there is a consensus in favour of the on-shell 
renormalisation scheme.

In electroweak theory there is as yet no consensus. The large mass scales mw, 
mz mean that in principle it is possible to obtain large numbers which are 
formally of order unity, although to date the calculations performed display a 
remarkable consistency in their numerical predictions. Even so, it may be 
thought preferable to use a ‘neutral’ scheme, in which the parameters have no 
direct physical significance. The m s  and m s  schemes, described in §7.5, are
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examples; the renormalised parameters are determined by the mass scale M  
which enters via dimensional regularisation, and the chosen value(s) of the 
gauge-fixing parameters) £. It might be argued that, by adjusting M  to the 
characteristic energy scale of the process under consideration, one should be 
able to make the numerical value of the radiative corrections small compared 
with those arising in a different approach, or from an injudicious choice of M. 
(The problem of minimising radiative corrections in every order has been 
addressed by Stevenson2.) Even if the preceding argument is true, the logic of it 
requires that the values of the various renormalised parameters should be 
determined from other experiments where the same value M is also the 
characteristic scale, and this is not always easy to arrange. Besides, the 
renormalised parameters in such schemes in general depend upon the gauge- 
fixing parameters) £. Since S-matrix elements are independent of f , as we 
showed in Appendix B, only ^-independent combinations of the renormalised 
parameters can be determined from experiment or enter into theoretical 
predictions of scattering amplitudes. It has therefore also been argued that it is 
preferable to use an on-shell approach in which each renormalised parameter 
is automatically ^-independent, and preferably directly ascertainable from 
experiment. Another more practical consideration which may affect the 
specific choice of renormalisation approach is the ease and convenience with 
which it may be applied to actual calculations of physical interest.

Without necessarily denying the arguments which have been advanced in 
support of the m s  and m s  schemes, we have, nevertheless, decided to present the 
on-shell scheme which has been advocated by Sirlin3. The simplicity of the 
scheme, besides making for ease of calculation, makes feasible a text-book 
treatment of what may otherwise become an extremely complicated topic.

15.2 Definition of the renormalised parameters

The major simplification which characterises Sirlin’s scheme3 is achieved by 
working throughout with unrenormalised fields. In other words, all wave 
function renormalisation constants are chosen to be unity. The immediate 
objection to such an approach is that the renormalised Green functions are 
then in general divergent (in the limit that the space-time dimensionality 
d = 2co approaches 4.) However, S-matrix elements may be rendered finite 
using only mass and coupling constant renormalisations, as we shall shortly 
verify. Thus provided we only wish to calculate radiative corrections to 
physical scattering amplitudes, we can eliminate a large number of counter 
terms, at a stroke. Although this elimination of counter terms obviously leads 
to major simplification, there is a (small) price to be paid. In the competing on- 
shell schemes the wavefunction renormalisation constants are chosen so as to 
ensure that propagator poles have residue unity. Then S-matrix elements are 
obtained immediately from the Green functions. In Sirlin’s scheme, since no 
such choice has been made, the poles in general do not have unit residue. Thus



to determine S-matrix elements it is necessary to rescale the Green functions 
by an appropriate amount so that external lines do have unit residue. (This is 
why the factors Z R L in (15.128) for example are not equal to unity.) The ready 
determination of the renormalised parameters from experiment is achieved by 
using the parameter set (15.3) as input. The masses are all the measured 
physical masses of the particles and e is the measured electric charge of the 
positron.

We start with the bare gauge boson mass Lagrangian which may be found 
using (14.29) or (14.72):

&%(W9 Z) = m iBW~ W+" + 2mzBZ MZ M (15.9)

where the suffix ‘B’ indicates that all quantities are bare. (We omit the suffix 
from the fields, since they remain throughout unrenormalised, as explained 
above.) The bare masses m%B and m|B are given by (14.37):

*WWB==40Bl;B (15.10a)

WlZB==i(^B^"9B2)l?B = sec2 0WBWWB (15.10b)
and the bare weak mixing angle 0WB is defined by

tan 0wB=gB/gB (15.10c)

so that the mass Lagrangian is diagonalised by the combinations defined in
(14.20). Counter terms are generated by the substitutions

mwB =  ̂ w + = mU  1 +  ̂ w) (15.1 la)

W zB=m|+Am|=m|(l + Kz) (15.11b)

but no field renormalisations. Then

&%( W, Z) = JS?M( W, Z) + Aj^M( W,Z) (15.12a)

where the renormalised Lagrangian
£ >fA(W,Z)=mlWtl+W~M+ im iZ .Z"  (1512b)

and the counter term Lagrangian

A ^ M( W9 Z) =  Kwm i W+ + iX zm|Z,Z^. (15.12c)

The renormalised quantities mw and mz are so far unspecified, but we now 
identify them with the physical masses4 of the observed W and Z particles, 
given in (14.112):

mw = mW phys =  80.8 ± 2.7 GeV (15.13a)
^z =  ̂ z,Phys =  92.9± 1.6 GeV. (15.13b)

Thus these particular (combinations of the) renormalised parameters are 
guaranteed to be independent of £, and have already been ascertained from 
experiment.

The form of the renormalised mass Lagrangian (15.12b) is the same as that 
of the unrenormalised mass Lagrangian (15.9) with the replacement of the bare

15.2 DEFINITION OF RENORMALISED PARAMETERS 263



264 RENORMALISATION OF ELECTROWEAK THEORY

masses by the renormalised masses. Thus when combined with the 
(unrenormalised) kinetic energy terms in (14.72) and those in the gauge-fixing 
Lagrangian, they lead to the same form of propagators (14.38H 14.40), but 
with mw and mz now having their renormalised values (15.13). The counter 
term Lagrangian, Ai?M generates additional vertices having the following 
Feynman rules:

i1'w J p v : ig„vKwm l  (15.14a)

| . ig^K zm l  (15.14b)

The gauge fixing Lagrangian also contains mass terms for the Goldstone 
modes G±, G°, with

mi(G+) = { m lB (15.15a)

mB2(G°) = £m!B. (15.15b)
Thus the renormalisation (15.11) also renormalises the masses of these 
Goldstone particles. When combined with the (unrenormalised) kinetic energy 
terms for these particles, which are contained in (14.73), these renormalised 
mass terms generate propagators having the same form as (14.45), (14.46), but 
with mw and mz now having their renormalised values (15.13). The counter 
term Goldstone mass Lagrangian generates additional vertices with the 
following Feynman rules:

 1 —  : -iK wfim i (15.16a)

1° : - iK z £ m l  (15.16b)

We turn next to the fermion-gauge boson interactions contained in (14.17). 
Using (14.22) and remembering that all parameters are bare, we write the 
interactions with the electromagnetic field as

J^(em )=  - e ^ A '  (15.17a)
where

e6= g M g i+ g B 2)~112 (15.17b)
and the electromagnetic current j^ is given in (14.12) for the leptons and in
(14.145) for the quarks. As before, the counter terms are generated by the
substitution

eB =  e + Ae=e(l + Ke) (15.18)

(and no field operator renormalisations). Then

j^ B(em) = <£F(em) + AJ^f(em) (15.19a)

where the renormalised Lagrangian

JS?f( e m ) = - g ^  (15.19b)

and the counter term Lagrangian

Aj§ff(em)= -K & 'A * .  (15.19c)



The renormalised parameter e is how identified with the measured physical 
electric charge of the positron given in (14.119):
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Thus this parameter too is guaranteed to be independent of c, and has already 
been ascertained from experiment.

The remaining fermion-gauge boson interactions given in (14.17), involving 
the W and Z bosons, are expressed in terms of gB and 0WB, or equivalently gB 
and g'B. This gives (for the leptons)

where the currents LM, Lj anf T 2 are defined in (14.3) and (14.13). Using (15.10) 
and (15.17) we can equivalently express it in terms of eB, mWB and mZB. Since we 
have now completely specified the renormalised parameters e, mw and mz, it 
follows that the corresponding renormalised and counter term Lagrangians 
£?{(W, Z) and A if f( W, Z) are also determined. The renormalised Lagrangian is

(1 + K )2=(1 + Ke)2( 1 +  Kz) sin2 0w(sin2 0W + K z -  cos2 0WKW)" 1 

(1 +  K 3)2=(1 +  Ke)2(l +  Kz)2(l + Kw)“ 1

x sin2 0w(sin2 0W+ Kz —cos2 0WKW)_ 1 

(1 + K 4)2 = (1 + K e)2( 1 +  Kw) - 1 cosec2 0w(sin2 0W + K z -  cos2 0WKW). (15.24)

e= 0.302 8221. (15.20)

(15.21)

<e\W, Z)  =  9—  + L l w +»)
2\/2

(15.22a)

(15.22b)

(15.22c)

where
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In (15.22) and (15.24) we have defined the angle 0W by

tan 0w=0'/0- 

Thus it follows that in Sirlin’s scheme

(15.25)

sin2 0W = (m |—m%)/m\ =  0.243 ±  0.022 (15.26)

as in (14.113). Note that 0W is not the weak mixing angle; the (unrenormalised) 
fields are mixed with mixing angle 0WB, given in (15.10c), which is not equal to

As before, the forms of the renormalised Lagrangians f(em) and Z) 
are the same as the forms of the bare Lagrangians with the replacement of the 
bare coupling constants eB, gB and g'B by the renormalised values given in
(15.20), (15.22). Thus the corresponding Feynman rules are also those given in
(14.61) to (14.65) but with g now given by (15.22b) and 0W by (15.26). The 
counter term Lagrangians generate additional vertices with the following 
Feynman rules:

(15.27)

(15.28)

(15.29)

z
Z X 3> . M - , , '  

4 cos 0W
(15.30)
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M

As before, g and 0W are given in (15.22b) and (15.26). The constants K, K 3 and 
K+ are given in terms of K e, K z, K w in (15.24).

The treatment of the quark-gauge boson interactions proceeds similarly. 
Again the Feynman rules for the vertices deriving from the renormalised 
Lagrangian have the same form as those in (14.149) to (14.153), but with g 
given by (15.22b) and 0W by (15.26). The counter term Lagrangian generates 
vertices with the following Feynman rules

- i  Kg
2 J 2

vfgy M - y s) (15.32)

- i  Kg 
2 ^ 2 VJiV'd-Vs) (15.33)
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The constants K , K 3, X4 are given in terms of Ke, Xw and K z in (15.24).
Other pieces of the bare Lagrangian are also expressible in terms of gB, gB 

and vB, or equivalently mWB, mZB and eB. So, just like i f B(IF, Z) the 
corresponding renormalised and counter term Lagrangians are also 
completely specified. For example, the self-interaction of the gauge bosons is 
expressible in terms of gB, gB, when the fields corresponding to the mass 
eigenstates W 1, Z, A are used. Thus, as before, the Feynman rules for the 
renormalised Lagrangian are those given in (14.66) to (14.71); again with g and 
0W given in (15.22b) and (15.26). Proceeding as before we find that the counter 
term Lagrangian generates vertices with the following Feynman rules:

Tf 

. W“
i(^e £̂ QvpQkn QupQkv Gpvdkpl (15.38)

z
- i ( K l  + 2Ks)g2 cos2 d ^ l g ^ g ^ - g ^ - g ^ g ^

(15.39)

- i(KSK C + K 5 + Ke)eg cos 6w[_2gvpgXfl - gwgiv - g ^ g ^

(15.40)
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V

i K ee[(r -  q)xg,v + ( q -  p)vg ^ + { p -  r \g v)}  (15.4 la)

V

iK 5g cos dw[(r- q ) ^ ,  + {q-p)vg ^ + ( p - r ^ g .J  (15.4lb)

X M

where K s is given by

(1 + K 5)2=(1 + Ke)2(l + Xw) sin2 0w[sin2 0W -hK z -c o s 2 0w^w ] " 1 (15.42)

and g and 0W are given in (15.22b) and (15.26).
We turn next to the renormalisation of the scalar Lagrangian (14.73). The 

first two terms, arising from the co variant derivative of the scalar doublet, are 
again expressible in terms of eB, mWB and mZB, and so their renormalised 
Lagrangian leads to the vertices (14.74) to (14.94) with g and 0W given in 
(15.22b) and (15.26), and there are corresponding vertices generated by the 
counter term Lagrangian. Proceeding as before we find that the Feynman 
rules for these vertices are as follows:

M

(15.43)

(15.44)

Q
(15.45)
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Kg(p + q)„

1
v  \ ?  

/ »

- i^K gip+qX

p/  \  i  
/ g * h \

- i \Kg(p + q)

P /  \<7 
y  h  g°\

ff'l
t

A i K-,em^g

G'\

W* z
M v

- i K agmz sin2 Q^g

H I

W* W*
M v

iK 9gmwg„

(15.46)

(15.47)

(15.48)

(15.49)

(15.50)

(15.51)

(15.52)
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ii
I

H 1
iK i0gmzg^  (15.53)

where K  is defined in (15.24), and

K 6 = (1 +  K z) - 1 sec 20Wl(K3 -  K z) cos 20W + 2 cos2 0W( 1 + K 3)(KW -  Kz)]
(15.54a)

1 +  k 7 = (1 + Ke)(l +  Kw)1/2 (15.54b)

(1 + K 8)2 = (l + Ke)2 cosec2 0w[sin2 0w + Kz - K wcos2 0W] (15.54c)

1 + K g =(1 +K)(1 + K W)1/2 (15.54d)

1 + K 10 = (1 + K)(1 + KZ)1/2 (15.54e)

with X 3 as defined in (15.24).
The remaining terms in (14.73) all involve the (bare) scalar self-interaction 

coupling constant AB, or equivalently the (bare) Higgs particle mass. We start 
with the Higgs mass Lagrangian

( H )= - im 2Bt f 2 (15.55)

and renormalise in a manner directly analogous to (15.11):

™hb = ™h(1 + Kh) (15.56)

with no field renormalisation. Then

jSPjftH) = £>M(H) + AjSPM(/f) (15.57)

where the renormalised Lagrangian

J^M(H)= - \ r n \H 2 (15.58)

and the counter term Lagrangian

H 2. (15.59)

As before, the renormalised mass mH is now identified with the physical mass of 
the (so far unobserved) Higgs particle:

WH = ™H,phys- (15.60)

Assuming that the Higgs particle is eventually discovered, the renormalised 
parameter mH will be directly ascertainable from experiment, and is 
guaranteed to be gauge-parameter independent. As before, this means that the 
Higgs particle propagator has the same form as (14.47), but now mH has its 
renormalised value. The counter term Lagrangian generates an additional



vertex having the Feynman rule

: _ i  Knm l  (15.61)

Since
^HB = 'M'B̂ B (15.62)

we may express XB in terms of mHB and the parameters eB, mWB, mZB, whose 
renormalisation has already been defined. Thus the renormalisation of the 
remaining (interaction) terms in (14.73) is completely specified. The 
renormalised Lagrangian is

J?V(G,H)= - iA v lG +G~ +UG02+ H 2)]H

- i A  IG+G-+% G02+ H 2) ¥

where

1 _  e2mgw|
2m&(mz -m&)

k._ emjmz 
mw(m|-ro&)1/2

and the counter term Lagrangian is

A i?„(G ,fl)=  - i X n lt)[G+G -  + % G 02+ H 2y]H

- iK ,A [ G +G '  +UG02+ H 2)Y

where

1 +  Kx=(1 + Kt) \  1 + K h)( 1 +  K z)( 1 + K *)~1 sin2 0W
x (sin2 0\y "f fCz K w cos2 0\y) *

1 + K u  =  (1 + Ke)( 1 + K h)( 1 + K zy 2{ 1 + Kv) ~ l>2 sin 0W
x (sin2 0W + KZ —Xwcos2 0W)~1/2.

Clearly the renormalised Lagrangian gives vertices having the Feynman rules 
(14.95) to (14.98), but now with renormalised parameters. The counter term 
Lagrangian generates analogous vertices for the (three-scalar) vertices with the 
substitution

g n & l m l K ^ g m U m l .  (15.67)

(Note that, using (15.22b), gm^/mw — Av.) The counter term four-scalar vertices 
are obtained by the substitution

A=\g2m ^ l m l ^ K ^ g 2m im l.  (15.68)

We have seen in (14.49) and (14.50) that the ghost particles rj±,r]z, and their
conjugates, have squared masses cm*, and £m| respectively. Thus the
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(15.63)

(15.64a)

(15.64b)

(15.65)

(15.66a)

(15.66b)
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renormalisation (15.11) of the gauge particle masses also renormalises the 
masses of the ghosts. As before the effect is to give ghost propagators of the 
same form, but with renormalised masses, and to generate counter term 
interactions with Feynman rules

-LKw£mw (15.69)T] • —  L / V W C ,W W

*z : -iKzCmi. (15.70)

The previously introduced renormalisations of eB, mWB, mZB also renormalise 
the interaction part (14.102) of the Faddeev-Popov Langrangian. The 
renormalised Lagrangian generates vertices having Feynman rules of the same 
form as (14.103) to (14.114), but with renormalised parameters e, g, mz
(the renormalised values of g and 0W are defined in (15.22b) and (15.26)). The 
counter term Lagrangian generates analogous vertices for which the Feynman 
rules are obtained by the following substitutions:

e-+Kee (15.71a)

^ m w KgZgmw (15.7 lb)

cos 20w « cos 20w
£gmw  ^  [(l + K 6)(l + Kwy ' 2- l]4 g m w — (15.71c)

COS COS l7yy

lgmz -> K 10igmz (15.7 Id)

where K , K 6, K 9, K 10 are defined in (15.24) and (15.54). (Since the ghost 
particles only arise in closed loops, these ghost counter terms contribute first 
only in two-loop order.)

Finally we renormalise the Yukawa sector of the theory. The (bare) lepton 
mass Lagrangian (14.57) may be written in the form

(15.72)
I

using the relation (14.58). We generate counter terms by making the 
substitutions

mlB = ml( l+ k l) (/ = e,/i,r) (15.73)

where the renormalised masses are identified with the physical masses (14.120) 
of the observed leptons. Evidently these renormalised parameters are 
guaranteed to be gauge-parameter independent, and have already been 
ascertained from experiment. As before these renormalisations ensure that the 
renormalised lepton propagators have the same form as (14.59) and (14.60), 
but with ml now the renormalised mass. The counter terms lead to the 
following Feynman rules

-*■
/ (15.74)
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The renormalisation of the remaining Yukawa interactions in (14.57) is now 
completely specified by the above renormalisation of mlB and the previously 
introduced renormalisations of eB, mWB and mZB. The renormalised vertices are 
given by (14.115) to (14.118), but with g, mt and mw now having their 
renormalised values. The corresponding counter terms are obtained by the 
substitution

g —  ^ [ ( l + K ) ( l  +  fc() ( l + K w r 1/2- l ] 0 —  (15.75)mw raw

in all four vertices.
The inclusion of the quarks is only slightly more complicated. The (bare)

quark mass Lagrangian (14.146) may be written in the form

^(<Z) = -  [Df mB(D)fgDg+ Uf mgB(U)fgUg-} (15.76)

using (14.150). The matrices m B(U), m B(D) are the diagonal quark mass 
matrices given in (14.148). The renormalisation is achieved by the 
substitutions

m b(D) =  m(D)[l + k (£>)] (15.77a)

mB(lO =  m(C/)[l +k(£/)] (15.77b)

where m(D), m(L0, k(D), k(U) are all diagonal. Then the quark propagators 
have the same form as (14.149), but with mq now the renormalised mass. As 
before, this is chosen to be the ‘physical’ mass of the ‘observed’ quark. The 
counter term vertices are

£ p  : - i  kqmq (15.78)

where kq is the appropriate element of the matrix k(U) or k(D). Then the 
renormalised Yukawa vertices are given by (14.152) to (14.157), but with g, 
m(I/), m (D) and mw now having their renormalised values. The corresponding 
counter terms are obtained by the substitutions

—  m0>)->{(l + K) [1 +  k(£>)](l + /CW) - 1/2 -1 }  —  m(D) (15.79a)
mw mw

-2-  m( U) {(1 + £ )[  1 +  k(U)]( 1 ■+ K„) - ■1 ̂12 - 1} m( U) (15.79b)
mw %

in all six vertices.

15.3 Evaluation of the renormalisation constants

In the previous section we gave precise definitions of the fundamental 
renormalised parameters (e, mw, mz, mH, mz, mq) which characterise Sirlin’s
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electroweak renormalisation scheme. Each fundamental renormalised 
parameter has an associated counter term vertex, given in (15.16), (15.29),
(15.61), (15.74), (15.78), and all other counter term vertices generated by the 
renormalisation are expressed in terms of the constants Ke, Kw, K z, KH, kh kq. 
Thus in order to calculate S-matrix elements it is necessary to evaluate the 
renormalisation constants. In this section we shall indicate how to determine 
them to one-loop order.

We start with Kz, defined in (15.11), and consider the S-matrix element for 
the process in which a single (physical) incoming Z boson of momentum px 
goes to a single outgoing Z of momentum p2; momentum conservation of 
course ensures that P i= p2- To one-loop order

Sfi =
z z
(1) (2) (3)

(4) (5) (6)

(8) (9) (10)

(12) (13) (15.80)
The large number of diagrams which contribute even at one-loop order has 
necessitated some economy of notation. In the above equation the external 
lines are all (physical on-shell) Z boson lines, but the internal lines are to be 
understood to include all allowed particles with the convention that 
continuous lines — *—  represent fermions, wavy lines represent
gauge vector boson, dashed l i n e s  represent scalars (Goldstone and
Higgs), and dotted lines ►.....  represent ghosts. Thus in the above example
the first fermion loop diagram represents the contribution from all three
colours of all six quark flavours, plus all six leptons. It follows from the
Feynman rules given in (14.115) to (14.118) that in the last four (‘tadpole’) 
diagrams the exchanged scalar must be a Higgs particle (so in the fermion 
tadpole there is no contribution from the neutrinos assuming they have zero 
mass). The first diagram represents the no-scattering contribution which is 
present in all 5-matrix elements. Since there is no scattering for the process 
Z -► Z this must give the entire contribution. So

Sfi = Sri(l) (15.81)

by definition. It follows that the remaining contributions to Sfi must sum to 
zero:

I  S„(n)=0. (15.82)
11=2
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Thus the counter term contribution 5fi(2), proportional to Kz, must be 
adjusted so as to cancel the remaining contributions which, as explained in the 
previous section, are completely determined by the (physical) parameters e, 
mw, mz, mH, mh mq. We denote the sum of the contributions from diagrams (3),
(4), (5), (6), (7), (8) and (9) without the external polarisation vectors and for a 
general momentum p by

n z„v( p)= M p2) ( g^  - ■ + Bz( P2) (15.83)

Thus UZflv(p) is essentially the o p i  two-point function T{2J(p, — p). Similarly let 
us denote the sum of the tadpole contributions (10), (11), (12), (13) without the 
external polarisation vectors and for general p by

W p) = U v (15.84)

The form (15.83) is the most general allowed by Lorentz covariance and the 
form (15.84) follows from the form (14.84) of the ZZH  vertex. The requirement 
(15.82) that 5-matrix element contributions (2) to (13) cancel means that

e(1)̂ [i^vKzmz2 + n z, v(p) + r Z/iV(p)]e(2)v = 0 (15.86)

when p2 =  mz and e(1) and e(2) are the physical polarisation vectors of the initial 
and final Z boson. It follows from (13.3) that the polarisation vectors of a 
massive vector boson satisfy

e(i).p= 0  =  e(2)*p. (15.87)

Then substituting (15)84) and (15.85) into (15.86) we find

[lKzmz -{- Az(mz) -F • e*2̂ =  0. (15.88)

Since this must be satisfied for all choices of e(1) and e(2) (including e(1) =  e(2)), we 
see that K z is determined by the (calculable) quantities (Azmz) and Tz:

Kz = i m i  2[Az(mi) + Tz]. (15.89)

Thus ‘all’ that is required to evaluate K z is the calculation of the loop diagrams 
in (15.80). Before discussing the details of these calculations we note that a 
precisely analogous argument can be presented for the S-matrix element for
the process in which a single incoming W boson goes to a single outgoing W
boson. Then the renormalisation constant K w is given by

/Cw =  imw2(>lw(»4) +  rw] (15.90)

where /lw(p2) and Tw are defined in exact analogy to Az(p2) and Tz in (15.83), 
(15.84).

The loop diagrams displayed in (15.80) all have divergent momentum 
integrals, in four dimensions, and it is necessary to regulate them. As in 
previous chapters we use the dimensional regularisation introduced in §7.2. 
This involves performing the integrations in 2co-dimensional space-time.



Then the divergence of the four-dimensional integrals is reflected by the 
appearance of poles at e = 2 — co=0 in the corresponding 2<w-dimensional 
integrals. Also, the diagrams in general depend upon the gauge fixing 
parameter(s) £ which enters via the Feynman rules for the propagators and 
vertices given in Chapter 14. We are only concerned with S-matrix elements, 
which we have demonstrated in Appendix B are independent of £. Thus we 
may choose any convenient value of the gauge parameter. We always use the 
‘Feynman gauge’ in which
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Using the techniques of Chapters 7 and 11, the evaluation of the loop diagrams 
displayed in (15.80) is now straightforward in principle. However in practice it 
is tedious and very protracted. General formulae for the various types of 
Feynman integral which are encountered have been given by Aoki et al.5, but 
even so the sheer complexity of the results makes a complete and detailed 
treatment impossible within the limited space of a single chapter. For example, 
Aoki et al.5 find that the quantity Az(p2), defined in (15.83), is given by

— 2mz(piz + 2m\m\ — 4m^)— %p2(mz — 2 m \m \— 18m%) )(£ 1 + r '( l )  + ln47r)

+ £  mzUnf + l)p2F(mit mb p2) -  m2F 0(m„ m,-, p2)] - i p 2(mz -  2mlm£+4m&)
i

+ m^(mz —4m|mw +  16mw) In m ^/M 2+ ln mz/M 2 

+ Wh In Wh/M2) — lOm^p2F0(mw, mw, p2)+p2(m£-4m£ml 

+24m$,)F(mw,mw, p2) + n4(3m| -  4 m|m& -1 6  m&)F0(mw, mw, p2)

+ m|[2m|F0(mH, mz, p2)-m | F 1(mH,mz, p2) + p2F(mH,mz, p2)]

where is a sum over fermion flavours (leptonic and hadronic) and, in the 
case of quark flavours, a colour sum must also be included. The constants f/; 
have the values

£= !• (15.91)

M - i p V + l ) + m ? ]

(15.92)

//, = 1 (Z=e,p, t)

rjt = (4mw — 3mz)/m| (/=e,p, t)

(15.93a)

(15.93b)

(15.93c)

(15.93d)

f?u,c,t = (8n»w — 5mz)/3mz 

'7d,s,b = (4m£-m!)/3m!.
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The functions Fn (n = 0, 1, 2) are defined by

Fn(m1,m 2, p2)= J  dxxM n[m2(l--x)4-m 2x —p2x ( l—x)]/M (15.94)

and

F = F1- F 2. (15.95)

For this reason in the remainder of this chapter we shall merely outline the 
calculations which have to performed to carry out the renormalisation of the 
theory. The reader who requires more precise details of these calculations is 
referred to Aoki et al.5, or one of several similar treatments which appear in the 
literature6. The momentum integrations occurring in the tadpole 
contributions represented by diagrams (10), (11), (12), (13) of (15.80) are 
essentially the same as that arising in diagram (8), and we find that the 
combined tadpole contribution is

T ii2fnz
z 32n2(mz —mw)mJmH

—4 £  mf 4- 3(2mw 4- mz)

+ im £ (2 /4 + m !+ 3 m ^ (e -1 + r ( l ) + I n  4n+  1)

+ 4  £  mt  ln tnf/M2 — 2(2m& 4- mz)
i

—Ww(6mw4-mH) In m ^ /M 2 —^mz(6mz + m^) In m |/M 2

— In mn/M2J. (15.96)

Then putting p2 =  m| in (15.92) and substituting both (15.92) and (15.96) back 
into (15.89) determines the renormalisation constant K z.

Similar calculations may be performed to determine Aw(p2), Tw and hence 
the renormalisation constant K w. Because of its complexity we shall not even 
quote the result for A^(p2). However the tadpole contribution is easily found 
with no extra work; the coupling of the Higgs scalar H to the W is given in
(14.93), and the momentum integrations occurring in the tadpole
contributions is precisely the same as those occurring in the Z tadpoles. Thus

T^=-(mi/ml)Tz . (15.97)

Having determined Aw(p2), and hence 4 w(m^), and Tw, the renormalisation 
constant K w is now given by (15.90).

The renormalisation constant K H is found in a very similar manner. We 
consider the process H -+H and denote the sum of the o p i  contributions, 
analogous to diagrams (2) to (9) of (15.80), for a general momentum p by AH( p2). 
The tadpole contributions, analogous to diagrams (10) to (13), are denoted by
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Th. Then, as before, the on-shell renormalisation scheme requires that the 
counter term contribution cancels the sum of the loop contributions, and

K h = — imH 2D4H(mn)4- TH] (15.98)

analogously to (15.89).
The determination of the fermion mass renormalisation constants is only 

slightly more complicated. As before, we consider the S-matrix element for a 
single incoming fermion /  going to an identical outgoing fermion. Then

Sfi —

p
(1)

(4)

(2 )

9
(5)

r C ^ .
13)

Q

( 6 )

(7) (8) (15.99)

where we are using the same convention as in (15.80) with regard to the lines 
appearing in the above diagrams. The contribution from diagrams (3), (4), 
without the external spinors and for a general momentum p, is

2/( p) = K{(p2)\ + Ki( P 2) y s + K{ (p2y + K{y(p2)jh 5 (15.100)

and the tadpole contribution, from diagrams (5), (6), (7), (8), without the 
external spinors and for a general momentum p is

rf  = T{\ + Tf5y5. (15.101)

As before, the diagram (1) gives the entire contribution to the S-matrix 
element, so the counter term contribution (2) must cancel the single loop 
contributions. Thus

u{( p)l — \kf mf  + S/ ( p) 4- t /]m{( p) =  0 (15.102)

where p2 = mj and u{(p), u^(p) are the spinors associated with the initial and 
final fermion. These spinors satisfy

juf( p) = m f uf ( p) (15.103a)

u{{p)y5u{(p) = 0 (15.103b)

so (15.102) gives

kf = —im f1 \_K{{mj) 4- m f K fy (mj) + T{]. (15.104)

Thus the fermion mass renormalisation constants kf  ( f = /, q) are completely 
determined, once the calculations necessary to find I/(p ), xf  (and hence
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K{(mj), T{) have been performed. Again we shall not quote the
results.

It only remains for us to calculate the charge renormalisation constant K e, 
defined in (15.18). We consider the S-matrix element for the process in which a 
single incoming electron is scattered by an infinitely heavy external source to 
produce a final outgoing electron. To one-loop order

Sfi =

. . . . A ,
(8) (9) (10) (11) (1 5 .1 0 5 )

The infinitely heavy external source is represented by the dot at the end of the 
external y line. Diagram (2) is the counter term contribution. Diagrams (3), (4),
(5) and (6) represent the diagrams in which there is a counter term vertex or a 
loop inserted in one of the external lines; thus diagram (3), for example, 
represents the contribution when diagrams analogous to (2)-{13) of (15.80) are 
inserted in the external gauge field line. Diagram (4) represents the 
contribution from similar diagrams connecting y and Z lines. Similarly 
diagrams (5) and (6) represent the contributions when diagrams (2) to (8) of
(15.99) are inserted in the external electron lines.

The contribution from diagram (1) is

Sfi =  u W e y ^ i p )  — ^ j W d ( p - p f -* ). (15.106)
(P - P)

The definition of — e (that it is the physical electric charge of the electron) 
means that, in the limit p —p' -»0, Sfi(l) gives the entire contribution to Sfi. 
Thus

lim [Sfi-S n (l)]= 0  (15.107)
p — p' ~*o

and the counter term contribution (2) must cancel the remaining contributions 
(3H11) (in the limit p — p' 0).

We may write the contribution from diagrams (7)—(11) in the form

ieu W W .ip , P') ^ ^ 2  j W S ( p - p ' - k )  (15.108)



r„ (p, P') = Fi(fc2)y„ + F2(k2)ia,vkv + F ^ k 2) ^

+ G1(/c2)V 5  + G2(/c2)/c,y5 + G3(/c2K v/c>5. (15.109)

In the limit p -  p' -► 0, k -► 0, so only the terms proportional to F x(0) and Gx(0) 
survive. The point is that F^O) and G^O) are well defined and calculable, once 
we have decided how the divergences are to be regulated, and so, therefore, is 
the contribution from diagrams (7)—(11).

The contributions from diagrams (3) and (4) are also well defined, and 
calculable. Using the notation of (15.83), but now for a y line, we find

— i T /  kV~\ — i
Sfi(3) =  Me(p')iey„ue(p)-p-1 Ay(k2)\ghV — p - J  + By(k2) - p - J p - j v(27t)4<5(p-p’- k)

= t7‘(p')i<7X(P) J T  A.t{k2) ^ r ( 2 n f d { p - p ' - k )  (15.110)
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where, without loss of generality,

using the Dirac equation.
In fact, Ay(0)= 0  (since the photon has zero rest mass) so A(k2)/k2 -► A'(0) as 

k2 0, and

Sfi(3)= -U ;(0)Sfi(l). (15.111)

Clearly the effects of the insertion in the photon line will be shared between the 
electron vertex and the interaction with the external source. Thus for the 
purposes of determining the charge renormalisation we should halve the 
contribution from this diagram (since the other half renormalises the other 
vertex), at least in lowest order. Then

5fi(3 ) -> -^ ;(0 )5 fi(l). (15.112)

(The reader may convince himself of this by replacing the source by a heavy 
charged particle, and considering the appropriate diagrams.) Using the 
Feynman rule (14.65), the contribution from diagram (4) may be found 
straightforwardly.

s fi(4)= «e(p')_ - lg y„(dv-gAys)u%p)-k —mz

Az(fc2) k v + Brz(fc2) J T  p-J,(27t)4<5(p - p ' - k )
(15.113a)

where
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In the limit k -► 0,

S,<4) -

x i.4,z(0)mz 2 p -  p2 -  k). (15.114)

However the contribution from diagrams (5) and (6) is a priori ill-defined. 
Consider, for example, diagram (5). The Feynman rules give

S„(5) =  u'(p’)iey —  [ -  ifeeme +  I e( p) +Te]ue( p)
P tne

- k )  (15.115)

where Ee and t e are defined in (15.100) and (15.101) (for a general fermion /) . 
We insert the identity

X « e(p,s)u‘(p,s) (15.116)
S

where the sum is over the two possible polarisation states s=T, 1 °f the 
electron. Then

Sfi(5)= £  «*(/>')iey? -r~—  (^ + we) ~1 P-s)
s p-m *

x u\P, s)[ - iM v +  Ee(p)+ Te]«e(p) j ^ f ( 2 n ) 4S(p - p ' - k )

(15.117a)

= E Me(p')igyy -a-j M2 “e(p>s)
s  P

x ue(p, s)[-  i/ceme + I e(p)+ r e]ue(p) ~  f (2 n )48 {p -p ’ - k).
(15.117b)

The indeterminacy arises arises because p is the (physical) momentum of the 
external electron, so p2—me2= 0  and the first line is infinite; however, by 
definition the mass renormalisation constant ke is such that (15.102) is satisfied, 
so the second line is zero. Thus the value of Sfi(5), and similarly Sfl(6), is ill- 
defined. The problem derives from the fact that we are concerned with S- 
matrix elements, which are defined by a limiting procedure applied to (off- 
shell) Green functions. Had we first renormalised the Green functions, using 
non-trivial wave function/field operator renormalisation constants, we should 
have avoided this difficulty. Let us investigate the ambiguous part of (15.115) 
in more detail.



Using the definitions (15.100), (15.101) and (15.104), we may write 

-  i keme + Se(p) +  Te = A%( p2)ys + K%(p2)^y5

+ Ae(p2)(p2-  m2)+K'(p2){if-m J
(15.118a)

where

A%(p2) = r s + K e5(p2) (15.118b)

and

(p2 - m2)A \p 2)= K \(p2) - K\(m2)+ me[X '(p2) - X'(m2)]. (15.118c)

Now suppose we ignore the fact that ( ^ —me) is singular, since p2—m2; then the 
contribution from the first two terms in (15.118a) to (15.115) is (fairly) well 
defined since

~T_—  lA \(p2)y5 +K%(p2)^y5]uc{p) —  lA%(m2) -  K ^ m ^ m j y  5u%p)
P P Wle

= 2^T tA's(m? ) - K esy(m?)m'ly5u%p) (15.119)

and we have assumed

/ ( M p )  =  /(meK(p). (15.120)

If we were to cancel the (j/—me)-1 propagator against the two remaining 
terms in (15.118a) we would have
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1
[(p2 -  ml)AXp2) + K;(p2) ( ^  me)]

y - « e
= i( j+ m ')A '(P 2)+ iK ;(p 2) (15.121) 

and, combining with (15.119), we would find 

i
fl-m .

■ l - i k eme+'Z%p)+T°]ue(p)

= l( ~ ^ ~  A%(m2)y5 +  %K%Jm2)y5+ 2mtA%m2) + Ky(m2) )«'(p). (15.122)

In the same way we would find
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Thus the combined contributions of diagrams (5) and (6) would be 

S„( 5+6) =  u%p’) ie y ^ K \y(m2J y 5 + 4meA‘(m2) + 2 K;(m2)] u'(p)

x ^ y ^ l n f S i p - p ' - k )  (FALSE). (15.124)

Actually this last expression is not quite correct. The coefficients of K*(m2) and 
of A\m^) must be halved. We can see this most easily by considering the 
(hypothetical) case that the electron has zero mass, and the theory has chiral 
symmetry. Then in the notation of (15.100)

2( p)= Ky( p2) j+ K  5,( p2) h  5

=  A K y(p2) + K 5y(p2)]aK + A K y{p2) ~ K 5y(p2y]aL. (15.125)
The full propagator is then given by

S (p )= ^ + ^ 2 :(p )^ + ^ S (p )^ S (p )^ + ... (15.126)

=  [ l - i ( K J(0) + K 5,(0 ))]-1aR̂

+ [1 -  i(K,(0) -  jK57(0))] ~1aL^ + . . .  (15.127)

where we have retained only the pole contributions at p2=0. Evidently the 
effect of the radiative corrections is to ‘renormalise’ the right (left) component 
of the propagator with a factor Z R(ZL) where

Z R = {1— i[Ky(0) ± K 5y(0)3} - (15.128)
L

Thus the effect of the radiative corrections on external (electron) lines is to 
renormalise their contribution by a factor Z R£  So if we scatter a right chiral 
electron, for example, from an infinitely heavy source, the radiative corrections 
contained in diagrams (5) and (6) have the effect of multiplying the uncorrected 
contribution by a factor Z R. It follows that

Sfi(5 +  6)R =  (ZR-  l)Sfl(l)R (15.129a)
and to lowest order in a

Z R -  l * i l K 7(0) + K 57(0)l (15.129b)

Since y5uR = + uR, the coefficient of K Sy in (15.124) agrees with the correct
result (15.129) (when me=0), whereas the coefficient of K y in (15.124) is a factor 
2 too large. A similar argument applies to Ae(m2), and the correct result is

Sfi(5 + 6) = u‘(p?)ieyl,ilKt5y(mZ)y5 + 2meAe(m2)

+ K'y(m?)-]u*(p) ~ f { 2 n ) * d ( p - p ' - k ) .  (15.130)
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We note in passing that a similar argment could have been presented to justify 
the modification (by a factor of the contribution from the photon line 
insertions. These have the effect of renormalising the uncorrected amplitude 
by a factor [ l +  i>4'(0)]_1. Thus the contribution to each vertex is 
[1 +  i47(0)] " 1/2 ~  1 -^i,4'(0), as claimed in (15.112). The requirement that the 
counter term contribution Sfi(2) cancels the contributions from diagrams (3) to 
(11), in the limit p - p ' - *  0, then gives

K' + FA0) +  Gt(0)y5 - iK (0 ) + %

+ i[/cym e2)v5+ 2me/f(m2) + K°(m2)]=0. (15.131)

The terms proportional to y5 arise because of different contributions to the 
scattering of the right and left chiral components of the electron. This derives 
from the fact that electroweak theory is a parity non-conserving theory. 
However, we know that the right and left chiral components have the same 
electric charge. Thus the parity-violating contributions to (15.131) must cancel 
separately. Hence

S . OHUq , („■>— (15.132)

and substituting from (15.118c) we find 

K =  — F i (0) + i 2-^(0)—i^ (w 2)

-  / f (0)2,1/2 gv-i2m t lK';(m?)+mtK ; W ) l  (15.133) zmw(mz — )

So the electric charge renormalisation constnat K e is completely determined 
once the calculations necessary to find Fx(0), 4̂7(0), as well as K e7(mf), K 7(mf) 
and Xe/(m^), have been performed. Again we shall not quote the result. We 
leave it as an exercise (problem 15.5) to verify that (15.132) is satisfied.

15.4 Radiative corrections to muon decay

We have indicated in the previous section how all of the renormalisation 
constants (Ke, Kw, K z, K H, kh kq) which fix the counter term vertices are 
determined. In principle, therefore, we may evaluate the S-matrix element for 
any electroweak process to arbitrary accuracy, including the effects of all 
electroweak radiative corrections. We shall illustrate this by considering the 
order a radiative corrections to muon decay

-► e “ vev/i

which was computed in lowest order in §14.4. As before, we shall not actually
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evaluate the corrections, which are complicated and not in themselves 
especially illuminating. Rather, we shall discuss the various contributions, and 
in particular how the loop corrections and the counter term contributions 
combine to give a finite, calculable result.

The lowest order contribution to the process is given by the diagrams

and, as we showed in (14.118), the contribution from the second diagram is 
smaller than the first by a factor of order m jn jm h .  We shall therefore neglect 
this contribution, since it is smaller than the O(a) terms we are about to 
consider. The first set of radiative corrections are generated by self-energy, 
tadpole, and counter term insertions into the various lines

We are using the same shorthand as in (15.105), where the shaded blob signifies 
the sum of the self-energy loop, tadpole and counter term insertion. As 
explained in the previous section, the external line insertions are a priori 
ambiguous in our approach. However, the analysis given there shows how it is 
resolved. Then the contribution from diagram (3) is

and the contributions from diagrams (1), (2) and (4) may be obtained in a 
similar manner (problem 15.6). The contribution from diagram (5) is

(15.134)

=

(5) (15.135)

(15.136)



determined by the W self-energy, tadpole and mass counter terms. In the 
Feynman gauge, the propagator of the W is

A„v(p,»Jw)=  —igfiJ,P2~ mw)~1 (15.137)

and the above insertions amount to the replacement

5„v(p,mw) -*■ p, mw)[igpaK v/m l  + Yl%(p) + Twgp°~}&Jp, mw) (15.138)

where n w is defined analoguously to TIZ in (15.83). Using (15.90) it follows that

i g ^ m i  + n ^  + T ^

= [Aw(p2) -  A v ( m l W ° + [BW(P2) ~  ̂ w(P2)] • (15.139)

The terms proportional to pfp” lead to lepton mass terms via the Dirac 
equation, as shown in (14.120). Neglecting them we find

ASu>{5)= _ i M P 3H w K ) s ,oi (15140)
P ~~mw

The next set of radiative corrections arises from vertex insertions and counter 
terms

( 6 )
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( 8)

Diagrams (6) and (7) include all three-point vertex corections, analogous to 
those displayed in diagrams (7)-{ 11) of (15.105). The counter term vertex which 
appears in diagrams (8) and (9) is that given in (15.27) with K  defined in (15.24). 
Thus (8) and (9) give

AS}2)(8 + 9) =  2 KStf\  (15.142)

Since all of the counter terms are of order e2 we may expand (15.24) accurate to 
this order and obtain

K  =  K e 4- 2 cot2 0W(/CW — Kz)

— Ke 4- 2mw(mz. ~  ) HKw - K z). (15.143)

If we like, Kw — Kz can be re-expressed using (15.89), (15.90) and (15.97) to give 

~  K z =  — i[mz 2Az(mz) — wiw2̂ w(ww)]* (15.144)

The presence of a neutrino in both of the three-point vertex corrections means



that the analogue of (15.109) may be written in the form

Pv-) =  i m p %  + m p :2K v P v +  / (| v')(P2)p J(l -7 s) (15.145)

and we can neglect the / 3 term, since pM leads to lepton mass terms which we 
shall drop. Thus, for example, the invariant amplitude for diagram (7) is

x u(e)[/'r,(p2) r^ + /<2,)(p2)iv / ,2] ( 1 -VsMVe) (15.146)
and a similar expression may be obtained for 

The final set of diagrams are the four-point functions. These are too 
numerous to display in full and we merely illustrate the gauge boson 
contributions

ASfi3) =
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where the exchanged lines must be W, Z or W, y. The undisplayed diagrams 
include all contributions from scalar exchanges. We shall not need any details 
of these amplitudes. The interested reader is referred to Sirlin3 and references 
therein. Suffice it to say that all of these diagrams are (ultraviolet) finite. In 
other words they contain no poles in 2 —co which derive from the large 
momentum behaviour of the integrands. (The infrared behaviour is another 
matter, which we shall not address.)

The ultraviolet divergent contributions arise from the terms already 
displayed. Neglecting the masses of the leptons, the only divergent terms in
(15.136) are Ky and K eSy, with similar divergences from the other self-energy 
contributions. We leave it as an exercise to verify that when these 
contributions are combined with the other divergent contributions, contained 
in (15.140), (15.142), (15.146), they lead to a finite correction to the muon decay 
amplitude. (This is just a verification that electroweak theory is a 
renormalisable theory, as we have claimed but not proved.) Numerical details 
of these calculations are contained in Sirlin, who concludes that the order a 
corrections have the effect of increasing the decay rate by about 7% compared 
with the tree graph prediction (14.125).

15.5 Anomalies

We have shown in Appendix B that S-matrix elements are independent of the 
gauge-fixing parameter <*. In consequence the ghost particles and would-be
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Goldstone scalars, whose masses depend upon £, decouple from the physical 
states. This means that the physical states are complete and that the S-matrix is 
unitary. The proof of this ^-independence utilised the gauge (and b r s ) 

invariance of the functional integration measure, and this invariance may be 
verified for the (non-chiral) theories envisaged in Chapters 9 and 10.

However, the electroweak theory with which we are now concerned is a 
chiral theory; the left and right chiral components of fermion fields transform 
differently under gauge transformations. For these theories the fermionic 
integration measure is not in general gauge invariant7. In consequence the 
Slavnov-Taylor identity (B.9) is violated, and (supposed) S-matrix elements 
will be ^-dependent, because of the appearance of unphysical particles (e.g. 
Goldstone scalars) in physical processes. Clearly such a theory is nonsense; the 
gauge fixing and ghost terms in the Lagrangian were merely technical devices 
to permit the formulation of the quantum field theory, and nothing physical 
should depend upon £, if the theory is to make sense. Thus the gauge non­
invariance of the fermionic measure is a disaster for the (chiral) gauge theories 
in which it appears. It means that these theories are non-quantisable8. Only 
theories in which this problem can be evaded can be considered as candidates 
to describe reality.

We illustrate the problem by considering first the case of ‘axial electro­
dynamics’, which is described by

<£ =  lAiy'H+ i 4 K„ +  i g A ^ M  F„VF"V - # „ < ? "  (15.148a)

where

F„,s 3 ^ , - 3 ^  (15.148b)

(15.148c)

Clearly i f  is invariant with respect to local U(1)K x U( 1)̂  gauge transformations 
in which

i//(x) -*• i//'(x) = exp[ — iqA(x) — iga.(x)y 5] t/4x) (15.149a)

V„(x) -*■ V'Jx) =  F„(x) +  5„A(x) (15.149b)

A^x) ->• A'^x) = AJjc)+ d„a(x). (15.149c)

Then the left and right chiral components of if/ transform according to

\l/L(x)=aL\j/(x) -*■ ex p [-i0 L(x)]^L(x) (15.150a)

i]/R(x)=aktJ/(x) -> ex p [- i0 R(x)]i/'R(x) (15.150b)

with

0L =qA+ga. (15.150c)
R

The transformation law (15.149a) means that the fermionic measure <3\jj



transforms according to

3>\l/ {Det exp[—igA(x) — igoi(x)y5]}~l&il/ (15.151)

where the inverse of the determinant appears because integration over the 
Grassmann variable \l/(x) is defined (in Chapter 3) as the left-differentiation 
with respect to ij/(x). The determinant Det, with a capital D, is taken over both 
Dirac spinor indices and the space-time labels x. In the same way, since 
(15.149a) shows that

\j/(x) -► \j/'(x) =  $(x) exp[igA(x)—i^a(x)y5] (15.152)

the fermionic measure

3)\jf -> {Det Qxp[iqA{x)—ig(x{x)y5]}~ l2il/. (15.153)

Hence
Det exp[2i0a(x)y5] ^ ^ .  (15.154)

Thus, as anticipated, the measure is not invariant, because the left and right 
chiral components transform differently:

2goc =  0R- 0 L*O. (15.155)
Formally, we may write

Det exp[2i0a(x)y5] =  exp Tr[2i0a(x)y5] (15.156)

where, as before, the trace Tr, with a capital T, is taken over both Dirac and 
space-time labels. (The trace tr will be used when the trace is only over Dirac 
and any internal labels.) We may rewrite the trace by introducing a complete 
orthonormal set of energy eigenfunctions <pn satisfying

i y ' D ^ - ^ .  (15.157a)

E p «(x)<pJO')=5(x - jOI (15.157b)
#1

where is the covariant derivative

Dll=dll + iqVlt+igAllys. (15.157c)
Then

T r [2iga(x)y 5] = T r[2iga(x)<5(:x—y)y 5]

= T r( 2igcc(x)ys £  <p„(x)<p%y)
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= jd x d y <5(x—y) tr^2i0a(x)y5£  <p„(x)(pl{ŷ j 

= 2ig j*dxa(x)/l(x) (15.158a)



where
A(x) = 'Z < P % x ) y s (p „ (x )  (15.158b)

n

measures the ‘anomaly’. To evaluate A(x) we need to regulate the large 
eigenvalues, since as it stands the expression is only conditionally convergent. 
Thus we define

/!(;*)= hm £  <plix)y sj{J^J<Pn(x) (15.159)

where f(z) is any smooth function which rapidly approaches zero as z — oo:

/(~oo) =  / '(~ o o ) =  / " ( ~ o o ) = . . .= 0  (15.160a)

and

/(0)=1 (15.160b)

so that the contribution from any fixed eigenvalue Xn approaches unity as
M  -► oo. For example we could choose

/(z) =  ez. (15.161)

Using (15.157a), we can write
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A(x)= lim X<ioI(x)y5/ ( - ^ ) < i o n(x)
M - 0 0  ft V  M  /

= lim tr
M - o o  J  <

^  i it.:e Vs/ " i t i  K *  (15.162a)
M-»00 J

where we define

0  =  / D M (15.162b)

and we have changed from the energy eigenfunction basis cpn(x) to a plane- 
wave basis Qlkx. The definition (15.157c) of the co variant derivative DM gives the 
identity

0 2 =  y ^ y v Dv= y"y VG„DV (15.163a)

where
^  = Slt + \qV)l- ig A lly5

= D/,-2i</A„y5. (15.163b)

Then

0 2 = [My.. V.} +*&,. yJKD" -  2igApys)Dv
= D„D"+i[y„, y J  [D'i, Dv] -2i£y 5t4„D" -  iff[y„, y J /F y5D*

= D2 +  (i/4) [y„, y J  (qFpv + gGp'ys) + 2i<^y50  (15.164)
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and for any function /(x)

D ,[z(x)e^] =  [(i/c, + D ^ ] e ikx. (15.165)

Substituting back and rescaling k gives

(15.166)

We now expand /  in a Taylor series about fc2, and as M -* oo the only 
surviving terms will be up to and including the fourth derivative of / .  The 
resulting expression may be simplified by noting that

and by using symmetric integration to eliminate odd powers of k. Even so, the 
algebra is pretty horrendous, and we refer the reader to Balachandran et al.9 
for the complete treatment. We illustrate the result by dropping the gauge field 

associated with the local chiral transformation. This considerably simplifies 
the algebra, and there remain some effects which are interesting in their own 
right, as we shall see. We then find

The momentum integration is transformed to a Euclidean one. Then, as in 
Chapter 7,

and we note that the anomaly is finite, and well defined. Substituting back into

tr y 5 = tr[)V y J  = tr y s[y„, y „] = 0 (15.167)

(15.168)

k2= - e = - \ k \ 2

d 4k = id 4k = i7t2| 2 d| k\2.

Integrating by parts gives

(15.169a)

c r°°
i d4kf"( — \k\2) = in2 dxf'( — x) = in2 (15.169b)

Jo

using the properties (15.160) of the function / .  Thus

(15.170)
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(15.158) and using (15.156) and (15.154), we find that the non-invariance of the 
fermionic measure is given by

-» exp^i J d 4x #a(x) e/ivpaFMVFpff̂ ^ ^ .  (15.171)

This non-invariance indicates that the anomaly is specifically a quantum 
effect, since functional integration is the ingredient required to proceed from 
classical to quantum field theory. This quantum effect leads to a violation of 
the classical conservation law associated with the chiral transformation.

In the absence of an associated gauge field, the Lagrangian density (and 
therefore the action) is no longer invariant under a local chiral transformation. 
In fact, for the (massless) Lagrangian (15.148), the non-invariance is given by

J8?-JSP + 0(0M a ) ^ y 5̂ . (15.172)

However, the quantum effects we have been discussing generate an additional 
variation of the generating functional W. From (15.171) we see that the total 
effect of the chiral transformation in such a theory is given by

pnvppo^j

(15.173)
We require that W  is invariant under such transformations

"L-o.
<5a(x)

Hence

and we see that the (classical) conservation of the axial vector current, 
associated with the invariance of a massless fermionic theory under chiral 
transformations, is violated by the (quantum) anomaly.

Fujikawa’s derivation of the anomaly, which we have presented, makes it 
clear that the anomaly is a non-perturbative effect, even though the original 
discovery of it was noted in a perturbative context10. In fact (15.175) indicates 
that the anomaly is given exactly by the lowest order radiative corrections to 
the axial vector vertex. This is illustrated in figure 15.1. Each vertex with the 
gauge field VM is associated with a factor q, and we have seen that the effect is 
entirely due to fermionic quantum fluctuations. Thus only the single triangle 
loops illustrated contribute. All higher order radiative corrections to these are 
non-anomalous. In this treatment the anomaly is associated with the (linear)

(15.174)

(15.175)

W-+ J  exp i | J d 4x ^ i?  + gid^i/zy^y^  +  got - £ - e
16tt2
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V s

(a )

Figure 15.1 Fermion triangle diagrams responsible for the anomaly.

divergence of the fermion loop integration. We can see this as follows: the 
matrix element represented by figure 15.1(a) is

j d4k V W x ) - + ^ r 1]- (15.176)

* i+ *2= (*  +  * i+ f c ) - *  (15.177)

J-

Using the trivial identity

it follows that

(2n)* J
d*k tr + + (15.178)

Both of these are divergent, but formally we may translate the integration in 
the second integral (fc -► k —kY) which gives

(<k1+k 2f M J  d4fc tr [y5r  V M i ) ' 1̂ ]

-2
(15.179)

(2n)‘
jV /c  tr[y5t ly M + t 2r lyPl

The evaluation of (kt the contribution from figure 15.1(&), follows
immediately by interchanging

k\* P k2i g. (15.180)

Since (15.179) is antisymmetric it follows that the sum of the two 
diagrams formally satisfies

(kl + k 2YM lipa = 0 (15.181)

in accordance with the classical conservation law (15.173).
However the above arguments are purely formal, because M ppa is divergent. 

It might be thought that one could avoid this objection by using dimensional
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regularisation, which typically has the attractive property of preserving such 
conservation laws while rendering the integrals finite. In this case, however, 
dimensional regularisation is complicated by the (active) presence of the y5 
matrix. y5 is specifically tied to four dimensions; by definition, it is the product 
of the four gamma matrices y°, y 1, y 2, y 3, and its anticommutation properties 
with them then follows from the Clifford algebra. In a higher (2a>)-dimensional 
space-time, the actual definition of y 5 is problematic: do we take

y 5 = iy°y1 ___ y(2oi) (2co even) (15.182a)

or
y 5 =  iy°y*y2y 3? (15.182b)

In the first case, the axial vector current remains an axial 2co- vector, but Mppa is 
zero. In the second, the axial vector becomes an antisymmetric tensor of rank 
2co — 3, but its divergence is non-zero because y 5 no longer anticommutes with 
all of the gamma matrices. In fact, the non-zero value is precisely that already 
obtained in (15.175), and the same (finite) non-zero value is obtained if we use 
an old-fashioned co variant cut-off and remain in four dimensions throughout.

It is therefore clear that the anomaly is a real effect, and not just some artifice 
of the particular regularisation scheme adopted. For the reasons given at the 
beginning of this section, anomalies will destroy the ^-independence of S- 
matrix elements, and make the theory nonsensical. The key to evading this 
problem derives from noting that the anomaly is independent of the mass of 
the fermion field. (The fermion in (15.148) is massless, but this was not used in 
the derivation of the anomaly.) It is therefore possible to arrange that 
contributions from different fermions cancel against each other, by virtue of 
the group-theoretic structure of the model.

In a general (non-Abelian) gauge theory each of the vertices of the triangle 
diagrams will carry an internal symmetry matrix, and the anomaly will be 
multiplied by a factor

Aabc =  tr(tfl{tbt c + t ct*}) (15.183)

where now the trace is over the internal symmetry space. Thus provided Aabc 
vanishes for all axial-vector-vector triangles (and all axial-axial-axial 
triangles) the full theory will be anomaly-free.

In electroweak theory it is easy to see that this is what happens. The SU(2) 
gauge bosons have a fermionic vertex ypTa, where

Ta = g%zaaL (a =1,2,3) (15.184)

while the U(l) gauge boson-fermion vertex is y^r4, where

T *=g'(YaL + QaR)

= g '(Y + k 3aR) (15.185)

since Q =-§r3 A Y. Note that on all four vertices y 5 appears only in conjunction
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with one of the t  matrices. Thus the A -A -A  anomaly is proportional to 
tr(Ta{TV+TV>}) (a ,b ,c=  1,2,3)

= 2<5* tr ra

=0. (15.186)
The A -V -V  anomaly cancellation is not automatic, because although A is 
associated with a r matrix the V may have a t  matrix or the unit matrix. The 
potentially dangerous cases are when two t  matrices are involved (444,4be). In 
this case the anomaly is proportional to

tr(Ta{TbY + Y tb})ocdab tr Y

= Sab tr Q. (15.187)
Thus to make the theory anomaly-free we need that the sum of the electric 
charges of all the fermions should vanish

l Q / = 0 .  (15.188)
f

Remembering that each quark flavour has three colours, we see that the above 
requirement is satisfied in each family, since

ev(+ a + 3ec/+ 3e/)=o. (15.189)
We have emphasised the form of the anomaly when the axial currents are 

not associated with gauge fields, and also when the (vector) gauge group is 
U(l). Relaxing these constraints leads to more anomalous diagrams. This is 
fairly obvious from (15.175), for example. In a non-Abelian theory we should 
expect that Fpv is replaced by its non-Abelian analogue F“v, which has terms 
linear and quadratic in the gauge fields. Thus we anticipate anomalies in the 
square (AVVV ,, AAA V) and pentagon (AVVVV ,, AAAVV, A A AAA) diagrams, 
besides the triangle (AVV, AAA) diagram already discussed. Also, it is 
apparent from (15.166) that the axial gauge fields generate extra contributions 
with a different structure from those we have kept. In fact, both of these 
expectations are fulfilled; the interested reader is referred to Balachandran et 
al.9 for details, and also to Einhom and Jones11 for a very clear analysis of the 
opposite case considered in the text, namely when the vector gauge field Vp 
(rather than Ap) is dropped.

Problems

15.1 Verify the form of (1+ K)2 in (15.24).

15.2 Verify the Feynman rules (15.31), (15.41) and (15.44).

15.3 Verify (15.102) and (15.104).

15.4 Justify (15.112) by considering the scattering of an electron by a heavy 
charged particle.
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15.5 By calculating the quantities involved, or by using the results of 
reference 5, check that (15.132) is satisfied.

15.6 Determine the contributions of diagrams (1), (2) and (4) of (15.135).

15.7 Show that the fermionic functional integration measure is gauge 
invariant in q c d .

15.8 After dropping show that (15.168) follows from (15.166). 
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16 

GRAND UNIFIED THEORY 

16.1 Philosophy 

We have seen in Chapter 14 how the electromagnetic and weak interactions 
may be unified into electroweak theory. This unification leaves something to 
be desired. First, there are two independent coupling constants in the theory, g 
and g', and, second, no unification with the strong interactions (QCD) has 
occurred. The aim of grand unified theory1•2 is to rectify this by unifying 
strong, weak and electromagnetic interactions in a grand unified gauge theory 
with a single coupling constant. Once such a unification has been achieved, the 
coupling constants g, g' and g. (the QCD coupling constant) will be related by 
group theory factors to a single grand unified coupling constant. Though such 
a statement flows easily from the pen, it needs some sharpening up. We have 
seen in Chapter 7 that the values of the renormalised coupling constants 
depend on the renormalisation scale, M, and we have discussed this 
dependence in detail in §12.7, for QCD and QED. Thus, we must decide at what 
renormalisation scale M0 the coupling constants g, g' and g. satisfy the group 
theoretical relationships associated with the embedding of electro weak theory 
and QCD in the grand unified gauge group. Once we have fixed the 
renormalisation scale M0 (the grand unification scale) it is clear that these 
relationships between g, g' and g. will not hold at lower renormalisation scales 
M. This is because these coupling constants vary with Min different ways 
when the extra gauge fields associated with the grand unification may be 
ignored. On the other hand, these relationships will hold at higher 
renormalisation scales, because for mass scales large compared with the 
masses of the new gauge fields all gauge fields are on the same footing. Then 
there must be a single coupling constant g0 developing according to the 
renormalisation group equation of the grand unified theory. 

A priori, the grand unification scale M 0 might be an ordinary mass 
(~ 100 GeV). After all, (12.128) shows that for renormalisation scales of 4 or 
5 GeV, the ratio of g.(M) to e(M) is 5 or 6. This is the kind of number which just 
possibly could be attributable to group theory factors in the embedding of QCD 

and electroweak theory in the grand unified theory. However, at least for 
grand unified theories of reasonably low rank, it turns out that a ratio of g. to e 
of 5 or 6 does not come out naturally from the group theory, but smaller 
numbers arise. If the grand unification is to succeed, it must therefore be that 
unification occurs at some larger mass scale, and the desired ratio of g. to e 
arises when the renormalisation group equations are used to continue g.(M) 
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and e(M) back to ordinary mass scales. (Remember that #S2(M) decreases and 
e2(M) increases as M  increases.) Since coupling constants vary only 
logarithmically with M in gauge field theories, the grand unification scale is 
likely to have to be extremely large to achieve a significant deviation from the 
group theoretical value of g je  in this way. We shall discuss this in detail in 
§16.3. This large grand unification scale is a good thing, because typical grand 
unified theories put leptons and quarks in the same multiplets and contain 
baryon number violating exchanges. If the masses of the new gauge fields 
which mediate baryon number violating processes were not be very large, the 
proton would decay at an unacceptably fast rate. This point is discussed in 
§16.6.

16.2 SU(5) grand unified theory

Since SUc(3)x SUL(2)xU(l) of q c d  and electroweak theory has rank 4, it 
follows that any grand unified theory will have to be based on a semi-simple 
Lie group of rank at least 4. (The grand unification group has to be either 
simple, or semi-simple, with a discrete symmetry superimposed, to obtain a 
single coupling constant.) It turns out1,2 that there is only one semi-simple 
rank 4 group which allows q c d  and electroweak theory to be embedded in a 
way consistent with the quantum numbers of the quarks and leptons, namely 
SU(5). We shall restrict attention to SU(5) grand unified theory here, though 
other grand unifications are possible with higher rank Lie groups, e.g. SO(IO) 
with rank 5.

The generators Ta of SU(5) for the fundamental five-dimensional 
representation may conveniently be represented by the natural generalisation 
of the Gell-Mann matrices (see Appendix D) which we denote by Xa9 
a= 1 ,..., 24, and normalise in the conventional way so that

7r(XaXb) = 25ab. (16.1)

(A good discussion of the properties of SU(N) Gell-Mann matrices is given by 
Macfarlane et al.3) Thus

Ta= |  a =  1 , . .2 4 .  (16.2)

The colour group SUC(3) is conveniently identified with the X matrices which 
have non-zero entries in only the first three rows and columns, viz. Xl9. . . ,  X8, 
and the SUL(2) group with the X matrices which utilise only the last two rows
and columns, viz. X22, ^23 an(i ( \ /^ ^ 2 4  — y/6Xl5)/4. Thus, the generators of 
SUc(3) are

7 ? = y  a =  1 , . . 8 (16.3)
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and the generators of SUL(2) are

T’L_^22 t l = —  (16 41
1 2 2 2 3 8

It remains to identify the weak hypercharge, related to the charge Q and T \  by

Q = Tl3 + Y. (16.5)

We shall see later that consistency with the charges of the quarks and leptons 
requires the identification

Q = - y f i * i s  (16.6)
so that

Y - - ( y Y 0 X 24+ ^ X 15y s .  (16.7)

(Q must certainly be a generator of SU(5) since the photon is a gauge field.)
The gauge fields A* belong to the 24-dimensional adjoint representation of 

SU(5), and may be written as a 5 x 5 matrix

A* = A*T, = A * ^  (16.8)

as in (9.25), where Ta are the generators of SU(5) for the five-dimensional
fundamental representation as in (16.2). Having regard to the identifications of 
generators made above, we may write (see problem 16.1)

J2A>‘ =

1 1 

v / 2  ^ 6

2 B "

v ^ o

1
- r M - a
sfi

1

y 2

XI -V \Y,

7= A1} +12 
s fi

A$ A$ 2 &
>  y 5 o

Ai-i-,
s/2

X* n

~7=a u  ,5
n/ 2

F  Afs + i7

y 2

- s f \ A > ™
y s o

xs n

Xi XI
W$ 3 BP 
J l  v '3 0

W%

Yt Y*2 Y$ W*
W1 3

—y 2  + y 5 o ,

(16.9)

where A*, a =  1 ,..., 8, are the colour gluons of SUC(3), and W \, W \, W t and 
B11 are the electroweak gauge fields of §14.1. In terms of SU(5) gauge fields,
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W%={sfWA\A- J l A > [ 5)l4 

^ ± =  (^ 22 + i^ 23)/V2

B"= ~ ( s / i  A ^  + y / i A ^ / 2 .

(16.11)

(16.12)

301

(16.10)

The identifications (16.10)—(16.12) are made by observing that S'* is the 
correctly normalised field coupled to weak hypercharge etc.

The new gauge fields, XI, i = 1,2,3 and Y?,i= 1,2,3 are anti-triplets under 
SUc(3), and are defined by

1

x/2

and

1
X ^ — ^lA ^+ iA U )

(16.13)

y ; = - c U ? 6+ u ? 7) Y\\ = (A%+iA%) ^ = —pUzo + i^ i ) -
yft-

(16.14)

They are often referred to as lepto-quark (or diquark) bosons for reasons 
which will become clear shortly.

The first generation of quarks and leptons (u„ df, e~, ve) where i =  1,2,3 is 
the colour index of the quarks, has fifteen helicity states, because the neutrino 
is massless. These states fit into a 5 of SU(5), 0Fp)L, p=  1,. . ., 5, and a 10 of 
SU(5), x£*, p, q= 1, . . ., 5, as follows, with corresponding assignments for 
further generations, (c*, si9 (tf, bf, t  ” , vT) etc. (Cabibbo angles have been
suppressed, but are easily reintroduced.)

(V p)L =

dc2

d? (16.15)

and

1

72

0 “ «2 - d t

■u? 0 u? - u 2 — d 2

u? -u ? 0 - u 3 - d 3

Ul u2 u3 0 —ec

d, d2 d3 ec 0

(16.16)
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where all fields are left-handed, and the right-handed components for a given 
particle have been introduced as the left-handed components of the charge 
conjugate field. For any fermion field \j/ the notation, as in (14.4)-(14.7), is

^ R = id + y 5)^ (16.17)

and
(16.18)

with CaP having the defining property

C - y c = - ( / ) T. (16.19)

The form of (16.16) is dictated by the fact that the 10 occurs as the anti­
symmetric part of the decomposition of the product of two 5’s. Noticing that 
the generators Ta for 5 are

f a=  for 5 (16.20)

and the generators Ta for 10 are

fa = ^ (g )l + l ® ^  for 10 (16.21)
2 2

where in the first term Xa acts on the index p of x£*, and in the second term 
it acts on the index q, it is easy to check that the identification (16.6) for the 
charge operator in the 5 leads to the correct quark and lepton charges. Using 
the criteria (15.183) one sees that there is a cancellation of Adler anomalies 
between the 5 and the 10.

The assignment of quarks and leptons to multiplets of the grand unified 
group SU(5) explains things which were left unexplained by q c d  and 
electroweak theory. For instance, the third-integral quark charges are a 
consequence of the fact that the charge Q is a generator of SU(5) (as in (16.6)), 
and so traceless. Thus the sum of the charges of the particles in any 
representation of SU(5) must be zero. For the 5 this means that

~3<2d + e e=0 (16.22)

and for the 10

36d-Qe=0. (16.23)

Either way, we get

Gd=-6e/3. (16.24)

The 3 has arisen because quarks come in three colours.
Because quarks and leptons occur in the same irreducible representations of 

SU(5), there are vertices involving the lepto-quark gauge boson X  and Y of
(16.13) and (16.14) which change a quark into a lepton, e.g. those shown in
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Figure 16.1 Vertices changing a quark into a lepton.

figure 16.1. Because quark fields and their conjugate fields both occur in the 10, 
there are also vertices in which a pair of quarks annihilate, as, for example, in 
figure 16.2. These two types of vertices may be combined to produce baryon 
number violation, as, for example, in figure 16.3, where we have added a 
spectator d quark. Since baryon number is known to be conserved to a very 
good approximation, these processes must be suppressed by a very large mass 
for the X  and Y lepto-quarks. We shall see in §16.6 that this is indeed the case.

Figure 16.2 Vertices with two quarks annihilating.

d

Figure 16.3 Diagram for p—>7t°e+.

The q c d  and electroweak coupling constants, gs, g and ^'may be related to 
the grand unified coupling constant gG (at the unification scale) by writing 
down the SU(5) gauge invariant couplings of the quarks and leptons. The 
appropriate terms (as in (9.36) and (9.15)) are

^ f e r m i o n  = i(V ^  + i X ^ T > ^ (16.25)



where

D „(¥,)L= a„(4yL -  i gG W X K

304 GRAND UNIFIED THEORY

= ̂ ( vPp)L-i3G(^*)P,(vP,)L (16.26)

and

D „ x e » = < v c F + i ^ + ( y )  x f j

= W  + i gG KA^rX?  + ( ^ ) 45x a  (16.27)

where A* is as in (16.8) and (16.9). (Fermion masses will be introduced in §16.5 
after spontaneous symmetry breaking has been discussed.) Using the 
antisymmetry of xL in its indices (16.27) simplifies to

D,x£* = 8 ^ + 2 i ^ ) pX q (16.28)

when it is coupled to xf*. With the aid of the identity for any Dirac field if/,

^ y y iA £ = ^ R/ei> R  (16.29)

one may easily check that the gG independent terms in (16.25) are the standard 
kinetic energy terms for quarks and leptons. The interaction terms in (16.25) 
are

^ r ion =  ̂ G('Pp)L?/i(^ )p ,(% ) L -20Gx7V (^)pX « (16.30)

with Ap as in (16.9), 0Fp)L as in (16.15), and x£* as in (16.16). It is clear from (16.9) 
that SUC(3) and SU2(2) are embedded in SU(5) in the natural way, so that

0s= 0  = 0g* (16.31)

We may identify the coupling constant g' for the U(l) of weak hypercharge by 
retaining only B** dependent terms in (16.30). Then we obtain

p̂feimkm _  _  + i(u f)Ly"(Uj)L

+ -  eRf  eR -  i(df)R/(d j)R 

-2eLy"eL—K y"vL] (16.32)

where we have used the identity for any Dirac field ij/,

(16.33)

Comparing with §14.1, we see that

f f W W  (16-34)
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16.3 The grand unification scale and 0W

The scale at which grand unification occurs, with a single coupling constant 
for all gauge field interactions, may be determined using the renormalisation 
group equation to extrapolate4,5 the known values of the q c d  and electroweak 
coupling constants gs(M), g(M), and g'(M) at an ‘ordinary’ renormalisation 
scale. At the SU(5) grand unification scale, the coupling constants must satisfy 
(16.31) and (16.34). Since gG is in the first instance unknown, there are two 
constraints. These may be used, for example, to determine the grand 
unification scale JVfG from the known values of gs and e at ordinary energies, 
and to predict the ratio g'/g, and so the weak mixing angle, 0W, at ordinary 
energies. Equations (12.29b), (12.25) and (12.18) with s = M /M G enable us to 
relate coupling constants at some ‘ordinary’ renormalisation scale Af and the 
grand unification scale MG. For the U(l), SUL(2) and SUC(3) factors of 
electroweak theory and q c d  we have

(g’)~ 2(M) - (gr)~ 2{Mg) = 2by In(M/M0) (16.35)

g- 2(M) - g~ 2(Mg) = 2b2 In(M/MG) (16.36)

and

g - 2( M ) - g - 2(MG) = 2b, In(M/MG) (16.37)

where, using a slight generalisation of (12.15) (see problem 16.2),

1611^= ~ ^ N g (16.38)

16,12b2= ~ - ^  (16.39)

4 N
16n2b3= 11------------------------------------- (16.40)

We have assumed NG generations of fermions (ui5 df, e “ , ve), (c„ sf, jx, v„), (tf, bf, f, 
vT) etc, where i =  1,2,3 is the colour index, and there is the usual assignment to 
multiplets of SUL(2) x U(l) as in §14.1. Possible contributions of Higgs scalar 
loops to (16.39) and (16.40) have been ignored. It turns out (see problem (16.3) 
that such contributions make only a small difference. From (16.31) and (16.34),

9s(Mg) = g(Ma) = V ? g'(MG) = g0(Ma). (16.41)

Also, from §14.21,

g(M) sin 0W(M) = g'(M) cos 0W(M) = e(M) (16.42)

where 0^(M) is the value of the weak mixing angle at the renormalisation scale
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M. Thus, (16.35H 16.37) imply that

e~2(M) sin2 8w{M )-2 b 2 ln(M/Ma) = g - 2(M )-2 b 3 ln(M/MG)

(16.44)

and

sin2 0w(Af)=gs V  + 2e2(62- 63) In(M/MG)

3(^3 ~  b2) (562 -  3 6t)«(M)/«s(M)
863-3 (6 x+ 6 2) 863 —3(6j + 62)

where a(M) and as(M) are the fine structure constant and q c d  fine structure 
constant as in (12.126) and (12.122). With bu b2 and b3 as in (16.38)-(16.40), we 
see that, at this order in perturbation theory, the predictions for M a/M  and 0W 
are independent of N a, the number of generations of fermions, and are

With the values of as(mz) and a(mz) given by (12.121) and (12.129), we obtain

The extremely large value of the grand unification scale MG has arisen 
from the logarithmic dependence in (16.46) with a right-hand side of order 
30. The predicted value of sin2 0W(M) at M  — mz differs substantially from 
the value |  at the unification scale M  = MG which follows from (16.31) and
(16.34). Even when many small corrections to the equations of this section 
are made, including higher-order perturbation theory, effects of quark 
thresholds, and the contributions of Higgs scalars, the predicted value of 
sin2 0W cannot be brought into agreement with the experimental value of 
0.233 at M = mz. (However, in supersymmetric grand unified theory, which 
is outside our scope here, agreement can be achieved.)

ln(MG/Af) =
7t( 1 — 8ot(M)/3as(M)) 

11a (M)
(16.46)

and

(16.47)

MGi 5 x  1014 GeV (16.48)

and

sin2 0W(M) =  0.206 M  = mz . (16.49)



With the value of M a in (16.48) and the value of as(m2) of (12.121) the 
grand unified fine structure constant is given by

«g(Mg) = gh(M0)/4n = gf(MG)/4n »  2.4 x 10" 2 (16.50)

where we have assumed three generations of fermions.
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16.4 Spontaneous symmetry breaking for SU(5) grand unified theory

Since the only massless gauge fields we want are the photon and the colour 
gluons, we must introduce enough Higgs scalar multiplets into the theory to 
break the SU(5) gauge symmetry to SUC(3) x Ue(l), where UG(1) is the U(l) of 
electromagnetism. There must therefore be Higgs scalars to give masses of 
order 100 GeV to W 1 and Z° and Higgs scalars to give masses of order 
1015 GeV to the lepto-quark gauge bosons X  and Y of (16.13) and (16.14) 
(because, as observed in §16.1, the masses of these new gauge bosons must be of 
the order of the grand unification scale (16.48)). Since two very different mass 
scales are involved, we are going to need at least two multiplets of Higgs 
scalars with very different vacuum expectation values. A suitable choice is a 24 
of Higgs scalars (corresponding to the adjoint representation) to break SU(5)
to SUC(3) x SUl(2) x U(l), and a 5 of Higgs scalars (corresponding to the
fundamental representation of SU(5)) to break SUc(3)xSU L(2)xU(l) to 
SUc(3)xUe(l).

SU(5) -  SUC(3) x SUl (2) x U( 1) -► SUC(3) x UQ( 1). (16.51)
24 5

The expectation values are chosen so that the 24 gives masses to the lepto- 
quark bosons X  and Y of order 1015 GeV, and the 5 gives masses to Z° and 
W* of order 102 GeV. (There is also a negligible contribution from 5 to the 
masses of X  and 7.) The SUL(2) doublet of Higgs scalars introduced in §14.2 is 
contained in the 5, and it is in these components of the 5 that the v e v  must 
develop.

To realise this scheme of spontaneous symmetry breaking5 we have to write 
down a suitable Higgs scalar Lagrangian containing the 24 of Higgses, which 
we write as a 5 x 5 matrix,

4>s £  <t>Ja (16.52)
a =  1

where Ta are the generators of the five-dimensional fundamental 
representation of SU(5) as in (16.2), and the 5 of Higgses, which we write as a
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H 2

H =  H 3 

\ H S)

(16.53)

(It is convenient to write the adjoint representation of Higgs scalars as a 
matrix, as in (16.52), just as we often write the adjoint representation of gauge 
fields as a matrix, as in (16.8) and (16.9).) For simplicity, we first consider the 
Higgs multiplet O in isolation, and then the multiplet H in isolation, returning 
later to the coupling between these two sectors.

For the adjoint representation of Higgs scalars <& the most general 
Lagrangian (apart from coupling to fermions) is

j^= T r(D /D )2 ~m 2 Tr 3>2- ^ ( T r  <D2)2

— A2 Tr <$4 (16.54)

where we have imposed a discrete symmetry under -► — $  to avoid a Tr <I>3
term.

Using (9.15) and (9.41) for the co variant derivative of scalar fields in the 
adjoint representation,

G r f ' - W a - g f a t M M c  (16-55)

so that
(16.56)

Corresponding to (16.54), the effective potential at tree approximation is

V*= ml Tr 0>l + (Tr <J$2+ X2 Tr<&£ (16.57)

Minimisation of this expression shows that the desired spontaneous symmetry 
breaking to SUC(3) x SUL(2) x U(l) occurs provided

A. > 0
- 7  
"30 '

(16.58)

the second condition being necessary for the potential to be bounded below. 
The form of expectation value corresponding to this symmetry breaking is

d>r = y is
diag{ 1, 1, 1, - i  - f } (16.59)

and at the minimum
2 = „2=<t> c = v, m ll(h  +wA2). (16.60)



The co variant derivative term in (16.54) produces gauge field mass terms

^ n a s s = - ^ T r ( [ ^ ,O c] 2). (16.61)

With <&c at the SU(3) x SU(3) x U(l) invariant minimum given by (16.59) and
(16.60), and AM given by (16.9), one verifies (see problem 16.3) that only the 
lepto-quark gauge fields acquire masses and these masses are given by

*1S a b i £  ( * ? * '+ f? n ) -  (16.62)
i =  1

Thus all three colours of X  or Y lepto-quarks have the same mass mx or my, 
and

m2x=m^ = yiQg^  (16.63)

As discussed in §16.1, the grand unification scale M G is of the order of the 
lepto-quark masses mx, my. Thus, using (16.48) and (16.50), we find that the 
v e v  for the adjoint of Higgses is given b y

5 x 1014 GeV

”* "  T T m i r  * 1,5 * 10 GeV' (,6 -64)
The general Lagrangian for the 5 of Higgs scalars H is

&h= ^ ± H ' H - ^ ( H ' H ) 2- (16.65)

To break SUC(3) x  SUL(2) x  U(l) to SUC(3) x  UQ(1) we must take the v e v  in the 
neutral, SUL(2) doublet, colour singlet component of H. With the 
identification of generators for the 5 of (16.3), (16.4) and (16.6), the appropriate 
component is H 5. The tree approximation effective potential corresponding to 
(16.65) is

K„ =  ̂ t f t t f c +  ̂ ( / / t H c)2 (1666)

and at the asymmetric minimum

(Hs)c =  v h =  —yn\lk 3. (16.67)

This v e v  gives masses to W1 and Z° as in §14.2. (In the notation of §14.23 and 
§14.30, H 5 is 0°, and vH is v /y / l)

In the absence of cross-terms coupling O and H, there arises the difficulty 
(see problem 16.5) that there remains a massless combination of the colour 
triplet components of H  and O, after taking account of the Higgs mechanism. 
Such massless scalars would, amongst other things, lead to disastrously rapid 
baryon number violating processes. This difficulty is overcome when the cross­
terms are included. The most general terms coupling O to H  are

«2Wr = ~ k sH fH  Tr <P2 -  X6H fQ>2H (16.68)
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where we have again imposed a discrete symmetry, <I> -► — O. The 
corresponding tree approximation effective potential terms are

Vqh = A,$HqH q Tr Oc +  A.$HqQ)qHc. (16.69)

When the complete effective potential made up from (16.57), (16.66) and (16.69) 
is minimised, the troublesome colour triplet of Higgses acquires a mass of 
order mx, and there are small corrections to the form of the v e v  (16.59). It is 
necessary to ensure that vH (the v e v  of the 5) remains of order 100 GeV, while v# 
(the v e v  of the 24) is of order 1015 GeV, so that the appropriate mass hierarchy 
for W*, Z° and X, Y is retained. This turns out to require a fine tuning of the 
parameters in the effective potential to 24 orders of magnitude! This unnatural 
fine tuning is readily disturbed by radiative corrections and constitutes one of 
the major aesthetic objections to grand unified theories (the hierarchy 
problem). The resolution of this difficulty may require the use of 
supersymmetry, which produces miraculous cancellations of radiative 
corrections. However, the large subject of supersymmetric gauge field theories 
is outside the scope of this book.

16.5 Fermion masses in SU(5)

As in electroweak theory, it is not possible to introduce fermion mass terms 
directly into the SU(5) grand unified theory consistently with the gauge 
symmetry. The reason for this is as follows. For a general Dirac spinor field t/f, 
the mass term is constructed from ij/ij/ and (see problem 16.6)

^  =  IpR\l/L + = -  ij/l CiAl+ he. (16.70)

where we have used (16.18), and C is the charge conjugation matrix with 
defining property (16.19). With (a generation of) fermions in a 5 and a 10, as
(16.15) and (16.16), mass terms could a priori arise from 5(g) 10 and 10® 10. 
However,

5®  10 = 45 + 5 (16.71)

and

10® 10=45 + 5 +  50. (16.72)

In neither case can we construct a gauge singlet, and if mass terms were 
introduced directly into the Lagrangian they would break the gauge 
invariance (and so spoil the renormalisability).

On the other hand, since 5 or 5 is contained in (16.71) or (16.72), it is possible 
to write down gauge invariant Yukawa couplings of the fermions to the 5 of
Higgses. Then spontaneous symmetry breaking can give masses to the
fermions. For the first generation of fermions (and ignoring Cabibbo angles
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which mix generations) the gauge invariant Yukawa interactions are

jSfV* -G \((V p)lCxl«Hl + h.c.)

-  Ge2(cMWf(xP)TC x?flf + h.c.) (16.73)

where epqrs, is the totally antisymmetric Levi-Civita symbol, and the 
superscript e on the Yukawa coupling constants G\ and G\ labels the 
electron’s generation of fermions. After spontaneous symmetry breaking the 
first term gives mass to d quarks and electrons, and the second term gives 
masses to u quarks (and similarly for other generations). Explicitly, using
(16.15), (16.16) and (16.67), we find the mass terms

( t  a A  +  e e )—4G;„„ i  Q«u,.

There are thus the masses

(16.74)

= me=G e1i;H/N/5  (16.75)

and

mu = 4Gc2vH. (16.76)

The equality of the quark and electron masses applies at renormalisation 
scales greater than or equal to the grand unification scale. (The SU(5) 
invariant Yukawa interactions of (16.73) presuppose that we are working at a
scale at which the grand unified symmetry group is applicable.) There will be
corresponding results for other generations of fermions so that

ms =  mp . (16.77)

and

mh = mr. (16.78)

It is possible to use the renormalisation group equation (12.21) to turn the 
predictions for fermion masses (16.75), (16.77) and (16.78) at a renormalisation 
scale greater than or equal to the grand unification scale, into predictions5,6 at 
an ‘ordinary’ renormalisation scale at which we usually define renormalised 
masses for leptons and quarks. From (12.21),

m(s)/m =  s " 1 exp^ -  J  ym(#(s'))^. (16.79)

Using (12.19) to change the variable to g,

m(s)/m = s ' 1 exp ̂  ym(g)j (16.80)



and inserting (12.10) and (12.12) (for four dimensions, s=0),

m(s) =  s " 1(g2(s)/g2)bJ2bm. (16.81)

In terms of the renormalised mass m(sM) for renormalisation scale sM , given 
by (12.27),

m(sM) — (g2(s)/g2)bJ2bm(M). (16.82)

For

s =  M/M (16.83)

we have

m(M) =  [_g2(M)/g2(My]bJ2bm(M) (16.84)

where we have used (12.25) and (12.118).
In the case of SU(5) grand unified theory at renormalisation scales below the 

grand unification scale there are contributions to the mass renormalisation 
from the gauge fields of each of the factors SUC(3), SUL(2) and U(l). Thus, for 
any fermion mass m,

m(M)/m(M) =  (g^M )lg^M )f- l2bigHM)lg2( M ) f ^

x(g '2(Ai)/g'2(M))b̂ 2b' (16.85)

with b3, b2, bl as in (16.38H 16.40), and b3, b2, determined from (12.12) using
the assignment of the fermion to representations of SUC(3), SUL(2) and U(l), 
respectively. If, for instance, we wish to continue the prediction (16.78) to an 
‘ordinary’ renormalisation scale, we require

167t2b3 = 4  167t2b2 = f  16jr2b i,= i^  for b quark (16.80)

and

I6n2b2=0 167t262= f  167t26 i = |  for t  lepton. (16.81)

With the aid of (16.38)—(16.40) and (16.85) this leads to

^ ) / m b(M) =  ̂ 2AM)lg2(M )fl(l 1 2(M)/<?'2(M))3̂ °  (16.88)

where N G is the number of generations of fermions. We may now obtain the
required prediction for mb/mx at an ‘ordinary’ renormalisation scale by taking 
M  = M g and, for instance, M  =  mz. At M = M G the relation (16.78) holds 
between the masses and the relations (16.31) and (16.34) hold between the 
coupling constants. The variation of g2(M) and g,2(M) with M  is given by 
(16.37) and (16.35). Using the empirical values

as(mz) = 0.113 a _1(mz)=  127.9 sin2 0w(mz) =  0.233 (16.89)
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together with (16.42), the result for three generations of fermions, N G = 3, is

mb(mz)/mr(mz) -  2.2. (16.90)

For a r mass of about 1.8 GeV, mb(mz) is about 4.0 GeV compared with a 
value of mb from states containing bottom quarks of 5 GeV. Quark masses 
mq as derived from current algebra are often defined at a scale M  given by

M  = 2mq(M) (16.91)

which corresponds to the threshold for producing quark-antiquark pairs (if 
such a thing were possible.) The continuation from M  =  mz as in (16.90) to 
this M  does not make much difference to the value of mh/mT since it involves 
less than an order of magnitude in M, whereas the extrapolation to the grand 
unification scale is over 15 orders of magnitude. Similar, but less successful 
predictions may be made for m jm „ and md/me.

16.6 Proton decay

It was observed in §16.2 that there are processes in the SU(5) grand unified 
theory (e.g. that of figure 16.3) which can produce proton decay1. It is easy to 
estimate the order of magnitude of the proton lifetime. For processes such as 
this one, with low energies associated with the external legs, the amplitude may 
be approximated by using a current-current four-fermion interaction 
proportional to aGm*2 (or acjmf2) with the grand unified fine structure 
constant given by (16.50), and the lepto-quark mass mx (or mY) given by

mx & M G (16.92)

with M g as in (16.48). Squaring the amplitude to get the decay rate, and getting 
the dimensions right using the proton mass mp, we may estimate the proton 
lifetime rp to be

Tp« a G2m£mp-5

« 3  x 1030 years (16.93)
where the numerical values of (16.48) and (16.50) have been used. Although 
more sophisticated treatments can increase tp to as much as 1031 years, 
consistency cannot be achieved with the observed lower bound of 6 x 1032 
years. However, in supersymmetric grand unified theory, which is outside 
our scope here, a sufficiently long proton lifetime can be obtained. The 
particles into which the proton may decay are limited by symmetry principles. 
For example, the amplitude of figure 16.3 obeys the selection rule

A (B -L )= 0  (16.94)

where B, L  are baryon number and lepton number, respectively. This is true of
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all amplitudes that can mediate proton decay in the SU(5) grand unified 
theory. (See problem 16.7.)

Problems

16.1 Check the assignment (16.9) of the gauge fields to the adjoint 
representation of SU(5).

16.2 Show that when the left- and right-handed components of fermions are 
assigned to different representations of a gauge group, then (12.15) generalises 
to

f> =  (16712) - 1  C1 X  E  C2*(R )^

where the group theory factors c*(L) and c£(R) are for left- and right-handed 
fermion fields assigned to representation R  of the gauge group, respectively.

16.3 Calculate the contribution of Higgs scalar loops to (16.39).

16.4 Verify that the Higgs scalar expectation value given by (16.59) and
(16.60) gives masses only to the lepto-quark gauge fields (as expected from the 
symmetry of this expectation value).

16.5 Show that there is a massless combination of the colour triplet 
components of H  and O, after spontaneous symmetry breaking, in the absence 
of cross-terms coupling O and H.

16.6 Check (16.70) for a fermion mass term.

16.7 Show that the selection rule A{B—L) =  0 applies to all amplitudes 
mediating proton decay in the SU(5) grand unified theory.
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oc

The Schrodinger picture field operator is 4>{t = 0,x), and the corresponding 
eigenstates |</>(jc), t —0) are given by

<£(t =0, x)\<f>(x), t = 0 )  =  0(jc)|^(jc),t=o>. (17.8)

Then the partition function of (17.1) may be written explicitly as a ‘summation’ 
over the eigenstates:

Z = Z  < (/> (x ),t= 0 |e-^(jc),t= 0 ). (17.9)

Second, we make an analogy with the zero temperature field theory of a scalar 
field. From (4.2), and the field theory analogue of (2.5),

0 " W , t"\4>\x), O

= m x ) , t = 0 \ e - m r- n\4>’(x),t= 0)

j*^7r exp i dt 0)^ (17.10)

where the path integral is over all functions n(t, x) and over functions satisfying 
the boundary conditions (4.3). If, heuristically we introduce a variable

T =  U =  ixo (17.11)

and take the limits of integration in (17.10) to be

tf = 0 (17.12)
we obtain

< ^ W ,f  =  0 |e - ^ |^ ) , ? = 0 >

oc J^</> exp dr j d 3x ^ n ^ ~  — Jf(n, </>)̂  (17.13)

where <£ and k are now regarded as functions of t  and x , and the path integral is 
over all functions n ( x , jc), and over functions </>(t, x )  satisfying the boundary 
conditions

<MP, x) =  P (x) <K 0, *) =  (17.14)

It should be noted that, although the introduction of the variable t  here is 
formally similar to the introduction of the variable x° in (4.10), the
interpretation is quite different. In Chapter 4, we introduced x °  and continued
to Euclidean space in order to make the path integral well defined, but at the 
end of the day we continued back to Minkowski space to obtain the physical 
generating functional and Green functions. Here, we introduce the variable t  
to make a bridge from field theory to statistical mechanics. There will be no 
question of continuing back to the variable t, because our goal is to obtain the 
partition function, which is a thermodynamic object with no time dependence.



The final step is to take

|<j>"(x), t = 0> = 10'(x), t = 0> = |</>(x), t = 0> (17.15)

in (17.13), and ‘sum’ over all eigenstates, as in (17.9). Then we obtain
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Z oc @<t> exp
J  periodic J

dr

The boundary conditions (17.14), together with (17.15), mean that the path 
integral is now restricted to functions # t, jc) which are periodic in t with 
period /?,

(j)(T = 0, x) =  <£(T =  jS, x) (17.17)

and the fact that we sum over all eigenstates means that all such functions are
to be integrated over. The path integral over n  is still over all 7 t( t ,  x).

When the Lagrangian and Hamiltonian densities take the form

X(4>, W )  = %d0<«2 + /W>, Vfl (17.18)

and

(17.19)

the integration over n may be carried out explicitly with the aid of (1.14) (much 
as in §4.1) to obtain

Z =  N(p)

= N W  f

S>4 > exp — ( dr d3x \ ( ^ )  -M ,V< p) 1 
periodic JO  J J

^ e x p  J  dr j*d3x =^(0,^0)
J  periodic

where

(17.20)

(17.21)

and N(P) is a temperature dependent normalisation, arising from the operator 
determinant when the path integral over n is carried out.

17.2 Partition function for free scalar field theory

For the free scalar field theory, the path integral (17.20) becomes a Gaussian 
integral, and may be carried out exactly. The appropriate Lagrangian is

n<t>,d,4>)= (1722)

where we have denoted the mass by m rather than ju to avoid any possible
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confusion with the chemical potential, in the thermodynamic context. 
Thus

Z =$(/?) f 2(j) exp ( —7. f dr' fd3x' |* dr d3x(j)(x ) A(x ,x)cp(x) 
J  periodic V J o J J o J

where
Aix', x) = ( — d ffi + m2 )S(x' — x) 

with the shorthand notations

<5(x'-x) = <5( T' - x)d(x?-x) 

x  =  (  —  i t ,  jc)

and 1)̂  as in (17.21). Following (1.6) we obtain

Z = N(P) exp( —̂  Tr In A)

(17.23)

(17.24)

(17.25)

(17.26)

(17.27)

where the operator trace is to be carried out in a way appropriate to functions 
(/>(r, x) obeying the periodicity condition (17.17). To evaluate this trace, we first 
observe that the periodicity of 0 in 0 < t  < /? means that it can be expressed in 
the Fourier expansion

with the Matsubara frequencies for bosons,

(o„ = 2 nn/P bosons

with n an integer.
This can be made shorthand by writing

d3P

with

and

(2rc)3

p = ( i ( o „ , p )

p -  X  =  0 ) nT — p * X .

Correspondingly we write (see problem 17.1)

’ d 3p
d(x

and

p - i  p - ( x ’ - x )

(2 TC) 3 

d3P

(17.28)

(17.29)

(17.30)

(17.31)

(17.32)

(17.33)

(17.34)
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where

p i = - ( c o 2n+ p 2). (17.35)

Thus, setting x '= x  and integrating (and summing) over all values of x,

= Jd3xE ln(con2+/>2+m 2). (17.36)

Such frequency sums are easily done. (See Appendix E.)
The result is

r r rU
Tr ln A =  d3x {/? J p 2 + m2 + 2 ln[l -  exp( -  P-Jp2 + m2)]

J  J

+ (yjp2 + w2)-independent constant}. (17.37)

Using (17.37) in (17.27),

—/?F =  ln Z = — J d 3x J^ 3  +  + ln [l — exp(- f i j p 2 + m2)]j

(17.38)

after cancellation of the constant in (17.37) against N(P), as discussed in 
Appendix E.

When the mass of the scalar field is negligible compared with the 
temperature, the integral in (17.38) is particularly easy, and we find for the free 
energy density $F (apart from an additive temperature independent constant 
corresponding to the zero-point energy of the vacuum)

— K2 K2T*
* - 9 0 ^ - “ 90" T> m  (17 39)

where we have written

1 d 3x (17.40)
’- l e

From (17.5) and (17.6), the corresponding pressure and entropy density of 
the ideal ultrarelativistic boson gas are

p  = 7i2T4/90 (17.41)

and

^ = 2 n 2T 3/45 (17.42)
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where

S=  d3x 5 f (17.43)

From (17.4), the energy density p is

p =  7t2T 4/30. (17.44)

17.3 Partition function for gauge vector bosons

A subtlety which arises for gauge fields is that there are only two independent 
degrees of freedom for a massless vector field, but in a typical renormalisable 
gauge the Lagrangian involves four degrees of freedom. The two extra degrees 
of freedom are not physical and cannot be in equilibrium with a heat bath. 
There are also the Faddeev-Popov ghosts, which do not correspond to physical 
particles and lead to the same difficulty. The resolution of the problem is 
obtained by noticing that there are gauges (for instance axial gauge) in which 
each gauge field has only two degrees of freedom, and in which there are no 
Faddeev-Popov ghosts. In such gauges there should be no difficulty, and the 
analogue of (17.20) should be correct (with two factors of N(/?), one for each 
gauge field degree of freedom) and should equal Tr e “^ .  In other gauges, we 
may continue to use this expression, with the Faddeev-Popov ansatz for i f .  
(These points are discussed in detail by Bernard4.) However, in general Z, is 
not equal to Tr e- ^ ,  because the trace would involve unphysical states, which 
cannot be in equilibrium with a heat bath. Thus, for gauge fields

with i f  as in ( 10.57), ( 10.58) and (10.59) with the fields functions of x == ( — it, jc) ,  

and derivatives 8M replaced by 8̂  (as in (17.21)), and dG the number of gauge 
fields (the dimension of the adjoint representation of the gauge group). The 
Faddeev-Popov ghost fields are treated as having the same periodicity in t  as 
the gauge fields, rather than in the way we shall treat fermion fields in the next 
section. The reason is that the (unphysical) ghost fields arise from a 
determinant defined in the space of gauge fields. (See (10.40), (10.43) and

In the free-field limit (g -► 0) we may again perform the Gaussian path 
integrals exactly. For notational simplicity, we consider the Abelian case. In 
the non-Abelian case we will just have to multiply by the number of gauge 
fields the result for F.

J  periodic J  periodic

(17.45)

(10.56).)
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For 0 =  0,

z= m m 21 2 A* exp
J  periodicjJ  pe

I exp dx d^rf
J  periodic J

dx(

d̂ rj

where
FMv= aM v- a v̂  

and we have adopted the notation

dx =

Thus,

z = i m r  <2>AM exp —̂
J  periodic

*dt j d 3X

(17.46)

(17.47)

(17.48)

x @t]*3)ri exp— I dx'dx rj"
J  periodic J

(x')C(x', x)rj(x)

where

and

£H x \ x)= ( g ^ px -  (1 -  r  ' K ' m ?  -  X)

(17.49)

(17.50)

C(x\ x) = d*.dpxd(x’—x) (17.51)

with S(? — x) as in (17.25). Performing the Gaussian path integrals we obtain 

Z =  lN (m  2 exp( -  ̂  Tr In B) exp(Tr In C). (17.52)

Fourier transforming as in (17.33) and (17.34) we write

1
£H x',x) = - X  

P n %
r „ — 1D-(X —(x'-xl

(2n)3 ~

X [ p V - P " W ) + P 2r V W ]  (17.53)
where we have separated into projection operators. The logarithm of B may 
now be taken by taking the logarithm of the coefficient of each projection 
operator. Taking the trace both in x space and in the space of Lorentz indices, 
we obtain

T r l n B = i j * d x X j [3 In p2+ ln(£ “ 1 p~  2)]

- M S 4 ln(a;2 + p ) (17.54)



where we have dropped an additive temperature independent (infinite) 
constant. Also,
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d3p
J (2rc)

leading to

C (x ',x l= i £  e - ^ - V  (17.55)

Tr In C =  J d 3x £  ln(<nB2 +p2). (17.56)

Substituting (17.54) and (17.56) in (17.52) gives

d3p
Z = T O )]  2 exp

(2n)2
2 In (cD2n+p2)). (17.57)

This is just what we had in §17.2 for m = 0, but with the exponent doubled. 
Thus, we obtain for the free energy density

^■=-27c2r 4/90. (17.58)

The Faddeev-Popov ghosts have cancelled the contribution from the two non­
physical degrees of freedom of the gauge field.

17.4 Partition function for fermions

In extending the discussion of §17.1 to fermions we recall that physical 
observables always involve even powers of the Dirac field ij/ (because ij/ 
changes sign under a rotation through 2n). Thus, the eigenstates | ±  ij/(x), t = 0} 
of the Schrodinger picture field operator $ (t= 0 ,  jc) correspond to the same 
values of the physical observables and describe the same state. There is 
therefore some ambiguity deriving a path integral formulation of the partition 
function. To obtain a prescription which is consistent with Fermi statistics 
when thermal averages are calculated, it turns out to be necessary to start from

Z = K ^ ( jc ) , t= 0 |e - ^ |- .A ( x ) ,t= 0 ) .  (17.59)

The analgoue of (17.20) for fermions is then

Z=N'(P) f  exp f  dx fd 3x i?(^ ) (17.60)
Jantiperiodic J O  J

where in the field i// is understood to be a function of r and x  antiperiodic in 
0< t< jS ,

if/( t  =  0 ,*)=  -i/K t  = 0,x) (17.61)

and derivatives d̂  are understood to be replaced by d̂  as in (17.21). An



appropriate Fourier expansion for i//(x) is therefore

where the Matsubara frequencies for fermions are

a)n= ~ f e r m i o n s  (17.63)

with n an integer, and x, and p-x are as in (17.26), (17.31) and (17.32). 
For the free-field case, the appropriate Lagrangian is

&W) = (17.64)
Thus

Z =  N'(P) j p( -  dx j dx ^(x')Z)(x', x)i//(x) ) (17.65)
Jantiperiodic \  J J J

with
D ( x x )  =  (if* 8̂  + m)6(xf -  x). (17.66)

Performing the Gaussian path integral,
Z = N'(P) exp(Tr ln D). (17.67)

The trace is evaluated by Fourier transforming, much as in §17.2, except that 
the Matsubara frequencies are given by (17.63) and we have to take a trace on 
the Dirac indices as well as on x.
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D (x ',x )= iZ
P  n

leading to (see problem 17.2) 

Trln D =

d P + (17.68)
(2*)

d3p 2 In( m 2 - p 2)
(2n)3

ln(co2+p2 + m2). (17.69)

Performing the (fermion) Matsubara frequency sum (see Appendix E) gives 

Trln D =2

f  d P _ L  „ 2  _ L  m 2 \

J (2n)3

1 r a ̂
d 3x { p y / p 2 + m 2 + 2 ln[ 1 + exp(-  f i j p 2 +  m2)]

J (2 « )3

+ (> /?  +  m2)-independent constant}. (17.70)

Using (17.70) in (17.67)

-jSF = ln Z = 2  j*d3x j* ^ ^ { j8 N/p 2+m 2+ 21n[l+ exp(-)?x/p 2+m 2)]}

(17.71)
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after cancellation of the constant in (17.70) against For T  > m, we find for
the free energy density (apart from an additive temperature-independent 
constant)

S’ — — 7Tt27’4/180. (17.72)

For massless fermions (with only one helicity state) a similar calculation, using 
Weyl spinors, gives half the above answer. (See problem 17.3.)

We can summarise the results of the last three sections for the free energy 
density of an ideal ultrarelativistic gas (T>m) as

^ = - 7 t 2r 4(JVB+ iN F)/90 (17.73)

where 1VB and N F are the number of bosonic and fermionic degrees of freedom, 
respectively. (JVB = 1 for a neutral scalar field, NB = 2 for a neutral gauge field, 
iVF= 4  for a Dirac field where there are two helicity states for the particle and 
two for the antiparticle, and NF= 2 for a Weyl field.) Correspondingly, using
(17.5) and (17.6), the pressure P and entropy density S ’ are

P = 7t2T4(NB+ iN F)/90 (17.74)

and

y ’ = 27t2T 3(NB+flVF)/45 (17.75)

and, using (17.4), the energy density is

p = n2T 4(NB + |iV F)/30. (17.76)

17.5 Temperature Green functions and generating functionals

For simplicity of presentation we shall restrict the discussion to scalar fields, 
but the changes necessary to include gauge fields and fermion fields will be 
clear from the discussion of previous sections. In Chapter 4, when we studied 
Green functions and generating functionals for these Green functions at zero 
temperature, the Green functions had time dependence and carried dynamical 
information. Here we shall discuss generating functionals for temperature 
Green functions which contain information about the equilibrium 
thermodynamic properties of the finite temperature system and have no time 
dependence.

In §17.1, a path integral formulation of the partition function was obtained 
by introducing the variable x = ix°, and integrating our classical fields </> which 
were functions of x. Temperature Green functions are defined in terms of field 
operators $  which are also functions of t. By analogy with (4.7) we introduce 
the temperature Green functions

& N)(x ,  . . . , X „ )  =  <  T M i x , ) . . .  $ { x N ))y (17.77)
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where

x = ( —ir, jc)  (17.78)

and Tx means to order the fields from right to left in order of increasing t. The 
expectation value < > now means a thermal average rather than just a vacuum 
expectation value.

i , -  « x _ T r „&**) ) ]  
<Tt(0(xi)...<«xw))> s-----------Tr[e-ifl]-----------  (17.79)

where the trace means to sum the matrix elements of the operator in the square 
bracket between all independent states of the system.

To see why such objects might be of interest, consider <̂{2)(xu x 2) and 
suppose we want to know the expectation value (thermal average) of some 
observable A represented by the operator A in the Schrodinger picture with, 
for instance,

uI”
Then

But

A= d3x<t>2(t=0,x). (17.80)

/ i \ _ Trte fiHf d 3x P ( t= 0 rx)] (17.81)
W  ~  Tr[e-"«] '

l i m , . , , .  J

Jd 3xTr[e ^ 0 2(O,jc)] 
= T r[e -^ ]

(17.82)

where in the last step we have used the connection (2.3) between the field 
operator at time t and time zero with t -» — it. Thus,

< i> = lim T̂ T+>x,_ d3x ^ (2)(x',x). (17.83)

A path integral representation for the temperature Green functions may be 
obtained as follows. The field theory analogue of (2.50) is

< < m  t=0\e~'f>(, ~n 1{<})(xl) ... 4>(xN))\(f)'(x),t=0')

oc !34> . . .  <t>{xN) exp i J  dt j*d3x ^ 7 t ^ — $)^. (17.84)



By the same (heuristic) steps as in §17.1, we arrive at

j* |'^7t0(x1) ...0 (x JV)exp f  dr {d3x ( i n ^ -  —
(B (N )(v  v  V ^/periodic____ J_____________________Jo J V /

J ^>J^Jtexp dr Jd3x̂ i7t-̂ - — J

(17.85)
and if i f  is of the form (17.18),
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re r
© ^ (X i) . . .  (j>(xN) exp I dr d3xi?(<Mm0)

p e r i o d i c  J 0  J___________

f  3><j>expi dx^d3x £ ’(<t>,dtl(f>)
J periodic Jo J

(17.86)

By analogy with Chapter 4, we now introduce a generating functional for 
temperature Green functions.

j* 3>cf)exp( j* dr jd 3x(i?(^>,<?„(/>) +  J<fr)\

w [r \ = ----------  / f»  r (17’87)
£̂ </>expf dr |d 3x^f(^,5^0) J

J  periodic V J o  J  /

where the source J  is a function of x. The temperature Green functions are 
obtained from W[J] by functional differentiation.

 «■»)-SJ(xN) . . .  SJ(xt )

and tF[J] may be expanded in temperature Green functions as

1

(17.88)

d x j . . .  J d x w & N\ x x,. . . , x N) (17.89)

where

dx =  I dr I d3x. (17.90)s s j^ d T  J d 3x.

Fourier transformed temperature Green functions # (N) may be introduced 
through

p M p t  + ...  + pN)(2n)3p

dxN exp[i(pt ■xl + . . . + p N- xN)]^m(xu . . . , x N) (17.91)
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where

p=(icon,p) (17.92)

with con as in (17.29), p x  is as in (17.32) and we use the notation

<5(pi + . . .  +  Pn) s <5Wi+ +raN0<5(pj +  ...+/>w). (17.93)

A generating functional X[J] for connected temperature Green functions 
G{N) may be defined through

=  (17.94)

with the relations

V X IJ ]
Gw (x 1, . . . , xn) = -

SJ(xN) .. .  8J(x i) 

and

(17.95)
2=0

X[J1 = A  jdx'!... jdx-„ GN(x1 xN). (17.96)

17.6 Finite temperature generating functional for a free scalar field

The procedure is similar to §4.2. In the case of a free scalar field, the 
appropriate Lagrangian is (17.22). Thus,

W0 [J] =
j <3>(f)Qxp (  —i  j d x '  d x 0 ( x ' ) ^ ( x ' ,x ) < /> ( x ) +  j d x J(x)(j)(x)j

J  periodic_____________\  ^  J  J _____________________________________ J ____________________ )

J  ^0exp^— -  Jdx' Jdx0(x')y4(x',x)0(x)^

(17.97)

with A(x!,x) as in (17.24). Using (1.14), we obtain

W ]  = e x p ( ~ J d x '  JdxJ(x ')A F(x' -x)J(xJ) (17.98)

where we have written
AF(x '—x) = - A ~ \x \ x ) .  (17.99)

The inverse A ” 1 may be obtained by Fourier transforming as in (17.34). Thus,

1 C d3
Af(x'—x)= — Z  J p j j s  (17.100)

with p as (17.31), and

Af(p) — —( - p 2+m 2)_1= —(co2+p2+m2y l . (17.101)



17.7 Feynman rules for temperature Green functions

The approach used in Chapter 6 for ordinary Green functions is easily adapted 
to temperature Green functions. The only real differences arise because p° has 
been replaced by ia>„, and because various factors of i no longer occur in
(17.86), (17.98) and (17.89) compared with the zero temperature case. The 
resulting Feynman rules are as follows (see problem 17.4):

1 With each line carrying ‘momentum’ p = (imn, p) we are to associate a factor 
(p2—m2)-1 .

: ( p 2 —m 2) - 1  =  — (co*+p2 +  m 2) ~ 1.

2 With each vertex of four lines carrying ‘momenta’ pl9 p2, p3, p4 we 
associate a factor — A, constraining the ‘momenta’ so that there is overall 
conservation

/p
1 \  /  2

yX  : -A  (P i+ p2+p3+p4-=0).
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3 Integrate and sum over each independent internal loop ‘momentum’ 
p=(ia>„,p) with weight

f d3p
- Ip r (2tt)3 *

The corresponding modifications are made to the Feynman rules for 
fermion fields and gauge fields. (No factors of i for vertices or propagators, 
P o  ->• i<o„ and j  d4p/(2n)4 -4 (1//3) d 3p/(2jt)3.)

17.8 The finite temperature effective potential

By analogy with §4.4, a classical field </>c(x) may be defined by

- W  (17,02)

From (17.87),

5W [f]
5J(x)

where (0 (x )); is the expectation value (thermal average) of 4>(x) in the presence
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of the source J. Using (17.94),

(17.104)

For zero source,

&(x)=<&*)> J= 0  (17.105)

since

fF[0] = l. (17.106)

Moreover,

< <£(*)> = T r[e -^ 0 (t, x )]/T r[e -^]

~  T r[e “^$(0 , jr)]/T r[e~^] (17.107)

where we have used the connection (2.3) between the field operator at time t 
and time zero, with t-> — it. Combining (17.105) and (17.107),

&(*) = <<£(<U)> J = 0. (17.108)

Thus, for zero source, <j)c(x) is the expectation value (thermal average) of $(0, jc) ,  

the Schrodinger picture field operator.
An effective action F is defined by analogy with (4.68),

H > c] =  X [J] -  J dxJ(x)<l>c(x) (17.109)

and the source is given by

t/ - vJ(x)= • (17.110)S4>c(x)

One-particle-irreducible temperature Green functions, r (;V), may be defined by 
the expansion

r [ 0 j  = X ...  dxNr w (x i,... ,  x„)

x >̂c(xi). . .  0c(%) (17.111)

and momentum space o p i  temperature Green functions, F(N), by 

f w(Pi, . . . ,  pN)S(pi + . . .  + pN)(2n)3p

= j d x j ... Jdxjvexp[i(p! • X j. . . + pN■ x * ) ] ^ ) * ! , . . . , x N) (17.112)

with S(pt + . . . +pN) as in (17.93).
The finite temperature effective potential P(0C) may be defined by an
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expansion analogous to (4.77),

r[& ]= jd * ( -  P ( & ) +•••).  (17.113)

If the classical field has no spatial (or t) dependence then only the P(<£c) term in 
the expansion (17.113) need to be retained, and (17.110) becomes

dV/d(j)c=J.  (17.114)

If we set the source term to zero, then, from (17.108), 0C has the significance of 
the expectation value (thermal average) of the field operator, and

d P  „— =0. (17.115)

Thus, when it has no spatial variation, the expectation value of the field
operator at finite temperature may be obtained by minimising the finite 
temperature effective potential.

Using the inverse of (17.112) in (17.111), the effective potential may be 
expanded in terms of Fourier transformed temperature Green functions at 
zero ‘momenta’. (See problem 17.5.)

P(<k) = -  £  f (JV)(0 ,...,0)<%/NL (17.116)
N = l

17.9 Finite temperature effective potential at one-loop order

The contribution to the finite temperature effective action from one-loop 
diagrams in the expansion (17.111) is obtained by exact analogy with §13.9. 
Thus we have to shift scalar fields by their expectation values (which are now 
thermal averages) and isolate the terms in the (t dependent) Lagrangian which 
are quadratic in all (shifted) fields including fermion fields and gauge fields. The 
one-loop contribution to the effective action T x [</>c] is then obtained as a 
Gaussian path integral.

periodic antiperiodic

x exp J  dr J d 3x ^ qxiM c(x)) (17.117)

where </>i9 rja and \j/r are the scalar fields, gauge fields, Fadeev-Popov ghost 
fields and (Dirac) fermion fields, respectively, and Ĵ quadĈ cO*)) is the quadratic 
term in the (t dependent) fields, in the shifted Lagrangian. The one-loop 
contribution to the finite temperature effective potential P ^ c )  is obtained by 
taking </>c to be constant, and using (17.113).
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exp/^ — f  dr fd 3x V 1((j)c) \=  f  f  @\j/<2>\l/
\  J o  J /  J  periodic Jantiperiodic

X exp ^  d t | d 3x S e ^ fa ) .  (17.118)

In general, i?quad(0c) takes the form 

^ quad(4>c)

- i ( 3 M ; -V A W S jtA ^-IJ iA J ,,)  

+i[M?(</>c)]fli, ^ 4  -  (1 / 2 f f i „ 4 ) 2

+ ̂ X ^ a  + ̂ r f ^ r

- I M A W M s  (17-119)

where we have adopted Landau gauge, f  -► 0, so as to avoid couplings of the
scalar fields to the Fadeev-Popov ghosts. The mass matrices of the scalar,
vector and fermion fields after spontaneous symmetry breaking are M |(0C), 
My((j)c) and M F(0C), where <j>c is used as shorthand for the expectation values 
(thermal averages) (</>f)c. We may write

j* dr J d 3x i f quad(<k) =  - 1  Jd x’ dx 0 i(x'Mi/x ', x)<t>j(x)

d x A l(x W al(x \x )A bv(x) 

dx' I dx rj*(x )C(x\ x)r/(x)

with
I-  dx' dx 4/r(x')Drs{x', x)^5(x) (17.120)

(17.121)Ait{x\ x) =  ( -  +  « ) ] ^ ( f  -  x)

BS& , X) =  { ( g ^ J px - ( 1 - r  - g ^ [ M ^ c) l b}S(x-' - x) (17.122)

C(x', x) =  -  d£,dpxS(x' -  x)

and

(17.123)

(17.124)Z>rs(x-\ x)= (iSrsy%  + [MAABrsWx' -  x)

where x and <5(x' — x) are as in (17.26) and (17.25). Performing the Gaussian 
path integrals in (17.118) leads to

- J > d3x =  - i  Tr In A Tr In B + Tr In C + Tr InD.
(17.125)



The traces are evaluated much as in §17.2, §17.3 and §17.4 to obtain (see 
problem 17.6)

C bosons C d 3d
Trln A =  J d3x £  J E  lnk 2 +/>2+(M S2)J (17.126)

C bosons C d 3d
TrlnB  = jd 3x X j  £  (3 lnk 2 +P2+ (Mv)J +  >n|>2 +P2 + £(M2)«]}

(17.127)
with £ -*• 0 for Landau gauge,

c bos°ns r d3n 
T rlnC  =  I d3x X I X ln("n+/>2) (17.128)
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Trln D = 2
' fermions

d3x X | ^ X lnK + P 2+(^F2)r] (17.129)

where (M |(0C))(My(</>c))a and (Mp(</>c))r are the eigenvalues of the matrices 
M f(0c), My($c) an<l M 3(<f)c), and the Matsubara frequencies are as in (17.29) 
and (17.63) for boson and fermion sums respectively. Substituting (17.126)— 
(17.129) in (17.125), and using the Matsubara frequency sums of appendix E, 
gives

i  r  a  3

m<$>c)=-2 I 1  + + 2 1 n [l- e x p ( - ^ p 2+ ( M i m

1 /* - 4 3

+2 j g j j i  £  {3/?vV  + (M v)a +6 ln[l - e x p ( - P y / p 2+{M$)J]

~ P\p\—2 ln(l — e“ d̂)}

- 2  j - ^ 3  £  {/?\//»2 + (MF)r + 2 ln[l + exp(~Py/p2 + (M|)r)]}.

(17.130)

We may separate Kt(0c) into a part F?((/>c) which survives at T = 0 , and a T 
dependent part P[(</>c),

?»(&)= ? ? (& )+ Pi(&) (17.131)
where

(? ln(Po+/»2 + (M |)f)

+ X [3 ln( p l+ p 2+ (My)a) -  ln( pi +/»2)]
a

—4Xln(po+/»2 + (Mp)r) j  (17.132)
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and

^ I ln[ i - ex P ( - v 9 T F W ) ]

+  £  3 ln[l -  exp( - J y 2 + T~ 2(M2)J  -  ln ( l-e '* ) ]
a

- 4 ^ 1 n [ l  + e x p ( - y y 2 + T 2(A/^)r)]'j (17.133)
r /

where
y = P\p\ = T  l \p\. (17.134)

In arriving at (17.132), we have used the fact that

(17.135)
The expression (17.132) is just the T = 0  radiative correction to the effective 
potential, at one-loop order. The evaluation and renormalisation of such 
terms has already been studied in §13.9.

The temperature dependent part of the one-loop effective potential, V\((j)c), 
is particularly simple in two limiting cases. First, for all mass eigenvalues (M|)f, 
{M2)a and (M2)r, very much greater than T 2, all contributions to (17.133) 
approach zero exponentially fast, and V\ becomes negligible. (This is also true 
of the ln[l — exp( —y)] term since if we were to carry the gauge parameter £ 
through to this stage we would have ln[l — exp( — y]y2 + T ~ 2£(M2)a)]. We 
then take the limit £ -* 0 after the limit (M2)aT ~ 2 -> oo.) Second, in the high 
temperature limit, T  very much greater than all the mass eigenvalues, we may 
use

—j dy y2 ln [ l—exp( —v/y 2 + RT 2) ]«  
In  Jo

-re 2r 4 r t 2
 —----+ -TT-90 24

R T ~ 2< 1

(17.136)

o
dy y2 ln[l -I-exp( - s/ y 2 + R T  2)]

l n 2T A R T 2
720 48

R T~2< 1.

(17.137)
Thus, for the high temperature limit,
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where M |(0C)> M fyc) and M F((f)c) are the scalar, vector and Dirac fermion mass 
matrices of (17.119). (For fermions described by Weyl spinor fields there would 
be no factor of 2 in front of the last term of (17.138). See problem 17.7.) The T4 
term in (17.138) is just the free energy density for an ideal ultrarelativistic gas of 
(17.73), with N b and N F the number of bosonic and fermionic degrees of 
freedom, respectively. If some fields are heavy and some light, on the scale of 
the temperature T, then iVB and N F should be interpreted as the degrees of 
freedom of light fields, and the traces of mass matrices should be evaluated 
only for light fields, since the heavy fields do not contribute, as discussed 
above.

17.10 The Higgs model at finite temperatures

The simplest model, incorporating both scalar and vector fields, to study at 
finite temperature is the Higgs model described in §13.5. The finite temperature 
(effective) Lagrangian is

<£ =  Dm0 D ^ *  -(A/4)(</>*0)2

-(1 /2  Q id .A ^  + d ^ r i  (17.139)

where m2 is negative,

D„0 = (^  +  i e A J t  (17.140)

B ^ * s ( 3 M-ie 4 ,)0 *  (17.141)

is as in (17.47), d  ̂as in (17.21) and the fields functions of x  of (17.26) rather 
than x. We have included the Faddeev-Popov ghosts rj because they are needed 
to cancel contributions to the free energy from unphysical degrees of freedom 
of the gauge field A ^  as discussed in §17.3. To obtain the finite temperature 
effective potential, we first shift the scalar fields by the expectation value 
(thermal average)

-%  = <<£(*)> (17.142)
sH-

which has been taken real without loss of generality, because of gauge 
invariance, and assumed constant. (The factor 1/^/2 has no significance, but 
has simply been introduced for convenience.) Thus, we write

^ = _ L ( ^  +  ̂ 1 + i cj,2) (17.143)

where 4>x and (j>2 are real (shifted) fields. The quadratic terms in the shifted



^ quad = l + { (\4>2)2 (m2 + ̂

( w 2+^ ^ 2)^2  “ 5 + J

" ( A ^ + A ^ n  (17.144)

where we have adopted Landau gauge, ̂  0, so as to remove an Atidtl(j> 2 cross­
term. In the notation of (17.119), we have

Mi(4>c) = diagjm2+ ^  (f>2, m2+ ^  <£2j  (17.145)

m m = e 2<t>l (17.146)

Provided that e4 A, we may drop the zero temperature one-loop contribution 
to the effective potential (17.132) compared with the tree terms,

( i7-147)

The temperature dependent one-loop contribution is obtained from (17.138), 
in the high temperature limit, and is

+ (17.148)

where we have also assumed that T 2$>—m2. Thus, the one-loop
approximation effective potential is

.  x m2(T) X ± 4n2T 4
v(4>c)= - ~ Y  4>c + <t>? jQ -  (17.149)

where we have defined a temperature dependent effective mass by

m2(T) = m2+ ^ +̂ e ) T 2. (17.150)

The expression (17.149) is valid for temperatures large compared with the
masses of all shifted fields,

T 2>X4>le2<!>l-m2 (17.151)

and

e4<X (17.152)

so that the zero temperature radiative correction may be dropped. There is no
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Lagrangian are
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difficulty in relaxing the approximation (17.151), by using (17.133) instead of 
(17.138), though the high temperature approximation is adequate for our 
purposes in this section. When (17.152) is not satisfied, the zero temperature 
radiative correction may be included, with interesting consequences, as we 
shall see in §17.13.

The expectation value (thermal average) of the field is obtained by 
minimising (17.149). For m2(T)  negative,

dV
—  =  0 (17.153)
<30c

has two possible solutions:

</>c = 0 (17.154)

and

</>c =  — 4m2(T)/A. (17.155)

For m 2(T)  positive, only the solution (17.154) is possible. In (17.150), m 2 is 
negative, and so there is a temperature (the critical temperature) for which

m2(Tc)= 0  (17.156)

namely that given by

T2 =  -  12m2/(A -f 3e2). (17.157)

For T  greater than Tc, m 2(T)  is positive and, at the minimum of the effective 
potential, (f>c=0. We then say that the system is in the symmetric phase (no 
spontaneous symmetry breaking). For T  less than Tc, m2(T) is negative, the 
minimum at </>c= 0  turns into a maximum, and the system is in the asymmetric 
phase given by (17.155). (See figure 17.1.) The system passes in a continuous 
fashion from one phase to the other at T= Tc and there is a second-order phase 
transition.

17.11 Electroweak theory at finite temperature

The finite temperature (effective) Lagrangian is as in §14.1 and §14.2 with the 
usual replacements of d̂  by 5 ,̂ x by x etc. An expectation value (thermal 
average) for the Higgs doublet is introduced by

<i7- '58)

Then a calculation exactly analogous to that of §17.10 leads to the one-loop 
approximation effective potential, when the temperature is large compared
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Curves A, B, C are for T> TC,T&TC and T<TC, respectively.

with all masses (see problem 17.8)

V(ct> c)= W(T)4>2C + ( X m t  -  (Nb+ IU F )n2 T V  90 

+ B<t>t(\n(4>2J M 1)-25/6) (17.159)

with N b and N P the number of bosonic and fermionic degrees of freedom, 
respectively, and

m (T) = m +[ -  +
X e2( l+ 2  cos2 0W)

4 sin2 20w
(17.160)

with the weak mixing angle 0W and the Yukawa couplings of the fermions Gf  
as in §14.2. The last term in (17.159) is the zero temperature radiative 
correction to the effective potential, renormalised at mass M  as in §13.9, and B 
has the value

B = —  I —  
64 \47t

2 \ 2 (2 + sec4 0W) 
sin4 0W

(17.161)

where we have dropped order A2 contributions, which are always 
perturbatively negligible compared with the tree terms.

For the case e4 <̂ A, the 7 = 0  radiative correction is negligible, and the 
discussion is exactly analogous to §17.10, with a critical temperature Tc for the
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second-order phase transition given by

j \2  4 s iir 2 0W j  12 y

(The case e4> 2  is discussed in §17.13.)
For T  greater than Tc, the system is in the symmetric phase, in which $c=0, 

and the gauge bosons are all massless. For T  less than Tc, the system is in the 
asymmetric phase for which <j>c ̂  0, the W 1 and Z° bosons acquire masses, and 
the symmetry is reduced from SUL(2) x U(l) to Ue(l). The critical temperature 
Tc is of the same order of magnitude as the value at T = 0  of 0C at the 
(asymmetric) minimum of the effective potential, and the W1 and Z° masses 
are of order e<j)c. Thus, Tc should be of the order of 100 GeV.

17.12 Grand unified theory at finite temperature

In this section we construct the finite temperature effective potential for the 
SU(5) grand unified theory disucssed in Chapter 16. If we want to study the 
grand unified phase transition from the SU(5) symmetric phase to the 
SUC(3) x SUl(2) x U(l) symmetric phase, we need only retain the Higgs scalars 
responsible for this particular symmetry breaking, and may drop the Higgs 
scalars responsible for the breaking of electroweak symmetry. (The argument 
given at the end of §17.11 leads us to expect that the critical temperature for the 
grand unified phase transition will be of the order of 1015 GeV and at such 
temperatures the expectation values of the electroweak Higgs scalars, which 
are of the order of 100 GeV, will be negligible.) Thus, we need only keep the 
Higgs scalars d> belonging to the 24-dimensional adjoint representation of 
SU(5)

X 4>J. (17.163)
a =  1

where T„ =  XJ2 are the generators of the five-dimensional representation of 
SU(5) as in §16.2, and appendix D.

The finite temperature (effective) Lagrangian is

& =  - m \  Tr 4>2-A j(Tr <D2)2-A 2 Tr <54

+ T r(D /lO)2 - i T r { F j n

-< T 1 T r ( d ^ ) 2 + 2 TxCdtfWri) (17.164)

where have dropped fermions (apart from their contribution to the T 4 term in 
K(</>c)) since the masses of known fermions are negligible on the scale of 
1015GeV, and they therefore make a negligible contribution to the </>c
dependent part of the effective potential. In (17.164), all quantities are defined



as in §16.5, but with the fields now functions of x  of (17.26) rather than x, and 8̂  
replaced by <5„ of (17.21).

For the breaking of SU(5) to SUC(3) x SUL(2) x U( I) we take the expectation 
value (thermal average)

<$>=-^==diag{l, 1 , 1 , ( 1 7 . 1 6 5 )

A calculation analogous to §17.10 gives the one-loop approximation to the 
effective potential for temperatures large compared with all masses (see 
problem 17.9)

i \ j.2 , (̂ 1 i 4v(<t>c)= 2mi (m : + — ^—  0c

(17.166,
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90 " CV 6

where N B and N F are the number of bosonic and fermionic degrees of freedom 
respectively, and

(17.167)
ou

The last term in (17.166) is the zero temperature radiative correction to the 
effective potential, renormalised at mass M as in §13.9, and B has the value 
(neglecting order /I2):

B = 25g%/256n2. (17.168)

In deriving (17.166), the identities for SU(N) Gell-Mann matrices given by 
MacFarlane et al.5 can be useful.

For ^2 we may drop the zero temperature radiative correction, and
the discussion is exactly analogous to §17.10, with a critical temperature for the 
second-order phase transition given by

T 2=  -e0ml/(l3OX1 +47A2 + 750g). (17.169)

For T  greater than Tc, the system is in the SU(5) symmetric phase, for which 
(pc= 0, and all gauge bosons are massless. For T less than Tc, 0C is non-zero, the 
system is in the SUc(3)x SUL(2)x U(l) symmetric phase, and only the
electroweak gauge bosons are massless. By the argument at the end of §17.11,
Tc should be of the order of 1015 GeV.

17.13 First-order phase transitions

In §§17.10-17.12, we have always assumed that the fourth power of the gauge 
coupling constant is very much less than the </>4 coupling constant, and have
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then found a second-order phase transition. In this section we discuss what 
happens for larger values of the gauge coupling constant6,7,8. We shall find 
two differences. First, that we cannot use the high temperature approximation, 
that T  is very much bigger than the masses of all fields, for the asymmetric 
minimum. Second, that we cannot always neglect the zero temperature 
radiative correction to the effective potential. The result of these differences is 
to produce a first-order phase transition.

For definiteness we shall discuss the Higgs model, though everything we say 
applies with very minor changes to electroweak and grand unified theory. 
Including the zero temperature radiative correction, as in (13.253), the finite 
temperature effective potential is

m,)=Y rt+~ rt +B**[,n( ^ )  -  t ]  + (17-169)
where, from (13.266) with A2 negligible compared with e4,

B=3e4/64n2. (17.170)

The temperature dependent one-loop contribution F[(</>c) is given by (17.133) 
with the mass matrix of (17.145) and (17.146). (We are not now necessarily 
going to make the high T  approximation of (17.138).) Thus

F[W>c)=£  f  i y  y2{ln[1 - exP( ~ J y 2 + T -  2(m2 +  3A0c2/4))]

+ ln[ 1 -  exp( -  sJy2-\-T~ 2{m2 + A0c2/4))]

4- 3 ln[ 1—exp( — v V  + T~ V 0 e2)] -  ln( 1 -  e ~ 0}- (17.171)

The first question we ask is whether it is correct to use the high temperature
approximation for P[(0C) at the critical temperature, when e4>A.

From §17.10, the critical temperature for a second-order transition, Tc, is 
given by

Tc2= —4m2/e2 (17.172)

for e2 > A. However, at the zero temperature asymmetric minimum (neglecting 
the radiative correction for the moment)

</>2 =  u2= — 4m2/A. (17.173)

Thus

A
T 2$>m2+ -  v2 = 0 (17.174)

and

2 2 3A 2T 2^ m 2+ — v2 (17.175)
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but

T 2 <| e2v2 for e4 > A. (17.176)

It is therefore not correct to use the high temperature approximation to study 
the critical temperature when e4>A. At <j>c = 0, the high temperature 
approximation is valid, and from (17.138) we have

^ ( ^  = 0)= - 4 tc2T4/90. (17.177)

However, at the asymmetric minimum (/>c = v9 the contribution to K[(0C), 
involving the gauge field mass is exponentially suppressed (because of 
(17.176)), as discussed after (17.135), but the high T  approximation may be 
used for the other terms. Thus, dropping the zero temperature radiative 
correction for the moment,

m (17178)

(We are working in Landau gauge. In other gauges, all terms in (17.171) except 
the first one are exponentially suppressed, because of the appearance of an 
additional mass term £e2</>2 as can be seen from (12.262). The result is the same, 
as it must be.)

The symmetric minimum is at a lower value of the effective potential than 
the asymmetric minimum for

T> Tcl =(30/7r2A)1/4m. (17.179)

The temperature Tcl is the temperature for a first-order phase transition, and 
the development of the asymmetric minimum with temperature is as in figure 
17.2. The transition is first-order becuase of the discontinuous change in the 
expectation value of the field when the phase transition occurs. (The observant 
reader will have noticed that we have assumed that the value of the effective 
potential at the asymmetric minimum is the same as at zero temperature, apart 
from the T4 term. He will be reassured to know that it can be shown that this is 
correct apart from corrections of higher order in e2. See problem 17.10.)

When zero temperature radiative corrections are taken into account, it is 
convenient to cast the effective potential in terms of the mass of the physical 
Higgs particle. Thus, by analogy with (12.151)—(12.253),

V(A) = b ( ^  v2<t>2 <t>i+ 4>t In(<t>2J v 2) j  + V\(4>c) (17.180)

where the renormalisation has been carried out at the zero temperature 
asymmetric minimum according to
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Figure 17.2 Development of asymmetric minimum with temperature in Higgs model 
for 4n2A/llPe4>2. Curve A is at zero temperature, curve B is at Tcl, the critical 
temperature for the first-order phase transition, and C and D correspond to higher 
temperatures.

d4F
d&f

=|A .
(f>c =  v

The physical Higgs scalar mass mH is given by

d2V
d<t>c

= 2Bu2(4—a).
4>c = v

The Coleman-Weinberg case of (13.286) (a = 0) corresponds to

=  TWcW "■ 85t?2.

In terms of the original parameters of the Lagrangian

(17.182)

(17.183)

(17.184)

(17.185)

For mn<mcw (a>0), the situation is qualitatively different from figure 17.2 
because there is a (local) minimum of the effective potential at <£c= 0  due to 
radiative corrections already present at T=0. Then we must take account of 
zero temperature radiative corrections and the development of the effective 
potential with temperature is as in figure 17.3. The present case, a> 0 , 
corresponds to

£?4> 4 tt2/1/11 (17.186)

with A defined as in (17.182).
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Figure 17.3 Development of asymmetric minimum with temperature in Higgs model 
for e4>47r2A/ll. Curve A is at zero temperature, curve B is at Tcl, the critical 
temperature for the first-order phase transition, and C and D correspond to higher 
temperatures.

In practice, the phase transition to the asymmetric phase may occur at a 
much lower temperature than Tcl, because of a very slow rate of tunnelling 
through the potential barrier between the symmetric minimum and the 
asymmetric minimum8-11. However, detailed discussion of nucleation at the 
first-order phase transition is outside our scope here.

Problems

17.1 Show that <5(t' — t), defined through (17.33) and (17.25), acts like a Dirac 
delta function for functions periodic with period /?.

17.2 Show that

Tr ln(—$ + m) =  2 ln(m2 -  p2)

as required for (17.69).

17.3 Calculate the free energy density for free massless spin 1/2 fermions.

17.4 Derive the Feynman rules for temperature Green functions of §17.7.

17.5 Derive the expansion (17.116) of the finite temperature effective 
potential in terms of temperature Green functions.
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17.6 Derive the finite temperature operator traces (17.126), (17.127), (17.128) 
and (17.129).

17.7 Derive the fermion contribution to (17.138) for massless spin 1/2 
fermions.

17.8 Derive the finite temperature one-loop effective potential (17.159) for 
electroweak theory.

17.9 Derive the finite temperature one-loop effective potential (17.166) for 
SU(5) grand unified theory.

17.10 Show that the finite temperature effective potential at the asymmetric 
minimum for the Higgs model is the same, apart from the additive T4 term, as 
at T = 0, correct to leading order in e2.
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FEYNMAN INTEGRALS IN 
2W-DIMENSIONAL SPACE

C d 2o>kJ
ir_ 1 V "+n rim  +  n - r a lW m - n  m - m \

(  — p 2 y o  — m —n  ( A 1 )i ( - i r +n T(m+n-coWa-n^-m), _m
{4nf r(m)r(n)

l 2 \ - n r ( i ,  I „ \ 2 t  - m
r A2oijc

j(2 - ^ h ( k 2r nw + p )2r

■ n — cn) R(m — —
, ( _ p 2  r - m - n ( _ h )  ( A 2 )i(— l)m+" r(m + n—qj)B((0 — n + l,a>—m) ( r2w_w_a/ 

(4 n f  r(m)r(n)

f d 2(°k
J(2 - ^ kM k 2r ni(k+ P)2r m

i ( _ l ) m + »  ( _ p 2 y - m - n

[ pp pvr(m + n —ca)B(co—m ,co—n + 2)
(47tf r(m)r(n)

+ 2 ffnvP2̂ (m + n ~ C0~  m+ l,co -n  + 1)] (A.3)

d 2mk
klkllkM 2r nw + p ) 2r m

[ -  PxPpPM™+ n-ct))B(co - n + 3 ,to -m )

(2n)2a "
 jjm + n ^ p2y° ~m~n

(4n f T(m) F(n)

- i P 2(g^P,+ g„vPi+ 9 *iPnW{m + n-a> -l)B (co—n + 2 ,w —m+  1)]
(A.4)

d 2mk
— kxklikvkp(k2)-''i(k+p)2r m

i(_  !)'"+'•
 r(m)t(n) LpiP>P"p»r{m + n -u )B (co -n+ 4 ,co -m )

- 2  pHgx^Pp+g^PxP^+g^PiPp+g^Pv+gx^Pp+g„PPxPv) 
x  r(m + n —a> — l)B(co — n + 3,(D — m+ 1)

+ i( P2)2(gxpg*p+ gxyg„p + 0 ^ ,) r ( m  +  n -  (O -  2)fl(<o -  n + 2, CO -  m + 2)].
(A.5)
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5-MATRIX ELEMENTS ARE INDEPENDENT 
OF f

We have seen that in order to quantise field theories possessing a local gauge 
invariance it is necessary to introduce into the Lagrangian a gauge fixing term 
and the associated contribution from Faddeev-Popov ghosts. Thus the effective 
quantum Lagrangian is

where J^Ym and &f are given in (10.59) and (10.62) respectively, and

Since JS?Q has been used to derive the Feynman rules with which we calculate 
the Green functions, it is clear that in general a Feynman diagram will depend 
upon the particular value of the parameter £ which is chosen. However, we 
have attached no physical significance to £, and since it was introduced to deal 
with the technical problems associated with gauge invariance, one feels that no 
physical observable should depend upon In fact this is true. Physically 
observable quantities all derive from 5-matrix elements, and we can show that 
5-matrix elements are independent of f . Other Green functions, which are not 
on-the-mass-shell, in general depend upon f .

The proof of this statement which we shall present uses the fact that the 
effective quantum action

is invariant under certain transformations. These transformations are called 
the ‘b r s  transformations’, after their authors Becci, Rouet and Stora1. Under 
the transformations

—  i?YM + i?F (<3^S)2 + <£?Fp (B.l)

^FP =  d fltW la  + GfabcVb^c)

= (^ ? )(D £ ^ ) .

(10.58a)

(10.58b)

(B.2)

A*-+A*+ 6A* (B.3a)
where

(B.3b)

The changes in the other fields are

5\j/= (B.4a)
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*/« =  -iQOfabMe

(B.4b)

(B.4c)

where 9 is a constant real Grassmann number; it follows that 92 = 0, so 9 is 
effectively infinitesimal. The reason for introducing 9 is so that the 
transformations do not alter the character of the fields being transformed. rja 
and rj* are GrassmannKVariables and their transformed fields maintain this 
property. We note that (B.3) is just the usual transformation (9.18) of the gauge 
field, but with

Since i?YM *s independent of the other fields (\j/, rjai rf*), it follows that the gauge 
invariance of JS?YM ensures the b r s  invariance of JS?YM- Similarly is b r s  

invariant, since (B.4a) is the usual gauge transformation (9.16) of xjj, again with 
Afl given by (B.5). By design, the gauge fixing term is not gauge invariant, and 
therefore not b r s  invariant. In fact

and we notice that (B.6) and the first term on the right-hand side of (B.7) add to 
give a total divergence J ,  so that these two terms also leave SQ
invariant. We leave it as an exercise (problem B.l) to verify that S(D^brjb) = 0 
using (B.4a,c) and the Jacobi identity. It is essential to remember at all stages 
that the order of the Grassmann variables can only be changed with the 
anticommutation relation.

Now, it follows from the defining properties (8.4), (8.5) of integration over 
Grassmann variables, that

since SQ contains rj and rj* only bilinearly. We next perform the b r s 

transformation on all field variables. We leave it as (another) exercise (problem 
B.2) to verify that the measure is b r s  invariant, and we have
just shown that SQ is b r s  invariant. Thus the only terms which are affected are 
rj* and the various fields attached to the source terms. To simplify the 
equations let us drop the fermions from the field theory; the essential features 
of the ensuing argument are unaffected. Then the only source term which we

(B.5)

(B.6)

The change in «S?FP is

s& Fp = S id r fM tf , ,+ d x m s i b )

= -  r 1 OlMS.A:)Wabrib + d r fd iD to J (B.7)

(B.8)
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keep is that attached to the gauge fields. It follows that

0=<5I= 1 3̂  A^x) +
%

x expij 5q + fd 4y J 6v̂ \ (B.9)

This is the generalised Ward-Takahashi identity first proved by Slavnov and 
Taylor2. It is a direct consequence of the b r s  invariance of the quantum action 
SQ, which itself follows from the (non-Abelian) gauge invariance of the original 
classical Lagrangian, Ĵ Vm + (In order to define the quantum field theory, 
this gauge invariance had to be broken, by the addition of the gauge fixing and 
ghost contributions.) Thus the Slavnov-Taylor identity just expresses the 
gauge invariance of the original theory. We shall use it to prove that physical
S-matrix elements are independent of the gauge-fixing parameter f .

So consider the generating functional associated with J?Q given in (B.l):

If we change the parameter £ by the infinitesimal amount d£, then the change 
in is

Now we use the Slavnov-Taylor identity (B.9). First we operate on it with

and then integrate with respect to x and z. The derivative acts on both the 
exponential and the pre-factor. On the pre-factor we are left with a total 
divergence, which integrates to zero. The remaining differentiation then gives

(B.10)

(B.ll)

0 = S / A ^ r j * ^  I d 4x(d>A*)[% 1 ̂ Al(x) +
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Using this in (B. 11) and then adding (B. 10) gives

w(tr \+ A W sir \

= j* ^1 +  2^ J" b e  ric{x) ̂

x exp i J s Q + J d  *yJbvA lj  

@A»&ri*gti exp { Sq + J d *xJblx̂ A l ( d rAvJr}?DMbc>jcJ (B.13)

Thus the generating functional W^+6̂ [f] associated with the gauge fixing 
parameter £+d£ is just the original generating functional W ^J]  with a 
different field attached to the external source. In general, therefore, the Green 
functions are modified by the change of gauge parameter. However, the S- 
matrix elements are obtained by rescaling the Green functions so that the 
propagator poles associated with the external legs have resdue unity. As we 
saw in Chapter 5, all non-pole contributions are projected to zero by the factor 
q2—/i2 as q2 -► \i2. Changing the field associated with the external source will 
change the residues of these pole terms, but this will merely alter the rescaling 
necessary to arrange that the poles have unit residue. Thus the S-matrix 
elements are unaffected by changing £ to £ + d£.

The reader may recall that the particular choice of gauge fixing term (10.31) 
was relatively arbitrary, and was also accorded no physical significance. So we 
should be able to change the gauge fixing function Fa[A%], not merely the 
associated parameter £, and also show that S-matrix elements are unaffected 
by the variation. This too can be shown using the Slavnov-Taylor identity (at 
least for linear gauge functions3); in this case it is necessary to include also the 
change in W[J] induced by the corresponding change in i f FP, which, as we 
showed in (10.55), depends upon the gauge-fixing function Fa. (The interested 
reader is invited to construct her own proof of the more general result, and, 
should she fail, look in the article by B W Lee4 for assistance.)

The Slavnov-Taylor identity which we have used was for the 
wnrenormalised theory, and we have shown that a small variation of the 
unrenormalised gauge-fixing function leaves the S-matrix invariant. The 
theory we have been studying is, in fact, renormalisable. Thus the renormalised 
theory has the same structure as the unrenormalised one, and consequently 
there is a renormalised Slavnov-Taylor identity. It follows by the same 
argument as before that the S-matrix is invariant with respect to variation of 
the renormalised parameters in the gauge fixing function. Since this variation 
changes the masses of the ‘unphysical’ particles (scalars, ghosts), it follows from
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the invariance of S that these particles really are unphysical. They decouple 
completely from the physical ones in S-matrix elements, and the physical states 
are therefore complete. Thus the S-matrix is unitary.

Problems

B.1 Show that D*brjb is brs invariant.

B.2 Show that the functional integration measures Q)A^& îQ)^Q)Yj^Q)rj is brs 
invariant.
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C.1 Vector-vector-scalar-scalar vertices
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c;
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C.2 Vertices involving four scalars
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SU(5) A MATRICES
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These matrices are normalised so that

Ti(XaAb) = 2dab.
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MATSUBARA FREQUENCY SUMS

In the case of bosons, it may be shown by contour integration that

v 1 _ ,r n
( « * - / )

where a>„ is given by (17.29). Thus

S „ 2+ x 2~ 2 ( ^ - 1 ) '  ^

But

Performing the x integration we find

J) ln(<u^+ x2) = f ix+ 2  ln( 1 — e ~fx)+ (x-independent constant). (E.4)
n

The constant in (E.4) is temperature dependent and infinite. Fortunately, it 
cancels against the temperature dependent part of N(P) when we evaluate Z. 

For fermions, the corresponding results are

? ( i ® . - x r ( e * - l )  (E5)

where a>„ is given by (17.63), and

£  ln(co;J + x2) =  /?x +  2 ln( 1 + e ~fx) 4- (x-independent constant). (E.6)
n

The temperature dependent constant cancels against N'(p) when Z is 
evaluated.

More details may be found in Fetter A L and Walecka J D 1971 Quantum 
Theory o f Many-Particle Systems (New York: McGraw-Hill) p. 248, and in 
Bernard C W 1974 Phys. Rev. D 9 3312.
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Abelian gauge field theory, 110-11 
Angular momentum tensor, 23, 26, 30, 

37
Annihilation operators, 39 
Anomalies, 272
Anomalous dimensions, 158-62 
Anomalous magnetic moment, of 

electron, 140-2 
Asymmetric phase, 338, 340-1, 343 
Asymptotic behaviour, 54-5 
Asymptotic conditions, 55 
Asymptotic freedom, 147 
Axial gauges, 125, 130 
Axial U(l) symmetry, 218 
Axial vector current conservation, 217 
Axion, 217 

mass, 225-6 
invisible, 226

Bare coupling constant, 75
Bare Lagrangian, for gauge theory, 132
Bare mass, 75
Baryon number conservation, 40 
Baryon number violation, by colour 

triplet Higgs scalars, 309 
Bjorken limit, 151 
Bjorken scaling, 155 
Bottom quark mass, in grand unified 

theory, 313 
Boundary conditions, for path 

integrals, 40-1 
b r s  transformations, 346

Charge, 19 
Chiral theory, 273 
Chiral transformation, 38 
Chirality, 191 
Classical field, 15, 47, 174 

as solution of the classical field 
equation, 48 

relation to vacuum expectation value 
of field, 47 

Closed fermion loops, 135

Coleman-Weinberg mechanism, 212 
Coleman-Weinberg transition, 342 
Colour, 116
Complex scalar field theory, 24, 175 
Conjugate momentum, in field theory, 

39
Connected Green functions, 46 

in momentum space, 47 
Conserved current, 18-20 
Continuation to Euclidean space, of 

vacuum amplitude, 41 
Continuation to imaginary time, for 

ground state amplitude, 10-11 
Counter term, Lagrangian, 85 
Counter terms, 263 

for gauge theories, 132 
Covariant cut-off, 79 
Covariant derivative, 185 

for Abelian gauge field, 111 
for non-Abelian gauge fields, 112, 

115, 125 
Co variant spin vector, 27, 33 
Creation operators, 39 
Critical temperature, 336, 338-40 
Curie temperature, 172

Deep inelastic scattering, 149, 162 
moments of structure functions,

162-3
structure functions, 150 

Degree of divergence, 77 
for Feynman diagrams with fermions, 

101-3
for gauge theories, 131 

Derivative interactions, 103 
Derrick’s theorem, 194 
Dilatation, 37, 38 
Dimensional regularisation, 79-81 
Dimensional transmutation, 212 
Diquarks, 301, 303 

masses, 309
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Dirac <5 function, integral 
representation, 44 

Dirac equation, 25 
Dirac field, 31
Dirac matrix identities, in 2co 

dimensions, 137, 139 
Divergences, 17

Effective action, 48, 201-3 
for free scalar field, 48 

Effective potential, 49, 200-12 
at finite temperature, 313-18 
expansion in terms of Green 

functions, 50 
Eigenstates, of the field operator, 39 
Electric dipole moment, 220 
Electromagnetic current, 31, 216, 218 
Electron-positron annihilation, 

inclusive process, 165-7 
Electroweak theory, 214, 232 

at finite temperature, 322-3 
Energy-momentum tensor, 23, 35 
Energy-momentum vector, 22, 27, 35 
Euclidean space 

continuation of Feynman 
propagator, 44 

continuation of vacuum amplitude, 
41

Green functions, 41 
Euler-Lagrange equations, 16-17, 26, 

34, 170

Faddeev-Popov ghosts, 123-5 
Faddeev-Popov Lagrangian, 187, 189 
Faddeev-Popov procedure, 119-23 
Fermi coupling constant, 214 
Fermi statistics, at finite temperature, 

306
Fermion loops, 105-6 
Fermion mass matrix, 190, 192 
Fermion mass terms, 217 
Fermion masses 

in electroweak theory, 223, 233 
in grand unifield theory, 294-7 

Fermionic functional integration 
measure, 273 

Ferromagnet, 172

Feynman diagrams, 62-3 
for free scalar field theory, 45 

Feynman gauge, 126, 140, 261 
Feynman integrals, 81-5 
Feynman integrals in 2co dimensions, 

329
Feynman parameter, 82-3, 141 
Feynman propagator, 

diagramatic representation of scalar 
propagator, 46 

for Dirac field, 100 
for Faddeev-Popov ghosts, 126 
in momentum space for Dirac field, 

101, 128
in momentum space for scalar field 

theory, 44 
for scalar field theory, 43-4 

Feynman rules, 63, 187 
for electroweak counter terms, 248-58 
for electroweak gauge boson vertices,

224-231
for electroweak gauge bosons, 221,

225-6
for electroweak ghost particles, 222, 

224
for electroweak Goldstone bosons, 

222, 226, 228 
for electroweak Higgs particle, 222, 

226, 228
for Faddeev-Popov ghosts, 126, 128
for fermion antiparticles, 107-8
for fermion-fermion scattering, 107-8
for fermion loops, 105-6
for fermion propagators, 104
for gauge field interactions, 127-9
for /104 theory, 60
for momentum space, 64
for S-matrix elements, 70
for temperature Green functions, 312
for quarks in electroweak theory,

238, 240 
for Yukawa interactions, 103-6 
from counter terms, 86 

Field equations, for gauge field 
theories, 114 

Fine structure constant, 142, 232 
Finite temperature effective potential, 

313-14
at one loop order, 314-19, 321, 323
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Free energy, 315
Functional derivatives, 3, 13, 40-1, 48, 

122
for fermions, 99
with respect to spinor sources, 104 

Functional expansion 
in terms of connected Green 

functions, 46 
in terms of Green functions, 41 
in terms of o p i  Green functions, 48 
of effective action, 48 
of vacuum amplitude, 41

Gauge boson mass matrix, 186 
Gauge-fixing Lagrangian, 183, 186 
Gauge-fixing term, 34, 121, 124-5 
Gauge invariance, 170 

Abelian, 110 
non-Abelian, 113-14 

Gauge invariant Lagrangian 
for Abelian gauge field, 111 
for non-Abelian gauge fields, 114 
of renormalised Lagrangian, 131 

Gauge parameter (£), 289, 346 
Gauge transformation, 24, 30, 34 
Gaussian integral, 1 

for Grassmann variables, 96-9 
Gell-Mann k matrices, normalisation, 

299
Generating functional 

for connected Green functions, 46 
for Gauge theories, 123-5 
for Green functions, 40-1 
for Euclidean Green functions, 41 
for spinor field theories, 99 
in free scalar field theory, 42-5 

Global transformation, 19, 24, 30 
Goldstone boson, 177, 179-80, 183, 

185, 187-8, 218, 224 
Goldstone modes, 220, 222 
Gordon reduction, 142 
Grand unification scale, 298, 305-6 
Grand unified theory, 198, 225, 298 
Grassmann variables, 28-9, 96, 210 

complex, 98, 123-4 
Green functions, 40 

connected, 46
for Faddeev-Popov ghosts, 136

Green functions (continued) 
for free scalar field theory, 45-7 
for gauge fields, 133-5 
for o p i , 66
for spinor field theories, 99 
high momentum behaviour, 149 
in Euclidean space, 41 
in momentum space, 46 
inserted, 157
one-particle-irreducible, 47-50 
unrenormalised, 144 

Ground state expectation values 
in quantum mechanics, 11-14 
in terms of ground state amplitude, 

14
Ground-state-to-ground-state

amplitude, in quantum mechanics, 
8-11

Group generators, normalisation, 114 
Group theory factors, 135, 137, 139 

in renormalisation group equation, 
146

Hadronic weak current, 252 
Hamiltonian, 22 
Hamiltonian density, 22, 39, 41 
Heisenberg picture, 5 
Helicity, 31, 33, 37 
Higgs field, 174, 183, 187-9, 209 
Higgs mechanism, 180 

in non-Abelian theories, 185 
Higgs model, 180, 207

at finite temperature, 334-6, 340 
Higgs scalar, 337 

breaking SU(5) symmetry, 307-8 
for electroweak breaking, 309 

Higgs scalar mass, 342 
Higgs scalar potential 

for SU(5) breaking, 308

Identical fermions, factors in 
scattering amplitudes, 108 

In and out fields, 54—5 
Infinities, 75, 79
Infrared divergence, 83, 139, 142 
Instantons, 212-3 
Invariant amplitude, for fermion- 

fermion scattering, 108
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Klein-Gordon equation, 21

Lagrange multiplier, 34 
Lagrangian, 15 
Lagrangian density, 15, 41 
Lagrange’s equations, 16 
Landau gauge, 126, 148-9, 208, 210 
Lepto-quarks, 301, 303 

masses, 309 
Leptonic current, 330 
Light cone, 152-3 
Light cone coordinates, 151-2 
Local gauge invariance, 34, 79 
Logarithmic divergence, 77 
Loop expansion, 201, 207 
Lorentz (gauge) condition, 34-5, 170, 

183
Lorentz transformation, 23

Magnetic charge, 200 
Magnetic monopoles, 193-200 
Magnetisation, 172 
Mass-independent renormalisation 

schemes, 91 
Massless fermions 

generating functional, 106 
propagators, 107 

Matsubara frequencies 
for bosons, 318 
for fermions, 323 

Maxwell’s equations, 17, 33 
Minimal subtraction (m s), 90, 206 

in gauge theory, 133 
m s scheme, 91, 206 

Momentum scheme, 92 
Muon decay, 249-252, 285

Noether current, 25, 31, 178 
Noether’s theorem, 18-19 
Non-Abelian gauge field theory, 112-15 
Non-Abelian gauge symmetry, 177 
Non-Abelian gauge transformations, 

112-13
Normalisation factor, for generating 

functional, 42

On-mass-shell electrons, 141 
On-shell scheme, 93

One-particle-irreducibility, of Green 
functions, 47-50 

Operator product expansion, 152-3 
Optical theorem, 151

Parity, 31, 190-1 
Partition function, 315 

as a path integral, 317 
for fermions, 322-324 
for free scalar field, 317-320 
for gauge fields, 320-322 

Path integrals 
for Grassmann variables, 96-9 
for Grassmann variables in 

Minkowski space, 98-100 
Gaussian, 1-4
over conjugate momentum, 42 

Peccei Quinn symmetry, 223-4 
Perturbation series, with fermions, 104 
Perturbation theory, 60 
Phase transformation, 110 
Phase transition 

first order, 339-41 
second order, 336 

Physical renormalisation, 206 
Poincare transformation, 21, 27 
Polarisation vectors 

of a massive vector field, 171 
longitudinal, 171 

Pontryagin index, 213-4 
Prasad-Sommerfield solution, 197 
Projection operators, for gauge field 

propagators, 117-18, 126 
Proton decay, 309, 313

Quadratic divergence, 77 
in gauge theory, 133 

Quantum chromodynamics ( q c d ) ,  116, 
192

Quantum mechanics, 51 
Quarks, 236

Radiative corrections to muon decay, 
285-288

Renormalisable field theory, 75, 169 
Renormalisable interactions of fermions 

with scalars, 102
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Renormalisation, 74-8 
of A<£4 theory, 74-8, 85 

Renormalisation group coefficients, 
145-6

Renormalisation group equation, 145 
for Wilson coefficients, 157-8 
solution of, 146-7 

Renormalisation scheme, 88, 90, 260 
Renormalised coupling constant, 74 
Renormalised field, 75, 85 
Renormalised Lagrangian, for gauge 

theories, 131 
Renormalised mass, 74 
Representations of SU(5), for fermions, 

301
Rotation of contour, 10, 45, 76, 80 
Running coupling constants, 146 

in q c d ,  148 
in q e d ,  148 

Running gauge parameters, 146 
Running masses, 146 
R$ gauge, 183-4, 186

S-matrix element, 51-3, 69 
S-matrix generating functional, 55-9, 60 
Scalar electrodynamics, 180 
Scalar field theory, 20 
Scalar mass matrix, 179, 187 
Scalar product, in Euclidean space, 44 
Scattering amplitude, 51-9, 67, 69 

for gauge fields, 129 
relation to Green functions, 40 
with fermions, 107-8 

Scattering cross section, 70 
Schrodinger picture, 5 
Sirlin’s renormalisation scheme, 262 
Slavnov-Taylor identity, 289, 348-9 
Source terms, 8 

calculation from effective potential,
49

for gauge fields, 123-4 
in field theory, 40 

Spinor field, 25
Spontaneous symmetry breaking, 169-92 

and fermion masses, 196 
by radiative corrections, 206 
in a ferromagnet, 172 
of a continuous global symmetry, 175

Spontaneous symmetry breaking 
((continued) 

of a discrete symmetry, 173 
of a local gauge invariance, 180 
of SU(2) x U(l), 235 

Strong c p  problem, 222-3 
SU(2) x U(l) invariance, 233 
Symmetric phase, 338, 341, 343 
Symmetry factors, 134

Tadpole diagrams, 275 
Temperature Green functions, 324-7, 

329-30 
Feynman rules, 328 

Time-ordered product 
for spinor fields, 99 
of operators, 12-13 
of scalar fields, 40 

Transition amplitude, 51 
as path integrals, 5-8 
as path integrals in quantum field 

theory, 39 
Hamiltonian form, 7 
Lagrangian form, 8 
with external source, 8 

Tunnelling, at first-order phase 
transition, 327 

Twist, 153

Ultraviolet divergence, 76 
Unitary gauge, 183, 186

Vacuum expectation value (v e v ) , 174 
of a field operator, 47 

Vacuum polarisation diagrams, in 
gauge theory, 133 

Vacuum state, 40 
0 vacuum, 216, 218-9 

Vacuum-to-vacuum amplitude, 40-2 
expansion in terms of Green 

functions, 41 
in Hamiltonian form, 41 
in Lagrangian form, 42 
in presence of a source, 47 

Vector boson propagator, 170, 184 
Vector field, 33 
Vector potential, 17, 33 
Vertex renormalisation, for gauge 

theories, 138-40
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W mass, 249 
Wave equation, 17 
Wave function, 52 
Wave function renormalisation 

constant, 85 
Weak current, 226-7 
Weak hypercharge, 233, 254 
Weak isospin, 231-2, 254 
Weak mixing angle (0W), 234 

from grand unification, 305-6 
Weinberg’s theorem, 78

Weyl representation, 32-3 
Weyl spinor, 32 

generating functional, 106 
propagators, 107 

Wick rotation, 10, 45, 76, 80

Yang-Mills fields, 114
Yukawa interaction, 102, 238, 247, 256

Z mass, 249
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